

Lecture Notes in Computer Science 4910
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Viliam Geffert Juhani Karhumäki
Alberto Bertoni Bart Preneel
Pavol Návrat Mária Bieliková (Eds.)

SOFSEM 2008:
Theory and Practice
of Computer Science

34th Conference on Current Trends
in Theory and Practice of Computer Science
Nový Smokovec, Slovakia, January 19-25, 2008
Proceedings

13

Volume Editors

Viliam Geffert
P. J. Šafárik University, 04154 Košice, Slovakia
E-mail: villiam.geffert@upjs.sk

Juhani Karhumäki
University of Turku, 20014 Turun Yliopisto, Finland
E-mail: karhumak@utu.fi

Alberto Bertoni
Università degli Studi, 20135 Milano, Italy
E-mail: bertoni@dsi.unimi.it

Bart Preneel
Katholieke Universiteit Leuven, 3001 Leuven-Heverlee, Belgium
E-mail: bart.preneel@esat.kuleuven.be

Pavol Návrat
Mária Bieliková
Slovak University of Technology, 81243 Bratislava, Slovakia
E-mail: {navrat,bielik}@fiit.stuba.sk

Library of Congress Control Number: 2007942547

CR Subject Classification (1998): F.2, F.1, D.2, H.3, H.2.8, H.4, F.3-4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77565-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77565-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12212293 06/3180 5 4 3 2 1 0

Preface

This volume contains the invited and the contributed papers selected for pre-
sentation at SOFSEM 2008, the 34th Conference on Current Trends in Theory
and Practice of Computer Science, which was held January 19–25, 2008, in the
Atrium Hotel, Nový Smokovec, High Tatras in Slovakia.

SOFSEM (originally SOFtware SEMinar), as an annual international con-
ference devoted to the theory and practice of computer science, aims to foster
cooperation among professionals from academia and industry working in all areas
in this field. Developing over the years from a local event to a fully international
and well-established conference, contemporary SOFSEM continues to maintain
the best of its original Winter School aspects, such as a high number of invited
talks and in-depth coverage of novel research results in selected areas within
computer science. SOFSEM 2008 was organized around the following tracks:

– Foundations of Computer Science (Chair: Juhani Karhumäki)
– Computing by Nature (Chair: Alberto Bertoni)
– Networks, Security, and Cryptography (Chair: Bart Preneel)
– Web Technologies (Chair: Pavol Návrat)

The SOFSEM 2008 Program Committee consisted of 75 international ex-
perts, representing active areas of the SOFSEM 2008 tracks with outstanding
expertise and an eye for current developments, evaluating the submissions with
the help of 169 additional reviewers.

An integral part of SOFSEM 2008 was the traditional Student Research Fo-
rum (chaired by Mária Bieliková), organized with the aim of presenting student
projects in the theory and practice of computer science and to give students feed-
back on both originality of their scientific results and on their work in progress.
The papers presented at the Student Research Forum were published in a sepa-
rate local proceedings.

In response to the call for papers, SOFSEM 2008 received 162 submissions.
After a careful reviewing process (mostly with three or four reviewers per paper),
followed by a detailed electronic discussion, a total of 57 papers were selected
for presentation at SOFSEM 2008, following the strictest criteria of quality and
originality. In addition, this volume contains full texts or extended abstracts of
10 invited papers.

From among 44 papers falling into the student category, 13 were accepted for
this volume. The Track Chairs also selected the best student paper: “Computing
Longest Common Substring and all Palindromes from Compressed Strings,” by
W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashi-
moto. Furthermore, 13 student papers were presented at the SOFSEM 2008
Student Research Forum, based on the recommendation by the PC members
and approved by the Track Chairs.

VI Preface

As the editors of these proceedings, we are indebted to all the contributors
to the scientific program of the conference, especially to the invited speakers
and all authors of the contributed papers. We also thank all authors who re-
sponded promptly to our requests for minor modifications and corrections in
their manuscripts. Last but not least, we would like to thank the members of
the Program Committee and all additional reviewers for their work.

November 2007 Viliam Geffert
Juhani Karhumäki

Alberto Bertoni
Bart Preneel
Pavol Návrat

Mária Bieliková

Organization

Program Committee

Foundations of Computer Science

Juhani Karhumäki Turku, Finland, Chair
Marie-Pierre Béal Marne la Valée, France
Wit Foryś Kraków, Poland
Viliam Geffert Košice, Slovakia
Lane A. Hemaspaandra Rochester/NY, USA
Hendrik J. Hoogeboom Leiden, The Netherlands
Oscar H. Ibarra Santa Barbara/CA, USA
Pawel M. Idziak Kraków, Poland
Rastislav Královič Bratislava, Slovakia
Mojmir Křet́ınský Brno, Czech Republic
Luděk Kučera Prague, Czech Republic
Markus Lohrey Stuttgart, Germany
Markus Nebel Kaiserslautern, Germany
Damian Niwinski Warszawa, Poland
Alexander Okhotin Turku, Finland
Pekka Orponen Helsinki, Finland
Dana Pardubská Bratislava, Slovakia
Michel Rigo Liège, Belgium
Sebastian Seibert Zürich, Switzerland
Imrich Vrt’o Bratislava, Slovakia
Jǐŕı Wiedermann Prague, Czech Republic
Detlef Wotschke Frankfurt a/M., Germany
Sheng Yu London/ON, Canada
Wies�law Zielonka Paris, France

Computing by Nature

Alberto Bertoni Milan, Italy, Chair
Gabriela Andrejková Košice, Slovakia
Bartlomiej Beliczynski Warsaw, Poland
Christian Choffrut Paris, France
Marco Dorigo Brussels, Belgium
Rūsiņš Freivalds Rı̄ga, Latvia
Rudolf Freund Vienna, Austria
Pascal Koiran Lyon, France
Věra Kůrková Prague, Czech Republic

VIII Organization

Giancarlo Mauri Milan, Italy
Carlo Mereghetti Milan, Italy
Ashwin Nayak Waterloo/ON, Canada
Bernardete Ribeiro Coimbra, Portugal
John G. Taylor London, UK
György Vaszil Budapest, Hungary
Ingo Wegener Dortmund, Germany

Networks, Security, and Cryptography

Bart Preneel Leuven, Belgium, Chair
Tuomas Aura Cambridge, UK
Michael Backes Saarbrücken, Germany
Dan Bailey Bedford/MA, USA
Bruno Crispo Trento, Italy
George Danezis Leuven, Belgium
Ian Goldberg Waterloo/ON, Canada
Marc Joye Cesson-Sévigné, France
Aggelos Kiayias Storrs/CT, USA
Vlastimil Kĺıma Prague, Czech Republic
Chris Mitchell London, UK
David Naccache Paris, France
Mats Näslund Stockholm, Sweden
Frank Piessens Leuven, Belgium
Ahmad Sadeghi Bochum, Germany
Pim Tuyls Eindhoven, The Netherlands

Web Technologies

Pavol Návrat Bratislava, Slovakia, Chair
András Benczur Budapest, Hungary
Mária Bieliková Bratislava, Slovakia
Paul Brna Glasgow, UK
Peter Brusilovsky Pittsburgh/PA, USA
Alexandra I. Cristea Warwick, UK
Peter Dolog Aalborg, Denmark
Ladislav Hluchý Bratislava, Slovakia
Geert-Jan Houben Brussels, Belgium
Wolfgang Nejdl Hannover, Germany
Ján Paralič Košice, Slovakia
Dimitris Plexousakis Heraklion, Greece
Jaroslav Pokorný Prague, Czech Republic
Karel Richta Prague, Czech Republic

Organization IX

Petr Šaloun Ostrava, Czech Republic
Július Štuller Prague, Czech Republic
Peter Vojtáš Praha, Czech Republic
Bartosz Walter Poznań, Poland
Jaroslav Zendulka Brno, Czech Republic

List of Additional Reviewers

Stefano Aguzzoli, Gorjan Alagic, Jürgen Albert, Rajeev Alur, András Antos,
Vikraman Arvind, Marian Babik, Zoltán Balogh, Jǐŕı Barnat, Simone Bassis,
Dietmar Berwanger, Hans-Joachim Böckenhauer, Frank de Boer, Bernard Boige-
lot, Olivier Bournez, Tomáš Brázdil, Robert Brijder, Václav Brožek, Ivana Bu-
dinská, Martin Burger, Thierry Cachat, Peter Cameron, Alexandre Campo,
Christophe De Cannière, Olivier Carton, Elena Casiraghi, Jérémie Chalopin,
Jan Chomicki, Robin Cockett, Elena Czeizler, Eugen Czeizler, Lieven Desmet,
Dwight Deugo, Volker Diekert, Didier Dubois, Eric Duchêne, Alain Durand,
Szilárd-Zsolt Fazekas, Thomas Fernique, Vojtěch Forejt, Dominik Freydenberger,
Cesare Furlanello, Fabio Gaducci, Jean-Marie Gaillourdet, Leo Galamboš, Yuan
Gao, Emil Gatial, Stefan Göller, Rodrigo Gonzalez, Tomasz Gorazd, Sylvain
Gravier, Jaros�law Grytczuk, Giovanna Guaiana, Grzegorz Gutowski, Harri Haan-
pää, Julien Hendrickx, Kevin Henry, Alain Hertz, Mika Hirvensalo, Jan Holeček,
Antti Hyvärinen, Sebastiaan Indesteege, Damien Jamet, Petr Jančar, Ryszard
Janicki, Artur Jeż, Ranjit Jhala, Galina Jirásková, Raphaël Jungers, Christos
Kapoutsis, Sabine Kappes, Jarkko Kari, Petteri Kaski, Julia Kempe, Alexei
Khvorost, Jetty Kleijn, Joachim Kneis, Eryk Kopczyński, Maciej Koutny, Jakub
Kozik, Stanislav Krajči, Richard Královič, Matthias Krause, Danny Krizanc,
Sven Krumke, Alexander Kulikov, Michal Kunc, Dietrich Kuske, Martin Kutrib,
Michal Laclavik, Jeroen Laros, Frédéric Lefèbfre, Pierre Lescanne, Hing Le-
ung, Hans Löhr, Tamás Lukovszki, Andreas Malcher, Dario Malchiodi, Adam
Malinowski, Sebastian Maneth, Wim Martens, Pavel Martyugin, Ayoub Mas-
soudi, Grzegorz Matecki, András Méhes, Larissa Meinicke, Alexandre Miquel,
Tobias Mömke, Filip Murlak, Uwe Nestman, Frank Neven, Gregory Neven, Linh
Anh Nguyen, Samuel Nicolay, Rolf Niedermeier, Jan Obdržálek, Marco Montes
de Oca, Peter Ochsenschläger, Elizaveta A. Okol’nishnikova, Alina Oprea, Krzysz-
tof Pancerz, Geneviève Paquin, Panos Pardalos, Radek Pelánek, Wojciech Pen-
czek, Milan Petković, Zoltán Petres, Justus Piater, Lecomte Pierre, Jean-Éric
Pin, Tomáš Plachetka, Wojciech Plandowski, Igor Potapov, Vladimir Prus, San-
guthevar Rajasekaran, Bala Ravikumar, Heiko Röglin, Andrea Roli, Dan Romik,
Miklos Santha, Martin Sauerhoff, Elisa Schaeffer, Karsten Schmidt, Georg Schnit-
ger, André Schumacher, Martin Seleng, David Shmoys, Detlef Sieling, Marek
Skomorowski, Boris Skorić, Sergey Sosnovsky, Fred Spiessens, Zdenko Stańıček,
Marcin Stefaniak, Patrick Stewin, Jan Strejček, Jianwen Su, Alexander Szabari,
Nathalie Sznajder, Paul Tarau, Torsten Tholey, Marco Trubian, Yih-Kuen Tsay,
Pawe�l Waszkiewicz, Frank Weinberg, Philipp Wölfel, Hsu-Chun Yen, Koen Ysk-
out, Hong-Sheng Zhou.

X Organization

Steering Committee

Július Štuller Institute of Computer Science, Czech Republic,
Chair

Mária Bieliková Slovak University of Technology, Slovakia
Bernadette Charron-Bost École Polytechnique, France
Keith Jeffery CCLRC, UK
Antońın Kučera Masaryk University Brno, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands
Branislav Rovan Comenius University in Bratislava, Slovakia
Petr Tůma Charles University in Prague, Czech Republic

Organizing Institutions

Institute of Computer Science, P. J. Šafárik University, Košice, Slovakia
Slovak Society for Computer Science
Institute of Computer Science of the Czech Academy of Sciences
Czech Society for Cybernetics and Informatics

Organizing Committee

Gabriela Andrejková, Jozef Gajdoš, Frantǐsek Galč́ık, Viliam Geffert,
Peter Gurský, Tomáš Horváth, Michal Mati, Peter Mlynárčik, Marián Novotný,
Dana Pardubská, Gabriel Semanǐsin (Chair), Eva Trenklerová

Sponsoring Institutions

Asseco Slovakia
Ditec — Data Information Technology & Expert Consulting
ERCIM — European Research Consortium for Informatics and Mathematics
Hewlett-Packard Slovakia
IBM Slovakia
Ness Slovakia
Siemens Slovakia
SOFTEC

Table of Contents

Invited Talks

Quantum Random Walks – New Method for Designing Quantum
Algorithms . 1

Andris Ambainis

Social Information Access: The Other Side of the Social Web 5
Peter Brusilovsky

Designing Adaptive Web Applications . 23
Peter Dolog

Best of Both: Using Semantic Web Technologies to Enrich User
Interaction with the Web and Vice Versa . 34

Martin Dzbor

On the Hardness of Reoptimization . 50
Hans-Joachim Böckenhauer, Juraj Hromkovič, Tobias Mömke, and
Peter Widmayer

Describing Self-assembly of Nanostructures . 66
Natasha Jonoska and Gregory L. McColm

On the Undecidability of the Tiling Problem . 74
Jarkko Kari

Remote Entrusting by Run-Time Software Authentication 83
Mariano Ceccato, Yoram Ofek, and Paolo Tonella

Trusted Computing—Special Aspects and Challenges 98
Ahmad-Reza Sadeghi

Optimizing Winning Strategies in Regular Infinite Games 118
Wolfgang Thomas

Foundations of Computer Science

Recursive Domain Equations of Filter Models . 124
Fabio Alessi and Paula Severi

Algorithmic Problems for Metrics on Permutation Groups 136
V. Arvind and Pushkar S. Joglekar

Periodic and Infinite Traces in Matrix Semigroups . 148
Paul Bell and Igor Potapov

XII Table of Contents

From Asynchronous to Synchronous Specifications for Distributed
Program Synthesis . 162

Julien Bernet and David Janin

Exact OBDD Bounds for Some Fundamental Functions (Extended
Abstract) . 174

Beate Bollig, Niko Range, and Ingo Wegener

Clustering-Based Similarity Search in Metric Spaces with Sparse
Spatial Centers . 186

Nieves Brisaboa, Oscar Pedreira, Diego Seco, Roberto Solar, and
Roberto Uribe

A Useful Bounded Resource Functional Language . 198
Michael J. Burrell, James H. Andrews, and Mark Daley

On Reachability Games of Ordinal Length . 211
Julien Cristau and Florian Horn

An Algorithm for Computation of the Scene Geometry by the Log-Polar
Area Matching Around Salient Points . 222

Bogus�law Cyganek

The Power of Tokens: Rendezvous and Symmetry Detection for Two
Mobile Agents in a Ring . 234

Jurek Czyzowicz, Stefan Dobrev, Evangelos Kranakis, and
Danny Krizanc

How Much Information about the Future Is Needed? 247
Stefan Dobrev, Rastislav Královič, and Dana Pardubská

On Compiling Structured Interactive Programs with Registers and
Voices . 259

Cezara Dragoi and Gheorghe Stefanescu

Optimal Orientation On-Line . 271
Lech Duraj and Grzegorz Gutowski

Some Tractable Instances of Interval Data Minmax Regret Problems:
Bounded Distance from Triviality . 280

Bruno Escoffier, Jérôme Monnot, and Olivier Spanjaard

Assisted Problem Solving and Decompositions of Finite Automata 292
Peter Gaži and Branislav Rovan

Energy-Efficient Windows Scheduling . 304
Christian Gunia

A New Model to Solve the Swap Matching Problem and Efficient
Algorithms for Short Patterns . 316

Costas S. Iliopoulos and M. Sohel Rahman

Table of Contents XIII

Certification of Proving Termination of Term Rewriting by Matrix
Interpretations . 328

Adam Koprowski and Hans Zantema

Extension of Rescheduling Based on Minimal Graph Cut 340
Marián Lekavý and Pavol Návrat

Deriving Complexity Results for Interaction Systems from 1-Safe Petri
Nets . 352

Mila Majster-Cederbaum and Christoph Minnameier

Computing Longest Common Substring and All Palindromes from
Compressed Strings . 364

Wataru Matsubara, Shunsuke Inenaga, Akira Ishino,
Ayumi Shinohara, Tomoyuki Nakamura, and Kazuo Hashimoto

Basic Sets in the Digital Plane . 376
Neža Mramor-Kosta and Eva Trenklerová

Algebraic Optimization of Relational Queries with Various Kinds of
Preferences . 388

Radim Nedbal

Mortality Problem for 2 × 2 Integer Matrices . 400
C. Nuccio and E. Rodaro

Element Distinctness and Sorting on One-Tape Off-Line Turing
Machines . 406

Holger Petersen

Improved Bounds for Range Mode and Range Median Queries 418
Holger Petersen

An Automata Theoretic Approach to Rational Tree Relations 424
Frank G. Radmacher

Slicing Petri Nets with an Application to Workflow Verification 436
Astrid Rakow

Lower Bound for the Length of Synchronizing Words in
Partially-Synchronizing Automata . 448

Adam Roman and Wit Foryś

Verifying Parameterized taDOM+ Lock Managers . 460
Antti Siirtola and Michal Valenta

Untangling a Planar Graph . 473
Andreas Spillner and Alexander Wolff

XIV Table of Contents

Computing by Nature

Quantum Walks with Multiple or Moving Marked Locations 485
Andris Ambainis and Alexander Rivosh

Parallel Immune System for Graph Coloring . 497
Jacek Da̧browski

The Quantum Complexity of Group Testing . 506
Sebastian Dörn and Thomas Thierauf

Quantum Walks: A Markovian Perspective . 519
Diego de Falco and Dario Tamascelli

A Memetic Algorithm for Global Induction of Decision Trees 531
Marek Krȩtowski

Geometric Rates of Approximation by Neural Networks 541
Věra K̊urková and Marcello Sanguineti

A Sensitive Metaheuristic for Solving a Large Optimization Problem . . . 551
Camelia-M. Pintea, Camelia Chira, D. Dumitrescu, and
Petrica C. Pop

Networks, Security, and Cryptography

Domain Name System as a Memory and Communication Medium 560
Dušan Bernát

Strong Authentication over Lock-Keeper . 572
Feng Cheng and Christoph Meinel

Short Ballot Assumption and Threeballot Voting Protocol 585
Jacek Cichoń, Miros�law Kuty�lowski, and Bogdan Wȩglorz

Practical Deniable Encryption . 599
Marek Klonowski, Przemys�law Kubiak, and Miros�law Kuty�lowski

Taming of Pict . 610
Matej Koš́ık

Classification, Formalization and Verification of Security Functional
Requirements . 622

Shoichi Morimoto, Shinjiro Shigematsu, Yuichi Goto, and
Jingde Cheng

ONN the Use of Neural Networks for Data Privacy 634
Jordi Pont-Tuset, Pau Medrano-Gracia, Jordi Nin,
Josep-L. Larriba-Pey, and Victor Muntés-Mulero

Table of Contents XV

Threshold Privacy Preserving Keyword Searches . 646
Peishun Wang, Huaxiong Wang, and Josef Pieprzyk

Web Technologies

3D XML: A Three-Dimensional XML-Based Model 659
Khadija Ali and Jaroslav Pokorný

Visual Exploration of RDF Data . 672
Jǐŕı Dokulil and Jana Katreniaková

Creation, Population and Preprocessing of Experimental Data Sets for
Evaluation of Applications for the Semantic Web . 684

György Frivolt, Ján Suchal, Richard Veselý, Peter Vojtek,
Oto Vozár, and Mária Bieliková

Algorithm for Intelligent Prediction of Requests in Business Systems . . . 696
Piotr Kalita, Igor Podolak, Adam Roman, and Bartosz Bierkowski

Mining Personal Social Features in the Community of Email Users 708
Przemys�law Kazienko and Katarzyna Musia�l

Proofs of Communication and Its Application for Fighting Spam 720
Marek Klonowski and Tomasz Strumiński

Web Pages Reordering and Clustering Based on Web Patterns 731
Miloš Kudělka, Václav Snášel, Ondřej Lehečka,
Eyas El-Qawasmeh, and Jaroslav Pokorný

Compression of Concatenated Web Pages Using XBW 743
Radovan Šesták and Jan Lánský

The Dynamic Web Presentations with a Generality Model on the News
Domain . 755

Hyun Woong Shin, Eduard Hovy, and Dennis McLeod

A Highly Efficient XML Compression Scheme for the Web 766
Przemys�law Skibiński, Jakub Swacha, and Szymon Grabowski

Improving Semantic Search Via Integrated Personalized Faceted
and Visual Graph Navigation . 778

Michal Tvarožek, Michal Barla, György Frivolt, Marek Tomša, and
Mária Bieliková

Author Index . 791

Quantum Random Walks – New Method for

Designing Quantum Algorithms

Andris Ambainis�

Department of Computer Science, University of Latvia, Raina bulv. 19, Riga,
LV-1586, Latvia

andris.ambainis@lu.lv

Abstract. Quantum walks are quantum counterparts of random walks.
In the last 5 years, they have become one of main methods of designing
quantum algorithms. Quantum walk based algorithms include element
distinctness, spatial search, quantum speedup of Markov chains, evalua-
tion of Boolean formulas and search on ”glued trees” graph. In this talk,
I will describe the quantum walk method for designing search algorithms
and show several of its applications.

1 Quantum Algorithms: An Overview

Quantum computing (and, more broadly, quantum information science) is a new
area at the boundary of computer science and physics. The laws of quantum me-
chanics are profoundly different from conventional physics. Quantum computing
studies how to use them for the purposes of computer science and information
processing.

The area of quantum computing was shaped by the discoveries of two major
quantum algorithms in mid-1990s. The first of the two was Shor’s polynomial
time quantum algorithm for factoring and discrete logarithms.

Factoring and discrete logarithm are very hard number theoretic problems. The
difficulty of these problems has been used to design cryptosystems (such as RSA
and Diffie-Helman key exchange) for secure data transmission over an insecure
network (such as Internet). The security of data transmission rests on the assump-
tion that it is hard to factor (or find discrete logarithm of) large numbers. Until
recently, this assumption was not in doubt. Mathematicians had tried to devise
an efficient way of factoring large numbers for centuries, with no success.

In 1994, Shor [26] discovered a fast algorithm for factoring large numbers - on a
quantum mechanical computer. This shook up the foundations of cryptography.
If a quantum mechanical computer is built, today’s methods for secure data
transmission over the Internet will become insecure.

Another, equally strikingly discovery was made in 1996, by Lov Grover [18].
He invented a quantum algorithm for speeding up exhaustive search problems.
Grover’s algorithm solves a generic exhaustive search problem with N possible
solutions in time O(

√
N). This provides a quadratic speedup for a range of

search problems, from ones that are solvable in polynomial time classically to
NP-complete ones.
� Supported by University of Latvia Grant Y2-ZP01-100.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 1–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 A. Ambainis

Since then, each of the two algorithms has been analyzed in great detail. Shor’s
algorithm has been generalized to solve a class of algebraic problems that can be
abstracted to Abelian hidden subgroup problem [20]. Besides factoring and discrete
logarithm, the instances of Abelian HSP include cryptanalysis of hidden linear
equations [8], solving Pell’s equation, principal ideal problem [19] and others.

Grover’s algorithm has been generalized to the framework of amplitude am-
plification [10] and extended to solve problems like approximate counting [12,25]
and collision-finding [11].

More recently, two new methods for designing quantum algorithms have
emerged: quantum walks [2,21] and adiabatic algorithms [15].

2 Quantum Walks

The main quantum algorithms that use quantum walks are:

1. Quantum walk on the ”glued trees” graph [13].
Consider a problem in which we have a graph G with two particular vertices
u, v, designed as the entrance and the exit. The problem is to find the vertex
v, if we start at the vertex u.

There is a special exponential size graph called ”glued trees” on which any
classical algorithm needs exponential time to find v but a quantum algorithm
can find v in polynomial time [13].

2. An optimal quantum algorithm for element distinctness [3].
In the element distinctness problem, we are given variables x1, . . . , xN ∈
{1, . . . , M}. Our task is to determine if there are two equal ones among them.
The values xi are given via a black box which answers queries. An input to
a query is i, the output is xi. Classically (i.e., for non-quantum algorithms),
Ω(N) queries are required. In quantum case, we can use quantum walks to
design a quantum algorithm that solves element distinctness with O(N2/3)
queries. This is known to be optimal [1,4].

3. A quantum algorithm for search on grids [6,14].
In the spatial search problem, we have N items arranged on a d-dimensional
grid. The task is to find an item with a certain property (a “marked” item).
In one time step, we can perform one of two operations:
– check if the item at the current location is marked;
– move to an adjacent location on the grid.
This problem is harder than Grover’s search problem, since we are only

permitted to move to an adjacent location in one step (instead of being able
to move to an arbitrary location).

Classical complexity of the problem isΩ(N). In the quantumcase, the prob-
lem can be solved either by a discrete time quantum walk [6] or a continuous
time quantum walk [14]. Both of those approaches give a quantum algorithm
that runs in time O(

√
N) for d ≥ 3 and time O(

√
N log2 N) for d = 2.

4. A quadratic quantum speedup for hitting times of Markov chains [27,23].
Let M be a reversible and irreducible classical Markov chain in which some

states are marked. Let T be the expected time to reach a marked state, if we

Quantum Random Walks – New Method for Designing Quantum Algorithms 3

start the Markov chain M in a uniformly random state. Then, a quantum
algorithm of [27,23] can find a marked state in time (roughly) O(

√
T).

Quantum algorithms for both element distinctness problem and search on
the grid are special cases of this algorithm.

5. A quantum algorithm for finding triangles in a graph [24,23].
In this problem, we have a graph on n vertices, specified by n2 variables
ai,j that are 1 if there is an edge between vertices i and j. Classically, Ω(n2)
queries are required. Using the ideas from the element distinctness algorithm,
one can design a O(n1.3 logc n) query quantum algorithm [24]. This has been
refined to O(n1.3) query quantum algorithm by [23].

6. A quantum algorithm for testing matrix identities [9,22].
We have three n × n matrices A, B and C and are allowed to query the
matrix elements. We would like to test if AB = C. The classical complexity
of the problem is Θ(n2). (An Ω(n2) query lower bound is easy. Querying
all elements allows to solve the problem with 3n2 queries. There is also a
probabilistic algorithm whose total running time is O(n2) [17].)

Using quantum Markov chain results of [27], Buhrman and Špalek [9] have
constructed a O(n5/3) query quantum algorithm for this problem. Magniez
and Nayak [22] have shown how to use quantum walks to test if a group
operation (specified by a table which is accessed by queries) is commutative.

7. A quantum algorithm for evaluating Boolean formulas [16,5].
Using quantum walks, [16,5] have shown that any Boolean formula (consist-
ing of AND, OR, NOT gates) of size m can be evaluated using O(m1/2+o(1))
queries to the variables in the formula.

This is nearly optimal: if the formula is read-once (every variable occurs
exactly once), Ω(m) queries are required.

In this talk, we will describe the quantum walk methodology and some of the
results listed above.

For a broader (although slightly outdated) survey on quantum walks, we refer
the reader to [2,21].

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. Journal of ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum walks and their algorithmic applications. International
Journal of Quantum Information 1, 507–518 (2003)

3. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings
of FOCS 2004, pp. 22–31 (2004)

4. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: collision
and element distinctness with small range. Theory of Computing 1, 37–46 (2005)

5. Ambainis, A., Childs, A., Reichardt, B., Spalek, R., Zhang, S.: Any AND-OR
formula of size N can be evaluated in time N1/2+o(1) on a quantum computer. In:
Proceedings of FOCS 2007, pp. 363–372 (2007)

6. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Pro-
ceedings of SODA 2005, pp. 1099–1108 (2005)

4 A. Ambainis

7. Barnum, H., Saks, M.: A lower bound on the quantum complexity of read once
functions. Journal of Computer and System Sciences 69, 244–258 (2004)

8. Boneh, D., Lipton, R.: Quantum cryptanalysis of hidden linear functions (extended
abstract). In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437.
Springer, Heidelberg (1995)

9. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings
of SODA 2006, pp. 880–889 (2006)

10. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. In: Quantum Computation and Quantum Information Science.
AMS Contemporary Mathematics Series, vol. 305, pp. 53–74 (2002)

11. Brassard, G., Hoyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998)

12. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 820–831. Springer, Heidelberg
(1998)

13. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Ex-
ponential algorithmic speedup by quantum walk. In: Proceedings of STOC 2003,
pp. 59–68 (2003)

14. Childs, A.M., Goldstone, J.: Spatial search and the Dirac equation. Physical Review
A 70, 42312 (2004)

15. Farhi, E., Goldstone, J., Gutman, S., Sipser, M.: A quantum adiabatic algorithm ap-
plied to random instances of an NP-complete problem. Science 292, 472–476 (2001)

16. Farhi, E., Goldstone, J., Gutman, S.: A Quantum Algorithm for the Hamiltonian
NAND Tree. arXiv preprint quant-ph/0702144

17. Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) MFCS 1979. LNCS,
vol. 74, pp. 57–69. Springer, Heidelberg (1979)

18. Grover, L.: A fast quantum mechanical algorithm for database search. In: Grover,
L. (ed.) Proceedings of STOC 1996, pp. 212–219 (1996)

19. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the prin-
cipal ideal problem. Journal of the ACM 54, 1 (2007)

20. Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup prob-
lem. IEEE Multimedia 3, 34–43 (1996)

21. Kempe, J.: Quantum random walks - an introductory overview. Contemporary
Physics 44(4), 307–327 (2003)

22. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. Al-
gorithmica 48(3), 221–232 (2007)

23. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In:
Proceedings of STOC 2007, pp. 575–584 (2007)

24. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle prob-
lem. SIAM Journal on Computing 37(2), 413–424 (2007)

25. Nayak, A., Wu, F.: The quantum query complexity of approximating the median
and related statistics. In: Proceedings of STOC 1999, pp. 384–393 (1999)

26. Shor, P.: Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing. In: Proceedings of FOCS 1994, pp. 124–134 (1994)

27. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings
of FOCS 2004, pp. 32–41 (2004)

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 5–22, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Social Information Access:
The Other Side of the Social Web

Peter Brusilovsky

School of Information Sciences, University of Pittsburgh
135 N. Bellefield Ave. Pittsburgh, PA 15260, USA

peterb@pitt.edu

Abstract. Modern Web, which is frequently called Social Web or Web 2.0,
celebrates the power of the user community. Most frequently it is associated
with the power of users as contributors or various kinds of contents through
Wikis, blogs, and resource sharing sites. However, the community power
impacts not only the production of Web content, but also the access to all kinds
of Web content. A number of research groups worldwide work on social
information access techniques, which help users get to the right information
using “community wisdom” distilled from tracked actions of those who worked
with this information earlier. The paper provides an overview of this research
stream focusing on social search, social navigation, and social visualization
techniques.

1 Introduction

Modern Web, which is frequently called Social Web or Web 2.0, celebrates the power
of the user community. Most frequently it is associated with the power of user
community as content contributors through Wikis, blogs, and resource sharing sites.
However, the power of community impacts not only the production of Web content,
but also the access to all kinds of Web content. A number or research groups
worldwide work on social information access technologies, which help users get to
the right information using “community wisdom” distilled from the actions of those
who worked with this information earlier. Social information access technologies
capitalize on the natural tendency of people to follow direct and indirect cues of
others’ activities, e.g. going to a restaurant that seems to attract many customers, or
asking others what movies to watch.

Social information access can be formally defined as a stream of research that
explores methods for organizing users’ past interaction with an information system
(known as explicit and implicit feedback), in order to provide better access to
information to the future users of the system. This stream has to be considered as
emerging. It covers a range of rather different systems and technologies operating on
a different scale - from a small closed corpus site to the whole Web. While the
technologies located on the different sides of this stream may not even recognize each
other as being a part of the same whole, the whole stream is driven by the same goals:
to use the power of a user community for improving information access.

6 P. Brusilovsky

The social information access is frequently considered as an alternative to the
traditional (content-based) information access. In most of the cases, social
information access can run in parallel with the traditional one, helping users to find
resources that would be hard to find in a traditional way. In other cases where
traditional information access is hard to organize (for example, in a collection of non-
indexed images), social mechanisms (such as tagging) can provide a handy
replacement. However, it has been more and more frequently demonstrated that most
benefits could be obtained by integrating social and traditional technologies, for
example, building hybrid recommender systems, which integrate collaborative and
content-based recommender mechanisms [10]. An important feature of all social
navigation systems is self-organization. Social navigation systems are able to work
with little or no involvement of human indexers, organizers, or other kinds of experts.
They are truly powered by a community of users.

As a type of information access, which can offer multiple benefits, while being
relatively easy to organize and maintain, social information access attracts more and
more researchers and practitioners. The paper provides an overview of this emerging
research stream while focusing primary on social search, social navigation, and social
visualization techniques.

2 The Emergence of Social Information Access

The pioneer work on social information access appeared in the early 1990s, but the
emergence of social information access as a research area happened between 1994
and 1996. This period brought many innovations in all areas related to information
access, as research teams investigated new approaches to help users in the rapidly
expanding information space. In the area of social information access, these years
produced two well-defined research streams: collaborative filtering and social
navigation.

Collaborative filtering [36; 45] attempted to propagate information items between
users with similar interests. This technology enabled social forms of information
filtering and recommendation. The emergence of collaborative filtering is typically
traced back to the Information Tapestry project and a seminal paper about it, which
coined the term [23]. Information Tapestry employed an approach, which was later
called pull-active collaborative filtering [36]: to receive social guidance, its users had
to actively query the community feedback left by earlier users. Another early example
of “active” filtering (in this case push-active) was provided by Lotus Notes
recommender [39], which encouraged users to send interesting documents directly to
their colleagues. While both of these examples were highly influential, the
mainstream work in the area of collaborating filtering focused on automatic
approaches based on matching users with similar interests and cross-recommending
positively-rated items. This direction was lead by such pioneer systems as GroupLens
[43], Ringo [47], and Video Recommender [26].

Social navigation [13] in its early forms attempted to visualize the aggregated or
individual actions of other community users. The motivation behind this work was
that that these “footprints” can help other community users to navigate through
information space. By its nature, social navigation supported user browsing activity.

 Social Information Access: The Other Side of the Social Web 7

The ideas of social navigation are frequently traced back to the pioneer Read Wear
and Edit Wear system [27]. This system visualized the history of authors’ and
readers’ interactions with a document enabling new users to quickly locate the most
viewed or edited parts of the document. Social navigation in information space as
well as the term social navigation was introduced two years later by Dourish and
Chalmers as “moving towards cluster of people” or “selecting subjects because others
have examined them” [16].

The pioneer systems Juggler [12] and Footprints [50] used the ideas of social
navigation to help users navigating in two kinds of information spaces – a Web site
and a text-based virtual environment (MOO). Both systems attempted to visualize
“wear” traces left by the system users in order to guide future users. In addition to this
indirect social navigation, Juggler also implemented several types of direct social
navigation (for example, allowing users to guide each other directly through chat).
This allowed Dieberger [12] to start the process of generalizing the ideas of social
navigation.

Further generalization of the field of social navigation was propelled by several
workshops, which gathered like-minded researchers, and publications, which steamed
from these workshops [14; 28; 41]. As a result of this active idea exchange, the scope
of social navigation was broadened to cover all approaches, which use social feedback
as a source of knowledge in assisting the users. The notion of social feedback was
also broadened to includes a variety of options – from navigation traces to rich
explicit feedback and resource annotations. The newly-defined field of social
navigation included two main groups of systems - collaborative filtering systems and
Footprints-type systems, which were referred to as history-enriched environments.

More recently, the set of social information access technologies was extended with
social search and social bookmarking systems. The research on collaborative
information retrieval [33] produced some truly social search systems that attempted to
help new searchers by capitalizing on past successful searches of similar users. The
pioneer AntWorld system [32] was soon followed by several similar systems such as
I-SPY [48] and SERF [30]. Another group of pioneer systems such as Siteseer [44],
PowerBookmarks [38], and WebTagger [34] started the collaborative bookmarking
research stream. Researchers working on collaborative bookmarking explored
different ways of bookmark sharing to help new users locate useful information
already discovered and classified by others and invented social tagging mechanism. In
less than 10 years social bookmarking and tagging system popularized by such
systems as del.icio.us or Flickr.com grew into a new major Internet technology [24].

It’s important to stress again that each social information access technology
achieved success by collecting community wisdom in a specific form, and enabling
users working with a specific information access paradigm to benefit from this. Being
quite different by nature, the social information access technologies have a lot in
common. Unfortunately, no recent attempts were made to provide a comprehensive
overview of these technologies. The important “unifying” books and papers on social
navigation [14; 28; 41] appeared too early to cover and integrate more recent
technologies. This paper attempts to fill this gap to some extent and provide a unified
view on all technologies listed above. It looks at the problem from the prospective of
information access, which is a slightly different and in some sense more narrow angle
than the one taken in the books cited above. The next section suggests a framework,

8 P. Brusilovsky

which can be used to classify existing social information access technologies. The
remaining sections focus on social search, browsing, and visualization, which are
arguably the least known social information access technologies.

3 A Taxonomy of Social Information Access Technologies

To understand differences between modern social information access systems, it is
useful to understand which type of information access they are attempting to support.
In an earlier paper we distinguished four major information access paradigms to
classify adaptive information access systems: ad-hoc information retrieval,
information filtering, hypertext browsing, and information visualization [9]. In ad-hoc
information retrieval (IR), users get access to relevant information by issuing a query
to an IR system or search engine and analyzing a ranked list of documents (for
example, book records), which are returned as a result. In information filtering (IF) an
information system attempts to recommend documents, which match the user’s long-
term interests. Traditional IF systems match a user-provided profile against a flow of
incoming documents (for example, news articles) to select the most relevant items for
the user. Modern recommender systems (often considered as an extension of IF)
construct dynamic user profiles by observing user interactions, and as a result can
produce new recommendations even in stable document collections. In hypertext
browsing, a user attempts to find relevant documents by browsing links that connect
documents in a collection. In information visualization, a set of documents is
presented to the user using some visualization metaphor in 2 or 3 dimensions; the user
observes or, in the case of interactive visualization, interacts with the visualized set to
find the most relevant documents.

The analysis of modern social information access technologies shows that different
technologies were, in fact, developed in conjunction with different information access
paradigms. The type of information access supported by a specific technology to a
large extent determines the nature of this technology and its difference from other
paradigms. For example, classic social navigation technologies (history-enriched
environments) were developed to support browsing-based access. This context
requires navigation support systems, which can help the users to decide, which of
many links on the current page to follow. The natural approach to using the
community wisdom is to show “where did the people go” [13] by augmenting links
with digital “wear” indicators. The natural approach to collect this wisdom is to track
user page visits [8] or link traversals [50].

Social search technologies were developed to support traditional IR information
access. In this context, users expect to see a ranked list of relevant resources. The
natural approach to using the community wisdom is to insert community-relevant
links into the list or results [30; 48] or stress, which of the returned documents are not
only relevant, but also appreciated by the community [2; 32]. A reliable approach to
collecting this wisdom is to track connections between queries and items selected or
rated by the community members in the context of these queries [30; 32; 48].

The presence of the context (such as current query or location in the hyperspace)
helps both IR and browsing systems to identify similar users without more
sophisticated tracking. These system can accumulate community wisdom by query,

 Social Information Access: The Other Side of the Social Web 9

by link, or by page – but not necessary by user. As a result, there is no need for a user
to login, although both kinds of systems can provide better service if the user can pick
up one of the sub-communities tracked by the system [19; 48]. As a result, social
search and browsing system are very easy to integrate into any kind of existing Web
systems.

In contrast, collaborative filtering technologies were designed to work in the most
challenging situation – long-term information filtering, i.e., in a situation with no
current context, As a result, collaborative filtering technologies have to track all user
activity on the individual level, construct detailed user profiles and apply
sophisticated approaches to match similar users.

Let’s skip social visualization, since this area is not sufficiently developed, and
move to social bookmaking. Social bookmarking technology presents an interesting
case in social information access. Unlike other listed technologies, modern social
bookmarking does not really augment any of the traditional information access
paradigms. Instead, it provides an alternative mechanism to access information using
community-contributed tags. In this case the social wisdom, which other social
systems accumulate in some hidden form “behind the stage”, becomes visible as a
tightly interlinking tag space. The information can be accessed through this tag space
using traditional access paradigms such as tag searching, tag navigation, or tag
visualization in the form of tag cloud. So, social tagging augments several traditional
information access paradigms by providing additional community-created space
where these paradigms can be applied.

As could be noticed from the discussion above, there are at least three different
levels on which social information technologies accumulate user information. The
most relaxing is the all-users level where a system does not distinguish its users and
accumulates all past usage activity “in a single pile”. This approach was used in
several early social search and browsing systems [12; 21; 32; 50] and is still
appropriate in the situations where the body of users is reasonably sized and their
information needs are similar [30; 37].

In the situation where the body of users is large and diverse (which is the case for
the majority of “open Web” systems), the presence of context such as the current
query or Web page become insufficient to reliably identify similar users. The
information needs of the users passing a specific link or issuing a specific query may
still be too diverse. This situation caused several recent social information access
projects such as I-SPY [48], Knowledge Sea II [17], Conference Navigator [19], and
ASSIST [20] to start accumulated social wisdom for different subsets of the whole
body of users independently. The subsets could be of different nature and size – from
a community of like-minded users [19; 48], which can include hundreds, to a small
group of users (such as a college class) joined by the same information goal [17]. This
approach can be called community-level or group-level information access. In this
paper we will use the latter term, since it stresses the clear difference from “all-users”
approach. Group level access provides an attractive compromise between all-users
and individual level. It can provide very reliable social guidance without a
requirement to authenticate, which can be a stumbling point for several reasons [48].
Comparable with all-user level, group-level approaches sort user feedback in multiple
“group bins”, which may result in community wisdom becoming too sparse. The
challenge for the developers of group-level social systems is to engineer the groups of

10 P. Brusilovsky

the proper size to make sure that the volume of social feedback is sufficient for useful
guidance. If the volume of social information provided by an average user is large and
the volume of resources used by a group is not large, some good social guidance can
be provided even for small groups of users. In addition, the problem of sparsity in
group-level systems can be addressed by propagation of social feedback between
groups [22].

The most fine-grained level of wisdom collection is user-level, where each piece of
feedback is associated with an individual user and accumulated in the profile of this
user. User-level tracking is a standard for personalized information access techniques
such as adaptive navigation support [7] or personalized search [40]. Among social
information access systems, user-level tracking is critical only for collaborative
filtering systems. However, modern approaches to increasing user contributions in
social systems such as incentives [11] or “do it for yourself” [18; 19] may require
user-level tracking in any kind of social information access systems. User-level
tracking adds another burden to the developers of a social information system: how to
attribute all kinds of feedback left by an individual user to the profile of that user. To
some limited extent, it can be done by tracking a user within a single session, but in
general case it requires a long-term user profiling and reliable user authentication
(such as password-protected login).

Due to the lack of space, this paper offers no further attempts to classify social
information access systems. Instead, we refer to several collaborative filtering and
social navigation papers [13; 36; 45; 49], which offer several useful dimensions to
classify social systems. While each of these dimensions was suggested to classify a
special group of systems, most of them can be successfully applied to classify all
kinds of social information access approaches.

The remaining sections attempt to provide examples of social navigation
technologies discussed above. Since both collaborative filtering and social tagging are
rather well publicized in research literature, the presentation is focused on the least
known social navigation, social search, and social visualization technologies.

4 Social Browsing

Social browsing systems use “community wisdom” to assist their users in the process
of browsing a hyperspace or another virtual environment (such as MUD). As
mentioned before, social browsing support systems collect the community wisdom by
tracking two kinds of information – link traversals (link-centric approach) and page
visits (page-centric). While these kinds of information look similar, they are quite
different and each has its own advantage. Link traversal is the most browsing-specific
kind of information. It allows not just counting how many users visited a specific
page, but also distinguishing where they came from, i.e. the context in which this visit
took place. The context in hypertext is quite important. Visiting the same page may be
very relevant for the community members in one context (i.e., from one page linked
to it) and much less relevant in the other context (i.e., from another linked page).
While link-centric approaches take this context into account, they still do not track
user activities within a page and this can’t distinguish links to really useful pages
from “tar pits” – low-value pages hidden behind attractive links. In contrast,

 Social Information Access: The Other Side of the Social Web 11

page-centric approaches do not distinguish how the community users get to a specific
page. It decreases the precision of system advice and makes is necessary to group
users in reasonably homogeneous communities and track navigation within each
community. At the same time, it is easier for page centric approaches to take into
account user behavior within each page (time spent, browsing, annotation) and thus
distinguish good pages from tar pits.

Most of the early social browsing systems were link centered, although they still
differ in respect to how the accumulated link traversal information was used. One
kind of systems followed the traditions of intelligent hypertext and used link traversal
information to periodically modify and expand the hyperspace link structure. For
example, a system presented in [5] can add a link from page A to page C if existing
links from A to B and from B to C were frequently used in succession. This kind of
re-structuring typically requires global log analysis and is better performed off-line.
The other kind of systems was inspired by the social navigation ideas and used link
traversal information to dynamically generate history-enriched environments, where
the behavior of past users is made visible.

A classic example of a link-centric history-enriched system is Juggler [12]. Juggler
is a MOO system, a text-based virtual environment, which is conceptually similar to
hypertext. A MOO system consists of rooms connected by passages. Every room exit
in Juggler tracked how frequently it was used and showed this information (textually)
as wear on a door mat. Wear decayed over time in order to reflect the behavior of
natural environments, such as a path in the forest, which may fade and disappear if
not used frequently. This feature was introduced to guide people towards popular
locations and make encounters in the environment more likely. The same idea was
implemented in the Web navigation context in Footprints system, which visualizes
usage paths in a web site [50]. The Footprints system allows users to leave activity
traces in the virtual environment and visualizes these traces to guide future users.
With the Footprints system, new users can see the popularity of each link on the
current page and make navigation decisions.

An example of a simple page-centric social browsing system is CoWeb [13; 15].
CoWeb is a history-enriched Wiki system. To increase user awareness of what is
going on in the Wiki space and to guide the users to most recently updated or visited
pages all links inside the CoWeb were annotated with activity markers (Fig. 1). An
access marker showed access information using a metaphor of footprints. Small
footprint symbols in three different colors (gray, orange, red) were placed right next
to links to indicate the amount of traffic the page behind that link received in the past
24 hours. A novelty marker indicated another kind of community activity, which is
specific to Wiki: page updates. Using three different novelty levels, it indicated how
long ago that page was last modified.

A more sophisticated example of page-centric social browsing system is the
Knowledge Sea II [8]. Knowledge Sea II uses ideas of social navigation to support
both browsing and visualization access to information. The visualization-based access
is provided through an 8 by 8 cell-based map of the information space. This map is
assembled using Kohonen’s Self-Organized Map (SOM) technology [35] from about
25,000 Web pages devoted to C programming language. Every cell on a resulting map
provides access to a subset of these pages. By clicking on a cell, the user can open it
and get access to the set of pages located in this cell (Fig. 2). An interesting property

12 P. Brusilovsky

of SOM technology is that it places similar pages into the same or adjacent cells on
the map, so the result presents a reasonably good semantic map of the information
space. The cells of the map are marked by keywords, which are most frequently found
in its pages and by landmark resources located in the cell.

Fig. 1. Page-centric social browsing support in CoWeb. Two kinds of activity markers indicate
when the page behind the link was last modified and also whether it was recently accessed.
Used from [13] with the permission from the author.

The browsing-based access is provided through the hierarchical structure of the C
programming tutorials assembled by the system. Each tutorial site is organized as a
tree with table of contents, sections, and subsections. The home page of Knowledge
Sea II provides access to the root pages of all these tutorials. Starting from that, users
can navigate down to the sections or subsections of interest.

The community wisdom in Knowledge Sea II is collected by tracking two kinds of
page-centric user information: timed page visits (traffic) and page annotations. This
information is used to generate a history-enriched environment with two types of
visual cues, which change the appearance of links on the pages and map cells
presented to the user (Fig. 2). These cues are based on the two kinds of tracked
information and are known respectively as traffic- and annotation-based social
navigation support. The system generates appropriate cues individually for each user
by analyzing past individual activities of the user and other users belonging to the
same group.

 Social Information Access: The Other Side of the Social Web 13

Fig. 2. Social navigation support in the Knowledge Sea II system. The knowledge map is
shown on the top left and an opened cell on the right. The list of links to the tutorial roots is
shown on the bottom left. A darker blue background indicates documents and map cells that
have received more attention from users within the same group. Human icons with darker
colors indicate documents and cells that have received more attention from the user herself.
Similarly, a yellow background indicates density of annotations.

Traffic-based navigation support attempts to express how much attention the user
herself and other users from the same group paid to each of 25,000 pages that the
system monitors. The level of attention for a page is computed taking into account
both number of visits and time spent on the page and is displayed to the user through
an icon that shows a human figure on a blue background. The color saturation of the
figure expresses the level of the user’s own attention while the background color
expresses the average level of group attention. The higher the level of attention is, the
darker the color appears to the user. The contrast between colors allows the user to
compare her navigation history with the navigation of the entire group. For example, a
light figure on a dark background indicates a page that is popular among group
members but remains under-explored by the user. The color of the map cell and the
human figure shown in the cell is computed by integrating attention parameters of all
pages belonging to that cell.

Annotation-based navigation support uses a similar approach to represent the
number of page annotations made by the users from the same group. Users can
annotate each page in the system. Users can also indicate that a note is praise (i.e., the
page is good in some aspect). While users make annotations mainly for themselves,

14 P. Brusilovsky

Knowledge Sea II allows all users of the same group to benefit from collective
annotation behavior. The yellow annotation icon shown next to the blue traffic icon
shows the density and the “praise temperature” of annotation for each page. The more
annotations a page has, the darker the yellow background color appears to the user.
The temperature shown on a thermometer icon indicates the percentage of praise
annotations.

5 Social Search

Let’s start with narrowing down the notion of social search. Over the last 10 years,
researchers and practitioners suggested a number of creative approaches to use social
information for the improvement of Web search. The most well-known example is
Google PageRank [6], which improves ranking by using Web link structure - a
communal product of Web page authors. However, in the light of definition of social
information access suggested in the introduction, only a subset of these approaches
qualify as social search – those based on taking into account the past behavior of
information system users. Similar to the case of social browsing, the approaches
based on past search behavior can be further classified into off-line and on-line
approaches. Off-line approaches seek to use various kinds of social information to
improve indexing and ranking delivered by search engines. For example, weights of
query terms may be increased in the index of documents, which were selected in
response to this query [46]. On-line approaches seek to assist users in their search
dynamically by accessing the accumulated social information during the very search
process. By social search, modern sources traditionally mean on-line approaches. We
will follow this tradition below.

Social search approaches do not attempt to modify the behavior of search engines,
but instead apply the community wisdom before the search engine is invoked or after
the results are returned. Pre-search approaches use community wisdom for social
query expansion. This idea was suggested by Fitzpatrick and Dent [21] (who also
coined the term social search) and expanded in several other projects [3; 29]. Due to
the lack of space, we will not provide more details about these approaches.

Post-search approaches use the community wisdom to manipulate results returned
by a search engine. It can be done in several ways: re-ranking results returned by the
engine according to their social value, inserting additional results that were not in the
list originally, and adding social visual cues to the listed results. A pioneer attempt to
use social information for ranking search results was made at the second part of the
1990's by DirectHit (www.directhit.com) search engine. DirectHit used query logs to
measure the popularity of result selections for each given query. This data was used
for “social ranking” for future occurrences of this query. Unfortunately this approach
turned out to bee too simplistic for a large-scale search engine: it never became a
success story. The study [4] showed that DirectHit falls below the satisfaction of an
average user. The most cited reason of DirectHit failure was low query repetition,
which made the social data collected by it too sparse to use frequently and reliably.
User diversity was another likely contribution: users with different goals and interests
may prefer different results returned by the same query. Finally, the proposed

 Social Information Access: The Other Side of the Social Web 15

approach to link ranking was too easy to abuse by malicious users who wanted to
promote their favorite pages.

A more sophisticated approach was pioneered at the same time [31] in AntWorld
system [32] and later re-used in SERF [30]. AntWorld introduced the concept of a
quest, which is an information goal pursued by a user over a sequence of queries (Fig.
3). The system successfully encouraged its users to describe their quests in natural
language and used this description to determine inter-quest similarity. During their
search, the users were able to rank search results by their relevance to the original
quest (not a query used to obtain this result!). These innovations allowed the system
to address to some extent the sparsity and reliability problems. To determine
documents, which are socially relevant for a particular quest, the system looked for
positively ranked documents in past similar quests. The system assisted the user by
adding socially relevant documents to the list of search results and also adding a small
ant icon to socially relevant links returned during each search within the quest.

Fig. 3. AntWorld encouraged its user to describe their quests in natural language

A different approach to improve the reliability of social recommendation was
suggested in I-SPY, which worked as a post-filter for regular search engines [48]. I-
SPY combined and extended DirectHit and AntWord approaches. Like DirectHit, it
used indirect feedback (the fact of document selection from the list of results) and
accumulated social information on the level of a single query, not a multy-query
quest. Thus it targeted typical search engine users who are less likely to specify wordy
quests or rate search results. At the same time, I-SPY used query similarity to fight
sparsity in the same way as AntWorld used quest similarity. When presented with a
new query, in addition to retrieving the appropriate results from the underlying search
engine, I-SPY retrieved any search sessions associated with similar queries and
combined the results selected during these sessions. Results with high social scores
were promoted ahead of the results returned by the search engine (Fig. 4).

16 P. Brusilovsky

The key innovation introduced by I-SPY was community-based search. I-SPY
allowed users to join one of many communities and perform the search from the
community prospect. All social feedback was collected and used independently for
each community, i.e., on a group-level, which increased the reliability of search
results. A more recent example of social search system with group-level collection of
social feedback is the search component of Knowledge Sea II [2].

Fig. 4. Promotion of community-relevant results in I-SPY search engine. Promoted links are
placed on the top of the results list and annotated with a “pair of eyes” icon.

6 Social Visualization

Social visualization is the least investigated area of social information access,
however, it is one of the most promising context of the application of social access
ideas, due to the highly expressive power of information visualization (IV).
Information visualization allows users to see a set of information resources as a
whole, while still being able to recognize individual resources, their properties, and
their relationships to each other using relative positioning and visual cues such as
shape, color, and size. In contrast to the 1-dimensional guidance provided by the
ordered list of objects in IR and IF, a typical IV can use two spatial dimensions in
addition to the item appearance to express any information important for the users.
This could be critical for social information access systems, which have to present
community wisdom to their users in addition to regular information presented in
traditional information systems. Giving an individual the ability to manipulate the

 Social Information Access: The Other Side of the Social Web 17

relative positioning of documents and visual cues allows a social information access
system to present more aspects that are valuable to their users. In addition, the higher
level of interactivity supports more reliable user tracking techniques.

Fig. 5. A visualization of a Knowledge See II cell in Social VIBE system. Information
resources are represented by “human on a background” icons. The color density of the
background indicates timed page traffic for a group of users.

To some extent, social visualization resembles social browsing and social
information filtering. Like in social hypertext browsing, information visualization
supports user-driven exploration of information items. However, this exploration is
done not by moving from item to item using links, but by exploring and manipulating
the visual representation of these items. As a result the context (such as current page
or query) either does not exist or is hard to define. It makes the visualization close to
information filtering. These similarities hint that approaches from social browsing and
collaborative filtering could be appropriate for building social visualization. Indeed,
both user-profile based approaches from the area of collaborative filtering and page-
centric approaches from the area of collaborative browsing are appropriate for
collecting community wisdom in the context of social visualization. A benefit of
page-centric approaches is that they may not require individual login, it may be
sufficient for users to indicate their community as in I-SPY [48], ASSIST [20] or
Conference Navigator [19] systems. If the number of visualized objects is not very
large (up to a few thousands) and the groups are reasonably homogeneous,
community-level tracking may work quite well. For larger information spaces or to

18 P. Brusilovsky

achieve better precision individual profiling and profile matching may be necessary.
On the presentation side, the traditional ranked recommendation list used by
collaborative filtering system is hardly appropriate for expressing the community
wisdom in social visualization. The ideas of history-enriched environments used by
social browsing looks much more relevant. I.e., the representation of information
items on the visualization can be altered to express past interaction of similar users
(users from the same community or with matching profiles).

Knowledge Sea II presented in section 4 provides an example of social
visualization, which uses page-centric group-level activity tracking and expresses it
by creating a history-enriched environments with color visual cues. However, it is not
the most useful example since the visualization itself is not very typical. It is area-
based, not item-based (as in the majority of visualization approaches) and the user
can’t explore this visualization by manipulating its parameters.

A more straightforward example can be provided by Social VIBE [1]. This system
was originally developed in conjunction with the Knowledge Sea II and used to
visualize documents within a SOM cell. Social VIBE is based on VIBE [42]
interactive spatial visualization approach, which uses document content analysis to
present a collection of documents in two dimensions, relative to the points of interest
(POI). By manipulating the location of the POI, a user can explore the collection and
locate relevant documents. In Social VIBE the top cell keywords (the cell focus) are
used as POI so the visualization helps users can to discover relationships between the
focal keywords and the documents located inside the cell. On Fig. 5 the POIs are
shown as small orange squares and the documents are displayed using the same social
icons as used by Knowledge Sea II social browsing context (the color of the human
figure indicates user personal traffic and its background indicates group traffic). The
document positions are determined by their similarities to POIs: the closer a
document to a POI, the more similar its contents to the POI. For example, we can see
that the documents that are displayed on Fig. 5 are more similar to terms like “loop,”
“statement,” and “operator” than the terms “condition” and “expression.” When a user
drags a POI around the screen, related documents follow the move, according to their
similarity to that POI. Therefore, the user can easily understand the related document
by observing these movements. If one document moves a greater distance than the
other documents do, when a POI is moved, it means that the document is more similar
to that POI. Trails of the movements may optionally be displayed, as in Fig. 5. Social
VIBE also provides several other ways to manipulate the visualization (see [1]), but
they are not essential for the focus of this paper.

7 Conclusions

This paper reviewed social information access, a new stream of research on the
crossroads of information access and social computing. It reviewed the origins of this
stream, classified social information access technologies according to the supported
information access paradigm, and provided examples of three less explored types of
social information access systems. Due to the space limits, some interesting
technologies were just briefly mentioned and some were completely left out. The
results of empirical evaluation or reviewed technologies were not presented either. In

 Social Information Access: The Other Side of the Social Web 19

addition, there was no space to discuss two important integrative topics, which go
beyond the technology-by-technology structure of the review. The first of these topics
is the emergence of social information access systems, which integrate creatively
several traditional technologies such as visualization+browsing in Knowledge Sea II
[17] or search+browsing in ASSIST [20]. This direction of research is important since
integration expands the volume of community information available for the social
guidance algorithms. Another important topic is the modern stream of research on
encouraging user contributions in social systems. Ensuring a reliable stream of user
feedback is critical for social systems and a number of modern approaches to increase
the flow of feedback seriously influence the design of social systems. More
information about it can be found in [11; 20; 25]. With all these shortcomings, the
author hopes, that this review will be useful to those interested in exploring and
implementing social information access technologies.

Acknowledgments. This material is partially based upon work supported by the
National Science Foundation under Grants No. 0310576 and 0426021. A number of
systems presented in this paper were developed in collaboration with Rosta Farzan,
who was supported by National Science Foundation Graduate Fellowship.

References

1. Ahn, J.-w., Farzan, R., Brusilovsky, P.: A two-level adaptive visualization for information
access to open-corpus educational resources. In: Brusilovsky, P., Dron, J., Kurhila, J.
(eds.) Proc. of Workshop on the Social Navigation and Community-Based Adaptation
Technologies at the 4th International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems, pp. 497–505 (2006)

2. Ahn, J.-w., Farzan, R., Brusilovsky, P.: Social search in the context of social navigation.
Journal of the Korean Society for Information Management 23(2), 147–165 (2006)

3. Amitay, E., Darlow, A., Konopnicki, D., Weiss, U.: Queries as anchors: selection by
association. In: Proc. of Proceedings of the 16th ACM Conference on Hypertext and
Hypermedia, pp. 193–201 (2005)

4. Beg, M.M.S., Ravikumar, C.P.: Measuring the quality of web search results. In: JCIS
2002. Proc. of 6th Int. Conf. on Computer Science and Informatics, A Track at the 6th
Joint Conference on Information Sciences, pp. 324–328 (2002)

5. Bollen, J., Heylighen, F.: A system to restructure hypertext networks into valid user
models. The New Review of Multimedia and Hypermedia 4, 189–213 (1998)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual (Web) search engine. In:
Ashman, H., Thistewaite, P. (eds.) Proc. of Seventh International World Wide Web
Conference, vol. 30, pp. 107–117. Elsevier Science B.V., Amsterdam (1998)

7. Brusilovsky, P.: Adaptive navigation support. In: Brusilovsky, P., Kobsa, A., Neidl, W.
(eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS,
vol. 4321, pp. 263–290. Springer, Heidelberg (2007)

8. Brusilovsky, P., Chavan, G., Farzan, R.: Social adaptive navigation support for open
corpus electronic textbooks. In: De Bra, P., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137,
pp. 24–33. Springer, Heidelberg (2004)

9. Brusilovsky, P., Tasso, C.: Preface to special issue on user modeling for Web information
retrieval. User Modeling and User Adapted Interaction 14(2-3), 147–157 (2004)

20 P. Brusilovsky

10. Burke, R.: Hybrid Web recommender systems. In: Brusilovsky, P., Kobsa, A., Neidl, W.
(eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS,
vol. 4321, pp. 377–408. Springer, Heidelberg (2007)

11. Cheng, R., Vassileva, J.: Design and evaluation of an adaptive incentive mechanism for
sustained educational online communities. User Modelling and User-Adapted Interaction
16(2/3), 321–348 (2006)

12. Dieberger, A.: Supporting social navigation on the World Wide Web. International Journal
of Human-Computer Interaction 46, 805–825 (1997)

13. Dieberger, A.: Where did all the people go? A collaborative Web space with social
navigation information (2000),
http://homepage.mac.com/juggle5/WORK/publications/SwikiWriteup.html

14. Dieberger, A., Dourish, P., Höök, K., Resnick, P., Wexelblat, A.: Social navigation:
Techniques for building more usable systems. Interactions 7(6), 36–45 (2000)

15. Dieberger, A., Guzdial, M.: CoWeb - experiences with collaborative Web spaces. In:
Lueg, C., Fisher, D. (eds.) From Usenet to CoWebs: Interacting with Social Information
Spaces, pp. 155–166. Springer, Heidelberg (2003)

16. Dourish, P., Chalmers, M.: Running out of space: Models of information navigation. In:
Cockton, G., Draper, S.W., Weir, G.R.S. (eds.) Proc. of HCI 1994, Cambridge University
Press, Cambridge (1994)

17. Farzan, R., Brusilovsky, P.: Social navigation support through annotation-based group
modeling. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI),
vol. 3538, pp. 463–472. Springer, Heidelberg (2005)

18. Farzan, R., Brusilovsky, P.: Social navigation support in a course recommendation system.
In: Wade, V., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 91–100.
Springer, Heidelberg (2006)

19. Farzan, R., Brusilovsky, P.: Community-based Conference Navigator. In: Dimitrova, V.,
Tzagarakis, M., Vassileva, J. (eds.) UM 2007. Proc. of 1st Workshop on Adaptation and
Personalisation in Social Systems: Groups, Teams, Communities at the 11th International
Conference on User Modeling, pp. 30–39 (2007)

20. Farzan, R., Coyle, M., Freyne, J., Brusilovsky, P., Smyth, B.: ASSIST: adaptive social
support for information space traversal. In: HT 2007. Proc. of 18th conference on
Hypertext and hypermedia, pp. 199–208. ACM Press, New York (2007)

21. Fitzpatrick, L., Dent, M.: Automatic feedback using past queries: social searching? In:
Proc. of ACM SIGIR 1997, pp. 306–313 (1997)

22. Freyne, J., Smyth, B.: Cooperating search communities. In: Wade, V., Ashman, H., Smyth,
B. (eds.) AH 2006. LNCS, vol. 4018, pp. 101–111. Springer, Heidelberg (2006)

23. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an
information tapestry. Communications of the ACM 35(2), 61–70 (1992)

24. Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A General
Review. D-Lib Magazine 11(4) (2005)

25. Harper, F.M., Li, X., Chen, Y., Konstan, J.: An economic model of user rating in an online
recommender system. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS
(LNAI), vol. 3538, pp. 307–316. Springer, Heidelberg (2005)

26. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in
a virtual community of use. In: CHI 1995. Proc. of SIGCHI conference on Human factors
in computing systems, pp. 194–201 (1995)

27. Hill, W.C., Hollan, J.D., Wroblewski, D., McCandless, T.: Edit wear and read wear. In:
CHI 1992. Proc. of SIGCHI Conference on Human Factors in Computing Systems, pp.
3–9. ACM Press, New York (1992)

 Social Information Access: The Other Side of the Social Web 21

28. Hook, K., Benyon, D., Munro, A.J. (eds.): Designing Information Spaces: The Social
Navigation Approach. Springer, Berlin (2003)

29. Huang, C.K., Chien, L.F., Oyang, Y.J.: Relevant term suggestion in interactive web search
based on contextual information in query session logs. Journal of the American Society for
Information Science and Technology 54(7), 638–649 (2003)

30. Jung, S., Harris, K., Webster, J., Herlocker, J.L.: SERF: Iintegrating human recom-
mendations with search. In: CIKM 2004. Proc. of ACM 13th Conference on Information and
Knowledge Management, pp. 571–580 (2004)

31. Kantor, P.B.: Historical Note on the archaeology and the history of recommender systems
(2007),
http://www.scils.rutgers.edu/ kantor/AntWorld/OCLC_ANTWORLD_HistoricalNote.doc

32. Kantor, P.B., Boros, E., Melamed, B., Meñkov, V., Shapira, B., Neu, D.J.: Capturing
human intelligence in the net. Communications of the ACM 43(8), 112–116 (2000)

33. Karamuftuoglu, M.: Collaborative information retrieval: toward a social informatics view
of IR interaction. Journal of the American Society for Information Science 49(12),
1070–1080 (1998)

34. Keller, R.M., Wolfe, S.R., Chen, J.R., Rabinowitz, J.L., Mathe, N.: A bookmarking
service for organizing and sharing URLs. In: Proc. of Sixth International World Wide Web
Conference. Computer Networks and ISDN Systems, vol. 29(8-3), pp. 1103–1114 (1997)

35. Kohonen, T.: Self-organizing maps. Springer, Berlin (1995)
36. Konstan, J., Riedl, J.: Collaborative filtering: Supporting social navigation in large,

crowded infospace. In: Höök, K., Benyon, D., Munro, A.J. (eds.) Designing Information
Spaces: The Social Navigation Approach, pp. 43–82. Springer, Berlin (2003)

37. Lehikoinen, J., Salminen, I., Aaltonen, A., Huuskonen, P., Kaario, J.: Meta-searches in
peer-to-peer networks. Personal and Ubiquitous Computing 10(6), 357–367 (2006)

38. Li, W.-S., Vu, Q., Agrawal, D., Hara, Y., Takano, H.: PowerBookmarks: a system for
perzonalizable Web information organization, sharing, and management. In: Proc. of 8th
International World Wide Web Conference, pp. 297–311. Elsevier, Amsterdam (1999)

39. Maltz, D., Ehrlich, K.: Pointing the way: active collaborative filtering. In: CHI 1995.
Proceedings of the SIGCHI conference on Human factors in computing systems, pp.
202–209. ACM Press, New York (1995)

40. Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the World
Wide Web. In: Brusilovsky, P., Kobsa, A., Neidl, W. (eds.) The Adaptive Web: Methods
and Strategies of Web Personalization. LNCS, vol. 4321, pp. 195–230. Springer,
Heidelberg (2007)

41. Munro, A.J., Hook, K., Benyon, D. (eds.): Social Navigation of Information Space.
Springer, Berlin (1999)

42. Olsen, K.A., Korfhage, R.R., Sochats, K.M., Spring, M.B., Williams, J.G.: Visualisation
of a document collection: The VIBE system. Information Processing and Management 29,
1 (1993)

43. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open
architecture for collaborative filtering of netnews. In: Proc. of ACM 1994 Conference on
Computer Supported Cooperative Work, pp. 175–186. ACM Press, New York (1994)

44. Rucker, J., Polano, M.J.: Siteseer: Personalized navigation for the Web. Communications
of the ACM 40(3), 73–75 (1997)

45. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender
systems. In: Brusilovsky, P., Kobsa, A., Neidl, W. (eds.) The Adaptive Web: Methods and
Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg
(2007)

22 P. Brusilovsky

46. Scholer, F., Williams, H.E.: Query association for effective retrieval. In: CIKM 2002.
Proc. of ACM 11th Conference on Information and Knowledge Management, pp. 324–331
(2002)

47. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating ”word
of mouth”. In: Katz, I., Mack, R., Marks, L. (eds.) Proc. of CHI 1995, pp. 210–217. ACM
Press, New York (1995)

48. Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting Query
Repetition and Regularity in an Adaptive Community-Based Web Search Engine. User
Modeling and User-Adapted Interaction 14(5), 383–423 (2004)

49. Svensson, M., Höök, K., Cöster, R.: Designing and evaluating kalas: A social navigation
system for food recipes. ACM Transactions on Computer-Human Interaction 12(3),
374–400 (2005)

50. Wexelblat, A., Mayes, P.: Footprints: History-rich tools for information foraging. In: CHI
1999. Proc. of ACM Conference on Human-Computer Interaction, pp. 270–277 (1999)

Designing Adaptive Web Applications

Peter Dolog

Aalborg University, Computer Science Department
Selma Lagerlöfs Vej 300, DK-9220 Aalborg-East, Denmark

dolog@cs.aau.dk

Abstract. The unique characteristic of web applications is that they are
supposed to be used by much bigger and diverse set of users and stake-
holders. An example application area is e-Learning or business to busi-
ness interaction. In eLearning environment, various users with different
background use the eLearning system to study a discipline. In business to
business interaction, different requirements and parameters of exchanged
business requests might be served by different services from third parties.
Such applications require certain intelligence and a slightly different ap-
proach to design. Adpative web-based applications aim to leave some of
their features at the design stage in the form of variables which are de-
pendent on several criteria. The resolution of the variables is called adap-
tation and can be seen from two perspectives: adaptation by humans to
the changed requirements of stakeholders and dynamic system adaptation
to the changed parameters of environments, user or context. Adaptation
can be seen as an orthogonal concern or viewpoint in a design process. In
this paper I will discuss design abstractions which are employed in cur-
rent design methods for web applications. I will exemplify the use of the
abstractions on eLearning web applications as well as on applications for
business to business interaction based on web services.

1 Introduction

Adaptive Web-based applications provide an alternative to the traditional “one-
size-fits-all” applications [3]. Such applications try to address diverse require-
ments of different stakeholders by leaving some of their features at the design
stage in the form of variables which are dependent on several criteria. The resolu-
tion of the variables is called adaptation and can be seen from two perspectives:

– Adaptation by humans to the changed requirements of stakeholders;
– Dynamic system adaptation to the changed parameters of the environment

or context.

User-centered adaptive applications utilize user features to resolve the vari-
ability; i.e. to determine appropriate information presentation and navigation
sequences for exploring a sufficiently complete set of information. They update
a user model in accordance with user interaction and the information which he
or she has provided. There are several application domains where such adaptive
web applications have been found useful such as education, eCommerce, and
news.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 23–33, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 P. Dolog

Adaptive eLearning Applications. The UML-Guide [7] is an example of an
adaptive web application. It geneates a map of an information space designed
for a particular information or learning goal. The map itself is adaptive; some of
the links and symbols are annotated according to knowledge about a user which
is maintained by the UML-Guide.

One approach to the visualization of the navigation map is depicted in Fig. 1.
The navigation map displays a composite hierarchy of information nodes in
information space (folder symbols with subfolders and document nodes) and
sequencing relations between the nodes (arrow symbol).

Fig. 1. Visualization of the navigation graph for the Java e-lecture [4]

Besides the adaptation mentioned here, the content served by a web applica-
tion can be adapted as well. Some fragments of presented content can be hidden,
some can be displayed. Composition and placement of the fragments can change
according to preferences and user abilities.

The adaptation in such applications like the UML-Guide is usually a deci-
sion for a particular information item or function based on knowledge about the
items being recommended. The knowledge about items usually comprises what
particular information items or functions have in common and where they differ.
The properties which differ from item to item determine the source for adapta-
tion. The selection of an appropriate item is based on results from matchmaking
between user and information properties. The differences between users in terms
of properties and their values determine a selection of different information items
or functions which best fit to particular user features according to a chosen selec-
tion strategy. As the user’s behavior pattern evolves, recommended items may
change. This is ensured by continuous updating and evolution of a user’s profile
based on his or her behavior as traced by the application. In this way, the user
always receives up to date information items or functions matching the current
state of her profile.

Designing Adaptive Web Applications 25

Business to Business Interaction. Supply chain management or financial
applications are other examples of application which could benefit from adapta-
tion. In such applications, the adaptivity is considered beyond the user profile
and is based on rather different requirements profiles matched with service pro-
files satisfying a business function. Consider for example a company’s monthly
payroll processing from [21]. A company has to calculate a salary for each em-
ployee. In the next step, the payment of the salary is performed, which comprises
several operations. First of all, the salary is transferred from the company’s ac-
count to the employee’s account. Then the company transfers the employee’s
income tax to the account of the tax authorities. Finally, the company prints
the payslip and sends it to the employee. On the employee has only one task
which he has to perform each month in this scenario: He transfers the monthly
installment for his new car to the car dealer’s account.

The company’s and the employee’s operations are each controlled by a busi-
ness process, and are implemented using Web services from multiple providers.
The business transactions are used in order to guarantee a consistent execution
of all required operations. This is depicted in Figure 2. Only the services of
transaction T1 are shown.

Fig. 2. The motivating scenario

Examples where adaptation/replacement can occur are the following:

1. A service which participates in the transaction fails (for example transfer of
the salary fails due to an internal error). Instead of aborting and rolling back
to the previous state, a different service can be selected to compensate the
failed one. The compensating service is selected based on matchmaking be-
tween requested and offered capability. Such a replacement is encouraged by
the fact that usually multiple services exist that have the same capabilities.

2. A mistake has been made regarding the input data of an operation. In this
scenario, it could be that the calculation of the salary is inaccurate, and too
much has been transferred to the employee’s account. The flaw is spotted by
an administrator, and the system offers a compensating service which will
correct the mistake instead of aborting the whole transaction.

26 P. Dolog

In the above examples, the adaptation is considered as a replacement either
during the business transaction execution or as a post process compensation
execution.

2 Web Application Design

The Web-based application development is usually characterized as an integrated
set of activities producing three products of a Web application: application do-
main, navigation, and presentation and their engineering.

Application Domain Engineering deals with analysis, design, implementation,
authoring of concepts which are related to the information content to be made
accessible through the Web application, and functions to process, access, and
guide through. Navigation Engineering deals with activities related to analy-
sis, design, implementation and testing of the modality through which users
will navigate through the available information and services. In particular, the
navigation engineering is concerned with grouping information fragments and
functions into navigation nodes (hypertext nodes, contexts, views) and intercon-
nects them by links. Presentation Engineering is concerned with analysis, design,
implementation, and testing of appearance of information fragments, functions
and their results to a user. The presentation model defines spatial layout and
content of information fragments related to the user interface. It also defines
presentation classes or objects, spatial relationships between them and content
associated with them.

There have been several proposals for Web development methods, describing
specific activities for Web application development, like OOHDM [22], WebML [5],
UML-based Web Engineering [11], and HERA [13] or reference models like the
IMPACT-A method [16]. All of them provide design abstractions for above men-
tioned activities.

Adaptivity is another concern in web application design which is orthogonal to
those mentioned above. Systematic analysis and design of adaptive application
features require following requirements to be met [6]:

– Common and Variable Features — A method and technique is needed, which
will support analysis of common (nonadaptive) and variable (adaptive) parts
of developed applications.

– Multiple Domains — A Web application usually serves information from
several domains and uses different environments to do so. The adaptation is
influenced by parameters from user or client constraints domains. Separation
of these concerns, according to domains to which they belong to, helps a
designer to focus on features which are important for a particular domain.

– Dynamic connectors between domains — The separation between several
domains allows for better decision making about features in a particular do-
main. When designing a particular (instance of) a Web application, the do-
main features have to be connected (configured) in a certain manner suited
to the context of the (instantiated) Web application. Appropriate design

Designing Adaptive Web Applications 27

technique which supports connectors (compositions) and collaborations be-
tween domains is needed. Such a technique helps reason about connections
between domains which might encourage their reuse. The connections can
be further constrained where the constraints are to be evaluated at run time.

– Support for adaptive navigation design in connected domains — the composed
information fragments should be further linked to form possible navigation
paths. The navigation paths can be further constrained where constraints are
to be evaluated at run time.

2.1 Common and Variable Features in Multiple Domains

Adaptation components in adaptive web applications usually recommend one
of the several options for links, operations, or content fragments in a content
composition. Furthermore, information items can be adaptively configured in
the web application based on user profile or abilities of an environment. The
options which are planed to be available for adaptation are described using
feature models.

Feature Modeling. There have been several proposals for techniques model-
ing variability and commonality in software systems such as Feature Oriented
Domain Analysis (FODA) [15] and or the extended UML structural modeling
package with stereotypes for feature modeling (see [6]). Other proposals use dif-
ferent techniques for capturing the variability in software systems like the story
boards [2], variation points in assets and components in [1].

Feature model is a set of models which represent configuration aspects of
concepts from domains analyzed in web application engineering. Each model in
a feature model has one concept and its belonging features. The concept and
features are connected to each other by composition relationship. Configura-
tion relations between features and concept are represented as variation points.
The concepts and features in feature models are mapped on the concepts and
relationships from the conceptual model.

Multiple Domains. The feature models prescribe the parts of the content,
environment, and software components, which are stable or common for any
user or customer and parts which are variable depending in general on some
factors (mostly values of user features or client profiles with requirements for
business operations).

The common and variable features can be described separately in:

– Application Domain — a domain of information (or content) and user task
supporting functions which are served by a web application;

– Environment Domain — a domain for representation and organization of
information and task supporting functions in a delivery platform;

– User Domain — a domain of user features and constrains which are rele-
vant for matchmaking with content, functions and environment to decide for
particular option to be offered by a web application.

28 P. Dolog

In application domain, different content can be used to communicate the same
information to people with different background. Moreover, the same content
can be represented by different media and this content can evolve in time. The
content can be also presented in different environment, e.g. as a book, lecture, or
an article. Also overall access to the content can be managed through different
patterns such as digital library, e-course (virtual university), on-line help, etc.

Each user group may require different information fragment to browse, differ-
ent composition of presented information (local navigation), and different order
and interconnections between information chunks (global navigation). Different
navigation styles can also be determined by the target environment where the
information is served to a user.

Similarly, different audience may require different appearance and layout of
information chunks and different presentation of organization of read informa-
tion. Target environment can also restrict possibilities to presentation. Thus, it
is important to also capture this kind of variability.

Feature Models for Content Intensive Adaptive Web Applications. A
feature, as a prominent or distinctive user-visible aspect, quality, or character-
istic of a software system [12], in feature models of adaptive web application
represents:

– in an application domain model — information fragments, which are
needed to communicate effectively a concept of a feature model,

– in an environment/information model — supporting structural units
of a content in particular web-based application,

– in a user domain model — qualitative and quantitative features which
are needed for decisions about certain adaptation strategy within adaptation
process (e.g. a competence acquired within learner performance to decide
whether a user is able to grasp particular content item or exercise or metrics
of the performance for finer recommendations of next learning steps).

Mandatory features, Optional features, and variation points are means to anal-
yse and plan a variability of adaptive web applications in the domains mentioned
above. The variation points are means to model the dependencies between fea-
tures and concepts in feature models and can specify mutually exclusive (XOR),
mutually required (AND), and mutually inclusive features (OR).

Feature Models for Web Services and Business Transactions. The do-
main engineering activities in Web service environments are realized by different
independent service providers. The application engineering activities are realized
by different parties as well, employing service selection mechanisms and match-
making to fit particular business activities when utilizing Web services from
different providers. Some of the variable features of the Web services can be
considered at runtime. Therefore, the software product line engineering process
can be tailored to the Web service environment with extended compensation
capabilities as follows. Service provider tasks are:

Designing Adaptive Web Applications 29

– Service Domain Analysis — is a domain engineering process where variabil-
ities and commonalities between service variants are designed to support
compensations based on failures or based on different constraints and re-
quirements;

– Service Domain Design and Implementation — different service features are
mapped onto an implementation and an architecture for service provisioning
where some of the features need not to be exposed to the public and some
of the variabilities may be left to runtime adaptation.

Client/service consumer tasks are:

– Business Application Analysis and Design — is an application engineering
task which may be performed by a party external to the service provider
and involves the definition of requirements for and constraints on the Web
service compensations;

– Retrieving the Abstract Web Services — is an application engineering task
in which a designer looks for and retrieves Web services which are required
to perform business to business conversations;

– Defining Client Side Compensations — is an application engineering task
in which a designer defines a variability for compensations which will be
exploited at runtime if more Web services with similar capabilities have
been found, or an alternative Web service has been defined by an application
developer;

– Implementing Client Side Compensations and Functionalities — is an ap-
plication engineering task in which the additional compensations are imple-
mented at the client side, as well as additional operations for which there
was no Web service found are realized by an application developer.

Web service capabilities or client requirements are placed into the application
domain conceptual model and the compensation concepts are placed into the
environment conceptual model. The configuration view on the concepts in the
application domain model and the environment model is described by means of
feature modelling. Therefore, the functionality feature model as well as the com-
pensation feature model are created. Subsequently, the functionality and com-
pensation models are merged to describe the offered capabilities by a service
provider, or requested functionalities and restrictions regarding compensations
by a service consumer.

Similarly, [10] studies product lines in the context of adaptive composite ser-
vice oriented systems. A pattern based variability has been employed for devel-
opment of composite service-oriented systems in [14].

2.2 Dynamic Connectors between Domains

The collaboration diagrams provide useful abstraction to link together several
application domains, where the content or service capabilities are comming from,
with an environment through which they are provided.

30 P. Dolog

A Story Collaboration Model is a set of collaboration diagrams which define
dynamic content chunks or interaction spaces with business functions accessible
in particular environments constrained by conditions evaluating partial restrict-
ing profile state (user profile or client requirements profile). The story collabo-
ration diagrams contain collaborations between roles created as instance roles
of features and concepts from an application domain feature model linked to
instance roles of features and concepts from an environment feature model.

At runtime, the feature instances collaborate to create a content which can
be modeled as active information objects providing a defined interface to access
their content and presentation. In web services domain, features from capabilities
domain interact with each other to deliver a requested service together with
environment features such as the compensations.

Roles are used to model different purposes of a particular feature or concept
in an environment component. Roles terminology can form a complex structures.
The UML class diagram can be employed to model such a structure. This model
can be used similarly to the domain and environment conceptual models.

2.3 Adaptivive Navigation in Connected Domains

State machines provide a useful abstraction for adaptive navigation design in a
web application where the navigation is seen as a guidence through a certain
path in a hypertext graph.

A Navigation State for a user is an information chunk or an interaction
space [9] observed by a user at a hypertext node at a given time. In the UML
state diagrams, atomic states can be grouped into superstates. States usually
refer to concepts of an application domain. The superstate may compose sub-
states in alternate or parallel fashions. Concurrency in web presentations can be
handled by Concurrent regions, Fork and Join pseudostates, and SyncState.

A Transition in Navigation Trail is a transition between one navigation state
and another. The transition is usually caused by a user interaction event or by
another event (e.g. time event). When the transition is fired it leads to a produc-
tion of a new hypertext node for a user — the new navigation state. Guards can
be used to constrain transitions, entry, and exit actions of states by adaptation
rules. Usually, they consist of a predicate over user profile attributes or context
information. The transitions and events on states are useful abstractions for as-
signing sensors observing user evolution. Each transition can have a side effect
action. Actions can be performed also at entry, exit and as an internal transition
side effect of state. The side effect can be, for example, the modification of a
user profile, or the choice of presentation styles for a given chunk of information.
Actions can also process parameters used in guards of outgoing part of branches.

The variability in the navigation trails is supported by the alternate (OR)
states and by decision symbols which can split transition to several alterna-
tive transitions. In this way, the navigation trails can have alternate navigation
paths and information chunks constrained by conditions referring to certain user,
content, device, or environment features. From user point of view it means that

Designing Adaptive Web Applications 31

each trail can be adapted by taking into account the user background, level of
knowledge, preferences and so on [7].

Similar principles apply to business operations. Those business operations
which are dependent on each other may similarly be linked from the user per-
spective. State machines or transition systems can then be applied in a similar
fassion. [18,20], for example, describe the semi-automatic adaptation of a work-
flow in case of errors. A change of the workflow process can, for example, consist
of a deletion or jump instruction, or the insertion of a whole new process segment.
The change can either be done on a running instance, or it can be performed
on the scheme which controls the workflow, and which results in a change in all
running instances. Refer to [19] for details. Labeled transition systems are also
used in context based substitution of web services [17].

3 Further Challanges

As the web evolves new opportunities for innovative applications occur. These
opportunities, however, also raise many challenges for design. Here I have men-
tioned just three categories, which I think are very relevant today.

Rich Internet Applications. Rich internet applications are applications which try
to enhance user experience on the web and bring it as close as possible to desk-
top applications. Such applications become popular especially when multimedia
capabilities and programming models behind Adobe/Macromedia products and
AJAX were introduced. However, the challenge for web engineering methods is
how to deal with asynchronous communication, functionality on server side as
well as client side, possibly independent autonomous servers, synchronization
and so on. In this setting, computation of links is becoming more complex. Is-
sues such as availability of content, which have not been so crucial in closed, one
server environments, are now also becomming important.

Social Web Applications. Open adaptive web applications where dynamic groups
of users exist pose other challenges on design. The open question is, for example,
how to compose user profiles into group profiles. It is also interesting to study
in which context a single individual profile is more useful over the group profile.
Furthermore, it is also interesting to study how different activities of different
groups and different individuals contribute to an effective personalized access to
information and operations. This multilevel interaction of various profiles adds
a complexity to web applications, thus influencing their design methods as well.

Composition Models. There are two mainstream approaches to handle business
transactions, commits, locking, composition, interaction as well as coordination of
adaptive web services and applications followed in web services community. On the
one hand, there are plan-based design approaches, for example, based on BPEL,
which prescribe composition and interaction between participating services. On
the other hand, there are middleware approaches with autonomous protocols fo-
cusing on environments where services can join and leave on an ad-hoc manner. It

32 P. Dolog

is interesting to study the tradeoffs between them as well as various design tech-
niques either for compositions or for middleware in combination with algorithms,
protocols, and computation models for transactions.

References

1. Bachmann, F., Goedicke, M., do Prado Leite, J.C.S., Nord, R.L., Pohl, K., Ramesh,
B., Vilbig, A.: A meta-model for representing variability in product family devel-
opment. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 66–80.
Springer, Heidelberg (2004)

2. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.,
DeBaud, J.-M.: Pulse: A methodology to develop software product lines. In: SSR,
pp. 122–131 (1999)

3. Brusilovsky, P.: Adaptive hypermedia. User Modeling and User-Adapted Interac-
tion 11(1-2), 87–100 (2001)

4. Ceri, S., Dolog, P., Matera, M., Nejdl, W.: Adding client-side adaptation to the
conceptual design of e-learning web applications. Journal of Web Engineering 4(1),
21–37 (2005)

5. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive web
applications. IEEE Internet Computing 6(4) (August 2002)

6. Dolog, P.: Engineering Adaptive Web Applications. Doctoral thesis, Leibniz Uni-
versity of Hannover, Hannover, Germany (March 2006)

7. Dolog, P., Nejdl, W.: Using UML and XMI for generating adaptive navigation
sequences in web-based systems. In: Stevens, P., Whittle, J., Booch, G. (eds.)
UML 2003. LNCS, vol. 2863, pp. 205–219. Springer, Heidelberg (2003)

8. Dolog, P., Nejdl, W.: Using UML-based feature models and UML collabora-
tion diagrams to information modelling for web-based applications. In: Baar, T.,
Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp.
425–439. Springer, Heidelberg (2004)

9. Dolog, P., Stage, J.: Designing interaction spaces for rich internet applications
with uml. In: Fraternali, P., Baresi, L., Houben, G.-J. (eds.) ICWE2007. LNCS,
vol. 4607, pp. 358–363. Springer, Heidelberg (2007)

10. Hallstein, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to build
adaptive systems. In: SPLC 2006. 10th Intl. Software Product Line Conference
(2006)

11. Hennicker, R., Koch, N.: A UML-based methodology for hypermedia design. In:
Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, Springer, Heidel-
berg (2000)

12. American Heritage: The american heritage dictionary. Houghton Mifflin, Boston,
MA (1998)

13. Houben, G.-J., Barna, P., Frasincar, F., Vdovjak, R.: Hera: Development of se-
mantic web information systems. In: Lovelle, J.M.C., Rodŕıguez, B.M.G., Gayo,
J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 529–
538. Springer, Heidelberg (2003)

14. Jiang, J., Ruokonen, A., Systä, T.: Pattern-based variability management in web
service development. In: ECOWS 2004 (2005)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E.: Feature-oriented domain analy-
sis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21, ESD-90-TR-222,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania 15213 (1990)

Designing Adaptive Web Applications 33

16. Lowe, D.B., Bucknell, A.J., Webby, R.G.: Improving hypermedia development: a
reference model-based process assessment method. In: Hypertext 1999. Proceedings
of the ACM International Conference on Hypertext and Hypermedia, Darmstadt,
Germany, pp. 139–146 (February 1999)

17. Pathak, J., Basu, S., Honavar, V.: On context-specific substitutability of web ser-
vices. In: ICWS 2007. IEEE International Conference on Web Services, Salt Lake
City, Utah, USA, pp. 192–199 (July 2007)

18. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems 10(2), 93–129
(1998)

19. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management
with ADEPT2. In: ICDE, pp. 1113–1114. IEEE, Los Alamitos (2005)

20. Rinderle, S., Bassil, S., Reichert, M.: A Framework for Semantic Recovery Strate-
gies in Case of Process Activity Failures. In: Manolopoulos, Y., Filipe, J., Constan-
topoulos, P., Cordeiro, J. (eds.) ICEIS, pp. 136–143 (2006)

21. Schäfer, M., Dolog, P., Nejdl, W.: Engineering compensations in web service en-
vironment. In: Fraternali, P., Baresi, L., Houben, G.-J. (eds.) ICWE 2007. LNCS,
vol. 4607, pp. 32–46. Springer, Heidelberg (2007)

22. Schwabe, D., Rossi, G.: An object-oriented approach to web-based application
design. Theory and Practise of Object Systems (TAPOS), Special Issue on the
Internet 4(4), 207–225 (1998)

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 34–49, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Best of Both: Using Semantic Web Technologies to
Enrich User Interaction with the Web and Vice Versa

Martin Dzbor

Knowledge Media Institute, The Open University, UK
mdzbor@acm.org

1 Background

Human-computer interaction is a well-established and rich subject that has an impact
not only on those who develop computational systems, but also on the users of such
systems, the vendors, maintainers, and many more stakeholders who are normally
involved in designing and delivering software and computer-based tools. Interaction
in this context is seen broadly – in general, it involves three constituting parts: the
user, the technology, and the way they work together. One can then study such
phenomena as how the users work with a particular technology, what the users prefer,
how the technology addresses given issues, etc. In this contribution I want to look at a
specific type of user interaction – with semantically enriched content in general, and
with ontologies in particular.

Human-ontology interaction can be seen as a subset of user interaction issues that
apply to specific tasks and specific technologies. On the level of task we can see the
emergent importance of inference and reasoning, while on the level of technologies
we are aware of markup languages for denoting semantic content (e.g. RDF or OWL),
but also of an increasing number of techniques to manage, learn or evaluate semantic
content of different kind. We will return to some of these techniques later.

While the awareness of human-computer interaction is a subject almost as old as
the computer science, the specifics of interacting with ontologies were not considered
in much depth. Tools supporting ontological engineering are considered to be
primarily software artifacts, and thus, it is presumed that general user interaction rules
apply to ontologies and other semantic content. To some extent, this is true; however,
design and subsequently application of ontologies in our everyday activities are
indeed specific ways to interact with the technology.

In this contribution, we look at several different aspects of how a user may interact
with ontologies in a varied sort of ways. In the first part (sections 2 and 3) we will
explore a range of existing web interaction techniques and tools with the discussion of
how they may apply to facilitate user interaction with semantic content. In the second
part (section 4) we will look at two techniques that aim to intertwine the Web with the
Semantic Web, and thus simplify the navigation through semantic spaces on one hand
and the interpretation of semantic content on the other hand.

2 User Interactions with the Semantic Web

In the previous publications [13] we analyzed the state of the art tools for engineering
ontologies based on the paradigm of reusing an existing content. The main

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 35

conclusions from that study were that the user group that engages in ontology design
faces numerous issues with expressing their modeling intentions in the tools they have
at disposal. One of the observations was the confirmation of the gap between the
language people think in and the language they have to encode their ontological
commitments in.

This is an important group of users; however, these are not necessarily the only
users who may have a need to interact with networked ontologies. The issue of
interacting with ontologies effectively and efficiently is much more pressing with less
experienced users, who carry out an ad-hoc, occasional ontology-related task. An
example of such a task may be to use the ontological content to annotate and interpret
a textual document.

2.1 Familiarity of Tools Supporting Users

Although the key interaction with the Semantic Web is the interaction with a single
type of software artefact: ontology, there are significant difference that need to be
kept in mind. Users involved in ontology-driven production of information and
knowledge need to be equipped with a range of software configurations and diverse
user interfaces to deliver the outcomes of their work as effectively and efficiently as
possible. There are two broad strategies how one can match the tools to the needs:

1. different tools for different users and different purposes and
2. different configurations of one tool or toolkit for different users or purposes

The two strategies are not mutually exclusive; very often we find users rely on a
limited range of tools, and then may have different, specialized configurations for
some of those tools. Let us briefly consider the key advantages and disadvantages of
the above approaches:

In the former situation, tools are well defined but apparently independent of each
other. This may lead to a proliferation of a large number of highly specialized tools,
something that is unlikely to alleviate the user’s confusion and overwhelming.
Moreover, with specialized tools, there is an increasing risk of them being mutually
less compatible or compatible on a rather cumbersome level (e.g. import/export
mechanism of various graphical editors is a good example of this compatibility issue).
The main advantage is that the user will only get to work with tools and interfaces
s/he necessarily needs to carry out given tasks, and nothing more.

In the latter situation, we tend to see more complex and multi-functional tools that
can exhibit a variety of user interfaces and user interaction components in different
situations. In many tools of this type, we see an aggregation of functionalities and a
fairly seamless switching between many tasks the user may carry out at some point.
This is essentially a “one-stop shop” approach where the user has (almost) everything
they may ever need already inside the tool, and only needs to activate different
configurations. A typical example of this would be editors like Microsoft Word, and
its ‘rich document editor’ face, as opposed to (say) ‘content revision’ face or ‘mail
merge and distribution’ face.

As we suggested in this brief discussion, the assumption that a new technology
(e.g. Semantic Web) has to introduce new tools and user interaction metaphors may
be actually incorrect. In line with the initial definition of user interaction as a triangle

36 M. Dzbor

comprising users, technologies and the application patterns, we can even argue that
the three nodes of the triangle interact with each other and have impact on the overall
user’s experience with the applied technology. However, they may have different
weight in different interactive situations. So, if the user is introduced to a new
technology and at the same time to a new tool to facilitate his or her interaction with
that technology, unnecessary confusion may arise.

Fig. 1. User – User Interaction Paradigm – Technology triangle

Thus, intuitively it seems reasonable to argue for reusing the existing, familiar user
interfaces to introduce novel technologies – through the “back door”. A similar
observation has been formally made in the aforementioned study with the ontology
designers, where users missed common features they got used to – e.g. bookmarks to
flag the ontology section they work on, keyboard vs. mouse interactions, etc.

In terms of our simplified triangle this can be generalized so as to limit the number
of unknowns in the triangle, or to introduce the innovations in steps rather than
disruptively. Take the semantic web technology such as RDF for annotating
documents that we want to push to the user. That makes one node in the triangle a
variable. As the RDF technology is unfamiliar, it brings in uncertainty for the user,
who may not have had any experience with it, may not know its benefits, etc. Now, if
we decide to realize this technological change in a radically different user interface
from what the user is familiar with, we are introducing another unknown into the
interactive experience triangle.

2.2 Towards Universal Usability

The idea of taking advantage of the existing approaches has been explored by the user
interaction scientists in the past with a notable contribution made by Shneiderman in
terms of his argument for a universal usability [27]. In his seminal work,
Shneiderman points to several factors that may affect the tool usability. These are
factors that vary from one user to another, and hence trigger a degree of adaptation to
the user interface. Importantly, Shneiderman highlights many common factors that are
not always recognized as valid reasons for UI customization. For example, he talks
about technological variety (i.e. the need to support a range of software and hardware

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 37

platforms, networks, etc.), about gaps in user knowledge (what users know, what they
should know, etc.), or about demographic differences (skills, literacy, income) or
environmental effects (light, noise, etc.)

One approach to achieving more universal usability of a tool is to introduce user
interface (UI) adaptation into the loop. The rationale is that while a standard UI may
not fit the user completely, it might be tweaked so that it gets as closely as possible to
the user needs. There are two distinct strategies of how UI adaptation may be
accomplished. Since this differentiation may have impact on what is actually
modified in the tool, we decided to include this brief detour to generic issues of
adaptation. The two strategies distinguish between the following types [21]:

• adaptive UI: These are systems and user interfaces that are capable of monitoring
its users, their activity patterns, and automatically adjust the user interface or
content to accommodate these local differences in activity patterns (which may be
due to user’s skill, preference, etc.).

• adaptable UI: These are systems and user interfaces that allow the users to control
and specify adjustments, and often come with the provision of some guidance or
help.

According to the informal definitions, the difference is in the actor; who performs
the adaptation act. In adaptive UI-s it is the tool, applications or the system that takes
the active role; whereas in adaptable UI-s it is the human – typically the actual user of
the system, but possibly another user (such as system administrator).

Why do we mention user interface adaptation in this context? Ontologies are
highly structured, formalized artefacts that have sufficient expressiveness to describe
the structure of a system, tool, or its user interface. Considering that such common
tools as web browsers already make use of ontological formalisms to support
customization and thus make life easier for the user, it is rather surprising that very
little of a similar approach is used to improve the interaction with ontologies for the
end users such as bioinformaticians, students, analysts and indeed general public.

Let us therefore start with a brief review of how familiar web interaction metaphors
may find their use in the context of a new paradigm of the Semantic Web.

3 Familiar Tools for the (Unfamiliar) Semantic Web

In this section we look at the characteristics of a Semantic Web browsing application
with respect to support some form of enriched or enhanced navigation through a rich,
semantically encoded space. Quan and Karger [24] suggested that the primary
functionality an application for the Semantic Web should satisfy is “to separate the
content – the proper purview of the publisher serving the information – from the
presentation – an issue in which the end user or their local application should have
substantial say.”

Since the discussion of generic aspects of what may constitute a Semantic Web
browser and navigation support tool were published earlier in [15], here we limit
ourselves to reviewing and discussing different types of tools that the researchers and
developers borrowed from the Web and applied to the Semantic Web. In particular we

38 M. Dzbor

look at the use of graph metaphor, the use of multidimensional facets, the role of
styles and templates, and finally the metaphor of semantic layering.

3.1 Navigation in Semantic Graphs

One example of a user interface that extends a familiar metaphor of navigating in
semantic graphs by means of expansible nodes and arcs is Tabulator [2]. The project
started to demonstrate the “serendipitous re-use” and to address the “explore vs.
analyze” tension in user interface design in an open-world of interlinked semantic
data. Tabulator was designed as a generic browser for linked data, without the
expectation of providing domain-specific interfaces. However, it permits domain-
specific functionality (such as calendar, money or address book management) to be
loaded transparently from the web.

For the Tabulator the logical, semantic graph is the primary source of data; the web
documents are optional and secondary. Hence, the user can explore the graph of data
as a conjunction of all the graph documents that have been read (in a particular
browsing session). While this approach may not allow directly browsing the
documents, it allows the user to check the provenance or source of any piece of
information included in the browseable graphs.

Tabulator operates in two modes: exploration and analysis. In the exploration
(open world) mode it allows the user to explore the data graph, without the user
having to provide all the data – Tabulator implicitly follows links that may contain
RDF data about relevant nodes. Data is typically presented as traditional graphs of
nodes and arcs, which in Tabulator are called outline views. In the analysis mode, the
user may select some nodes or arcs to define patterns of a query, which is then
executed by the tool. Query results may be displayed in different views and may be
mashed together.

While this approach is sufficiently generic and universally usable, it has some
shortcomings when it comes to interpreting and making sense of the data. The focus
on the individual nodes and immediate links (relationships) may be often reductive. It
treats knowledge as an abstract artifact that can be removed and expressed
independently of any specific context. Thus, the metaphor may suit better those who
want to use ontological data in the abstract, conceptual sense – i.e. without the need to
ground the ontology in a document or another data set.

3.2 Navigation in Multidimensional Facets

One typical feature of semantic content is that its entities can be formally assigned
many properties and may participate in numerous relations with other entities. If each
relationship and property is treated as a potential “dimension” along which one may
navigate, the metaphor of multidimensional navigation becomes applicable. One
interaction strategy for such a type of data – in addition to simple searching and
browsing – is faceted browsing, where users filter an item sub-set by progressively
selecting from valid dimensions of an appropriate classification. On a non-semantic
level, the strategy was piloted in Flamenco [28] that used metadata to guide users
through the choices of views, thus helping them to organize the underlying collection.

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 39

Although without ontological support, Flamenco used the notion of lateral links to
complement the standard hierarchies.

For semantic (i.e. RDF-encoded) data, Longwell is an out-of-the-box faceted
browser intended to be used for viewing arbitrary, complex RDF datasets in a user-
friendly way. It was deployed in various contexts both domain independent and
dependent [22]. One of its most important features is that of facet extraction from
RDF literals and support for inference. A similar approach can be seen in /facet – a
browser for heterogeneous RDF data that handles collections of different types of
items unlike most other, more specialized faceted browsers [16]. It explores the facets
of items related by subClassOf relation, uses intersections, and can also collapse
facets related through subPropertyOf relation.

In mSpace paradigm [26], the Semantic Web is seen as a hypertext system. Hence,
mSpace extends the faceted browsing paradigm and its functional operations like
slicing, sorting, swapping, adding, or subtracting to the semantic content. mSpace
relies on ontological knowledge as a basis on which the above operations can be
realised in a domain-independent manner. It supports direct manipulation of the
ontology representation and the selection of instances associated with its current
configuration. Its logic also provides for automatic reasoning to ensure that only
meaningful attribute ordering/selections occur. In addition to traditional facets,
mSpace adds a few experimental semantic add-ons – e.g. its numeric volume
indicators are interesting as they help the user reflect on what (volume of data) to
expect behind a particular facet.

Unlike the metaphor of semantic graphs, faceted navigation makes the semantic
content much easier accessible to the ordinary users. For example, it completely hides
the complexity of interpreting all the relationships an entity engages in at once.
Instead, its step-by-step approach to unfolding the space seems simple and intuitive.
On the other hand, the user can meaningfully process a small number of facets – e.g.
the tools mentioned above usually demonstrate their functionality with three to five
facets. This has as implications in terms of hiding too much semantic information
from the user, which to some extent violates the motivation for using ontologies in the
first place – to facilitate knowledge sharing in explicit, well-defined and formal terms.

3.3 Navigation Using Styles and Templates

This approach to browsing relates to the definition from Quan and Karger mentioned
at the beginning of this section arguing the complete separation of content from
presentation. It emerged from the fact that much information present on the Web is
already stored in relational form, in the database-driven web sites. Therefore, another
way to resolve the knowledge acquisition bottleneck is to take advantage of the
structural clues of this structured web content to re-create the original information
stored in the databases backing this content.

Thresher [18] is a system build on top of the Haystack platform [23], which allows
non-technical users, rather than content providers, to “unwrap” the semantic
structures buried inside human-readable Web. It provides users with an interface to
“demonstrate” the extraction of semantic meanings, and through such demonstrations
it learns mappings between the regularities in the document structure and the
semantics. Thresher then automatically applies the mappings to similar documents.

40 M. Dzbor

Thus, extraction of semantic data is separated from its presentation, and is accessible
for further reuse via the Haystack platform.

A notable trend related to templates is the push away from the heavy, specialized
clients towards lightweight clients – often in a form of plugins or bookmarklets. A
lightweight equivalent of Haystack is PiggyBank [19], which runs as a browser
plugin, allowing the user to collect and browse found semantic information. Solvent,
another web browser plugin, performs Thresher’s role for PiggyBank, allowing the
user to visually annotate the document with common vocabularies (e.g. Doublin Core)
and generate “scrapers” that extract, convert and store in PiggyBank the “unwrapped”
semantic information.

Exhibit [20] is another tool from the same family as the above tools, is a
JavaScript-based approach that exposes structured data to the Web using styles and
templates. Rather than directly showing graph structures, Exhibit, PiggyBank and
others emphasize the need to make the semantic content human-friendly – hence,
templates and styles serve to ‘prettify’ the graphs and show them in a variety of
familiar metaphors (e.g. timelines, maps, tables, etc.) One shortcoming of this
approach is its focus on presenting simple annotations — they rely on the fact that
inference support and additional personalization by the users are not needed in most
browsing scenarios.

Similarly as with the previous metaphors, the issue of removing knowledge from
its original context is also applicable to styles and templates. In fact, the use of
templates in conjunction with formal knowledge may be seen as an introduction of
new context for that knowledge, which may not always be desirable.

3.4 Navigation by Means of Semantic Layering

Semantic layering is a notion that was introduced in connection with browsing and
navigation in early papers about Magpie [9, 10]. However, this metaphor has been
used previously by annotating and entity discovery algorithms (e.g. [6]) to present
outcomes of the text analysis. In the context of Magpie, its browser extension (plugin)
contains a small HTML parser that finds and highlights the entities from a particular
ontology in the current web page. A pre-condition of a successful parsing within the
Magpie-enabled web browser is the definition or download of an ontology-derived
lexicon. Lexicon- or gazeteer-based parsing is extremely fast approach to carry out an
entity recognition task in plain text [17]; in case of Magpie it helps keeping the time
overheads of semantic layering comparable to those for network latency.

The outcome of this text processing by Magpie plugin is annotation of an entity
instantiation in the web page using custom tags, which can then be activated using
Magpie toolbar. This process creates a semantic layer over the original document. The
original content remains unchanged; only the interesting concepts and the
corresponding text are highlighted. This approach to visualizing the semantic layers
puts the users in control of what knowledge is visible at any time, which in turn
reduces a common problem of overwhelming the users with too much information (as
in many link recommenders, annotators or data fed systems.

Annotated and highlighted concepts become ‘hotspots that allow the user to
request a menu with a set of actions for a relevant item. More on this is in the next
section. Here it suffices to say that web service choices depend on the ontological
classification of a particular concept in the selected ontology and on what services are

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 41

available for the concepts in a given ontology. Magpie plugin is wrapping the requests
for a particular service into a URI, which is then unwrapped to communicate with the
actual web service using SOAP (or correctly SOAP over HTTP). The results from the
individual web service may be fed into appropriate forms and visualizations based on
data retrieval, knowledge-level inference, statistical correlation, or their combination.

Unlike the previous three metaphors that focus on capturing abstract knowledge
and acknowledge context as a secondary thing, semantic layering treats knowledge in
situ, in its original surrounding. It also acknowledges the fact that the same piece of
text can be interpreted using different ontological commitments – every ontology
resulting in different entities being relevant and annotated. Since this approach is the
core of our research, we will devote more space to analyzing pluses and minuses of
this user interaction metaphor.

4 Enhancing Semantic Layering

In the scenario discussed in the previous publications [11] we considered Magpie
used as a dynamic educational resource supporting undergraduate students at The
Open University (UK). In this scenario, Magpie assisted these students by facilitating
a course-specific perspective on scientific texts, analyses and publications. Since
Magpie is a generic framework, several demonstrators have been built by using
different sets of ontologies, different web services and inference methods. In one such
large-scale example Magpie uses a 50k term large thesaurus of terminology related to
agriculture reused from resources of the Food and Agriculture Organization of the
United Nations (Fig. 2). Web services developed for FAO include term translations
(in conceptual and natural languages) and the conceptual navigation through
semantically close entities.

4.1 Positive Experiences with Semantic Layering in Magpie

The Magpie framework is open and transparent to these types of ontological
commitments. For the user the choice of ontological perspective alters the appearance
of the graphical user interface – the Magpie toolbar. Users can at any time switch to a
different ontology (if available) – e.g., if they want to re-interpret the document in the
context of agriculture instead of climate science. This is an important design feature,
as it allows one to circumscribe the scope of web pages in an open world. The control
over ontological viewpoints is up to the user, rather than the knowledge engineer.

Another positive aspect is the capability to interact with the user via semantic web
services – these can even be derived automatically based on a given ontology.
Services can be obviously composed, and thus a more natural and richer user
experience can be achieved. For example, the content of service response in Fig. 2 is
computed from several independent web services (e.g., term code to label
transformation and a calculation of a semantic neighbourhood). Hence, the user’s
single click gives a more comprehensive result that would normally require more
complex, manual composition of partial results, their interpretation, etc. The degree of
sophistication of the web services is independent of the Magpie architecture, which
sees services as black boxes.

42 M. Dzbor

Fig. 2. Magpie demonstrator: (a) applying the Agrovoc-derived lexicon to a web page, and
(b) an associated web service facilitating conceptual navigation

Since an answer to a semantic query/service may be a web resource in its own
right, it can also be semantically browsed and annotated. Here Magpie merges the
mechanisms for recognizing semantic relevance with browsing the results of semantic
inferences similarly as some other open hypermedia systems.

4.2 Negative Experiences with Semantic Layering in Magpie

Although the “single ontology = single interpretative perspective” paradigm used by
Magpie reduces the size of the problem space, this reduction is not always helpful.
Although it focuses the user’s attention (as intended), it also unduly restricts the
breadth of the acquired knowledge (this was clearly not intended). For instance,
during a study session a student may come across a few similar but semantically not
entirely identical study materials.

This means that at each page, the student would benefit from minor tuning of the
used ontology, glossary and/or service menu. These tunings reflect slight shifts within
a broader problem space, which is a fairly common tactic we use everyday to deal
with the open situations. Thus, Magpie’s design actually features a gap between the
inherent notion of a single, formal, sound but ‘semantically closed ontology
guaranteeing a certain precision within the domain, and the desire to open up the

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 43

interaction by supporting multiple services, as well as multiple ontologies (at the same
time, without explicit user’s reloading step).

4.3 Future of Semantic Browsing

As we suggested in the previous section, one experience from semantic layering that
seems to hamper the full potential of the approach is the actual selection of the
ontological perspective. A single ontology can hardly capture the diverse contexts and
variations in the meaning of resources found on the Web. Hence, as argued also in
[15], one of the key issues to enable full-power semantic browsing is the capability to
apply multiple ontological perspectives in multiple user contexts.

This may seem a straightforward requirement to extend the user interface and
simply include several ontologies in place of a single one. However, in practice, this
is heavily dependent on the capability of the semantic browser to find and/or retrieve
the relevant ontologies in the distributed setting of the Web. In this section, we
present our view of strategy that uses the existing Web and the existing partial
semantic resources as a background knowledge to enable automatic use of multiple
ontologies during browsing.

The idea of relying on the redundancy of information published on the Web and
using it as a large-scale repository of background knowledge to helps solve hardly
tractable problems is not novel. It has been applied e.g. in ontology learning and
relation population scenario in [4]. Another use of a similar motivation has been in
[25] for the purposes of ontology mapping. However, both these approaches could be
labeled as “back-office” support, i.e. the Web is interacting with techniques,
algorithms and heuristics before the any result is proposed to the user. The difference
of our approach is in stepping toward the front-end support and exploit the Web as a
source of ontologically captured knowledge that can help other users to navigate in a
semantically meaningful way.

First, we explain how we use the Web as a source of ontologies and semantic
content; alongside with justifying why the existing infrastructures (such as e.g.
Google) are not sufficiently expressive to do this task. Second, we propose how the
user can interact with a potentially large number of ontologies semantically applicable
to a particular web document.

4.3.1 Finding Distributed Ontologies on the Web
The requirement of coping with multiple ontologies on the user level depends, to
some extent, on an existence of a broader infrastructure supporting quick and efficient
selection and application of ontologies. It has been observed that the number of
ontologies and semantically marked up data is growing at a rapid pace. However, the
present knowledge of the quality of this generated and designed content in the
distributed Semantic Web resources is very sparse. To that extent, we are
investigating an infrastructure known as Watson [7], whose primary functions are:

• to enable advanced Semantic Web applications access and use ontologies that may
be distributed throughout the Web,

• to enrich access to networked ontologies by taking into account their quality, the
relationships and dependencies among, and

44 M. Dzbor

• to improve our understanding of the nature of the ontologies on the Semantic Web,
so that these can be effectively and economically re-used by the new generation of
Semantic Web applications (e.g. question answering tools, ontology mapping
engines, flexible semantic browsers, etc.)

Watson infrastructure offers a scalable mechanism for discovering, selecting, and
accessing ontologies distributed over the Web. It is a standalone (i.e. semantic
browsing independent) infrastructure with several benefits over similar competitors.
For instance, Swoogle [8] – the best known ‘ontology search engine’ has a broad
coverage of semantic content, but it suffers from two issues that make it less reliable
for advanced Semantic Web applications:

• indexed semantic content is often of mixed quality; Swoogle does not use any
stronger notion of ontology quality there are several independent works in the area
of ontology evaluation, but these do not benefit the Swoogle users;

• its primary criterion is akin to Google’s PageRank, i.e. reflecting popularity of
ontologies rather than more practical aspects such as domain coverage or similarly;
furthermore, Swoogle’s emphasis on web-like treatment of ontologies overlooks
their semantic content

One effect of this web-view in Swoogle cited and discussed in [7] is existence of
semantic duplicates or near- duplicates – i.e. files having different URLs but
semantically being equivalent. The lack of treatment of such a simple issues as
semantic duplication then may lead to skewing the performance of advanced
applications like semantic browsers. While duplication is a useful measure to tell
something about the popularity of a certain opinion, it is a misleading factor if it starts
influencing e.g. the meaning disambiguation and similarly.

Hence, infrastructure like in Watson is needed to create more in-depth knowledge
about the distributed semantic content available for the purposes of browsing,
question answering, etc. Watson’s initial contribution is in discovering ontologies and
other semantic content by means of commonly used data harvesting techniques. These
may produce a large quantity of input, so the actual added value of this envisaged
framework is the semantic and qualitative analysis of the harvested content.

In addition to simple analytic information (e.g. languages, formats, expressivity,
similarity, versions, etc.) it is important to know about the topological and networked
relationships among the individual ontologies and semantic data sets as wholes. Once
such information is acquired, we may consider tackling the second criterion in the
semantic browsing applications – the support for multiple ontological frames.

4.3.2 Semantic Browsing Using Multiple Ontologies
The new semantic browser (‘PowerMagpie’) we are developing relies on the generic
Watson framework introduced in the previous section. The role of Watson in this
semantic ‘power browsing’ tool is to identify and make available ontologies that are
interesting or otherwise relevant to the content of the web page visited by the user.
Watson enables us to extend the semantic layering to multiple ontologies, where in
turn, we need to distinguish the ontologies of different quality, topic coverage,
expressivity, etc., rather than merely finding any semantic content containing a given
keyword.

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 45

Once the external (semantic) content provider, such as Watson, provides ontologies
or other semantic content applicable to the visited web page, this is passed onto the
user interaction component, and is presented to the user. Contrary to the previous
version of Magpie, where the user was restricted to one mode of interaction (i.e.
semantic layering with ontology-specific categories), the new framework is more
flexible. Apart from offering various interpretative perspectives on a single web page,
the PowerMagpie browser is able to discover further semantically related resources,
which are not directly or indirectly referred by the selected ontology.

The key principle of this functionality is the fact that each ontology models a
certain aspect of the world and does it from a very particular perspective, which is by
no means exhaustive.

This strategy is common in information search and retrieval – e.g. under such
names as query expansion. However, a vast majority of search engines bases the
similarity on the lexical proximity of the resources, which, in turn, draws upon the
underlying search index. When such a service is implemented outside the search
engine scope – i.e. it cannot make direct use of the document index to explore the
resource neighbourhood – a dynamic, document-specific descriptive vector of terms
needs to be computed. In our framework, this capability is referred to as document
fingerprint, and it is somewhat resembling a summary of the document, a set of key
defining terms.

We are experimenting with various possibilities and methods to compute document
fingerprints, which are to be modularized and parameterized by the chosen user
perspective. A sub-set of such terms can be submitted to a search engine, or to our
semantic our alternative of a search engine – Watson Semantic Gateway (described in
section 4.1. The key idea of interfacing Watson rather than standard search engines
such as Google is to find and reuse other, already formalized and represented
conceptual commitments that may be captured in several ontologies that Watson
discovered on the web.

This technique is inherently iterative: the web browser plugin starts with an initial
document fingerprint and tests its conceptual fitness against the existing ontologies.
From the most relevant ontologies5 one can calculate semantic neighbours of the
matched concepts, which, when returned to the PowerMagpie plugin serve as
candidate fingerprint extensions. The plugin attempts to find matches to these
fingerprint extensions, thus disambiguating between the different perspectives in
which a document might be interpreted.

The discrimination between the different perspectives not only facilitates different
navigational paths for the document interpretation, but it also offers opportunities for
an implicit annotation of the resource or for an implicit population of the ontologies.
In the previous versions of the semantic web browsers, such annotations were merely
visual and from the reuse point of view transient. Now, with discovering new
ontologies it makes sense to store the annotations locally. One formalism that has
been recently agreed upon to facilitate this reuse is RDFa [1], which brings in either
ad-hoc or ontology driven annotation to the level that can be easily parsed and reused
– e.g. for the purposes of social semantic annotations or tagging applications.

46 M. Dzbor

5 Conclusions and Discussion

The Semantic Web is gaining momentum and more semantic data is available online.
This has an impact on the application development strategies. The original Magpie,
which started our interest in user interfaces for navigating and browsing the Semantic
Web, appeared in the time before this momentum became visible. Therefore, one of
the key assumptions behind the ‘classic’ Magpie of having no or little semantic mark-
up available is now becoming obsolete. In fact, there are nowadays many ontologies
available, which brings in new challenges.

The above-mentioned momentum also implies that the new generation of Semantic
Web application needs to work with more heterogeneous and distributed semantic
data. Hence, another design principle typically occurring in the applications from late
1990s and early 2000s (a single ontology) is challenged by this environment
consisting of distributed and networked ontologies.

The idea tested by us in the early applications of the Magpie technology of
interlinking semantic annotation, semantic browsing and semantic services is gaining
popularity. Annotation is no longer a separate objective in its own right; most of the
new annotation tools aim to offer additional services; e.g. validation or consistency
checking. A major challenge stems from the need to make the association between
semantic services and semantic mark-up more open, flexible and simpler. Clearly,
more usable techniques are needed for marking up, discovering and deploying such
services, so that these are more readily available to the users.

A potentially interesting input is likely to come from the deployment of modular
ontologies and specialized services as opposed to monolithic ontologies with tightly
integrated web services. Namely, the modular approach may allow some of the
services to be involved in evolving the general knowledge captured on the Semantic
Web. Some methods may use statistical techniques, where other services may rely
more on social trust. It seems that knowledge evolution would need to be investigated
from two complementary perspectives – (i) formal knowledge evolution based on
logical inference with an aim to assure consistency in knowledge bases, and (ii) social
knowledge evolution based on the input from the Semantic Web users and tools with
an aim to inspect the validity and applicability of knowledge.

New techniques for IE, text analysis, knowledge validation or relationship
discovery will surely emerge in the near future. However, the open – web browser
and service-based Magpie framework proved to be capable of facilitating the low-cost
upgrade to these future technologies without any major re-design of the existing user
components, such as ontologies or services. The open architecture of Magpie is thus
becoming a bridge to enable a shift from closed, single perspective application
development to a smarter, on-demand knowledge construction.

On a similar note, our early experimentation with the PowerMagpie, the successor
of the original idea of a Semantic Web browser points to the feasibility of the user
interaction with multiple ontologies at the same time. The challenge at this point,
which I will address in more depth in the talk at the conference, is to improve our
understanding of how different views on the content coming from multiple ontologies
affect the interpretation of semantic annotations. For example, with having several
ontologies found to be potentially relevant to a single web page, it is not unusual to
have mutually inconsistent conceptualizations of a particular term – how can we

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 47

(i) communicate this difference to the user, while at the same time (ii) associate terms
with appropriate web services in the case where consistency is no longer guaranteed?

This leads to some tentative suggestions regarding the styles of semantically
enriched browsing and navigation. One can take the ontology-driven pathway,
whereby the text is annotated in a manner that is consistent with a particular core
ontology. Other, potentially relevant ontologies would form a contextual fringe; they
may only be used, if they do not conflict with the core, only enhance it. On the other
hand, we can imagine a more ‘lateral navigation’ strategy, whereby the users would
be enabled to explore the consequences of alternative conceptual commitments with
respect to the same, vague terms.

The difference between the two strategies is not in the underlying technologies; the
problem is on the level of user interaction – how to convey different meanings using
essentially a single channel, which is fairly constrained by its reliance on the standard
web browsing tools. We have piloted this exploratory approach to interacting with
distributed resources in the domain of supporting learners to interpret complex,
interlinked educational materials [14]. Specifically we tested two distinct modes of
exploratory learning: (i) convergent, ‘spotlight’ browsing of semantically enriched
resources [5], and (ii) divergent, ‘serendipitous’ browsing into conceptually related
parts of the problem space [3, 12].

Applying Semantic Web to construct multiple exploratory paths and attending to
different aspects of the exploration, rather than to the individual nodes of the
semantically enriched space, has several side effects. For instance, from the user
experience viewpoint, the application becomes more flexible. A semantically enriched
application does not confine its user to one specific activity or role. With
PowerMagpie, the user would be assisted in both modes of interaction mentioned
above, and likely several additional modes would be developed, as we get more
understanding of the roles played by different relationships among multiple
ontologies.

Another side effect of pursuing a more exploratory support for semantic navigation
in PowerMagpie is the dynamics of the semantic application. Ontology-driven
solutions are often brittle; often based on closed worlds that enable reasoning solely
about the known concepts. Linking the process of concept discovery and the concept
association with terms to their presentation using multiple modalities overcomes this
brittleness, and also helps to bypass the knowledge acquisition bottleneck. In other
words, with the new generation of Semantic Web applications, the concern of the user
would be far less on having a good ontology to start with – the ontology would
become more fluid, modules and concepts can be added to it based on their utility and
usefulness in particular user interaction situation.

Acknowledgements

The author and his Magpie research have been over the years supported by several
projects and research initiatives. In particular, by the climateprediction.net, Dot.Kom,
KnowledgeWeb, Advanced Knowledge Technologies (AKT), OpenKnowledge and
NeOn pro jects. Climateprediction.net was sponsored by the UK Natural Environment
Research Council and UK Department of Trade e-Science Initiative. Dot.Kom

48 M. Dzbor

(Designing Adaptive Information Extraction from Text for Knowledge Management)
by the IST Framework 5 grant no. IST-2001-34038. KnowledgeWeb is an IST
Framework 6 Network of Excellence (grant no. FP6-507482). AKT is an
Interdisciplinary Research Collaboration (IRC) sponsored by the UK Engineering and
Physical Sciences Research Council by grant no. GR/N15764/01. OpenKnowledge
and NeOn are research projects partly supported by grants no. IST-2005-027253 and
no. IST-2005-027595, respectively, provided by the European Commission’s IST
Framework 6 Programme.

References

[1] Adida, B., Birbeck, M.: RDFa Primer 1.0: Embedding RDF in XHTML, World Wide
Web Consortium. p. W3C Working Draft (2007)

[2] Berners-Lee, T.: Tabulator: Exploring and analyzing linked data on the Semantic Web.
In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

[3] Brusilovsky, P., Rizzo, R.: Map-Based Horizontal Navigation in Educational Hypertext.
Journal of Digital Information 3(1), 156 (2002)

[4] Ciravegna, F., Dingli, A., Guthrie, D., et al.: Integrating Information to Bootstrap
Information Extraction from Web Sites. In: IJCAI Workshop on Information Integration
on the Web, Mexico (2003)

[5] Collins, T., Mulholland, P., Zdrahal, Z.: Semantic Browsing of Digital Collections. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 127–141. Springer, Heidelberg (2005)

[6] Cunningham, H., Maynard, D., Bontcheva, K., et al.: GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and Applications. In: ACL. 40th
Anniversary Meeting of the Association for Computational Linguistics, Pennsylvania, US
(2002)

[7] d’Aquin, M., Sabou, M., Dzbor, M., et al.: WATSON: A Gateway for the Semantic Web.
In: Posters of the 4th European Semantic Web Conf., Austria (2007)

[8] Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC
2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)

[9] Domingue, J., Dzbor, M., Motta, E.: Semantic Layering with Magpie. In: Staab, S.,
Studer, R. (eds.) Handbook on Ontologies in Information Systems, Springer, Heidelberg
(2003)

[10] Dzbor, M., Domingue, J., Motta, E.: Magpie: Towards a Semantic Web Browser. In:
Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 690–
705. Springer, Heidelberg (2003)

[11] Dzbor, M., Motta, E., Domingue, J.: Opening Up Magpie via Semantic Services. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 635–649. Springer, Heidelberg (2004)

[12] Dzbor, M., Motta, E., Stutt, A.: Achieving higher-level learning through adaptable
Semantic Web aplications. Int. J. of Knowledge and Learning 1(1/2), 25–43 (2005)

[13] Dzbor, M., Motta, E., Buil Aranda, C., et al.: Developing ontologies in OWL: An
observational study. In: OWL: Experiences & Directions workshop, Georgia, US (online)
(2006)

 Best of Both: Using Semantic Web Technologies to Enrich User Interaction 49

[14] Dzbor, M., Motta, E.: Semantic Web Technology to Support Learning about the Semantic
Web. In: AIED. Proc. of the 13th Intl. Conf. on Artificial Intelligence in Education, IOS
Press, California, US (2007)

[15] Dzbor, M., Motta, E., Domingue, J.: Magpie: Experiences in supporting Semantic Web
browsing. Journal of Web Semantics 5(3), 204–222 (2007)

[16] Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for heterogeneous
semantic web repositories. In: Proc. of the 5th Intl. Semantic Web Conf., Georgia, US
(2006)

[17] Hirschman, L., Chinchor, N.: Named Entity Task Definition. In: 7th Message Under-
standing Conf (MUC-7) (1997)

[18] Hogue, A., Karger, D.R.: Thresher: automating the unwrapping of semantic content from
the World Wide Web. In: Proc. of the 14th Intl. WWW Conf., ACM Press, Japan (2005)

[19] Huynh, D., Mazzocchi, S., Karger, D.R.: Piggy Bank: Experience the Semantic Web
Inside Your Web Browser. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729, pp. 413–430. Springer, Heidelberg (2005)

[20] Huynh, D., Karger, D., Miller, R.: Exhibit: Lightweight Structured Data Publishing. In:
Proc. of the 16th Intl. WWW Conf., Alberta, Canada (2007)

[21] Kules, B.: User modeling for adaptive and adaptable software systems. UUGuide:
Practical design guidelines for Universal Usability 2000 (April 2007),
http://www.otal.umd.edu/UUGuide

[22] Mazzocchi, S., Garland, S., Lee, R.: SIMILE: Practical Metadata for the Semantic Web.
O’Reilly (2005), http://www.xml.com/pub/a/2005/01/26/simile.html

[23] Quan, D., Huynh, D., Karger, D.R.: Haystack: A Platform for Authoring End User
Semantic Web Applications. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 738–753. Springer, Heidelberg (2003)

[24] Quan, D., Karger, D.R.: How to make a semantic web browser. In: Proc. of the 13th
International Conference on World Wide Web, ACM Press, New York (2004)

[25] Sabou, R.M., d’Aquin, M., Motta, E.: Using the Semantic Web as Background
Knowledge for Ontology Mapping. In: Proc. of the Ontology Mapping wksp (collocated
with ISWC 2006) (2006)

[26] Schraefel, M.C., Smith, D.A., Owens, A., et al.: The evolving mSpace platform:
leveraging the Semantic Web on the Trail of the Memex. In: Proc. of the Intl. Conf. on
Hypertext, Austria (2005)

[27] Shneiderman, B.: Universal Usability: pushing human-computer interaction research to
empower every citizen. Communications of the ACM 43(5), 84–91 (2000)

[28] Yee, P., Swearingen, K., Li, K., et al.: Faceted Metadata for Image Search and Browsing.
In: CHI. Proc. of the ACM Conf. on Computer-Human Interaction (2003)

On the Hardness of Reoptimization�

Hans-Joachim Böckenhauer, Juraj Hromkovič, Tobias Mömke,
and Peter Widmayer

Department of Computer Science, ETH Zurich, Switzerland
{hjb,juraj.hromkovic,tobias.moemke,widmayer}@inf.ethz.ch

Abstract. We consider the following reoptimization scenario: Given an
instance of an optimization problem together with an optimal solution,
we want to find a high-quality solution for a locally modified instance.
The naturally arising question is whether the knowledge of an optimal
solution to the unaltered instance can help in solving the locally modified
instance. In this paper, we survey some partial answers to this questions:
Using some variants of the traveling salesman problem and the Steiner
tree problem as examples, we show that the answer to this question de-
pends on the considered problem and the type of local modification and
can be totally different: For instance, for some reoptimization variant
of the metric TSP, we get a 1.4-approximation improving on the best
known approximation ratio of 1.5 for the classical metric TSP. For the
Steiner tree problem on graphs with bounded cost function, which is
APX-hard in its classical formulation, we even obtain a PTAS for the
reoptimization variant. On the other hand, for a variant of TSP, where
some vertices have to be visited before a prescribed deadline, we are able
to show that the reoptimization problem is exactly as hard to approxi-
mate as the original problem.

Keywords: reoptimization, approximation algorithms, inapproxi-
mability.

1 Introduction

In algorithmics and operations research, we deal with many optimization prob-
lems whose solutions are of importance in everyday applications. Unfortunately,
most of these problems are computationally hard, and so we use different ap-
proaches such as heuristics, approximation algorithms, and randomization in
order to compute good (not necessarily optimal) solutions. Nevertheless, we are
often not even able to give any reasonable guarantee on the solution quality or
on the efficiency of the applied algorithm. In this difficult situation, we propose
to make use of a very natural idea: Don’t start from scratch when confronted
with a problem, but try to make good use of prior knowledge about similar
problem instances whenever they are available. Traditionally, there is no such

� This work was partially supported by SBF grant C 06.0108 as part of the COST 293
(GRAAL) project funded by the European Union.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 50–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Hardness of Reoptimization 51

prior knowledge because problem inputs are considered as isolated instances. In
reality, prior knowledge is often at our disposal, because a problem instance can
arise from a small modification of a previous problem instance. As an example,
imagine that an optimal timetable (for some objective function, under some con-
straints) for a given railway network is known, and that now a railway station
is closed down. It is intuitively obvious that we should profit somehow from the
old timetable when we try to find a new timetable. It is this idea that we pursue
in some generality: Given a problem instance with an optimal (or approximate)
solution, and a variation of the problem instance that we obtain through small,
local modifications, what can we learn about the new solution? Does the old
solution help at all? Under what circumstances does it help? How much does it
help? How much does it help for the runtime, how much for the quality of the
output?

In this paper, we investigate the hardness of solving locally modified problem
instances when an optimal (or a good) solution to the original instance is for
free. We survey some results showing that this additional information helps to
get solutions with better quality guarantees for some problems and does not help
to find the solution more easily for other problems. The core of our approach
is to investigate which algorithmic problems become easier when moving from
the classical problem formulation to the version with locally modified instances,
and which don’t. Our hopes should not be unrealistic: In general, NP-hardness
of a problem implies that the solution to a locally modified problem cannot be
found in polynomial time, given the solution of the original problem. But it is,
on the other hand, obviously a drastic advantage to know a solution of a problem
instance, as compared to not knowing it, and this is reflected in the fact that
verification for problems in NP is polynomial, while finding a solution is not
(unless P=NP). For polynomial-time solvable problems, such as maintaining a
substructure in a graph under local changes (e.g., edge weight changes, insertions,
deletions), there are plenty of positive research results.

In this paper, we limit ourselves to hard problems; amazingly, they have been
relatively little studied under this natural perspective. Our study aims at con-
tributing to the understanding of the computational hardness of locally modified
problems, and can furthermore lead to developing new algorithms for solving al-
gorithmic tasks that are not only efficient, but also provide reasonable guarantees
on the solution quality.

The general idea of problem solving through repeated modification is also
reflected on a somewhat higher level of generality in the idea of solving a broad
variety of problems through an ”iterated” approach: In [20], four solutions to
very important problems (a polynomial time approximation of the permanent of
non-negative matrices; a construction of expander graphs; a log-space algorithm
for undirected connectivity; an alternative proof of the PCP theorem) are found
to start from a trivial construct, and to apply an ingeniously designed sequence of
iterations that yields the desired result by modifying the construct in a moderate
manner at each step.

52 H.-J. Böckenhauer et al.

We now define our notion of reoptimization problems more technically: Given
an instance of an optimization problem together with an optimal solution, we
consider the scenario in which the instance is modified locally. In graph problems,
e.g., the cost of one edge might be varied or a single vertex or edge may be
removed or added, etc. For a problem U and a local modification lm, we denote
the resulting problem by lm–U . Obviously, lm–U may be easier than U because
we have the optimal solution for the original problem instance for free.

A research question related to reoptimization was also considered in opera-
tions research [19,25,26,31,32], where one studies how much a given instance of
an optimization problem may be varied if it is desired that optimal solutions
to the original instance retain their optimality. In contrast with this so called
“postoptimality analysis”, we allow also modifications causing the loss of the
optimality of the solution to the original instance for the modified instance and
look for efficient algorithms for computing new high-quality solutions.

Note that, for some optimization problems, knowing an optimal solution to
the original instance trivially makes their reoptimization versions easy to solve
because the given optimal solution is itself a very good approximate solution
to the modified instance. For example, adding an edge in the instance of a
coloring problem can increase the cost of an optimal solution at most by one.
But such obvious cases are not a matter of our investigation. They are only
useful for illustrating the possible different outcomes of this study. On the one
hand, lm–U may become very easy relative to a problem U , either in terms of
an additive approximation as for the coloring problem, or it may allow for a
PTAS whereas the non-reoptimization variant of the problem is APX-hard. On
the other hand, we will show an example where lm–U is exactly as hard as U
from the approximability point of view.

To illustrate these possibilities in this paper, we will employ several variants
of the traveling salesman problem (TSP) and the Steiner tree problem. The
TSP is the problem of finding a minimum-cost Hamiltonian cycle in a complete
edge-weighted graph; as local modifications we consider changing the cost of
exactly one edge. In the Steiner tree problem, we are given a complete edge-
weighted graph and a subset of vertices, called terminals, and the goal is to find
a minimum-cost subtree connecting all terminals (and possibly containing some
of the non-terminals). For the Steiner tree problem, we consider the change of
the terminal set by adding or removing exactly one vertex as local modifications.

The paper is organized as follows: Section 2 contains some basic definitions.
In Section 3 we show that, for many optimization problems, the reoptimization
variants are still NP-hard. In Section 4 we present a 7/5-approximation algo-
rithm for a reoptimization variant of the metric TSP and 3/2-approximation
algorithms for some Steiner tree reoptimization variants. Section 5 contains a
PTAS for a reoptimization variant of the Steiner tree problem on graphs with
bounded edge weights. In Section 6, we present a reoptimization variant of the
TSP with deadlines which is exactly as hard as the non-reoptimization problem.
We conclude the paper in Section 7 with some remarks on possible research
directions.

On the Hardness of Reoptimization 53

2 Problem Definitions

In this section, we will formally define the reoptimization problems which we
will use as examples in the subsequent sections of this paper.

We start with the classical traveling salesman problem (TSP). An input in-
stance for the TSP is a complete edge-weighted graph G = (V, E), if the edge
cost function c : E → Q+ satisfies the triangle inequality

c({u, v}) ≤ c({u, w}) + c({w, v})

for all vertices u, v, w ∈ V , we call this instance metric. For the TSP, we will con-
sider two different types of local modifications in this paper, namely increasing
or decreasing the cost of a single edge.

Definition 1. The traveling salesman reoptimization problem with increasing
(decreasing, resp.) edge costs, IncEdge-TSP (DecEdge-TSP, resp.) for short, is
the following optimization problem: Given an undirected complete graph G =
(V, E) with two edge cost functions cO, cN : E → Q+, which coincide for all but
one edge e ∈ E where cO(e) < cN (e) (cO(e) > cN (e), resp.), and a minimum-cost
Hamiltonian tour TO in G according to cO, find a minimum-cost Hamiltonian
tour in G according to cN .

The subproblem where both (V, E, cO) and (V, E, cN) are metric graphs is de-
noted by IncEdge-ΔTSP (DecEdge-ΔTSP, respectively).

We will also consider a variant of the TSP where additionally a subset of ver-
tices get assigned deadlines, and a feasible Hamiltonian tour has to visit these
deadline vertices before the expiry of their respective deadlines, starting from
a prespecified start vertex. For this deadline TSP, we will consider the local
modifiations of increasing or decreasing the value of a deadline.

Definition 2. The deadline traveling salesman reoptimization problem with in-
creasing (decreasing, resp.) deadline, IncDead-DLTSP (DecDead-DLTSP, resp.)
for short, is the following optimization problem: The input consists of a complete
graph G = (V, E) with edge cost function c : E → Q+, a set D ⊂ V of dead-
line vertices, a start vertex s ∈ V , two deadline assignments dO : D → Q+

and dN : D → Q+ which coincide for all but one deadline vertex v where
dO(v) < dN (v) (dO(v) > dN (v), respectively), a minimum-cost Hamiltonian tour
in G obeying the deadline restrictions according to dO, and a feasible Hamilto-
nian tour in G with respect to the deadline restrictions dN . The goal is to find a
minimum-cost Hamiltonian tour in G obeying the deadline restrictions dN .

The subproblem where (V, E, c) is a metric graph is denoted by IncDead-
ΔDLTSP (DecDead-ΔDLTSP, respectively).

Note that, for some deadline TSP instances, even finding a feasible solution
might already be a hard task. Since we are not interested in this hardness aspect
of the problem here, we assume that a feasible solution also for the new instance
with the changed deadline value is given as part of the input.

54 H.-J. Böckenhauer et al.

The last problem which we will consider as an example in this paper is the
Steiner tree problem. For the Steiner tree problem, we are given a complete
edge-weighted graph and a subset of the vertex set, whose elements are called
terminals. The goal is to construct a minimum-cost subtree containing all termi-
nals and possibly any of the non-terminal vertices. For the Steiner tree problem,
we consider the local modifications of adding a vertex to the set of terminals or
removing a vertex from the terminal set.

Definition 3. The Steiner tree reoptimization problem with increasing (decreas-
ing, resp.) terminal set, IncTerm-STP (DecTerm-STP, resp.) for short, is the
following optimization problem: Given a complete graph G = (V, E) with edge
cost function c : E → Q+, two terminal sets SO ⊆ V and SN ⊆ V where
SO ⊂ SN and |SO| + 1 = |SN | (SN ⊂ SO and |SO| − 1 = |SN |, resp.), and
a minimum-cost Steiner tree TO for (G, c, SO), find a minimum-cost Steiner
tree TN for (G, c, SN). We denote the variant of IncTerm-STP (DecTerm-STP,
resp.) where the edge costs are restricted to values from {1, 2, . . . , r} for a con-
stant r by r-IncTerm-STP (r-DecTerm-STP, resp.).

3 NP-Hardness of Reoptimization

In this section, we show that for the reoptimization problems as defined in Section
2 there is no hope for polynomial-time exact algorithms.

In [4,5], it has been shown that TSP reoptimization in graphs with general
cost functions is still as hard to approximate as the classical non-reoptimization
variant of general TSP.

Theorem 1. Unless P = NP, there is no polynomial-time p(n)-approximation
algorithm for IncEdge-TSP or DecEdge-TSP for any polynomial p. ��
The proof of Theorem 1 employs a diamond graph construction similar to the
one which was used in [29] to exhibit worst-case examples for local search TSP
algorithms.

We will in the following focus on the metric case for the TSP reoptimization.
The following result was proved in [4,5].

Theorem 2. The problem IncEdge-ΔTSP is NP-hard.

Proof. We use a reduction from the restricted Hamiltonian cycle problem (RHC)
which can be described as follows. The input is an unweighted, undirected graph
G and a Hamiltonian path P in G which cannot be trivially extended to a
Hamiltonian cycle by joining its end-points. The goal is to decide whether G
contains a Hamiltonian cycle. This problem is well-known to be NP-complete
(see, for example, [24]).

The idea of the reduction is similar to the well-known reduction from the
Hamiltonian cycle problem to the TSP. Let (G, P) be an instance of RHC where
G = (V, E), V = {v1, . . . , vn}, and P = (v1, . . . , vn). From this RHC instance,
we construct an instance for IncEdge-ΔTSP as follows. Let G̃ = (V, Ẽ) be a

On the Hardness of Reoptimization 55

complete graph on vertex set V , and let cO(e) = 1 for all e ∈ E ∪{{vn, v1}} and
cO(e) = 2 otherwise, and let cN ({vn, v1}) = 2. Let TO = v1, v2, . . . , vn, v1 be the
given optimal Hamiltonian tour in G̃ according to cO.

This reduction can obviously be performed in polynomial time, the con-
structed cost functions are metric, and moreover it is easy to see that G contains
a Hamiltonian cycle if and only if G̃ contains a Hamiltonian cycle of cost n, ac-
cording to cN . ��

In the previous examples, we used the usual Karp reductions. If our aim is
to show NP-hardness, however, a polynomial-time Turing reduction is already
satisfactory [18]. Using an oracle polynomially many times turns out to be helpful
for proving hardness of reoptimization problems. In the following, we present a
general framework for proving NP-hardness of reoptimization problems. Then
we apply this framework for showing the NP-hardness of two variants of the
Steiner tree reoptimization problem (see [12]).

Lemma 1. Let U be an NP-hard optimization problem and let lm be a local
modification for U such that a deterministic algorithm can transform some ef-
ficiently solvable input instance I ′ for U into any input instance I for U using
a polynomial number of local modifications of type lm. Then, also the problem
lm–U is NP-hard.

Proof. We reduce U to lm–U using a polynomial-time Turing reduction. Since
U is NP-hard, this implies that also lm–U is NP-hard.

Let l be the number of local modifications of type lm needed to transform the
instance I ′ into I. Now suppose that there is a polynomial-time algorithm A for
lm–U . Then, applying A exactly l − 1 times, starting from I ′, is sufficient for
finding an optimal solution for I. Therefore, both the number of computations
and the runtime of each computation are polynomial in the size of U which
implies that the reduction runs in polynomial time, too. ��

For the problems IncTerm-STP and DecTerm-STP, we are able to show even
stronger results by restricting the edge costs to one and two only.

Theorem 3. The problems IncTerm-STP and DecTerm-STP are strongly NP-
hard.

Proof. We show the stronger result that 2-IncTerm-STP and 2-DecTerm-STP
are NP-hard. Since the edge costs are restricted to one and two, according to [18],
the NP-hardness implies that these problems are also strongly NP-hard. Obvi-
ously, IncTerm-STP and DecTerm-STP are at least as hard as their restricted
versions.

Let (G, S, c) be an arbitrary input instance for the problem 2-MinSTP where
G = (V, E) and S = {s1, s2, . . . , sl}. It is well known that 2-MinSTP is NP-hard
(and even APX-hard, see [3]). For the 2-IncTerm-STP, we use the efficiently
solvable input instance (G, {s1}, c). The graph ({s1}, ∅) is the unique optimal
solution. Now we can transform (G, {s1}, c) into (G, S, c) by adding the l − 1

56 H.-J. Böckenhauer et al.

vertices s2 to sl successively to the terminal set, each time solving an instance
of 2-IncTerm-STP. Hence, according to Lemma 1, 2-IncTerm-STP is NP-hard.

Analogously, the problem 2-DecTerm-STP is NP-hard. Here, the instance
(G, V, c) is efficiently solvable since we only have to compute a minimum spanning
tree. Obviously, successively removing all vertices from V \S from the terminal
set is sufficient for applying Lemma 1. ��

4 Improving Constant-Factor Approximations

We have seen in the preceding section that we cannot hope for polynomial-
time exact algorithms for many reoptimization problems. Thus, we will focus
on approximation algorithms in the remainder of this paper. We start with a
1.4-approximation algorithm for IncEdge-ΔTSP and DecEdge-ΔTSP which was
presented in [4,5]. This algorithm shows that reoptimization can indeed help for
finding approximative solutions since the best known approximation algorithm
for the metric TSP is Christofides’ algorithm [14] which achieves an approxima-
tion ratio of 1.5.

Theorem 4. There exists a polynomial-time approximation algorithm for both
IncEdge-ΔTSP and DecEdge-ΔTSP which achieves an approximation ratio of
7/5.

The proof of Theorem 4 is based on the observation that, if both the old and
the new cost function are metric, the local change can only be moderate if the
edge with changed cost is adjacent to an edge with small cost. More precisely,
the following lemma from [4,5] holds.

Lemma 2. Let G(V, E) be a complete graph, let cO, cN : E → Q+ be two metric
cost functions which coincide, except for one edge e. Then, every edge adjacent
to e has a cost of at least 1/2 · |cO(e) − cN (e)|.

Proof. We first assume that cO(e) > cN (e), and let δ = cO(e)−cN (e). Let f ∈ E
be any edge adjacent to e, and for any such f , let f ′ ∈ E be the one edge that is
adjacent to both e and f . The triangle inequalities according to cO and cN then
imply cO(e) ≤ cO(f) + cO(f ′) = cN (f) + cN (f ′) and cN (f ′) ≤ cN (f) + cN(e).
Hence, cO(e)−cN(e) ≤ 2·c(f). The proof in the cost-increasing case is analogous.

��

We now prove Theorem 4 for the case of IncEdge-ΔTSP. The proof for DecEdge-
ΔTSP is similar and can be found in [4,5].

Proof of Theorem 4. Let (G, cO, cN , TO) be an input instance for IncEdge-ΔTSP.
Let e be the edge of G where cO(e) < cN (e), let δ = cN (e)−cO(e). We distinguish
two cases depending on the size of the edge cost change δ. Let TN denote one
optimal Hamiltonian tour in G according to cN .

On the Hardness of Reoptimization 57

e

f

g

u

v

w

P

Fig. 1. The structure of an optimal tour according to cN in case 2 of the proof of
Theorem 4

Case 1: Assume δ/cN(TN) < 2/5. In this case, already the given old solution
TO constitutes a 7/5-approximation, since

cN (TO)
cN (TN)

≤ cO(TO) + δ

cN (TN)
≤ cO(TN) + δ

cN (TN)
≤ cN (TN) + δ

cN (TN)
= 1 +

δ

cN (TN)
≤ 7

5
.

Case 2: Assume δ/cN(TN) ≥ 2/5. In this case, we will construct an approxi-
mate Hamiltonian tour. We may assume that the edge e is not part of any
new optimal solution, otherwise TO obviously would be optimal also accord-
ing to cN . Let TN denote one arbitrary (but fixed) optimal tour according
to cN , let u denote one of the endpoints of e. Then TN contains two edges
f and g incident to u, let v and w denote the other endpoints of f and g,
respectively. By P we denote the subpath of TN from v to w not containing
u. In other words, TN consists of a path P from v to w and the two edges f
and g as shown in Figure 1.

We now consider the following algorithm. For any pair f̃ = {ṽ, u} and
g̃ = {w̃, u} of edges incident to u, compute an approximate Hamiltonian path
on G − u with start vertex ṽ and end vertex w̃ using the 5/3-approximation
algorithm from [21,22] and augment it with the edges f̃ and g̃ to yield a
Hamiltonian tour for G. The algorithm then outputs the cheapest of these
O(|V |2) tours.

Since all possible pairs f̃ , g̃ of edges are considered, one of the constructed
tours contains exactly the same edges f and g as TN does. Hence, the algo-
rithm constructs a tour of cost at most

c(f) + c(g) +
5
3
c(P) = (cN (TN) − c(P)) +

5
3
c(P) = cN (TN) +

2
3
c(P)

and thus achieves an approximation ratio of

1 +
2
3

· c(P)
OTGN

.

58 H.-J. Böckenhauer et al.

Due to Lemma 2, c(f), c(g) ≥ δ/2 and thus

c(P)
cN (TN)

≤ 1 − δ

cN(TN)
≤ 3

5
.

Using this, we achieve an approximation ratio of 1 + 2/5 = 7/5 also in this
case. ��

We have seen above that reoptimization can help for the metric subproblem of
TSP. All of these results can be generalized to TSP instances satisfying a relaxed
form of triangle inequality. For a complete graph G = (V, E) with edge cost func-
tion c and for any β > 1/2, we say that c satisfies the β-triangle inequality if

c({u, v} ≤ β · (c({u, w}) + c({w, v}))

for all vertices u, v, w ∈ V . If β > 1, we speak of a relaxed triangle inequality; if
1/2 < β < 1, we speak of a sharpened triangle inequality. For the case of a re-
laxed triangle inequality, approximation algorithms were designed for TSP reop-
timization with increasing or decreasing edge costs in [4,5]. These algorithms have
constant approximation ratios (depending on the parameter β only) and again im-
prove over the best known approximation algorithms for the non-reoptimization
variant of TSP on instances with relaxed triangle inequality.

Also for the local modification of inserting a new vertex into the graph, approx-
imation algorithms improving over Christofides’ algorithm have been designed in
[1,2]. The best currently known result is a 4/3-approximation as presented in [2].

We proceed with approximation algorithms for Steiner tree reoptimization. The
best currently known approximation ratio achievable by an approximation algo-
rithm for the Steiner tree problem is 1 + (ln 3)/2 ≈ 1.55, see [30]. For the re-
optimization variants with the local modification of increasing and decreasing the
number of terminals, we present a 1.5-approximation algorithm from [12]. We will
focus especially on the algorithm for IncTerm-STP because its time complexity is
linear in the number of terminals. Thus, we do not only achieve a better approx-
imation ratio in this case, but also an improved runtime compared to using the
algorithm from [30] which iteratively solves minimum spanning trees.

For simplicity, we assume that the cost functions of all instances for IncTerm-
STP and DecTerm-STP are metric. This is no restriction because it is sufficient
to solve these problems on the metric closure of the input graph, see [12,28]. The
metricity allows us to ignore nonterminals of degree two in the given solution
since any such vertex can be replaced by connecting its two adjacent vertices
directly without increasing the cost.

Theorem 5. There exists a 1.5-approximation algorithm for IncTerm-STP, and
its runtime is linear in the number of terminals.

Proof. Consider the following algorithm A. If the new terminal t is contained in
the given optimal Steiner tree TO, then A keeps the old solution. Otherwise, A
adds the cheapest edge that connects TO with t.

On the Hardness of Reoptimization 59

a

b b′

z z′

v

t

Fig. 2. The situation in the proof of Theorem 5 where the degree of t is one and the
neighbor of t is a non-terminal

Now we show that the approximation ratio of A is at most 1.5. If t is in TO,
then we get an optimal solution for the new instance since any new optimal tree
TN cannot be cheaper than TO. In the case where the added edge is cheaper than
c(TO)/2, the claimed approximation ratio can also be easily guaranteed. Since
TN is at least as expensive as TO, the cost of the computed solution, which is
at most 1.5 · c(TO), suffices for a 1.5 approximation. Hence, in the following we
assume that t is not in TO and that any cheapest edge from t to a terminal costs
at least c(TO)/2. Let TN denote an optimal tree for the new instance; whenever
it is possible to get a new optimal tree by augmenting TO with an additional
edge from t, let TN be of this kind.

For now, let us assume that the degree of t in TN is one; afterwards we will
show that higher degrees of t are even easier to deal with.

Let a = {t, v} be the only edge that is incident to t in TN . If v is a terminal,
then, due to the optimality of the subtree without t (see [27]), A computes an
optimal solution. Hence, we assume v to be a nonterminal. We further assume
that the degree of v is at least three since we can replace every nonterminal of
degree two by an edge connecting the adjacent vertices.

Since each leaf of an optimal Steiner tree is a terminal, in TN there are two
terminals z and z′ such that a path b connects v to z and a path b′ connects v to
z′. Note that, due to the metricity, the paths b and b′ are at least as expensive
as the edges {v, z} and {v, z′} (see Figure 2).

Since TN − a is a solution for (G, SO, c),

c(TN) ≥ c(TO) + c(a). (1)

Both a + b and a + b′ connect t with a terminal. Let TA be the Steiner tree
computed by A. Then

c(TA) ≤ c(TO) + c(a) + c(b). (2)

60 H.-J. Böckenhauer et al.

Let us assume that, without loss of generality, c(b) ≤ c(b′). Since c(TN) ≥
c(b) + c(b′), we know that

c(b) ≤ c(TN)/2, (3)

and thus we get

c(TA) ≤
(2)

c(TO) + c(a) + c(b) ≤
(1)

c(TN) + c(b) ≤
(3)

3c(TN)/2,

proving that TA is a 1.5-approximative solution.
If the degree of t is at least two, we can use the same proof as above, but with

c(a) = 0, i.e.,

c(TA) ≤ c(TO) + c(b) ≤ c(TN) + c(b) ≤ 3c(TN)/2.

It is easy to verify that the runtime of A is linear in the number of terminals. ��
As mentioned above, the knowledge of an optimal solution also helps us to find
an approximative solution in the case where a terminal is declared to become a
nonterminal.

Theorem 6. There is a 1.5-approximation algorithm for DecTerm-STP.

For the 1.5-approximation algorithm, the degree of the altered vertex t is cru-
cial. If the degree of t is at least three, then the old optimal tree provides a good
approximation. The hardest case appears to be the one where the degree of t
is two. The main idea here is to remove the shortest path from t to a terminal
in each of the two subtrees that are connected by t. Afterwards, the algorithm
computes an optimal Steiner tree for connecting the components that were cre-
ated by removing the paths. The branching of the two subtrees ensures that the
length of the paths is logarithmic in the number of vertices, which allows the
algorithm to run in polynomial time.

If the degree of t is one, removing t and the only corresponding edge either
yields an optimal solution for the reoptimization problem, if t is adjacent to
a terminal, or it allows us to apply one of the first two cases to compute an
approximative solution.

5 Polynomial-Time Approximation Schemes

In the preceding section, we have seen that the concept of reoptimization can help
in lowering a constant approximation ratio. In this section, we will present two
examples, where the improvement is even larger. More precisely, we will present
APX-hard problems whose reoptimization variants allow for a polynomial-time
approximation scheme (PTAS).

Theorem 7. Let r be an arbitrary positive integer. There exist polynomial-time
approximation schemes for r-IncTerm-STP and r-DecTerm-STP.

Proof. We have to show that, for every ε > 0, there is a polynomial-time (1+ε)-
approximation algorithm for both r-IncTerm-STP and r-DecTerm-STP. For this
purpose, we consider the following algorithm A.

On the Hardness of Reoptimization 61

Let k = 1/ε�. If the number of terminals in the new input instance, |SN |,
is at most r · k, then A computes an optimum solution for r-IncTerm-STP or r-
DecTerm-STP, respectively, using the Dreyfus-Wagner algorithm [16]. Otherwise,
for r-DecTerm-STP, A keeps the given old solution; for r-IncTerm-STP, A keeps
the old solution and, if the new terminal is not contained in the old solution, A
adds an arbitrary edge that connects the old tree with the new terminal.

In the following we assume without loss of generality that the input instance
has more than k · r terminals, i.e., |SN | > r · k, since otherwise A computes an
optimal solution.

Therefore, an optimal solution contains at least r · k edges, each of cost at
least one.

Adding one edge to some solution increases its costs by at most r. Hence, for
IncTerm-STP, c(TA) ≤ c(TO) + r and the approximation ratio of A is at most

c(TA)
c(TN)

≤ c(TO) + r

c(TN)
≤ c(TN) + r

c(TN)
= 1 +

r

c(TN)
≤ 1 +

r

r · k ≤ 1 + ε.

For r-DecTerm-STP, adding one edge to TN yields a feasible solution for
(G, SO, c). Hence, we know that c(TO) ≤ c(TN)+ r and the approximation ratio
of A is

c(TA)
c(TN)

≤ c(TN) + r

c(TN)
= 1 +

r

c(TN)
≤ 1 +

r

r · k
≤ 1 + ε.

For both problems, whenever the number of terminals |SN | is at most k ·r, the
time complexity of A is bounded from above by O(n2 · 3r·k) — the time to com-
pute an optimal Steiner tree using the Dreyfus-Wagner algorithm (see [16]) —
which is only exponential in the constants 1/ε� and r. The remaining parts of
the algorithm only require constant time complexity. Hence, all requirements for
a PTAS are satisfied. ��
A similar result has been proven in [5] for TSP reoptimization with increasing or
decreasing edge costs on instances satisfying some sharpened triangle inequality.
Moreover, a PTAS for a reoptimization variant of the metric maximum TSP,
where the local modification is the insertion of a new vertex into the graph, was
presented in [2].

6 Approximation Hardness of Reoptimization

In the preceding sections, we have seen some examples of problems where the
reoptimization approach helps to achieve a better approximation guarantee. In
this section, we will demonstrate that there are also problems for which reop-
timization does not help at all. As an example, we will use the reoptimization
variant of the TSP with deadlines as presented in Definition 2.

We start with the subproblem where the number of deadline vertices is boun-
ded by a constant. The classical non-reoptimization variant k-ΔDLTSP of this
problem with metric edge cost function and a constant number k of deadline
vertices was shown to be 2.5-approximable in [11,10]. Furthermore, for every
small ε > 0, a lower bound of 2 − ε on the approximability of k-ΔDLTSP was

62 H.-J. Böckenhauer et al.

s
s′

t′

u

G′

D1 D2

dO(D1) = γ + n dO(D2) = 2γ + n + 1

γ

γ

γ

γ − 1 2n

1

Fig. 3. The construction in the proof of Theorem 8. All vertices v ∈ V ′ − {s′, t′} are
connected like u.

proven in [11,10]. We will in the following present a result from [4] showing that
exactly the same lower bound also holds for k-IncDead-ΔDLTSP and k-Dec-
Dead-ΔDLTSP.

Theorem 8. Let ε > 0. There is no polynomial-time (2 − ε)-approximation
algorithm for k-IncDead-ΔDLTSP or k-DecDead-ΔDLTSP, unless P = NP.

Proof. We prove the claim for 2-IncDead-ΔDLTSP only. The proof for 2-Dec-
Dead-ΔDLTSP is similar and can be found in [4].

For the proof, we use a reduction from the restricted Hamiltonian path prob-
lem (RHP) which is defined as follows. The input is an unweighted, undirected
graph G and a Hamiltonian path P in G with start vertex s and end vertex t.
The goal is to decide whether G contains a Hamiltonian from s to some vertex
u �= t. This problem is well-known to be NP-complete (see, for example, [24]).

Let ε > 0. We show that the RHP could be solved using a (2 − ε)-approxima-
tion algorithm for k-IncDead-ΔDLTSP.

Let (G′, P ′) be an input instance for RHP where G′ = (V ′, E′) is an un-
weighted undirected graph, |V ′| = n + 1, and P ′ is a Hamiltonian path in G′

from start vertex s′ ∈ V ′ to end vertex t′ ∈ V ′.
We choose a γ > (5n+3)/(2ε); this implies (4γ +n−1)/(2γ +3n+1) > 2−ε.
Now we construct a complete weighted graph G = (V, E) with edge cost func-

tion c as part of an input instance for 1-IncDead-ΔDLTSP as shown in Figure
3: We add three new vertices s, D1, and D2 to V ′, i.e., V = V ′ ∪ {s, D1, D2},
and, for any edge e between two vertices v1, v2 ∈ V ′, we set c(e) = 1 if e ∈ E′

and c(e) = 2 otherwise. All edges depicted in Figure 3 have the indicated costs
while non-depicted edges obtain maximal possible costs such that the triangle
inequality is still satisfied. The only deadline vertices are D1 and D2, We set the
deadlines dO(D1) = γ +n and dO(D2) = 2γ + n + 1. The given optimal solution
for this ΔDLTSP instance is the tour TO = s, D1, D2, t

′, . . . , s′, s which uses the
Hamiltonian path P ′ from s′ to t′ in G′.

The cost of this given solution is exactly γ−1+γ+γ+n+γ = 4γ+n−1. Any
solution not using such Hamiltonian path from s′ to t′ may visit some vertices
in V ′ between s and D1, but costs at least the amount of 1 more.

On the Hardness of Reoptimization 63

Moreover, we define the new deadline function dN by increasing the deadline
of D1 by the amount of x, i.e., dN (D1) = dO(D1)+x. If the graph G′ contains a
Hamiltonian path P from s′ to some vertex u �= t′, an optimal solution for G with
respect to dN is the tour s, P, D1, D2, s which costs γ+n+1+γ+2n = 2γ+3n+1.

On the other hand, if G′ does not contain such a Hamiltonian path, it is not
possible to visit all vertices in V ′ before reaching D1 and D2. As c({t′, D1}) ≥ 2,
we cannot follow the given Hamiltonian path P because this would violate the
deadline d(D2). Similar arguments hold for every other possibility. Hence, the
given tour TO remains an optimal solution also with respect to dN in this case.

Thus, we could use any approximation algorithm with an approximation guar-
antee better than

4γ + n − 1
2γ + 3n + 1

> 2 − ε

to solve the RHP. Hence, approximating 2-IncDead-ΔDLTSP within a ratio of
2 − ε is NP-hard which obviously implies the same lower bound also for every
k ≥ 2. ��
Note that we have actually proven even a stronger result than claimed in The-
orem 8: The claimed lower bounds even hold for problem instances containing
only two deadline vertices.

In the more general case of an unbounded number of deadline vertices, even a
linear lower bound on the approximation ratio was shown for ΔDLTSP in [11,10].
Also this lower bound carries over to the reoptimization case as shown in [4].

Theorem 9. Let ε > 0. There is no polynomial-time O(|V |)-approximation al-
gorithm for IncDead-ΔDLTSP or DecDead-ΔDLTSP, unless P = NP.

The reduction needed for proving Theorem 9 is technically rather involved, so
we refer to [4] for the proof.

Similar results as in Theorems 8 and 9 can also be shown for the local modi-
fication of increasing or decreasing the cost of a single edge instead of changing
a deadline.

7 Conclusion

In this paper, we have presented an overview of the current techniques and
results in the area of approximation algorithms for reoptimization problems.
We have shown that the concept of reoptimization can in many cases help to
improve the approximability of hard optimization problems by lowering constant
approximation ratios or even constructing a PTAS for problems which are APX-
hard in their classical non-reoptimization variant. On the other hand, we have
exhibited some problems where reoptimization does not help at all.

But there are also several interesting open questions in this area of research.
For example, the approximation hardness of all reoptimization problems pre-
sented in Section 4 is open. Moreover, the model of reoptimization considered
so far is rather restricted and could be generalized in two ways: First, instead of

64 H.-J. Böckenhauer et al.

requiring an exact solution to the unaltered instance as part of the input, a more
advanced model of reoptimization could also consider a good approximative so-
lution here. Closely connected with this is a second possible way of generalizing
the model by allowing for not only one local modification of the input instance,
but for a sequence of local modifications. First results in this direction were
presented in [2] for TSP reoptimization with insertion of new vertices as local
modification.

References

1. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman
problem. Networks 42, 154–159 (2003)

2. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.Th.: Reoptimization of minimum
and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R. (eds.) SWAT
2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)

3. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2.
Information Processing Letters 32(4), 171–176 (1989)

4. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G.,
Widmayer, P.: Reusing optimal TSP solutions for locally modified input instances
(extended abstract). In: IFIP TCS 2006. Proc. of the 4th IFIP International Con-
ference on Theoretical Computer Science, pp. 251–270. Springer, Norwell (2006)

5. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G.,
Widmayer, P.: On the approximability of TSP on local modifications of optimally
solved instances. Algorithmic Operations Research 2(2), 83–93 (2007)

6. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the
notion of stability of approximation for hard optimization tasks and the traveling
salesman problem (extended abstract). In: Bongiovanni, G., Petreschi, R., Gambosi,
G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000)

7. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approxima-
tion algorithms for TSP with sharpened triangle inequality. Information Processing
Letters 75, 133–138 (2000)

8. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: An im-
proved lower bound on the approximability of metric TSP and approximation
algorithms for the TSP with sharpened triangle inequality (extended abstract). In:
Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 382–394. Springer,
Heidelberg (2000)

9. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the
notion of stability of approximation for hard optimization tasks and the traveling
salesman problem. Theoretical Computer Science 285, 3–24 (2002)

10. Böckenhauer, H.-J., Hromkovič, J., Kneis, J., Kupke, J.: On the parameterized
approximability of TSP with deadlines. Theory of Computing Systems (to appear)

11. Böckenhauer, H.-J., Hromkovič, J., Kneis, J., Kupke, J.: On the approximation
hardness of some generalizations of TSP. In: Arge, L., Freivalds, R. (eds.) SWAT
2006. LNCS, vol. 4059, pp. 184–195. Springer, Heidelberg (2006)

12. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Re-
optimization of Steiner trees: changing the terminal set (submitted)

13. Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability
of the traveling salesman problem. RAIRO Theoretical Informatics and Applica-
tions 34, 213–255 (2000)

On the Hardness of Reoptimization 65

14. Christofides, N.: Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh (1976)

15. Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F.: VRP
with time windows. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem,
SIAM 2001, pp. 157–193 (2001)

16. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207
(1971/72)

17. Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S.: On the stability of approxima-
tion for Hamiltonian path problems. Algorithmic Operations Research 1(1), 31–45
(2006)

18. Garey, M., Johnson, D.: Computers and Intractability. W. H. Freeman and Co.,
New York (1979)

19. Greenberg, H.: An annotated bibliography for post-solution analysis in mixed inte-
ger and combinatorial optimization. In: Woodruff, D.L. (ed.) Advances in Compu-
tational and Stochastic Optimization, Logic Programming, and Heuristic Search,
pp. 97–148. Kluwer Academic Publishers, Dordrecht (1998)

20. Goldreich, O.: Bravely, moderately - A common theme in four recent works. In:
SIGACT News, vol. 37, pp. 31–46. ACM, New York (2006)

21. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation al-
gorithms with bounded performance guarantees for the clustered traveling sales-
man problem. Algorithmica 28, 422–437 (2000)

22. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters 10, 178–193 (1978)

23. Hromkovič, J.: Stability of approximation algorithms for hard optimization prob-
lems. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725,
pp. 29–47. Springer, Heidelberg (1999)

24. Hromkovič, J.: Algorithmics for Hard Problems. Introduction to Combinatorial Op-
timization, Randomization, Approximation, and Heuristics. Springer, Heidelberg
(2003)

25. Libura, M.: Sensitivity analysis for minimum Hamiltonian path and traveling sales-
man problems. Discrete Applied Mathematics 30, 197–211 (1991)

26. Libura, M., van der Poort, E.S., Sierksma, G., van der Veen, J.A.A.: Stability as-
pects of the traveling salesman problem based on k-best solutions. Discrete Applied
Mathematics 87, 159–185 (1998)

27. Mölle, D., Richter, S., Rossmanith, P.: A faster algorithm for the Steiner tree
problem. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
561–570. Springer, Heidelberg (2006)

28. Prömel, H.J., Steger, A.: The Steiner Tree Problem. Friedr. Vieweg & Sohn, Braun-
schweig (2002)

29. Papadimitriou, Ch., Steiglitz, K.: Some examples of difficult traveling salesman
problems. Operations Research 26, 434–443 (1978)

30. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
Proc. of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 770–779. ACM, New York (2000)

31. Sotskov, Y.N., Leontev, V.K., Gordeev, E.N.: Some concepts of stability analysis
in combinatorial optimization. Discrete Appl. Math. 58, 169–190 (1995)

32. Van Hoesel, S., Wagelmans, A.: On the complexity of postoptimality analysis of
0/1 programs. Discrete Applied Mathematics 91, 251–263 (1999)

Describing Self-assembly of Nanostructures

Natasha Jonoska� and Gregory L. McColm

Department of Mathematics
University of South Florida

Tampa, FL 33620
{jonoska,mccolm}@math.usf.edu

Abstract. We outline an algebraic model for describing complex struc-
tures obtained through self-assembly of molecular building blocks and
show that, with this model, the assembled structure can be associated
to a language and it can be determined up to congruence.

Recently models for self-assembly have been proposed for describing vari-
ous phenomena ranging from nano-scale structures, material design, crystals,
bio-molecular cages such as viral capsids and for computing (see for example
[3,4,7,8]). There is an increased necessity for mathematical study of these phe-
nomena. With this abstract we sketch an informal description of an algebraic
system for describing and characterizing nanostructures built by a set of molecu-
lar building blocks. This algebraic approach connects the classifcal view of crystal
dissection with a more modern system based on algebraic automata theory. A
two dimensional treatment of the same problem with a more formal description
can be found in [5]. Here we concentrate on a simple three-dimensional case with
polyhedral building blocks.

1 The General Set-Up

For simplicity we take that the molecular building blocks can be modeled as a
set of polyhedra, for example a pyramid and a cube (see Figure 1). The building
blocks have specific chemical properties on their faces (presented as labels or
colors). These bonds may be strong covalent or weak ionic (hydrogen) types of
bonds and specify which two faces can be superimposed or “glued” together.
Say, the connection or bonding is allowed only along compatible faces, where
the “compatibility” is defined by a binary relation on the set of bond types.

We concentrate on two general, essentially geometric problems,

– how can structures that can be built characterized or classified?
– how can two non-congruent structures be distinguished?

In this note, we outline a method for answering the latter question.
For these questions, one utilizes classical symmetry isometries: suppose that

the cube was taken from an archetypic “cube type” in “standard position”
� Supported in part by the NSF grants CCF-0726396 and CCF-0523928.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 66–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Describing Self-assembly of Nanostructures 67

Fig. 1. An example of assembly of two polyhedral blocks together by bonding across
compatible faces. In this example, two faces are compatible if they are congruent and
of the same color.

(in a particular orientation, centered at the origin). If this block is used in an
assembly of a complex structure, it will be displaced by a vector x and then
rotated by an angle θ about a line �. Its new placement can be described by the
triple (x, �, θ). Attaching a pyramid across a face of the cube requires it to be
displaced and rotated as in Figure 2. All block types that take part in assembly
of the structure are assumed to be taken from a standard position (centered
at the origin in a particular orientation) and then displaced to their appropri-
ate position in the built structure. For every assembled structure we assume
that there is a building block which is in its standard position which we call a
reference block.

We also assume that there is a finite set of building block types, there are a
finite number of bond types, and a finite number of relative rotations that one
block can take with respect to another while bonding.

It is desirable that a computer program be used to design and investigate these
structures. For this purpose one needs to convert the geometry into a compact
(algebraic) system for representing the geometric articulation. We propose to do
this by using finite state automata and borrowing a notion from turtle geometry
(from the “turtle graphics” of the computer language Logo developed by Wally
Feurzeig and Seymour Papert; see, e.g., [1]).

2 Automata

A structure can be described by knowing the positions of all building blocks,
and those positions are known if a path that a “bug” could take from the ref-
erence block to each block in the structure. Hence, we can describe a structure
(composed of building blocks) by describing all the paths that a bug could take
to traverse it. The bug starts at the center of the reference block, and moves
from block to block across bonds. Its motion is tracked by the vectors from the
center of a block to the center of the next block. During this motion, the bug
keeps track of the re-orientations it needs to make arriving at a block: orienting
itself, and then moving to the next block. Each re-orientation is accomplished

68 N. Jonoska and G.L. McColm

l

θ

e

e
e

e

ee

’

’’
1

2

3

v’

Fig. 2. Displacing the cube by the vector x and rotating by angle θ around an oriented
line � allows connection the pyramid’s base to the cube’s top face. If e3 is the vector
from the center of the cube (in standard position) to the center of the top face (which
we treat as the “reference point” for the top face), then the corresponding vector in
the displaced and rotated cube is e′

3 = Rot�,θ(e3) where Rot�,θ is the corresponding
matrix for the given transformation. If the vector from the center of the pyramid to
its base is denoted v (when in standard position), after rotation, that vector becomes
v′ = Rot�,θ(v). Hence after displacing, the center of the pyramid is at x+ e′

3 −v′, and
its orientation is determined by (�, θ).

by a single rotation around a line (from a fixed list of such orientations) relative
to the block it is on.

A finite state automaton can be used to generate the possible bug paths
for a given set of block types within an assembled structure. The states of the
automaton are the block types: in the example of Figure 1, denote � for the state
representing the cube block type and � for the state representing pyramid block
type. The automaton also has a zero state 0 to represent a state of the bug having
attempted an illegal move. All states of the automaton are initial and terminal.
The input alphabet of the automaton consists of all possible movements a bug
can make from one block (of a specific type) to another block (of a specific type).
The walks follow the bonding properties of the abutting faces. For example, a
transition from a block b to a block b′ labeled by symbol σ = (u, ı, ϕ) represents
the following movement of the bug. From a block b, rotate through an angle ϕ
about a line ı (for ı displaced to go through the center of b) and translate the
bug through the vector u to a new block b′. To a walk of the bug within the
structure we associate a walk in the directed graph represented by the finite
state automaton. At every step of the walk, we associate a placement of the bug.
If the bug starts a walk in the structure at block b, then its placement at the
starting time is at the origin, and the block b is considered to be in the standard
position and is the “reference block”. Now, inductively, if the bug is on a block b

Describing Self-assembly of Nanostructures 69

whose center is at x, and if that block was rotated from its standard orientation
through an angle θ about the oriented line �, we say that its placement is at
block b with position (x, �, θ). A transition moves the bug from one placement
to another. For example, if the bug is at placement (x, �, θ) at block b (of type
b), an automaton transition from state b to state b′ labeled σ = (u, ı, ϕ) moves
the bug to a block b′ with position (x + Rot�,θ(u), j, ψ), where Rot�,θ is the
rotation operator (for the rotation about � by angle θ) and Rotj,ψ = Rotı,ϕ◦
Rot�,θ as computed by the Euler-Oliveires formulas (see, e.g., [6, (4.3), p. 82]).
Hence a path in the automaton bσ1σ2 · · · σkb′ starting at block type (state) b and
ending at block type (state) corresponds to a path in the assembled structure
starting at b0 (of type b) following displacements defined with σ1, σ2, ..., and
σk, and ending at block bk (of type b′). Such a path in the automaton (or in
the structure) represents a composition of translations and rotations moving the
bug from block b0 to block bk.

This automaton is symmetric in the sense that a bug can always reverse
direction: for any transition σ representing a movement from a block of type b
to an adjacent block of type b′, there is a “local inverse” σ−1 representing a bug
movement from a block of type b′ to a block of type b.

Hence, given a structure made of building blocks, any traversal of the structure
by the bug can be represented by a “framed walk” bσ1σ2 · · · σnb′, where b and
b′ encode the types of the initial and terminal blocks, and σ1, . . . , σn encode n
movements by the bug. Note that the walks do not encode particular blocks, just
their types: transfixing (identifying or distinguishing) between blocks requires an
additional notion. In this sense, a framed walk can be seen as a walk through
the automaton’s digraph.

Even for cubes and pyramids, if we allowed all possible transitions across abut-
ting square faces, the computational details could be burdensome. For example,
if the bug started at a cube in standard position, and moved to an adjacent
block, there are 6 faces of the cube (hence six bonding sites), and for each face,
there are two possible next blocks: the cube (via any of the six faces, and for
each choice of articulating faces, there are four orientations of the adjacent cube)
and the pyramid (one face, with four orientations): thus there are 6×7×4 = 168
possible adjacencies, and so 168 possible transitions (even though in any par-
ticular structure, there will be at most six possible transitions from this initial
cube).

For simplicity, we restrict the example to only one building block, a cube,
where the only bonding is Left-Right, Up-Down, and Back-Front, and hence each
complex formed has each block in the same orientation, as shown in Figure 3. So
the bug moving from cube to cube can only move from a Right face of one cube
to the (abutting) Left face of an adjacent cube (a transition labeled R), or from
the F ront face to the Back face of an adjacent cube (a transition labeled F), or
from the Upper face to the Down face of an adjacent cube (a transition labeled
F),and so on. In this example, there are only six possible transitions, and the
resulting automaton is presented in Figure 3. The transitions labeled L = R−1,
B = F−1, and D = U−1 are (local) inverses of R, F , and U , respectively. We

70 N. Jonoska and G.L. McColm

have the following correspondence of the symbols with the geometric movements
of the bug: F = (〈1, 0, 0〉, �, 0), F = (〈0, 1, 0〉, �, 0), and U = (〈0, 0, 1〉, �, 0), for
any �. And thus B = F−1 = (〈−1, 0, 0〉, �, 0), and so on.

Down

Up

Left Right

Front

Back
(U,D) (R,L)

(D,U)(L,R)

(F,B)

(B,F)

Fig. 3. To the left, a cube in standard position, with its faces labeled; a cube is allowed
to connect to its neighbor only via a complementary face, as dictated by the automaton
represented by the digraph to the right. For example, L is an instruction: “go through
the Left face of the current block into the next block, entering that next block via its
Right face.” On a particular block in a particular assembled structure, the bug can
obey this instruction if and only if there is a next block beyond the Left face of the
current block, and the Right face of that next block abuts the Left face of the current
block.

So we start with a fixed set of block types (cubes, pyramids, etc.) that can
connect in certain ways defined by transitions of some automaton. These transi-
tions can be concatenated into words. Given such an automaton, call the set of
all words it can generate its walkspace. In order to identify structures that can
be built from building blocks, we assume that a bug is traversing a particular
structure, (using a framed walk as a list of instructions to follow). Hence, we
look at particular structures through the walks of the bug.

3 Structures through Words

Intuitively, a particular structure is an assembly of blocks (each one of a given
block type), all arranged so that they are connected across articulating faces.

A framed walk is a list of instructions for walking through a structure, with
the following complication: it may not be possible for the bug to follow the
instructions. For example, imagine a structure of five cubes from Figure 3, lined
up and articulating Right face to Left face in a row. From the leftmost cube,
but not from the middle cube, the bug could perform the walk �RRRRR�; but
there is no cube from which it could perform the walk �FRB�. In the rest of
the section, intuitively we take that “structure” is a possible assembled structure

Describing Self-assembly of Nanostructures 71

that can be obtained by gluing building blocks of given types according to the
bonding relation.

Definition 1. Let C be a structure, and let b be a block of C. Let W (C,b) be
the set of framed walks in the automaton that can be walked in C starting at b
as a reference block. Furthermore, the length of a framed walk is the number of
transitions, i.e., |bσ1σ2 · · ·σnb′| = n. Let Wn(C,b) = {w ∈ W (C,b): |w| ≤ n}.
We now convert geometry to algebra by defining an equivalence that identifies
pairs of framed walks that lead the bug from the same initial block to the same
terminal block. Let b0s1b ∼ b0s2b mean that if the bug started at a block of
type b0 (in standard position) and followed the walk instructions s1, it would
wind up in the same position and orientation, and hence the same block as if it
followed the walk instructions s2. We define a structure to be rigid with respect
to ∼ if for any three blocks b0,b1,b2 of the structure, where type(b0) = b0 and
type(b1) = type(b2) = b, the following is true: b1 = b2 if and only if for any
framed walk b0s1b that guides the bug from b0 to b1 and for any framed walk
b0s2b that guides the bug from b0 to b2, b0s1b ∼ b0s2b. Notice that ∼ depends
on the shapes of the blocks, and on the geometric space in which the blocks
are placed. This relation ∼ is defined through cycles in the walkspace, i.e., by
identifying those framed walks that in the geometry lead the bug back to the
block on which it started (see Figure 4). For a set of walks W denote with Ŵ
the equivalence classes of walks in W .

REF

A BLOCK

Fig. 4. An example of a structure built using the blocks (and transitions) of the au-
tomaton in Figure 3. Consider paths from block REF to block BLOCK. As � is the
sole block type, we have �RRBUUL� ∼ �LBUURR�. This indicates that when
following one of the framed walks, and then the other but in reverse, one returns to
the original block.

This notion of rigidity of the structure has the following consequence.

Theorem 1. Suppose that two structures C1 and C2 which consist of n blocks
each are generated from the same block types according to transitions of the same

72 N. Jonoska and G.L. McColm

automaton. Then they are (geometrically) congruent if and only if for some block
b1 of C1 and some block b2 of C2, Ŵn(C1,b1) = Ŵn(C2,b2).

Hence we can treat a structure as a set of framed walks, i.e., as a language, thus re-
moving the geometry from the computation. Using this fact, and assuming that ∼
(and associated apparatus) is PTIME computable, we can prove that congruence
of rigid structurees is PTIME computable, which contrasts from the popular sus-
picion that the Graph Isomorphism problem is not PTIME computable.

4 Summary

We also need to make sure that two blocks do not try to occupy the same space.
We can use a forbidden set of words (walks) in the automaton to prevent blocks
from intersecting (see Figure 5. By creating a set of excluded walks the bug is
forbidden from making. Call this set of excluded walks I. It can be shown that I
is a semigroup ideal (the walkspace itself is a semigroup under the concatenation
operator). Note that in the example of Figure 3, I = ∅. But given more possible
blocks and orientations, as in the example shown in Figure 5, we can have I to
be nonempty, indeed infinite, but sometimes (as in the case of the example in
Figure 5), readily computable.

ε

ε

ε

τ

−1

−1

33

2

Fig. 5. We cannot insert a cube in the given slot. Using “�” to represent the cube type
and “�” to represent the pyramid type, and setting D to be Down, R to be Right,
etc., we see that the framed walk �DRUL� is excluded.

By building a computable algebraic model of a structure, block by block, not
adding any blocks forbidden by the exclusion set, connecting blocks to complete
cycles mandated by ∼, a computer and programmer may design a blueprint or
an analysis of a complex structure. (Computer-aided analysis (e.g., the database
at [2]) and design (e.g., the engine described in [4]) is already done for crystals.)
Characterizing classes of building block types that have computable algebraic
structures (∼ and I) is a challenge for the theoreticians.

Describing Self-assembly of Nanostructures 73

References

1. Abelson, H., deSessa, A.A.: Turtle Geometry: The Computer as a Medium for Ex-
ploring Mathematics. MIT Press, Cambridge (1980)

2. Cambridge Structural Database, Cambridge Crystallographic Data Centre,
http://www.ccdc.cam.ac.uk/

3. Chen, H-I., Goel, A.: Error-free assembly using error-prone tiles. In: Ferretti, C.,
Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 62–75.
Springer, Heidelberg (2005)

4. Foster, M.D., Treacy, M.M.J., Higgins, J.B., Rivin, I., Balkovsky, E., Randall, K.H.:
A systematic topological search for the framework of ZSM-10. J. Appl. Crystallog-
raphy 38, 1028–1030 (2005), http://www.hypotheticalzeolites.net/

5. Jonoska, N., McColm, G.L.: Flexible versus Rigid Tile Assembly. In: Calude, C.S.,
Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS,
vol. 4135, pp. 139–151. Springer, Heidelberg (2006)

6. Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Applications to
Orbits, Aerospace, and Virtual Reality. Princeton U. Press, Princeton (1999)

7. Twarock, R.: A tiling approach to virus capsid assembly explaining a structural
puzzle in virology. J. Theor. Biol. 226, 477–482 (2004)

8. Winfree, E.: Algorithmic Self-assembly of DNA, PhD Thesis, CalTech (1998)

http://www.ccdc.cam.ac.uk/
http://www.hypotheticalzeolites.net/

On the Undecidability of the Tiling Problem

Jarkko Kari�

Department of Mathematics, FIN-20014 University of Turku, Finland
jkari@utu.fi

Abstract. The tiling problem is the decision problem to determine if a
given finite collection of Wang tiles admits a valid tiling of the plane. In
this work we give a new proof of this fact based on tiling simulations of
certain piecewise affine transformations. Similar proof is also shown to
work in the hyperbolic plane, thus answering an open problem posed by
R.M.Robinson 1971 [9].

1 Introduction

A Wang tile is a unit square tile with colored edges. Tiles are placed on the plane
edge-to-edge, under the matching constraint that abutting edges must have the
same color. Tiles are used in the given orientation, without rotating. If T is a
finite set of Wang tiles, a tiling of the plane is a covering t : Z2 −→ T of the
plane by copies of the tiles in such a way that the color constraint is satisfied
everywhere.

The tiling problem (also known as the domino problem) is the decision problem
that asks whether a given finite tile set T admits at least one valid tiling t :
Z2 −→ T . This problem was proved undecidable by R.Berger in 1966 [1], see also
R.M.Robinson [9] for another proof. Both proofs rely on an explicit construction
of an aperiodic tile set. Set T is called aperiodic if it admits some valid tiling
of the plane, but it does not admit a valid periodic tiling, i.e. a tiling that is
invariant under some translation. Note that existence of such aperiodic sets is
not obvious, and in fact it was conjectured prior to Berger’s work that they
do not exist. If aperiodic sets did not exist, then the tiling problem would be
decidable as one can simply try tilings of larger and larger rectangles until either
(1) a rectangle is found that can no longer be tiled, or (2) a tiling of a rectangle
is found that can be repeated periodically. Only aperiodic tile sets fail to reach
either (1) or (2).

Note that Wang tiles are an abstraction of geometric tiles. Indeed, by using
suitable ”bumps” and ”dents” on the sides to represent different colors, one
can effectively replace any set of Wang tiles by a set of geometric tiles (all
polygons with rational coordinates) such that the geometric tiles admit a tiling
(a non-overlapping covering of the plane) if and only if the Wang tiles admit a
tiling. Hence undecidability of the tiling problem by geometric tiles follows from
Berger’s result.
� Research supported by the Academy of Finland grant 211967.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 74–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Undecidability of the Tiling Problem 75

In this work we present a new proof for the undecidability of the tiling prob-
lem. The proof uses plane tilings to simulate dynamical systems that are based
on piecewise affine transformations. The undecidability of the tiling problem
will then be concluded from the undecidability of the mortality problem of such
dynamical systems.

A particularly nice feature of our proof is the fact that it is purely combi-
natorial. As a result of this the method generalizes easily to tilings in other
lattices as well. In particular, we show that the tiling problem is undecidable in
the hyperbolic plane. This resolves an open question asked already by Robinson
in 1971 [9], and discussed by him in more details in 1978 [10]. In particular,
Robinson proved the undecidability of the origin constrained tiling problem in
the hyperbolic plane. This is the easier question where one asks the existence of
a valid tiling that contains a copy of a fixed seed tile. We mention that there
is a concurrent, independent and unpublished approach by M.Margenstern to
the tiling problem in the hyperbolic plane [8]. We have reported our approach
previously in [5].

We first discuss piecewise affine transformations and their mortality problem.
We then outline the construction of corresponding Wang tiles. We then conclude
by providing the analogous construction in the hyperbolic plane.

2 Mortality Problems of Turing Machines and Piecewise
Affine Maps

Our proof is based on a reduction from the mortality problem of Turing machines.
In this question we are given a deterministic Turing machine with a halting state,
and the problem is to determine if there exists a non-halting configuration, that
is, a configuration of the Turing machine that never evolves into the halting state.
Such configuration is called immortal. Note that the Turing machine operates
on an infinite tape, and configurations may contain infinitely many non-blank
symbols.

Mortality problem of Turing machines. Does a given Turing machine have
an immortal configuration ?

The mortality problem was proved undecidable by P.K.Hooper in 1966 [4], the
same year that Berger proved his result. The two results have similar flavor, but
proofs are independent in the sense that they do not rely on each other in either
direction. Note an analogy to aperiodic tile sets: Hooper’s result means that
there must exist aperiodic Turing machines, that is, Turing machines that have
immortal configurations but no immortal configuration repeats itself periodically.
Our present proof establishes another connection between Hooper’s and Berger’s
results since we reduce the mortality problem to the tiling problem.

We first consider dynamical systems determined by piecewise affine transfor-
mations of the plane. There exists a well known technique to simulate Turing
machines by such transformations, see e.g. [2,7]. The idea is to encode Tur-
ing machine configurations as two real numbers (l, r) ∈ R2, representing the

76 J. Kari

left and the right halves of the infinite tape, respectively. The integer parts of
l and r uniquely determine the next rule of the Turing machine to be used.
More precisely, suppose the tape and state alphabets of the Turing machine are
A = {0, 1, . . . , a} and Q = {0, 1, . . . , b}. Let M be an even integer such that
M > a + 1 and M > b. Then we let

l =
−∞∑

i=−1

M iti, and

r = Mq +
∞∑

i=0

M−iti,

where q ∈ Q is the current state of the Turing machine and (ti)i∈Z is the content
of the infinite tape. We use a moving tape model of Turing machines: The Turing
machine always reads cell 0 while the tape shifts left or right according to the
rules of the Turing machine. Note that �r� = Mq + t0 determines the next move
of the machine, and that the encoding is one-to-one.

For each transition rule of the Turing machine one can effectively associate a
rational affine transformation of R2 that simulates that transition. The matrix
of the transformation is

(
M 0
0 1

M

)
,

(
1 0
0 1

)
or

(
1
M 0
0 M

)

depending on the direction of the movement associated with the transition. The
translation part of the transformation takes care of the changes in the tape
symbol in cell 0 as well as the change in the state of the Turing machine.

In this fashion any deterministic Turing machine is converted into a system of
finitely many rational affine transformations f1, f2, . . . , fn of R2 and correspond-
ing disjoint unit squares U1, U2, . . . , Un with integer corners. Squares Ui serve as
domains for the affine maps: the affine transformation fi is applied when (l, r)
is in the unit square Ui. Together the transformations define a partial function
f : R2 −→ R2 whose domain is U = U1 ∪ U2 ∪ . . . ∪ Un, and whose operation is

�x �→ fi(�x) for �x ∈ Ui.

Point �x ∈ R2 is called immortal if for every i = 0, 1, 2, . . . the value f i(�x) is
in the domain U . In other words, we can continuously apply the given affine
transformations and the point we obtain always belongs to one of the given unit
squares Ui.

The reduction from Turing machines to piecewise affine transformations pre-
serves immortality: the Turing machine has an immortal configuration if and
only if the corresponding system of affine maps has an immortal starting point.
Hence we conclude from Hooper’s result that the following immortality question
is undecidable:

Mortality problem of piecewise affine maps: Does a given system of ra-
tional affine transformations f1, f2, . . . , fn of the plane and disjoint unit squares
U1, U2, . . . , Un with integer corners have an immortal starting point ?

On the Undecidability of the Tiling Problem 77

3 Reduction into the Euclidean Tiling Problem

Next the mortality question of piecewise affine maps is reduced into the tiling
problem of Wang tiles. The idea is very similar to a construction of an aperiodic
Wang tile set presented in [6]. In [6] a tile set was given such that every valid
tiling is forced to simulate an infinite orbit according to the one-dimensional
piecewise linear function f : [12 , 2] −→ [12 , 2] where

f(x) =
{

2x, if x ≤ 1, and
2
3x, if x > 1.

Function f has no periodic orbits so the corresponding tile set is aperiodic.
The construction needs to be generalized in two ways: (1) instead of linear

maps we need to allow more general affine maps, and (2) instead of R the maps
are now over R2. Fortunately both generalizations are very natural and work
without any complications.

The colors of our Wang tiles are elements of R2. Let f : R2 −→ R2 be an
affine function. We say that tile

n

w

s

e

computes function f if
f(�n) + �w = �s + �e.

(The ”input” �n comes from north, and f(�n) is computed. A ”carry in” �w from
the west is added, and the result is split between the ”output” �s to the south
and the ”carry out” �e to the east.)

Suppose we have a correctly tiled horizontal segment of length n where all
tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(�n) +
1
n

�w = �s +
1
n

�e,

where �n and �s are the averages of the top and the bottom labels. As the segment
is made longer, the effect of the carry in and out labels �w and �e vanish. Loosely
speaking then, in the limit if we have an infinite row of tiles, the average of the
input labels is mapped by f to the average of the output labels.

78 J. Kari

Consider now a given system of affine maps fi and unit squares Ui. For each
i we construct a set Ti of Wang tiles that compute function fi and whose top
edge labels �n are in Ui. An additional label i on the vertical edges makes sure
that tiles of different sets Ti and Tj cannot be mixed on any horizontal row of
tiles. Let

T =
⋃

i

Ti.

If T admits a valid tiling then the system of affine maps has an immortal point.
Namely, consider any horizontal row in a valid tiling. The top labels belong to
a compact and convex set Ui. Hence there is �x ∈ Ui that is the limit of the top
label averages over a sequence of segments of increasing length. Then fi(�x) is the
limit of the bottom label averages over the same sequence of segments. But the
bottom labels of a row are the same as the top labels of the next row below, so
fi(�x) is the limit of top label averages of the next row. The reasoning is repeated
for the next row, and for all rows below. We see that �x starts an infinite orbit
of the affine maps, so it is an immortal point.

We still have to detail how to choose the tiles so that any immortal orbit of
the affine maps corresponds to a valid tiling. Consider a unit square

U = [n, n + 1] × [m, m + 1]

where n, m ∈ Z. Elements of

Cor(U) = {(n, m), (n, m + 1), (n + 1, m), (n + 1, m + 1)}
are the corners of U . For any �x ∈ R2 and k ∈ Z denote

Ak(�x) = �k�x�
where the floor is taken for each coordinate separately:

�(x, y)� = (�x�, �y�).
Denote

Bk(�x) = Ak(�x) − Ak−1(�x) = �k�x� − �(k − 1)�x�.
It easily follows that if �x ∈ U then

Bk(�x) ∈ Cor(U).

Vector �x will be represented as the two-way infinite sequence

. . . B−2(�x), B−1(�x), B0(�x), B1(�x), B2(�x), . . .

of corners. It is the balanced representation of �x, or the sturmian representation
of �x. Note that both coordinate sequences are sturmian.

The tile set corresponding to a rational affine map

fi(�x) = M�x +�b

and its domain square Ui consists of all tiles

On the Undecidability of the Tiling Problem 79

fi(Ak−1(�x))
−Ak−1(fi(�x))

+(k − 1)�b

fi(Ak(�x))
−Ak(fi(�x))

+k�b

Bk(fi(�x))

Bk(�x)

where k ∈ Z and �x ∈ Ui. Observe the following facts:

(1) For fixed �x ∈ Ui the tiles for consecutive k ∈ Z match in the vertical edges
so that a horizontal row can be formed whose top and bottom labels read
the balanced representations of �x and fi(�x), respectively.

(2) A direct calculation shows that the tile above computes function fi, that is,

fi(�n) + �w = �s + �e.

(3) Because fi is rational, there are only finitely many tiles constructed, even
though there are infinitely many k ∈ Z and �x ∈ Ui. Moreover, the tiles can
be effectively constructed.

Now it is clear that if the given system of affine maps has an immortal point �x
then a valid tiling exists where the labels of consecutive horizontal rows read the
balanced representations of the consecutive points of the orbit for �x. We conclude
that the tile set we constructed admits a tiling of the plane if and only if the
given system of affine maps is immortal. Undecidability of the tiling problem
follows from the undecidability of the immortality problem that we established
in Section 2

4 Reduction into the Tiling Problem on the Hyperbolic
Plane

The method of the previous section works just as well in the hyperbolic plane.
Instead of Wang tiles we use hyperbolic pentagons that in the half-plane model
of hyperbolic geometry are copies of

(2,2)(0,2)

(0,1) (1,1) (2,1)

Note that all five edges are straight line segments. These tiles admit valid tilings
of the hyperbolic plane in uncountably many different ways

80 J. Kari

In these tilings the tiles form infinite ”horizontal rows” in such a way that each
tile has two adjacent tiles in the next row ”below”.

In the following these hyperbolic pentagons are used instead of the Euclidean
square shaped Wang tiles. The five edges will be colored, and in a valid tiling
abutting edges of adjacent tiles must match. This is an abstraction – analogous
to Wang tiles in the Euclidean plane – that can be transformed into hyperbolic
geometric shapes using bumps and dents.

Exactly as in the Euclidean case we color the edges by vectors �x ∈ R2. We
say that pentagon

r

n

ew

l

computes the affine transformation f : R2 −→ R2 if

f(�n) + �w =
�l + �r

2
+ �e.

Note that the difference to Euclidean Wang tiles is the fact that the ”output” is
now divided between �l and �r.

Consider a correctly tiled horizontal segment of length n where all tiles com-
pute the same f .

s

w e

Average = n

Average =

Clearly we have
f(�n) +

1
n

�w = �s +
1
n

�e,

where �n and �s are the averages of the top and the bottom labels on the segment.

On the Undecidability of the Tiling Problem 81

Analogously to the Euclidean case, given a system of affine maps fi and unit
squares Ui, we construct for each i a set Ti of pentagons that compute function
fi and whose top edge labels �n are in Ui. It follows, exactly as in the Euclidean
case, that if a valid tiling of the hyperbolic plane with such pentagons exists then
from the labels of horizontal rows one obtains an infinite orbit in the system of
affine maps.

We still have to detail how to choose the tiles so that the converse is also
true: if an immortal point exists then its orbit provides a valid tiling. The tile
set corresponding to a rational affine map

fi(�x) = M�x +�b

and its domain square Ui consists of all tiles

fi(Ak−1(�x))
− 1

2A2(k−1)(fi(�x))
+(k − 1)�b

fi(Ak(�x))
− 1

2A2k(fi(�x))
+k�b

B2k−1(fi(�x)) B2k(fi(�x))

Bk(�x)

where k ∈ Z and �x ∈ Ui. Now we can reason exactly as in the Euclidean case:

(1) For fixed �x ∈ Ui the tiles for consecutive k ∈ Z match so that a horizontal
row can be formed whose top and bottom labels read the balanced represen-
tations of �x and fi(�x), respectively.

(2) A direct calculation shows that the tile computes function fi:

fi(�n) + �w =
�l + �r

2
+ �e.

(3) There are only finitely many pentagons constructed (because fi is rational),
and they can be formed effectively.

The tiles constructed admit a valid tiling of the hyperbolic plane if and only
if the corresponding system of affine maps has an immortal point. So we have
proved

Theorem. The tiling problem is undecidable in the hyperbolic plane.

References

1. Berger, R.: Undecidability of the Domino Problem. Memoirs of the American Math-
ematical Society 66, 72 (1966)

2. Blondel, V., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.: Deciding sta-
bility and mortality of piecewise affine dynamical systems. Theoretical Computer
Science 255, 687–696 (2001)

82 J. Kari

3. Goodman-Strauss, C.: A strongly aperiodic set of tiles in the hyperbolic plane.
Inventiones Mathematicae 159, 119–132 (2005)

4. Hooper, P.K.: The undecidability of the Turing machine immortality problem. The
Journal of Symbolic Logic 31, 219–234 (1966)

5. Kari, J.: The Tiling Problem Revisited (extended abstract). In: Durand-Lose, J.,
Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 72–79. Springer, Heidel-
berg (2007)

6. Kari, J.: A small aperiodic set of Wang tiles. Discrete Mathematics 160, 259–264
(1996)

7. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynam-
ical systems. Theoretical Computer Science 132, 113–128 (1994)

8. Margenstern, M.: About the domino problem in the hyperbolic plane, a new so-
lution. Manuscript , 109 (2007), http://www.lita.univ-metz.fr/∼margens/ and
also see arXiv:cs/0701096, same title

9. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae 12, 177–209 (1971)

10. Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Inventiones
Mathematicae 44, 259–264 (1978)

http://www.lita.univ-metz.fr/~margens/

Remote Entrusting by Run-Time Software

Authentication

Mariano Ceccato2, Yoram Ofek1, and Paolo Tonella2

1 University of Trento, Italy
ofek@dit.unitn.it

2 Fondazione Bruno Kessler—IRST, Trento, Italy
{ceccato, tonella}@fbk.eu

Abstract. The problem of software integrity is traditionally addressed
as the static verification of the code before the execution, often by check-
ing the code signature. However, there are no well-defined solutions to
the run-time verification of code integrity when the code is executed re-
motely, which is refer to as run-time remote entrusting. In this paper we
present the research challenges involved in run-time remote entrusting
and how we intend to solve this problem. Specifically, we address the
problem of ensuring that a given piece of code executes on an remote
untrusted machine and that its functionalities have not been tampered
with both before execution and during run-time.

1 Introduction

When the software industry discusses software integrity, the main focus is on the
protection of static software modules (e.g., by verifying the signature of their
originator). On the other hand, dynamic software authentication in real-time
during execution is a known problem without a satisfactory solution. Specifically,
how to ensure that trusted code base (i.e., the software as was specified and
coded) is running on an untrusted machine at all times and that the original
code functionality was not modified prior to or during execution, is an open
research challenge. This issue of entrusting software components is crucial since
software, computers and networks are invading all aspects of modern life.

The issue of executing software in a trusted computing (TC) environment
has gained a great deal of attention recently, in particular, the TCG (Trusted
Computing Group) [22], Microsoft NGSCB (Next Generation Secure Comput-
ing Base) [23] and TrustZone developed by ARM [24] (see the next related work
subsection for more details). These activities are somewhat complementary and
orthogonal to the work presented in this paper. The previous approaches are
hardware-based, and consequently, will not be available on all existing machines.
Our research hypothesis is that a solution can be designed at any layer as a soft-
ware component enhancing the layer itself in a cost-effective fashion; in contrast,
TC is invasive, since it requires special hardware on the “motherboard”. The
proposed novel paradigm for remote entrusting of software will be available as
a general, platform-independent solution (i.e., it is non-monopolistic, thus more

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 83–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 M. Ceccato, Y. Ofek, and P. Tonella

competitive). The solution adds another line of defense to complement the cur-
rent hardware solutions; while Trusted Computing (TC) can help manage keys
and verify the system integrity during startup, it offers little protection against
an attacker that already has access to the machine.

The key research question in remote entrusting is: “How can the execution
of a software component be continuously entrusted by a remote machine, albeit
the software component is running inside an untrusted environment?” (This is
refer to as the “remote entrusting problem”).

The solution to the above research problem should be able to employ external
hardware, such as, smart cards, but not as a mandatory component. Further-
more, this work investigates a novel methodology for solving this problem by
employing a software-based trusted logic component on a remote untrusted ma-
chine that in turn authenticates its operation continuously during run-time (i.e.,
execution). The method should assure the entrusting component that if the
authentication is successful, then the original (i.e., unchanged) software func-
tionality is being executed.

The long-term objective of the proposed approach is to entrust selected func-
tionalities that are executed on untrusted machines and thereby ensure crucial
trust/security properties.

Examples of possible applications are:

1. Protecting network resources and servers from users employing untrusted
(i.e., unauthorized) software and protocols — specifically in the critical ap-
plications, such as, e-commerce, e-government.

2. Ensuring data privacy in Grid computing as well as digital right manage-
ment (DRM) adherence by assuring proper processing of untrusted (possibly
misbehaving) machines.

There are two fundamental differences between remote entrusting and other
related approaches. Those fundamental differences are clear manifestation of
some of the advancements beyond the state-of-the-art proposed by our approach.

1. Core of trust location — the basic working assumption when dealing with
trust is that “some system components can be trusted” called at times, “core
of trust”. In some current approaches, such as trusted computing (TC), the
“core of trust” is located locally on the “mother board”, while in RE-TRUST
the “core of trust” is placed in a remote trusted entity across the network.
In other words, our model intend to address the trust problem by using the
network under the assumption of continuous network connectivity, which is
almost a reality today.

2. Entrusting/validation method — our proposed validation method is a sig-
nificant departure from the-state-of the-art by introducing a novel protocol
that provides software trust (or authentication) that is continuous during
run-time — in other words, we introduce a proactive (avoidance) method.
The main current approach to trust, e.g., TC (trusted computing) is off-
line or reactive (after the fact); namely, it may be possible to detect trust
violations after some damage has been done. The objective of RE-TRUST
project is to avoid breach of SW trust damages all together.

Remote Entrusting by Run-Time Software Authentication 85

In the rests of the paper describes how we intend to address the remote en-
trusting problem. In Section 2 the basic remote entrusting approach is described
and in Section 3 more details are given regarding the general architecture, pure-
software and the hardware assisted solutions, then Section 4 introduces some
possible attacks and discusses some possible protection mechanisms. The dis-
cussion in Section 5 concludes the paper.

1.1 Related Works

The initial work concerning the remote entrusting was developed by some con-
sortium members in the TrustedFlow research activities [1,2]. The initial work
introduced the ideas on how to generate a continuous stream of signatures us-
ing software only. The remote entrusting methodology is novel and challenging,
and presents a major advancement beyond the state of the art. However, some
specific aspects of the proposed research activities have been dealt with in differ-
ent contexts. Therefore, the following state of the art discussion is divided into
several subsections corresponding to various research aspects that are related to
our approach.

Software dependability state of the art. Software dependability is a ma-
ture and well-established research area that seeks solutions to the problem of
software errors that can corrupt the integrity of an application. To this aim,
several techniques have been developed and the most prominent are control-flow
checking and data duplication. Control-flow checking techniques are meant to
supplement the original program code with additional controls verifying that
the application is transitioning through expected valid “traces” [3,4,5]. In data
duplication techniques, program variables are paired with a backup copy [6,7,8].
Write operations in the program are instrumented to update both copies. Dur-
ing each read access, the two copies are compared for consistency. There is one
main difference regarding the “attack model”, between software dependability
and the current project. Software dependability assumes that modifications are
accidental (random) errors (say bit flips), while remote entrusting deals with
intentional and malicious software modifications.

Software tamper resistance state of the art. Among the several possible
attacks, the focus is on the problem of authenticity, i.e., attacks aiming at tam-
pering with application code/data for malicious purposes, like bypassing licens-
ing, or forcing a modified (thus unauthorized) execution. Different solutions have
been proposed in the literature to protect software from the above-mentioned
rogue behaviors. Such solutions are surveyed in details in [9,10] and briefly de-
scribed in the following. Obfuscation is used to make application code obscure
so that it is complex to understand by a potential attacker who wants to reverse
engineer the application. Obfuscation techniques, change source code structure
without changing its functional behavior through different kinds of code trans-
formations [11,12]. Theoretical studies about complexity of reverse engineering
and de-obfuscation are in early stage. It is well-known that for binaries that

86 M. Ceccato, Y. Ofek, and P. Tonella

mix code and data disassembly and de-compilation are undecidable in the worst
case [13]. On the other hand, some work reported that de-obfuscation (under
specific and restrictive conditions) is an NP-easy problem [14]. Further, it was
proven that a large number of functions cannot be obfuscated [15].

Replacement background state of the art. Dynamic replacement strategy
relies on the assumption that tampering attempts can be made more complex if
the attackers have to face newer versions continuously. This approach has some
similarities with software aging [16], where new updates of a program are fre-
quently distributed. This limits the spread of software “cracks” and it allows
renewal of software protection techniques embedded in the application. Another
relevant area of related work is represented by techniques for protection of mobile
agents [16,17]. For instance, previous work proposed a scheme to protect mobile
code using a ring-homomorphic encryption scheme based on CEF (computa-
tion with encrypted functions) with a non-interactive protocol [18,19]. However
the existence of such homomorphic encryption function (also known as a privacy
homomorphism) is still an open problem. Furthermore, some approaches mix ob-
fuscation and mobility. For instance, in [20] agents are periodically re-obfuscated
to ensure that the receiving host cannot access the agent state.

Hardware-based entrusting state of the art. Solution proposed by Trusted
Computing initiatives [21,22,23,24] rely both on a trusted hardware component
on the motherboard (co-processor) and on a common architecture that enable
a trusted server-side management application to attest the integrity of a ma-
chine and to establishing its “level of trust”. This non run-time approach has
been applied to assess integrity of a remote machine enhanced with a trusted
coprocessor and a modified Linux kernel [25]. In that work a chain of trust is
created. First BIOS and coprocessor measure integrity of the operating system
at start-up, then the operating system measure integrity of applications, and
so on. Other non run-time approaches rely on additional hardware to allow a
remote authority to verify software and hardware originality of a system [26].
Beside Trusted Computing, another interesting approach is presented in [27].
This approach has some similarities to our hardware assisted method, as it is
based on commodity hardware tokens (e.g., smart cards) and remote execution
of selected software components.

2 Basic Approach

Detection of software changes on a 1st machine by a 2nd machine across the
network is difficult since the 2nd machine cannot directly observe the software
executed on the 1st machine. As shown in Figure 1, in order to solve the problem,
the 2nd machine should receive some “proofs” regarding the authenticity of the
software that is running on the 1st machine. Such “proofs” are hard to obtain
since the 2nd machine often receives only data from the 1st machine, while what
is actually needed by the 2nd machine is to receive signatures (or attestations)
continuously from selected parts of the software running on the 1st machine,

Remote Entrusting by Run-Time Software Authentication 87

i.e., selected applications and protocols that are executed on the 1st machine.
The signatures (or attestations) will thereby authenticate the respective selected
software parts executed on the 1st machine. In other words, the signatures that
are continuously emanated from selected parts of the software on the 1st ma-
chine provide the “identity” of the running software and thereby enabling the
2nd machine, after validation, to entrust the software running on the 1st ma-
chine. However, today selected applications and protocols that are developed
and deployed on such 1st machines are not designed to emanate signatures (or
attestations) continuously. In essence this is a paradigm shift and one of the
main scientific/technical challenges introduced in the RE-TRUST project [29].

Secur e T ags

2 nd Ent r ust ing
M achine

1 st U nt r ust ed
M achineEnt r ust ing

T he Global
I nt er net

¬ 1 st U nt r ust ed machine emanat es S ecur e T ags
f r om a code/ sof t war e dur ing ex ecut ion

¬ 2 nd Ent r ust ing M achine is EN T RU S T I N G t he
1 st U nt r ust ed machine by ver if ying t he S ecur e T ags

Core of Trust

Fig. 1. Entrusting by remote software authentication during execution

As stated before, networking and computing are converging into one system,
consequently, various security and trust problems are emerging. The core of the
remote entrusting principle (or entrusting, for short), presented in this research
project, is: “To utilize trusted entities in the system/network (firewall, interface,
server, protocol client, etc.) in order to entrust selected software components in
otherwise untrusted machines across the network, assuring their on-line/run-
time functionality”. Namely, entrusting is based on the assumption that there
are trusted entities in the converged system of networking and computing (ob-
viously, if nothing can be trusted, building any trust relationship is not feasi-
ble). The term “untrusted machine” implies that a malicious user has access
to system resources (e.g., memory, disks, etc.) and tools (e.g., debuggers, dis-
assemblers, etc.) on the 1st untrusted machine, and consequently, is capable of
tampering/modifying the authentic (i.e., original) code prior to or during ex-
ecution. In other words, the objective is that a 2nd entrusting machine (e.g.,
“Core of Trust”, see Figure 1) will entrust the 1st untrusted machine by “au-
thenticating its execution” (i.e., in real-time). Indeed, the execution of software
(code/protocol) is authentic/trusted if and only if its functionality has not been
altered/tampered by an untrusted/unauthorized entity, both prior to execution
and, more importantly, during run-time. Finally, note that the basic remote
entrusting scheme depicted in Figure 1, can be extended to contemplate:

88 M. Ceccato, Y. Ofek, and P. Tonella

– Mutual remote entrusting: where the 1st and 2nd machines are entrusting
one another.

– Transitive remote entrusting: where a 1st machine is entrusting a 2nd ma-
chine and a 2nd machine is entrusting a 3rd machine.

3 General Architecture

The scientific and technical challenges involved in the present approach follows
three orthogonal dimensions represented in Figure 2. Two dimensions represent
two main software only approaches(code tamper resistance and code replace-
ment), while the third represents the hardware assisted approach (tamper resis-
tance (TR) using combined hardware (e.g., smart cards) and software).

The first software based dimension is the tamper resistance quality, it mea-
sures how difficult is to apply malicious modifications to the running program.
Several techniques could be applied to increase the protection along this dimen-
sion, such as obfuscation, to increase the reverse engineering effort required to
apply any attack.

 SW −based
Dynamic Replacement
(increased frequency)

SW −based
Tamper−resistance (TR) Quality

(increased reverse engineering complexityincreased reverse engineering complexity)

Im proved SW Originality TrustImproved SW Originality Trust
is Measured by Increased
Distance from the Origin
Using 2Using 2−−type of Metrics: type of Metrics:
Time and TR ComplexityTime and TR Complexity

HW /SW −based [e.g., USB Smart Card]
Tamper−resistance (TR) and Encryption Quality
(increased reverse engineering and decryption complexityincreased reverse engineering and decryption complexity)

Fig. 2. Quality of remote entrusting

The second software pure-software dimension involves dynamic replacement.
A portion of the application is periodically replaced at runtime, in order to give
an attacker a limited time to complete an attack. Ideally a solution for remote
entrusting should take advantage of both these two dimensions, because the more
resilient is a tamper proof technique, the longer an attack would take to break
it, the lower replacement frequency is required.

In the third dimension, tamper resistant methods involve co-design of ap-
plication with software and hardware components, analyzing trade off between
hardware and software. Pure software-based techniques may be extended to take
advantage of the hardware dimension to increase the level of protection.

Remote Entrusting by Run-Time Software Authentication 89

3.1 Pure Software Approach

The pure software dimensions investigate software-only methodologies for real-
izing the above-mentioned principle. In particular two objectives are addressed:
(1) the secure software monitor should be combined (interlocked) in a secure
way with the original application, and (2) the combined monitor must be robust
against tampering (i.e., tamper resistance - TR). The first challenge will be dealt
with by means of SW dependability techniques (e.g., for software faults detec-
tion). Tampering attacks are similar to random faults with the major difference
that they are intentional (not accidental). Consequently, software dependability
techniques are applicable to the trust domain as defined in Section 2. Finally,
note that software dependability techniques are traditionally applied to a com-
piled code (e.g., C and C++). An additional challenge in this task will be to
extend the above-mentioned techniques to an interpreted code (e.g., C# and
Java). The second above objective will be addressed with two complimentary
techniques: tamper resistance through software-based techniques, like source and
binary obfuscation, and tamper avoidance, by dynamically replacing (parts of)
secure software monitor, hence limiting the monitor lifetime (thus, also the tam-
pering duration).

3.2 Hardware Assisted Approach

The hardware assisted dimension investigates tamper resistance methodologies
combining hardware and software. With this approach, relatively inexpensive
and widely available hardware monitors, such as smart cards or Trusted Plat-
form Modules (TPMs) can be used to strengthen and improve the software-only
protection method. A wide spectrum of possible solutions will be investigated
ranging from low to high trust protection. This ranges from the hardware per-
forming only some central operations (e.g., public key cryptography) to directly
controlling the execution of major parts of the application, where the (untrusted)
computer only stores encrypted code and data.

To investigate the combination of hardware- and software based software pro-
tection. The idea is twofold. On one hand, it is desired to utilize cheap and
available hardware that alone may not be able to provide enough functionality.
For example, trusted platform monitors, to strengthen the software protection.
At the other extreme, the hardware itself may control most of the program flow,
delivering maximum security at the price of a performance penalty. Finally, it is
desired to investigate solutions in between the two extremes, to allow developers
to freely choose the trade off between hardware cost, performance and security.
Along the above lines, two major issues need to be investigated:

1. Regarding the low trust protection mode, execution of the code must be
split between hard- and software, in a way that maximizes protection and
minimizes the performance penalty.

2. Regarding the full trust protection, methods must be developed that allow
an attacker to observe the entire communication between the computing

90 M. Ceccato, Y. Ofek, and P. Tonella

engine (the secure hardware) and the memory (in the PC), without learning
any useful information.

Novel methods should be developed to scale the protection level, i.e., to discreetly
adapt the trust and security level of specific scenarios.

3.3 Monitor

The secure software monitor and the original application must be correlated in
such a way that any attempt to corrupt the authenticity of the application will
be detected by the monitor, and that any attempt to harm the integrity of the
monitor itself will stop the generation of valid signatures. This constitutes a
major and open challenge in a pure software methodology. The initial approach
will investigate techniques borrowed from the software dependability discipline,
as in the area of software fault tolerance.

Innovative methods will be investigated to exploit the “time dimension” to
increase overall tamper resistance of the secure software monitor. Namely, to
bound the time available for attackers by means of dynamic software updates,
where (parts of) the secure software monitor can be replaced at any instant dur-
ing run-time. This approach improves tamper avoidance by making the life-time
of each secure software monitor to a short defined time interval. To achieve this
goal two major issues must be investigated, i.e., replacement strategies for inter-
preted (e.g., C# and Java) and compiled (e.g., C and C++) code the automated
and non-predictable generation of secure software.

In pure software methods, the secure software monitor has to be protected
from tampering. In particular, this requires solutions to two different problems:
(1) the monitor behavior must be hidden to avoid trivial reverse engineering, and
(2) secret data inside the monitor (e.g., encryption keys) must be hidden in order
to be not easily spotted. It is envisioned that the obfuscation and white-box cryp-
tography are the means to address the above-mentioned problems, respectively.
This problem is articulated in the following ones: source-to-source obfuscation,
obfuscation of (Java) byte code and protection of embedded keys with white-box
cryptography techniques.

4 Attacks and Analysis

This sections introduces some possible attacks and then discusses some possible
protection mechanisms.

4.1 Possible Attacks

A number of attacks may be applied to the remote entrusting software/hardware
protection schemes. The attacker objective is to prevent the trusted machine
from detecting tampering, and consequently, (remote) entrusting an untrusted
machine. The rest of the section uses P to denote the program running on the
untrusted machine that must be protected. The secure monitor will be called M.

Remote Entrusting by Run-Time Software Authentication 91

Reverse engineering attacks. Reverse engineering attacks aim at locating
important functionalities and data both in P and M. Once located, functionalities
and data are altered maliciously. Key functionalities and data that can be the
target of a reverse engineering attack in the remote entrusting scheme are:

– Secure tag (sequence) generator.
– Authenticity checking functions.
– Secret keys (e.g., used for secure tag generation).
– Input data (e.g., passed to checking functions).
– Output data (e.g., produced by checking functions).

The attacker may attempt to locate the function of M that generates the
authenticity secure tag sequence and any secret key used for it. Once located, this
functionality could be tampered with in order to produce correct authenticity
tags even when P should not be trusted.

The attacker may attempt to locate and tamper with the functions that are
devoted to checking the authenticity of P and of the underlying software and
hardware. They could be modified so as to return a positive test result even when
the actual result is negative. Moreover, they could be analyzed to understand
which parts of the whole system are subjected to frequent checks and which
ones are verified more rarely, in order to discover weak points where to apply a
malicious modification that would be revealed with low probability.

The attacker may attempt to locate and change the input and output values
involved in function calls, so as to change the behavior of the called function.
This could be used to alter the result of a check performed by the monitor M
or to tamper with the expected behavior of the program P. One way to change
inputs or outputs is by directly modifying the code. Another possibility, which
requires a combined execution environment attack (see next section), consists of
intercepting the function call and changing input or output values dynamically.
This second approach is stealthier than the former, because it cannot be detected
by a code analysis on P. In fact, the running code is the original one.

Execution environment attacks. The attacker can tamper with the under-
lying execution environment, thus altering the behavior of P without modifying
its code. Instead of deploying P on the actual processor, the attacker could run
it on a simulated processor, which implements the same functionalities of the
actual processor in software. It provides registers, interrupts and I/O devices. It
can interpret and execute binary code. The simulated processor can be stopped
when specific events occur. The current context (i.e., memory, call stack, param-
eters) can be analyzed and modified. Then, execution is resumed. The attacker
can take advantage of this infrastructure to intercept calls to libraries, to oper-
ating system and I/O facilities in order to dynamically modify parameters and
memory locations and, thus, maliciously change the behavior of the program.

A similar attack consists of executing program P inside a debugger, which
traces all the executed instructions, memory accesses and memory content. The
debugger can interrupt the execution when selected instructions or conditions
are met and the user can perform dynamic modifications.

92 M. Ceccato, Y. Ofek, and P. Tonella

Another attack to the execution environment may be directed toward the dy-
namic libraries. By altering them, it could be possible to trace and modify any
operation that the program delegates to them, such as I/O, memory manage-
ment, file system storage and network communication.

Cloning attack. In a cloning attack two copies of P are installed. The first copy
is the original, unadulterated one. The monitor M is correctly installed with it
and it is periodically updated. The execution environment, operating system and
hardware are genuine. Such a program sends the server the expected authenticity
secure tag sequence and, thus, is entrusted. The attacker maliciously modifies
the second copy of P. The tampered copy runs in parallel with the first one,
but not necessarily on the same client. The output of its monitor M is simply
discarded.

All the network traffic coming from the server is sent both to the original
and to the tampered applications (e.g. using a modified network device), so they
can be executed in parallel on the same input values. The original application
provides the authenticity tags required to be trusted by the server, whereas the
tampered copy provides the modified behavior required by the malicious user.

The effectiveness of this attack depends on the possibility to decouple the gen-
eration of the tag sequence from the communication occurring between client and
server. In fact, if the secure tag sequence originated from P includes data used by
the server to carry out the computation required by the client (as prescribed by
some variants of the remote entrusting scheme), a consistent computation must
be performed on original and tampered copy, so as to keep unchanged the com-
munication with the server. There are several classes of network applications for
which the preservation of the communication between client and server entails
that no malicious tampering is actually taking place (e.g., no unfair behavior
can take place, no incorrect billing can be originated, etc.). One important class
of applications for which preservation of the communication is not enough to
ensure that no malicious tampering is taking place is Digital Right Management
(DRM). In fact, DRM applications should prevent the client from creating illegal
copies. However, creating an illegal copy does not involve any communication
between client and server.

Differential analysis attack. Differential analysis consists of gathering infor-
mation about the monitors by comparing the sequence of monitors produced
and delivered by the monitor factory over time. Previously released monitors
may be successfully broken when new ones are delivered, since the attacker has
more time to reverse engineer them. If their analysis reveals, to some extent, the
strategy implemented by the monitor factory, the attacker could take advantage
of this knowledge to reduce the time necessary to break the current monitor,
eventually compromising it before its expiration time.

Dependencies among attacks. The attacks described above are not inde-
pendent of each other. In particular, the execution environment, cloning and
differential analysis attacks all depend on the reverse engineering attack and
cannot be performed without it.

Remote Entrusting by Run-Time Software Authentication 93

With regards to the execution environment attack, deciding when to intercept
the execution and how to alter it depends on the goal of the attacker. In turn,
this requires some level of understanding of the program being tampered with.
Potentially, a huge amount of information can be gathered and modified at run
time. Focusing on the relevant functions, data and events requires a deep level of
knowledge about the running code, hence the dominant problem becomes reverse
engineering. Thus, modification of the execution environment is just a way to
implement the reverse engineering attack.

A similar argument holds for cloning and differential analysis attacks. In the
cloning attack, substantial reverse engineering effort must be devoted to locating
the functions to be tampered in the program and to ensure the correct authenti-
cation secure tag sequence is sent to the server. Comparison between successive
versions of the monitor aims at simplifying its reverse engineering, which is at
the core of the possibility to modify it maliciously.

Overall, the attack model consists of a specific technique to gather and alter
information (either adulteration of execution environment, cloning or differential
analysis) combined with the understanding of the program and the monitor, to
be achieved through reverse engineering.

4.2 Analysis of Attack Resistance

The trust model, and its variants, currently defined in the remote entrusting
scheme address in various ways the attacks described in the previous section.
In this section each source of trust in the trust model is related to the attacks
it provides some defense against. The strength of such a defense is also briefly
discussed.

Table 1 relates sources of trust to attacks. The meaning of a cell marked X
is that the corresponding source of trust contributes to some extent to defend
against the attack in this cell column. This does not mean that the source of trust
provides full or proved protection against an attack. The given defense makes
the attack harder, by addressing the vulnerabilities exploited by the attack, but
it may still be only a partial defense.

For example, code obfuscation provides a limited defense against reverse engi-
neering. In fact, an obfuscated code is expected to be harder to understand and
analyze than a clear text. However, given enough time, a determined attacker
can always reverse engineer a program, despite its code obscurity. Combined
with monitor replacement, code obfuscation becomes a stronger defense, since
only a limited time is available to the attacker to de-obfuscate the code.

Verification of the integrity of P (first row of Table 1) is a protection against
malicious modifications that do not involve the monitor M. It must be combined
with the verification of the verifier (M) itself to become effective against attacks
that involve modifications of the monitor (columns 2, 3, 4, 6). Verification of
the libraries (row 3) is an important defense line against execution environment
attacks. However, more checks are needed to verify that HW/OS are genuine
and that execution is not in debug mode. Direct implementation of this de-
fense might be problematic and hard to achieve, since the monitor has limited

94 M. Ceccato, Y. Ofek, and P. Tonella

T
ab

le
1.

S
o
u
rc

es
o
f
tr

u
st

re
la

te
d

to
sp

ec
ifi

c
a
tt

a
ck

s

A
tt

a
ck

s
R

e
v
e
rs

e
e
n
g
in

e
e
ri

n
g

a
tt

a
ck

s
E

x
e
c
u
ti

o
n

e
n
v
ir

o
n
m

e
n
t

a
tt

a
ck

s
S
o
u
rc

es
o
f

P
is

R
e
p
la

c
e

R
e
p
la

c
e

ta
g

M
o
d
if
y

in
p
u
t

M
o
d
if
y

o
u
tp

u
t

R
e
p
la

c
e

R
e
p
la

c
e

T
a
m

p
e
re

d
C

lo
n
in

g
D

iff
e
re

n
ti

a
l

tr
u
st

ta
m

p
e
re

d
ch

e
ck

in
g

se
q
u
e
n
c
e

b
e
fo

re
c
a
ll

o
n

b
e
fo

re
re

tu
rn

o
n

H
W

/
O

S
d
y
n
a
m

ic
e
x
e
c
u
ti

o
n

a
tt

a
ck

a
n
a
ly

si
s

w
it

h
fu

n
c
ti

o
n

g
e
n
e
ra

to
r

M
/
P

e
n
v
.

M
/
P

e
n
v
.

li
b
ra

ri
e
s

(d
e
b
u
g

m
o
d
e
)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
)

M
ch

e
ck

s
P

te
x
t

X
a
n
d

d
a
ta

se
g
m

e
n
t

(2
)

M
se

lf
ch

e
ck

s
X

X
X

X
it

se
lf

b
e
fo

re
ch

e
ck

in
g

P
(3

)
M

ch
e
ck

s
X

li
b
ra

ri
e
s

u
se

d
b
y

P
(4

)
M

ch
e
ck

s
X

X
X

e
x
e
c
u
ti

o
n

e
n
v
ir

o
n
m

e
n
t

(5
)

M
ch

e
ck

s
th

e
X

O
S

a
n
d

th
e

H
W

(6
)

M
ch

e
ck

s
re

su
lt

s
X

X
X

X
X

X
X

X
o
f
c
o
m

p
u
ta

ti
o
n

(7
)

S
e
c
re

t
k
e
y

X
u
se

d
to

g
e
n
e
ra

te
th

e
ta

g
se

q
u
e
n
c
e

(8
)

M
o
n
it

o
r

X
X

X
X

X
X

X
re

p
la

c
e
m

e
n
t

(9
)

R
e
v
-e

n
g

X
X

X
X

X
X

X
X

X
X

X
X

re
si

st
a
n
c
e

(c
o
d
e

o
b
fu

sc
a
ti

o
n
)

(1
0
)

N
e
tw

o
rk

o
f

X
X

X
X

tr
u
st

(s
e
lf
-c

h
e
ck

in
g

im
p
le

m
e
n
ta

ti
o
n
)

(1
1
)

T
a
g
s

in
c
lu

d
e

X
X

X
X

(p
o
rt

io
n

o
f)

o
u
tp

u
t

(1
2
)

B
i-
d
ir

e
c
ti

o
n
a
l

X
X

X
X

X
X

c
o
m

m
u
n
ic

a
ti

o
n

(c
h
a
ll
e
n
g
e

fr
o
m

th
e

se
rv

e
r)

Remote Entrusting by Run-Time Software Authentication 95

capabilities of testing the HW/OS and the execution mode when running on the
client. However, further lines of defense can be put in place. Firstly, the veri-
fication of the output of computations that depend on HW/OS and execution
mode can be exploited for this purpose (see row 6). Moreover, since modifica-
tion of the execution environment must be necessarily combined with a reverse
engineering attack, reverse engineering resistance mechanisms, such as code ob-
fuscation, provide a defense against execution environment attacks as well, in an
indirect way.

The verification of the results of selected computations is also effective against
modifications of P, M, as well as modifications of data passed to or returned from
genuine functions of P and M. Hiding a secret key into the monitor is essential to
protect the secure tag sequence generator (row 7). Monitor replacement (row 8) is
an important countermeasure against tampering with the monitor (columns 2-7).
Combined with the capability of producing new monitors that are independent
from the previous ones, monitor replacement gives also some protection against
the differential analysis attack.

Reverse engineering resistance, of which code obfuscation is one possible in-
stance, is potentially effective against any attack, either directly or indirectly,
because any attack must be necessarily combined with reverse engineering and
program understanding, in order to alter the program behavior in a meaningful
way, according to the attacker’s goals.

The network of trust (row 10) increases the protection of the monitor’s code
(columns 2, 3, 4, 6). Inclusion of output data into the secure tags makes replace-
ment of the checking function harder, as well as tampering with the output data
produced by functions. Making the communication with the server bi-directional
makes any change to the monitor harder (columns 2-7), since such changes might
affect the verification triggered by the challenge, invalidating the result. If the
verification is coupled with the ongoing computation, because the secure tags
include a portion of the output (row 11), the cloning attack can be effective only
if the communication with the server is preserved in the clone, which means
that for many classes of applications no malicious tampering can actually take
place at all.

5 Discussion

In this paper we presented the problem of remote entrusting as a novel paradigm,
which give rise to multiple interdisciplinary problems encompassing many as-
pects of computing and networking. The central issue is how to entrust a piece
of software executing on an untrusted and remote machine. We proposed a gen-
eral architectural framework for remote entrusting with three problems: (i) how
to combine two programs (the original code with the secure tags generation
code) into one combined program, (ii) how to make it hard to separate using
reverse engineering techniques, and (iii) how to dynamically replace parts of the
combined program during run-time in order to limit the time available for an
attacker to reverse engineer the combined program. The previous three problems

96 M. Ceccato, Y. Ofek, and P. Tonella

are investigated and solved along three main research dimensions, which require
comprehensive solution. Specifically, dynamic replacement, tamper resistance
with and without hardware assistance. A number of attacks have been identified
on the proposed architectural framework, they have been analyzed and discussed.

Effective solutions of the remote entrusting problem will impact many applica-
tion areas. Two main categories of applications have been identified,depending on
the direction of the flow of data. The first category contains all the applications
where the untrusted client sends data to the trusted machine (e.g., server) and
the latter reacts by delivering a certain service (e.g., e-commerce, e-government).
For these applications, a viable solution is based in hiding secure or authenticity
tags in the outgoing data, in such a way that it would be difficult to tamper
with them without affecting the data. Applications in the second category are
those ones that receive private or protected data from the trusted party (e.g.,
grid computing, digital right management). In this case the solution is more
challenging because, once delivered, protected data can not be longer protected,
even if a tampering is detected.

Acknowledgments. This work was supported by funds from the European
Commission (contract No 021186-2 for the RE-TRUST project, see [29]).

References

1. Baldi, M., Ofek, Y., Young, M.: Idiosyncratic Signatures for Authenticated Execu-
tion of Management Code. In: Brunner, M., Keller, A. (eds.) DSOM 2003. LNCS,
vol. 2867, Springer, Heidelberg (2003)

2. Baldi, M., Ofek, Y., Young, M.: The TrustedFlow(TM) Protocol - Idiosyncratic
Signatures for Authenticated Execution. In: 4th Annual IEEE Information Assur-
ance Workshop, West Point, NY, USA (June 2003)

3. Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-flow checking by software signa-
tures. IEEE Transactions on Reliability 51(1) (March 2002)

4. Ohlsson, J., Rimen, M.: Implicit signature checking. In: Proceedings of 25th Inter-
national Symposium on Fault-Tolerant Computing (June 1995)

5. Benso, A., Di Carlo, S., Di Natale, G., Prinetto, P., Tagliaferri, L.: Control-flow
checking via regular expressions. In: Proceedings of 10th Asian Test Symposium
(November 2001)

6. Oh, N., Mitra, S., McCluskey, E.J.: ED4 I: error detection by diverse data and
duplicated instructions. IEEE Transactions on Computers 51(2) (February 2002)

7. Oh, N., Shirvani, P.P., McCluskey, E.J.: Error detection by duplicated instructions
in super-scalar processors. IEEE Transactions on Reliability 51(1) (March 2002)

8. Benso, A., Chiusano, S., Prinetto, P., Tagliaferri, L.: A C/C++ source-to-source
compiler for dependable applications. In: DSN. Proceedings of International Con-
ference on Dependable Systems and Networks (June 2000)

9. Collberg, C., Thomborson, C., Low, D.: Watermarking: Tamper-Proofing, and Ob-
fuscation - Tools for Software Protection. IEEE Transactions on Software Engineer-
ing 28 (2002)

10. Naumovich, G., Memon, N.: Preventing piracy, reverse engineering, and tampering.
IEEE Computer 36(7), 64–71 (2003)

Remote Entrusting by Run-Time Software Authentication 97

11. Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of software-based survivabil-
ity mechanisms. In: DSN. Proceeding of International Conference on Dependable
Systems and Networks, Goteborg, Sweden (July 2001)

12. Valdez, E., Yung, M.: Software DisEngineering: Program Hiding Architecture and
Experiments. Information Hiding (1999)

13. Linn, C., Debray, S.: Obfuscation of Executable Code to Improve Resistance to
Static Disassembly. In: CCS. Proceedings of the 10th ACM Conference on Com-
puter and Communications Security (October 2003)

14. Appel, A.W.: Deobfuscation is in NP,
www.cs.princeton.edu/∼appel/papers/deobfus.pdf

15. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, Springer, Heidelberg (2001)

16. McGraw, G., Felten, E.W.: Mobile Code and Security. IEEE Internet comput-
ing 2(6) (1998)

17. Esparza, O., Soriano, M., Munoz, J.L., Forne, J.: Detecting and Proving Manip-
ulation Attacks in Mobile Agent Systems. In: Karmouch, A., Korba, L., Madeira,
E.R.M. (eds.) MATA 2004. LNCS, vol. 3284, pp. 224–233. Springer, Heidelberg
(2004)

18. Sander, T., Tschudin, C.F.: Towards Mobile Cryptography. IEEE Symposium on
Security and Privacy (May 1998)

19. Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts.
LNCS (1998)

20. Badger, L., et al.: Self-protecting mobile agents obfuscation techniques evaluation
report. NAI Labs Report (November 2001),
www.isso.sparta.com/research/documents/spma.pdf

21. Pearson, S.: Trusted computing platforms, the next security solution. Technical
Report HPL-2002-221, HP Laboratories (2002)

22. The Trusted Computing Group, https://www.trustedcomputinggroup.org
23. NextGeneration SecureComputingBase, http://www.microsoft.com/resources/

ngscb
24. York, R.: A New Foundation for CPU Systems Security. ARM Limited,

http://www.arm.com
25. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of

a TCG-based Integrity Measurement Architecture. In: Proceedings of the 13th
USENIX Security Symposium San Diego, CA, USA (August 2004)

26. Kennell, R., Jamieson, L.H.: Establishing the Genuinity of Remote Computer Sys-
tems. In: Proceedings of the 12th USENIX Security Symposium (2003)

27. Mana, A., Lopez, J., Ortega, J., Pimentel, E., Troya, J.M.: A Framework for Secure
Execution of Software. International Journal of Information Security 3(2) (2004)

28. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.K.: Pioneer:
Verifying code integrity and enforcing untampered code execution on legacy sys-
tems. In: SOSP. Proceedings of the 20th ACM Symposium on Operating Systems
Principles, Brighton, UK, pp. 1–16 (October 23-26, 2005)

29. http://re-trust.org/

www.cs.princeton.edu/~appel/papers/deobfus.pdf
www.isso.sparta.com/research/documents/spma.pdf
https://www.trustedcomputinggroup.org
http://www.microsoft.com/resources/ngscb
http://www.microsoft.com/resources/ngscb
http://www.arm.com
http://re-trust.org/

Trusted Computing —

Special Aspects and Challenges

Ahmad-Reza Sadeghi

Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
sadeghi@crypto.rub.de

Abstract. The advent of e-commerce, e-government, and the rapid ex-
pansion of world-wide connectivity demands end-user systems that ad-
here to well-defined security policies. In this context Trusted Computing
(TC) aims at providing a framework and effective mechanisms that allow
computing platforms and processes in a distributed IT system to gain
assurance about each other’s integrity/trustworthiness. An industrial at-
tempt towards realization of TC is the initiative of the Trusted Comput-
ing Group (TCG), an alliance of a large number of IT enterprises. The
TCG has published a set of specifications for extending conventional
computer architectures with a variety of security-related features and
cryptographic mechanisms. The TCG approach has not only been sub-
ject of research but also public debates and concerns. Currently, several
prominent academic and industrial research projects are investigating
trustworthy IT systems based on TC, virtualization technology, and se-
cure operating system design.

We highlight special aspects of Trusted Computing and present some
current research and challenges. We believe that TC technology is indeed
capable of enhancing the security of computer systems, and is another
helpful means towards establishing trusted infrastructures. However, we
also believe that it is not a universal remedy for all of the security prob-
lems we are currently facing in information societies.

1 Introduction

The increasing global connectivity, distributed applications and digital services
over the Internet, both for business and private use, require IT systems that guar-
antee confidentiality, authenticity, integrity, privacy, as well as availability. Ex-
amples include online banking, e-commerce and e-government services, content
delivery, etc. Modern cryptography and information security provide a variety
of very useful technical security measures such as encryption and strong authen-
tication mechanisms to achieve these security targets. However, these measures
provide only partial solutions as long as the underlying computing platforms
still suffer from various security problems in hardware and software: Beside ar-
chitectural security problems and the inherent vulnerabilities resulting from high
complexity, common computing platforms require careful and attentive system
administration skills, and are still unable to effectively protect against execution
of malicious code and tampering.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 98–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Trusted Computing — Special Aspects and Challenges 99

In this context some fundamental and challenging issues are how to define and
to determine/verify the integrity/trustworthiness1 of a computing platform or in
general of an IT system, and how could common computing platforms support
such functionalities. Note that even a perfectly secure operating system cannot
verify its own integrity. Today, the authorized access to online services or data
over the Internet is controlled by means of secure channel protocols where the
standard approaches are security protocols like Transport Layer Security (TLS)
[14] or Internet Protocol Security (IPSec) [25]. However, these protocols do not
provide any guarantees regarding the integrity/trustworthiness of the commu-
nication endpoints. Security breaches on the Internet today rarely involve com-
promising the secure channel because endpoints are much easier to compromise
since they are frequently subject to attacks by malware (e.g., viruses and Trojan
horses). Using a secure channel to an endpoint of unknown integrity is ultimately
futile.2

Hence, reliable mechanisms are desired that allow to verifiably reason about
the “trustworthiness” of a peer endpoint (local or remote), i.e., whether its state
(the hardware and software configuration) conforms to a defined security policy.

A recent industrial initiative towards this goal is put forward by the Trusted
Computing Group (TCG), a consortium of a large number of IT enterprises,
which proposes a new generation of computing platforms that employs both,
supplemental hardware and software. The claimed goal of this architecture is
to improve the security and the trustworthiness of computing platforms (see,
e.g., [35,42]). The TCG has published several specifications on various concepts
of trusted infrastructures [54].3 The core component the TCG specifies is the
Trusted Platform Module (TPM). The current widespread implementation of
the TPM is a small tamper-evident cryptographic chip [57,53]. Many vendors
already ship their platforms with TPMs (mainly laptop PCs and servers). To
this end, the conventional PC architecture is extended by new mechanisms to
(i) protect cryptographic keys, (ii) authenticate the configuration of a platform
(attestation), and (iii) cryptographically bind (sensitive) data to a certain sys-
tem configuration (sealing), i.e., the data can only be accessed (unsealed) if the
corresponding system can provide the specific configuration for which the data
has been sealed.

Trusted Computing technology was subject of public debates due to its claimed
capabilities, in particular, in conjunction with Digital Rights Management (DRM)
(see, e.g., [3,16,36]). Concerns were aroused that TC technology may give

1 “Trust” is a complicated notion that has been studied and debated in different areas
(social science and humanities as well as computer science). A possible definition
of the notion “trustworthy” is the degree to which the (security) behavior of the
component is demonstrably compliant with its stated functionality (e.g., see [7]).

2 In the words of Gene Spafford, “Using encryption on the Internet is the equivalent
of arranging an armored car to deliver credit card information from someone living
in a cardboard box to someone living on a park bench.”[50].

3 Claimed role is to develop, define and promote open, vendor-neutral industry spec-
ifications for trusted computing including hardware building blocks and software
interface specifications across multiple platforms and operating environments.

100 A.-R. Sadeghi

vendors and content providers new abilities to get control over personal systems
and users’ private information. Hence they may allow commercial censorship, po-
litical censorship, and product discrimination or undermine the General Public
License (GPL [18]).

Meanwhile Trusted Computing has attracted many researchers and develop-
ers, and the capabilities as well as the shortcomings of the TCG proposals are
better understood. Currently, several prominent research and industrial projects
are investigating open trustworthy computing platforms (PC, servers, embed-
ded) and applications based on Trusted Computing, virtualization technology
and secure operating system design4. Since the body of related literature in this
area has grown rapidly, and we have limited space, we only highlight some special
aspects of the TC technology, and present some current research challenges and
proposals made so far to tackle some shortcomings of the TCG specifications.
Hence, we do not claim completeness and apologize for not referring to some of
the works done in this area.

2 Main Aspects of the TCG Specification

2.1 Core Components and Functionalities

The main components of the TCG approach are a hardware component called
Trusted Platform Module (TPM), a kind of (protected) pre-BIOS (Basic I/O
System) called the Core Root of Trust for Measurement (CRTM), and a sup-
port software called Trusted Software Stack (TSS), which has various functions
like providing a standard interface for TPMs of different manufacturers commu-
nicating with the rest of the platform or with remote platforms.

The TPM is the main component of the specification and provides a secure
random number generator, non-volatile tamper-resistant storage, key generation
algorithms, cryptographic functions like RSA encryption/decryption, and the
hash function SHA-1 (see Figure 1). The TPM protects a variety of keys. Two
of its main keys are the endorsement key (EK), an encryption key that uniquely
identifies each TPM, and the Storage Root Key (SRK) or Root of Trust for
Storage (RTS), uniquely created inside the TPM. The private SRK never leaves
the TPM, and it is used to encrypt all other keys created by the TPM. The TPM
state contains further security-critical data shielded by the TPM. Amongst them
is a set of registers called Platform Configuration Registers (PCR) that can be
used to store hash values. The hardware ensures that the value of a PCR register
can only be modified as follows: PCRi+1 := SHA1(PCRi|I), with the old register
value PCRi, the new register value PCRi+1, and the input I (e.g. a SHA-1 hash
value). This process is called extending a PCR. Hash values computed during
this process are called measurements in TCG terminology.

The TCG has published two specifications versions 1.1b [57] and 1.2 [53] for
the TPM where the latter has more and also improved functionalities. In par-
ticular TPM 1.2 provides at least 4 concurrent monotonic counters and privacy
4 See, e.g., EMSCB project (www.emscb.org) and OpenTC (www.opentc.net)

www.emscb.org
www.opentc.net

Trusted Computing — Special Aspects and Challenges 101

Input/Output
• Protocol en /decoding
• Enforces access policies

Cryptographic Co Processor
• Asymmetric en /decryption (RSA)
• Digital signature (RSA)

Key Generation
• Asymmetric keys (RSA)
• Symmetric keys
• Nonces

HMAC

Random Number Generation

SHA 1
Opt In
• Stores TPM state information
(e.g., if TPM is disabled)

• Enforces state dependent limitations
(e.g., some commands must not be
executed if the TPM is disabled)

Non Volatile Memory
• Stores persistent TPM data
(e.g., the TPM identity or special keys)

• Provides read , write or unprotected
storage accessible from outside the TPM

Execution Engine
• Processes TPM commands
• Ensures segregation of operations
• Ensures protection of secrets

Platform Configuration Registers (PCR)
• Storage of integrity measurements

Trusted Platform Module (TPM)

System Interface
(e.g., LPC Bus)

Fig. 1. TPM Architecture

enhanced protocols such as Direct Anonymous Attestation (DAA) [9]. Based on
TPM functionalities, the TCG specification defines four mechanisms called in-
tegrity measurement, attestation, sealing and maintenance which are explained
briefly in the following:

Integrity Measurement & Platform Configuration. Integrity measure-
ment is done during the boot process by computing the hash value of the initial
platform state. For this purpose the CRTM computes a hash of (measures) the
code and parameters of the BIOS and extends the first PCR register by this
result. A chain of trust is established if an enhanced BIOS and bootloader also
measure the code they are transferring control to, e.g., the operating system.
The security of the chain relies strongly on explicit security assumptions about
the CRTM. The state of the PCRs is also called the platform’s configuration.

Attestation. The TCG attestation protocol is used to give assurance about the
platform configuration to a remote party. To guarantee integrity and freshness,
PCR values and a fresh nonce provided by the remote party are digitally signed
with an asymmetric key called Attestation Identity Key (AIK), which is under
the sole control of the TPM. A trusted third party called Privacy Certification
Authority (Privacy-CA) is used to guarantee the pseudonymity of the AIKs. In
order to overcome the problem that the Privacy-CA can link transactions to a
certain platform (e.g., by means of the same AIK), version 1.2 of the TCG spec-
ification defines a cryptographic protocol called Direct Anonymous Attestation
(DAA) [9], a cryptographic credential scheme that aims at providing anonymity
of the platform and unlinkability of remote authentication transactions of the
TPM. DAA can be used to sign an AIK, or PCR values.

102 A.-R. Sadeghi

Sealing/Binding. Data can be cryptographically bound/encrypted to a cer-
tain platform configuration by the sealing operation of the TPM. The unseal
operation releases the decrypted data only if the current configuration (software
and/or hardware) equals the configuration, which has been defined when the
data was sealed. Binding is like conventional asymmetric encryption where en-
crypted data can only be recovered by the TPM that knows the corresponding
secret key (no platform configuration check is required).

Secure and Authenticated Boot. The former means that a system termi-
nates the boot process in case the integrity check (e.g., comparing the system
measurements with a securely stored reference value) fails, whereas the latter
aims at proving the platform integrity to a (remote) verifier.

Maintenance. Maintenance functions can be used to migrate the SRK to an-
other TPM: The TPM owner can create a maintenance archive by encrypting the
SRK under a public key of the TPM vendor and an own secret key. In case of a
hardware error the TPM vendor can load the SRK from the maintenance archive
into another TPM. Currently the maintenance function is still optional and, to
our knowledge, not implemented in the currently available TPMs. Moreover, the
maintenance function works only for TPMs of the same vendor.

2.2 Trust Model and Assumptions

The TCG defines a component or a system as “trusted” if it always behaves in
the expected manner for the intended purpose. Note that this definition differs
subtly from the mostly used definition that a system or component is “trusted” if
its failure breaks the security policy of the system (see, e.g., [2]). This definition
requires the number of trusted components in a system, also called Trusted
Computing Base (TCB), to be as small as possible.

The correctness and soundness of the TCG proposed functionalities are based
on some assumptions, which we briefly discuss below. Building systems that
can reasonably satisfy these assumptions in practice is a technical challenge and
subject of ongoing research, which we will shortly consider in the subsequent
sections.

– The platform configuration cannot be forged after the corresponding hash
values are computed and stored in the TPM’s PCR registers. Otherwise no
reliable integrity reporting is possible. Note that currently available oper-
ating systems such as Windows or Linux can easily be modified, e.g., by
exploiting security bugs or by changing memory which has been swapped
to a hard disk. Hence, one requires an appropriate secure operating system
design methodology.

– A verifier can determine the trustworthiness of the code from digests (hash)
values. Note that today’s operating systems and application software are
extremely complex, making it very difficult, if not impossible, to determine
their trustworthiness. Hence, in practice one requires more effective, reliable,
and realistic methodology for this purpose than relying on hash values of
binary codes.

Trusted Computing — Special Aspects and Challenges 103

– Secure channels can be established between hardware components (TPM
and CPU), e.g., when both components are on the same chipset. Note that
currently TPM chips are connected to the I/O system with an unprotected
interface that can be eavesdropped and manipulated easily [28]. Secure chan-
nels to remote parties can be established based on cryptographic mechanisms
and a Public Key Infrastructure (PKI).

The main hardware-based components, CRTM and TPM, are assumed to be
trusted by all involved parties. Currently the CRTM is not contained in a tamper-
resistant module. It should be noted that the TCG specification requires pro-
tection of these components only against software attacks. Nevertheless, certain
hardware attacks may defeat the security of the TCG approach. Some TPM man-
ufacturers have already started a third party certification of their implementation
with respect to security standards (Common Criteria [13]) to assure a certain
level of tamper-resistance. Although an integration of the TPM functionality
into chipsets makes the manipulation of the communication link between TPM
and the CPU significantly more difficult and costly, it also introduces new chal-
lenges since an external validation and certification of the TPM functionalities
(e.g., required by some governments) will be much more difficult.

Even though the TCG approach explicitly allows an application to distin-
guish between different TPM implementations, the trade-off between costs and
tamper-resistance, which is certainly application dependent, will finally deter-
mine the level of tamper-resistance.

2.3 Trusted Network Connect (TNC)

The specification for Trusted Network Connect (TNC) [52] has been published
by the TNC working group of the TCG. It should be a vendor independent
network standard that enhances network security by combining network access
control with Trusted Computing. The goal is to integrate the concepts of Trusted
Computing with existing network access control mechanisms.

The overall goal of TNC is to prevent compromise of the hosts that connect to
a network or other network resources and thus the network itself. The specifica-
tion suggests platform authentication through a proof of identity in combination
with the integrity status of the platform that wants to connect to a network.
Therefore network access control is based on extended attributes like platform
authentication (e.g., by using an AIK), endpoint compliance, or software state
information, which are collected and attested to a verifier. Based on this infor-
mation the verifying instance is able to decide whether it is secure to extend the
network to that platform.

2.4 Mobile Trusted Module (MTM)

The Mobile Trusted Module is a technology that can serve as an integrity control
mechanism for protecting non-discretionary services in embedded devices. It
adds features to the baseline TPMs in the domain of secure booting. In case

104 A.-R. Sadeghi

of mobile or embedded platforms, one uses the notion Mobile Trusted Module
(MTM) [55,56]. Although an MTM has similar features as a common TPM,
there are some differences. The Mobile Trusted Module specification defines two
types of MTMs: the Mobile Remote-Owner Trusted Module (MRTM) and the
Mobile Local-Owner Trusted Module (MLTM). The difference between them is
that the MRTM must support mobile-specific commands defined in the MTM
specification as well as a subset of the TPM 1.2 commands. Typically, phone
manufacturers and network service providers use an MRTM. These parties only
have remote access to the MTM whereas the MLTM is used by the user who has
physical access to the device and his applications. The different parties, called
stakeholders, have different requirements on the integrity, device authentication,
SIM Lock/device personalization, secure software download, mobile ticketing
and payment, user data protection, privacy issues and more. How these different
types of MTMs are implemented is not defined since the specification published
by the TCG is quite vague.

3 Property-Based Attestation and Sealing

Integrity verification of applications and their underlying Trusted Computing
Base (TCB) is especially important in the context of security policies enforced
in a distributed system. Here, remote integrity verification mechanisms should
enable a remote party to verify whether an application behaves according to
certain security policies.

The TCG solution for remote integrity verification are mechanisms called
remote binary attestation, remote binary binding, and binary sealing. Although
binding and sealing are two slightly different concepts, in the following only the
term binding is used for simplicity. Nevertheless, the concepts of property-based
binding can also be applied to the sealing functionality.

Loosely speaking, binary attestation and binary binding are based on (i) a
measurement of the chain of executed code using a cryptographic digest and (ii)
some trust assumption (see Section 2.2). However, TCG proposals have some
shortcomings: (i) they reveal the information about the platform’s hardware
and software configuration and thus make fingerprinting attacks on the platform
much easier (security and privacy), (ii) they allow remote parties to exclude
certain system configurations (discrimination), e.g., a content provider can col-
laborate with an operating system vendor to allow only the software of that
vendor to download certain content, (iii) data bound to a certain configuration
is inaccessible after any update in firmware or software, or after hardware mi-
grations (data availability), and (iv) the verifier is required to know all possible
trusted configurations of all platforms (scalability).

A more general and flexible extension to the binary attestation is property-
based attestation [41,38,27]: on higher system levels, attestation should only de-
termine whether a platform configuration or an application has a desired prop-
erty. Property-based attestation/binding should determine whether the target

Trusted Computing — Special Aspects and Challenges 105

machine to be attested fulfills certain requirements (e.g., provides certain ac-
cess control methods). This avoids revealing the concrete configuration of soft-
ware and hardware components. For example, it would not matter whether Web
browser A or B is used, as long as both have the same properties. For most
practical applications, the verifier is not really interested in the specific system
or application configuration. This is even disadvantageous for the verifier since
he has to manage a multitude of possible configurations. Basically, properties
change rarely compared to binaries on program updates.

Some proposals in the literature consider the protection and prove the integrity
of computing platforms in the context of secure and authenticated (or trusted)
boot (see, e.g., [4], [15], [45], [49], [58]). A high-level protocol for property-based
attestation is presented in [38]. The solution is based on property certificates that
are used by a verification proxy to translate binary attestations into property at-
testations. In [41] the authors propose and discusses several protocols and mech-
anisms that differ in their trust models, efficiency, and the functionalities offered
by the trusted components. In particular, [41] discusses how the TSS, the TPM
library proposed by the TCG, can provide a property-based attestation protocol
based on the existing TC hardware without a need to change the underlying trust
model. Another refinement of this idea is proposed in [27]. Moreover, based on
ideas of [41], [12] proposes a cryptographic zero-knowledge protocol for anony-
mous property-based attestation.

In [24] the authors propose semantic remote attestation using language-based
trusted virtual machines (VM) to remotely attest high-level program properties.
The general idea is to use a trusted virtual machine (TrustedVM) that verifies
the security policy of the machine that runs within the VM.

In [31], [34] and [33] the authors propose a software architecture based on
Linux providing attestation and binding. The architecture binds short-lifetime
data (e.g., application data) to long-lifetime data (e.g., the Linux kernel) and
allows access to that data only if the system is compatible to a security policy
certified by a security administrator.

However, many challenges remain to be solved and are subject of ongoing
research: how to define useful properties applicable for practice, how to build
efficient mechanisms to determine properties of complex and composed systems,
and how to formally capture this notion.

4 Secure Data Management

The integrity measurement mechanism securely stores the platform’s initial con-
figuration into the registers (PCRs) of the TPM. Any change to the measured
software components results in changed PCR values, making sealed data inacces-
sible under the changed platform configuration. While this is desired in the case
of an untrustworthy software suite or malicious changes to the system’s software,
it may become a major obstacle for applying patches or software updates. Such
updates do generally not change the mandatory security policy enforced by an

106 A.-R. Sadeghi

operating system (in fact, patches should close an existing security weakness not
included in the system specification). Nevertheless, the altered PCR values of
the operating system make the sealed information unavailable under the new
configuration. As mentioned in Section 3 the semantic of the sealing operation
is too restrictive to efficiently support sealed information through the software
life-cycle including updates/patches. The main problem is the lack of a mapping
between the security properties provided by a platform configuration and its
measurements. This difficulty is also pointed out in [42]. A further problem with
the TCG’s proposal is how to handle hardware replacements in a computing
platform. Such replacements are necessary due to outdated or faulty hardware.
In corporate contexts, hardware is typically replaced every few years. Any sealed
data bound to a given TPM cannot directly be transferred to another TPM,
because it is encrypted with a key protected by the SRK, which in turn is stored
within the TPM. Further, the maintenance function does not allow platform
owners to migrate to a TPM of a different vendor.

In [26] the authors address these problems and propose possible solutions
for the secure migration, maintenance, and a more flexible sealing procedure.
They also use the ideas on property-based attestation [41,38] (see also Section 3)
to construct property-based sealing. However, some of these solutions require
changes to the TPM specification and consequently to the TPM firmware. The
future versions of the TPM specification may integrate some of these ideas. The
challenge is, however, to reduce the TPM complexity but still have appropriate
solutions for the mentioned problems above.

In [45] the authors present an integrity measurement architecture (IMA) for
Linux (see also Section 8). However, platform updates and migration are not
addressed, and, as the PCR values are employed to protect the current list of
measurements, working with sealed data seems to be difficult.

5 Trusted Channels — Beyond Secure Channels

The standard approach for creating secure channels over the Internet is to use se-
curity protocols such as Transport Layer Security (TLS) [14] or Internet Protocol
Security (IPSec) [25], which aim at assuring confidentiality, integrity, and fresh-
ness of the transmitted data as well as authenticity of the involved endpoints.
However, as mentioned before, secure channels do not provide any guarantees
about the integrity of the communication endpoints, which can be compromised
by viruses and Trojans. Based on security architectures that deploy Trusted
Computing functionalities (see also Section 10), one can extend these protocols
with integrity reporting mechanisms (either binary or property-based attesta-
tion), as proposed in [21] for the case of TLS (see also related work in [21]).

In this context, an interesting issue would be to analyze how to extend other
cryptographic protocols and mechanisms (e.g., group based cryptography like
group key exchange) with integrity reporting and binding/sealing mechanisms

Trusted Computing — Special Aspects and Challenges 107

and all this under the weakest possible assumptions. Besides, the underlying
security architecture should be capable of handling configuration changes and
its validation in run time environment and be able to manage the corresponding
access control, e.g., to generate new session keys. However, efficient and effective
run time attestation remains an open problem.

6 Compliance and Conformance

The Trusted Platform Module (TPM) acts as the root of trust and is the basis for
all other specifications of the TCG. Vendors already deploy computer systems,
e.g., laptop computers, that are equipped with a TPM chip. The TPM is a basic
but nevertheless very complex security component. Its specifications are contin-
uously growing in size and complexity (120 commands and up to 19 command
parameters in TPM v1.2), and there is still no published analysis on the mini-
mal TPM functionalities that are practically needed. In addition to this, TPM
users have to completely trust implementations of TPM manufacturers regard-
ing the compliance but also conformance (security) to the TCG specification.
This also requires the user to trust the TPM implementation that no malicious
functionalities have been integrated (trapdoors or Trojan horses). Finally, the
TCG adversary model considers software attacks only (see also 2.2).

Due to the complexity of the TPM specifications, one expects that not all
TPM chips operate exactly as specified. In practice, different vendors may im-
plement the TPM differently. They may exploit the flexibility of the specification
or they may deviate from it by inappropriate design and implementation5.

In [40], the authors introduce a prototype test suite developed for TPM com-
pliance tests. Based on the test results, they point out the non-compliance and
bugs of many TPM implementations currently available at the market. They
present a testing strategy, some sample test results, and an analysis for different
TPM implementations of different manufacturers, and discuss how one can con-
struct attacks by exploiting non-compliance and deficiencies of protection mech-
anisms. However, their test suite does not cover the entire TPM specifications.

In the recent years many efforts have been invested into thorough analysis of
cryptographic algorithms and security protocols resulting in a variety of methods
and automatic tools. Security models and manual security proofs up to formal
and automatic verification have been developed for this purpose, leading to a
deeper understanding of proposed algorithms and protocols. However, not much
is publicly known whether the same has been done for the TPM specification.
While [40] focuses mainly on TPM compliance issues, [23] presents the results of
an automated verification of some generic scenarios based on TPM functionalities
5 One may argue that vendors can deviate from the TPM specification because the

TCG does not enforce its brand name strongly enough. However, the TCG specifi-
cation itself has a certain degree of flexibility which may be exploited. This is also
the case with many other standards. Pushing a brand name or logo “TCG inside”
may not be sufficient in general given the complexity of the TPM.

108 A.-R. Sadeghi

and identifies some security problems and inconsistencies which have been
adopted into the recent version of the specification.

7 Virtual TPM

Virtualization [17,22] is a very useful technology that allows the cost-effective use
of hardware and resource sharing. In the recent years virtualization technology
is enjoying its rediscovery. Virtualization allows to run several virtual machines
(VM) (e.g., several operating systems) on top of the same hardware platform,
move the VMs among different platforms etc. Virtual Machine Monitors (VMM),
or hypervisors, acting as a control instance between virtual machines and phys-
ical resources, provide isolation of processes. However, for security-critical ap-
plications where confidentiality and integrity of data are required, one needs
mechanisms that assure the integrity of the underlying software (VMs and the
virtualization layer), or that these components conform to the defined security
policy. Combining VMM with Trusted Computing functionalities based on a
hardware-based root of trust (e.g., TPM) can provide such mechanisms under
specific assumptions (see also Sections 2.2 and 10).

In this context TPM virtualization makes TPM’s capabilities available to
multiple virtual machines running on the platform. However, a virtual (software)
TPM (vTPM) underlies a different trust model than a hardware TPM and hence,
there should be a secure link between each virtual TPM and the unique hardware
TPM. This is a challenging task in particular with regard to migration of vTPM
instances among different platforms that may have a different level of trust and
security requirements. Moreover, the state of a virtual TPM shall not be subject
to manipulation or cloning.

In [8] the authors propose an architecture where all vTPM instances are exe-
cuted in one special VM. This VM also provides a management service to create
vTPM instances and to multiplex the requests. Optionally, the vTPM instances
may be realized in a secure co-processor card. In their approach, migration of
vTPM instances is realized through an extension of the TPM command set.
When migration of a vTPM is requested, the state of the vTPM is encrypted
with a symmetric key that itself is encrypted by a migratable key of the real
TPM. On the destination site, the symmetric key and then the state of the
vTPM are decrypted and the vTPM instance resumes.

GVTPM [39] is a virtual TPM framework that supports various TPM models
and even different security profiles for each VM under the Xen hypervisor. In
contrast to providing fully virtualized TPM functionality, [46] virtualizes only
one functionality of a TPM 1.2, namely monotonic counters.

However, one still needs more flexible architectures for secure management of
vTPMs that among others (i) do not require extensions, and consequently more
complexity for TPMs, (ii) are less dependent on binary hash-based measure-
ments to properly manage updates and resealing, and (iii) can migrate VMs and
their associated vTPMs to platforms with different security policies and different
binary implementations of the underlying virtual machine monitor (VMM).

Trusted Computing — Special Aspects and Challenges 109

8 Integrity Measurement

AEGIS [4] performs an integrity check during the boot process of the whole
operating system. It protects the integrity reference values by building a chain
of trust and protecting the root reference value by special hardware. Enforcer [31]
is a security module for the Linux kernel, which works as an integrity checker
for file systems. It uses a TPM to verify the integrity of the boot process and
to protect the secret key of an encrypted file system. A certain configuration
of a system can be proved by comparing the values inside the TPM register
to previously computed reference values. If data or applications are sealed with
these values, the integrity of the underlying platform is indirectly assured. [45]
introduces IMA, an integrity measurement architecture for Linux. It extends the
Linux kernel and inserts measurement hooks in functions relevant for loading
executable code. In this way, they extended the measurement chain from the
BIOS and bootloader to the application level. However, frequent changes in
application files on a running system, e.g., due to updates and patches, steadily
increase the measurement list and may become impractical. Remote parties can
first verify the integrity of the table of measurements using remote attestation,
and can then decide if the current platform configuration is trustworthy.

9 New Processor Generation

Hardware vendors have improved both, the security features provided by the
CPU and the appropriate chipsets by the following features.6 First, a new CPU
mechanism to protect security-critical code and data from untrusted code, e.g.,
an existing operating system. This allows a security kernel to be executed in
parallel to an existing legacy operating system. Second, a CPU secure startup-
technique based on TPM functionality that allows to load security critical code
dynamically, i.e., after untrusted code has already been loaded. This function-
ality, called SKINIT on AMD Pacifica and SENTRY on Trusted Execution Tech-
nology, is an alternative realization of the CRTM that does neither require a
tamper-resistant BIOS extension nor modifications of the bootloader. Third, an
extension of the mainboard chipset allows to prevent DMA-enabled devices from
accessing security-critical data [47,11].

10 Security Architectures — Possible Approach

The basic desired primitives required for a trustworthy IT system are (i) means
for integrity verification that allow a computing platform to export verifiable
information about its properties (comes from the requirement of assuring the
executing image and environment of an application located on a remote com-
puting platform), (ii) secure storage that allows applications to persist data
6 Intel’s Trusted Execution Technology formerly known as LaGrande (see
http://www.intel.com/technology/security) and AMD’s Virtualization Technol-
ogy formerly code-named Pacifica (see http://www.amd.com/virtualization)

http://www.intel.com/technology/security
http://www.amd.com/virtualization

110 A.-R. Sadeghi

•
•
•

•
•

Fig. 2. Possible Security Architecture

securely between executions using traditional untrusted storage, (iii) strong pro-
cess isolation, and assuring (memory space) separation between processes, (iv)
secure I/O to assure that users securely interact with the intended application,
and (v) interoperability and ability to use legacy software.

A possible security architecture that aims to provide the above mentioned
properties is shown in Figure 2. Its realization deploys various technologies such
as virtualization and Trusted Computing (TC). The Virtual Machine Monitor
(VMM) consists of a security kernel that is located as a control instance between
the hardware and the application layer. It implements elementary security prop-
erties like trusted channels and strong isolation between processes. Virtualization
technology enables reutilization of legacy operating systems and existing appli-
cations whereas TC technology serves as the root of trust.

Hardware Layer. The hardware layer consists of commercial off-the-shelf PC
hardware enhanced with trusted computing technology as defined by the Trusted
Computing Group (TCG) [51] (see also Section 2).

Virtualization Layer. The main task of the virtualization layer, also called
hypervisor, is to provide an abstraction of the underlying hardware, e.g., CPU,
interrupts and devices, and to offer an appropriate management interface as
well as inter-process communication (IPC). Device drivers and other essential
operating system services, such as process and memory management, run in iso-
lated user-mode processes. Moreover, this layer enforces an access control policy
based on these resources. Providing a virtualized environment is one approach

Trusted Computing — Special Aspects and Challenges 111

to secure computing systems that process potentially malicious code. This tech-
nique is widely used for providing V-Servers, i.e., servers that feature several
virtual machines. While users have full control over the virtual environment,
they should not be able to cause damage outside that environment. Although
virtualization offers abstraction from physical hardware and some control over
process interaction, there still are problems to be solved. For example, in the x86
architecture, direct memory access (DMA) devices can access arbitrary physi-
cal memory locations. However, new hardware generations (see Section 9) aim
to address these problems and could eventually lead to secure isolation among
virtual machines. Virtualization technology can be leveraged for building an ap-
propriate environment for a variety of applications, especially because several
works, such as [43,44], have already begun to consider architectures that feature
policy enforcement in the virtualization framework.7 Possible implementations
can be based on microkernels [29] or Xen hypervisor [6].

Trusted Software Layer. The trusted software layer provides various security
related services and uses the functionality offered by the virtualization layer to
provide security functionalities on a more abstract level. A possible design of
these services is illustrated in Figure 2, which is being currently implemented
within different projects.8 The main services and their main tasks are as follows:
A Compartment Manager for managing compartments, i.e., logically isolated
components, e.g., virtual machines (VMs); a Storage Manager for compartments’
persistent storage providing integrity, confidentiality, authenticity and freshness;
a Trust Manager for providing trusted computing services, e.g., attestation, seal-
ing, trusted channels to other (remote) compartments; a User Manager for man-
aging user accounts and credentials; and a Secure UI for establishing a trusted
path between the user and compartments, e.g., to assure to which application a
user is communicating and to prevent keyloggers and spyware attacks.

Application Layer. On top of the security kernel, several instances of legacy
operating systems (e.g., Linux) as well as security-critical applications (e.g., grid
jobs, online banking, hard disk encryption, e-voting, VPN, DRM, etc.) can be
executed in strongly isolated compartments. The proposed architecture offers
migration of existing legacy operating systems. The legacy operating system pro-
vides all operating system services that are not security-critical and offers users
a common environment and a large set of existing applications. If a mandatory
security policy requires isolation between applications of the legacy OS, they can
be executed by parallel instances of the legacy operating system.

Verifiable Initialization. For verifiable bootstrapping of the TCB, the CRTM
measures the Master Boot Record (MBR) before passing control to it. A secure

7 sHype is a security extension for Xen developed by IBM. sHype provides a MAC-
based security architecture by adding static type enforcement (static coloring) on
communication channels and allows to enforce a Chinese Wall restriction on con-
currently running domains.

8 EMSCB (www.emscb.org) and OpenTC (www.opentc.net)

www.emscb.org
www.opentc.net

112 A.-R. Sadeghi

chain of measurements is then established: before a program code is executed, it
is measured by a previously (measured and executed) component.9 The measure-
ment results are securely stored in PCRs of the TPM. All further compartments,
applications, and legacy OS instances are then subsequently loaded, measured,
and executed by the Compartment Manager.

Examples for a security architecture as above is PERSEUS [37]. Other related
work include Microsoft’s Next-Generation Secure Computing Base (NGSCB)
and Terra [20]. NGSCB was originally planed as a security architecture based
on the TCG specifications [35]. However, the status of this project is currently
unclear.10 Terra is a trusted virtual machine monitor (VMM) that partitions a
hardware platform into multiple, strictly isolated virtual machines (VM).

11 Applications

Trusted Computing framework and the related security architectures (see, e.g.,
Section 10) enable policy enforcement, and in particular multilateral security,
which is crucial for applications with sophisticated security needs such as com-
mercial grid, e-government, e-health, online banking to name some. In the fol-
lowing we consider some of the recent work on application of TC functionalities.

In [32,30] the authors propose to utilize TC technology for grid applications,
with [48] more closely examining which scenarios require TC techniques. The
common protection mechanisms in grid usually do not concern themselves with
protecting the grid user (the person or entity wishing to utilize resources). The
user is forced to trust the provider, often without the possibility to verify whether
that trust is justified. However, in most of the current literature on grid security
the user is usually not regarded as trustworthy. This trust asymmetry could
potentially lead to a situation in which the grid provider causes large damage to
the user with little risk of detection or penalty.

Trusted monotonic counters enable different types of distributed services that
are vulnerable to replay attacks, including offline payment, e-wallets, virtual
trusted storage, and management of stateful licenses in various digital rights
management (DRM) applications. Stateful licenses are required in scenarios for
trading and using digital goods where the enforcement of the underlying policies
requires to securely maintain the state information about the past usage or envi-
ronmental factors. In [46] the authors propose a trusted monotonic counter solely
based on multiplexing the TPM counters without requiring a trusted operating
system whereas [5] proposes a security architecture for the secure management
(e.g., usage, and transfer) of stateful licenses and content on a virtualized open
platform. The proposed architecture makes use of the monotonic counters of the
9 For this purpose, one can use a modified GRUB bootloader

c(www.prosec.rub.de/tgrub.html).
10 Microsoft has often changed the name of its security platforms: Palladium (see, e.g.,

[47]), NGSCB, Longhorn and recently Windows Vista which uses TPM v1.2 for hard
disk encryption (system partition) to protect data against theft.

www.prosec.rub.de/tgrub.html

Trusted Computing — Special Aspects and Challenges 113

TPM combined with a software security service to provide trusted storage with
freshness.

In [19], the authors propose the design and implementation of a security ar-
chitecture that aims at preventing both classical and malware phishing attacks.
The security architecture deploys ideas of compartmentalization for isolating
applications of different trust level, and a trusted wallet for storing credentials
and authenticating sensitive services. Other work on preventing phishing attacks
based on TC can be found in [1].

In [10] the authors describe a secure network virtualization framework for
establishing Trusted Virtual Domains (TVDs) and its implementation based on
Xen hypervisor [6]. The proposed framework aims at connecting groups of re-
lated virtual machines running on separate physical machines as if there were
on their own separate network while enforcing the domain’s security policy (in
their case isolation, confidentiality, and information flow control). Trusted com-
puting functionalities can assure that core components for establishing TVDs
are trustworthy, i.e., conform to a the well-defined security policy.

Other applications include deployment of TC for biometric systems secu-
rity, video broadcasting, medical privacy, Web security, protection of massively
multiplayer online games (MMOGs), RFID applications with privacy need, sin-
gle sign-on, secure information sharing, protecting digital signatures, TC-based
security architecture for mobile platforms, VPN and hard disk encryption
applications.11

12 Conclusion and Future Work

Trusted Computing (TC) is an emerging technology that can enhance the secu-
rity of computing platforms in many ways. Nevertheless, TC technology is not a
universal solution to all of the IT security problems, but rather an additional tool
to pave the way towards trusted infrastructures. The technological realization
of TC brings new technical but also legal and economical challenges. It is diffi-
cult to predict whether or not the security benefits of TC outweighs the efforts
needed to face these challenges. Though we strongly believe that research on this
technology results in a deeper understanding of complex IT systems and how
to maintain their integrity, since trusted computing concerns security aspects at
many system abstraction layers (hardware, operating systems and application
software). Many challenges still remain as we discussed previously: designing ef-
fective and efficient remote proof of trustworthiness of codes, or of a platform
(e.g., property-based attestation), incorporating the underlying hardware in the
chain of trust, designing a minimal and less complex but effective TPM, simpli-
fying complex cryptographic protocols by using TC functionalities, developing
secure and efficient VMMs, establishing appropriate formal security models and
analysis for the corresponding mechanisms and architectures.
11 See www.isg.rhul.ac.uk/∼pnai178/tcgresources.htm, and www.emscb.org for a

collection of papers on these topics.

www.isg.rhul.ac.uk/~pnai178/tcgresources.htm
www.emscb.org

114 A.-R. Sadeghi

In particular, trusted mobile platforms seem to be an important future ap-
plication and market segment since embedded devices are increasingly used for
security critical applications and have challenging requirements due to their con-
strains but also the diversity of the parties involved as well as their requirements
and interests.

Even though the security level strongly depends on the details of design and
implementation, Trusted Computing as an abstract functionality is inevitable
for realizing applications and IT infrastructures with sophisticated security re-
quirements.

Acknowledgment. We are very grateful to Frederik Armknecht, Christian
Stüble and in particular to Christian Wachsmann for the fruitful discussions
and their valuable comments on the early draft of this survey.

References

1. Alsaid, A., Mitchell, C.J.: Preventing Phishing Attacks using Trusted Computing
Technology. In: INC (July 2006)

2. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems, 1st edn. John Wiley & Sons, New York, USA (2001)

3. Anderson, R.J.: The TCPA/Palladium FAQ (2002),
http://www.cl.cam.ac.uk/∼rja14/tcpa-faq.html

4. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap ar-
chitecture. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, IEEE Computer Society, Technical Committee on Security and Privacy,
pp. 65–71. IEEE Computer Society Press, Los Alamitos (1997)

5. Asokan, N., Ekberg, J.-E., Sadeghi, A.-R., Stüble, C., Wolf, M.: Enabling fairer
digital rights management with trusted computing. In: ISC (2007)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP (2007)

7. Benzel, T.V., Irvine, C.E., Levin, T.E., Bhaskara, G., Nguyen, T.D., Clark, P.C.:
Design principles for security. Technical Report NPS-CS-05-010, Naval Postgrad-
uate School (September 2005)

8. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:
Virtualizing the Trusted Platform Module. In: Proceedings of the 15th USENIX
Security Symposium, pp. 305–320. USENIX (August 2006)

9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM-CCS
(October 2004)

10. Cabuk, S., Chris, H.R., Dalton, I., Schunter, M.: Towards automated provisioning
of secure virtualized networks. In: ACM-CCS (2007)

11. Carroll, A., Juarez, M., Polk, J., Leininger, T.: Microsoft ”Palladium”: A busi-
ness overview. Technical report, Microsoft Content Security Business Unit (August
2002)

12. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.-R., Stüble, C.: A
protocol for property-based attestation. In: ACM-STC, ACM Press, New York
(2006)

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

Trusted Computing — Special Aspects and Challenges 115

13. Common Criteria Project Sponsoring Organisations. Common criteria for in-
formation technology security evaluation. Norm Version 2.1, CCIMB-99-031
– 33, Common Criteria Project Sponsoring Organisations (August 1999),
http://csrc.nist.gov/cc/CC-v2.1.html

14. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1,
RFC4346 (April 2006), http://www.ietf.org/rfc/rfc4346.txt

15. Dyer, J., Lindemann, M., Perez, R., Sailer, R., van Doorn, L., Smith, S.W., Wein-
gart, S.: Building the IBM 4758 Secure Coprocessor. IEEEC 34(10), 57–66 (2001)

16. Felten, E.W.: Understanding Trusted Computing — Will Its Benefits Outweigh Its
Drawbacks? IEEE Security and Privacy, 60–62 (May/June 2003)

17. Figueiredo, R., Dinda, P.A., Fortes, J.: Resource virtualization renaissance. IEEE
Computer 38, 28–31 (2005)

18. Foundation, F.S.: GNU General Public License, Version 3,
http://gplv3.fsf.org/

19. Gajek, S., Sadeghi, A.-R., Stüble, C., Winandy, M.: Compartmented security for
browsers — or how to thwart a phisher with trusted computing. In: ARES (2007)

20. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: SOSP, pp. 193–206. ACM, New
York (2003)

21. Gasmi, Y., Sadeghi, A.-R., Stewin, P., Unger, M., Asokan, N.: Beyond secure chan-
nels. In: ACM-STC (2007)

22. Goldberg, R.P.: Architectural Principles for Virtual Computer Systems. PhD the-
sis, Harvard University (1972)

23. Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security evalua-
tion of scenarios based on the TCG TPM specification. In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 438–453. Springer, Heidelberg (2007)

24. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: A virtual ma-
chine directed approach to trusted computing. In: USENIX Virtual Machine Re-
search and Technology Symposium May 2004, Also Technical Report No. 03-20,
School of Information and Computer Science, University of California, Irvine (Oc-
tober 2003)

25. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol, RFC2401
(November 1998), www.ietf.org/rfc/rfc2401.txt

26. Kühn, U., Kursawe, K., Lucks, S., Sadeghi, A.-R., Stüble, C.: Secure data man-
agement in trusted computing. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, Springer, Heidelberg (2005)

27. Kühn, U., Selhorst, M., Stüble, C.: Property-Based Attestation and Sealing with
Commonly Available Hard- and Software. In: ACM-STC (2007)

28. Kursawe, K., Schellekens, D., Preneel, B.: Analyzing Trusted Platform Communi-
cation. In: ECRYPT-CRASH (2005)

29. Liedtke, J.: Towards real micro-kernels. Commun. ACM 39(9) (1996)
30. Löhr, H., Ramasamy, H.G.V., Schulz, S., Schunter, M., Stüble, C.: Enhancing Grid

Security Using Trusted Virtualization. In: ATC (2007)
31. MacDonald, R., Smith, S., Marchesini, J., Wild, O.: Bear: An open-source virtual

secure coprocessor based on TCPA. Technical Report TR2003-471, Department of
Computer Science, Dartmouth College (2003)

32. Mao, W., Jin, H., Martin, A.: Innovations for Grid Security from Trusted Com-
puting, http://www.hpl.hp.com/personal/Wenbo Mao/research/tcgridsec.pdf

http://csrc.nist.gov/cc/CC-v2.1.html
http://www.ietf.org/rfc/rfc4346.txt
http://gplv3.fsf.org/
www.ietf.org/rfc/rfc2401.txt
http://www.hpl.hp.com/personal/Wenbo_Mao/research/tcgridsec.pdf

116 A.-R. Sadeghi

33. Marchesini, J., Smith, S., Wild, O., Barsamian, A., Stabiner, J.: Open-source ap-
plications of TCPA hardware. In: ACSAC, ACM, New York (2004)

34. Marchesini, J., Smith, S.W., Wild, O., MacDonald, R.: Experimenting with
TCPA/TCG hardware, or: How I learned to stop worrying and love the bear. Tech-
nical Report TR2003-476, Department of Computer Science, Dartmouth College
(2003)

35. Mundie, C., de Vries, P., Haynes, P., Corwine, M.: Microsoft whitepaper on trust-
worthy computing. Technical report, Microsoft Corporation (October 2002)

36. Oppliger, R., Rytz, R.: Does trusted computing remedy computer security prob-
lems? IEEE Security & Privacy 3(2), 16–19 (2005)

37. Pfitzmann, B., Riordan, J., Stüble, C., Waidner, M., Weber, A.: The PERSEUS
system architecture. Technical Report RZ 3335 (#93381), IBM Research Division,
Zurich Laboratory (April 2001)

38. Poritz, J., Schunter, M., Van Herreweghen, E., Waidner, M.: Property attestation—
scalable and privacy-friendly security assessment of peer computers. Technical
Report RZ 3548, IBM Research (May 2004)

39. Rozas, C.: Intel’s Security Vision for Xen (April 2005),
http://www.xensource.com/files/XenSecurity Intel CRozas.pdf

40. Sadeghi, A.-R., Selhorst, M., Christian Stüble, C., Wachsmann, Winandy, M.: TCG
Inside? — A Note on TPM Specification Compliance. In: ACM-STC (2006)

41. Sadeghi, A.-R., Stüble, C.: Property-based attestation for computing platforms:
Caring about properties, not mechanisms. In: ACM SIGSAC, The 2004 New Se-
curity Paradigms Workshop, ACM Press, New York (2004)

42. Safford, D.: The need for TCPA. IBM Research (October 2002)
43. Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J.L., van

Doorn, L.: Building a MAC-Based Security Architecture for the Xen Open-Source
Hypervisor (2005)

44. Sailer, R., Valdez, E., Jaeger, T., Perez, R., van Doorn, L., Griffin, J.L., Berger,
S.: sHype: Secure hypervisor approach to trusted virtualized systems. Technical
Report RC23511, IBM Research Division (February 2005)

45. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. Research Report RC23064, IBM
Research (January 2004)

46. Sarmenta, L.F.G., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
monotonic counters and count-limited objects using a tpm without a trusted os.
In: ACM-STC, pp. 27–42 (2006)

47. Schoen, S.: Palladium details (2002), http://www.activewin.com/articles/
2002/pd.shtml

48. Smith, M., Friese, T., Engel, M., Freisleben, B.: Countering Security Threats
in Service-Oriented On-Demand Grid Computing Using Sandboxing and Trusted
Computing Techniques. Journal of Parallel and Distributed Computing (2006)

49. Smith, S.W.: Outbound authentication for programmable secure coprocessors. In:
Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502,
pp. 72–89. Springer, Heidelberg (2002)

50. Spafford, G.: Risks Digest 19.37 (September 1997), http://catless.ncl.ac.uk/
Risks/19.37.html

51. Trusted Computing Group, www.trustedcomputinggroup.org

http://www.xensource.com/files/XenSecurity_Intel_CRozas.pdf
http://www.activewin.com/articles/2002/pd.shtml
http://www.activewin.com/articles/2002/pd.shtml
http://catless.ncl.ac.uk/Risks/19.37.html
http://catless.ncl.ac.uk/Risks/19.37.html
www.trustedcomputinggroup.org

Trusted Computing — Special Aspects and Challenges 117

52. Trusted Computing Group. TCG Architecture Overview (April 2004)
53. Trusted Computing Group. TPM main specification. Main Specification Version

1.2 rev. 85, Trusted Computing Group (February 2005)
54. Trusted Computing Group (TCG). About the TCG,

http://www.trustedcomputinggroup.org/about/
55. Trusted Computing Group (TCG). TCG Mobile Reference Architecture, Specifi-

cation version 1.0, Revision 1 (June 12, 2007)
56. Trusted Computing Group (TCG). TCG Mobile Trusted Module Specification,

version 1.0, Revision 1 (June 12, 2007)
57. Trusted Computing Platform Alliance (TCPA). Main specification, Version 1.1b

(February 2002)
58. Yee, B.S.: Using Secure Coprocessors. PhD thesis, School of Computer Science,

Carnegie Mellon University, CMU-CS-94-149 (May 1994)

http://www.trustedcomputinggroup.org/about/

Optimizing Winning Strategies in Regular

Infinite Games

Wolfgang Thomas

RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Abstract. We consider infinite two-player games played on finite graphs
where the winning condition (say for the first player) is given by a regular
omega-language. We address issues of optimization in the construction
of winning strategies in such games. Two criteria for optimization are
discussed: memory size of finite automata that execute winning strate-
gies, and – for games with liveness requests as winning conditions –
“waiting times” for the satisfaction of requests. (For the first aspect we
report on work of Holtmann and Löding, for the second on work of Horn,
Wallmeier, and the author.)

1 Introduction

A central result in the algorithmic theory of infinite two-player games is the
Büchi-Landweber Theorem [2]. It shows how to “solve” finite-state games where
the winning condition is given by a regular ω-language (over the state space of the
underlying finite game arena). The solution of a game involves two algorithms,
the first one to decide for each state who of the two players wins the plays
starting from this state, and the second one to synthesize a winning strategy for
the respective winner. As it turns out, finite-state winning strategies suffice, i.e.
strategies that are realized by a finite-state machine with output (for example
in the format of a Mealy automaton). For some further background see [10,13].

The Büchi-Landweber Theorem provides an approach for the automatic syn-
thesis of finite-state controllers, assuming that the synthesis problem can be
modeled in the framework of finite-state games (with a regular winning condi-
tion). Two directions of research have been opened by this fundamental result.
First, various options of extending the framework have been investigated, such as
infinite-state games, concurrent games, distributed (or multiplayer) games, and
stochastic games, and in each case the scope of models that still allow an algo-
rithmic solution has been explored. The other direction aims at a refined analysis
of finite-state games, with the objective to single out cases that are interesting
in applications and allow an efficient treatment. We discuss the second problem
in this paper, starting with the observation that from a practical viewpoint the
Büchi-Landweber Theorem is insufficient in two respects: It involves procedures
of high computational complexity, and – if a controller exists – the controller’s
behavior is not optimized in any way. Progress on both questions seems possible

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 118–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimizing Winning Strategies in Regular Infinite Games 119

since the full power of regular winning conditions is rarely needed in applica-
tions; many interesting cases can be studied in a more restricted framework. As
important conditions of this kind we mention (and pursue below) the “weak”
winning conditions and the “request-response conditions”. In this context we
address the aspect of optimization for two criteria:

1. memory size of the controller
2. waiting times when liveness conditions are to be satisfied.

Regarding these criteria we report (in Sections 2 and 3, respectively) on recent
and initial results obtained in the Aachen research group. The results on memory
reduction are due to Michael Holtmann and Christof Löding [7,6], the results
on minimizing waiting times in request-response games to Florian Horn, Nico
Wallmeier, and the author [11,8].

2 Reducing Memory in Winning Strategies

It is well-known that regular winning conditions are reducible to a format that
is called “Muller condition”. A game with a Muller winning condition is given
by a pair (G, F) where G is a finite game arena (or: game graph), say, over the
set Q, and F is a family of subsets of Q. A play � ∈ Qω is declared as won by
player 0 (playing against player 1) according to the Muller condition if the set
Inf(�) of states visited infinitely often in � belongs to F . As shown in [3], a lower
bound for the memory size of finite-state winning strategies in Muller games is
given by the factorial function (in the number of vertices of the game graph). An
exponential lower bound is known for the so-called weak Muller games, which
are also presented as pairs (G, F) and in which a play is won by player 0 if the
“occurrence set” Occ(�) of states visited in � belongs to F .

The known solutions of (Muller and weak Muller) games yield finite-state
strategies as Mealy automata that can then be minimized by classical tech-
niques. A serious disadvantage of this method is the fact that the initial Mealy
automaton is not constructed in a way that supports memory reduction. There
are examples where a given finite-state winning strategy is minimal (i.e., cannot
be reduced w.r.t. number of states), but where another winning strategy exists
with exponentially less states. The main (and still open) problem is to have an
overview of all possible winning strategies and a method to single out the “small”
ones.

In their recent work [7,6] Holtmann and Löding developed a technique which
achieves partial progress in the search for memory-optimal strategies. The main
idea is to do some preprocessing of the game arena – reducing it in size – so that
the subsequent application of the standard algorithms leads to winning strategies
with smaller memory.

An efficient preprocessing turns out to be possible for the case of weak Muller
games. We describe the technique for this example; other cases such as Muller
games and Streett games are treated in ongoing work (including experimental
studies).

120 W. Thomas

The first step in the algorithm is to reduce a weak Muller game to a weak
parity game. (The weak parity condition refers to a coloring of states by natural
numbers, and it requires that the highest used color in a play is even.) This
reduction involves an expansion of the state space of the given arena G to a new
arena G′: From the state set Q of G we proceed to 2Q × Q. Intuitively, each
play � over Q is mapped to a new play �′ over 2Q × Q where, at each moment t,
�′(t) is the pair consisting of (1) the set of previously visited states in � and (2)
the current state �(t). The first component is thus also called the “appearance
record” (of visited states). An important property of the appearance record over
Q is the fact that for each weak Muller condition over Q one can build a finite-
state winning strategy with appearence records as memory states (if a winning
strategy exists at all).

The second (and essential) step is a minimization of the resulting game graph
G′ over 2Q × Q with the weak parity winning condition. The game graph G′

is converted into a weak parity automaton A (with state space 2Q × Q and
input alphabet Q) accepting precisely those plays � over G that satisfy the given
weak Muller condition. A variant of the Löding’s efficient minimization of weak
automata [9] yields a reduced automaton A′ which accepts the same plays as A;
this automaton is then converted back into a weak parity game (over a quotient
graph G′′ of G′). The specific structure of game graphs (with vertices attributed
to the two players, which deviates from the format of acceptors) requires some
technical work in order to be able to switch from games to automata and back. In
particular, the form of the state equivalence that leads to a state space reduction
has to be designed appropriately.

The approach of optimizing winning strategies via a reduction of game graphs
can result in an exponential improvement of the size of finite-state strategies; a
family of examples is given in [6].

The main point for the practical applicability of this approach is the avail-
ability of efficient minimization (or reduction) procedures for ω-automata. In the
case of deterministic weak parity automata, as needed above, the minimization
algorithm of [9] can be used. For more general winning conditions, such as the
Büchi condition and the (strong) parity condition, other algorithms have to be
used ([4],[5]; see [6]).

Many questions remain open in this field. Already in [2], Büchi and Landweber
raise the question whether the space of all (winning) strategies for a given Muller
game can be parametrized by data that are derived from the loop structure of a
Muller game graph. We do not have as yet any transparent scheme that captures
all winning strategies of an infinite game. Another problem is motivated by the
fact that many game specifications are given as logical formulas (e.g., formulas
of linear-time temporal logic LTL). In this case, the first step is to construct a
Muller game which is then treated as discussed above. The interplay between
these two steps (introducing states for the Muller game, and introducing further
states for its solution in terms of finite-state strategies) is not well understood;
it seems reasonable to expect gains in efficiency by integrating these two levels
of state space reduction.

Optimizing Winning Strategies in Regular Infinite Games 121

3 Minimizing Waiting Times in Liveness Conditions

Many specifications (winning conditions) for infinite games consist of a combi-
nation of a safety condition (“all states visited in play should share a certain
“good” state property”) with liveness conditions of the following form:

(∗) Whenever a P -state is visited, later also an R-state is visited

where P and R are subsets of the vertex set of the game graph (state properties).
This corresponds to a situation where a visit to P signals a certain “request”
and a visit to R the corresponding “response” (usually meaning that satisfaction
of the request is granted). The safety conditions can be captured by a restric-
tion of the game graph. We thus concentrate on the second type of winning
condition (∗). A request-response condition is a finite conjunction of conditions
of the form (∗). In linear-time temporal logic this amounts to a conjunction∧k

i=0 G(pi → XF ri) with formulas pi, ri expressing state properties. A request-
response game (in short, RR-game) is a finite-state game with a request-response
winning condition.

It is not difficult to show that RR-games can be reduced to Büchi games,
in which the winning condition just requires to visit states in a certain desig-
nated set F infinitely often [12]. Via this reduction (and the solution of Büchi
games), the RR-games can be solved, and a finite-state winning strategy can
be constructed for the respective winning player. In most practical scenarios,
however, the construction of a finite-state strategy which just ensures winning
an RR-game is unsatisfactory. As in scheduling problems, one would like to have
a solution that minimizes the time lags between visits to a set P and the suc-
ceeding visits to R afterwards (referring to a condition (∗)). An approach that
is familiar from “parametrized model-checking” [1] is to bound the time lags by
a constant and to check whether this bound is respected for all RR-conditions
involved. A corresponding optimization problem asks to compute the minimal
possible bound. We pursue here a more ambitious goal, namely to realize an opti-
mization of the waiting times for the individual RR-conditions. Furthermore, we
use real numbers as values for optimization; they reflect average waiting times
in infinite plays. We obtain associated valuations for winning strategies, and de-
clare a winning strategy as optimal if it realizes the optimal value (if it exists)
among all winning strategies.

We discuss here two natural valuations (a more general framework is treated
in [8]). Let us first consider just a single RR-condition with sets P, R as above,
and assume that a play � satisfies the condition. We count the time lags between
“first visits” to P , which we call “activations of waiting” and the successive R-
visits. (A visit is “first” if all previous visits to P are already matched by an
R-visit.) For each finite play prefix �[0 . . . n], the average waiting time w�,0(n)
is the sum of the waiting times in the prefix �[0 . . . n] divided by the number of
activations.

A weakness of this approach of “linear penalty for waiting” is that it does not
distinguish between the following two kinds of plays, with two RR-conditions to

122 W. Thomas

be observed: In the first play, the conditions are met with waiting times 9 and
1, respectively, in the second both conditions are satisfied with waiting time 5
each (and the repetition is assumed to be the same in both cases). The intuitive
preference for the second solution (where the maximum waiting time is smaller)
is met by introducing the penalty m (rather than 1) for the m-th successive time
instance of waiting. This results in a quadratic increase of the penalty during a
waiting phase; and we define w�,1(n) as the sum of these penalties for the play
prefix �[0 . . . n], again divided by the number of activations.

Let us write w�(n) for any of these two values w�,i(n). (We suppress the
index i ∈ {0, 1} for better readability.) The value of a play � is then v(�) :=
lim supn→∞ w�(n) (which is set to be ∞ if this limit does not exist). If there are
k RR-conditions with respective values wj

�(n) (j = 1, . . . , k), then the value of �
is defined as

v(�) := lim sup
n→∞

1
k

k∑

j=1

wj
�(n)

We write v(σ, τ) for the value of the play that is determined by the strategies σ, τ
of players 0 and 1, respectively. The value of strategy σ is v(σ) := supτv(σ, τ).
A winning strategy for player 0 is called optimal if there is no other winning
strategy for player 0 with smaller value.

A simple example shows that the value derived from linear penalty for wait-
ing does not allow, in general, to construct optimal winning strategies that are
finite-state. However, in the case of quadratic penalty for waiting, an optimal
finite-state winning strategy exists, which moreover can be effectively computed
([11,8]). The key fact to establish this result is a lemma that ensures a uni-
form bound on the waiting times for an optimal winning strategy. An optimal
finite-state strategy can then be computed via a reduction to the solution of
mean-payoff games [14].

This study addresses games where the payoff of a play is different from 0 or 1.
This view is standard, for example, in mean-payoff games and stochastic games.
Here we apply it to discrete infinite games, extract continuous parameters, and
referring to them compute again discrete optimal objects (finite-state strategies).

4 Conclusion

We discussed two problems of optimization in solving infinite games with regular
winning conditions. While the two problems are quite different in nature, they
point to a shift in the analysis of games. The origins of the theory of infinite
games are descriptive set theory and questions of mathematical logic, in which
the existence of winning strategies is the main issue. The refined studies in
theoretical computer science (and their applications in system design) naturally
lead to modifications of the objectives. The present paper illustrates this by
studies on quantitative classifications of winning strategies.

Optimizing Winning Strategies in Regular Infinite Games 123

References

1. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for
“model measuring”. ACM Trans. Comput. Logic 2, 388–407 (2001)

2. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Amer. Math. Soc. 138, 367–378 (1969)

3. Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to
win infinite games? In: Proc. 12th IEEE Symp. on Logic in Computer Science, pp.
99–110. IEEE Computer Society Press, Los Alamitos (1997)

4. Etessami, K., Wilke, Th., Schuller, R.A.: Fair bismulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34, 1159–1175
(2005)

5. Fritz, C., Wilke, Th.: Simulation relations for alternating parity automata and
parity games. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp.
59–70. Springer, Heidelberg (2006)

6. Holtmann, M., Löding, C.: Memory reduction for strategies in infinite games. In:
Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 253–264. Springer,
Heidelberg (2007)

7. Holtmann, M.: Memory Reduction for Strategies in Infinite Games, Diploma thesis,
RWTH Aachen 2007, http://www.automata.rwth-aachen.de/∼holtmann/

8. Horn, F., Thomas, W., Wallmeier, N.: Optimal strategy synthesis for request-
response games (submitted)

9. Löding, C.: Efficient minimization of deterministic weak ω-automata. Inf. Proc.
Lett. 79, 105–109 (2001)

10. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995)

11. Wallmeier, N.: Strategien in unendlichen Spielen mit Liveness-Gewinnbedingungen:
Syntheseverfahren, Optimierung und Implementierung, Dissertation, RWTH
Aachen (2007)

12. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of finite-state con-
trollers for request-response specifications. In: Ibarra, O.H., Dang, Z. (eds.) CIAA
2003. LNCS, vol. 2759, pp. 11–22. Springer, Heidelberg (2003)

13. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)

14. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158, 259–343 (1996)

http://www.automata.rwth-aachen.de/~holtmann/

Recursive Domain Equations of Filter Models

Fabio Alessi and Paula Severi

Università degli Studi di Udine
Dipartimento di Matematica ed Informatica

via delle Scienze 208, 33100 Udine, Italy

Abstract. Filter models and (solutions of) recursive domain equations
are two different ways of constructing lambda models. Many partial re-
sults have been shown about the equivalence between these two con-
structions (in some specific cases). This paper deepens the connection by
showing that the equivalence can be shown in a general framework. We
will introduce the class of disciplined intersection type theories and its
four subclasses: natural split, lazy split, natural equated and lazy equated.
We will prove that each class corresponds to a different recursive domain
equation. For this result, we are extracting the essence of the specific
proofs for the particular cases of intersection type theories and making
one general construction that encompasses all of them. This general ap-
proach puts together all these results which may appear scattered and
sometimes with incomplete proofs in the literature.

1 Introduction

This paper is concerned with two different ways of constructing models of the
untyped lambda calculus which are strongly related.

1. Scott’s D∞-models. They were introduced in the 70’s as solutions of the
recursive domain equation D = [D → D] [19]. Their construction depends
on an initial domain D0 and an initial embedding i0. Variations of D0 and
i0 define different D∞-models.

2. Filter models. They were introduced in the 80’s using the notion of type as
the elementary brick for their construction [5]. We start from an extension
of the simply typed lambda calculus with intersection types and subtyping.
Then, the interpretation of a λ-term is defined as the set of its types and it
has the property of being a filter. The so-called intersection type theory T
is a set of subtyping statements A ≤ B. Variations on the intersection type
theory T induce different filter lambda models denoted by FT .

Many partial results have been shown about the correspondence between both
constructions (in some specific cases). Historically, some instances of D0 and i0
have given rise to some specific filter models such as Scott and Park lambda
models [19,16]. This result has been generalized [5,8,9,3] by showing that in the
category of ω-algebraic complete lattices, any D∞-model can be described as
a filter model by coding the compact elements of D0 as types and defining an

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 124–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Recursive Domain Equations of Filter Models 125

intersection type theory T that contains both the order of D0 and i0
1. The

converse is obviously not true. Filter models are in a sense weaker structures
than D∞-models. Not all of them satisfy the recursive domain equation D =
[D → D]. If we restrict our attention to the extensional filter models, then some
of them have been described as D∞-models by choosing an appropriate D0 and
i0 [7,8,2,10]. In spite of the fact that the non-extensional filter models do not
satisfy D = [D → D], in some cases it is possible to find other recursive domain
equations for them [2]. For instance, the non-extensional filter model for the lazy
λ-calculus [1] satisfies the equation D = [D → D]⊥, while the filter model of [5]
satisfies the equation D = E × [D → D] for a suitable E. In some cases [8], it is
not clear if a filter model satisfy any domain equation at all.

In this paper we show that the connection between filter models and (solutions
of) domain equations can be shown in a general framework. We characterize the
classes of filter models that correspond to each recursive domain equation as
shown in Fig. 1. Many filter models in the literature belong to one of these four
classes. Our classification will be done by analyzing patterns of axioms in the
definition of the subtyping relation inducing the filter model. In order to give
a proper formalization for the study of these patterns of axioms, we will define
the subtyping parametric on a set Σ of axioms. The judgements are of the form
Σ � A ≤ B. This defines the intersection type theory T Σ, or just T , generated
by Σ [8]. Depending on the shape of the axioms Σ, we will introduce four classes
of type theories: natural split, lazy split, natural equated and lazy equated (Sec-
tion 3). Each class corresponds to a different recursive domain equation in the
following sense: the intersection type theory T belongs to the class iff the fil-
ter model FT satisfies the corresponding recursive domain equation. This result
will be a consequence of a stronger and more refined theorem which states the
correspondence between intersection type theories and triples 〈F, D0, i0〉 where
F is a functor, D0 an object and i0 an embedding in the category of complete
ω-algebraic lattices. We will specify in each of the four cases how to construct
FT as a colimit of ω-chains starting from certain 〈F, D0, i0〉 (Section 4).

The contribution of this paper can be summarized as follows.

1. We introduce the class of disciplined type theories and its four subclasses:
natural split, lazy split, natural equated and lazy equated.

2. In Theorem 27, we prove that filter models over any disciplined intersection
type theory can be constructed as the colimit of certain ω-chain. In Theorem
30, we prove the converse.

3. As corollaries of those two theorems, we deduce the correspondence between
intersection type theories and recursive domain equations shown in Fig. 1

4. In the proofs of Theorem 27 and Theorem 30, we are extracting the essence
of the specific proofs for Scott, Park, CDZ, DHM and HR and making one
general construction that encompasses all these particular cases. This general
approach puts together all these results which may appear scattered and
sometimes with incomplete proofs in the literature.

1 In the categories of Scott domains or stable sets, D∞-models cannot be captured in
their full generality.

126 F. Alessi and P. Severi

Class Equation

Natural split D = E × [D → D]

Lazy split D = E × [D → D]⊥

Natural equated D = [D → D]

Lazy equated D = [D → D]⊥

Fig. 1. Classification of recursive domain equations

2 Domain-Theoretic Preliminaries

This auxiliary section is devoted to recall some definition and facts from lattice
theory of some importance in the following sections. For fundamental notions
and results on lattices we refer to [13].

Definition 1. 1. Let D = 〈D, �〉 be a complete lattice. A subset Z ⊆ D is
directed if it is non-empty and for any z, z′ ∈ Z there exists z′′ ∈ Z such
that z, z′ � z′′.

2. A monotone function f : D → E is continuous if for any directed Z ⊆ D,
we have that f(

⊔
Z) =

⊔
f(Z) . The space of continuous functions from D

to E, ordered with the pointwise ordering, is denoted by [D → E].
3. An element d ∈ D is compact if for any directed Z ⊆ D, d � ⊔

Z implies
that there exists z ∈ Z such that d � z. The set of compact elements of D is
denoted by K(D).

4. D is an ω-algebraic lattice if K(D) is countable and moreover, for any x ∈ D,
x =

⊔{d ∈ K(D) | d � x}. ALG is the category of complete ω-algebraic
lattices and continuous functions (see [17]).

5. Given two ω-algebraic lattices D and E, and two compact elements d ∈
K(D), e ∈ K(E), we define the step function

(d ⇒ e)(x) =
{

e if d � x
⊥ otherwise

We have that (d ⇒ e) � f if and only if e � f(d). Hence d ⇒ e � d′ ⇒ e′ if and
only if d′ � d and e � e′. Finite sups of step functions are the compact elements
in [D → E].

Lemma 2. Let D, E ∈ ALG. Then,

1. K([D → E]) = {⊔n
i=1(di ⇒ ei) | n ∈ N & di, ei compact & 1 ≤ i ≤ n}.

2. [D → E] is ω-algebraic.
3.

⊔n
j=1(cj ⇒ dj) � ⊔n

i=1(ai ⇒ bi) ⇔
∀j ∈ {1 . . . n}.dj � ⊔{bi | 1 ≤ i ≤ n & ai � cj}.

Morever ALG is a CCC (cartesian closed category) with “enough points”.

Recursive Domain Equations of Filter Models 127

Definition 3. Let i : D → E, j : E → D be continuous functions. We say that
ι = 〈i, j〉 : D → E is an embedding-projection pair (ep for short) if j ◦ i = IdD

and i ◦ j � IdE.
If 〈i, j〉 : D → E and 〈h, k〉 : E → E′, then 〈i, j〉 ◦ 〈h, k〉 = 〈h ◦ i, j ◦ k〉.
ALGE is the category of ω-algebraic lattices and ep’s.

Next lemma on ep’s is very useful. Its proof can be recovered by using the results
of Section 0-3 of [13] on basic properties of Galois connections.

Lemma 4. Let D, E ∈ ALG and ι = 〈i, j〉 : D → E be an ep.

1. ∀x ∈ D, y ∈ E. i(x) � y ⇔ x � j(y).
j is the right adjoint of i and it is often denoted by iR.

2. ι is completely determined by the embedding i, since j is forced to satisfy the
following equality:

(†) j(y) =
⊔{x | i(x) � y}

3. i is additive, injective and preserves compact elements.

Thanks to Lemma 4(2), we identify an ep ι = 〈i, iR〉 with its embedding i.

Definition 5. Let F : ALGE → ALGE be a locally continuous endofunctor2,
D0 ∈ ALG and i0 : D0 → F (D0) be an embedding in ALG.

1. The triple ρ = 〈F, D0, i0〉 is called a specification of a colimit.
2. Every specification ρ = 〈F, D0, i0〉, induces an ω-chain

D0
i0→ F (D0)

F (i0)→ F 2(D0)
F 2(i0)→ F 3(D0) . . .

that we call the ω-chain of ρ.
3. Then, D0 is called the initial domain and i0 the initial embedding.
4. The colimit of ρ, denoted by colim(ρ), is the colimit of the ω-chain of ρ.

3 Intersection Type Theories and Filter Models

In this section we recall the notion of intersection type theory and its induced
filter model. We will consider intersection type theories generated by a set Σ of
axioms [8]. Depending on the shape of the axioms Σ, we introduce four classes
of type theories: natural split, lazy split, natural equated and lazy equated. We
show that many of the examples of intersection type theories that appear in the
literature fit in one of these four patterns of axioms. In this section we will also
show that any of these four classes behaves well in the sense that they all induce
reflexive filter structures and, hence, λ-models.

Definition 6. Let A be a countable set of symbols, called atoms.
2 See [20]: what matters here is that F locally continuous implies that it commutes

with colimits in ALGE and the domain equation X = F (X) has solution in ALG.

128 F. Alessi and P. Severi

1. We assume there is a special atom � in A, called top.
2. The set B(A) (or just B) of basic types over A is defined by B = A | B ∩ B.
3. The set T(A) (or just T) of types over A is defined by T = A | T → T | T∩T.

Greek letters α, β, . . . range over A and A, B, . . . range over B or T.
Next definition is standard [5] except for the axiom (�lazy). The intuition behind
this last axiom is that anything that is more defined than a function is still a
function. Note that we can deduce that A → � = � → �.

Definition 7. An intersection type theory T is a set of statements of the form
A ≤ B (to be read: A is a subtype of B), with A, B ∈ T, that satisfies the
following axioms and rules.

(refl) A ≤ A

(inclL) A ∩ B ≤ A

(inclR) A ∩ B ≤ B

(trans)
A ≤ B B ≤ C

A ≤ C

(glb)
C ≤ A C ≤ B

C ≤ A ∩ B

(�) A ≤ �

(�lazy) A → � ≤ � → �

(→∩) (A → B) ∩ (A → C) ≤ A → B ∩ C (→)
A′ ≤ A B ≤ B′

A → B ≤ A′ → B′

We write A = B (to be read as “A is equivalent to B”) for A ≤ B ∈ T and
B ≤ A ∈ T . We extend ≤, ∩ and → to T/= in the obvious way. The equivalence
class of a type A is denoted as [A]. Syntactic identity is denoted as A ≡ B.

Intersection is associative and commutative with respect to equivalence of
types, so if n ≥ 1, we may write

⋂n
i=1 Ai or

⋂{A1, · · · , An} for A1 ∩ · · · ∩ An.
The case

⋂ ∅ denotes �. If n ≥ 1, we may write
⋂n

i=1 Ai or
⋂{A1, · · · , An} for

A1 ∩ · · · ∩ An. The empty intersection
⋂ ∅ denotes �. In the literature, the top

� is denoted by different symbols such as ω in [6] or Ω in [11].
We now recall the definition of filter structure [5,8].

Definition 8. Let T be an intersection type theory.

1. A filter (resp. basic filter) is a set X ⊆ T (resp. X ⊆ B) such that:
(a) � ∈ X;
(b) A ≤ B(resp.A ≤B B) and A ∈ X imply B ∈ X;
(c) A ∈ X and B ∈ X imply A ∩ B ∈ X.

2. Let Y ⊆ T. Then, ↑Y denotes the filter generated by Y . If Y = {A}, we write
↑A instead of ↑{A} and ↑A is called a principal filter. Actually it coincides
with the upper closure of A, i.e. ↑A = {B | A ≤ B}. If Y ⊆ B the basic filter
generated by Y is denoted by ↑B Y . Similarly, we write ↑B A instead of ↑B {A}
for the principal filter.

3. FT (resp. FB) is the set of filters (resp. basic filters) over T , ordered by
set-theoretic inclusion, and is called the filter structure (resp. basic filter
structure) over T .

Recursive Domain Equations of Filter Models 129

It is well-known that FT is an ω-algebraic lattice [8]. Given X ⊆ FT

(fil-sup)
⊔ X =↑ {⋂n

j=1 Aj | n ∈ IN, ∀1 ≤ j ≤ n.∃X ∈ X .Aj ∈ X},

Moreover X � Y = X ∩ Y , the bottom filter is ↑�, the top filter is T. Compact
elements in FT are the principal filters and they inherit the order ≤op:

↑A ⊆↑B ⇔ B ≤ A

In the following definition we show how to interpret the untyped lambda calculus
in a filter structure FT .

Definition 9. Let T be an intersection type theory.

1. We define AppT : FT → [FT → FT] and AbsT : [FT → FT] → FT as
follows.

AppT (X)(Y) = {B | ∃A ∈ Y.A → B ∈ X}
AbsT (f) = ↑{A → B | B ∈ f(↑ A)}

2. We define an interpretation on λ-terms as follows [8]3.

[[x]]ρ = ρ(x)
[[MN]]ρ = (AppT ([[M]]ρ))([[N]]ρ)
[[λx.M]]ρ = AbsT (λλd ∈ FT .[[M]]ρ[x/d])

Not any filter structure FT gives rise to a lambda model 〈FT , AppT , AbsT , [[]]〉,
but if the definition of an intersection type theory satisfy some restrictions, not
only the induced filter structure will be a λ-model, but also the connection with
suitable colimits emerges rather clearly. Importantly, the restrictions we put in
Definition 12 are easily satisfied by the main intersection type theories in the
literature. Before that we have to introduce the notion of specification of axioms.

Definition 10. A specification of axioms is a pair Σ = (<B, def) where <B
is a partial order on B such that ∩ is the meet and � is the top and def is a
function from A to T. The function def is extended from A to T by def(A∩B) =
def(A) ∩ def(B) and def(A → B) = A → B.

Definition 11. Let Σ = (<B, def) be a specification of axioms. The intersection
type theory generated by Σ, denoted by T Σ or just T , derives judgements of the
form A ≤ B ∈ T Σ or Σ � A ≤ B and it is defined as the smallest intersection
type theory that contains the following two axioms.

(B-ax)
A ≤B B

Σ � A ≤ B
(def-ax) Σ � α = def(α)

We write Σ � A ≤ B if A ≤ B ∈ T Σ . If there is little danger of confusion, when
Σ or T are clear from the context, then we will just write (A ≤ B).

Figure 2 shows how many of the intersection type theories that appear in the
literature can be generated by a specification Σ = (≤B, def). For the B-axioms,

130 F. Alessi and P. Severi

T A B-axioms ≤B def-axioms α = def(α)

Scott [19] {0, �} 0 ≤B � 0 = � → 0, � = � → �
Park [16] {0, �} 0 ≤B � 0 = 0 → 0, � = � → �
CDZ [9] {0, 1, �} 0 ≤B 1 ≤B � 0 = 1 → 0, 1 = 0 → 1, � = � → �
HR [15] {0, 1, �} 0 ≤B 1 ≤B � 0 = 1 → 0, 1 = (0 → 0) ∩ (1 → 1), � = � → �
DHM [12] {0, 1, �} 0 ≤B 1 ≤B � 0 = � → 0, 1 = 0 → 1, � = � → �
BCD [5] A∞ ci ≤B � ci = ci, � = � → �
AO [1] {�} � = �

Fig. 2. Intersection type theories generated by Σ = (≤B, def)

we do not specify the whole set ≤B. Each ≤B is actually defined as the least
partial order that contains the pairs A ≤B B shown in the table. We define a
countable set of constants A∞ = {ci | i ∈ N} ∪ {�}.

Definition 12. Let Σ = (<B, def) be a specification of axioms.

1. We say that Σ (and also T Σ) is lazy if def(�) = �.
2. We say that Σ (and also T Σ) is natural if def(�) = � → �.
3. We say that Σ (and also T Σ) is split if the following two conditions hold.

(a) A− {�} �= ∅.
(b) def(α) = α, ∀ α ∈ A− {�}.

4. We say that Σ (and also T Σ) is equated if the following conditions hold.
(a) ∀α ∈ A− {�}, ∃A1, . . . An ∈ B, B1, . . . Bn ∈ B − {�},

def(α) ≡
n⋂

i=1

(Ai → Bi);

(b) ∀A, B ∈ B − {�},
A ≤B B ⇔ ∀j ∈ {1 . . . n}.

⋂{Bi | 1 ≤ i ≤ m & Ai ≥B Cj} ≤B Dj

where def(A) ≡ ⋂m
i=1(Ai → Bi) and def(B) ≡ ⋂n

j=1(Cj → Dj).
5. We say that Σ (and also T Σ) is disciplined if it is either one of these

four possible combinations: natural split, lazy split, natural equated or lazy
equated.

The examples of intersection type theories given in Figure 2 are classified ac-
cording to the four classes defined above as follows.

Natural split BCD
Lazy split none
Natural equated Scott, Park, CDZ, HR, DHM
Lazy equated AO

3 It coincides with the interpretation defined through the type assignment system [8].

Recursive Domain Equations of Filter Models 131

Lemma 13. In any intersection type theory T , the following statements hold:

1. If A ≤ C and B ≤ D then A ∩ B ≤ C ∩ D.
2. (A1 → B1) ∩ . . . ∩ (An → Bn) ≤ (A1 ∩ . . . ∩ An) → (B1 ∩ . . . ∩ Bn).
3. If ∀j ∈ {1 . . . n}.

⋂{Bi | 1 ≤ i ≤ m & Ai ≥ Cj} ≤ Dj then

m⋂

i=1

(Ai → Bi) ≤
n⋂

j=1

(Cj → Dj).

Definition 14. We define two functions to extract the sets of outermost atoms
and arrows of a type.

ats(α) = {α} ars(α) = ∅
ats(A → B) = ∅ ars(A → B) = {A → B}
ats(A ∩ B) = ats(A) ∪ ats(B) ars(A ∩ B) = ars(A) ∪ ars(B)

Theorem 15. (Conservativity of ≤B). Let A, B ∈ B and Σ be disciplined.
Then, A ≤B B iff Σ � A ≤ B.

Since ≤B is antisymmetric, we have the following:

Corollary 16. If Σ � α = β then α ≡ β.

The converse of Lemma 13 part 3 is an important property which is not always
true. We will see later that it is a sufficient and necesary condition for having a
reflexive filter structure. For this, we will define the following notion.

Definition 17. We say that T is β-sound if
⋂m

i=1(Ai → Bi) ≤ (C → D) ⇒ ⋂{Bi | 1 ≤ i ≤ m & Ai ≥ C} ≤ D

∀Ai, Bi, C, D ∈ T with 1 ≤ i ≤ m.

A particular case of β-soundness is the invertibility of the rule (→), i.e. if A →
B ≤ C → D then A ≥ C and B ≤ D.

Theorem 18. Let T be disciplined. If E ≤ F then

1.
⋂

ats(def(E)) ≤ ⋂
ats(def(F))

2. ∀j ∈ {1 . . . n}.
⋂{Bi | 1 ≤ i ≤ m & Ai ≥ Cj} ≤ Dj where

ars(def(E)) ≡ {(Ai → Bi) | 1 ≤ i ≤ m} and
ars(def(F)) ≡ {(Cj → Dj) | 1 ≤ i ≤ n}.

Proof. We prove it by induction on the derivation of E ≤ F . The interesting
case is (B-ax) which follows from Condition 4b (⇒) in Definition 12. ��
Corollary 19. Let T be disciplined. Then T is β-sound.

Theorem 20. If T is disciplined then 〈FT , AppT , AbsT , [[]]〉 is a λ-model.

Proof. Since T is β-sound, it follows from [8,18] that 〈FT , AppT , AbsT , [[]]〉 is a
reflexive filter structure, i.e. AppT ◦AbsT = Id[FT →FT]. Since any reflexive filter
structure is a λ-model [14,4], we conclude that FT is also a λ-model. ��

132 F. Alessi and P. Severi

4 Classification of Recursive Domain Equations

This section shows that filter structures over disciplined type theories corre-
spond to the colimit of certain ω-chains. Definition 24 gives the correspon-
dence between the intersection type theories T and the induced specification
ρ(T) = 〈F (T), D

(T)
0 , i

(T)
0 〉 of a colimit. In Theorem 27, we prove that FT is iso-

morphic to the colimit of ρ(T). In Theorem 30 we prove the converse: for any
triple ρ = 〈F, D0, i0〉 of certain class C, it is possible to construct a displined
Tρ such that FTρ is isomorphic to the colimit of ρ. As a consequence of these
two theorems, we can justify the correspondence between classes and recursive
domain equations shown in Figure 1.

Definition 21. We define four different functors in ALGE.

HomY (X) = Y × [X → X]
HomY

⊥(X) = Y × [X → X]⊥
Hom(X) = [X → X]
Hom⊥(X) = [X → X]⊥

with the expected actions on morphisms (for instance, Hom(i)(f) = i ◦ f ◦ j for
an embedding projection pair 〈i, j〉 and a continuous function f : X → X).

Definition 22. Let D0 = {⊥}. The trivial embedding trv : D0 → F (D0) is
defined as trv(⊥) = ⊥.

Definition 23. Let Σ be equated. We define the embedding d̂ef : FB → [FB →
FB] on compact elements as follows.

1. If def(A) ≡ ⋂m
i=1(Ai → Bi) then

d̂ef(↑B A) =
{⊔m

i=1(↑B Ai ⇒↑B Bi) if Σ is natural⊔m
i=1((↑B Ai ⇒↑B Bi), 0), if Σ is lazy

2. If def(�) = � then d̂ef(↑B �) = ⊥.

Definition 24. Let T be disciplined. We define a specification of a colimit ac-
cording to the following four cases.

T F (T) D
(T)
0 i

(T)
0

Natural split HomFB {⊥} trv

Lazy split HomFB

⊥ {⊥} trv

Natural equated Hom FB d̂ef

Lazy equated Hom⊥ FB d̂ef

Finally, for any n > 0, define inductively D
(T)
n = F (T)(Dn−1).

Definition 25. Let T be disciplined. We define μ
(T)
n : K(D(T)

n) → T/ = by
induction as follows.

Recursive Domain Equations of Filter Models 133

1. – if T is split, then μ
(T)
0 (⊥) = [�]

– if T is equated, then μ
(T)
0 (↑B A) = [A]

2. Let n > 0. Then
– if T is natural split, then

μ
(T)
n (↑B A,

⊔m
i=1(di ⇒ ei)) = [A] ∩ (

⋂m
i=1(μ

(T)
n−1(di) → μ

(T)
n−1(ei))

– if T is lazy split, then
μ

(T)
n (↑B A, ⊥) = [A]

μ
(T)
n (↑B A, (

⊔m
i=1(di ⇒ ei), 0)) = [A] ∩ (

⋂m
i=1(μ

(T)
n−1(di) → μ

(T)
n−1(ei))

– if T is natural equated, then
μ

(T)
n (

⊔m
i=1(di ⇒ ei)) =

⋂m
i=1(μ

(T)
n−1(di) → μ

(T)
n−1(ei))

– if T is lazy equated, then
μ

(T)
n (⊥) = [�]

μ
(T)
n (

⊔m
i=1(di ⇒ ei), 0) =

⋂m
i=1(μ

(T)
n−1(di) → μ

(T)
n−1(ei)).

From now on we omit the superscript (T) on μn.

Proposition 26. Let T be disciplined. Then for all n,

1. ∀e, e′ ∈ K(D(T)
n). e′ � e ⇔ μn(e) ≤ μn(e′).

2. ∀d ∈ K(D(T)
n).μn(d) = μn+1(in(d)) where in = F (T)(n)

(i0).
3. ∀A ∈ T. ∃n ≥ 0, a ∈ K(D(T)

n). μn(a) = [A].

Theorem 27. Let T be disciplined. Then

FT � colim(ρ(T))

Proof. First define μ̄n : K(D(T)
n) → FT , for any n ≥ 0 and d ∈ K(D(T)

n) by

μ̄n(d) =↑ [μn(d)]

μ̄n are monotone by Proposition 26(1). Then the extensions μ̃n : D
(T)
n → FT of

μ̄ defined by
μ̃n(x) =

⊔
{μ̄n(d) | d ∈ K(D(T)

n) & d � x}
are continuous. It follows from Proposition 26(2) that for any n ≥ 0, x ∈ D

(T)
n ,

μ̃n(x) = μ̃n+1(in(x)). Hence, FT together with μ̃n is a cocone for the ω-chain of
〈F (T), D

(T)
0 , i

(T)
0 〉. To prove that it is initial, consider another cocone, a domain

E with σn : D
(T)
n → E such that σn+1 ◦ in = σn. We define θ : FT → E on

compact elements by θ(↑A) = σn(a) where a is an element of some K(D(T)
n) such

that μn(a) = [A]. This element exists by Proposition 26(3). We prove that θ is
monotone. Suppose ↑ A ⊆↑ B, i.e. B ≤ A. By Proposition 26(2)(3) there exist
n ≥ 0, a ∈ K(D(T)

n) and b ∈ K(D(T)
n) such that μn(a) = [A] and μn(b) = [B].

It follows from Proposition 26(1) that a � b. Hence σn(a) � σn(b), since σn

are monotone. By the definition of θ, θ(↑A) � θ(↑B). We have defined θ to
have θ(μ̄n(d)) = σn(d). The continuous extension θ̃ : FT → E is the unique
mediating morphism such that ∀n.θ̃ ◦ μ̃n = σn. ��
Corollary 28

1. If T is natural split then FT � FB × [FT → FT].
2. If T is lazy split then FT � FT × [FB → FT]⊥.

134 F. Alessi and P. Severi

3. If T is natural equated then FT � [FT → FT].
4. If T is lazy equated then FT � [FT → FT]⊥.

As expected, we can go in the other direction, proving that a certain kind of
colimits could be recovered as filter structures of disciplined intersection type
theories.

Definition 29. We define the sets of triples Ci (i ∈ {1, 2, 3, 4}) as follows:

C1 = {〈HomE , {⊥}, tr〉 | E ∈ ALG}
C2 = {〈HomE

⊥, {⊥}, tr〉 | E ∈ ALG}
C3 = {〈Hom, E, i0〉 | E ∈ ALG & i0 : E → [E → E]}
C4 = {〈Hom⊥, E, i0〉 | B ∈ ALG & i0 : E → [E → E]⊥}

We define C = C1 ∪ C2 ∪ C3 ∪ C4.

Theorem 30. Let ρ = (F, D0, i0) ∈ C. Then there exists a disciplined intersec-
tion type theory T ρ such that

colim(ρ) � FT ρ

Proof. For each ρ = 〈F, D0, i0〉 ∈ C, we first define a set Aρ of atoms.

Aρ = {d | d ∈ K(B) & d �= ⊥} ∪ {�}
Then, we define a preorder ≤B on B(Aρ) as follows.

d ≤B e ⇔ e � d
d =B

⋂m
i=1 ei ⇔ d =

⊔m
i=1 ei

d ≤ �
For the cases where the embeddings i0 are non-trivial, we define def as follows.

def(d) =
⋂m

i=1(ai → bi) ⇔ i0(d) =
⊔m

i=1(ai ⇒ bi)

It is routine to check that the resulting intersection type theory T ρ is disci-
plined in all four cases. Since B � FB, by Theorem 27 we have that FT ρ �
colim(ρT

ρ

) � colim(ρ). ��
We now prove the converse of Corollary 28. These two corollaries together justify
the classification shown in Figure 1.

Corollary 31

1. If FT � E × [FT → FT] then ∃T ′ natural split such that T/= � T ′/=.
2. If FT � E × [FT → FT]⊥ then ∃T ′ lazy split such that T/= � T ′/=.
3. If FT � [FT → FT] then ∃T ′ natural equated such that T/= � T ′/=.
4. If FT � [FT → FT]⊥ then ∃T ′ natural equated such that T/= � T ′/=.

Proof. We prove only the third case. The rest is similar. Take ρ = (Hom, FT , i0)
where i0 is the isomorphism from D to [D → D]. By the previous theorem, we
have that FT � colim(ρ) � FT ′

for some T ′ natural equated. Since K(FT) �
T/= and K(FT ′

) � T ′/=, we conclude that T/= � T ′/=. ��

Acknowledgments. Authors thank the referees for many useful suggestions.

Recursive Domain Equations of Filter Models 135

References

1. Abramsky, S., Ong, L.C.: Full abstraction in the Lazy Lambda Calculus. Informa-
tion and Computation 105, 159–267 (1993)

2. Alessi, F.: Strutture di tipi, teoria dei domini, e modelli del λ-calcolo. PhD Thesis.
University of Turin (1991)

3. Alessi, F., Dezani-Ciancaglini, M., Honsell, F.: Inverse Limit Models as Filter Mod-
els. In: Proceedings of HOR 2004, pp. 3–25 (2004)

4. Barendregt, H.P.: The Lambda Calculus: Its syntax and semantics. North-Holland
Publishing co., Amsterdam (1984)

5. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. J. Symbolic Logic 48(4), 931–940 (1983)

6. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Formal Logic 21(4), 685–693 (1980)

7. Coppo, M., Dezani-Ciancaglini, M., Longo, G.: Applicative information systems.
In: Protasi, M., Ausiello, G. (eds.) CAAP 1983. LNCS, vol. 159, pp. 35–64.
Springer, Heidelberg (1983)

8. Coppo, M., Dezani-Ciancaglini, M., Honsell, F., Longo, G.: Extended type struc-
tures and filter lambda models. In: Logic Colloquium 1982, pp. 241–262. North-
Holland, Amsterdam (1984)

9. Coppo, M., Dezani-Ciancaglini, M., Zacchi, M.: Type theories, normal forms and
D∞ lambda models. Information and Compuation 72(2), 85–116 (1987)

10. Dezani-Ciancaglini, M., Ghilezan, S., Likavec, S.: Behavioural inverse limit models.
Theoret. Comput. Sci. 316(1–3), 49–74 (2004)

11. Dezani-Ciancaglini, M., Honsell, F., Alessi, F.: A complete characterization of com-
plete intersection-type preorders. ACM TOCL 4(1), 120–146 (2003)

12. Dezani-Ciancaglini, M., Honsell, F., Motohama, Y.: Compositional characteriza-
tion of λ-terms using intersection types. Theoret. Comput. Sci. 304(3), 459–495
(2005)

13. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, D.J., Mislove, M.W., Scott, D.:
Continuous lattices and domains. Cambridge University Press, Cambridge (2003)

14. Hindley, R., Longo, G.: Lambda calculus models and extensionality. Z. Math Logik
Grundlag. Math 26(4), 289–310 (1980)

15. Honsell, F., Ronchi Della Rocca, S.: An approximation theorem for topological
lambda models and the topological incompleteness of lambda calculus. J. Comput.
System Sci. 45(1), 49–75 (1992)

16. Park, D.: The Y-combinator in Scott’s λ-calculus models (revised version). Theory
of Computation Report 13, Department of Computer Science, University of Warick
(1976)

17. Plotikin, G.: Set-Theoretic and Other Elementary Models of the λ-Calculus. The-
oretical Computer Science 121, 351–409 (1993)

18. Ronchi della Rocca, S., Paolini, L.: The Parametric Lambda Calculus. A Meta-
model for Computation. In: Texts in Theoretical Computer Science. An EACTS
Series, Springer, Heidelberg (2004)

19. Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M.
(eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 577–613.
Springer, Heidelberg (1982)

20. Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing 11(4), 761–783 (1982)

Algorithmic Problems for Metrics on Permutation
Groups

V. Arvind and Pushkar S. Joglekar

Institute of Mathematical Sciences
C.I.T Campus, Chennai 600 113, India

{arvind,pushkar}@imsc.res.in

Abstract. Given a permutation group G ≤ Sn by a generating set, we explore
MWP (the minimum weight problem) and SDP (the subgroup distance problem)
for some natural metrics on permutations. These problems are know to be NP-
hard. We study both exact and approximation versions of these problems. We
summarize our main results:

– For our upper bound results we focus on the Hamming and the l∞ permu-
tation metrics. For the l∞ metric, we give a randomized 2O(n) time algo-
rithm for finding an optimal solution to MWP. Interestingly, this algorithm
adapts ideas from the Ajtai-Kumar-Sivakumar algorithm for the shortest vec-
tor problem in lattices [AKS01]. For the Hamming metric, we again give a
2O(n) time algorithm for finding an optimal solution to MWP. This algo-
rithm is based on the classical Schrier-Sims algorithm for finding pointwise
stabilizer subgroups of permutation groups.

– It is known that SDP is NP-hard([BCW06]) and it easily follows that SDP is
hard to approximate within a factor of logO(1) n unless P = NP. In contrast,
we show that SDP for approximation factor more than n/ log n is not NP-
hard unless there is an unlikely containment of complexity classes.

– For several permutation metrics, we show that the minimum weight problem
is polynomial-time reducible to the subgroup distance problem for solvable
permutation groups.

1 Introduction

We investigate the computational complexity of two natural problems for metrics on
permutation groups given by generating sets. Given a permutation group G = 〈A〉 ≤
Sn by a generating set A of permutations, we are interested in the minimum weight
problem (denoted MWP) and the subgroup distance problem (denoted SDP) for natural
permutation metrics. These problems were studied in [BCW06, CW06] by Cameron et
al and are shown to be NP-hard for several natural permutation metrics.

These problems are analogous to the shortest vector problem and the closest vector
problem for integer lattices, and to the minimum Hamming weight problem and nearest
codeword problem for linear codes. The corresponding problems for lattices and codes
are also NP-hard, and their approximability is a subject of current intensive study (see
e.g. [MG02]). Our primary motivation stems from the fact that lattices and codes are
abelian groups, and it is interesting to ask if the upper and lower bound techniques

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 136–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algorithmic Problems for Metrics on Permutation Groups 137

and results for approximability can be extended to arbitrary (nonabelian) permutation
groups. Several permutation metrics are in the literature and have been studied from
a statistical perspective. Deza [DH98] examines permutation metrics from a coding
theory perspective by considering subgroups of Sn as codes.

Our main results: We give 2O(n) time algorithms for the minimum weight problem
for both the Hamming and the l∞ permutation metrics. Notice that a naive brute-force
search algorithm can take n! steps since G ≤ Sn can have up to n! elements. In the
case of Hamming metric, it turns out that we can design a deterministic 2O(n) time
algorithm which is group theoretic in nature. The algorithm is based on the classi-
cal Schrier-Sims algorithm for finding pointwise stabilizer subgroups of permutation
groups (see e.g. [Lu93]). However, the problem for l∞ metric does not appear amenable
to a group-theoretic approach. Our 2O(n) time randomized algorithm for the problem
is more geometric. Interestingly, for this algorithm we are able to adapt ideas from the
Ajtai-Kumar-Sivakumar algorithm for the shortest vector problem in lattices [AKS01].

A function d : Sn × Sn �→ R is a metric on the permutation group Sn if for all
π, τ, ψ ∈ Sn d(π, τ) = d(τ, π) ≥ 0 and d(π, τ) = 0 iff π = τ . Furthermore, the
triangle inequality holds: d(π, τ) ≤ d(π, ψ) + d(ψ, τ).

Let e ∈ Sn denote the identity permutation. For τ ∈ Sn, d(e, τ) is the norm
of τ for metric d, and is denoted by ‖τ‖. A right-invariant metric d on Sn satisfies
d(π, τ) = d(πψ, τψ) for all π, τ, ψ ∈ Sn. A left invariant metric is similarly defined.
For a detailed discussion regarding metrics on Sn we refer to [DH98]. We recall the
definitions of permutation metrics studied in this paper.

Hamming distance: d(τ, π) = |{i|τ(i)
= π(i)}|.
lp distance: for p ≥ 1, d(τ, π) = (Σn

i=1|τ(i) − π(i)|p)1/p
.

l∞ distance: d(τ, π) = max1≤i≤n|τ(i) − π(i)|.
Cayley Distance: d(τ, π) = minimum number of transpositions taking τ to π.

These metrics are right invariant. Furthermore, the Hamming and Cayley metrics are
also left invariant.

For S ⊆ Sn and τ ∈ Sn let d(τ, S) = minψ∈Sd(τ, ψ). For τ ∈ Sn, r ∈ R+

let Bn(τ, r, d) = {π ∈ Sn|d(π, τ) ≤ r} be the ball of radius r centred at τ for a
metric d. Analogous to the geometric setting, we define the volume Vol(S) of a subset
S ⊆ Sn is its cardinality |S|. For right invariant metric d we have, for all τ ∈ Sn, r ≥ 0,
Vol(Bn(e, r, d)) = V ol(Bn(τ, r, d)). Next we define Subgroup Distance Problem and
Minimum Weight Problem with respect to a metric d.

Definition 1. [CW06, BCW06]
Subgroup Distance Problem (SDP): Input instances are (G, τ, k), where G ≤ Sn is
given by a generating set, τ ∈ Sn, and k > 0. Is d(τ, G) ≤ k?
Minimum Weight Problem (MWP): Input instances are (G, k), G ≤ Sn given by a
generating set and k > 0. Is there a τ ∈ G \ {e} with ‖τ‖ ≤ k?

We are also interested in approximate solutions to MWP and SDP. For MWP, given
γ > 1 the approximation problem is to find a π ∈ G, π
= e such that ‖π‖ is bounded
by γ times the optimal value. The approximation version of SDP is likewise defined. It
is useful to define promise decision versions of SDP and MWP that capture this notion
of approximation:

138 V. Arvind and P.S. Joglekar

For any permutation metric d, the promise problem GapSDPγ where γ is a function
of n, is defined as follows: inputs are the SDP inputs (G, τ, k). An instance (G, τ, k)
is a YES instance if there exist ψ ∈ G such that d(ψ, τ) ≤ k. And (G, τ, k) is a NO
instance if for all ψ ∈ G, d(ψ, τ) > γk. The problem GapMWPγ is similarly defined.
An algorithm solves the promise problem if it decides correctly on the YES and NO
instances.

2 A 2O(n) Algorithm for MWP over l∞ Metric

We consider the search version of MWP: given G ≤ Sn, the goal is to find a permutation
τ ∈ G \ {e} with minimum norm with respect to a metric d. We refer to such a τ ∈ G
as a shortest permutation in G w.r.t. the metric d. First we consider the l∞ metric and
give a 2O(n) time randomized algorithm for finding a shortest permutation for G ≤
Sn given by generating set. The algorithm uses the framework developed in [AKS01]
for the shortest vector problem for integer lattices. Regev’s notes [Re] contains a nice
exposition.

The basic idea is to first pick N elements of G independently and uniformly at ran-
dom, where N is 2c·n (where the constant c will be appropriately chosen). Each of these
elements is multiplied by a random permutation of relatively smaller norm to get a new
set of N elements. On this set of permutations a sieving procedure is applied in several
rounds. The crucial property of the sieving is that after each stage the remaining permu-
tations have the property that the maximum norm is halved and in the process at most
2c′·n elements are sieved out for a small constant c′.

Thus, repeated sieving reduces the maximum norm until it becomes a constant multi-
ple of norm of shortest permutation of G. Then we can argue that for some π1, π2 from
the final set of permutations, π1π

−1
2 will be a shortest permutation with high probability.

First we prove certain volume bound for l∞ metric ball, which is crucially used in
the algorithm, next we give a procedure to sample permutations from an l∞ metric ball
uniformly.

Lemma 1. For 1 ≤ r ≤ n − 1 we have, rn/e2n ≤ Vol(Bn(e, r, l∞)) ≤ (2r + 1)n.
Consequently, for any constant α < 1, Vol(Bn(e, r, l∞))/Vol(Bn(e, αr, l∞)) ≤ 2c1·n,
where c1 = log2(3e2/α).

Proof. Let τ ∈ Bn(e, r, l∞). So, |τ(i) − i| ≤ r for all i. Thus, for each i there are at
most 2r + 1 choices for τ(i). This implies Vol(Bn(e, r, l∞)) ≤ (2r + 1)n. Although
better bounds can be shown, this simple bound suffices for the lemma. Now we show the
claimed lower bound. Let n = kr + t, 0 ≤ t ≤ r − 1. For jr + 1 ≤ i ≤ (j + 1)r, 0 ≤
j ≤ k − 1, τ(i) can take any value in {jr + 1, jr + 2, . . . , (j + 1)r}. Hence we
have Vol(Bn(e, r, l∞)) ≥ r!kt! ≥ (rr/er)kt! ≥ rn−ttt/en. Using some calculus it is
easily seen that the function y = rn−ttt is minimum at t = r/e. Hence rn−ttt/en ≥
rn/en+r/e ≥ rn/e2n. This proves the first part of lemma. The second part is immediate.

We now explain an almost uniform random sampling procedure from Bn(e, r, l∞).
First, we randomly generate a function τ ∈ [n][n] by successively assigning values to

Algorithmic Problems for Metrics on Permutation Groups 139

τ(i) for i ∈ [n] as follows. For each i ∈ [n] we have the list Li = {j|1 ≤ j ≤ n, i−r ≤
j ≤ i+ r} of candidate values for τ(i). Thus we have at most (2r +1)n functions from
which we uniformly sample τ . Of course, τ defined this way need not be a permutation,
but if it is a permutation then clearly τ ∈ Bn(e, r, l∞). Our sampling procedure outputs
τ if it is a permutation and outputs “fail” otherwise. By Lemma 1 the probability that
τ is a permutation is Prob[τ ∈ Bn(e, r, l∞)] ≥ rn

e2n(2r+1)n > 1
24n > 2−5n. Thus, if

we repeat above procedure sufficiently many times (say 210n times) then the sam-
pling procedure will fail with negligible probability, and when it succeeds it uniformly
samples from Bn(e, r, l∞). In summary we have the following lemma.

Lemma 2. There exists a randomized procedure which runs in time 2O(n) and produces
an almost uniform random sample from Bn(e, r, l∞).

Now we describe the sieving procedure used in the algorithm. Hereafter we denote
Bn(ψ, r, l∞) by Bn(ψ, r) for simplicity.

Lemma 3. [Sieving Procedure] Let r > 0 and {τ1, τ2, τ3, . . . , τN} ⊆ Bn(e, r) be a
subset of permutations. Then in NO(1) time we can find S ⊂ [N] of size at most 2c1n

for a constant c1 such that for each i ∈ [N] there is a j ∈ S with l∞(τi, τj) ≤ r/2.

Proof. We construct S using a greedy algorithm. Start with S = ∅ and run the following
step for all elements τi, 1 ≤ i ≤ N . At the ith step we consider τi. If l∞(τi, τj) > r/2
for all j ∈ S include i in set S and increment i. After completion, for all i ∈ [N]
there is a j ∈ S such that l∞(τi, τj) ≤ r/2. To argue that |S| < 2c1n for constant
c1 we use the volume bound of Lemma 1. The construction of S implies for distinct
indices j, k ∈ S that l∞(τj , τk) > r/2. Hence the metric balls Bn(τj , r/4) for j ∈ S
are all pairwise disjoint. The right invariance of l∞ metric implies Vol(Bn(τj , r/4)) =
V ol(Bn(e, r/4)). As τj ∈ Bn(e, r), by triangle inequality we have Bn(τj , r/4) ⊆
Bn(e, r + r/4) for j ∈ S. Hence |S| < V ol(Bn(e,5r/4))

V ol(Bn(e,r/4)) ≤ 2c1n by Lemma 1, which
also gives the constant c1. This completes the proof of the lemma.

Now we describe our algorithm to find a shortest permutation in G using Lemma 3. Let
t denote the norm of a shortest permutation in G. The following claim gives an easy
2O(n) time algorithm when t ≥ n/10.

Lemma 4. If the norm t of a shortest permutation in G is greater than n/10 then in
time 2O(n) we can find a shortest permutation in G.

Proof. Consider Bn(τ, t/2) for τ ∈ G. By triangle inequality, all Bn(τ, t/2) are dis-
joint. Also, by Lemma 1 we have Vol(Bn(τ, t/2)) ≥ (t/2)n · e−2n ≥ nnβ−n for some
constant β > 1. Since |G| ≤ |Sn|/Vol(Bn(τ, t/2)), it follows that |G| ≤ βn. As we
can do a brute-force enumeration of G in time polynomial in |G|, we can find a shortest
permutation in 2O(n) time.

Now we consider the case when t < n/10. We run the algorithm below for 1 ≤ t <
n/10 (the possible values of t) and output a shortest permutation in G produced by the
algorithm.

140 V. Arvind and P.S. Joglekar

1. Let N = 2cn. For 1 ≤ i ≤ N , pick ρi independently and uniformly at random
from G, and pick τi almost uniformly at random from Bn(e, 2t).

2. Let ψi = τiρi, 1 ≤ i ≤ N . Let Z = {(ψ1, τ1), (ψ2, τ2), . . . , (ψN , τN)}, and let
R = maxi‖ψi‖.

3. Set T = [N].
4. While R > 6 ∗ t do the following steps:

(a) Apply the “sieving procedure” of Lemma 3 to {ψi | i ∈ T }. Let set S ⊆ T be
the output of sieving procedure.

(b) for all i ∈ S remove tuple (ψi, τi) from Z .
(c) for all i /∈ S replace tuple (ψi, τi) ∈ Z by (ψiψ

−1
j τj , τi), where j ∈ S and

d(ψj , ψi) ≤ R/2.
(d) set R = R/2 + 2t.
(e) T := T \ S.

5. For all (ϕi, τi), (ϕj , τj) ∈ Z , let ϕi,j = (τ−1
j ϕj)(τ−1

i ϕi)−1 (which is in G). Out-
put a ϕi,j with smallest nonzero norm.

In Step 1 of the algorithm, an almost uniform random sampling procedure from l∞
metric ball is given by Lemma 2. For G ≤ Sn, uniform sampling from G can be done
in polynomial time by using a strong generating set for G (see e.g. [Lu93]). A random
element is obtained by picking a coset representative at each level from the pointwise
stabilizer tower of subgroups and multiplying them out. Thus Step 1 of the algorithm
takes 2O(n) time. Clearly, the while loop takes 2O(n) time.

In order to prove the correctness, we examine the invariant maintained during each
iteration of the while loop.

Proposition 1. Before each iteration of the while loop, the following invariant is main-
tained. For all i ∈ T we have (ϕi, τi) ∈ Z , τ−1

i ϕi ∈ G and ‖ϕi‖ ≤ R.

Proof. Clearly, the invariant holds before the first iteration. Inductively, suppose that
at the beginning of an arbitrary iteration the set Z is of the form Z = {(ϕi, τi) |
i ∈ T } such that τ−1

i ϕi ∈ G and ‖ϕi‖ ≤ R. During this iteration, in Z we replace
(ϕi, τi) by (ϕiϕ

−1
j τj , τi), where j ∈ S and l∞(ϕi, ϕj) ≤ R/2. By right invariance

of the l∞ metric, we have l∞(ϕi, ϕj) = ‖ϕiϕ
−1
j ‖ ≤ R/2. Triangle inequality implies

‖ϕiϕ
−1
j τj‖ ≤ ‖τ−1

j ‖ + ‖ϕiϕ
−1
j ‖ = ‖τj‖ + ‖ϕiϕ

−1
j ‖ ≤ 2t + R/2 which equals the

value of R set in Step 4(d). Hence, ‖ϕi‖ ≤ R at the beginning of next iteration. Clearly,
τ−1
i ϕiϕ

−1
j τj is in G since τ−1

i ϕi and τ−1
j ϕj are in G.

By Proposition 1 when the algorithm stops (after Step 5) we have τ−1
i ϕi ∈ G and

‖τ−1
i ϕi‖ ≤ 8t for all (ϕi, τi) ∈ Z . We want to argue that one of th ϕi,j is equal to a

shortest permutation in G with high probability. In Step 1 we pick τi almost uniformly
at random from Bn(e, 2t). Similar to the AKS algorithm’s analysis, as explained in
Regev’s notes [Re], we define a new randomized procedure which also uniformly sam-
ples from Bn(e, 2t) and has some properties which enable us to conveniently argue the
correctness of the algorithm. In the lattice setting, the euclidean metric makes it easier
to define a modified sampling from Bn(e, 2t). However, for the l∞ metric over Sn,
the modified sampling from Bn(e, 2t) is more involved. We now explain this modified
sampling.

Algorithmic Problems for Metrics on Permutation Groups 141

Let τ ∈ G be an element with shortest nonzero norm t. We introduce some notation.
Let Cτ = Bn(e, 2t)∩Bn(τ, 2t), Cτ−1 = Bn(e, 2t)∩Bn(τ−1, 2t) and C = Cτ ∩Cτ−1 .
The following claim is obvious.

Lemma 5. Consider a map φ1 : Cτ −→ Cτ−1 defined as φ1(σ) = στ−1. Then φ1 is a
bijection from Cτ onto Cτ−1 .

Let φ′
1 : Cτ−1 −→ Cτ denote the inverse of φ1.

We now define a randomized procedure Sample which on input a random permuta-
tion σ ∈ Bn(e, 2t) returns a new random permutation Sample(σ) ∈ Bn(e, 2t).

(i) If σ /∈ Cτ ∪ Cτ−1 then Sample(σ) = σ with probability 1.
(ii) If σ ∈ Cτ \ C then

(a) if φ1(σ) ∈ C then randomly set Sample(σ) to either σ with probability 3/4 or
to φ1(σ) with probability 1/4.

(b) if φ1(σ) /∈ C then randomly set Sample(σ) to σ or φ1(σ) with probability 1/2
each.

(iii) If σ ∈ Cτ−1 \ C then define Sample(σ) analogously as in Step (ii) above, using
φ′

1 instead of φ1.
(iv) If σ ∈ C, then randomly set Sample(σ) to either σ with probability 1/2, or to

φ1(σ) with probability 1/4, or to φ′
1(σ) with probability 1/4.

The following lemma essentially states that the random variables Sample(σ) and σ
are identically distributed.

Lemma 6. If σ is uniformly distributed in Bn(e, 2t) then Sample(σ) is also uniformly
distributed in Bn(e, 2t).

Proof. Let V = Vol(Bn(e, 2t)). We claim Sample(σ) is uniformly distributed over
Bn(e, 2t). For each π ∈ Bn(e, 2t) we have

Prob[Sample(σ) = π] =
∑

δ∈Bn(e,2t)

Prob[σ = δ] · Prob[Sample(δ) = π].

We need to show that
∑

δ∈Bn(e,2t) Prob[σ = δ] · Prob[Sample(δ) = π] = 1/V . As
σ is uniformly distributed, it is equivalent to showing

∑
δ∈Bn(e,2t) Prob[Sample(δ) =

π] = 1. If π /∈ Cτ ∪ Cτ−1 it is true directly from the definition of Sample. Con-
sider π ∈ C, since maps φ1 and φ′

1 are bijective, there are unique σ1
= σ2 such
that φ1(σ1) = φ′

1(σ2) = π. By definition of Sample we have Prob[Sample(σ1) =
π] = Prob[Sample(σ2) = π] = 1

4 and Prob[Sample(π) = π] = 1
2 . Summing up

we get Σδ∈Bn(e,2t)Prob[Sample(δ) = π] = 1 as desired. Now suppose π ∈ Cτ \ C.
If φ1(π) = ψ ∈ C then clearly φ′

1(ψ) = π. The definition of Sample implies that∑
δ∈Bn(e,2t) Prob[Sample(δ) = π] = Prob[Sample(ψ) = π]+Prob[Sample(π) = π] =

1
4 + 3

4 = 1. If φ1(π) = ψ /∈ C, we have
∑

δ∈Bn(e,2t) Prob[φ(δ) = π] = 1
2 + 1

2 = 1.
The case when π ∈ Cτ−1 \ C is similar. This proves the lemma.

It follows from the definition of Sample that replacing τi by Sample(τi) does not affect
the distribution of ψi in Step 2. In fact, Sample(τi) and τi are identically distributed by

142 V. Arvind and P.S. Joglekar

Lemma 6. In Step 1 we pick each τi almost uniformly at random from Bn(e, 2t). Now,
in our analysis we replace this by Sample(τi). The crucial point of the argument is that
it suffices to replace τi by Sample(τi) after Step 2, as the τi is only used to define ψi

and it will not affect the distribution of ψi if we replace τi by Sample(τi). Note that
τi is used during sieving step in the while loop only if i lies in the sieved set S. The
remaining τi are replaced by Sample(τi) in Step 5. Clearly, this modification does not
change the probability of computing a shortest permutation as the distributions in the
two cases are the same. As already mentioned, note that Sample(τi) is introduced for
analysis. We cannot implement the procedure Sample efficiently as we do not know τ .

In Step 1 of the algorithm we pick each τi almost uniformly at random from
Bn(e, 2t). The initial set is {τi | i ∈ [N]}. The while loop iterates for at most 2 logn
steps and in each step we remove a set S of size at most 2c1n, where c1 is given by
Lemma 1. Thus, at the end of the while loop we still have N − 2 logn · 2c1n many τi in
the remaining set T . Thus, as argued earlier for the purpose of analysis we can replace
τi by Sample(τi) for all i ∈ T and it still doesn’t affect the working of the algorithm.

The triangle inequality implies Bn(e, t) ⊆ Cτ . Thus Vol(Cτ) ≥ V ol(Bn(e, t)) ≥
tn · e−2n by Lemma 1. Also, Vol(Bn(e, 2t)) ≤ (5t)n. Hence, V ol(Cτ∪Cτ−1)

V ol(Bn(e,2t)) ≥ 2−c2n,
for some constant c2 (which depends on c1). Thus a random π ∈ Bn(e, 2t) lies in
Cτ ∪ Cτ−1 with probability at least 2−c2n.

Given a constant c3 > 0, we can choose a suitably large N = 2cn for a constant c so
that at least 2c3n many τi for i ∈ T at the end of the while loop will lie in Cτ ∪ Cτ−1 .
Thus, with probability 1−2−O(n) we can guarantee that at least 2c3n many τi for i ∈ T
are such that τi ∈ Cτ ∪ Cτ−1 and (ϕi, τi) ∈ Z at the beginning of Step 5.

Furthermore, at the beginning of Step 5 each (ϕi, τi) ∈ Z satisfies ‖τ−1
i ϕi‖ ≤ 8t

and τ−1
i ϕi ∈ G. Now we argue using the pigeon-hole principle that there is some

π ∈ G such that π = τ−1
i ϕi, (ϕi, τi) ∈ Z for at least 2n indices i ∈ T .

Claim. |G ∩ Bn(e, 8t)| < 2c4n for some constant c4.

Proof. Note that l∞(π1, π2) ≥ t for distinct π1, π2 ∈ G. Thus, metric balls of radius t/2
around each element in G∩Bn(e, 8t) are all pairwise disjoint. By triangle inequality, all
these t/2 radius metric balls are contained in Bn(e, 8t+ t/2). Hence |G∩Bn(e, 8t)| <
V ol(Bn(e, 17t/2))/V ol(Bn(e, t/2)) < 2c4n, by Lemma 1. This proves the claim.

Let c3 = c4+1. Then with probability 1−2−O(n) we have π ∈ G such that π = τ−1
i ϕi,

(ϕi, τi) ∈ Z for at least 2c3n/2c4n = 2n indices i ∈ T . Call this set of indices T0.
Recall that in our analysis we can replace τi by Sample(τi) for each i ∈ T0. By

the definition of Sample(τi), Prob[Sample(τi) = τi ∀ i ∈ T0] ≤ (3/4)2
n

. Similarly,
Prob[Sample(τi)
= τi ∀ i ∈ T0] ≤ (1/2)2

n

. Hence with probability 1 − 2−O(n)

there are indices i, j ∈ T0 such that (ϕi, τi), (ϕj , τj) ∈ Z and Sample(τi) = τi

Sample(τj)
= τj . Clearly, Sample(τj) = τjτ or Sample(τj) = τjτ
−1. Without loss of

generality, assume Sample(τj) = τjτ . Then, after Step 5 we have with high probability
ϕi,j = ((τjτ)−1ϕj)(τ−1

i ϕi)−1 = τ−1ππ−1 = τ−1. In other words, with probability
1 − 2−O(n) one of the 2O(n) output permutations is a “shortest” permutation in G. We
have shown the following theorem.

Algorithmic Problems for Metrics on Permutation Groups 143

Theorem 1. Given a permutation group G ≤ Sn as input, we can find a permutation
in G \ {e} with smallest possible norm with respect to l∞ metric in 2O(n) randomized
time.

3 Weight Problems for Hamming Metric

We first give an easy 2O(n) time deterministic algorithm for Minimum Weight Problem
in the case of Hamming metric. It turns out we can use a well-known algorithm from
permutation groups. Suppose G ≤ Sn is given by a generator set. The problem is to
find a shortest permutation in G for the Hamming metric. For every S ⊆ [n] consider
the pointwise stabilizer subgroup GS ≤ G defined as GS = {g ∈ G| ∀ i ∈ S : g(i) =
i}. Using the Schrier-Sims algorithm in polynomial time [Lu93] we can compute a
generating set for GS . Thus, in 2O(n) time we can compute GS for all S ⊆ [n] and find
the largest t < n for which there is S ⊆ [n] such that |S| = t and GS is a nontrivial
subgroup. Clearly, any τ
= e ∈ GS is a shortest permutation with respect to Hamming
metric.

Finally, we also consider the problem of finding an element in G ≤ Sn of maximum
norm w.r.t. Hamming metric. We first consider the problem of deciding if G ≤ Sn has
a fixpoint free permutation. In general it is known that this problem is NP-complete
[CW06]. Using the Inclusion-Exclusion Principle we give a 2O(n) time deterministic
algorithm for the search version of the problem as follows. As before, let GS be the
subgroup of G that pointwise fixes S ⊆ [n]. Let F ⊆ G denote the set of fixpoint free
elements. Clearly, F ∩ GS = ∅ for each nonempty S. Also, F ∪ ⋃

S �=∅ GS = G. In

2O(n) time we can compute generating sets for all GS .
For the algorithm, inductively assume that we have already computed a coset Hk−1

of G[k−1] in G, where for all τ ∈ Hk−1 we have τ(i) = αi, αi ∈ [n] for 1 ≤ i ≤ k − 1
and Hk−1 contains a fixpoint free permutation in G.

We now show how to compute a point αk ∈ [n] which will fix the coset Hk of G[k] in
2O(n) time such that for all τ ∈ Hk, τ(i) = αi for i = 1 to k and Hk contains a fixpoint
free element in G. By repeating this successively we can find a fixpoint free permuta-
tion. First, from the orbit of k we pick a candidate point αk distinct from α1, · · · , αk−1

and k. Let Hk = {τ ∈ G|τ(i) = αi, 1 ≤ i ≤ k}.
Let Ai = Hk∩G{i} for i = k+1 to n. It is clear that intersection of any subcollection

of these Ai ’s is of the form Hk ∩ GS for S ⊆ [n]. We can compute GS in polynomial
time for any S ⊆ [n] using the Schreier-Sims algorithm [Lu93]. Furthermore, the coset
intersection problem Hk ∩ GS can also be solved in 2O(n) time using the machinery of
Babai and Luks [BL83, Lu93]. Thus, in time 2O(n) we can compute | ⋂i∈S Ai| for all
subsets S ⊆ [n − k]. In 2O(n) further steps, by using the Inclusion-Exclusion formula,
we can compute |Ak+1 ∪ Ak+2 ∪ . . . ∪ An| = m. Clearly, Hk contains a fixpoint free
element of G iff m < |Hk|. If m = |Hk|, we try the next candidate value for αk

from the orbit of k. This procedure clearly succeeds assuming Hk−1 has a fixpoint free
element of G. This gives 2O(n) time algorithm to find a fixpoint free permutation. With
minor changes to this algorithm, we can compute an element of maximum norm in G
with respect to Hamming norm in 2O(n) time. We summarize these observations in the
following theorem.

144 V. Arvind and P.S. Joglekar

Theorem 2. Given a permutation group G ≤ Sn by a generating set, in 2O(n) time we
can find τ ∈ G\{e} with smallest possible norm and ψ ∈ G with largest possible norm
with respect to Hamming metric.

4 MWP Is Reducible to SDP for Solvable Permutation Groups

For integer lattices, SVP (shortest vector problem) is polynomial-time reducible to CVP
(closest vector problem) [GMSS99]. A similar result for linear codes is also proved
there. We show an analogous result for solvable permutation groups. In fact we give a
polynomial-time Turing reduction from MWP to SDP, which works for the gap version
of the problem for any right invariant metric d. We do not know if this reduction can be
extended to nonsolvable permutation groups. Finally we make an observation about the
hardness of approximation of SDP and MWP.

Let G ≤ Sn be input instance for MWP. The idea is to make different queries of the
form (H, τ) to SDP, for suitable subgroups H ≤ G and τ /∈ H .

Let d be a right invariant metric on Sn. We want to find a shortest permutation τ ∈
G w.r.t. metric d. It is well-known in algorithmic permutation group theory (e.g. see
[Lu93]) that for solvable permutation groups G ≤ Sn we can compute in deterministic
polynomial time a composition series G = Gk �Gk−1 � . . .�G1 �G0 = {e}, k ≤ n.
In other words, Gi−1 is a normal subgroup of Gi for each i. Furthermore, since G is
solvable, each quotient group Gi/Gi−1 has prime order, say pi (where the pi’s need not
be distinct). Notice that for any τi ∈ Gi \ Gi−1, the coset Gi−1τi generates the cyclic
quotient group Gi/Gi−1. It is easily seen that these elements τi form a generating set
for G with the following standard property. We omit the proof due to lack of space.

Proposition 2. For each i, 1 ≤ i ≤ k, every τ ∈ Gi \ Gi−1 can be uniquely expressed
as τ = τα1

1 τα2
2 . . . ταi

i , 0 ≤ αj < pj , 1 ≤ j ≤ i and αi
= 0.

Theorem 3. For any right invariant metric d on Sn, and for solvable groups,
GapMWPγ is polynomial time Turing reducible to GapSDPγ .

Proof. Let (G, m) be an input instance of GapMWPγ . We compute τ1, . . . τk for
the group G as described above. Then we query the oracle of GapSDPγ for instances
(Gi−1, τ

−r
i , m), for 1 ≤ i ≤ k, 1 ≤ r < pi. The reduction outputs “YES” if at least one

of the queries answers “YES” otherwise it outputs “NO”. Clearly, the reduction makes
at most O(n2) oracle queries and runs in polynomial time. We prove its correctness.

Suppose (G, m) is a “YES” instance of GapMWPγ . We show that at least one
of the queries (Gi−1, τ

−r
i , m), 1 ≤ i ≤ k, 1 ≤ r < pi will return “YES”. Let

τ ∈ G = Gk such that ‖τ‖ ≤ m. Let i be the smallest such that τ /∈ Gi−1,
τ ∈ Gi. From Proposition 2 it follows that τ can be uniquely expressed as

∏i
j=1 τ

αj

j ,

where 0 ≤ αj < pj , 1 ≤ j ≤ i and αi
= 0. As
∏i−1

j=1 τ
αj

j ∈ Gi−1,

we have d(τ−αi

i , Gi−1) ≤ d(τ−αi

i ,
∏i−1

j=1 τ
αj

j). The right invariance of d implies

d(τ−αi

i , Gi−1) ≤ d(e,
∏i

j=1 τ
αj

j) = ‖τ‖ ≤ m. Hence (Gi−1, τ
−αi

i , m) is a “YES”
instance of GapSDPγ .

Algorithmic Problems for Metrics on Permutation Groups 145

Now suppose (Gi−1, τ
−r
i , m), 1 ≤ i ≤ k,1 ≤ r ≤ pi − 1 is not a “NO” instance of

GapSDPγ . Then there is some τ ∈ Gi−1 such that d(τ, τ−r
i) ≤ γm, i.e. ‖ττr

i ‖ ≤ γm.
As τi ∈ Gi \ Gi−1, τ t

i /∈ Gi−1 for 1 ≤ t ≤ pi − 1. Thus τr
i /∈ Gi−1 implying ττr

i
= e.
Hence (G, m) is not a “NO” instance of GapMWPγ . This completes the proof.

Cameron et al [BCW06, CW06] have shown that SDP and MWP are NP-hard for sev-
eral permutation metrics. It follows from [ABSS97] that SDP for linear codes is NP-
hard to approximate within a factor of (log n)c, where n is the block length of the input
code and c is an arbitrary constant. Furthermore, Dumer et al [DMS99] have shown that
constant-factor approximation is NP-hard for MWP restricted to binary linear codes.
Given a binary linear code C of block length n, we can easily construct an abelian 2-
group G ≤ S2n isomorphic to C. An easy consequence of this construction and known
hardness results for binary linear codes directly yields the following hardness results
for GapSDPγ and GapMWPγ for different metrics.

Theorem 4. For Hamming, Cayley, and the lp metrics, GapSDPγ is NP-hard for γ =
O((log n)c) and GapMWPγ is NP-hard under randomized reduction for any constant γ.

5 Limits of Hardness

Since GapSDPγ is NP-hard for γ ≤ (log n)c, a natural question is to explore its com-
plexity for larger gaps. For the GapCVP problem on lattices, Goldreich and Goldwasser
[GG00] have shown a constant round IP protocol for O(

√
n/ logn) gap in the case of l2

norm. Consequently, for this gap GapCVP is not NP-hard unless polynomial hierarchy
collapses. We adapt similar ideas to the permutation group setting. For the Hamming
and Cayley metric we give a constant round IP protocol for the complement problem of
GapSDPγ for γ ≥ n/ log n, such that the protocol rejects “YES” instances of GapSDPγ

with probability at least n− log n, and always accepts the “NO” instances. For designing
the IP protocols we require uniform random sampling procedures from metric balls for
the Hamming and Cayley metrics.

We first consider the Cayley metric. Recall that the Cayley distance between τ and
e is the least number of transpositions required to take τ to e. Let k be the number of
cycles in τ . Each transposition multiplied to τ increases or decreases the number of
cycles by 1. Since τ is transformed to e with the fewest transpositions if we always
multiply by a transposition that increments the number of cycles, we have d(e, τ) =
n − k. Thus, a Cayley metric ball of radius r contains τ ∈ Sn such that τ has at
least n − r cycles. The number c(n, k) of permutation in Sn with exactly k cycles
is a Stirling number of the first kind and it satisfies the recurrence relation c(n, k) =
(n − 1)c(n − 1, k) + c(n − 1, k − 1). We can compute c(m, l), 0 ≤ m ≤ n, 0 ≤ l ≤ k
using the recurrence for c(n, k).

Proposition 3. Let S ⊆ Sn be the set of permutations with k cycles. Let N = |S| =
c(n, k). Then there exists a polynomial (in n) time computable bijective function fn,k :
[N] �→ S.

Proof. If n = k = 1, clearly such function exists, f1,1(1) is simply defined as iden-
tity element of S1. We use induction on n + k. Assume that such functions exist for

146 V. Arvind and P.S. Joglekar

n + k ≤ t. Now consider n, k such that n + k = t + 1. We define the function fn,k(i),
for 1 ≤ i ≤ N :

1. If i > (n − 1)c(n − 1, k), let π = fn−1,k−1(i − (n − 1)c(n − 1, k)) and τ be
obtained by appending a 1-cycle (n) to π. Define fn,k(i) = τ .

2. If i ≤ (n−1)c(n−1, k) then find j such that (j−1)c(n−1, k) < i ≤ jc(n−1, k).
Let π = fn−1,k(i − (j − 1)c(n − 1, k)), write π as product of disjoint cycles. Let
τ ∈ Sn be obtained by inserting n in the jth position of the cyclic decomposition
of π. Define fn,k(i) = τ .

Clearly, fn,k is polynomial time computable. We show fn,k is bijective by induction.
Suppose fn−1,k−1 and fn−1,k are bijective. Each τ ∈ Sn with k cycles can be uniquely
obtained either by inserting element n in cyclic decomposition of a π ∈ Sn−1 with k
cycles (which can be done in n − 1 ways) or by attaching a 1-cycle with element n to
some π ∈ Sn−1 with k − 1 cycles. It follows that fn,k is bijective.

To uniformly sample τ ∈ Sn with k cycles, we pick m ∈ {1, 2, . . . , c(n, k)} uniformly
at random and let τ = fn,k(m).

Lemma 7. There is a randomized procedure which runs in time poly(n) and samples
from Bn(e, r, d) almost uniformly, where d denotes Cayley metric.

Now consider the Hamming Metric. The Hamming ball of radius r contains all τ ∈ Sn

such that τ(i)
= i for at most r many points i. Hence, Vol(Bn(e, r, d)) = Σr
i=0

(
n
i

)
Di,

where Di denotes the number of derangements on i points. We can easily enumerate
all i-element subsets of [n]. The number Di of derangements on i points satisfies the
recurrence Di = (i − 1)(Di−1 + Di−2). With similar ideas as used for sampling for
Cayley metric balls we can do almost uniform random sampling from Hamming metric
balls in polynomial time.

Lemma 8. For r > 0, there exists a randomized procedure which runs in time poly(n)
and samples almost uniformly at random from the Hamming balls of radius r around e
(Bn(e, r, d)).

We now describe the simple 2-round IP protocol for the Hamming metric. Let (G, τ, r)
be input instance of GapSDPγ for γ ≥ n/ logn, and d is the Hamming metric.

1. Verifier: picks σ ∈ {0, 1}, ψ ∈ G, β ∈ Bn(e, γr/2, d) almost uniformly at ran-
dom. The verifier sends to the prover the permutation π = βψ if σ = 0, and
π = βτψ if σ = 1.

2. Prover: The prover sends b = 0 if d(π, G) < d(π, τG) and b = 1 otherwise.
3. Verifier: Accepts iff b = σ.

For the protocol we need polynomial time random sampling from a permutation group
which is quite standard [Lu93]. We also need uniform sampling from Hamming metric
balls which is given by Lemma 8. Due to lack of space, we omit the correctness proof
of the protocol stated in the next lemma.

Algorithmic Problems for Metrics on Permutation Groups 147

Lemma 9. The verifier always accepts if (G, τ, r) is “NO” instance of GapSDPγ .
Furthermore, the verifier rejects with probability at least n− log n if (G, τ, r) is a “YES”
instance of GapSDPγ .

This shows correctness of the protocol for Hamming metric. For the Cayley metric
too a similar IP protocol can be designed. As an immediate consequence we have the
following.

Corollary 1. For the Hamming and Cayley metrics, GapSDPγ for γ ≥ n/ logn is
not NP-hard unless coNP has constant round interactive protocols with constant error
probability with the verifier allowed nO(log n) running time.

Recall that GapMWPγ is Turing reducible to GapSDPγ for solvable groups by Theorem
3 and the Turing reduction makes queries with the same gap. Hence, by the above
corollary it follows that GapMWPγ for solvable groups and for γ > n/ log n is also
unlikely to be NP-hard for Hamming and Cayley metrics.

Acknowledgement. We thank the referees for their valuable comments.

References

[ABSS97] Arora, S., Babai, L., Stern, J., Sweedyk, E.Z.: The hardness of approximate optima
in lattices, codes, and system of linear equations. Journal of Computer and System
Sciences 54(2), 317–331 (Preliminary version in FOCS 1993)

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vec-
tor. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
pp. 266–275 (2001)

[BL83] Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Computing, pp. 171–183 (1983)

[BCW06] Buchheim, C., Cameron, P.J., Wu, T.: On the Subgroup Distance Problem ECCC,
TR06-146 (2006)

[CW06] Cameron, P.J., Wu, T.: The complexity of the Weight Problem for permutation
groups. Electronic Notes in Discrete Mathematics (2006)

[DH98] Deza, M., Huang, T.: Metrics on Permutations, a Survey. J. Combin. Inform. System
Sci. 23, 173–185 (1998)

[DMS99] Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating minimum dis-
tance of a linear code. In: 40th Annual Symposium on Foundations of Computer
Science, pp. 475–484 (1999)

[GG00] Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice prob-
lems. Journal of Computer and System Sciences 60(3), 540–563 (2000)

[GMSS99] Goldreich, O., Micciancio, D., Safra, S., Seifert, J.P.: Approximating shortest lattice
vector is not harder than approximating closest lattice vectors. Information Process-
ing Letters 71(2), 55–61 (1999)

[Lu93] Luks, E.M.: Permutation groups and polynomial time computations. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 11, 139–175
(1993)

[MG02] Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems. A Cryptographic
Perspective. Kluwer Academic Publishers, Dordrecht (2002)

[Re] O. Regev.: Lecture Notes - Lattices in Computer Science,
http://www.cs.tau.ac.il/ odedr/teaching/
lattices fall 2004/index.html

http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/index.html
http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/index.html

Periodic and Infinite Traces in Matrix

Semigroups�

Paul Bell1 and Igor Potapov2

1 Department of Mathematics, Turku University
paubel@utu.fi

2 Department of Computer Science, University of Liverpool
potapov@liverpool.ac.uk

Abstract. In this paper we provide several new results concerning word
and matrix semigroup problems using counter automaton models. As a
main result, we prove a new version of Post’s correspondence problem to
be undecidable and show its application to matrix semigroup problems,
such as Any Diagonal Matrix Problem and Recurrent Matrix Problem.
We also use infinite periodic traces in counter automaton models to show
the undecidability of a new variation of the Infinite Post Correspondence
Problem and Vector Ambiguity Problem for matrix semigroups.

1 Introduction

Over the last few decades, there has been considerable interest in algorithmic
problems for matrix semigroups. Matrices are commonly used objects in math-
ematics, physics, engineering and other areas of science. Many questions about
the dynamics of finite or infinite matrix products tightly connect problems with
computation theory and theoretical computer science in general.

It is known that semigroups generated by matrices have a number of unde-
cidable problems. Therefore many questions related to processes with iterative
matrix multiplication are very hard to analyse and answer in general.

The majority of the investigated questions related to matrix semigroups were
about direct reachability: membership problems (can a particular matrix be con-
structed by multiplication of matrices from a given set of generators?); vector
reachability problems (can one particular vector be reached from another one
by means of a set of linear transformations from a given set of generators?) and
scalar reachability problems and their variants [2,3,8]. The only problem that
may stand alone is the freeness problem for matrix semigroups: “Does every
matrix in the semigroup have a unique factorization?” [6]. What might be inter-
esting in terms of further understanding of the fundamental properties of matrix
semigroups is to analyse the behavioural properties of possible traces and their
relations.

The undecidability results for matrix semigroups were mainly shown by a
reduction from the undecidability of Post’s Correspondence Problem (PCP).
� This work was partially supported by Royal Society IJP 2007/R1 grant.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 148–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Periodic and Infinite Traces in Matrix Semigroups 149

In this paper we want to highlight a number of “cross references” and connec-
tions between matrix semigroup problems and behavioral properties of counter
machines. As a main result, we show that the Vector Ambiguity Problem and
Recurrent Matrix Problem are undecidable for finitely generated matrix semi-
groups over integer and rational numbers. We also show that the problem of
reaching any diagonal matrix is undecidable for 4 × 4 matrix semigroups over
complex numbers. Moreover, using counter machine models, we provide a new
undecidable variant of the infinite Post correspondence problem.

2 Preliminaries

In this section we introduce standard definitions and show some technical results
about periodic traces in counter automata with their proofs to make the paper
self contained.

Let us denote an empty word by ε. For two words u = u1u2 · · ·um and v =
v1v2 · · · vn we denote their concatenation by u · v = u1u2 · · · umv1v2 · · · vn. For
the inverse of a letter ‘a’ we sometimes write ‘a’. Given a word w = w1w2 · · ·wk,
we also define w = w−1 = wk · · · w2 w1. We denote a word aa · · · a︸ ︷︷ ︸

k

by ak.

Post’s correspondence problem (PCP) is formulated as follows: Given a finite al-
phabet Σ and a finite (ordered) set of pairs of words in Σ∗: {(u1, v1), . . . , (uk, vk)}.
Does there exist a finite sequence of indices (i1, i2, . . . , im) with 1 ≤ ij ≤ k for
1 ≤ j ≤ m, such that ui1ui2 · · · uim = vi1vi2 · · · vim . It can be shown that this
problem is undecidable even with a binary alphabet Σ.

2.1 Two-Counter Minsky Machines

In this subsection we shall describe a well known computational model known
as a Minsky machine. Informally speaking, a Minsky machine is a two-counter
machine that can increment and decrement counters by one and test them for
zero. It is known that Minsky machines are a universal model of computation
[15]. Being of very simple structure, Minsky machines are very useful for proving
undecidability results (see for example [11] or [12]).

It is convenient to represent a counter machine as a simple imperative program
M consisting of a sequence of instructions labeled by natural numbers from 1
to some L. Any instruction is one of the following forms:

l: ADD 1 to Sk; GOTO l′;
l: IF Sk �= 0 THEN SUBTRACT 1 FROM Sk; GOTO l′ ELSE GOTO l′′;
l: STOP.

where k ∈ {1, 2} and l, l′, l′′ ∈ {1, . . . , L}.
The machine M starts executing with initial nonnegative integer values in

counters S1 and S2 and the control at instruction 1. We assume the semantics
of all the above instructions and of the entire program is clear. Without loss of
generality, one can suppose that every machine contains exactly one instruction

150 P. Bell and I. Potapov

of the form l: STOP which is the last one (l = L). It should be clear that the
execution process (run) is deterministic and has no failure. Any such process is
either finished by the execution of instruction L: STOP, or lasts forever.

As a consequence of the universality of such a computational model, the halt-
ing problem for Minsky machines is undecidable:

Proposition 1 ([15]). It is undecidable whether a two-counter Minsky machine
halts when both counters initially contain 0.

In this paper, unless otherwise stated, we assume all machines start with 0 in
both counters. Minsky machines can be simulated by PCP in a direct way. Given
a two-counter machine M , our aim is to produce a set of pairs of words P =
{(u1, v1), (u2, v2), . . . , (un, vn)} such that there exists a finite sequence of indices
S = (i1, i2, . . . , ik) with each 1 ≤ ij ≤ n where ui1ui2 · · · uik

= vi1vi2 · · · vik
if

and only if M halts when starting from the initial state with 0 in both counters.
The sequence S we shall call a solution of the instance and it corresponds to a
halting run of M and can be seen as an instance of PCP. Another option is to
consider an infinite sequence S that corresponds to an infinite run of a counter
machine.

Proposition 2. A two-counter automata CA can be simulated by Post’s corre-
spondence problem (PCP), where PCP has a solution if and only if CA halts.

Proof. We use the definitions of a two-counter machine from [10]. We require
two operations, firstly “from state q, increment counter {1, 2} and move to state
s”. Secondly, we require an operation to “test if counter {1, 2} is zero, moving to
state r if it is, or state t if it is positive”. We shall use the symbol ‘z’ throughout
to denote a zero counter.

We start with an initial pair of words (u1, v1) = (#, #zaiq0a
jz#) where i

denotes the initial value of the counter C1 and j denotes the initial value of the
counter C2. Let us deal with the first type of operation. To move from state q
to s and increment C1, we add the pair (q, as) to P . To move from state q to
s and increment C2, we add the pair (q, sa) to P . But the counters could be
zero (denoted zqC2 or C1qz) so we also add pairs (zq, zas) to increment C1 and
(qz, saz) to increment C2.

For the second operation, we require to move from q to r if C1 is zero, so we
add pair (zq, zr). To move from q to r if C2 is zero, we add pair (qz, rz). To
move from q to t and decrement C1 if not zero, we add pair (aq, t) and to move
from q to t and decrement C2 if not zero, we add pair (qa, t). Finally, we add
pairs (a, a), (#, #), (z, z), (aqaccept, qaccept), (qaccepta, qaccept) and (#�, �)
to P where � is a new symbol.

We can enforce that the first pair used must be (u1, v1) by using a word
mapping. Let y = y1y2 · · · yn ∈ Γ ∗ be any word and let ‘∗’ be a new letter not
in Γ . Then define the three mappings:

�y = ∗y1 ∗ y2 · · · ∗ yn

y� = y1 ∗ y2 ∗ · · · yn∗
�y� = ∗y1 ∗ y2 ∗ · · · ∗ yn∗

Periodic and Infinite Traces in Matrix Semigroups 151

We apply one of the three above � mappings to each word pair. Let (u1, v1) =
(�u1, �v1�), (uj , vj) = (�uj, vj�) for each 2 ≤ j ≤ (n−1) and (un, vn) = (#∗�, �)
also. Clearly if a match occurs in P it must start with this new (u1, v1) since
only the first two letters in these two words are equal. Examining the mapping
allows us to conclude it must then proceed as before using the new pairs (ui, vi)
with 2 ≤ i ≤ n and finally finish with the pair (un, vn), see [17] for further details
since this is similar to how a Turing machine is encoded.

If there exists some sequence S = (i1, i2, . . . , ik) such that u1ui1ui2 · · · uik
=

v1vi1vi2 · · · vik
then it corresponds to a correct halting computation of a two-

counter machine and it is thus undecidable whether such a sequence S exists.

2.2 Periodicity in Counter Machines

It was proven in [7] that given a counter machine M , we can construct a second
counter machine, M ′, such that M ′ never halts and has a periodic configuration if
and only if M halts. Since the halting problem for arbitrary two-counter machines
is undecidable, this means that checking the periodicity is also undecidable. We
shall now give a simple proof to the above result from [7] for completeness:

Proposition 3. Let M ′ be a counter machine that has no halting configuration.
The problem of deciding if M ′ has a periodic configuration is undecidable1.

Proof. Given a specific counter machine M . Let q0 be the initial state of M and
H = {qh1 , qh2 , . . . , qht} be the set of halting states. Let R = {R1, R2, . . . , Rk}
be the set of counters of M . See Figure 1 a.

We shall now show how to create a new machine M ′. Initially, let M ′ have
the same states Q as M and the same transition function δ. We add a new start
state qI and add the two rules to δ which move from qI to state q0 regardless of
whether the first counter R1 equals zero and leaves all counters as they are.

a)

q q

q

q

qht

h1

h2q
i j

m R R R1 2 k

q 0

b)

q
q q

q

qht

h2q
i j

m

qh1

qR1

R2q

qq Rkq

R R R1 2 k P

P

0

I

Fig. 1. a) Minsky machine with k counters b) Periodic Minsky machine

1 The problem is undecidable even in the case of two-counter machines.

152 P. Bell and I. Potapov

We define all states q ∈ H to be non-halting states and add new states
qR1 , qR2 , . . . , qRk

. These new states will be used to zero all counters. We add
rules which move us from each q ∈ H to qR1 regardless of whether R1 is non-
zero and leave all counters at their current values. Then for each state qRi ,
1 ≤ i < k we add rules which decrease Ri if it is non-zero and remain in the
current state. We add a rule to move to state qRi+1 if it does equal zero (thus
the counter is decremented to zero before going to the next state). Finally, for
state qRk

we add a rule to decrease Rk if it is non-zero and stay in state qRk
, or

else move to the initial state qI if it does equal zero (note that once we go to qI ,
all counters are equal to 0 and we are back to the original configuration).

Thus, if M reached a halting state with some values in its counters R, then M ′

will instead decrement all counters to zero and restart the computation. Clearly
the only way to get back to qI is via some state in H of M , thus the only way
M ′ is periodic is if M halts as required.

We may note that there may be some other configuration of M which is
periodic, thus M ′ will contain an ultimately periodic configuration (though not
periodic since it still will not go to qI). We can avoid this situation if required
by a simple construction. Add a new counter P such that every transition of
machine M increments P and then does what it would do normally (we need to
add new states and rules to do this). Then add a new state qP such that qRk

now goes to qP instead of qI . Then add rules to decrement qP to zero as before
and then move to state qI . The only way to decrement counter P is via a halting
state thus now the only periodic configurations contain qI with all counters zero
in their period. See Figure 1 b.

Proposition 4. Let M ′ be a nondeterministic n-counter machine. The problem
of deciding if M ′ has an infinite number of trajectories leading to a halting state
qfinal with zero in all counters is undecidable for any n ≥ 2.

Proof. The problem of determining if a counter machine M can reach a halting
state with zero counters is undecidable. Without loss of generality we can also
assume that the initial state of M will be visited only once. Let us construct
a new nondeterministic counter machine M ′ based on a deterministic counter
machine M as follows. First, we add two extra states qfinal (which is the only
halting state of M ′) and qcontinue. Then add transitions from all halting states
of M leading to both qfinal and qcontinue which will only be executed if both
counters are zero. Secondly, we create copies of all transitions from the inital state
of M and add them to the automaton as outgoing transitions from qcontinue.

As a result, we have that the initial state of M ′ (which is the same as in
M) will be visited only once and state qfinal with zero counters is reachable in
M ′ if and only if machine M can reach a halting state with zero counters. On
the other hand, if qfinal with zero counters can be reached at least once, we
can construct an infinite number of traces that will lead to qfinal by returning
from the halting state of M to qcontinue and repeating the same looping trace
an unbounded number of times before going to state qfinal.

Periodic and Infinite Traces in Matrix Semigroups 153

3 Fixed Element PCP

Problem 1. FixedElementPCP -GivenanalphabetΓ={a, b, a−1, b−1, Δ, Δ−1, �}
where Γ \{�} forms a free group not containing ‘�’, and a finite set of pairs of words
over Γ ,

P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊂ Γ ∗ × Γ ∗.

Does there exist a finite sequence of indices s = (s1, s2, . . . , sk) such that
us1us2 · · ·usk

= vs1vs2 · · · vsk
= �?

This variant of PCP is interesting since it is similar to the standard PCP
however instead of testing for a solution via equality checking for two arbitrary
words, the solutions will have a specific form of a fixed letter �.

Theorem 1. The Fixed Element PCP is undecidable.

Proof. The instance set of Fixed Element PCP will now be defined. Given an
instance of PCP over Σ = {a, b} where the first and last pairs are used exactly
once2:

P ′ = {(u1, v1), (u2, v2), . . . , (um, vm)} ⊂ Σ∗ × Σ∗

we shall define two sets L, R such that P = L ∪ R:

L = {(�u1, �Δbab), (ui, a
ib)} ⊂ Γ ∗ × Γ ∗ ; 2 ≤ i ≤ m (1)

R = {(vi, Δai bΔ), (vm, b am bΔ)} ⊂ Γ ∗ × Γ ∗ ; 1 ≤ i ≤ m − 1 (2)

Since we are looking for a product of pairs of words equal to (�, �) and � /∈ Γ ,
then the first pair L1 = (�u1, �Δbab) must occur exactly once. Let us denote
any such product (if it exists) as:

X = (�, �) = X1X2 · · · Xk ∈ 〈L ∪ R〉.
It can be seen that X1 = L1, otherwise if Xj = L1 for some j > 1, then:

〈(L ∪ R) \ {L1}〉 � X1X2 · · · Xj−1 = (ε, ε),

but this is impossible since clearly ε is not in the subsemigroup generated by
{bambΔ, aib, ΔaibΔ : 1 ≤ i ≤ m − 1}, therefore the second word cannot equal
ε. This follows since the inverse of ‘bΔ’ clearly cannot be found as a prefix of
any word in the subsemigroup and thus an element equal to ε would have to
begin using elements of the form aib. But this must eventually concatenate with
bambΔ to reduce the word, and again we will have ‘bΔ’ on the right which then
cannot be reduced. Therefore we must have:

X = L1X2 · · · Xk = (�, �).

Let us consider the second words, in order to determine the sequence they
must take to give ‘�’. We have the set of elements:

A = {�Δbab, bambΔ, a2b, . . . , amb, ΔabΔ, . . . , Δam−1bΔ}.

2 This is standard in proofs of undecidability of PCP, see the construction in [17].

154 P. Bell and I. Potapov

We know the first element is (�Δbab) which is used only once. We now show
that the only products equal to ‘�’ are of the form:

L1Li1Li2 · · · LmRm · · · Ri2Ri1R1, (3)

for some i1, i2, . . . , il ∈ {2, . . . , m − 1}. Since (�Δbab) is the first element used,
assume that the next element is from R, i.e., of the form (ΔaibΔ) for some
1 ≤ i ≤ m − 1 or (bambΔ). But this gives ‘(�Δbab)(ΔaibΔ)’ or ‘(�Δbam−1bΔ)’
and both cannot be reduced by further right multiplications since clearly from
the set A, there is not any product of elements with a ‘Δb’ on the left hand side.

Thus, the only option is for the second element to be of the form (aib) for
2 ≤ i ≤ m. Let j +1 be the first index at which we do not have an element from
L, thus the product X1X2 · · · Xj is of the form: (�Δbab)(ai2b)(ai3b) · · · (aij b)
where 2 ≤ i2, i3, . . . , ij ≤ m. To reduce this product, the next element must be
(bambΔ) since this is the only element with a ‘b’ on the left. The product of
(aij b)(bambΔ) is am−ij bΔ. If ij < m, then this will not reduce to ‘bΔ’ and so
the left ‘b’ will not cancel. Similarly to before, we cannot reduce this product
any further since the right hand element is ‘bΔ’. Thus ij = m.

The next element to the right cannot be (bambΔ) since the left hand letter
does not cancel with Δ and it will have ‘bΔ’ on the right hand side which cannot
be canceled. Similarly, the next element cannot be of the form (ak1b) since this
would then give:

(�Δbab)(ai2b)(ai3b) · · · (aij)Δak1b,

and again this is only reduced with (bambΔ), but

(aij)Δak1b(bambΔ) = aij Δam−k1bΔ,

and regardless of whether k1 = m, the product ends with ‘bΔ’ which cannot be
reduced.

Thus, the next element must be of the form (Δak2bΔ) giving:

(�Δbab)(ai2b)(ai3b) · · · (aij)Δ(Δak2bΔ)

and the product does not end with ‘bΔ’ if and only if k2 = ij−1, in which case it
ends with · · ·aij−1Δ. This continues inductively for each pair of elements from
the center outwards and we see that we finally reach ‘�’ if and only if the product
is of the form shown in Equation (3).

The first word corresponding to this is a correctly encoded PCP sequence
which equals ‘�’ if and only if it corresponds to a correct solution word, com-
pleting the proof. Note that set P has 2 times the number of elements as the set
P ′. Since PCP was shown to be undecidable for 7 pairs of words in [13] (even
with the first and last pairs used only once), Fixed Element PCP is undecidable
for 14 pairs of words.

Let us consider a small example of the second word encoding for the sequence
of words 1, i1, i2, m. Following the above proof, we correctly obtain:

(�Δbab)(ai1b)(ai2b)(amb)(bambΔ)(Δai2bΔ)(Δai1bΔ)(ΔabΔ) = �.

Periodic and Infinite Traces in Matrix Semigroups 155

4 Applications of FEPCP and Periodicity of
Computations

In this section we show our main results via applications of the Fixed Element
PCP and the construction of periodic traces in counter automaton models.

4.1 Any Diagonal Matrix Problem

Problem 2. Any Diagonal Matrix Problem - Given a finite set of matrices
G generating a semigroup S. Does there exist any matrix D ∈ S such that D is
a diagonal matrix?

This problem was considered for integral matrices in [6], but we shall now show
that it is undecidable for rational complex matrix semigroups by using the Fixed
Element PCP. In our proof we shall exhibit a semigroup that has no diagonal
matrices if the instance of PCP has no solution and an infinite number of diagonal
matrices (i.e. powers of a specific, known diagonal matrix) if the PCP instance
does have a solution.

Theorem 2. Given a finitely generated matrix semigroup S ⊆ C(Q)4×4, it is
algorithmically undecidable to determine whether there exists any matrix D ∈ S
such that D is a diagonal matrix.

Proof. We shall utilize the Fixed Element PCP (FEPCP) and the matrix rep-
resentation ζ of a free group of rational quaternions. Let us define a function
ζ : {a, b, a, b} → C(Q)2×2 (where C(Q) denotes the field of complex numbers
with rational coefficients):

ζ(a) =
(

3
5 + 4

5 i 0
0 3

5 − 4
5 i

)
, ζ(b) =

(
3
5

4
5− 4

5
3
5

)
,

ζ(a) =
(

3
5 − 4

5 i 0
0 3

5 + 4
5 i

)
, ζ(b) =

(
3
5 − 4

5
4
5

3
5

)
.

and ζ forms a free group as proved in [4]. Recall also that in the Fixed Element
PCP we have an alphabet of 7 letters, Γ = {a, a, b, b, Δ, Δ, �}. We shall use a
homomorphism, γ, to encode these letters using elements of ζ. Specifically, define
γ : Γ ∗ → C(Q)2×2 by:

γ(�) = ζ(a), γ(a) = ζ(bab), γ(b) = ζ(b2a2b2), γ(Δ) = ζ(b3a3b3)
γ(a) = ζ(bab), γ(b) = ζ(b

2
a2b

2
), γ(Δ) = ζ(b

3
a3b

3
)
,

and then extending to a monoid homomorphism in the usual way. Now, given
an instance of FEPCP:

P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ Γ ∗ × Γ ∗,

we shall use the mixed product property of Kronecker products that for any four
matrices A, B, C, D ∈ Cj×j :

(AB ⊗ CD) = (A ⊗ C)(B ⊗ D).

156 P. Bell and I. Potapov

We create a final set of 4-dimensional rational complex matrices:

T = {γ(u1) ⊗ γ(v1), γ(u2) ⊗ γ(v2), . . . , γ(un) ⊗ γ(vn)} ⊆ C(Q)4×4.

From the definition of FEPCP, we know a solution w = w1w2 · · ·wk gives the
equation uw1uw2 · · · uwk

= vw1vw2 · · · vwk
= � for the special symbol �. Using our

above encoding, we see that γ(�) = ζ(a) which is clearly diagonal. Thus, given
a correct solution to FEPCP, there exists a matrix D ∈ 〈T 〉 such that:

D = γ(uw1uw2 · · ·uwk
) ⊗ γ(vw1vw2 · · · vwk

) = γ(�) ⊗ γ(�) = ζ(a) ⊗ ζ(a),

which is diagonal (since the Kronecker product of two diagonal matrices is diag-
onal). It can be seen that any word which is not a solution will contain at least
one matrix ζ(b) or ζ(b) and since these are not diagonal, the tensor product will
not be diagonal either.

4.2 The Recurrent Matrix Problem

The next problem that we consider here is the problem of whether an element
of a matrix semigroup has an infinite number of factorizations over elements
of the generator. This question is trivially undecidable in the case of singular
matrices since it can be reduced to the mortality problem (whether a zero matrix
belongs to a semigroup). Here we show that this problem is also undecidable for
invertible matrix semigroups.

Problem 3. Recurrent Matrix Problem - Given a matrix B and a semigroup
S generated by a finite set of matrices G. Does B have an infinite number of
factorizations over elements of G?

Theorem 3. The recurrent matrix problem is undecidable for non-singular 4×4
integer matrix semigroups.

Proof. From the construction in Proposition 4 we have that the problem of
deciding if a nondeterministic two-counter automaton has an infinite number of
trajectories leading to a final state sfinal with zero counters is undecidable. We
can encode and simulate this automaton by PCP, as shown in Proposition 2. We
shall now also reduce it to the FEPCP which will be directly applicable to the
recurrent matrix problem.

Thus, if the instance of FEPCP has a solution then a nondeterministic two-
counter automaton has an infinite number of trajectories leading to a final state
sfinal with zero counters and FEPCP also has an infinite number of different
sequences of indices that will lead to the solution (�, �). We now show how to
encode an instance of FEPCP into a matrix semigroup.

Let Σ = {a, b} be a binary alphabet and Σ = {a, b} be the inverse elements of
Σ, i.e., a=a−1 and b=b−1. We define the homomorphism ϕ : (Σ∪Σ)∗→Z2×2 by:

ϕ(a) =
(

1 2
0 1

)
, ϕ(b) =

(
1 0
2 1

)
, ϕ(a) =

(
1 −2
0 1

)
, ϕ(b) =

(
1 0

−2 1

)

Periodic and Infinite Traces in Matrix Semigroups 157

It is well known that ϕ forms a free group of 2 × 2 matrices from the free group
of words generated by Σ ∪ Σ.

Let Γ = {a, a, b, b, Δ, Δ, �} and define a new mapping γ, to encode Γ using
elements of ϕ, where γ : Γ ∗ → Z2×2 is given by:

γ(�) = ϕ(a), γ(a) = ϕ(bab), γ(b) = ϕ(b2a2b2), γ(Δ) = ϕ(b3a3b3)
γ(a) = ϕ(bab), γ(b) = ϕ(b

2
a2b

2
), γ(Δ) = ϕ(b

3
a3b

3
)
,

and then extending to a monoid homomorphism. Given an instance of FEPCP
P = {(ui, vi)|1 ≤ i ≤ n}, for each 1 ≤ i ≤ n we define the following matrices:

Ai =
(

γ(ui) 0
0 γ(vi)

)
.

If the matrix

B =
(

γ(�) 0
0 γ(�)

)

belongs to the semigroup S generated by G = {A1, . . . , An} ⊆ Z4×4 then FEPCP
has a solution. According to the construction of the automaton, the FEPCP has a
solution if the automaton halts and has an infinite number of trajectories leading
to its final state. It also follows that the number of different paths leading to B
is infinite. Since the existence of an infinite number of trajectories leading to the
final state is an undecidable problem then the recurrent matrix problem is also
undecidable.

4.3 The Vector Ambiguity Problem

Problem 4. Vector Ambiguity Problem - Given a semigroup S of n × n
matrices and an initial n-dimensional vector u. Let V be a set of vectors such
that V = {v : v = Mu; M ∈ S}. Do S and u generate a non-repetitive set of
vectors? In other words the question is whether for every vector v of set V there
is a unique matrix M ∈ S such that M · u = v?

Theorem 4. The vector ambiguity problem is undecidable for matrix semi-
groups over integers in dimension 4 and over rationals in dimension 3.

Proof. Let M be a two-counter machine that has no halting configuration. The
problem of determining if M has a periodic configuration is undecidable. Let us
use a construction proposed in Proposition 2, which simulates any two-counter
machine by a set of pairs of words. Note that our method does not define a halting
state of the machine and in this case we only predefine an initial configuration
of a counter machine M .

Assume that the set of pairs of words used to simulate a counter machine is
P = {(ui, vi)|1 ≤ i ≤ n}. Let us construct a set of pairs of 2 × 2 matrices using
the homomorphism ϕ i.e. {(ϕ(u1), ϕ(v1)), . . . , (ϕ(un), ϕ(vn))}.

Instead of equation u = v we consider a concatenation of two words u · v
which equals ε only in the case where u = v. We associate 2 × 2 matrix C

158 P. Bell and I. Potapov

with a word w of the form u · v̄. Initially C is a matrix that corresponds to the
initial configuration of the machine which is stored in the first pair (u1, v1), so
C = ϕ(u1) · ϕ(v1).

The extension of a word w by a new pair of words (ur, vr) (i.e., that gives us
w′ = ur · w · vr) corresponds to the following matrix multiplication

Cw′ = ϕ(ur) · Cw · ϕ(vr) (4)

Let us rewrite operation (4) in more detail.
(

c11
w′ c12

w′

c21
w′ c22

w′

)
=

(
u11 u12

u21 u22

)
·
(

c11
w c12

w

c21
w c22

w

)
·
(

v11 v12

v21 v22

)
(5)

In this case, pairwise multiplication will correspond to an update of the current
state according to the operation of a two-counter machine M .

Let us consider the dynamics of changes for the matrix C. It is easy to see that
in the case of an incorrectly applied command for a machine M , the pairwise
concatenation (multiplication) will lead to increase of the length for a word w
and will never end up in a repeated word after that. Therefore after an incorrect
application of a command of M , a matrix C will never have the same value again.
The correct application of pairwise concatenation of words or multiplication of
matrices covers the set of correct configurations of a two-counter machine M . In
the case of a periodic two-counter machine, the finiteness of the configuration
space will lead to the finiteness of the set X of possible C matrices that can be
generated during the correct application of rules for M , since every matrix C ∈ X
corresponds to a unique reachable configuration of M . Thus the set of matrices
that can be generated by pairwise multiplication may contain repetitions if and
only if the two-counter machine has periodic behavior.

In order to finish the proof of undecidability for the case of an integer ma-
trix semigroup, we represent matrix C as a vector x = (cw

11, cw
12, cw

21, cw
22)T

increasing the dimension to 4 and rewriting pairwise multiplication as a 4-
dimensional linear transformation of vector x.

⎛

⎜⎜⎝

c11
w′

c12
w′

c21
w′

c22
w′

⎞

⎟⎟⎠ =
(

u11 u12

u21 u22

)
⊗

(
v11 v12

v21 v22

)T

·

⎛

⎜⎜⎝

c11
w

c12
w

c21
w

c22
w

⎞

⎟⎟⎠ (6)

The same method can be used to prove the undecidability of the vector am-
biguity problem in dimension three for rational matrices by instead of using ϕ,
using another homomorphism ψ based on a free group:

ψ(a) =
(

1 1
0 2

)
ψ(b) =

(
1 2
0 2

)
ψ(a) =

(
1 − 1

2
0 1

2

)
ψ(b) =

(
1 −1
0 1

2

)

Since we multiply only upper triangular matrices in (5) we have that c21
w is

equal to zero in the initial moment and after every next multiplication. When
we rewrite (5) into a 4-dimensional linear transformation as is shown in (6), the

Periodic and Infinite Traces in Matrix Semigroups 159

third row and the third column can be removed from the 4 × 4 matrix in (6).
Finally, we rewrite (6) as a 3-dimensional linear transformation for the vector
(cw

11, cw
12, cw

22)T .

Note that from the above result it also follows that it is undecidable whether there
exists a periodic trace of configurations in a one state blind nondeterministic 4-
counter machine with only counter updates in terms of linear transformations.

4.4 The Infinite Post Correspondence Problem

As another application of periodic counter machines we state a new variant
of the infinite PCP. It was shown in [5] that the infinite Post correspondence
problem is undecidable for 105 pairs of words. This result was later improved to
9 by V. Halava and T. Harju [9] by encoding semi-Thue systems and utilizing
Claus’s construction for PCP. The authors of [9] also show a related result that
determining if a particular PCP instance has a solution that is non-ultimately
periodic is undecidable.

Lemma 1. [9] If the termination problem is undecidable for n-rule semi-Thue
systems, then it is undecidable for instances of the PCP size n + 3 whether or
not there exists an infinite solution that is not ultimately periodic.

We recall that an infinite word is said to be ultimately periodic if it can be
written in the form w = uv∞ where u, v are non-empty, finite words.

Using an encoding of two-counter machines into pairs of words and thus PCP
instances and Proposition 3 (shown in [7]), we can derive a related result.

Lemma 2. There exists a class of instances of Post’s correspondence problem
which have a guaranteed single infinite solution and no finite solution where it
is undecidable whether the solution is ultimately periodic.

Proof. We use the construction from Proposition 2 which allows us to simulate
an arbitrary two-counter machine by a finite set of pairs of words as is done
in Post’s correspondence problem. We shall use the idea from Proposition 3 in
which we start with an initial counter machine M and create a second counter
machine M ′ such that M ′ does not halt and M ′ has a periodic configuration
if and only if M halts on its input in the same way as was originally done in
[7]. Since determining if an arbitrary counter machine M halts is undecidable,
determining if M ′ has a periodic configuration is undecidable as explained in
Proposition 3.

It is well known that a k-counter machine can be simulated by a two-counter
machine. Therefore, from machine M ′, we create a third machine M ′′ which
has only two counters. Using the construction from Proposition 2, we can sim-
ulate M ′′ via an instance of PCP which we denote by P . However, due to the
construction of M ′, we know it does not halt, thus P has no solution.

The counter machine M ′ is deterministic and has a guaranteed infinite run.
Therefore instance P has a single infinite word solution. By the conversion from

160 P. Bell and I. Potapov

a two-counter machine to a PCP instance from Proposition 2, there is a single
letter γ1 ∈ Γ which must be used first and then never again. Therefore, the
infinite solution of PCP is of the form:

w′ = γ1w; γ1 ∈ Γ, w ∈ (Γ \ {γ1})∞.

Since determining if M ′ is periodic is undecidable, it is also undecidable whether
w is a periodic word, or equivalently, whether w′ is ultimately periodic, thus
completing the proof.

Acknowledgements

We would like to thank the referees for their careful checking of this manuscript,
especially the referee who noticed a gap in one of our earlier proofs.

References

1. Abdulla, P.A., Jonsson, B.: Undecidable Verification Problems for Programs with
Unreliable Channels. Inf. Comput. 130(1), 71–90 (1996)

2. Babai, L., Beals, R., Cai, J., Ivanyos, G., Luks, E.M.: Multiplicative Equations
Over Commuting Matrices. In: ACM-SIAM Symposium on Discrete Algorithms,
pp. 28–30 (1996)

3. Bell, P., Potapov, I.: Lowering Undecidability Bounds for Decision Questions in
Matrices. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 375–
385. Springer, Heidelberg (2006)

4. Bell, P., Potapov, I.: Reachability Problems in Quaternion Matrix and Rotation
Semigroups. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708,
Springer, Heidelberg (2007)

5. Blondel, V., Canterini, V.: Undecidable Problems for Probabilistic Automata of
Fixed Dimensions. Theory Comput. Syst. 36(3), 231–245 (2003)

6. Blondel, V., Cassaigne, J., Karhumäki, J.: Problem 10.3. In: Blondel, V., Megret-
ski, A. (eds.) Freeness of Multiplicative Matrix Semigroups, Unsolved Problems in
Mathematical Systems and Control Theory, pp. 309–314

7. Blondel, V., Cassaigne, J., Nichitiu, C.: On the Presence of Periodic Configurations
in Turing Machines and in Counter Machines. Theoretical Computer Science 289,
573–590 (2002)

8. Halava, V., Harju, T., Hirvensalo, M.: Undecidability Bounds for Integer Matrices
using Claus Instances, TUCS Technical Report No. 766 (2006)

9. Halava, V., Harju, T.: Undecidability of Infinite Post Correspondence Problem for
Instances of Size 9. Theoretical Informatics and Applications 40, 551–557 (2006)

10. Korec, I.: Small Universal Register Machines. Theoretical Computer Science 168,
267–301 (1996)

11. Kurganskyy, O., Potapov, I.: Computation in One-Dimensional Piecewise Maps
and Planar Pseudo-Billiard Systems. Unconventional Computation, 169–175 (2005)

12. Lisitsa, A., Potapov, I.: In Time Alone: On the Computational Power of Querying
the History. In: TIME 2006, pp. 42–49 (2006)

13. Matiyasevic, Y., Sénizergues, G.: Decision Problems for Semi-Thue Systems with
a Few Rules. Theoretical Computer Science 330, 145–169 (2005)

Periodic and Infinite Traces in Matrix Semigroups 161

14. Minsky, M.: Recursive Unsolvability of Post’s Problem of “tag” and other Topics
in Theory of Turing Machines. Annals of Mathematics 74, 437–455 (1961)

15. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall Interna-
tional, Englewood Cliffs (1967)

16. Potapov, I.: From Post Systems to the Reachability Problems for Matrix Semi-
groups and Multicounter Automata. In: Calude, C.S., Calude, E., Dinneen, M.J.
(eds.) DLT 2004. LNCS, vol. 3340, pp. 345–356. Springer, Heidelberg (2004)

17. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing (1997)

From Asynchronous to Synchronous
Specifications for Distributed Program Synthesis

Julien Bernet and David Janin

LaBRI, Université de Bordeaux I
351, cours de la Libération

33 405 Talence cedex France
{bernet,janin}@labri.fr

Abstract. Distributed games [7] allow expression of various distributed
program synthesis problems. In such games, a team of Process players
compete against a unique Environment player, each Process playing on
its own arena, without explicit communications with its teammates.

The standard definition of distributed games allows some degree of
asynchrony : the Environment can play only on part of the arenas, there-
fore concealing to some Process players that the play is going on. While
this is convenient for modeling distributed problems (especially those that
themselves make use of asynchrony), these games are by no means easy to
manipulate, and the existing constructions are much more tedious.

In this paper, we provide a uniform reduction of any finite state dis-
tributed game, synchronous or asynchronous, to a synchronous one with
the same number of players. This reduction is shown to be correct in the
sense that it preserves the existence of finite state distributed winning
strategies for the team of Processes. It is uniform in the sense that it is
designed for arbitrary input distributed game without any prior knowl-
edge about its satisfiability. The size of the resulting synchronous game
is also linear in the size of the original asynchronous one and, moreover,
there is no blowup of the size of the winning strategies. Additional ex-
pected preservation properties (e.g. information flows) are studied. Sur-
prisingly, it seems that no such reduction exists for arbitrary (infinite
state) strategies.

Introduction

Asynchrony in a distributed environment can be defined in an abstract way as
the ability of some processes or agents to perform some action in the distributed
systems while other processes or agents not only perform no action but are even
not aware that they are staying idle. In other words, in a model where every
event in a process (e.g. a local action or an incoming or outgoing message) is
triggered by the tick of a local clock, asynchrony occurs when there is no global
clock on which local clocks are synchronized.

However, if the memory of a distributed system has finitely many possible
states, it is commonly understood that synchronous and asynchronous behaviors
are, to some extent, equivalent. In fact, the number of relevant asynchronous
events between any two synchronous events can be bounded by the number of

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 162–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

From Asynchronous to Synchronous Specifications 163

global states. More precisely, the (presumably asynchronous) distributed system
can be modeled (at a more abstract level) by an equivalent synchronous one.

For instance, within a distributed system with an asynchronous message pass-
ing mechanism, if the number of messages that have been sent but not yet
received is bounded, there cannot be an unbounded number of (relevant) asyn-
chronous events between any two synchronizations.

Of course asynchrony makes a difference at the implementation level. For
instance communication protocols do have to cope with asynchrony to be correct.
However, at some more abstract level, provided the global memory of a system
is finite, it seems that, in some sense, asynchronous and synchronous systems
have the same computational power.

The main objective of this paper is to substantiate this intuition. More pre-
cisely, in the setting of distributed program synthesis problem, we aim at proving
that (1) when the distributed environment is finite state and (2) when one con-
siders only finite state programs, any synchronous or asynchronous distributed
program synthesis problem is equivalent to a synchronous distributed program
synthesis problem.

An immediate difficulty for this task is however to find the appropriate
formalism.

In fact, there exists plenty of models of distributed systems and behaviors;
consider for instance the diversity of models of communications between pro-
cesses or agents: from communication via global shared memory mechanisms to
many types of message passing systems. For distributed program synthesis spec-
ification, where one not only aims at modeling a single behavior but a full class
of behaviors that may, or may not, fulfill the design objectives, there may be
even more formalisms. See for instance Pnueli and Rosner’s notion of distributed
architecture [10,4] or Wonham et al.’s distributed control theory [5,6].

In this paper, we choose to study the relationship between synchronous and
asynchronous distributed synthesis problems in a fairly abstract though general
model: the model of distributed games [7].

These games, designed after Peterson and Reif’s partial information games [9],
rely on an explicit modeling of the local information - projection of the global
state - available to every agent (or process) for guiding its own behaviors. As a
matter of fact, no explicit communication is modeled, henceforth no commitment
has to be done in favor of such or such communication mechanism. Moreover,
most distributed synthesis problem can be encoded and solved within distributed
games problem [2,7].

In a distributed game, a team of Process players compete against a unique
Environment player, each Process playing on its own arena - with its own projec-
tion of the global state of the system - while Environment player has a complete
knowledge of the global state.

Communications are implicitly modeled as follows. In a distributed game defi-
nition, one may restrict Environment player. From a given global state - partially
known by every Process player - this may force the Environment player to reach
some global states with more informative local projections than other global states.

164 J. Bernet and D. Janin

Asynchrony, that induces an extra layer of partial information - absence of
global clock - is modeled as follows: in a distributed game, the Environment may
play only on part of the arenas, therefore concealing to some Process players that
the play is going on elsewhere.

In this paper we prove that, as far as finite systems and programs are con-
cerned, asynchrony does not yield extra expressive power.

More precisely, we provide a reduction of any asynchronous finite state dis-
tributed game to a synchronous one with the same number of players. This
reduction is shown to be correct in the sense that it preserves the existence of fi-
nite state distributed winning strategies for the team of Processes. The size of the
resulting synchronous game is also linear in the size of the original asynchronous
one and, moreover, there is no blowup of the size of the winning strategies. Addi-
tional expected preservation properties (e.g. information flows) are also studied.

For strategies with unbounded memory, it is conjectured that there is no such
a reduction. Still; one may ask whether such a result could be extended to more
general classes of programs with infinite memory such as, for instance, pushdown
strategies. This remains an open problem. However, even decidability questions
are yet not settled for these more general strategies.

1 Notations

For any finite alphabet A, a word over A is a function w : N → A whose domain
is an initial segment of N. The only word such with empty domain is called the
empty word, and denoted by ε.

The following notations are used : A∗ is the set of finite words (i.e. whose
domain is finite) over A, Aω is the set of infinite words over A, A∞ = A∗ ∪ Aω

is the set of finite and infinite words over A, and A+ = A∗ − {ε} is the set of
finite non-empty words over A.

For any finite word w, its length |w| is the cardinal of its domain. For any
words u ∈ A∗ and v ∈ Aω , the word u · v is the concatenation of words u and
v. For any integer k, the word uk is built by concatenating k copies of u. When
u �= ε, the infinite word uω is the infinite concatenation of u with itself.

These operations are extended to the languages. Given X ⊆ A∗ and Y ⊆ A∞,
we use the notations X · Y = {u · v : u ∈ X, v ∈ Y }, X0 = {ε}, Xk = {w · u :
w ∈ Xk−1, u ∈ X} for any k > 0, X∗ =

⋃
k≥0 Xk and, when ε /∈ X , Xω for the

set of all words that can be defined as an infinite product of words of X . The
following additional notations are also used : X + Y = X ∪ Y , X − Y = X\Y
and X? = {ε} ∪ X .

Given n sets X1, . . . , Xn, consider their direct product X = X1 × · · · × Xn.
For every set I = {i1, . . . , ik} ⊆ {1, . . . , n}, consider the natural projection
πI : X → Xi1 × · · · × Xik

defined by πI((x1, . . . , xk) = (xi1 , . . . , xik
). For any

x ∈ X , we also use the more convenient notation x[I] = πI(x).
Following the same idea, for any set Y ⊆ X , denote by Y [I] the set πI(Y).

If R ⊆ Xm is a m-ary relation over X , we should also write use R[I] =
{(x1[I], . . . , xm[I]) : (x1, . . . , xm) ∈ R}. When I in an interval of integers of

From Asynchronous to Synchronous Specifications 165

the form [i, j] we use the notations x[i, j], Y [i, j], R[i, j]. Whenever I is reduced
to a single integer i, these notations simplify to x[i], Y [i], R[i].

Moreover, these notations are extended to words and languages : for any word
w = x0 · x1 · · · ∈ X∞, then w[I] = x0[I] · x1[I] · · · .

2 Distributed Games

A n-process distributed arena is a game arena built from some product of n local
standard game arena.

Definition. Given n arenas Gi = 〈Pi, Ei, TP,i, TE,i〉 for i ∈ [1, n] with disjoint
sets of Process position Pi, sets of Environment position Ei, sets of Process
moves TP,i ⊆ Pi × Ei and sets of Environment moves TE,i ⊆ Ei × Pi, an n-
Process distributed game arena built from the local game arenas {Gi}i∈[1,n] is
any game arena G = 〈P, E, TP , TE〉 such that:

– Environment positions : E =
∏

i∈[1,n] Ei,
– Processes positions : P =

∏
i∈[1,n](Ei ∪ Pi) − ∏

i∈[1,n] Ei,
– Processes moves : TP is the set of all pairs (p, e) ∈ (P × E) such that, for

i ∈ [1, n]:
• either p[i] ∈ Pi and (p[i], e[i]) ∈ TP,i (Process i is active in p),
• or p[i] ∈ Ei and p[i] = e[i] (Process i is inactive in p),

– and Environment moves : TE is some subset of the set of all pairs (e, p) ∈
(E × P) such that, for i ∈ [1, n]:

• either p[i] ∈ Pi and (e[i], p[i]) ∈ TP,i (Environment activates Process i),
• or p[i] ∈ Ei and p[i] = e[i] (Environment keeps Process i inactive).

When the set TE of Environment moves is maximal, we call such an arena the free
asynchronous product of arenas {Gi}i∈[1,n] and it is written G1 ⊗G2 ⊗· · ·⊗Gn.

Remark. The essential idea behind this definition is to get a definition of
a multiplayer game in which a team of Processes compete against a unique
Environment to achieve some infinitary goal. The following point is important
: this definition allows the Environment to play only on a subset of the arenas,
therefore hiding that the play is going on to the Processes on which arenas it
does not play. This will be referred in the following as asynchronous move, and
allows to encode neatly many distributed synthesis problems from the literature,
such as [10,4] or [5].

In distributed games, asynchrony occurs when Environment player decides to
keep one or more Process players inactive. A synchronous distributed arena can
thus be defined as follows.

Definition. An n-process distributed arena G = 〈P, E, TP , TE〉 is a synchronous
distributed arena when TE ⊆ E × ∏

i∈[1,n] P [i].

Since a distributed arena is built upon n simple arenas, we need a definition to
speak about its local components:

166 J. Bernet and D. Janin

Definition. Given a distributed arena G = 〈P, E, TP , TE〉 as above, given a
non empty set I ⊆ [1, . . . , n] we define the canonical projection G[I] of G on I
as the arena G[I] = 〈P ′, E′, T ′

P , T ′
E〉 given by: P ′ = P [I]−E[I] (possibly smaller

than P [I] !), E′ = E[I], T ′
P = TP [I] ∩ (P ′ × E′), and T ′

E = TE [I] ∩ (E′ × P ′).

A distributed game arena is, at first sight, a particular case of standard discrete
and turn base two player game arena. Standard notions of plays and strategies
are still defined. However, in order to avoid confusion with what may happen in
the local arena a distributed game is build upon, we shall speak now of a global
play and global and local strategy. Partial information is then captured by means
of the notion of local view of play and distributed strategy.

Definition. Given an n-process distributed arena G, a global play from an
initial position e ∈ E is defined as a path in G (seen as a bipartite graph)
emanating from position e that is built alternatively by the Environment player
and the Process team.

More precisely, from a current position x ∈ P ∪ E, either x ∈ E and it is
Environment player turn to play by choosing some position y ∈ P such that
(x, y) ∈ TE or x ∈ P and it is Process team turn to play by choosing some
position y ∈ E such that (x, y) ∈ TP .

Accordingly, a global strategy for the Process team is a partial function σ :
(E.P)+ → E such that for every play of the form w.p ∈ dom(σ) with w ∈
E.(P.E)∗ and p ∈ P one has (p, σ(w.p)) ∈ TP .

A play w is said compatible with strategy σ when, for every integer n ≥ 0
such that w[n] ∈ P one has w[n + 1] = σ(w[0, n]) where w[0, n] is the prefix of
w of length n + 1.

Definition. A game G = 〈P, E, TE , TP , e0, W〉 is a game arena 〈P, E, TE , TP 〉
equipped with an extra initial position e0 ∈ E and a distinguished set W ⊆
(E + P)ω called infinitary condition for the Process team.

We say that global strategy σ is a winning strategy for the Process team from
position e0 ∈ E with condition W when every maximal plays starting in e0 and
compatible with strategy σ is either finite and ends in an environment position
or is infinite and belongs to W .

A strategy with finite memory for the Process team is given as a tuple M =
〈M, m0, μ : M × (P ∪ E) → M, h : M × P → E〉, where M is a finite set of
memory states, m0 is the initial memory, μ is the update function, and h is
the hint function. The induced strategy σM : (E · P)+ → E is then defined,
for any play w · p ∈ (E · P)+, by σM = h(μ∗(m0, w), p) (where μ∗ is defined by
μ∗(m, ε) = m, and μ∗(m, w ·x) = μ(μ∗(m, w), x) for every m ∈ M , w ∈ (E∪P)∗,
x ∈ (E ∪ P)).

In distributed games, it is intended that, within the Process team, every process
has only a partial view of a global play. Not only every process only sees its own
projection of every global positions, but, when idle, a process is even not aware
that the play is going on. This intention is formally defined as follows.

From Asynchronous to Synchronous Specifications 167

Definition. The local view Process i has of a global play in a distributed game
G is given by the map viewi : (E · P)∗ · E? → (Ei · Pi)∗ · E?

i defined in the
following way:

– viewi(ε) = ε
– viewi(x) = x[i]

– viewi(w · x · y) =
{

viewi(w · x) if x[i] = y[i]
viewi(w · x) · y[i] otherwise.

A play w ∈ (E ·P)+ is said to be active for Process i when w ends in a position
p ∈ P such that p[i] ∈ P [i].

Remark. Observe that in a synchronous distributed arena, as expected, for
every play w ∈ (E.P)∗.E? one has viewi(w) = w[i], i.e. the local view of a
global play is just the projection of this play.

Definition. A global strategy σ for the Process team is a distributed strategy
when, for every i ∈ [1, n], there is a process strategy σi : (E[i].P [i])+ → E[i] in
the local game G[i], from now on called local strategy for Process i, such that,
for any play of the form w · p ∈ (E · P)+, given the set I ⊆ {1, . . . , n} of active
processes in the global Processes position p, σ(w · p) = e if and only if

– e[i] = σi(viewi(w) · p[i]) for i ∈ I
– e[i] = p[i] for i ∈ {1, . . . , n} − I

In this case, we write σ1 ⊗ σ2 ⊗ · · · ⊗ σn for the distributed strategy σ.

Remark. Observe that when G is synchronous, the distributed strategy σ =
σ1 ⊗ · · · ⊗ σn can simply be defined for any global play w ∈ (E · P)∗ by :

σ(w) = (σ1(w[1]), . . . , σn(w[n]))

Remark. Global strategies are not always distributed. In particular, there are
distributed games where Process team has a winning global strategy, but no
winning distributed strategy. For more details, the reader can refer to [7].

3 From Asynchronous Game to Synchronous Game

We prove here that every (asynchronous) distributed game is equivalent in some
sense to a synchronous distributed game. More precisely:

Theorem 1. There exists a mapping that maps every distributed game G to
exists a distributed game G̃ such that the Process team have a distributed winning
strategy with finite memory in G if and only if they have one in G̃. Moreover,
game G̃ has the same number of Process players as game G with only a linear
increase of number of positions. Moreover, this mapping is defined uniformly on
distributed games, be them winning for the process team or not.

The remaining of this section is devoted to the proof of this result.

168 J. Bernet and D. Janin

Let G = 〈P, E, T, e0, W〉 be a n-processes distributed game. First, we are going
to describe the synchronous game G̃, then we will show that it is equivalent to
G in terms of distributed strategies with finite memory.

For any set Ei, define Êi as an equipotent set, such that Ei ∩ Êi = ∅; for
any e ∈ Ei, denote by êi its image in Êi. Let Ê =

∏
i∈{1,...,n} Êi and let P̂ =

∏
i∈{1,...,n} P̂i (i.e. we restrict to relevant process positions in a synchronous

game: process positions where every process is active).
Consider G̃ = 〈P̃ , Ẽ, T̃ , e0, W̃〉, whose positions are:

P̃i = Pi ∪ Êi ; Ẽi = Ei (for all i ∈ {1, . . . n})

For any position x ∈ P ∪ E, denote by x̂ the position of P̃ obtained by
replacing in e each component from Ei with their image in Êi , i.e. :

x̂[i] =
{

x̂[i] if x[i] ∈ Ei

x[i] if x[i] ∈ Pi

The function that maps any x ∈ P ∪ E to its image x̂ in P̃ is trivially a
bijection. The moves of G̃ are defined as follows:

T̃ P
i = T P

i ∪ {(ê, e) : e ∈ Ei}
T̃ E = {(e, p̂) ∈ Ẽ × P̃ | (e, p) ∈ T E}

∪ {(e, ê) : e ∈ E}
The function cancel(Ẽ · P̃)∗ → (E · P)∗ erases any asynchronous move from a

global play: cancel(ε) = ε, cancel(w · e ·p) = cancel(w) · e ·p, and cancel(w · e · ê) =
cancel(w) (where p ∈ P , e ∈ E).

This function is generalized to infinite words by: cancel(x0 · x1 · · · ·) =
limi→∞ cancel(x0 · · · xi) (it is a converging sequence, in the sense of the prefix
topology over words, as defined for instance in [8]).

The winning condition of G̃ is then defined as follows:

W̃ = cancel−1(W) ∪ (Ẽ · P̃)∗ · (E · Ê)ω

Remark. The underlying bipartite graph of G is embedded into the one from
G̃. The graph of the arena of G̃ is actually nothing more than the subgraph
induced by this embedding, where on each position of the environment a loop of
size 2 has been added, corresponding to a totally asynchronous move. Moreover,
the winning condition W̃ is not much more complicated than W : amongst the
usual infinitary winning conditions (reachability, safety, parity, Muller, etc. ...),
only the safety condition in not preserved by this construction.

Lemma 1 (From asynchronous to synchronous). For any distributed and
winning strategy for the Process team in G, there is a winning distributed strategy
for the Process team in G̃.

The idea is actually to copy this strategy on G̃, ensuring in the process that the
Process players do not take the asynchronous moves played onto their arena into
account.

From Asynchronous to Synchronous Specifications 169

For any i ∈ {1, . . . , n}, let us define a function canceli : (Ẽi · P̃i)∗ → (Ei · Pi)∗

that erases the local asynchronous moves: canceli(ε) = ε, canceli(w · e · p) =
canceli(w) · e · p, and canceli(w · e · ê) = canceli(w) for any e ∈ Ei, p ∈ Pi, and
w ∈ (Ẽi.P̃i)∗.

Consider a winning distributed strategy σ = σ1 ⊗ · · · ⊗ σn over G. The dis-
tributed strategy σ̃ = σ̃1 ⊗· · ·⊗ σ̃n is defined for any i ∈ {1, . . . , n}, for any local
play w ∈ Ẽi · (P̃i · Ẽi)∗, and for any positions p ∈ Pi, e ∈ Ei by:

σ̃i(w · p) =
{

σi(canceli(w · p)) if canceli(w · p) ∈ Dom(σi)
undetermined otherwise.

σ̃i(w · ê) = e

It is clear that for any i ∈ {1, . . . , n}, the following diagram commutes:

(Ẽ · P̃)∗ cancel−−−−−−−−→ (E · P)∗

πi

⏐⏐�
⏐⏐�viewi

(Ẽi · P̃i)∗
canceli−−−−−−−−→ (Ei · Pi)∗

Therefore, for any global play w ∈ Dom(σ̃), and for any Process i ∈ {1, . . . , n}
such that w[i] ∈ Pi, we have:

σ̃i(w[i]) = σi(canceli(w[i]))
= σi(viewicancel(w))

For any infinite play w in G̃ which is consistent with σ̃, the corresponding
play cancel(w) in G is consistent with σ, hence belongs to W when infinite.
Then w ∈ W̃ comes directly. The strategy σ̃ is therefore winning over G.

Lemma 2 (From synchronous to asynchronous). For any finite state win-
ning distributed strategy for the Process team over G̃ there exists a finite state
winning distributed strategy for the Process team over G with a memory of the
same size.

The problem in proving this lemma is that we will obviously have to cope with
any local strategy over G̃i (i ∈ {1, . . . , n}) has the ability to somehow count the
asynchronous moves, therefore getting additional information on the global play
comparing to a local strategy over G.

The answer consists in showing that this counting is in any case useless, since
each time the Environment can choose to play a totally asynchronous move. A
Process i has therefore no interest in counting the local asynchronous moves,
since he does not know whether they are true asynchronous moves (correspond-
ing to asynchronous moves in G) or totally asynchronous ones.

The proof technique we use consists in saturating the memory of any dis-
tributed strategy over G, building in the process a distributed strategy that

170 J. Bernet and D. Janin

behaves like the one over G would do if the Environment played a large number
of totally asynchronous moves each time he has to play.

Suppose the following distributed strategy with finite memory is given: σ̃ =
σ̃1 ⊗ · · · ⊗ σ̃n, and suppose it is winning over G̃ with the following memories:

M̃i = 〈M̃i , m̃0,i ∈ M̃i , μ̃i : M̃i × (P̃i ∪ Ẽi) → M̃i , h̃i : M̃i × P̃i → Ẽi〉
(for (i ∈ {1, . . . , n}).

Since there are finitely many local strategies, each of them with finite memory,
pumping lemma arguments show that: there exists an integer L such that for
any Process i ∈ {1, . . . , n}, for any memory element m in M̃i, for any position
e ∈ Ẽi, the following holds:

μ∗
i (m, (e · ê)L) = μ∗

i (m, (e · ê)k·L) for any integer k > 0 (1)

Now, consider the distributed strategy over G σ = σ1 ⊗ · · · ⊗ σn with finite
memory Mi = 〈Mi, m0,i, μi, hi〉, where Mi = M̃i, m0,i = m̃0,i, hi = h̃i, and:

μi(m, e) = μ̃i
∗(m, e · (ê · e)2·L−1)

μi(m, p) = μ̃i(m, p)

for e ∈ Ei and p ∈ Pi.
We are going to show that σ is winning over G. First of all, define the function

fill : (E · P)∗ → (Ẽ · P̃)∗ as follows:

fill(e0 · p0 · e1 · p1 · · · pn) = e0 · (ê0 · e0)2·L−1 · p̂0 · e1 · (ê1 · e1)2·L−1 · p̂1 · · · p̂n

fill can be generalized to infinite words in the same fashion than cancel.
Remark. fill is clearly a map from the plays where the Processes have to play in
G to the plays of G̃. It is moreover easy to figure out that cancel ◦ fill, restricted
to the plays of G, is the identity function, and that therefore fill(w) ∈ W̃ implies
w ∈ W .

Last, the following fact tells that σ behaves over G exactly like σ̃ does over G̃ if
the Environment plays 2 · L − 1 totally asynchronous moves each time it has to
play.

Fact 2.1 For any infinite play w in G consistent with σ, the play fill(w) is
consistent with σ̃.

Knowing that σ̃ is winning, and using remark above, we conclude that σ is
winning.

Remark. σ is not more complex than σ̃; it actually uses a memory of exactly
the same size.

4 Synchronizing Linear Game

It is known that, in general, checking the existence of a winning distributed
strategy for the Process team is undecidable, even in the case there are only two

From Asynchronous to Synchronous Specifications 171

Process players with reachability (W = ∅) or safety (W = (E + P)ω) winning
condition [3]. However, when the information flows satisfies some linearity condi-
tion described below, the problem becomes decidable though non elementary [9].

In view of these properties, it occurs that our reduction of asynchronous dis-
tributed games to equivalent synchronous one is not that satisfactory. In fact,
by introducing global non deterministic Environment moves everywhere, the lin-
earity of the information flows in game G is lost in game G̃.

We provide in this section a modification of our construction that do preserve
such a linearity property (built upon the notion of i-sequentiality in [7]).

Definition. Given an n-Process distributed game G = 〈P, E, TP , TE , e0, W〉,
we say that game G is a distributed linear game when for every i ∈ [1, n], for
every Environment positions e and f , for every Process team positions p and
q ∈ P such that (e, p) ∈ TE and (f, q) ∈ TE :

If e[1, i] = f [1, i] and if p[i] = q[i] ∈ P [i] or p[i] ∈ E[i] or q[i] ∈ E[i] then
p[1, i] = q[1, i].

This (local) linearity property first ensures that before every Environment moves,
if a Process player i knows (in the epistemic sense) not only his own position
e[i] but also the position e[1, i − 1] of positions of every Process player with
lower index, then this remain the case after any (synchronous or asynchronous)
Environment move.

Moreover, since Process players knows each other strategies, this properties
also ensures that, from a given starting position, given a fixed distributed strat-
egy, every Process player knows (again in the epistemic sense), at any time he
is active during a play, the position of every Process player of smaller index.

The next definition gives a construction on distributed games that, when
applied to linear games, can be seen as a normalization process shifting from
implicit knowledge to explicit knowledge.

Definition. Let G = 〈P, E, TP , TE , e0, W〉 be an n-process distributed game,
and let lin(G) = 〈P ′, E′, T ′

P , T ′
E , e′0, W ′〉, called the linearization of G, be the

game defined from game G as follows:

1. for every i ∈ [1, n]:
(a) P ′

i = P [1, i] − E[1, i] + {⊥i},
(b) E′

i = E[1, i],
(c) T ′

P,i = TP [1, i] ∩ (P ′
i × E′

i),
2. and, for every e ∈ E′ =

∏
i∈[1,n] E

′
i:

(a) either position e is coherent w.r.t. game G in the sense that for every
i ∈ [1, n] one has e[i] = (e[n])[1, i], then we put (e, p) ∈ T ′

E for every
p ∈ P ′ such that ∀i ∈ [1, n], (e[i], p[i]) ∈ TE[1, i],

(b) or position e is incoherent then we put (e, ⊥)∈T ′
E with ⊥=(⊥1, · · · , ⊥n).

3. e′0 = (e0[1], e0[1, 2], · · · , e0[1, n − 1], e0[1, n]),
4. and W ′ = {w ∈ (P ′ + E′)ω : w[n] ∈ W}.

172 J. Bernet and D. Janin

Remark. Observe that, in game lin(G) any time the Process team reach an
incoherent position e, Environment player moves to position ⊥ where the Pro-
cess team looses. It follows that relevant positions in game lin(G) (positions
where the Process team will play to win) are only coherent positions that is
to say position x ∈ E′ + P ′ such that, given y = x[n] ∈ P + E, one has
x = (y[1], y[1, 2], · · · , y[1, n−1], y[1, n]). In other words, in every global coherent
position x of game lin(G), Process i explicitly knows position x[j] for every index
j such that 1 ≤ j ≤ i.

More formally, distributed strategies in game G and lin(G) can be related as
stated in the following two lemmas.

Lemma 3. For every winning distributed strategy σ1 ⊗ · · · ⊗ σn in game G, the
distributed strategy σ′

1 ⊗ · · · ⊗ σ′
n in game lin(G) defined, for every i ∈ [1, n], by

σ′
i = σ1 ⊗ · · · ⊗ σi, is a winning distributed strategy in game lin(G).

Proof. Immediate from definitions and remark above.

In general, there is no converse to such a lemma. In fact, games of the form
lin(G) are linear henceforth existence of winning distributed strategies is decid-
able which is not true for arbitrary game G. If, however game G is itself linear,
a converse hold.

Lemma 4. If game G is linear, for every winning distributed strategy σ′
1 ⊗· · ·⊗

σ′
n in game lin(G) there is a winning distributed strategy σ1 ⊗ · · · ⊗ σn in game

G such that, for every i ∈ [1, n], σ′
i = σ1 ⊗ · · · ⊗ σi.

Proof. Observe first that, because the distributed strategy σ′
1⊗· · ·⊗σ′

n is winning
in game lin(G) it only goes to coherent positions. Without lost of generality we
can thus assume that the local strategies are themselves coherent. In other words,
we can assume that, for every i and j with 1 ≤ i < j ≤ n, for every global finite
play w in game lin(G), σ′

i(viewi(w)) = σ′
j(viewj(w))[1, i]

Now, the statement follows from the study of linear games presented in [1].
The distributed strategy σ1 ⊗ · · · ⊗ σn is defined inductively.

First, strategy σ1 is just defined to be strategy σ′
1. In fact, up to position ⊥1,

local games lin(G)[1] and G[1] are essentially isomorphic.
Next, for every i ∈ [2, n], strategy σi is inductively built from strategy σ′

i−1 =
σ1 ⊗ · · · ⊗ σi−1 and strategy σ′

i as follows. The key idea is to simulate, from
the knowledge of the initial position e0, the knowledge of strategy σ′

i−1 and any
local play wi in G[i], the (unique by linearity) play w that has been played on
the projection G[1, i] such that wi = viewi(w). Then, we put σi(wi) = σ′

i(w).
Linearity ensures that this simulation can indeed be performed. �.

Now, it occurs that

Theorem 2. For every n-Process linear distributed game G the game lin(G̃)
is linear and equivalent to game G in the sense that Process team has a finite
memory winning strategy in game G if and only if it has one in game lin(G̃).

From Asynchronous to Synchronous Specifications 173

Proof. The proof arguments are similar to the proof arguments for Theorem 1.
There, they have been detailed. Here, we only give a sketch of them.

First, any winning distributed strategy σ1 ⊗ · · · ⊗ σn induces, by composing
it with function cancel, a winning strategy in game G̃ that, in turn, applying
Lemma 3, induces a winning strategy in game lin(G̃).

Conversely, assuming there is a finite state distributed winning strategy σ̃ for
the Process team in game lin(G̃), it occurs that one can build, using similar
pumping argument, a finite state distributed winning strategy σ′ for the Process
team in game lin(G). Then, in turn, this strategy induces a finite state winning
distributed strategy by applying Lemma 4.

References

1. Bernet, J., Janin, D.: Tree automata and discrete distributed games. In: Liśkiewicz,
M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 540–551. Springer, Hei-
delberg (2005)

2. Bernet, J., Janin, D.: Distributed synthesis in zero-delayed architectures with cy-
cles. In: Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 175–190. Springer, Heidelberg (2006)

3. Janin, D.: On the (high) undecidability of distributed synthesis problems. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.)
SOFSEM 2007. LNCS, vol. 4362, pp. 320–329. Springer, Heidelberg (2007)

4. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: LICS 2001.
Proc. IEEE Symposium on Logic in Computer Science, pp. 389–398 (2001)

5. Lin, F., Wonham, M.: Decentralized control and coordination of discrete event
systems with partial observation. IEEE Transactions on automatic control 33(12),
1330–1337 (1990)

6. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001)

7. Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FST TCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)

8. Perrin, D., Pin, J.E.: Infinite Words; Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

9. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS 1979. 20th An-
nual IEEE Symposium on Foundations of Computer Science, pp. 348–363 (October
1979)

10. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS 1990. Proc. 31th IEEE Symposium on Foundations of Computer Science,
pp. 746–757 (1990)

Exact OBDD Bounds for Some Fundamental

Functions

(Extended Abstract)

Beate Bollig, Niko Range, and Ingo Wegener

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
beate.bollig@uni-dortmund.de, niko@range.at, ingo.wegener@uni-dortmund.de

Abstract. Ordered binary decision diagrams (OBDDs) are the most
common dynamic data structure or representation type for Boolean func-
tions. Among the many areas of application are verification, model check-
ing, computer aided design, relational algebra, and symbolic graph
algorithms. Although many even exponential lower bounds on the OBDD
size of Boolean functions are known, there are only few functions where
the OBDD size is even asymptotically known exactly. In this paper the
exact OBDD sizes of the fundamental functions multiplexer and addition
of n-bit numbers are determined.

Keywords: Computational complexity, lower bounds, ordered binary
decision diagrams.

1 Introduction and Results

When working with Boolean functions as in circuit verification, synthesis, model
checking, and even in graph algorithms, ordered binary decision diagrams, de-
noted OBDDs, introduced by Bryant (1986), are the most often used data struc-
ture supporting all fundamental operations on boolean functions.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-
able order π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

Definition 2. A π-OBDD on Xn (see Fig.1) is a directed acyclic graph G =
(V, E) whose sinks are labeled by Boolean constants and whose non sink (or
inner) nodes are labeled by Boolean variables from Xn. Each inner node has
two outgoing edges one labeled by 0 and the other by 1. The edges between inner
nodes have to respect the variable order π, i.e., if an edge leads from an xi-node
to an xj-node, π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node v
represents a Boolean function fv : {0, 1}n → {0, 1} defined in the following way.
In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node
choose the outgoing edge with label bi until a sink is reached. The label of this
sink defines fv(b). The size of the π-OBDD G is equal to the number of its nodes.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 174–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exact OBDD Bounds for Some Fundamental Functions 175

Note, that OBDDs are not restricted to the representation of single-output func-
tions. An OBDD represents a Boolean function f ∈ Bn,m by representing simul-
taneously the outputs f1, f2, . . . , fm of f .

The size of the reduced π-OBDD representing f is described by the following
structure theorem (Sieling and Wegener (1993)). In order to simplify the de-
scription, we describe the theorem only for the special case where π equals the
identity id(i) = i.

Theorem 1. The number of xi-nodes of the id-OBDD for f = (f1, . . . , fm) is
the number si of different subfunctions fj|x1=a1,...,xi−1=ai−1 , 1 ≤ j ≤ m and
a1, . . . , ai−1 ∈ {0, 1}, essentially depending on xi (a function g depends essen-
tially on xi if g|xi=0 �= g|xi=1).

The variable order π is not given in advance and we have the freedom (and the
problem) to choose a good or even an optimal order for the representation of f .
Let π-OBDD(f) denote the π-OBDD size of f .

Definition 3. The OBDD size of f (denoted by OBDD(f)) is the minimum of
all π-OBDD(f).

It is an obvious aim to determine OBDD(f) for as many of the interesting func-
tions f as exactly as possible. This is similar to other fundamental complexity
measures, among them circuit size, formula size, monotone circuit size or al-
gebraic complexity (for such results see Wegener (1987)). Although many even
exponential lower bounds on the OBDD size of Boolean functions are known
and the method how to obtain such bounds is simple, there are only few func-
tions where the OBDD size is asymptotically known exactly (see, e.g., Bollig
and Wegener (2000).) Surprisingly enough, there is only one paper presenting
tight bounds on the OBDD size (Wegener (1984)) which has even been published
before the notion OBDD was established. For several fundamental functions one
believes to know the optimal variable order but has no proof for this conjecture.
We start to fill this gap by determining exact OBDD bounds for two fundamen-
tal functions, namely multiplexer MUXn, often also called direct storage access
function DSAn, and binary addition ADDn.

Definition 4. The multiplexer MUXn (or direct storage access function DSAn)
is defined on n + k variables ak−1, . . . , a0, x0, . . . , xn−1, where n = 2k. The a-
variables are called address variables and the x-variables data variables.
MUXn(a, x) = x|a|, where |a| is the number whose binary representation equals
(ak−1, . . . , a0).

Definition 5. Binary addition ADDn:{0, 1}2n → {0, 1}n+1 maps two n-bit in-
tegers x = xn−1 . . . x0 and y = yn−1 . . . y0 to their sum. That is ADDn(x, y)=
sn . . . s0 where x + y = s, where s = sn . . . s0. ADDi,n computes the ith bit si of
ADDn.

The results of the paper are the following ones.

Theorem 2. OBDD(MUXn) = 2n + 1.

176 B. Bollig, N. Range, and I. Wegener

Theorem 3. OBDD(ADD1) = 6 and, for n ≥ 2, OBDD(ADDn) = 9n − 5.

The upper bounds are contained in Wegener (2000) (Theorem 4.3.2 and Theorem
4.4.3). For binary addition the case n = 1 is special since the outputs of ADD1

are symmetric functions (x0 ∧ y0 and x0 ⊕ y0) and the π-OBDD size does not
depend on π. Hence, it is sufficient to consider one of the two possible variable
orders.

In Sections 2 and 3 the lower bounds are proved where it is essential to avoid
an inspection of too many cases since the number of variable orders grows ex-
ponentially. The following simple observation will be helpful. Given an arbitrary
variable order π the number of nodes labeled by a variable x in the π-OBDD
representing a given function f is not smaller than the number of x-nodes in a
π-OBDD representing any subfunction of f . Furthermore, the proofs of the lower
bounds are based on Theorem 1 implying that we do not introduce a new lower
bound method. However, we show how to solve some combinatorial problems in
order to obtain more precise results than known before.

2 Tight Bounds for the OBDD Size of the Multiplexer

In this section, we determine a lower bound on the size of OBDDs for the rep-
resentation of the multiplexer.

Lemma 1. The size of an OBDD for the representation of the multiplexer is at
least 2n + 1.

Proof
Let π be an arbitrary variable order. In order to simplify the description, we
assume w.l.o.g. that the sequence of the address variables according to π is
a0, a1, . . . , ak−1. This assumption is justified because of the observation that the
size of an OBDD representing the multiplexer remains the same if we only change
the positions of some address variables.

Since the multiplexer essentially depends on all data variables, for each vari-
able xi, 0 ≤ i ≤ n − 1, there is at least one node labeled by xi. Moreover, there
have to be two sinks. In the following, our aim is to prove that there exist for
each address variable ai at least 2i further nodes representing non-constant sub-
functions of the multiplexer, such that the number of nodes altogether in the
OBDD is at least

2 + n +
∑k−1

i=0 2i = 2 + n + 2k − 1 = 2n + 1.
We fix one of the address variables, called ai, and use the following nota-

tion. Let Ti(x) be the set of the x-variables tested before the variable ai, Ri(x)
describes the set of the remaining x-variables. Now, we consider all possible as-
signments to the address variables a0, . . . , ai−1. Our aim is to prove that there
exists at least one further node for each assignment. The data variables are par-
titioned into 2i disjoint groups such that the indices of the variables of each
group agree in their binary representation to the corresponding assignment to
the address variables a0, a1, . . . , ai−1. Let bi be an assignment to the address

Exact OBDD Bounds for Some Fundamental Functions 177

variables a0, a1, . . . , ai−1. The group Gbi contains all data variables xj such that
the i least significant bits of the binary representation of j equals bi. Obvi-
ously, Gb′

i
∩ Gb′′

i
= ∅ for different assignments b′i and b′′i to the address variables

a0, a1, . . . , ai−1.
For each assignment bi to the address variables a0, . . . , ai−1 we distinguish

two cases.

Case 1: Gbi ∩ Ri(x) �= ∅.
We show that there exists a subfunction corresponding to bi that essentially
depends on ai, therefore there has to be one further node labeled by ai in the
π-OBDD representing the multiplexer.

For this reason, we consider the subfunction which corresponds to the fol-
lowing assignment to the variables. Let xj be a variable in Gbi ∩ Ri(x). The
assignment to the address variables a0, a1, . . . , ai−1 is bi, the assignment to all
data variables in Ti(x) is 0. Obviously, the corresponding subfunction essen-
tially depends on xj . Therefore, different assignments to the address variables
a0, a1, . . . , ai−1 lead to different subfunctions which have to be represented at
different nodes in the π-OBDD. Furthermore, the considered subfunction essen-
tially depends on ai, since the assignment 1 to xj , 0 to all other data variables,
and the binary representation of j to the address variables has the function value
1 but changing only the assignment to ai leads to the function value 0.

Altogether, we have shown that there has to be one further ai-node in the
π-OBDD representing the multiplexer.

Case 2: Gbi ∩ Ri(x) = ∅.
This case is more difficult because it is possible that there does not exist a
subfunction for which the assignment to the variables a0, a1, . . . , ai−1 agrees with
bi and which essentially depends on ai. We have to inspect this case very carefully
in order to guarantee that we count each node of the π-OBDD representing the
multiplexer only once.

Let bj
i , j ≤ i, be the assignment to the variables a0, a1, . . . , aj−1 according

to bi. Let i′ be the minimum number in {0, . . . , i} such that Gbi′
i

∩ Ri′(x) = ∅.
Since Gbi ⊆ Gbi′

i
we know that Gbi ⊆ Ti′(x). Now, we consider the assignment

bi′−1
i which is unique for bi. Let xj′ be the jth data variable of the set Gbi′

i
in

the sequence according to π. Our aim is to show that there are at least 2j−1 xj′ -
nodes in the π-OBDD representing the multiplexer. For this reason, we consider
the following 2j−1 different assignments to the first variables of the set Gbi′

i

which are before xj′ in the sequence according to π. The address variables are
set according to the assignment bi′−1

i , the data variables in Ti′(x) \ Gbi′
i

are
fixed to 0 and for the first j − 1 variables from Gbi′

i
according to π we consider

all possible assignments. Obviously, the corresponding subfunctions essentially
depend on xj′ . Furthermore, two different assignments to the first j − 1 data
variables of Gbi′

i
according to π lead to different subfunctions, since each of

these data variables can determine the output of the multiplexer. For this we
consider the following assignments to the remaining variables. Let xk′ be one of

178 B. Bollig, N. Range, and I. Wegener

the first j − 1 data variables under consideration. The remaining data variables
are set to 0 and the address variables are set to the binary representation of k′.
The output of the multiplexer is equal to the assignment of xk′ .

Using the fact that |Gbi′
i
| = 2k−(i′−1) we can conclude that there are at least

2k−(i′−1)∑

j=1

2j−1 =
2k−i′
∑

j=0

2j = 22k−i′
+1 − 1

nodes labeled by a data variable from Gbi′
i

in the π-OBDD representing the
multiplexer. We have already counted one node for each data variable, therefore
we have shown that there are at least

(22k−i′
+1 − 1) − 2k−(i′−1)

further nodes.
On the other hand, there are 2�−(i′−1) assignments b� to the address variables

a0, a1, . . . , a�−1, � ≥ i′ − 1, such that bi′−1
i is equal to bi′−1

� . Therefore, we can
conclude that there are

k−1∑

�=i′−1

2�−(i′−1) =
k−i′∑

�=0

2� = 2k−i′+1 − 1

assignments to the address variables corresponding to bi′−1
i that lead to case 2

in our investigation.
Since 22k−i′+1 − 1 ≥ 2k−i′+2 − 1, we are done. �

3 Tight Bounds for the OBDD Size of Binary Addition

As noted before, Wegener (2000) has already presented the upper bound of 9n−5
on the OBDD size of binary addition for two n-bit numbers where n ≥ 2. In the
following, we prove the matching lower bound. Figure 1 shows an OBDD for the
binary addition of two 4-bit numbers according to an optimal variable order.

In order to obtain lower bounds on the size of OBDDs one-way communication
complexity has become a standard technique (see Hromkovič (1997) and Kushile-
vitz and Nisan (1997) for the theory of communication theory). In the following,
we do not really use methods from communication theory but the notion of a com-
munication matrix which is nothing else but the value table of a function in a dif-
ferent form. A function f : {0, 1}m×{0, 1}n → {0, 1} can be described by a matrix
of size 2m ×2n. The matrix entry at position (a, b), a ∈ {0, 1}m and b ∈ {0, 1}n, is
f(a, b). The number of different rows is equal to the number of different subfunc-
tions obtained by the replacement of the first m variables by constants. Since each
column is associated with an assignment to the last n variables, a row corresponds
to a subfunction essentially depending on a variable z iff there exist two columns
associated with two assignments that differ only in the assignment of z and for
which the entries in the matrix are different.

Exact OBDD Bounds for Some Fundamental Functions 179

x0

y0y0

1

ADD3,n

x3

ADD2,n

ADD1,n

ADD0,n

x3

y3 y3 y3 y3

x2 x2 x2

y2 y2 y2 y2 y2 y2

x1 x1 x1

y1y1y1y1y1y1

0

x0 x0

ADD4,n

Fig. 1. An OBDD for the binary addition of 4-bit numbers (dotted edges are edges
with label 0 and solid edges are edges with label 1)

Since the functions ADDi,n, 0 ≤ i ≤ n, are different and non-constant there
are at least n + 1 nodes representing ADDi,n in an OBDD representing binary
addition. Our aim is to show that for almost all pairs (xi, yi), 0 ≤ i ≤ n−1, there
exist at least 8 nodes labeled by xi or yi not representing one of the functions
ADDi,n, 0 ≤ i ≤ n. Together with the two sinks we are done.

We start our investigation with two simple observations. Let π be an arbitrary
variable order. Symmetric variables for a given function f are variables that can
be exchanged without changing the considered function, i.e. the variables zi

and zj are symmetric variables for f when f|zi=0,zj=1 = f|zi=1,zj=0. In order to
simplify the description, we assume w.l.o.g. that for each variable pair (xi, yi),
0 ≤ i ≤ n−1, the variable xi ist tested before the variable yi according to π. This

180 B. Bollig, N. Range, and I. Wegener

assumption is justified because of the observation that xi and yi are symmetric
variables for binary addition.

Since the functions ADDi,n, 0 ≤ i ≤ n−1, essentially depend on the variables
x0, y0, x1, . . . , xi, yi and ADDn,n essentially depends on all variables, none of
the functions ADDi,n, 0 ≤ i ≤ n, can be represented at a node labeled by a
y-variable.

Now, we introduce some useful notation. Let X be the set of all x-variables and
Y the set of all y-variables. The set X>i contains the variables xi+1, . . . , xn−1.
Similar the sets Y >i, X<i, and Y <i are defined. Let Πxi = (Axi , Bxi), 0 ≤ i ≤
n−1, be a partition of the variables in X ∪Y according to a given variable order
π, where Axi contains all variables that are tested before xi according to π and
Bxi the remaining variables. For a subset S ⊆ X ∪ Y , we denote by A(S) the
set of all possible assignments to the variables in S.

First, we present lower bounds on the number of x-nodes not representing one
of the functions ADDi,n, 0 ≤ i ≤ n. Afterwards the number of y-nodes is investi-
gated. The general proof strategy is the following one. Using some assumptions
suitable assignments to the variables in Az are identified that lead to a suffi-
cient number of different subfunctions. By carefully choosing assignments to the
variables in Bz it is proved that the considered subfunctions are really different
and that they essentially depend on the variable z. The consideration of the
communication matrices for the functions ADDi,n : A(Az) × A(Bz) → {0, 1},
0 ≤ i ≤ n, simplified the investigations.

The missing proofs can be found in the full version of the paper [1].

Lemma 2. Let π be an arbitrary variable order and Πxi = (Axi , Bxi) be a
partition of the variables in X∪Y according to π and an arbitrary chosen variable
xi, 0 ≤ i ≤ n − 1. Let G be a π-OBDD representing ADDn. If Axi ∩ X>i �= ∅,
the number of xi-nodes in G not representing one of the functions ADDj,n,
0 ≤ j ≤ n, is at least 2.

Lemma 3. Let π be an arbitrary variable order and Πxi = (Axi , Bxi) be a
partition of the variables in X∪Y according to π and an arbitrary chosen variable
xi, 0 ≤ i ≤ n − 1. Let G be a π-OBDD representing ADDn. If Axi ∩ X<i �= ∅,
the number of xi-nodes in G not representing one of the functions ADDj,n,
0 ≤ j ≤ n, is at least 4.

Combining Lemma 2 and Lemma 3 we obtain the following result.

Corollary 1. Let π be an arbitrary variable order and let G be a π-OBDD
representing ADDn. The number of x-nodes in G not representing one of the
functions ADDj,n, 0 ≤ j ≤ n, is at least 2n − 2.

Lemma 4. Let π be an arbitrary variable order and Πyi = (Ayi , Byi) be a
partition of the variables in X∪Y according to π and an arbitrary chosen variable
yi, 0 ≤ i ≤ n − 1. Let G be a π-OBDD representing ADDn. If Ayi ∩ X>i �= ∅
and Byi ∩ Y <i �= ∅, the number of yi-nodes in G is at least 6.

Exact OBDD Bounds for Some Fundamental Functions 181

Lemma 5. Let π be an arbitrary variable order and Πyi = (Ayi , Byi) be a
partition of the variables in X∪Y according to π and an arbitrary chosen variable
yi, 0 ≤ i ≤ n − 1, where Ayi ∩X>i �= ∅ and Byi ∩Y <i = ∅. Let G be a π-OBDD
representing ADDn.

i) The number of yi-nodes in G is at least 2.
ii) If |Byi ∩ Y | > 1, there are at least 2 + |Byi ∩ Y | nodes labeled by yi.
iii) If |Byi ∩ Y | ∈ {2, 3} and |Byi ∩ X | < |Byi ∩ Y | − 1, the number of yi-nodes

in G is at least 6.
iv) Let |Byi ∩ Y | = 3 and let yr be the variable in Byi , where Byr ⊂ Byi and

|Byr | > 1, with other words the variable yi ist tested before yr but yr is not
the last variable according to π. If |Byi ∩X | = |Byi ∩Y |−1 = 2, there are at
least 4 yr-nodes in G and 4 xr-nodes not representing one of the functions
ADDj,n, 0 ≤ j ≤ n.

In the following, we show that for almost all pairs (xi, yi), 0 ≤ i ≤ n − 1, the
number of nodes not representing one of the functions ADDj,n, 0 ≤ j ≤ n, and
labeled by xi or yi is 8 if Ayi ∩ X>i = ∅.

Lemma 6. Let π be an arbitrary variable order and Πyi = (Ayi , Byi) be a
partition of the variables in X∪Y according to π and an arbitrary chosen variable
yi, 0 ≤ i ≤ n−1, where Ayi ∩X>i = ∅. Let G be a π-OBDD representing ADDn.

i) If Axi �= ∅, the number of xi-nodes in G not representing one of the functions
ADDj,n, 0 ≤ j ≤ n, is at least 4.

ii) The number of yi-nodes in G is at least 2.
iii) If i ≤ n − 2, the number of yi-nodes in G is at least 4.
iv) If |Byi ∩ Y | > 1, the number of yi-nodes in G is at least 4.

Proof. i) Since Axi �= ∅ and Ayi ∩X>i = ∅, we know that there exist a variable
xk before xi according to π where k < i. Therefore, we can apply Lemma 3
and obtain at least 4 xi-nodes not representing one of the functions ADDj,n,
0 ≤ j ≤ n.

ii) We consider two assignments to the variables in Ayi that differ only in the
assignment to the variable xi. In aj , j ∈ {0, 1}, the variable xi is set to j, the
remaining x-variables in Ayi are set to 1, the y-variables in Ayi are set to 0. Our
aim is to prove that the subfunctions ADDi,n|a0 and ADDi,n|a1 are different and
that they essentially depend on yi. For this reason, we consider the following
two assignments to the variables in Byi that differ only in the assignment to
the variable yi. In bj, j ∈ {0, 1}, the variable yi is set to j, the x-variables in
Byi are set to 1 and the remaining y-variables are set to 0. Table 1 show part
of the communication matrix for ADDi,n. Obviously, the two subfunctions are
different and essentially depend on yi.

iii) Using part ii) it remains to prove that there are two further nodes labeled
by yi. Since Ayi ∩ X>i = ∅, we can conclude that there exist a variable yh,
h > i, in Byi ∩Y . Now, we consider the subfunctions ADDh,n|a1 and ADDn,n|a1

for a1 chosen as in part ii). Both essentially depend on yh and are therefore

182 B. Bollig, N. Range, and I. Wegener

Table 1. Part of the communication matrix for ADDi,n

ADDi,n b0 b1

a0 0 1
a1 1 0

Table 2. Part of the communication matrix for ADDh,n and ADDn,n

ADDh,n b0 b1

a1 1 0

ADDn,n b0 b1

a1 0 1

different from the subfunctions considered in part ii). Table 2 shows part of the
communication matrix for ADDh,n and ADDn,n. Obviously, both subfunctions
are different and essentially depend on yi. Together with the proof of part ii) we
obtain at least 4 yi-nodes.

iv) We assume i = n − 1, otherwise we can use part iii) and we are done.
As in part ii) we consider the assignments a0 and a1. Using the proof of part
ii) we know that there have to be 2 yn−1-nodes representing the subfunctions
ADDn−1,n|a0 and ADDn−1,n|a1 . Our aim is to prove that there have to be two fur-
ther yn−1-nodes in G representing the subfunctions ADDn,n|a0 and ADDn,n|a1 .
Since |Byn−1 ∩ Y | > 1, there has to be a variable yl in Byn−1, where l < n − 1.
We consider the following four assignments to the variables in Byn−1 that differ
only in the assignments to the variables yl and yn−1. In bj1j2 , j1, j2 ∈ {0, 1}, the
variable yl is set to j1 and the variable yn−1 to j2. The x-variables are set to 1
and the remaining y-variables are set to 0.

Figure 2 illustrates the replacement of the variables with the exception of
xn−1, yn−1, and yl by constants.

��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������

���
���
���
���

���
���
���
���

1

0

B

yn−1

xn−1

yl

A

B

Fig. 2. The replacement of some of the variables by constants in the proof of Lemma 6

Table 3 shows part of the communication matrix for ADDn−1,n and ADDn,n.
Obviously, the four subfunctions are different and essentially depend on yn−1,

therefore there are at least 4 nodes labeled by yn−1 in G. �

Table 4 illustrates the minimal number of nodes not representing one of the
functions ADDj,n, 0 ≤ j ≤ n, and labeled by xi or yi if Ayi ∩ X>i = ∅.

Exact OBDD Bounds for Some Fundamental Functions 183

Table 3. Part of the communication matrix for ADDn−1,n and ADDn,n

ADDn−1,n b00 b01 b10 b11

a0 0 1 1 0
a1 1 0 0 1

ADDn,n b00 b01 b10 b11

a0 0 0 0 1
a1 0 1 1 1

Table 4. The minimal number of xi- and yi-nodes if Ayi ∩ X>i = ∅

Axi = ∅ Axi �= ∅
i = n − 1 ∧ |Byi ∩ Y | = 1 2 6
i ≤ n − 2 ∨ |Byi ∩ Y | > 1 4 8

In order to prove the lower bound for binary addition, we only have to combine
Lemma 2-6 in a sufficient way. In doing so, we have to rule out the possibility
that there are too many y-variables for which we cannot guarantee 6 nodes.

Theorem 4. The size of an OBDD for the representation of binary addition is
at least 9n − 5 for n ≥ 2.

Proof. Let π be an arbitrary variable order and G be a π-OBDD representing
ADDn. Our aim is to prove that G has at least 9n−5 nodes. There are (n+1)+2
nodes in G representing the functions ADDi,n, 0 ≤ i ≤ n, and the constant
functions 0 and 1. Using Corollary 1 we obtain at least 2n − 2 further nodes
labeled by an x-variable. If we can prove that there are at least 6n − 6 further
nodes, we are done.

Now, we investigate the number of y-nodes in G. For each variable yi, 0 ≤ i ≤
n− 1, exactly one of the Lemmas 4-6 can be applied and for almost all variables
yi it can be proved that G contains at least 6 yi-nodes. In the following, we
book for each variable xi for which we can prove that there exist at least 4 xi-
nodes in G not representing one of the functions ADDi,n, 0 ≤ i ≤ n, 2 nodes
by the variable yi. Next, we look more carefully at the y-variables for which we
cannot directly guarantee using Lemma 4-6 that there are at least 6 nodes in G.
Figure 3 illustrates all possible cases where the number of nodes accounted for
a y-variable can be less than 6.

– C1 is the set of yi-variables for which Ayi ∩ X>i �= ∅ and |Byi ∩ Y | = 1.
– C2 is the set of yi-variables for which Ayi ∩ X>i �= ∅, Byi ∩ Y <i = ∅, and

|Byi ∩ Y | ∈ {2, 3}, where |Byi ∩ X | = |Byi ∩ Y | − 1.

1

2

6

3

C2

5

4
|Byi

∩ Y | ∈ {2, 3}

∧|Byi
∩ X| = |Byi

∩ Y | − 1

C3 4i = n − 1 ∧ |Byi
∩ Y | = 1 ∧ Axi

�= ∅
C1 |Byi

∩ Y | = 1 2

4

C5 (i ≤ n − 2 ∨ |Byi
∩ Y | > 1) ∧ Axi

= ∅ 4

i = n − 1 ∧ |Byi
∩ Y | = 1 ∧ Axi

= ∅ 2C4

Fig. 3. Possible sets of y-variables for which less than 6 nodes can be directly booked

184 B. Bollig, N. Range, and I. Wegener

– C3 contains the variable yn−1 if |Byn−1 ∩ Y | = 1 and Axn−1 �= ∅.
– C4 contains the variable yn−1 if |Byn−1 ∩ Y | = 1 and Axn−1 = ∅.
– C5 is the set of yi-variables, i ≤ n − 2, where Ayi ∩ X>i = ∅, |Byi ∩ Y | > 1,

and Axi = ∅.

The right column of a Cj-row, 1 ≤ j ≤ 5, presents the minimal number of nodes
accounted for a variable in Cj . Obviously, each variable yi can be in at most one
set Cj , j ∈ {1, . . . , 5}. On the other hand, |Cj | ≤ 1 for j ∈ {1, 3, 4, 5}. Lemma 5
part iv) guarantees that C2 can contain at most one variable. An arrow between
a Cj1 - and a Cj2 -row, j1, j2 ∈ {1, 2, . . . , 5}, indicates that there cannot be a
variable in Cj1 for which only the minimal number of nodes can be accounted
for, as well as in Cj2 .

It is not difficult to see that |C1| + |C3| + |C4| ≤ 1, therefore the arrows 1 − 3
are justified. Furthermore, using the definition of the sets we can immediatley
conclude that |C4| + |C5| ≤ 1 and the arrow 4 follows. For the fifth arrow we
have to work a little bit harder.

Claim
If C1 �= ∅ and C2 �= ∅, the minimal number of nodes accounted for the variables
in C1 ∪ C2 is at least 8.

Proof. Let yi be the variable in C1 and yj be the variable in C2. Because of
the definition of C2 we know that i > j and xi ∈ Byj . Therefore, we can apply
Lemma 3 in order to prove that there are at least 4 xi-nodes. �

In order to prove that |C2| + |C4| ≤ 1 and therefore the arrow 6 is justified, we
assume that C2 �= ∅. Let yj ∈ C2 and yk ∈ Byi , with other words the variable yi

is tested before the variable yk according to π. Because of the definition of C2,
more precisely, since |Byi ∩ X | = |Byi ∩Y | − 1, it follows that also xk ∈ Byi and
therefore Axk

�= ∅. Therefore, the set C4 has to be empty.
Summarizing, we obtain the following results:

– |Ci| ≤ 1, i ∈ {1, 2, . . . , 5}.
– If C1 �= ∅, we know that C2 = C3 = C4 = ∅.
– If C4 �= ∅, it follows that C1 = C2 = C3 = C5 = ∅.

Altogether, we have proved that the number of nodes in G accounted for a
y-variable is at least 6n − 6. �

References

1. Bollig, B., Range, N., Wegener, I.: Exact OBDD bounds for some fundamental
functions. ECCC TR07-049 (2007)

2. Bollig, B., Wegener, I.: Asymptotically optimal bounds for OBDDs and the solu-
tion of some basic OBDD problems. Journal of Computer and System Sciences 61,
558–579 (2000)

3. Bryant, R.E.: Graph-based algorithms for Boolean manipulation. IEEE Trans. on
Computers 35, 677–691 (1986)

Exact OBDD Bounds for Some Fundamental Functions 185

4. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Hei-
delberg (1997)

5. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press,
Cambridge (1997)

6. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters 48, 139–144 (1993)

7. Wegener, I.: Optimal decision trees and one-time-only branching-programs for sym-
metric Boolean functions. Information and Control 62, 129–143 (1984)

8. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner (1987)
9. Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and Ap-

plications. SIAM Monographs on Discrete Mathematics and Applications (2000)

Clustering-Based Similarity Search in Metric

Spaces with Sparse Spatial Centers

Nieves Brisaboa1, Oscar Pedreira1, Diego Seco1,
Roberto Solar2,3, and Roberto Uribe2,3

1 Database Laboratory, University of A Coruña
Campus de Elviña s/n, 15071 A Coruña, Spain

2 Dpto. Ingenieŕıa en Computación, Universidad de Magallanes
Casilla 113-D, Punta Arenas, Chile

3 Grupo de Bases de Datos (UART), Universidad Nacional de la Patagonia Austral
Rio Turbio, Santa Cruz, Argentina

{brisaboa,opedreira,dseco}@udc.es, {rsolar,ruribe}@ona.fi.umag.cl

Abstract. Metric spaces are a very active research field which offers
efficient methods for indexing and searching by similarity in large data
sets. In this paper we present a new clustering-based method for similar-
ity search called SSSTree. Its main characteristic is that the centers of
each cluster are selected using Sparse Spatial Selection (SSS), a technique
initially developed for the selection of pivots. SSS is able to adapt the
set of selected points (pivots or cluster centers) to the intrinsic dimen-
sionality of the space. Using SSS, the number of clusters in each node
of the tree depends on the complexity of the subspace it represents. The
space partition in each node will be made depending on that complexity,
improving thus the performance of the search operation. In this paper
we present this new method and provide experimental results showing
that SSSTree performs better than previously proposed indexes.

Keywords: Similarity search, metric spaces, sparse spatial selection,
cluster center selection.

1 Introduction

Searching in metric spaces is a very active research field since it offers efficient
methods for indexing and searching by similarity in non-structured domains. For
example, multimedia databases manage objects without any kind of structure
like images, audio clips or fingerprints. Retrieving the most similar fingerprint
to a given one is a typical example of similarity search. The problem of text
retrieval is present in systems that range from a simple text editor to big search
engines. In this context we can be interested in retrieving words similar to a
given one to correct edition errors, or documents similar to a given query. We
can find more examples in areas such as computational biology (retrieval of DNA
or protein sequences) or pattern recognition (where a pattern can be classified
from other previously classified patterns) [1,2].

The problem of similarity search can be formalized through the concept of met-
ric spaces. A metric space (X, d) is composed of a universe of valid objects X and

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 186–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Clustering-Based Similarity Search in Metric Spaces 187

a distance function d : X × X −→ R+ satisfying the properties of non-negativity
(d(x, y) > 0 and if d(x, y) = 0 then x = y), symmetry (d(x, y) = d(y, x)) and the
triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). The distance function determines
the similarity between any two objects from that universe. A collection of words
with the edit distance (computed as the number of characters to insert, delete or
modify to transform a word into another), is an example of a metric space. A vec-
tor space is a particular case of a metric space, in which each object is composed
of k real numbers. In vector spaces we can use any distance function from the fam-
ily Ls(x, y) = (

∑
1≤i≤k|xi − yi|s)

1
s . For example, L1 is the Manhattan distance,

L2 is the Euclidean distance and L∞ = max1≤i≤k|xi − yi| is the maximum dis-
tance. The dimensionality of a vector space is the number of components of each
vector. Although general metric spaces do not have an explicit dimensionality, we
can talk about their intrinsic dimensionality following the idea presented in [1].
The higher the dimensionality the more difficult the search.

Similarity search can involve different types of queries. Range search retrieves
the objects that are within distance r (query range) to the query q, i.e., {u ∈
U/d(q, u) ≤ r}. k-nearest neighbor search retrieves the k nearest objects to the
query q, i.e., the set A ⊆ U such that |A| = k y ∀ u ∈ A, v ∈ U − A, d(q, u) ≤
d(q, v). Range search is the most general and k-nearest neighbor search can be
implemented in terms of it [1].

Similarity search can be trivially implemented comparing the query with all
the objects of the collection. However, the high computational cost of the dis-
tance function, and the high number of times it has to be evaluated, makes
similarity search very inefficient with this approach. This has motivated the
development of indexing and search methods in metric spaces that make this
operation more efficient trying to reduce the number of evaluations of the dis-
tance function. This can be achieved storing in the index information that, given
a query, can be used to discard a significant amount of objects from the data
collection without comparing them with the query.

Although reducing the number of evaluations of the distance function is the
main goal of indexing algorithms, there are other important features. Some meth-
ods can only work with discrete distance functions while others admit continuous
distances too. Some methods are static, since the data collection cannot grow
once the index has been built. Dynamic methods support insertions in an ini-
tially empty collection. Another important factor is the possibility of efficiently
storing these structures in secondary memory, and the number of I/O operations
needed to access them.

Search methods in metric spaces can be grouped in two classes [1]: pivot -
based and clustering-based search methods. Pivot-based methods select a subset
of objects from the collection as pivots, and the index is built computing and
storing the distances from each of them to the objects of the database. During
the search, this information is used to discard objects from the result without
comparing them with the query. The most important pivot-based methods are
Burkhard-Keller-Tree (BKT) [3], Fixed-Queries Tree (FQT) [4], Fixed-Height
FQT (FHQT) [5], Fixed-Queries Array (FQA) [6], Vantage Point Tree (VPT)

188 N. Brisaboa et al.

[7] and its variants [8] [9], Approximating and Eliminating Search Algorithm
(AESA) [10] and LAESA (Linear AESA) [11].

Clustering-based methods partition the metric space in a set of regions or
clusters, each of them represented by a cluster center. In the search, complete
regions are discarded from the result based on the distance from their center to
the query. The most important clustering methods are Bisector Tree (BST) [12],
Generalized-Hyperplane Tree (GHT) [13] and Geometric Near-neighbor Access
Tree (GNAT) [14]. In section 2 we will briefly review how these methods work.

This paper presents a new index structure for searching in metric spaces called
SSSTree. It is a clustering-based search method, and its main feature is that the
cluster centers are selected applying Sparse Spatial Selection (SSS) [15], a strategy
initially designed for pivot selection. SSS is adaptive, dynamic and the set of se-
lected objects are well-distributed in the metric space. Applying SSS, the SSSTree
is not balanced, but it is adapted to the complexity of the space, which is an im-
portant difference with previously proposed methods. Our hypothesis is that, ap-
plying SSS to select the cluster centers, the space partition will be more efficient
and the search operation will show a better performance. Experimental results
show that this new approach performs better than previously proposed methods.

Next Section briefly explains some basic concepts about clustering-based meth-
ods for similarity search. Section 3 analyzes the problem of pivot and cluster center
selection and describes SSS. Section 4 presents SSSTree. In Section 5 experimen-
tal results are discussed and Section 6 finishes the paper with the conclusions and
future work.

2 Previous Work on Clustering-Based Similarity Search

Clustering-based search methods partition the metric space in several regions
or clusters, each of them represented by a cluster center. The index stores the
information of each cluster and its center. Given a query, complete clusters can
be discarded from the result based on the distance from their centers to the
query. In those clusters that can not be discarded, the query is sequentially
compared with all the objects of the cluster.

There are two pruning criteria to delimit the clusters in clustering-based meth-
ods: generalized hyperplane and covering radius. The algorithms based in the
hyperplane partitioning divide the metric space in a Voronoi partition. Given
a set of cluster centers {c1, c2, . . . , cn} ⊂ X, the Voronoi diagram is defined as
the space subdivision in n areas in such a way that, x ∈ Area(ci) if and only
if d(x, ci) < d(x, cj), for j �= i. In this type of algorithms, given a query (q, r),
the clusters with no objects in the result set are directly discarded based in the
query range and the distance from the query to the hyperplane that separates
that cluster from the next one.

In the case of the algorithms that use the covering radius for pruning, the space
is divided in a set of spheres that can intersect, and a query can be included
in more than one sphere. The covering radius is the distance from the cluster
center to the furthest object from it. Knowing the distance from the query to

Clustering-Based Similarity Search in Metric Spaces 189

q

ci

cj

dmin

dmax

Fig. 1. Use of the max and min distances to discard objects in GNAT

the cluster center, the query range, and the covering radius, we can decide if
that cluster contains objects in the result set or if it does not.

Bisector Tree (BST) [12] recursively divides the space storing the information
about the clusters in a binary tree. In the root of the tree, two cluster centers
are selected to make the division. The objects that belong to the first cluster are
assigned to the left child node, and those that belong to the second cluster are
assigned to the right child. This process is repeated in each node to recursively
partition the space. For each cluster, the cluster center and the covering radius
are stored. Given a query, the tree is traversed deciding in each node what
branches (clusters) can be discarded from the result. Generalized Hyperplane
Tree (GHT) [13] also applies a recursive partitioning to the space. However,
during the search GHT does not use the covering radius to determine what
clusters can be discarded. In this case, this decision is taken using the hyperplane
place between the two cluster centers stored in each node.

Geometric Near-neighbor Access Tree (GNAT) [14] uses m cluster centers in
each internal node of the tree. Each node of the tree stores a table with m rows
(one for each cluster center) and m columns (one for each cluster). Cell (i, j)
stores the minimum and maximum distances from the cluster center ci to an
object belonging to Clusterj. During the search, the query q is compared with a
cluster center ci. Now, we can discard the clusters Clusterj such that d(q, ci) is
not between that minimum and maximum distances. Figure 1 intuitively shows
the meaning of these distances and how they can be used to decide in which
clusters continue the search.

EGNAT [16] belongs to the group of algorithms based on compact partitions
and is a secondary memory optimization of GNAT, in terms of space, disk ac-
cesses and distance evaluations.

3 The Problem of Pivots and Cluster Centers Selection

3.1 Previous Work

Something that most of the algorithms we have mentioned have in common is
that both pivots and cluster centers are usually selected at random. However, it

190 N. Brisaboa et al.

is evident that the specific set of selected reference objects has a strong influence
in the efficiency of the search. The number of objects, their position in the
space and their position with respect to the others, determine the ability of
the index for discarding objects without comparing them with the query. Other
important problem is how to determine the optimal number of reference objects.
For example, in the case of pivot-based algorithms, we could think that the higher
the number of elements chosen as pivots, the more efficient the search. But the
query has to be compared both with the pivots and the objects that could not
be discarded, so we have to reach a good trade-off between the number of pivots
and the amount of objects that can be discarded using them.

Previous works have proposed several heuristics for pivot selection. For exam-
ple, [11] selects as pivots the objects maximizing the sum of the distances to the
already selected pivots. [7] and [14] try to obtain pivots far away from each other.
[17] extensively analyzes this problem and shows experimentally the importance
of this factor in the search performance. In addition, [17] proposes a criterion
to compare the efficiency of two sets of pivots of the same size, and three pivot
selection techniques based on that criterion. The first one is called Selection,
which selects N random sets of pivots and finally uses the one maximizing the
efficiency criteria. Incremental iteratively selects the set of pivots, adding to the
set the object that more contributes to the efficiency criteria when added to the
current set of pivots. Local optimum starts with a random set of pivots and in
each iteration substitutes the pivot that less contributes to the efficiency crite-
rion with other object. Although all these techniques select pivots that improve
the search performance, in all of them the number of pivots has to be stated in
advance. Therefore, the optimal number of pivots has to be computed by trial
and error on a significant data collection (and this inevitably makes the search
method static).

3.2 Sparse Spatial Selection (SSS)

Sparse Spatial Selection (SSS) [15] dynamically selects a set of pivots well dis-
tributed in the space. The hypothesis behind this selection strategy is that, if
the pivots are “spatially” sparse in the metric space, they will be able to discard
more objects in the search operation. To do this, when a new object is inserted in
the database, it is selected as a new pivot if it is far away enough from the pivots
already selected. We consider that the new object is far enough if its distance
to any pivot is greater than or equal to Mα, being M the maximum distance
between any two objects from the collection, and α a constant parameter that
usually takes values are around 0.4. The parameter α has effect on the number
of pivots selected. Figure 2 shows with several vector spaces that the optimal
values of this parameter are always in the range from 0.35 to 0.4 (note also that
the efficiency of the search is virtually the same for all the values included in
this interval).

The results presented in [15] show that this strategy is more efficient than
others previously proposed in most cases. Furthermore, SSS has other important
features. SSS is dynamic, this is, the database can be initially empty, and the

Clustering-Based Similarity Search in Metric Spaces 191

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
10

2

10
3

10
4

�

Dim. 8

Dim. 10

Dim. 12

Dim. 14

100,000 objects, 10,000 queries, retrieving the 0.01% of the database

E
v
a
lu

a
ti
o
n
s

o
f
th

e
d
is

ta
n
c
e

fu
n
c
ti
o
n

Fig. 2. Search efficiency in terms of the parameter α

pivots will be selected when needed as the database grows. SSS is also adaptive,
since it is no necessary to state in advance the number of pivots to select. As the
database grows, the algorithm determines if the collection has become complex
enough to select more pivots or not. Therefore, SSS adapts the index to the
intrinsic dimensionality of the metric space [15].

Although SSS was initially designed for pivot selection, in this work it has been
used for cluster center selection. Our hypothesis is that if the cluster centers are
well distributed in the metric space, the partition of the space will be better and
the search operation will be more efficient.

4 SSSTree: Sparse Spatial Selection Tree

SSSTree is a clustering-based method for similarity search based on a tree struc-
ture where the cluster centers of each internal node of the tree are selected ap-
plying Sparse Spatial Selection (SSS). Our hypothesis is that, using these cluster
centers, the partition of the space will better and the performance of the search
operation will be increased. In each node, the corresponding subspace is divided
in several regions or clusters, and for each of them the covering radius is stored.
An important difference with methods like GNAT is that SSSTree is not a bal-
anced tree and not all the nodes have the same number of branches. The tree
structure is determined by the internal complexity of the collection of objects.

4.1 Construction

In the construction process we use an additional data structure called bucket,
which simply contains a subset of the objects of the collection. All the objects
of the collection are initially in the bucket. In the root of the tree the cluster
centers are selected applying SSS (the maximum distance can be estimated as
in [15]). Therefore, the first object of the bucket will be the first cluster center.
For the rest of the objects in the bucket, an object is selected as a new cluster

192 N. Brisaboa et al.

(a) Selected centers

(b) Auxiliar bucket

Fig. 3. Situation after the selection of the cluster centers of the root tree

center if it is at a distance greater than Mα to the centers already selected. If an
object is not a new cluster center, it is inserted in the bucket of its corresponding
cluster (the cluster of its nearest center). Figures 3 and 4 show an example of
tree construction after the selection of the cluster centers of the root node. The
process is recursively repeated in each internal node of the tree (in each node,
the objects of its corresponding cluster are stored in a bucket and we can proceed
exactly in the same way), until clusters reach a minimum number of elements.
The partition applied in each new node depends on the complexity of the cluster
associated to it and does not have to use the same number of clusters.

In each internal node we have to estimate again the maximum distance in
the cluster associated to it (since the maximum distance of the metric space is
not valid for each new cluster). The maximum distance can vary even between
different clusters in the same level. In next subsection we explain different ways
to efficiently estimate the maximum distance into a cluster. Once estimated, the
new cluster centers are selected, and the new subspaces are created. The process
stops when a cluster has a number of objects less than or equal to a threshold δ
or, alternatively, when the covering radius of the cluster is smaller than a given
threshold.

Applying this strategy for the selection of cluster centers, not all the nodes
of the tree will have the same number of child nodes. Each cluster is divided in
a number of regions which depends on the distribution and complexity of the
data of that cluster. This is a very important difference with other structures
like GNAT. The index construction adapts the index to the complexity and
distribution of the objects of the metric space, and in each level of the tree only
those needed clusters will be created. This property is derived from the fact that
SSS is a dynamic selection strategy able to adapt the set of reference objects to
the complexity of each space or subspace.

Clustering-Based Similarity Search in Metric Spaces 193

Fig. 4. SSSTree tree after the first space partition

4.2 Estimation of the Maximum Distance M

One of the problems of the construction process is the need of computing the
maximum distance M in each cluster. The naive way to compute this distance
is to compare each object of the cluster with all the other objects (and this
approach is too expensive). Although the index construction is usually an off-
line process, the value of the maximum distance should be estimated to improve
the index construction.

M is the maximum distance between any pair of objects of the cluster, and
the covering radius RC is the distance from the cluster center to the furthest
object of the cluster. Thus, M ≤ 2 × RC. As we can observe in figure 5, if we
use 2×RC as the cluster diameter we can cover the same objects as using M as
diameter. Therefore, 2 × RC can be used as a good estimation of the maximum
distance during the construction process.

Center

Furthest object

Fig. 5. Maximum distance estimation

4.3 Searching

During the search operation the covering radius of each cluster is used to decide
in each step in which clusters we have to continue the search. The covering

194 N. Brisaboa et al.

radius is the distance from the cluster center ci, and the object of the cluster
furthest to it. Therefore, in each step we can discard the cluster with center ci

if d(q, ci) − r > rc(ci), where rc(ci) is the covering radius of that cluster. When
the search reaches the leaves of the tree which could not be discarded, we have
to compare the query against all the objects associated to that leaf to obtain
the final result of the search.

5 Experimental Results

5.1 Experimental Environment

The performance of SSSTree was tested with several collections of data. First,
we used a collection of 100, 000 vectors of dimension 10, synthetically generated,
and with Gaussian distribution. The Euclidean distance was used as the distance
function when working with this collection. In addition to this synthetic vector
space, we also worked with real metric spaces. The first one is a collection of
86, 061 words taken from the Spanish dictionary, using the edit distance as the
distance function. The second one is a collection of 40, 700 images taken from the
NASA image and video archives. Each image is represented by a feature vector of
20 components obtained from the color histogram of the image. The Euclidean
distance was used with this collection to measure the similarity between two
images. The algorithm was compared with other well-known clustering-based
indexing methods: M-Tree [18], GNAT [14] and EGNAT [16].

5.2 Search Efficiency

The first experiment consisted in the evaluation of the search efficiency obtained
with SSSTree compared with other similar methods. Figure 6 shows the results

20000

30000

40000

50000

60000

70000

80000

0.01 0.10 1.00

E
v
a
lu

a
ti
o
n
s

o
f
th

e
d
is

ta
n
c
e

fu
n
c
ti
o
n

Query range

Average search cost (n=100,000, Gauss dim. 10)

SSSTree
EGNAT

GNAT
M-Tree

Fig. 6. Evaluations of the distance function with M-Tree, GNAT, EGNAT and SSSTree
in a collection of vectors of dimension 10 and Gaussian distribution

Clustering-Based Similarity Search in Metric Spaces 195

obtained with the collection of vectors, expressed as the number of evaluations
of the distance function (average of 10, 000 queries), in terms of the percentage
of the database retrieved in each query (the higher this percentage, the more
difficult the search). As we can see in this figure, SSSTree obtains better results
than the other methods.

Figures 7 and 8 show that SSSTree is also more efficient in the collection
of words taken from the Spanish dictionary and the collection of images from
NASA archives, which both are real metric spaces. In the case of the collection
of words, the performance of the algorithms was compared for different query
ranges, since the higher the range the more difficult the search. These results
obtained with both synthetic and real metric spaces show that SSSTree is more
efficient than previously proposed methods.

10000

20000

30000

40000

50000

60000

70000

4321

E
v
a
lu

a
ti
o
n
s

o
f
th

e
d
is

ta
n
c
e

fu
n
c
ti
o
n

Query range

Average search cost (n=86,061, Spanish dictionary)

SSSTree
EGNAT

GNAT
M-Tree

Fig. 7. Evaluations of the distance function with M-Tree, GNAT, EGNAT, and
SSSTree, in a collection of words taken from the Spanish dictionary

18000

19000

20000

21000

22000

23000

24000

25000

26000

27000

10.10.01

E
v
a
lu

a
ti
o
n
s

o
f
th

e
d
is

ta
n
c
e

fu
n
c
ti
o
n

Query range

Average search cost (n=40,700, NASA images)

SSSTree
EGNAT

Fig. 8. Evaluations of the distance function with EGNAT and SSSTree, in a collection
of images from NASA archives

196 N. Brisaboa et al.

6 Conclusions and Future Work

In this paper we present a new method for similarity search in metric spaces
called SSSTree. Its main characteristic is that the cluster centers are selected
applying Sparse Spatial Selection (SSS), a selection strategy initially developed
for pivot selection. SSS is an adaptive strategy that selects well distributed ref-
erence points to improve the search performance. These two properties are also
present in SSSTree. The adaptive cluster center selection makes each node of the
tree to partition its corresponding subspace as needed in terms of its complexity,
a very important difference with previously proposed methods.

The paper also presents experimental results with vector spaces, a collection
of words and a collection of images, that show the efficiency of SSSTree against
other methods. The obtained improvement is obtained due to the fact that the
cluster centers are well distributed in the space and only the clusters needed to
cover the complexity of the metric space are created. The space partition is more
efficient and this is reflected in the search efficiency.

Our work line still maintains some open questions for future work. First, we are
testing the performance of SSSTree with other real metric spaces, as collections
of text documents or images. We are also studying the stop condition for the
construction process in terms of the covering radius instead of the number of
objects contained in the cluster. We are also working in experiments with nested
metric spaces [15].

Acknowledgments

This work has been partially supported by: For N. Brisaboa, O. Pedreira and D.
Seco by “Ministerio de Educación y Ciencia” (PGE and FEDER) refs. TIN2006-
16071-C03-03and (ProgramaFPU) AP-2006-03214(for O. Pedreira), and “Xunta
de Galicia” refs. PGIDIT05SIN10502PR and 2006/4. For R. Uribe by Fondecyt
1060776, Conicyt PR-F1-002IC-06, Universidad de Magallanes, Chile y CYTED-
GRID Proyecto 505PI0058.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33, 273–321 (2001)

2. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search. The metric space
approach 32 (2006)

3. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
munications of the ACM 16, 230–236 (1973)

4. Baeza-Yates, R., Cunto, W., Manber, U., Wu, S.: Proximity matching using fixed-
queries trees. In: Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807,
pp. 198–212. Springer, Heidelberg (1994)

5. Baeza-Yates, R.: Searching: an algorithmic tour. Encyclopedia of Computer Science
and Technology 37, 331–359 (1997)

Clustering-Based Similarity Search in Metric Spaces 197

6. Chávez, E., Marroqúın, J.L., Navarro, G.: Overcoming the curse of dimensionality.
In: CBMI 1999. European Workshop on Content-based Multimedia Indexing, pp.
57–64 (1999)

7. Yianilos, P.: Data structures and algorithms for nearest-neighbor search in general
metric space. In: Proceedings of the fourth annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 311–321 (1993)

8. Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high-dimensional metric
spaces. In: SIGMOD 1997. Proceedings of the ACM International Conference on
Management of Data, pp. 357–368 (1997)

9. Yianilos, P.: Excluded middle vantage point forests for nearest neighbor search. In:
Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, Springer,
Heidelberg (1999)

10. Vidal, E.: An algorithm for finding nearest neighbors in (aproximately) constant
average time. Pattern Recognition Letters 4, 145–157 (1986)

11. Micó, L., Oncina, J., Vidal, R.E.: A new version of the nearest-neighbor approxi-
mating and eliminating search (aesa) with linear pre-processing time and memory
requirements. Pattern Recognition Letters 15, 9–17 (1994)

12. Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest
point problem. IEEE Transactions on Software Engineering 9, 631–634 (1983)

13. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters 40, 175–179 (1991)

14. Brin, S.: Near neighbor search in large metric spaces. In: 21st conference on Very
Large Databases (1995)

15. Brisaboa, N.R., Pedreira, O.: Spatial selection of sparse pivots for similarity search
in metric spaces. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C.,
Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 434–445. Springer,
Heidelberg (2007)

16. Uribe, R., Navarro, G., Barrientos, R.J., Maŕın, M.: An index data structure for
searching in metric space databases. In: Alexandrov, V.N., van Albada, G.D., Sloot,
P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 611–617. Springer,
Heidelberg (2006)

17. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity
searching in metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)

18. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: VLDB 1997. Proceedings of the 23rd International
Conference on Very Large Data Bases, pp. 426–435 (1997)

A Useful Bounded Resource Functional

Language

Michael J. Burrell1, James H. Andrews2, and Mark Daley3

1 Department of Computer Science, University of Western Ontario
mburrel@uwo.ca

2 Department of Computer Science, University of Western Ontario
andrews@csd.uwo.ca

3 Department of Computer Science and Department of Biology,
University of Western Ontario

daley@csd.uwo.ca

Abstract. Real-time software, particularly that used in embedded sys-
tems, has unique resource and verification requirements. While embedded
software may not have great need for processor and memory resources,
the need to prove that computations are performed correctly and within
hard time and space constraints is very great. Improvements in hardware
and compiler technology mean that functional programming languages
are increasingly practical for embedded situations. We present a func-
tional programming language, Ca, built on catamorphisms instead of
general recursion, intended for use in static analysis. Ca is not Turing-
complete—every program must terminate—but it still provides an excel-
lent framework for building static analysis techniques. Catamorphisms
are a general tool which encompass bounded iteration, and allow to tra-
verse any algebraic data structure. We discuss the computational prop-
erties of this language, as well as provide a framework for future work in
static analysis.

1 Introduction

Software running on embedded systems has requirements unique from that on
other systems. While recent work in static analysis has focused on imperative
languages, particularly in data flow analysis [5,1], improvements in compiler tech-
nology and hardware technology make functional languages increasingly prac-
tical. Certain constructs in imperative languages, such as pointer aliasing and
global variables, make static analysis difficult, often requiring whole-program
analysis. However, referential transparency is inherent in many functional lan-
guages and allows one to reason about the semantics of a program piecemeal.
This makes a language with referential transparency well-suited for situations
where the behaviour of a program needs to be verified.

Software for embedded systems is often written as an event loop, responding
to events or to conditions reported by sensors and giving some response in turn.
In this way, a component of an embedded system can be viewed as a computation

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 198–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Useful Bounded Resource Functional Language 199

which takes an event as input, and produces a response as output. This computa-
tion can be abstracted away from the need to perform side effects.

Section 2 discusses previous work in the area of static analysis aimed at em-
bedded systems, and previous work in functional language research. Section 3
introduces a new programming language designed specifically for suitably in
writing embedded software; Section 4 gives the language’s operational seman-
tics. Sections 5 and 6 discuss the theoretical computational properties of this
programming language, specifically its termination and computational power
respectively. Finally, the paper will discuss applying this framework to static
analysis and future work.

2 Previous Work

Static analysis is of great potential, and has especial importance in embedded
systems. Recent work has focused on imperative languages [6,8,10]. In the case of
determining the Worst Case Execution Time (WCET) of a program for example,
current techniques typically focus on analysing imperative programs by looking
at program control flow and data flow [6,10]. This has the disadvantage that, due
to effects like aliasing and loop-variant side-effects, worst case estimates must
either be very conservative, or very expensive, involving whole-program analysis,
or even so far as abstract interpretation to improve accuracy [8].

We focus on functional languages, which offer the principle of referential trans-
parency. That is, the behaviour of a function depends solely on its arguments,
and never on any global state of the program.

3 Programming Language

We present a programming language, Ca, based on catamorphisms which is
purely functional and strongly typed, with user-specified types. Ca can be re-
garded as a restricted form of Haskell, and a programming language in its own
right. However, it can also be regarded as a set of restrictions to apply to pro-
grams of other functional languages. Ca bears resemblance to Charity [7], an-
other language built on catamorphisms, and other categorical languages built
on the work of Hagino [9]. However, Charity is a much more complex language,
aimed at researching program transformations, rather than static analysis, and
has an anamorphism construct, which increases its computational power [3].

The grammar describing the expressions in Ca is shown in figure 1. The syntax
is similar to that of many small purely functional languages. For instance, Ca

allows non-recursive function declarations similar to many functional languages.
The most important restriction of Ca is that general recursion is prohibited.

While function calls are allowed, a function may only call functions which have
been previously declared. Similarly, while let expressions are allowed, there is
no mechanism to allow letrec-like expressiveness.

200 M.J. Burrell, J.H. Andrews, and M. Daley

Expression → ‘let’ identifier ‘=’ Expression1 ‘; in’ Expression
| Expression Catamorphism
| Expression1

Expression1 → Expression1 binaryOperator Expression2
| Expression2

Expression2 → identifier ArgumentList | Expression3
ArgumentList → ArgumentList Expression3 | ε
Expression3 → identifier

| @ identifier
| integerLiteral
| ‘(’ Expression ‘)’

Catamorphism → ‘{’ PatternList ‘}’
PatternList → PatternExpr | PatternExpr PatternList
PatternExpr → Pattern ‘→’ Expression ‘;’
Pattern → identifier | Pattern identifier

Fig. 1. The syntax expressions in the Ca programming language

3.1 Catamorphisms

Since recursion is disallowed, a catamorphism construct is added. A catamor-
phism [12] is an operation that works on a (typically recursive) data type, and
allows for recursively traversing the constructors in a data structure and com-
bining the results. When applied to a list, a catamorphism allows a general way
of applying an operation to every element in the list; when applied to a natural
number, a catamorphism allows a way to do something a bounded number of
times. A catamorphism must be applied to some object, such as a list or natural
number.

Catamorphisms in Haskell. Readers familiar with functional programming
in a function language that allows recursion, such as Haskell, will recognize the
right fold function. In Haskell, a right fold function might be expressed as:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr c n [] = n
foldr c n (x:xs) = c x (foldr c n xs)

The right fold is a catamorphism over lists. The Nil constructor is replaced
by the object n, and the Cons constructor is replaced by the result of calling
the function c. Since the Nil constructor has an arity of 0, the n object also has
arity 0. Since the Cons constructor has arity 2 (it has two data: the head of
the list, and the tail of the list), the c function also has arity 2. In effect, the
foldr function allows a very general way to perform an operation (given by the
c function) to every element of a list. The return type, b, can be the same list
type or any other type, but it must be the same as the type of n and the return
type of c.

Such a function can be written for any data type. Consider a hypothetical
binary tree data type, defined as: data Tree a = Node (Tree a) (Tree a) |
Leaf a. The catamorphism function for Tree in Haskell would look as follows:

A Useful Bounded Resource Functional Language 201

sumLeaves t = t { cataTree n l (Leaf x) = l x
Node l r -> @l + @r; cataTree n l (Node left right)
Leaf x -> x; = n (cataTree n l left) (cataTree n l right)

} sumLeaves t = cataTree (λ suml sumr ->
suml + sumr) (λ (Leaf x) -> x) t

Fig. 2. The correspondence between the catamorphism notation of Ca, left, and the
equivalent program in Haskell, right

cataTree :: (b -> b -> b) -> (a -> b) -> (Tree a) -> b
cataTree n l (Leaf x) = l x
cataTree n l (Node lt rt) = n (cataTree n l lt) (cataTree n l rt)

The catamorphism could, for instance, be used to calculate the sum of all the
nodes of a tree of integers as seen in Figure 2.

Catamorphisms in Ca. The catamorphism construct in Ca is a description
of a function that recurses down a data structure. The application of catamor-
phism c to expression e is written in postfix, as e c. A catamorphism construct
associates patterns with corresponding expressions, like a case-based function
definition. Within a catamorphism we can use an expression of the form @v to
signify the application of the catamorphism to v, if v is a variable from the
corresponding pattern which is of the same type as the argument of the cata-
morphism.

Figure 2 shows how a catamorphism written in Ca corresponds to a recursive
program in Haskell. In the Node case, l and r (the left and right branches of
the node) are of type Tree. However, we can use @l and @r, which stand for the
results of the left and right branches, respectively, when the catamorphism is
applied to them. Thus, since the catamorphism returns integers, @l and @r are
integers, not trees. @l stands for the sum of the left branch, and @r stands for
the sum of the right branch, and thus the sum of the tree is simply @l + @r.

Example 1. The traditional append function and the sumList function that sums
the members of a list can be programmed in Ca as follows.

append a b = a { Nil -> b; Cons x xs -> Cons x @xs; }
sumList a = a { Nil -> 0; Cons x xs -> x + @xs; }

Note that, beyond allowing bounded iteration, catamorphisms also allow a mech-
anism for case matching. Consider a non-recursive type, such as the booleans, de-
fined as: data Boolean = True | False. Performing case matching on a boolean
object can be done simply via catamorphism:

Example 2. Using catamorphisms to simulate an if-then-else construct.

(x < 4) {
True -> 4;
False -> x;

}

202 M.J. Burrell, J.H. Andrews, and M. Daley

In general, the expression if p then e1 else e2 is represented in Ca as (p) { True
-> e1; False -> e2; }.

3.2 Tuples

Tuples of any length can be simulated via data types and catamorphisms. For
example, consider a 4-tuple. We can define a data type as follows:

data Tuple4 a b c d = Tuple4 a b c d

We can then represent the expression (x, y, z, w) in Ca as the construction
Tuple4 x y z w. We can also define projection functions, denoted by the letter
π, such that πie will be the ith element in the tuple e. For example, π2 in the
context of a 4-tuple would be represented as:
π2 e = e { Tuple4 x y z w -> y; }
In the rest of the paper, we assume the existence of the tuple types and projection
functions.

3.3 Natural Numbers

From a theoretical basis, natural numbers and integers are often defined recur-
sively. They have a zero constructor and a successor constructor, as we have
been using so far. In practical implementations, natural numbers and integers
will not be defined recursively, but rather will be implemented as words to be
stored in machine registers. Since data types in Ca must be recursively defined,
we will treat natural numbers as being so, even if they are not so in practical
implementations.

4 Operational Semantics

In this section we use the notation e[a1 �→ e1, . . . , an �→ en] to stand for the
expression e with all instances of the variables ai replaced by the expressions
ei. Figure 3 provides the list of operational semantics rules. In all rules, we
use C to stand for a constructor. Without loss of generality, we assume all
defined data types group recursively-defined subexpressions at the end, e.g. as
C x1 · · · xn y1 · · · ym, where each yi is of the same type as the expression, and
each xi is of a different type.

– Rule 1 explains the semantics of a catamorphism when the expression we
are folding over is of a non-recursive constructor (e.g., the Nil constructor of
a list). This is where we stop executing the catamorphism.

– Rule 2 explains the semantics of a catamorphism when the expression we
are folding over is of a recursive constructor (e.g., the Cons constructor of
a list). In this case we recurse on the recursive elements of the constructor
(e.g., the “tail” of the list).

A Useful Bounded Resource Functional Language 203

Γ � e0 ⇒ C b1 · · · bn Γ � e1[x1 �→ b1, · · · , xn �→ bn] ⇒ e2

Γ � e0{· · · C x1 · · · xn → e1; · · ·} ⇒ e2 (1)

Γ � e0 ⇒ C b1 · · · bnd1 · · · dm Γ � d1cata ⇒ d′
1 · · · Γ � dmcata ⇒ d′

m Γ � e′
1 ⇒ e2

Γ � e0 cata ⇒ e2 (2)

where cata contains (Cx1 · · · xn y1 · · · ym) �→ e1,

and e′
1 = e1[x1 �→ b1, . . . , xn �→ bn, y1 �→ d′

1, . . . , ym �→ d′
m]

Γ � e1 ⇒ e′
1 · · · Γ � en ⇒ e′

n Γ � d[p1 �→ e′
1, · · · , pn �→ e′

n] ⇒ e

Γ � fe1 · · · en ⇒ e (3)

where (f �→ d) ∈ Γ

Γ � e1 ⇒ e′
1 · · · Γ � en ⇒ e′

n

Γ � C e1 · · · en ⇒ C e′
1 · · · e′

n (4)

Γ � n ⇒ n (5)

where n ∈ N

Γ � e1 ⇒ e′
1 Γ � e2 ⇒ e′

2

Γ � e1 ⊕ e2 ⇒ e′
1⊕̂e′

2 (6)

where ⊕ is a binary operation, and ⊕̂ is its semantic equivalent

Fig. 3. The operational semantics of Ca

Γ � []{Nil → [9, 10]; · · ·} ⇒ [9, 10] Γ � Cons 1 [9, 10] ⇒ [1, 2, 3, 4, 9, 10]

Γ � [1]{Nil → [9, 10]; Cons x xs → Cons x @xs; } ⇒ [1, 9, 10] (7)

Γ � 0 ⇒ 0
Γ � []{Nil → 0; · · ·} ⇒ 0 Γ � 0 + 10 ⇒ 10

Γ � [10]{· · ·} ⇒ 10 Γ � 9 + 10 ⇒ 19

Γ � [9, 10]{· · ·} ⇒ 19 Γ � 1 + 19 ⇒ 20

Γ � [1, 9, 10]{Nil → 0; Cons x xs → x + @xs; } ⇒ 20 (8)

Γ � [1] ⇒ [1] Γ � [9, 10] ⇒ [9, 10] Tree 7

Γ � append a b ⇒ [1, 9, 10] Tree 8

Γ � sumList (append [1] [9, 10]) ⇒ 20 (9)

Fig. 4. Tree 9 shows an execution of the program given in figure 1. Γ holds definitions
of the functions append, sumList, a and b.

204 M.J. Burrell, J.H. Andrews, and M. Daley

– Rule 3 describes the semantics of function calls. Recall that an expression
can only call a function, f , if it has previously been defined. Thus, the
environment Γ will already have a definition for f .

– Rule 4 describes the semantics of constructions.
– Rule 5 shows that a number evaluates to itself.
– Finally, rule 6 describes the semantics of binary operations. For example, for

addition, ⊕ would be the syntactic addition operator +, and ⊕̂ would be the
mathematical operation of addition.

Figure 4 shows an example execution of the Ca program sumList (append [1]
[9, 10]), using functions from example 1. For reasons of brevity, we use the
notation [e1, . . . , en] to stand for a Cons-Nil list of elements e1 through en.

5 Termination

We provide a proof that every well-defined Ca program terminates. In this con-
text, we say that a program, P , terminates if and only if all of the functions
defined in P terminate on all arguments. Other programming languages built
upon category theory have guaranteed termination [9].

Notation 1. Where f and g are functions defined in a program, P , we denote
g � f to mean f ultimately calls g. Thus, g � f if and only if either there is an
expression or sub-expression in f which calls g; or there is a function h ∈ P such
that g � h and h � f .

Lemma 1. For any well-defined Ca program, P , the relation, �, provides a
strict partial order over the functions defined in P .

Proof. Recall that f refers to g only if g appears earlier in the program. Thus, f
cannot refer to f , and so � is irreflexive. Further, if f can refer to g, then g cannot
refer to f , and so � is asymmetric. Transitivity follows from the definition.

The ramification of lemma 1 is that the “call graph” of any well-defined Ca

program will be a directed acyclic graph. This allows us to provide a measure of
where in the call graph a particular function is.

Definition 2. For a well-defined Ca program, P , with a finite set of functions,
F , we define a function, f ∈ F , to have function number, denoted f̊ , which
is defined as:

f̊ =

{
1 , if � ∃g ∈ P such that g � f
i + 1 , otherwise, where i = max

g∈F,g�f
g̊

In other words, if a function, f , is a leaf function, then f̊ = 1. If f̊ = 2, then it
calls only leaf functions, and so on.

A Useful Bounded Resource Functional Language 205

Towards the goal of proving termination, we can now introduce the complexity
of an expression in a Ca program.

Definition 3. The complexity of an expression e, denoted |e|, is an ordinal.
Let ω be the smallest transfinite ordinal. |e| is defined as follows:

1. If e is a constant or identifier, |e| = 0;
2. If e is a composition of expressions, i.e., a construction, arithmetic operation,

or logical operation, with associated sub-expressions e1, . . . , en for some n ∈
N, then |e| =

∑
i,1≤i≤n

|ei|+1;

3. If e is a catamorphism over expression ec, with patterns p1 → e1, . . . , pn →
en for some n ∈ N, then |e| = ω(|ec| + max

i,1≤i≤n
|ei|);

4. If e is a function call to function f with arguments e1, . . . , en for some n ∈ N,
then |e| = ωωf̊ +

∑
i,1≤i≤n

|ei|.

Lemma 2. If, in the context of an environment, Γ , for a well-defined expres-
sion, e, there exists an expression, e′, such that Γ � e ⇒ e′, then |e′| < ω.

Proof. We can prove by induction that each expression on the right hand side
of the ⇒ must be an expression built up from integer literals and constructors.
These expressions all have a complexity less than ω.

Lemma 3. If Γ � e ⇒ e′, then |e′| ≤ |e|.
Proof. If |e| ≥ ω, then by Lemma 2, |e′| < ω < |e|. If |e| < ω, we can prove
by induction on |e| that the evaluation process will produce a value of lesser or
equal complexity.

Lemma 4. Let |e| < ωωn, and let e′ be e[x �→ t] for some variable x and ex-
pression t such that |t| < ω. Then it is also the case that |e′| < ωωn.

Proof. By induction on the structure of e.
If e is a constant or a variable other than x, then e′ = e, and so |e′| = 0. If e

is the identifier x, then e′ = t, and so |e′| < ω < ωωn.
Otherwise, we assume that the lemma holds for all sub-expressions of e.
If e is a composition of expressions, i.e., a construction or binary operation,

then |e| =
∑

i,1≤i≤n

|ei| + 1, so |ei| < ωωn. By the induction hypothesis, |e′i| < ωωn

for each |ei|, where e′i = ei[x �→ t]. That is, for each |ei|, the biggest term must
be less than to ωω(n−1)k for some k < ω. Thus, |e′| < ωω(n−1)k.

If e is a catamorphism over expression ec with patterns p1 → e1, . . . , pn →
en, then |e| = ω(|ec| + max

i,1≤i≤n
|ei|). Similarly to the proof for a composition of

expressions, |e′| < ω(ωω(n−1)k + ωω(n−1)l) for some k, l < ω, and so |e′| < ωωn.
If e is a function call to function f with arguments e1, . . . , en for some n ∈ N,

then, because e is well-defined, it must be that f̊ < n. |e| = ωωf̊ +
∑

i,1≤i≤n

|ei|.

206 M.J. Burrell, J.H. Andrews, and M. Daley

Similarly to the proof for a composition of expressions,
∑

i,≤i≤n

|e′i| < ωω(n−1)k for

some k < ω, where e′i = ei[x �→ t] for each ei. Thus, |e′| < ωωf̊ +ωω(n−1)k < ωωn.

Proposition 1. For any well-defined expression, e, and environment, Γ , there
is an expression, e′, such that Γ � e ⇒ e′, by the semantics defined in figure 3.

Proof. By transfinite induction on the size of e.
If |e| = 0, then, by definition, e is a constant, and e = e′ by rule 5.
If |e| is a successor ordinal, then it must be that e is a composition of

subexpressions, i.e., a construction or binary operation. We know that |e| =∑
i,1≤i≤n

|ei| + 1. |ei| < |e| and thus, by the induction hypothesis, there exist

expressions e′i such that Γ � ei ⇒ e′i. If e is a construction then, by rule 4,
Γ � e ⇒ C e′1 · · · e′n. If e is a binary operation, the proof follows by rule 6.

If |e| is a limit ordinal, e must be a catamorphism or function call.
In the case that e is a function call, let e be f applied to arguments e1, . . . , en.

|e| = ωωf̊ +
∑

i,1≤i≤n

|ei|. |ei| < |e|, so by the induction hypothesis, there are

expressions e′i such that Γ � ei ⇒ e′i. There is a mapping (f �→ ef) ∈ Γ .
Let efv = ef [x1 �→ e′1, . . . , xn �→ e′n] where x1, . . . , xn are the arguments of f .
Because ef can only refer to functions with a function number strictly less than
f̊ , |ef | < ωωf̊ . Since, by lemma 2, |e′i| < ω, it must be by lemma 4 that |efv| <

ωωf̊ < |e|. By the induction hypothesis, then, ∃e′fv such that Γ � efv ⇒ e′fv.
We then consider that e is a catamorphism over ec with pattern list p1 →

e1, . . . , pn → en. |e| = ω(|ec| + max
i,1≤i≤n

|ei|). By the induction hypothesis, there

is an expression, e′c = C ec,1 . . . ec,k for some k ∈ N such that Γ � ec ⇒ e′c. ec

matches some pattern pj for some j ∈ N such that 1 ≤ j ≤ n.
If C is a non-recursive constructor, let e′j = ej[x1 �→ ec,1, . . . , xk �→ ec,k]

where, without loss of generality, x1, . . . , xk are the variables bound by pattern
pk. By the induction hypothesis, ∃e′ such Γ � e′j ⇒ e′.

If C is a recursive constructor, then let x1, . . . , xm be C’s non-recursive
attributes—those that do not have the same type as e—and y1, . . . , yp be C’s
recursive attributes. ∀i ∈ N, p < i ≤ k, let ti = ec,i{p1 → e1, . . . , pn → en}. By
lemma 2, |ec,i| is finite and, by extension, |ec,i| < |ec|. Thus, |ti| < |e|. By the in-
duction hypothesis, ∃t′i such that Γ � ti ⇒ t′i. Let ejv = ej[x1 �→ ec,1, . . . , xm �→
ec,m, @y1 �→ t′1, . . . , @yp �→ t′p]. Each t′i is finite, and so |ej| ≤ ω|e| + b for some
b ∈ N, b < ω, |ejv| < |e|. By the induction hypothesis, ∃e′ such that Γ � ejv ⇒ e′.

6 Computational Power

As every Ca program must halt, Ca is not a Turing-complete language; there
are computable functions that are not computable by Ca. Here we prove that
Ca computes the primitive recursive functions. We believe this class of problems,
which includes strictly more than the exponential hierarchy, is a reasonable level
of expressiveness for use as one cycle of an embedded system event loop.

A Useful Bounded Resource Functional Language 207

Notation 4. We use Knuth’s “up arrow” notation [11] to express power towers.
The algebraic expression mn, for m, n ∈ N, can be expressed as m ↑ n. m ↑2 n

is equivalent to mm
...m

where the m is raised n times. Stated formally:

m ↑k n =

⎧
⎨

⎩

mn , if k = 1
1 , if n = 0
m ↑k−1 (m ↑k (n − 1)) , otherwise

Lemma 5. For any k ∈ N, it is possible to express the binary Ca function exp k
m n, which computes m ↑k n.

Proof. By induction on k.
If k = 1, we define: exp 1 m n = n { Zero -> 1; Succ n -> m * @n; }.
If k > 1, we assume by the induction hypothesis that there exists a function

exp l m n which computes m ↑l n where l = k − 1. We define:

exp_k m n = n { Zero -> 1; Succ n -> exp_l m @n; }

This computes exp l m (exp l m (exp l m ...1)) with n applications of exp l.
Thus, it computes m ↑l (m ↑l (m ↑l · · · 1)) for n applications of the ↑l operator.
Thus, it computes m ↑k n.

Notation 5. For a function f : N → N, we define O(f) = {g | g : N → N, ∃n0, c ∈
N such that ∀n ∈ N such that if n > n0, g(n) ≤ c · f(n)}
Proposition 2. If, for a language L ⊆ Σ∗, there is a Turing machine, M , such
that M decides L and terminates in time tf (n) for tf ∈ O(n ↑k n) where k ∈ N,
and input of length n, then there is a Ca program which decides L.

Proof. Since tf ∈ O(n ↑k n), there is a Turing machine which decides L in time
c(n ↑k n) for some c ∈ N, as states can always be added after M accepts or rejects
to consume time. We assume, without loss of generality, that tf = c(n ↑k n). By
lemma 5, there is a Ca function which computes n ↑k n. We can multiply any
result by a constant, and so there is a Ca function to compute tf .

The proof follows by construction. We assume M is a one-tape, deterministic
Turing machine. First, introduce a data type enumerating all states of M and
the symbols of the tape of M .

data Q = State0 | State1 | State2 | State3 | ...
data Symbol = Blank | S0 | S1 | ...
data Dir = Left | Right

Next, write a transition table (the following table would say that, in state 0,
given a blank symbol on the tape, transition to state 3, write a 1, and move the
head left):

next q s = q {
State0 -> s {
Blank -> (State3, S1, Left); -- as an example

208 M.J. Burrell, J.H. Andrews, and M. Daley

S0 -> ...
};
State1 -> s { ... };
...

}

Finally, we provide a catamorphism, bounded by the time needed to compute.
We assume the existence of the at function (to return the ith element of a list),
update function (to replace the ith element of a list with a given symbol) and
the length function (to return the length of a list).

simulate startState input = (tf (length input)) {
Zero -> (startState, input, 0);
Succ prevComp -> let (curState, curTape, curHead) = @prevComp;

(nextState, sym, dir) = next curState curTape curHead; in
(nextState, update curTape curHead sym,
dir { Left -> curHead - 1; Right -> curHead + 1; });

}

Consider a word w ∈ Σ∗. There is a cognate Ca list of symbols, input. We
prove, by induction on tf (n) that, if M halts in state q on input w with tape t
and head position h, then the simulate function above returns the triple (q,
t, h) when given the appropriate starting state and input as arguments.

If tf (n) = 0, M cannot make any moves. Consequently, it halts in the start
state, with the original tape, with the head at position 0. The catamorphism
given in function simulate matches the Zero case immediately, and returns a
value of (startState, input, 0), where input is the original tape.

If tf (n) > 0, then after tf (n) − 1 steps of execution w, M halts in state
q′ with tape t′ and the head in position h′. Let input’ be the cognate Ca

string corresponding to string w. By the induction hypothesis, the simulate
function returns (q’, t’, h’). Thus, when simulate is run on input input,
the catamorphism falls through to the Succ case. Note curState is q’, curTape
is t’ and curHead is h’. If M ’s transition table directs M to write symbol σ,
then the next function updates curTape to write a σ. If M ’s transition table
directs M to move the head left, then 1 is subtracted from curHead, and thus
curHead matches the position of the head in M . Similarly for if M moves the
head right. If M ’s transition table directs M to transition to state q, then the
next function returns a nextState which matches q. Consequently, if M halts
in state q with tape t and head in position h, then simulate returns (q, t, h).

We write another function which determines which states are accept states,
such as:

isAccept q = q {
State0 -> True; -- as an example
...

}

A Useful Bounded Resource Functional Language 209

And thus, to decide if w ∈ L for some word w, assuming state 0 is the start
state, we write: decideWord w = isAccept (π1 (simulate State0 w)), and
it follows directly that decideWord returns True if and only if M accepts w, and
decideWord returns False if and only if M rejects w.

Proposition 2 shows that Ca is capable of computing any program where the
complexity is an exponential, tetration, etc. function. It is known that this class
is equal to that of the primitive-recursive functions [2], referred to as PR.

7 Conclusion and Future Work

We have provided a functional programming language, Ca, which does not al-
low general recursion, but rather allows bounded recursion through data struc-
tures via catamorphisms. Computational properties of Ca were explored, and it
was proven that Ca contains the primitive recursive functions. This is powerful
enough to capture programs that would be used in embedded systems, while still
allowing a framework for performing static analysis.

Future work will focus primarily on developing static analysis techniques based
on Ca programs: for instance, algorithms to efficiently determine running time
of Ca programs, number of memory allocations, amount of memory consumed,
and cache state. Further, extensions to the language to allow more natural and
efficient iteration over multiple data simultaneously, as described in [4], will be
explored.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging software via static anal-
ysis. In: 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 1–3 (2002)

2. Brainerd, W.S., Landweber, L.H.: Theory of computation. Wiley, New York (1974)
3. Cockett, R.: Charitable thoughts. Lecture notes, University of Calgary (1996)
4. Colson, L.: About primitive recursive algorithms. Theoretical Computer Sci-

ence 83(1), 57–69 (1991)
5. Dhurjati, D., Das, M., Yang, Y.: Path-sensitive dataflow analysis with iterative

refinement. Technical Report MSR-TR-2005-108, Microsoft Corporation (2005)
6. Ermedahl, A., Stappert, F., Engblom, J.: Clustered calculation of worst-case exe-

cution times. In: Proceedings of the 2003 International conference on Compilers,
architecture, and synthesis for embedded systems, San Jose, California, USA, pp.
51–62 (2003)

7. Fukushima, T., Tuckey, C.: Charity User Manual. University of Calgary (January
1996)

8. Gustafsson, J., Ermedahl, A., Lisper, B.: Towards a flow analysis for embedded
system c programs. In: 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, pp. 287–300 (2005)

9. Hagino, T.: A Categorical Programming Language. PhD thesis, University of Ed-
inburgh (1987)

210 M.J. Burrell, J.H. Andrews, and M. Daley

10. Steven Li, Y.-T., Malik, S., Wolfe, A.: Efficient microarchitecture modeling and
path analysis for real-time software. In: 16th IEEE Real-Time Systems Symposium,
p. 298 (1995)

11. MathWorld. Arrow notation (1999),
http://mathworld.wolfram.com/ArrowNotation.html

12. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Programming
Languages and Computer Architecture. LNCS, vol. 523, pp. 124–144. Springer,
Heidelberg (1991)

http://mathworld.wolfram.com/ArrowNotation.html

On Reachability Games of Ordinal Length�

Julien Cristau1 and Florian Horn1,2

1 LIAFA, Université Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris 5, France
2 Lehrstuhl für Informatik VII, RWTH, Ahornstraße 55, 52056 Aachen, Germany

{jcristau,horn}@liafa.jussieu.fr

Abstract. Games are a classical model in the synthesis of controllers
in the open setting. In particular, games of infinite length can represent
systems which are not expected to reach a correct state, but rather to
handle a continuous stream of events. Yet, even longer sequences of events
have to be considered when infinite sequences of events can occur in finite
time — Zeno behaviours.

In this paper, we extend two-player games to this setting by con-
sidering plays of ordinal length. Our two main results are determinacy
of reachability games of length less than ωω on finite arenas, and the
PSPACE-completeness of deciding the winner in such a game.

1 Introduction

Games are a classical model for the synthesis of controllers in open settings, with
numerous applications. Although finite games seems more natural, there has
been a huge interest for games of infinite duration [GTW02]. They have strong
connections with logic (e.g. parity games and μ-calculus [EJ91]), and provide
useful models in economy. In verification, they are used to represent reactive
systems which must handle a continuous stream of events [Tho95]. However,
some behaviours cannot be described by this model, when infinite sequences of
events happen in finite time. Such behaviours — Zeno behaviours — especially
need to be considered in timed systems, when successive events can be arbitrarily
close. The classical discrete-time framework used by Alur and Dill in their semi-
nal paper [AD94] prevents such behaviours, while several papers about real-time
models limit their results to non-Zeno runs [AM99] or force the players to ensure
that they can not happen [dAFH+03]. Since Büchi in the 1960’s, several exten-
sions of automata to words of ordinal length have been proposed [BC01, BÉ02].
Demri and Nowak propose in [DN05] an extension of LTL to ordinals of length
ωn. They also formalise a problem of open specification, where only the environ-
ment has the opportunity to play more than ω moves, and which was solved in
[Cac06].

In this paper, we use the methods of [BC01] in order to define game arenas
admitting plays of ordinal length. We show that these reachability games of
ordinal length are determined, through a reduction to Muller games. We also

� This paper was supported in part by the French ANR DOTS.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 211–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 J. Cristau and F. Horn

show that, for several natural ways of representing the transitions, the problem
is PSPACE-complete.

Overview of the paper. In Section 2, we recall the definitions of automata
on words of ordinal length and games of infinite duration, and we introduce
our model of games of ordinal length. Section 3 shows the determinacy of these
games on finite arenas, and Section 4 considers the complexity issues. Finally,
Section 5 summarises our results, and presents several interesting perspectives
for future work about these games.

2 Definitions

2.1 Ordinals and Automata on Words of Ordinal Length

We consider ordinals, i.e. totally ordered sets where any non-empty subset has
a least element. In particular, every finite ordered set is an ordinal, as is the set
of natural numbers with the usual ordering (usually called ω).

One extends the usual operators + and · to ordinals: I +J is defined by I �J
ordered in a way such that i < j if i ∈ I and j ∈ J ; I · J is the set I × J ordered
lexicographically.

A cut of an ordinal J is a partition (K, L) of J such that ∀k ∈ K, l ∈ L, k < l.
The set of cuts of J is an ordinal, denoted by Ĵ . For an element j of J , we define
the cuts j− by ({i ∈ J | i < j}, {i ∈ J | i ≥ j}) and j+ by ({i ∈ J | i ≤ j}, {i ∈
J | i > j}).

Example 1. ω2 + 3 is obtained by adding 3 elements to ω2, which are greater
than all others. We represent it below, with bullets for the elements and vertical
lines for the cuts:

∣∣∣
ω︷ ︸︸ ︷

•| • | • | · · ·
∣∣∣

ω︷ ︸︸ ︷
•| • | • · · ·

∣∣∣ · · · · · ·
︸ ︷︷ ︸

ω2

∣∣∣ •| • |•︸ ︷︷ ︸
3

∣∣∣

A word of ordinal length J over an alphabet Σ is a mapping from J to Σ. Let
ρ be such a word, and j an element of J . The prefix of ρ of length j denoted by
ρ<j is defined as (ρi)i<j . The limit of ρ, denoted lim ρ, is the set: {a ∈ Σ | ∀j ∈
J, ∃i > j, ρi = a}.

Bruyère and Carton define in [BC01] an automaton A on these words as a
tuple (Q, Σ, E , T , I, F). Q is a finite set of states, Σ is a finite alphabet, E and
T are respectively the successor and limit transition relations, I ⊆ Q is the set
of initial states, and F ⊆ Q is the set of final states. The successor transitions
of E are usual transitions, of the form p

a−→ q ∈ Q × Σ × Q. The limit transitions
of T are of the form P

lim−−→ q ∈ P(Q) × Q.
A run of A on a word x = (xj)j∈J is a word ρ of length Ĵ on Q, verifying the

following conditions:

– if c is the initial cut, ρc ∈ I;
– if j ∈ J , ρj−

xj−→ ρj+ ∈ E ;

On Reachability Games of Ordinal Length 213

– if c has no predecessor, lim ρ<c
lim−−→ ρc ∈ T ;

– if c is the final cut, ρc ∈ F .

Example 2. Figure 1 shows a simple automaton over the alphabet {a, b}.

{0} → 1

{2} → 0

{0, 1, 2} → 3

a b a

a

Fig. 1. Automaton recognising (aωb�aω)ω

From the results of Choueka in [Cho78], one can derive Theorem 3:

Theorem 3. In an automaton with n states where the transitions are of the
form P

lim−−→ q /∈ P , there are no runs of length greater than ωn.

2.2 Infinite Games

We recall here the usual concepts related to infinite duration games. Such a game
G is played by two players called Eve and Adam on an arena of the form (Q, E),
which is a directed graph partitioned between Adam’s vertices (QA, represented
by �) and Eve’s vertices (QE , represented by �). The winning condition W ⊆ Qω

describes the plays won by Eve. We refer the reader to [Tho95] for more details
on infinite games.

A play of G is a (finite or infinite) path in the arena. We assume that every
state has at least one successor, so any finite play can be prolonged into an
infinite one. Prolonging a finite play by one vertex is called a move in the game.
During the play, when the last vertex of the current prefix is in QE, Eve chooses
the next move, otherwise Adam does. Eve wins the play if and only if it is in W.

A strategy for Eve is a function σ : Q∗QE → Q such that for every finite
prefix w ending in a state q ∈ QE , (q, σ(w)) ∈ E. A play ρ = ρ0ρ1ρ2 . . . is
consistent with a strategy σ (for Eve) if for every n such that ρn ∈ QE , ρn+1 =
σ(ρ0ρ1 . . . ρn). A strategy σ is winning for Eve if every play consistent with σ
is won by Eve. Strategies and winning strategies for Adam are defined likewise.
A strategy with memory M for Eve is defined by a transducer (M, ν, μ) and
an initial memory state Ω0 ∈ M . The two functions ν : M × Q → Q and
μ : M × Q → M respectively give the next move when the token is in QE, and
update the memory.

We use Muller games in our proofs. In these games, the winning condition is
defined by a subset M of P(Q). Eve wins if the set of states occurring infinitely
often during the play belongs to M. For a play ρ, this set is denoted by Inf(ρ)
(Occ(ρ) denotes the set of states occurring in ρ).

214 J. Cristau and F. Horn

When considering complexity issues, the representation of the winning condi-
tion is important, as it directly influences the input size. The most straightfor-
ward is to list the elements of M — the explicit representation. Other possibilities
include colouring, Zielonka trees and DAGs, win-set conditions, and Emerson-Lei
conditions. We will only define Emerson-Lei conditions here, and refer to [Zie98]
and [HD05] for more details.

Emerson-Lei games were introduced in [EL85] and are equivalent, in terms of
expressive power, to the usual Muller games. The winning condition is defined
by a Boolean formula ϕ using elements of Q as variables. The play ρ is winning
for Eve if the truth assignment mapping every state of Inf(ρ) to true and every
other state to false satisfies ϕ.

2.3 Games of Ordinal Length

As done in [BC01] for finite automata, we extend the classical model of infinite
games to arenas admitting paths of ordinal length by adding limit transitions. A
reachability game of ordinal length is defined as a tuple (Q, QE , QA, E , t, �, ⊗).
The special states � and ⊗ are the only two states without successors. The
function t maps P(Q) to Q ∪ {�, ⊗} in a way such that t(P) /∈ P . A play is a
word ρ of ordinal length on Q ∪ {�, ⊗}. Every play that does not end in {�, ⊗}
can be prolonged through a move or a limit transition, and by Theorem 3, there
are no plays of length greater or equal to ωω. Eve wins if the play ends in �, while
Adam wins when the token reaches ⊗. For technical reasons, we suppose without
loss of generality that our arenas are semi-alternating, i.e. that the successors of
a state of Adam belong to Eve1. The notion of strategy is extended naturally, by
considering ordinal prefixes rather than finite ones. Strategies with memory are
extended likewise, with a memory transducer on ordinals. Notice that restricting
plays to lengths smaller than ωω makes sense in the verification problem: infinite
sequences represent events of very different durations, and an infinite hierarchy
of infinitesimality seems far-fetched.

3 Solving Ordinal Reachability Games

In this section, we consider the problem of deciding the winner in an ordinal
reachability game. Our result is formalised as Theorem 4, and this section will
mainly be devoted to its proof.

Theorem 4. Two player reachability games of ordinal length are determined on
finite arenas.

We prove this theorem through a reduction from an ordinal reachability game
G to a Muller game G. This construction is described in Section 3.1. Section 3.2
gives the main steps of the proof of Lemmas 5 and 6 by strategy translation.

Lemma 5. If Eve wins in G from q ∈ Q, she also wins in G from q.
1 This allows us to only define t (and later o) on sets containing a state of Eve.

On Reachability Games of Ordinal Length 215

α : {a} lim−−→ c

β : {a, b} lim−−→ d

γ : {a, b, c} lim−−→ ⊗

δ : {a, b, d} lim−−→ ⊗

θ : {a, b, c, d} lim−−→ �

a

b
c d

Fig. 2. Game of ordinal length

Lemma 6. If Adam wins in G from q ∈ Q, he also wins in G from q.

From these two Lemmas and Theorem 7, we derive Theorem 4.

Theorem 7 ([Mar75]). Muller games are determined.

3.1 Reduction to Muller Games

We describe here a reduction from a reachability game of ordinal length G to
a Muller game G. The idea is to compel the players to simulate the limit tran-
sitions, in such a way that an uncooperative player will lose the play. In this
regard, our approach is similar to the one by Chatterjee, de Alfaro, Jurdzinski
and Henzinger in [CJH03] and [CdAH05], where they use parity conditions in or-
der to simulate randomness for qualitative winning regions. In both approaches,
there is an identity between the winning regions of the original game and the
reduced one, but not between the actual plays.

The fundamental idea of this reduction is that a word of length less than ωω

can be described by a finite word with “shortcuts” in lieu of limit transitions.
These shortcuts have to be taken in two steps, guaranteeing that both players
agree to take it. The “widget” we use is described in Figure 3: for each set of
states P containing a state of Eve2, we distinguish one state o(P) in P ∩ QE .
In addition to its original successors, this state now leads to a new state χ(P),
which belongs to Adam. There, he can either accept the transition, and proceed
to t(P), or refuse it, and go to another clone of o(P), called ξ(o(P)). This clone
only leads to the original successors of o(P) in G, not to χ(P). The definition of
the Muller condition guarantees that no one can block the play without losing.
It contains all the sets of the form P ∪{χ(P)}, so if Adam repeatedly declines to
2 See Footnote 1 on page 214.

216 J. Cristau and F. Horn

a

b

d

a

b

d

ξ(a)
β

{{a, b, β}} ⊆ M

χ({a, b}) = β

Fig. 3. Widget for {a, b} lim−−→ d

take a legitimate proposition, he will lose. Formally, the reduced game G from
G = (Q, QE, QA, E , T , �, ⊗) is defined by:

QE = QE ∪ {ξ(q) | q ∈ QE}
QA = QA ∪ {χ(P) | P ∈ P(Q)}

E = E
∪{(o(P), χ(P)) | P ∈ P(Q)}
∪{(χ(P), t(P)) | P ∈ P(Q)}
∪{(χ(P), ξ(o(P))) | P ∈ P(Q)}
∪{(ξ(p), q) | (p, q) ∈ E}
∪{(�, �), (⊗, ⊗)}

M = {P ∪ H | P ⊆ Q, H ∩ Q = ∅, χ(P) ∈ H}

3.2 Strategy Translation: From Muller to Ordinal Reachability

Lemmas 5 and 6 are proved through a similar notion of strategy translation:
from a winning strategy3 in the reduced Muller game G we can derive a winning
strategy in the ordinal game G. The memory states of this new strategy are
plays of the Muller game that are consistent with the original strategy.

The memory will evolve during the course of a play in G, moving along the
tree of all plays consistent with the strategy. Successor transitions extend the
current play, lengthening the memory. Limit transitions will branch to another
prefix in the tree, under suitable assumptions. An exemple of this whole process
(for both players) is given in Figure 4.
3 It is not possible to translate a losing strategy with our technique, not even to a

losing one.

On Reachability Games of Ordinal Length 217

v

w

Occ(w) ∩ Q
=

{a, b}

ψ
Occ(ψ) ∩ Q

=
Inf(ψ) ∩ Q

=
{a, b}

a

β

ξ(a)

b

d

a

b

a

β

ξ(a)

a

ν

d

θ

ξ(d)

a

d

a

d

�

θ

a

a

v

w

ψ

d

δ a θ

ξ(d) ξ(d)

a a

α b a β

c a d

α b a β

c a d

b δ a θ

a ξ(d) ξ(d)

ν a a

Fig. 4. Strategy translation from G to G

Successor Transitions. The successor transitions always lengthen the mem-
ory, and guarantee that it remains consistent with the original strategy. The
basic idea is to copy the current move in the memory. However, we have to be
cautious with the states of Eve: she must have the possibility to choose, either
as proponent or opponent, to go to a state of the Muller game that does not
belong to the original game. This case is treated differently depending whether
we consider a strategy for Eve or for Adam.

Eve: For a strategy σ of Eve, the problem arises when, in a state q ∈ Q with
memory Ω ∈ Q∗, σ(Ω · q) does not belong to Q, but is a new state χ(P). To
deal with this case, we add three moves to the memory instead of one: μ(q, Ω) =
Ω · q · χ(P) · ξ(q). This is still a finite play consistent with σ, so Eve can now
send the token to the location σ(Ω · q · χ(P) · ξ(q)), which is a successor of q in
G by definition of ξ(q).

Adam: In Adam’s case, the problem is not what the strategy can do — Adam’s
options in the states of Q are the same in G and in G — but how to interpret
what Eve does. Supposing that she always keeps to states of Q is not correct,
since almost any strategy wins against such behaviors. We will thus consider
that Eve always chooses to propose transitions when Adam refuses them: if the

218 J. Cristau and F. Horn

token is in state q ∈ QE and Eve sends the token to q′, we first look for a set P
such that:

– o(P) = q (Eve can propose the transition)
– τ(Ω · q · χ(P)) = ξ(P) (Adam’s strategy τ would refuse it)

If we do not find one, the memory is simply updated to Ω · q. Otherwise, we
denote by P the one such that χ(P) did not occur in Ω for the longest time,
and update the memory to Ω · q · χ(P) · ξ(P). Here also, the resulting memory
is still consistent with τ .

Limit Transitions. When the play goes through a limit transition, the idea is
to go back to a suitable shortcut in the past of the memory. To explain how we
do it, we first fix some notations: we consider a play ρ consistent with our new
strategy, and a transition P

lim−−→ q occuring at position j — i.e. lim ρ<j = P and
ρj = q. Furthermore, we denote by (Ωi)i<j the (transfinite) sequence of memory
states occuring in the course of ρ<j .

One first problem is that there is no last memory state before j from which
to work. Propositions 8 and 9 compensate for this:

Proposition 8. The sequence (Ωi)i<j has a limit, denoted by Ω<j, which is an
infinite play in G consistent with the original winning strategy.

Proposition 9. lim ρ<j = Inf(Ω<j)

With these two propositions, we can now update the memory. We have to be
careful when choosing where to branch, in order to ensure that the memory still
grows with respect to a possible higher order transition. It is done by keeping
one copy of the limit set in the resulting memory: We divide Ω<j in three factors
v, w, and ψ:

– v contains all occurrences of states in Q \ Inf(Ω<j);
– w contains an occurrence of each state in Inf(Ω<j) ∩ Q. Furthermore, it

must end at a suitable branching point: for Eve, it means ending with an
occurence of χ(P); for Adam, it must end with an occurence of o(P), and
be such that τ(v · w · χ(P)) = t(P);

– ψ contains the remainder of Ω<j .

The factor v · w remains as a prefix of the new memory. Instead of ψ, there is
now an accepted shortcut: v ·w · t(P) or v ·w ·χ(P) · t(P), depending on whether
we are building a strategy for Eve or for Adam. This process is described in
Figure 4.

Once the soundness of our construction is accepted, it is not difficult to show
that it produces winning strategies: a full play always ends in � or in ⊗, and the
current state is systematically added to the memory. As this memory can only
contain plays consistent with the original strategy, the “bad” state (⊗ if we build
a strategy for Eve, � if it is for Adam) cannot occur in the memory. Thus, the
final state of a play consistent with our new strategy is necessarily the “good”
one. This completes the proof of Lemmas 5 and 6.

On Reachability Games of Ordinal Length 219

4 Complexity

We now consider the complexity of solving ordinal reachability games. As in
Muller games, we need to specify precisely how the transitions are represented.
In the case where transitions are represented as relevant sets, colour sets, a
Zielonka DAG or Boolean formulae, we get Theorem 10.

Theorem 10. Deciding the winner in a reachability game of ordinal length
whose limit transitions are represented as relevant sets, colour sets, a Zielonka
DAG or Boolean formulae is PSPACE-complete.

We will prove the membership part in Section 4.1, and the hardness part in
Section 4.2. The complexity in the case of transitions represented explicitly, or
as Zielonka Trees is left open.

4.1 Reduction to Emerson-Lei Games

Lemma 11. Deciding the winner in a reachability game of ordinal length whose
transitions are represented as Boolean formulae is PSPACE.

Proposition 12. The reduced game G is equivalent to an Emerson-Lei game
L of size polynomial in the size of G, if the transitions of G are represented as
Boolean formulae.

Proof. In order to get a polynomial reduction, we need to avoid the exponential
blow-up that occurs when we add a state χ(P) for each set of states P . It can
be done, by noticing that if two sets P and P ′ are such that o(P) = o(P ′) and
t(P) = t(P ′), χ(P) and χ(P ′) have exactly the same neighbours in G. In the
definition of L, we can thus replace them both by a single state κ(o(P), t(P)).
This limits the number of new states to |Q|2 + |Q|.

The winning condition of L can now be described in Emerson-Lei formalism:

ϕ = � ∨
∨

q∈Q∪{�,⊗}

(
ϕq ∧

∨

p∈Q

κ(p, q)
)

The size of formula ϕ is O(
∑

q∈Q∪{�,⊗}(|ϕq | + n)), which is polynomial in the
size of G. This modified reduction is still fair. ��
The last step of the proof is Theorem 13:

Theorem 13 ([HD05]). Deciding the winner in an Emerson-Lei game is
PSPACE-complete.

Lemma 11 follows directly from Property 12 and Theorem 13. Corollary 14
follows from the results of [HD05] about succinctness.

Corollary 14. Deciding the winner in a reachability game of ordinal length
whose limit transitions are represented as relevant sets, colour sets, or a Zielonka
DAG is PSPACE.

220 J. Cristau and F. Horn

4.2 Hardness Results

The hardness result also derives from Theorem 13. Indeed, any classical Muller
game (Q, QE , QA, E, M) can be represented as the ordinal reachability game
(Q, QE, QA, E, t, �, ⊗), with t(P) = � for all P ∈ M and t(P) = ⊗ for all P /∈ M.
The strategies and plays will be the same in both games. The only difference is
that after ω moves in the reachability game, the token will take a limit transition
to � or ⊗, depending on whether the infinite play is winning for Eve or Adam
in the Muller game. This reduction can be done for any representation of the
Muller condition.

Lemma 15. In a reachability game of ordinal length whose limit transitions are
represented as relevant sets, colour sets, a Zielonka DAG or Boolean formulae,
deciding the winner is PSPACE-hard.

5 Conclusion

We have extended the classical model of infinite games to games of ordinal length.
These games, that generalise all regular games, are determined, and the winner
is decidable through a reduction to Muller games. If the limit transitions are
represented as relevant sets, colour sets, a Zielonka DAG or Boolean formulae,
the problem is PSPACE-complete.

We intend now to use this formalism in the context of timed games, following
for example the work of [JT07]. Another perspective concerns the minimal quan-
tity of memory that is necessary to define winning strategies in ordinal games.
Finally, we would like to consider less general games, where the transitions can
be represented in a more compact way — especially parity — and study the
effects on complexity and memory.

References

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

[AM99] Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed
automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999.
LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)

[BC01] Bruyère, V., Carton, O.: Automata on linear orderings. In: Sgall, J.,
Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 236–247.
Springer, Heidelberg (2001)

[BÉ02] Bloom, S.L., Ésik, Z.: Some remarks on regular words. Technical Report
RS-02-39, 27 (September 2002)

[Cac06] Cachat, T.: Controller synthesis and ordinal automata. In: Graf, S.,
Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 215–228. Springer,
Heidelberg (2006)

[CdAH05] Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochas-
tic Rabin and Streett games. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878–
890. Springer, Heidelberg (2005)

On Reachability Games of Ordinal Length 221

[Cho78] Choueka, Y.: Finite automata, definable sets, and regular expressions over
ωn-tapes. Journal of Computer and System Sciences 17(1), 81–97 (1978)

[CJH03] Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Simple stochastic parity
games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803,
pp. 100–113. Springer, Heidelberg (2003)

[dAFH+03] de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.:
The element of surprise in timed games. In: Amadio, R.M., Lugiez, D.
(eds.) CONCUR 2003. LNCS, vol. 2761, Springer, Heidelberg (2003)

[DN05] Demri, S., Nowak, D.: Reasoning about transfinite sequences. In: Peled,
D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 248–262.
Springer, Heidelberg (2005)

[EJ91] Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy.
In: Proceedings of FOCS 1991, pp. 368–377. IEEE, Los Alamitos (1991)

[EL85] Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time
strikes back. In: Proceedings of POPL 1985, pp. 84–96 (1985)

[GTW02] Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite
Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

[HD05] Hunter, P., Dawar, A.: Complexity bounds for regular games. In: Je-
drzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp.
495–506. Springer, Heidelberg (2005)

[JT07] Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata.
In: ICALP 2007. LNCS, vol. 4596, pp. 838–849. Springer, Heidelberg
(2007)

[Mar75] Martin, D.A.: Borel determinacy. Annals of Mathematics 102, 363–371
(1975)

[Tho95] Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr,
E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer,
Heidelberg (1995)

[Zie98] Zielonka, W.: Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theorical Computer Science 200(1-2), 135–
183 (1998)

An Algorithm for Computation of the Scene

Geometry by the Log-Polar Area Matching
Around Salient Points

Bogus�law Cyganek

AGH - University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

cyganek@uci.agh.edu.pl

Abstract. Computation of a scene geometry belongs to the one of the
fundamental problems of computer vision. It can be computed from point
correspondences found in a pair of stereo images or a video sequence. This
is achieved by an image matching algorithm. However, found correspon-
dences usually are burdened with large errors due to noise and outliers.
In this paper we propose an improvement to the point matching algo-
rithm which is twofold. At first the salient points are found which are
corners detected by the structural tensor. Then the log-polar representa-
tions are computed around found salient points and the matching is done
in the extended log-polar space. Such representation has very desirable
properties which allow detection of a local change of scale and rotation of
the matched areas. This feature is employed in the matching algorithm
to eliminate outliers. The proposed method can be used in variety of
computer vision tasks, such as stereovision, recovering shape and motion
from video, or camera calibration and autocalibration.

1 Introduction

Efficient point matching among multiple views of a scene is a key technique
for majority of computer vision methods such as stereovision, tracking, SLAM,
camera calibration, to name a few. The problem is difficult and ill posed due
to physical characteristic of a camera − a 3D point is mapped onto the camera
plane which is ”only” two-dimensional. This way all points on a line of sight
are mapped into a single point. This inevitably leads to loss of information.
Therefore to recover the 3D geometry of a scene a second (or more) camera(s), as
well as a point matching methods, are necessary. However, finding corresponding
points, i.e. image matching, is not an easy task due to signal quantization, noise
and distortions, occlusions, etc. In this paper we propose a new approach to
salient point detection and their matching. Detection is based on the structural
tensor which allows fast and accurate computation of corners in areas of the
strongest signal response. The latter is measured by the lowest eigenvalue of
a local structure. Then area matching around the found points is performed.
However, instead of the intensity signal its log-polar (LP) representation is used

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 222–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Algorithm for Computation of the Scene Geometry 223

which was shown to be more discriminative [12]. Then, an analysis of the local
changes in rotation and scale of the matched regions allows elimination of the
outliers. Such strategy improves overall accuracy of the method.

2 Computation of the Scene Geometry from Multiple
Images

The corresponding image points a and b in Fig. 1 are related by the following
formula [3,6]:

aTFb = 0 (1)

where F is a fundamental matrix which determines the epipolar geometry of a
camera setup, a= [a1, a2, a3]T and b= [b1, b2, b3]T are left and right image points
expressed in the homogeneous coordinate systems associated with their image
planes. It is assumed that the cameras can be approximated by the pinhole
model. Once the matrix F is known, the epipolar lines, la for the left and lb for
the right camera, can be determined as follows:

la = Fb, lb = FTa. (2)

Fig. 1. Epipolar geometry of the two cameras (stereo) system

In a case of a stereo setup this limits the search to one dimension, i.e. along the
epipolar lines. Taking into account homogeneous representation of the points,
the formula (1), can be expressed in the following form:

qTf = r =
9∑

i=1

qifi = 0, (3)

where r is called a residual, whereas vectors q and f are given as follows

q = [a1b1, a2b1, b1, a1b2, a2b2, b2, a1, a2, 1]T (4)

f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
T

.

Each pair of the corresponding points gives one equation of the type (3). Then,
K≥8 pairs of the corresponding points are gathered into a compound matrix
QK×9. From Q the so called moment matrix M=QT Q is created which is of

224 B. Cyganek

size 9x9 [10]. The matrix F is found as an eigenvector w of M which corresponds
to the lowest eigenvalue of M. This way found F minimizes the sum of squares
of the algebraic residuals E =

∑K
k=1 ρk. Therefore, computation of the matrix

F can be stated as the following optimization problem

min {E} , (5)

where the functional E is given as follows [10]:

E =
K∑

k=1

ρk =
K∑

k=1

r2
k

fT Jf
=

K∑

k=1

aT
k Fbk

fT Jf
=

fT Mf
fT Jf

, (6)

where J=J1=diag[1,1,. . . ,1] is the normalization matrix which corresponds to
the optimization constraint in the form: ||f|| =

∑
if

2
i = 1. The denominator in

the above represents an optimization constraint which allows a solution from an
equivalence class, excluding the trivial zero results at the same time. Solution to
(5) and (6) is obtained as an eigenvector fs=w that corresponds to the lowest
eigenvalue λk of the moment matrix M. To impose the rank two of the com-
puted matrix F we set its smallest singular value to 0 and then recalculate the
fundamental matrix. The way to estimate the given point configuration is just to
measure how close to 0 is the smallest singular value of M. Hence optimizing for
the smallest singular value leads to a measure of a quality of the point matching.

However, instead of J=J1 Torr and Fitzgibbon proposed to apply a constraint
which is invariant to the Euclidean transformations in the image planes [10].
They showed that the Frobenius norm of the form f2

1 + f2
2 + f2

4 + f2
5 fulfils

such invariance requirement. This corresponds to J=J2=diag[1,1,0,1,1,0,0,0,0].
Finding fs in this case is more complicated since it is equivalent to solving the
generalized eigenvector problem: fT Jf − fT Mf = 0. However, the faster and
more stable solution can be obtained by the procedure originally proposed by
Bookstein and also cited by Torr & Fitzgibbon in [10]. The methodology consists
in partitioning f into f1 = [f1, f2, f4, f5] and f2 = [f3, f6, f7, f8, f9]. Then f1 is
obtained as an eigenvector solution to the equation

Df1 = λf1, (7)

where

D = M11 − M12M−1
22 MT

12, and M =
[
M11 M12

MT
12 M22

]
. (8)

M is divided into Mij in such a way that

fT Mf = fT
1 M11f1 + 2fT

1 M12f2 + fT
2 M22f2. (9)

Then f2 is found from M12, M22, and f1, as follows:

f2 = −M−1
22 MT

12f1. (10)

An Algorithm for Computation of the Scene Geometry 225

Point coordinates in the equations (1)-(10) are integer values measured in dis-
crete pixel coordinates. Thus the individual entries in these equations can vary
by two or three orders of magnitude. This can cause excessive errors when com-
puting F due to finite precision of a computer representation of data. Hartley
showed that a special normalization procedure can increase stability of these
computations [5]. The normalization is done by an affine transformation T, con-
sisting of a translation and scaling, so that the centroid of the reference points
is at the origin of the coordinate space and the root-mean-square distance of the
points from the origin is

√
2. This can be written as follows:

a′ = Taa =

⎡

⎣
sa 0 −ma1sa

0 sa −ma2sa

0 0 1

⎤

⎦

⎡

⎣
a1

a2

1

⎤

⎦ , (11)

where ma = [ma1, ma2, 1] is a mean point, sa=
√

2/dav and dav is an average
point distance from the origin point [0, 0, 1].

Now, in the light of (11) the equation (1) takes the following form:

aTFb =
(
T−1

a a′)T F
(
T−1

b b′) = a′TT−T
a FT−1

b b′ = 0. (12)

Thus, computing in the domain of transformed coordinates we actually obtain:

F
′
= T−T

a FT−1
b . (13)

Therefore at the end it is necessary to recover F, which can be done as follows:

F = TT
a F

′
Tb. (14)

The normalization is done separately for each image of the stereo-pair. The de-
normalization (14) is done once. Finally, estimation of the trifocal tensor is very
similar to the outlined computation of the fundamental matrix [6][3].

3 Salient Points from the Structural Tensor

The idea of an upright image analysis consists of dividing an image into local
neighbourhoods around each pixel and then determining local phase, magni-
tude and coherence of each of the neighbourhoods. Subsequent image analysis
is based on the computed local parameters. We are trying to describe each local
neighbourhood(LN) Ω of pixels with a single orientation, denoted by a vector
w in Fig. 2. This could be possible if LN shows some regularity of its intensity
signal. This can be measured by gradient vectors in each point of the LN. If
these are approximately oriented in the direction of w, then we can say that w
represents well a given LN. For this purpose we need to introduce a measure of
a ‘goodness’ of such a fit. It can be defined as an average of the squared modules
of vectors s which are perpendicular projections of the gradients gi onto the
sought orientation vector w. From Fig. 2 we see that

s = g − r = g − w
‖w‖ ‖r‖ = g − wgT w

wT w
. (15)

226 B. Cyganek

Fig. 2. A local neighbourhood Ω is represented with a single orientation vector w,
which is accurate if most of the gradients gi in Ω coincide with w . This is equivalent
to minimization of a cumulative sum of the residual vectors si in Ω which is also
equivalent to finding eigenvectors of the structural tensor.

Assuming that
wT w = 1, (16)

the error function can be now defined as follows [1]:

e(x,x0) = ‖s‖ =
∥∥g (x) − w (x0)gT (x)w (x0)

∥∥ . (17)

The total error E is obtained by integrating the square of e(x ,x 0) over all possible
locations x in the neighbourhood Ω, using a Gaussian soft averaging filter Gσ:

E(x0) =
∫

Ω

e2(x,x0)Gσ (x,x0)dx. (18)

In robust approach, the Gσ is substituted with a robust function [2] which makes
filtering dependant on a local structure. This makes the orientation vector w well
adapted. However, this implies also an iterative solution which sometimes is too
slow. Inserting (17) to (18) and expanding we obtain

E = −
∫

Ω

gT gGσ (x,x0) dx + wT

⎛

⎝
∫

Ω

gT gGσ (x,x0) dx

⎞

⎠w. (19)

Now, to find w we have to solve the following optimization problem

min
w

‖E‖ , (20)

subject to the constraint (16). Substituting (19) into (20) we obtain

min
w

‖E‖ = min
w

∥∥∥∥∥∥

∫

Ω

gT gGσ (x,x0) dx − wT

⎛

⎝
∫

Ω

gT gGσ (x,x0) dx

⎞

⎠w

∥∥∥∥∥∥
. (21)

Since it holds that gT g≥0, then solving (21) is equivalent to the following min-
imization problem

min
w

‖E‖ = max
w

⎧
⎨

⎩wT

⎛

⎝
∫

Ω

gT gGσ (x,x0) dx

⎞

⎠w

⎫
⎬

⎭

∣∣∣∣∣∣
wT w=1

, (22)

An Algorithm for Computation of the Scene Geometry 227

Fig. 3. A priority queue for selection of image points with strongest responses

where the expression

T =
∫

Ω

gT gGσ (x,x0) dx, (23)

is called a structural tensor (ST). Using the method of Lagrange multipliers we
find that the sought orientation w is an eigenvector of T corresponding to its
largest eigenvalue. This way we obtain w, as follows [1]:

w =
[
T11 − T22 2T12

]T
. (24)

where Tij are components of T.
It appears that an analysis of the eigenvalues of T

λ1,2 =
1
2

[
(T11 + T22) ±

√
(T11 − T22)

2 + 4T 2
12

]
, (25)

can provide information on a type of the local structures in an image [1]. By this
method, the corner points (xi, yi) which we use for matching, can be described
as such points which fulfil the following condition:

λ1(xi, yi) ≥ λ2(xi, yi) ≥ μ (26)

where μ is a threshold for the lowest eigenvalue. The advantage of this ap-
proach is that it leads to a natural ordering of the detected points based on their
strength, i.e. value of the lowest eigenvalue λ2 in (25). Moreover we can avoid
strict definition of a threshold using a priority queue depicted in Fig. 3. It allows
also a control over the mutual distances among the found points which results
in a more uniform distribution of the salient points. For an even more uniform
spread of the salient points, corners are searched for in a separate tiles of the
image. In practice it is sufficient to divide an image into for example 16×16 tiles.

4 Image Matching in the Log-Polar Domain

The log-polar transformation takes points (x, y) from the Euclidean space into
the (r,ϕ) points in the polar space. This process is defined as follows [11]:

r = logB

(√
(x − x0)

2 + (y − y0)
2

)
, ϕ = arctan y−y0

x−x0
, for x �= x0 (27)

for a point (x, y), where O = (x0, y0) is a centre of transformation, B > 1
denotes base of a logarithm. In practice it is chosen to encompass the maximal
area determined by a distance rmax from the centre O.

228 B. Cyganek

a b

Fig. 4. A matching area from the Tsukuba image and a view of its LP transformation
(a). Matching a pattern in the extended LP space: For each position search is two-
dimensional to account for the scale and rotation - this results in a 4D search (b).

In the proposed method matching in the LP space follows the technique pre-
sented by Zokai & Wolberg [11]. The search is four dimensional and starts with
building a reference area which is transformed into the LP space. Then, for each
position (xi, yi) in the second image(s) a region of the exact size is selected and
also transformed into the LP representation. Fig. 4a depicts a left image from
the “Tsukuba” stereo pair with a selected region of size 30×30 pixels and its LP
transformed version. This region of size a×b pixels is matched with the right
image of “Tsukuba”. Contrary to the simple intensity matching, the matching
of the LP transformed signals is done in an extended space depicted in Fig. 4b.
A test pattern is wrapped around to 2b to allow for inherent rotations. The scale
range is extended by a distance c, which can reach up to width a of a template.
Each position in the extended space is then matched pixel-by-pixel with help of
the cross correlation ρ (covariance-variance) measure, given as follows [8]:

ρ =

∑
(i,j)∈U

(
I1 (i, j) − I1 (U)

)
·
(
I2 (i, j) − I2 (U)

)

√
∑

(i,j)∈U

(
I1 (i, j) − I1 (U)

)2

· ∑
(i,j)∈U

(
I2 (i, j) − I2 (U)

)2
, (28)

where Ik (U) denotes an average intensity in a pixel region U in a k-th image.
This way found position of the best match in the extended space contains an
additional information on local scale and rotation (r,ϕ) between input and the
template. Thus, for each checked position in the input image, the four parameters
(xi, yi,r,ϕ) of the best matches are stored. Selection of a best match can be done
at least in two different ways. One is to set a fixed threshold value and accept
only correlation measures above this threshold. The second is to build again a
priority queue of a fixed length N , which stores N best matches.

The ability of the LP matching to detect local rotation and scale can be used
to sieve out the outliers. Our idea here is to reject all the matching pairs for
which their local rotation or scale deviates significantly from 0. Such a strategy
comes from an observed phenomenon that large variations of these parameters
in stereo images or consecutive frames of a video stream are highly unusual.

An Algorithm for Computation of the Scene Geometry 229

This process is controlled by setting specific threshold values for these param-
eters. However, to alleviate the problem of finding a suitable threshold values
we independently sort the found matches by r and ϕ. The justification of this
procedure is an assumption of local consistency of the matched images. It means
that the corresponding points and their neighbouring areas exhibit topological
and geometrical similarity. In other words, except for a limited number of image
points such as occlusions or noise, it is assumed to be very unusual to have local
matching areas which differ significantly in rotation or scale. This is safe proce-
dure since due to over-determined set of equations even if we reject some good
matches from further considerations, the left ones are sufficient for computation
of the scene geometry. Our assumptions were verified experimentally with help
of many real images. The third parameter which can indicate outliers is a value ρ
(28) of each match. However, a simple thresholding won’t work here. A possible
solution is to sort the points in the order of ρ and then disregard a number of
points with the lowest scores.

Yet we can do one step more to limit influence of the outliers. After the first
sieve it is still possible that the set of matched points will contain outliers. Such
situation is more probable when using small regions for the LP matching. For this
reason for the computation of the scene parameters we use the robust estimation.
The most common is the RANSAC algorithm proposed by Fischler and Bolles
[4]. It is also used in our method. It consists in random choice of samples from the
set of all measurements, which are then used to the computation of a tentative
model. Then a number of other points that are in consensus with this model
estimate is checked. The process is repeated and the best fit, i.e. an estimate
supported by the maximal number of measurements is left as a solution. All
other points are treated as outliers.

The last parameter that needs to be controlled is setting of the search range in
the second image. In the simplest approach it can be the whole image. However,
this means an exhaustive 2D×2D search which is time consuming and is more
probable to produce outliers. Thus, additional information on a matched scene
can help to limit the potential search space. For example, in a tracking problem
the correspondences are assumed to lie in a limited distance from their reference
points in the previous image, although they can be moved in any direction. This
is also the case of stereo matching where disparities follow camera setup, e.g. in
a horizontal alignment of cameras we expect to have horizontal disparities rather
than vertical ones, etc.

5 Experimental Results

The code was written in C++ on the Microsoft R© .NET 2005 IDE. The tests were
performed on the laptop computer with the Intel R© Core Duo processor 2MB L2
cache (T2600 with 2.16GHz speed) and the 2GB of RAM. Architecture of the
software for image matching is depicted in Fig. 5. Our methodology of testing
the system consists mostly in measuring the following parameters: matching
accuracy, speed, and robustness of the method to noise and distortions. Fig. 6

230 B. Cyganek

Fig. 5. Architecture of the software for computation of the scene geometry

a b

Fig. 6. Matching of the exemplary video sequence. First frame (a) with salient points
obtained by the structural tensor detector. The next (5th) frame in a sequence with
the matched points (b). Outliers are the pairs of points no. 2 and 5.

depicts two frames from an exemplary video sequence. The corner points with
the strongest signal response were detected with the ST. Then the points were
matched in the LP space. Each matching area was of the size 17×17. An average
execution time is 3.35 [s]. Table 1 contains coordinates of the matched points
as well as their parameters: ρ, as well as the local rotation and scale. It is
visible that the points which have their large local rotation and/or scale are
candidates for outliers which indeed is the case for this example (see Fig. 6).
Fig. 7 presents matching of the “Car” stereo pair. Left image with salient points
obtained by the structural tensor detector is visible in Fig. 7a; The right image
with the matched points in Fig. 7b. Two outliers are detected – see Table 2.

Table 1. Matching results of the images from Fig. 6. Outliers entries no.2 and no.5.

No Left pt. (x, y) Right pt. (x, y) Best match val. ρ LP (scale, rotation)

1 248, 51 (253, 52) 0.929104 (0, 0)

2 158, 66 (253, 48) 0.924074 (15, 2)

3 227, 24 (232, 25) 0.912579 (0, 0)

4 16, 105 (20, 105) 0.840755 (0, 0)

5 288, 80 (293, 144) 0.634407 (-14, 4)

6 135, 117 (135, 117) 0.746453 (0, 1)

7 170, 136 (173, 136) 0.876785 (0, 0)

8 192, 175 (199, 175) 0.846410 (0, 0)

An Algorithm for Computation of the Scene Geometry 231

a b

Fig. 7. Matching of the “Car” stereo pair. Left image (a) with salient points from the
ST detector. The right image with the matched points (b). Two outliers.

Table 2. Results of the LP matching of the images in Fig. 7. Outliers no. 25 and 26.

No Left pt. (x, y) Right pt. (x, y) Best match val. ρ LP (scale, rotation)

1 (53,53) (54,51) 0.929504 (0,0)

2 (36,55) (34,52) 0.826554 (0,0)

.

25 (31,229) (48,224) 0.807608 (0,13)

26 (72,209) (52,208) 0.795199 (0,0)

.

32 (245,183) (263,186) 0.976108 (0,0)

Matrix F obtained from point correspondences in Fig. 7 can be seen in the
following formula. Computation is performed in accordance with the formulas
(5) and (6) presented in the previous sections.

F =

⎡

⎣
0.492126 −0.343832 0.1690080

−0.269639 −0.190649 0.0927313
0.167368 0.117041 −0.0574843

⎤

⎦ (29)

The achieved accuracy is in the order of 10−6. Prior to matching the outliers
were removed and points normalized in accordance with (11).

Although LP search is a four dimensional one, usually this does not pose
a problem if a geometry can be computed off line. Otherwise, the hardware
accelerated computations are an option.

Fig. 8 and Fig. 9 present computation of the point correspondences in the stereo
pairs “Parkmeter” and “Tsukuba”, respectively. For the “Tsukuba” stereo-pair
each of the LP patches has size of 27×27 pixels, corners are detected independently
in 4×4=16 tiles. Found point correspondences were used for computation of the
fundamental matrix with the described method (2).

The method allows detection of the point correspondences with simultaneous
rejections of outliers. Based on the experiments we found that the best results
are obtained if the square LP windows are of size from 15 to 35 pixels. This
parameter depends on contents of an image and its resolution.

232 B. Cyganek

a b

Fig. 8. Matching of the “Parkmeter” stereo pair. Left image (a) with salient points
obtained by the ST detector. The right image with the matched points (b). No outliers.

a b

Fig. 9. Matching the “Tsukuba” stereo-pair divided into 4×4 tiles. 27×27 LP window
used for matching. Left (a) with detected corners. The right with the matched points
(b). No outliers.

6 Conclusions

In this paper a novel method for efficient computation of a scene geometry is pre-
sented. It is composed of two stages. The first one consists in computation of the
salient points (corners). For this purpose the structural tensor is employed which
allows fast selection of the strongest signal responses which also exhibit high
discriminative properties. The second step consists in region matching around
salient points. However, instead of bare intensities their log-polar representations
are used for this purpose. One of the advantageous of this approach is possible
detection of outliers based on their excessive local rotation and/or scale. From
the point correspondences a geometry of multiple views can be recovered. For
two views this is achieved by computation of the fundamental matrix F. A brief
description of this process is also presented. The method was verified experimen-
tally on the video sequences and stereo images, allowing accurate computation
of a scene geometry.

An Algorithm for Computation of the Scene Geometry 233

Acknowlegement

This work was supported from the Polish funds for the scientific research in 2007.

References

1. Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional Orientation Estimation
with Applications to Texture Analysis and Optical Flow. IEEE PAMI 13(8), 775–
790 (1991)

2. Brox, T., van den Boomgaard, R., Lauze, F., van de Weijer, J., Weickert, J.,
Mrázek, P., Kornprobst, P.: Adaptive Structure Tensors and their Applications.
In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields,
pp. 17–47. Springer, Heidelberg (2006)

3. Faugeras, O.D., Luong, Q.-T.: The Geometry of Multiple Images. MIT Press, Cam-
bridge (2001)

4. Fischler, M.A., Bolles, R.C.: Random sample consensus. Communications of the
ACM 24(6), 381–395 (1981)

5. Hartley, R.I.: In Defense of the Eight-Point Algorithm. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 19(6), 1064–1075 (1997)

6. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge (2000)

7. Morita, T., Kanade, T.: A Sequential Factorization Method for Recovering Shape
and Motion From Image Streams. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(8), 858–867 (1997)

8. Pratt, W.K.: Digital Image Processing, 3rd edn. Wiley, Chichester (2001)
9. Shapiro, L.S., Zisserman, A., Brady, M.: 3D Motion Recovery via Affine Epipolar

Geometry. Int. Journal of Computer Vision 16, 147–182 (1995)
10. Torr, P.H.S., Fitzgibbon, A.W.: Invariant Fitting of Two View Geometry. IEEE

Transactions on Pattern Analysis and Machine Intelligence 26(5), 648–650 (2004)
11. Zokai, S., Wolberg, G.: Image Registration Using Log-Polar Mappings for Recov-

ery of Large-Scale Similarity and Projective Transformations. IEEE Tr. on Image
Processing 14(10), 1422–1434 (2005)

The Power of Tokens: Rendezvous and

Symmetry Detection for Two Mobile Agents
in a Ring

Jurek Czyzowicz1, Stefan Dobrev2, Evangelos Kranakis3, and Danny Krizanc4

1 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec J8X 3X7, Canada. Research supported in part by NSERC

2 School of Information Technology and Engineering, University of Ottawa, Ottawa,
Canada, on leave from Slovak Academy of Sciences, Bratislava, Slovakia.

Research supported in part by NSERC
3 School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
Ontario, K1S 5B6, Canada. Research supported in part by NSERC and MITACS

4 Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459,
USA

Abstract. Rendezvous with detection differs from the usual rendezvous
problem in that two mobile agents not only accomplish rendezvous when-
ever this is possible, but can also detect the impossibility of rendezvous
(e.g., due to symmetrical initial positions of the agents) in which case
they are able to halt. We study the problem of rendezvous with and with-
out detection of two anonymous mobile agents in a synchronous ring. The
agents have constant memory and each of them possess one or more to-
kens which may be left at some nodes of the ring and noticed later. We
derive sharp bounds for the case of at most two tokens per agent and also
explore trade-offs between the number of tokens available to the agents
and the time needed to accomplish rendezvous with detection.

1 Introduction

The mobile agent rendezvous problem is a search optimization problem that
seeks an algorithm specifying how should anonymous mobile agents move along
the vertices of a network in order to determine whether or not they can meet
at some node of the network. The mobile agents are autonomous entities that
move along vertices of the network acting on the information collected following
a given protocol.

In certain instances, if the rendezvous problem is impossible to solve the mo-
bile agents will be executing a rendezvous algorithm that may never terminate.
It is therefore crucial for accomplishing rendezvous what knowledge the mobile
agents have about the network configuration (e.g., size of the network, rela-
tion between start positions of the mobile agents). In this paper we distinguish
between two types of rendezvous problem: rendezvous without detection (also
simply rendezvous, abbreviated RV) and rendezvous with detection (abbrevi-
ated RD). In the former case, the agents know that the rendezvous problem

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 234–246, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Power of Tokens: Rendezvous and Symmetry Detection 235

has a solution either for the given system configuration or regardless of the sys-
tem configuration and they just want to accomplish rendezvous at a node of
the ring in, say, minimum number of steps. (For example, in a ring of size n
the rendezvous problem is always solvable for m mobile agents if m and n are
relative primes). In the latter case, we are also interested in the decision problem
which in addition to rendezvous requires a solution of the halting problem for
rendezvous. I.e., we look for an algorithm that detects feasibility of a solution
for all starting positions after a finite number of steps (usually dependent either
on their distance or the size of the network). Thus, if rendezvous is possible then
rendezvous is achieved, while if rendezvous is not possible then all agents stop
and know that rendezvous is not possible.

In this paper, of interest will be mobile agents that have constant memory-
space (independent of the size of the ring and the number of mobile agents in
the system) and thus are unable to remember either their past actions or the
current conditions of the system. Conditions for the mobile agents we consider
may include 1) constant memory-space and 2) a given number of tokens per
mobile agent. In addition, it is assumed that the tokens are indistinguishable
from each other as well as from the tokens of the other agent(s). In other words,
when an agent finds a token that has been released at a node in the ring neither
can it distinguish it from its own token(s) nor from the token(s) of the other
mobile agents. We distinguish two cases: unidirectional ring, where agents may
move in a single, say counterclockwise, direction, and bidirectional ring - where
clockwise and counterclockwise moves are allowed.

1.1 Results and Outline of the Paper

The paper studies rendezvous with detection (RD) and explores trade-offs be-
tween the number of tokens available to the agents and the time needed to
rendezvous with detection on an n node ring. In more detail, Section 2 includes
impossibility, as well as upper and lower bound results for two mobile agents
with constant memory and at most two tokens each. Main results of Section 2
are summarized in Table 1. The first column depicts the number of tokens avail-
able per mobile agent, the second indicates the number of directions on the ring
(1 means unidirectional and 2 bidirectional), while the third and fourth columns

Table 1. Time bounds for two mobile agents with constant memory to detect if ren-
dezvous is possible (RD) and to rendezvous when input is asymmetric (RV) on an n
node synchronous uni-, bi-directional ring with one or two tokens

Conditions on Time Required for

Tokens # Dirs # RD RV
1 1 ∞ ∞
1 2 ∞ Θ(n2)

2 1 Θ(n2) Θ(n2)

2 2 Θ(n2) Θ(n2)

236 J. Czyzowicz et al.

indicate the time required to solve the problem indicated. The memory required
for all the algorithms depicted is O(1). In Section 3 we show how the time com-
plexity of RD algorithm may be improved if more than two tokens per agent are
allowed. In particular, we look at the case where each mobile agent has t ≥ 3
tokens and memory O(log t). We give an O(mn) upper bound for RD, where m
is the smallest integer such that

(
m−1
t−2

) ≥ n − 1.

1.2 Mobile Agent Model

In this paper we consider an anonymous, synchronous, either unidirectional or
bidirectional ring network on n nodes. The nodes of the ring are identical and
do not have distinct identities. Two mobile agents are situated on the nodes
of the ring. Each mobile agent owns a set of tokens that it may release at any
node of the ring. The tokens are indistinguishable from each other. At any single
time unit, the mobile agent occupies a node of the ring and may 1) stay at its
current position, 2) move left or right from its current position, 3) detect the
presence of one or more tokens at the node it is occupying, and 4) release/remove
one or more tokens to/from any node it is occupying. Initially, a mobile agent
may occupy any node of the network and the start node of the mobile agent
is also called its home node or home base. Both agents start their algorithm at
the same time. Mobile agents may communicate and exchange information with
each other only when they find themselves at the same node. We say that one
or more mobile agents rendezvous when either they meet at the same node or
else traverse the same edge in opposite directions. They can see, remove or add
tokens, and can also see each other if either they are crossing over an edge or
arriving at a node at the same time. The computation is synchronous and both
agents work in lock-step.

Definition 1 (Finite automaton). More formally, the two agents holding t
tokens each are starting at their home bases which are located at different nodes
of a ring of unknown size n. In a bidirectional ring an agent is a finite automaton
with k states represented by a state-transition function σ : S ×T ×T → S ×T ×
{L, R, W} where S = {1, 2, . . . , k} and T = {1, 2, . . . , 2t}. Moreover, whenever
σ(s, t1, t2) = (s′, t′1, d) it must hold t′1 ≤ t1 + t2. The parameters mentioned above
are to be interpreted as follows: 1) The set S represents the agents’ states, not
including the number of tokens the agent holds. 2) t1 ∈ T is the number of tokens
the agent holds when making the decision, and t2 ∈ T is the number of tokens
the agents see in the current node. t′1 is the new number of tokens the agent holds
after making a state transition. (Note that t1, t2, but also t1 + t2 are always at
most 2t, as the total number of tokens in the system is 2t. Moreover, as the agent
can pick up only the tokens it sees, the number of tokens it carries after the state
transition is bounded by t1 + t2.) 3) L, R, W represent the “movement” decision
by the agent – either moving one position Left, Right (according to the specified
global orientation) or Wait. (For a unidirectional ring the moves L, R, W have
to be modified to M, W meaning either Move or Wait, respectively.)

The Power of Tokens: Rendezvous and Symmetry Detection 237

We note that this definition of the automaton represents only a reference model
and is meant to be used only as a guide. In actual proofs we will avoid strict
conformance to its specific workings as it would lead to long and tedious con-
structions.

1.3 Related Work

The rendezvous problem was first considered by the operations research commu-
nity as a search game for two or more players in various network topologies (see
[1], [2]). In its current algorithmic form with one token per agent the problem
was first considered in [10] and more extensively in the PhD thesis of [8]. The
RD problem is mentioned in [7] and studied in the case of the torus in [6] where
also the power of tokens for rendezvous is investigated. A related “whiteboard”
model can be found in [3] whereby an agent is allowed to write messages of cer-
tain size on a white board that can be read by the other agent. So, in a sense,
the token model presented here can be thought of as the “weakest possible”
form of the white board model. For additional information on algorithmics for
mobile agent models the reader is advised to consult [5]. General discussion of
the relation of the rendezvous problem to P2P networks can be found in the
edited volume [9].

2 Mobile Agents with at Most Two Tokens

In this section we consider time upper bounds for rendezvous with detection in a
ring when the mobile agents have constant memory-space and at least one token
each. We consider an n-node ring and two mobile agents each having a number
(same for both mobile agents) of indistinguishable tokens. It goes without saying
that the mobile agents cannot know the size n of the ring since they have only
constant size memory, independent of n (unless n itself is a constant).

2.1 Upper Bounds for Rendezvous with Detection

First consider the case where each mobile agent has a single token and the ring
is bidirectional. In this case the asymmetric rendezvous problem is solvable, as
shown in the following theorem.

Theorem 1. In bidirectional rings, the rendezvous problem (RV) is solvable in
O(n2) time for two mobile agents having constant memory and one token each.

Proof. Consider the pendulum-like algorithm presented below. First, note that if
the agents have different notion of which direction is right, they will start moving
towards each other and will meet in O(n) time. Hence, it is sufficient to consider
the case where the agents have the same sense of direction. Let us call the agents
A and B and the initial distances between them be d and n−d, respectively. Let
t1, t2, t3, . . . be the times when the agent A finds a token (i.e. ti is the time when
i-th iteration of the loop begins). Let t′1, t

′
2, t

′
3, . . . be those times for the agent B.

238 J. Czyzowicz et al.

Algorithm 1. Algorithm One-Token.
1: Drop your token at your home base.
2: Go right until a token is found or you meet the other agent, counting (in your state)

the value of x equal to the distance traveled modulo three. Let this distance be
x (remember it in your state).

3: if not met the other agent
4: repeat
5: Pick the token, reverse direction, move one step and drop the token there.
6: Continue in current direction until a token is found, counting the value of

y equal to the distance travelled mod3.
7: until y ≡ (x − 1) mod 3 or met the other agent
8: if did not meet the other agent.
9: Stop and wait for the other agent.

10: endif
11: endif

Without loss of generality assume that d < n − d and set δ = (n − d) − d. Note
that d = t1 ≡ xA mod 3 and n − d = t′1 ≡ xB mod 3. Observe that as long as
ti+1 < t′i, the agent B will move a token before the agent A arrives to it, and A
will find the distance between the tokens has not changed. However, as t1 �= t′1,
it is easy to prove by induction that the value of t′i − ti, which is the difference
between the times when both agents start their i-th iteration, increases by δ, i.e.
t′i − ti = iδ. That means that after �t1/δ	 iterations ti+1 ≥ t′i. If ti+1 = t′i, the
agents meet over the token. Otherwise, agent A arrives to the token before B
had moved it, i.e. A traveled distance t1 −1 ≡ xA −1 mod 3. At that moment, A
will stop and start waiting for B. As B has so far measured only equal distances,
it will continue and eventually arrive at the place where A is waiting. Since there
are t1/δ iterations of t1 steps each, plus final time at most t′1 for the agent B to
arrive to the meeting place, the rendezvous will happen in time O((t1/δ)t1 + t′1).
Since δ ≥ 1, t1 < n/2 and t′1 = t1 + δ < n, the resulting time is O(n2). This
completes the proof of Theorem 1.

Algorithm One-Token solves RV but not RD, as it will run forever if the agents
are initially in a symmetric configuration. Next we show that rendezvous with
detection can be solved if we endow each agent with two tokens, even in unidi-
rectional rings.

Theorem 2. Rendezvous with detection (RD) is solvable in a unidirectional
ring for two mobile agents with constant memory and two tokens each, in time
O(n2).

Proof. We present an algorithm that at the cost of using two tokens per mobile
agent detects the possibility of rendezvous and can eventually rendezvous when
possible. Formally we have the following algorithm. Each mobile agent leaves
one token at its home node and the other token at the neighboring node located
to its right. Then it travels right and moves every second token one position
to the right (note that this will keep the home node tokens at their original

The Power of Tokens: Rendezvous and Symmetry Detection 239

Algorithm 2. Algorithm Two-Tokens.
1: Drop first token at your home base and second token to node located to the right.
2: repeat
3: Travel right and move every second token you meet one position to the right.
4: until agent detects two tokens on top of each other.
5: if two tokens are found on top of each other go around and check if other two

tokens are also on top of each other.
6: if yes then rendezvous is not possible else agent waits at last position.
7: endif
8: endif

locations). The process is repeated until the agent detects two tokens at the
same node. When this happens, the agent continues traveling to check whether
the other two tokens are also at a same node. If they are, then the home nodes
were n/2 away, the whole computation was symmetric and the agents can never
rendezvous. If the other pair of tokens are not at a same node, then the agent
waits as the other agent will eventually come to meet it. The running time of
the algorithm is as claimed. This completes the proof of Theorem 2.

2.2 Impossibility Results

As shown in Theorem 2, two tokens per agent and unidirectional ring are suf-
ficient to solve RD (and hence also RV). On the other hand, the one-token,
bidirectional ring algorithm from Theorem 1 fails to solve RD if the initial
configuration is symmetric, as it will cycle forever. Note, that RD is trivially
solvable if agents possess Ω(log n) memory, i.e. if the number of states exceeds
the size n of the ring, even if the agents have only one token each and the ring
is unidirectional. In such a case, the agent leaves the token at its home base and
counts in states the distance to the token of the next agent, and checks whether
this is equal to the distance to the next (his own) token. (In fact O(log n

log log n)
states are sufficient. See [7].) Hence, the remaining interesting cases, addressed
in this section, are agents with constant memory and one token each, for either
unidirectional or bidirectional rings.

Let us first introduce some tools that will be used in the impossibility and
lower bound proofs. Consider an agent moving through a tokenless path of the
ring. On one hand, if the agent carries no tokens, after at most k + 1 moves it
will repeat a previously encountered state and will continue moving in the same
direction until a token is encountered. On the other hand, if the agent carries a
token, after at most 2k + 1 moves two identical states will be repeated, which
means that the agent has fallen into a cycle and will repeat its activity until it
encounters another token. (Note that it is not necessary for the agent to carry
the token the whole time – it may leave it momentarily and pick it up after a
few steps and move it, but all this process is cyclically repeated, the agent is
in fact carrying the token.) If no identical states with the agent carrying the
token appear within the first k steps, the agent will leave the token and then it

240 J. Czyzowicz et al.

will continue moving, carrying no token, until it arrives to another token. (This
idea can be extended to unidirectional rings and t tokens.) This leads us to the
following definition of the base of an agent.

Definition 2 (Agent’s Base). A base is a contiguous segment of the ring
delimited by nodes containing tokens or agents carrying a token. An initial base
is formed when an agent leaves a token for the first time, and it consists of the
single node containing this token. As the agents start in the same state, this
means that initially there are two bases, at the same distance as the starting
distance between the agents. When an agent holding a token leaves a base, the
base expands to contain that token if and only if the agent has not entered a
cyclic behavior that will make it carry the token all the way to the opposite base.
Otherwise, that token ceases to be part of the base and the base shrinks to enclose
its remaining tokens.

Note that if the agents have a single token and the bases are left tokenless
according to the above definition, the agents will start an infinite cycle carrying
the tokens and chasing each other. If the agents have two tokens and they start
carrying a token to the other base, the bases shrink to contain a single token
and the algorithm effectively resets itself (if this happens more then k times, the
algorithm will cycle forever).

Definition 3 (Time shift). Let us denote by the increasing integer t1, t2, . . .
the times when agent A arrives to alternating bases. More precisely, t1 is the
time when A arrives for the first time to the base of B, t2 is the first time after
t1 that A arrives to its own base, t3 is the first time after t2 that A arrives to
B’s base). Analogously, we define the time sequence t′1, t

′
2, . . . for agent B. Let

δi = |t′i − ti| and call it time shift of round i.

Let us denote by st
A and st

B the state (including the number of tokens being
carried) of agents A and B, respectively, at time t. The following lemma forms
the core of our impossibility and lower bound proofs. It states that it is pos-
sible to choose the initial distances between the agents in a large enough ring
in such a way that the agents essentially arrive to the same state (but, possi-
bly, time-shifted) for long enough time. Note that the lemma does not assume
unidirectional ring.

Lemma 1. Let the two initial distances between the agents on a ring be M and
M + xk! for some M ≥ k! and an arbitrary x ≥ 0. As long as δr < M and the
distance between the bases is at least k + 1, it holds that ∀i < r, ∀j ≤ min(ti+1 −
ti, t

′
i+1 − t′i) : sti+j

A = s
t′
i+j

B (and those states would be the same for any other
natural number x). Moreover, at time ti, the base to which A arrived has exactly
the same configuration as the base to which agent B arrived at time t′i.

Proof. The proof is by induction on r. Initially, we have t0 = t′0 = 0, s0
a = s0

b

and the initial bases have the same configuration (single node with single token
each), as the agents start at the same state and at the same time. Induction
step: Assume that δr < M and the distances between the bases is at least k + 1.

The Power of Tokens: Rendezvous and Symmetry Detection 241

Moreover, assume that the base of agent A at time tr−1 and the base of agent
B at time t′r−1 are in the same configuration. We will prove that the base of
A at time tr is in the same configuration as the base of B at time t′r and that

s
tr−1+j
A = s

t′
r−1+j

B for all j ≤ min(tr − tr−1, t
′
r − t′r−1).

As at time tr−1 agent A arrives to a base, the configuration of the base
captures its state (and the same is true for agent B at time t′r−1). Since the base
configurations are the same (by induction hypothesis), that means that s

tr−1
A =

s
t′
r−1

B and the agents arrive to the same side of the corresponding bases. The fact
that the base configurations are the same also means that the agents continue
behaving the same as long as the environment they see is the same. As the bases
contain all tokens in the ring, the first moment when there is difference in what
the agents see is when one of them arrives to the opposite base, i.e. after min(tr−
tr−1, t

′
r − t′r−1) time steps. Note that up to that moment, the configurations of

both bases stayed equal (as the agents did the same modifications).
If x = 0, the situation is symmetric and both agents arrive to the bases at

the same time and in the same state and the lemma holds, Consider now the
case x �= 0. Without loss of generality assume that agent A is the first one to
arrive to the opposite base (at time tr). Note that as the distance between the
bases is at least k + 1, A must have been in a cycle (of states), moving towards
the opposite base. As up to this moment B behaved the same, B must also be
in such cycle, moving towards its opposite base. This means it cannot return to
the base to modify it, and the base configurations remain equal.

It remains to be shown that when agent B arrives to its opposite base at time
t′r, it will be in the same state (i.e. s

t′
r

B = s
t′
r−1+tr−tr−1

B = str

A). From the fact that
initial distances between the bases differed by xk! and the base configurations
remain the same, it follows that the distances between the bases remain different
by xk!, i.e. at time t′r−1 + tr − tr−1, B is at distance xk! from its opposite base.
We already know that at this moment B is moving in a cycle of states of length
at most k. Let l be the forward distance traveled by B in this cycle. Obviously
l ≤ k (it can be l < k if B zig-zags). However, that means that l divides xk!, i.e.
when B arrives to its opposite base, it will be in exactly the same state. This
proves Lemma 1.

Theorem 3. Neither the rendezvous problem (RV) nor rendezvous with detec-
tion (RD) is solvable for two identical mobile agents having constant memory
and one token each in a unidirectional ring.

Proof. Consider the two mobile agents with one token each in a unidirectional
ring and suppose they are represented by identical automata with k states. We
will exhibit two different configurations, one symmetric and one asymmetric,
that the two agents cannot distinguish. First, we consider a symmetric config-
uration whereby the two mobile agents start at distance k! from each other in
a ring of size 2k!. As long as the agents do not drop their tokens, they see the
same environment (no tokens) and therefore behave (state changes and moves
performed) identically. Hence, in order to rendezvous or detect that it is not

242 J. Czyzowicz et al.

possible, the agents will eventually drop their tokens, and they will be at dis-
tance k! from each other at that moment.

Consider now two rings with agents starting k! apart, one symmetrical of size
2k!, the other asymmetrical of size 3k!. Note that the conditions of Lemma 1 are
satisfied, as the first ring corresponds to M = k!, x = 0, while for the second
M = k! and x = 1. Observe that because the ring is unidirectional, we get
∀i : t2i = t′2i in both cases (even if distances between the bases are not equal,
each agent alternates between traversing the short and long distance). That
means that Lemma 1 holds for all r. In particular, ∀i : st2i

A = s
t′
2i

B and those
states are the same for all x. What that means is that either the algorithm never
terminates, or, if it terminates, it produces the same output for a symmetric
ring of 2k! nodes and for the asymmetric ring of 3k! nodes, i.e. the algorithm is
incorrect.

Next we consider the case of bidirectional rings. In view of Theorem 1 it is no
longer true that RV is unsolvable. However, it can be shown that RD remains
unsolvable if we limit ourselves to agents with one token and constant memory.

Theorem 4. Rendezvous with detection (RD) is not solvable for two identical
mobile agents having constant memory and one token each in a bidirectional
ring.

Proof. The overall structure of the proof is similar to the proof of Theorem 3:
we apply Lemma 1 to two configurations (one symmetric and other asymmetric)
and show that either the algorithm does not terminate in the symmetric config-
uration, or produces wrong output in the asymmetric case. The symmetric case
is a ring of size n = 2N + 2k! (corresponding to M = N + k!, x = 0, where N
is determined later), the asymmetric case uses the same M but x = 1. Assume
that the algorithm correctly decides in the symmetric ring, after r rounds (r, cf.
Lemma 1, corresponds to how many times an agent switched bases). Since the
agents have k states, we get that r must be at most k (otherwise the algorithm
would cycle forever). We will define N in such a way that Lemma 1 applies for
at least k + 1 rounds (for the faster agent) in the asymmetric case. That would
ensure that in the asymmetric execution the same deciding state appears and
the algorithm decides incorrectly.

How much can δi grow in each round? The only difference the agents experi-
ence is that the distances between the bases differ by k!. In one round, each agent
crosses this distance exactly once. Let c represent the maximal time it takes an
agent to travel one step (it can be more than one, as the agent can zig-zag, but
it is a constant as the agent has k states). Then, each round the time shift can
grow by at most ck! and after i rounds the time shift is at most ick!. Choosing
N > ic(k + 1)! ensures that Lemma 1 applies for at least k + 1 rounds.

2.3 Lower Bounds for Rendezvous

In Section 2.1 we have shown O(n2) upper bounds for settings not excluded
by the impossibility results from Section 2.2. An obvious question to ask is

The Power of Tokens: Rendezvous and Symmetry Detection 243

whether these upper bounds are tight. In this section we provide an affirmative
answer by proving an Ω(n2) lower bound for RV in bidirectional rings for agents
with two tokens. This implies the same lower bound also for RD, as well as for
unidirectional rings and single-token agents. The main result of this section is
the following theorem.

Theorem 5. The rendezvous problem (RV) for two mobile agents having con-
stant memory and two tokens each require Ω(n2) time in a bidirectional ring of
size n.

Proof. Consider a ring of size n = 2N + k! with the agents starting at distance
N from each other. Again, Lemma 1 applies while δr < N and the distance
between the bases is at least k +1. We show that (1) if δr < N/3 holds until the
bases reach size N/3, then it takes Ω(N2) time to increase the bases to size N/3,
and (2) if the base sizes are at most N/3, then it takes Ω(N2) time to increase
δr to N/3. When combined with a choice of N ≥ k! this yields the desired Ω(n2)
lower bound.

Assume first that the bases reach size N/3 before δr exceeds N/3. Note that
at the moment a base has 2 tokens for the first time, the size of the base is
at most k (otherwise an agent is carrying the second token in a cycle and by
definition it is not a part of the base). Moreover, an agent can increase the size
of the base by at most k before it enters a cyclic behavior – which will either
take it to the other base, or to the other end of the current base.

Let xj be the size of the base at the moment an agent is leaving the base’s
endpoint in a cycle for the j-th time (called quasi-round j). Let pj and p′j ,
respectively, be the times this happens for the two bases. We get that xj+1 ≤
xj + k and pj+1 ≥ pj + xj : The base grows either when an agent traverses it
from one end to another (obviously taking xj time), or when an agent moves
from one base to another, yielding pj+1 ≥ p′j + (N − xj). As the time difference
is at most N/3 and xj ≤ N/3, we get pj+1 ≥ p′j + (N − xj) ≥ p′j + 2N/3 ≥
pj +N/3 ≥ pj +xj . As xj+1 −xj ≤ k there must be at least N/3k quasi-rounds.
Let f be the final quasi-round, i.e. xf ≥ N/3. Summing over all rounds we get
pf =

∑f
j=1 xj =

∑f−1
j=0 xf−j ≥ ∑f−1

j=0 (N/3 − jk) ∈ Ω(N2), as f ≥ N/3k and k
is a constant.

Consider now the case that δr exceeds N/3 before the bases reach size N/3.
Using the same argument as in the proof of Theorem 4, we get that δi ≤ ick!,
i.e. r ≥ N/3ck!. As the base sizes are at most N/3, each round takes at least
2N/3 time steps (each round involves traversing from one base to another, by
definition of a round). Summing up over all r rounds we get the lower bound
N2(2/9)ck!, which is Ω(n2), since c and k are constants.

3 Mobile Agents with More Than Two Tokens

Now that we have the complete picture for rendezvous with detection when each
mobile agent has at most two tokens we look for the more general case whereby
each mobile agent has more than two tokens.

244 J. Czyzowicz et al.

3.1 Upper Bounds for Rendezvous with Detection

The first theorem provides a trade-off between number t of tokens being used
and time required for RD. We consider the case of at least three tokens per
mobile agent, i.e., t ≥ 3.

Theorem 6. Consider a synchronous, bidirectional ring with n nodes and two
mobile agents located at two of its nodes. Rendezvous with detection (RD) is
solvable for two mobile agents having t ≥ 3 tokens and O(log t) bits of memory
each in time O(mn), where m is the smallest integer such that

(
m−1
t−2

) ≥ n − 1.

Proof. A basic idea of the algorithm is to implement a counter Ct, that can
count up to n. The counter will be represented by a segment of nodes of the ring
containing up to t tokens at its nodes, delimited by two tokens at a maximum
distance m, say, from each other. The values that this counter takes are held
within this segment of nodes of the ring; one of the two tokens delimiting it is
located at the home base of the agent while the other is the last token that the
mobile agent released at a node of the ring at distance m from its home base.

Assuming that such counter exists, we can proceed just like in the proof of
Theorem 2. The basic idea for RD is to have an agent go from its home base
to the home base of the other agent, while incrementing its counter by one
once in each round. After the counter reaches its maximum, the agent contin-
ues to go from its home base to the base of the other agent but now decre-
menting its value by one once in each round. Notice that the counter can be
incremented/decremented in time O(m) per round. As with the algorithm of
Theorem 2, when the counter reaches 0 before encountering its own home base,
the mobile agent goes to the first base, and if the counter of the other mobile
agent reaches exactly 0 at the second base as well, then the situation is symmet-
ric and rendezvous is impossible. Otherwise this agent waits at the second base
until the other agent comes there and the rendezvous is accomplished. Therefore
the algorithm whose idea has just been described not only reaches rendezvous,
whenever possible, but also detects when it is not possible within the same time
bound. The running time of the algorithm presented will be O(mn) since each
round takes n steps which is the size of the ring.

Clearly, the running time of the algorithm is directly proportional to how
compact the counter Ct can be, as the cost of moving is proportional to its
size m, which is the distance between the two tokens delimiting the counter
Ct. Therefore for the given number t of tokens it remains to determine m so
that the mobile agent can implement a counter that can hold a maximum value
n. By assumption, each mobile agent has t tokens. One token is being used to
mark the mobile agent’s home base thus leaving t − 1 tokens that can be used
to implement the counter. The technical part is how to implement the counter,
with the remaining t − 1 tokens. The counter will be delimited by two tokens,
located in nodes A, B, at distance m apart. A token is located at the home base
A, say, of an agent. This leaves t−1 tokens for marking positions at nodes of the
network. Another token located at B increments the range of the counter. Since
the agent can count internally to t − 1 (since it has t − 1 tokens), all possible

The Power of Tokens: Rendezvous and Symmetry Detection 245

combinations of t − 3 tokens between two fencing tokens at distance k can be
tried, and afterward increment k and repeat until the home base of the other
mobile agent is reached, where k ≤ m.

It remains to investigate what the size of the counter should be so as to
guarantee that it is able to count up to n. For given k, there are

(
k−2
t−3

)
possibilities

(assuming no two tokens can can be left at the same node, but appropriate
combination numbers can be derived for that as well). Summing up over all
k ≤ m until the home base of the other agent is reached results in at most∑m

k=2

(
k−2
t−3

)
=

(
m−1
t−2

)
possibilities (see [4][page 56]). Since the position of the

home base of the other agent is at most n − 1 the counter Ct needs to count
up to n − 1. Therefore the value of m will never need to exceed the smallest
m such that

(
m−1
t−2

) ≥ n − 1. Further, notice that the two agents are required
to have O(log t) bits of memory so that they can count internally up to t and
thus distinguish the two delimiters of the counter Ct. This completes the proof
of Theorem 6.

Corollary 1. Rendezvous with detection (RD) is solvable for two mobile agents
having t > 2 tokens and memory O(log t) each, in time O(n

t−1
t−2 t) in a bidirec-

tional ring. Moreover, if t = log n then the algorithm works in time O(n log n).

3.2 Lower Bounds for Rendezvous in Unidirectional Rings

Very little is known concerning lower bounds for agents with more than two
tokens. However, for the case of unidirectional rings we can improve on the
result of Theorem 5 thus relating the rendezvous time with the number of tokens
available to each agent.

Theorem 7. The rendezvous problem (RV) for two mobile agents having con-
stant memory and t tokens each requires Ω(n2/t) time in an unidirectional ring
of size n. Moreover, there is an algorithm achieving this bound.

Proof. This is similar to the proof of Theorem 5. As before, we take a ring of
size n = 2N + k!, with the agents starting at distance N . Because the ring is
unidirectional, δ2i = 0 and δ2i+1 = k!, as in two consecutive rounds each agent
traverses the entire ring. Moreover, the quasi-rounds correspond to the rounds
from Lemma 1, as an agent cannot reverse direction and traverse and increase
the size of the base it have just crossed. An agent having t tokens can increase
the size of the base by at most (t − 1)k: one token should remain to mark the
beginning of the base, so an agent carries at any moment at most t−1 tokens. In
the (t − 1)k + 1 steps after the agent left the right endpoint of the former base,
at least two agent configurations (state, number of tokens held) repeat. By the
definition of a base, the new base stops growing when the agent starts cycling,
i.e. xj+1 ≤ xj +(t−1)k. That means that Lemma 1 holds for at least N/(t−1)k
rounds. As two consecutive rounds last together n time steps, we get that the
algorithm cannot terminate before time nN/(2(t − 1)k ∈ O(n2/t).

The matching upper bound is simple. Each agent goes around and every round
it increases the base by t: skip first token of the base, then walk until the second

246 J. Czyzowicz et al.

token is found, pick it up and keep picking up until you have t − 1 tokens in
hand (if you cannot count up to t, just have the tokens next to each other, the
first empty space means end-of-base), and then just lay them down one after
another. While leaving the tokens of your base, verify if you fall onto the other
agent’s base.

4 Conclusion and Open Problems

In this paper we studied the rendezvous problem RV and rendezvous with de-
tection RD for two variants of a synchronous, anonymous ring: unidirectional
and bidirectional. Several challenging problems remain. Some of them concern
closing gaps remaining in the trade-offs derived in this paper. Generally, we are
lacking general non-trivial lower bounds for t ≥ 3 tokens. E.g., can we derive
sharp upper and lower bounds for t tokens? Another problem is related to the
case t = 3: are three tokens really more powerful than two tokens (see Theo-
rem 6)? It would also be interesting to look at rendezvous with detection for
more than two mobile agents, and also consider the case where no synchrony is
assumed.

References

1. Alpern, S.: Rendezvous search: A personal perspective. Operations Research 50(5),
772–795 (2002)

2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Aca-
demic Publishers, Norwell, Massachusetts (2003)

3. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in
a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

4. Knuth, D.: The Art of Computer Programming, Fundamental Algorithms, 3rd
edn., vol. 1. Addison-Wesley, Reading (1997)

5. Kranakis, E., Krizanc, D.: An algorithmic theory of mobile agents. In: Roddick,
J.F., Hornsby, K. (eds.)TGC 2006. LNCS, vol. 4661, Springer, Heidelberg (2007)

6. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
Springer, Heidelberg (2006)

7. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous
search problem in the ring. In: ICDCS. International Conference on Distributed
Computing Systems, pp. 592–599 (2003)

8. Sawchuk, C.: Mobile Agent Rendezvous in the Ring. PhD thesis, Carleton Univer-
sity, School of Computer Science, Ottawa, Canada (2004)

9. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial In-
telligence. Wiley, Chichester (2002)

10. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

How Much Information about the Future Is

Needed?�

Stefan Dobrev1, Rastislav Královič2, and Dana Pardubská2

1 Institute of Mathematics,
Slovak Academy of Sciences
Stefan.Dobrev@savba.sk

2 Department of Computer Science,
Comenius University, Bratislava, Slovakia

{kralovic,pardubska}@dcs.fmph.uniba.sk

Abstract. We propose a new way of characterizing the complexity of
online problems. Instead of measuring the degradation of output quality
caused by the ignorance of the future we choose to quantify the amount of
additional global information needed for an online algorithm to solve the
problem optimally. In our model, the algorithm cooperates with an oracle
that can see the whole input. We define the advice complexity of the
problem to be the minimal number of bits (normalized per input request,
and minimized over all algorithm-oracle pairs) communicated between
the algorithm and the oracle in order to solve the problem optimally.
Hence, the advice complexity measures the amount of problem-relevant
information contained in the input.

We introduce two modes of communication between the algorithm and
the oracle based on whether the oracle offers an advice spontaneously
(helper) or on request (answerer). We analyze the Paging and DiffServ
problems in terms of advice complexity and deliver tight bounds in both
communication modes.

1 Introduction

The term “online” is used to describe algorithms that operate without the full
knowledge of the input: a typical scenario would be a server that must continually
process a sequence of requests in the order they arrive. More formally, an online
algorithm processing an input sequence of requests x = 〈x1, x2, . . . , xn〉 produces
an output sequence y = 〈y1, y2, . . . , yn〉 in such a way that each yi is computed
as a function of the prefix 〈x1, x2, . . . , xi〉. On the other hand, an algorithm
computing the whole output sequence y from the entire input sequence x is
termed “offline”. The systematic study of online problems began in the late
sixties [12], and has received much attention over the years (see e.g. [1], [4]).
The standard measure used for evaluating online algorithms is the competitive
ratio [16], [20], i.e. the worst case ratio between the solution quality of the given
online algorithm and that of the optimal offline algorithm. The competitive
� Supported by APVV-0433-06 and VEGA 1/3106/06.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 247–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

248 S. Dobrev, R. Královič, and D. Pardubská

complexity of an online problem is the best competitive ratio attainable by an
online algorithm solving the problem. Intuitively, this measure describes the
price, in terms of solution quality, that has to be paid for not knowing the whole
input from the beginning.

In this paper we propose a new way of characterizing the complexity of online
problems. The hardness incurred by the online setting comes from the fact that
there is some information about the future input that is not available to the
algorithm. In our approach we measure the amount of this hidden information.
However, the input contains also information that is irrelevant to the problem at
hand, and we have to find a way of distilling the problem-relevant information
from the input.

Our approach to measure the relevant information is inspired by the commu-
nication complexity research. We consider, in addition to the algorithm itself,
an oracle that sees the whole input and knows the algorithm. When computing
the i-th output yi, the algorithm not only sees the sequence 〈x1, x2, . . . , xi〉, but
can also communicate with the oracle. We require that the algorithm always
computes an optimal solution. The advice complexity of the algorithm is the
number of bits communicated between the algorithm and the oracle, normalized
per request. The advice complexity of an online problem is the minimum advice
complexity over all oracle–algorithm pairs that together solve the problem.

Apart from its theoretical significance, this measure can be of use in some
semi-online scenarios where the input is available, but has to be accessed sequen-
tially by the algorithm. As a motivation example, consider the scenario where
a simple device (e.g. a remote robot) is supposed to process a large amount
of data (e.g. a series of orders) in an online fashion. The data are stored and
sequentially fed to the device from a powerful entity (base station) over a (wire-
less) communication link. In order to guide the robot in the processing, the base
station may pre-process the data and send some additional information together
with each data item. However, since communication rapidly depletes the robots
battery, the amount of this additional communication should be kept as small
as possible.

We are primarily interested in the relationship between the competitive ratio
and the advice complexity. If the competitive ratio measures the price paid for
the lack of information about future, the advice complexity quantifies for how
much information is this price paid.

Note that there are two ways to achieve trivial upper bounds on advice com-
plexity: (1) the oracle can send, in some compressed way, the whole input to the
algorithm, which then can proceed as an optimal offline algorithm, and (2) the
oracle can tell the algorithm exactly what to do in each step. However, both these
approaches can be far from optimum. In the first case all information about the
future input is communicated, although it may not be relevant1. In the second
case, the power of the online algorithm is completely ignored. Indeed, an online

1 Consider, e.g. the Paging problem. There may be a long incompressible sequence of
requests that do not result in a page fault; the information about the actual requests
in this sequence is useless for the algorithm.

How Much Information about the Future Is Needed? 249

algorithm may be able to process large parts of the input optimally without any
advice, requiring only occasional help from the oracle.

In the paper, we define two modes of interaction with the oracle. In the helper
mode, the algorithm itself cannot activate the oracle; instead, the oracle oversees
the progress of the algorithm, and occasionally sends some pieces of advice. In
the answerer mode the oracle remains passive, and the algorithm may, in any
particular step, ask for advice.

To model the impact of the timing of the communication, let the algorithm
work in a synchronous setting: in the i-th step, it receives the i-th input request
xi, and possibly some advice ai, based on which it produces the output yi. In
a manner usual in the synchronous distributed algorithms (see e.g. [22] and ref-
erences therein) we count the number of bits communicated between the oracle
and the algorithm, relying upon the timing mechanism for delimiting both in-
put and advice sequences 2. We show that these two modes are different, but
are related by BH(P) ≤ BA(P) ≤ 0.92 + BH(P) where BH(P) is the advice
complexity of a problem P in the helper mode, BA(P) is the complexity in the
answerer mode. Moreover, we analyze two well studied online problems from the
point of view of advice complexity, obtaining the results shown in Figure 1. Due
to space constraints some of the proofs have been omitted and can be found in
the technical report [7].

competitive ratio helper answerer

Paging K [24] (0.1775, 0.2056) (0.4591, 0.5 + ε)

DiffServ ≈ 1.281[8] 1
K

(log K
2K

, log K
K

)

Fig. 1. Communication complexities of some online problems compared with compet-
itive ratio (asymptotics for large K)

To conclude this section we note that there has been a significant amount of
research devoted to developing alternative complexity measures for online prob-
lems. The competitive ratio has been criticized for not being able to distinguish
algorithms with quite different behavior on practical instances, and giving too
pessimistic bounds [13]. Hence, several modifications of competitive ratio have
been proposed, either tailored to some particular problems (e.g. loose compet-
itiveness [26]), or usable in a more general setting. Among the more general
models, many forms of resource augmentation have been studied (e.g. [15],[21]).
The common idea of these approaches is to counterbalance the lack of informa-
tion about the input by granting more resources to the online algorithm (e.g.
by comparing the optimal offline algorithm to an online algorithm that works
k-times faster). Another approach was to use a look-ahead where the online algo-
rithm is allowed to see some limited number of future requests [3],[15],[25]. The
2 Alternatively, we might require that both the input requests, and the oracle advices

come in a self-delimited form. This would alter our upper bounds by a factor of at
most 4, as discussed in the appendix.

250 S. Dobrev, R. Královič, and D. Pardubská

main problem with the look-ahead approach is that a look-ahead of constant
size generally does not improve the worst case performance measured by the
competitive ratio. Yet another approach is based on not comparing the online
algorithms to offline ones, but to other online algorithms instead (e.g. Max/Max
ratio [3], relative worst-order ratio [6]; see also [9]). Still another approach is
to limit the power of the adversary as e.g. in the access graph model [5,14],
statistical adversary model [23], diffuse adversary model [18], etc.

Finally, a somewhat similar approach of measuring the complexity of a prob-
lem by the amount of additional information needed to solve it has been recently
pursued in a different setting by Fraigniaud, Gavoille, Ilcinkas, and Pelc [10,11].

2 Definitions and Preliminaries

An online algorithm receives the input incrementally, one piece at a time. In
response to each input portion, the algorithm has to produce output, not knowing
the future input. Formally, an online algorithm is modeled by a request-answer
game [4]:

Definition 1. Consider an input sequence x = 〈x1, x2, . . . , xn〉. An online algo-
rithm A computes the output sequence y = A(x) = 〈y1, y2, . . . , yn〉, where yi =
f(x1, . . . , xi). The cost of the solution is given by a function CA(x) = COST (y).

In the competitive analysis, the online algorithm A is compared with an optimal
offline algorithm OPT , which knows the whole input in advance (i.e. y = f(x))
and can process it optimally. The standard measure of an algorithm A is the
competitive ratio:

Definition 2. An online algorithm is c-competitive, if for each input sequence
x, CA(x) ≤ c · COPT (x)

Let us suppose that the algorithm A is equipped with an oracle O, which knows
A, can see the whole input, and can communicate with A. We shall study pairs
(A, O) such that the algorithm (with the help of the oracle) solves the problem
optimally. We are interested in the minimal amount of communication between
A and O, needed to achieve the optimality.

We distinguish two modes of communication: the helper mode, and the answerer
mode. In the helper mode, the oracle (helper) sends in each step i a binary advice
string ai (possibly empty), thus incurring a communication cost of |ai|. A can use
this advice, together with the input x1, . . . , xi to produce the output yi.

Definition 3 (Online algorithm with a helper). Consider an online algo-
rithm A, an input sequence x = 〈x1, x2, . . . , xn〉, and a helper sequence O(x) =
〈a1, a2, . . . , an〉 of binary strings ai. The online algorithm with helper (A, O)
computes the output sequence y=〈y1, y2, . . . , yn〉, where yi =f(x1, . . . , xi, a1, . . . ,
ai). The cost of the solution is C(A,O)(x) = COST (y), and the advice (bit) com-
plexity is BH

(A,O)(x) =
∑n

i=1 |ai|

How Much Information about the Future Is Needed? 251

In the answerer mode, on the other hand, the oracle is allowed to send an advice
only when asked by the algorithm. However, this advice must be a non-empty
string. For the ease of presentation we define the answerer oracle as a sequence
of non-empty strings. However, only those strings requested by the algorithm
are ever considered.

Definition 4 (Online algorithm with an answerer). Consider an algorithm
A, an input sequence x = 〈x1, x2, . . . , xn〉, and an answerer sequence O(x) =
〈a1, a2, . . . , an〉 of non-empty binary strings ai. The online algorithm with an-
swerer (A, O) computes the output sequence y = 〈y1, y2, . . . , yn〉 as follows:

1. in each step i, a query ri ∈ {0, 1} is generated first as a function of previous
inputs and advices, i.e. ri = fr(x1, . . . , xi, r1 � a1, . . . , ri−1 � ai−1)3

2. then, the output is computed as yi = f(x1, . . . , xi, r1 � a1, . . . , ri � ai)
The cost of the solution is C(A,O)(x) = COST (y), and the advice (bit)
complexity is BA

(A,O)(x) =
∑n

i=1 |ri � ai|
As already mentioned, we are interested in the minimal amount of information
the algorithm must get from the oracle, in order to be optimal. For an algorithm
A with an oracle (helper or answerer) O, the communication cost is the worst
case bit complexity, amortized per one step:

Definition 5. Consider an online algorithm A with an oracle O using commu-
nication mode M ∈ {H, A}4. The bit complexity of the algorithm is

BM
(A,O) = lim sup

n�→∞
max
|x|=n

BM
(A,O)(x)

n

The advice complexity of an online problem P is the minimum bit complexity
of an optimal pair (A, O):

Definition 6. Consider a problem P. The advice complexity of P in commu-
nication mode M ∈ {H, A} is BM (P) = min(A,O) BM

(A,O) where the minimum is
taken over all (A, O) such that ∀x : C(A,O)(x) = COPT (x)

We start analyzing the advice complexity with an immediate observation that
the answerer model is more restrictive in the following sense:

Claim 1. For each problem P, BH(P) ≤ BA(P) ≤ 0.92 + BH(P).

In the lower bound arguments, we shall use the notion of a communication pat-
tern. Informally, a communication pattern is the entire information that the
algorithm receives from the oracle. Since the algorithms are deterministic, the
number of different communication patterns gives the number of different be-
haviors of the algorithm on a given input.

3 The function “�” is defined c � α =

{
empty string if c = 0
α otherwise

.

4 In the description of communication modes, H stands for helper and A for answerer.

252 S. Dobrev, R. Královič, and D. Pardubská

Definition 7 (Communication pattern – helper). Consider an algorithm
with helper. The communication pattern is defined as the sequence of advices
given at each particular step, i.e. 〈a1, . . . , an〉, where ai is a, possibly empty,
binary string.

Obviously, the input and communication pattern completely determine the be-
havior of the algorithm.

Lemma 1. Consider an algorithm with helper, and let the input sequence be
of length n + 1. For a fixed s, consider only communication patterns in which
the helper sends in total at most s bits over all n + 1 advices. The number
X of distinct communication patterns with this property is at most log X ≤
s
(
log(1 + α) + 1 + 1

ln 2

)
+ 1

2

[
log

(
1 + 1

α

)
+ log s

]
+ c where α = n

s > 1, and c is
some constant.

The situation in the answerer mode is slightly more complicated due to the fact
that answers are delivered only when requested.

Definition 8 (Communication pattern – answerer). For each execution of
an algorithm with q queries to the answerer, the communication pattern is the
sequence 〈ai1 , . . . , aiq〉 of non-empty answers, where ij is the step in which the
j’th question was asked.

The behavior of the algorithm is clearly completely determined by the input,
the communication pattern and a mapping that assigns for each aij the step
j in which the answer was delivered. However, this mapping bears no relevant
information: for a given input and communication pattern, the algorithm always
receives identical answers, and hence it also asks identical questions. Hence, the
behavior of an algorithm with answerer is completely determined by its input
and communication pattern.

Lemma 2. Consider an algorithm with answerer. For a fixed q, and s ≥ q,
consider only communication patterns, in which the algorithm ask q questions,
and s is the total number of bits in all answers. Then there are X = 1

3

(
22s+1 + 1

)

different communication patterns with this property5.

In the rest of the paper we assume that the algorithm knows the length of the
input. Indeed, it is always possible to alter the oracle in such a way that it sends
the length of the input6 in the first step. Since there are O(log n) additional
bits sent, the normalized contribution to one request is O(log n/n) which is
asymptotically zero.

3 Paging

Paging and its many variants belong to the classical online problems. The virtual
memory of a computer is divided into logical pages. At any time K logical pages
5 Note that the formula does not depend on q.
6 In self-delimited form to distinguish it from the possible advice.

How Much Information about the Future Is Needed? 253

can reside in the physical memory. A paging algorithm is the part of the operating
system responsible for maintaining the physical memory. If a program requests
access to a logical page that is not currently in the physical memory, a page fault
interrupt occurs and the paging algorithm has to transfer the requested page
into physical memory, possibly replacing another one. Formally, we define the
paging problem as follows:

Definition 9 (Paging Problem). The input is a sequence of integers (logical
pages) x = 〈x1, x2, . . . , xn〉, xi > 0. The algorithm maintains a buffer (physical
memory) B = {b1, . . . , bK} of K integers. Upon receiving an input xi, if xi ∈ B,
yi = 0. If xi �∈ B a page fault is generated, and the algorithm has to find some
victim bj, i.e. B := B \ {bj} ∪ {xi}, and yi = bj. The cost of the solution is the
number of faults, i.e. COST (y) = |{yi : yi > 0}|.
It is a well known fact [24] that there is a K-competitive paging algorithm,
and that K is the best attainable competitive ratio by any deterministic online
algorithm. The optimal offline algorithm is due to [2]. Let us consider the advice
complexity of this problem for both helper and answerer modes. We prove that
for the helper mode the complexity is between 0.1775 and 0.2056, and for the
answerer mode the complexity is between 0.4591 and 0.5 + ε bits per request.
Let us first analyze the helper mode. We start with a simple algorithm that uses
one bit per request:

Lemma 3. Consider the Paging problem. There is an algorithm A with a
helper O, such that O sends an advice of exactly one bit each step.

Proof. Consider an input sequence x, and an optimal offline algorithm OPT
processing it. In each step of OPT , call a page currently in the buffer active,
if it will be requested again, before OPT replaces it by some other page. We
design A such that in each step i, the set of OPT ’s active pages will be in B,
and A will maintain with each page an active flag identifying this subset. If A
gets an input xi that causes a page fault, some passive page is replaced by xi.
Moreover, A gets with each input also one bit from the helper telling whether
xi is active for OPT . Since the set of active pages is the same for OPT and A,
it is immediate that A generates the same sequence of page faults.
�
Now we are going to further reduce the advice complexity. The algorithm will
still receive the required one bit for every input, however, it is possible to encode
the bits in a more efficient way using larger strings as advice:

Lemma 4. For r large enough, the helper can communicate a binary string of
length αr using r bits over a period of αr steps, where α ≈ 4.863876183.

Theorem 1. BH(Paging(K)) ≤ 1
α , where α ≈ 4.863876183.

On the lower bound side, we can prove the following:

Theorem 2. For every fixed K, there is a constant αK < 20.742 such that
BH(Paging(2K)) ≥ 1

αK
. Moreover, αK is a decreasing function in K and

limK �→∞ αK ≈ 5.632423693

254 S. Dobrev, R. Královič, and D. Pardubská

Sketch of the proof. We shall consider a particular subset of input sequences
x = {xk}K(2+3i)

k=1 for some i. Each input sequence consists of the sequence S0 =
〈1, 2, . . . , 2K〉 followed by i frames, each of length 3K, where the jth frame has
the form Dj · 〈dj〉 · Sj . The first part of each frame, Dj is of length K − 1 and
contains unused pages that generate page faults, the next request dj is again
an unused page. The last part, Sj is a sequence of length 2K consisting of any
subsequence of Sj−1 · Dj of length 2K − 1, followed by dj .

1
D D

21
d

2
dS

1
S

2
S

0

1 2 3 4 5 6 7 8 9 2 3 5 6 7 9 3 6 710 11 12 10 129

Fig. 2. An example of first two frames for K = 3, i.e. with buffer of size 6. The arrows
indicate which pages are replaced during faults.

It is easy to see that no optimal algorithm can generate a page fault in Sj ,
which means that at the beginning of Sj , the content of the buffer of any optimal
algorithm is uniquely determined.

Since any optimal algorithm needs a different communication pattern for each

input, a simple calculation shows that there must be at least Y =
[

2
3

(
3K
K

)]i

different communication patterns. However, using Lemma 1, we get that there
are at most X different communication patterns of length n + 1 using at most s
bits. Comparing these two numbers concludes after some calculations the proof.

�
Let us proceed now with the analysis of the answerer mode. First, we give an
upper bound by refining Lemma 3:

Theorem 3. For each ε > 0, BA(Paging(K)) ≤ 1
2 + ε

To conclude this section, the same technique as used in Theorem 2 can be em-
ployed to deliver the corresponding lower bound:

Theorem 4. BA(Paging(2K)) ≥ 0.4591 − O
(

log K
K

)

4 Diff-Serv

DiffServ is another problem widely studied using competitive analysis (see
[8],[19] and references therein). The setting involves a server processing an in-
coming stream of packets of various values. If the processing speed of the server is
slower than the arrival rate, some packets must be dropped, ideally those least
valuable. For our purposes, following [19], the packets arrive in discrete time
steps. In each step a number of packets can arrive, one packet can be processed,
and at most K packets can be stored in a buffer. Moreover, it is required that
the packets are processed in FIFO manner. The formal definition is as follows:

How Much Information about the Future Is Needed? 255

Definition 10 (Diff-Serv problem). Consider a sequence of items 〈p1, . . . ,
pm〉, partitioned into a series of subsequences, called requests. The input is the
sequence of requests x = 〈x1, . . . , xn〉, where each xi = 〈pji−1+1, . . . , pji〉 is a
(possibly empty) request. Each item pi has a value v(pi). In each step i, the algo-
rithm maintains an ordered buffer Bi = 〈b1, . . . , bK〉 of K items. Upon receiving
a request sequence xi, the algorithm discards some elements from the sequence
Bi ·xi, keeping some subsequence B′

i Bi ·xi of length at most K +1. The first
item (if B′

i is nonempty) of B′
i is submitted, and the remainder of the sequence

forms the new buffer, i.e. B′
i = yi · Bi+1. The process ends if there are no more

requests7 and the buffer is empty.
The cost of the solution is the sum of the values of all submitted elements, i.e.

COST (y) =
∑

i>0 v(yi).

For the remainder of this section we shall consider only the case of two distinct
item values; we shall refer to them as heavy and light items. Without loss of
generality we may assume that each request contains at most K +1 heavy items.
Lotker and Patt-Shamir [19] presented an optimal greedy offline algorithm. We
first present another optimal offline algorithm, and then show how to transform
it to an online algorithm with a helper.

Let us start with a simple greedy algorithm that never discards more items
than necessary (Algorithm 1 without line 4). This algorithm is not optimal in
situations where it is favorable to discard leading light items even if the buffer
would not be filled8. These situations, however, can easily be recognized:

Definition 11. Consider a buffer B at time t0 and the remainder {xt0+i}n
i=1

of the input sequence. Let a0 be the number of heavy elements in B (before xt0+1

has arrived), and ai ≤ K + 1 be the number of heavy elements in xt0+i. The
remainder of sequence x is called critical (w.r.t. B), if there exists t > 0 such
that

∑t
i=0 ai ≥ K + t, and for each t′ such that 0 < t′ ≤ t it holds

∑t′

i=0 ai ≥ t′.

Informally, an input sequecne is critical w.r.t. an initial buffer if the buffer grad-
ually fills with heavy items even if the algorithm submits a heavy item in each
step. Our algorithm processes requests sequentially. Each request is processed as
shown in Algorithm 1, and it can be proven that this algorithm is optimal.

Now we turn this offline algorithm into an online algorithm with helper. We
are going to simulate Algorithm 1 with an algorithm and a helper. The only place
where the algorithm needs information about the future is on line 4, where the
algorithm tests the criticality of the input. Clearly, one bit per request (indicating
whether the input is critical or not) is sufficient to achieve optimality. However,

7 In this case some number of virtual empty requests is added until the buffer is
emptied.

8 Consider a situation with a buffer of size 3 containing one light and two heavy items.
If there are no more requests, the best solution is to submit all three of them in the
next three steps. However, if there is another request coming, containing two heavy
items, the best solution is to discard the light one and submit heavy items in the
next four steps.

256 S. Dobrev, R. Královič, and D. Pardubská

Algorithm 1. Processing of a request xi with a buffer B

1: B′ ← B · xi

2: starting from left, discard light items from B′ until |B′| = K + 1 or there are no
light items left.

3: if |B′| > K + 1 then discard last |B′| − K − 1 (heavy) items
4: if the remainder of the input sequence is critical and there are some heavy items

in B′ then discard leading light items from B′

5: submit the first item of B′ (if exists)
6: B ← remainder of B′

we show that situation in which a bit must be sent can occur at most once in
every K + 1 steps.

Theorem 5. BH(DiffServ(K)) ≤ 1
K+1

Using a technique similar to the proof of Theorem 2, we can show the following:

Theorem 6. For K ≥ 4 it holds BH(DiffServ(K)) ≥ 1
γK ·K , where γK ≤ 6.13

and limK �→∞ γK = 1

In a similar fashion, the following results can be shown for the answerer mode:

Theorem 7. BA(DiffServ(K)) ≤ 1+log(K+1)
K+1

Theorem 8. For each fixed K ≥ 4 there exists a γK ≤ 3.822 such that
BA(DiffServ(K)) ≥ log(K+2)

γK(K+2) Moreover limK �→∞ γK = 2.

5 Conclusion

We have proposed a new way to evaluate online problems, based on the commu-
nication complexity. While the competitive analysis is an algorithmic measure
evaluating the output quality degradation incurred by the requirements to pro-
duce the output online, our measure is a structural one quantifying the amount
of additional information about the input needed to produce optimal output in
an online fashion. The study of the relation between those two measures can
lead to a deeper understanding of the nature of online problems. We have shown
that there are problems like Paging and DiffServ where the advice complex-
ity (in the helper mode) is proportional to the competitive ratio. On the other
hand, there are problems with simple structure like SkiRental [17], which has
competitive ratio 2 − ε, but a single bit of information is sufficient to solve the
problem optimally (i.e. it has zero advice complexity).

Studying advice complexity of a problem can lead to exposure of the criti-
cal decisions to be made (like in Algorithm 1 for DiffServ) and subsequently
to better understanding of the problem and possibly more efficient algorithms.
Moreover, we expect that in certain situations involving cooperating devices of
uneven computational power communicating over a costly medium (as e.g. in
sensor networks), the advice complexity might be of practical interest.

How Much Information about the Future Is Needed? 257

The proposed topic presents a number of intriguing open questions. Is it, for
example, possible to characterize a class of problems where the competitive ratio
is proportional to the advice complexity? Another whole research area is to study
the tradeoff between the amount of communicated information and the achieved
competitive ratio.

There is also a number of variations of the model that could be investigated.
One potential modification would be to limit the size of advice given in one step.
In our model this size is unbounded, and this fact is heavily relied upon (sending
the length of the input in one step). However, for modelling potentially infinite
inputs it would be more appealing to limit the size of advice to be independent
of the input size.

References

1. Albers, S.: Online algorithms: A survey. Mathematical Programming 97, 3–26
(2003)

2. Belady, L.A.: A study of replacement algorithms for virtual storage computers.
IBM Systems Journal 5, 78–101 (1966)

3. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11(1), 73–91 (1994)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

5. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. In: Proc. 23rd Annual ACM Symp. on Theory of Computing, pp. 249–
259 (1991)

6. Boyar, J., Favrholdt, L.M.: The Relative Worst Order Ratio for Online Algorithms.
In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653,
pp. 58–69. Springer, Heidelberg (2003)

7. Dobrev, S., Královič, R., Pardubská, D.: How Much Information About the Future
is Needed?, Technical report TR-2007-007, Faculty of Mathematics, Physics, and
Informatics, Comenius University, Bratislava,
http://kedrigern.dcs.fmph.uniba.sk/reports/display.php?id=22

8. Englert, M., Westermann, M.: Lower and Upper Bounds on FIFO Buffer Manage-
ment in QoS Switches. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 352–363. Springer, Heidelberg (2006)

9. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive Paging Algorithms. J. Algorithms 12, 685–699 (1991)

10. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with
advice: information sensitivity of graph coloring. In: Arge, L., et al. (eds.) ICALP
2007. LNCS, vol. 4596, Springer, Heidelberg (2007)

11. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for
communication problems. In: PODC 2006. Proc. 25th Ann. ACM Symposium on
Principles of Distributed Computing, pp. 179–187 (2006)

12. Graham, R.L.: Bounds for Certain Multiprocessing Anomalies. Bell Systems Tech-
nical Journal 45, 1563–1581 (1966)

13. Irany, S., Karlin, A.R.: Online Computation. In: Hochbaum, D.S. (ed.) Approxima-
tion Algorithms for NP-Hard Problems, pp. 521–564. PWS Publishing Company
(1997)

http://kedrigern.dcs.fmph.uniba.sk/reports/display.php?id=22

258 S. Dobrev, R. Královič, and D. Pardubská

14. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging
with locality of reference. In: Proc. 3rd Annual ACM-SIAM Symp. on Discrete
Algorithms, pp. 228–236 (1992)

15. Kalyanasundaram, B., Pruhs, K.: Speed is as Powerful as Clairvoyance. In: IEEE
Symposium on Foundations of Computer Science, pp. 214–221 (1995)

16. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive Snoopy
Caching. Algorithmica 3, 79–119 (1988)

17. Karp, R.: On-line algorithms versus off-line algorithms: how much is it worth to
know the future? In: Proc. IFIP 12th World Computer Congress, vol. 1, pp. 416–
429 (1992)

18. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. In: Proc. 34th
Annual Symp. on Foundations of Computer Science, pp. 394–400 (1994)

19. Lotker, Z., Patt-Shamir, B.: Nearly Optimal FIFO Buffer Management for DiffServ.
In: PODC 2002, pp. 134–143 (2002)

20. Manasse, M.M., McGeoch, L.A., Sleator, D.D.: Competitive Algorithms for Online
Problems. In: Proc. 20th Annual Symposium on the Theory of Computing, pp.
322–333 (1988)

21. Philips, C.A., Stein, C., Torng, E., Wein, J.: Optimal Time-Critical Scheduling
via Resource Augmentation. In: Proc. 29th Annual ACM Symp on the Theory of
Computing, pp. 140–149 (1997)

22. O’Reilly, U.M., Santoro, N.: The Expressiveness of Silence: Tight Bounds for Syn-
chronous Communication of Information Using Bits and Silence. In: Mayr, E.W.
(ed.) WG 1992. LNCS, vol. 657, pp. 321–332. Springer, Heidelberg (1993)

23. Raghavan, P.: A statistical adversary for on-line algorithms. In: On-Line Algo-
rithms, DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, pp. 79–83 (1991)

24. Sleator, D.D., Tarjan, R.E.: Amortized Efficiency of Update and Paging Rules.
Comm. of the ACM 28(2), 202–208 (1985)

25. Torng, E.: A Unified Analysis of Paging and Caching. Algorithmica 20, 175–200
(1998)

26. Young, N.: The k-server dual and loose competitiveness for paging. Algorith-
mica 11, 525–541 (1994)

On Compiling Structured Interactive Programs

with Registers and Voices�

Cezara Dragoi�� and Gheorghe Stefanescu

Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, Bucharest, Romania 010014
{cdragoi,gheorghe}@funinf.cs.unibuc.ro

Abstract. A model (consisting of rv-systems), a core programming lan-
guage (for developing rv-programs), several specification and analysis
techniques appropriate for modeling, programming and reasoning about
interactive computing systems have been recently introduced by Ste-
fanescu using register machines and space-time duality, see [13]. In
[3,4,5,6] the authors have have introduced and studied structured pro-
gramming techniques for rv-systems.

The aim of the present paper is to define a scenario-based operational
semantics for structured rv-programs and to offer a translation from
structured rv-programs to rv-programs. The main technical result states
that the translation is correct. This is part of an effort to get a running
environment for structured rv-programs built up on top of rv-programs.

Keywords: interactive systems, structured rv-systems, programming lan-
guages, operational semantics, registers and voices, compiler correctness.

1 Introduction

Interactive computation has a long tradition and there are many successful ap-
proaches to deal with the intricate aspects of this type of computation, see
[1,2,7,8,15], to mention just a few references from a very rich literature. How-
ever, a general simple and unifying model for interactive computation, extending
the classical, popular imperative programming paradigm, is still to be find.

A model (consisting of rv-systems), a core programming language (for de-
veloping rv-programs), several specification and analysis techniques appropriate
for modeling, programming and reasoning about interactive computing systems
have been recently introduced by Stefanescu using register machines and space-
time duality, see [13]. One of the key features of the model is the introduction of
high-level temporal data structures. Actually, having high level temporal data on
interaction interfaces is of crucial importance in getting a compositional model

� This research was partially supported by the Romanian Ministry of Education and
Research (PNCDI-II Program 4, Project D1/1052/18.09.2007: GlobalComp - Models,
semantics, logics and technologies for global computing).

�� Current address: LIAFA, Universite Paris Diderot - Paris 7, France.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 259–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

260 C. Dragoi and G. Stefanescu

for interactive systems, a goal not always easy to achieve (recall the difficulties
in getting a compositional semantics for data-flow networks).

In [3,4,5] the authors have introduced and studied structured programming
techniques for rv-systems. In [6], a kernel programming language for interactive
systems AGAPIA is introduced and its typing system is studied. See [14,10] for
more information and results on rv-systems and their verification.

The aim of the present paper is to offer a translation from structured rv-
programs to rv-programs. This is part of an effort to get a running environment
for structured rv-programs built up on top of rv-programs. The main technical
contribution of the paper is a proof of the translation correctness.

The paper is organized as follows. It start with a presentation of spatial and
temporal data, of spatio-temporal relational specifications, and of scenarios and
operations on scenarios. Next, after a brief recall of rv-programs, structured rv-
programs are introduced. Then, the scenario-based operational semantics is pre-
sented. After that, the translation from structured rv-programs to rv-programs
is defined and finally, the statement on translation correctness is included. (The
proof of the translation correctness, developed in the long version of the paper,
is rather tricky, based on a good understanding of rv-program transformations.)

2 Scenarios

In this section we briefly present temporal data, spatio-temporal specifications,
grids, scenarios, and operations on scenarios.

2.1 Specifications and Scenarios

Spatio-temporal specifications. To handle spatial data, common data struc-
tures and their natural representations in memory are used. For the temporal
data, we use streams: a stream is a sequence of data ordered in time and is de-
noted as a0

�a1
� . . ., where a0, a1, . . . are its data at time 0, 1, . . ., respectively.

Typically, a stream results by observing the data transmitted along a channel:
it exhibits a datum (corresponding to the channel type) at each clock cycle.

A voice is defined as the time-dual of a register: A voice is a temporal data
structure that holds a natural number. It can be used (“heard”) at various loca-
tions. At each location it displays a particular value.

Voices may be implemented on top of a stream in a similar way registers
are implemented on top of a Turing tape, for instance specifying their starting
time and their length. Most of usual data structures have natural temporal
representations. Examples include timed booleans, timed integers, timed arrays
of timed integers, etc.

For an interactive system using no more complex data than registers and
voices, a spatio-temporal specification S : (m, p) → (n, q) is a relation S ⊆
(Nm × Np) × (Nn × Nq), where m (resp. p) is the number of input voices (resp.
registers) and n (resp. q) is the number of output voices (resp. registers). It may
be defined as a relation between tuples, written as 〈v | r〉 �→ 〈v′ | r′〉, where v, v′

(resp. r, r′) are tuples of voices (resp. registers).

On Compiling Structured Interactive Programs with Registers and Voices 261

Specifications may be composed horizontally and vertically, as long as their
types agree; e.g., for two specifications S1 : (m1, p1)→(n1, q1) and S2 : (m2, p2)→
(n2, q2) the horizontal composition S1 �S2 is defined only if n1 = m2 and the type
of S1 � S2 is (m1, p1 + p2) → (n2, q1 + q2).

Grids and scenarios. A grid is a rectangular two-dimensional area filled in with
letters of a given alphabet. An example of a grid is presented in Fig. 1(a). In our
standard interpretation, the columns correspond to processes, the top-to-bottom
order describing their progress in time. The left-to-right order corresponds to
process interaction in a nonblocking message passing discipline: a process sends
a message to the right, then it resumes its execution. (See [9] for related studies.)

A scenario is a grid enriched with data around each letter. The data may have
various interpretation: they either represent control/interaction information, or
current data of the variables, or both. Fig. 1 illustrates the first case, Fig. 1(c) the
last case, and Fig. 1(d) the middle case. Notice that the scenario from Fig. 1(d) is
similar to that in (c), but the control/interaction labels A,B,C,1,2,3 are omitted.
The scenarios of a rv-program look like in (c), while those of structured rv-
programs as in (d) - there are not labels in the latter case.

aabbabb
abbcdbb
bbabbca
ccccaaa

1 1 1
AaBbBbB
2 1 1

AcAaBbB
2 2 1

AcAcAaB
2 2 2

1:
x=4

A:
X

1:
y=nil

B:
tx=4 Y

1:
z=nil

C:
Z

D

3:
x=2

A:
U

2:
y=4

B:
tx=2 V

2:
z=4

C:
W

D

3:
x=1

A:
U
2:

x=0

2:

B:
tx=1 V

2:

2:
z=2

C:
W

D:

2:
z=0

x=4

X
tx=4

Y
tx=4

Z
x=2

U
x=1

y=4

tx=2
V

y=4

z=4

tx=2
W
z=2

(a) (b) (c) (d)

Fig. 1. A grid (a), an abstract scenario (b), and concrete scenarios (c,d)

The type of a scenario interface of type (d) is represented as t1; t2; . . . ; tk,
where each tk is a tuple of simple types used in the scenario cells. An empty tuple
is also written 0 or nil and can be freely inserted to or omitted form such descrip-
tions. The type of a scenario f is specified by the notation f : 〈w|n〉 → 〈e|s〉,
where w/n/e/s represent the types of its west/north/east/south borders. For
the example in Fig. 1(d), the type is 〈nil; nil|sn; nil; nil〉 → 〈nil; nil|sn; sn; sn〉,
where sn denotes the spatial integer type.

2.2 Operations with Scenarios

We say two scenario interfaces t = t1; t2; . . . ; tk and t′ = t′1; t
′
2; . . . ; t

′
k′ are equal if

k = k′ and the types and the values of each pair ti, t
′
i are equal. Two interfaces

262 C. Dragoi and G. Stefanescu

g h i
B

ed f

a b c
A

nil

V W

Z U
B

X Y
A

nil

X Y
A

a b c

ed f

Z U
B

V W

g h i

nil

nil

(a) (b) (c)

Fig. 2. Horizontal composition of scenarios

are equal up to the insertion of nil elements, written t =n t′, if one can insert
nil elements into these interfaces such that the resulting interfaces are equal.

We denote by Idm,p : 〈m|p〉 → 〈m|p〉 the identity constant, i.e., the tempo-
ral/spatial output is equal to the temporal/spatial input, respectively.

Horizontal composition: Suppose we start with two scenarios fi : 〈wi|ni〉 →
〈ei|si〉, i = 1, 2. Their horizontal composition f1 � f2 is defined only if e1 =n w2.
For each inserted nil element in an interface, a dummy row is inserted in the
corresponding scenario, resulting a scenario fi. After these transformations, the
result is obtained putting f1 on left of f2. (Notice that f1 : 〈w1|n1〉 → 〈t|s1〉
and f2 : 〈t|n2〉 → 〈e2|s2〉, where t is the resulting common interface.) The result,
f1 �f2 : 〈w1|n1; n2〉 → 〈e2|s1; s2〉, is unique up to insertion or deletion of dummy
rows. See Fig. 2 and Fig. 3(b). Its identities are Idm,0.

Vertical composition The definition of vertical composition f1 ·f2 is similar, but
now s1 =n n2. For each inserted nil element, a dummy column is inserted in the
corresponding scenario, resulting a scenario fi. The result, f1 ·f2 : 〈w1; w2|n1〉 →
〈e1; e2|s2〉, is obtained putting f1 on top of f2. See Fig. 3(a). Its identities are
Id0,m.

Constants: Except for the already defined identities I, additional constants
may be used. Some of them may be found in Fig. 3: A recorder R (2nd cell in
the 1st row of (c)), a speaker S (1st cell in the 2nd row of (c)), an empty cell Λ
(3rd cell in the 1st row of (c)), etc.

Diagonal composition: The diagonal composition f1 • f2 is defined only if
e1 =n w2 and s1 =n n2. It is a derived operation defined by

f1 • f2 = (f1 � R1 � Λ1) · (S2 � Id � R2) · (Λ2 � S1 � f2)
for appropriate constants R, S, Id, Λ. See Fig. 3(c). In this case R1 : 〈t| 〉 → 〈 |t〉,
S1 : 〈 |t〉 → 〈t| 〉, Id : 〈u|t〉 → 〈u|t〉, R2 : 〈u| 〉 → 〈 |u〉, S2 : 〈 |u〉 → 〈u| 〉, where

X

Y

X Y

X

Y

(d)
(f) (g)

(e)

(a) (b) (c)

Fig. 3. Operations on scenarios

On Compiling Structured Interactive Programs with Registers and Voices 263

t (resp. u) is a common representation for e1 and w2 (resp. s1 and n2) obtained
inserting nil elements. Its identities are Idm,n.

We extend the definitions of the scenario compositions to set of scenarios.
Given two sets of scenarios, A and B, we define the horizontal composition

A � B = {fa � fb| for fa ∈ A and fb ∈ B}.
The vertical composition A · B and the diagonal composition A • B on set of
scenarios A, B are similarly defined.

3 Rv-Programs

In this section we briefly describe rv-programs (interactive programs with regis-
ters and voices); see [13,14] for more details.

Finite interactive systems. A finite interactive system (shortly fis) is a fi-
nite hyper-graph with two types of vertices and one type of (hyper) edges: the
first type of vertices is for states (labeled by numbers), the second is for classes
(labeled by capital letters) and the edges/transitions are labeled by letters de-
noting the atoms of the grids; each transition has two incoming arrows (one
from a class and the other from a state), and two outgoing arrows (one to a
class and the other to a state). Some classes/states may be initial (indicated by
small incoming arrows) or final (indicated by double circles); see, e.g., [12,13].
An example is shown below.

For the parsing procedure, given a fis F and a grid w, insert initial states/classes
at the north/west border of w and parse the grid completing the scenario according
to the fis transitions; if the grid is fully parsed and the south/east border contains
final states/classes only, then the grid w is recognized by F . The language of F is
the set of its recognized grids. A fis F1 and a parsing accepting abb

cab
cca

are shown

below.

F1 = A B

1

a

b

c 2

1 1 1
Aa b b

Ac a b

Ac c a

1 1 1
AaBb b
2
Ac a b

Ac c a

. . . 1 1 1
AaBbBbB
2 1 1
AcAaBbB
2 2 1
AcAcAaB
2 2 2

Interactive programs with registers and voices. An rv-system (interactive
system with registers and voices) is a fis enriched with: (i) registers associated to
its states and voices associated to its classes; and (ii) appropriate spatio-temporal
transformations for actions.

We study programmable rv-systems specified using rv-programs. An example
of rv-program is presented in Fig. 4. A computation is described by a scenario
mixing control/interaction labels and data; see Fig. 1(c) for an example.

Syntax of rv-programs. A program is a collection of modules. A module has
a name and 4 areas: (1) The top-left part contains a pair of labels specifying the
interaction/control (class/state) coordinates where the module may be applied.

264 C. Dragoi and G. Stefanescu

in: A,1; out: D,2
X::
(A,1) x : sInt

tx : tInt;
tx = x;
x = x/2;
goto [B,3];

Y::
(B,1) y : sInt

tx :
tInt

y = tx;
goto [C,2];

W::
(C,2) z : sInt
tx :
tInt

z = z - tx;
goto [D,2];

V::
(B,2) y : sInt

tx :
tInt

if(y%tx != 0)
tx = 0;

goto [C,2];

U::
(A,3) x : sInt

tx : tInt;
tx = x; x = x - 1;
if (x > 0) {goto [B,3]}
else {goto [B,2];}

Z::
(C,1) z : sInt
tx :
tInt

z = tx;
goto [D,2];

Fig. 4. The rv-program Perfect (for perfect numbers)

(2)-(3) The top-right (resp. bottom-left) part specifies the spatial (resp. tem-
poral) input variables. (4) The bottom-right part is the body of the module,
including C-like code. The exit from the module is specified by a goto state-
ment. A statement, say goto [B,3], indicates that: (i) the data of the spatial
variables in the current module will be used in a next module with control state
3; and (ii) the data of the temporal variables in the current module will be used
for the interaction interface of a new module with interaction label B.

Operational and denotational semantics of rv-programs. The operational
semantics is given in terms of scenarios. Scenarios are built up with the following
procedure, described using the scenario in Fig. 1(c) for the rv-program Perfect:
(1) Each cell has a module name as label.
(2) In the areas around a cell we show how variables are modified.
(3) In a current cell, the values of spatial variables are obtained going vertically

up and collecting the last updated values.
(4) Similarly, the full information on temporal variables in a current cell is ob-

tained collecting their last updated values going horizontally on left.
(5) The first column has input classes and particular values for their temporal

variables; the first row has input states and particular values for their spatial
variables.

(6) The computation in a cell α is done as follows: (i) Take a module β of the pro-
gram bearing the class label of the left neighboring area of α and the state
label of the top neighboring area of α. (ii) Follow the code in β using the spa-
tial and the temporal variables of α with their current values. (iii) If the local
execution of β is finished with a goto [Γ, γ] statement, then the label of the
right neighboring area of α is set to Γ and the label of the bottom neighboring
area of α is set to γ. (iv) Insert the values of the temporal variables updated
by β in the right neighboring area of α and the values of the spatial variables
updated by β in the bottom neighboring area of α.

(7) A partial scenario (for an rv-program) is a scenario built up using the above
rules; it is a complete scenario if the bottom row has only final states and
the rightmost column has only final classes.

On Compiling Structured Interactive Programs with Registers and Voices 265

The scenario in Fig. 1(c) is a complete scenario for the rv-program Perfect.
The input-output denotation of an rv-program is the relation between the

input data on the north/west borders and output data on the south/east borders
of the program scenarios.

Notice that a global scoping rule is implicitly used here: once defined, a vari-
able is always available. It is also possible to introduce rv-programs obeying a
stronger typing discipline, where each module comes with an explicit type at each
border. This option is actually used for structured programs to be introduced in
the next section.

4 Structured rv-Programs

The rv-programs, briefly presented in the previous section, resemble flowcharts
and assembly languages: one freely uses goto statements, with both temporal
and spatial labels. The aim of this section is to introduce structured program-
ming techniques on top of rv-programs. The resulting structured rv-programs
may be described directly, from scratch. The lower level of rv-programs is used
as a target language for compiling.

4.1 Syntax, Examples

The syntax of structured rv-programs. It is given by the BNF grammar

P::=X | if(C)then{P}else{P}| P%P | P#P | P$P
| while t(C){P} | while s(C){P}| while st(C){P}

X::=module{listen t vars}{read s vars}{ code; }{speak t vars}{write s vars}
Structured rv-programs use modules X as their basic blocks. On top of them,

larger programs are built up by “if” and composition and iteration constructs
for the vertical (or temporal), the horizontal (or spatial), and the diagonal (or
spatio-temporal) directions, i.e., (%, while t)/(#, while s)/($, while st). These
statements aim to capture at the program level the corresponding operations on
scenarios.

Examples. We include a simple, but rather general example of structured rv-
program to give a clue to the reader on the naturalness and the expressiveness
of the language. More examples may be found, e.g., in [3,5,10].

A structured rv-program for a ring termination detection protocol is presented
in [5]; except for the details on I1,I2,R, it has the following format

P :: [I1# for s(tid=0;tid<tn;tid++){I2}#] $
[while st(!(token.col==white && token.pos==0)){
for s(tid=0;tid<tn;tid++){R}}]

It starts with an initialization step where processes are created and inserted
into the ring. Next, a diagonal iteration takes places where, in each step, the
processes do their jobs and interact horizontally by passing a message list from
one process to the next, in the order from process 0 to process tn-1. At the

266 C. Dragoi and G. Stefanescu

end of an iteration, if the guard condition is fulfilled, a new iteration takes place
where the message list of process tn-1 is passed to process 0 and all processes
continue the execution from their last memory states.

Such a program is rather generic and may be used for many other problems
like n-player games, 8-queen problem, implementations of OO-systems based on
message passing communication, etc.

A dynamic case where processes may freely join or leave the ring may be
easily specified in a slightly extended context (see, e.g., [10]).

4.2 Operational Semantics

The operational semantics

| | : Structured rv-programs → Scenarios

associates to each program the set of its possible running scenarios.
The type of a program P , which is denoted by P : 〈w(P)|n(P)〉 → 〈e(P)|s(P)〉,

indicates the types at its west, north, east, and south borders. On each side, the
type may be quite complex, including sets of possible instantiations — see, e.g.,
the types for AGAPIA interfaces [6]. We use the convention to separate by “,” the
data from within a module and by “;” the data coming from different modules.
These convention refers to both, spatial data (coming from different processes)
and temporal data (coming from different transactions).

Two interface types match if they have a nonempty intersection.

Modules. The modules are the starting blocks for building structured rv-
programs. The listen (read) instruction is used to get the temporal (spatial)
input and the speak (write) instruction to return the temporal (spatial) out-
put. The code consists in simple instructions as in the C code. No distinction
between temporal and spatial variables is made within a module.

A scenario for a module consists of a unique cell, with particular data on
the borders, and such that the output data are obtained from the input data
applying the module code.

Composition. Due to their two dimensional structure, programs may be com-
posed horizontally and vertically, as long as their types on the connecting inter-
faces agree. They can also be composed diagonally by mixing the horizontal and
vertical compositions.

Suppose two programs Pi : 〈wi|ni〉 → 〈ei|si〉, i = 1, 2 are given. We define the
following composition operators.

Horizontal composition: P1#P2 is defined if the interfaces e1 and w2 match.
The type of the composite is 〈w1|n1; n2〉 → 〈e2|s1; s2〉. A scenario for P1#P2

is a horizontal composition of a scenario in P1 and a scenario in P2, formally
|P1#P2| = |P1| � |P2|.

Vertical composition: Similarly, |P1%P2| = |P1| · |P2|.
Diagonal composition: P1$P2 connects the east border of P1 to the west border

of P2 and the south border of P1 to the north border of P2. It is defined if

On Compiling Structured Interactive Programs with Registers and Voices 267

each pair of interfaces e1, w2 and s1, n2 matches. The type of the composite is
〈w1|n1〉 → 〈e2|s2〉. A scenario for P1$P2 is a diagonal composition of a scenario
in P1 and a scenario in P2, formally |P1$P2| = |P1| • |P2|.
If. Given two programs Pi : 〈wi|ni〉 → 〈ei|si〉, i = 1, 2, a new program Q =
if (C) then P1 else P2 is constructed, for a condition C involving both, the
temporal variables in w1 ∩ w2 and the spatial variables in n1 ∩ n2. The type of
the result is Q : 〈w1 ∪ w2|n1 ∪ n2〉 → 〈e1 ∪ e2|s1 ∪ s2〉.

A scenario for Q is a scenario of P1 if the data on west and north borders of
the scenario satisfy condition C, otherwise is a scenario of P2.

While. We have introduced three types of while statements, each being the
iteration of a corresponding composition operation.

Temporalwhile:For a programP : 〈w|n〉 → 〈e|s〉, the statementwhile t (C){P}
is defined if the interfacesn and smatch andC is a condition on the spatial variables
in n ∩ s. The type of the result is 〈(w;)∗|n ∪ s〉 → 〈(e;)∗|n ∪ s〉. (When the body
programP of a temporal while has dummy temporal interfaces, the temporal while
coincides with the while from imperative programming languages.)

A scenario for while t (C){P} is either an identity (if C is false), or a repeated
vertical composition f1 ·f2 · . . . ·fk of scenarios for P , such that the north border
of each fi satisfies C, while the south border of fk does not satisfy C.

Spatial while: while s (C){P} is similar.
Spatio-temporal while: If P : 〈w|n〉 → 〈e|s〉, the statement while st (C){P} is

defined if each pair of interfaces w, e and n, s matches and C is a condition on
the temporal variables in w ∩ e and the spatial variables in n ∩ s. The type of
the result is 〈w ∪ e|n ∪ s〉 → 〈w ∪ e|n ∪ s〉.

A scenario for while st (C){P} is either an identity (if C is false), or a repeated
diagonal composition f1 • f2 • . . . • fk of scenarios for P , such that the west and
north border of each fi satisfies C, while the east and south border of fk does
not satisfy C.

5 The Translation

In this section we describe a translation from structured rv-programs to rv-
programs. As we will show later, the translation is correct with respect to the
input-output semantics. Moreover, it is weakly correct with respect to the oper-
ational semantics, i.e., under mild scenario transformations, the set of running
scenarios is preserved.

A transformation on rv-programs

Lemma 1. (i) For each rv-program P there is an equivalent rv-program P ′

where all initial/final states/classes only occur on one border of the scenarios,
and never inside. (ii) Moreover, for each border, one can manage to have a
unique state/class for each interface type of the scenario cells.

268 C. Dragoi and G. Stefanescu

The translation: general form. The translation Tr is done in three steps:
Tr(•) = Tr3(Tr2(Tr1(•))). First, we define a function Tr1 from structured
rv-programs to rv-programs. The next two functions act on rv-programs trans-
forming them into a canonical form. Tr2, based on Lemma 1(i), renames the
labels such that the initial/final states/classes only occur on one border of the
scenarios, and never inside. Tr3, based on Lemma 1(ii), further transforms the
rv-programs into rv-programs with a unique state/class on the borders for each
interface cell type. We will focus on the definition of Tr1, but one has to have
in mind that, in the inductive definition, all rv-programs used as arguments in
a step have the particular format resulting form Lemma 1(ii).

The translation of modules and of composite programs
Module: A module M is translated to an rv-program Tr1(M) that consists of
one module. Fresh control/interaction labels for the input/output state/class
in Tr1(M) are used. The input registers/voices of Tr1(M) are the variables
that appear in the read/listen instruction and the output registers/voices of
Tr1(M) are the variables that appear in the speak/write instruction. The code
of Tr1(M) is the code from M enriched with goto statements for termination.

Horizontal composition: The rv-program Tr1(X1#X2) is obtained taking the
translations Tr(X1), Tr(X2) and identifying each output class of Tr(X1) to each
input class of Tr(X2), provided they have the same type. (We suppose the labels
in Tr(X1) and Tr(X2) are different.) The initial/final states of Tr(X1#X2) are
the join initial/final states of Tr(X1) and Tr(X2). The initial classes are those
in Tr(X1) and the final those in Tr(X2).

Vertical and diagonal composition: They are similarly defined.

Collecting data form various components. The translation of “if” and
“while” programs is further complicated by the fact that data may be spread on
various components and we have to collect and test them before starting a real
computation. We use a preprocessing unit which, in terms of scenarios, acts as
follows (see Fig. 5(a))

Preyes = |collectH| · (|collectV | � [(|Testyes| � |initH |) · (|initv| � |P1|)]) and
Preno = |collectH| · (|collectV | � [(|Testno| � |initH |) · (|initv| � |P2|)].

This preprocessing unit is implemented by an rv-program which consists of
the following components:

– Two collect components which use transformed recorders and speakers (pre-
sented in Fig. 3(e,g)) to collect the data from general interfaces into single
components, still preserving the interface. The type of the horizontal collec-
tor is collectH : 〈nil|a1; . . . ; am〉 → 〈nil|(a1, . . . , am); a1; . . . ; am〉 and of the
vertical one is collectV : 〈b1; . . . ; bn|nil〉 → 〈(b1, . . . , bn); b1; . . . ; bn|nil〉.

– A test block which uses the collected spatial and temporal data (a1, . . . , am),
(b1, . . . , bn) to test the condition. The output state/class label of its goto’s
denote either the “yes” or the “no” branch.

– Two init components (blocks), which under the “yes” trigger, generate the
initial states/classes for the program Tr(P1) (following the “yes” branch).
Similarly for the “no” branch.

On Compiling Structured Interactive Programs with Registers and Voices 269

a1

a1

a2 ... am

b1

b2
...
bn a2 ... am

...

(a1,...,am)

(a1,...,am)

Init_H

Init_V X

bn

b2

b1

(b1,...,bn)

(b1,...,bn)

Test
.

SRV

Scen

.

RV

RV−Scen
U

Tr

(a) (b)

Fig. 5. Collecting data (a); translation correctness (b)

– Finally, the translated rv-programs Tr(P1) and Tr(P2), defined using the
induction hypothesis.

The translation for if and while programs. For “if” and “while” programs,
the translation acts as follows:

If–then–else: The translation Tr1(if(C) then P1 else P2) contains the trans-
lations of P1 and P2 and the above preprocessing unit Pre, where in the “yes”
(resp. “no”) case the init components generate initial states/classes from Tr(P1)
(resp. Tr(P2)). The initial states/classes are those of Pre, Tr(P1), and Tr(P2),
while the final states/classes are those of Tr(P1) and Tr(P2).

Temporal while: The translation Tr1(while t(C){P}) is the rv-program: (1)
containing the translation of P ; (2) containing a particular preprocessing unit
Pre with dummy temporal data which passes the control either to P , or stops
the execution passing the control to an exit block; (3) and such that the output
state labels of P are identified to the input state labels of Pre (to repeat the
procedure). The initial/final classes are those of P , while the initial states are
those of Pre and Tr(P), and the final states are those of the exit block.

Spatial while: The translation is similar.
Spatio-temporal while: The translation of the program while sp(C){P} is the

rv-program which combine the translation of P , the preprocessing unit Pre
which passes the control either to P , or stops the execution passing the control
to an exit block, and additional components to connect the outputs of P to
the inputs of Pre (similar to those used for diagonal composition). The initial
states/classes are those of Pre and Tr(P), while the final states/classes are those
of the exit block.

270 C. Dragoi and G. Stefanescu

6 The Translation Correctness

Actually, the translation correctness is reduced to the proof of the commutativity
of the diagram in Fig. 5(b), where U is a forgetful transformation which strips
the state/class labels from rv-scenarios.

Two scenarios are weakly equivalent =w if they have the same computation
atoms, except for tests, or connections cells. For instance, for input data which
pass the test Test, X and the scenario in Fig. 5(a) are weakly equivalent.

Theorem 1. (i) The above translation Tr, from structured rv-programs to rv-
programs, is correct with respect to the input-output semantics.

(ii) Moreover, the translation weakly preserves the set of running scenarios.
That is, up to mild scenario transformations regarding the use of tests and con-
stants (recorders, speakers, etc.) the associated scenarios are the same.

References

1. Bruni, R.: Tile logic for synchronized rewriting of concurrent systems. PhD Thesis,
Department of Computer Science, University of Pisa (1999)

2. Broy, M., Olderog, E.R.: Trace-oriented models of concurrency. In: Bergstra, J.A.,
et al. (eds.) Handbook of process algebra, pp. 101–196. North-Holland, Amsterdam
(2001)

3. Dragoi, C., Stefanescu, G.: Structured programming for interactive rv-systems.
IMAR Preprint 9/2006, Bucharest (2006)

4. Dragoi, C., Stefanescu, G.: Towards a Hoare-like logic for structured rv-programs.
IMAR Preprint 10/2006, Bucharest (2006)

5. Dragoi, C., Stefanescu, G.: Implementation and verification of ring termination de-
tection protocols using structured rv-programs. Annals of University of Bucharest,
Mathematics-Informatics Series 55, 129–138 (2006)

6. Dragoi, C., Stefanescu, G.: AGAPIA v0.1: A programming language for interactive
systems and its typing systems. In: Proc. FINCO/ETAPS (2007)

7. Gadducci, F., Montanari, U.: The tile model. In: Proof, language, and interaction:
Essays in honor of Robin Milner, pp. 133–168. MIT Press, Cambridge (1999)

8. Goldin, D., Smolka, S., Wegner, P. (eds.): Interactive computation: The new
paradigm. Springer, Heidelberg (2006)

9. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns.
Journal of Statistical Physics 91, 909–951 (1998)

10. Popa, A., Sofronia, A., Stefanescu, G.: High-level structured interactive programs
with registers and voices. J. Universal Computer Science 13(11) (2007)

11. Stefanescu, G.: Network algebra. Springer, Heidelberg (2000)
12. Stefanescu, G.: Algebra of networks: modeling simple networks as well as complex

interactive systems. In: Proof and System-Reliability, Proc. Marktoberdorf Summer
School 2001, pp. 49–78. Kluwer, Dordrecht (2002)

13. Stefanescu, G.: Interactive systems with registers and voices. Fundamenta Infor-
maticae 73, 285–306 (2006), (Early draft, School of Computing, National University
of Singapore July 2004)

14. Stefanescu, G.: Towards a Floyd logic for interactive rv-systems. In: Letia, A.I. (ed.)
Proc. 2nd IEEE Conference on Intelligent Computer Communication and Process-
ing, Technical University of Cluj-Napoca, pp. 169–178 (September 1-2, 2006)

15. Wegner, P.: Interactive foundations of computing. Theoretical Computer Sci-
ence 192, 315–351 (1998)

Optimal Orientation On-Line

Lech Duraj and Grzegorz Gutowski

Theoretical Computer Science Department, Jagiellonian University,
ul. Gronostajowa 3, 30-387 Kraków, Poland

lech.duraj@tcs.uj.edu.pl, grzegorz.gutowski@tcs.uj.edu.pl

Abstract. We consider the problem of graph orientation on-line. Ori-
entation of a graph is an assignment of direction to every edge, resulting
with a directed graph. The optimal orientation of a graph G is the one
which maximizes the number of ordered pairs (u, v) of vertices of G for
which there is a directed path from u to v in the resulting directed graph.
Graph orientation on-line is a game in which one of the players constructs
a graph by adding vertices one by one, so that the graph is connected at
all times, and the second one assigns direction to the newly added edges.
The goal of the second player is to maximize the number of connected
pairs in the orientation, while the first player is trying to minimize it.
We present asymptotically optimal strategies for both players and state

that the game with n turns has a Θ
(
n log n

log log n

)
outcome.

Keywords: On-line algorithms, Connectivity, Oriented graphs.

1 Introduction and Off-Line Results

The concept of the average connectivity, as an interesting measure of the reliabil-
ity of a graph, was first introduced in [1] and further studied in [2]. Both papers
focus on determining bounds on average connectivity of several classes of graphs.
The results were extended for directed graphs in [3], where also a problem of
finding an optimal orientation of a graph was introduced. We define optimal
orientation slightly different, in order to simplify the presentation of obtained
results. For a given graph G an orientation is an assignment of direction to every
edge. In the resulting directed graph −→

G we define the connectivity measure as
the number of ordered pairs of different vertices (u, v) which are connected by
a path from u to v. Optimal orientation of a graph is the one which maximizes
the connectivity measure amongst all possible orientations.

The connectivity measure used in [3] was average connectivity, that is the
average of number of internally disjoint paths from u to v over all ordered pairs
(u, v) of distinct vertices. For trees both measures are the same, as there is
at most one path connecting two vertices in a directed tree. An algorithm for
constructing optimal orientation of a given tree was presented. It was also proven
that on every tree with n vertices the number of connected pairs in an optimal
orientation lies between 2

9n (n − 1) and 1
2n (n − 1).

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 271–279, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 L. Duraj and G. Gutowski

2 On-Line Results

In an on-line version of the problem the algorithm works in turns. During each
turn, the algorithm is given a single new vertex together with edges connecting it
to previous vertices. The algorithm needs to decide the direction of each new edge
before receiving next vertex, and the decisions are permanent. The algorithm’s
goal is to keep the total number of connected pairs as high as possible.

For a fixed algorithm A, this number is described by a function sA (G) depen-
dent on the graph G together with on-line presentation. The function sA (n) =
min|G|=n sA (G) represents the score of the algorithm in the worst possible case.
We are interested in determining the best possible score regardless of the graph
given, i.e. determining the behavior of the function s (n) = maxA sA (n).

Without putting any constraints on the presentation of a graph, we allow
construction of a graph without edges. Each algorithm scores 0 in this game.
Therefore to make the problem interesting, we require that the graph is con-
nected in every turn. We will show that in this setting s (n) = Θ

(
n log n

log log n

)
.

First, we show a specific greedy algorithm Gr, for which sGr (n) = Ω
(
n log n

log log n

)
.

Then, we present a strategy of constructing an on-line graph which for every al-
gorithm A assures sA (n) = O

(
n log n

log log n

)
.

It is common for analysis of on-line algorithms to determine the competitivity
ratio, i.e., the ratio between the score of an on-line algorithm and the optimal
off-line solution. In this problem, however, our results show that no finite ratio
can be achieved, as optimal orientation of any tree (and therefore any connected
graph) gives Ω(n2) connected pairs. This is why we focus only on an on-line
score without comparing it to the off-line one. Another feature of our approach
is that in fact all interesting action appear already among graphs with lowest
possible connectivity, that is, among trees.

The unusual log n
log log n component in our results comes from inverting the fac-

torial, as stated in the following preliminary proposition:

Proposition 1. For en := max{k : k! � n} we have en = Θ
(

log n
log log n

)
.

Proof. It is well known that c1k log k � log k! � c2k log k for some c1, c2 > 0. By
definition, en! � n � (en + 1)!, which yields:

c1en log en � log n (1)

c2 (en + 1) log (en + 1) � log n

The left side of the second equation can be bounded from above by c′2en log en

for some c′2 > 0, so that
c′2en log en � log n (2)

From (1) and (2) we obtain, respectively:

log c1 + log en + log log en � log log n

log c′2 + log en + log log en � log log n

Optimal Orientation On-Line 273

which means that
log en � d1 log log n (3)

log en � d2 log log n (4)

for some d1, d2 > 0. Thus,

1
c′2d1

log n

log log n
� en � 1

c1d2

log n

log log n

Where the first inequality follows from (1) and (4), while the second one follows
from (3) and (2). This ends the proof. ��

3 Lower Bound

The goal of this section is to describe an on-line algorithm which greedily chooses
directions for edges to create as many connected pairs as possible at each step.
We assume that the graph given is a tree – this is the worst case for the algorithm
and the general case is shortly discussed at the end of the section. Notice that
the only way of presenting a tree on-line is to give a leaf (a vertex connected to
only one other vertex) in each turn – otherwise the graph would be disconnected
or would contain a cycle.

For any vertex v, let R
(n)
out (v) be the number of vertices reachable from v

after n-th turn (we call it the out-rank of v), and let R
(n)
in (v) be the number

of vertices from which v can be reached (the in-rank). Given a new vertex t
connected to an old vertex s, the greedy algorithm Gr compares the numbers
R

(n)
in (s) and R

(n)
out (s). The algorithm Gr directs the edge (s, t) from s to t if

and only if R
(n)
in (s) � R

(n)
out (s). This way Gr greedily creates as many connected

pairs as possible. Suppose that R
(n)
in (s) � R

(n)
out (s), in this case it holds that

R
(n+1)
in (s) = R

(n)
in (s) and R

(n+1)
out (s) = R

(n)
out (s) + 1 (the set of reachable vertices

is extended by t). Moreover, R
(n+1)
in (t) = R

(n)
in (s) + 1, since the vertices with a

path to s, as well as s itself, have paths to t. The case of R
(n)
in (s) < R

(n)
out (s) is

similar: the bigger rank of the parent vertex stays the same, and the smaller one
increases by 1. One of the ranks of t is zero, while the other is its parent’s bigger
rank increased by 1. Let us call this number the order of a vertex (precisely, the
order σ (v) of a vertex v is its only positive rank immediately after its creation).
The order of a vertex, once assigned, does not change in the future.

Lemma 1. At least one of the vertex ranks is greater or equal to its order.

Proof. The ranks can never decrease (no paths are lost), and in the beginning
one of them equals to the order. ��
Lemma 2. The order of a vertex is strictly greater then its parent’s order.

Proof. The order of a vertex is greater by 1 than the parent’s bigger rank, which
by Lemma 1 must be at least as big as its order. ��

274 L. Duraj and G. Gutowski

Lemma 3. For any k ∈ N, a vertex has at most k children of order k.

Proof. Let u be a vertex. If a child of u inherits order k, then the bigger rank of
u must be exactly k − 1 at the moment. The smaller rank of u goes up by 1 for
every child, therefore after connecting k children, one of the ranks must exceed
k − 1. Thus, there can be at most k children of order k. ��
Lemma 4. There are at most (k + 2)! vertices of order k.

Proof. Let Ak denote the maximum number of vertices of order k. We prove
by induction that Ak � (k + 2)!. Only the very first vertex has order 0, thus
A0 � 2. For induction observe that a vertex of order k + 1 is a child of a vertex
of smaller order, and each of them has at most k + 1 such children. Thus:

Ak+1 � (k + 1) (Ak + Ak−1 + . . . + A0) �
� (k + 1) ((k + 2)! + (k + 1)! + . . . + 2!) �
� (k + 1) (k + 2)! + (k + 1) · 2 · (k + 1)! �
� (k + 1) (k + 2)! + 2 (k + 2)! = (k + 3)! ��

Lemma 5. There are at most (k+3)!
2 vertices of order at most k.

Proof. Obvious from Lemma 4, as 2! + . . . + (k + 2)! < (k+3)!
2 . ��

Lemma 6. In a tree with n � 2 vertices, at least n
2 of them have order en − 2

or greater.

Proof. Suppose not. Then more than n
2 vertices have order less or equal en − 3.

By Lemma 5, there are less than en!
2 � n

2 such vertices, a contradiction. ��
Theorem 1. Let T be a tree with |T | = n. The total number sGr (T) of con-
nected pairs is Ω (nen).

Proof.

sGr (T) =
1
2

∑

v∈G

(
R

(n)
in (v) + R

(n)
out (v)

)
� 1

2

∑

v∈G

σ (v) �

� 1
4

∑

v∈G

(en − 2) =
1
4

(nen − 2n) = Ω (nen)

The first inequality follows by Lemma 1, and the second one follows by Lemma 6.
��

Now we are ready to consider the general case. If the graph given is not a tree, the
only difference is that the arriving vertex is possibly connected to many previous
vertices. A modified version of greedy algorithm simply picks an arbitrary one
of the incoming edges and forgets about the rest. With this modification, the
algorithm obtains at least the same score as greedy algorithm Gr on the resulting
spanning tree.

Corollary 1. s (n) = Ω (nen) = Ω
(
n log n

log log n

)
.

Optimal Orientation On-Line 275

4 Upper Bound

In this section we describe a strategy which does not allow any algorithm to
exceed O

(
n log n

log log n

)
bound for the number of connected pairs. Again, the con-

structed graph is a tree. The situation can be viewed as a game between us and
another player, the algorithm A: in each move we present to A a vertex and an
edge which A has to direct. We keep the number of connected pairs after n turns
bounded by O

(
n log n

log log n

)
. Of course, our construction depends on how A has

directed previous edges.

Fig. 1. Ascending 1-factorial tree

4-factorial tree

Fig. 2. Descending 4�-factorial tree

By a k-factorial tree we mean a directed tree in which the following conditions
hold:

– all edges are directed the same way, i.e. all towards the root, or all towards
the leaves. Depending on this orientation, we call a factorial tree ascending
or descending respectively.

– the root has up to k children, each of which has up to k + 1 children, and
so on.

276 L. Duraj and G. Gutowski

The k�-factorial tree is a k-factorial tree, with additional parent and exactly
k grandparents attached to the root. As in k-factorial tree all edges need to be
directed the same way. By factorial trees we mean both k- and k�-factorial trees.

The key idea behind our strategy is to force A to orient the edges such that
entire tree becomes an union of factorial trees. During the construction, we
assign to every vertex v a number ρ (v), called rank, and one additional bit of
information, the mark. Our strategy attaches new vertices only to marked ones.

First we present a pseudo-code of our strategy, and after it we describe it in
a more readable form.

1 rank[]; // For each vertex stores its rank.
2 mark[]; // For each vertex stores its mark.
3 dir[]; // For each vertex stores the direction
4 // of the edge connecting it to the parent.
5 // Two connected vertices v0 and v1 are presented to A.
6 rank[v0] = 1;
7 mark[v0] = false;
8 rank[v1] = 2;
9 mark[v1] = true;

10 // Here algorithm A needs to direct the first edge v0v1.
11 dir[v1] = ask A;
12 while true do
13 u = select a marked vertex of lowest possible rank;
14 r = rank[u];
15 s = 0;
16 for i = 1 to r do
17 // New vertex ai connected to u is presented to A.
18 rank[ai] = r + 1;
19 dir[ai] = ask A;
20 if dir[ai] <> dir[u] then
21 s = i;
22 break;
23 mark[u] = false;
24 if s <> 0 then
25 // A has played reversal move and as is reversal vertex.
26 for i = 1 to s - 1 do
27 mark[ai] = false;
28 rank[as] = s;
29 mark[as] = true;
30 else
31 // A has played blooming move.
32 for i = 1 to r do
33 mark[ai] = true;

Optimal Orientation On-Line 277

Our strategy starts with two connected vertices v0 and v1. It gives one of them
rank 1 and unmarks it (prevents it to have more neighbors), whereas the other
one receives rank 2 and it is marked. The strategy repeats the following move:
selects the marked vertex u of lowest possible rank r, and tries to create, one by
one, up to r children a1, . . . , ar of u. Assuming, without loss of generality, that
the edge connecting u to its parent is descending (i.e. it is directed towards u),
there are two possible ways A may react:

1. All new edges are directed from u to new vertices a1, . . . , ar. In this case,
strategy unmarks u, gives positive mark and assigns rank r + 1 to all of the
ai’s and continues the construction. As long as A chooses this response (called
blooming), a factorial tree is created. Notice that algorithm Gr described in
Section 3 always reacts this way.

2. One of the edges to a new vertex, say as, is directed by A towards u. If
this happens, our strategy creates no more children of u, and starts a new
s�-factorial tree: giving rank s to as and unmarking u as well as a1, . . . , as−1.
The new s�-factorial tree will be ascending, thus we call this move reversal,
and as is the reversal vertex. From now on the vertices a1, . . . , as−1 as un-
marked are considered to be “dummy” vertices – although they are leaves,
our strategy will not develop their subtrees anymore.

. . .

u

a1 as−1 as

Fig. 3. Reversal move

Let T be a rooted, undirected tree. A set I ⊆ T is called independent if for
different a, b ∈ I, a does not lie on the path from b to the root of T . For a ∈ T
the set {x ∈ T : a lies on the path from x to the root of T } is a subtree of a.

In the following, by a dummy vertex we mean simply an unmarked leaf. Note
that a dummy vertex is always a result of a reversal move.

Lemma 7. Let u be a non-dummy vertex with ρ (u) = r. Then in the subtree
of u there is an independent set of r non-dummy vertices of rank r + 1, or a
marked vertex of rank at most r.

Proof. If u is a non-dummy leaf, then it is itself marked and of rank r. If A
makes a blooming move at u, then the children of u form an independent set
of r non-dummy vertices of rank r + 1. The reversal at u always creates a new
marked vertex u′ with ρ (u′) � r. Such a vertex can be unmarked only at line 23

278 L. Duraj and G. Gutowski

of our strategy. If rank of u′ is lower than r or A makes a reversal move at u′, a
new marked vertex u′′ of rank at most r is created.

We repeat the same argument with u′ replaced by u′′ and state that the only
way for A to unmark a marked vertex of rank at most r and not to create another
one is to make a blooming move at a vertex of rank exactly r. ��

Lemma 8. If there is a vertex of rank r + 1, there must be at least (r − 1)!
independent, non-dummy vertices of rank r.

Proof. To induct on r note that there is nothing to show for r = 1. For r � 2,
consider the moment, when a vertex of rank r+1 appears for the first time. The
vertex needs to be a child of a vertex of rank r and, by induction, there is a set
I of (r − 2)! independent, non-dummy vertices of rank r − 1. Notice that there
are no marked vertices of rank r − 1 or lower – this is because in line 13 of our
strategy a marked vertex with lowest possible rank is selected. Lemma 7 gives us,
that in a subtree of each vertex in I there are at least r−1 independent vertices,
each of rank r. Together all those vertices form a set of (r − 1)! independent
vertices of rank r. ��

Lemma 9. Each vertex u of rank r forms at most r connected pairs with vertices
created earlier in our construction.

Proof. To induct on r note that when a vertex has rank 1, then it is either v0 or
a reversal vertex being the first (and only) child of its parent.

For r � 2, all paths connecting u with earlier vertices must go through its
parent v. First suppose that r � ρ (v) and observe that this may happen only
if u is a reversal vertex. In this case u forms connected pairs with r of previous
vertices, that is v and r − 1 dummy children of v.

Now, suppose that r = ρ (v)+1. This means that u is not a reversal vertex and
none of earlier children of v is connected by a path with u. Therefore all vertices
connected with u are v and vertices earlier than v. By induction hypothesis it
follows, that there are at most ρ (v) + 1 = r of them. ��

Theorem 2. Our strategy allows any algorithm to achieve at most O (nen) con-
nected pairs on trees with n vertices.

Proof. Let m be maximum rank of vertices in a tree. By Lemma 8, it follows
that n � (m − 2)! and m � en +2. To count the total number of connected pairs
it is sufficient to count for each vertex u the number c(u) of vertices forming
a connected pair with u and created before u – this is because in each pair of
vertices one is created earlier than the other. However, Lemma 9 tells us that
c(u) � ρ (u) � m. Hence, the total number of pairs is O (nm) = O (nen). ��

Theorem 3. s (n) = Θ
(
n log n

log log n

)
.

Proof. Immediate from Corollary 1 and Theorem 2. ��

Optimal Orientation On-Line 279

References

1. Beineke, L.W., Oellermann, O.R., Pippert, R.E.: The average connectivity of a
graph. Discrete Mathematics 252, 31–45 (2002)

2. Dankelmann, P., Oellermann, O.R.: Bounds on the average connectivity of a graph.
Discrete Applied Mathematics 129, 305–318 (2003)

3. Henning, M.A., Oellermann, O.R.: The average connectivity of a digraph. Discrete
Applied Mathematics 140, 143–153 (2004)

Some Tractable Instances of Interval Data

Minmax Regret Problems: Bounded Distance
from Triviality

Bruno Escoffier1, Jérôme Monnot1, and Olivier Spanjaard2

1 LAMSADE-CNRS, Université Paris Dauphine, Place du Mal de Lattre de Tassigny,
F-75775 Paris Cedex 16, France

{escoffier,monnot}@lamsade.dauphine.fr
2 LIP6, Université Pierre et Marie Curie, 4 Place Jussieu,

F-75252 Paris Cedex 05, France
olivier.spanjaard@lip6.fr

Abstract. This paper focuses on tractable instances of interval data
minmax regret graph problems. More precisely, we provide polynomial
and pseudopolynomial algorithms for sets of particular instances of the
interval data minmax regret versions of the shortest path, minimum
spanning tree and weighted (bipartite) perfect matching problems. These
sets are defined using a parameter that measures the distance from well
known solvable instances. Tractable cases occur when the parameter is
bounded by a constant. Two kinds of parameters are investigated, mea-
suring either the distance from special weight structures or the distance
from special graph structures.

Keywords: Robust optimization, Interval data, Shortest path, Spanning
tree, Bipartite perfect matching.

1 Introduction

In recent years there has been a growing interest in robust optimization prob-
lems [15]. Studies in this field concern problems where some parameters are
ill-known due to uncertainty or imprecision. Usually, in valued graph optimiza-
tion problems, the ill-known parameters are the valuations. In such a case, a set
of scenarios is defined, with one scenario for each possible assignment of valua-
tions to the graph. Two approaches can be distinguished according to the way
the set of scenarios is defined: the interval model where each valuation is an in-
terval and the set of scenarios is defined implicitly as the cartesian product of all
the intervals; the discrete scenario model where each valuation is a vector, every
component of which is a particular scenario. Intuitively, a robust solution is a
solution that remains suitable whatever scenario finally occurs. Several criteria
have been proposed to formalize this: the minmax criterion consists of evaluat-
ing a solution on the basis of its worst value over all scenarios, and the minmax
regret criterion consists of evaluating a solution on the basis of its maximal devi-
ation from the optimal value over all scenarios. We will mainly focus here on the

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 280–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Some Tractable Instances of Interval Data Minmax Regret Problems 281

robust shortest path problem (RSP for short), the robust minimum spanning tree
problem (RST for short) and the robust minimum weighted (bipartite) perfect
matching problem (R(B)PM for short), with the minmax regret criterion in the
interval model.

Formally, an interval data minmax regret network optimization problem can
be defined as follows. Let G = (V, E) be a given directed or undirected graph
with n vertices and m edges. A feasible solution is a subset π ⊆ E satisfying
a given property Π (for example, being a path, a tree or a matching). Each
edge e ∈ E is valued by an interval Ie = [le; ue] of possible weights. The set
of scenarios is the cartesian product S =

∏
e∈E Ie. In other words, a scenario

s ∈ S consists in assigning a weight ws(e) ∈ Ie for every e ∈ E. For any
feasible solution π and any scenario s ∈ S of an instance I = (G, IE) where
IE = {Ie : e ∈ E}, the value of π under scenario s is ws(π) =

∑
e∈π ws(e) and

its regret under scenario s is Rs(π) = |ws(π) − opt(s)|, where opt(s) is the value
of an optimal solution for the standard instance valued by ws (rigorously, we
should write Rs(I, π) but we omit to indicate I when no confusion is possible).
The max regret of solution π is defined by R(π) = maxs∈S Rs(π). The aim of a
minmax regret optimization problem is, given an instance I = (G, IE), to find
a feasible solution π∗ minimizing R(π∗). Note that, for a minimization problem,
R(π) = Rs(π)(π), where s(π), called worst case scenario for π, is defined by
ws(π)(e) = ue if e ∈ π and ws(π)(e) = le otherwise [3].

In this paper, we consider tractable instances of RSP and RST, that have been
proved strongly NP-hard [4] in the general case, as well as tractable instances
of RBPM, the restriction of which to complete bipartite graphs (known as the
interval data minmax regret assignment problem) has been proved NP-hard [12].
For this purpose, as suggested by Guo et al. [10], we introduce parameters that
measure the distance from well known solvable instances. For example, if all
the intervals of an instance reduce to a single point –degenerate intervals–, then
the robust optimization problem reduces to a standard optimization problem,
and is therefore polynomially solvable provided that the standard version is
polynomial. One can define the distance from this easy case as the number k of
non degenerate intervals. If this distance k is bounded by a constant, then the
robust optimization problem is polynomially solvable by a brute force algorithm
[4]. In this work, we focus on two kinds of parameters: the ones that measure the
distance from special valuation structures (instances the minmax regret of which
is zero, instances with linearly ordered valuations), and the ones that measure
the distance from special graph structures (series-parallel graphs, trees). The
paper is organized as follows. The first two sections deal with the first kind of
parameters: we show that RSP and RBPM are polynomially solvable when the
minmax regret is bounded by a constant k (Section 2), as well as RST when
the number of intersecting intervals in the instance is bounded by a constant
k (Section 3). More precisely, following parameterized complexity terminology
[8], the first two problems are in XP (problems solvable in O(nf(k)) for some
function f) while the third one is in FPT (problems solvable in O(f(k)nc) for
some constant c). The next sections deal with the second kind of parameters:

282 B. Escoffier, J. Monnot, and O. Spanjaard

we show that RSP is pseudopolynomial for graphs which are close to be series-
parallel (Section 4), and that RSP and RBPM are pseudopolynomial for graphs
with bounded treewidth and bounded degree (Section 5). Due to lack of space,
some proofs are omitted and can be found in [9].

2 Upper Bounded Minmax Regret

In this section, we investigate the hardness of solving an interval data minmax
regret graph optimization problem when there exists a solution with bounded
maximal regret. Note that studying instances where the optimum value is upper
bounded is a classical way to understand the intrinsic difficulty of a combinatorial
optimization problem (problems which become polynomially solvable in this case
are called simple, see Paz and Moran [16]). Here, we first show that we can easily
determine if there is a solution of maximal regret 0, i.e. a solution which is
optimal under every possible scenario. Next, we show that for RSP and RBPM,
we can extend this result to polynomially determine if there exists a solution of
maximal regret at most k.

First, let us prove that the problem of the existence of a solution of maximal
regret 0 can be easily solved for any interval data minmax regret graph opti-
mization problem Π . We use a nice generic 2-approximation algorithm proposed
by Kasperski and Zielinski [13]. For any instance I this algorithm outputs a
solution π such that R(π) ≤ 2R(π∗) (where R(π∗) is the minmax regret of I). If
R(π∗) = 0, then R(π) = 0, else since R(π) ≥ R(π∗), we have R(π) > 0. The ex-
pected result follows (Π being assumed to be polynomial). Now, by a reduction
to the regret 0 case, we prove the following:

Proposition 1. For RSP, the problem of determining if the minmax regret is
at most k can be solved in time O(n2mk).

Proof. Let I = (G, IE) be an instance of RSP and denote by r its optimum
regret. Let us remark that if there exists a degenerate interval Ie = {0} in I
with e = (v1, v2), then one can merge nodes v1 and v2 and get an equivalent
instance (possibly with multiedges). In particular, we can assume that ue > 0
for any e. We construct m instances I1, . . . , Im of RSP as follows: Ii is the same
instance as I up to the interval [li, ui] associated in I to ei which is transformed
into [max{li − 1; 0}, ui − 1]. We claim that:

(i) r∗i ≥ r − 1 where r∗i denotes the optimum regret of Ii;
(ii) if r∗i = r − 1 then any optimum solution for Ii is optimum for I;

(iii) there exists at least one i such that r∗i = r − 1 (if r > 0).

If the claims are true, then by applying k times these procedures, I has an
optimum regret at most k if and only if (at least) one of the final instances has op-
timum regret 0 (if at some point, we find an interval reduced to {0}, we can merge
the corresponding nodes). We get mk instances; the generic 2-approximation al-
gorithm is in O(n2) for RSP, and the complexity follows. Claims (i) and (ii) hold
since the regret of any path π satisfies Ri(π) ≥ R(π) − 1 (under any scenario,

Some Tractable Instances of Interval Data Minmax Regret Problems 283

the value of any path has decreased by at most 1). For Claim (iii), consider an
optimum solution π∗ = ((v0, v1), · · · , (vp−1, vp)) (where v0 = s and vp = t) of I,
and its worst case scenario s(π∗) in I. We prove that there exists at least one
edge ei ∈ π∗ such that no shortest path in s(π∗) contains this edge. Note that if
this is true, then consider instance Ii: in s(π∗), the value of the shortest path is
the same in I and in Ii, hence the regret of π∗ decreased by 1, and Claim (iii) is
true. Then, assume that for any i, there exists a shortest path πi (in s(π∗)) which
contains (vi−1, vi). Let wi

1 be the value (in s(π∗)) of this path between s and vi−1

and wi
2 its value between vi and t (hence w1

1 = wp
2 = 0). Since π∗ has regret r, we

get (s(π∗) is omitted for readability) that w(πi) = wi
1+wi

2+u(vi−1,vi) = w(π∗)−r.
Summing up we obtain:

p∑

i=1

(wi
1 + wi

2) = pw(π∗) − pr −
p∑

i=1

u(vi−1,vi) = (p − 1)w(π∗) − pr (1)

But remark that for each i ∈ {2, · · · , p} we can build a path of value wi
1 + wi−1

2

(composed of the initial part of πi from s to vi−1 and the final part of πi−1 from
vi−1 to t). Then, since each of these paths has value at least w(π∗) − r:

p∑

i=2

(wi
1 + wi−1

2) ≥ (p − 1)(w(π∗) − r) = (p − 1)w(π∗) − pr + r (2)

But since w1
1 = wp

2 = 0, Equations (1) and (2) are incompatible for r > 0. �

The central property, leading to Claim (iii), is that, in an optimum solution
π∗ for which R(π∗) > 0, there exists at least one edge that does not belong
to any optimum solution in s(π∗). Actually, one can show that this property
is also true for the interval data minmax regret perfect matching problem in
bipartite graphs. For any instance I = (G, IE) of R(B)PM, we assume that G
has a perfect matching (in particular, the number n of vertices of G is even).

Proposition 2. For RBPM, the problem of determining if the minmax regret
is at most k can be solved in time O(n2mk).

Proof. The proof is almost identical to the one of Proposition 1. Let I = (G, IE)
be an instance of RBPM where G = (V, E) is a bipartite graph which admits
a perfect matching and denote by r its optimum regret. W.l.o.g., assume that
le ≥ k for any e. Actually, by adding any constant c > 0 to each interval Ie, we
obtain an equivalent instance since all the perfect matchings have the same size.
As previously, we build m instances I1, . . . , Im of RBPM where Ii is the same
instance as I up to the interval [li, ui] associated in I to ei which is transformed
to [li − 1, ui − 1]. Using the same notation as in Proposition 1, we claim that:
(i) r∗i = R(Ii) ≥ r − 1; (ii) if r∗i = r − 1 then any optimum solution for Ii is
optimum for I; (iii) there exists at least one i such that r∗i = r − 1 (if r > 0).

The proof of Claims (i) and (ii) is identical to the proof of Proposition 1. So,
we only prove Claim (iii). Consider an optimum solution π∗ = {e1, · · · , en

2
} of I,

and its worst case scenario s(π∗) in I. As previously, we prove that there exists

284 B. Escoffier, J. Monnot, and O. Spanjaard

at least one edge ei ∈ π∗ such that no perfect matching with minimum weight
in s(π∗) contains this edge. Assume the reverse, and let πi for i = 1, · · · , n

2 be
a perfect matching with minimum weight w(π∗) − r which contains edge ei in
scenario s(π∗) (note that possibly some πi are identical). Then, in scenario s(π∗)
we have:

n
2∑

i=1

w(πi \ ei) =
n − 2

2
w(π∗) − n

2
r (3)

On the other hand, the graph G′ induced by ∪n
2
i=1

(
πi \ ei

)
is (n

2 − 1)-regular
(G′ is considered as a multigraph, that is if an edge (x, y) appears p times in
∪n

2
i=1

(
πi \ ei

)
, then there are p parallel edges between x and y in G′). Since G′ is

bipartite and (n
2 − 1)-regular, G′ can be decomposed into (n

2 − 1) matchings π′i

for i = 1, . . . , n
2 −1. These matchings π′i are perfect in G and if π′ is a matching of

minimum weight in scenario s(π∗) among the matchings π′i for i = 1, . . . , n
2 − 1,

then the value of π′ satisfies:

n − 2
2

w(π′) ≤
n
2∑

i=1

w(πi \ ei) (4)

Using equality (3) and inequality (4) we obtain w(π′) ≤ w(π∗)− (1+ 2
n)r, which

is impossible for r > 0 since w(π′) ≥ w(π∗) − r.
By applying k times this method, we build mk instances such that I has an

optimum regret at most k iff (at least) one of the final instances has optimum
regret 0. Since we supposed that ∀e ∈ E, le ≥ k for the initial instance, all the
interval lower bounds in the final instances are non-negative. �

Our method seems to be quite general and may be fruitfully applied to other
problems, but however not to all of them. Indeed, the property leading to
Claim (iii) is no more true for some problems such as RST or RPM (in ar-
bitrary graphs), and for them the question whether they are simple (according
to the definition of [16]) or not remains open.

3 Upper Bounded Number of Interval Intersections

As previously mentioned, RST and RSP are fixed parameter tractable (FPT)
when the parameter is the number of non degenerate intervals (with a brute
force algorithm). Minimum spanning trees have special properties that leads to
another easy cost structure: when all intervals are disjoint (Ie ∩ If = ∅ for any
edges e and f), any minimum spanning tree under any scenario is an optimum
solution for RST [1]. Indeed, Kruskal’s algorithm leads then to the same tree,
independently of the scenario. This tree is optimal, and its regret is 0. Note that,
on the other hand, even if all intervals are [0, 1], RST is NP-hard [1,4]. Here,
we show that considering as parameter the number of intervals that intersect at
least one other interval, RST is FPT. Although using brute force, the optimality
of the algorithm is not obvious.

Some Tractable Instances of Interval Data Minmax Regret Problems 285

Proposition 3. RST can be solved in time O(2k m log m), where k is the num-
ber of intervals that intersect at least one other interval.

Proof. Let I = (G, IE) be an instance of RST where G = (V, E) and Ie =
[le, ue] for any e ∈ E. We define J = {Ie1 : ∃e2 �= e1, Ie1 ∩ Ie2 �= ∅}, and we set
k = |J |. Let J ′ ⊆ J . We want to compute the best (in terms of regret) spanning
tree π such that π ∩EJ = EJ′ (where EJ denotes the set of edges corresponding
to intervals in J). If EJ′ contains a cycle, there is no such tree. If not, we proceed
as follows: we remove from E the set EJ\J′ and, considering EJ′ as part of the
spanning tree, we complete it by applying Kruskal’s algorithm to the remaining
graph (choosing any valuation w(e) ∈ [le, ue] since the output does not depend
on the value of an edge e �∈ J). Let πJ′ be the obtained solution.

Now, let π be a spanning tree such that π ∩EJ = EJ′ . We want to prove that
R(πJ′) ≤ R(π). First, note that πJ′ and π agree on EJ . Then, under any scenario
where w(e) = ue for e ∈ EJ′ and w(e) = le for e ∈ EJ\J′ , Kruskal’s algorithm
will produce the same optimum solution π∗. In particular π∗ is optimal both in
s(π) and s(πJ′). However, π∗ has not the same value in these two scenarios.
Then:

R(πJ′) − R(π) = ws(πJ′)(πJ′) − ws(πJ′)(π
∗) −

(
ws(π)(π) − ws(π)(π∗)

)

We upper bound this by considering each edge of the graph. If πJ′ and π agree
on an edge e (either take it or not), then the difference is 0 for this edge, since
this edge has the same value in s(π) and s(πJ′), and since we refer to the same
tree π∗. Note that this includes all edges in EJ . If πJ′ and π disagree on e:

– either e is in πJ′ \ π. If e is not in π∗, then in the regret it counts ue for πJ′

(ue for πJ′ and 0 for π∗) and 0 for π (0 for π and 0 for π∗). If e is in π∗, it
counts 0 for πJ′ and −le for π. The loss (in terms of regret) from πJ′ with
respect to π is therefore at most ue;

– or e is in π \πJ′ . If e is not in π∗, then it counts 0 for πJ′ and ue for π. If e is
in π∗, it counts −le for πJ′ and 0 for π. Then, with respect to π, πJ′ “wins”
at least le.

Summing up these inequalities for all edges leads to:

R(πJ′) − R(π) ≤
∑

e∈πJ′\π

ue −
∑

e∈π\πJ′

le (5)

Now, recall that π and πJ′ agree on J , and that the intervals not in J do not
intersect. Hence, whatever the value of edges not in J , πJ′ will have a better
value than π. This is true in particular when the weight of each e �∈ J is fixed
to ue if e is in πJ′ and to le otherwise. This means that

∑

e∈πJ′\π

ue ≤
∑

e∈π\πJ′

le (6)

Equations (5) and (6) lead to the result that πJ′ is the best tree π such that
π ∩ J = J ′.

286 B. Escoffier, J. Monnot, and O. Spanjaard

To conclude, we only have to consider each possible J ′ ⊆ J , and take the best
solution so computed. The global complexity is hence 2kO(m log m). �

Note that for RSP, making assumptions on interval intersections does not sim-
plify the problem.

Proposition 4. RSP is NP-hard even if there are no intersections between in-
tervals.

4 Upper Bounded Reduction Complexity

We now consider a particular class of directed acyclic graphs (DAGs), namely
series-parallel graphs. This class can be defined using the following kinds of
reductions in a DAG: (1) a series reduction at v is possible when e1 = (u, v) is the
unique edge into v and e2 = (v, w) is the unique edge out of v: then e1 and e2 are
replaced by e = (u, w); (2) a parallel reduction at u, w replaces two edges e1, e2

joining u to w by a single edge e = (u, w). Two nodes s and t are distinguished as
the source and the sink (st-DAG). A graph is said to be edge series-parallel (ESP)
if it can be reduced to a single edge (s, t) by using such reductions. Kasperski and
Zielinski have recently shown that RSP is NP-hard in ESP graphs, but admits
a pseudopolynomial algorithm in this case [14]. In this section, we extend this
result to graphs close to be ESP. For the convenience of the reader, we first
describe the basic principles of the pseudopolynomial algorithm for ESP graphs.
It operates by applying a sequence of series and parallel reductions from the
input graph G = (V, E) to a single edge (s, t). This sequence is given by an
algorithm in O(m) to recognize ESP graphs [17], where m = |E|. In a reduced
graph, a subset Ei ⊆ E is associated with every edge ei. These subsets are defined
recursively: the set {e} is associated with every e ∈ E; let e1, e2 denote the edges
involved in a reduction, then the set E1∪E2 is associated with the new edge. For
every edge ei, the subgraph of G induced by Ei is denoted Gei . Let uπ and R(π)
denote respectively the worst value and the max regret of a path π in an induced
subgraph Ge. The principle of the algorithm is, for each reduction yielding a new
edge e = (v, w), to keep only a minimal subset Pe of non-dominated paths from
v to w, where π dominates σ if uπ ≤ uσ and R(π) ≤ R(σ) with at least a strict
inequality. Indeed, those paths are potential subpaths of a minmax regret path
from s to t in G. Initially, Pe = {e} for every edge e. Then, for any new edge e
obtained by a reduction involving e1 and e2, set Pe is computed from Pe1 ∪ Pe2

in a parallel reduction, and from Pe1 × Pe2 (concatenated paths) in a series
reduction. When the sequence of reductions terminates, there is only a single
edge (s, t), and path π∗ = arg minπ∈P(s,t) R(π) is a minmax regret path from s
to t in G. Noticing that |Pe| is upper bounded by Lmax, where Lmax is the value
of the longest path from s to t in G over all scenarios, the authors, thanks to
a recursive computation of u and R (avoiding shortest path computations from
scratch when computing R(π) for π ∈ Pe1 ∪Pe2 or Pe1 × Pe2), establish that the
running time is O(mL2

max), and therefore pseudopolynomial.
We now extend this result to graphs close to be ESP. We first need to measure

how far a graph is from being ESP. For that purpose, the notion of reduction

Some Tractable Instances of Interval Data Minmax Regret Problems 287

complexity has been introduced [5]. It uses a third kind of reduction, called node
reduction. Such a reduction can be performed at a node v when v has in-degree
or out-degree 1: suppose v has out-degree 1, let e1 = (u1, v), . . . , eδ = (uδ, v) be
the edges into v and eδ+1 = (v, w) be the edge out of v, then {e1, . . . , eδ+1} is
replaced by {e′1, . . . , e

′
δ}, where e′i = (ui, w) (the case where v has in-degree 1 is

symmetric). Note that every st-DAG can be reduced to a single edge (s, t) by
iterating the three types of reductions. The reduction complexity of a graph G is
defined as the minimum number of node reductions sufficient –along with series
and parallel reductions– to reduce G to (s, t). There exists an O(n2.5) algorithm
to compute an optimal reduction sequence [5] (i.e., involving a minimum number
of node reductions), and hence to determine reduction complexity. Thanks to
this, the result of Kasperski and Zielinski [14] can be extended:

Proposition 5. RSP can be solved in time O(2km2 L2
max) in st-DAGs of re-

duction complexity k.

5 Upper Bounded Treewidth and Max Degree

The treewidth of a graph can be seen as a measure of how far it is from being
a tree (the treewidth of a tree is 1). It is well-known that the treewidth of an
(undirected) ESP graph is at most 2. A natural extension of the previous result
is therefore to investigate the complexity of RSP in graphs of bounded treewidth
(more precisely, in graphs whose corresponding undirected simple graph has a
bounded treewidth). Clearly, RSP is polynomially solvable in a graph G the
treewidth of which is k = 1 (G is a tree), or the max degree of which is Δ ≤ 2
(G is a set of cycles and/or chains). However, it is NP-hard when k = 2 and Δ =
3 (since there is a polynomial reduction from the partition problem involving
an ESP graph -without multiedges- of max degree 3 [14]). We show here its
pseudopolynomiality for bounded k and Δ.

Proposition 6. RSP can be solved in time O((n+m)2Δ(k+1)((n−1)umax)k+1)
in graphs of treewidth k and max degree Δ, where umax = max

(i,j)∈A
uij.

Proof. Let G = (V, A) denote a directed graph with a source node s and a sink
node t, and let G′ = (V, E) denote the simple undirected graph obtained from
G by removing orientation of edges and by simplifying multiedges. Solving RSP
in G amounts to solve the following integer linear program (ILP) [11]:

min
∑

(i,j)∈A

uijyij − xt (7)

s.t. xj ≤ xi + lij + (uij − lij)yij ∀(i, j) ∈ A, (8)

∑

(j,k)∈A

yjk −
∑

(i,j)∈A

yij =

⎧
⎨

⎩

1 if j = s
-1 if j = t
0 if not

∀j ∈ V, (9)

xs = 0, yij ∈ {0, 1} ∀(i, j) ∈ A, xj ∈ N ∀j ∈ V. (10)

288 B. Escoffier, J. Monnot, and O. Spanjaard

The interaction graph of an ILP includes a vertex for each variable of the program
and an edge between two vertices if both corresponding variables appear in the
same constraint. We now show that the program is solvable in pseudopolynomial
time by applying a dynamic programming technique on a tree decomposition of
the interaction graph IG = (I, U), i.e. a labeled tree (T, L) such that (a) every
node t of T is labeled by a non-empty subset L(t) of V s.t. ∪t∈T L(t) = V , (b)
for every edge {i, j} ∈ U there is a node t of T whose label L(t) contains both
i and j, (c) for every vertex i ∈ I the nodes of T whose labels include i form a
connected subtree of T . The width of a tree decomposition is maxt∈T |L(t)| − 1.
The treewidth of IG is the smallest k for which IG has a tree decomposition
of width k. If the treewidth of a graph is bounded by a constant k, then a
tree decomposition of treewidth at most k can be constructed in linear time
(in the number of nodes) [7]. This tree decomposition can itself be converted
in linear time in a nice tree decomposition of the same width, i.e. a rooted tree
decomposition such that each node has at most two children, with four types
of nodes t: leaf nodes with |L(t)| = 1, join nodes with two children t′, t′′ s.t.
L(t) = L(t′) = L(t′′), introduce nodes with one child t′ s.t. L(t′) = L(t) ∪ {v}
for some v ∈ V , forget nodes with one child t′ s.t. L(t) = L(t′) − {v} for some
v ∈ V . The proof of pseudopolynomiality of the approach is in three steps: (i)
we show that if the max degree of G and the treewidth of G′ are bounded by
some constant, then the treewidth of IG is bounded by some constant; (ii) we
show how to solve by dynamic programming an ILP whose IG has a bounded
treewidth; (iii) we show that the previous approach is pseudopolynomial since
variables xj are upper bounded by (n − 1)umax, where umax = max(i,j)∈A uij .

Proof of (i). Assume that G′ has treewidth k and G has max degree Δ. Note
that IG restricted to constraints (9) is the line graph of G, i.e., the graph where
each vertex represents an edge of G and any two vertices are adjacent iff their
corresponding edges are incident. It can be shown that the treewidth of the
line graph is at most Δ(k + 1) − 1 [2]. Assuming (T, L) is a tree decomposition
of width k of G′, the idea is to consider the labeled tree (T, L′) where L′(t)
is the set of edges of G incident to some node in L(t). Indeed, one can show
that (T, L′) is then a tree decomposition of the line graph [2]. We now show
that (T, L ∪ L′) is a tree decomposition of IG (where we identify a vertex or
an edge of G with the corresponding variable in the ILP). For this purpose,
one can consider the following partitions of I and U : I = X ∪ Y , where X =
{xj : j ∈ V } and Y = {yij : (i, j) ∈ A}, and U = UX ∪ UY ∪ UXY , where
UX = {[xi, xj] : (i, j) ∈ A}, UY = {[yjk, yij] : (i, j) ∈ A, (j, k) ∈ A} and
UXY = {[xi, yij], [xj , yij] : (i, j) ∈ A}. Condition (a) holds since ∪t∈T L(t) = X
and ∪t∈T L′(t) = Y . Conditions (b) and (c) hold for edges of UX and for vertices
in X since (T, L) is a tree decomposition of G′. They also hold for edges of UY and
for vertices in Y since (T, L′) is a tree decomposition of the line graph. Besides,
condition (b) holds for edges of UXY by construction of L′. Hence, (T, L ∪ L′) is
a tree decomposition of IG. Furthermore, the treewidth of IG is upper bounded
by maxt∈T L(t) + maxt∈T L′(t) − 1 = k + Δ(k + 1).

Some Tractable Instances of Interval Data Minmax Regret Problems 289

Proof of (ii). By using a method related to non-serial dynamic programming [6],
we now show how to solve an ILP in the following general form:

(P)

⎧
⎨

⎩

min
∑n

j=1 cjxj∑n
j=1 aijxj Ri bi where Ri ∈ {≤, =, ≥} ∀i ≤ m

xj ∈ Dj ∀j ≤ n

For this purpose, let us introduce the notion of subprogram of an ILP. For each
node t of T , P (t) denotes the subprogram of P restricted to the variables whose
indices belong to D(t) =

⋃
t′ L(t′) for t′ = t or t′ a descendant of t:

(P (t))

⎧
⎨

⎩

min
∑

j∈D(t) cjxj∑n
j=1 aijxj Ri bi ∀i : [∀j, (aij �= 0 ⇒ j ∈ D(t))]

xj ∈ Dj, ∀j ∈ D(t)

Given t ∈ T and σ : L(t) → Πj∈L(t)Dj an assignment of values to variables
of L(t), we denote by Rt(σ) the minimum value of a feasible solution x of P (t)
under the constraint xj = σ(j) ∀j ∈ L(t). One sets Rt(σ) = +∞ if no feasible
solution of P (t) is compatible with σ. The dynamic programming algorithm
consists of traversing the nice tree decomposition in a bottom up manner, and
computing recursively the tables Rt for each t ∈ T , where table Rt has an
entry Rt(σ) for each possible assignment σ: let t be a leaf node, say L(t) =
{j}, then Rt(σ) = cjσ(j); let t be a join node with two children t′ and t′′,
then Rt(σ) = Rt′(σ) + Rt′′(σ) − ∑

j∈L(t) cjσ(j); let t be an introduce node,
say L(t) = L(t′) ∪ {j}, then Rt(σ) = +∞ if σ violates a constraint of P (t),
otherwise Rt(σ) = Rt′(σt′) + cjσ(j) where σt′ denotes assignment σ restricted
to the variables in L(t′); let t be a forget node, say L(t) = L(t′) − {j}, then
Rt(σ) = mindj∈Dj {Rt′(σ′) : σ′(k) = σ(k) ∀k �= j and σ′(j) = dj}. The optimum
is minσ Rr(σ) at the root node r of the nice tree decomposition.

Proof of (iii). We have |I| = n + m since there are n xi’s and m yij ’s in the
ILP formulation of RSP. There are therefore O(n + m) nodes in the nice tree
decomposition. Noticing that a table Rt can be computed in time O(2Δ(k+1)((n−
1)umax)k+1) since there are at most Δ(k+1) boolean variables and k+1 integer
variables in L(t), the result follows. �

This approach based on properties of the interaction graph of an ILP formulation
is quite general, and can be also fruitfully applied to RBPM. As in Section 2,
for any instance of RBPM, we assume that there exists a perfect matching.

Proposition 7. RBPM can be solved in time O((n+ m)2Δ(k+1)((n+1)umax)k+1)
in graphs of treewidth k and max degree Δ, where umax = max

(i,j)∈E
uij.

6 Concluding Remarks

Several results given in this paper deserve to our opinion further research. For
instance, we conjecture that RSP, as well as other problems, can be pseudopoly-

290 B. Escoffier, J. Monnot, and O. Spanjaard

nomially solved in graphs with bounded treewidth (without any degree restric-
tion). Alternatively, devising a general method for solving in polynomial time
any problem with bounded minmax regret could be very appealing, but the
existence of such a method seems quite hypothetical to us.

Besides, the issue we considered here can also be investigated in the discrete
scenario model. In that model, each edge e is valued by (se

1, · · · , se
b). For example,

the robust shortest path and spanning tree problems can be trivially solved under
the minmax criterion when the set of valuations is comonotone, i.e. se

i ≤ se
j ⇒

sf
i ≤ sf

j for any i, j and e, f . Indeed, the value of every solution is maximized
under the same scenario. Then, one can measure the distance from comonotony
as the minimum number of edges the removal of which leads to a comonotone
instance. Interestingly enough, it can be shown that, even if the distance from
comonotony is 1, and even if there are only 2 scenarios, the robust shortest path
and minimum spanning tree problems are NP-hard.

References

1. Aron, I.D., Van Hentenryck, P.: On the complexity of the robust spanning tree
problem with interval data. Operations Research Letters 32, 36–40 (2004)

2. Atserias, A.: On digraph coloring problems and treewidth duality (2006),
www.lsi.upc.es/∼atserias/

3. Averbakh, I.: On the complexity of a class of combinatorial optimization problems
with uncertainty. Mathematical Programming Ser. A 90, 263–272 (2001)

4. Averbakh, I., Lebedev, V.: Interval data minmax regret network optimization prob-
lems. Discrete Applied Mathematics 138, 289–301 (2004)

5. Bein, W.W., Kamburowski, J., Stallmann, M.F.M.: Optimal reduction of two-
terminal directed acyclic graphs. SIAM J. on Computing 21(6), 1112–1129 (1992)

6. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, Lon-
don (1972)

7. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. on Computing 25(6), 1305–1317 (1996)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

9. Escoffier, B., Monnot, J., Spanjaard, O.: Some tractable instances of interval
data minmax regret problems: bounded distance from triviality. Technical Report
265, Cahiers de recherche, LAMSADE (2007), http://www.lamsade.dauphine.fr/
cahiers/PDF/cahierLamsade265.pdf

10. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing prob-
lems: Distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.)
IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)

11. Karasan, O.E., Pinar, M.C., Yaman, H.: The robust shortest path problem with
interval data. Technical report, Bilkent Univ., Dpt. of Industrial Engineering (2001)

12. Kasperski, A., Zielinski, P.: Minimizing maximal regret in the linear assignment
problems with interval costs. Technical Report 007, Instytut Matematyki Wroclaw
(2004)

13. Kasperski, A., Zielinski, P.: An approximation algorithm for interval data minmax
regret combinatorial optimization problems. Information Processing Letters 97,
177–180 (2006)

www.lsi.upc.es/~atserias/
http://www.lamsade.dauphine.fr/cahiers/PDF/cahierLamsade265.pdf
http://www.lamsade.dauphine.fr/cahiers/PDF/cahierLamsade265.pdf

Some Tractable Instances of Interval Data Minmax Regret Problems 291

14. Kasperski, A., Zielinski, P.: The robust shortest path problem in series-parallel
multidigraphs with interval data. Operations Research Letters 34, 69–76 (2006)

15. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, Dordrecht (1997)

16. Paz, A., Moran, S.: Non deterministic polynomial optimisation problems and their
approximation. Theoretical Computer Science 95, 251–277 (1981)

17. Valdes, J., Tarjan, R., Lawler, E.: The recognition of series-parallel digraphs. SIAM
J. on Computing 11(2), 298–313 (1982)

Assisted Problem Solving and Decompositions of

Finite Automata

Peter Gaži and Branislav Rovan�

Department of Computer Science, Comenius University
Mlynská dolina, 842 48, Bratislava, Slovakia

{gazi,rovan}@dcs.fmph.uniba.sk

Abstract. A study of assisted problem solving formalized via decom-
positions of deterministic finite automata is initiated. The landscape of
new types of decompositions of finite automata this study uncovered is
presented. Languages with various degrees of decomposability between
undecomposable and perfectly decomposable are shown to exist.

1 Introduction

In the present paper we initiate the study of assisted problem solving. We intend
to model and study situations, where solution to the problem can be sought
based on some additional a priori information about the inputs. One can expect
to obtain simpler solution in such case. There are similar approaches known
in the literature, most notably the notions of advice functions [1], where the
additional information is based on the length of the input word and the notion
of promise problems [2], where the set of inputs is separated into three classes
– those with “yes” answer, those with “no” answer and those where we do not
care about the outcome. By considering the simplest case where the “problem
solving” machinery is the deterministic finite automaton (DFA) we obtain a new
motivation for studying new types of finite automata decompositions.

In this paper we shall thus consider the case where solving a problem shall
mean constructing an automaton for a given language L. The “assistance” shall
be given by additional information about the input, e.g., that we can assume
the inputs shall be restricted to words from a particular regular language L′.
Thus, instead of looking for an automaton A such that L = L(A) we can look
for a (possibly simpler) automaton B such that L = L(B) ∩ L′. We can then
say that B accepts L with the assistance of L′. We shall call L′ (or the corre-
sponding automaton A′ such that L′ = L(A′)) an advisor to B. In this case the
advisor A′ provides assistance to the solver B by guaranteeing that A′ accepts
the given input word. We shall also study a case where the assistance provides
more detailed information about the outcome of the computation of A′ on the
input word (e.g., the state reached). Clearly the advisor can be considered useful
only if it enables B to be simpler than A and at the same time A′ is not more

� This work was supported in part by the grant VEGA 1/3106/06.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 292–303, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Assisted Problem Solving and Decompositions of Finite Automata 293

complicated than A. The measure of complexity we shall consider is the number
of states of the deterministic finite automaton. This measure of complexity was
used quite often recently due to renewed interest in finite automata prompted
by applications such as model checking (see e.g. [3] for a recent survey). (Note
that results complementary to ours, namely results on complexity of automata
for the intersection of regular sets were studied in [4].)

The contribution of our paper is twofold. First, we can interpret the ‘solver’
and the ‘advisor’ as two parallel processes each performing a different task and
jointly solving a problem. Since our approach lends itself to a generalization to
k advisors it may stimulate new parallel solutions to problems (the traditional
ones usually using parallel processes to perform essentially the same task). Sec-
ond, the choice of finite automata as the simplest problem solving machinery
brought about new types of decompositions motivated by the information the
‘advisor’ can provide to the ‘solver’. Our results provide a complete picture of
the landscape of these decompositions.

The problem within this scenario we shall address in this paper is the exis-
tence of a useful advisor for a given automaton A. We shall compare the power
of several types of advisors, and investigate the effect of the advisor on the com-
plexity of the assisted solver B. We can formulate this also as a problem of
decomposition of deterministic finite state automata – given DFA A find DFA
A1 (a solver) and A2 (an advisor) such that w ∈ L(A) can be determined from
the computations of A1 and A2. We shall study several new types of decompo-
sitions of DFA, one of them is analogous to the state behavior decomposition of
finite state transducers studied in [5]. In Sect. 3 we prove relations among these
decompositions. For each type of decomposition there are automata which are
undecomposable and automata for which there is a decomposition that is the
best possible. In Sect. 4 we consider the space between these extreme points and
study the degree of decomposability.

2 Definitions and Notation

We shall use standard notions of the theory of formal languages (see e.g. [6]). Our
notation shall be as follows. Σ∗ denotes the set of all words over the alphabet
Σ, the length of a word w is denoted by |w|, ε denotes the empty word, and for
a language L we shall denote by ΣL the minimal alphabet such that L ⊆ Σ∗

L.
The number of occurrences of a given letter a in a word w is denoted by #a(w).
Throughout this paper we shall consider deterministic finite automata only.

A deterministic finite automaton (DFA) is a quintuple (K, Σ, δ, q0, F), such
that K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is the initial
state, F ⊆ K is the set of accepting states and δ : K × Σ → K is a transition
function. As usual, we shall denote by δ also the standard extension of δ to
words, i.e., δ : K × Σ∗ → K. We shall denote by |K| the number of states in K.

Formalizing the notions of assisted problem solving from the Introduction we
shall now define several types of decompositions of DFA A into two (simpler)
DFAs A1 and A2 (a solver and an advisor) so that the membership of an input

294 P. Gaži and B. Rovan

word w in L(A) can be determined based on the information on the computations
of A1 and A2 on w.1

We first introduce an acceptance-identifying decomposition of deterministic
finite automata.

Definition 1. A pair of DFAs (A1, A2), where A1 = (K1, Σ, δ1, q1, F1) and
A2 = (K2, Σ, δ2, q2, F2), forms an acceptance-identifying decomposition (AI-
decomposition) of a DFA A = (K, Σ, δ, q0, F), if L(A) = L(A1) ∩ L(A2). This
decomposition is nontrivial if |K1| < |K| and |K2| < |K|.
By decomposing A in this manner, one of the decomposed automata (say A2)
can act as an advisor and narrow down the set of input words for the other one
(say A1), whose task to recognize the words of L(A) may become easier.

Another requirement we could pose on a decomposition is to identify the
final state of any computation of the original automaton by only knowing the
final states of both corresponding computations of the automata forming the
decomposition. This requirement can be formalized as follows.

Definition 2. A pair of DFAs (A1, A2), where A1 = (K1, Σ, δ1, q1, F1) and A2 =
(K2, Σ, δ2, q2, F2), forms a state-identifying decomposition (SI-decomposition) of
a DFA A = (K, Σ, δ, q0, F), if there exists a mapping β : K1 × K2 → K, such that
it holds β(δ1(q1, w), δ2(q2, w)) = δ(q0, w) for all w ∈ Σ∗. This decomposition is
nontrivial if |K1| < |K| and |K2| < |K|.
The third – and the weakest – requirement we pose on a decomposition of a
DFA is to require that there must exist a way to determine whether the original
automaton would accept some given input word based on knowing the states in
which the computations of both decomposition automata have finished.

Definition 3. A pair of DFAs (A1, A2), where A1 = (K1, Σ, δ1, q1, F1) and
A2 = (K2, Σ, δ2, q2, F2), forms a weak acceptance-identifying decomposition
(wAI-decomposition) of a DFA A = (K, Σ, δ, q0, F), if there exists a relation
R ⊆ K1 × K2 such that it holds R(δ1(q1, w), δ2(q2, w)) ⇔ w ∈ L(A) for all
w ∈ Σ∗. This decomposition is nontrivial if |K1| < |K| and |K2| < |K|.
Note that in the last two definitions, the sets of accepting states of A1 and A2

are irrelevant.
By a decomposability of a regular language L in some way, we shall mean the

decomposability of the corresponding minimal automaton over ΣL.
To be able to compare these new types of decomposition to the parallel de-

compositions of state behavior introduced for sequential machines in [5], we shall
redefine them for DFAs.
1 We keep our terminology close to the original one of [5] since we find it more intu-

itive for a nonspecialist than the current terminology of automata morphisms and
congruences used in the algebraic automata theory. It should facilitate the use of
assisted problem solving in different setting while specialists in algebraic automata
theory should have no difficulty to follow the decomposition results obtained.

Assisted Problem Solving and Decompositions of Finite Automata 295

Definition 4. A DFA A′ = (K ′, Σ, δ′, q′0, F
′) is said to realize the state behav-

ior of a DFA A = (K, Σ, δ, q0, F) if there exists an injective mapping α : K → K ′

such that

(i) (∀a ∈ Σ)(∀q ∈ K); δ′(α(q), a) = α(δ(q, a)),
(ii) α(q0) = q′0.

Moreover, A′ is said to realize the state and acceptance behavior of A, if in
addition the following property holds:

(iii) (∀q ∈ K); α(q) ∈ F ′ ⇔ q ∈ F .

Definition 5. The parallel connection of two DFA A1 = (K1, Σ, δ1, q1, F1) and
A2 = (K2, Σ, δ2, q2, F2) is the DFA A = A1||A2 = (K1 × K2, Σ, δ, (q1, q2), F1 ×
F2) such that δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)).

Definition 6. A pair of DFAs (A1, A2) is a state behavior (SB-) decomposition
of a DFA A if A1||A2 realizes the state behavior of A. The pair (A1, A2) is an
acceptance and state behavior (ASB-) decomposition of A if A1||A2 realizes the
state and acceptance behavior of A. This decomposition is nontrivial if both A1

and A2 have fewer states than A.

We have modified the definitions to fit the formalism and purpose of deter-
ministic finite automata (i.e., to accept formal languages) without loosing the
connection to the strongly related and useful concept of S.P.partitions, exhibited
below.

We shall use the following notation and properties of S.P. partitions from [5].
A partition π on a set of states of a DFA A = (K, Σ, δ, q0, F) has substitution
property (S.P.), if it holds ∀p, q ∈ K; p ≡π q ⇒ (∀a ∈ Σ; δ(p, a) ≡π δ(q, a)). If
π1 and π2 are partitions on a given set M , then

(i) π1 · π2 is a partition on M such that a ≡π1·π2 b ⇔ a ≡π1 b ∧ a ≡π2 b,
(ii) π1 +π2 is a partition on M such that a ≡π1+π2 b iff there exists a sequence

a = a0, a1, a2, . . . , an = b, such that ai ≡π1 ai+1 ∨ ai ≡π2 ai+1 for all
i ∈ {0, . . . , n − 1},

(iii) π1 � π2 if it holds (∀x, y ∈ M); x ≡π1 y ⇒ x ≡π2 y.

The set of all partitions on a given set (with the partial order �, join realized
by + and meet realized by .) forms a lattice. The set of all S.P. partitions on
the set of states of a given DFA forms a sublattice of the lattice of all partitions
on this set. The trivial partitions {{q0}, {q1}, . . . , {qn}} and {{q0, q1, . . . , qn}}
shall be denoted by symbols 0 and 1, respectively. The block of a partition π
containing the state q shall be denoted by [q]π . In addition, we shall use the
following separation notion.

Definition 7. The partitions π1 = {R1, . . . , Rk} and π2 = {S1, . . . , Sl} on a set
of states of a DFA A = (K, Σ, δ, q0, F) are said to separate the final states of A
if there exist indices i1, . . . , ir and j1, . . . , js such that it holds (Ri1 ∪ . . .∪Rir)∩
(Sj1 ∪ . . . ∪ Sjs) = F .

296 P. Gaži and B. Rovan

3 Relations between Types of Decompositions

The concept of partitions separating the final states allows us to derive a neces-
sary and sufficient condition for the existence of SB- and ASB-decompositions
similar to the one stated in [5].

Theorem 1. A DFA A = (K, Σ, δ, q0, F) has a nontrivial SB-decomposition iff
there exist two nontrivial S.P. partitions π1 and π2 on the set of states of A such
that π1 ·π2 = 0. This decomposition is an ASB-decomposition if and only if these
partitions separate the final states of A.

Proof. The proof is analogous to that in [5] but had to be extended for the ASB-
decomposition. We omit it due to space constraints. ��
For the other decompositions, we can derive the following sufficient conditions
that exploit the concept of S.P. partitions.

Theorem 2. Let A = (K, Σ, δ, q0, F) be a deterministic finite automaton, let
π1 and π2 be nontrivial S.P. partitions on the set of states of A, such that they
separate the final states of A. Then A has a nontrivial AI-decomposition.

Proof. Since π1 and π2 separate the final states of A, there exist blocks B1, . . . , Bk

and C1, . . . , Cl of the partitions π1 and π2 respectively, such that (B1 ∪ . . . ∪
Bk) ∩ (C1 ∪ . . . ∪ Cl) = F . We shall construct two automata A1 and A2 hav-
ing states corresponding to blocks of these partitions and show that (A1, A2) is a
nontrivial AI-decomposition of A. Let A1 = (π1, Σ, δ1, [q0]π1 , {B1, . . . , Bk}) and
A2 = (π2, Σ, δ2, [q0]π2 , {C1, . . . , Cl}) be DFAs with δi defined by δi([q]πi , a) =
[δ(q, a)]πi , i ∈ {1, 2} (this definition does not depend on the choice of q since πi is
an S.P. partition). We now need to prove that L(A) = L(A1) ∩ L(A2).

Let w ∈ L(A). Suppose that the computation of A on the word w ends in some
accepting state qf ∈ F . Then, from the construction of A1 and A2 it follows that
the computation of Ai on the word w ends in the state corresponding to the block
[qf]πi of the partition πi. Since qf ∈ F , it must hold [qf]π1 ∈ {B1, . . . , Bk} and
[qf]π2 ∈ {C1, . . . , Cl}, hence from the construction of Ai, these blocks correspond
to the accepting states in the respective automata. Thus w ∈ L(Ai) for i ∈ {1, 2},
therefore L(A) ⊆ L(A1) ∩ L(A2).

Now suppose w ∈ L(A1) ∩ L(A2), Thus the computation of A1 on w ends in
one of the states B1, . . . , Bk, which means that the computation of A on w would
end in a state from the union of blocks B1∪. . .∪Bk. Using the same argument for
A2, we get that the computation of A on w would end in a state from C1∪. . .∪Cl.
Since (B1 ∪ . . . ∪ Bk) ∩ (C1 ∪ . . . ∪ Cl) = F we obtain that the computation of
A ends in an accepting state, hence w ∈ L(A) and L(A1) ∩ L(A2) ⊆ L(A).

Since both partitions are nontrivial, so is the AI-decomposition obtained. ��
Theorem 3. Let A = (K, Σ, δ, q0, F) be a deterministic finite automaton, let
π1 and π2 be nontrivial S.P. partitions on the set of states of A, such that
π1 · π2 � {F, K − F}. Then A has a nontrivial wAI-decomposition.

Assisted Problem Solving and Decompositions of Finite Automata 297

Proof. We shall construct A1 and A2 corresponding to the S.P. partitions π1

and π2 as follows: Ai = (πi, Σ, δi, [q0]πi , ∅), where δi([q]πi , a) = [δ(q, a)]πi and
i ∈ {1, 2}. To show that (A1, A2) is a wAI-decomposition of A, we define the
relation R ⊆ π1 × π2 by the equivalence R(D1, D2) ⇔ (D1 ∩ D2 ⊆ F),where
Di is some block of the partition πi. Now we need to prove that ∀w ∈ Σ∗;
w ∈ L(A) ⇔ R(δ1([q0]π1 , w), δ2([q0]π2 , w)).

Let the computation of A on w end in some state p ∈ K. It follows that the
computation of Ai on the word w ends in the state corresponding to the block
[p]πi , i ∈ {1, 2}. Thus R(δ1([q0]π1 , w), δ2([q0]π2 , w)) ⇔ R([p]π1 , [p]π2) and by the
definition of R, we have R(δ1([q0]π1 , w), δ2([q0]π2 , w)) ⇔ [p]π1 ∩ [p]π2 ⊆ F . Since
p ∈ [p]π1 ∩ [p]π2 , [p]π1 ∩ [p]π2 is a block of the partition π1 · π2 and π1 · π2 �
{F, K − F}, it must hold that either [p]π1 ∩ [p]π2 ⊆ F or [p]π1 ∩ [p]π2 ⊆ K − F .
Therefore R(δ1([q0]π1 , w), δ2([q0]π2 , w)) ⇔ p ∈ F and the proof is complete. ��
It follows directly from the definitions, that each SI-decomposition is also a wAI-
decomposition, and so is each AI-decomposition. Also, each ASB-decomposition
is an AI-decomposition, which is a consequence of the definition of acceptance
and state behavior realization. For minimal automata, a relationship between
AI- and SI-decompositions can be obtained.

Theorem 4. Let A = (K, Σ, δ, q0, F) be a minimal DFA, let (A1, A2) be its
AI-decomposition. Then (A1, A2) is also an SI-decomposition of A.

Proof. Since (A1, A2) is an AI-decomposition of A, L(A) = L(A1) ∩ L(A2).
Therefore if we use the well-known Cartesian product construction, we obtain
the automaton A1||A2 such that L(A1||A2) = L(A). Since A is the minimal
automaton accepting the language L(A), there exists a mapping β : K ′ → K such
that it holds (∀w ∈ Σ∗); β(δ′(q′0, w)) = δ(β(q′0), w), where δ′ is the transition
function of A1||A2, K ′ is its set of states and q′0 is its initial state. Since A1||A2

is a parallel connection (i.e., K ′ = K1 × K2, q′0 is the pair of initial states of A1

and A2), it is easy to see that β is in fact exactly the mapping required by the
definition of the SI-decomposition. ��
The ASB-decomposition is a combination of the SB-decomposition and the AI-
decomposition, as the next theorem shows.

Theorem 5. Let A be a DFA without unreachable states. (A1, A2) is an ASB-
decomposition of A iff (A1, A2) is both an SB-decomposition and an AI-
decomposition of A.

Proof. The first implication clearly follows from the definitions, Theorem 1 and
Theorem 2. Now let (A1, A2) be an SB- and AI-decomposition of A =
(K, Σ, δ, q0, F). Let α be the mapping given by the definition of SB-decomposition.
We need to prove that for all states q of A, q ∈ F iff α(q) ∈ F1×F2, where Fi is the
set of accepting states of Ai, i ∈ {1, 2}. Let q ∈ K and let w be a word such that
δ(q0, w) = q. Then q ∈ F ⇔ w ∈ L(A) ⇔ w ∈ L(A1) ∩ L(A2) ⇔ α(q) ∈ F1 × F2,
where the first equivalence is implied by the choice of w, the second holds because
(A1, A2) is an AI-decomposition and the third is a consequence of the properties
of α guaranteed by the SB-decomposition definition. ��

298 P. Gaži and B. Rovan

There is also a relationship between SB- and SI-decompositions, in fact SB- is
a stronger version of the state-identifying decomposition, as the following two
theorems show. We need the notion of reachability on pairs of states.

Definition 8. Let A1 =(K1, Σ, δ1, p1, F1) and A2 =(K2, Σ, δ2, p2, F2) be DFAs.
We shall call a pair of states (q, r) ∈ K1 × K2 reachable, if there exists a word
w ∈ Σ∗ such that δ1(p1, w) = q and δ2(p2, w) = r.

Theorem 6. Let A = (K, Σ, δ, q0, F) be a DFA and let (A1, A2) be its SB-
decomposition. Then (A1, A2) also forms an SI-decomposition of A.

Proof. Let Ai =(Ki, Σ, δi, qi, Fi), i∈{1, 2}. Since (A1, A2) is an SB-decomposition
of A, there exists an injective mapping α : K → K1×K2 such that it holds α(q0) =
(q1, q2) and (∀a ∈ Σ)(∀p ∈ K); α(δ(p, a)) = (δ1(p1, a), δ2(p2, a)), where α(p) =
(p1, p2). Let us define a new mapping β : K1 × K2 → K by

β(p1, p2) =
{

p if ∃p ∈ K, α(p) = (p1, p2)
q0 otherwise. (1)

Since α is injective, there exists at most one such p and this definition is correct.
We now need to prove that β satisfies the condition from the definition of

SI-decomposition, i.e., that (∀w ∈ Σ∗); β(δ1(q1, w), δ2(q2, w)) = δ(q0, w). Since
α(q0) = (q1, q2) and all the pairs of states we encounter in the computation of
A1||A2 are thus reachable, this follows from the definition of α and (1) by an
easy induction. ��
Lemma 1. Let A be a DFA without unreachable states and let (A1, A2) be its
SI-decomposition, with β being the corresponding mapping. Then (A1, A2) is an
SB-decomposition of A if and only if β is injective on all reachable pairs of states.

Proof. Let (A1, A2) be an SB-decomposition of A. It clearly follows from Def-
inition 2, that the corresponding β satisfies the equation (1) in the proof of
Theorem 6 on all reachable pairs of states. Since the mapping α is a bijection
between the set of states of A and the set of all reachable pairs of states of A1

and A2, β defined as its inverse on the set of reachable pairs of states will be
injective on this set.

For the other implication, let (A1, A2) be an SI-decomposition of A and let
β be injective on the set of reachable pairs of states, let βr denote the mapping
β restricted onto the set of all reachable pairs of states of A1, A2. Since A has
no unreachable states, βr is also surjective, thus we can define a new mapping
α : K → K1 × K2 by the equation α(q) = β−1

r (q). Since β maps the initial state
onto the initial state, so does α, and since β satisfies the condition from the
Definition 2, it implies that also α satisfies the condition (i) from the definition
of realization of state behavior. Therefore (A1, A2) is an SB-decomposition of A,
with the corresponding mapping α. ��
The converse of Theorem 6 does not hold. The minimal automaton for the lan-
guage L = {a4kb4l|k ≥ 0, l ≥ 1} gives a counterexample. Inspecting its S.P.

Assisted Problem Solving and Decompositions of Finite Automata 299

partitions shows that it has no nontrivial SB-decomposition, but it can be AI-
decomposed into minimal automata for languages L1 = {a4kbl|k ≥ 0, l ≥ 1} and
L2 = {w|#b(w) = 4l; l ≥ 0}. According to Theorem 4, this AI-decomposition is
also state-identifying.

Each ASB-decomposition is obviously also an SB-decomposition. On the other
hand, there exist SB-decomposable automata, that are ASB-undecomposable.
For example, the minimal automaton for the language

L1 = {w ∈ {a, b, c}∗|#a(w) mod 3 = 0 ∧ #b(w) mod 5 = 0}
∪ {w ∈ {a, b, c}∗|#a(w) mod 3 = 2 ∧ #b(w) mod 5 = 4}

has this property, because the corresponding S.P. partitions on the set of its
states do not separate the final states in the sense of Definition 7.

It is also not so difficult to see that for any non-minimal automaton A without
unreachable states, there exists a nontrivial AI- and wAI-decomposition (A1, A2)
such that A1 is the minimal automaton equivalent to A and A2 has only one
state. This decomposition is obviously not state-identifying.

Figure 1 summarizes all the relationships among the decomposition types that
we have shown so far.

ASB

�����
��

��
��

����������

AI

×����

������

min
���

�

�����
�

��

×
��

SB

����������

×����

������

SI

�����
��

���
�

×����

������

wAI

×

��

Description:

A �� B : every A-decomposition is also a B-
decomposition

A min �� B : every A-decomposition of a minimal
DFA is also a B-decomposition

A × �� B : not every A-decomposition is also a
B-decomposition

A × �� B : there exists a DFA that has a nontriv-
ial A-decomposition but does not have a non-
trivial B-decomposition

Fig. 1. Relationships between decomposition types of DFA

Now we show that for the case of so-called perfect decompositions, some of
the types of decomposition mentioned coincide.

Definition 9. Let t be a type of decomposition, t ∈ {ASB, SB, AI, SI, wAI}.
Let A be a DFA having n states, let A1 and A2 be DFAs having k and l states,
respectively. We shall call the pair (A1, A2) a perfect t-decomposition of A, if it
forms a t-decomposition of A and n = k · l.

Theorem 7. Let A be a DFA with no unreachable states and let (A1, A2) be a
pair of DFAs. Then (A1, A2) forms a perfect SI-decomposition of A iff (A1, A2)
forms a perfect SB-decomposition of A.

300 P. Gaži and B. Rovan

Proof. One of the implications is a consequence of Theorem 6. As to the second
one, since (A1, A2) forms a perfect SI-decomposition of A, each of the pairs of
states of A1 and A2 is reachable and each pair has to correspond to a different
state of A in the mapping β, therefore β is bijective and the theorem follows
from Lemma 1. ��
Corollary 1. Let A be a minimal DFA and let (A1, A2) be a pair of DFAs. Then
(A1, A2) forms a perfect AI-decomposition of A iff (A1, A2) forms a perfect ASB-
decomposition of A.

Proof. The claim follows from Theorem 5, Theorem 4 and Theorem 7. ��
As a consequence of these facts, we can use the necessary and sufficient conditions
stated in Theorem 1 to look for perfect AI- and SI-decompositions.

Now, let us inspect the relationship between decompositions of an automaton
and the decompositions of the corresponding minimal automaton.

Theorem 8. Let A = (K, Σ, δ, q0, F) be a DFA and let Amin be a minimal
DFA such that L(A) = L(Amin). Let (A1, A2) be an SI-decomposition (AI-
decomposition, wAI-decomposition) of A, then (A1, A2) also forms a decomposi-
tion of Amin of the same type.

Proof. First, note that this theorem does not state that any of the decomposi-
tions is nontrivial. To prove the statement for SI-decompositions, suppose that
(A1, A2) is an SI-decomposition of A, thus there exists a mapping α : K1×K2 →
K such that it holds (∀w ∈ Σ∗); α(δ1(q1, w), δ2(q2, w)) = δ(q0, w), where δi and
qi are the transition function and the initial state of the automaton Ai. Since
Amin is the minimal automaton corresponding to A, there exists some mapping
β : K → Kmin such that (∀w ∈ Σ∗); β(δ(q0, w)) = δmin(β(q0), w), where δmin is
the transition function of Amin and Kmin is the set of states of Amin. By the com-
position of these mappings we obtain the mapping β◦α : K1×K2 → Kmin, which
combines A1 and A2 into Amin in the way that the definition of SI-decomposition
requires. For both the AI- and the wAI-decomposition, this statement is trivial,
since L(A) = L(Amin). ��
Based on the above theorem it thus suffices to inspect the SI- (AI-, wAI-) de-
composability of the minimal automaton accepting a given language, and if we
show its undecomposability, we know that the recognition of this language can-
not be simplified using an advisor of the respective type. However, this does not
hold for SB- and ASB-decompositions, this can be exhibited by the following
example. Let us consider the language L = {a2kb2l|k ≥ 0, l ≥ 1}. The minimal
automaton Amin = (K, ΣL, δ, a0, {a0, b0}) has its transition function defined by
the first transition diagram in Fig.2. We can easily show that this automaton
does not have any nontrivial SB- (and thus neither ASB-) decomposition by
enumerating its S.P. partitions.

Now let us examine the automaton A′ = (K ′, ΣL, δ′, a0, {a0, b0}) with the tran-
sition function δ′ defined by the second transition diagram in Fig.2. Clearly,
L(A′) = L(Amin), but by inspecting the lattice of S.P. partitions of A′, we can find

Assisted Problem Solving and Decompositions of Finite Automata 301

a1
b ��

a

��

R

a0
b ��

a

		

b1

b

a

��

b0

b

��

a
 a1

b ��

a

��

R1

b ��
R0

b

��

a0
b ��

a

��

b1

b

a

��

b0

b

��

a

��

Fig. 2. Transition functions of Amin and A′

the pair π1 ={{a0}, {a1}, {b0, b1}, {R0, R1}} and π2 ={{a0, a1, b0, R0}, {b1, R1}}
such that π1 · π2 = 0 and they separate the final states of A′. By Theorem 1 we
can use these partitions to construct a nontrivial ASB- (and thus also SB-) de-
composition of A′ formed by the automata A1 and A2 having two and four states,
respectively. Note that both A1 and A2 have less states than Amin.

In the following theorem (inspired by a similar theorem in [5]) we state a
condition, under which the situation from the last example cannot occur, i.e.,
under which any SB-decomposition of a DFA implies a (maybe simpler) SB-
decomposition of the equivalent minimal DFA.

Theorem 9. Let A = (K, Σ, δ, q0, F) be a deterministic finite automaton and
let Amin = (Kmin, Σ, δmin, qmin, Fmin) be the minimal DFA such that L(A) =
L(Amin). Let (A1, A2) be a nontrivial SB-decomposition of A consisting of au-
tomata having k and l states. If the lattice of S.P. partitions of A is distributive,
then there exists an SB-decomposition of Amin consisting of automata having k′

and l′ states, such that k′ ≤ k and l′ ≤ l.

Proof. Since Amin is the minimal DFA such that L(A) = L(Amin), there exists
a mapping f : K → Kmin such that (∀w ∈ Σ∗); f(δ(q0, w)) = δmin(qmin, w).
Using the mapping f , let us define a partition ρ on the set of states of A by
p ≡ρ q ⇔ f(p) = f(q). Clearly, ρ is an S.P. partition.

Since (A1, A2) is a nontrivial SB-decomposition of A, we can use it to obtain
S.P. partitions π1 and π2 on the set of states of A such that π1 · π2 = 0. Let us
define new partitions π′

1 and π′
2 on the set of states of Amin by f(p) ≡π′

i
f(q) ⇔

p ≡ρ+πi q. Since it holds that ρ � ρ + πi, this definition does not depend on the
choice of the states p and q. It holds that |π′

i| = |ρ + πi| ≤ |πi|, therefore if we
prove that π′

1 and π′
2 are S.P. partitions and π′

1 · π′
2 = 0, we can use them to

construct the desired decomposition.
The fact that π′

i is an S.P. partition on the set of states of Amin is a trivial
consequence of the fact that ρ+πi is an S.P. partition on the set of states of A. We
need to prove that π′

1 ·π′
2 = 0. Let us assume that p′ and q′ are states of Amin such

that p′ ≡π′
1·π′

2
q′ and p, q are some states of A such that f(p) = p′ and f(q) = q′.

Then p′ ≡π′
1

q′ and p′ ≡π′
2

q′, and by definition of π′
i we get p ≡ρ+π1 q and

p ≡ρ+π2 q, which is equivalent to p ≡(ρ+π1)·(ρ+π2) q. Since the lattice of all S.P.
partitions of A is distributive, we have (ρ+π1)·(ρ+π2) = ρ+(π1 ·π2) = ρ+0 = ρ,
therefore p ≡ρ q, which by definition of ρ implies that f(p) = f(q), in other words
p′ = q′. Hence π′

1 · π′
2 = 0. ��

302 P. Gaži and B. Rovan

4 Degrees of Decomposability

It is easy to see that for each type of decomposition, there exist undecomposable
regular languages (e.g. L(n) = {ak|k ≥ n − 1} is wAI-undecomposable for each
n ∈ N). There also exist regular languages, that are perfectly decomposable in
each way (e.g. L(k,l) = {w ∈ {a, b}∗|#a(w) mod k = 0 ∧ #b(w) mod l = 0} has
a perfect ASB-decomposition for all k, l ≥ 2). We shall now investigate whether
all values between these two limits can be achieved.

Definition 10. Let A be a DFA, let (A1, A2) be its nontrivial SB- (ASB-) de-
composition with the corresponding S.P. partitions π1 and π2. We shall call this
decomposition redundant, if there exist S.P. partitions π′

1 � π1 and π′
2 � π2

such that at least one of these inequalities is strict, but it still holds π′
1 · π′

2 = 0
(and π′

1 and π′
2 separate the final states of A).

Lemma 2. For each r, s ∈ N, r, s ≥ 2, there exists a minimal DFA A consisting
of r · s states and having only one nontrivial nonredundant SB-decomposition
(ASB-decomposition) up to the order of automata, consisting of automata having
r and s states.

Proof (sketch). By a careful analysis of the S.P. partitions of the minimal au-
tomaton accepting the regular language L = {w ∈ {a, b}∗|#a(w) ≥ r − 1 ∧
#b(w) ≥ s − 1}, it can be shown that it has the desired property. ��
Definition 11. Let A = (K, Σ, δ, q0, F) be a deterministic finite automaton, let
K ∩ {p0, p1, . . . , pk−1} = ∅ and let c be a new symbol not included in Σ. We
shall define a k-extension A′ of the automaton A by the following construction:
A′ = (K ∪ {p0, p1, . . . , pk−1}, Σ ∪ {c}, δ′, p0, F), where the transition function δ′

is defined as follows:

(∀q ∈ K) (∀a ∈ Σ); δ′(q, a) = δ(q, a)
(∀q ∈ K); δ′(q, c) = q

(∀p ∈ {p0, p1, . . . , pk−1}) (∀a ∈ Σ); δ′(p, a) = p

(∀i ∈ {0, 1, . . . , k − 2}); δ′(pi, c) = pi+1

δ′(pk−1, c) = q0.

Note that a k-extension of a minimal DFA is again a minimal DFA.

Lemma 3. Let A be a DFA consisting of n states, all of which are reachable. Let
A′ be its k-extension. Then A has a nontrivial nonredundant SB-decomposition
(ASB-decomposition) consisting of automata having r and s states iff A′ has a
nontrivial nonredundant decomposition of the same type, consisting of automata
having k + r and k + s states.

Proof (sketch). We shall analyze the S.P. partitions of the extended automaton
A′ and relate them to the S.P. partitions of the original automaton A. It can
be shown that any S.P. partition of A′ that does not contain a special one-state

Assisted Problem Solving and Decompositions of Finite Automata 303

block for each of the new extension states cannot distinguish between the old
states of A at all, i.e. they all belong to the same block. Therefore, for each
pair of partitions inducing a decomposition of A′ there must exist a pair of
partitions of A that can be obtained by removing all these one-state blocks, and
these partitions induce a decomposition of A. On the other hand, each pair of
partitions inducing a decomposition of A can be extended by adding new blocks
for each of the extension states, obtaining a pair of partitions of A′, and thus a
decomposition. ��
We omit the full proofs of both lemmas due to space limitations, they will appear
in the full version of the paper.

We can combine the lemmas to obtain the following theorem.

Theorem 10. Let n ∈ N be such that n = k + r · s, where r, s, k ∈ N, r, s ≥ 2.
Then there exists a minimal DFA A consisting of n states, such that it has only
one nontrivial nonredundant SB-decomposition (ASB-decomposition) up to the
order of the automata in the decomposition, and this decomposition consists of
automata with k + r and k + s states.

References

1. Balcazar, J.L., Diaz, J., Gabarro, J.: Structural Complexity I. Springer, New York
(1988)

2. Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with
Applications to Public-Key Cryptography. Information and Control 61(2), 159–173
(1984)

3. Yu, S.: State Complexity: Recent Results and Open Problems. Fundamenta Infor-
maticae 64, 471–480 (2005)

4. Birget, J.C.: Intersection and Union of Regular Languages and State Complexity.
Information Processing Letters 43, 185–190 (1992)

5. Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, Englewood Cliffs (1966)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

Energy-Efficient Windows Scheduling

Christian Gunia�

Dept. of Computer Science, Freiburg University
Georges-Köhler-Allee 79, 79110 Freiburg, Germany

gunia@informatik.uni-freiburg.de

Abstract. A server repeatedly transmits data items (pages) possibly
with different speeds on a set of channels. The objective is to minimize
energy consumption of the schedule. We adopt the common model that
sending at speed s for t time units consumes t · sα energy for a constant
α ≥ 2. An individual window length is associated with each page. This
length is a strict upper bound on the time between two consecutive
broadcasts for that page. We present an easy to implement algorithm
for the single channel case that obtains an approximation ratio of 3 ·
4α. For the multi-channel case with identical channels an extension of
this algorithm computes an 8α-approximation. Both algorithms run in
low-order polynomial time. As our main tool for the analysis, we show
that it suffices to consider periodic schedules as their energy density
(total energy consumption per time unit) differs from the one of general
schedules at most by (1 + ε) for an arbitrary constant ε > 0.

1 Introduction

Recent years have witnessed a growing interest in solving tasks in an energy-
efficient manner. This development can be observed in a variety of research
areas ranging from CPU architecture to job scheduling to information transmis-
sion in wireless networks. Classical objectives in computer science mostly focus
on achieving a solution that is best possible in terms of convenience for the ser-
viced clients. However, they ignore the cost incurred by realizing this solution.
While this approach is reasonable in many classical research areas, taking this
realization cost into account has significantly helped establishing new application
areas. In most of these applications energy is a critical resource and must not
be neglected. Thus, a model has to reflect the underlying computing machinery
appropriately. We briefly introduce two of these applications.

Multi-agent systems. In the growing field of multi-agent systems self-sustaining
mobile agents cooperate to solve a common task [1]. In many applications those
mobile agents wish to access information another agent has gathered during
its operation. This information is typically transmitted by wireless broadcasts.
Due to characteristics of their operation areas these agents tend to be small and
their memory storage is limited. Consequently, not every agent stores all received
� Supported by DFG research training program No 1103 ‘Embedded Microsystems’.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 304–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Energy-Efficient Windows Scheduling 305

data and relies on a transmission of the required information at the right time.
It is reasonable to assume that this information does not have to be delivered
instantly but the agent’s waiting time is bounded from above by some reasonable
but predetermined limit. This limit must not be exceeded in order to guarantee
a smooth cooperation. As the agents also carry a limited power supply they use
specialized hardware like low-power CPUs to reduce their energy consumption.
For this reason the energy spent in establishing the communication link is far
from being negligible. With decreasing transmission speed the signal-to-noise
ratio needed to receive the transmission decreases as well [2]. We propose to
adjust the transmission speed in order to save energy. The agents can reduce
their energy consumption by keeping the transmission speed low.

Smart Sensor Nodes. A problem quite similar to the information distribution
problem in multi-agent systems arises from signal pre-processing on smart sensor
nodes. A smart sensor node pre-processes the sensor signal before it is made
available for other agents [3]. These nodes often carry a limited power supply
and reduce the processor speed in order to save energy. On the other hand
most applications enforce a fixed sampling rate, i.e., the period between two
samples must not exceed some given limit. Therefore, the node has to adjust
its computational power to guarantee this property. As the sensor signal has
to be consistent, preemption during the pre-processing is not allowed. In highly
integrated sensor nodes many different sensor signals are pre-processed on one
single processor to keep hardware expenses as low as possible.

1.1 Model and Notation

Inspired by these applications we investigate the following problem. A server
stores data items 1, 2, . . . , n and broadcasts them on channels 1, 2, . . . , m. These
data items are called pages for the remainder of this work. The channels are
speed-controlled, i.e., the server can choose the speed of each transmission inde-
pendently. Let α ≥ 2 be a constant. We follow the standard model [4] assuming
that a broadcast at speed s for t time units consumes t · sα energy. All pages are
of unit size, i.e., each one can be transmitted in t time units at speed 1/t while
consuming (1/t)α−1 energy. Due to the convexity of the energy function, it is not
difficult to see that this is the minimal amount of energy needed to deliver the
whole page within t time units. A broadcast schedule is a sequence of broadcasts
for each channel. Each page p is associated with an individual window length
wp that has to be met. For a given broadcast schedule we say that the win-
dow length of page p is met if within every time window of length wp page p is
broadcasted at least once uninterruptedly. Without loss of generality we assume
the window lengths to be ordered non-decreasingly for the rest of this work,
i.e., w1 ≤ w2 ≤ · · · ≤ wn. If all window lengths are met we call the schedule
feasible. Note that every feasible schedule is an infinite sequence of broadcasts
for each channel. Its energy consumption is the sum of the broadcasts’ energy
consumptions and, therefore, also infinite. We observe that the overall energy
consumption is no appropriate measure for the quality of a schedule. Let ES(t)

306 C. Gunia

denote the energy consumed by schedule S up to time t. The energy density δS

of a schedule S is defined by δS := lim supt→∞ ES(t)/t. Although this measure
seems a bit artifical at first glance, it reduces to a very natural one for an impor-
tant kind of schedules as we will see in the next paragraph. By minimizing the
energy density we maximize the period of time a server can operate with a given
amount of energy for most natural schedules. In this context by most natural
we mean that the server does not spend all its energy at the beginning of that
schedule. In this paper we consider the problem of finding a feasible schedule
with minimal energy density.

Although a feasible schedule is implicitly infinite due to the problem defi-
nition, it needs to be stored in finite space. To this end we compute a finite
representation of that schedule. A representation R of a schedule S is a sequence
of broadcasts for each channel such that S corresponds to repeatedly concatenat-
ing representation R. We assume that a representation starts at time 0 and define
its length to be the ending point of its last broadcast. A schedule is called cyclic
if there exists a representation of finite length. Otherwise, it is called acyclic.
The period of a schedule is the length of its shortest representation; it is defined
to be ∞ for acyclic schedules. We point out that that since ES(T) is finite the
definition of energy density reduces to δS = ES(T)/T for cyclic schedules where
T denotes the period of schedule S. Thus, the energy density denotes the average
energy consumption per time unit within one period for cyclic schedules.

We introduce some notation used throughout this work. A broadcast that
starts at time ts, ends at time te and broadcasts page p at constant speed is
denoted by the triple (ts, te, p). Its length is defined as te − ts. For two disjoint
broadcasts (ts, te, p) and (t′s, t

′
e, p

′) with te ≤ t′s their distance is defined by t′e−ts.
As the complete input instance is known in advance and the energy function is
convex, we assume without loss of generality that all schedules considered in this
work do not change the transmission speed during a broadcast. For any page p
let w′

p denote the windows length wp rounded down to the next power of two.
As mentioned above a feasible schedule has to meet the window length of

every page. Since time windows can start at any point of time—particularly
right after the beginning of a broadcast for a page—it is rather easy to see that
every feasible schedule has to fulfill the following property: For each page p the
distance of each pair of consecutive broadcasts for this page is at most wp. On
the other hand, this property is sufficient to yield the feasibility of a schedule.

1.2 Related Work

The problem considered in this paper is closely related to the windows scheduling
problem, where the goal is to find the minimal number of slotted channels needed
to feasibly schedule pages for a given set of window lengths. One can think of
the original windows scheduling as uniformly fixing the transmission speed for
all broadcasts in advance. This results in slots of fixed size and the problem is
to assign the pages to these slots while respecting their windows lengths. Since
the channels are partitioned into slots of fixed length in the problem definition,
feasible schedules are assumed to be cyclic and energy consumption is irrelevant

Energy-Efficient Windows Scheduling 307

in classical windows scheduling. Bar-Noy and Ladner [5] present lower bounds
on the number of channels and give an algorithm that computes the optimal
schedule for harmonic windows scheduling. In a subsequent work Bar-Noy et
al. [6] generalize this problem by considering different page sizes. They present
an 8-approximation algorithm and a greedy algorithm based upon a tree rep-
resentation of schedules. The authors also show that this generalized window
scheduling problem is NP-hard even if all windows are powers of two.

A related problem that has received a lot of attention also from the energy
perspective is job scheduling with deadlines [7]. Here, a sequence of jobs, each
with an individual release time, deadline and a certain workload needs to be
scheduled on a single speed-controlled processor, such that all jobs are finished
in time and the overall energy consumption is minimized. Yao et al. [7] present a
polynomial time offline algorithm and propose different online strategies. Bansal
et al. [4] present a (2 · (eα/(α − 1))α)-competitive online algorithm and show
that this is asymptotically best possible. Another work by Briest et al. [2] study
pull-based broadcasting on a single speed-controlled channel. They present a
conceptionally simple online algorithm that is ((α/(α − 1))2 · 2α)-competitive
with respect to energy consumption for the case where only one page exists and
each request defines a strict deadline. Furthermore, they show that this is best
possible and present an online algorithm for the multi-page case. All cited works
on energy preservation using speed control mechanisms use the common model
that the maximum speed is not upper bounded. Most recently, Chan et al. [8]
focused on fixing the maximum speed in job scheduling in advance and presented
an algorithm that is 14-competitive in terms of throughput and (αα + α24α)-
competitive on energy usage.

1.3 Contributions

To the author’s best knowledge this is the first analysis directly addressed to the
minimization of energy consumption for windows scheduling by speed-scaling. To
keep assumptions on the model as low as possible, we allow continuous selection
of the transmission speed. As a consequence some schedules might not have
finite representation, i.e., they are not cyclic. In Section 2 we show that an
optimal cyclic schedule differs from an optimal (acyclic) schedule by at most
a factor (1 + ε) for an arbitrary constant ε > 0. To this end we first show
that the shortest broadcast in any optimal schedule does not shrink over time.
Afterwards, we introduce what we call a configuration of a channel, and use
a kind of combinatorial argument to show the claim. Section 3 is dedicated to
the restricted version of the problem where only one channel is available for
transmission. We present a simple algorithm that computes a cyclic schedule
with a period of at most w′

n and an approximation ratio of at most min{3 ·
4α, (2 · (1 + 3/k))α} for k =

∑n
p=1 w′

1/w′
p ≥ 1. At the end of that section we

discuss how to implement this algorithm to run in time O(n2). Section 4 deals
with the more general case of m ≥ 1 identical channels. Here we obtain an 8α-
approximation by extending the algorithm of the preceding section. We consider
this the main contribution of this work. To show this result we first round down

308 C. Gunia

each window length to the next power of two, bound the approximation ratio
obtained on this input instance and, finally, transfer this bound on the original
window lengths. This extension of the algorithm presented in Section 3 runs in
time O(m · n2) and obtains a schedule with period wn/2. Although arbitrary
speed changes are allowed in our model, the speed used on an arbitrary channel
varies at most by a factor of 2 over time.

2 Cyclic and Acyclic Schedules

The definition of energy density allows us to compare the quality of two sched-
ules. This holds for cyclic schedules as well as for acyclic ones. Nevertheless,
acyclic schedules are harder to handle; e.g., they might not be stored on finite
space. We focus on cyclic schedules and show how to compute such broadcast
schedules in the next sections. In this section we give reasons for this choice. We
show that for each acyclic schedule one can find a cyclic schedule that has the
same energy density up to a factor (1 + ε) for an arbitrary constant ε > 0. For
the remainder of this section let S denote an arbitrary schedule.

Lemma 1. There exists a feasible schedule whose broadcasts are at least of
length w1/(64n) and whose energy density at most δS.

The proof is omitted due to space limitations. The following lemma will become
useful later in this section. Its proof is omitted due to space limitations and can
be found in [9].

Lemma 2. Given two vectors (a1, a2, . . . , an) > 0 and (b1, b2, . . . , bn) > 0 such
that a1/b1 ≤ a2/b2 ≤ · · · ≤ an/bn. It holds

a1

b1
≤ a1 + a2

b1 + b2
≤ · · · ≤ a1 + a2 + · · · + an

b1 + b2 + · · · + bn
.

With this lemma at hand we are able to show that cyclic schedules are not
significantly worse than general schedules. The proof of the following theorem is
mostly technical and only sketched due to space limitations.

Theorem 1. For any arbitrary constant ε > 0 there exists a feasible cyclic
schedule whose energy density is at most (1 + ε) · δS.

Proof (Sketch). We fix an optimal schedule S and convert it into a cyclic schedule
S′. During this conversion the energy density of schedule S increases by at most a
factor 1+ε. Choose 1/2 ≥ ε′ > 0 such that 1/(1−ε′)α ≤ 1+ε holds. Without loss
of generality we assume the smallest broadcast in schedule S to be bounded from
below by � > 0. We raster the time line equally into slots of length σ := �ε′/2
and align all broadcast to this raster. This is done by moving each starting point
of a broadcast to the next and each finishing point to the preceding raster point.
It is not difficult to observe that the schedule’s energy density increases at most
by a factor 1/(1 − ε′)α−1 while its feasibility is preserved.

Energy-Efficient Windows Scheduling 309

Next we introduce the notation of a configuration and say that schedule is in
configuration c = (p, t1, . . . , tn) in a particular σ-slot if and only if

1. a broadcast of page p is finished at the end of this slot, and
2. for all j ∈ {1, . . . , n} the starting point of the last broadcast of page j is

exactly tj slots ago.

Consider a sequence of broadcasts that starts and ends in a slot with some con-
figuration c and meets all constraints on the window lengths. Due to the second
set of conditions in the definition of a configuration, it is guaranteed that repeat-
ing this sequence repeatedly results in a feasible schedule. On the other hand,
at least every �w1/σ� slots a broadcast finishes. Thus, a configuration is reached
at least every �w1/σ� slots. Schedule S induces a infinite sequence of configura-
tions. As the number of configurations is finite, at least one configuration has to
be reached infinitely often. It is possible to show that there has to exist a config-
uration c∗ and a sequence of broadcast in schedule S which starts and ends in c∗

and whose (infinite) repetition yields a schedule S′ whose energy consumption
is at most a factor 1/(1 − ε′)α higher than the one of schedule S. �
Let δopt denote the energy density achieved by an optimal schedule. The last
theorem guarantees that for each constant ε > 0 there exists a schedule with
finite period whose energy density is at most (1 + ε) · δopt. Thus, we focus on
them for the remainder of this work. We point out that the period of this cyclic
schedule might be large and depends on ε. Hence, the existence of an optimal
cyclic schedule cannot be guaranteed. We will create schedules with acceptable
period and performance in the next sections and start by dealing with the single
channel case in the next section.

3 Broadcasts on a Single Channel

In this section we present algorithm SingleApprox and show that it obtains a
min{(2·(1+3/k))α, 3·4α}-approximation for k =

∑n
p=1 w′

1/w′
p. Before presenting

it formally we describe its basic structure. The algorithm rounds each window
length down to the nearest power of 2 resulting in window lengths w′

i and par-
titions the channel equally into slots of length w′

1(k + 1)/(k + 3). At any point
of time each slot has a set of pages assigned to it. The algorithm processes all
pages sequentially and assigns each page to the slot that has currently the fewest
pages assigned to. Finally, the assignments are transformed into broadcasts by
performing them sequentially in order of (non-decreasing) window length. The
speed is chosen independently for each slot such that the whole slot is used for
broadcasts. The canonical implementation of the algorithm shown below might
have a pseudo-polynomial running time. So we discuss an implementation that
runs in time O(n2) at the end of this section. Before turning to a formal de-
scription of algorithm SingleApprox, we state an easy observation. Consider a
schedule S that is feasible for a set of window lengths w′

1, w
′
2, . . . , w

′
n. Modify all

window lengths by scaling them by the same factor c > 0. Schedule S might be
infeasible for this new set of parameters. Nevertheless, converting each broad-
cast (s, t, p) of schedule S into broadcast (c · s, c · t, p), i.e., scaling it by factor c,

310 C. Gunia

Round each page’s window length down to the nearest power of 2, i.e., w′
i := 2ki1

Partition the timeline equally into slots 1, 2, . . . of length t0 ← (k + 1)/(k + 3)2

where k =
∑n

p=1 w′
1/w′

p ∈ N

foreach page p do3

Let sp denote the currently first emptiest slot.4

Assign page p to each slot sp, sp + w′
p, sp + 2 · w′

p, . . .5

end
Choose transmission speed of each slot such that all assigned broadcasts are6

performed and the whole slot is used.

Algorithm 1. SingleApprox

again results in a feasible schedule. Without loss of generality we assume w1 = 1;
otherwise scale all broadcasts by w−1

1 before rounding. Observe that the optimal
energy density with respect to window lengths wi and the optimal energy density
with respect to w′

i differ at most by a factor 2α−1. In all proofs we can assume
all original window lengths to be powers of two and compensate for this with a
factor 2α−1. We call all slots with fewest pages assigned to it emptiest slots. The
proofs of this section are omitted due to space limitations.

Lemma 3. The approximation ratio of algorithm SingleApprox is at most
(2 · (1 + 3/k))α for k =

∑n
p=1 w′

1/w′
p.

The proof is based upon the fact that for each page the distance between its
broadcasts is close to its window length. Thus, the frequency of broadcasts within
schedule S and any optimal schedule is also close to each other. As the broad-
cast speed in schedule S does not vary too much over time, the claim follows
straightforwardly. Obviously, the obtained schedule has a period of w′

n/w′
1 slots.

As page p is assigned to every (w′
p/w′

1)-th slot, it is assigned to w′
n/w′

p slots
within one period. This sums up to

∑n
p=1 w′

n/w′
p which results in an average

number of
∑n

p=1 w′
1/w′

p pages per slot. As the number of assigned pages per
slot differs at most by one, this yields that parameter k describes the number of
pages assigned to the emptiest slot at the end of the algorithm. We point out
that the more broadcasts per slot are performed, i.e., the more energy is used per
time unit, the better the bound on the approximation ratio gets. However, last
lemma only yields an upper bound of 8α on the approximation ratio due to small
k. We improve upon this bound by looking at small k ∈ {1, 2} more carefully.
If k is small, the most frequent page 1 dominates the energy consumption. This
can be exploited to obtain a better lower bound and yields the next lemma.

Lemma 4. The approximation ratio of SingleApprox is at most 3 · 4α.

A canonical implementation of algorithm SingleApprox has a running time of
Ω(wn) as the number of slots is bounded below by this term and the emptiest
one has to be found in Line 5. On the other hand, the running time can easily
be bounded above by O(n · wn) which is pseudo-polynomial. Note that it is

Energy-Efficient Windows Scheduling 311

impossible for any implementation of algorithm SingleApprox to output S
explicitly slot by slot in polynomial time since its period is Ω(wn). Nevertheless,
it is sufficient to know t0 and all page offsets sp in order to specify schedule S
completely. Moreover, with this information at hand one can construct schedule
S on-the-fly over time with low computational effort. Due to this we say that
schedule S is computed as soon as these parameters are known. Next lemma
states that they can be computed in time O(n2).

Lemma 5. Algorithm SingleApprox can be implemented to run in time O(n2).

The proof of Lemma 5 is omitted. The key observation is the regular structure
of the assignment: After page p has been processed the assignment is periodic
with period w′

p/2. With this observation at hand it is not hard to observe that
the first emptiest slot in Line 4 can be computed by dynamic programming in
polynomial time. We obtain the following theorem.

Theorem 2. Algorithm SingleApprox runs in time O(n2) and has an ap-
proximation ratio of at most min{3 · 4α, (2 · (1 + 3/k))α} for k =

∑n
p=1 w′

1/w′
p.

4 Broadcasts on Multiple Channels

In the following we extend the scenario to multiple but identical channels. Each
page will be broadcasted on exactly one channel. Essentially, we have to find
an assignment of the pages to channels. To this end we extend algorithm Sin-

gleApprox to algorithm MultiApprox. Again, first all window lengths are
rounded down to the nearest power of 2. Recall that the window lengths are as-
sumed to be ordered non-decreasingly. The first m pages are distributed among
the m channels by assigning page i to channel i: Channel i is partitioned into
slots of length w′

i/2 and page i is assigned to each one of them. Denote the j-th
slot on channel i by si

j and let ai
j be the number of pages currently assigned to

it. As the slots on different channels might differ, the number of assigned pages
is no longer an appropriate measure. Instead we use the slot density. Define the
density of slot si

j by di
j := 2ai

j/w′
i. The remaining pages m + 1, m + 2, . . . , n are

processed sequentially with decreasing window length. Each page is assigned to
the channel currently holding the slot with lowest density. This assignment is
done in the same manner as in algorithm SingleApprox. Algorithm 2 shows
algorithm MultiApprox in more detail. Here is our main result.

Theorem 3. Algorithm MultiApprox can be implemented to run in time
O(n2 · m) and has an approximation ratio of at most 8α + 2α−1.

The rest of this section is dedicated to proving this theorem. We show the claim
on the running time first. Lines 1 and 2 can obviously be performed in linear
time. Each iteration of the loop in Lines 3–6 requires to identify the slot with
the lowest density. If we computed this slot in a trivial manner, the running
time of each iteration would be bounded below by the number of slots. This
is at least w′

n which is pseudo-polynomial. Nevertheless, the regular structure

312 C. Gunia

Round each page’s window length down to the nearest power of 2, i.e., w′
i := 2ki .1

Partition channel i equally into slots si
j of length w′

i/2 and assign page i to each2

one.
foreach page p > m do3

Let i be the channel containing slot si
j with the lowest density.4

Assign page p to slots si
j , s

i
j + w′

p/w′
i, s

i
j + 2w′

p/w′
i, . . .5

Recompute densities di
j6

end
Choose transmission speed of each slot such that all assigned broadcasts are7

performed and the whole slot is used.

Algorithm 2. MultiApprox

of the assignment can be exploited to keep the running time polynomial. First,
we observe that it is sufficient to know the slot with the lowest density on each
channel; afterwards, we take their minimum over all channels. At any point of
time the slot with lowest density on channel i is the slot on this channel with
the least pages assigned to. Consider subset Pi of pages that are assigned to
channel i. Note that the page assignment on this channel is identical to the one
obtained by algorithm SingleApprox if that algorithm is applied to pageset
Pi. We use one instance of that algorithm for each channel to keep track of the
lowest density of the channels. This yields the claim on the running time.

Let S denote the schedule obtained by algorithm MultiApprox. Before deal-
ing with its approximation ratio we discuss its feasibility. Focus on page p and
assume it is assigned to channel i. Since the page assignment on this channel is
identical to the one obtained by algorithm SingleApprox on pageset Pi, page
p is assigned to one of the first w′

p/w′
i slots. Moreover, beginning with this slot

it is assigned to each (w′
p/w′

i)-th slot and the distance between two consecutive
broadcasts of page p is bounded from above by (1 + w′

p/w′
i) · w′

i/2 ≤ w′
p. As this

holds for any page p the schedule’s feasibility follows.
Let us turn to its approximation ratio. We assume for the rest of this proof

that each window length wi is already a power of 2, no rounding was done in
Line 1 and show an approximation ratio of 4α−1 + 1 for this case. An additional
factor 2α−1 compensates for this assumption and establishes the claim. For an
arbitrary constant ε > 0 fix a feasible cyclic schedule S∗ whose energy density
is at most (1 + ε)δopt. Let T be the least common multiple of the periods of
schedules S and S∗.

Lemma 6. The energy consumption induced by page p in schedule S∗ within
time [0, T] is bounded below by T · (2/wp)α.

The proof is completely straightforward and omitted. If all pages were assigned
due to Line 2, the number of pages is bounded from above by the number of
channels. In this case schedule S broadcasts page i on channel i by broadcasts of
length wi/2. The schedule consumes (2T/wi)

∑n
i=1(2/wi)α−1 energy up to time

T . Due to Lemma 6 this energy consumption is best possible and the claim on

Energy-Efficient Windows Scheduling 313

the approximation ratio of algorithm MultiApprox follows for this case. For
the rest of this proof we assume that the number of pages exceed the number
of available channels. Consider the moment page p > m is processed and is
about to be assigned to channel i. The current assignment on that channel is
periodic with period (wp/wi) · (wi/2) = wp/2, i.e., the assignment of any slot
s is identical to the assignment of slot s + wp/wi. This follows from the fact
that the assignment on that channel is done in the same manner as in algorithm
SingleApprox. Consider the assignment of page n. All slots that are modified
by this assignment have density d before and d′ ≤ 2d after the modification.
With respect to this threshold d we define two groups of channels. If all slot
densities on a channel are in interval [d, 2d], we add this channel to group C=. If
at least one slot density exceeds 2d it is put in group C>.

Lemma 7. The slot density of any slot of schedule S is at least d. The slot
densities on all channels that broadcast at least two distinct pages are in [d, 2d].

Proof. Have a look at the following game. Given are a number of bins. At the
beginning of the game each bin contains a particular load—these loads are not
necessarily identical. In each round of the game the bin currently containing the
least load is selected and its load increases but is at most doubled. At any point
of time pick two bins that were modified during the game. It is not difficult to
observe that the load of these two bins differs at most by factor 2. We transfer
this observation to schedule S. The slots correspond to the bins. A bin is initiated
with some load due to Line 2. Each time a page is assigned to some slot due to
Line 5 this slot was the one with lowest density and its density is at most doubled;
the corresponding bin was picked and its load at most doubled. Consequently,
all densities of slots that were chosen at least once due to Line 5 differ at most
by a factor 2. These are all slots that have at least two pages assigned to it. As
this holds at any time this holds right before page n is processed. Recall that the
assignment of page n increases the density of some slots from d to d′. Since the
slot with lowest density among all slots (on all channels) is chosen in Line 4, all
slots have at least density d. This shows the first part of the claim. As d′ ≤ 2d
holds the densities of all slots on channels C= differ at most by factor 2. �

Due to this lemma we observe that each channel in C> broadcasts at most one
page. All slot densities on each of these channels are identical and, therefore,
each channel is either in C= or C>. We conclude that these two groups form a
partition of the channels. Since each page is broadcasted on exactly one channel
they induce a partition into sets P= and P> on the pages as well.

First, we focus on channels C>. The slot length on a channel of C> depends
linearly on window length of the page due to Line 2. For each p ∈ P> we
successively half its window length and update the corresponding slot length in
schedule S until its density falls in [d, 2d]. Note that we do not run algorithm
MultiApprox for the new set of window lengths, but merely adjust schedule S.
The resulting schedule is denoted by S′ and the corresponding set C> is empty.
Let δ′opt denote the optimal energy density achievable for this modified set of

314 C. Gunia

window lengths and fix an arbitrary cyclic schedule Ŝ whose energy density is
at most (1 + ε)δ′opt.

Let T ′ be the least common multiple of the periods of schedules S, S′, S∗

and Ŝ. Since cT ′ for an arbitrary natural number c is a multiple of the periods
of these four schedules, equality ES(cT ′)/ES∗(cT ′) = δS/δS∗ holds as well as
ES′(cT ′)/EŜ(cT ′) = δS′/δŜ. The following lemma shows that these two ratios
are closely related.

Lemma 8. ES(cT ′)/ES∗(cT ′) ≤ ES′(cT ′)/EŜ(cT ′) + 1.

Proof. As all arguments about energy consumptions used in this proof refer to
energy consumptions up to time cT ′, we omit the term (cT ′) for clarity. Let E>

S

and E=
S denote the energy consumption on channels C> and C=, respectively, in

schedule S. The corresponding values for schedule S′ are identified by E>
S′ and

E=
S′ . Observe that due to Lemma 6 pages P> induce in any cyclic schedule at

least the cost the incur in schedule S and S′, respectively. Hence, ES∗ ≥ E>
S

and EŜ ≥ E>
S′ hold. Furthermore, the energy spent on channels C= remains

unchanged during the modification, i.e., E=
S = E=

S′ . We abbreviate the ratio
ES′/EŜ = (E>

S′ +E=
S′)/EŜ by � > 1. The claim follows if we show that ES/ES∗ =

(E>
S + E=

S)/ES∗ is bounded from above by � + 1. To this end we do a case
inspection on E>

S . If E>
S ≥ E=

S /� holds, ratio ES/ES∗ is bounded above by
(E>

S + E=
S)/ES∗ ≤ (1 + �)E>

S /ES∗ ≤ 1 + �. In the remaining case we bound the
energy consumption implied by schedule S by (1 + 1/�) · E=

S ≤ (1 + 1/�) · E=
S′ .

The energy density of an optimal schedule is anti-monotonic in the page window
lengths, i.e., increasing some window length does not increase the optimal energy
density. EŜ ≤ ES is fulfilled and the claim holds for this case as well. �
According to this lemma in order to show the claimed approximation ratio it
is sufficient to bound ES′(cT ′)/EŜ(cT ′) from above for some appropriate c. Let
N denote the number of broadcasts done in schedule S′ up to time T ′. As
the distance between two broadcasts of page p is at least wp/2 in schedule S′

and this distance is bounded above by wp in any schedule, it is not difficult
to verify that at least cN/2 − n broadcasts are performed in schedule Ŝ up to
that time. For sufficiently large c this is at least cN(1 − ε)/2. As cmT time is
available to perform these broadcasts energy consumption of Ŝ is bounded below
by (1 − ε)N/2 · (2mT ′/((1− ε)N))−α+1. Recall that the density of any two slots
differs by at most a factor 2 in schedule S′. Due to the definition of slot density
we conclude that the length of any broadcasts in schedule S′ differs at most
this factor. Note that on each channel cT ′ time units are used for broadcasts in
schedule S′. Hence, cmT ′ time units are used to perform cN broadcasts, yielding
that the length of the longest one is at least mT ′/N time units. As the length of
the longest and the shortest broadcasts differs by at most a factor 2, the shortest
broadcast is bounded from below by mT ′/(2N). This shows that the energy
consumption of schedule S′ is at most N · (mT ′/(2N))−α+1. Since the lower
bound on the energy consumption of schedule Ŝ holds for any ε > 0 and schedule
S is not influenced by factor c, we conclude that ES′(cT ′)/EŜ(cT ′) ≤ 2 · 4α−1 is
fulfilled. The inequality ES(cT ′)/ES∗(cT ′) ≤ 2 · 4α−1 +1 follows from Lemma 8.

Energy-Efficient Windows Scheduling 315

5 Conclusions and Open Problems

We investigated the problem of finding energy efficient broadcast schedules for
speed-controlled channels. Each page has an individual window length and a
feasible schedule has to fulfill the constraint that for each page the distance
between two broadcasts for that page has to be bounded above by this length.
We introduced the energy density to measure the quality of a broadcast schedule
and saw that for each ε > 0 cyclic schedules can approximate general schedules
up to factor 1 + ε. The length of their period might increase with decreasing ε.

For the single channel version of the problem we presented an easy to im-
plement algorithm and showed that it obtains a min{(2 · (1 + 3/k))α, 3 · 4α}-
approximation for k =

∑n
p=1 w′

1/w′
p. We extended this algorithm to the multi-

channel version and proved an approximation ratio of 8α. Both algorithms run
in low-order polynomial time and obtained schedules whose period is bounded
above by wn. This period is reasonable short for practical applications. Further-
more, the speed on each channel varies at most by a factor of 2 over time.

Further research on this topic seems to be promising. The most interesting
question might be whether the problem is NP-hard at all. Up to now it remains
open if algorithm MultiApprox can be adapted to work on non-identical chan-
nels: each channel has an individual power coefficient c and sending at speed s
for 1/s time units consumes (cs)α/s energy units. The power coefficients can be
used to model technological differences between the channels.

References

1. Shen, W., Norrie, D.H.: Agent-based systems for intelligent manufacturing: A state-
of-the-art survey. Knowledge and Information Systems 1(2), 129–156 (1999)

2. Briest, P., Gunia, C.: Energy-efficient broadcast scheduling for speed-controlled
transmission channels. In: Proc. of Symp. on Algorithms and Computation (2006)

3. Krco, S.: Implementation solutions and issues in building a personal sensor network
for health care monitoring. In: Proc. of the Special Topic Conference on Information
Technology Applications in Biomedicine (2003)

4. Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and
temperature. In: Proc. of the Symp. on Foundations of Computer Science (2004)

5. Bar-Noy, A., Ladner, R.E.: Windows scheduling problems for broadcast systems.
SICOMP: SIAM Journal on Computing 32, 1091–1113 (2003)

6. Bar-Noy, A., Ladner, R.E., Tamir, T., VanDeGrift, T.: Windows scheduling of ar-
bitrary length jobs on parallel machines. In: Proc. of Symp. on Parallelism in Algo-
rithms and Architectures (2005)

7. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In:
Proc. of the Symp. on Foundations of Computer Science (1995)

8. Chan, H., Chan, W., Lam, T., Lee, L., Mak, K., Wong, P.: Energy efficient online
deadline scheduling. In: Proc. of the Symp. on Discrete Algorithms (2007)

9. Panagiotou, K., Souza, A.: On adequate performance measures for paging. In: Proc.
of the Symp. on Theory of Computing (2006)

A New Model to Solve the Swap Matching

Problem and Efficient Algorithms for Short
Patterns

Costas S. Iliopoulos� and M. Sohel Rahman��,���

Algorithm Design Group
Department of Computer Science, King’s College London,

Strand, London WC2R 2LS, England
{csi,sohel}@dcs.kcl.ac.uk

http://www.dcs.kcl.ac.uk/adg

Abstract. In this paper, we revisit the much studied problem of Pat-
tern matching with Swaps (Swap Matching problem, for short). We first
present a new graph-theoretic approach to model the problem, which
opens a new and so far unexplored avenue to solve the problem. Then,
using the model, we devise an efficient algorithm to solve the swap match-
ing problem. The resulting algorithm is an adaptation of the classic shift-
or algorithm. For patterns having length similar to the word-size of the
target machine, the algorithm runs in O(n log m) time, where n and m
are the length of the text and the pattern respectively.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P of length m in a text T of length n, both being sequences of characters
drawn from a finite character set Σ. This problem is interesting as a fundamental
computer science problem and is a basic need of many practical applications such
as text retrieval, music retrieval, computational biology, data mining, network se-
curity, among many others. In this paper, we revisit the Pattern Matching with
Swaps problem (the Swap Matching problem, for short), which is a well-studied
variant of the classic pattern matching problem. The pattern P is said to match
the text T at a given location i, if adjacent pattern characters can be swapped, if
necessary, so as to make the pattern identical to the substring of the text ending (or
equivalently, starting) at location i. All the swaps are constrained to be disjoint,
i.e., each character is involved in at most one swap. Amir et al. [1] obtained the first
non-trivial results for this problem. They showed how to solve the problem in time
O(nm1/3 log m log σ), where σ = min(|Σ|, m). Amir et al. [3] also studied certain
special cases for which O(n log2 m) time can be obtained. However, these cases
are rather restrictive. Finally, Amir et al. [2] solved the Swap Matching problem

� Supported by EPSRC and Royal Society grants.
�� Supported by the Commonwealth Scholarship Commission in the UK under the

Commonwealth Scholarship and Fellowship Plan (CSFP).
��� On Leave from Department of CSE, BUET, Dhaka-1000, Bangladesh.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 316–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Model to Solve the Swap Matching Problem and Efficient Algorithms 317

in time O(n log m log σ). We remark that all the above solutions to swap matching
depend on the fast fourier transform (FFT) technique. It may be noted here that
approximate swapped matching [4] and swap matching in weighted sequences [7]
have also been studied in the literature.

The contribution of this paper is as follows. We first present a new graph-
theoretic approach to model the problem which opens a new and so far unex-
plored avenue to solve the problem. Then, using the model, we devise an efficient
algorithm to solve the swap matching problem. The resulting algorithm is an
adaptation of the classic shift-or algorithm and runs in O(n log m) if the pattern
is similar in size to the size of word in the target machine. This seems to be
the first attempt to provide an efficient solution to the swap matching problem
without using the FFT techniques.

The rest of the paper is organized as follows. In Section 2, we present some
preliminary definitions. Section 3 presents our new model to solve the swap
matching problem. In Section 4, we present the algorithm to solve the swap
matching problem. Finally, we briefly conclude in Section 5.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. A string X
of length n is denoted by X [1..n] = X1X2 . . . Xn, where Xi ∈ Σ for 1 ≤ i ≤ n.
The length of X is denoted by |X | = n. A string w is called a factor of X if
X = uwv for u, v ∈ Σ∗; in this case, the string w occurs at position |u| + 1 in
X . The factor w is denoted by X [|u| + 1..|u| + |w|]. A k-factor is a factor of
length k. A prefix (or suffix) of X is a factor X [x..y] such that x = 1 (y = n),
1 ≤ y ≤ n (1 ≤ x ≤ n). We define i-th prefix to be the prefix ending at position
i i.e. X [1..i], 1 ≤ i ≤ n. On the other hand, i-th suffix is the suffix starting at
position i i.e. X [i..n], 1 ≤ i ≤ n.

Definition 1. A swap permutation for X is a permutation π : {1, . . . , n} →
{1, . . . , n} such that:

1. if π(i) = j then π(j) = i (characters are swapped).
2. for all i, π(i) ∈ {i − 1, i, i + 1} (only adjacent characters are swapped).
3. if π(i) �= i then Xπ(i) �= Xi (identical characters are not swapped).

For a given string X and a swap permutation π for X , we use π(X) to denote
the swapped version of X , where π(X) = Xπ(1)Xπ(2) . . . Xπ(n).

Definition 2. Given a text T = T1T2 . . . Tn and a pattern P = P1P2 . . . Pm, P
is said to swap match at location i of T if there exists a swapped version P ′ of
P that matches T at location1 i, i.e. P ′

j = Ti−m+j for j ∈ [1..m].

Problem “SM” (Pattern Matching with Swaps). Given a text T =
T1T2 . . . Tn and a pattern P = P1P2 . . . Pm, we want to find each location i ∈
[1..n] such that P swap matches with T at location i.
1 Note that, we are using the end position of the match to identify it.

318 C.S. Iliopoulos and M.S. Rahman

Definition 3. A string X is said to be degenerate, if it is built over the potential
2|Σ| − 1 non-empty sets of letters belonging to Σ.

Example 1. Suppose we are considering DNA alphabet i.e. Σ = ΣDNA =
{A, C, T, G}. Then we have 15 non-empty sets of letters belonging to ΣDNA.
In what follows, the set containing A and T will be denoted by [AT] and the
singleton [C] will be simply denoted by C for ease of reading.

Definition 4. Given two degenerate strings X and Y each of length n, we say
X [i] matches Y [j], 1 ≤ i, j ≤ n if, and only if, X [i] ∩ Y [j] �= ∅.
Example 2. Suppose we have degenerate strings X = AC[CTG]TG[AC]C and
Y = TC[AT][AT]TTC. Here X [3] matches Y [3] because X [3] = [CTG]∩Y [3] =
[AT] = T �= ∅.

3 A Graph-Theoretic Model for Swap Matching

In this section, we present a new model to solve the swap matching problem. In
our model, we view the text and the pattern as two separate graphs. We start
with the following definitions.

Definition 5. Given a text T = T1 . . . Tn of Problem SM, a T -graph, denoted
by T G = (V T , ET), is a directed graph with n vertices and n − 1 edges such
that V T = {1, 2, . . . n} and ET = {(i, i + 1)|1 ≤ i < n}. For each i ∈ V T we
define label(i) = Ti and for each edge e ≡ (i, j) ∈ ET we define label(e) ≡
label((i, j)) ≡ (label(i), label(j)) = (Ti, Tj).

Note that the labels in the above definition may not be unique. Also, we normally
use the labels of the vertices and the edges to refer to them.

a → c → a → c → b → a → c → c → b → a → c → a → c → b → a

Fig. 1. The corresponding T -graph of Example 3

Example 3. Suppose, T = acacbaccbacacba. Then the corresponding T -graph is
shown in Figure 1.

Definition 6. Given a text P = P1 . . . Pm of Problem SM, a P-graph, denoted
by PG = (V P , EP), is a directed graph with 3m − 2 vertices and at most 5m −
9 edges. The vertex set V P can be partitioned into three disjoint vertex sets
namely V P

(+1), V
P
0 , V P

(−1) such that |V P
(+1)| = |V P

(−1)| = m − 1 and |V P
(0)| = m.

The partition is defined in a 3 × m matrix M [3, m] as follows. For the sake of
notational symmetry we use M [−1], M [0] and M [+1] to denote respectively the
rows M [1], M [2] and M [3] of the matrix M .

1. V P
(−1) = {M [−1, 2], M [−1, 3], . . .M [−1, m]}

2. V P
(0) = {M [0, 1], M [0, 2], . . .M [0, m]}

3. V P
(+1) = {M [+1, 1], M [+1, 2], . . .M [+1, m − 1]}

A New Model to Solve the Swap Matching Problem and Efficient Algorithms 319

The labels of the vertices are derived from P as follows:

1. For each vertex M [−1, i] ∈ V P
(−1), 1 < i ≤ m:

label(M [−1, i]) =

{
Pi−1 if Pi−1 �= Pi,

X if Pi−1 = Pi, where X /∈ Σ
(1)

2. For each vertex M [0, i] ∈ V P
(0), 1 ≤ i ≤ m, label(M [0, i]) = Pi

3. For each vertex M [+1, i] ∈ V P
(+1), 1 ≤ i < m:

label(M [+1, i]) =

{
Pi+1 if Pi �= Pi+1,

X if Pi = Pi+1, where X /∈ Σ
(2)

The edge set EP is defined as the union of the sets EP
(−1), E

P
(0) and EP

(+1) as
follows:

1. EP
(−1) = {(M [−1, i], M [0, i + 1]), (M [−1, i], M [+1, i + 1]) | 2 ≤ i ≤ m −

2
∧

label(M [−1, i]) �= X} ⋃ {(M [−1, m − 1], M [0, m]) | label(M [−1, m −
1]) �= X}

2. EP
(0) = {(M [0, i], M [0, i+1]) | 1 ≤ i ≤ m−1} ⋃ {((M [0, i], M [+1, i+1]) | 1 ≤

i ≤ m − 2
∧

label(M [+1, i + 1]) �= X}
3. EP

(+1) = {(M [+1, i], M [−1, i+ 1]) | 1 ≤ i ≤ m − 1
∧

label(M [+1, i]) �= X}2

The labels of the edges are derived from using the labels of the vertices in the
obvious way.

Example 4. Suppose, P = acbab. Then the corresponding P-graph PG is shown
in Figure 2. On the other hand, the corresponding P-graph PG′

for P ′ = accab
is shown in Figure 3. Note that in P ′ we have P ′

2 = P ′
3 = c. The dotted edges in

Figure 3 are non-existent in PG′
and are shown only for the sake of understanding.

Definition 7. Given a P-graph PG, a path Q = u1 � u� = u1u2 . . . u� is
a sequence of consecutive directed edges 〈(u1, u2), (u2, u3), . . . (u�−1, u�)〉 in PG

starting at node u1 and ending at node u�. The length of the path Q, denoted by
len(Q), is the number of edges on the path and hence is � − 1 in this case. It is
easy to note that the length of a longest path in PG is m − 1.

Definition 8. Given a P-graph PG and a T -graph T G, we say that PG matches
T G at position i ∈ [1..n] if and only if there exists a path Q = u1u2 . . . um in
PG having u1 ∈ {M [0, 1], M [+1, 1]} and um ∈ {M [−1, m], M [0, m]} such that
for j ∈ [1..m] we have label(uj) = Ti−m+j

The above definitions set up our model to solve the swap matching problem.
The following Lemma presents the idea for the solution.

2 Note that, if label(M [+1, i]) = X then label(M [−1, i + 1]) = X as well.

320 C.S. Iliopoulos and M.S. Rahman

a c b a b

a c b a

c b a b

−1

0

+1

1 2 3 4 5

Fig. 2. P-graph of the Pattern P = acbab

a c a b

a c a

c a b

−1

0

+1

1 2 3 4 5

c

c

c

X

X

Fig. 3. P-graph of the Pattern P ′ = accab

Lemma 1. Given a pattern P of length m and a text T of length n, suppose PG

and T G are the P-graph and T -graph of P and T , respectively. Then, P swap
matches T at location i ∈ [1..n] of T if and only if PG matches T G at position
i ∈ [1..n] of T G.

Proof. The proof basically follows easily from the definition of the P-graph. At
each column of the matrix M , we have all the characters as nodes considering the
possible swaps as explained below. Each node in row (−1) and (+1) represents a
swapped situation. Now consider column i of M corresponding to PG. According
to definition, we have M [−1, i] = Pi−1 and M [+1, i − 1] = Pi. These two nodes
represents the swap of Pi and Pi−1. Now, if this swap takes place, then in the
resulting pattern, Pi−1 must be followed by Pi. To ensure that, in PG, the only
edge starting at M [+1, i−1], goes to M [−1, i]. On the other hand, from M [−1, i]
we can either go to M [0, i+1] or to M [+1, i+1]: the former is when there is no
swap for the next pair and the later is when there is another swap for the next

A New Model to Solve the Swap Matching Problem and Efficient Algorithms 321

pair. Recall that, according to the definition, the swaps are disjoint. Finally, the
nodes in row 0 represents the normal (non-swapped) situation. As a result, from
each M [0, i] we have an edge to M [0, i + 1] and an edge to M [+1, i + 1]: the
former is when there is no swap for the next pair as well and the later is when
there is a swap for the next pair. So it is easy to see that all the paths of length
m − 1 in PG represents all combinations considering all possible swaps in P .
Hence the result follows. �

It is clear that the number of possible paths of length m−1 in PG is exponential
in m. So spelling all the paths and then perform a pattern matching against,
possibly, a index of T is very time consuming unless m is constant. We on the
other hand exploit the above model in a different way and apply a modified
version of the classic shift-or [5] algorithm to solve the swap matching problem.
In the rest of this section, we present a notion of “Forbidden Graph” and in
the next section we show how to exploit this notion and modify the shift-or
algorithm to solve the swap matching problem.

Definition 9. Given a P-graph PG = (V P , EP), the forbidden Graph P
G

=
(V

P
, E

P
) is such that V

P
= V P and E

P
is defined as follows: E

P
= {(M [i, j],

M [i, j + 1]) | i ∈ {−1, 0, +1}, 1 ≤ j < m, (label(M [i, j]) �= X ∨
label(M [i, j +

1]) �= X)
∧

(∀(M [k, j], M [k, j + 1]) ∈ EP , k ∈ {−1, 0, +1}, label((M [k, j],
M [k, j + 1])) �= label((M [i, j], M [i, j + 1])))}.

In other words, the forbidden graph P
G

contains an edge (u, v) from column j
to j + 1, where 1 ≤ j < m, if, and only if, there exists no edge from j to j + 1
in P-graph having the same label.

Example 5. Suppose, P = acbab. Then the forbidden graph P
G

corresponding to
the P-graph PG is shown in Figure 4. The edges of PG are shown in dashed lines

a c b a b

a c b a

c b a b

−1

0

+1

1 2 3 4 5

Fig. 4. Forbidden graph (solid edges) corresponding to the P-graph (dashed edges) of
the Pattern P ′ = acbab

322 C.S. Iliopoulos and M.S. Rahman

and the edges of P
G

are shown in solid lines. Note that, (M [+1, 3], M [+1, 4])
is nonexistent in P

G
, because, label((M [+1, 3], M [+1, 4])) = (a, b) and we have

(M [+1, 3], M [−1, 4]) ∈ EP with the same label (a, b).

4 Algorithm for Swap Matching

In this section, we present a new efficient algorithm based on the model pre-
sented in Section 3. Our algorithm is a modified version of the classic shift-or
algorithm for pattern matching. For the sake of completeness, we first present a
brief account of the shift-or algorithm in the following subsection. In Section 4.2
we present the modifications needed to adapt it to solve the swap matching
problem.

4.1 Shift-Or Algorithm

The shift-or algorithm uses the bitwise techniques and is very efficient if the
size of the pattern is no greater than the word size of the target processor.
The following description of the shift-or algorithm is taken from [6] after slight
adaptation to accommodate our notations.

Let R be a bit array of size m. Vector Rj is the value of the array R after
text character Tj has been processed. It contains information about all matches
of prefixes of P that end at position j in the text. So, for 1 ≤ i ≤ m we have:

Rj [i] =

{
0 if P [1..i] = T [j − i + 1..j],
1 Otherwise.

(3)

The vector Rj+1 can be computed after Rj as follows. For each Rj [i] = 0:

Rj+1[i + 1] =

{
0 if Pi+1 = Tj+1,

1 Otherwise.
(4)

and

Rj+1[0] =

{
0 if P0 = Tj+1,

1 Otherwise.
(5)

If Rj+1[m] = 0 then a complete match can be reported.
The transition from Rj to Rj+1 can be computed very fast as follows. For

each c ∈ Σ let Dc be a bit array of size m such that for 1 ≤ i ≤ m, Dc[i] = 0 if
and only if Pi = c.The array Dc denotes the positions of the character c in the
pattern P . Each Dc for all c ∈ Σ can be preprocessed before the pattern search.
And the computation of Rj+1 reduces to two operations, shift and or:

Rj+1 = SHIFT (Rj) OR DTj+1

A New Model to Solve the Swap Matching Problem and Efficient Algorithms 323

4.2 Modifying Shift-Or Algorithm for Swap Matching

In this section, we modify the shift-or algorithm to solve swap matching problem.
To do that we use the graph model, particularly the forbidden graph, presented in
Section 3. The idea is quite simple and described as follows. First of all, the shift-
or algorithm can be extended easily for the degenerate patterns [5]. In our swap
matching model the pattern can be thought of a having a set of letters at each posi-
tion as follows: P̃ = [M [0, 1]M [+1, 1]] [M [−1, 2]M [0, 2]M [+1, 2]] . . . [M [−1, m −
1]M [0, m − 1][+1, m − 1]] [M [−1, m]M [0, m]]. Note that we have used P̃ instead
of P above because, in our case, the sets of characters in the consecutive positions
in the pattern P don’t have the same relation as in a usual degenerate pattern.
In particular, in our case, a match at position of i + 1 of P will depend on the
previous match of position i as the following example shows.

Example 6. Suppose, P = acbab and T = bcbaaabcba. The P-graph of P is shown
in Figure 2. So, in line of above discussion, we can say that P̃ =[ac][acb][cba][ba][ab].
Now, as can be easily seen, if we consider degenerate match, then P̃ matches T at
position 2 and 6. However, P swap matches T only at position 6; not at position
2. To elaborate, note that at position 2, the match is due to c. So, according to the
graph PG the next match has to be an a and hence at position 2 we can’t have a
swap match.

In what follows, we present a novel technique to adapt the shift-or algorithm
to tackle the above situation. We use the forbidden graph as follows. For the
sake of convenience, in the discussion that follows, we refer to both P̃ and the
pattern P as though they are equivalent; but it will be clear from the context
what we really mean. Suppose we have a match up to position i < m of P̃ in
T [j−i+1..j]. Now we have to check whether there is a ‘match’ between Tj+1 and
Pi+1. For simple degenerate match, we only need to check whether Tj+1 ∈ Pi+1

or not. However, as the Example 6 shows, for our case we need to do more than
that. What we do is as follows. Suppose that Tj = c = M [�, i]. Now, from the
forbidden graph we know which of the M [k, i + 1], k ∈ [−1, 0, +1] can’t follow
M [�, i]. So, for example, even if M [q, i + 1] = T [j + 1] we can’t continue if there
is an edge from M [�, i] to M [q, i + 1] in the forbidden graph (or equivalently if
there is no edge from M [�, i] to M [q, i + 1] in the P-graph).

In the rest of this section, we show how we use the forbidden graph to modify
the shift-or algorithm to solve the swap matching problem. Recall that, we first
process the pattern to compute the masks Dc for every c ∈ Σ. This can be done
in O(m/w(m+Σ)) time [5] when pattern is not degenerate. However, in our case,
we need to assume that our pattern has a set of letters in each position. In this
case, we require O(m/w(m′ +Σ)) time where m′ is the sum of the cardinality of
the sets at each position [5]. In general degenerate strings, m′ can be m|Σ| in the
worst case. However, in our case, m′ = |V P | = O(m), where V P is the vertex set
of the P-graph. So, computation of the D-mask requires O(m/w(m+Σ)) time in
the worst case. Then we do a further processing on P as follows. We compute the
forbidden graph P

G
= (V

P
, E

P
) from the P-graph PG = (V P , EP). Recall that

324 C.S. Iliopoulos and M.S. Rahman

V P = O(m) and EP = O(m) and therefore, by definition, we have V
P

= O(m)
and E

P
= O(m). So we can compute the forbidden graph in O(m) time.

Two edges (u, v), (x, y) of the forbidden graph (and the P-graph) are said to
be ‘same’ if label(u) = label(x) and label(v) = label(y), i.e. if the two edges
have the same labels. Also, given an edge (u, v) ≡ (M [i1, j1], M [i2, j2]) we say
that edge (u, v) ‘belongs to’ column j2, i.e. where the edge ends; and we say
col((u, v)) ≡ col((M [i1, j1], M [i2, j2])) = j2. Now we traverse all the edges and
construct a set of sets S = {S1 . . . S�} such that each Si, 1 ≤ i ≤ � contains the
edges that are ‘same’. The set Si is named by the (same) label of the edges it
contains and we may refer to Si using its name. Now, we construct forbidden
masks FSi , 1 ≤ i ≤ � such that FSi [k] = 1 if, and only if, there is an edge
(u, v) ∈ Si having col((u, v)) = k. Note that � = O(m).

The construction of the forbidden mask can be done in O(m/w m log m)
time as follows. We first initialize all the entries of the forbidden masks to
0 which requires O(m/w m) time. Then we start traversing the edges. Con-
sider the first edge (u1, v1). We know the label of this edge is label((u1, v1)) ≡
(label(u1), label(v1)). We include the label of this edge in a name database and
assign a set Si ∈ S to this name and keep pointers for constant time reference
later. We also set FSi [j] = 1, where col((u1, v1)) = j. Now, consider another
edge (uk, vk). This time we first check whether label((uk, vk)) already exists in
the name database. If yes, then we use the existing name to do the update oth-
erwise we include the label in the name database and continue as before. It is
clear that this check in the database can be done in O(log �) = O(log m). Since
we have O(m) edges, the complete construction of the forbidden mask requires
O(m/w m logm) time.

With the forbidden masks at our hand, for our problem, we simply need to
compute Rj+1 as follows:

Rj+1 = SHIFT (Rj) OR DTj+1 OR F(Tj ,Tj+1)

Note that, to locate the appropriate forbidden mask we again need to perform
a look up in the name database constructed during the construction of the
forbidden mask. So, in total the construction of the R values require O(n log m)
time. One detail is that, if F(Tj ,Tj+1) doesn’t exist then we assume the mask to
have all 0’s. It is easy to see that this works because the forbidden mask allows
Rj+1 to have 0 at position i if, and only if, the edge (Tj , Tj+1) is not ‘forbidden’.
Example 7 shows a complete execution of our algorithm.

Example 7. Suppose, P = accab and T = acacbaccbacacba. The P-graph and
corresponding forbidden graph of P is shown in Figure 3 and 5 respectively. The
D-masks and F -masks are shown in Figure 6 and 7 respectively. Figure 8 shows
the detail computation of the R bit array up to the first match found. Figure 8
shows the complete computed values of R.

The running times of the different phases of the algorithm are listed in Figure 10.
Therefore, in total the running time of our algorithm is O(m/w(m log m+ |Σ|+
n log m)). So, when pattern size is similar to the word size of the target machine,

A New Model to Solve the Swap Matching Problem and Efficient Algorithms 325

a c a b

a c a

c a b

−1

0

+1

1 2 3 4 5

c

c

c

X

X

Fig. 5. Forbidden graph for P = accab

D Da Db Dc DX
a

1 [ac] 0 1 0 1

2 [acc] 0 1 0 1

3 [acc] 0 1 0 1

4 [cab] 0 0 0 1

5 [ab] 0 0 1 1

a Here X indicates all letters that are not present in P .

Fig. 6. The D-masks for Example 7

F(a,a) F(a,b) F(b,b) F(c,c) F(c,a) F(X,X)
a

1 0 0 0 0 0 0

2 1 0 0 1 0 0

3 0 0 0 0 0 0

4 1 1 0 1 0 0

5 1 0 1 0 1 0

a Here (X, X) indicates all edges that are not present in the forbidden graph.

Fig. 7. The F -masks for Example 7

we achieve a very good running time of O(m log m+ |Σ|+n logm) = O(n log m).
This follows because we can safely assume that m ≤ n and |Σ| ≤ n. Therefore,
we have the following theorem.

Theorem 1. The swap matching problem can be solved in O(m/w(m+n) log m)
worst case running time.

Corollary 1. The swap matching problem can be solved in O(n log m) worst
case running time if the pattern is similar to the word size of the target machine.

326 C.S. Iliopoulos and M.S. Rahman

− SH Da F(X,X) OR SH Dc F(a,c) OR SH Da F(c,a) OR SH Dc F(a,c) OR SH Db F(c,b) OR . . .

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 . . .

2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 . . .

3 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 . . .

4 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 . . .

5 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 . . .

� . . .

Fig. 8. Detail steps up to the first reported match of Example 7. Here SH means
Shift operation on the previous column and OR means or operation on the previous 3
columns.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a c a c b a c c b a c a c b a

1 a 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0

2 c 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1

3 c 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1

4 a 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1

5 b 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0

� � � � �

Fig. 9. The complete computed values of R in Example 7. The occurrences of swap
match are shown using tick marks. Note that the end location of the matches are
identified here.

Phase Running Time

Computation of D-masks O(m/w(m + |Σ|))
Computation of F -masks O(m/w m log m)

Computation of R-values O(m/w n log m)

Fig. 10. Running times of the different phases

5 Conclusion

In this paper, we have revisited the Pattern Matching with Swaps problem, a
well-studied variant of the classic pattern matching problem. We have presented
a new graph-theoretic approach to model the problem which opens a new and
so far unexplored avenue to solve the problem. Then, using the model, we have
devised an efficient algorithm to solve the swap matching problem. The resulting
algorithm is an adaptation of the classic shift-or algorithm and runs in O(n log m)
if the pattern-length is similar to the word-size in the target machine. Notably,
the best known algorithm for swap matching runs in O(n log m log σ) and uses
the FFT technique, which has large hidden constants inside its good theoretical
bound. This seems to be the first attempt to provide an efficient solution to the
swap matching problem without using FFT techniques. Moreover the techniques
used in our algorithm is quite simple and easy to implement. We believe that
the new graph theoretic model could be used to devise more efficient algorithms

A New Model to Solve the Swap Matching Problem and Efficient Algorithms 327

and a similar approach can be taken to model similar other variants of the clas-
sic pattern matching problem. Furthermore, it would be interesting to ‘swap’
the definitions of T - graph and P- graph and investigate whether efficient pat-
tern matching techniques for Directed acyclic graph can be employed to devise
efficient off-line and online algorithms for swap matching.

References

1. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern
matching with swaps. J. Algorithms 37(2), 247–266 (2000)

2. Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap matching.
Inf. Comput. 181(1), 57–74 (2003)

3. Amir, A., Landau, G.M., Lewenstein, M., Lewenstein, N.: Efficient special cases of
pattern matching with swaps. Inf. Process. Lett. 68(3), 125–132 (1998)

4. Amir, A., Lewenstein, M., Porat, E.: Approximate swapped matching. Inf. Process.
Lett. 83(1), 33–39 (2002)

5. Baeza-Yates, R., Gonnet, G.: A new approach to text searching. Communications
of the ACM 35, 74–82 (1992)

6. Charras, C., Lecroq, T.: Handbook of Exact String Matching Algorithms. Texts in
Algorithmics. King’s College, London (2004)

7. Zhang, H., Guo, Q., Iliopoulos, C.S.: String matching with swaps in a weighted
sequence. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp.
698–704. Springer, Heidelberg (2004)

Certification of Proving Termination of Term

Rewriting by Matrix Interpretations�

Adam Koprowski and Hans Zantema

Eindhoven University of Technology
Department of Computer Science

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
{A.Koprowski,H.Zantema}@tue.nl

Abstract. We develop a Coq formalization of the matrix interpretation
method, which is a recently developed, powerful approach to proving ter-
mination of term rewriting. Our formalization is a contribution to the
CoLoR project and allows to automatically certify matrix interpretation
proofs produced by tools for proving termination. Thanks to this develop-
ment the combination of CoLoR and our tool, TPA, was the winner in 2007
in the new certified category of the annual Termination Competition.

1 Introduction

Termination is an important concept in term rewriting. Many methods for prov-
ing termination have been proposed over the years. Recently the emphasis in
this area is on automation and a number of tools have been developed for that
purpose. One of such tools is TPA [13] developed by the first author.

To evaluate termination tools and stimulate their improvement the annual
Termination Competition [3] is organized, where such tools compete on a set of
problems from the Termination Problems Database (TPDB), [4]. This competi-
tion has become a de-facto standard in evaluation of new termination techniques
and developments of termination tools.

However, every year termination tools are becoming more and more complex
and are changing rapidly as new techniques are being developed and old ones
re-implemented. Therefore ensuring correctness of such tools is a challenging
task. This was one of the motivations to start the CoLoR [6] project, initiated
by Frédéric Blanqui in 2004. The goal of the project is to use the Coq [1] the-
orem prover to fully automatically verify results produced by tools for proving
termination.

The main subject of this paper is our contribution to the CoLoR project, namely
formalization of the matrix interpretation method [9]. This recent method turned
out to be very powerful for proving termination and was incorporated into many
modern termination provers. Due to space restrictions we present this develop-
ment for termination only, but it is also applicable to relative termination prob-
lems and in the setting of dependency pairs [5]. For a more detailed description
we refer to [15].
� Some preliminary results of this paper were first announced in [14].

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 328–339, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Certification of Proving Termination of Term Rewriting 329

This year in the termination competition the new certified category has been
introduced, where tools must not only find a termination proof but also ensure
its correctness by stating and proving it in an established theorem prover. Our
contribution to CoLoR allowed the combined entry of TPA+CoLoR to win the
2007 edition of the competition in this newly introduced category.

Concerning related work in the first place we should mention the Coccinelle
library which uses approach similar to the one employed by CoLoR and also uses
Coq theorem prover. We will say more about it in Section 4, where we evaluate
the results of CoLoR in the context of the termination competition.

The recent work of Alexander Krauss [16] is another effort toward certified
termination. It is different in several aspects. Its main aim is to automatically
generate certified termination proofs for recursive functions used in Isabelle/HOL
theorem prover. However external termination provers are not involved and the
only termination technique supported by this method is the size-change principle.

The rest of this paper is organized as follows. First in Section 2 we recapitulate
the theory of matrix interpretations from [9]. Section 3 presents an overview of
the Coq formalization of the theoretical results from the preceding section. It
is followed by Section 4 where the method is evaluated in the context of the
Termination Competition. We conclude in Section 5.

2 Theory of Matrix Interpretations

2.1 Preliminaries

Let Σ be a signature. For a set of variable symbols V , let T (Σ, V) be the set of
terms over Σ and V . We denote application of a substitution σ : V → T (Σ, V)
to a term t by tσ.

A term rewriting system (TRS) R over Σ, V is a set of pairs (�, r) ∈ T (Σ, V)×
T (Σ, V), for which � �∈ V and all variables in r occur in �. Pairs (�, r) are called
rewrite rules and are usually written as � → r.

For a TRS R the top rewrite relation
top→R on T (Σ, V) is defined by t

top→R u if
and only if there is a rewrite rule � → r ∈ R and a substitution σ : V → T (Σ, V)
such that t = �σ and u = rσ. The rewrite relation →R is defined to be the
smallest relation such that

top→R ⊆ →R and if ti →R ui and tj = uj for j �= i,
then f(t1, . . . , tn) →R f(u1, . . . , un) for every f ∈ Σ of arity n.

A binary relation → is called terminating or strongly normalizing, notation
SN(→), if it is well-founded. A TRS R is called terminating if SN(→R) holds,
shortly written as SN(R)

2.2 Monotone Algebras

Here we summarize the monotone algebra theory as presented in [9,10]. There
is one difference: in contrast to [9] we do not consider many-sortedness. It is
not essential for certification as every proof in the many-sorted setting can be
trivially translated to the one-sorted setting. The reason for this more complex

330 A. Koprowski and H. Zantema

setup in [9] is that it allows for an optimization in the search for termination
proofs using matrix interpretations.

The monotone algebra approach works for all non-empty sets A; when using
matrix interpretations the set A always consists of the set of vectors over N of a
fixed dimension.

Definition 1. An operation [f] : A × · · · × A → A is monotone with respect to
a binary relation → on A if for all ai, bi ∈ A for i = 1, . . . , n with ai → bi for
some i and aj = bj for all j �= i we have [f](a1, . . . , an) → [f](b1, . . . , bn).

An extended weakly monotone Σ-algebra (A, [·], >, �) is a Σ-algebra (A, [·])
equipped with two binary relations >, � on A such that > is well-founded, >·� ⊆
> and for every f ∈ Σ the operation [f] is monotone with respect to >.

Up to presentation details the following theorem is the one-sorted version of the
main theorem for the matrix interpretations from [9, Theorem 2].

Theorem 2. Let R, R′ be TRSs over a signature Σ. Let (A, [·], >, �) be an
extended monotone Σ-algebra such that [�, α]�[r, α] for every rule � → r in R
and [�, α]>[r, α] for every rule � → r in R′, for every α : V → A.

Then SN(→R) implies SN(→R ∪ →R′).

2.3 Matrix Interpretations

Now we present matrix interpretations with a fixed dimension d as an instance
of monotone algebras. For the interpretation [f] of a symbol f ∈ Σ of arity n we
choose a vector f ∈ Nd and n matrices F1, F2, . . . , Fn over N, each of size d × d,
such that the upper left elements (Fi)1,1 are positive for all i = 1, 2, . . . , n. Now
we define

[f](v1, . . . , vn) = F1v1 + · · · + Fnvn + f (1)

for all v1, . . . , vn ∈ A.
So we fix a monotone algebra with A = Nd, interpretations [·] defined as above

and we use the following orders on algebra elements:

(u1, . . . , ud)�(v1, . . . , vd) ⇐⇒ ∀i : ui ≥N vi

(u1, . . . , ud)>(v1, . . . , vd) ⇐⇒ (u1, . . . , ud)�(v1, . . . , vd) ∧ u1 >N v1

One easily checks that (A, [·], >, �) is an extended monotone Σ-algebra.
Let x1, . . . , xk be the variables occurring in �, r. Then due to the linear shape

of the functions [f] we can compute matrices L1, . . . , Lk, R1, . . . , Rk and vectors
l, r such that

[�, α] = L1x1 + · · · + Lkxk + l, [r, α] = R1x1 + · · · + Rkxk + r (2)

where α(xi) = xi for i = 1, . . . , k.
For matrices B, C ∈ Nd×d write B�C as a shorthand for ∀i, j : (B)i,j ≥ (C)i,j .

The following lemma provides a decision procedure for orders > and � lifted to
terms as used in Theorem 2.

Certification of Proving Termination of Term Rewriting 331

Lemma 3. Let �, r be terms and let matrices L1, . . . , Lk, R1, . . . , Rk and vectors
l, r be defined as above. Then ∀α : V → A, [�, α]�[r, α] (resp. [�, α]>[r, α]) iff
∀i : Li�Ri and l�r (resp. l>r)

Now the approach of applying Theorem 2, for proving SN(R) is as follows:

– Fix a dimension d.
– For every symbol f ∈ Σ choose a vector f ∈ Nd and matrices Fi ∈ Nd×d for

i = 1, 2, . . . , n for n being the arity of f , such that the upper left elements
(Fi)1,1 are positive for all i = 1, 2, . . . , n.

– For every rule � → r ∈ R check that Li�Ri for i = 1, . . . , k and l�r for the
corresponding matrices Li, Ri and vectors l, r as defined above.

– Remove all rules from R moreover satisfying l1>r1.
– If the remaining R is empty we are finished, otherwise the process is repeated

for the reduced TRS R.

Example 4. We illustrate the above procedure on an example. Consider the TRS
consisting of the following single rule: a(a(x)) → a(b(a(x))). It is worth noting
that this TRS is not simply terminating and hence simplification orders are
bound to fail for it. For the approach of matrix interpretations we choose dimen-
sion d = 2 and the following interpretation of symbols:

[a(x)] =
[
1 1
0 0

]
x +

[
0
1
]
, [b(x)] =

[
1 0
0 0

]
x +

[
0
0
]

We proceed by computing interpretation of the left and right hand side of the
single rule.

[a(a(x))] =
[
1 1
0 0

]([
1 1
0 0

]
x +

[
0
1
])

+
[
0
1
]

[a(b(a(x)))] =
[
1 1
0 0

]([
1 0
0 0

]([
1 1
0 0

]
x +

[
0
1
])

+
[
0
0
])

+
[
0
1
]

Evaluating that expressions to linear form, as in Equation 2 yields:

[a(a(x))] =
[
1 1
0 0

]
x +

[
1
1
]
, [a(b(a(x)))] =

[
1 1
0 0

]
x +

[
0
1
]

We observe that coefficients standing by x are equal and for the constant terms
we have

[
1
1
]
>

[
0
1
]

as we have strict decrease in the first position and equality
in the second. Hence by Lemma 3 we conclude that [a(a(x)), α] > [a(b(a(x))), α]
for all α : V → A. Application of Theorem 2 allows us to remove this rule. As
this is the only rule we have proven termination of this one rule TRS.

3 Coq Formalization

Our formalization was developed within the CoLoR project, so we begin by a short
introduction of CoLoR in Section 3.1. Then we continue with a description of the

332 A. Koprowski and H. Zantema

formalization ofmatrix interpretations,which consists of several parts.The formal-
ization of monotone algebras, introduced in Section 2.2, is presented in Section 3.2.
To deal with matrices we had to develop a Coq library of matrices; this is the sub-
ject of Section 3.3. Then in Section 3.4 we present the formalization of the matrix
interpretations method, corresponding to the theory developed in Section 2.3.

3.1 CoLoR: Certification of Termination

The CoLoR [6] project was founded by Frédéric Blanqui in March 2004, with the
goal of certification of termination proofs found by termination provers in Coq.
It is available at the following address: http://color.loria.fr.

It essentially consists of three parts:

– TPG (Termination Proofs Grammar): a formal grammar for the termination
proofs.

– CoLoR (Coq Library on Rewriting and Termination): a library of results on
termination of rewriting, formalized in Coq.

– Rainbow: a tool for transforming termination proofs in the TPG format into
Coq scripts certifying termination by employing results from CoLoR.

The general approach to certifying termination with CoLoR is presented in
Figure 1. For a given TRS R some termination prover is called. If it succeeds
in proving termination, it outputs a termination proof in the TPG format. Such
an encoding of a proof is given to Rainbow which translates it into a Coq script
containing a formal proof of the claim that R is terminating by using results
from the CoLoR library. Then Coq is executed on such a script to verify that the
termination proof found by the termination tool is indeed correct.

For a more detailed description of the TPG format we refer to [15].

TRS
problem.trs �� Termination

prover

Termination proof
prf.xml (TPG) �� Rainbow Coq script

prf.v

��������������

Coq

CoLoR

���������������

Fig. 1. Certifying termination with CoLoR

3.2 Monotone Algebras

While doing this formalization we faced a number of design choices. The essential
question was whether to simply formalize matrix interpretations as they are
or to try to make the development as general as possible, such that hopefully
(parts of) it could be reused for other techniques and also extensions to the
technique itself would be feasible. We opted for the latter. Hence we formalized
monotone algebras in their full generality and only later instantiated them to

http://color.loria.fr

Certification of Proving Termination of Term Rewriting 333

matrix interpretations; as in the theory presented in Sections 2.2 and 2.3. This,
later on, allowed us to easily express the technique of polynomial interpretations
in the setting of monotone algebras, making it more powerful and more generally
applicable. For more details we again refer to [15].

To achieve such a generic formalization we found the module mechanism of Coq
especially useful. It allows for mass abstraction by encapsulating a number of dec-
larations and definitions in modules. Such modules can be parameterizedby means
of functors, that is functions from modules to modules. For instance we formalized
monotone algebras in Coq as a functor, which takes as an argument a structure
describing a weakly monotone Σ-algebra instance, as introduced in Section 2.2.

For the formalization there is however one more thing that we need in order to
be able to deal with concrete examples. For an application of Theorem 2 we need
to check for arbitrary terms � and r whether [�, α]>[r, α] for every α : V → A and
similarly for �. Our first approach was to require the relations > and � lifted to
terms to be decidable, that is to require a proof that for two arbitrary elements
the relation between them either holds or not. Such decidability results proven
in the constructive logic of Coq provide a decision procedure. By making proofs
transparent and hence allowing to reduce associated proof terms, one effectively
obtains an algorithm for checking whether two given terms can be oriented with
the given relation.

This approach however has one limitation: we require a decidability proof, so in-
deed the relations in question must be decidable. This is the case for matrix inter-
pretations due to the characterization of Lemma 3 but it is not so for instance for
non-linear polynomial interpretations. Therefore to make our development more
general we actually require two decidable relations � and � such that � ⊆ > and
� ⊆ � and those relations are used in application of Theorem 2 to check whether
a rule can be (weakly) oriented. The fact that they are subsets of > and � ensures
soundness of this approach. But there is no completeness requirement allowing to
use some heuristics in cases where the intended relations are not decidable, such
as in case of polynomial interpretations; see [15] for more details.

To give a feeling of how theorems from Section 2.2 are stated in the theorem
prover we present the Coq equivalent of Theorem 2.

Lemma ma_termination:

let R_gt := partition part_succ R in

let R_ge := partition part_succeq R in

monotone I succ -> snd R_ge = nil -> WF (red (snd R_gt)) -> WF (red R).

Let us try to explain the components of this statement. To begin with partition
P l is a function that given a predicate P and a list l, splits this list into two
parts and returns them as a pair l1, l2, such that P holds for every element of
the list l1 and does not hold for every element of l2.

Now part succ and part succeq are predicates for the partition function,
corresponding to the relations succ (>) and succeq (�). We demand succ to
be monotone, monotone I succ. Now we require the second component of the
pair R ge to be empty, hence all the rules of R must be weakly oriented. Finally
this theorem states that we can conclude WF (red R) if, on top of all the other

334 A. Koprowski and H. Zantema

requirements that we mentioned, we can prove WF (red (snd R gt)) so of the
TRS consisting of the rules from R that could not be oriented strictly. Stating
this problem in such “operational” style allows us to easily apply it for concrete
instances of termination problems.

The monotone algebra module also contains Coq tactics allowing to deal with
proving termination for concrete examples. This means that for using a monotone
algebra approach one only needs to provide a monotone algebra instance and as
a result one obtains all the results and a full machinery for proving termination.
We will sketch in Section 3.4 how we instantiated monotone algebras to the
matrix interpretation method. We also did that for polynomial interpretations;
the interested reader is referred to [15].

3.3 Matrices

To begin with, the sole fact that we had to formalize matrices may be surprising
— one would expect such a general notion to be readily available in a theorem
prover. But it is not present in the Coq standard library. Moreover we could
find only one Coq development where matrices were used: the contribution by
Nicolas Magaud [17], where he proves ring properties of square matrices. We
decided not to use this formalization for the reasons that we discuss at the end
of this section.

To implement matrices we used a generic approach by allowing entries in the
matrices to be arbitrary elements from some semi-ring structure. For that firstly
we expressed semi-rings as a module type. Then we defined matrices as a functor
taking as its argument such a semi-ring structure and as a result producing the
structure of matrices of arbitrary size with entries from the semi-ring domain.

Internally we represent matrices as vectors of vectors. Vectors are defined
in the standard library of Coq (Coq.Bool.BVector) with the type vector A n
representing a vector of n elements of type A. Apart from this definition the
Coq standard library provides only few basic properties and operations on this
type. But on the other hand, building on that, the CoLoR project provides a
rich set of results about vectors that were further extended in the course of this
development. Here we informally define some of these functions, which we will
need later on in the presentation:

Vnth [a1; . . . an] i = ai

Vfold left f [a1; . . . an] b = f a1 (f . . . (f an b) . . .)
Vmap f [a1; . . . an] = [f a1; . . . f an]

Vmap2 f [a1; . . . an] [b1; . . . bn] = [f a1 b1; . . . f an bn]

Ability to reuse those results was our main motivation to represent matrices
in the following way:

Definition matrix (m n : nat) : matrix m n := vector (vector A n) m.

Then a number of operations on matrices was defined and some of its proper-
ties proven. The library is by no means complete and contains little more than

Certification of Proving Termination of Term Rewriting 335

the results needed for certification of matrix interpretations. The provided opera-
tions include: matrix creation (given matrix size and a function providing values
for all matrix entries), several accessor functions to retrieve matrix elements,
columns and rows, conversions from vectors to 1-row and 1-column matrices
and few standard matrix operations such as transposition, addition and multi-
plication. To show how reusing results about vectors substantially eased our task
we present below the definition of multiplication.

First we need a few auxiliary functions on matrices. We begin with three
accessor functions: get row, get col and get elem to retrieve, respectively, the
i’th row, the j’th column and element at position (i, j) of a given matrix. 1

Definition get_row m n (M : matrix m n) i (ip : i < m) := Vnth M ip.
Definition get_col m n (M : matrix m n) j (ip : j < n) :=
Vmap (fun v => Vnth v ip) M.

Definition get_elem m n (M : matrix m n) i j (ip : i < m) (jp : j < n) :=
Vnth (get_row M ip) jp.

Note that those functions are partial as indexes i and j must be within the
boundaries of a matrix M. In Coq all functions are total and to deal with this we
use additional arguments for those functions, the so-called domain predicates,
which ensure that the arguments are within the domain of the function.

Next we introduce the mat build function, which constructs a m × n matrix
from two natural numbers m and n, and a function f which, given a matrix
position, returns the value of a matrix element to be placed at that position.
Again, this function f is partial as it is defined only for coordinates i, j such that
0 ≤ i < m and 0 ≤ j < n.2 Defining function mat build explicitly is not an easy
task due to the presence of domain predicates and dependent types. Therefore
we use Coq proving capabilities to prove existence of such a function using its
specification.3

Definition mat_build_spec m n (gen : forall i j, i < m -> j < n -> A),
{ M : matrix m n | forall i j (ip : i < m) (jp : j < n),

get_elem M ip jp = gen i j ip jp }.
Proof. [...] Defined.

and we extract the computational content from the above constructive proof to
obtain the required mat build function.

Having all those auxiliary, general purpose functions on vectors and matrices
defining matrix multiplication is fairly straightforward. First we introduce a dot
product of two vectors as:

Definition dot_product (n : nat) (l r : vector A n) : vector A n :=
Vfold_left Aplus A0 (Vmap2 Amult l r).

1 Note that variables m, n, i and j below do not have type annotations as their types
can be inferred by Coq and hence can be omitted. In this case all those variables
range over natural numbers as a careful reader can easily check.

2 We index matrix rows and columns starting from 0.
3 Please note that we are using the Coq mechanism of implicit arguments to skip

arguments that can be inferred by Coq due to type dependencies. So for the func-
tion get elem M i j ip jp arguments i and j can be inferred from the domain
predicates ip and jp.

336 A. Koprowski and H. Zantema

where A0 is the zero element of the domain (the additive identity of the semi-ring)
and Aplus is the addition. Then multiplication becomes:

Definition mat_mult m n p (L : matrix m n) (R : matrix n p) :=
mat_build (fun i j ip jp => dot_product (get_row L ip) (get_col R jp)).

As can be seen from this example abstracting away natural operations on
vectors and matrices and then using them for more complex constructs has
big advantages. Not only the definitions became significantly simpler but also
reasoning about them, as one can first prove properties about such auxiliary
functions and then use them to reason about more complex constructs.

In fact this was the main reason against using the development by Nicolas
Magaud, mentioned at the beginning of this section. It provides nice results by
proving the ring properties for square matrices. But the fact that it is stand-
alone and does not provide this kind of separation as mentioned above, made
it difficult to use in our setting. For instance a function for matrix addition is
realized there by a relatively complex Fixpoint construct (which is 16 lines long),
whereas we can simply write

Definition vec_plus n (L R : vector A n) := Vmap2 Aplus L R.
Definition mat_plus m n (L R : matrix m n) := Vmap2 (@vec_plus n) L R.

and use all CoLoR properties of Vmap2 to prove properties of matrix addition.
Similarly other operations could be expressed easily and concisely by using op-
erations and properties of vectors available in CoLoR.

3.4 Matrix Interpretations

Now we will explain how monotone algebras are instantiated for the matrix
interpretation method, so we will develop the Coq counter-part of the theory
described in Section 2.3. First we introduce a data type representing a matrix
interpretation of a function symbol:

Variables (Sig : Signature) (f : symbol Sig) (dim : nat).
Record matrixInt (argCnt : nat) : Type := mkMatrixInt {
const : vector nat dim;
args : vector (matrix dim dim) argCnt

}.

So matrixInt n is a type of matrix interpretation for a function symbol of arity
n, defined as a record with two fields: const being a constant vector of the inter-
pretation of size dim and args representing coefficients for the arguments with
a dim×dim matrix per argument. Comparing with equation 1, const represents
the f vector and args the list of matrices F1, · · · , Fn.

Now we enclose all the parameters required for the application of Theorem 2
specialized to the monotone algebra for matrix interpretations, in a module type:

Module Type TMatrixInt.
Parameter sig : Signature.
Parameter dim : nat.

Certification of Proving Termination of Term Rewriting 337

Parameter dim_pos : dim > 0.
Parameter trsInt : forall f : sig, matrixInt dim (arity f).

End TMatrixInt.

So we take a signature sig, dimension for matrices (dim; d in Section 2.3), a
proof that dimension is positive (dim pos) and interpretations for all function
symbols of the signature, with respective arities (trsInt).

Given those parameters we construct the respective monotone algebra. We
cannot present it here in details due to space limitations. The most difficult
property was actually decidability of algebra relations > and � lifted to terms.
This corresponds to proving the ‘if’ part of Theorem 3. Note that we did not
prove the ‘only-if’ part of that theorem, which state completeness of this charac-
terization and which is not needed for the correctness of the approach. Proving
the ‘if’ part required performing linearization of the computation of a matrix
interpretation, such as in Equation 2. Then we proved that evaluating this lin-
earized expression leads to the same result as simply evaluating this expression
without any simplifications beforehand. Performing those two steps in Coq re-
quired a substantial effort.

4 Evaluation

We already mentioned the termination competition [3,18], the battlefield for ter-
mination provers, in Section 3.1. This year, for the first time, a new category of
certified termination has been introduced, showing the recognition for the im-
portance of certification efforts. Indeed ensuring reliability of constantly evolving
and more and more complex tools is difficult and every year we observe some
disqualifications due to erroneous proofs produced by some of the tools.

In this new category every claim made by a termination prover must be backed
up by a full formal proof expressed and checked by some well established theorem
prover (and not only by a textual informal description of such a proof, as is the
case in the standard category). This makes the results reliable with the highest
standards of reliability available in verification.

The combination of the CoLoR project (with Rainbow) and the termination
prover TPA [13], developed by the first author, was the winning entry in this
newly introduced category of the Termination Competition in 2007. It achieved
the score of 354, meaning that for 354 out of the total 975 TRSs used in the
competition, TPA could find a termination proof and using CoLoR correctness
of this proof could be verified by Coq.

Due to the fact that this category was introduced only this year there were
only two other participants. The termination prover CiME [8] using the Coccinelle
[7] library to certify termination results, again using Coq theorem prover. It got
the second place with a score of 317. The third participating tool was the entry
of TTT[12] using CoLoR as the certifying back-end with a score of 289.

For comparison we would like to mention that in the standard category, which
is run on the same set of problems, the scores ranged from 330 to 723. This
shows that many proofs are beyond reach of the certification at the moment,

338 A. Koprowski and H. Zantema

which is completely understandable. But it also shows that for a substantial part
of proofs we can not only produce them with termination tools but also fully
automatically ensure their correctness, including difficult problems for which
establishing termination results by human is very hard. We believe this is a big
step forward and a very promising future for the termination results.

Considering evaluation of our contribution, every single termination proof
produced by TPA in the competition was using matrix interpretations at some
point. This is not so surprising given the fact that CoLoR, at the moment, is
supporting only two basic orders: polynomial and matrix interpretations. But
this also shows that for winning the competition, our contribution was crucial.

When it comes to performance finding a proof took TPA on average 2.0 sec
and certification required 2.6 sec per system. There were however few systems
were the certification time was substantially longer. During the competition
verification for 4 problems reached the 5 minutes timeout. Currently we are
busy experimenting and trying to improve the performance of the verification
routines but, although we did achieve some speedups, so far they were of rather
minor effect.

5 Conclusions

We presented our contribution to the CoLoR project — a Coq formalization of
matrix interpretations method for proving termination of rewriting. This allows
us to fully automatically certify termination of non-trivial rewrite systems, such
as the Zantema/z086.srs from the TPDB [4]:

a(a(x)) → c(b(x)), b(b(x)) → c(a(x)), c(c(x)) → b(a(x))

Until recently termination of this innocent looking system was an open problem
[2, Problem 104] and now not only it can be automatically proven terminating
by termination tools but also that results can be warranted by Coq.

It is worth noting that typically Coq is used as a proof assistant, where the
formalization is built by a human interacting with the system. It is not so in
our application as the Coq script formalizing termination of a given system is
generated fully automatically by Rainbow from a proof description produced
by some termination prover; again, automatically. However the proof assistance
capabilities of Coq are crucial for the development of CoLoR.

The natural way of continuing work on certification of termination is to for-
malize further termination techniques. Although matrix interpretations provide
a very powerful base ordering, they do not subsume other orders. Even more
advantageous would be formalization of more involved refinements of the depen-
dency pair framework [11]; a modular, powerful approach to proving termination,
employed by most, if not all, successful modern termination provers. By support-
ing relative top termination problems our development is fully ready to benefit
from such refinements (see [15] for details), but the CoLoR library at the mo-
ment supports only the basic computation of dependency pairs. Implementing
extensions such as usable rules or dependency graph approximations is on-going
work.

Certification of Proving Termination of Term Rewriting 339

Acknowledgements

We would like to thank Frédéric Blanqui for helpful comments and encourage-
ment for this work.

References

1. The Coq proof assistant, http://coq.inria.fr
2. The RTA list of open problems, http://www.lsv.ens-cachan.fr/rtaloop
3. Termination competition,

http://www.lri.fr/∼marche/termination-competition
4. Termination problems data base, http://www.lri.fr/∼marche/tpdb
5. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-

retical Computer Science 236(1-2), 133–178 (2000)
6. Blanqui, F., Delobel, W., Coupet-Grimal, S., Hinderer, S., Koprowski, A.: CoLoR,

a Coq library on rewriting and termination. In: 8th WST (2006)
7. Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of

automated termination proofs. In: Konev, B., Wolter, F. (eds.) FroCoS 2007.
LNCS(LNAI), vol. 4720, pp. 148–162. Springer, Heidelberg (2007)

8. Contejean, E., Marché, C., Monate, B., Urbain, X.: The CiME rewrite tool,
http://cime.lri.fr

9. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

10. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. Journal of Automated Reasoning (accepted, 2007)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005)

12. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
Information and Computation 205(4), 474–511 (2007)

13. Koprowski, A.: TPA: Termination proved automatically. In: Pfenning, F. (ed.) RTA
2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)

14. Koprowski, A., Zantema, H.: Certification of matrix interpretations in Coq. In: 9th
WST (2007)

15. Koprowski, A., Zantema, H.: Certification of proving termination of term rewriting
by matrix interpretations. Technical Report CS-Report 07/22, Eindhoven Univer-
sity of Technology (August 2007), http://www.win.tue.nl/ akoprows/papers/
mint-cert-TR.pdf

16. Krauss, A.: Certified size-change termination. In: CADE 2007. LNCS (LNAI),
vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

17. Magaud, N.: Ring properties for square matrices. Coq contributions, http://
coq.inria.fr/contribs-eng.html

18. Marché, C., Zantema, H.: The Termination Competition 2007. In: RTA 2007.
LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

http://coq.inria.fr
http://www.lsv.ens-cachan.fr/rtaloop
http://www.lri.fr/~marche/termination-competition
http://www.lri.fr/~marche/tpdb
http://cime.lri.fr
http://www.win.tue.nl/~akoprows/papers/mint-cert-TR.pdf
http://www.win.tue.nl/~akoprows/papers/mint-cert-TR.pdf
http://coq.inria.fr/contribs-eng.html
http://coq.inria.fr/contribs-eng.html

Extension of Rescheduling Based on Minimal

Graph Cut

Marián Lekavý and Pavol Návrat

Slovak University of Technology
Faculty of Informatics and Information Technologies

Ilkovičova 3, 842 16 Bratislava, Slovakia
lekavy@fiit.stuba.sk

Abstract. An important role of a workflow system is to schedule and
reschedule the workflow process and to allow the user to monitor and
guide the overall progress of the workflow and its activities. This pa-
per presents extensions of a rescheduling algorithm based on minimal
graph cut. The initial approach allowed to find an optimal rescheduling,
which changed the initial schedule by shortening and moving of activi-
ties. The new schedule had the lowest overall price, counted as the sum
of prices of shortening activities. The extension presented in this paper
allows several extensions, while keeping the optimality: handling several
delayed activities, handling the price of moving an activity and handling
the price of deadline violation. The rescheduling algorithm is used within
an ontology-based workflow management system for the process of mil-
itary exercise preparation in Centre of simulation technologies National
Academy of Defence.

1 Introduction

A common problem is that the schedule is not always 100% respected. If some
activity is not accomplished in time, it is necessary to reschedule dependent
activities, which require the output of the delayed activity. This is especially
important if the schedule is directed towards fulfilling a deadline (DAY-D) and
must not exceed this limit. It is therefore necessary to reschedule and shorten
the time for dependent activities.

Rescheduling is often bound to replanning if the workflow is not well-defined
and stable. This paper, however, focuses on rescheduling, without allowing re-
planning. In general, there are 4 approaches to rescheduling:

1. Schedule enforcement, responsibility left on agents. We can avoid
the problem of rescheduling by deliverable-oriented management, enforc-
ing deliverable dates and disallowing an agent to change the schedule in
a way, which would affect the schedules of other agents (e.g. EVM [3] used
at CERN). If an agent fails to produce a deliverable on time, all affected
agents have to agree on a new schedule. This places big confidence into
agents’ reliability in fulfilling the deliverable dates and the agents need the
capability to create a new schedule.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 340–351, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extension of Rescheduling Based on Minimal Graph Cut 341

2. Include all possibilities into the workflow definition All possible exe-
cution scenarios are listed in the workflow definition (e.g. PROTEUS [4]). It
is not necessary to reschedule at run-time, but the manual definition of all
possibilities is a difficult process. It is also possible to pre-schedule reserves
for unexpected situations, generating a robust schedule [12].

3. Complete rescheduling (CR) Probably the most common method of
rescheduling (other than manual) is to create a new schedule from scratch
(e.g. MicroBoss [16]). This has, however, several disadvantages. The main
disadvantage is that we discard previous scheduling information, causing a
major waste of computational time. Another disadvantage is that the new
schedule is not related to the previous schedule, so the amount of changes
compared to the previous schedule can be higher than necessary.

4. Modify the old schedule. Many approaches, including human-made
rescheduling, use a set of heuristics to correct the initial schedule. The new
schedule is created with low effort, but the rescheduling is not guaranteed
to be optimal with respect to any metrics (i.e. there are more changes than
really necessary). In the human-made rescheduling, it is possible to use
various supporting methods, like the ones based on Critical Path Method
(CPM) [13] or Program Evaluation and Review Technique (PERT) [13],
which allow to optimise the schedule with respect to the schedule length,
but don’t take the cost of changes into account. There are two basic
methods of automatic rescheduling: Right-shift rescheduling (RSR) and
Partial rescheduling (PR). RSR simply postpones all activities affected by
a failure. PR [15], tries not to modify more activities than necessary. One
of PR approaches is the Match-up rescheduling (MUR) [1], which tries to
make the new schedule completely consistent with the initial schedule from
a certain time point. PR approaches (including MUR) usually use
heuristics to find a near-to-optimal solution. There is also an optimal
approach based on mixed integer linear programming (MILP)[17]. It uses
an overall cost of the schedule, including the rescheduling cost. It
constructs all possible reschedulings and selects the one with the lowest
cost. Generating all possible reschedulings causes NP-completeness, making
the use for large problems difficult.

Most existing approaches focus on creating the schedule with the smallest
execution time (makespan), but usually, the change itself also has some cost,
including the risks that the changes will cause unexpected delays and endanger
the schedule execution. Recently, the stability of rescheduling became more im-
portant. In this context, stability is the measure of the impact of disruptions
caused by changes of activities, i.e. to achieve stability, we need to minimise the
cost of rescheduling. Combining the makespan and stability criteria results in
multiobjective solutions [14,2].

Some approaches use actuality penalty function for changing the activities
close to current time [14]. This way, they prefer to change activities with later
start time, avoiding some organisational problems with rush orders. On the other
hand, the actuality penalty is in direct conflict with MUR, because actuality

342 M. Lekavý and P. Návrat

penalty prefers the rescheduling of later activities, while MUR tries to minimise
the impact of schedule changes to the later activities. For the same reason,
actuality penalty is in conflict with an unmovable deadline (DAY-D), because it
increases the risk at the end of the schedule.

Taking rescheduling cost into account is especially important for projects,
where the project execution time is fixed and known in advance and we need
to minimise the impact of a delay in some activity. If the deadline cannot be
moved and some activity fails to complete on time, then the only possibility
to cope with this situation is to shorten the remaining schedule by shortening
some activities. We can do this by adding manpower to these activities (perhaps
taking it from other, less important projects) or by decreasing the quality of the
final project result/product. The possibility to shorten activities is overlooked
by rescheduling approaches, but in workflow systems, shortening of activities is
used very often as a possibility to compensate a delay.

This paper presents the rescheduling algorithm to be used in an ontology-
based workflow management system for the process of military exercise prepa-
ration in Centre of simulation technologies National Academy of Defence.

The introduced rescheduling algorithm creates the optimal rescheduling ac-
cording to some rescheduling metrics (e.g. minimal number of rescheduled tasks
or some other rescheduling cost function) by using minimal graph cut. In the
worst case, the algorithm has cubic time complexity with respect to number
of activities and dependencies. Previously, no algorithms based on graph cut
for rescheduling were used. We show, that under the given constraints, minimal
rescheduling is equivalent to minimal graph cut.

This paper presents an extended version of the algorithm presented previously
[10,11]. The extension additionally handles several delayed activities, the price
of moving an activity, the price of deadline violation and the price of aborting
the delayed activity.

The algorithm, however, doesn’t handle replanning, nor does it handle re-
sources. Therefore, it is only usable for well defined domains, where the necessary
tasks are known and planned in advance.

2 The RAPORT System

The RAPORT system [7] is designed for a pilot application: organisation of mil-
itary exercise in Centre of simulation technologies (CST) National Academy of
Defence (NAO) in Liptovský Mikuláš. CST organises training and education for
headquarters’ staff and commanders with support of information and communi-
cation technologies.

CST staff executes the requested activities of the military exercise preparation,
while the tasks are distributed among CST staff members. Coordination is made
during control meetings. Preparation of several exercises may overlap.

Most similar workflows are organised manually, using office software and paper
documents.

Extension of Rescheduling Based on Minimal Graph Cut 343

The RAPORT knowledge management support system is designed to work
for arbitrary administration process. It is designed to fulfil several requirements:

– Prepare necessary information related to the current working context, role
in the organisation and role in the workflow process instance (predefined
e-mails, documents, forms etc.)

– Support users’ experience exchange and collaboration by allowing interactive
collaboration and exchanging notes and hints.

– Check current plans for important dates, evaluate the workflow for each
agent and activity and adapt the plans if necessary.

– Collect experience from users and present it to users in similar working
context.

The RAPORT system combines both: the process-oriented and deliverable-
oriented paradigms. The workflow activities are well defined and the system
supports these activities by providing necessary documents, process descriptions
and guidance to the assigned agents. At the same time, each activity is ended if
all output documents for the activity are delivered.

The whole schedule is relative to the date of the exercise - DAY-D. All activi-
ties have their accomplishment date relative to DAY-D. At DAY-D, all activities
have to be accomplished successfully in order to meet the exercise requirements.

3 Optimal Rescheduling as Minimal Graph Cut

This section provides a basic outline of the rescheduling algorithm and shows,
how the rescheduling problem is related to the minimal graph cut problem.

The goal of rescheduling is to compensate the unexpected delay of one or
more activities by shortening the schedule behind the delayed activities.

The first step of the rescheduling algorithm is to create a dependence graph
for the actual schedule, where each dependence and activity is represented by an
edge. Then, we mark the edges with the cost of shortening the edge. If the edge
cannot be shortened, the cost of the edge is set to infinite. In this graph, we find
the minimal cut and move all parts of the graph before the cut by 1 time unit.

This was the basic outline of the algorithm. Individual steps are discussed in
following subsections in more detail.

The fulfilment check of the schedule is done on an every-day basis (or some
other unit time), so activities are only shortened or moved by 1 time unit. If
we need to move the activities by more than 1 time unit, we have to invoke the
rescheduling process several times.

3.1 Rescheduling as Graph Cut

Activities are bound by documents. If an activity Ause uses a document D
created by another activity Aproduce, then the activity Ause is dependent on
the activity Aproduce. Ause cannot start before Aproduce ended and created the
document D. If some activities depend on each other, but there is no document

344 M. Lekavý and P. Návrat

transferred between them, a virtual empty document is added to the system to
express this dependency.

An activity has three times defined: time of start, time of end and minimal
time necessary for execution. Initially, these times come from the workflow default
schedule. The start and end time can further be changed due to rescheduling.

So an activity for the purpose of this algorithm is the tuple A = (id, Dused,
Dproduced, tstart, tend, tmin), where id is the activity identifier, Dused is the
set of documents required by the activity, Dproduced is the set of documents
created by the activity, tstart and tend are the times of activity start and end
in the current schedule and tmin is the minimal time needed for the activity
(tend − tstart ≥ tmin). Activity definition in the domain ontology contains other
information like roles, responsible agents, document templates, active hints and
others. For the purpose of the rescheduling algorithm, we can neglect these.

From the workflow model (Figure 1a) stored in the domain ontology, we can
construct a dependence graph for the activities. In this graph, activities are
vertices and the dependencies are edges. This way, we get an acyclic dependence
graph (Figure 1b). For the purpose of rescheduling, we remove all activities (and
corresponding dependencies), which are not dependent on the activities, which
failed to complete in time - Af# (# stands for the activity identifier).

For the minimal cut algorithm, we also need the activities to be expressed by
edges. Therefore, we split each vertex for some activity A# (except the failed
activities Af#) into two activities A#start and A#end connected by an edge
eA#. All incoming edges of the previous vertex A# are connected to A#start and
outgoing edges to A#end. Additionally, we add the vertex ADAY −D, representing
the final deadline. ADAY −D is dependent on every activity in the schedule, as all
activities have to be completed before this deadline. Finally, we add an artificial
source Ainit and artificial sink Afinal. Ainit is connected to all failed activities
(Af#) and ADAY −D is connected to Afinal (Figure 1c).

This way, we created a dependency graph, which has a vertex for each event
in the schedule, which is possibly affected by the change of duration of the
failed activities (Af#). These events are the starts (A#start) and ends (A#end)
of dependent activities, the final deadline (ADAY −D) and ends of the failed
activities (Af#). (The symbol # stands for the identifier of an activity.)

Theorem 1. Every possible rescheduling, which changes the schedule by post-
poning the start and/or end times of some activities by 1 time unit, corresponds
to some cut of the dependency graph.

Proof (sketch). We define two sets: Vchanged containing vertices which are post-
poned in the rescheduling and Vunchanged containing vertices which are not af-
fected by the rescheduling. Each event of the dependency graph (A#start, A#end,
ADAY −D, Af#; # standing for an activity identifier) is either postponed or not,
i.e. it belongs to Vchanged or Vunchanged, while Vchanged ∩Vunchanged = ∅. A graph
cut is the division of a graph into two sets, dividing two vertices (in this case
Ainit ∈ Vchanged and Afinal ∈ Vunchanged). This means that every possible com-
bination of sets (Vchanged, Vunchanged) representing some rescheduling is a cut of
the dependency graph. ��

Extension of Rescheduling Based on Minimal Graph Cut 345

Fig. 1. A simple example of conversion from activities and dependences (a) to oriented
graph (b), splitting the activity vertices and adding the deadline, initial and final
vertices (c)

Several cases may occur in the distribution of events in sets (Vchanged,
Vunchanged) representing the graph cut.

– If an activity A# is moved forward by 1 time unit, both, the start and stop
time of the activity are increased (A#start ∈ Vchanged, A#stop ∈ Vchanged).

– If an activity A# is shortened by 1 time unit, only the start time of the ac-
tivity is increased. That means A#start ∈ Vchanged and A#stop ∈ Vunchanged.

– It is also possible to expand an activity by increasing the stop time (A#start ∈
Vunchanged, A#stop ∈ Vchanged). Expanding an activity is usually not very
useful when shortening the schedule and is only recommended by the algo-
rithm if the cost of shortening is negative.

– For activities which are not changed, both A#start, A#stop ∈ Vunchanged.
– The ends of the failed activities Af# should be in Vchanged, because the goal

of the algorithm is to move them. However, the cost function may allow not
to move some failed activities.

– The final deadline (ADAY −D) should be in Vunchanged. Otherwise, the dead-
line is violated. (More details in the Cost of the Edges section.)

– The initial activity Ainit ∈ Vchanged and the final activity
Afinal ∈ Vunchanged.

The edges inside Vchanged or Vunchanged represent activities or dependences,
whose length remains unchanged, as we move both, starting and ending ver-
tex or none of them. Activities and dependencies represented by edges going
from Vchanged to Vunchanged are shortened by 1 time unit, because their starting
vertices are moved, but the ending vertices are not (Figure 2).

If the minimal cut capacity (maximal graph flow, the minimal cost of shorten-
ing the schedule) is infinite, then it is impossible to reschedule without violating
the constraints on dependencies and minimal activity duration. In that case, the

346 M. Lekavý and P. Návrat

Fig. 2. A simple example of rescheduling minimal cut. From the original schedule (a),
the dependence is created and according to the minimal cut (b), the delay of activities
Af1 and Af2 is compensated by shortening of activity A3 (c).

system notifies the responsible persons about a critical state, when the workflow
cannot be fulfilled on time.

We can also extend Theorem 1 to rescheduling by more than 1 time unit.

Theorem 2. Every possible rescheduling corresponds to a superposition of de-
pendency graph cuts.

Proof (sketch). We can divide the starting and ending vertices of all activities
into several sets, each of them containing vertices moved by the same amount of
time (Vi = {v|v is moved by i time units}). For each combination of sets (Vi)n

i=0,
we can simply construct n cuts (Vchangedj , Vunchangedj)n

j=0 in a way that each
v ∈ Vi belongs to i sets Vchangedj and to n − i sets Vunchangedj . ��
Theorem 2 shows that we can express every rescheduling as a sequence of several
graph cuts, thus it is possible to use several iterations of the proposed algorithm
for more complex, k-step reschedulings. This theorem, however, does not say
that a minimal k-step rescheduling corresponds to a superposition of minimal
graph cuts. This is only guaranteed if the shortening is commutative (i.e. cost
of shortening of some edge by n time units is equal to the sum of n shortenings
by 1 time unit, regardless of the order in which this and the other edges are
shortened), reversible (the sum cost of sequential shortening and expanding an
edge by 1 time unit is zero) and the law of diminishing returns is not violated
(the cost of shortening an edge does not decrease by its shortening). This in-
cludes constant costs of the edges during all iterations. If these conditions are
not fulfilled, the superposition of minimal graph cuts can be more expensive
than the minimal k-step rescheduling. On the other hand, minimal graph k-cut
problem is NP-complete. Therefore, k minimal graph cuts, each having cubic
time complexity, can be used as a cheap polynomial approximation, but with no
guaranty being minimal.

Extension of Rescheduling Based on Minimal Graph Cut 347

3.2 Cost of the Edges

Each graph cut in the dependence graph, dividing the initial vertex and the
final vertex, represents one possible schedule change. We try to find the change,
which would shorten the activities at minimal costs. Therefore, we have to assign
costs to the individual edges, relative to the cost of shortening the edge (and
corresponding activity or dependence). The cost will then be assigned to the
edge maximal throughput.

The meaning of edges’ costs/throughputs in a dependency graph is following:

– Shortening an activity: Cost of eA# = (A#start, A#stop) is the cost of short-
ening the activity A#.

– Shortening a dependence: Cost of eAiAj = (Aistop, Ajstart) (or (Afi, Ajstart)
for the failed activities) is the cost of shortening the delay between activities
Ai and Aj .

– Moving an activity: Cost of eA#D = (A#stop, ADAY −D) is the cost of moving
the activity A# (i.e. shortening the delay between A# and the final deadline
ADAY −D).

– Violating the deadline: Cost of eADAfinal
= (ADAY −D, Afinal) is the cost of

violating the deadline, i.e. the cost of moving the whole schedule. This cost
is usually infinite, as we want to avoid deadline violation.

– Not moving a failed activity: Cost of eAinitAf# = (Ainit, Af#) is the cost of
not moving (i.e. aborting) the failed activity Af#. Sometimes, it is possible
to abort some activity instead of changing the remaining schedule, but for
most activities, it is not possible and the cost should be infinite.

Theorem 3. If the costs of rescheduling are expressed by the above
cost/throughput policy and no other costs are connected to the rescheduling,
then the minimal cut of the dependency graph corresponds to the rescheduling
with the lowest cost and the cost is equal to the minimal cut capacity.

Proof (sketch). It is obvious that if the meaning of edges’ throughput is as
described above, then the minimal cut is the rescheduling with the minimal
cost, while the minimal cost is equal to the cut capacity. The minimal graph cut
capacity is the sum of costs of edges going across the cut. It is easy to show that
cost of some edge is added to the sum iff the shortening of this edge has the
effect mentioned above:

– The cost of eA# = (A#start, A#stop) is added to the cut iff the cut goes
across this edge, i.e. A#start ∈ Vchanged, A#stop ∈ Vunchanged, which means
that the activity A# was shortened.

– The cost of eAiAj = (Aistop, Ajstart) (or (Afi, Ajstart) for the failed activ-
ities) is added to the cut iff the cut goes accross this edge, i.e. Aistop ∈
Vchanged, Ajstart ∈ Vunchanged, which means that the delay between Ai and
Aj was shortened.

– The cost of eA#D = (A#stop, ADAYD) is just a special case of eAiAj .
– The cost of eDAfinal

= (ADAY −D, Afinal) is added to the cut iff the cut goes
across this edge, i.e. (ADAY −D ∈ Vchanged (and Afinal ∈ Vunchanged), which
means that the deadline was moved.

348 M. Lekavý and P. Návrat

– The cost of eAinitAf# = (Ainit, Af#) is added to the cut iff the cut goes
across this edge, i.e. Af# ∈ Vunchanged (and Ainit ∈ Vchanged), which means
that the end of the failed activity Af# was not moved.

(Note that a vertex is moved forward in time by 1 time unit iff the vertex belongs
to Vchanged.) The resulting capacity of the minimal cut is the sum of capacities of
edges going across the cut (i.e. between Vchanged and Vunchanged) and is therefore
equal to the cost of changes made in the schedule. ��

We can set the cost of shortening an activity to 1 and shortening a dependence to
0. This way, we say that we want to shorten as few activities as possible and don’t
care about shortening dependencies. The cost of moving an activity can be set
to a small number (e.g. 0.001) to reduce unnecessary moving of activities, while
placing the main focus on the cost of shortening. This cost policy is used in the
RAPORT system. We don’t allow violation of the deadline (cost(eDAfinal

) = ∞)
and aborting of a failed activity (cost(eAinitAf#) = ∞).

We could also use a different cost policy. Activities can have different costs
defined. Or we can prefer the shortening of activities with the highest time
reserve. The cost of shortening an activity can change (usually increase) after
shortening the activity. This means that if we are invoking the algorithm several
times, we may have to re-compute the costs of affected activities.

We have to assure that an activity or dependence will not be shortened be-
low its minimal duration. If an activity already has its minimal duration or a
dependence has duration 0, the cost of shortening is set to infinite.

We can manually give several ”commands” to the algorithm by changing the
costs of the edges. This way, we can manually adjust the result of the algorithm in
almost arbitrary way, when necessary. For example, the shortening or movement
of activity A# can be disallowed by setting the cost of the eA# or eA#D edges
to infinite. The same way, we can ”encourage” the algorithm to shorten or move
some activity by setting the costs of the eA# or eA#D edges to zero. Possible
commands supported by the rescheduling algorithm and used in the RAPORT
system are listed in Table 1. Commands for enforcing/allowing/disallowing of
deadline violation or aborting a failed activity by modifying the costs of edges
eDAfinal

and eAinitAf# are also possible, but are not included here because dead-
line violation or aborting an activity is not admissible in the RAPORT system.

Additionally, other changes of the cost function may be done manually when
necessary. On the other hand, changes other than the ones listed in Table 1 have
to be done carefully, because they require deeper understanding of the underlying
rescheduling algorithm.

3.3 Minimal Cut and Time Complexity

The presented rescheduling algorithm is in fact just conversion of the reschedul-
ing problem to the minimal cut problem. These two problems are equivalent.

We use the Ford-Fulkerson algorithm [6] in our prototype implementation,
however any algorithm for finding minimal cut can be used. There are minimal

Extension of Rescheduling Based on Minimal Graph Cut 349

Table 1. Possible manual cost changes, affecting the rescheduling

Command Cost function change

Don’t shorten activity A# cost(eA#) = ∞
Shorten activity A# when necessary cost(eA#) = 0

Shorten activity A# cost(eA#) = −∞
Don’t move activity A# cost(eA#D) = ∞
Move activity A# when necessary cost(eA#D) = 0

Move activity A# cost(eA#D) = −∞
Don’t shorten the time reserve between activities Ai and Aj cost(eAiAj) = ∞

cut algorithms with lower time complexity. The only requirement is the ability
to work with infinite edge throughputs.

The conversion of the schedule to graph and back is very straightforward (time
complexity O(|A|+ |D|), where |A| is the number of activities, |D| is the number
of dependencies), so the main complexity issue is to find the minimal cut. The
Ford-Fulkerson algorithm we use has time complexity O((|A|+ |D|)2 ∗ |A|). This
is also the complexity of the whole rescheduling algorithm.

It is hard to compare our algorithm to existing approaches, as we were not
able to find an algorithm solving the same set of problems. We chose 2 ap-
proaches, which seem to be closest to our approach and the authors published
time measurements for at least some problems. PRDO [2] only creates sequen-
tial schedule and does not allow shortening of activities. For 200 tasks, PRDO
needs up to 30s, while our approach only needs 0.2-20ms on similar hardware
(Pentium4@1.8GHz). The MILP-based rescheduling [17] handles resources, but
does not allow shortening of activities. For 22 tasks, it needs 130-330ms (on
unknown hardware), while our approach needs 0.1-10ms. Additionally, MILP is
NP-complete, so from [17] no predictions can be made how the approach scales.

4 Future Work

This paper showed that the minimal graph cut algorithm can be used to find the
rescheduling with the minimal cost with respect to the cost of moving or short-
ening an activity. The method can be used for automatic or semi-automatic
rescheduling. In the RAPORT project, we use semi-automatic rescheduling, al-
lowing the human user to keep full control of the new schedule and to modify it if
necessary. This is especially important in the first year of use, as the cost function
is not verified and it may be necessary to modify it according to the experience
with the system. Later, it may be possible to switch to automated rescheduling.
The human intervention, however, will always be allowed. The semi-automatic
method can also be used to adjust actions’ cost. If the user allows/disallows the
shortening of some edge, the cost of the edge will be slightly decreased/increased
the next time by default.

It will be very useful to combine this method with existing scheduling meth-
ods, especially CPM or PERT -based methods [13]. For the semi-automatic use,

350 M. Lekavý and P. Návrat

these methods can provide the human user with additional information about
the schedule, like the list of critical activities and overall time reserve for op-
timistic/pessimistic execution scenario. For the automatic use, it is possible to
use this additional information to modify the cost function, e.g. by increasing
the cost of shortening of near-to-critical activities with low time reserve.

The challenge for the future is adding resources. This is, for example, possible
by adding resource links, as proposed in the RCPM scheduling algorithm [8]. The
resources links would form additional dependencies in the dependency graph.

As a side effect, we also plan to visualise the algorithm for educational pur-
poses, to support our e-learning courses in theoretical computer science [5].

5 Conclusions

The presented rescheduling algorithm is able to compensate the violation of a
deadline by moving and shortening of dependent activities.

The presented rescheduling algorithm uses the cost information and creates
the schedule with minimal cost in polynomial (cubic) time.

We showed that the minimal-cost rescheduling problem with costs expressed
as costs of moving/shortening of activities and shortening of dependencies is
convertible to the minimal graph cut problem.

It can be proven (the proof is out of scope of this paper) that the presented
algorithm can also find minimal cost k-step rescheduling if the shortening is
commutative, reversible and the law of diminishing returns is not violated. This,
however, doesn’t guarantee optimality if two rescheduling requests arrive at dif-
ferent times.

The rescheduling algorithm presented in this paper is suitable for workflows
under following conditions:

1. The workflow process is well-defined and planned. We know the activities’
interdependencies. All activities are planned for execution for an exact time.

2. Activities may be shortened, but not below a critical length. There is a
”nominal” length of an activity, which can be further modified if necessary,
but not below the critical length.

3. Cost of rescheduling can be expressed as the sum of costs for
moving/shortening of activities and shortening of delays between activities.

4. Workflow participants (agents) are willing to accept the new schedule, as
long as the new schedule doesn’t violate the condition 2.

There is no other limitation on the agents, participating in the workflow. The
RAPORT system, for which the algorithm is designed, contains only human
agents. The rescheduling can also be used for artificial agents or hybrid systems.

Acknowledgments. This work was partially supported by the Slovak Research
and Development Agency under the contract No. APVT 51-024604; by the Slo-
vak Research and Development Agency under the contract No. APVV-0391-06;
by the Scientific Grant Agency of Slovak Republic, grant No. VG1/3102/06.

Extension of Rescheduling Based on Minimal Graph Cut 351

References

1. Bean, J.C., Birge, J.R., Mittenehal, J., Noon, C.E.: Match-up scheduling with
multiple resources, release dates and disruption. Operations Research 39(3), 470–
483 (1991)

2. Bing, W., Yu-Geng, X.: Rolling Partial Rescheduling with Dual Objectives for
Single Machine Subject to Disruptions. Acta Automatica Sinica 32(5), 667–673
(2006)

3. Bonnal, P., De Jonghe, J., Ferguson, J.: A Deliverable-Oriented Evm System Suited
to a Large-Scale Project. Project Management Journal (2006)

4. Corkill, D.D., Rubinstein, Z.B., Lander, S.E., Lesser, V.R.: Live-Representation
Process Managment. In: Proc. 5th International Conference on Enterprise Infor-
mation Systems, Angers, France (2003)

5. Chuda, D.: Evaluation and Security Features in e-learning. In: e-learning Confer-
ence 2007, Istanbul, Turkey, pp. 81–85 (2007)

6. Ford, L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal
of Mathematics 8, 399–404 (1956)

7. Forgac, R., Budinska, I., Gatial, E., Nguyen, G., Laclavik, M., Balogh, Z., Mokris,
I., Hluchy, L., Ciglan, M., Babik, M.: Ontology based knowledge management for
organizational learning. In: ISIM 2006. Proc. of 9-th Intl. Conf. Information Sys-
tems Implementation and Modelling, Brno, April, MARQ Ostrava, pp. 177–184
(2006)

8. Kim, K.: A Resource-constrained CPM (RCPM) Scheduling and Control Technique
with Multiple Calendars. Dissertation, Faculty of Virginia Polytechnic Institute
and State University, USA (2003)

9. Kučera, L.: Kombinatorické algoritmy. Praha, SNTL (1993)
10. Lekavý, M., Návrat, P.: Dynamic Workflow Schedule Adjusting. In: INFORMAT-

ICS 2007. Proceedings of the Ninth International Conference on Informatics,
SSAKI, Bratislava, pp. 117–123 (2007) ISBN 978-80-969243-7-0

11. Lekavý, M., Návrat, P.: Dynamic Rescheduling as a Minimal Graph Cut Problem.
In: Software Engineering in Progress: Work in Progress section of CEE-SET 2007,
Poznań, pp. 141–153 (2007)

12. Lin, X., Janak, S.L., Floudas, C.: A new robust optimization approach for schedul-
ing under uncertainty: I. Bounded uncertainty. Computers and Chemical Engineer-
ing 28, 1069–1085 (2004)

13. Moder, J.J., Phillips, C.R., Davis, E.W.: Project management with CPM, PERT,
and precedence diagramming. Van Nostrand Reinhold Company, NY (1983)

14. Pfeiffer, A., Kádár, B., Monostori, L.: Stability-oriented evaluation of hybrid
rescheduling methods in a job-shop with machine breakdowns. In: 39th CIRP
international seminar on manufacturing systems. The morphology of innovative
manufacturing systems, Ljubljana, pp. 173–178 (2006)

15. Sabucuonglu, I., Bayiz, M.: Analysis of reactive scheduling problems in a job shop
environment. European Journal of Operational Research 126, 567–586 (2000)

16. Sadeh, N.: Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling,
Ph.D. Thesis. School of Computer Science, Carnegie Mellon University (1991)

17. Vin, J.P., Ierapetritou, M.G.: A new approach for efficient rescheduling of multi-
product batch plants. Industrial Engineering and Chemical Research 39, 4228–4238
(2000)

Deriving Complexity Results for Interaction

Systems from 1-Safe Petri Nets

Mila Majster-Cederbaum and Christoph Minnameier�

Institut für Informatik
Universität Mannheim, Germany
cmm@informatik.uni-mannheim.de

Abstract. Interaction systems are a formal model for component-based
systems, where components are combined via connectors to form more
complex systems. We compare interaction systems (IS) to the well-
studied model of 1-safe Petri nets (1SN) by giving a translation map1:
1SN → IS and a translation map2: IS → 1SN, so that a 1-safe Petri net
(an interaction system) and its according interaction system (1-safe Petri
net) defined by the respective mapping are isomorphic up to some label
relation R. So in some sense both models share the same expressiveness.
Also, the encoding map1 is polynomial and can be used to reduce the
problems of reachability, deadlock and liveness in 1SN to the problems
of reachability, deadlock and liveness in IS, yielding PSPACE-hardness
for these questions.

1 Introduction

In [GS03], Gössler and Sifakis presented interaction systems, a model for com-
ponent-based concurrent systems. As typical for component-based systems, in-
teraction systems display two different layers of description: On the one hand the
components, which are used to describe the communicating units, together with
the ports over which they communicate. On the other hand the glue code, i.e.
the information about the way components may communicate with each other.
I/O-Automata [LT89] and interface automata [dAH01] can be considered as
subclasses of interaction systems, for the latter feature a more general notion of
communication. E.g. interaction systems allow different degrees of parallelism,
i.e. different interactions may involve different numbers of participants.

Interaction systems seem to be an appropriate model for a variety of different
types of systems. More details about interaction systems and their properties
can be found in [Sif04, Sif05, GGM+07b, GGM+07a, MMM07b, MMM07a]. A
framework for component-based modelling using interaction systems has been
implemented in the BIP-project [BBS06, GQ07, BS07] and applied to [BMP+07].
Furthermore, interaction systems have been used to model biochemical reactions
[MSW07] and they serve as a commom semantic framework for the SPEEDS-
project [BCSM07].

� Corresponding author.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 352–363, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deriving Complexity Results for Interaction Systems from 1-Safe Petri Nets 353

The aim of this paper is to answer some relevant questions concerning the in-
herent complexity of properties of interaction systems. A first result, concerning
these matters is given in [Min07], where it is shown that the problems of local
and global deadlock are NP-hard. Here, we obtain stronger results by establish-
ing a relation between interaction systems and the well-studied model of 1-safe
Petri nets.

In [CEP93] important results about PSPACE-completeness of behavioral
questions in 1-safe Petri nets have been established, which is the starting point
of our investigation. In particular, we consider the traditional Petri net token-
game semantics for Petri nets, which does not allow the concurrent performance
of multiple transitions (even if their presets and postsets are disjoint). In other
words, we restrict ourselves to the intrinsic concurrency of the Petri net model,
i.e. the fact that a transition may already involve multiple places.

This decision is natural for our purpose of comparing the model of 1-safe nets
to the model of interaction systems, because in the latter’s semantics, we also
may concurrently perform multiple actions within an interaction but only one
interaction at a time.

The main part of this work consists of giving mappings from one model to
the other and isomorphism relations for the resulting pairs of nets and systems.

The mappings and isomorphism relations are then used to derive PSPACE-
hardness results for some important behavioral questions for interaction systems,
namely reachability, global deadlock and liveness.

The paper is organized as follows. Section 2 contains the basic definitions.
Sections 3 and 4 give the respective translations between 1-safe Petri nets and
interaction systems. Section 5 contains a conclusion and a discussion of related
work.

2 Definitions

2.1 1-Safe Petri Nets

A Petri net [CEP93] is a fourtuple N = (P, T, F, M0) such that:

– P and T are finite disjoint sets. Their elements are called places and tran-
sitions, respectively.

– F ⊆ (P × T) ∪ (T × P). F is called the flow relation.
– M0 : P → N is called the initial marking of N . In general, a mapping

M : P → N is called a marking of N . By M we denote the set of all
markings of a net.

For places as well as transitions we define the notion of preset and postset:
For p ∈ P , preset(p) := {t ∈ T | (t, p) ∈ F}, postset(p) := {t ∈ T | (p, t) ∈ F}.
For t ∈ T , preset(t) := {p ∈ P | (p, t) ∈ F}, postset(t) := {p ∈ P | (t, p) ∈ F}.

For technical reasons we only consider nets in which every node has a nonempty
preset or a nonempty postset. We let + denote the union of multisets.

354 M. Majster-Cederbaum and C. Minnameier

Let N = (P, T, F, M0) be a Petri net. A transition t ∈ T is enabled under a
marking M if M(p) > 0 for every place p in the preset of t. Given a transition
t, we define a relation t→N as follows: M

t→N M ′ if t is enabled under M and
M ′(p) = M(p)+F (t, p)−F (p, t), where F (x, y) is 1 if (x, y) ∈ F and 0 otherwise.
We say that the transition t is performed at M . We define the global transition
system (or global behavior) TN of N by TN = (M, T, →N , M0).

For M, M ′ ∈ M, we write M →*
N M’ if there are (k ∈ N and) markings

M1, . . . , Mk ∈ M and transitions t1, . . . , tk+1 ∈ T that build a transition se-

quence M
t1→N M1 t2→N . . .

tk→N Mk tk+1→ N M ′ in TN .
A marking M of a net N is called 1-safe, if for every place p of the net

M(p) ≤ 1. We identify a 1-safe marking with the set of places such that M(p) =
1. A net N is called 1-safe if all its reachable markings are 1-safe. 1-safe nets
are a well studied computation model. The following questions are known to be
PSPACE-complete [CEP93].

The reachability problem for 1-safe nets consists of deciding, given a 1-safe
net N = (P, T, F, M0) and a marking M of N , whether M0 →∗

N M .
The liveness problem for 1-safe nets consists of deciding, given a 1-safe net

N = (P, T, F, M0) if every transition can always occur again. More precisely, if
for every reachable marking M and every transition t, there is M ′ ∈ M with
M →∗

N M ′ and M ′ enables t.
The deadlock problem for 1-safe nets consists of deciding, given a 1-safe net

N = (P, T, F, M0), if every reachable marking enables some transition. If this is
the case we call the net deadlock-free.

Example 1
The 1-safe net N1 is given (by its graphical representation) in Figure 1. N1 is
deadlock free and even live and the set of reachable markings is {{p1, p2, p3},
{p3, p4, p5}, {p1, p6}}.

p1 p3

p4 p5

p2

t2 t3t1 t4

p6

Fig. 1. A 1-safe net N1

Deriving Complexity Results for Interaction Systems from 1-Safe Petri Nets 355

2.2 Interaction Systems

We review here interaction systems, a model for component-based systems that
was proposed and discussed in detail in [GS03, Sif05, GS05, BBS06, GGM+07b,
GGM+07a, MMM07a]. An interaction system is a tuple Sys = (K, {Ai}i∈K ,
C,Comp, {Ti}i∈K), where K is the set of components. W.l.o.g. we assume K =
{1, . . . , n}. Each component i ∈ K offers a finite set Ai of ports (also called ac-
tions) for cooperation with other components. The port sets Ai are pairwise dis-
joint. Cooperation is described by connectors and complete interactions. A con-
nector is a finite set of actions c ⊆ ⋃

i∈K Ai, subject to the constraint that for
each component i at most one action ai ∈ Ai is in c. A connector c = {ai1 , . . . , aik

}
with aij ∈ Aij describes that the components i1, . . . , ij cooperate via these ports.

A connector set C is a finite set of connectors, s.t. every action of every
component occurs in at least one connector of C and no connector contains
any other connector. Sometimes not all components involved in a connector are
ready to perform their respective action. Still, we might want to allow those that
are ready to go on. For this we may designate certain subsets of connectors as
complete interactions. Let Comp be a designated set of complete interactions.
Comp has to be upwards-closed w.r.t. C, i.e.: ∀α ∈ Comp ∀c ∈ C ((α ⊂ α′ ⊆
c) ⇒ α′ ∈ Comp).

We call Int := C ∪ Comp the set of interactions1. (The distinction between
connectors and complete interactions is irrelevant for our encodings).

The local behavior of each component i is described by a transition system
Ti = (Qi, Ai, →i, q

0
i), where Qi is the finite set of local states, →i⊆ Qi ×Ai ×Qi

the local transition relation and q0
i ∈ Qi is the local starting state.

Given an interaction α ∈ Int and a component i ∈ K we denote by i(α) :=
Ai ∩ α the participation of i in α. For ease of notation, we identify a singleton
set with its element.

For qi ∈ Qi we define the set of enabled actions ea(qi) := {ai ∈ Ai | ∃q′i ∈
Qi, s.t. qi

ai→i q′i}. We assume that the Ti’s are non-terminating, i.e. ∀i ∈ K ∀qi ∈
Qi ea(qi) �= ∅.

The global behavior TSys = (Q, Int, →Sys, q
0) of Sys (henceforth also referred

to as global transition system) is obtained from the behaviors of the individual
components, given by the transition systems Ti, and the interactions Int in a
straightforward manner:

– Q =
∏

i∈K Qi, the Cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, . . . , qn) and call them
global states.

– the relation →Sys ⊆ Q × Int × Q, defined by
∀α ∈ Int ∀q, q′ ∈ Q q = (q1, . . . , qn) α→Sys q′ = (q′1, . . . , q

′
n) iff

∀i ∈ K (qi
i(α)→i q′i if i(α) �= ∅ and q′i = qi otherwise).

– q0 = (q0
1 , . . . , q0

n) is the starting state for Sys.

1 In the original nomenclature of [GS03], subsets of connectors in general are called
interactions. This more general notion of interaction is however only needed for the
purpose of composing interaction systems out of smaller interaction systems.

356 M. Majster-Cederbaum and C. Minnameier

Less formally, a transition labeled by α may take place in the global transition
system when each component i participating in α is ready to perform i(α).

Example 2
Let Sys1 = {{1, 2, 3}, {Ai}1≤i≤3, C, Comp, {Ti}1≤i≤3), where A1 = {a1, b1},
A2 = {a2, b2}, A3 = {a3, b3, d3}, C = {{a1, a2, a3}, {b1, b2, b3}, {d3}}, Comp =
{{b1, b2}} and the local transition systems Ti are given in Figure 2.

T1:

q1
0

T2: T3:

q1
1 b1

a1a1

q2
0

q2
1

a2b2

q3
0

q3
1 q3

2

b3

a3

a3

d3

Fig. 2. The Ti’s for Sys1

For the following definitions let Sys be an interaction system:

Let →*
Sys denote the reflexive and transitive closure of →Sys.

Given a state q ∈ Q we denote by reachability of q the question, whether
q is reachable in TSys, i.e. whether q0 →∗

Sys q.
The question whether Sys contains a global deadlock (henceforth simply

referred to as a deadlock) is the question whether there is a reachable global
state q such that q �→.

We say a component i ∈ K is live2 in Sys, if for any reachable global state
there is some q′ ∈ Q with q →∗

Sys q′ such that there exist α ∈ Int and q′′ ∈ Q

with q′ α→Sys q′′, where i participates in α.
If a component i ∈ K is live in Sys then at each reachable global state a

clever scheduler can continue in such a way that eventually an interaction may
be performed in which i participates.

2.3 Isomorphism up to a Label Relation R

We define a notion of isomorphism, namely isomorphism up to a label relation R,
which we use to establish a relation between transition systems that use different
label sets L1 and L2. R then defines which labels in L1 we want to correspond
to which labels in L2.

Let Ti = (Qi, Li, →i, q
0
i), i ∈ {1, 2} be two labeled transition systems. Given

a label relation R ⊆ (L1 × L2), that relates labels of L1 to labels of L2, we
say that T1 and T2 are isomorphic up to R iff there exists a bijective function
f : Q1 → Q2, such that f(q0

1) = q0
2 and ∀q1 ∈ Q1, q2 ∈ Q2 the following two

propositions hold:

2 Note that this notion of liveness does not coincide with the one defined in [MMM07a].

Deriving Complexity Results for Interaction Systems from 1-Safe Petri Nets 357

1) q1
l1→1 q′1 ⇒ ∃l2 ∈ L2, s.t. (l1, l2) ∈ R ∧ f(q1)

l2→2 f(q′1).
2) q2

l2→2 q′2 ⇒ ∃l1 ∈ L1, s.t. (l1, l2) ∈ R ∧ f−1(q2)
l1→1 f−1(q′2).

We say an interaction system and a 1-safe net are isomorphic up to a label
relation R iff this holds for their respective global transition systems.

3 Translating 1-Safe Nets to Interaction Systems

Let N = (P, T, F, M0) be a 1-safe net. We give a translation map1 from 1-safe
Petri nets to interaction systems as follows. We introduce a component p̂ for
each place p ∈ P . The transition system Tp̂ has only two states, one state s1

p̂ to
reflect the fact that p contains a token, one state s0

p̂ to reflect that it doesn’t.
The transitions t adjacent to p define the transition relation of Tp̂, where we
distinguish three cases:

a) t ∈ (preset(p) \ postset(p)). When such a transition is performed in N , this
means that p is empty before the performance of t and contains a token after-
wards. Thus, we introduce an edge from s0

p̂ to s1
p̂ labeled by a(t,p).

b) t ∈ (postset(p) \ preset(p)). Inverse to a), i.e. we introduce an edge from s1
p̂ to

s0
p̂ labeled by a(p,t).

c) t ∈ (preset(p)∩postset(p)). This means there has to be a token in p to perform
t and there will still be one there afterwards. In this case, we introduce a loop
at s1

p̂ labeled by a(t,p,t).

For an example of a place with pre- and postset resp. its corresponding compo-
nent, see Figure 3 (a) resp. (b). (Note that only edges adjacent to p are depicted.)

Now we define a connector c(t) for each transition t. For the places adjacent to
t again we distinguish three cases:

a) p ∈ (preset(t) \ postset(t)). This means that in order to perform t, there
has to be a token in p, and there will be no token in p after performing t. Thus
we include the action a(p,t) in c(t) which already occurs in the component p̂ in
such a way that this fact is perfectly reflected.
b) p ∈ (postset(t) \ preset(t)). Inverse to a), i.e. we include the action a(t,p) in
c(t).
c) p ∈ (preset(t) ∩ postset(t)). This means that in order to perform t, there has
to be a token in p, and there still be a token in p after performing t. Thus we
include the action a(t,p,t) in c(t) which already occurs in the component p̂ in the
corresponding way.

For an example of a transition with pre- and postset resp. its corresponding
connector, see Figure 4 (a) resp. (b). (Note that only edges adjacent to t are
depicted.)

358 M. Majster-Cederbaum and C. Minnameier

Formal definition of map1:

map1(N) = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, where

K := {p̂ | p ∈ P}

For p̂ ∈ K : Ain
p̂ := {a(t,p) | ∃t ∈ T , s.t. p ∈ (preset(t) \ postset(t))},

Aout
p̂ := {a(p,t) | ∃t ∈ T , s.t. p ∈ (postset(t) \ pretset(t))},

Ainout
p̂ := {a(t,p,t) | ∃t ∈ T , s.t. p ∈ (preset(t) ∩ postset(t))}, and
Ap̂ := Ain

p̂ ∪ Aout
p̂ ∪ Ainout

p̂ .

Tp̂ := ({s0
p̂, s

1
p̂}, Ap̂, →p̂, q

p̂
s), where Ap̂ has already been given,

→p̂ := {(s0
p̂, a(t,p), s

1
p̂) | a(t,p) ∈ Ain

p̂ }
∪ {(s1

p̂, a(p,t), s
0
p̂) | a(p,t) ∈ Aout

p̂ }
∪ {(s1

p̂, a(t,p,t), s
1
p̂) | a(t,p,t) ∈ Ainout

p̂ }
q0
p̂ := s0

p̂ if M0(p) = 0 and q0
p̂ := s1

p̂ if M0(p) = 1.

In order to define a connector for a transition we now relate the actions in⋃
i∈K Ai to the transitions in the way described above.

For t ∈ T : Ain
t := {a(p,t) | p ∈ (preset(t) \ postset(t))},

Aout
t := {a(t,p) | p ∈ (postset(t) \ pretset(t))},

Ainout
t := {a(t,p,t) | p ∈ (preset(t) ∩ postset(t))}
c(t) := Ain

t ∪ Aout
t ∪ Ainout

t

C := {c(t) | t ∈ T }
Comp := ∅

It remains to prove that C is indeed a connector set.
We observe that {Asup

t | t ∈ T, sup ∈ {in, out, inout}} is a disjoint decompo-
sition of

⋃
i∈K Ai. This is due to the fact that the Asup

t ’s are defined following
the definition of the Asup

p̂ ’s. C is just a coarser decomposition obtained from the
one above by merging some of the disjoint subsets. So each action occurs exactly
once in a connector, i.e. it occurs in at least one connector and no connector can
be a subset of another connector.

Also, as Comp = ∅ we have upwards-closedness of Comp w.r.t. C.

p

t1 t2 t3

t4 t5

s0
p̂

s1
p̂

a(p,t4) a(t1,p)a(p,t5) a(t2,p) a(t3,p)

(a) (b)

t6

a(t6,p,t6)

Fig. 3. A place with ingoing and outgoing transitions and its corresponding component

Deriving Complexity Results for Interaction Systems from 1-Safe Petri Nets 359

t

p1 p2 p3

p4

c(t) = {a(p1,t), a(p2,t), a(t,p3,t), a(t,p4)}

(b)(a)

Fig. 4. A transition with its pre- and postset and its corresponding connector

Example 1 continued
Let N1 = (P, T, F, M0) be the 1-safe net from Example 1. The corresponding in-
teraction system is map1(N1) = {{1, . . . , 6}, {Ai}1≤i≤6, C, ∅, {Ti}1≤i≤6}, where
C = {{ a(p4,t1), a(p5,t1), a(t1,p1), a(t1,p2)}, {a(p1,t2), a(p2,t2), a(t2,p4), a(t2,p5),

a(p3,t2,p3)}, {a(p2,t3), a(p3,t3), a(t3,p6)}, {a(p6,t4), a(t4,p3), a(t4,p2)}}
and the Ti’s (and implicitely the Ai’s) are given in Figure 5.

s0
p̂1

s1
p̂1

a(t1,p1)a(p1,t2)

s0
p̂2

s1
p̂2

a(t1,p2)a(p2,t2)

s0
p̂3

s1
p̂3

a(t4,p3)a(p3,t3)

s0
p̂4

s1
p̂4

a(t2,p4)a(p4,t1)

s0
p̂5

s1
p̂5

a(t2,p5)a(p5,t1)

s0
p̂6

s1
p̂6

a(t3,p6)a(p6,t4)

a(p3,t2,p3)

a(t4,p2)a(p2,t3)

T1 : T2 : T3 :

T4 : T5 : T6 :

Fig. 5. The Ti’s for map1(N1)

Let q be a global state of map1(N). Then q(p̂) denotes the projection of q to p̂.

Theorem 1. Let N be a 1-safe net and Sys = map1(N). With R := {(c, t) ∈
(Int × T) | c = c(t)} and with the bijection f : Q → M, defined by f(q) = {p ∈
P | q(p̂) = s1

p̂} we have defined an isomorphism up to R for Sys and N .

Let Sys be an interaction system. We consider questions for typical properties
and prove them PSPACE-hard using Theorem 1 (and, of course, building on the
evident fact that map1 can be determined in polynomial time):

Corollary 1. The question, whether some state q can be reached in Sys is
PSPACE-hard.

We know that the reachability question for 1-safe nets, i.e. the question whether
some marking M is reachable in N is PSPACE-hard [CEP93].

360 M. Majster-Cederbaum and C. Minnameier

By Theorem 1 we know that this question can be answered by answering
instead the reachability question for M ’s corresponding global state f−1(M) in
Sys.

Corollary 2. The question, whether Sys is free of global deadlock is PSPACE-
hard.

We know that the question of deadlock for 1-safe nets, i.e. the question whether
there is a reachable marking M in N where no transition is enabled is PSPACE-
hard [CEP93]. By Theorem 1 we may conclude that this is the case iff there is
a reachable global state in map1(N), where no interaction is enabled.

Corollary 3. The question, whether a component i ∈ K is live is PSPACE-
hard.

We know that the question of liveness for 1-safe nets, i.e. the question whether
every transition can always occur again is PSPACE-hard [CEP93].

As liveness in 1-safe nets concerns transitions, which are translated to inter-
actions, and, in contrast, liveness in interaction systems concerns components,
we introduce a place pt for each transition t, such that the place’s correspond-
ing component p̂t will be live iff t can always occur again. This can be done by
employing a (polynomial) preencoding mappre on N before applying map1.

More formally, let mappre(N) = (P ∪ {pt | t ∈ T }, T, F ∪ {(pt, t), (t, pt) | t ∈
T }, M0 ∪ {pt | t ∈ T }).

Now N is live iff every p̂t (t ∈ T) is live in map1(mappre(N)).

4 Translating Interaction Systems to 1-Safe Nets

In this section, we present the encoding map2 from interaction systems to 1-safe
nets. Our interest in such a translation is mainly of theoretic nature, i.e. we
want to gain more understanding of the properties of these two models. Still,
as interaction models are a relatively young model, for which so far not many
tools have been developed, there is some practical benefit: One could translate a
system into a net and apply Petri net tools in order to investigate some behavioral
questions of the system.

Let Sys = (K, {Ai}i∈K , C,Comp, {Ti}i∈K) be an interaction system. We in-
troduce a place q̂i for each local state qi ∈ Qi of a component i ∈ K. A global
state of Sys is a tuple of the present local states of the components, so for every
reachable state in N , there will always be exactly one place q̂i for each i ∈ K
that contains a token. This reflects that qi is the present state of component i.

It remains to translate the glue code given by the interactions Int to the notion
of transition. An action ai in Ai may occur multiple times in the local transition
system Ti of component i. Thus the performance of an interaction α may cause
differnet state changes in Sys.

As a consequence we are going to map an interaction α not to a single tran-
sition but to a set of transitions T (α). Each transition in T (α) represents one of

Deriving Complexity Results for Interaction Systems from 1-Safe Petri Nets 361

these possible global state changes and will shift the tokens in N according to
the local state changes that are caused for the components that participate in α.

More formally, we define the mapping map2 from interaction systems to 1-safe
nets as follows:
map2(Sys) = (P, T, F, M0), where
P =

⋃
i∈K{q̂i | qi ∈ Qi}.

For α = {ai1 , ai2 , . . . , aik
} ∈ Int, we introduce a set of transitions T (α) :=

{{(qi1 , ai1 , q
′
i1), . . . , (qik

, aik
, q′ik

)} | ∀1 ≤ j ≤ k(qij , aij , q
′
ij

) ∈→ij }.
Then we define T =

⋃
α∈Int T (α).

For each α and each transition t = {(qi1 , ai1 , q
′
i1

), . . . , (qik
, aik

, q′ik
)} in T (α)

we introduce arcs as follows:
F (t) = {(q̂i1 , t), . . . , (q̂ik

, t)} ∪ {(t, q̂′i1), . . . , (t, q̂
′
ik

)}
F (α) =

⋃
t∈T (α) F (t).

F =
⋃

α∈Int F (α).
M0 = {q̂i ∈ P | qi = q0

i }.
This means that in the initital marking exactly those places that correspond

to the local starting states of the components contain a token.

Remark: Let Ti be the local labeled transition system of component i and
let ai ∈ Ai be an action of i. We denote the number of occurences of ai

in Ti by occ(ai). Note that for one interaction α = {ai1 , . . . , aik
} there are

(occ(ai1) · . . . · occ(aik
)) instances of α. This means we might have exponentially

(in n) many instances for a single interaction α, which will result in an expo-
nential blowup in our mapping from interaction systems to 1-safe nets. (See,
e.g. Example 2, where we would gain occ(a1) · occ(a2) · occ(a3) = 2 · 1 · 2 = 4
transitions of the interaction {a1, a2, a3} in T ({a1, a2, a3}).)

Theorem 2. Let Sys be an interaction system and N = map2(Sys). With R :=
{(α, t) ∈ (Int × T) | t ∈ T (α)} and with the bijection f : Q → M, defined by
f(q1, . . . , qn) = {q̂1, . . . , q̂n} we have defined an isomorphism up to R for Sys
and N .

Remark: One application of our translation of interaction systems to Petri nets
is to answer behavioral questions for an interaction system Sys by translating
it to a 1-safe net and answering the (corresponding) question there. Also the
translation preserves component identity, i.e. a component i is represented in
map2(Sys) exactly by the places {q̂i | qi ∈ Qi}.

5 Conclusion and Related Work

Interaction systems are a model for component-based systems. The increasing
relevance of interaction systems demands a profound theoretical basis for this
model. In this paper we study complexity results for interaction systems. We
do so by establishing a relation between the model of interaction systems and
the well-studied model of 1-safe Petri nets for which complexity results have
been investigated in [CEP93]. We show that anything described by a 1-safe net

362 M. Majster-Cederbaum and C. Minnameier

can easily be described by an interaction system without a blowup in notation.
Similarly, interaction systems can be translated into 1-safe nets. However, it
seems unavoidable to have a (worst case) exponential blowup for this translation.

The results with the greatest impact are that the problems of deadlock-
freeness and reachability are PSPACE-hard for interaction systems. These are
the first PSPACE-hardness results concerning interaction systems and they par-
tially outrun the complexity results given in [Min07]. The established results
provide an essential basis for future work: Given these “master”-reductions we
may extend the PSPACE-hardness results (by polynomial reductions) to almost
all behavioral questions for interaction systems.

Furthermore these results suggest that there is no polynomial time algo-
rithm for solving the questions of deadlock, reachability or liveness in inter-
action systems and thus provide further motivation for approaches to establish
desired properties: e.g. finding sufficient conditions for deadlock-freeness and
other properties of interaction systems such as the ones given in [MMM07a]
and [GGM+07a] that can be tested in polynomial time or methods making use
of compositionality. The model of interaction systems is particularly suited for
applying these approaches because they exploit local information about compo-
nents, whose identities are preserved when composing the interaction system. In
contrast to this Petri nets lack compositionality and the identity of a component
is lost when a composite system is modeled by a Petri net.

References

[BBS06] Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Com-
ponents in BIP. In: SEFM 2006. Proceedings of the Fourth IEEE Inter-
national Conference on Software Engineering and Formal Methods, pp.
3–12. IEEE Computer Society, Washington, DC, USA (2006)

[BCSM07] Bozga, M., Constant, O., Skipper, M., Ma, Q.: Speeds Meta-Model Syn-
tax and Static Semantics (2007)

[BMP+07] Basu, A., Mounier, L., Poulhis, M., Pulou, J., Sifakis, J.: Using BIP
for Modeling and Verification of Networked Systems - A Case-Study on
Tinyos-Based Networks. Technical Report, Verimag, Centre Équation
(2007)

[BS07] Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interac-
tion in bip. In: EMSOFT 2007. Proceedings of the 7th ACM & IEEE
international conference on Embedded software, pp. 11–20. ACM, New
York (2007)

[CEP93] Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-safe Nets.
In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 326–
337. Springer, Heidelberg (1993)

[dAH01] de Alfaro, L., Henzinger, T.: Interface automata. In: Proceedings of FSE
2001, ACM Press, New York (2001)

[GGM+07a] Goessler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis,
J.: An Approach to Modelling and Verification of Component Based
Systems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel,
C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, Springer,
Heidelberg (2007)

Deriving Complexity Results for Interaction Systems from 1-Safe Petri Nets 363

[GGM+07b] Goessler, G., Graf, S., Majster -Cederbaum, M., Martens, M., Sifakis,
J.: Ensuring Properties of Interaction Systems by Construction. In: Pro-
gram Analysis and Compilation, Theory and Practice. LNCS, vol. 4444,
Springer, Heidelberg (2007)

[GQ07] Graf, S., Quinton, S.: Contracts for BIP: Hierarchical Interaction Models
for Compositional Verification. In: FORTE 2007. LNCS, vol. 4574, pp.
1–18. Springer, Heidelberg (2007)

[GS03] Goessler, G., Sifakis, J.: Component-based Construction of Deadlock-
free Systems. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003.
LNCS, vol. 2914, pp. 420–433. Springer, Heidelberg (2003)

[GS05] Goessler, G., Sifakis, J.: Composition for Component-based Modeling.
Sci. Comput. Program. 55(1-3), 161–183 (2005)

[LT89] Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata.
In: CWI-Quarterly, pp. 219–246 (1989)

[Min07] Minnameier, C.: Local and Global Deadlock-Detection in Component-
based Systems are NP-hard. In: Information Processing Letters 3630
(2007)

[MMM07a] Majster-Cederbaum, M., Martens, M., Minnameier, C.: A Polynomial-
time Checkable Sufficient Condition for Deadlock-Freedom of
Component-based Systems. In: van Leeuwen, J., Italiano, G.F.,
van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007.
LNCS, vol. 4362, Springer, Heidelberg (2007)

[MMM07b] Majster-Cederbaum, M., Martens, M., Minnameier, C.: Liveness in In-
teraction Systems. In: Proceedings of FACS 2007, ENTCS (2007)

[MSW07] Majster-Cederbaum, M., Semmelrock, N., Wolf, V.: Interaction Models
for Biochemical Reactions. In: BioComp (2007)

[Sif04] Sifakis, J.: Modeling Real-time Systems. In: Keynote talk RTSS 2004
(2004)

[Sif05] Sifakis, J.: A Framework for Component-based Construction (extended
abstract). In: SEFM, pp. 293–300 (2005)

Computing Longest Common Substring and

All Palindromes from Compressed Strings

Wataru Matsubara1, Shunsuke Inenaga2, Akira Ishino1, Ayumi Shinohara1,
Tomoyuki Nakamura1, and Kazuo Hashimoto1

1 Graduate School of Information Science, Tohoku University, Japan
{matsubara@shino., ishino@, ayumi@, nakamura@aiet.,

hk@aiet.}ecei.tohoku.ac.jp
2 Department of Computer Science and Communication Engineering,

Kyushu University, Japan
inenaga@c.csce.kyushu-u.ac.jp

Abstract. This paper studies two problems on compressed strings de-
scribed in terms of straight line programs (SLPs). One is to compute the
length of the longest common substring of two given SLP-compressed
strings, and the other is to compute all palindromes of a given SLP-
compressed string. In order to solve these problems efficiently (in poly-
nomial time w.r.t. the compressed size) decompression is never feasible,
since the decompressed size can be exponentially large. We develop com-
binatorial algorithms that solve these problems in O(n4 log n) time with
O(n3) space, and in O(n4) time with O(n2) space, respectively, where n
is the size of the input SLP-compressed strings.

1 Introduction

The importance of algorithms for compressed texts has recently been arising
due to the massive increase of data that are treated in compressed form. Of
various text compression schemes introduced so far, straight line program (SLP)
is one of the most powerful and general compression schemes. An SLP is a
context-free grammar of either of the forms X → Y Z or X → a, where a is a
constant. SLP allows exponential compression, i.e., the original (uncompressed)
string length N can be exponentially large w.r.t. the corresponding SLP size
n. In addition, resulting encoding of most grammar- and dictionary-based text
compression methods such as LZ-family [1,2], run-length encoding, multi-level
pattern matching code [3], Sequitur [4] and so on, can quickly be transformed into
SLPs [5,6,7]. Therefore, it is of great interest to analyze what kind of problems
on SLP-compressed strings can be solved in polynomial time w.r.t. n. Moreover,
for those that are polynomial solvable, it is of great importance to design efficient
algorithms. In so doing, one has to notice that decompression is never feasible,
since it can require exponential time and space w.r.t. n.

The first polynomial time algorithm for SLP-compressed strings was given by
Plandowski [8], which tests the equality of two SLP-compressed strings in O(n4)
time. Later on Karpinski et al. [9] presented an O(n4 log n)-time algorithm for

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 364–375, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing Longest Common Substring and All Palindromes 365

the substring pattern matching problem for two SLP-compressed strings. Then
it was improved to O(n4) time by Miyazaki et al. [10] and recently to O(n3)
time by Lifshits [11]. The problem of computing the minimum period of a given
SLP-compressed string was shown to be solvable in O(n4 log n) time [9], and
lately in O(n3 log N) time [11]. Ga̧sieniec et al. [5] claimed that all squares of a
given SLP-compressed string can be computed in O(n6 log5 N) time.

On the other hand, there are some hardness results on SLP-compressed string
processing. Lifshits and Lohrey [12] showed that the subsequence pattern match-
ing problem for SLP-compressed strings is NP-hard, and that computing the
length of the longest common subsequence of two SLP-compressed strings is also
NP-hard. Lifshits [11] showed that computing the Hamming distance between
two SLP-compressed strings is #P-complete.

In this paper we tackle the following two problems: one is to compute the
length of the longest common substring of two SLP-compressed strings, and the
other is to find all maximal palindromes of an SLP-compressed string. The first
problem is listed as an open problem in [11]. This paper closes the problem
giving an algorithm that runs in O(n4 log n) time with O(n3) space. For second
the problem of computing all maximal palindromes, we give an algorithm that
runs in O(n4) time with O(n2) space.

Comparison to previous work. Composition system is a generalization of
SLP which also allows “truncations” for the production rules. Namely, a rule of
composition systems is of one of the following forms: X → Y [i]Z[j], X → Y Z,
or X → a, where Y [i] and Z[j] denote the prefix of length i of Y and the
suffix of length j of Z, respectively. Ga̧sieniec et al. [5] presented an algorithm
that computes all maximal palindromes from a given composition system in
O(n log2 N ×Eq(n)) time, where Eq(n) denotes the time needed for the equality
test of composition systems. Since Eq(n) = O(n4 log2 N) in [5], the overall time
cost is O(n5 log4 N).

Limited to SLPs, Eq(n) = O(n3) due to the recent work by Lifshits [11].
Still, computing all maximal palindromes takes O(n4 log2 N) time in total, and
therefore our solution with O(n4) time is faster than the previous known ones
(recall that N = O(2n)). The space requirement of the algorithm by Ga̧sieniec et
al. [5] is unclear. However, since the equality test algorithm of [11] takes O(n2)
space, the above-mentioned O(n4 log2 N)-time solution takes at least as much
space as ours.

2 Preliminaries

For any set U of pairs of integers, we denote U ⊕ k = {(i+ k, j + k) | (i, j) ∈ U}.
We denote by 〈a, d, t〉 the arithmetic progression with the minimal element a,
the common difference d and the number of elements t, that is, 〈a, d, t〉 = {a +
(i − 1)d | 1 ≤ i ≤ t}. When t = 0, let 〈a, d, t〉 = ∅.

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string T is denoted by |T |. The empty string ε is a string of length 0, namely,
|ε| = 0. For a string T = XY Z, X , Y and Z are called a prefix, substring, and

366 W. Matsubara et al.

suffix of T , respectively. The i-th character of a string T is denoted by T [i] for
1 ≤ i ≤ |T |, and the substring of a string T that begins at position i and ends
at position j is denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For any string T , let T R

denote the reversed string of T , namely, T R = T [|T |] · · ·T [2]T [1].
For any two strings T, S, let LCPref (T, S), LCStr(T, S), and LCSuf (T, S)

denote the length of the longest common prefix, substring and suffix of T and
S, respectively.

A period of a string T is an integer p (1 ≤ p ≤ |T |) such that T [i] = T [i + p]
for any i = 1, 2, . . . , |T | − p.

A non-empty string T such that T = T R is said to be a palindrome. When
|T | is even, then T is said to be an even palindrome, that is, T = SSR for some
S ∈ Σ+. Similarly, when |T | is odd, then T is said to be an odd palindrome,
that is, T = ScSR for some S ∈ Σ∗ and c ∈ Σ. For any string T and its
substring T [i : j] such that T [i : j] = T [i : j]R, T [i : j] is said to be the maximal
palindrome w.r.t. the center 	 i+j

2
, if either T [i−1] �= T [j +1], i = 1, or j = |T |.
In particular, T [1 : j] is said to be a prefix palindrome of T , and T [i : |T |] is said
to be a suffix palindrome of T .

In this paper, we treat strings described in terms of straight line programs
(SLPs). A straight line program T is a sequence of assignments such that

X1 = expr1, X2 = expr2, . . . , Xn = exprn,

where each Xi is a variable and each expri is an expression in either of the
following form:

– expri = a (a ∈ Σ), or
– expri = X�Xr (�, r < i).

Denote by T the string derived from the last variable Xn of the program T . The
size of the program T is the number n of assignments in T .

When it is not confusing, we identify a variable Xi with the string derived
from Xi. Then, |Xi| denotes the length of the string derived from Xi.

For any variable Xi of T with 1 ≤ i ≤ n, we define XR
i as follows:

XR
i =

{
a if Xi = a (a ∈ Σ),
XR

r XR
� if Xi = X�Xr (�, r < i).

Let T R be the SLP consisting of variables XR
i for 1 ≤ i ≤ n.

Lemma 1. SLP T R derives string T R.

Proof. By induction on the variables XR
i . Let ΣT be the set of characters ap-

pearing in T . For any 1 ≤ i ≤ |ΣT |, we have Xi = a for some a ∈ ΣT , thus
XR

i = a and a = aR. Let Ti denote the string derived from Xi. For the induction
hypothesis, assume that XR

j derives T R
j for any 1 ≤ j ≤ i. Now consider variable

Xi+1 = X�Xr. Note Ti+1 = T�Tr, which implies T R
i+1 = T R

r T R
� . By definition,

we have XR
i+1 = XR

r XR
� . Since �, r < i + 1, by the induction hypothesis XR

i+1

derives T R
r T R

� = T R
i+1. Thus, T R = XR

n derives T R
n = T R. �

Note that T R can be easily computed from T in O(n) time.

Computing Longest Common Substring and All Palindromes 367

3 Computing Longest Common Substring of Two SLP
Compressed Strings

Let T and S be the SLPs of sizes n and m, which describe strings T and S,
respectively. Without loss of generality we assume that n ≥ m.

In this section we tackle the following problem:

Problem 1. Given two SLPs T and S, compute LCStr(T, S).

In what follows we present an algorithm that solves Problem 1 in O(n4 log n) time
and O(n3) space. Let Xi and Yj denote any variable of T and S for 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

3.1 Overlaps between Two Strings

For any two strings X and Y , we define the set OL(X, Y) as follows:

OL(X, Y) = {k > 0 | X [|X | − k + 1 : |X |] = Y [1 : k]}
Namely, OL(X, Y) is the set of lengths of overlaps of suffixes of X and prefixes
of Y . Karpinski et al. [9] gave the following results for computation of OL for
strings described by SLPs.

Lemma 2 ([9]). For any variables Xi and Xj of an SLP T , OL(Xi, Xj) can
be represented by O(n) arithmetic progressions.

Theorem 1 ([9]). For any SLP T , OL(Xi, Xj) can be computed in total of
O(n4 log n) time and O(n3) space for any 1 ≤ i ≤ n and 1 ≤ j ≤ n.

As we will show in the sequel, we need to compute OL(Xi, Yj) and OL(Yj , Xi)
for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. In so doing, we produce a new variable
V = XnYm, that is, V is a concatenation of SLPs T and S. Then we compute
OL for each pair of variables in the new SLP of size n + m. On the assumption
that n ≥ m, it takes O(n4 log n) time and O(n3) space in total.

3.2 The FM Function

For any two variables Xi, Yj and integer k with 1 ≤ k ≤ |Xi|, we define the
function FM (Xi, Yj , k) which returns the previous position of the first position
of mismatches, when we compare Yj with Xi at position k. Formally,

FM (Xi, Yj , k) = min{1 ≤ h ≤ |Yj | | Xi[k + h − 1] �= Yj [h]} − 1.

Namely, FM (Xi, Yj , k) equals the length of the common prefix of Xi[k : |Xi|]
and Yj when it is not zero. When the common prefix is the empty string ε (when
such h does not exist), let FM (Xi, Yj , k) = 0.

Lemma 3 ([9]). For any variables Xi, Yj and integer k, FM (Xi, Yj , k) can be
computed in O(n log n) time, provided that OL(Xi′ , Xj′) is already computed for
any 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

368 W. Matsubara et al.

kh1 h2

Xi

Yj

Xli Xri

Yrj
Ylj

kh1 h2

Xi

Yj

Xli Xri

Yrj
Ylj

Fig. 1. Illustration of Observation 2 where we “extend” an overlap k as a candidate of
LCStr(T, S)

3.3 Efficient Computation of Longest Common Substrings

The main idea of our algorithm for computing LCStr(T, S) is based on the
following observation.

Observation 1. For any substring Z of string T , there always exists a variable
Xi = X�iXri of SLP T such that:

– Z is a substring of Xi and
– Z touches or covers the boundary between X�i and Xri .

It directly follows from the above observation that any common substring of
strings T, S touches or covers both of the boundaries in Xi and Yj for some
1 ≤ i ≤ n and 1 ≤ j ≤ m.

For any SLP variables Xi = X�iXri and Yj = Y�j Yrj , and k ∈ OL(Xi, Yj), let
ExtXi,Yj (k) = k+h1 +h2 such that h1 = LCSuf (X�i [1 : |X�i |−k], Y�j) and h2 =
LCPref (Xri , Yrj [k + 1 : |Yrj |]). For any k /∈ OL(Xi, Yj), we leave ExtXi,Yj (k)
undefined. For a set S of integers, we define ExtXi,Yj (S) = {ExtXi,Yj (k) | k ∈ S}.
ExtYj ,Xi(k) and ExtYj ,Xi(S) are defined similarly.

The next observation follows from the above arguments (see also Fig. 1):

Observation 2. For any strings T and S, LCStr(T, S) equals to the maximum
element of the set

⋃

1≤i≤n,1≤j≤m

(ExtXi,Yj (OL(X�i , Yrj))∪ExtYj ,Xi(OL(Y�j , Xri))∪LCStr∗(Xi, Yj)),

where LCStr∗(Xi, Yj) = LCSuf (X�i , Y�j) + LCPref (Xri , Yrj).

Based on Observation 2, our strategy for computing LCStr(T, S) is to compute
max(ExtXi,Yj (OL(X�i , Yrj))) and max(ExtYj ,Xi(OL(Y�j , Xri))) for each pair of
Xi and Yj . Lemma 4 shows how to compute max(ExtXi,Yj (OL(X�i , Yrj))) and
max(ExtYj ,Xi(OL(Y�j , Xri))) using FM .

Computing Longest Common Substring and All Palindromes 369

Yj

Ylj Yrj

XriXli

Xi

} case 1

case 4

case 5

} case 2

} case 3

e2 e1

e4
e3

k

Fig. 2. Illustration for the proof of Lemma 4. The dark rectangles represent the overlaps
between X�i and Yrj . Case 6 is the special case where cases 4 and 5 happen at the
same time and case 3 does not exist.

Lemma 4. For any variables Xi = X�iXri and Yj = Y�j Yrj , we can compute
max(ExtXi,Yj (OL(X�i , Yrj))) and max(ExtYj ,Xi(OL(Y�j , Xri))) in O(n2 log n)
time.

Proof. Here we concentrate on computing max(ExtXi,Yj (OL(X�i , Yrj))), as the
case of max(ExtYj ,Xi(OL(Y�j , Xri))) is just symmetric. Let 〈a, d, t〉 be any of the
O(n) arithmetic progressions of OL(X�i , Yrj).

Assume that t > 1 and a < d. The cases where t = 1 or a = d are easier to
show. Let u = Yrj [1 : a] and v = Yrj [a + 1 : d]. For any string w, let w∗ denote
an infinite repetition of w, that is, w∗ = www · · · . Firstly we compute

e1 = LCPref (Xri , (vu)∗) =

{
FM (Yrj , Xri , a+1) if FM (Yrj , Xri , a+1)<d,

FM (Xri , Xri , d + 1) + d otherwise,

e2 = LCSuf (X�i , (vu)∗) = FM (XR
�i

, XR
�i

, d + 1) + d,

e3 = LCPref (Yrj , (uv)∗) = FM (Yrj , Yrj , d + 1) + d,

e4 = LCSuf (Y�j , (uv)∗) =

{
FM (XR

�i
, Y R

�j
, a+1) if FM (XR

�i
, Y R

�j
, a+1)<d,

FM (Y R
�j

, Y R
�j

, d + 1) + d otherwise.

(See also Fig. 2.) As above, we can compute e1, e2, e3, e4 by at most 6 calls of FM .
Note that Xi[|X�i |−e2+1 : |X�i |+e1] is the longest substring of Xi that contains
Xi[|X�i | − d + 1 : |X�i |] and has a period d. Note also that Yj [|Y�j | − e4 + 1 :
|Y�j | + e3] is the longest substring of Yj that contains Yj [|Y�j | + 1 : |Y�j | + d] and
has a period d.

370 W. Matsubara et al.

Let k ∈ 〈a, d, t〉. We categorize ExtXi,Yj (k) depending on the value of k, as
follows.

case 1: When k < min{e3 − e1, e2 − e4}. If k − d ∈ 〈a, d, t〉, it is not difficult to
see ExtXi,Yj (k) = ExtXi,Yj (k − d) + d. Therefore, we have

A = max{ExtXi,Yj (k) | k < min{e3 − e1, e2 − e4}} = ExtXi,Yj (k
′),

where k′ = max{k | k < min{e3 − e1, e2 − e4}}.
case 2: When k > max{e3 − e1, e2 − e4}. If k + d ∈ 〈a, d, t〉, it is not difficult to

see ExtXi,Yj (k) = ExtXi,Yj (k + d) + d. Therefore, we have

B = max{ExtXi,Yj (k) | k > max{e3 − e1, e2 − e4}} = ExtXi,Yj (k
′′),

where k′′ = min{k | k > max{e3 − e1, e2 − e4}}.
case 3: When min{e3 −e1, e2 −e4} < k < max{e3 −e1, e2 −e4}. In this case we

have ExtXi,Yj (k) = min{e1+e2, e3+e4} for any k with min{e3−e1, e2−e4} <
k < max{e3 − e1, e2 − e4}. Thus

C = max{ExtXi,Yj (k) | min{e3 − e1, e2 − e4} < k < max{e3 − e1, e2 − e4}}
= min{e1 + e2, e3 + e4}.

case 4: When k = e3 − e1. In this case we have

D = ExtXi,Yj (k) = k + min{e2 − k, e4} + LCPref (Yrj [k + 1 : |Yrj |], Xri)
= k + min{e2 − k, e4} + FM (Yrj , Xri , k + 1).

case 5: When k = e2 − e4. In this case we have

E = ExtXi,Yj (k) = k + LCSuf (X�i [1 : |X�i | − k], Y�j) + min{e1, e3 − k}
= k + FM (XR

�i
, Y R

�j
, k + 1) + min{e1, e3 − k}.

case 6: When k = e3 − e1 = e2 − e4. In this case we have

F = ExtXi,Yj (k)
= k + LCSuf (X�i [1 : |X�i | − k], Y�j) + LCPref (Yrj [k + 1 : |Yrj |], Xri)

= k + FM (XR
�i

, Y R
�j

, k + 1) + FM (Yrj , Xri , k + 1).

Then clearly the following inequality stands (see also Fig. 2):

F ≥ max{D, E} ≥ C ≥ max{A, B}. (1)

A membership query to the arithmetic progression 〈a, d, t〉 can be answered in
constant time. Also, an element k ∈ 〈a, d, t〉 such that min{e3 − e1, e2 − e4} <
k < max{e3 − e1, e2 − e4} of case 3 can be found in constant time, if such exists.
k′ and k′′ of case 1 and case 2, respectively, can be computed in constant time as
well. Therefore, based on inequality (1), we can compute max(ExtXi,Yj(〈a, d, t〉))
by at most 2 calls of FM , provided that e1, e2, e3, e4 are already computed.

Since OL(X�i , Yrj) contains O(n) arithmetic progressions by Lemma 2, and
each call of FM takes O(n log n) time by Lemma 3, max(ExtXi,Yj(OL(X�i , Yrj)))
can be computed in O(n2 log n) time. �
Now we obtain the main result of this section.

Computing Longest Common Substring and All Palindromes 371

Theorem 2. Problem 1 can be solved in O(n4 log n) time with O(n3) space.

Proof. It follows from Theorem 1 that OL(Xi, Yj) can be computed in O(n4 log n)
time with O(n3) space. For any variables Xi = X�iXri and Yj = Y�j Yrj , by Lem-
mas 2, 3 and 4, max(ExtXi,Yj (OL(X�i , Yrj))) and max(ExtYj ,Xi(OL(Y�j , Xri)))
can be computed in O(n2 log n) time.

Moreover, it is easy to see that

LCSuf (X�i , Y�j) = FM (XR
�i

, Y R
�j

, 1) and
LCPref (Xri , Yrj) = FM (Xri , Yrj , 1).

Thus LCStr∗(Xi, Yj) can be computed in O(n log n) time. Overall, by Observa-
tion 2 it takes O(n4 log n) time and O(n3) to solve Problem 1. �
The following corollary is immediate.
Corollary 1. Given two SLPs T and S describing strings T and S respectively,
the beginning and ending positions of a longest common substring of T and S
can be computed in O(n4 log n) time with O(n3) space.

4 Computing Palindromes from SLP Compressed Strings

In this section we present an efficient algorithm that computes a succinct rep-
resentation of all maximal palindromes of string T , when its corresponding SLP
T is given as input. The algorithm runs in O(n4) time and O(n2) space, where
n is the size of the input SLP T .

For any string T , let Pals(T) denote the set of pairs of the beginning and
ending positions of all maximal palindromes in T , namely,

Pals(T) = {(p, q) | T [p : q] is the maximal palindrome centered at 	p+q
2
}.

Note that the size of Pals(T) is O(|T |) = O(2n). Thus we introduce a succinct
representation of Pals(T) in the next subsection.

4.1 Succinct Representation of Pals(T)

Let Xi denote a variable in T for 1 ≤ i ≤ n. For any variables Xi = X�Xr,
let Pals�(Xi) be the set of pairs of beginning and ending positions of maximal
palindromes of Xi that cover or touch the boundary between X� and Xr, namely,

Pals�(Xi) = {(p, q) ∈ Pals(Xi) | 1 ≤ p ≤ |X�| + 1, |X�| ≤ q ≤ |Xi|, p ≤ q}.

Also, let PPals(T) and SPals(T) denote the set of pairs of the beginning and
ending positions of the prefix and suffix palindromes of T , respectively, that is,

PPals(T) = {(1, q) ∈ Pals(T) | 1 ≤ q ≤ |T |}, and
SPals(T) = {(p, |T |) ∈ Pals(T) | 1 ≤ p ≤ |T |}.

Ga̧sieniec et al. [5] claimed the following lemma:
Lemma 5 ([5]). For any string T , PPals(T) and SPals(T) can be represented
by O(log |T |) arithmetic progressions.
We have the following observation for decomposition of Pals(Xi).

372 W. Matsubara et al.

Observation 3. For any variables Xi = X�Xr,

Pals(Xi) = (Pals(X�) − SPals(X�)) ∪
Pals�(Xi) ∪ ((Pals(Xr) − PPals(Xr)) ⊕ |X�|).

Thus, the desired output Pals(T) = Pals(Xn) can be represented as a combina-
tion of {Pals�(Xi)}n

i=1, {PPals(Xi)}n
i=1 and {SPals(Xi)}n

i=1. Therefore, com-
puting Pals(T) is reduced to computing Pals�(Xi), PPals(Xi) and SPals(Xi),
for every i = 1, 2, . . . , n. The problem to be tackled in this section follows:

Problem 2. Given an SLP T of size n, compute {Pals�(Xi)}n
i=1, {PPals(Xi)}n

i=1

and {SPals(Xi)}n
i=1.

Lemma 6 is useful to compute Pals�(Xi) from SPals(X�) and PPals(Xr).

Lemma 6. For any variable Xi = X�Xr and any (p, q) ∈ Pals�(Xi), there
exists an integer l ≥ 0 such that (p+ l, q− l) ∈ SPals(X�)∪ (PPals(Xr)⊕|X�|)∪
{(|X�|, |X�| + 1)}.
Proof. Since Xi[p : q] is a palindrome, Xi[p + l : q − l] is also a palindrome for
any 0 ≤ l < 	p+q

2
. Then we have the following three cases:

1. When 	p+q
2
 < |X�|, for l = p − |X�|, we have (p + l, q − l) ∈ SPals(X�).

2. When 	p+q
2
 > |X�|, for l = |X�| − p + 1, we have (p + l, q − l) ∈ PPals(Xr).

3. When 	p+q
2
 = |X�|, if q − p + 1 is odd, then the same arguments to case 1

apply, since X�[|X�|] = X�[|X�|]R and (|X�|, |X�|) ∈ SPals(X�). If q − p + 1
is even, let l = |X�| − p. In this case, we have p + q = 2|X�| + 1. Thus,
p + l = |X�| and q − l = |X�| + 1. �

By Lemma 6, Pals�(Xi) can be computed by “extending” all palindromes in
SPals(X�) and PPals(Xr) to the maximal within Xi, and finding the maxi-
mal even palindromes centered at |X�| in Xi. In so doing, for any (maximal
or non-maximal) palindrome P = Xi[p : q], we define function ExtXi so that
ExtXi(p, q) = (p − h, q + h), where h ≥ 0 and Xi[p − h : q + h] is the maximal
palindrome centered at position 	p+q

2
 in Xi. For any p, q with Xi[p : q] not being
a palindrome, we leave ExtXi(p, q) undefined. For a set S of pair of integers, let
ExtXi(S) = {ExtXi(p, q) | (p, q) ∈ S}.

The next observations give us a recursive procedure to compute Pals�(Xi).

Observation 4. For any variable Xi = X�Xr,

Pals�(Xi) = ExtXi(SPals(X�)) ∪ ExtXi(PPals(Xr)) ∪ Pals∗(Xi), where

Pals∗(Xi) = {(|X�| − l + 1, |X�| + l) ∈ Pals(Xi) | l ≥ 1}.

PPals(Xi) and SPals(Xi) can be computed from Pals�(Xi) as follows:

Observation 5. For any variable Xi = X�Xr,

PPals(Xi) = PPals(X�) ∪ {(1, q) ∈ Pals�(Xi)} and
SPals(Xi) = (SPals(Xr) ⊕ |X�|) ∪ {(p, |Xi|) ∈ Pals�(Xi)}.

Computing Longest Common Substring and All Palindromes 373

4.2 Efficient Computation of Pals�(Xi)

Let us first briefly recall the work of [10,11]. For any variables Xi = X�Xr and
Xj , we define the set Occ�(Xi, Xj) of all occurrences of Xj that cover or touch
the boundary between X� and Xr, namely,

Occ�(Xi, Xj) = {s > 0 | Xi[s : s + |Xj| − 1] = Xj , |X�| − |Xj | + 1 ≤ s ≤ |X�|}.

Theorem 3 ([11]). For any variables Xi and Xj, Occ�(Xi, Xj) can be com-
puted in total of O(n3) time and O(n2) space.

Lemma 7 ([10]). For any variables Xi, Xj and integer k, FM (Xi, Xj , k) can
be computed in O(n2) time, provided that Occ�(Xi′ , Xj′) is already computed
for any 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

Lemma 8. For any variable Xi = X�Xr and any arithmetic progression 〈a, d, t〉
with (1, 〈a, d, t〉) ⊆ PPals(Xr), ExtXi((1, 〈a, d, t〉)) can be represented by at most
2 arithmetic progressions and a pair of the beginning and ending positions of a
maximal palindrome, and can be computed by at most 4 calls of FM . Similar for
ExtXi((〈a, d, t〉, |X�|)) with (〈a′, d′, t′〉, |X�|) ⊆ SPals(X�).

Proof. By Lemma 3.4 of [13]. �
We are now ready to prove the following lemma:

Lemma 9. For any variable Xi = X�Xr, Pals�(Xi) requires O(log |Xi|) space
and can be computed in O(n2 log |Xi|) time.

Proof. Recall Observation 4. It is clear from the definition that Pals∗(Xi) is
either singleton or empty. When it is a singleton, it consists of the maximal even
palindrome centered at |X�|. Let l = FM (Xr, X

R
� , 1). Then we have

Pals∗(Xi) =

{
∅ if l = 0,
{(|X�| − l + 1, |X�| + l)} otherwise.

Due to Lemma 7, Pals∗(Xi) can be computed in O(n2) time.
Now we consider ExtXi(SPals(X�)). By Lemma 7 and Lemma 8, each subset

ExtXi((1, 〈a, d, t〉)) ⊆ ExtXi(SPals(X�)) requires O(1) space and can be com-
puted in O(n2) time. It follows from Lemma 5 that ExtXi(SPals(X�)) consists
of O(log |Xi|) arithmetic progressions. Thus ExtXi(SPals(X�)) can be computed
in O(n2 log |Xi|) time. Similar arguments hold for ExtXi(PPals(Xr)). �

4.3 Results

Theorem 4. Problem 2 can be solved in O(n4) time with O(n2) space.

Proof. Firstly we analyze the time complexity. From Theorem 3 preprocessing
for the FM function takes O(n3) time. By Lemma 7, each call of FM takes
O(n2) time. It follows from Lemma 9 that Pals�(Xi) can be computed in O(n3)

374 W. Matsubara et al.

time. By Observation 5, PPals(Xi) and SPals(Xi) can be computed in O(n)
time from Pals�(Xi). Hence the overall time cost to compute {PPals(Xi)}n

i=1,
{SPals(Xi)}n

i=1, and {Pals�(Xi)n
i=1} is O(n4).

Secondly we analyze the space complexity. The preprocessing for the FM func-
tion requires O(n2) due to Theorem 3. From Lemma 5 PPals(Xi) and SPals(Xi)
require O(n) space. Lemma 9 states that Pals�(Xi) requires O(n) space. Thus
the total space requirement is O(n2). �
The following two theorems are results obtained by slightly modifying the algo-
rithm of the previous subsections.

Theorem 5. Given an SLP T that describes string T , whether T is a palin-
drome or not can be determined with extra O(1) space and without increasing
asymptotic time complexities of the algorithm.

Proof. It suffices to see if (1, |T |) ∈ PPals(T) = PPals(Xn). By Lemma 5,
PPals(Xn) can be represented by O(n) arithmetic progressions. It is not dif-
ficult to see that T is a palindrome if and only if a + (t − 1)d = |T | for the
arithmetic progression 〈a, d, t〉 of the largest common difference among those
in PPals(Xn). Such an arithmetic progression can easily be found during com-
putation of PPals(Xn) without increasing asymptotic time complexities of the
algorithm. �
Theorem 6. Given an SLP T that describes string T , the position pair (p, q)
of the longest palindrome in T can be found with extra O(1) space and without
increasing asymptotic time complexities of the algorithm.

Proof. We compute the beginning and ending positions of the longest palindrome
in Pals�(Xi) for i = 1, 2, . . . , n. It takes O(n) time for each Xi. If its length
exceeds the length of the currently kept palindrome, we update the beginning
and ending positions. �
Provided that {PPals(Xi)}n

i=1, {SPals(Xi)}n
i=1, and {Pals�(Xi)n

i=1} are already
computed, we have the following result:

Theorem 7. Given pair (p, q) of integers, it can be answered in O(n) time
whether or not substring T [p : q] is a maximal palindrome of T .

Proof. We binary search the derivation tree of SLP T until finding the variable
Xi = X�Xr such that 1 + offset ≤ p ≤ |X�| + offset and 1 + offset + |X�| ≤ q ≤
|Xi| + offset . This takes O(n) time. Due to Observation 4, for each variable Xi,
Pals�(Xi) can be represented by O(n) arithmetic progressions plus a pair of the
beginning and ending positions of a maximal palindrome. Thus, we can check if
(p, q) ∈ Pals�(Xi) in O(n) time. �
Finally we supply pseudo-codes of our algorithms.

Algorithm ComputeLCStr
Input: SLP T = {Xi}n

i=1, S = {Yj}m
j=1.

L = ∅;
for i = 1 . . . n do
for j = 1 . . . m do
compute OL(Xi, Yj) and OL(Yj , Xi);

Algorithm ComputePalindromes
Input: SLP T = {Xi}n

i=1.
for i = 1 . . . n do

SPals(Xi) = ∅; PPals(Xi) = ∅;
Pals�(Xi) = ∅;

Computing Longest Common Substring and All Palindromes 375

for i = 1 . . . n do
for j = 1 . . . m do
if Xi = a then /* a ∈ Σ */
L = L ∪ LCSuf (Yj� , Xi)

∪LCPref (Yjr , Xi);
else if Yj = a then /* a ∈ Σ */
L = L ∪ LCSuf (Xi� , Yj)

∪LCPref (Xir , Yj);
else /* Xi = X�Xr and Yi = Y�Yr */
L = L ∪ LCStr∗(Xi, Yj)

∪ExtXi,Yj (OL(X�i , Yrj))
∪ExtYj ,Xi(OL(Y�j , Xri));

return max(L);

for i = 1 . . . n do
if Xi = a then
SPals(Xi) = (1, 1); PPals(Xi) = (1, 1);

Pals�(Xi) = (1, 1);
else /* Xi = X�Xr */
seed = SPals(X�) ∪ (PPals(Xr) ⊕ |X�|);
Pals�(Xi) = ExtXi(seed) ∪ Pals∗(Xi);
SPals(Xi) = SPals(Xr)

∪{(1, q) ∈ Pals�(Xi)};
PPals(Xi) = PPals(X�)

∪{(p, |X�|) ∈ Pals�(Xi)};
return Pals�(X1), . . . ,Pals�(Xn);

References

1. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Info. Theory IT-23(3), 337–349 (1977)

2. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Trans. Info. Theory 24(5), 530–536 (1978)

3. Kieffer, J., Yang, E., Nelson, G., Cosman, P.: Universal lossless compression via
multilevel pattern matching. IEEE Trans. Info. Theory 46(4), 1227–1245 (2000)

4. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of hi-
erarchical grammars. In: DCC 1994, pp. 244–253. IEEE Press, Los Alamitos (1994)

5. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms
for Lempel-Ziv encoding. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS,
vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

6. Rytter, W.: Grammar compression, lz-encodings, and string algorithms with im-
plicit input. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004)

7. Inenaga, S., Shinohara, A., Takeda, M.: An efficient pattern matching algorithm on
a subclass of context free grammars. In: Calude, C.S., Calude, E., Dinneen, M.J.
(eds.) DLT 2004. LNCS, vol. 3340, pp. 225–236. Springer, Heidelberg (2004)

8. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van
Leeuwen, J. (ed.)ESA1994.LNCS,vol. 855, pp. 460–470. Springer,Heidelberg (1994)

9. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

10. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.)
CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)

11. Lifshits, Y.: Processing compressed texts: A tractability border. In: CPM 2007.
LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

12. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Hei-
delberg (2006)

13. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a
string. Theoretical Computer Science 141, 163–173 (1995)

Basic Sets in the Digital Plane

Neža Mramor-Kosta1,� and Eva Trenklerová2,��

1 University of Ljubljana, Faculty of Computer and Information Science and Institute
of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia

neza.mramor@fmf.uni-lj.si
2 Institute of Computer Science

Faculty of Science
P.J.Šafárik University

Jesenná 5, 04001 Košice, Slovakia
eva.trenklerova@upjs.sk

Abstract. A set K in the plane R2 is basic if each continuous func-
tion f : K → R can be expressed as a sum f(x, y) = g(x) + h(y) with
g, h : R → R continuous functions. Analogously we define a digital set
Kk in the digital plane to be basic if for each digital function f : Kk → R

there exist digital functions g, h : Ik → R on the digital unit interval Ik

such that f(x, y) = g(x) + h(y) for each pixel (x, y) ∈ Kk. Basic subsets
of the plane were characterized by Sternfeld and Skopenkov. In this pa-
per we prove a digital analogy of this result. Moreover we explore the
properties of digital basic sets, and their possible use in image analysis.

Keywords: Basic Sets in the Plane, Digital Topology.

1 Introduction

A set K ⊂ Rn is a basic subset of Rn if for each continuous function f : K → R

there exist continuous functions g1, . . . , gn : R → R such that f(x1, . . . , xn) =
g1(x1) + . . . + gn(xn) for each point (x1, . . . , xn) ∈ K.

Basic sets are connected to the thirteenth problem from Hilbert’s list of 23
open mathematical problems formulated in his famous lecture at the Interna-
tional Congress of Mathematics in Paris in 1900. The problem contained the
conjecture that not all continuous functions of three variables are representable
as superpositions of continuous functions of two variables. This conjecture can
be reformulated in terms of basic subsets of dimension 3. It was refuted in a se-
ries of papers by Arnold [1,2] and Kolmogorov [3,4]. Results of Kolmogorov [4],
Ostrand [5] and Sternfeld [9] show that compact sets which can be embedded as
basic subsets of the unit cube In for n > 2 are characterized by dimension: for
a compact set K there exists an embedding (a continuous injective map with
continuous inverse) ϕ : K → In such that ϕ(K) ⊂ In is a basic subset if and

� Partially funded by the Research Agency of Slovenia, grant no. P1-0292.
�� The author was supported by grants VEGA 1/3002/06 and VEGA 1/3128/06.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 376–387, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Basic Sets in the Digital Plane 377

only if the dimension of K is not greater than (n − 1)/2, where n > 2. For
n = 2, Sternfeld [10] also gave a characterization of compact basic subsets K of
I2, which can be expressed in terms of sequences of a special type called arrays.

Definition 1. An array is a sequence of points {(xi, yi) | i ∈ I}, where I =
{1, 2, . . . , m} for some m ∈ N such that either x2i−1 = x2i and y2i = y2i+1 for
all triples of indeces 2i − 1, 2i, 2i + 1 ∈ I or y2i−1 = y2i and x2i = x2i+1 for all
2i−1, 2i, 2i+1 ∈ I and no two consecutive points are equal. If I = {1, 2, . . . , m}
then the length of the array is m. We say that the array is closed, if (x1, y1) =
(xm, ym).

Fig. 1. Arrays in I2

According to Sternfeld’s characterization and its reformulation by Skopenkov [8],
a compact subset K of I2 is basic if and only if there exists a constant M ∈ N

such that the lengths of arrays in K are bounded by M . Although Sternfeld’s
characterization is formulated in elementary terms, his proof is not construc-
tive, and uses arguments from functional analysis. This work was motivated by
an attempt to find a direct constructive proof of Sternfeld’s theorem which is
described in [11].

The approach used there leads naturally to a digital formulation of basic sets
which we describe in this contribution.

In the digital setting, we consider the digital unit square I2k, k = 1, 2, . . ., i.e.
the unit square subdivided into k × k cells (pixels)

I2k = {eij | i = 1, . . . , k, j = 1, . . . , k} ,

where each cell eij is a product of half-open intervals

eij = ai × bj = [(i − 1)/k, i/k) × [(j − 1)/k, j/k) .

The digital square can be thought of as the product I2k = Ik × Ik, where Ik

denotes the digital unit interval

Ik = {[(i − 1)/k, i/k) | i = 1, . . . , k} .

A digital set Kk ⊂ I2k is a collections of cells eij , and a digital function fk : Kk →
R associates a real number to each cell in Kk. If we identify a digital set Kk ⊂ I2k
with the union of its cells, then a digital function on Kk can be thought of as a
piecewise constant function with constant value on each cell eij ∈ Kk.

378 N. Mramor-Kosta and E. Trenklerová

As in the classical case, we define:

Definition 2. A digital set Kk ⊂ I2k is basic if for each function fk : Kk → R

there exist functions gk, hk : Ik → R such that fk(eij) = gk(ai) + hk(bj) for each
cell eij = ai × bj ∈ Kk.

In Section 2 we prove a digital analogue of Sternfeld’s theorem, stating that a
digital set Kk ⊂ I2k is basic precisely when it contains no closed arrays (Theorem
1). We also prove an upper and lower bound on the norms of the functions gk, hk

in the decomposition. We show that this condition does not suffice to obtain
digitally continuous decompositions in the sense of [7]: a digitally 8-continuous
function fk on Kk ⊂ I2k can not be decomposed as a sum fk = gk +hk of digitally
continuous functions gk, hk on the digital interval.

In Section 3 we describe an application of digital basic sets to image analysis.
A gray-scale image can be thought of as a digital function on the digital square
[6], and a decomposition of the foreground of the picture as a union of digital
basic subsets enables, in some cases, a compressed representation of the image.

In the last section, Section 4, the following result of [11] is reformulated in the
digital setting. Let K ⊂ I2 be a compact set which contains no arrays of length
more than two, and f : K → R a continuous function. For each ε > 0 there
exists a k, a digital subset Kk ⊂ I2k approximating the set K, and continuous
functions gk, hk : I → R which are linear on all segments [(i − 1)/k, i/k] ⊂ [0, 1],
i = 1, . . . , k such that

|f(x, y) − gk(x) − hk(y)| < ε.

In addition, the norms of the function gk and hk are bounded by twice the norm
of f , which implies the convergence of the sequences {gk}, {hk} to continuous
functions on I.

2 Digital Basic Sets

Let pk, qk : I2k → Ik denote the vertical and the horizontal projections respec-
tively, i.e. pk(eij) = ai, qk(eij) = bj.

Definition 3. A (digital) array of length m in I2k is a sequence of cells {e1,
e2, . . . , em}, en = ain × bjn , n = 1, . . . , m, such that both ai2j−1 = ai2j and
bi2j = bi2j+1 for all j or both bi2j−1 = bi2j and ai2j = ai2j+1 for all j, with no two
consecutive cells equal.

Let us prove a digital analogue of Sternfeld’s characterization of compact basic
sets in the plane stating that a digital set Kk ⊂ I2k is basic if and only if it
contains no arrays of arbitrary length.

Since a digital set is a finite collection of cells this is equivalent to proving that
Kk is basic if and only if it contains no closed array, i.e. no array {e1, e2, . . . , em}
with e1 = em.

Theorem 1. A digital set Kk ⊂ I2k is a basic subset of I2k if and only if it
contains no closed array.

Basic Sets in the Digital Plane 379

e1

e2

e5 e4

e3

e6

Fig. 2. Digital array

Proof. Let Kk contain a closed array {e1, . . . , em}, e1 = em. The length m must
be odd. Let for example ai1 = ai2 , bi2 = bi3 , ai3 = ai4 , . . ., bim−1 = bim = bi1 .
Let fk : Kk → R be such that fk(e2n−1) = 1 and fk(e2n) = −1 for all n. Let us
assume that fk is decomposed as gk + hk. Then

1 = g(ai1) + h(bi1)
−1 = g(ai1) + h(bi2)

1 = g(ai3) + h(bi2)
...

1 = g(aim−2) + h(bim−3)
−1 = g(aim−2) + h(bi1)

By adding up with changing sign we get m − 1 = 0. Contradiction. So Kk is not
basic.

Let us show the opposite implication. We will call a set A ⊂ Kk such that for
each pair of cells e �= e′ from A there exists an array in A with end cells e, e′

an array structure. An array structure is maximal if it is not contained in any
larger array structure in Kk.

Let fk be a digital function on Kk and let Kk be decomposed as
⋃

i∈I Ai,
where each Ai is a maximal array structure. Evidently the decomposition is
unique and pk(Ai) ∩ pk(Aj) = ∅ and qk(Ai) ∩ qk(Aj) = ∅ for any two different
i, j. So it suffices to find a decomposition

fk(eij) = gk(pk(eij)) + hk(qk(eij))

on each maximal array structure separately.
Let A be a maximal array structure in Kk, and e = a × b ∈ A any cell. Let

gk(a) be arbitrary, and hk(b) = fk(e) − gk(a). Since any cell in A is connected
to e by an array, the values of gk, hk on all other cells in pk(A) and qk(A) are
then determined – they are defined inductively, in the following way.

380 N. Mramor-Kosta and E. Trenklerová

0. Let D0 = {e} be a single cell.
1. After an even number of steps of the construction, suppose that gk, hk are

defined for all cells eij = ai × bj on a subset D2k of A, and let D2k+1 be
obtained by adding to D2k all cells ei′j′ ∈ A \ D2k which form a horizontal
pair with some cell eij′ ∈ D2k. For every such cell, hk is defined but gk is
not defined yet, since this would imply the existence of a closed array in A.
On every such cell we define gk(ai′) = f(ei′j′) − hk(bj′).

2. After an odd number of steps of the construction, gk and hk are defined
on a set D2k+1, and D2k+2 is obtained by adding to D2k+1 all cells ei′j′

of A \ D2k+1 which form a vertical pair with some cell of D2k+1. For every
such cell, gk is defined, while hk is not defined yet, and we set hk(bj′) =
f(ei′j′) − gk(ai′).

3. Since A is a finite collection of cells, Dl = A for some l.

Remark 1. Since a pixel in the digital plane can be represented by its center, a
digital sets can be represented as a finite set, which is compact. Theorem 1 thus
follows directly from the continuous case. But, unlike the proof of the continuous
case [10], this proof is constructive.

Theorem 1 shows that in order to store the values of a function fk on a basic
digital set Kk in I2k, it suffices to store the values of gk and hk on the projections
pk(Kk) and qk(Kk). For example, the gray-scale function fk of a digital image
representing an object whose form is a basic digital set Kk can be reconstructed
from the values of gk and hk. The values of gk and hk are not restricted to the
range of fk any more, though. The following proposition gives bounds for the
norms of gk and hk, which ensure that the computation required to reconstruct
fk from gk and hk does not involve very large numbers.

Proposition 1. Let Kk ⊂ I2k be a basic digital set, and let M be the maximal
length of an array in Kk. For any digital function fk : Kk → R there exists a
decomposition fk(eij) = gk(ai) + hk(bj) such that

max{‖gk‖, ‖hk‖} ≤ M‖fk‖.

Proof. Let Di be as in the proof of Theorem 1. On D0 = {e = a × b} define
gk(a) = 0 and hk(b) = fk(e). Then ‖gk‖ = 0 and ‖hk‖ = ‖fk‖ on D0. At
each even step of the construction the norm of hk|D2k is bounded by the sum
of the norm of gk|D2k−1 and the norm of fk. Similarly, at each odd step of the
construction the norm of gk|D2k+1 is bounded by the sum of the norm of hk|D2k

and the norm of fk. Since the number of steps in the construction is at most
M − 1, we obtain the required bound.

There is also a lower bound on the norms.

Proposition 2. For each M there exists a set Kk which contains arrays of
length at most M and a function fk on Kk such that for each decomposition
fk(eij) = gk(ai) + hk(bj) we have

min{‖gk‖, ‖hk‖} ≥ (M − 2)‖fk‖.

Basic Sets in the Digital Plane 381

Proof. Let Kk be the set of cells {e11, e31, e33, . . . , eMM} for an odd M and
{e11, e31, e33, . . . , e(M+1)(M−1)} for an even M (see Figure 3). Define fk as
fk(e(2i−1)(2i−1)) = 1 and fk(e(2i+1)(2i−1)) = −1, then ‖fk‖ = 1. For any value of
gk(a1) we have hk(b1) = 1 − gk(a1), gk(a3) = −gk(a1) − 2, hk(b3) = 3 + gk(a1),
etc. and the result can easily be seen.

1 −1

1 −1

1

1

0

10

Fig. 3. Proposition 2 for M = 2 (left) and Proposition 3 (right)

Let us consider continuity. A function fk : Kk → Z is said to be 8-continuous (see
[7]) if |fk(eij)− fk(ei′j′)| ≤ 1 for each cell eij ∈ K2

k and for all cells ei′j′ ∈ Kk in
the 8-neighborhood of eij , i.e. max{|i − i′|, |j − j′|} = 1. A function gk : Ik → Z

is said to be continuous if |gk(ai) − gk(ai′)| ≤ 1 for each two cells ai, ai′ such
that |i − i′| ≤ 1.

Proposition 3. There exists a set Kk ⊂ Ik which contains no closed array and
an 8-continuous function fk : Kk → Z such that there does not exist a decom-
position fk(eij) = gk(ai) + hk(bj), gk, hk : Ik → Z, with both functions gk, hk

continuous.

Proof. Let K = {e11, e13, e22, e23}. Let fk(e11) = 1, fk(e13) = 0, fk(e22) =
0, fk(e23) = 1 (see Figure 3). Let gk(a1) be arbitrary. Then

hk(b1) = fk(e11) − gk(a1) = 1 − gk(a1)
hk(b3) = fk(e13) − gk(a1) = 0 − gk(a1)
gk(a2) = fk(e23) − hk(b3) = 1 − hk(b3) = 1 + gk(a1)
hk(b2) = fk(e22) − gk(a2) = 0 − gk(a2) = −1 − gk(a1).

Now in the adjacent cells b1, b2 we have |hk(b1) − hk(b2)| = 2.

In the discrete case, the number of subsets Kk ⊂ I2k is finite and the question is
how many sets among all nonempty subsets Kk ⊂ I2k are basic. As noted in the
beginning of this section this number is equal to the number of all sets containing
no closed arrays, and can be computed by counting. For example, for k = 3, it
is equal to 328. Figure 4 shows, up to symmetry, all the maximal basic subsets
(i.e. those not contained in any bigger basic set) of I23.

For small values of k, we have computed the number of basic sets using an
algorithm which searches through the space of all possible sets I23. The idea is to
try to add one cell at a time – if the cell does not close any array already in the

382 N. Mramor-Kosta and E. Trenklerová

Fig. 4. Basic subsets of I23

Table 1. The number and the mean size of the maximal basic sets in I2k

k No. of non-empty basic sets Size of maximal basic sets

2 11 3
3 328 5
4 16 145 7
5 1 475 856 9

set we add the cell and continue searching, in any case we continue searching
without the cell. The algorithm has exponential complexity. Table 1 gives the
numbers of the non-empty basic sets. The maximal basic sets have the same size
for a given k.

Problem 1. Find a closed form expression for the number of basic subsets of I2k
for an arbitrary k.

The problem of determining whether a given set Kk ⊂ I2k is basic is much simpler,
and can be solved in polynomial time. It is equivalent to finding cycles in a graph
of a special type. The algorithm goes through all cells of Kk and constructs the
set of arrays.

array A := ∅
set of arrays SA := {some cell c′}
for all cells c from Kk not in SA

for all arrays B from SA
if c has a horizontal or vertical neighbor in B

if c has both a horizontal and vertical neighbor in B
“We have a closed array”
exit

else
if A=∅

add c to B
A:=B

else
delete B from SA and connect B to A

if c was not added anywhere
add {c} as a new array to SA

Basic Sets in the Digital Plane 383

3 An Application

In this section we describe an application of digital basic sets to image analysis.
An example of a digital function on the digital square is the gray-scale function

of a digital image of resolution k × k. A digital image representing an object on
a uniform background is given by a digital function fk on I2k. The support Kk

of fk is in general not a basic set, but it can be decomposed into a union of
basic sets. Our idea is that, if this decomposition is done carefully, only a small
number of these basic subsets suffices for an approximate reconstruction of the
digital image.

In Figure 5, the left picture represents a gray-scale image of a tree on a white
background. The resolution of the image is 249 × 249.

Fig. 5. A gray-scale image consisting of 249 × 249 pixels

In order to decompose the foreground, i.e. the union of cells which are not
white, into basic sets we have used a straightforward algorithm, which produced
a decomposition consisting of 61 basic sets. The right picture in Figure 5 shows
the reconstruction obtained from the first 20 sets in the decomposition.

The total number of nonzero values (non-white cells) in this example is 16157,
while the total number of nonzero values of the functions g249 and h249 on all the
sets in the decomposition is 8163+7968 = 16131, so the complete reconstruction
would require approximately as many stored values as the original image. An
approximate reconstruction represents a substantial reduction in the required
number of stored values, though. Figure 6 shows two reconstruction obtained
from every 2nd and every 10th basic set, respectively.

In order to use basic decomposition for image compression one would need
an efficient algorithm for decomposing a given set into basic sets. A part of this
problem is finding the smallest number of necessary basic sets, and an upper
bound for this is the number of basic sets necessary to cover the whole square
I2k. Clearly, two basic sets are necessary to cover the square I22. In general k basic
sets suffice to cover the square I2k, but Figure 4 shows that the square I23 can
be covered by 2 basic sets (for example, by the first maximal basic set and its
complement).

Problem 2. What is smallest number of basic sets necessary to cover the square
I2k?

384 N. Mramor-Kosta and E. Trenklerová

Fig. 6. Reconstructions on the basis of basic sets

In our example the basic sets included in the reconstructions where chosen ar-
bitrarily. A good criterion for choosing the basic sets included would certainly
improve the reconstruction. One possibility would be to use the size of the sets
as a criterion, that is, include only the basic sets which are big enough.

4 Digital Approximations of Basic Sets in I2

Definition 4. The digital approximation at resolution k of a set K ⊂ I2 is the
digital set Kk ⊂ Ik consisting of cells e such that e ∩ K �= ∅.

The digital approximation of a compact set K in the plane which is basic, i.e.
contains only arrays of limited length, might not be a basic digital set. There
exist basic sets K ⊂ R2 such that the digital approximation at every resolution
contains a closed array. An example of such a set is shown on Figure 7. The set
consists of a single arc and three additional points, which form an array. There
also exist examples of compact sets in the plane containing only arrays of length
two, such that each digital approximation contains a closed array (as they are
rather complicated we do not give them here).

However, it is possible to construct an approximate decomposition fk =
gk + hk of a function fk : Kk → R, although the set Kk may contain a closed

Fig. 7. A set and its digital approximation

Basic Sets in the Digital Plane 385

digital array. In addition, if Kk is the digital approximation of a basic set K and
fk a digital function approximating a continuous function f on K then, for k
big enough, it is possible to find an approximate decomposition fk = gk + hk

with digitally continuous functions gk and hk. This idea was used in [11] in the
construction of a decomposition f(x, y) = g(x)+h(y) of a function f on a set K
containing no arrays of length more than two. Such a construction is nontrivial
even in this simplest case. We give a digital formulation of the main steps of this
construction.

Definition 5. The digital approximation at resolution k of a function f : K → R

is the digital function fk : Kk → R on the digital approximation Kk of K defined as

fk(e) = inf{f(x, y) | (x, y) ∈ e ∩ K} .

Since the digital approximation fk of a continuous function has values in R, and
not in Z, we will use the following natural modification of the definition of digital
continuity from Section 2:

Definition 6. A digital function gk : Ik → R is said to be ε-continuous if |gk(ai)−
gk(ai′)| ≤ ε for each two cells ai, ai′ such that |i − i′| ≤ 1.

The following theorem is a digital reformulation the main result of [11].

Theorem 2. Let K ⊂ I2 be a compact set which contains no arrays of length
more than m = 2, and f : K → R a continuous function. For each ε > 0
there exists a k ∈ N such that for the digital set Kk ⊂ I2n approximating K
and for the digital function fk : Kk → R approximating f there exist functions
gk, hk : I2k → R such that

|fk(ai, bj) − gk(ai) − hk(bj)| ≤ ε

for each cell (ai, bj) from Kk. Moreover the functions gk and hk are ε-digitally
continuous and their norms are bounded by 2||f ||.
The set Kk in Theorem 2 is not necessarily basic in the digital sense. But it has
a different property which somehow mimics the fact that K does not contain
arrays of length more than 2.

We say that two cells eij , ei′j′ ∈ I2 form an almost vertical or almost horizontal
pair , if |i − i′| ≤ 1 or |j − j′| ≤ 1, respectively. An extended arc is a sequence
of cells {e1, . . . , em} in I2k such that each two cells ei and ei+1 form an almost
horizontal or vertical pair, see Figure 8. The length of this extended arc is m.

Definition 7. A set Kk ∈ I2k is called (α, l)-faithful if it has the following prop-
erty: for each almost vertical pair e1, e2 ∈ Kk and each almost horizontal pair
e3, e4 ∈ Kk with |e1 − e2| > α, |e3 − e4| > α, the length of each extended arc in
Kk connecting e2 to e3 is at least l.

The following theorem is a digital version of [11][Lemma 3.5].

386 N. Mramor-Kosta and E. Trenklerová

e1

e2

e3

e4 e5

e6

e7 e8

Fig. 8. An extended arc

Theorem 3. Let a compact set K ⊂ I2 contain arrays of length at most two.
For each α ∈ R, α > 0 and for each l ∈ N there exists k ∈ N such that the digital
set Kk approximating K is (α, l)-faithful.

Theproof of the next theorem is a digital reformulation of the proof of [11][Theorem
3.4] with different constants.

Theorem 4. Let Kk be a digital set which is (α, l)-faithful. Let fk : Kk → R be
a digital function. Let β = β(α, fk) be such that |fk(e) − fk(e′)| < β for all cells
e, e′ with |e−e′| < α. Let η = max {β, ||f ||/l} . Then there exist digital functions
gk, hk : I2k → R such that

1. |fk(eij) − gk(ai) − hk(bj)| ≤ 10η for each cell eij ∈ Kk

2. |gk(ai) − gk(ai+1)| ≤ 10η for all ai, ai+1 ∈ pk(Kk)
3. |hk(bj) − hk(bj+1)| ≤ 10η for all bi, bi+1 ∈ qk(Kk)
4. max{||gk||, ||hk||} ≤ 2||fk||.

Proof (Proof of Theorem 2). Let ε > 0 be arbitrary. The function f is uniformly
continuous on the compact set K, so there exists an α > 0 such that |f(x, y) −
f(x′, y′)| < ε/10 for each (x, y), (x′, y′) ∈ K with |(x, y) − (x′, y′)| < α. Let
l = 10||f ||/ε. According to Theorem 3 there exists a k ∈ N such that the set
Kk approximating K is (α, l)-faithful. If we set β in Theorem 4 to ε/10, then
η = ε/10 and it follows that there exist gk and hk such that |fk(eij) − gk(ai) −
hk(bj)| ≤ ε and max{||gk||, ||hk||} ≤ 2||fk|| ≤ 2||f ||.
The construction of an approximate continuous decomposition fk

∼= gk + hk in
the proof of [11][Theorem 3.4] is quite involved already in the simple case of sets
K with arrays of length at most m = 2. It can be modified to the case m = 3,
and we believe that it can be modified to cover the case of a general m. For
now the technical difficulties seem too big, though. Such a modification would
provide a constructive proof of the theorem of Sternfeld [10] giving an answer to
a question posed by Skopenkov. We thus conclude with the following problem
which is still open.

Problem 3. Generalize the construction in the proof of Theorem 2 to a general m.

Basic Sets in the Digital Plane 387

References

1. Arnold, V.I.: On functions of three variables. Dokl. Akad. Nauk SSSR 114, 679–681
(1957)

2. Arnold, V.I.: On the representation of continuous functions of three variables by
superpositions of continuous functions of two variables. Math. Sb (N.S.) 48(90),
3–74 (1959)

3. Kolmogorov, A.N.: On the representations of continuous functions of many vari-
ables by superpositions of continuous functions fewer variables. Dokl. Akad. Nauk
SSSR 108, 179–182 (1956)

4. Kolmogorov, A.N.: On the representations of continuous functions of many vari-
ables by superpositions of continuous functions of one variable and addition. Dokl.
Akad. Nauk SSSR 114, 953–956 (1957)

5. Ostrand, P.A.: Dimension of metric spaces and Hilbert’s problem 13. Bull. Amer.
Math. Soc. 71, 619–622 (1965)

6. Rosenfeld, A.: Digital Topology. The Amer. Math. Monthly 86(8), 621–630 (1979)
7. Rosenfeld, A.: ‘Continuous’ functions on digital pictures. Pattern Recognition Let-

ters 4, 177–184 (1986)
8. Skopenkov, A.: A description of continua basically embeddable in R2. Topology

Appl. 65, 29–48 (1995)
9. Sternfeld, Y.: Dimension, superposition of functions and separation of points, in

compact metric spaces. Israel J. Math. 50, 13–52 (1985)
10. Sternfeld, Y.: Hilbert’s 13th problem and dimension. Lect. Notes Math., vol. 1376,

pp. 1–49. Springer, Heidelberg (1989)
11. Trenklerová, E.: Constructive decomposition of functions of two variables us-

ing functions of one variable. In: submitted to Proc. Amer. Math. Soc. (2007),
arXiv:math/0702822v1

Algebraic Optimization of Relational Queries

with Various Kinds of Preferences�

Radim Nedbal

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

radned@seznam.cz

Abstract. Preferences can be used for information filtering and extrac-
tion to deliver the most relevant data to the user. Therefore the efficient
integration of querying with preferences into standard database technol-
ogy is an important issue. The paper resumes a logical framework for for-
mulating preferences and their embedding into relational algebra through
a single preference operator parameterized by a set of user preferences
of sixteen various kinds and returning only the most preferred subsets
of its argument relation. Most importantly, preferences between sets of
elements can be expressed. To make a relational query language with the
preference operator useful for practical applications, formal foundation
for algebraic optimization, applying heuristics like push preference, has
to be provided. Therefore abstract properties of the preference opera-
tor and a variety of algebraic laws describing its interaction with other
relational algebra operators are presented.

Keywords: logic of preference, relational query, optimization.

1 Introduction

If users have requirements that are to be satisfied completely, their database
queries are characterized by hard constraints, delivering exactly the required ob-
jects if they exist and otherwise empty result. This is how traditional database
query languages treat all the requirements on the data. However, requirements
can be understood also in the sense of wishes: in case they are not satisfied,
database users are usually prepared to accept worse alternatives and their data-
base query is characterized by soft constraints. Requirements of the latter type
are called preferences.

Preferences are ubiquitous in our daily lives, which suggests that database
query languages should support both views of requirements, characterized by

� This work was supported by the project 1ET100300419 of the Program Information
Society (of the Thematic Program II of the National Research Program of the Czech
Republic) “Intelligent Models, Algorithms, Methods and Tools for the Semantic Web
Realization”, and by the Institutional Research Plan AV0Z10300504 “Computer
Science for the Information Society: Models, Algorithms, Applications”.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 388–399, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algebraic Optimization of Relational Queries 389

hard or soft constraints. The research on preferences is extensive and encom-
passes preference logic, preference reasoning, non-monotonic reasoning, and, re-
cently, preferences also attracted attention in database community (see Sect. 5).

Building on a logical framework for formulating preferences and on their em-
bedding into relational algebra (RA) through a single preference operator (PO)
to combat the empty result and the flooding effects, this paper presents an
approach to algebraic optimization of relational queries with various kinds of
preferences. The PO selects from its argument relation the best-matching al-
ternatives with regard to user preferences, but nothing worse.1 Preferences are
specified using a propositional logic notation and their semantics is related to
that of a disjunctive logic program. The language for expressing preferences i) is
declarative, ii) includes various kinds of preferences, iii) is rich enough to ex-
press preferences between sets of elements, iv) and has an intuitive, well defined
semantics allowing for conflicting preferences.

In Sect. 2, the above mentioned framework for formulating preferences and
in Sect. 3 an approach to their embedding into RA are revisited. Presenting
a variety of algebraic laws that describe interaction with other RA operators
to provide a formal foundation for algebraic optimization, Sect. 4 provides the
main contribution of this paper.2 A brief overview of related work in Sect. 5 and
conclusions in Sect. 6 end this paper. All the nontrivial proofs are given.

To improve the readability, � (x, y) ∧ ¬ � (y, x) and � (x, y)∧ � (y, x) is
substituted by � (x, y) and = (x, y), respectively.

2 User Preferences

A user preference is expressed by a preference statement, e.g. “a is preferred to
b”, or symbolically by an appropriate preference formula (PF). PF’s comprise
a simple declarative language for expressing preferences. To capture its declara-
tive aspects, model-theoretic semantics is defined: considering a set of states of
affaires S and a set W = 2S of all its subsets – worlds, if M = 〈W, �〉 is an
order � on W such that w � w′ holds for some worlds w, w′ from W , then M
is termed a preference model (PM) of w > w′ – a preference of the world w over
the world w′, which we express symbolically as M |= w > w′.

The basic differentiation between preferences is based on notions of optimism
and pessimism. Defining a-world as a world in which a occurs, if we are optimistic
about a and pessimistic about b for example, we expect some a-world to precede
at least one b-world in each PM of a preference statement “a is preferred to b”.
This kind of preference is called opportunistic. By contrast, if we are pessimistic
about a and optimistic about b, we expect every a-world to precede each b-world
in each PM of a preference statement “a is preferred to b”. This kind of preference
is called careful. Alternatively, we might be optimistic or pessimistic about both
a and b. Then we expect some a world to precede each b-world or each a-world
1 A similar concept was proposed by Kießling et al. [1,2] and Chomicki et al. [3] and,

in a more restricted form, by Börzsönyi et al. [4] (for more detail refer to Sect. 5).
2 The presented results correspond to those of [3].

390 R. Nedbal

to precede some b-world in each PM of a preference statement “a is preferred
to b”. This kind of preference is called locally optimistic or locally pessimistic,
respectively. Locally optimistic, locally pessimistic, opportunistic and careful
preferences are symbolically expressed by PF’s of the form: a M>M b, a m>m b,
a M>m b, and a m>M b, respectively.

Also, we distinguish between strict and non-strict preferences. For example,
if w precedes w′ strictly in a PM, then we strictly prefer w to w′.

In addition, we distinguish between preferences with and without ceteris
paribus proviso – a notion introduced by von Wright [5] and generalized by Doyle
and Wellman [6] by means of contextual equivalence relation – an equivalence
relation on W .3 For example, a PM of a preference statement “a is carefully pre-
ferred to b ceteris paribus” is such an order on W that a-worlds precede b-worlds
in the same contextual equivalence class. Specifically, the preference statement
“I prefer playing tenis to playing golf ceteris paribus” might express by means
of an contextual equivalence that I prefer playing tenis to playing golf only if
the context of weather is the same, i.e., it is not true that I prefer playing tenis
in strong winds to playing golf during a sunny day.

Next, we revisit the basic definitions introducing syntax and model-theoretic
semantics of the language for expressing user preferences:

Definition 1 (Language). Propositional formulas are defined inductively:
Given a finite set of propositional variables p, q, . . . i) every propositional vari-

able is a propositional formula; ii) if ϕ, ψ are propositional formulas then so are
ϕ ∧ ψ and ¬ϕ.

PF’s are expressions ϕ x>y ψ and ϕ x≥y ψ for x, y ∈ {m, M}, where ϕ, ψ
are propositional variables.

If we identify propositional variables with tuples over a relation schema R, then
we get PF’s over R. A relation instance I(R), i.e., a set of tuples over R, creates
a world w, an element of a set W .

The PM is defined so that any set of (possibly conflicting) preferences is
consistent: the partial pre-order, i.e., a binary relation which is reflexive and
transitive, in the definition of the PM, enables to express some kind of conflict
by incomparability:

Definition 2 (Preference model). A PM M = 〈W, �〉 over a relation schema
R is a couple in which W is a set of worlds, relation instances of R, and � is a
partial pre-order over W , the preference relation over R.

A set of user preferences of various kinds can by represented symbolically by a
preference specification (PS), which corresponds to an appropriate complex PF
in the above defined language.

Definition 3 (Preference specification). Let R be a relation schema and P�
a set of PF’s over R of the form {ϕi � ψi : i = 1, . . . , n}. A PS P over R is
3 As it has been shown [7] that any preference with contextual equivalence specification

can be expressed by a set of preferences without contextual specification, we can
restrict ourselves only to preferences without ceteris paribus proviso.

Algebraic Optimization of Relational Queries 391

a tuple 〈P�|� ∈ { x>y, x≥y |x, y ∈ {m, M}}〉, and M is its model, i.e., a PS
model, iff it models all elements P� of the tuple. Interpreting

M |= P� ⇐⇒ ∀(ϕi � ψi) ∈ P� : M |= ϕi � ψi .

3 Preference Operator

To embed preferences into RQL, the PO ωP returning only the best sets of tuples
in the sense of user preferences P is defined:

Definition 4 (Preference operator). The PO ω is a mapping from a pow-
erset into itself. Specifically, if R is a relation schema, P a PS over R, and M
the set of its models; then the PO ωP is defined for all sets {I1(R), . . . , In(R)}
of instances of R as follows:

ωP({I1(R), . . . , In(R)}) =
{
w ∈ {I1(R), . . . , In(R)}∣∣

∃Mk = 〈W, �k〉 ∈ M , ∀w′ ∈ {I1(R), . . . , In(R)} : �k (w′, w) ⇒ �k (w, w′)
}

.

Remark 1 (Preference operator notation). For brevity, when writing the argu-
ment without braces, e.g., ωP(I(R)), then the unabbreviated notation is
ωP({2I(R)}), showing that the argument is the powerset of I(R).

3.1 Basic Properties

The following propositions are essential for investigation of algebraic properties
describing interaction of the PO with other RA operations:

Proposition 1. Given a relation schema R and a PS P over R, for all instances
I(R) of R the following properties hold:

ωP(I(R)) ⊆ 2I(R) ,

ωP ({ωP(I(R))}) = ωP(I(R)) ,

ωPempty(I(R)) = 2I(R) ,

where Pempty is the empty PS, i.e., containing no preference.

The PO is not monotone or antimonotone with respect to its relation argument.
However, partial antimonotonicity holds:

Proposition 2 (Partial antimonotonicity). Given a relation schema R and
a PS P over R, for all instances I(R), I ′(R) of R the following property holds:

I(R) ⊆ I ′(R) ⇒ 2I(R) ∩ ωP(I ′(R)) ⊆ ωP(I(R)) .

Proof. Assume w ∈ 2I(R) ∩ ωP(I ′(R)). It follows that w ⊆ I(R) and from the
definition (Def. 4) of the PO w ⊆ I ′(R) ∧ ∃Mk ∈ M s.t. ∀w′ ∈ W : w′ ⊆
I ′(R)∧ �k (w′, w) ⇒�k (w, w′). As I(R) ⊆ I ′(R), we can conclude that ∃Mk ∈
M s.t. ∀w′ ∈ W : w′ ⊆ I(R)∧ �k (w′, w) ⇒�k (w, w′), which together with
w ⊆ I(R) implies w ∈ ωP(I(R)). ��

392 R. Nedbal

The following theorems enable to reduce cardinality of an argument relation of
the PO without changing the return value and ensure that the empty query
result effect is successfully eliminated:

Theorem 1 (Reduction). Given a relation schema R, a PS P over R, for all
instances I(R), I ′(R) of R the following property holds:

I(R) ⊆ I ′(R) ∧ ωP(I ′(R)) ⊆ 2I(R) ⇒ ωP(I(R)) = ωP(I ′(R)) .

Proof. ⊆: Assume w ∈ ωP(I(R)). Then, it follows from the definition of the
PO w ⊆ I(R) ∧ ∃Mk ∈ M s.t. ∀w′ ⊆ I(R) : �k (w′, w) ⇒ �k (w, w′). The
assumption ωP(I ′(R)) ⊆ 2I(R) implies ∀w′ ∈ 2I′(R) − 2I(R) : ¬ �k (w′, w),
and we can conclude ∀w′ ⊆ I ′(R) : �k (w′, w) ⇒ �k (w, w′), which together
with the assumption I(R) ⊆ I ′(R) implies w ⊆ I ′(R) ∧ ∃Mk ∈ M s.t.
∀w′ ⊆ I ′(R) : �k (w′, w) ⇒ �k (w, w′), the definition of w ∈ ωP(I ′(R)).

⊇: Immediately follows from Prop. 2. ��
Theorem 2 (Non-emptiness). Given a relation schema R, a PS P over R,
then for every finite, nonempty instance I(R) of R, ωP(I(R)) is nonempty.

3.2 Multidimensional Composition

In multidimensional composition, we have a number of PS defined over several
relation schemas, and we define PS over the Cartesian product of those relations:
the most common ways are Pareto and lexicographic composition.

Definition 5 (Pareto composition). Given two relation schemas R1 and R2,
PS’s P1 over R1 and P2 over R2, and their sets of models M1 and M2, the Pareto
composition P (P1, P2) of P1 and P2 is a PS P0 over the Cartesian product
R1 × R2, whose set of models M0 is defined as:

∀Mm = 〈W1 × W2, �m〉 ∈ M0,

∃Mk = 〈W1, �k〉 ∈ M1, ∃Ml = 〈W2, �l〉 ∈ M2 s.t.

∀w1, w
′
1 ∈ W1, ∀w2, w

′
2 ∈ W2 :
�m (w1 × w2, w

′
1 × w′

2) ≡ �k (w1, w
′
1) ∧ �l (w2, w

′
2) .

Definition 6 (Lexicographic composition). Given two relation schemas R1

and R2, PS’s P1 over R1 and P2 over R2, and their sets of models M1 and
M2, the lexicographic composition L(P1, P2) of P1 and P2 is a PS P0 over the
Cartesian product R1 × R2, whose set of models M0 is defined as:

∀Mm = 〈W1 × W2, �m〉 ∈ M0,

∃Mk = 〈W1, �k〉 ∈ M1, ∃Ml = 〈W2, �l〉 ∈ M2 s.t.

∀w1, w
′
1 ∈ W1, ∀w2, w

′
2 ∈ W2 :

�m (w1 × w2, w
′
1 × w′

2) ≡ �k (w1, w
′
1) ∨ (=k (w1, w

′
1)∧ �l (w2, w

′
2)) .

Algebraic Optimization of Relational Queries 393

4 Algebraic Optimization

As the PO extends RA, the optimization of queries with preferences can be
realized as an extension of a classical relational query optimization. Most im-
portantly, we can inherit all well known laws from RA, which, together with
algebraic laws governing the commutativity and distributivity of the PO with
respect to RA operations, constitute a formal foundation for rewriting queries
with preferences using the standard strategies (push selection, push projection)
aiming at reducing the sizes of intermediate relations.

Remark 2 (RA operators notation). In the following, RA selection and projec-
tion are generalized so that they can operate on set arguments, denoted by
braces, e.g., σϕ({ωP(I(R))}). The corresponding definitions are indicated by def=.

4.1 Commuting with Selection

The following theorem identifies a sufficient condition under which the PO com-
mutes with RA selection:

Theorem 3 (Commuting with selection). Given a relation schema R, a PS
P over R, the set of its PM’s M , and a selection condition ϕ over R, if

∀Mk = 〈W, �k〉 ∈ M , ∀w, w′ ∈ W : �k (w′, w) ∧ w = σϕ(w) ⇒ w′ = σϕ(w′)

is a valid formula, then for any relation instance I(R) of R:

ωP (σϕ(I(R))) = σϕ({ωP(I(R))})
def
= {w ∈ ωP(I(R))|σϕ(w) = w} .

Proof. Observe that:

w ∈ ωP(σϕ(I(R))) ≡ w ⊆ I(R) ∧ σϕ(w) = w ∧
¬(∀Mk ∈ M , ∃w′ ⊆ I(R) : (σϕ(w′) = w′∧ �k (w′, w)) .

w ∈ σϕ({ωP(I(R))}) ≡ w ⊆ I(R) ∧ σϕ(w) = w ∧
¬(∀Mk ∈ M , ∃w′ ⊆ I(R) : �k (w′, w)) ,

Obviously, the second formula implies the first. To see that the opposite implica-
tion also holds, we prove that w �∈ σϕ({ωP(I(R))}) ⇒ w �∈ ωP(σϕ(I(R))). There
are three cases when w �∈ σϕ({ωP(I(R))}). If w � I(R) or σϕ(w) �= w, it is
immediately clear that w �∈ ωP(σϕ(I(R))). In the third case, ∀Mk ∈ M , ∃w′ ⊆
I(R) : �k (w′, w). However, due to the theorem assumption, ∀Mk ∈ M , ∃w′ ⊆
I(R) : σϕ(w′) = w′∧ �k (w′, w), which completes the proof. ��

4.2 Commuting with Projection

The following theorem identifies sufficient conditions under which the PO com-
mutes with RA projection. To prepare the ground for the theorem, some defini-
tions have to be introduced:

394 R. Nedbal

Definition 7 (Restriction of a preference relation). Given a relation
schema R, a set of attributes X of R, and a preference relation � over R,
the restriction θX(�) of � to X is a preference relation �X over πX(R) defined
using the following formula:

�X (wX , w′
X) ≡ ∀w, w′ ∈ W : πX(w) = wX ∧ πX(w′) = w′

X ⇒ � (w, w′) .

Definition 8 (Restriction of the preference model). Given a relation sche-
ma R, a set of relation attributes X of R, and a PM M = 〈W, �〉 over R, the
restriction θX(M) of M to X is a PM MX = 〈WX , �X〉 over πX(R) where
WX = {πX(w) | w ∈ W}.
Definition 9 (Restriction of the preference operator). Given a relation
schema R, a set of attributes X of R, a PS P over R, and the set MX of its
models restricted to X, the restriction θX(ωP) of the PO ωP to X is the PO ωX

P
defined as follows:

ωX
P (πX(I(R))) = {wX ⊆ πX(I(R)) | ∃MX ∈ MX s.t.

∀w′
X ⊆ πX(I(R)) : �X (w′

X , wX) ⇒ �X (wX , w′
X)} .

Theorem 4 (Commuting with projection). Given a relation schema R, a
set of attributes X of R, a PS P over R, and the set of its PM’s M , if the
following formulae

∀Mk ∈ M , ∀w1, w2, w3 ∈ W :
πX(w1) = πX(w2) ∧ πX(w1) �= πX(w3) ∧ �k (w1, w3) ⇒ �k (w2, w3) ,

∀Mk ∈ M , ∀w1, w3, w4 ∈ W :
πX(w3) = πX(w4) ∧ πX(w1) �= πX(w3) ∧ �k (w1, w3) ⇒ �k (w1, w4)

are valid, then for any relation instance I(R) of R:

ωX
P (πX(I(R))) = πX({ωP(I(R))})

def
= {πX(w) | w ∈ ωP(I(R))} .

Proof. We prove: πX(w) �∈ ωX
P (πX(I(R))) ⇐⇒ πX(w) �∈ πX({ωP(I(R))}).

⇒: Assume πX(w3) �∈ ωX
P (πX(I(R))). The case πX(w3) � πX(I(R)) is triv-

ial. Otherwise, it must be the case that ∀MX ∈ MX , ∃wX ⊆ πX(I(R)) :
�X (wX , πX(w3)), which implies ∀Mk ∈ M , ∀w1, w4 ∈ W : πX(w1) =
wX ∧πX(w4) = πX(w3) ⇒ �k (w1, w4) and thus πX(w3) �∈ πX({ωP(I(R))}).

⇐: Assume πX(w3) �∈ πX({ωP(I(R))}). Then ∀Mk ∈ M and ∀w4 ⊆ I(R)
s.t. πX(w4) = πX(w3), there is w1 ⊆ I(R) s.t. �k (w1, w4) and πX(w1) �=
πX(w4). From the assumption of the theorem, it follows that ∀w2, w4 ⊆
I(R) : πX(w2) = πX(w1) ∧ πX(w4) = πX(w3) ⇒ �k (w2, w4), which implies
θX(�k)(πX(w1), πX(w3)) and thus πX(w3) �∈ ωX

P (πX(I(R))). ��

Algebraic Optimization of Relational Queries 395

4.3 Distributing over Cartesian Product

For the PO to distribute over the Cartesian product of two relations, the PS,
which is the parametr of the PO, needs to be decomposed into the PS’s that will
distribute into the argument relations. We obtain the same property for both
Pareto and lexicographic composition:

Theorem 5 (Distributing over Cartesian product). Given two relation
schemas R1 and R2, and PS’s P1 over R1 and P2 over R2, for any two relation
instances I(R1) and I(R2) of R1 and R2:

ωP0(I(R1) × I(R2)) = ωP1(I(R1)) × ωP2(I(R2))
def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ∈ ωP2(I(R2))} ,

where P0 = P (P1, P2) is a Pareto composition of P1 and P2.

Proof. We prove:

w1 × w2 �∈ ωP0(I(R1) × I(R2)) ⇐⇒ w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)) .

⇒: Assume w1 × w2 �∈ ωP0(I(R1) × I(R2)). Then ∀Mm ∈ M0, models of P0,
there are w′

1 ⊆ I(R1), w′
2 ⊆ I(R2) s.t. �m (w′

1 ×w′
2, w1 ×w2). Consequently,

∀Mk ∈ M1, ∀Ml ∈ M2, models of P1 and P2, there are w′
1 ⊆ I(R1), w′

2 ⊆
I(R2) s.t. �k (w′

1, w1) or �l (w′
2, w2), which implies w1 �∈ ωP1(I(R1)) or

w2 �∈ ωP2(I(R2)) and thus w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)).
⇐: Assume w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)). Then w1 �∈ ωP1(I(R1)) or

w2 �∈ ωP2(I(R2)). Assume the first. Then ∀Mk ∈ M1, models of P1, there
must be w′

1 ⊆ I(R1) s.t. �k (w′
1, w1). Consequently, ∀Mm ∈ M0, models

of P0, ∃w′
1 ⊆ I(R1) : �m (w′

1 × w2, w1 × w2), which implies w1 × w2 �∈
ωP0(I(R1) × I(R2)). The second case is symmetric. ��

Theorem 6 (Distributing over Cartesian product). Given two relation
schemas R1 and R2, and PS’s P1 over R1 and P2 over R2, for any two relation
instances I(R1) and I(R2) of R1 and R2:

ωP0(I(R1) × I(R2)) = ωP1(I(R1)) × ωP2(I(R2))
def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ∈ ωP2(I(R2))} ,

where P0 = L(P1, P2) is a lexicographic composition of P1 and P2.

Proof. We prove:

w1 × w2 �∈ ωP0(I(R1) × I(R2)) ⇐⇒ w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)) .

⇒: Assume w1 × w2 �∈ ωP0(I(R1) × I(R2)). Then ∀Mm ∈ M0, models of P0,
there are w′

1 ⊆ I(R1), w′
2 ⊆ I(R2) s.t. �m (w′

1 ×w′
2, w1 ×w2). Consequently,

∀Mk ∈ M1, ∀Ml ∈ M2, models of P1 and P2, there are w′
1 ⊆ I(R1), w′

2 ⊆
I(R2) s.t. �k (w′

1, w1) or =k (w′
1, w1) ∧ �l (w′

2, w2), which implies w1 �∈
ωP1(I(R1)) or w2 �∈ ωP2(I(R2)) and thus w1×w2 �∈ ωP1(I(R1))×ωP2(I(R2)).

396 R. Nedbal

⇐: Assume w1 × w2 �∈ ωP1(I(R1)) × ωP2(I(R2)). Then w1 �∈ ωP1(I(R1)) or
w2 �∈ ωP2(I(R2)). Assume the first. Then ∀Mk ∈ M1, models of P1, there
must be w′

1 ⊆ I(R1) s.t. �k (w′
1, w1). Consequently, ∀Mm ∈ M0, models of

P0, there must be w′
1 s.t. �m (w′

1 × w2, w1 × w2), which implies w1 × w2 �∈
ωP0(I(R1) × I(R2)). The second case is symmetric. ��

The equality ωPempty(I(R)) = 2I(R) and both Theorem 5 and Theorem 6 make
it possible to derive the transformation rule that pushes the PO with a one-
dimensional PS down the appropriate argument of the Cartesian product:

Corollary 1. Given two relation schemas R1 and R2, a PS’s P1 over R1, and
an empty PS P2 over R2, for any two relation instances I(R1) and I(R2) of R1

and R2, the following property holds:

ωP0(I(R1) × I(R2)) = ωP1(I(R1)) × 2I(R2) def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ⊆ I(R2)} ,

where P0 = P (P1, P2) is a Pareto of lexicographic composition of P1 and P2.

4.4 Distributing over Union

The following theorem shows how the PO distributes over RA union:

Theorem 7 (Distributing over union). Given two compatible relation
schemas4 R and S, and a PS P over R (and S), if the following formula

ωP(I(R) ∪ I(S)) ⊆ 2I(R) ∪ 2I(S)

is valid for relation instances I(R) and I(S) of R and S, then:

ωP(I(R) ∪ I(S)) = ωP({ωP(I(R)) ∪ ωP(I(S))}) .

Proof. It follows from Proposition 1 that ωP(I(R))∪ωP (I(S)) ⊆ 2I(R) ∪2I(S) ⊆
2I(R)∪I(S). If we show that ωP(I(R) ∪ I(S)) ⊆ ωP(I(R)) ∪ ωP(I(S)), then the
theorem follows from Theorem 1.

If w ∈ ωP(I(R) ∪ I(S)), then it follows from the definition of the PO w ⊆
I(R) ∪ I(S) ∧ ∃Mk ∈ M s.t. ∀w′ ⊆ I(R) ∪ I(S) : �k (w′, w) ⇒ �k (w, w′). As
w ⊆ I(R) ∨ w ⊆ I(S) from the assumption of the theorem and 2I(R) ∪ 2I(S) ⊆
2I(R)∪I(S), we can conclude (w ⊆ I(R) ∨ w ⊆ I(S)) ∧ ∀w′ ∈ 2I(R) ∪ 2I(S) : �k

(w′, w) ⇒ �k (w, w′), implying w ∈ ωP(I(R)) ∪ ωP(I(S)). ��

4.5 Distributing over Difference

Only in the trivial case, the the distribution over RA difference is possible:
4 We call two relation schemas compatible if they have the same number of attributes

and the corresponding attributes have identical domains.

Algebraic Optimization of Relational Queries 397

Theorem 8 (Distributing over difference). Given two compatible relation
schemas R and S, and a PS P over R (and S), if the following formula

ωP(I(R)) ⊆ 2I(R)−I(S) ∪ 2I(S)

is valid for relation instances I(R) �= I(S) of R and S, then:

ωP(I(R) − I(S)) = ωP(I(R)) − ωP(I(S))

iff the PS P is empty.

4.6 Push Preference

The question arises how to integrate the above algebraic laws into the classical,
well-known hill-climbing algorithm. In particular, we want to add heuristic strat-
egy of push preference, which is based on the assumption that early application
of the PO reduces intermediate results. Indeed, the Theorem 1 provides a formal
evidence that it is correct to pass exactly all the tuples that have been included
in any world returned by the PO to the next operator in the operator tree. This
leads to a better performance in subsequent operators.

Example 1. Consider a simple query expressed in RA as: ωP(πX(R ∪ S)). After
applying the preference strategy, we get: πX(ωP({ωP(R) ∪ ωP(S)})). The cor-
responding expression trees are depicted in Fig. 1, where data flow between the
computer’s main memory and secondary storage is represented by line width.

ωP

πX

∪

R S

(a) Before pushing

πX

ωP

∪

ωP ωP

R S

(b) After pushing

Fig. 1. Improving the query plan by pushing PO down the expression tree

We have supposed that relations R and S are too big to fit into main memory.
Using the number of the secondary storage I/O’s as our measure of cost for
an operation, it can be seen that the strategy of pushing the PO improves the
performance in this case significantly.

398 R. Nedbal

5 Related Work

The study of preferences in the context of database queries has been originated by
Lacroix and Lavency [8]. They, however, don’t deal with algebraic optimization.

Following their work, preference datalog was introduced in [9], where it was
shown that the concept of preference provides a modular and declarative means
for formulating optimization and relaxation queries in deductive databases.

Nevertheless, only at the turn of the millennium this area attracted broader
interest again. Kießling [1] and Chomicki et al. [3] have pursued independently a
similar, qualitative approach within which preferences between tuples are spec-
ified directly, using binary preference relations. The embedding into RQL they
have used is similar to ours: they have defined an operator returning only the
best preference matches. However, they, by contrast to the approach presented
in this paper, don’t consider preferences between sets of elements and are con-
cerned only with one type of preference. Moreover, the relation to a preference
logic unfortunately is unclear. On the other hand, both Chomicki et. al. [3]
and Kießling [2,10] have laid the foundation for preference query optimization
that extends established query optimization techniques: preference queries can
be evaluated by extended – preference RA. While some transformation laws for
queries with preferences have been presented in [2,10], the results presented in
[3] are mostly more general.

A special case of the same embedding represents skyline operator introduced
by Börzsönyi et al. [4]. Some examples of possible rewritings for skyline queries
are given but no general rewriting rules are formulated.

In [11], actual values of an arbitrary attribute were allowed to be partially
ordered according to user preferences. Accordingly, RA operations, aggregation
functions and arithmetic were redefined. However, some of their properties were
lost, and the the query optimization issues were not discussed.

6 Conclusions

We build on the framework of embedding preferences into RQL through the
PO that is parameterized by user preferences expressed in a declarative, logi-
cal language containing sixteen kinds of preferences and that returns the most
preferred sets of tuples of its argument relation. Most importantly, the language
is suitable for expressing preferences between sets of elements and its semantics
allows for conflicting preferences.

The main contribution of the paper consists in presenting basic properties
of the PO and a number of algebraic laws describing its interaction with other
RA operators. Particularly, sufficient conditions for commuting the PO with RA
selection or projection and for distributing over Cartesian product, set union, and
set difference have been identified. Thus key rules for rewriting the preference
queries using the standard algebraic optimization strategies like push selection
or push projection have been established. Moreover, a new optimization strategy
of push preference has been suggested.

Algebraic Optimization of Relational Queries 399

Future work directions include identifying further algebraic properties and
finding the best possible ordering of transformations to compose an effective
hill-climbing algorithm for optimization of RA statements with the PO. Also,
expressiveness of RA including the PO and complexity issues have to be ad-
dressed in detail.

References

1. Kießling, W.: Foundations of Preferences in Database Systems. In: Proceedings of
the 28th VLDB Conference, Hong Kong, China, pp. 311–322 (2002)

2. Kießling, W., Hafenrichter, B.: Algebraic optimization of relational preference
queries. Technical Report 2003-01, Institute of Computer Science, University of
Augsburg (February 2003)

3. Chomicki, J.: Preference Formulas in Relational Queries. ACM Trans. Database
Syst. 28(4), 427–466 (2003)

4. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, pp. 421–430. IEEE
Computer Society, Washington, DC, USA (2001)

5. von Wright, G.: The logic of preference. Edinburgh University Press, Edinburgh
(1963)

6. Doyle, J., Wellman, M.P.: Representing preferences as ceteris paribus comparatives.
In: Decision-Theoretic Planning: Papers from the 1994 Spring AAAI Symposium,
pp. 69–75. AAAI Press, Menlo Park, California (1994)

7. Kaci, S., van der Torre, L.W.N.: Non-monotonic reasoning with various kinds of
preferences. In: Brafman, R.I., Junker, U. (eds.) IJCAI 2005. Multidisciplinary
Workshop on Advances in Preference Handling, pp. 112–117 (2005)

8. Lacroix, M., Lavency, P.: Preferences; Putting More Knowledge into Queries. In:
Stocker, P.M., Kent, W., Hammersley, P. (eds.) VLDB, pp. 217–225. Morgan Kauf-
mann, San Francisco (1987)

9. Govindarajan, K., Jayaraman, B., Mantha, S.: Preference datalog. Technical Re-
port 95-50 (January 1995)

10. Hafenrichter, B., Kießling, W.: Optimization of relational preference queries. In:
CRPIT ’39. Proceedings of the sixteenth Australasian conference on Database tech-
nologies, Darlinghurst, pp. 175–184. Australian Computer Society, Inc., Australia
(2005)

11. Nedbal, R.: Relational Databases with Ordered Relations. Logic Journal of the
IGPL 13(5), 587–597 (2005)

Mortality Problem for 2 × 2 Integer Matrices

C. Nuccio and E. Rodaro�

Dipartimento di Matematica, Politecnico di Milano, Piazza L.da Vinci, 32, 20133
Milano, Italy

claudia.nuccio@polimi.it, emanuele.rodaro@mate.polimi.it

Abstract. A given set F of n × n matrices is said to be mortal if the
n × n null matrix belongs to the free semigroup generated by F . It is
known that the mortality problem for 3×3 matrices with integer entries
is undecidable [7],[3]. In this paper we prove that the mortality problem
is decidable for any set of 2 × 2 integer matrices whose determinants
assume the values 0, ±1.

1 Introduction

Some very simple questions on semigroups of matrices with integer entries are
undecidable even for low dimensions. In particular, in [7] it was proved that, given
a set of 3×3 matrices over the integers Z, the mortality problem is undecidable,
i.e. it is undecidable whether or not the zero matrix belongs to the semigroup
generated by this set. It is an open problem whether the mortality problem for
integer matrices of dimension 2 is decidable and we refer to [1], [4] and [5] for
some motivations, references and discussions. In this paper we prove that the
mortality problem is decidable for each finite set of integer matrices of order
2 such that all non singular matrices are in GL(2, Z), i.e. have determinant
±1. We use an approach that closely follows the technique used by Choffrut
and Karhumäki in [2], where it is proved that, for 2 × 2 integer matrices, it
is decidable the membership of a given non singular matrix to a given finitely
generated semigroup. We remark that in [6] it was proved that the mortality
problem is decidable for any set of row-monomial matrices.

2 Preliminaries

Let M(2, Z) be the set of 2 × 2 matrices with integer entries which is a monoid
with respect to the ordinary matrix product. We will use the symbols I and 0
respectively for the identity and the null matrices of order 2. Moreover we denote
by GL(2, Z) the general linear group, by SL(2, Z) the special linear group and
by PSL(2, Z) the projective special linear group of degree 2.

For each A ∈ M(2, Z), let ιA and κA be respectively the image and the kernel
of the endomorphism of R2 associated to A. If rank(A) = 1, then ιA and κA are
� This research was done with the partial support of GNSAGA, PRIN ”Automi e

Linguaggi Formali: aspetti matematici e applicativi” and ESF project AutoMathA.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 400–405, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mortality Problem for 2 × 2 Integer Matrices 401

1-dimensional R-subspaces. Throughout the paper, (x, y)T stands for the column
vector whose components are x, y ∈ R and e1 for the column vector (1, 0)T .

The following lemma gives a way to choose particular generators of ιA and
κA useful for the sequel:

Lemma 1. Let A ∈ M(2, Z) with rank(A) = 1. Then ιA (resp. κA) contains a
vector (x, y) ∈ Z2 such that gcd(x, y) = 1.

Proof. The case of ιA is trivial. In the case of κA, applying the Gauss elimination
method to the system AvT = (0, 0)T , we get that v ∈ Q2. Hence, there exists
λ ∈ N such that λv ∈ Z2 and so, dividing λv by the greatest common divisor of
its components, we obtain the vector (x, y) of the statement. ��
Let F = {M1, . . . , Mm} ⊆ M(2, Z) be a finite set and let H = 〈M1, . . . , Mm〉 be
the subsemigroup of M(2, Z) generated by F . The set F is called mortal if and
only if 0 ∈ H . We recall a lemma of [1]:

Lemma 2 ([1]). A finite set {A1, . . . , Am} of 2×2 matrices is mortal if and only
if there exist an integer k and integers i1, . . . , ik ∈ {1, . . . , m} with Ai1 · · ·Aik

= 0
and

1. rank(Aij) = 2 for 1 < j < k,
2. rank(Aij) < 2 for j ∈ {1, k}.

The set F can be divided into two disjoint sets S = {S1, . . . , Sk} and R =
{R1, . . . , Rn} such that rank(Si) < 2 for all i ∈ {1, . . . , k} and rank(Rj) = 2
for all j ∈ {1, . . . , n}. We can assume, without loss of generality, that both S
and R are non-empty. In fact, if S = ∅ then F is not mortal and, if R = ∅,
then, by Lemma 2, we can decide whether the set is mortal simply considering
the product of each pair of matrices in S. We can also assume, without loss of
generality, that rank(Si) = 1, otherwise 0 ∈ S and so F is trivially mortal. For
each Si ∈ S, we denote by ιi and κi respectively the image and the kernel of Si

and by ci (resp. ki) the generator of ιi (resp. κi) with integer and relative prime
components (Lemma 1).

3 Reduction of the Problem

We have the following proposition which is a direct consequence of Lemma 2.

Proposition 1. If 0 /∈ F , then F is mortal if and only if Kιi = κj for some
i, j ∈ {1, . . . , k} and K ∈ 〈R1, . . . , Rn〉.
Proof. If there exist i, j ∈ {1, . . . , k} and K ∈ 〈R1, . . . , Rn〉 such that Kιi = κj ,
then SjKSi = 0. Conversely, suppose that F is mortal. Then, by lemma 2,
SjKSi = 0 for some K ∈ 〈R1, . . . , Rn〉 and i, j ∈ {1, . . . , k} and so the statement
follows. ��

402 C. Nuccio and E. Rodaro

In the sequel we suppose that R ⊆ GL(2, Z). With this assumption we can
reduce the problem of seeing whether Kιi = κj to the problem of checking
whether KcT

i = ±kT
j , with i, j ∈ {1, . . . , k} and K ∈ 〈R1, . . . , Rn〉.

Lemma 3. Let K ∈ 〈R1, . . . , Rn〉. Then Kιi = κj for i, j ∈ {1, . . . , k} if and
only if KcT

i = ±kT
j .

Proof. Since KcT
i = λkT

j for some λ ∈ R, then λ ∈ Z because kj , ci ∈ Z2,
K ∈ M(2, Z) and kj = (z, t) with gcd(z, t) = 1. Therefore:

cT
i = λK−1kT

j

with K−1 ∈ M(2, Z). If ci = (x, y) then λ divides x, λ divides y and so λ = ±1
since gcd(x, y) = 1. ��
Lemma 4. Let c = (x, y) ∈ Z2 with gcd(x, y) = 1. Then there exists U ∈
GL(2, Z) such that Ue1 = cT .

Proof. Since gcd(x, y) = 1, there are two integers λ, μ ∈ Z such that λx+μy = 1.
If we put:

U =
(

x −μ
y λ

)

then Ue1 = (x, y)T , det(U) = 1 and so U ∈ GL(2, Z). ��
Using lemma 4 we reduce the problem of checking whether KcT

i = ±kT
j , for some

K ∈ 〈R1, . . . , Rn〉 and for i, j ∈ {1, . . . , k}, to the problem of checking whether
U−1KUe1 = ±U−1kT

j for some U−1KU ∈ 〈U−1R1U, . . . , U−1RnU〉, where U is
the matrix of lemma 4 when c = ci.

Proposition 2. Let a, b ∈ Z be relative prime. Then K ∈ GL(2, Z) maps e1 to
(a, b)T if and only if K is of the form AT λ where λ ∈ Z,

T =
(

1 1
0 1

)

and

A =
(

a c
b d

)
or A =

(
a −c
b −d

)

with c, d integers satisfying ad − bc = 1.

Proof. From the hypothesis it follows trivially that K =
(

a x
b y

)
, with x, y ∈ Z

and ay − bx = ±1. Since gcd(a, b) = 1, there exist c, d ∈ Z such that ad− bc = 1.
If ay − bx = 1, then a divides (c − x) and b divides (d − y). Let λ ∈ Z such that
c − x = λa and d − y = λb, hence

K =
(

a c
b d

)
−λ

(
0 a
0 b

)
.

Mortality Problem for 2 × 2 Integer Matrices 403

Putting

A =
(

a c
b d

)
and B =

(
0 a
0 b

)
,

easy computations lead to K = A(I − λA−1B) = AT−λ.
If ay − bx = −1, we prove the statement in an analogous way. ��

4 Main Result

Now we are in position of demonstrating our main result. In fact, in order to
prove whether the set F is mortal, we have to check if, for some integer i, j ∈
{1, 2, . . . , k}, there is an integer λ such that AT λ ∈ 〈R1, . . . , Rn〉, where A is a
given matrix depending on i and j with | detA| = ±1.

We strictly follow the technique used in [2], from which we recall for sake of
completeness some notation and properties.

Let M be a finitely presented monoid with set of generators Σ. Then M
is isomorphic to the quotient of a finitely generated free monoid Σ∗ by some
finitely generated congruence ≡. A rational subset H of M is defined by some
finite automaton A with input alphabet Σ in the following sense: a ∈ H if and
only if there exists a word w in the language recognized by A with a = [w]≡.

Proposition 3. Let G be a group such that G
 Z/p1Z ∗ . . . ∗ Z/pnZ. Let A, B
be two automata that recognize respectively two rational subsets H, K ⊆ G. Then
it is recursively decidable whether or not H ∩ K = ∅
Proof. The proof is a reformulation of the proof of Proposition 1 of [2]. As shown
there, it is possible to construct the automata AH , AK which recognize the sets of
reduced words congruent to the words accepted by the automata defining respec-
tively H and K. Then, since each word is equivalent to a unique reduced word,
H and K have a nonempty intersection if and only if the languages L(AH) and
L(AK) recognized respectively by AH and AK have nonempty intersection. ��
Theorem 1. Given a rational subset Q of matrices in M(2, Z) and a matrix
A ∈ GL(2, Z), it is recursively decidable whether or not {AT m | m ∈ Z} ∩ Q = ∅
where T =

(
1 1
0 1

)
.

Proof. This proof is analogous to the one of Theorem 1 in [2]. We reformulate
the problem in the following way: we have a rational expression R(X1, . . . , Xn)
over the set of symbols Xi, i = 1, . . . , n and a substitution ϕ assigning a matrix
of M(2, Z) to each symbol Xi. We want to establish, for the given rational subset
{AT m | m ∈ Z}, whether or not:

{AT m | m ∈ Z} ∩ ϕ(R(X1, . . . , Xn)) = ∅ (1)

We prove the thesis by successive simplifications:

Claim 1. Without loss of generality we may assume that A = I. Indeed, if X
is a new symbol and we extend ϕ so that ϕ(X) = A−1, then the condition (1)
is equivalent to the condition {T m | m ∈ Z} ∩ ϕ(X · R(X1, . . . , Xn)) = ∅.

404 C. Nuccio and E. Rodaro

Claim 2. Without loss of generality we may assume that the determinant of all
Xi’s is equal to 1 or -1 because det(T m) = 1 for all m ∈ Z.

Claim 3. Without loss of generality we may assume that the determinant of
all Xi’s is equal to 1. The argument is the same of Claim 3 in Theorem 1 of [2]
since det(T m) = 1 for all m ∈ Z.

The previous three claims prove that we can start from a rational expression R
and a morphism ϕ assigning a matrix of SL(2, Z) to each symbol Xi and so we
can suppose that ϕ(R) is a rational subset of SL(2, Z). Since

SL(2, Z)/{I, −I} = PSL(2, Z)
 Z/2Z ∗ Z/3Z,

by proposition 3 we can verify whether the image of {T m | m ∈ Z} ∩ ϕ(R) in
PSL(2, Z) is non-empty. Then, in order to prove if {T m | m ∈ Z} ∩ ϕ(R) =
∅ in SL(2, Z), we have to lift the ambiguity between T m and −T m. An easy
computation show that

T m =
(

1 m
0 1

)

and so, denoting by ψ the morphism from SL(2, Z) into M(2, Z/3Z) which puts
the entries of a matrix module 3, we obtain that:

{T m | m ∈ Z} ⊆ H =
{

A ∈ SL(2, Z) | ψ(A) =
(

1 i
0 1

)
mod 3, i = 0, 1, 2

}

while −T m /∈ H . The set:

Q =
{

W ∈ {X1, . . . , Xn}∗|ψ(ϕ(W)) =
(

1 i
0 1

)
mod 3, i = 0, 1, 2

}

is a rational set since it is the preimage by the morphism ϕ ◦ ψ of the finite set:
{(

1 i
0 1

)
mod 3 | i = 0, 1, 2

}

Thus {T m | m ∈ Z} ∩ ϕ(R(X1, . . . , Xn)) = ∅ if and only if

{T m | m ∈ Z} ∩ ϕ(R(X1, . . . , Xn) ∩ Q) = ∅,

where R(X1, . . . , Xn) ∩ Q is rational since it is the intersection of two rational
sets. ��
It would be interesting to see if the mortality problem is decidable for any set
of n × n integer matrices whose determinants are 0, ±1.

Acknowledgment

The authors thank professor Stuart Margolis for suggesting the problem to the
second named author during his stay at Bar Ilan University with the support
of AutMathA. They are also grateful to professor Alessandra Cherubini for her
precious advices.

Mortality Problem for 2 × 2 Integer Matrices 405

References

1. Bournez, O., Branicky, M.: On the mortality problem for matrices of low dimensions.
TCS 35(4), 433–488 (2002)

2. Choffrut, C., Karhumäki, J.: Some decision problems on integer matrices.
RAIRO/ITA 39(1), 125–132 (2005)

3. Halava, V., Harju, T.: Mortality in matrix semigroups. Amer. Math. Monthly 108(7),
649–653 (2001)

4. Krom, M., Krom, M.: Recursive solvability of problems with matrices. zwitschr. f.
math. Logik und Grundlagen d. Math. 35, 437–442 (1989)

5. Krom, M., Krom, M.: More on mortality. Amer. Math. Monthly 97, 37–38 (1990)
6. Lisitsa, A., Potapov, I.: Membership and reachibility problems for row-monomial

transformations. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS,
vol. 3153, pp. 623–634. Springer, Heidelberg (2004)

7. Paterson, M.S.: Unsolvability in 3 × 3 matrices. Stud. Appl. Math. 49, 105–107
(1970)

Element Distinctness and Sorting on

One-Tape Off-Line Turing Machines

Holger Petersen

Univ. Stuttgart, FMI
Universitätsstraße 38
D-70569 Stuttgart

petersen@informatik.uni-stuttgart.de

Abstract. We investigate off-line Turing machines equipped with a two-
way input-tape and one work-tape.

It is shown that the Element Distinctness Problem (EDP) for m binary
strings of length � = O(m/ log2 m) can be solved in time O(m3/2�1/2)
and space O(m1/2�1/2) on a nondeterministic machine. This is faster than
the best sorting algorithm on the computational model and optimal if
time and space are considered simultaneously.

For deterministic machines we give an optimal algorithm that can sort
m binary strings consisting of � bits each in O(m3/2�) steps, provided
that � = O(m1/4). By modifying the solution we obtain the time bound
O(m3/2�) and the space bound O(m1/2�2) for the EDP.

1 Introduction

The Element Distinctness Problem (EDP) is a well known benchmark task for
a variety of models of computation ranging from single-tape Turing machines
[1,8,9,11] to Quantum Computers [3]. The input for the EDP (sometimes called
Element Uniqueness Problem) is a multiset of m binary strings of length � each.
Here � is determined by some function of m. Of course � ≥ log m and typically
� = Θ(log m). The question to be answered is, whether every element in the
input occurs exactly once.

The EDP is closely related to sorting, since on most computational models an
efficient reduction from EDP to sorting is easily accomplished. Therefore lower
bounds for EDP generalize to sorting, while EDP as a decision problem might
be easier to analyze. For these reasons it is interesting to study upper and lower
bounds for EDP and compare them to the most efficient sorting algorithms on
different computational models.

On single-tape Turing machines (no separate input tape) several authors have
investigated the complexity of the EDP [8,9,11] until it was completely deter-
mined in [1]. We continue this research by moving on to a more powerful model
of computation, the off-line Turing machine. For this type of machine lower and
upper bounds on the complexity of sorting are known in the deterministic and
nondeterministic mode of operation [4,12]. In fact off-line Turing machines are
among the most powerful models of computation for which non-trivial lower

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 406–417, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Element Distinctness and Sorting on One-Tape Off-Line Turing Machines 407

bounds on natural problems could be shown. Upper bounds indicate to what
extent our techniques for establishing lower bounds can be improved.

This paper is organized as follows. In Section 2 the necessary definitions are
given. We present a nondeterministic solution of EDP and a matching lower
bound in Section 3. There are at least two reasons for considering these results
first. A nondeterministic Turing machine can guess very useful information that
a deterministic machine would have to tediously compute (if possible at all).
Therefore the algorithm tends to be simpler than a deterministic counterpart.
The second aspect is that a solution to EDP can reject immediately once it
discovers that an element appears twice in the input, while a sorting algorithm
has to handle multiple copies of an element. Surprisingly these copies make the
sorting method from [12] as well as our deterministic solution rather complex.

It should be noted that our nondeterministic solution for EDP is faster than
the best sorting algorithm [12] for a wide range of relations between m and �.

Section 4 contains a time optimal deterministic sorting algorithm and a mod-
ification that solves the EDP. The algorithm settles the question raised by Wie-
dermann [12], whether there exists a deterministic sorting method of an efficiency
comparable to his nondeterministic solution for � > log m. The strategy of the
algorithm from [12] is to nondeterministically extract groups of strings from the
input which are close in the sorted sequence. In a second phase these strings a
copied to their final positions, again making use of nondeterminism. We replace
the nondeterministic steps by computing strings that partition the input in a
suitable way and by finding their positions deterministically.

In Section 5 some open problems are outlined.

2 Preliminaries

Formally, the EDP can be defined as a language recognition problem:

EDP(m, �) = {x1#x2# · · ·#xm | xi ∈ {0, 1}�, xi �= xj for i �= j}.

Notice that the length of an input for the EDP has size O(m�).
Using an analogous notation, a solution of the sorting problem receives as in-

put x1#x2# · · · #xm with xi ∈ {0, 1}� and has to produce as output
xπ(1)#xπ(2)# · · · #xπ(m) with the property that xπ(i) ≤ xπ(i+1) for 1 ≤ i < m.
Here π is a permutation of the set {1, . . . , m}.

The computational models investigated are deterministic and nondeterminis-
tic off-line Turing machines. These machines are equipped with one work-tape
and a separate two-way input-tape. The machines cannot write on the input-
tape or move the head on this tape off the input. This is the notion of off-line
operation from [12]. We point out that other definitions exist in the literature.

The output of a computation is written onto the work-tape.

3 Nondeterministic Turing Machines

On most models of computation the EDP easily reduces to sorting. For Turing
machines the reduction requires some care, since comparing m strings of length

408 H. Petersen

� written on the work-tape to an adjacent string bit by bit (in a deterministic
way and without using the input-tape) requires time Ω(m�2). Making use of
nondeterminism and the storage capacity of the input-tape we can reduce this
overhead to O(m�), which is the time required to scan the input anyway.

Observation 1. Let t(m, �) be an upper time bound for sorting m binary strings
of length � on a nondeterministic off-line Turing machine with two-way input.
Then EDP(m, �) can be accepted in time t(m, �) + O(m�) on the same machine
model.

Proof. In the first stage a machine M deciding the EDP applies the sorting
algorithm. Then it verifies that neighboring strings are different making use of
its input tape as a unary counter. The count 0 is represented by the input head
being on the left end-marker. Increment and decrement correspond to right and
left movements.

Let xi and xi+1 differ at position j. Then M starts from the first symbol of xi

on the work-tape counting on the input tape until it guesses that it has reached
symbol j. It records the bit read and moves on the work-tape to the first symbol
of xi+1. By decrementing it locates symbol j and verifies that it differs from the
recorded bit.

Each comparison can be done on time O(�), leading to the claimed additional
O(m�) steps. ��
We can now derive from Wiedermann’s bound O(m3/2�) on sorting that EDP is
at most of the same complexity.

In the reduction above we made use of the fact that in order to determine
inequality of strings a difference of one bit is enough. Now we exploit this obser-
vation a little further and show that by using a suitable technique we can get a
better time complexity than by reducing EDP to sorting.

In the following we treat the strings in the input of the EDP as integers. We
first adapt Lemma 6 of [1] to the notation of the present paper.

Lemma 1. For every sufficiently large value of m, and for every set of m dis-
tinct binary strings of length � ≤ m there is a prime r ≤ m4, such that no two
elements are congruent modulo r.

Proof. By the Prime Number Theorem there are Ω(m4/ logm) primes less or
equal than m4. For any pair of values i, j of distinct elements in the input every
prime p such that i and j are congruent modulo p divides |i− j|. Hence there are
at most � ≤ m such primes for each pair. Omitting these at most m3 numbers
leaves at least one prime r with the desired property for sufficiently large m. ��
Theorem 1. The EDP(m, �) for length � = O(m/ log2 m) can be accepted in
time O(m3/2�1/2) and space O(m1/2�1/2) on a nondeterministic off-line Turing
machine with two-way input.

Proof. The strategy of the algorithm is to partition the elements from the input
into disjoint blocks of similar size. For each block a space efficient perfect hashing

Element Distinctness and Sorting on One-Tape Off-Line Turing Machines 409

function is guessed and it is verified that all elements in one block are mapped
to different hash values. This establishes that all elements are distinct.

We first describe the computation of the Turing machine M solving the EDP
on a positive instance. Machine M guesses a partition of the elements into blocks
of at most q = �√m�
 elements, such that each element from block i+1 is greater
than each element from block i. In order to do this, it generates two elements
such that at most q elements would lie between them in the sorted sequence
of elements. In each iteration M selects these elements. From now on we will
concentrate on one such set S of size q.

First M guesses a prime r of size polynomial in m according to Lemma 1.
Observe that r can be represented in O(log m) bits. By reducing each element
x to x′ = x mod r in time O(� log m) the machine can perform all following
arithmetics with numbers consisting of O(log m) bits.

A second prime p with r < p ≤ 2r is guessed in binary notation. Now M
uses the hashing technique based on the corollaries from [5] with universe U =
{1, . . . , p − 1}. By B(q, S, k, j) we denote the number of times j appears as the
image of an x ∈ S when the function x �→ (kx mod p) mod q is applied. First M
prepares a two-level hashing scheme by guessing a k < p such that

q∑

j=1

B(q, S, k, j)2 < 3q.

A k with this property exists by Corollary 1 of [5]. Then M allocates q buck-
ets consisting of B(q, S, k, j)2 binary flags each, separated by markers (length
B(q, S, k, j)2 of bucket Sj is guessed).

For the second level the space efficient rehashing of Slot and van Emde Boas
is employed [10], which we outline below.

Set sj = |Sj |, call k′ ∈ U good for bucket j if x �→ (k′x mod p) mod 2s2
j is

one-to-one on Sj . Let C be the set of buckets. By Corollary 4 from [5] at least
half of the k′s is good for each bucket in C, therefore there is a k′

1 that is good
for at least half of the buckets. Some k′

2 is good for at least half of the remaining
buckets etc. until all buckets are covered. From these 1 + log q good elements a
table k′

1, . . . , k
′
1+log q is formed in space O(log2 m).

The k′
i are assigned to buckets by 1 + log q tables of binary flags: in the first

table all buckets are marked for which k′
1 is a good multiplier in the sense defined

above, in the second table all remaining buckets are marked for which k′
2 is good

etc. Observe that each table occupies at most half of the space of the previous
one leading to a space bound O(q).

Computation of the hash-values: For every element x ∈ S hash function
h(x′) = (kx′ mod p) mod q is evaluated. Bucket j = h(x′) can be marked in
O(q) time with the help of the fast counting technique explained below.

A good k′
ij

for bucket j is found by first checking the flags for k′
1. If the j-th

flag is false, M counts the number of buckets before j which are not covered
by k′

1. This is again done with the help of the fast counting technique. Then

410 H. Petersen

hj(x′) = (k′
ij

x′ mod p) mod 2s2
j is computed, flag hj(x′) of bucket j is tested (M

rejects if it is true) and the flag is set.
The time required for arithmetics over all iterations is

O(m� log m) = O(m
√

�

√
m/ log2 m log m) = O(m3/2�1/2).

This concludes the description of M ’s computation on a positive instance. It
should be clear that by choosing suitable partitions and hashing functions each
positive instance of EDP can be accepted.

If there are duplicates in the input, then it might be impossible to guess a
partitioning into blocks of the intended size. This can be detected by M , since
it can compare the number of selected elements and q. Notice that M does not
have to establish that a partitioning is impossible, since an input is rejected if
all guesses fail. If a block contains two identical elements, then after applying
the transformations and hash-functions the same values will be computed. Thus
M will detect the collision.

Fast counting technique: The goal is to use the input tape as an auxiliary
counter without moving the input head to one of the end-markers, since this
would take too much time.

Let the input head of M be positioned on the marker before element x. Copies
of x are generated by M on a track parallel to the stored information on the
work-tape in time O(q). If x is closer to the left end of the input tape, then
an increment operation is simulated by a move to the right and decrement is
simulated by a move to the left. If x is close to the right, the directions are
interchanged. M can guess which case to choose. In this way M can count up to
m�/2, which is sufficient.

The test for zero is done in two stages: first M checks, whether it reads a
marker on the input tape. If this is the case, it compares the element following
the marker and a copy of x on the work-tape. If the work-tape head is not on the
first symbol of such a copy, M marks its current position, moves its head to the
first symbol, and after the comparison returns to the initial position. This test
would lead to incorrect results if x would appear more than once on the input
tape. Therefore whenever the counter is incremented and afterwards a marker
is read on the input tape, M compares the element following that marker and x
and immediately rejects if they are identical.

The time complexity of all counting processes is O(q) in the algorithm above,
since each comparison of complexity O(�) is preceded by � increment or decre-
ment operations of constant complexity. For linear complexity it is important
that x needs to be copied on the parallel track only once for all counting opera-
tions required by x. ��
Remark 1. The result shows that on this model of computation EDP is easier
concerning its time complexity than sorting at least for certain relations between
m and �.

Next we show that it is not possible to simultaneously improve the time and
space requirements in the previous algorithm.

Element Distinctness and Sorting on One-Tape Off-Line Turing Machines 411

Theorem 2. Any nondeterministic off-line Turing machine accepting the prob-
lem EDP(m, �) for length � ≥ 2 logm simultaneously within space s(m, �) and
time t(m, �) satisfies

s(m, �)t(m, �) = Ω(m2�).

Proof. Recall that N1(f) is the nondeterministic two-party communication com-
plexity of the two-place function f for the value 1. One can define this measure
as the minimum cost in terms of bits exchanged in a protocol for two players
evaluating f which are allowed to take nondeterministic steps. An equivalent
definition based on covers can be found in [7]. By DISJ(n, u) we denote the
boolean function of disjointness of two sets of n numbers each chosen from a
universe of u ≥ 2n elements.

Theorem 2.11 of [7] shows that

N1(DISJ(n, u)) = Ω

(
log

(
u
n

)

log u

)
.

A protocol for DISJ(m/4, 2� − m/2) can be obtained from a nondeterministic
off-line Turing machine accepting the EDP in time t(m, �) and space s(m, �)
by running it on an input consisting of Alice’s m/4 numbers, then a “desert”
of m/2 fixed numbers and finally Bob’s m/4 numbers. As long as the machine
does not enter Bob’s numbers with its input head, Alice does the simulation.
When this happens, she transmits all of the work-tape contents to Bob. He
then continues until the machine enters Alice’s region of the input tape and so
on. If the machine accepts, then the protocol accepts. Since a transfer of the
tape contents happens after at least m�/2 (length of the desert) steps, we have
that the protocol transmits O(t(m, �)s(m, �)/(m�)) bits. This gives the claimed
bound. ��

We remark that Karchmer [6] has shown t2(m, log m)s(m, log m) = Ω(m3)
for the stronger model of non-uniform nondeterministic Turing machines with
several input-heads.

4 Deterministic Turing Machines

The main portion of this section is devoted to a deterministic sorting algorithm.
Since it is considerably more complex than the nondeterministic solution of the
EDP presented in the previous section, we first describe the computation of some
auxiliary information.

Definition 1. Let M be a multiset of strings of length � and m = |M |. The k-th
radian xk is a string with the properties

|{y ∈ M | y < xk}| < k · �√m

and

|{y ∈ M | y ≤ xk}| ≥ k · �√m
,
where {y ∈ M | y < xk} and {y ∈ M | y ≤ xk} are multisets.

412 H. Petersen

Notice that xi = xj is possible for i �= j, since M is not required to be a
set. Intuitively, xk is an element of M whose position in the sorted sequence is
k · �√m
.
Lemma 2. There are less than

√
m + 2 radians and for each radian xk holds

xk ∈ M .

Proof. For 0 ≤ m ≤ 4 the first statement clearly holds. If m ≥ 5 we have

(
√

m + 2) · �√m
 ≥ (
√

m + 2) · (√m − 1)
= m +

√
m − 2

> m

and the inequality |{y ∈ M | y ≤ xk}| ≥ k · �√m
 cannot be satisfied for
k ≥ √

m + 2.
If xk �∈ M , then |{y ∈ M | y < xk}| = |{y ∈ M | y ≤ xk}| contradicting the

definition of a radian. ��
Lemma 3. A deterministic off-line Turing machine with two-way input receiv-
ing m binary strings of length � each can compute all radians and store them on
its work-tape in time O(m3/2� + m�3).

Proof. The computation is split into phases, where in each phase � radians are
computed.

Assume that the machine T computing the radians has determined all radians
up to x(k−1)� (this is vacuously true for k = 1). Now T starts phase k for
the computation of radians x(k−1)�+1 up to xk� with two variables s = 0 and
t = 2� − 1 and performs a binary search for xk� in the space of binary sequences
of length � (we identify these sequences with the numerical values in binary
notation). It maintains the invariant s ≤ xk� ≤ t, which clearly holds initially.
Then it computes z = �(s + t)/2
, compares each string y in the input with z
and counts those y for which y ≤ z. In order to do this efficiently the counter
is stored on a track along with z and the update is done when T resets its
head to the first symbol of the binary encoding of z. If the multiset of y ≤ z
satisfies |{y | y ≤ z}| < k� · �√m
 machine T replaces s with z + 1, otherwise
it replaces t with z. In the former case the radian xk� has to be greater than z,
since |{y ∈ M | y ≤ xk}| ≥ k · �√m
. Therefore z+1 ≤ xk� ≤ t and the invariant
is maintained by replacing s with z + 1. In the other case xk� cannot be greater
than z and so s ≤ xk� ≤ z. The process stops when s = t = xk�. The number
of iterations is bounded by �, since after the i-th iteration the i most significant
bits of s and t are identical, the �− i least significant bits of s are 0 and those of
t are 1. These properties hold before the first iteration and are maintained since
the � − i least significant bits of z in iteration i are 1. The time complexity of
this part of each phase is O(m�2) (the input of length O(m�) is read � times, the
other operations can be done in time O(�) per string).

Now in one pass over the input the machine computes d = min(|{y | y ≤
x(k−1)�}|, k� · �√m
). Then it generates d − (k − 1)� · �√m
 copies of x(k−1)�. In

Element Distinctness and Sorting on One-Tape Off-Line Turing Machines 413

another pass over the input, T copies all those y for which x(k−1)� < y < xk� onto
its work-tape. By definition of x(k−1)� and xk� these are less than �·�√m
 strings.
Finally T generates copies of xk� until � · �√m
 strings are on the work-tape.

Performing a similar binary search as above, T determines x(k−1)�+1 to xk�−1.
The main difference is that copies of s, t and z are stored on separate tracks
underneath each y. The initialization of s and t is trivial. The computation of
z can be done in one pass over the strings in time O(

√
m�2) (

√
m� strings of �

bits each). Along with the computation, T can compare z with each string and
count those y such that y ≤ z making use of its input-tape as a unary counter. If
d+ |{y | y ≤ z}| < ((k−1)�+ j) · �√m
 then T replaces s with z +1, otherwise it
replaces t with z. In this way T determines x(k−1)�+j for 1 ≤ j < �. The number
of radians computed per phase is �, each computation has to determine � bits
leading to a time bound O(

√
m�4) per phase.

There are O(
√

m/�) phases of complexity O(m�2 +
√

m�4) each leading to the
claimed bound O(m3/2� + m�3). ��
Theorem 3. Sorting m binary strings of length � each separated by marker
symbols can be done in time O(m3/2�) on a deterministic off-line Turing machine
with two-way input if � = O(m1/4).

Proof. The strategy of the algorithm is to partition the elements into blocks
using the radians computed according to Lemma 3. The elements from one block
are then moved to their final position by a counting technique.

Without loss of generality we may assume � ≥ log m, since otherwise Wieder-
mann’s procedure of complexity O(m�2��/2�) [12, Theorem 7] can be employed.
The assumption � ≥ log m justifies the use of binary encoded counters in the
range from 0 to m stored on separate tracks along with copies of the input
strings.

The machine T sorting the input first computes all radians according to
Lemma 3. Then it sets up a sequence of m slots containing several fields, where
slot j is composed of:

– tj a field of � bits which will eventually contain the j-th string of the sorted
sequence,

– aj an auxiliary field of � bits,
– pj a single bit,
– and gj a boolean flag marking those slots containing the final value in field

tj .

Initially all gj are set to false and all tj to 0�.
Now T computes k = �√m
 in binary and uses its input-head as a unary

counter in order to mark the positions of the radians in the sequence of slots by
setting their fields tj to 1�. Then T transfers each radian xi to its position by
finding xi on the input-tape, moving its work-tape head to the first slot j with
tj = 1� and gj = false, and copying xi from the input-tape onto tj . Field gj

is set to true. A second copy of xi is stored in the auxiliary field of the slot of
the previous radian (this will not work for x1, for which a second copy is placed
before the sequence).

414 H. Petersen

The radians define blocks of k − 1 empty slots, where eventually strings be-
tween the two neighboring radians will be stored. The j-th remaining slot in
block i has to accommodate a record of values, where the meaning of each entry
after completion of the computation for the block will be:

– yj is a string occurring in the input with xi ≤ yj ≤ xi+1,
– cj is the number of times yj occurs in the input,
– dj is the number of different strings smaller than yj and larger than xi in

the input,
– ej is the number of strings (counting duplicates) smaller than yj and larger

than xi in the input,
– and fj is a boolean flag.

Notice that the numbers cj , dj , and ej can be stored in � bits each, since � ≥
log m.

Stage i which determines strings properly between xi and xi+1 (we set x0 =
0�) starts with an empty block, which is indicated by flag fj being initialized to
false for all j in the current block.

In one pass over the input, T compares every string y with xi and xi+1 stored
in the first slot of the block. If y falls within this range, T compares y to all
strings already stored in the block. If y occurred previously as yj , then the count
cj is incremented. If y occurs for the first time, then the new slot h is initialized
by setting yh = y, ch = 1, and fh = true.

After storing all strings of the block the values dj and ej are determined in
two additional passes over the input. All counters are initialized with 0. For
computing the dj each y in the block is located on the input-tape in one scan
from left to right and then all other entries of the block are compared to y. For
those greater the counter dj is incremented. When computing the ej all strings
in the input between xi and xi+1 are taken into account and the counters are
updated in the same way as for the dj .

Now the fields tj in the current block are filled with the appropriate values.
Notice that the value d = |{y | y ≤ xi}| − i · k (which can be computed by
T in another scan of the input) determines the number of copies of radian xi

that occur before the next larger string. Therefore T marks the first max(d, k)
slots (e.g. by writing a special value into their a-fields) using its input-head as a
counter and then copies xi onto their t-fields. It marks them as final values by
setting their g-fields to true.

Next T has to move the values yj to their proper positions. It again uses its
input-head as a counter and in turn for every non-empty slot j of the block marks
the ej +1-st non-final field th. Then it stores cj as the position of its input-head
and copies the least significant bit of dj into the fields ph, . . . , ph+cj−1.

Now T scans all yj starting with the last one. It locates yj on the input-tape
searching backwards. If it has found yj it uses the input-tape for copying yj

into all a-fields of the current block. This copying is a preparatory step for a
deterministic variant of the fast counting technique described in Section 3. Then
T positions its input-head on the marker symbol after yj on the input-tape. It

Element Distinctness and Sorting on One-Tape Off-Line Turing Machines 415

starts to decrement dj until it reaches zero and for every step moves its input-
head one position to the left. If it encounters a marker, it checks whether the
string on the input-tape ending at this marker is equal to yj. If it is, it restores
dj (by reversing the counting process) and moves the input-head to the previous
occurrence of yj. This revision may be repeated several times. If the count is
completely stored, T moves its work-head onto the first non-final t-field and
starts to look for the correct position of yj . For doing this it decrements the
count stored as the position of its input-head for every change of the value of
consecutive p-fields, not however counting sequences of equal p-fields belonging
to final values. If the count reaches zero, T has found the proper position, copies
yj into the t-fields of all slots with the same p-value as the first one, and marks
these slots as final. The test for zero is done with the help of the copies of yj

stored in the a-field of every slot. Then T decrements the values dh for all yh > yj

to the left of yj on the work-tape and continues the process until all yj have been
copied.

We have to argue, that there is some occurrence of yj for which the counting
process can be completed. Such an occurrence is the first one, since before the
first occurrence of yj there will be at least as many occurrences of other strings
as there are different strings that still have to be moved to their proper positions.
The latter number bounds the maximum count to be stored.

If after the distribution of the yj there are still non-final t-fields, then T fills
them with xi+1.

We will now analyze the time complexity of the algorithm. Computing the
radians according to Lemma 3 is possible in time O(m3/2� + m�3). For � =
O(m1/4) this time bound is O(m3/2�).

The initialization of all fields can be completed in O(m�) steps.
Copying a radian xi is done by finding xi on the input-tape in O(m�) op-

erations, moving the work-tape head to the appropriate slot over O(m�) tape
cells, and copying xi from the input-tape in time O(�). Transferring all O(

√
m)

radians is therefore possible in time O(m3/2�).
Since each stage (except possibly the last) processes at least

√
m strings from

the input, the number of stages is O(m/
√

m) = O(
√

m). In order to derive the
claimed time bound O(m3/2�) it therefore suffices to show that each stage can
be completed in O(m�) steps.

Comparing all m strings in the input with a fixed number of strings on the
work-tape can be done in time O(m�). Similarly comparing O(

√
m) strings to

O(
√

m) strings stored in a block is possible in O(m�) steps. This shows that
filling the slots in one block and updating the counters does not exceed the
time-bound.

Copying the radian into O(
√

m) slots takes O(
√

m�2) steps, which is O(m�).
Preparing the p-fields requires O(

√
m) movements of the input-head over k� =

O(
√

m�) symbols. Here and in the sequel T has to count in binary. Notice that
counting up to (or down from) some number n takes time O(n).

Since T searches for the yj stored in one block in one scan of the input-tape,
it reads every symbol a finite number of times. The test for zero is carried out

416 H. Petersen

only at marker symbols, therefore this comparison of time complexity O(�) occurs
only after � steps with constant cost, resulting in constant amortized complexity.
Updating the counters is possible in O(

√
m�) steps per string, leading again to

the bound O(m�). ��
The lower bound on matrix transposition from [4] yields the time-bound

Ω
(
m3/2�

/⌈√
(log m)/�

⌉)

on sorting for � large enough to store binary addresses. Therefore Theorem 3
is asymptotically optimal for a wide range of lengths of strings to be sorted. If
� is small, Wiedermann’s sorting algorithm [12, Theorem 7] with time bound
O(m�2��/2�) is more efficient.

By modifying the sorting algorithm from the proof of Theorem 3 we obtain:

Theorem 4. The problem EDP(m, �) with � = O(m1/4) can be solved by a
deterministic off-line Turing machine with two-way input in time O(m3/2�) and
space O(m1/2�2).

Proof sketch. The first stage of the algorithm showing Theorem 3 computes el-
ements partitioning the input elements in time O(m3/2�) using O(m1/2�2) space.

The second stage actually sorting the input works in Θ(m1/2) phases, where
each phase generates a sorted subsequence consisting of Θ(m1/2) elements (space
Θ(m1/2�) per phase).

We modify the second stage so that each phase overwrites the elements stored
by the previous one. This reduces the overall space usage to Θ(m1/2�). Along
with storing an element, the machine compares it to every other element pre-
viously selected and rejects if it discovers two equal elements. Since the time
complexity of the second stage is O(m3/2�), we obtain the claimed bounds. ��

In a similar way as in Theorem 2 we obtain:

Proposition 1. Any deterministic off-line Turing machine accepting the prob-
lem EDP(m, �) for length � ≥ 2 logm simultaneously within space s(m, �) and
time t(m, �) satisfies

s(m, �)t(m, �) = Ω(m2�2).

This product of time and space complexity can be achieved by copying each
element onto the work-tape and comparing it with every other element in time
O(m2�) and space O(�). The time-efficient algorithm from Theorem 4 is however
worse by a factor � than the lower bound from Proposition 1.

5 Open Problems

It remains open whether our algorithms for EDP are time-optimal. For deter-
ministic machines there is even a gap between upper and lower bound for the
time-space product. An old problem related to the results of the present paper
is, whether a variant of EDP can be solved in linear time by a nondeterministic
Turing machine with several work-tapes [2].

Element Distinctness and Sorting on One-Tape Off-Line Turing Machines 417

The deterministic algorithm from Theorem 3 is asymptotically optimal for a
wide range of lengths of strings to be sorted. For small � Wiedermann’s solution
of time complexity O(m�2��/2�) is superior. In fact, it is optimal for constant �,
but it remains an open question whether it can be improved for slowly growing,
non-constant �.

Acknowledgments. The author is grateful to the referees for suggesting several
corrections and improvements of the presentation.

References

1. Ben-Amram, A.M., Berkman, O., Petersen, H.: Element distinctness on one-tape
Turing machines. Acta Informatica 40, 81–94 (2003)

2. Book, R.V., Greibach, S.: Quasi realtime languages. Mathematical Systems The-
ory 4, 97–111 (1970)

3. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf,
R.: Quantum algorithms for element distinctness. SIAM Journal on Computing 34,
1324–1330 (2005)

4. Dietzfelbinger, M., Maass, W., Schnitger, G.: The complexity of matrix trans-
position on one-tape off-line Turing machines. Theoretical Computer Science 82,
113–129 (1991)

5. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. Journal of the Association for Computing Machinery 31, 538–544
(1984)

6. Karchmer, M.: Two time-space tradeoffs for element distinctness. Theoretical Com-
puter Science 47, 237–246 (1986)

7. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

8. López-Ortiz, A.: New lower bounds for element distinctness on a one-tape Turing
machine. Information Processing Letters 51, 311–314 (1994)

9. Petersen, H.: Bounds for the element distinctness problem on one-tape Turing
machines. Information Processing Letters 81, 75–79 (2002)

10. Slot, C., van Emde Boas, P.: The problem of space invariance for sequential ma-
chines. Information and Computation 77, 93–122 (1988)

11. Szepietowski, A.: The element distinctness problem on one-tape Turing machines.
Information Processing Letters 59, 203–206 (1996)

12. Wiedermann, J.: Optimal algorithms for sorting on single-tape Turing machines.
In: van Leeuwen, J. (ed.) Algorithms, Software, Architecture, Proceedings of the
IFIP 12th World Computer Congress, Madrid, Spain, vol. I, pp. 306–314. Elsevier
Science Publishers, Amsterdam (1992)

Improved Bounds for Range Mode and Range

Median Queries

Holger Petersen

Univ. Stuttgart
FMI

Universitätsstr. 38
D-70569 Stuttgart

petersen@informatik.uni-stuttgart.de

Abstract. We investigate the following problem: Given a list of n items
and a function defined over lists of these items, generate a bounded
amount of auxiliary information such that range queries asking for the
value of the function on sub-lists can be answered within a certain time
bound.

For the function “mode” we improve the previously known time bound
O(nε log n) to O(nε) with space O(n2−2ε), where 0 ≤ ε < 1/2. We
improve the space bound O(n2 log log n/ log n) for an O(1) time bounded
solution to O(n2/ log n).

For the function “median” the space bound O(n2 log log n/ log n) is
improved to O(n2 log(k) n/ log n) for an O(1) time solution, where k is
an arbitrary constant and log(k) is the iterated logarithm.

1 Introduction

In this work we investigate the complexity of the following problem: Let A =
(a1, . . . , an) be a list of elements chosen from some set S and let f be a function
defined for lists over S. After possibly computing auxiliary information about A
in advance, a sequence of range queries asking for f(ap, . . . , aq) with varying p
and q has to be answered. We simultaneously bound the size of the additional
data stored by the preprocessing (the space) and the time for each query. The
computational model is a unit-cost RAM with Θ(log n) word length.

The obvious solution of storing answers for all sub-lists uses Θ(n2) space and
has constant time complexity. Our goal is to improve the space-time product to
sub-quadratic bounds.

The problem of range queries is particularly easy if S is a group with a constant
time computable operation and f(ap, . . . , aq) = ap · · · aq is the product of all
elements in the range. In this case all partial products mi = a1 · · · ai and their
inverses can be precomputed and stored in O(n) space. The computation of
f(ap, . . . , aq) = m−1

p−1mq is possible in constant time. Since the list A itself
requires space n these bounds are asymptotically optimal.

Among the operators of interest that do not admit the computation of inverses
are min and max where S is an ordered set. Nevertheless an optimal O(n) space

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 418–423, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Bounds for Range Mode and Range Median Queries 419

and O(1) query time solution has been given by Gabow, Bentley, and Tarjan
[GBT84], which is based on the solution of the nearest common ancestor problem
by Harel and Tarjan [HT84]. A simplified version is due to Bender and Farach-
Colton [BFC00, BFCP+05].

A median is an element of a sorted multi-set dividing the higher half from
the lower half. In comparison to the average (which usually is not a member
of the multi-set), the median often more accurately captures the concept of a
typical element. As an example of an area where median computations arise we
mention the definition of poverty: In the EU a person with an income below 60
% of the median in a country is considered to be at risk of poverty [SCFF05,
p. 125]. Another (not necessarily unique) parameter of a multi-set is the mode,
a value with maximum frequency.

The problem of computing the median and mode for ranges of lists has been in-
vestigated by Krizanc, Morin and Smid [KMS05]. For mode we improve their time
bound O(nε log n) with space O(n2−2ε) by a logarithmic factor and for the O(1)
time solution we improve the space bound O(n2 log log n/ log n) to O(n2/ logn).

For the function median we improve the previous space bound
O(n2 log log n/ logn) to O(n2 log(k) n/ logn) for the O(1) time solution, where
k ≥ 1 is an arbitrary constant and log(k) is the iterated logarithm.

Algorithms for approximate range mode and median queries are due to Bose,
Kranakis, Morin and Tang [BKMT05]. For computing an approximate range
mode they also present an Ω(n log n) lower bound on the time necessary for
preprocessing and answering the query, where the model is that of algebraic
decision trees. Notice that the algorithms of [KMS05] and the present work are
designed for random access machines.

The new bounds obtained and some previous results are summarized in the
following tables (for restrictions on ε see the references):

Range Mode
space time space × time ref.

O(n2−2ε) O(nε) O(n2−ε) Theorem 1
O(n2/ logn) O(1) O(n2/ logn) Theorem 2

Range Median
space time space × time ref.
O(n) O(nε) O(n1+ε) [KMS05]

O(n log2 n/ log log n) O(log n) O(n log3 n/ log log n) [KMS05]
O(n2 log(k) n/ logn) O(1) O(n2 log(k) n/ logn) Theorem 3

2 Results

We need the following observation from [KMS05]:

Lemma 1. Let A, B, C be multi-sets. If a mode of A ∪ B ∪ C is not a member
of A ∪ C, then it is a mode of B.

420 H. Petersen

In the following proofs we often use non-integer values when an integer is re-
quired. We assume that these values are appropriately rounded.

Theorem 1. For every 0 ≤ ε < 1/2 there is a data structure of size O(n2−2ε)
that can answer range mode queries in O(nε) time.

Proof. We first notice, that each element can be represented by an integer from
{1, . . . , n}, since a translation table can be stored within the space bound. We
will work only with these numbers and identify them with the original elements.

Let r = �ε/(1−2ε)�. Notice that r is a constant with ε ≤ r/(2r+1). We divide
the list into nested intervals, where each level � interval has length n(r+�)·ε/r for
0 ≤ � ≤ r. A level � interval thus contains nε/r level � − 1 intervals. For each
level r interval i we pre-compute a table fi of size n that stores the frequency of
each element in the prefix of the list up to and including interval i. Notice that
the frequency of element e in the range from interval j to k is fk[e]− fj−1[e] (f0

is always 0).
For each level � interval i with � > 0 we choose a constant time computable

hash function hi that is perfect for the elements occurring in the interval and
mapping into a set of size O(n(r+�)·ε/r) [FKS84]. We store each element e in a
table s at position hi(e). All entries of s that are not mapped to by hi are filled
with an arbitrary element from the interval. In addition we form a table t(g, j)
of size O(n(r+�+1)·ε/r) that stores for every hash value g and every level � − 1
interval j the frequency of the hashed element in the prefix of the list up to and
including that level � − 1 interval.

In addition a table of size O(n2−2ε) is set up that stores for each sorted pair of
(possibly identical) level 0 intervals the mode of the list between them (including
both intervals) and the frequency of each of these modes.

Finally a table c with n entries will be initialized with zeroes. While processing
a query this table will record the frequency of certain elements from the selected
range. After a query has been processed, the table will be reset to its initial state.
An easy way to do this without increasing the time complexity by more than a
constant factor is to record all modified entries in a linked list. After processing
the query all recorded entries are set to zero.

Suppose a range mode query for the list from position p to position q has to
be answered. If p and q are in the same level 0 interval, then in one scan for
every element e in the range c[e] is incremented. In a second scan of the interval
the element with the maximum count is selected.

In the following we assume that p and q are in different level 0 intervals. Let m
be the mode of the pair of (possibly identical) level 0 intervals properly between
p and q, or an arbitrary element of the range if p and q are in neighboring level 0
intervals. By Lemma 1 the mode of the sub-list from p to q is m or one of the O(nε)
elements in the prefix resp. suffix of the level 0 intervals containing p resp. q.

By the remarks in the introduction it is sufficient to compute the frequency
from the start of the list up to position p (resp. q − 1) for each element e which
could be the mode in constant time. The frequency can be computed as the
difference of the two values. We describe the frequency computation for position
p. Let � be the minimal level of intervals containing p and a position at which e

Improved Bounds for Range Mode and Range Median Queries 421

occurs, or � = r+1 if no such interval exists. This � can be computed in constant
time by performing the test e = s(hi(e)) for each of the at most r + 1 intervals
involved. If � = r+1 the frequency up to the preceding level r interval i (which is
the result) can be looked up in fi. If r ≥ � > 0, then the value t(hi(e), j) for the
level � interval i and the level �− 1 interval j containing p is the result. If finally
� = 0, then an approximate frequency up to the preceding level 0 interval j can
be fetched from t(hi(e), j), where i is the level 1 interval containing j. All these
approximate frequencies are stored in table c. Also the frequency of m is stored
in c. Now in a second pass for each occurrence of an element e in the prefix of
the level 0 interval containing p entry c[e] is incremented. This can be done in
O(nε) steps, thus in constant time per element. In this way the frequency of
each element in a prefix is computed in time O(1). From the non-zero entries of
c the maximum frequency is selected and returned as the answer to the query.

Each level r interval is of length n2ε, therefore there are n1−2ε of them. Hence
the tables fi with n entries require space O(n2−2ε) in total. The space used
by each level is dominated by the tables t which are of size O(n1+ε/r). We
have 1 + ε/r ≤ 1 + 1/(2r + 1) = 2 − (2r/(2r + 1)) ≤ 2 − 2ε and therefore
O(n1+ε/r) = O(n2−2ε). The table of modes of pairs of level 0 intervals can be
stored in space O((n1−ε)2) = O(n2−2ε). ��

Theorem 2. There is a data structure of size O(n2/ logn) that can answer
range mode queries in O(1) time.

Proof. In order to simplify computations we assume that the n elements are
stored in A[0, . . . , n − 1]. For every interval of the list of the form A[i, j · log n]
for 0 ≤ i ≤ n − 1 and i ≤ j log n ≤ n − 1 its mode is stored in the array m at
position m[i, j]. For each of the log n−1 positions k = j ·log n+1, j ·log n+2, . . . ,
(j +1) · log n−1 the mode of A[i, k] is the mode of A[i, k −1] or element A[k] by
Lemma 1 (notice that one of the sets is empty). This information can be encoded
into a single bit and all log n − 1 bits thus determined can be encoded into a
number r[i, j] stored in an array r. A systematic way to do this is to store the
bit for k = j · log n+1 as the least significant bit and proceed to more significant
bit positions in r[i, j].

Arrays m and r clearly require space O(n2/ logn). The information stored can
be accessed with the help of an auxiliary array b. Entry b[v, �] selects for value
v the least significant � bits and returns the position of the most significant 1
among those bits, or 0 if all selected bits are 0. Array b is of size O(n log n). If the
mode of A[i, p] has to be determined, then first j = p div log n and � = p−j ·logn
are computed. If b[r[i, j], �] = 0 then m[i, j] is returned. Otherwise the result is
element A[j · log n + b[r[i, j], �]].

Since the number of array accesses is fixed the running time is O(1). ��
We define the iterated logarithm function by letting log(1) n = log n and log(k+1)

n = log log(k) n.

Theorem 3. There is a data structure of size O(n2 log(k) n/ logn) that can an-
swer range median queries in O(1) time for every integer k ≥ 1.

422 H. Petersen

Proof. For k = 1 the statement holds, since the trivial solution of storing answers
to all possible queries suffices. In the following we assume that k ≥ 2.

We construct k levels of data structures. The level 1 structure contains for
every pair of blocks of length b1 = log n of the list the at most 4b1 elements that
can possibly be a median for pairs of indices within the blocks (each element
in the blocks can be a median, and the 2b1 elements in the center of the sorted
sequence of blocks properly in between, if any). The level 1 structure requires
space O(n2/ logn).

Suppose level �−1 has been constructed for 2 ≤ � ≤ k−1. Then level � contains
for every pair of blocks B�

i and B�
j of length b� = log(�) n pointers to the at most

4b� elements that can be a median for every pair of indices within the blocks.
These pointers are relative to the start of the data of the pair of level �−1 blocks
B�−1

i′ and B�−1
j′ containing B�

i and B�
j . Therefore O(log(�) n) bits per pointer are

sufficient, leading again to a space complexity of O(n2/ logn).
The construction for level k stores a pointer to the level k − 1 structure of

length O(log(k) n) for every pair of indices, thus the level k structure requires
space O(n2 log(k) n/ log n).

In order to meet the space bounds, the pointers have to be packed as fields into
numbers of O(log n) bits each. Accessing a field requires shift and bit-mask oper-
ations which can be implemented efficiently with the help of tables as explained
below (if these operations are assumed not to be included into the instruction
set of a RAM).

A query is answered by following pointers starting from level k. If the median
of (ap, . . . , aq) has to be computed, the algorithm first fetches log(k) n + 2 bits
from a three-dimensional array mk with n × (n div log n)× (log(k) n + 2) entries.
It reads mk[p, (q div log n), ((q mod log n) · (log(k) n + 2)) div log n] and extracts
log(k) n + 2 bits starting at position ((q mod log n) · (log(k) n + 2)) mod log n.
Here we start counting at the least significant position and allow for at most
log n + log(k) n + 1 bits per stored word in order to have only one access to mk.
The bits are shifted to the least significant positions, which can be accomplished
with the help of a table of size O(n log(k−1) n logn), since the number of bits
stored is O(log n). Then the lower log(k) n+2 bits are selected with the help of a
table of size O(n log(k−1) n). Now the algorithm has computed a pointer i with
0 ≤ i < 4 log(k−1) n. Suppose a pointer i into the data structure for level � < k
has been determined. If � ≥ 2 then the algorithm computes p′ = p div log(�) n,
q′ = q div log(�) n, reads m�[p′, (q′ div log n), ((q′ mod log n) · (log(�) n + 2)2 + i ·
(log(�) n+2)) div log n] and extracts log(�) n+2 bits starting at position ((q′ mod
log n) · (log(�) n + 2)2 + i · (log(�) n + 2)) mod log n. Here the tables have sizes at
most O(n log2 n) and O(n log n), which is within the claimed space bound. For
level � = 1 the access is to m1[(p div log n), (q div log n), i], where the index of an
element is stored directly.

Since the number of levels is fixed and every level requires a constant number
of operations or memory accesses, we get time complexity O(1). ��

Improved Bounds for Range Mode and Range Median Queries 423

Remark 1. By the method from the proof of Theorem 3 we can also obtain the
space bound O(n2 log∗ n/ logn) with time bound O(log∗ n).

3 Summary

We have improved previous bounds for range mode and range median queries
on lists. No non-trivial lower bounds for these problems are known on the RAM.
Thus it is not clear how far these solutions are from being optimal and algorith-
mic improvements as well as lower bounds are problems left open.

Acknowledgments. The author is grateful to Benjamin Hoffmann, Jürn Laun,
and the referees for useful comments.

References

[BFC00] Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In:
Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–
94. Springer, Heidelberg (2000)

[BFCP+05] Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin,
P.: Lowest common ancestors in trees and directed acyclic graphs. J.
Algorithms 57, 75–94 (2005)

[BKMT05] Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode
and range median queries. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 377–388. Springer, Heidelberg (2005)

[FKS84] Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with
O(1) worst case access time. Journal of the ACM 31, 538–544 (1984)

[GBT84] Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques
for geometry problems. In: STOC 1984. Proceedings of the sixteenth
annual ACM Symposium on Theory of Computing, pp. 135–143. ACM
Press, New York (1984)

[HT84] Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common an-
cestors. SIAM Journal on Computing 13, 338–355 (1984)

[KMS05] Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries
on lists and trees. Nordic Journal of Computing 12, 1–17 (2005)

[SCFF05] Schäfer, G., Cervellin, S., Feith, M., Fritz, M. (eds.): Europe in figures —
Eurostat yearbook 2005. Office for Official Publications of the European
Communities, Luxembourg (2005)

An Automata Theoretic Approach to

Rational Tree Relations

Frank G. Radmacher

Lehrstuhl für Informatik 7, RWTH Aachen, Germany
radmacher@automata.rwth-aachen.de

Abstract. We investigate rational relations over trees. Our starting point
is the definition of rational tree relations via rational expressions by Raoult
(Bull. Belg. Math. Soc. 1997). We develop a new class of automata, called
asynchronous tree automata, which recognize exactly these relations. The
automata theoretic approach is convenient for the solution of algorithmic
problems (like the emptiness problem). The second contribution of this pa-
per is a new subclass of the rational tree relations, called separate-rational
tree relations, defined via a natural restriction on asynchronous tree au-
tomata.These relations are closed under composition, preserve regular tree
languages, and generate precisely the regular sets in the unary case (all
these properties fail for the general model), and they are still more power-
ful than, for instance, the automatic tree relations.

1 Introduction

Automata definable relations over words are widely investigated. Recognizable,
automatic, deterministic rational, and (non-deterministic) rational relations re-
sult in a well-known hierarchy [3]. Proper generalizations of these theories to
trees have been established over the past years in the case of recognizable rela-
tions and automatic relations [2,4]. However, it is still debatable how to obtain
a reasonable generalization of rational word relations to trees.

Rational relations over words can be introduced in several equivalent ways:
First, they are definable via rational expressions (a generalization of regular
expressions), which means that rational relations are generated from the finite
relations by closure under union, componentwise concatenation, and Kleene star.
On the other hand rational relations are recognized by a generalized model of
finite automata, so-called asynchronous automata (sometimes also called multi-
tape automata). The theory was developed in [14,7,8,6,1,3].

Generalizing rational relations to trees (resp. terms) is not straightforward. A
survey focussing on binary relations (transductions) was given by Raoult in [17].
Attractive results on rational word relations which one would also like for rational
tree relations are the following:

– Applied to unary trees, the rational word relations should be generated (also
in the case of n-ary relations).

– A characterization via rational expressions should exist (this implies closure
under union, some kind of componentwise concatenation, and Kleene star).

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 424–435, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Automata Theoretic Approach to Rational Tree Relations 425

– A natural automata theoretic characterization should exist.
– Restricted to unary relations the class of regular tree languages should be

generated.
– Binary rational tree relations should be closed under composition.
– Binary rational tree relations (transductions) should preserve regular tree

languages.

Our automata theoretic approach is a step towards the definition of determin-
istic rational tree relations (cf. [14,13,11] for the word case) and rational relations
over unranked trees. These theories were started in [16].

Towards a generalization of rational relations to trees, Raoult suggests in [18]
defining relations over trees by tree grammars in which non-terminals are rep-
resented by tuples of letters (called multivariables), so that a synchronization
between the productions is possible. Raoult calls these relations rational tree
relations and gives also a characterization in terms of rational expressions.

Complementary Raoult’s grammars, the first contribution of this paper are
so-called asynchronous tree automata which recognize exactly the rational tree
relations. With our automata theoretic approach it is possible to address certain
properties and (un-) decidability results of rational tree relations.

Rational tree relations in the mentioned format have a few drawbacks. They
do not coincide with regular tree languages in the unary case, they are not
closed under composition, and if considered as transductions they do not preserve
regular tree languages. In [18] Raoult proposes a restriction of his tree grammars
to so-called transduction grammars which resolve these problems. But these have
the disadvantage that, when applied to unary trees, they can only be considered
as a generalization of binary rational word relations, but not of the n-ary case.
Furthermore, Raoult’s restriction is difficult to adapt to tree automata, i. e. it
misses a natural automata theoretic characterization. To take account of these
problems the second contribution of this paper is such a natural restriction of
rational tree relations (which semantically differs from Raoult’s one). These so-
called separate-rational tree relations meet all the properties demanded above
and are still more powerful than automatic tree relations [2].

The remainder of this paper is structured as follows. First we fix a few nota-
tions in Sect. 2. In Sect. 3 we define rational tree relation introduced by Raoult,
develop asynchronous tree automata, and show the equivalence. In Sect. 4 we
introduce separate-rational relations and corresponding separate-asynchronous
automata. Section 5 contains a conclusion and an outlook on further research.

2 Preliminaries

We assume the reader is familiar with the basics of tree automata [9,4] and
with rational relations over words [1,6]. Here, we fix just a few notations and
conventions used throughout this paper.

We consider trees and tuple of trees over ranked alphabets Σ = Σ0 ·∪ . . . ·∪ Σm

(where Σi contains exactly the symbols of rank i). Often we will state the rank
of a symbol in parentheses as superscript. So, f (2) means that the symbol f has

426 F.G. Radmacher

rank 2. A tree t is represented as a pair (domt, val) where domt is the set of
tree nodes and val : domt → Σ maps each node of rank k to a symbol in Σk.
Similarly, a tuple t̄ = (t1, . . . , tn) of trees is represented as (domt̄, val) where
domt̄ is the disjoint union of the domti . We write trees as terms in the standard
way. The height of a tree resp. a tuple of trees is defined as the number of nodes
of a longest path from a root to a leaf. For example a tree which only consists
of the root has a height of 1. With TΣ we denote the set of all trees over Σ. A
tree language resp. tree relation is a subset of TΣ resp. (TΣ)n. In Sect. 4 we will
also distinguish alphabets for each (projection to one) component of a relation.

3 Rational Tree Relations

In this section we present the theory of rational tree relations starting from
Raoult’s definition via rational expressions [18]. Then we define asynchronous
tree automata, show the equivalence to Raoult’s definition, and deal with some
closure properties and (un-) decidability results of rational tree relations.

3.1 Definition of Rational Tree Relations Via Rational Expressions

Example 1. Consider the rational expression

(cx1y1, cbx2y2)∗y1y2 ·y1y2 (a, a) ·x1x2 (bz1, bz2)∗z1z2 ·z1z2 (a, a)

over the ranked alphabet Σ = {a(0), b(1), c(2)}. In this example we use “multi-
variables” x1x2, y1y2, z1z2 (written also as X, Y, Z) which are subject to simul-
taneous substitution. The form of tuples of the rational tree relation defined by
above expression is depicted in Fig. 1. We see that the multivariable X = x1x2

occurs in distinct instances x1x2, x
′
1x

′
2, . . . which have to be distinguished. Here,

the number of possible instances of X cannot be bounded by a natural number.
Each instance of the multivariable X becomes substituted with two unary trees
of same height (see Fig. 3(a) on page 429 for a full example pair of trees).

Towards the formal definition, let V be a set of variables. A multivariable is
a sequence in V+ containing at most one occurrence of any variable. For

c
����� ����� c

����� �����

x1 c
����� ����� b c

����� �����

x′
1 c

����� ����� x2 b c
����� �����

x′′
1 . . .

a

x′
2 b . . .

a
x′′

2

Fig. 1. Generating an unbounded number of instances of a multivariable

An Automata Theoretic Approach to Rational Tree Relations 427

X = x1 · · · xn (n > 0) we say that the multivariable X has length |X | := n.
The set of all instances of variables resp. multivariables is the cartesian product
V × N resp. V+ × N. We say (x, j) is the j-th instance of variable x, written
xj , and (X, j) is the j-th instance of multivariable X , written Xj. In order to
avoid too many indices in the notation, we write instances x0

i , x
1
i , x

2
i , . . . of a

variable xi also in the form xi, x
′
i, x

′′
i ,

Instances of variables are nullary symbols which can only occur as leaves.
Furthermore, each instance of a multivariable can occur in a tuple of trees at
most once, and if an instance of a variable occurs, so all other variables of the
same multivariable and same instance: Formally, let t̄ ∈ T m

Σ , let X = x1 · · · xn

be a multivariable where xj
i occurs in t̄; then each xj

i′ occurs in t̄ exactly once
(and as leaf) for 1 ≤ i, i′ ≤ n.

Let X = x1 · · · xn be a multivariable of length n, R a relation over n-tuples
of trees, S a relation over m-tuples of trees, and t̄ a m-tuple of trees containing
k instances of X . Then the concatenation of a tuple with a tree relation is
defined as t̄ ·X R := {t̄′ | t̄′ results from t̄ by substituting each of the k instances
of X with a tuple from R}. The concatenation of two tree relations is defined as
S ·X R := {t̄ ·X R | t̄ ∈ S}, and the iterated concatenation and the Kleene star
for tree relations are defined as R0X := {(xj

1, . . . , x
j
n)}, RnX := {(xj

1, . . . , x
j
n)} ∪

R ·X R(n−1)X , and R∗X :=
⋃

n≥0 RnX . In the case of the iterated concatenation
the instance j ∈ N is chosen as a new instance, so that it occurs in the resulting
relation only once.

Definition 1 ([18]). The classes Ratn of rational tree relations are defined
inductively as follows:

– Each finite n-ary tree relation is in Ratn.
– R ∈ Ratn ∧ S ∈ Ratn ⇒ R ∪ S ∈ Ratn.
– R ∈ Ratn ∧ |X | = m ∧ S ∈ Ratm ⇒ R ·X S ∈ Ratn.
– R ∈ Ratn ∧ |X | = n ⇒ R∗X ∈ Ratn.

We denote the unary relations in the class Rat1 as rational tree languages. Note
that the class Rat1 does not coincide with the class of regular tree languages:

Example 2. The rational expression (fx1x2) ·x1x2 (gy1, gy2)∗y1y2 ·y1y2 (aa) over
the ranked alphabet Σ = {f (2), g(1), a(0)} describes the tree language Tsim =
{f(gna, gna) | n ∈ N} ∈ Rat1, but Tsim is not regular.

3.2 Asynchronous Tree Automata

Now we introduce a class of automata recognizing exactly the class Ratn of
rational tree relations. The above considered Examples 1 and 2 show that these
automata basically have to provide the following three mechanisms:

– Certain transitions are supposed to be used simultaneously. We will achieve
this by combining states to tuples of states which we will call macro states.
In the runs of our automata all states of a macro state have to be reached
and left simultaneously.

428 F.G. Radmacher

We write a finite set of macro states as Q = {q1, . . . , qk} where q1, . . . , qk

are tuples of states taken from a finite set Q of states (Q contains all states
that occur in some q ∈ Q). A macro state has the form q = (q1, . . . , ql)
with l ≥ 1. All macro states in Q are “pairwise disjoint”, i. e. {q1, . . . , ql} ∩
{p1, . . . , pm} = ∅ for all macro states q = (q1, . . . , ql) and p = (p1, . . . , pm)
in Q.

– In addition we require some mechanism to allow asynchronous moves. We
will achieve this by the addition of ε-transitions. This enables the automaton
to do a bottom-up step in one component and to stay in place in another
component (possibly just changing the state).

– An unbounded number of instances of macro states has to be distinguished.
In a run we have to distinguish whether states belong to the same or to dif-
ferent instances. We will achieve this by combining each state in a transition
with a variable. States with same variables must belong to the same instance
when these transitions are used. In a run of our automaton, variables will
be instantiated with natural numbers to denote the different instances.

Example 3. Consider macro states p = (p1, p2) and q = (q1, q2). Then two tran-
sitions ((p1, x), (p1, y), (p2, y), f, (q1, z)), ((p2, x), ε, (q2, z)) enable a bottom-up
computation step as depicted in Fig. 2.

f
������ ������ (p2, 1)

���� ���� −→
(q1, 3)

������ ������ (q2, 3)
���� ����

(p1, 1) (p1, 2) (p2, 2)

Fig. 2. A computation step of an asynchronous tree automaton

Before we give the formal definition of asynchronous tree automata, we start
with a comprehensive example.

Example 4. Consider the rational relation from Example 1. We define an asyn-
chronous tree automaton recognizing this relation. Formally, we will denote our
automaton with A(2) = 〈Q, Q, Var, Σ, Δ, F〉 (the superscript indicates that the
automaton runs on pairs of trees). Σ = {a(0), b(1), c(2)} is a ranked alphabet.
The used macro state set Q = {(qa1 , qa2), (qb1 , qb2), (qc1 , qc2)} consists of pair-
wise disjoint tuples of states in Q. We declare the macro states of the set F ⊆ Q
as final. In this example we declare only the macro state (qc1 , qc2) as final. A(2)

has the following transitions in its transition relation Δ which employ variables
of the set Var = {x, y, z}:

(a, (qa1 , x)) , (a, (qc1 , x)) ,

(a, (qa2 , x)) , (a, (qc2 , x)) ,

((qa1 , x), b, (qa1 , x)) , ((qa1 , x), ε, (qb1 , x)) ,

((qa2 , x), b, (qa2 , x)) , ((qa2 , x), b, (qb2 , x)) ,

((qb1 , x), (qc1 , y), c, (qc1 , z)) , ((qb2 , x), (qc2 , y), c, (qc2 , z)) .

An Automata Theoretic Approach to Rational Tree Relations 429

c
������� ������� c

������� �������

b c
������� ������� b c

������� �������

b b c
������� ������� b b c

������� �������

a a a a b b b a

a a a

(a)

(qc1 , 7)
������� ������� (qc2 , 7)

������� �������

(qa1/b1 , 3) (qc1 , 6)
������� ������� (qb2 , 3) (qc2 , 6)

������� �������

(qa1 , 3)(qa1/b1 , 2) (qc1 , 5)
������� ������� (qa2 , 3) (qb2 , 2) (qc2 , 5)

������� �������

(qa1 , 3) (qa1 , 2)(qa1/b1 , 1) (qc1 , 4) (qa2 , 3) (qa2 , 2) (qb2 , 1) (qc2 , 4)

(qa2 , 3) (qa2 , 2) (qa2 , 1)

(b)

Fig. 3. (a) A pair of trees; (b) an accepting run of A(2) on this pair of trees

Figure 3 shows a pair of trees and an accepting bottom-up run of A(2) on this
pair. For instance, in a first step of this accepting run the first instantiation of
the macro state (qa1 , qa2) is assigned to a pair of leaves resulting in the labelings
(qa1 , 1) and (qa1 , 2). In a second step this macro state changes to (qb1 , qb2) by
application of the transitions ((qa1 , x), ε, (qb1 , x)) and ((qa2 , x), b, (qb2 , x)). Note
that the numbering of instances is rather arbitrary as long as different instances
of variables can be distinguished. Due to lack of space we illustrate all inter-
mediate configurations of the run in one tree. If a node is part of two different
cuts in the run (due to the use of ε-transitions), we label this node with both
configurations in an abbreviated form, e. g. for a node v and two configurations
c1(v) = (qa1 , 3) and c2(v) = (qb1 , 3) we label v with (qa1/b1 , 3).

Now we give a formal definition of asynchronous tree automata.

Definition 2. An asynchronous tree automaton over a ranked alphabet Σ =
Σ0 ∪ . . . ∪ Σm is a tuple A(n) = 〈Q, Q,Var, Σ, Δ, F〉 with

– a finite set Q of states,
– a set Q of macro states over Q (i. e. pairwise disjoint tuples of states in Q),
– a finite set Var of variables,

430 F.G. Radmacher

– a transition relation

Δ ⊆
m⋃

i=0

(
(Q × Var)i × Σi × Q × Var

) ∪ (Q × Var × {ε} × Q × Var) ,

– and a set F ⊆ Q of final macro states.

An instantiation of a set V ⊆ Var of variables is an injective function IV :
V → N, x �→ α. We also refer to α ∈ N as the instance α. A cut C of an n-
tuple (t1, . . . , tn) of trees is an antichain in dom(t1,...,tn) (consisting of pairwise
incomparable nodes w. r. t. the prefix ordering). The computation shifts the cut
stepwise upwards until it reaches the antichain of the root nodes of t1, . . . , tn
(if possible). A configuration is a mapping c : C → Q × N which associates an
instantiated state to each node of C through the tuple (t1, . . . , tn). We require
that the instances of states are the same within each macro state of a configura-
tion; also different occurrences of a state in a configuration appear with different
instances (formally c(v1) �= c(v2) for all v1 �= v2).

A makes a computation step c1 → c2 between two configurations c1 : C1 →
Q × N and c2 : C2 → Q × N where C2 contains the parents of C1-nodes reached
via a proper transition, those C1-nodes which are only subject to state changes
by ε-transitions, and those C1-nodes which are not affected by any transitions in
this step and hence stay unchanged. More precisely, we require that there exist
nodes v1, . . . vk with children v1,1, . . . , v1,l of v1, children v2,1, . . . , v2,l of v2, . . .
and children vk,1, . . . , vk,l of vk as well as nodes vε1 , . . . , vεj , so that the following
conditions are fulfilled:

1. {v1,1, . . . , vk,l, vε1 , . . . , vεj } ⊆ C1.
2. C2 = (C1 \ {v1,1, . . . , vk,l}) ∪ {v1, . . . , vk}.
3. There exist proper transitions

((q1,1, x1,1), . . . , (q1,l, x1,l), val(v1), (q1, x)), . . . , ((qk,1, xk,1), . . . , (qk,l, xk,l), val(vk), (qk, x))

and ε-transitions

((qε1 , xε1), ε, (qε′
1
, x)), . . . , ((qεj , xεj), ε, (qε′

j
, x))

in Δ, so that
– q1, . . . , ql, qε′

1
, . . . , qε′

j
form exactly one macro state,

– q1,1, . . . , qk,l, qε1 , . . . , qεj form a union of certain macro states, and all
states belonging to the same macro state occur with the same variable,

– there exist an instantiation IV of a variable set V ⊆ Var, so that these
transitions with each variable x ∈ V replaced by IV(x) match exactly the
computation step c1 → c2.

4. c2 is identical to c1 on (C1 ∩ C2) \ {vε1 , . . . , vεj }.
The configuration c : C → Q × N with C = ∅ is called start configuration.

A configuration c : C → Q × N is accepting iff C = {root1, . . . , rootn} with
roots rooti of ti (1 ≤ i ≤ n), and there exist a final macro state (q1 . . . qn) ∈ F
and an α ∈ N, so that c(root1) = (q1, α), . . . , c(rootn) = (qn, α). A sequence of

An Automata Theoretic Approach to Rational Tree Relations 431

configurations is a run iff c1 → . . . → cm and c1 is the start configuration. Such
a run is called accepting iff cm is accepting. A(n) recognizes the n-ary relation

R(A(n)) = {(t1, . . . , tn) | there exists an accepting run of A(n) on (t1, . . . , tn)} .

3.3 The Equivalence Theorem

The equivalence theorem is an adaption of the Kleene-Theorem for tree languages
(see [9,4]). (For the detailed proof we refer to [15].)

Theorem 1. A relation R of n-tuples of trees is rational if and only if there
exists an asynchronous tree automaton A(n) with R(A(n)) = R.

Proof (Sketch). The ⇒-direction of the proof goes by induction over rational
expressions. For the induction start the construction of an asynchronous tree
automaton for a singleton of a tuple of trees suffices. Here it is important to
prepare the induction step by reading each instance of a multivariables at the
leaves simultaneously. For the induction step asynchronous tree automata for
the operations ∪, ·X and ∗X according to Definition 1 are easy to construct.

For the ⇐-direction it can be shown for each asynchronous tree automaton
A(n) that its recognized relation is rational. The result can be shown by an in-
duction over the set of “intermediate macro states” S of the runs of A(n). As
intermediate macro states we count macro states which occur in other config-
urations than start configurations at the leaves or an end configuration at the
root. For the induction start (S = ∅) we have to consider trees accepted by
A(n) without intermediate macro states. These are n-tuples of trees of height
1 or 2 only. Since these are only finitely many, they form a rational relation.
For the induction step (|S| > 0) it suffices to give a rational expression which
composes relations with |S| − 1 intermediate macro states to a relations with
|S| intermediate macro states and which is accepted by A(n). ��

3.4 Properties of Rational Tree Relations

Now we present some closure properties and (un-) decidability results, also re-
calling some “defects” of the rational tree relations which were noted in [18].

For a word relation R we define a tree relation TRel(R) by interpreting each
word u = a1a2 · · · an of a tuple of R as an unary tree u$ = a1(a2(. . . (an($)) . . .)).
For an n-ary word relation R ⊆ Σ∗

1 ×. . .×Σ∗
n the tree relation TRel(R) over Σ1 ·∪

{$(0)}, . . . , Σn ·∪ {$(0)} is defined as TRel(R) := {(u1$, . . . , un$) | (u1, . . . , un) ∈
R}. The following results are easy to prove by construction of corresponding
automata for each direction:

Lemma 1. Let R be a word relation. Then R is rational iff TRel(R) is rational.

Due to Lemma1 some elementary closure properties and all undecidability re-
sults of rational word relations can be extended to trees easily:

Proposition 1. (a) The class Ratn of n-ary rational tree relations is closed
under union, not closed under intersection, and not closed under comple-
mentation.

432 F.G. Radmacher

(b) For rational tree relations R1, R2 ∈ Ratn it is undecidable to determine
whether R1 ∩ R2 = ∅, R1 ⊆ R2, and R1 = R2.

The membership problem for asynchronous tree automata is decidable, i. e. it
is decidable whether (t1, . . . , tn) ∈ R(A). Also the emptiness problem, i. e. the
question whether R(A) = ∅, and the infinity problem, i. e. the question whether
|R(A)| is infinite, are decidable. (The proofs can be found in [15].)

Theorem 2. Given an asynchronous tree automata with macro state set Q and
transition relation Δ, and a tuple of trees with m nodes. The membership problem
is decidable in O(|Δ|m) time, and the emptiness and the infinity problem are
decidable in O(|Q|2 · |Δ|) time.

Unlike binary rational relations over words, the class Rat2 of binary rational tree
relations is not closed under composition:

Example 5. The binary tree relations R1 = {(bman$, f(an$, bm$)) | m, n ∈ N}
and R2 = {(f(an$, bm$), anbm$) | m, n ∈ N} are rational, but the composition
{(bman$, anbm$) | m, n ∈ N} is not rational.

Binary rational relations over words are also called (rational) transductions.
They preserve regular and context-free languages, i. e. the image and the inverse
image of a regular (resp. a context-free) language under a transduction is again
a regular (resp. context-free) language [1]. Here we note that binary rational tree
relations do not even preserve regularity:

Example 6 ([18]). Consider the rational tree relation Tsim = {f(gna, gna) | n ∈
N} from Example 2. Clearly, R := Σ∗ × Tsim is rational. The image of a regular
language under R is Tsim which is not regular. An analogous result for the inverse
image can be proved with a relation R′ := Tsim × Σ∗.

4 Separate-Rational Tree Relations

We have seen a few drawbacks of rational tree relations. They do not coincide
with regular tree languages in the unary case, are not closed under composition,
and do not preserve regular tree languages. In [18] Raoult proposes a restriction
of rational tree relations, generated by so-called transduction grammars. These
reestablish the demanded properties, but as mentioned in the introduction they
have other drawbacks: They are not a proper generalization of rational word re-
lations in the n-ary case, and the restriction is difficult to adapt to asynchronous
tree automata. So, we define yet another restriction, both for rational expressions
and asynchronous tree automata, resolving these issues.

The idea is to define a class of relations which can be computed by asyn-
chronous tree automata which have all their macro states separated between the
components, i. e. each state of a macro state can only occur in one component.

Definition 3. The classes SepRatn of separate-rational tree relations are de-
fined inductively as follows:

An Automata Theoretic Approach to Rational Tree Relations 433

– ∅ ∈ SepRatn.
– {(t1, . . . , tn)} ∈ SepRatn, where t1, . . . , tn are only trees of height 1 or 2 and

each component contains at most one variable of each multivariable.
– R ∈ SepRatn ∧ S ∈ SepRatn ⇒ R ∪ S ∈ SepRatn.
– R ∈ SepRatn ∧ |X | = m ∧ S ∈ SepRatm ⇒ R ·X S ∈ SepRatn, m ≤ n,

where each component of a tuple in R contains at most one variable of X.
– R ∈ SepRatn ∧ |X | = n ⇒ R∗X ∈ SepRatn, where each component of a

tuple in R contains exactly one variable of X.

Example 7. (a) The relation from Example 1 is separate-rational. The rational
expression can be rewritten as (cx1y1, cx2y2)∗y1y2 ·y1y2 (a, a) ·x1x2 (x1, bx2) ·x1x2

(bz1, bz2)∗z1z2 ·z1z2 (a, a). It is generated by trees of height 2 at most, and all
multivariables are separated between the components of the tuples.

(b) The rational relations R1 and R2 from Example 5 are not separate-rational,
because multivariables of length 3 are are easily seen to be necessary in order to
define these relations. So, at least two variables of one multivariable have to occur
in the same component of a tuple.

We will restrict asynchronous tree automata, so that these recognize exactly the
class of separate-rational relations. For the separate-asynchronous case we allow
the automata to utilize a specific ranked alphabet for each component.

Definition 4. A separate-asynchronous tree automaton A(n) = 〈Q, Q,Var, Σ1,
. . . , Σn, Δ, F〉 is an asynchronous tree automaton over Σ1 ∪ . . .∪Σn (each Σj =
Σ0j ∪ . . . ∪ Σmj is a ranked alphabets) with the following restrictions:

– the set Q of states is partitioned in Q = Q1 ·∪ . . . ·∪ Qn,
– for each macro state (q1, . . . , qm) ∈ Q and all qk �= ql, 1 ≤ k, l ≤ m, 1 ≤ j ≤

n holds: qk ∈ Qj ⇒ ql �∈ Qj,
– the transition relation is partitioned in Δ = Δ1 ·∪ . . . ·∪ Δn with

Δj ⊆ ∪m
i=0

(
(Qj × Var)i × Σij × Qj × Var

) ∪ (Qj × Var × {ε} × Qj × Var) ,

– each final macro state q ∈ F has the form q = (q1, . . . , qn) with qi ∈ Qi for
all 1 ≤ i ≤ n.

The Equivalence Theorem (Theorem1) can be reformulated for separate-rational
relations. Only slight modifications are necessary. It should be mentioned that
the restriction to elementary trees of height 1 or 2 in Definition 4 is important
for the “⇒”-direction of the proof in order to handle the induction start. Also,
this condition is not a restriction for the “⇐”-direction, because in the original
proof the induction start only results in trees of height 1 or 2.

Theorem 3. A relation R of n-tuples of trees is separate-rational if and only if
there exists a separate-asynchronous tree automaton A(n) with R(A(n)) = R.

Lemma1 can be reformulated for separate-rational relations. So, we obtain the
same undecidability results and closure properties which we derived for rational
tree relations from Lemma1. Beyond this, separate-rational relations resolve the
issues raised in Sect. 3.

434 F.G. Radmacher

Theorem 4. (a) The class SepRat1 of separate-rational tree languages is the
class of regular tree languages.

(b) The class SepRat2 of binary separate-rational tree relations is closed under
composition.

(c) The image and the inverse image of a regular tree language under a binary
separate-rational tree relation R are again regular tree languages.

Proof. (a) For n = 1 all multivariables have length 1 resp. all macro states have
size 1, yielding regular tree languages.

(b) Construct a separate-asynchronous automaton recognizing R � S
:= {(t, t′, t′′) | (t, t′) ∈ R, (t′, t′′) ∈ S} for separate-rational tree relations R
and S by synchronization of the common component. The projection on the
first and third component yields a separate-asynchronous automaton for R ◦ S.
(We refer to [15] for the detailed proof.)

(c) Due to symmetry of Definition 4, it suffices to show that the image of a
regular tree language under a binary separate-rational relation is regular. Clearly,
the identity idT = {(t, t) | t ∈ T } of a regular tree language T is separate-rational.
Thus, the image of T under a separate-rational relation R is the projection on the
second component of idT ◦ R. Due to Theorem4(b) idT ◦ R is also a separate-
rational. The projection on the second component yields a regular tree language
(due to the closure of SepRat under projections [15] and Theorem4(a)). ��
If we consider rational relations over words, they also preserve context-free lan-
guages [1]. It is an open question whether separate-rational tree relations also
preserve context-free tree languages as defined in [10].

5 Conclusion

We presented an automata theoretic approach to rational tree relations which
now can be described by three equivalent formalisms: Rational expressions, tree
grammars [18], and asynchronous tree automata. Separate-rational tree relations
overcome some drawbacks of the rational tree relations. This restriction is nat-
ural, since it is easy to apply to all three formalisms (tree grammars were not
discussed here, but can be restricted like rational expressions). Separate-rational
tree relations are a proper generalization of rational word relations and are still
more powerful than, for instance, automatic tree relations.

Outlook: Rational tree relations are more powerful than linear tree transduc-
ers (as defined in [4]) and some cases of term rewriting systems [12]. These
results do not hold for the separate-rational restriction. More expressive exten-
sions of separate-rational relations with such features need to be investigated.

Asynchronous tree automata allow the definition of rational relations over un-
ranked trees and the definition of deterministic rational tree relations (both over
ranked and unranked trees). For the deterministic top-down model see [5,16].
A deterministic bottom-up model seems to be more challenging (due to the
non-deterministic grouping of nodes in a run for the instantiation with macro

An Automata Theoretic Approach to Rational Tree Relations 435

states). A further restriction of separate-rational automata may yield a model
which generalizes deterministic rational word relations on the one hand and
includes recognizable and automatic tree relations on the other hand.

Acknowledgements. This work contains some results of my diploma the-
sis [16]. Special thanks go to Wolfgang Thomas for supervising this work and for
his numerous helpful suggestions.

References

1. Berstel, J.: Transductions and Context-Free Languages. Leitfäden der angewandten
Mathematik und Mechanik 38. Teubner, Stuttgart (1979)

2. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata
and interpretations. Theory of Computing Systems 37, 641–674 (2004)

3. Carton, O., Choffrut, C., Grigorieff, S.: Decision problems among the main sub-
families of rational relations. Theor. Informat. Appl. 40(2), 255–275 (2006)

4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. Unpublished electronic
book (1997), http://www.grappa.univ-lille3.fr/tata

5. Cristau, J., Löding, C., Thomas, W.: Deterministic automata on unranked trees.
In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 68–79.
Springer, Heidelberg (2005)

6. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New
York (1974)

7. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
Journal of Research and Development 9(1), 47–68 (1965)

8. Fischer, P.C., Rosenberg, A.L.: Multitape one-way nonwriting automata. Journal
of Computer and System Sciences 2(1), 88–101 (1968)

9. Gécseg, F., Steinby, M.: Tree Automata, Akadémiai Kiadó, Budapest (1984)
10. Gécseg, F., Steinby, M.: Tree Languages. In: Handbook of Formal Languages, Be-

yond Words, vol. 3, pp. 1–68. Springer, Heidelberg (1997)
11. Grigorieff, S.: Modelization of deterministic rational relations. Theoretical Com-

puter Science 281(1-2), 423–453 (2002)
12. Meyer, A.: On term rewriting systems having a rational derivation. In:

Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 378–392. Springer,
Heidelberg (2004)

13. Pelletier, M., Sakarovitch, J.: On the representation of finite deterministic 2-tape
automata. Theoretical Computer Science 225(1-2), 1–63 (1999)

14. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 115–125 (1959)

15. Radmacher, F.G.: An automata theoretic approach to the theory of rational tree re-
lations. Tech. Rep. (2007), http://www.automata.rwth-aachen.de/∼radmacher/

16. Radmacher, F.G.: Automatendefinierbare Relationen über Bäumen (Automata De-
finable Relations over Trees). Diploma thesis (revised version), RWTH Aachen
(2007), http://www.automata.rwth-aachen.de/∼radmacher/

17. Raoult, J.-C.: A survey of tree transductions. In: Nivat, M., Podelski, A. (eds.)
Tree Automata and Languages, pp. 311–326. Elsevier, Amsterdam (1992) (also
published as report 1410 INRIA-Rennes, 1991)

18. Raoult, J.-C.: Rational tree relations. Bulletin of the Belgian Mathematical Soci-
ety 4(1), 149–176 (1997)

http://www.grappa.univ-lille3.fr/tata
http://www.automata.rwth-aachen.de/~radmacher/
http://www.automata.rwth-aachen.de/~radmacher/

Slicing Petri Nets with an Application to

Workflow Verification�

Astrid Rakow

Department für Informatik, Universität Oldenburg
astrid.rakow@informatik.uni-oldenburg.de

Abstract. We introduce the notion of net-slice to describe a subnet of
a marked Petri net Σ that approximates Σ’s temporal behaviour with
respect to a set of places P . We consider slices Σ′ whose set of places
comprises the places referred to by a CTL∗ formula φ. If Σ is fair w.r.t.
the transitions of a slice, Σ |= φ can be verified and falsified by examining
the slice, given φ is a CTL∗ formula built without using the next-time
operator. Verification of LTL-X formulas is thus possible under these very
weak fairness assumptions, though LTL formulas using next-time can be
falsified.

Keywords: Verification, Net Reduction, Slicing, CTL∗
-X, Workflow nets.

1 Introduction

Slicing is a technique to syntactically reduce a model in such a way that at
best the reduced model contains only those parts that may influence the prop-
erty the model is analysed for. Slicing has originally been developed for software
analysis [1] to minimise the program size by “slicing away” bits of the program
that are not relevant for the current analysis. It has successfully been applied
to support software developers in tasks like program understanding, integra-
tion, maintenance and testing [2]. Since Mark Weiser in his original publication
[1] introduced the first program slicing algorithm, the concept of slicing has
been applied to formalisms other than programming languages such as attribute
grammars [3], hierarchical state machines [4] and Z- and CSP-OZ-Specifications
[5,6,7]. In [8] Chang and Wang present an algorithm on Petri nets, that slices
out all sets of paths, called concurrency sets, such that all paths within the same
set should be executed concurrently.

In this paper we introduce slicing as a method to alleviate the state explosion
problem for model checking on Petri nets. Our slicing algorithm derives a slice
Σ′ from a net Σ for a set of places, P . Given P is the set of atomic propositions
of a CTL∗ formula ϕ we examine under which conditions Σ |= ϕ can be verified
or falsified.

In the next section we give definitions of the basic terms used in this paper. We
introduce our slicing algorithm and present the results concerning verification
and falsification of a CTL∗ formula by means of a slice in Sect. 3. In Sect. 4
� This work is supported by the German Research Foundation (DFG), grant GRK

1076/1.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 436–447, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Slicing Petri Nets with an Application to Workflow Verification 437

we apply our slicing method to a small example which shows that due to their
normally non-strongly-connected nature, workflow systems are particularly apt
to be reduced in this way. We give a short overview of related work before
drawing the conclusions in Sect. 5.

2 Basic Definitions

We consider finite Petri nets only in this paper. We first introduce Petri net
terminology, then define the logics we consider and interpret on Petri nets. Last,
we give definitions for “|=”, “|= fairly” and related notions.

Petri Net Definitions
A Petri net N is a triple (S, T, W) where S and T are disjoint sets and W :
((S × T) ∪ (T × S)) → IN. An element s of S is called a place and t ∈ T is
called a transition. The function W defines weighted arcs between places and
transitions. A Petri net is finite iff S and T are finite sets.

The preset of s ∈ S is •s = {t ∈ T | W (t, s) > 0} and the postset of s is
s• = {t ∈ T | W (s, t) > 0}, analogously •t and t• are defined.

A marking of a net N is a function M : S → IN, which assigns a number
of token to each place. With a given order on the places, s1, ..., sn, M can be
represented as a vector in IN|S|, where the i-th component is M(si).

A transition t ∈ T is enabled at marking M , M [t〉, iff ∀s ∈ •t : M(s) ≥ W (s, t).
If t is enabled it can fire. The firing of t generates a new marking M ′, M [t〉M ′,
which is determined by the firing rule as M ′(s) = M(s)−W (s, t)+W (t, s), ∀s ∈
S. The definition of [〉 is extended to transition sequences σ as follows. A marking
M always enables the empty firing sequence ε and its firing generates M . M
enables a transition sequence σt, M [σt〉, iff M [σ〉M ′ and M ′[t〉. If M [σ〉, the
transition sequence σ is called a firing sequence from M . The function FsN

associates with a marking M the set of firing sequences from M , FsN (M). Given
a firing sequence σ = t1t2... with M [t1〉M1[t2〉M2..., the sequence MM1M2... is
called the marking sequence of σ from M , M(M, σ). A marking M is called
final iff there is no nonempty firing sequence from M . A firing sequence σ from
M is maximal iff either σ is of infinite length or σ generates a final marking.
The function FsN,max associates with a marking M the set of maximal firing
sequences from M . A marking sequence M(M, σ) is maximal iff σ is a maximal
firing sequence. By convention, we regard a finite maximal marking sequence μ
as equivalent to the infinite marking sequence μ′ that repeats the final marking
of μ infinitely often.

We denote X∗ ∪Xω as X∞ for a set X . For a finite sequence γ = x1x2...xn ∈
X∞, |γ| is n, the length of γ. If γ is infinite, |γ| = ω. γ(i) denotes the i-th
element and γi denotes the suffix of γ that truncates the first i positions of γ.

A Petri net Σ = (N, M0) with a designated initial marking M0 is called
a marked Petri net. A marking of Σ is reachable if there is a firing sequence
from M0 that generates M , M0[σ〉M . The set of reachable markings of Σ is
denoted as [M0〉. In the following we will use N synonymous with (S, T, W) and
Σ synonymous with (N, M0).

438 A. Rakow

The Logics
We study a Petri net and its slices for its behaviour with respect to temporal
logics, namely CTL∗ and its sublogics CTL and LTL. To simplify proofs we define
the semantics on Petri nets directly instead of considering transition systems.
The following definition of CTL∗ is parameterised by the function Fs, which
associates with a marking M a set of transition sequences. Fs depends on the
net semantics (c.f. next section), e.g. Fs(M) may be the set of maximal or fair
firing sequences from M .

We will refer to a path formula as ψ and to a state formula as φ, to formulas
that may be either as ϕ.

Definition 1. CTL∗, CTL, LTL
Let Σ be a marked Petri net. Let AP ⊆ S × IN be the set of atomic propositions
and Fs : IN|S| → 2(T ∞) a function that associates with a marking M a set of
transition sequences. A CTL∗ formula is a state formula of the following syntax:

Every atomic proposition (s, x) ∈ AP is a state formula.
If φ1 and φ2 are state formulas, then ¬φ1, φ1 ∨ φ2 are state formulas.
If ψ is a path formula, Eψ is a state formula.
If φ is a state formula, Dφ is a path formula.
If ψ1 and ψ2 are path formulas, so are ¬ψ1, Xψ1, ψ1 ∨ ψ2 and ψ1Uψ2.

CTL∗ Semantics:
‖(s, x)‖ = {M ∈ [M0〉 | M(s) = x}
‖¬φ1‖ = [M0〉 \ ‖φ1‖
‖φ1 ∨ φ2‖ = ‖φ1‖ ∪ ‖φ2‖
‖Eψ1‖ = {M ∈ [M0〉 | ∃ σ ∈ Fs(M) : M [σ〉 ∧ M(M, σ) ∈ ‖ψ1‖}
‖Dφ1‖ = {μ ∈ (IN|S|)ω | μ(1) ∈ ‖φ1‖}
‖¬ψ1‖ = (IN|S|)ω \ ‖ψ1‖
‖ψ1 ∨ ψ2‖ = ‖ψ1‖ ∪ ‖ψ2‖
‖Xψ1‖ = {μ ∈ (IN|S|)ω | μ1 ∈ ‖ψ1‖}
‖ψ1Uψ2‖ = {μ ∈ (IN|S|)ω | ∃i, 0 ≤ i : μi ∈ ‖ψ2‖ ∧ ∀j, 0≤j < i : μj ∈ ‖ψ1‖}

We use the following abbreviations: true ≡ (s, 1) ∨ ¬(s, 1), ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨
¬ϕ2), Fψ ≡ trueUψ, Aψ ≡ ¬E(¬ψ) and Gψ ≡ ¬F(¬ψ).

A CTL formula is a state formula of the following syntax: If φ1 and φ2 are
state formulas as defined above, then X(Dφ1), G(Dφ1), and (Dφ1)U(Dφ2) are
path formulas.

An LTL formula is a path formula of the following syntax: If (s, x) ∈ AP, then
D(s, x) is a path formula. If ψ1 and ψ2 are path formulas, then ¬ψ1, ψ1 ∧ ψ2,
Xψ1, and ψ1Uψ2 are path formulas.

A CTL∗-X (CTL-X/LTL-X) formula is a CTL∗ (CTL/LTL) formula built with-
out using the X operator.

For a path formula ψ, ‖ψ‖ contains marking sequences that may or may not
be generated by a firing sequence of the net. But since we only interpret state
formulas on Σ (c.f. Def. 4) the path qualifier E makes sure that only realisable
marking sequences are considered.

Slicing Petri Nets with an Application to Workflow Verification 439

The function scope associates with every CTL∗ and LTL formula ϕ the set of
places referred to by the atomic propositions used in ϕ.

Petri Net Semantics
In the following we define when a Petri net Σ satisfies an LTL or CTL∗

-X(and
hence a CTL) formula. Intuitively, a Petri net satisfies a formula ϕ if its behaviour
satisfies ϕ. We consider as behaviour of Σ its firing sequences that are maximal
or fair w.r.t. T ′ (c.f. Def. 3).

Definition 2. permanently enabled
Let σ = t1t2... be a firing sequence of Σ with Mi[ti+1〉Mi+1, ∀i, 0 ≤ i < |σ|.

σ permanently enables t ∈ T iff
either σ is finite and M|σ|[t〉 or σ is infinite and ∃i, 0 ≤ i : ∀j, i ≤ j : Mj [t〉.
Definition 3. Fairness with respect to T ′

Let T ′ be a subset of T , let σ = t1t2t3... be a maximal firing sequence of Σ and
Mi be the markings with Mi[ti+1〉Mi+1, ∀i, 0 ≤ i < |σ|.

σ is fair w.r.t. T ′ iff
− either σ is finite
− or σ is infinite, and, if there is a t ∈ T ′ it permanently enables, it then fires
infinitely often some transition of T ′ (which may or may not be t itself).

We also say “Σ is fair w.r.t. T ′ ” to express that we only consider firing sequences
of Σ that are fair w.r.t. T ′. The function FsN,fair(T ′) associates with a marking
M the set of firing sequences σ that are fair w.r.t. T ′. To define “Σ |= ϕ”
we consider the set of all maximal firing sequences, which include the firing
sequences that are fair w.r.t. T ′, for “Σ |= ϕ fairly w.r.t. T ′” we only consider
firing sequences that are fair w.r.t. T ′:

Definition 4. Σ |= ϕ (fairly w.r.t. T ′)
Let T ′ ⊆ T be a set of transitions of Σ. Let φ be a CTL∗ formula. Σ |= φ iff
M0 ∈ ‖φ‖ and Fs of Def. 1 is the function FsN,max . Σ |= φ fairly w.r.t. T ′ iff
M0 ∈ ‖φ‖ and Fs of Def. 1 is the function FsN,fair(T ′).

Let ψ be an LTL formula. Σ |= ψ iff Σ |= Aψ. Σ |= ψ fairly w.r.t. T ′ iff
Σ |= Aψ fairly w.r.t. T ′.

3 The Slicing Algorithm

The token count of a place p is determined by the firings of incoming and out-
going transitions of p. Whether such a transition can fire, depends on the token
count of its input places. So given a set of places P , we can iteratively construct
a subnet Σ̂ = (Ŝ, T̂ , Ŵ , M̂0) of Σ by taking all incoming and outgoing transi-
tions of a place s ∈ Ŝ together with their input places, starting with Ŝ = P .
The subnet Σ̂ captures every token flow of Σ with an effect on the token count
of a place s ∈ P . We extend this approach by distinguishing between reading
and non-reading transitions. A reading transition with respect to a set of places
R cannot change the token count of any place in R, i.e., t is a reading transi-
tion of R iff ∀s ∈ R : W (s, t) = W (t, s). If t is not a reading transition of R,

440 A. Rakow

we call t a non-reading transition of R. Let us now iteratively build a subnet
Σ′ = (S′, T ′, W ′, M ′

0) by taking all non-reading transitions of a place s ∈ S′

together with their input places, starting with S′ = P .

Definition 5. slice, slicing criterion
Let Σ be a marked Petri net and P ⊆ S a non-empty set, called slicing criterion.
The following algorithm constructs slice(Σ, P).

generateSlice (Σ, P){
T ′, Sdone := ∅;
S′ := P ;
while (∃s ∈ (S′ \ Sdone)) {

while (∃t ∈ ((•s ∪ s•) \ T ′) : W (s, t) �= W (t, s)) {
S′ := S′ ∪ •t;
T ′ := T ′ ∪ {t}; }
Sdone := Sdone ∪ {s}; }

W ′ := W |T ′∪S′ ;
M ′

0 := M0|S′ ;
return (S′, T ′, W ′, M ′

0) }
Figure 1 illustrates the effect of generateSlice. The net Σ′ = slice(Σ, P) also
captures every token flow with an effect on the token count of any s ∈ P but
Σ′ may be smaller than Σ̂, the subnet constructed without considering reading
transitions. Even for certain strongly connected nets Σ′ may be smaller than Σ,
whereas Σ̂ will equal Σ. As illustrated in Fig. 2, slice(Σ, P) is a subnet that
evolves without input of the remaining net: Reading transitions are the only
incoming transitions.

Note, that given two slicing criteria P1 ⊆ P2, slice(Σ, P1) is a subnet of
slice(Σ, P2), that means slice(Σ, P1) is the smallest slice that contains P1. In
the following we denote with Σ′ the slice of a given net Σ for a slicing criterion

(a)
s1

t3

s4 t5

s2

t7

s5s3

s0
t0 t1

t2

t4 t6 s6

(b)

s4 t5

s2

t7

s5s3 t4 t6

Fig. 1. (a) Σ1 = (N1, M1) (b) slice(Σ1, {s5}) = (N ′
1, M

′
1)

Σ′ Σ′′ Σ′′′

Fig. 2. Σ has (at least) four possible slices Σ′′, Σ′Σ′′, Σ′′Σ′′′ and Σ itself

Slicing Petri Nets with an Application to Workflow Verification 441

P ⊆ S, and if we interpret a formula ϕ on a net Σ, we assume that scope(ϕ) ⊆ S′.
So Σ′ is not necessarily the smallest possible slice, slice(Σ, scope(ϕ)).

3.1 Firing Sequences of the slice

In this section we concentrate on the correspondence between Σ and Σ′, which
we define below by means of the function slice. We study the correspondence
between (sets of) firing sequences of Σ and Σ′. From a correspondence between
maximal firing sequences we can bridge to a correspondence between their mark-
ing sequences, as we shall see. In Sect. 3.2 we examine what this correspondence
means for the set of formulas that Σ and Σ′ satisfy.

The function slice helps us to describe the correspondences between Σ and
Σ′. It projects markings, marking/firing sequences of a net Σ onto markings,
marking/firing sequences of its slices.

Definition 6. slice(N,N ′)

Let N and N ′ be two Petri nets with T ′ ⊆ T and S′ ⊆ S. We define slice(N,N ′) =
sliceTr

(T,T ′) ∪ sliceMkg

(S,S′) ∪ sliceMsq

(S,S′), where
sliceTr

(T,T ′) ∈ [T∞ → T ′∞] maps a sequence of transitions σ onto the transition
sequence σ′ where σ′ is derived from σ by omitting every transition t ∈ T \ T ′,

sliceMkg

(S,S′) ∈ [IN|S| → IN|S′|] maps a marking M of N onto the marking M ′ of
N ′ with M ′ = M |S′ , and

sliceMsq

(S,S′) ∈ [(IN|S|)
∞ → (IN|S′|)

∞
] is a function on sequences of markings.

Let M0M1M2... be a sequence of markings. sliceMsq

(S,S′)(M0M1...) is defined as
unstutter(sliceMkg

(S,S′)(M0) sliceMkg

(S,S′)(M1) ...). The function unstutter(μ) replaces
any finite sequence of a marking M in μ by a single occurrence of M but leaves
an infinite sequence of M unchanged.

We omit the indices referring to the nets and simply denote the function as slice,
if this does not cause ambiguities. We extend the function slice to sets in the
usual way: slice(X) =

⋃
x∈X{slice(x)}, X ⊆ T∞ ∪ (IN|S|)∞.

We start with two simple observations: The occurrence of a transition t ∈ T \T ′

cannot change the token count of any place in S′ whereas the occurrence of a
transition t ∈ T ′ changes the token count of at least one place in S′. A marking
M of Σ enables a transition t ∈ T ′ if and only if a marking M ′ = slice(M) of
Σ′ enables t, since transitions in T ′ have the same input places in Σ and Σ′.

Whatever one of the nets can do to a marking on S′, the other can do as well
by firing the same transitions in T ′ in the same order. So for firing sequences
there is a correspondence between Σ and Σ′, i.e. slice(FsN (M0)) = FsN ′(M ′

0).

Proposition 1. Let σ be a firing sequence and M be a marking of Σ.
(i) M0 [σ〉 M ⇒ M ′

0 [slice(σ)〉 slice(M).
Let σ′ be a firing sequence and M ′ a marking of Σ′.

(ii) M ′
0[σ

′〉M ′ ⇒ ∃M ∈ IN|S| : M ′ = slice(M) ∧ M0[σ′〉M .

442 A. Rakow

Proof. We show Prop. 1 by induction on the length l of σ and σ′, respectively.
l = 0: The initial marking of Σ and Σ′ is generated by firing the empty firing

sequence ε. By Def. 5 and Def. 6, M ′
0 = M0|S′ = slice(M0).

l → l + 1: First we show (i). Let σt be a firing sequence of Σ of length
l + 1, let Ml, Ml+1 be markings of Σ with M0[σ〉Ml[t〉Ml+1. By the ind. hyp.,
M ′

0[slice(σ)〉M ′
k with M ′

k = slice(Ml). If t is an element of T ′, it follows from
Ml[t〉 that M ′

k enables t. By the firing rule and since slice(Ml) = Ml|S′ = M ′
k,

it follows that slice(Ml+1) = M ′
k+1. If t ∈ T \ T ′, slice(σ) = slice(σt) and thus

M ′
0[slice(σt)〉M ′

k. A transition in T \ T ′ cannot change the token count of any
place s ∈ S′, thus slice(Ml+1) = slice(Ml).

For (ii) let σ′t be a firing sequence of Σ′ with length l + 1. Let M ′
l and M ′

l+1

be the markings of Σ′ with M ′
0[σ

′〉M ′
l [t〉M ′

l+1. Let Ml be the marking of Σ with
M0[σ′〉Ml and slice(Ml) = M ′

l , which exists by the ind. hyp.. Ml enables t. Again
by the firing rule, slice(Ml+1) = M ′

l+1. ��
Whatever maximal firing sequence the slice Σ′ may fire, Σ can fire a correspond-
ing maximal firing sequence, but not vice versa.

Proposition 2. Let σ′
m be a maximal firing sequence of Σ′.

There is a maximal firing sequence σm of Σ that starts with σ′
m and for which

slice(σm) = σ′
m holds.

Proof. By Prop. 1 (ii), σ′
m is a firing sequence of Σ. In case σ′

m is infinite, it is
also a maximal firing sequence of Σ. So let σ′

m be finite. Let σm be a maximal
firing sequence of Σ with σm = σ′

mσ where σ ∈ T∞. Let σ′ be the transition
sequence with σ′ = slice(σm) = σ′

mslice(σ). By Prop. 1 (i), σ′ is a firing sequence
of Σ′. Since σ′

m is maximal, it follows that slice(σ) = ε. ��
t4 is not a maximal firing sequence of slice(Σ1, {s5}) but it is the slice of
Σ1’s maximal firing sequence t4 t2 t0 t2 t0 So for maximal firing sequences
slice(FsN,max(M0)) ⊃ FsN ′,max(M ′

0). We get a two-way correspondence if we
assume that Σ is fair, i.e. slice(FsN,f air(T ′)(M0)) = FsN ′,max(M ′

0).

Proposition 3. Let σ′ be a maximal firing sequence of Σ′.
(i) There is a firing sequence σ of Σ that is fair w.r.t. T’, starts with σ′ and

slice(σ) = σ′.
Let σ be a firing sequence of Σ, that is fair w.r.t. T ′.

(ii) slice(σ) is a maximal firing sequence of Σ′.

Proof. Let Mi(M ′
i) be the marking of Σ(Σ′) generated by firing the first i tran-

sitions of σ(σ′). We first show (i) : By Prop. 1 (ii), σ′ is a firing sequence of Σ.
If σ′ is infinite, it is fair w.r.t. T ′. So let σ′ be finite. As σ′ is maximal, M ′

|σ′| does
not enable transitions of T ′, by Prop. 1, M|σ′| does not either. Let σ2 ∈ (T \T ′)∞

be such that σ = σ′σ2 is a maximal firing sequence of Σ, which exists by Prop.
2. Transitions of σ2 cannot change the token count of places in S′, thus σ is
slice-fair. We now show (ii): By Prop. 1 (i), σ′ = slice(σ) is a firing sequence of
Σ′. If σ′ is not maximal, there is a t′ ∈ T ′ with M ′

|σ′|[t
′〉. Let σ1 be the smallest

prefix of σ with slice(σ1) equals σ′. By Prop. 1 (i), slice(M|σ1|) = M ′
|σ′|. So

Slicing Petri Nets with an Application to Workflow Verification 443

M|σ1|[t
′〉. After firing σ1, σ does not fire any t ∈ T ′ and thus the token count of

places in S′ is not changed and t′ stays enabled. So σ is not fair w.r.t. T ′. ��
By the following proposition we can translate a correspondence between maximal
firing sequences into a correspondence of their marking sequences.

Proposition 4. Let M be a marking of Σ and σ be a maximal firing sequence
from M such that slice(σ) is a maximal firing sequence of Σ′ from slice(M).

slice(M(M, σ)) = M(slice(M), slice(σ))

Proof. We give a brief sketch of proof. By Prop. 1, σ and slice(σ) have the same
effect on S′. The function slice removes from M(M, σ) all finite sequences of
markings that are identical on S′ and a t ∈ T \T ′ does not change the token count
on S′, but a transition t ∈ T ′ changes the token count of at least one place s ∈ S′

and slice(σ) removes all t ∈ T \ T ′. Since M(M, σ) and M(slice(M), slice(σ))
are maximal marking sequences, they are both infinite. ��
We restate the main results regarding the correspondence between Σ and Σ′:
slice(FsN (M0)) = FsN ′(M ′

0), slice(FsN,max(M0)) ⊃ FsN ′,max(M ′
0) and finally,

slice(FsN,f air(T ′)(M0)) = FsN ′,max(M ′
0). Also, marking sequences of correspond-

ing maximal firing sequences on Σ and Σ′, correspond as well.

3.2 Verification and Falsification Results

Now our main results: For Σ that is fair w.r.t. T ′ and a CTL∗
-X formula φ, we

can derive whether or not Σ |= φ by examining Σ′. For next-time, we can derive
from Σ′ �|= ψ that Σ �|= ψ fairly w.r.t. T ′ but only for LTL formulas. We show
the contraposition in Theorem 2.

Theorem 1. Let φ be a CTL∗-X formula with scope(φ) ⊆ S′.
Σ |= φ fairly w.r.t. T ′ ⇔ Σ′ |= φ

We only sketch the proof of Theorem 1 very briefly due to the lack of space and
since the rather lengthy proof can be omitted without loosing important insights
about the relation of Σ and Σ′. First it is shown that markings and marking
sequences with the same slice are equivalent w.r.t. CTL∗

-X formulas. Therewith
we can show that slice(M) satisfies φ on Σ′ iff M satisfies φ on Σ.

Consider Σ1 and the CTL formula φ1 = EX (EX (D(s4, 1))). Σ1 may fire
t2 t4, to satisfy XXD(s4, 1), then t5 t6 for fairness w.r.t T ′, then infinitely often
t0 t2 for maximality. slice(Σ1, {s5}) has to fire t4 t5 first. Thus it does not satisfy
φ1. This shows, Theorem 1 cannot be extended for next-time for CTL (CTL∗).

Using the next-time operator it is possible to specify a condition to be true at
a certain point in the net evolution as a position within a sequence of markings.
Since slicing aims at building a reduced model, which should not reflect every
state(=marking) change of the original system, the restriction to CTL∗

-X formulas
without next-time is intrinsic of slicing.

ψ1 = X(D(s4, 1)) shows that “⇐” of Theorem 1 cannot be extended for LTL
with next-time: slice(Σ1, {s5}) |= ψ1 but Σ1 �|= ψ1. We now show that “⇒” of
Theorem 1 holds for LTL with next-time.

444 A. Rakow

The marking sequence of a maximal firing sequence σ′ satisfies ψ on Σ′ iff the
marking sequence of its corresponding maximal firing sequence σ satisfies ψ on
Σ, given σ starts with σ′. As we consider next-time, this restriction is necessary.

Proposition 5. Let ψ be an LTL formula such that scope(ψ) ⊆ S′. Let M be a
marking of N . Let σ be a maximal firing sequence from M , such that slice(σ) is
a maximal firing sequence from slice(M) and σ starts with slice(σ).

M(M, σ) ∈ ‖ψ‖ ⇔ slice(M(M, σ)) ∈ ‖ψ‖′.
Proof. Let M(M, σ) be μ and slice(M(M, σ)) be μ′. Note, a suffix σi is a
maximal firing sequence from μ(i + 1) which starts with slice(σi), also μi =
M(μ(i+1), σi), and by Prop. 4, slice(μi) = M(slice(μ(i+1)), slice(σi)), ∀i, 0 ≤
i < |σ| + 1.

ψ = D(s, x): Since the satisfiability of φ depends on the initial marking of s
only and {s} = scope(φ) ⊆ S′ ⊆ S, both directions hold.

ψ = ¬ψ1 and ψ = ψ1 ∧ ψ2 follow directly by the ind. hyp..
ψ = Xψ1: Let μ = MM1... ∈ ‖Xψ1‖. Hence μ1 ∈ ‖ψ1‖. By the ind.

hyp., slice(μ1) ∈ ‖ψ1‖′. So we need to show that slice(μ) = slice(M)slice(μ1),
i.e. that there is a marking preceeding slice(μ1). If the first transition of σ is
in T ′, slice(σ) = σ(1)slice(σ1) and slice(M) �= slice(M1). Thus slice(μ) =
slice(M)slice(μ1). If σ(1) ∈ T \ T ′, slice(σ) = ε. Since slice(σ) is a maximal
firing sequence from slice(M), slice(μ) = (slice(M))ω = slice(M)slice(μ1).

Let μ′ ∈ ‖Xψ1‖′, so μ′1 ∈ ‖ψ1‖′. By the ind. hyp., μ1 ∈ ‖ψ1‖.
ψ = ψ1Uψ2: If μ ∈ ‖ψ‖, then ∃i ≥ 0 : μi ∈ ‖ψ2‖ ∧ ∀j, 0 ≤ j < i : μj ∈ ‖ψ1‖.

By the ind. hyp., slice(μi) ∈ ‖ψ2‖′ and ∀j, 0 ≤ j < i : slice(μj) ∈ ‖ψ1‖′. Since
slice(μ) = μ′ there is an index i2 with slice(μi) = μ′i2 and ∀j, 0 ≤ j < i2 : ∃j2 <

i : μ′j = slice(μj2).
μ′ ∈ ‖ψ‖′ implies that ∃i ≥ 0 : μ′i ∈ ‖ψ2‖′ ∧ ∀j, 0 ≤ j < i : μ′j ∈ ‖ψ1‖′. Let i2

be the smallest index with slice(μi2) = μ′i. Since i2 is minimal, ∀j2, 0 ≤ j2 < i2 :
∃j, 0 ≤ j < i : slice(μj2) = μ′j . By the ind. hyp. follows that μ ∈ ‖ψ1Uψ2‖. ��
Theorem 2. Let ψ be an LTL formula with scope(ψ) ⊆ S′.

Σ |= ψ fairly w.r.t. T ′ ⇒ Σ′ |= ψ.

Proof. If Σ′ �|= ψ, there is a maximal firing sequence σ′ with M(M ′
0, σ

′) �∈ ‖ψ‖′.
By Prop. 3 (i), there is a firing sequence σ that is fair and starts with slice(σ) =
σ′, so M(M0, σ) �∈ ‖ψ‖ by Prop. 5. Hence Σ �|= ψ fairly w.r.t. T ′. ��
If “Σ �|= ψ fairly w.r.t. T ′” holds, then there is a firing sequence σ that does not
satisfy ψ, is fair w.r.t. T ′ and hence also maximal. So “Σ′ �|= ψ” implies also
that “Σ �|= ψ”.

Again we shortly summarise: For next-time, we can only falsify LTL formulas.
We can verify and falsify CTL∗

-X if the modelled system behaves fairly w.r.t. T ′.
In all scenarios it suffices to examine Σ′ without fairness assumptions.

Slicing Petri Nets with an Application to Workflow Verification 445

4 Example and Test Results

To illustrate our approach, we analyse the Petri net of Fig. 3, which models the
workflow of a business process for dealing with insurance claims as in [10]. An
incoming claim is recorded first. A claim may be accepted or rejected, depend-
ing on the insurance cover. For a rejected claim, a rejection letter is written.
If the claim is accepted, emergency measures, if necessary, are provided. After
an assessment -possibly done by an expert- a settlement is offered to the cus-
tomer, who may either accept or reject. A rejected offer may be followed by legal
proceedings or a revision. If a settlement is agreed upon, money is paid.

record accept

reject

rejection
letter

assess
by expert

emergency

measure

offer

accept

revise
legal proceedings

pay

close

start

cs

ac

end

Fig. 3. The net Σ2 modelling an insurance claim process

We want to verify that every accepted claim is settled, i.e. φ=AG(D(ac, 1) ⇒
FD(cs, 1)). The slice of Σ2 for {ac, cs} is the subnet within the dashed bor-
ders. In Σ2 29 states(=markings) via 60 state transitions are reachable, whereas
slice(Σ2, {ac, cs}) has 11 states and 14 state transitions only.

The example illustrates that the slicing algorithm works well for workflow
nets, since they usually are not strongly-connected. As a benchmark for the
effect of slicing on other nets, we used the set of Promela examples of [11], which
is a collection of “standard examples from the concurrency analysis literature”
[11]. The set consists of 75 examples, some of which are scaled up instances of
the same problem type, e.g. 6, 8, 10 and 12 dining philosophers. All in all there
are 23 different types of examples. For the experiments the biggest instance of
each scalable type has been removed to reduce the overall computation time.
For each place of the net a slice has been generated. Since we do not provide a
meaningful slicing criterion, we filter the generated slices. Slices with less than 20
states or 10% of the states are considered to be uninteresting. We also consider
slices with more than 85% of the states and the state transitions as too big. Of

446 A. Rakow

the 23 types 6 had nice slices, i.e. slices with less than 85% of the states or the
state transitions and more than 20 states and 10% of the states. In average they
covered 67% of the places (median 69%). It is perhaps worth mentioning that
only one type, the dining philosophers (dp), has a strongly connected net
and for the example dartes the time limit was exceeded.

5 Conclusions, Related Work and Future Work

This paper introduces Petri net slicing to reduce the size of a net in order to
alleviate the state explosion problem for model checking Petri nets. The slicing
algorithm is based on the observation that the token count of a place s is deter-
mined by the firings of non-reading transitions connected with s and these are
determined by the token count of their input places. A slice allows falsification
and verification of a CTL∗

-X formula if scope(φ) is a subset of the slice’s states.
For verification we need to assume that Σ is fair w.r.t. the set T ′ of transitions of
the slice. LTL formulas using next-time can be falsified. The present algorithm
constructs smaller slices for certain strongly connected nets, but is expected to
be most useful for nets, that are not strongly connected like workflow nets.

Our approach is quite general by imposing very weak restrictions on the for-
mulas (CTL∗ without next) and little restrictions on the net in terms of fairness
assumptions. Nevertheless, our results show that slicing is a technique that can
help to alleviate the state explosion problem for model checking Petri nets.

There are several groups working on slicing and on slicing as a method to
tackle the state-explosion problem for model-checking in particular. For pro-
gram slicing Dwyer and Hatcliff show in [9] that a program P and its program
slice P ′ either both satisfy φ or do not satisfy φ given the set of atomic proposi-
tions of an LTL-X formula φ is the slicing criterion. Cone-of-influence reduction
[12], a similar technique used in hardware verification, constructs a reduced
model P ′ for the set of atomic propositions of a formula φ and guarantees that
the reduced model P ′ satisfies φ if and only if the original model P does. In
[6] Brückner develops a technique for slicing CSP-OZ specifications. Brückner
and Wehrheim show in [7] the correctness of their approach to slicing Object-Z
specifications.

We are investigating two ideas for the development of algorithms that allow for
more aggressive slicing. One approach is the generalisation of reading transitions
to reading subnets that may temporarily remove tokens. Another approach is to
identify subnets that play the role of data and control flow, so that the concept
of relevant variables, as defined in [1], is applicable.

Acknowledgements. I would like to thank Eike Best, Hans Fleischhack and
Harro Wimmel for plenty of feedback. I am grateful to Javier Esparza and Maciej
Koutny for reading and commenting an earlier version of this paper. Thanks also
for the feedback I received while presenting a first version of this paper at the
“Formal Approaches to Business Processes and Web Services” workshop [13].

Slicing Petri Nets with an Application to Workflow Verification 447

References

1. Weiser, M.: Program slicing. In: Proceedings of the 5th international conference on
Software engineering, pp. 439–449. IEEE Press, Piscataway (1981)

2. Tip, F.: A survey of program slicing techniques. Journal of programming lan-
guages 3, 121–189 (1995)

3. Sloane, A.M., Holdsworth, J.: Beyond traditional program slicing. In: International
Symposium on Software Testing and Analysis, San Diego, CA, pp. 180–186. ACM
Press, New York (1996)

4. Heimdahl, M.P.E., Whalen, M.W.: Reduction and slicing of hierarchical state ma-
chines. In: Jazayeri, M. (ed.) ESEC 1997 and ESEC-FSE 1997. LNCS, vol. 1301,
pp. 450–467. Springer, Heidelberg (1997)

5. Chang, J., Richardson, D.J.: Static and dynamic specification slicing. In: Proceed-
ings of the Fourth Irvine Software Symposium (1994)

6. Brückner, I.: Slicing CSP-OZ specifications. In: Nordic Workshop on Programming
Theory (2004)

7. Brückner, I., Wehrheim, H.: Slicing Object-Z specifications for verification. In: Tre-
harne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455,
pp. 414–433. Springer, Heidelberg (2005)

8. Chang, C.K., Wang, H.: A slicing algorithm of concurrency modeling based on
Petri nets. In: Hwang, K., Jacobs, S.M., Swartzlander, E.E. (eds.) Proc. of the
1986 Int. Conf. on Parallel Processing, Washington, pp. 789–792. IEEE Computer
Society Press, Los Alamitos (1987)

9. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model construction.
Higher-Order and Symbolic Computation, 315–353 (2000)

10. Aalst, W.v.d., Hee, K.v.: Workflow Management - Models, Methods, and Systems,
pp. 4–62. The MIT Press, Cambridge (2002)

11. Corbett, J.C.: Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Transactions on Software Engineering 22(3), 161–180 (1996)

12. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model checking.
In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS,
vol. 1536, pp. 81–102. Springer, Heidelberg (1998)

13. Rakow, A.: Slicing Petri Nets. In: Proceedings of the Workshop on FABPWS 2007,
Satellite Event, Siedlce, pp. 56–70 (2007)

Lower Bound for the Length of Synchronizing

Words in Partially-Synchronizing Automata

Adam Roman and Wit Foryś

Institute of Computer Science, Jagiellonian University
Cracow, Poland

Abstract. We introduce the generalized notion of automata synchro-
nization, so called partial synchronization, which holds for automata
with partial transition function. We give a lower bound for the length
of minimal synchronizing words for partial synchronizing automata. The
difference, in comparison to the ’classical’ synchronization, lies in the
initial conditions: let A = (Q,A, δ) be an automaton representing the
dynamics of a particular system. In case of partial synchronization we
assume that initial conditions (initial state of the system) can be repre-
sented by some particular states, that is by some P ⊂ Q, not necessarily
by all possible states from Q. At first glance the above assumption limits
our room for manoeuvre for constructing possibly long minimal synchro-
nizing words (because of the lower number of states at the beginning).
Unexpectedly this assumption allows us to construct longer minimal syn-
chronizing words than in a standard case. In our proof we use Sperner’s
Theorem and some basic combinatorics.

1 Introduction

We define an automaton as a triple A = (Q, A, δ), where Q is a finite set of states,
A is a finite alphabet and δ : Q×A → Q is a partial function transforming states.
It can be extended on the free monoid A∗ and the set of subsets of Q:

∀a ∈ A ∀w ∈ A∗ ∀P ⊆ Q δ(P, ε) = P, δ(P, aw) =
⋃

p∈P

{δ(δ(p, a), w)},

where ε is an empty word of length 0. We say that w ∈ A∗ is a carefully synchro-
nizing word (csw) for A = (Q, A, δ) (or w carefully synchronizes A) if δ(Q, w)
is well defined (that is, if δ(q, w) is defined for all q ∈ Q) and |δ(Q, w)| = 1. If w
is the shortest word among all csws, we call w a minimal carefully synchroniz-
ing word (mcsw). By CSyn(A) we denote the set of all words which carefully
synchronize A. The following proposition is straightforward.

Proposition 1. Let A = (Q, A, δ), w ∈ CSyn(A). Then ∀u, v ∈ A∗ uwv ∈
CSyn(A), provided that δ(Q, uwv) is well defined.

In the light of Proposition 1 a natural question arises: given n, what is the longest
possible mcsw for n-state automaton? We denote it’s length by ω(n):

ω(n) = max
A=(Q,A,δ):|Q|=n

{ min
u∈CSyn(A)

{|u|}} .

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 448–459, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Lower Bound for the Length of Synchronizing Words 449

The notion of csw is a generalized version of well-known synchronizing words:
let A = (Q, A, δ) be a finite automaton with δ being a total function on Q × A.
We say that w ∈ A∗ synchronizes A iff |δ(Q, w)| = 1. Such a word is called
a minimal synchronizing word for A, if there is no shorter one. We denote it’s
length by m(A). The set of all n-state synchronizing automata is denoted by
Syn(n). Synchronizing automata are the object of intensive research because of
the famous, unsolved Černý Conjecture (see [4,5]):

Conjecture 1 (Černý, 1964). A ∈ Syn(n) =⇒ m(A) ≤ (n − 1)2 .

Synchronizing and carefully synchronizing automata have many possible appli-
cations, mainly in robotics ([1,9,10]), bioinformatics ([2,3]) and network theory
([7]).

Remark 1. Sometimes we will say that ’word w synchronizes P to R’. The word
’synchronization’ does not refer here to the process of synchronizing the set of
all possible states into a singleton, but to the process of transforming P into R
with w such that R = δ(P, w) and |R| < |P |.

2 Previous Results and Generalization

In [6] M. Ito and K. Shikishima-Tsuji have considered the estimation of ω(n)
(they denoted it by d3(n)). They proved the following two theorems:

Theorem 1
ω(n) ≤ 2n − 2n−2 − 1 .

Theorem 2

ω(n) ≥ 2
n
2 + 1, if n = 2k,

ω(n) ≥ 3 · 2 n−3
2 + 1, if n = 2k + 1 .

In [8] P. Martyugin improved the lower bound:

Theorem 3

ω(n) ≥ 3 · 3 n
3 − 2, if n = 3k,

ω(n) ≥ 4 · 3 n−1
3 − 2, if n = 3k + 1,

ω(n) ≥ 6 · 3 n−2
3 − 2, if n = 3k + 2 .

We will now generalize the notion of synchronization and prove analogical lower
bound for the generalized case.

Let P (k, n), 0 < k ≤ n, denotes the set of all n-state automata A = (Q, A, δ)
for which there exists k-element subset S of Q and w ∈ A∗ such that δ(S, w) is
well defined and |δ(S, w)| = 1. Notice that P (n + k, n) = ∅ for k > 0.

Definition 1. We say that an n-state automaton A is k-partially synchronizing
if A ∈ P (k, n) \ ⋃n

i=k+1 P (i, n).

450 A. Roman and W. Foryś

Definition 2. We say that an n-state automaton A is partially synchronizing
if there exists k such that A ∈ PSynk(n).

By PSynk(n) we denote the set of all k-partially synchronizing automata with
n states. By PSyn(n) we denote all n-state partially synchronizing automata.

The following propositions are straightforward.

Proposition 2

A = (Q, A, δ) ∈ Syn(n) ⇐⇒ A ∈ PSynn(n) and δ is a total function .

Proposition 3. Let n > 1 and A ∈ PSynk(n). Then ∀1 ≤ l ≤ k A ∈ P (l, n).

The motivation for introducing such a generalization arises from the paper of P.
Martyugin (see [8], p. 2):

”It is known ([9,10]) that synchronizing words play an important role
in robotics or, more precise, robotic manipulation which deals with part
handling problems in industrial automation such as part feeding, loading,
assembly and packing. The idea of it is as following. Let some identical
parts need to be oriented before assembly. There is a finite number of
simple devices which can rotate the parts. The action of a device depends
on the orientation of the part. A fragile part in several positions can be
destroyed by some devices. We consider an automaton, where the state
set is the set of all possible orientations of a part, the alphabet is the set
of devices. The partial transition function is defined by non-destroying
(or careful) actions of the devices. Then a carefully synchronizing word
sets an order of devices use avoiding the destruction of fragile parts while
orienting them”.

Let A = (Q, A, δ) be an automaton and assume that the initial parts orienta-
tion is represented by a proper subset P of all possible orientations represented
by Q. If |P | = k then the word synchronizing those k initial states into a single
state is called a k-partially synchronizing word for P .

We can introduce the notion of minimal synchronizing word for partially syn-
chronizing automaton in two ways:

Definition 3. Let A = (Q, A, δ) ∈ PSynk(n). We say that w ∈ A∗ is a m+-
minimal synchronizing word for A if |w| = maxP⊂Q,|P |=k {|v| : |δ(P, v)| = 1} .

Definition 4. Let A = (Q, A, δ) ∈ PSynk(n). We say that w ∈ A∗ is a m−-
minimal synchronizing word for A if |w| = minP⊂Q,|P |=k {|v| : |δ(P, v)| = 1} .

We will give the lower bounds for the length of m+ and m−-synchronizing words
for n-state partially synchronizing automata.

The reason for introducing two slightly different definitions of minimal syn-
chronizing word is due to a specific nature of industrial automation tasks men-
tioned above. Speaking more precisely: if there is a fixed set of states representing

Lower Bound for the Length of Synchronizing Words 451

Fig. 1. A single detail

initial part orientations, then in order to find a lower bound for the length of
minimal synchronizing word we need to use Definition 3. On the other side, if
we know only the maximal number of possible initial orientations, we need to
use Definition 4.

We illustrate this by the following example. Suppose that a factory produces
identical details, like the one presented in Fig. 1. It consists of a single hexagon
with four insets. Three of them (black) are tough and blow-resistant. The fourth
one (white) is fragile. Hitting it may cause its damage. Details are put on the
transmission belt. We assume a detail to be in one of 6 possible orientations. The
task is to rotate all the details into one common orientation. To do this, we use
3 kinds of obstacles arranged along the transmission belt. The lower one (l) will
rotate a detail 60◦ right only if there is an inset at the lower hexagon edge. The
upper-small (u) will rotate a detail 60◦ left only if there is an inset at the upper
hexagon edge. Finally, the upper-big (U) will rotate a detail 60◦ left in each
case. An example situation is shown in Fig. 2. All possible transitions between
orientations are shown in Fig. 3. Notice that transition function is a partial
function. Workers, who put details on the transmission belt, can hold them only
by one of the tough insets. The situation is shown in Fig 4: the initial orientations
allowed are 1, 4, 6. The problem is to find a minimal synchronizing word over
A = {l, u, U} (representing the sequence of obstacles) for the automaton with
Q = {1, 2, 3, 4, 5, 6} (representing the set of all possible orientations), provided
that the initial set of states is {1, 4, 6}.

Fig. 2. Examplary transformations. Top arrow indicates the direction of transportation
belt movement. Detail in position 1 is transformed by the lower upstacle into position 2.
To transform it from position 2 into position 3 we cannot use the upper-small obstacle
because there is no inset at the top hexagon edge. We must use the upper-big one. Next,
to transform a detail from position 3 into position 4 we cannot use the upper-big obstacle
again, because it would destroy the fragile inset; we have to use the upper-small one.

452 A. Roman and W. Foryś

Fig. 3. Orientation transformations using 3 kinds of obstacles: lower (l), upper-small
(u) and upper-big (U)

Fig. 4. Three possible ways to put a detail into transmission belt

At first glance the assumption on the cardinality of possible initial states lim-
its our room for manoeuvre for constructing possibly long minimal synchronizing
words (because of the lower number of states at the very beginning). Unexpect-
edly this assumption allows us to construct longer minimal synchronizing words
than in standard case. The reason is that we don’t need to use a letter a de-
fined on the whole set Q, such that |δ(Q, a)| < |Q|. This, in fact, increases our
manoeuvre room.

In Fig. 5 all possible ’forward’ transitions are shown. One can verify that
the shortest word synchronizing {1, 4, 6} into {5} is w = uUulUluu, but A ∈
PSyn5(6), so w is not a m+-minimal synchronizing word. It is the word v =
lUlUw = lUlUuUulUluu and it synchronizes {1, 2, 3, 4, 6} to {5}. In this case
m−-minimal synchronizing word equals v.

3 Main Result

Since now, for the sake of simplicity, we assume that the number of states in
automaton is an even number. Theorem 5 can be proved for automata with an
odd number of states in a very similar way. Let ω+(n) (ω−(n) resp.) denotes
the lower bound for the length of m+- (resp. m−-) minimal synchronizing word
for n-state partially synchronizing automaton. The main result is that ω+(n) ≥(
n+1

n
2

) − n
2 − 2 and ω−(n) ≥ ω+(n) − (

n
n
2

)
+ 1. These bounds are greater than

Lower Bound for the Length of Synchronizing Words 453

136 256 146 356 456

246 135 245 156 56

235 346 25 26 16

145 35 14 36 13

45 46 34 23 24

5 15 3

uU l u

u u
U u U

l
U

U
l

u
U

u U

U
ul

U

lU

u
lU

l

Fig. 5. All possible transitions. The initial subset is {1, 4, 6}.

all lower bounds for synchronizing and carefully synchronizing words’ lengths
previously found.

First let us recall the Sperner’s Theorem.

Theorem 4 (Sperner). The maximum cardinality of a collection of subsets of
a n-element set X, none of which contains another, is the binomial coefficient(

n
�n

2 �
)
.

The idea of our proof is to find possibly long sequence of subsets of Q such
that no one of them synchronizes the one following it. We see that for n even
the cardinality of the family of all n

2 -element subsets of X satisfies the above
assumption and realizes the maximum cardinality stated in Theorem 4. We will
use this family in our main result, Theorem 5.

Theorem 5 (main result). Let |Q| = n, where n is an even number. There
exists n

2 -partially synchronizing automaton A = (Q, A, δ) and m+-minimal syn-
chronizing word w ∈ A∗ for A such that

|w| =
(

n + 1
n
2

)
− n

2
− 2 .

The immediate consequence of Theorem 5 are the following Propositions and
Theorem.

Proposition 4. For n even we have ω+(n) ≥ (
n+1

n
2

) − n
2 − 2.

454 A. Roman and W. Foryś

Theorem 6. Let |Q| = n, where n is an even number. There exists n
2 -partially

synchronizing automaton A = (Q, A, δ) and m−-minimal synchronizing word
w ∈ A∗ for A such that

|w| =
(

n
n
2 − 1

)
− n

2
− 1 .

Proposition 5. For n even we have ω−(n) ≥ (
n

n
2 −1

) − n
2 − 1.

4 Proof of Theorem 5

We construct n-state automaton A ∈ PSynn
2
(n) with m+-minimal synchro-

nizing word of length
(
n+1

n
2

) − n
2 − 2. Let A = (Q, A, δ), Q = {1, 2, ..., n},

A = {a1, a2, ..., aN}, where N =
(

n
n
2

)
. Let < be a natural order on Q. For

each P ⊂ Q and p ∈ P we put rP (i) = p ⇔ i = 1 + |{s ∈ P : s < p}|. This
function returns the i-th element from the ordered sequence of elements from P .

From Theorem 4 we know that there exists a family F of sets {F1, ..., FN} such
that N =

(
n
n
2

)
, ∀i ≤ N Fi ⊂ Q ∧ |Fi| = n

2 . Let us introduce the lexicographic

order ≺ on F: Fi ≺ Fi+1 ⇔ ∑n
2
j=1 n

n
2 −j · rFi(j) <

∑n
2
j=1 n

n
2 −j · rFi+1(j), i < N.

We see that ≺ is a linear order on F. Let us now define the transition function δ:

δ(rFi (j), ai) = rFi+1(j) for i < N , j ≤ n
2 , (1)

δ(rFN (1), aN) = 1, (2)
δ(rFN (2), aN) = 1, (3)
δ(rFN (j), aN) = j − 1 for 3 ≤ j ≤ n

2 . (4)

Let P = {1, 2, ..., n
2 } ⊂ Q. From the properties of the Sperner family F we

have that in order to synchronize P to some n
2 − 1-element subset of Q we need

to use the word w = a1a2...aN . We have δ(P, w) = {1, 2, ..., n
2 − 1}. In order to

finish the proof we need to use the following Theorem 7, which uses Lemmata 1
and 2.

Theorem 7. Let P = {1, 2, ..., k}, where k ≤ n
2 . The shortest word w′ synchro-

nizing P to a subset of cardinality less then P has length L =
(n

2 +k
k

)
.

Proof. Fix k and let L =
(n

2 +k
k

)
. First we show that there exists such a word.

Let S = (P1, P2, ..., PL) be a sequence of subsets of Q such that

1. ∀1 ≤ i ≤ L Pi ⊂ Q,
2. P1 = P ,
3. PL = {n

2 + 1, n
2 + 2, ..., n

2 + k},
4.

⋃L
i=1 Pi = {1, 2, ..., n

2 + k},
5. ∀1 < i < L ∃ai ∈ A : δ(Pi, ai) = Pi+1.

Lower Bound for the Length of Synchronizing Words 455

S represents all k-element subsets, each consisting of some k different numbers
chosen from the set {1, 2, ..., n

2 + k}. For a given sequence {Pi}L
i=1 and letters

a1, ..., aL−1 there exists a corresponding sequence F = {Fji}L
i=1 of sets from the

family F, such that ∀1 < i ≤ L Pi ⊆ Fji and δ(Fji , ai) = Fji+1 ∀i < L. We say
that {Pi} is covered by {Fji}.

Notice that in order to synchronize the set {1, 2, ..., k} into a smaller one, we
need to transform it by some word to the set R such that {n

2 + 1, n
2 + 2} ⊂ R

and for all r ∈ R we must have r > n
2 , because state 1 must be transformed into

state n
2 +1. Next, it is enough to transform R by the letter aN . States n

2 +1 and
n
2 + 2 will be synchronized into a single state 1 (see definition of δ, equations
(2), (3)).

The property 5. of S is fulfilled for each k ≤ n
2 . It comes directly from the defi-

nition of δ. For example, if we have n = 20, k = 4 and Pi = {2, 4, 13, 14}, then its
lexicographic successor in S is Pi+1 = {2, 5, 6, 7}, and indeed there exists a ∈ A
such that δ(Pi, a)=Pi+1: for 10-element set P ={2, 4, 13, 14, 15, 16, 17, 18, 19, 20}
we have δ(P, a) = {2, 5, 6, 7, 8, 9, 10, 11, 12, 13} and particularly δ(2, a) = 2,
δ(4, a) = 5, δ(13, a) = 6 and δ(14, a) = 7.

Now we will show that w′ = a1a2...aL is the shortest word synchronizing P
to a smaller set. This is a direct consequence of the two following lemmata, but
first we need to define the notion of a sequence width.

Definition 5. Let P = {Pi}L
i=1 be a sequence of t-subsets covered by F =

{Fji}L
i=1. The value d(P, F) = maxi maxk=1...t r−1

Fji
(k) is called the width of P

covered by F .

Lemma 1. Let P be the shortest sequence of k-subsets covered by F , such that
P1 = {1, .., k}, PL = {n

2 + 1, ..., n
2 + k}, where L is the length of P (that is,

number of subsets Pi). If d(P, F) = k then L =
(n

2 +k
k

) − 1.

Lemma 2. Let P = (P1, ..., PL) be the shortest sequence of t-subsets from P1

to PL covered by F with width d(P, F) = dP , such that P1 = {1, ..., t}, PL =
{n

2 +1, ..., n
2 + t}. For each sequence R = (R1, ..., RM) covered by G and of width

d(R, G) = dR, such that R1 = P1, RM = PL and d(R, G) > d(P, F), we have
M ≥ L.

Lemma 2 shows that the shortest sequence S (corresponding to word w′) syn-
chroninzing P = {1, 2, ..., k} to some smaller set should be covered by F such
that d(S, F) is possibly the smallest, that is - d(S, F) = |P |. Then, from Lemma
1 we have that (|w′| =

(n
2 +|P |
|P |

) − 1) + 1 =
(n

2 +|P |
|P |

)
. We have to add one letter at

the end of the sequence in order to synchronize {n
2 + 1, n

2 + 2, ..., n
2 + |P |} into

{1, 2, ..., |P | − 1}.
Let us now return to the proof of Theorem 5. We start from n

2 -element
set T n

2 ={1, 2, ..., n
2 } and we want to synchronize it, through the sets T n

2 −1 =
{1, 2, ..., n

2 − 1}, T n
2 −2 = {1, 2, ..., n

2 − 2}, ..., T2 = {1, 2} to the set T1 = {1}.
From Theorem 7 we have that the shortest word wi which synchronizes Ti into
Ti−1 (2 ≤ i ≤ n

2) has length
(n

2 +i
i

)
.

456 A. Roman and W. Foryś

The word w = wn
2
wn

2 −1...w2 synchronizes our automaton A. It’s length is

|w| = |wn
2
wn

2 −1...w2| =

n
2∑

i=2

|wi| =

n
2∑

i=2

(n
2 + i

i

)
=

n
2∑

i=2

(n
2 + i

n
2

)

=

n
2∑

i=0

(n
2 + i

n
2

)
− 1 −

(n
2 + 1

n
2

)
=

(
n + 1

n
2

)
− n

2
− 2.

This ends the proof of Theorem 5. Let us now bound the length of m−-minimal
synchronizing word for the automaton defined above. It is obvious that for an
n
2 -element set we can take the one, which can be transformed into n

2 −1-element
set in one step (by one-letter word). Such a set is T = {n

2 +1, ..., n
2 +k}. Because

Table 1. Comparision between lower bounds on the lengths of minimal carefully syn-
chronizing words and m+-minimal synchronizing words

|Q| ω(|Q|) ω+(|Q|) |Q| ω(|Q|) ω+(|Q|)
8 52 120 22 8746 1 352 065

10 106 455 24 19 681 5 200 286

12 241 1 708 26 39 364 20 058 285

14 484 6 424 28 78 730 77 558 744

16 970 24 300 30 177 145 300 540 178

18 2 185 92 367 32 354 292 1 166 803 092

20 4 372 352 704 34 708 586 4 537 567 631

1 2 3

456

a10 a4, a16

a1, a7, a13, a19
a20

a20

a20

a10

a7, a13, a16

a3, a6, a8

a12, a14, a17

a16

a2, a5, a9

a11, a15, a18

a1, ..., a9 a1, ..., a3, a11, ..., a15 a5, a6, a11, a12, a17, a18

a9, a15, a18, a19 a19

a8, a14, a17

a4, a10

Fig. 6. 6-state automaton with m+-minimal synchronizing word of length 30

Lower Bound for the Length of Synchronizing Words 457

we needed to use
(

n
n
2

) − 1-letter word to transform {1, 2, ..., k} into T , therefore
from Theorem 6 and Proposition 5 we immediately obtain the following result:

ω−(n) ≥ ω+(n) − (
(

n
n
2

)
− 1) =

(
n

n
2 − 1

)
− n

2
− 1 .

Table 1 presents a comparision between lower bounds on the length of minimal
carefully synchronizing words and m+-minimal synchronizing words for partially
synchronizing automata.

5 Example

We illustrate now Theorem 5 by the following example. Let n = 6. From Propo-
sition 4 we have ω+(6) ≥ (

7
3

) − 6
2 − 2 = 35 − 3 − 2 = 30. We will construct the

automaton with m+-minimal synchronizing word of length 30.

1 1 2

4 5 6

3 5 6

3 4 6

3 4 5

2 5 6

2 4 6

2 4 5

2 3 6

2 3 5

2 3 4

2 3 4

1 5 6

1 4 6

1 4 5

1 3 6

1 3 5

1 3 4

1 2 6

1 2 5

1 2 4

1 2 3

a1 a1 a1

a2 a2 a2

a3 a3 a3

a4 a4 a4

a5 a5 a5

a6 a6 a6

a7 a7 a7

a8 a8 a8

a9 a9 a9

a10 a10 a10

a11 a11 a11

a12 a12 a12

a13 a13 a13

a14 a14 a14

a15 a15 a15

a16 a16 a16

a17 a17 a17

a18 a18 a18

a19 a19 a19

a20 a20 a20

5, 6

4, 61 3, 6

4, 5

3, 5

3, 42, 6

2, 5

2, 4

1, 62, 3 1, 5

1, 4

1, 3 1, 2
a4

a1, a7

a2, a5, a9

a10 a3, a6, a8

a16

a1, a13
a10

a2, a11, a15

a3, a12, a14

a16

a5, a11, a18

a19
a6, a12, a17

a20

a19
a9, a15, a18

Fig. 7. Construction of δ and transformations for all 2-element subsets

458 A. Roman and W. Foryś

Let A = (Q, A, δ), where Q = {1, 2, 3, 4, 5, 6} and A = {a1 · · · a20}. The
construction method of the transition function is presented at the left part of
Fig. 7. Letter ai transforms Pi into its very successor, Pi+1, according to (1).
The last 3-element subset of Q, P20, is synchronized to the set {1, 2} by a20,
according to (2), (3), (4). In order to synchronize {1, 2, 3} into {1, 2} we need to
use the word w3 = a1a2...a19a20. Now we have to synchronize {1, 2} into {1}. The
shortest such a word is the word labeling the shortest path from the state {1, 2}
to the state {1} in the automaton illustrated on the right side of Fig. 7. Notice
that one of the shortest words (denote it by w2) transforms only the subsets
of {1, 2, 3, 4, 5}: w2 = a4a7a9a10a13a15a16a18a19a20. Therefore an m+-minimal
synchronizing word for A is w3w2 = a1a2...a19a20a4a7a9a10a13a15a16a18a19a20

and its length is 30. Notice, that there are also other m+-minimal synchronizing
words, for example w3a4a1a9a6a10a11a3a16a19a20. In fact, a simple analysis of
the right part of Fig. 7 shows that there are exactly 540 different m+-minimal
synchronizing words.

References

1. Ananichev, D., Volkov, M.: Synchronizing monotonic automata. In: Ésik, Z., Fülöp,
Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 111–121. Springer, Heidelberg (2003)

2. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, L., Shapiro, E.: DNA molecule
provides a computing machine with both data and fuel. Proc. National Acad. Sci.
USA 100, 2191–2196 (2003)

3. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Pro-
grammable and autonomous computing machine of biomolecules. Nature 414, 430–
434 1 (2001)

4. Černý, J.: Poznámka k. homogénnym experimentom s konecnymi automatmi. Mat.
fyz. cas SAV 14, 208–215 (1964)

5. Černý, J., Pirická, A., Rosenauerova, B.: On directable automata. Kybernetica 7,
289–298 (1971)

6. Ito, M., Shikishima-Tsuji, K.: Some results on directable automata. In: Karhumäki,
J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113,
pp. 125–133. Springer, Heidelberg (2004)

7. Kari, J.: Synchronization and Stability of Finite Automata. JUCS 8, 2, 270–277
(2002)

8. Martyugin, P.V.: Lower bounds for length of carefully synchronizing words. In:
Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967,
Springer, Heidelberg (2006)

9. Natarajan, B.K.: An algorithmic Approach to the Automated Design of Parts
Orienters. In: Proc. 27th Annual Symp. Foundations of Computer Science, pp.
132–142. IEEE, Los Alamitos (1986)

10. Natarajan, B.K.: Some paradigms for the automated design of parts feeders. Int.
J. Robotic Research 8, 6, 89–109 (1989)

A Proofs of Lemmata 1 and 2

Proof of Lemma 1 It is clear that for each i < L and a such that δ(Pi, a)
is defined, we have δ(Pi, a) = Pi or δ(Pi, a) = next(Pi), where next(P) is the

Lower Bound for the Length of Synchronizing Words 459

set succeeding Pi in the lexicographic order under the alphabet {1, 2, ..., n
2 + k}.

So P must consist of all k-element subsets of n
2 + k-element set, therefore L =(n

2 +k
k

) − 1.

Proof of Lemma 2 Denote by max(P) the maximal element in P . Let us
consider three possible cases:

Case 1. max(∪L
i=1Pi) ≥ max(∪M

i=1Ri). In this case Ri can be covered by F and
therefore be of width dP . Because P was chosen as the shortest sequence from
P1 to PL, we have M ≥ L.

Case 2. max(∪L
i=1Pi) < max(∪M

i=1Ri) < dR. In this case Ri can be also covered
by some F ′, such that d(Ri, F

′) < dR. Therefore this case reduces to Case 1
(applying this construction at most dR − dP + 1 times).

Case 3. max(∪L
i=1Pi) < max(∪M

i=1Ri) = dR. We will show that Ri can be
covered by some F ′ such that d(Ri, F

′) ≤ dR − 1. If dP < dR − 1 we can apply
this construction again until dP = dR and then the problem reduces to the first
case.

We will show how to transform R to R′ of the same length, such that R1 = R′
1

and RL = R′
L and max(∪L

i=1R
′
i) < n

2 + dR. Let Rj be the first set in R such
that Rj �= Pj and Rv be the first set such that v > j and Rv = Pv. Notice that
necessarily v > j + 1. The above implies that for each l ∈ {j, j + 1, ..., v} the
set Gl, which covers Rl has to be of the form Rj ∪ {n

2 + t + 2, n
2 + t + 2, ..., n}.

It is possible now to replace each Rl by R′
l := Pl which will be covered by

F ′ = Pl ∪ {n
2 + t + 2, n

2 + t + 3, ..., n}. Such replacement should be done in all
such subsequences Rj , ..., Rv. At the end we have the sequence R′ with covering
sequence F ′, such that d(R′, F ′) < dR. We can proceed this construction until
d(R′, F ′) = dP . Then the problem reduces to Case 1. This ends the proof.

Verifying Parameterized taDOM+ Lock

Managers

Antti Siirtola1 and Michal Valenta2

1 University of Oulu, Department of Information Processing Science, PL 3000,
90014 University of Oulu, Finland

antti.siirtola@oulu.fi
2 Czech Technical University in Prague, Faculty of Electrical Engineering,
Department of Computer Science and Engineering, Karlovo námesti 13,

121 35 Prague 2, Czech Republic
valenta@fel.cvut.cz

Abstract. taDOM* protocols are designed to provide lock-based ap-
proach to handle multiple access to XML databases. The notion of ta-
DOM+ protocol is formalized and generalized and a formal model of
taDOM+ lock manager that is parameterized in the number of transac-
tions and in the size of database is represented. An important class of
safety properties of taDOM+ lock managers were proven to be checked
by examining just a small number of finite-state instances of the parame-
terized model. Our results were applied to prove a generalized mutual ex-
clusion property, known as repeatable-read, of taDOM2+ and taDOM3+
lock managers by model-checking.

Keywords: Verification, model-checking, parameterized systems, case
study, XML databases.

1 Introduction

Semi-structured data, like HTML and LaTeX documents, contain both content
and structure information. One of the most popular and important formats for
representing such data is XML (Extensible Markup Language) [27]. XML doc-
uments are not usually accessed directly, but through an interface that parses
them.

DOM (Document Object Model) [27] takes an XML document basically as a
tree and provides operations to manipulate them. DOM is applicable also when
the documents are stored in XML database, database whose logical storage unit
is an XML document. That is why we think the (XML) database as a rooted tree
(V, E, r), where V is a set of nodes, E ⊆ V × V a set of edges and r ∈ V a root
(node) [5]. We use standard concepts of parent, child, ancestor and descendant
when speaking about databases (rooted trees).

Transaction is the smallest operation a user can perform on a database. It
consists of a sequence of smaller operations on nodes, such that either all the
operations are completed successfully or all of them are cancelled. When the user

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 460–472, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Verifying Parameterized taDOM+ Lock Managers 461

wants to access the database, he/she first opens a transaction and then executes
a sequence of operations, and finally, he/she either commits all operations as
successfully completed, or rolls back the transaction, which means cancelling all
the operations.

Unfortunately, DOM does not support concurrent transactional access to
XML database, which is an issue of both availability and consistency. For this
purpose, taDOM* protocols are introduced. They provide an efficient lock-based
approach for the task [14]. The protocols are realized in the form of a transaction
manager that implements DOM interface, provides transaction initialization and
finalization, and invisibly takes care of locking (Fig. 1). Obviously, the role of
taDOM* protocols is extremely important, but the correctness of the protocols
is proved only in the form of test cases [14].

In this paper, we deal with the correctness of the lock manager part of ta-
DOM+ protocols. taDOM+ protocols cover a half of the taDOM* protocols
in practise and the lock manager is the most essential and critical part of these
protocols. We have captured the behavior of the lock manager in a formal model,
which is parameterized in the size of database and in the number of transactions,
which means the maximum number of simultaneous accesses to the database.
The correctness specification is given as an observer, which is comprised in the
model. The formulation of the model allows us to study safety properties [1]
related to two arbitrary transactions and one arbitrary node.

Due to the symmetry [4,12,17] of the model, to concentrate only on two fixed
transactions is sufficient. We also show that an instance of the model with just
two transactions enables to simulate bigger instances of the model with more
transactions if the database parameter is unchanged. Then, we prove a similar
bound to the size of the database. The bound depends on the correctness spec-
ification and on the taDOM+ protocol, but even in the worst case it is very
small. Combining these results allows us to reduce the related parameterized
verification problem to a finite verification task manageable by existing model-
checkers. Finally, we apply our results to prove a generalized mutual exclusion
property, known as as repeatable-read, of the lock manager of two real taDOM+
protocols, namely taDOM2+ and taDOM3+.

The parameterized verification problem is undecidable in general [2,8]. There-
fore, all the methods proposed for the automatic verification of the parameterized
systems are somehow restricted. Results similar to ours establishing an explicit
bound for the number of replicated components have been previously proved for
the systems composed of similar fixed-size processes [3,7], rings communicating
through the token passing [11,10], rings of the Petri nets [21,24] and the cache
coherence protocols [9,16].

In our case, the problem consists in dealing with a software system which is
highly parameterized. In contrast to the standard structure of the system it is
the state-space of the components which is parameterized as well. Actually, there
exist only few methods that can handle the systems with parameterized compo-
nents. One of the method is the method of Pyssysalo focussed on the rings of the
Petri nets [24]. Obviously it is inapplicable to the systems with different topology,

462 A. Siirtola and M. Valenta

Transaction 1

Transaction 2

...

Transaction n

Users

DOM interface &
Transaction
management

Lock manager
(taDOM* protocol)

Transaction manager

XML native
database

(rooted tree)

Fig. 1. Context of taDOM* protocol

like taDOM+ lock manager. Another method is an induction method of Creese
[6] based on the network invariants [19,28] and data-independence [20]. Unfor-
tunately, the method cannot be applied here, because the transactions must be
able to traverse between consecutive nodes of the database. This involves incre-
menting and decrementing the node identifiers, which breaks data-independence
of the system. We are not aware of other methods that could handle systems
with parameterized components naturally.

Another problem that prevents us from using generic methods lies in the fact
that the state-space of the components of our model is large. For example, a
node of a taDOM3+ lock manager model has 190 states at minimum. As the
complexity of generic methods is usually exponential in the number of states of
a component [13,18,23] the only solution to our situation is to create the method
tailor-made.

In the next section, the notation and the computation model which we build
our results on are introduced. After that, we generalize and formalize the notion
of a taDOM+ protocol. Section 4 presents our parameterized model of the ta-
DOM+ lock manager, and the main result to bound the values of parameters are
given in the following section. Empirical results are reported in Section 6, and
finally the paper discusses the restrictions of our approach and recommendations
for the future research.

2 Notation and Model of Computation

Let A and B be sets such that B has null element 0. The Kernel of function
f : A �→ B, Ker(f), is set {a ∈ A | f(a) = 0}. The set of all the finite sequences
of elements of A is denoted by A∗. Especially, the empty sequence, ε, is in A∗.
If w ∈ A∗ and A′ ⊆ A, then w \ A′ denotes a sequence obtained from w by
removing all the elements in A′. If i, j ∈ IN, we write [i, j] for set of natural
numbers {n ∈ IN | i ≤ n ≤ j}.

We use labelled transition system, LTS, as our fundamental model of computa-
tion [26]. Intuitively, LTS is a state machine with labelled transitions. Formally,
LTS A is a four-tuple (S, A, R, i), where (1) S is a non-empty set of states, (2)
A is a set of actions such that τ /∈ A, (3) R ⊆ S × (A ∪ {τ}) × S is a set of

Verifying Parameterized taDOM+ Lock Managers 463

transitions, and (4) i ∈ S is initial state. A is the alphabet of A and it is denoted
by Σ(A). Actions in A are called visible and τ , which, by the definition, is not
in A, is the invisible action.

When analyzing LTS’s, we are usually interested in the sequences of visible
actions reachable from the initial state. Let A = (S, A, R, i) be an LTS. An
alternating sequence of states and visible and invisible actions, s1a1s2 . . . an−1sn,
of A, is a path (in A) (from s1) (to sn) if (si, a, si+1) is the transition of A for
every i ∈ {1, 2, . . . , n − 1}. For a path c, act(c) denotes the sequence of visible
actions c \ (S ∪ {τ}). A state sb is reachable (in A) (from sa) (by a path c) if c
is a path in A from a state sa to sb. A state s is reachable (in A) (by a path c)
if it is reachable from the initial state of A. A sequence t of visible actions of A
is a trace (of A) if there is path π in A such that act(π) = t. The set of all the
traces of A is denoted by tr(A).

The systems are commonly built out of smaller LTS’s by interleaving and
a synchronous composition. Interleaved LTS’s run independently whereas syn-
chronously composed LTS’s must take transitions labelled by the same visible
action simultaneously. Finally, the actions that are irrelevant to the analysis, are
hidden, i.e. they are replaced by the invisible action. Let A1 = (S1, A1, R1, i1)
and A2 = (S2, A2, R2, i2) be LTS’s and B a set of visible actions. A parallel com-
position of A1 and A2 synchronized by B is LTS (S1 × S2, A1 ∪ A2, R, (i1, i2)),
denoted by (A1[|B|]A2), where

R = {((s1, s2), a, (s′1, s
′
2)) | (s1, a, s′1) ∈ R1, (s2, a, s′2) ∈ R2, a ∈ B} ∪

{((s1, s2), a, (s′1, s2)) | (s1, a, s′1) ∈ R1, a /∈ B} ∪
{((s1, s2), a, (s1, s

′
2)) | (s2, a, s′2) ∈ R2, a /∈ B} .

The Interleaving of A1 and A2, denoted by (A1 ||| A2), is a parallel composition
of A1 and A2 synchronized by an empty set. Synchronous composition of A1

and A2, denoted (A1 ‖ A2), is a parallel composition of A1 and A2 synchronized
by Σ(A1) ∩ Σ(A2). As the interleaving operator is associative, its replicated
version, |||i∈I Ai, where I is a set {i1, i2, . . . , ik} and Ai is an LTS for every
i ∈ I, is naturally defined as LTS (Ai1 ||| Ai2 . . . ||| Aik

). A1 hiding B, is LTS
(S1, A1 \ B, R′, i1), denoted by (A1 \ B), where

R′ = {(s, a, s′) ∈ R1 | a /∈ B} ∪ {(s, τ, s′) | ∃a ∈ B.(s, a, s′) ∈ R1} .

3 taDOM+ Protocols

taDOM+ protocols are described in [14] by giving a finite non-empty set of
lock modes L, a compatibility matrix, Cmp ⊆ L × L, and a conversion function,
cnv : L × L �→ L. For efficiency, at most one lock per transaction is stored on
a node. A compatibility matrix tells which lock modes of different transactions
can coexist on a node. We say that a lock mode l1 is compatible with l2 if
(l1, l2) ∈ Cmp. If l1 is compatible with l2, then one transaction can have lock l1
on a node while another transaction has lock l2 on the same node. If a transaction
requires lock mode l′ on a node on which it already has lock l, then, as the result

464 A. Siirtola and M. Valenta

of the request, the transaction will have lock l′′ := cnv(l′, l) on the node, provided
l′′ is compatible with the locks other transactions have on the node.

However, these constructs are not sufficient enough to describe a taDOM+
protocol in detail; there are other constructs implicitly related to each of the
protocols. A successful lock request on a node always leads to a lock request on
the parent. The lock that will be requested on the parent node is determined by
a precedence function, prv : L �→ L. Thus, if a transaction requests a lock on a
node and, as the result, the transaction gets lock l on the node, then lock mode
prv(l) will be requested on the parent. It means that node n cannot be locked
without locking all the nodes in the path from n to the root node. However, the
first lock request in such a locking chain cannot be arbitrary. A set of directly
request-able lock modes D ⊆ L captures the lock modes which are allowed be
requested on a node without the previous request on the one of its children.

Each lock mode is associated with a set of operations (on nodes) with scopes.
The set of operations (on nodes) is denoted by O and typically consists of read
and write operations. A lock operation mapping is a function, lop : L �→ IP(O ×
IN), such that lop(l) is a downward-closed set whenever l ∈ L, meaning that if
(o, n) ∈ lop(l) and m < n then (o, m) ∈ lop(l). A transaction can perform an
operation o on a node n, if the transaction has, or successfully requests, a lock
mode l on an ancestor n′ of n such that (o, d) ∈ lop(l), where d is the distance
between n and n′ in edges. Thus, lock l on node n allows to perform operation
o ∈ lop(l) on all the descendants of n within distance sup{k | (o, k) ∈ lop(l)}
from n, including n itself.

As an example, we consider an XML library database which consists of books
where it holds that for each of them specific data are assigned, e.g. author, type,
availability etc. The database can be simultaneously accessed by many users,
so its important to isolate write operations from simultaneous read or write
operations on the same data.

For that purpose, we introduce a simple taDOM+ protocol with two self-
explaining operations on the nodes, read and write, and five lock modes whose
first two modes are directly request-able: SR — subtree read, SX — subtree read
and write, IR — intention to read in a subtree, IX — intention to read or write
in a subtree — and SRIX — subtree read with intention to write in a subtree.

Lock operation mapping corresponding to the intuitive explanation of the lock
modes is a function mapping IR, IX and SRIX to the empty set, SR to {read} ×
IN and SX to {read, write} × IN. The compatibility relation and the conversion
function are given respectively, see Tables 1a and 1b. The first parameter of the
conversion function denotes the row, the second one the column, and the result of
the conversion can be read in the cell in the intersection. Similarly, lock modes are
compatible if there is + in the corresponding cell of the first table. The precedence
function maps SR and IR to IR and the rest of the lock modes to IX.

Now, let us assume that initially no one uses the database. Then appears a
user who wants to see the particulars of a book. The system executes Transaction
1 for him/her and the read lock mode SR is requested on the node representing
the book. Because there are no other locks on the node, it is successfully locked

Verifying Parameterized taDOM+ Lock Managers 465

Table 1. Compatibility and conversion matrices of taDOM+ protocol for library
database

IR SR IX SRIX SX

IR + + + +

SR + +

IX + +

SRIX +

SX

(a)

IR SR IX SRIX SX

IR IR SR IX SRIX SX

SR SR SR SRIX SRIX SX

IX IX SRIX IX SRIX SX

SRIX SRIX SRIX SRIX SRIX SX

SX SX SX SX SX SX

(b)

(a)

lib

IR1

book

SR1

avail

(b)

lib

IR1,SR2

book

SR1

avail

(c)

lib

IR1,SR2

book

SRIX1

avail

SX1

(d)

lib

IX1

book

SRIX1

avail

SX1

Fig. 2. (a) Transaction 1 accessing one book. (b) Transaction 1 accessing one book
and Transaction 2 accessing all the books. (c) Transaction 2 accessing all the books
and Transaction 1 trying to update availability information of a book. (d) Transaction
1 updating availability information of a book.

by SR and, according to the precedence function, IR is requested and granted
on its parent (Fig. 2a).

Shortly after that appears another user who wants to list all the books in
the database. The system executes Transaction 2 for him/her and the root gets
locked by SR, because the transaction has no earlier lock on the node and SR is
compatible with IR lock mode of Transaction 1 (Fig. 2b).

Next, the first user wants to borrow the book, and thus to change its informa-
tion on availability. The write lock mode SX is requested on the availability node
of the book by Transaction 1. However, before any changes are made, the whole
path up to the root must be locked appropriately. It means request of IX and
conversion of SR to SRIX on the book node and request of IX and conversion
of IR to IX on the root node according to precedence function and conversion
matrix. However, the conversion on the root node cannot be applied because IX
is not compatible with the read lock of Transaction 2 which already exists there
(see compatibility matrix). That is why Transaction 1 is blocked (Fig. 2c) until
Transaction 2 finishes processing.

As Transaction 2 has generated the list of all the books for the second user,
it ends and releases the locks it possesses. Now Transaction 1 can finish its lock
request and the first user can borrow the book (Fig. 2d).

466 A. Siirtola and M. Valenta

4 Modelling taDOM+ Lock Manager

Straightforward modelling of a taDOM+ lock manager leads to an infinite-state
LTS, which cannot be model-checked in general. However, in practise, applica-
tions cannot reach infinitely many states due to limited memory and running
time, and other limited resources. That is why we model the lock manager pa-
rameterized by the restrictions. The only problem with this approach is that
parameters cannot usually be bound. That is why we instantiate the model
for every possible value in the parameter domain, which results in an (infinite)
family of similar finite-state systems. Although verifying the whole family au-
tomatically with limited effort is impossible in general [2], we will see that this
is possible for the parameterized model of the taDOM+ lock manager we have
created.

The number of transactions is a natural parameter, but parameterizing the
size and the shape of the database is not that straightforward. We concentrate on
an arbitrary node of the database, which we call the context node. We model only
the path which leads from the root node to the context node, and we introduce
abstract nodes representing a sequence of one or more nodes (Fig. 3). The nodes
outside the path are not explicitly modelled. We model only the effect on the
nodes on the path when a lock is requested on one of the other nodes. Abstract
nodes do not exist as LTS’s, but their identifiers are included in the model.
When the transaction is proceeding on the path on either direction and enters
an abstract node, it can stay there arbitrarily long, silently simulating the lock
requests and lock reads.

We denote the set of transaction identifiers by Tb = {t1, t2, . . . , tb} and the set
of node identifiers by Nc = {n1, n2, . . . , nc}. If t ∈ Tb is a transaction identifier
and n ∈ Nc a node identifier, then the corresponding transaction and the node
are referred to by respectively t̂ and n̂. Database parameter f is a mapping from
Nc to {0, 1} such that a sequence f(n1)f(n2) . . . f(nc) contains no consecutive
1-symbols. Now, if f maps a node identifier n to 1, then n̂ is (modelled as)
an abstract node, otherwise n̂ is (modelled as) a regular node. The class of all
the database parameters from Nc with the kernel of size c′ is denoted by Fc,c′ .
The LTS representing transaction t̂ depends on database parameter f and the
LTS of regular node n̂ on the number of transactions b. The LTS’s are denoted
respectively by Trf (t) and Ndb(n). Here, we present an intuitive view on the
models, the formal definition is given in [29].

For modelling purposes, we assume that there is a special empty lock mode
⊥ ∈ L\D, and initially every transaction has this lock on every node. We require
that (1) {⊥} × L ∪ L × {⊥} ⊆ Cmp, (2) cnv(⊥, l) = ⊥ and cnv(l, ⊥) = l for
every l ∈ L, (3) prv(l) = ⊥ if and only if l = ⊥ for all l ∈ L, and (4) lop(⊥) = ∅.
Then ⊥ represents the absence of the lock in a node and, on the other hand, it
indicates a lock release request.

Ndb(n) just stores the lock for each transaction LTS, no data or other proper-
ties of the node are modelled. The locks are initialized to the empty lock mode.
At any moment, the mode of the lock of any transaction can be read. The lock
can also be updated anytime as long as the resulting lock mode is compatible

Verifying Parameterized taDOM+ Lock Managers 467

root

context
node

(a) n1, regular
f (n1)=0

n2, abstract
f (n2)=1

n3, regular
f (n3)=0

n4, regular
f (n4)=0

n5, abstract
f (n5)=1

root

context
node

(b)

Fig. 3. Creation of a database instance: (a) The context node is chosen. The nodes
in the path from the root to the context node are explicitly modelled. (b) Possible
connections to the nodes outside the path are modelled as well, and the abstract nodes
are introduced. The self-loops on the abstract nodes clarify the fact their representation
of one or more consecutive real nodes.

with the other locks on the node. Locking a node is an atomic operation, just
like in real implementations [15].

The transactions are modelled from the point of view of the lock manager,
and the context node. Trf (t) represents what the lock manager does for the
transaction t̂ and what operations the transaction can perform on the context
node. Trf (t) stores the set of operations O′ ⊆ O the transaction is entitled
to perform on the context node. Naturally, O′ is initially empty. We assume
that once a transaction has obtained the rights to an operation, it cannot lose
them. This modelling choice will not result in false negative verification results
unless the conversion function allows the locks to be degraded. Hence, this will
not be a problem with the models of real the taDOM+ protocols but they can
be analyzed only in repeatable-read mode, which presumes that the locks of a
transaction are not released until the transaction ends. However, in the case of
taDOM+ protocols, repeatable-read is the most important operating mode.

In the model, the creation of transaction t̂ is indicated by action t.beg. After
that, Trf (t) enters the main loop. Now, three kinds of things can be repeatedly
done until the transaction ends.

(1) Trf (t) can perform any operation o ∈ O′ on the context node. The opera-
tion is modelled using two actions, t.o.beg and t.o.end, representing the moments
when t̂ respectively starts and finishes execution of the operation.

(2) Trf (t) can search for locks on the path that entitle to perform a set of
operations U on the context node such that U is disjoint from O′. Searching
always starts from the root node and proceeds towards the context node until U
becomes empty or the context node is passed. During the search, the locks l the
transaction has on the regular nodes Ndb(ni) are being read and U is cut down

468 A. Siirtola and M. Valenta

and O extended by {o|(o, c−i) ∈ lop(l)}∩U . Visiting abstract nodes causes only
U to be reduced non-deterministically but O′ is not affected, because otherwise
all the transactions could get rights to every operation simultaneously, which
would make the model unusable for the verification of any reasonable property.
Correctness of this modelling choice will be established in the next section.

(3) Trf (t) can (directly) request any directly request-able lock mode on any
regular node on the path. It is also possible that t̂ makes the first (direct) lock
request on the node outside the path or on the node modelled as an abstract
one. That is why Trf (t) can (indirectly) request l′ on any node on the path,
where l′ is any lock mode that can be obtained from a directly request-able
lock mode by repeated (zero or more times) application of functions gl′′(l) :=
prv(cnv (l, l′′)), l′′ ∈ L.

If a direct request on regular node Ndb(ni) is successful, which means the
resulting lock l′ is compatible with the other locks on Ndb(ni), O′ is extended
by {o|(o, c − i) ∈ lop(l)} and lock mode l′′ := prv (l′) is (indirectly) requested
on the parent node. Lock requests on abstract nodes are always successful, be-
cause abstract nodes do not store locks. That is why requesting a lock mode l
on an abstract node just means that the lock mode that will be requested on
the parent is non-deterministically selected from {prv(l, l′′) | l′′ ∈ L}. For the
reasons explained earlier, O′ is not affected. Additionally, because an abstract
node represents any non-empty sequence of real nodes also the parent is non-
deterministically chosen from two alternatives, which are the node itself and its
actual parent. Hence, it is possible to stay within one abstract node arbitrarily
long. Locking proceeds like this until the root node is passed.

Finally, when in the main loop, the transaction can always end. This is indi-
cated by action t.end. After that all the locks of Trf (t) are released, replaced by
⊥, starting from the context node.

To build an instance AS b,f of the lock manager model with b transactions and
database f , the transaction LTS’s are mutually interleaved. It means that our
lock manager model can serve the transactions simultaneously. In real implemen-
tations, not every interleaving is possible, which makes our model more general.
Also the regular nodes are interleaved, because they do not communicate directly
with each other. As the transactions and nodes communicate through the lock
requests and lock reads, the resulting two LTS’s are synchronously composed to
create the lock manager model. Thus,

AS b,f = (|||
t∈Tb

Trf (t)) || (|||
n∈Ker(f)

Ndb(n)) .

We are interested in safety properties [1] related to the operations of two
arbitrary transactions, t1 and t2 performed on the context node. We feel that
this kind of properties cover a large portion of the safety properties of practical
interest. As taDOM+ protocols can deadlock, there is no point to reason liveness
properties [1] and, in real implementations, there are special mechanisms for
recovering from the deadlocks.

Normally, the correctness specification is formulated directly as an LTS, too.
However, we assume that the specification is given indirectly as an observer. An

Verifying Parameterized taDOM+ Lock Managers 469

observer is such LTS that captures the correct behavior and provided it sees the
behavior which is not in accordance with the property, executes a self-explaining
action error [22].

We write Obs(t1, t2) for an observer capturing a safety property related to
operations transactions t1 an t2 perform on the context node. Thus, Obs(t1, t2)
is an LTS with alphabet {t.beg, t.end, t.o.beg, t.o.end, error | t ∈ {t1, t2}, o ∈ O}.
If π is a path in Obs(t1, t2), then Ω(π) = {(t, o) | t.o.beg or t.o.end occurs in π}
denotes the set of transaction-operation pairs occurring in the actions of π. We
write |Ω(Obs(t1, t2))| for the maximum of |Ω(π)| taken over paths π in Obs(t1, t2)
such that π does not contain error actions.

As we can now concentrate only on error actions, all the other actions can be
hidden. Thus, the problem we are addressing is whether equation

tr((AS b,f || Obs(t1, t2)) \ Σ(AS b,f)) = {ε} (1)

is true for all positive integers c, c′ and b ≥ 2, any f ∈ Fc,c′ and every distinct
t1, t2 ∈ Tb. If the equation is true for all the instances of the lock manager and
every pair of transaction identifiers, then the observer cannot perform the error
action and thus the lock manager is in compliance with the specification.

However, because of the abstractions, the model-checks within our framework
may give false negative answers. It means that the actual lock manager can be
correct even if the verification of the model gives the opposite result. Fortunately,
this probably happens only if our framework is utilized in more innovative ways.
On the other hand, if our approach proves the protocol correct then it must be
correct.

5 Bounding the Parameters

We can automatically check Equation 1 for small b and f and any t1, t2 ∈ Tb.
However, if we want to prove the correctness of the entire lock manager, the
results of model-checking have to be generalized in three ways. We need to
prove that Equation 1 holds independent of the number of transactions b, the
structure of database f and the choice of t1 and t2.

First, let us fix b and f . To establish the correctness of AS b,f we should still
check Equation 1 for each pair of transaction identifiers. Fortunately, it is not
difficult to generalize observations made by two fixed transaction LTS’s to any
pair of transaction LTS’s. By the construction of the model, it is easy to see
that the resulting system is symmetric under the permutations of transaction
identifiers. The symmetry on the model checking [4,12,17] is a well-known topic
and we do not claim any originality here. As a consequence, we may assume that
t1 = t1 and t2 = t2 in Equation 1 from now on.

It is also quite easy to show that adding transaction LTS’s and hiding their ac-
tions cannot introduce new traces, that means new ways to violate the property.
Therefore it is sufficient to study instances of the lock manager model having
just two transaction LTS’s. Thus, b in Equation 1 can be set to 2.

470 A. Siirtola and M. Valenta

Once transaction LTS obtains the rights to perform an operation on the con-
text node, the rights exist as long as it ends, because its locks are not released ear-
lier. Getting the rights necessitates a suitable lock somewhere in the path, which
means at most |O| regular nodes per transaction LTS are effectively needed.
Therefore, to check all the instances of the model having at most 2|O| regular
nodes is sufficient. It means that we can also bound the size of the database.

However, in some cases we can do better than that. If in every trace t of an
observer, such that no error action occurs in t, at most n different transaction-
operation pairs occur in the actions of t, then it is sufficient to check all the
instances of the lock manager model having at most n regular nodes. This is
because every trace containing error actions has a maximal prefix that does not
contain them, which means that using a model of n regular nodes it is possible
to run the observer to a state from which the error action can be executed, if it
can be executed at all.

To summarize, it is enough to check all the instances of the lock manager
model having two transaction LTS’s, at most 2|Ω(Obs(t1, t2))|+1 abstract nodes
and at most |Ω(Obs(t1, t2))| regular nodes. The result is captured in the following
theorem the proof of which can be found at [29].

Theorem 1. Equation 1 holds for all positive integers c, c′ and b ≥ 2, every
f ∈ Fc,c′ and all distinct t1, t2 ∈ Tb if and only if equation

tr((AS 2,f || Obs(t1, t2)) \ Σ(AS2,f)) = {ε}
is true for all positive integers c and c′ ≤ |Ω(Obs(t1, t2))| and every f ∈ Fc,c′ .

6 Verification Results

We have applied our result to prove a generalized mutual exclusion property,
known as repeatable-read [25] in database world, for the lock managers at ta-
DOM2+ and taDOM3+ protocols. Repeatable-read property states that reading
a node should always give the same result within a transaction unless the trans-
action itself changed the contents of the node. In other words, if a transaction
is writing to or has written to a node, no other transaction should be able to
access the node until the transaction has ended, and if a transaction is reading
or has read a node, no other transaction should be able to write to the node
until the transaction has ended. The property was formulated as an observer
with |Ω(Obs(t1, t2))| = 3. Therefore it was sufficient to check all the instances
of the protocol model having at most 3 regular nodes.

Model-checking was done using CSP model-checker FDR2 [26]. To verify a
protocol, 18 model-checking runs were needed, one for each database parameter
f ∈ {g ∈ Fm′,m | 1 ≤ m′ ≤ m ≤ 7, m′ ≤ 3}. The largest instance of the
taDOM2+ lock manager model that needed to be checked had 25 million states
and 330 million transitions. It took 30 minutes and 720 MB of memory to verify it
using Sun V40z computation server with 2 GHz dual core Opteron 64 processors
running on Solaris 10.

Verifying Parameterized taDOM+ Lock Managers 471

In order to verify taDOM3+ we had to make an assumption that it is always
Trf (t1) that first accesses the context node. It was achieved by composing the
model with a process capturing the behavior. Without the restriction, the model
was too large for FDR2 to handle. Since both the model and the property are
symmetric under the permutations of T2, the restriction does not affect the
universality of model-checking results. Under this assumption, the largest model-
check needed for proving the correctness of a taDOM3+ lock manager model
took about 3.3 GB of memory and 180 minutes to complete. There were over
120 million states and 1.4 billion transitions to check.

7 Discussion

There are two obvious possible ways how to extend the results. Even though the
lock manager model is proved correct independent of the number of transactions
and the size of database, we have assumed the structure of the database to be
static. Hence, modelling node inserts and removals and still keeping the model
small enough for automatic verification is the first challenging task. The second
task is to generalize the results in such a way to support systems with non-
predefined structure and components.

Acknowledgments. The research is partially funded by the Ministry of Educa-
tion of Finland through Infotech Oulu Graduate School, the Grant GA201/06/
0756, and research program MSM 6840770014 of Ministry of Education, Czech
Republic. We thank Juha Kortelainen for his comments on the paper and Pavel
Strnad for discussions on taDOM* protocols.

References

1. Alpern, B., Schneider, F.B.: Defining Liveness. Inf. Process. Lett. 21, 181–185
(1985)

2. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inform. Process. Lett. 22, 307–309 (1986)

3. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar
processes. ACM T. Progr. Lang. Sys., 51–115 (1998)

4. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Method. Syst. Des. 9, 77–104 (1996)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

6. Creese, S.J.: Data Independent Induction: CSP Model Checking of Arbitrary Sized
Networks. Ph.D. thesis, Oxford University (2001)

7. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: McAllester, D. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp.
236–254. Springer, Heidelberg (2000)

8. Emerson, E. A., Kahlon, V.: Model checking guarded protocols. In: Proc. LICS
2003, Ottawa, pp. 361–370 (2003)

472 A. Siirtola and M. Valenta

9. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized
cache coherence protocols. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS,
vol. 2860, pp. 247–262. Springer, Heidelberg (2003)

10. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based mes-
sage passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

11. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proc. POPL 1995, San
Francisco, pp. 85–94 (1995)

12. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Method. Syst.
Des. 9, 105–131 (1996)

13. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39, 675–735 (1992)

14. Haustein, M., Härder, T.: Optimizing concurrent XML processing. In-
ternal report, Kaiserslautern University of Technology (2005), http://
wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/pubs/
papers/HH05.Int-Report.pdf

15. Haustein, M., Härder, T.: An efficient infrastructure for native transactional XML
processing. Data Knowl. Eng. 61, 500–523 (2007)

16. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying sequential consistency on
shared-memory multiprocessor systems. In: Halbwachs, N., Peled, D.A. (eds.) CAV
1999. LNCS, vol. 1633, pp. 301–315. Springer, Heidelberg (1999)

17. Ip, N., Dill, D.: Better verification through symmetry. Form. Method. Syst. Des. 9,
41–75 (1996)

18. Ip, N., Dill, D.: Verifying systems with replicated components in Murϕ. Form.
Method. Syst. Des. 14, 273–310 (1999)

19. Kurshan, R.P., McMillan, K.: A structural induction theorem for processes. Inf.
Comp. 117, 1–11 (1995)

20. Lazić, R.S.: A Semantic Study of Data Independence with Applications to Model
Checking. Ph.D. thesis. Oxford University (2001)

21. Li, J., Suzuki, I., Yamashita, M.: A new structural induction theorem for rings of
temporal Petri nets. IEEE T. Software Eng. 20, 115–126 (1994)

22. Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized
networks of processes. Theor. Comput. Sci. 256, 113–144 (2001)

23. Lubachevsky, B.D.: An approach to automating the verifcation of compact parallel
coordination programs I. Acta Inform. 21, 125–169 (1984)

24. Pyssysalo, T.: An Induction Theorem for Ring Protocols of Processes Described
with Predicate/Transition Nets. Research Reports, Helsinki University of Technol-
ogy A37 (1996)

25. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw
Hill, New York (2002)

26. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Englewood
Cliffs (1997)

27. World Wide Web Consortium, http://www.w3c.org/
28. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with

network invariants. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite
State Systems. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1990)

29. Appendix, http://www.tol.oulu.fi/∼santti/papers/tadom appendix.pdf

http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/pubs/papers/HH05.Int-Report.pdf
http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/pubs/papers/HH05.Int-Report.pdf
http://wwwlgis.informatik.uni-kl.de/archiv/wwwdvs.informatik.uni-kl.de/pubs/papers/HH05.Int-Report.pdf
http://www.w3c.org/
http://www.tol.oulu.fi/~santti/papers/tadom_appendix.pdf

Untangling a Planar Graph

Andreas Spillner1 and Alexander Wolff2

1 School of Computing Sciences, University of East Anglia, Norwich, UK
aspillner@cmp.uea.ac.uk

2 Faculteit Wiskunde en Informatica, TU Eindhoven, The Netherlands
http://www.win.tue.nl/~awolff

Abstract. In John Tantalo’s on-line game Planarity the player is given
a non-plane straight-line drawing of a planar graph. The aim is to make
the drawing plane as quickly as possible by moving vertices. Pach and
Tardos have posed a related problem: can any straight-line drawing of
any planar graph with n vertices be made plane by vertex moves while
keeping Ω(nε) vertices fixed for some absolute constant ε > 0? It is
known that three vertices can always be kept (if n ≥ 5).

We still do not solve the problem of Pach and Tardos, but we report
some progress. We prove that the number of vertices that can be kept
actually grows with the size of the graph. More specifically, we give a
lower bound of Ω(

√
log n/ log log n) on this number. By the same tech-

nique we show that in the case of outerplanar graphs we can keep a lot
more, namely Ω(

√
n) vertices. We also construct a family of outerplanar

graphs for which this bound is asymptotically tight.

1 Introduction

At the 5th Czech-Slovak Symposium on Combinatorics in Prague in 1998, Ma-
moru Watanabe asked the following question. Is it true that every polygon P
with n vertices can be untangled, i.e., turned into a non-crossing polygon, by
moving at most εn of its vertices for some absolute constant ε < 1? Pach and
Tardos [8] have answered this question in the negative by showing that there
must be polygons where at most O((n log n)2/3) of the vertices can be kept
fixed. In their paper, Pach and Tardos in turn asked the following question: can
any straight-line drawing of any planar graph with n vertices be made plane
by vertex moves while keeping Ω(nε) vertices fixed for some absolute constant
ε > 0? It is known [14,4] that at least three vertices can always be kept (assuming
n ≥ 5). We still do not know the answer to the question of Pach and Tardos,
but we report further progress. We show that Ω(

√
log n/ log log n) vertices can

always be kept. For outerplanar graphs our method keeps a lot more, namely
Ω(

√
n) vertices, and we show that there are drawings of outerplanar graphs

where only O(
√

n) vertices can be kept fixed, i.e., our bound is asymptotically
tight.

There is a popular on-line game that is related to the problem of Pach and
Tardos. In John Tantalo’s game Planarity [12] the player is given a non-plane

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 473–484, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

474 A. Spillner and A. Wolff

straight-line drawing of a planar graph. The player can move vertices, which
always keep straight-line connections to their neighbors. The aim is to make the
drawing plane as quickly as possible.

Let’s formalize our problem. Given a planar graph G = (V, E) a straight-line
drawing of G in the plane is uniquely defined by an injective map δ : V → R2 of
the vertices of G into the plane. It will be convenient to identify the map δ with
the straight-line drawing of G that is defined by δ. A drawing of G is plane if no
two edges in the drawing cross each other, that is, they only share points which
are endpoints of both edges. Given a drawing δ of G let

fix(G, δ) = max
δ′ plane drawing of G

|{v ∈ V | δ(v) = δ′(v)}|,

denote the maximum number of vertices of G that can be kept fixed when making
δ plane. Let fix(G) = min δ drawing of G fix(G, δ) denote the maximum number
of vertices of G that can be kept fixed when starting with the worst-possible
drawing of G. In this paper we show fix(G) ∈ Ω(

√
log n/ log log n), where n is

the number of vertices of G.
Our approach is as follows. Our main theorem (see Section 4) guarantees

that fix(G) ∈ Ω(
√

l) for all triangulated planar graphs G that contain a simple
length-l path of a special structure. In terms of the diameter d and the max-
imum degree Δ of G our main theorem yields bounds of Ω(

√
d) and Ω(

√
Δ),

respectively, for fix(G). The former is achieved with the help of so-called Schny-
der woods. Moore’s bound—a trade-off between d and Δ—then yields the bound
Ω(

√
log n/ log log n) for fix(G) in terms of n, see Section 5. The bound Ω(

√
Δ)

immediately yields a lower bound of Ω(
√

n) for outerplanar graphs. We comple-
ment this result by an asymptotically tight upper bound in Section 6. We start
by reviewing previous work in Section 2 and outlining our method in Section 3.

2 Previous and Related Work

Pach and Tardos [8] have shown that
√

n < fix(Cn) ≤ c(n log n)2/3 where Cn is
the cycle with n vertices and c is some positive constant. They used a proba-
bilistic method based on the crossing lemma.

Verbitsky [14] has considered two graph parameters; the obfuscation complex-
ity obf(G) of a graph G, which is the maximum number of edge crossings in any
drawing of G = (V, E), and the shift complexity shift(G) = |V | − fix(G) of G.
Concerning the shift complexity he observed that fix(G) ≥ 3 for planar graphs
with n ≥ 5 vertices. Further he gave two linear lower bounds on shift(G) depend-
ing on the connectivity of G. By reduction from independent set in line-segment
intersection graphs he showed that computing the shift complexity shift(G, δ) of
a fixed drawing is NP-hard even if the given graph is restricted to a matching.
This explains why Tantalo’s game Planarity is difficult and shows that comput-
ing fix(G, δ) is hard, too.

Independently, Goaoc et al. [4] have also shown that fix(G) ≥ 3 for any
planar graph G with n ≥ 5 vertices and that computing the shift complex-
ity is NP-hard. Their (more complicated) reduction is from planar 3-SAT. A

Untangling a Planar Graph 475

variant of their reduction also shows that shift(G, δ) is hard to approximate.
More precisely, if P �= NP then for no ε ∈ (0, 1] there is a polynomial-time
(n1−ε)-approximation algorithm for shift(G, δ) + 1. Note that this does not im-
ply hardness of approximation for computing fix(G, δ). On the combinatorial
side, Goaoc et al. showed that fix(T) ≥ √

n/3 for any tree T with n vertices and
that there exist planar graphs G with an arbitrary large number n of vertices
such that fix(G) ≤ �√n − 2 	 + 1. Note that the graphs in their construction
are not outerplanar and, therefore, this does not imply our result presented in
Section 6.

Kang et al. [7] have investigated an interesting related problem. They start
with a plane drawing of a graph and want to make it straight-line, again by
vertex moves. For any positive integers s and k they construct a graph Gs,k with
n = k(s + k) vertices and a plane drawing δs,k of Gs,k such that M ≥ s(k − 1)
moves are needed to make δs,k straight-line. The bound on M is maximized for
k ∈ O(n1/3) and thus shows that fix(G, δs,k) ∈ O(n2/3), which is weaker than the
upper bound of 2

√
n proved by Goaoc et al. Note, however, that the drawings

of Goaoc et al. are not plane.
Very recently—after submission of this paper and its long version [11]—Bose

et al. [2] answered the question of Pach and Tardos [8] in the affirmative by
showing that for any planar graph with n vertices at least 4

√
n/9 vertices can be

kept, thus improving our bound. They also showed that the Ω(
√

n) lower bound
of Goaoc et al. for trees is asymptotically tight.

3 Preliminaries and Overview

Definitions and notation. A(n abstract) plane embedding of a planar graph is
given by the circular order of the edges around each vertex and by the choice of
the outer face. A plane embedding of a planar graph can be computed in linear
time [6]. If G is triangulated, a plane embedding of G is determined by the choice
of the outer face. Recall that an edge of a graph is called chord with respect to
a path Π if the edge does not lie on Π but both its endpoints are vertices of Π .

For a point p ∈ R2 let x(p) and y(p) be the x- and y-coordinates of p, respec-
tively. We say that p lies vertically below q ∈ R2 if x(p) = x(q) and y(p) ≤ y(q).
For a polygonal path Π = v1, . . . , vk, we denote by VΠ = {v1, . . . , vk} the set of
vertices of Π and by EΠ = {v1v2, . . . , vk−1vk} the set of edges of Π . We call a
polygonal path Π = v1, . . . , vk x-monotone if x(v1) < · · · < x(vk). In addition,
we say that a point p ∈ R2 lies below an x-monotone path Π if p lies vertically
below a point p′ (not necessarily a vertex!) on Π . Analogously, a line segment
pq lies below Π if every point r ∈ pq lies below Π . We do not always strictly
distinguish between a vertex v of G and the point δ(v) to which this vertex is
mapped in a particular drawing δ of G. Similarly, we write vw both for the edge
{v, w} of G and the straight-line segment connecting δ(v) with δ(w).

The basic idea. Note that in order to establish a lower bound on fix(G) we can
assume that the given graph G is triangulated. Otherwise we can triangulate
G arbitrarily (by fixing an embedding of G and adding edges until all faces are

476 A. Spillner and A. Wolff

3-cycles) and work with the resulting triangulated planar graph. A plane drawing
of the latter trivially yields a plane drawing of G. So let G be a triangulated
planar graph, and let δ0 be a drawing of G, e.g., one with fix(G, δ0) = fix(G).

The basic idea of our algorithm is to find a plane embedding β of G such that
there exists a long simple path Π connecting two vertices s and t of the outer
triangle stu with the property that all chords of Π lie on one side of Π (with
respect to β) and u lies on the other. For an example of such an embedding β, see
Fig. 1(b). We describe how to find β and Π depending on the maximum degree
and the diameter of G in Section 5. For the time being, let’s assume they are
given. Now our goal is to produce a drawing of G according to the embedding β
and at the same time keep many of the vertices of Π at their positions in δ0.
Having all chords on one side is the crucial property of Π we use to achieve this.
We allow ourselves to move all other vertices of G to any location we like. This
gives us a lower bound on fix(G, δ) in terms of the number l of vertices of Π .
Our method is illustrated in Fig. 1.

Algorithm outline. Now we sketch our three-step method. Let C denote the
set of chords of Π . We assume that these chords lie to the right of Π in the
embedding β. (Note that “below” is not defined in an embedding.) Let Vbot

denote the set of vertices of G that lie to the right of Π in β and let Vtop =
V \ (VΠ ∪ Vbot). Note that u lies in Vtop.

In step 1 of our algorithm we bring the vertices in VΠ from the position
they have in δ0 into the same ordering according to increasing x-coordinates as
they appear along Π in β. This yields a new (usually non-plane) drawing δ1

of G that maps Π on an x-monotone polygonal path Π1. Now we can apply
the Erdős–Szekeres theorem [3] that basically says that a sequence of l distinct
integers always contains a monotone (increasing or decreasing) subsequence of
length at least

√
l − 1 + 1 ≥ �√l 	. Thus we can choose δ1 such that at least

√
l

vertices of Π remain fixed. Let F ⊆ VΠ be the set of the fixed vertices. Note
that δ1|V \VΠ

= δ0, see Fig. 1(c).
Once we have constructed Π1 we have to find suitable positions for the vertices

in Vtop ∪ Vbot. This is simple for the vertices in Vtop: if we move vertex u, which
lies on the outer face, far enough above Π1, then the polygon P1 bounded by
Π1 and by the edges us and ut will be star-shaped. Recall that a polygon P
is called star-shaped if the interior of its kernel is non-empty, and the kernel
of a clockwise-oriented polygon P is the intersection of the right half-planes
induced by the edges of P . Now if P1 is star-shaped, we have fulfilled one of
the assumptions of the following result of Hong and Nagamochi [5] for drawing
triconnected graphs, i.e., graphs that cannot be decomposed by removing two
vertices. We would like to use their result in order to draw into P1 the subgraph
G+

top of G induced by Vtop ∪ VΠ excluding the chords in C.

Theorem 1 ([5]). Given a triconnected plane graph H, every drawing δ∗ of the
outer facial cycle of H on a star-shaped polygon P can be extended in linear time
to a plane drawing of H (even one where all inner faces are convex).

Untangling a Planar Graph 477

1

2
3

4

5

6

7

8

13

10

11
12

9

1

2
3

4
5

6
7

8

13

10

11
12

9

1 2 3
4 5

6
7

8

10

11

13

12

9

(c) δ1

(d) δ2

(e) δ3

4

5
6

8

13

10

11 12

9

2

3 1

7

(a) δ0

(b) β

1

2
3

4
5 6

78

910

11

12

13 u

u

0.1.

2.

3.

s t

s

t

Fig. 1. An example run of our algorithm: (a) input: the given non-planar drawing δ0

of a triangulated planar graph G. (b) Plane embedding β of G with path Π (drawn
gray) that connects two vertices on the outer face. To make δ0 plane we first make Π x-
monotone (c), then we bring all chords (bold segments) to one side of Π (d), move u to
a position where u sees all vertices in VΠ , and finally move the vertices in V \(VΠ ∪{u})
to suitable positions within the faces bounded by the bold gray and black edges (e).
Vertices that (do not) move from δi−1 to δi are marked by circles (disks).

Observe that G+
top is not necessarily triconnected: vertex u may be adjacent

to vertices on Π other than s and t. But what about the subgraphs of G+
top

bounded (in β) by Π and edges of type uwi, where (s =)w1, w2, . . . , wl(= t) is
the sequence of vertices of Π? Recall that a planar graph H is called a rooted
triangulation [1] if in every plane drawing of H there exists at most one facial
cycle with more than three vertices. According to Avis [1] the result stated in the

478 A. Spillner and A. Wolff

following lemma is well known. It can be shown using Tutte’s characterization
of triconnected graphs [13].

Lemma 1 ([1]). A rooted triangulation is triconnected if and only if no facial
cycle has a chord.

Now it is clear that we can apply Theorem 1 to draw each subgraph of G+
top

bounded by Π and by the edges of type uwi. By the placement of u, each
drawing region is star-shaped, and by construction, each subgraph is chordless
and thus triconnected. However, to draw the graph G+

bot induced by Vbot ∪ VΠ

(including the chords in C) we must work a little harder.
In step 2 of our algorithm we once more change the embedding of Π . We first

carefully pick a subset V ∗ of vertices of Π . On the one hand V ∗ contains at
least one endpoint of each chord in C. On the other hand V ∗ contains only a
fixed fraction of the vertices in F , the subset of VΠ that δ1 leaves fixed. Then we
go through the vertices in V ∗ in a certain order, moving each vertex vertically
down as far as necessary (see vertices 5 and 7 in Fig. 1(d)) to achieve two goals:
(a) all chords in C move below the resulting polygonal path Π2, and (b) the
faces bounded by Π2, the edge st, and the chords become star-shaped polygons.
This defines a new drawing δ2, which leaves a third of the vertices in F and all
vertices in V \ VΠ fixed.

In step 3 we use that Π2 is still x-monotone. This allows us to move vertex u
to a location above Π2 where it can see every vertex of Π2. Now Π2, the edges
of type uwi (with 1 < i < l) and the chords in C partition the triangle ust into
star-shaped polygons with the property that the subgraphs of G that have to be
drawn into these polygons are all rooted triangulations, and thus triconnected.
This means that we can apply Theorem 1 to each of them. The result is our
final—and plane—drawing δ3 of G, see Fig. 1(e).

4 The Main Theorem

Recall that F is the set of vertices in VΠ we kept fixed in the step 1, i.e., in
the construction of the x-monotone polygonal path Π1. Our goal is to keep a
constant fraction of the vertices in F fixed when we construct Π2, which also is
an x-monotone polygonal path, but has two additional properties: (a) all chords
in C lie below Π2 and (b) the faces induced by Π , w1wl, and the chords in C
are star-shaped polygons. The following lemmas form the basis for the proof of
our main theorem (Theorem 2), which shows that this can be achieved. For the
proofs refer to the long version [11].

Lemma 2. Let Π = v1, . . . , vk be an x-monotone polygonal path such that
(i) the segment v1vk lies below Π and (ii) the polygon P bounded by Π and
v1vk is star-shaped. Let v′k be any point vertically below vk. Then the polygon
P ′ = v1, . . . , vk−1, v

′
k is also star-shaped.

Lemma 3. Let Π = v1, . . . , vk be an x-monotone polygonal path and let D be a
set of pairwise non-crossing straight-line segments with endpoints in VΠ that all

Untangling a Planar Graph 479

lie below Π. Let v′k be a point vertically below vk, let Π ′ = v1, . . . , vk−1, v
′
k, and

finally let D′ be a copy of D with each segment wvk ∈ D replaced by wv′k.
Then the segments in D′ are pairwise non-crossing and all lie below Π ′.

Lemma 4. Let Π = v1, . . . , vk be an x-monotone polygonal path. Let CΠ be a
set of chords of Π that can be drawn as non-crossing curved lines below Π. Let
GΠ be the graph with vertex set VΠ and edge set EΠ ∪ CΠ . Let V ∗ be a vertex
cover of the edges in CΠ . Then there is a way to modify Π by decreasing the
y-coordinates of the vertices in V ∗ such that the resulting straight-line drawing
δ∗ of GΠ is plane, the bounded faces of δ∗ are star-shaped, and all edges in CΠ

lie below the modified polygonal path Π.

Note that the vertices in the complement of V ∗ remain fixed and that the mod-
ified polygonal path Π is x-monotone, too.

Proof. We use induction on the number m of chords. If m = 0, we need not
modify Π . So, suppose m > 0. We first choose a chord vw ∈ CΠ with x(v) < x(w)
such that there is no other edge v′w′ ∈ CΠ with the property that x(v′) ≤ x(v)
and x(w′) ≥ x(w). Clearly, such an edge always exists. Then we apply the
induction hypothesis to CΠ \ {vw}. This yields a modified path Π ′ of Π such
that all edges in the resulting straight-line drawing of GΠ −vw lie below Π ′ and
all bounded faces in this drawing are star-shaped. Now consider the chord vw
and let f be the new bounded face that results from adding vw. Without loss of
generality we assume that v ∈ V ∗. According to Lemmas 2 and 3 we can move v
downwards from its position in Π ′ as far as we like. Hence, we can make the
face f star-shaped without destroying this property for the other faces. �
Now suppose we have modified the x-monotone path Π1 according to Lemma 4.
Then the resulting x-monotone path Π2 admits a straight-line drawing of the
chords in C below Π2 such that the bounded faces are star-shaped polygons,
see for the example in Fig. 1(d). Recall that u ∈ Vtop is the vertex of the outer
triangle in β that does not lie on Π . We now move vertex u to a position
above Π2 such that all edges uw ∈ E with w ∈ VΠ can be drawn without
crossing Π2 and such that the resulting faces are star-shaped polygons. Since
Π2 is x-monotone, this can be done. As an intermediate result we obtain a
plane straight-line drawing of a subgraph of G where all bounded faces are star-
shaped. It remains to find suitable positions for the vertices in (Vtop \{u})∪Vbot.
For every star-shaped face f there is a unique subgraph Gf of G that must be
drawn inside this face. Note that by our construction every edge of Gf that has
both endpoints on the boundary of f must actually be an edge of the boundary.
Therefore, Gf is a rooted triangulation where no facial cycle has a chord. Now
Lemma 1 yields that Gf is triconnected. Finally, we can use the result of Hong
and Nagamochi [5] (see Theorem 1) to draw each subgraph of type Gf and thus
finish our construction of a plane straight-line drawing of G, see the example in
Fig. 1(e). Let’s summarize.

Theorem 2. Let G be a triangulated planar graph that contains a simple path
Π = w1, . . . , wl and a face uw1wl. If G has an embedding β such that uw1wl is

480 A. Spillner and A. Wolff

the outer face, u lies on one side of Π, and all chords of Π lie on the other side,
then fix(G) ≥ √

l
/
3.

Proof. We continue to use the notation introduced earlier in this section. Recall
that F is the set of vertices that we kept fixed in the first step, that is in the
construction of the x-monotone path Π1. It follows from [8, Proposition 1] that
we can make sure that |F | ≥ √

l, where l is the number of vertices of the path Π
we started with. Further recall that C is the set of chords of Π . Now let C′ be the
subset of those chords in C that have both endpoints in F . Consider the graph H
induced by the edges in C′ on F . For example, in Fig. 1(c), C = {17, 13, 35, 36},
F = {2, 3, 4, 5, 7}, C′ = {35} and H = ({3, 5}, C′). Since H is outerplanar, it
is easy to color H with three colors: the dual of H without the vertex for the
outer face consists of trees each of which can be processed by, say, breadth-first
search. The union U of the smallest two color classes is a vertex cover of H of
size at most 2|F |/3. Now let V ∗ = (VΠ \ F) ∪ U . Then every chord in C has
at least one of its endpoints in V ∗ and |V ∗ ∩ F | = |U | ≤ 2/3|F |. Hence, by
Lemma 4 at least a third of the vertices in F remain fixed when we construct
the x-monotone path Π2. In the remaining steps of our construction, i.e., when
placing the vertices in Vtop and Vbot, none of the vertices in F \ U is moved.
Hence, fix(G) ≥ |F \ U | ≥ |F |/3 ≥ √

l
/
3. �

5 Finding a Suitable Path

In this section we present two strategies for finding a suitable path Π . They
both do not depend on the geometry of the given drawing δ0 of G. Instead, they
exploit the graph structure of G. The first strategy works well if G has a vertex
of large degree and, even though it is very simple, yields asymptotically tight
bounds for outerplanar graphs.

Lemma 5. Let G be a triangulated planar graph with maximum degree Δ. Then
fix(G) ≥ √

Δ
/
3.

Proof. Let u be a vertex of degree Δ and consider a plane embedding β of G
where vertex u lies on the outer face. Since G is planar, such an embedding exists.
Let W = {w1, . . . , wΔ} be the neighbors of u in β sorted clockwise around u.
This gives us the desired polygonal path Π = w1, . . . , wΔ that has no chords on
the side that contains u. Thus Theorem 2 yields fix(G) ≥ √

Δ
/
3. �

Lemma 5 yields a lower bound for outerplanar graphs that is asymptotically
tight as we will see in the next section.

Corollary 1. Let G be an outerplanar graph with n vertices. Then fix(G) ≥√
n − 1

/
3.

Proof. We select an arbitrary vertex u of G. Since G is outerplanar, we can
triangulate G in such a way that in the resulting triangulated planar graph G′

vertex u is adjacent to every other vertex in G′. Thus the maximum degree of a
vertex in G′ is n − 1. �
Our second strategy works well if the diameter d of G is large.

Untangling a Planar Graph 481

Lemma 6. Let G be a triangulated planar graph of diameter d. Then fix(G) ≥√
2d − 1

/
3.

Proof. We choose two vertices s and v such that a shortest s–v path has length d.
We compute any plane embedding of G that has s on its outer face. Let t and u be
the neighbors of s on the outer face. Recall that a Schnyder wood (or realizer) [10]
of a triangulated plane graph is a (special) partition of the edge set into three
spanning trees each rooted at a different vertex of the outer face. Edges can be
viewed as being directed to the corresponding roots. The partition is special in
that the cyclic pattern in which the spanning trees enter and leave a vertex is the
same for all inner vertices. Schnyder [10] showed that this cyclic pattern ensures
that the three unique paths from a vertex to the three roots are vertex-disjoint
and chordless. Let πs, πt, and πu be the “Schnyder paths” from v to s, t, and u,
respectively. Note that the length of πs is at least d, and the lengths of πt and πu

are both at least d − 1. Let Π be the path that goes from s along πs to v and
from v along πt to t. The length of Π is at least 2d − 1. Note that due to the
existence of πu the path Π has no chords on the side that contains u. Thus,
Theorem 2 yields fix(G, δ) ≥ √

2d − 1
/
3. �

Next we determine the trade-off between the two strategies above.

Theorem 3. Let G be a planar graph with n ≥ 4 vertices. Then fix(G) ≥
1
3

√
2(log n)−2
log log n − 1.

Proof. Let G′ be an arbitrary triangulation of G. Note that the maximum de-
gree Δ of G′ is at least 3 since n ≥ 4 and G′ is triangulated. To relate Δ to
the diameter d of G′ we use a very crude counting argument—Moore’s bound:
starting from an arbitrary vertex of G we bound the number of vertices we can
reach by a path of a certain length. Let j be the smallest integer such that
1 + (Δ − 1) + (Δ − 1)2 + · · · + (Δ − 1)j ≥ n. Then d ≥ j. By the definition of j
we have n ≤ (Δ − 1)j+1/(Δ − 2), which we can simplify to n ≤ 2(Δ − 1)j since
Δ ≥ 3. Hence we have d ≥ j ≥ (log n)−1

log(Δ−1) .
Now, if Δ ≥ log n, then Lemma 5 yields fix(G′) ≥ √

log n
/
3. Otherwise 2d −

1 ≥ 2(log n)−2
log log n − 1, and we can apply Lemma 6. Observing that fix(G) ≥ fix(G′)

yields the desired bound. �
Remark 1. The proof of Theorem 3 (together with the auxiliary results stated
earlier) yields an efficient algorithm for making a given straight-line drawing of
a planar graph G with n vertices plane by moving some of its vertices to new
positions. The running time is dominated by the time spent in the first step,
i.e., computing the x-monotone path Π1, which takes O(n log n) time [9]. The
remaining steps of our method can be implemented to run in O(n) time, including
the computation of a Schnyder wood [10] needed in the proof of Lemma 6.

6 An Upper Bound for Outerplanar Graphs

In this section we want to show that the lower bound for outerplanar graphs in
Corollary 1 is asymptotically tight. For a given positive integer q let Hq be the

482 A. Spillner and A. Wolff

c

0 q2 − 11

(a)

c

(b)

Fig. 2. The outerplanar graph Hq that we use in our upper-bound construction

outerplanar graph that consists of a path 0, 1, . . . , q2 − 1 and an extra vertex
c = q2 that is connected to all other vertices, see Fig. 2(a). Note that Hq has
many plane embeddings—e.g., Fig. 2(b)—but only two outerplane embeddings:
Fig. 2(a) and its mirror image.

Let δq be the drawing of Hq where all vertices are placed on a horizontal line 	
as follows. While vertex c can go to any (free) spot, vertices 0, . . . , q2 − 1 are
arranged in the order σq, namely

(q−1)q, (q−2)q, . . . , 2q, q, 0, 1+(q−1)q, . . . , 1+q, 1, . . . , q2−1, . . . , (q−1)+q, q − 1.

The same sequence has been used by Goaoc et al. [4] to construct a planar (but
not outerplanar) n-vertex graph G with fix(G) ≤ �√n − 2 	 + 1.

We now make two observations about the structure of σq.

Observation 1 ([4]). The longest increasing or decreasing subsequence of σq

has length q.

For the second observation let’s define that two sequences Σ and Σ′ of numbers
overlap if [min(Σ), max(Σ)] ∩ [min(Σ′), max(Σ′)] �= ∅.

Observation 2. Let Σ and Σ′ be two non-overlapping decreasing or two non-
overlapping increasing subsequences of σq. Then |Σ ∪ Σ′| ≤ q + 1.

Proof. First consider the case that Σ and Σ′ are both decreasing. Since they do
not overlap we can assume without loss of generality that max(Σ) < min(Σ′).
We define Vi = {iq + j : 0 ≤ j ≤ q − 1} for i = 0, . . . , q − 1. Then, since Σ
and Σ′ are both decreasing, they can each have at most one element in common
with every Vi. Now suppose they have both one element in common with some
Vi0 . Then, since max(Σ) < min(Σ′), Σ cannot have an element in common with
any Vi, i > i0, and Σ′ cannot have an element in common with any Vi, i < i0.
Therefore, |Σ ∪ Σ′| ≤ q + 1.

Due to the symmetry of σq the case that Σ and Σ′ are both increasing can
be analyzed analogously. �

Given these observations we can now prove our upper bound on fix(Hq, δq).

Theorem 4. For any q ≥ 2 it holds that fix(Hq, δq) ≤ 2q + 1 = 2
√

n − 1 + 1,
where n = q2 + 1 is the number of vertices of Hq.

Untangling a Planar Graph 483

m
M �

c

F1 F2 F3

a b

(a) good sequence

i

j m

c

π

b

F1

a

R

(b) bad sequence

Fig. 3. Analyzing the sequence of fixed vertices along the line �

Proof. Let δ′ be a plane drawing of Hq that maximizes the number of fixed
vertices with respect to δq. Let F be the set of fixed vertices. Our proof exploits
the fact that the simple structure of Hq forces the left-to-right sequence of the
fixed vertices to also have a very simple structure.

Consider the drawing δ′. Clearly vertex c does not lie on 	. Thus we can
assume that c lies below 	. Let a and b be the left- and rightmost vertices in F ,
respectively, and let m and M be the vertices with minimum and maximum
index in F , respectively. Without loss of generality we can assume that m lies
to the left of M , see Fig. 3(a).

We go through the vertices of F from left to right along 	. Let F1 be the
longest uninterrupted decreasing sequence of vertices in F starting from a. We
claim that m is the last vertex in F1. Assume to the contrary that i �= m is
the last vertex of F1, and let j ∈ F be its successor on 	, see Fig. 3(b). If m is
not the last vertex of F1, then F1 does not contain m. Thus m lies to the right
of j. Consider the path π = i, i − 1, . . . , m. Since j > i > m, j is not a vertex
of π. Clearly j lies below π, otherwise the edge jc would intersect π. Let R be
the polygon bounded by π and by the edges ci and cm. Since δ′ is plane, R is
simple. Observe that j lies in the interior of R, which is shaded in Fig. 3(b). On
the other hand, neither a nor b lies in the interior of R, otherwise the edge ac or
the edge bc would intersect π.

We consider two cases. First suppose j < a. Then Hq contains the path
j, j + 1, . . . , a and we know that a �= i (since by definition of i and j we have
i < j). Thus the path j, j + 1, . . . , a does not contain any vertex incident to R.
So it crosses some edge on the boundary of R. This contradicts δ′ being plane.
Now suppose j > a. Then Hq contains the path j, j + 1, . . . , b. In this case we
can argue analogously since m < b (otherwise m would lie to the right of M),
reaching the same contradiction. Thus our assumption i �= m is wrong, and m
is indeed the last vertex of F1.

Now let F2 be the longest uninterrupted increasing sequence of vertices in F
starting from the successor of m. With similar arguments as above we can show
that M is the last vertex in F2. Finally let F3 be the sequence of the remaining
vertices from the successor of M to b. Again with similar arguments as above
we can show that F3 is decreasing.

The set F is partitioned by F1, F2, and F3; F2 is increasing, while F1 and F3

are decreasing. Thus Observations 1 and 2 yield |F | ≤ 2q + 1 as desired. �

484 A. Spillner and A. Wolff

q2 − 1 0 1 2 q − 1

c

q

2q3q

(q − 1)q
.

Fig. 4. This plane drawing of Hq shows that fix(Hq, δq) ≥ 2q − 2 since it keeps the
vertices 0, 1, 2, . . . , q − 1, 2q, 3q, . . . , (q − 1)q of δq fixed

References

1. Avis, D.: Generating rooted triangulations without repetitions. Algorithmica 16,
618–632 (1996)

2. Bose, P., Dujmovic, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A
polynomial bound for untangling geometric planar graphs (October 2007), http://
arxiv.org/abs/0710.1641

3. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

4. Goaoc, X., Kratochv́ıl, J., Okamoto, Y., Shin, C.-S., Wolff, A.: Moving vertices to
make drawings plane. In: Hong, S.-H., Nishizeki, T. (eds.) GD 2007. Proc. 15th
Intern. Sympos. Graph Drawing. LNCS, vol. 4875, Springer, Heidelberg (to appear,
2008)

5. Hong, S.-H., Nagamochi, H.: Convex drawing of graphs with non-convex boundary.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 113–124. Springer, Heidelberg
(2006)

6. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21, 549–568 (1974)
7. Kang, M., Schacht, M., Verbitsky, O.: How much work does it take to straighten a

plane graph out? (June 2007), http://arxiv.org/abs/0707.3373
8. Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4), 585–

592 (2002)
9. Schensted, C.: Longest increasing and decreasing subsequences. Canadian Journal

of Mathematics 13, 179–191 (1961)
10. Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990. Proc. 1st

ACM-SIAM Symp. on Discrete Algorithms, pp. 138–148 (1990)
11. Spillner, A., Wolff, A.: Untangling a planar graph (September 2007),

http://arxiv.org/abs/0709.0170
12. Tantalo, J.: Planarity (2007), http://planarity.net/
13. Tutte, W.T.: A theory of 3-connected graphs. Indagationes Mathematicae 23, 441–

455 (1961)
14. Verbitsky, O.: On the obfuscation complexity of planar graphs (May & June 2007),

http://arxiv.org/abs/0705.3748

http://arxiv.org/abs/0710.1641
http://arxiv.org/abs/0710.1641
http://arxiv.org/abs/0707.3373
http://arxiv.org/abs/0709.0170
http://planarity.net/
http://arxiv.org/abs/0705.3748

Quantum Walks with Multiple or Moving

Marked Locations

Andris Ambainis and Alexander Rivosh�

Department of Computer Science, University of Latvia, Raina bulv. 19, Riga,
LV-1586, Latvia

andris.ambainis@lu.lv, alexander@biomed.lu.lv

Abstract. We study some properties of quantum walks on the plane.
First, we discuss the behavior of quantum walks when moving marked
locations are introduced. Second, we present an exceptional case, when
quantum walk fails to find any of the marked locations.

1 Introduction

Quantum walks are quantum counterparts of random walks [2,9]. They have been
useful for designing quantum algorithms for a variety of problems [6,3,13,4,10,5].
In many of those applications, quantum walks are used as a tool for search.

To solve a search problem using quantum walks, we introduce marked locations.
Marked locations correspond to elements of the search space that we want to find.
We then perform a quantum walk on search space with one transition rule at un-
marked locations and another transition rule at marked locations (this process is
also known as the perturbed quantum walk). If this process is set up properly, it
leads to a quantum state in which marked locations have higher probability than
the unmarked ones. This state can then be measured, finding a marked location
with a sufficiently high probability. This method of search using quantum walks
was first introduced in [12] and has been used many times since then.

Quantum walk search can be viewed as a generalization of Grover’s quan-
tum search algorithm [8]. Grover’s search algorithm finds a solution in an un-
structured search space of size N in O(

√
N) steps, by running a sequence of

transformations on N -dimensional space that is different for the basis states
corresponding to solutions and the basis states corresponding to non-solutions.
It can be recast as a quantum walk on the complete graph with N vertices.
By using quantum walks on other graphs, we can design search algorithms for
specific problems (such as element distinctness [3]) which perform better than
a simple application of Grover’s search. As shown by Szegedy [13], one can also
transform any reversible classical Markov chain into a quantum walk, with a
quadratic speedup for the time in which the walk hits a marked location.

In this paper, we study the quantum walks on a finite two-dimensional grid
of size N × N . As shown in [4], after O(N log N) steps, a quantum walk with
one or two marked locations reaches a state that is significantly different from
� Supported by University of Latvia Grant Y2-ZP01-100 and European Social Fund.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 485–496, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

486 A. Ambainis and A. Rivosh

the state of a quantum walk with no marked location. [13] has generalized this
to an arbitrary number of marked locations. Thus, a quantum walk on 2D grid
can be used to detect the presence of a marked location, with a nearly-quadratic
speedup over the best classical algorithm (which requires Θ(N2) steps).

[4] also shows that, for one or two marked locations, measuring the state of the
quantum walk after O(N log N) steps gives a marked location with probability
at least const/ logN . Thus, for the case with one or two marked location, the
quantum walk also finds a marked location. Similar results have been obtained
for continuous time quantum walks by [7].

In this paper, we continue the study of the quantum walks on 2D grid in two
directions. First, we look at the case when the marked locations are moving.
Unlike the case with fixed marked locations, this case has no immediate appli-
cations to quantum algorithms. However, it shows some interesting phenomena.
In particular, the ability of the quantum walk to detect the presence of moving
marked locations strongly depends on the number of marked locations and their
relative positions.

Second, we study the quantum walk on a 2-dimensional grid with multiple
(non-moving) marked locations. As described above, it has been known that the
quantum walk can detect the presence of a marked location [13]. It has been open
question whether a single run of a quantum walk also finds a marked location.
We show an example in which this is not the case.

2 Definitions

We consider quantum walks on a two-dimensional grid of size N × N . The
locations are labeled by their x and y coordinate as (x, y) for x, y ∈ {0, . . . , N −
1}. We assume that the grid has periodic boundary conditions. For example,
going right from a location (N − 1, y) on the right edge of the grid leads to the
location (0, y) on the left edge of the grid.

Quantum walk is a quantum counterpart of a well-known process - classical
random walk. In a classical random walk on the grid, we start in some location,
for example (0, 0). In each step we move from a location (x, y) to one of the
neighbouring locations (x−1, y), (x+1, y), (x, y −1), (x, y +1) with probability
1/4. (Since we have periodic boundary conditions, addition and multiplication
are modulo N : (N − 1) + 1 = 0 and 0 − 1 = N − 1).

The most obvious way to quantize this random walk would be to define basis
states |i, j〉, i, j ∈ {0, . . . , N − 1}, and let the state of the quantum walk |ψ(t)〉 be

|ψ(t)〉 =
∑

i,j

αi|i, j〉 (1)

To evolve the next step of quantum walk |ψ(t + 1)〉 = U |ψ(t)〉, we must have
some unitary operator U . Similarly to the conventional random walk, it is natural
to require that U maps each |i, j〉 to a superposition of |i, j〉 and the adjacent
locations, in a way that is independent of i and j:

U |i, j〉 = a|i − 1, j〉 + b|i, j〉 + c|i + 1, j〉 + d|i, j − 1〉 + e|i, j + 1〉 (2)

Quantum Walks with Multiple or Moving Marked Locations 487

where a, b, c, d and e are independent of i, j. Unfortunately, there is no non-
trivial unitary transformations U of this form. (This was shown for the quantum
walk on the line in [11]. The proof carries over unchanged to the 2-dimensional
grid).

To make it possible to apply non-trivial transformations, we add an additional
”coin” register with four states, one for each direction: |up〉, |down〉, |left〉 and
|right〉. At each step, we perform a unitary transform on the extra register, and
then evolve the system according to the state of the coin register.

Basis states for the combined space are now |i, j, d〉 for i, j ∈ {0, . . . , N − 1},
d ∈ {up, down, left, right} and the state of quantum walk is given by:

|ψ(t)〉 =
∑

i,j

(αi,j,up|i, j, up〉 + αi,j,down|i, j, down〉

+αi,j,left|i, j, left〉 + αi,j,right|i, j, right〉) (3)

A step of the coined quantum walk is performed by first applying 1 ⊗ C,
where C is a unitary transformation on the coin register. In this paper, the
transformation on the coin register is the Grover’s diffusion transformation D:

D =
1
2

⎛

⎜⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟⎟⎠ (4)

Then, we apply the shift transformation S which maps:

|i, j, up〉 �→ |i, j − 1, down〉
|i, j, down〉 �→ |i, j + 1, up〉
|i, j, left〉 �→ |i − 1, j, right〉
|i, j, right〉 �→ |i + 1, j, left〉

Notice that, after moving to an adjacent location, we change the value of the
direction register to the direction which is opposite to one from which we just
came. This is necessary for the quantum walk algorithm of [4] to work. If we
start our quantum walk in the state

|ψ(0)〉 =
∑

i,j

(
1

2N
|i, j, up〉 +

1
2N

|i, j, down〉 +
1

2N
|i, j, left〉 +

1
2N

|i, j, right〉)

It can be easily verified that the state of the walk stays unchanged, regardless
of the number of steps. For quantum walk search, we ”mark” some locations.
In unmarked locations, we apply the same transformations as above. In marked
locations, we apply −I instead of D as the coin flip transformation. The shift
transformation remains the same in both marked and unmarked locations.

If there are marked locations, the state of this process starts to deviate from
|ψ(0)〉. This means that we can detect the presence of a marked location by
measuring whether the state of the quantum walk after t steps is |ψ(0)〉. This
can be quantified, using the inner product (overlap) of quantum states.

488 A. Ambainis and A. Rivosh

Namely, a well known ”folklore” lemma [1] says that

Lemma 1. If 〈ψ1|ψ2〉 ≥ 1 − ε, then for any measurement M and any outcome i,
the probability of finding i when measuring |ψ1〉 and |ψ2〉 differs by at most

√
2ε.

Thus, in order to be able to determine if there is a marked location, we need
〈ψ(t)|ψ(0)〉 to be small, where |ψ(t)〉 is the state of the quantum walk with marked
locations after t steps and |ψ(0)〉 is the starting state (which is also the current
state of the quantum walk with no marked locations, after any number of steps).

Detecting the existence of a marked location is different from determining
which location is marked. It might be the case that the inner product 〈ψ(t)|ψ(0)〉
is small and it is difficult to determine which locations are marked. To measure
the success of the algorithm in finding the marked location, we look at the
probability of obtaining a marked location if the state of the quantum walk is
measured after t steps.

3 Moving Marked Locations

We introduce moving marked locations. Their position on the plane depends on
a number of performed steps. For example, if we have one marked location which
is originally at (i, j) and is moving one position to the right each step, then, at
step k, the location (i + k, j) is marked and other locations are not marked.

The results in this section are obtained by computer simulation of quantum
walks, except for Case 1 which is also proven analytically.

Case 1. We first examined the simplest case when only one moving marked
location existed and there is no other marked locations - neither static, nor
moving. The marked location was moving horizontally, by one position to the
right per step (Figure 1).

Fig. 1. Configurations of moving marked locations

The results of computer simulation in figure 2 show that the state of the
quantum walk stays close to the starting state, for any number of steps. We now
prove that this is indeed the case.

Theorem 1. Let |Φ〉 be the starting state of the quantum walk (the uniform
superposition over all |i, j, d〉 and |Φt〉 be the state of the quantum walk with
one marked location, which is moving one location to the right each step, after t
steps. Then,

〈Φt|Φ〉 ≥ 1 − 2
N

− 2√
N

.

Quantum Walks with Multiple or Moving Marked Locations 489

Fig. 2. Overlap between the starting state and the current state for case with one
moving location, for various grid sizes. Number of steps: 1000.

Proof. We first notice that, instead of a moving marked location, we can move
the grid and keep the marked location fixed. That is, we keep the marked location
at the origin (0, 0) and, after each step, move all amplitudes one position to the
left: |i, j, d〉 �→ |i−1, j, d〉. Then, the amplitude of |i, j, d〉 after t steps is the same
as the amplitude of |i, j + t, d〉 if the marked location was moving to the right.

Consider the quantum state |Ψ〉 =
∑

i,j,d αi,j,d|i, j, d〉, where

– αi,i,up = 0 and αi,j,up = 1/2N for i
= j.
– αi,−i,down = 0 and αi,j,down = 1/2N for i
= −j.
– αi,j,right = 1/2N for all i, j.
– αi,j,left = αi,j,up + αi,j,down − αi,j,right.

We claim that the state |Φ〉 is unchanged by the quantum walk with a marked
location at (0, 0) and the grid moving to the left. To see that, let |Φ′〉 =∑

i,j,d α′
i,j,d|i, j, d〉 be the state after applying the coin flip to |Φ〉.

We claim that the effect of the coin flip is to switch αi,j,left with αi,j,right

and αi,j,up with αi,j,down. This follows separately for the marked location (0, 0)
and the unmarked locations. In the marked location, we start with αi,j,up =
αi,j,down = 0, αi,j,left = 1/N and

αi,j,right = αi,j,up + αi,j,down − αi,j,left = −1/2N

and apply −I which results in α′
i,j,up = α′

i,j,down = 0, α′
i,j,left = −1/2N and

αi,j,right = 1/2N . For the unmarked locations, we apply Grover’s diffusion D
which results in

α′
i,j,left =

αi,j,left + αi,j,right + αi,j,up + αi,j,down

2
− αi,j,left

= αi,j,up + αi,j,down − αi,j,left = αi,j,right

and, similarly, α′
i,j,right = αi,j,left, α′

i,j,down = αi,j,up and α′
i,j,up = αi,j,down. We

now consider the effect of the next two operations: the shift operator and moving

490 A. Ambainis and A. Rivosh

the grid one position left. Let |Ψ ′′〉 =
∑

i,j,d α′′
i,j,d|i, j, d〉 be the state after those

two operations. Then,

α′′
i,j,up = α′

i+1,j+1,down = αi+1,j+1,up

Similarly,
α′′

i,j,down = α′
i+1,j−1,up = αi+1,j−1,down

α′′
i,j,right = α′

i+2,j,left = αi+2,j,right

α′′
i,j,left = α′

i+1,j+1,right = αi+1,j+1,left.

By comparing this with the definitions of αi,j,d we see that α′′
i,j,d = αi,j,d for all

i, j, d. Thus, the state |Ψ〉 is unchanged by the quantum walk.
Let |Φ〉 be the uniform superposition over all |i, j, d〉. By a direct calculation,

‖Ψ‖2 = 〈Ψ |Φ〉 = 1 − 1
N

+
1

2N2

for odd N and
‖Ψ‖2 = 〈Ψ |Φ〉 = 1 − 1

N
+

1
N2

for even N . Let |ψ〉 be a normalized version of the state |Ψ〉: |ψ〉 = |Ψ〉
‖Ψ‖ . Then,

〈ψ|Φ〉 =
〈Ψ |Φ〉
‖Ψ‖ ≥

√
1 − 1

N
+

1
2N2

≥ 1 − 1
2N

.

Therefore, we can write |Φ〉 = a|ψ〉+b|φ〉 for some state |φ〉, with a ≥ 1−1/2N
and

b =
√

1 − a2 ≤ 1√
N

.

Since the quantum walk leaves |Ψ〉 (and, therefore, also |ψ〉) unchanged, the
state after t steps will be |Φt〉 = a|ψ〉 + b|φt〉 for some |φt〉. We have

〈Φt|Φ〉 = a2〈ψ|ψ〉 + ab〈φ|ψ〉 + ab〈ψ|φt〉 + b2〈φ|φt〉

≥ a2 − ab − ab − b2 ≥ (1 − 1
N

) − 2√
N

− 1
N

= 1 − 2√
N

− 2
N

.

Thus, the overlap in this case always stays close to 1 (and the minimum
overlap grows with size of grid). See figure 2, where the comparison for different
grid sizes is shown. Theorem 1 and Lemma 1 together imply that probability
to measure the marked location is also small (at most 2+o(1)

4√
N

, by an application
of Lemma 1, with ε ≤ 2√

N
+ 2

N and even smaller according to our computer
simulations, see figure 3).

Case 2. Then, we examined the case when two marked locations were moving
horizontally on the parallel lines, one of them - by one position to the right
per step, another one - in opposite direction (figure 1b). The results of our
computer simulations were quite similar to results in case 1, i.e. the overlap

Quantum Walks with Multiple or Moving Marked Locations 491

Fig. 3. Probability to measure a moving marked location. Grid size: 101×101. Number
of steps:1000.

remains almost 1 and there were no states with large amplitude. With only one
exception, described below, attempts to change the relative locations of the two
moving locations did not give different results.

Case 3. Variation of initial distance between two marked locations lead us to
the case when the distance between parallel lines is 0, i.e. these locations are
moving in opposite directions on the same line (Figure 1c). We assume, that on
the step when the positions of both marked locations are equal, there is only
one marked location. Surprisingly, but in this case overlap meets 0 (Figure 4a).
Moreover, the number of steps needed to reach that state on an N × N grid
appears to be of the order Θ(N3/2) (Figure 5). But the probability to get one of
the two marked locations as the result of measurement is still low (Figure 4b).

Fig. 4. a) Overlap for case with two moving locations, which are moving in the oppo-
site directions on the same line. Grid size: 101x101. Number of steps: 4000. b) Sum of
probabilities to get a moving location as the result of a measurement after the certain
step.

Case 4. We also checked the case when marked locations are moving on perpen-
dicular lines (Figure 1d) - with two sub-cases: when these locations never be in
the same position and the case when there will be steps when positions of both
locations are equal. Results were quite similar to the Case 2.

492 A. Ambainis and A. Rivosh

Fig. 5. Step on which overlap meets 0 depending on grid size

Fig. 6. Overlap for the case with one static and one moving marked locations. The
static point lies on the line along which the other point moves. Number of steps: 9000.
Grid size: 101 × 101.

Fig. 7. a) Overlap for the case with one static and one moving marked locations com-
pared to the case with only one static marked location. Number of steps: 1000. b)
Sum of probabilities to get the static location as the result of a measurement after the
certain step. Grid size: 101 × 101 for both cases.

Case 5. We introduced one static marked location and another one which is
moving on horizontal line, by one position per step. In this case, the overlap
reaches 0 quite fast. Interestingly, the state of the system depends on the distance

Quantum Walks with Multiple or Moving Marked Locations 493

between the static and moving locations. If the static location is far from the line
on which another location is moving, the behavior of the system looks like the
case when only the static location is present. When the static location is close to
the path of moving location, i.e. lies on the line another location is moving along
(Figure 1e), the behavior changes. Namely, the oscillations of overlap are fading
(Figure 6), unlike in the case with only the static location (where the overlap
keeps oscillating between -1 and 1, see figure 7a for comparison).

4 Exceptional Case: Marked Locations on Diagonal

We now explore the quantum walks with multiple marked locations which are not
moving. As shown by Szegedy [13], regardless of the number of marked locations,
it is possible to detect if there is a marked location. More formally, if there is one
or more marked locations, the overlap decreases to 0 or less in O(N log N) steps,
for an appropriately defined quantum walk. This can then be used to detect the
presence of a marked location. If we actually want to find the marked location,
one solution is to run this algorithm multiple times, subdividing the grid into
smaller and smaller pieces, until a marked location is uniquely determined. This
works but is relatively complicated and requires multiple runs of quantum walk.

If there is just one or two marked locations, [4] have shown that a marked
location can be found with probability at least 1/ logN by just running the quan-
tum walk and measuring after t steps, for appropriately chosen t = O(N log N).
Computer simulations show that the same approach works for almost any con-
figuration of more than 2 marked locations. In this section, we show that this
approach is not sufficient in general. We exhibit a case when the quantum walk
algorithm of [4] does not find any of the locations with the probability larger
than in their probability in the initial state. This happens when marked loca-
tions are placed on diagonal of the plane and fit the whole diagonal. Although
the state of the quantum walk quickly becomes orthogonal to its starting state
(Figure 8), the probabilities to get any state stay the same as in initial state.
This is possible because the amplitudes of the states change their signs during
the quantum walk.

Theorem 2. If we run the quantum walk on the N ×N grid with N marked lo-
cations on the diagonal for t steps, the probability of measuring a marked location
at the end of the walk is 1/N , regardless of the number of steps.

Proof. We assume that locations (i, i) are marked and all other locations are
unmarked. We define

|Ψj,left〉 =
∑

i

1√
2N

|i, i + j, left〉 +
1√
2N

|i, i + j, down〉, (5)

|Ψj,right〉 =
∑

i

1√
2N

|i, i + j, right〉 +
1√
2N

|i, i + j, up〉. (6)

494 A. Ambainis and A. Rivosh

Fig. 8. Overlap for the case, when a diagonal of the grid is filled with marked locations
(101 marked locations). Grid size: 101 × 101. Number of steps: 1000.

Then, the starting state is equal to

|Ψstart〉 =
∑

j

1√
2N

|Ψj,left〉 +
1√
2N

|Ψj,right〉.

One step of a quantum walk consists of the coin flip C (which is equal to the
diffusion operator in unmarked locations and −I in marked locations) and the
shift operator S.

Applying the diffusion transformation D to |i, j, 0〉 = 1√
2
|i, j, left〉 + 1√

2
|i, j,

down〉 gives the state |i, j, 1〉 = 1√
2
|i, j, right〉+ 1√

2
|i, j, up〉. Similarly, applying D

to |i, j, 1〉 gives |i, j, 0〉. Therefore, D transforms |Ψj,left〉 (which is the superpo-
sition of |i, j, 0〉 with equal amplitudes) to |Ψj,right〉 (which is the superposition
of |i, j, 1〉 with equal amplitudes) and |Ψj,right〉 to |Ψj,left〉. In the marked lo-
cations (i, i), instead of D, we apply −I which transforms |i, i, 0〉 to −|i, i, 0〉
and |i, i, 1〉 to −|i, i, 1〉. Thus, |Ψj,left〉 (which is the superposition of |i, i, 0〉 with
equal amplitudes) is mapped to −|Ψj,left〉 and |Ψj,right〉 is mapped to −|Ψj,left〉.

The shift operation S maps |i, i+j, left〉 and |i, i+j, down〉 to |i−1, i+j, left〉
and |i, i + j + 1, up〉. Both |i − 1, i + j, left〉 and |i, i + j + 1, up〉 are components
of |Ψj+1,right〉. Therefore, |Ψj,left〉 is mapped to |Ψj+1,right〉. Similarly, |Ψj,right〉
is mapped to |Ψj−1,left〉.

Together, these two transformations have the following effect:

|Ψ0,left〉 C→ −|Ψ0,left〉 S→ −|Ψ1,right〉,
|Ψ0,right〉 C→ −|Ψ0,right〉 S→ −|Ψ−1,left〉

and
|Ψj,left〉 C→ |Ψj,right〉 S→ − |Ψj−1,left〉,
|Ψj,right〉 C→ |Ψj,left〉 S→ |Ψj+1,right〉

for j
= 0. If we repeat this t times, for t < N , the starting state

|Ψstart〉 =
∑

j

1√
2N

|Ψj,left〉 +
1√
2N

|Ψj,right〉.

Quantum Walks with Multiple or Moving Marked Locations 495

is mapped to

|Φt〉 = −
t∑

j=1

1√
2N

|Ψj,right〉 +
N∑

j=t+1

1√
2N

|Ψj,right〉

−
N−1∑

j=N−t

1√
2N

|Ψj,left〉 +
N−t+1∑

j=0

1√
2N

|Ψj,left〉.

After N steps, all components of |Ψstart〉 acquire a - sign and the state becomes
−|Ψstart〉. Hence, if we run the walk for M = kN + t, t < N steps, the resulting
state is just (−1)k|Φt〉. Since the marked locations are (i, i), for all i, the states
|Ψ0,left〉 and |Ψ0,right〉 consist of marked locations only and the states |Ψj,left〉 and
|Ψj,right〉, j > 0, consist of unmarked locations only. For any t, the probability of
the states |Ψ0,left〉 and |Ψ0,right〉 is 1

2N each. Thus, the probability of measuring
a marked location is 1

2N + 1
2N = 1

N .

5 Conclusion and Open Problems

In this paper, we explored quantum walks on the two-dimensional grid in which
some locations are marked. First, we considered the case when the marked loca-
tions are moving. In contrast to the previous research on fixed marked locations,
having a moving marked location makes very little difference compared with the
quantum walk with no marked locations. An exception to this general patterns
is when two marked locations are moving on the same line. Then, the quantum
walk leads to a state which is significantly different from the case with no marked
locations.

Three open problems on moving marked locations are:

1. Our results mostly rely on computer simulations. It would be good to develop
more methods for rigorous analysis of the walk with moving marked locations

2. What are the other cases when the quantum walk behaves similarly to the
case with two locations moving on the same line?

3. Does the walk with moving marked locations have algorithmic applications?

We also considered the case with both fixed and moving marked locations.
Then, the behavior of the quantum walk is almost the same as in the case
when there is only a fixed marked location. It leads to a state orthogonal to
the starting state in approximately the same number of steps and finds the fixed
marked location with a similar probability. The probability of finding the moving
location is negligible.

Second, we considered the quantum walk with multiple fixed locations. As
shown in [13], this walk always detects the presence of a marked location. We
explored whether it finds the marked location. In most cases, the walk finds one
of the marked locations with a good probability, but we found an example (N
marked locations on a diagonal of N ×N grid) in which it fails to find a marked
location.

496 A. Ambainis and A. Rivosh

References

1. Aharonov, D., Kitaev, A., Nisan, N.: Quantum Circuits with Mixed States. In:
Proceedings of STOC 1998, pp. 20–30 (1998)

2. Ambainis, A.: Quantum walks and their algorithmic applications. International
Journal of Quantum Information 1, 507–518 (2003)

3. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Com-
put. 37(1), 210–239 (2007)

4. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Pro-
ceedings of SODA 2005, pp. 1099–1108 (2005)

5. Buhrman, H., Špalek, R.: Quantum Verification of Matrix Products. In: SODA
2006. Proceedings of 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
Miami, Florida, pp. 880–889 (2006)

6. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Expo-
nential algorithmic speedup by a quantum walk. In: Proceedings of the 35th ACM
STOC, pp. 59–68 (2003)

7. Childs, A., Goldstone, J.: Spatial search and the Dirac equation. Physical Review
A 70, 042312 (2004)

8. Grover, L.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th ACM STOC, Philadelphia, Pennsylvania, pp. 212–219. ACM
Press, New York (1996)

9. Kempe, J.: Quantum random walks - an introductory overview. Contemporary
Physics 44(4), 302–327 (2003)

10. Magniez, F., Santha, M., Szegedy, M.: An O(n1.3) quantum algorithm for the
triangle problem. In: Proceedings of SODA 2005, pp. 1109–1117 (2005), SIAM J.
Comput. 37(2), 413–424 (2007)

11. Meyer, D.: From quantum cellular automata to quantum lattice gases. Journal of
Statistical Physics 85, 551–574 (1996)

12. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm.
Physical Review A 67(5), 052307 (2003)

13. Szegedy, M.: Quantum speed-up of Markov Chain based algorithms. In: Proceed-
ings of IEEE FOCS 2004, pp. 32–41 (2004)

Parallel Immune System for Graph Coloring

Jacek Da̧browski

Gdańsk University of Technology
ul. Gabriela Narutowicza 11/12, 80-952 Gdańsk, Poland

Jacek.Dabrowski@eti.pg.gda.pl

Abstract. This paper presents a parallel artificial immune system de-
signed for graph coloring. The algorithm is based on the clonal selection
principle. Each processor operates on its own pool of antibodies and a
migration mechanism is used to allow processors to exchange informa-
tion. Experimental results show that migration improves the performance
of the algorithm. The experiments were performed using a high perfor-
mance cluster on a set of well-established graph instances available on
the Web.

1 Introduction

A coloring of a graph G = (V, E), where V is the set of n = |V | vertices and E
is the set of edges, is a mapping c : V �→ 1..k, such that for each edge {u, v} ∈ E
we have c(u) �= c(v). Optimization version of GCP is stated as follows: given
a graph G, find a coloring with the minimum number k of colors used. This
number is referred to as χ(G), the chromatic number of graph G. The GCP is a
well-known NP-hard combinatorial optimization problem.

Artificial immune systems (AIS) can be defined as computational systems
inspired by theoretical immunology, observed immune functions, principles and
mechanisms designed to solve problems [5]. In recent years AIS have been ap-
plied to many different fields of computation, including pattern recognition [4],
anomaly detection [6,8] and optimization.

This paper presents an algorithm based on clonal selection - a mechanism
that allows lymphocytes to adapt to new, previously unencountered pathogens.
This biological process is briefly described in the next section. Section 3 gives
details of the implementation of the graph coloring algorithm. Section 4 presents
experimental results on well-established benchmarking graph instances available
from the Web - the 2nd DIMACS Implementation Challenge 1 and Michael
Trick’s Graph Coloring Resources 2. The results are summarized in section 5.

2 Biological Inspirations

The function of the immune system is the defence of an organism from pathogens,
i.e. self and non-self agents that could impair its functioning. Some of those
1 http://dimacs.rutgers.edu/Challenges/
2 http://mat.gsia.cmu.edu/COLOR/color.html

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 497–505, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

498 J. Da̧browski

agents are stopped by the physical barrier of skin and some by the physiological
conditions inside the body. Pathogens that cross that first line of defence should
be stopped by the innate and adaptive immune systems. Phagocyte cells of
the innate IS are the cleaning crew of an organism - they can kill intruders
and remove the remains from the system. Phagocytes identify the objects to be
removed by specific three dimensonal features on their surface called epitopes.
While a response to some types of pathogens is built-in in the innate IS, it is
impossible to pack all the information needed to identify and destroy constantly
mutating bacteria and viruses into the relatively short genome.

The adaptive immune system uses lymphocyte cells to mark pathogens for
removal. There are two types of lymphocyte cells: T cells created in thymus and
B cells created in bone marrow. Each lymphocyte recognizes a specific shape of
an epitope, and a special developement path from stem cells arms the IS with
millions of types of lymphocytes [9].

T cells perform vital functions in the immune response, but it is the learning
process of clonal selection of B cells that inspired most of the AIS research.
B cells defend the organism by launching antibodies on pathogens. Antibodies
are protein strands that attach themselves to specific epitopes and mark the
pathogens for removal. Stimulated B cells, with additional signals from accessory
cells, start dividing (cloning) and maturing into terminal (non-dividing) antibody
secreting cells. The rate of this process depends on the level of stimulation, B
cells that recognize the antigen most acurately have the most clones and produce
the most antibodies [3].

The dividing and maturing B cells undergo a process called somatic hyper-
mutation that further improves the response of the immune system. The protein
strands that recognize pathogens are slightly modified, and if a newly created
lymphocyte is a better fit for the invading pathogen it divides (clones itself) at

clonal
expansion

B

B
B

ag1
ag2

hypermutation

BB
B

ag1
ag2

B

Fig. 1. Clonal selection mechanism

Parallel Immune System for Graph Coloring 499

a higher rate. It has been observed that the extent of the mutation also depends
on the level of stimulation - cells with low affinity may be mutated further.

This biological process is a basis for clonal selection algorithms, which use the
clonal expansion and somatic hypermutation mechanisms on virtual antibodies
to perform pattern recognition and optimization tasks. The analogy between
pattern recognition and the function performed by the immune system is quite
obvious. For optimization tasks a specific instance of the given problem becomes
the single antigen, and the affinity of an antibody is measured by the quality of
the solution it represents.

3 Clonal Selection Algorithm for GCP

The algorithm presented in this paper solves the optimization version of the
graph coloring problem. It is done in steps - at each step the algorithm tries to
lower the upper bound of the graphs chromatic number χ. The antibodies are
initialized using a random assignment of colors to vertices or with DSATUR, a
nondeterministic greedy heuristic [1]. The clonal selection process is designed to
minimise the objective function, which is equal to the number of conflicts in a
coloring. As soon as a valid coloring using k colors is found, the upper bound is
lowered and all the antibodies in the pool are recolored so that they use at most
k − 1 colors.

Algorithm 1. Sibling selection
P0 ← Initialize(G) � generate initial antibody pool
t ← 0
while stop-condition do

for all ab in Pt do
nc ← number of clones of ab
clones ← φ
for i = 0 to nc do

c ← Hypermutation(ab)
clones ← clones ∪ c

end for
c ← Select(clones)
Pt+1 ← Pt+1 ∪ c

end for
t ← t + 1

end while

Two variants of the selection process have been used. The difference is in
the way the next-step antibody pool is selected. Sibling selection means that
an antibody in the pool can only be replaced by its own clone. This approach
is based on the CLONAFlex algorithm [10]. Such algorithm can be viewed as
a method of computation effort management for independent searches, because

500 J. Da̧browski

high-affinity clones of an antibody will never replace another antibody in the
pool. The clone is chosen using tournament selection.

The second approach uses a single set for clones of all antibodies. The new pool
is created by running N tournaments on this set. Here, clones of a poor quality
antibody are less likely to be chosen than clones of high-affinity clone antibodies.
This creates a higher selection pressure but can lead to loss of diversity.

Algorithm 2. Clones selection
P0 ← Initialize(G) � generate initial antibody pool
t ← 0
while stop-condition do

clones ← φ
for all ab in Pt do

nc ← number of clones of ab
for i = 0 to nc do

c ← Hypermutation(ab)
clones ← clones ∪ c

end for
end for
Pt+1 ← Select(clones)
t ← t + 1

end while

All antibodies in the pool are ranked 1..N according to their affinity. The
number of clones is given by formula:

nc(i) = (1 − r)
Nc

N
+ r

2Nc(N − i)
N(N − 1)

. (1)

It distributes the total number of clones Nc among the N antibodies in the
pool. The distribution is controlled through parameter r ∈< 0, 1 >. It can be
uniform, with all antibodies being cloned �Nc

N � times (r = 0), it can be inversely
proportional to the antibodies rank (r = 1), or it can be a combination of the two
(0 < r < 1). The effect this parameter has on the performance of the algorithm
is discussed in the next section.

The hypermutation mechanism changes the assignement of colors to vertices
of the graph. The relative quality of an antibody determines the number of
vertices that are affected during the mutation. The first vertex to be changed
is chosen at random and vertices that belong to conflicting edges have a higher
probability of being selected. Subsequent vertices are chosen from the neighbours
of the last mutated vertex. Vertices are assigned with colors that result in the
lowest number of conflicts.

To improve the performance a parallel version of the algorithm has been cre-
ated. It uses an island model, where every processor works on its own pool of an-
tibodies. A migration mechanism allows knowledge exchange between processes.

Parallel Immune System for Graph Coloring 501

At predefined intervals each process chooses migrants using tournament selec-
tion. The receipient is either random or it is the next processor according to the
MPI rank (cyclic migration). The receiving process chooses antibodies from its
own pool to be replaced by the migrants using an inverted tournament selec-
tion (the worst antibody from each tournament ’wins’ and becomes replaced).
According to the experimental results there are no apparent differences between
random and cyclic migration. During the benchmark runs the migration size was
set to one (as the pool sizes were small), the tournaments size to three and the
migration interval between five and thirty seconds (depending on the graph size
and density).

4 Experimental Results

The results are based on a C++ implementation of the algorithm. The exper-
iments were performed on a high performance cluster with 1.4 GHz Itanium 2
processors connected with an InfiniBand network.

4.1 Population Size

The size of the antibody pool is a very important parameter for evolutionary
algorithms. A large population size will slow down the search process, too small
will affect the diversity of solutions. Figure 2 presents an example of the perfor-
mance of the clonal selection algorithm on DSJC1000.5 graph. The number of
clones created in each generation is 100, same for all population sizes.

94

95

96

97

98

99

100

0 300 600 900 1200 1500 1800

time [s]

5

10

20
30

40

50

Fig. 2. Performance using varied pool sizes. Graph DSJC1000.5.

The results obtained show a good performance of the algorithm for relatively
small population sizes when compared to other evolutionary techniques. With
the number of clones within the tested range (40-300) a small population size of
20-40 antibodies seems to be a good choice for most graph instances.

502 J. Da̧browski

4.2 The Number of Clones

The second factor that greatly influences the speed of the search is the number
of clones generated each turn. The experiments have shown that regardless of
the size of an instance the number of clones is best kept at a low level of 50 to
100 clones (for a pool size of 30). Figure 3 shows its impact on the performance
of the algorithm.

51

52

53

54

55

56

57

58

59

60

0 100 200 300 400 500 600

time [s]

200

150

50

100

Fig. 3. Performance using varied numbers of clones. Graph DSJC500.5.

52

53

54

55

56

57

58

59

0 100 200 300 400 500 600

time [s]

0
0.3

0.7

1

Fig. 4. Performance using varied clone distributions. Graph DSJC500.5.

Some authors [4] state that for the sake of simplicity one can create the same
number of clones for all antibodies, regardless of their quality. Experimental
results, e.g. figure 4, show that a simple formula based on the ranks of antibodies
(and not the values of objective function), that changes the distribution of the
number of clones, can improve the performance of the algorithm.

4.3 Parallel Speedup

When parallelizing heuristic methods one often can’t use the classical speedup
measurement because the behaviour of the serial and the parallel algorithms
differ not only in terms of speed but also in the actual steps of the algorithm.
This is the usual case with island-model evolutionary algorithms.

Parallel Immune System for Graph Coloring 503

93

94

95

96

97

98

99

100

0 200 400 600 800 1000 1200

time [s]

1

48

16

Fig. 5. Performance using varied numbers of processors

During the experiments it has been observed that the use of island-model
parallelism increases the performance of the heuristic. There are two factors that
can explain this increase. The first one is the simple fact, that if one runs more
than one copy of the same heuristic process and always chooses the best solution
produced by any of the copies then the quality of the selected solution will not
be worse (and usually will be better) than the quality of a solution produced by
any single run. The other factor is the migration mechanism that allows pools on
different islands (processors) to exchange the best solutions. Figure 5 presents
the average quality of the best solution found when coloring the DSJC1000.5
graph using varying number of processors.

Experiments have shown that migration has a limited positive effect on the
performance of the algorithm. The variance of the time needed to find a solution
of a given quality between runs of the algorithm greatly outweights the difference
made by varying frequency of migration.

4.4 Results for Benchmark Graphs

This section presents the performance of the parallel clonal selection algorithm
(pAIS) on some of the well-established benchmark graphs compared with the per-
formance of two other algorithms: greedy DSATUR [1] and parallel tabu search
algorithm. The latter is a parallel version of Tabucol, a tabu search algorithm by
Hertz and de Werra [7]. Tabucol uses a simple 1-exchange neighborhood, where
a move is a pair (v, i) denoting assignment of color i to vertex v. After a move
is performed the pair (v, i) becomes a tabu move for �10 + 0.6f(x)� succeeding
iterations, where f(x) is the number of color conflicts in the current solution x.

Results for some of the benchmark graphs are not included as those graphs
are easily colorable. The book graphs and the graphs based on registry allocation
can be quickly colored optimally using DSATUR.

Table 1 compares the results obtained using DSATUR, pAIS an pTS using
8 processors of the holk cluster. The result of nondeterministic DSATUR is the
best out of ten runs, as each of them takes less than a second. The parameters of
pAIS are specified below the table. There were ten runs for each graph instance.

504 J. Da̧browski

Table 1. Performance of the algorithms on benchmark graphs

pTS pAIS
Graph |V | |E| χ DSATUR min avg min avg
DSJC125.9 125 6961 51 44 44.8 44 44
DSJC125.5 125 3891 22 18 18 17 17
DSJC125.1 125 736 6 5 5 5 5
DSJC250.9 250 27897 92 73 73 72 72
DSJC250.5 250 15668 37 31 31 29 29
DSJC250.1 250 3218 10 9 9 9 9
DSJC500.9 500 112437 170 130 131 128 128.9
DSJC500.5 500 62624 65 53 53.2 51 51
DSJC500.1 500 12458 16 13 13 13 13
DSJC1000.9 1000 449449 299 243 243.8 241 242.4
DSJC1000.5 1000 249826 115 94 94.4 93 93
DSJC1000.1 1000 49629 27 22 22 21 21
DSJR500.1 500 3555 13 12 12 12 12
DSJR500.1c 500 121275 90 85 85 85 85
DSJR500.5 500 58662 130 124 125.2 123 123.6
QUEEN14_14 196 8372 19 16 16 15 15
QUEEN15_15 225 10360 21 17 17 16 16
QUEEN16_16 256 12640 23 17 17.9 17 17
latin_square_10 900 307350 132 105 105.8 104 104.7
flat300_20_0 300 21375 20 39 20 20 20 20
flat300_26_0 300 21633 26 41 34 34 32 32
flat300_28_0 300 21695 28 42 34 34 32 32
flat1000_50_0 1000 245000 50 113 92 92 90 90.8
flat1000_60_0 1000 245830 60 116 93 93.2 91 91.4
flat1000_76_0 1000 246708 76 114 93 93.5 92 92
le_450_15a 450 8168 15 17 16 16 16 16
le_450_15b 450 8169 15 16 15 15 15 15
le_450_15c 450 16680 15 23 21 21 19 20
le_450_15d 450 16750 15 24 21 21 20 20.1
le_450_25a 450 8260 25 25 25 25 25 25
le_450_25b 450 8263 25 25 25 25 25 25
le_450_25c 450 17343 25 29 26 26.8 26 26
le_450_25d 450 17425 25 28 27 27 26 26

DSATUR: best result out of ten runs;
pTS: Tabucol, 1-exchange neighborhood, tabu length �10 + 0.6f(x)�;

pAIS: N = 20, Nc = 30, r = 0.5

The last four columns of the table present the minimum and the average number
of colors in the best found solution within 1800 seconds.

5 Conclusions

Clonal selection is an evolutionary approach that does not require a crossover
operator. Designign a good crossover operator that preserves the good features of

Parallel Immune System for Graph Coloring 505

the parents can prove to be difficult for some problems. The algorithm presented
in this paper shows that clonal selection can be successfully applied to the Graph
Coloring Problem.

The experiments have shown that for large graph coloring instances the depth
of the search (stimulated by low pool size and low number of clones) is more
important than its breadth when given a realistic time limit. This may not be the
case when facing other combinatorial optimization problems, therefore further
study on clonal selection algorithms is needed.

The results have also shown that the use of island-model parallelism increases
the efficiency of the algorithm, however the effect of the migration mechanism
should be investigated further.

Acknowledgments. The experiments were performed on a high performance
cluster holk at the TASK Academic Computer Centre3 in Gdańsk.

References

1. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
ACM 22, 251–256 (1979)

2. Cutello, V., Nicosia, G., Pavone, M.: A Hybrid Immune Algorithm with Informa-
tion Gain for the Graph Coloring Problem. In: Cantú-Paz, E., Foster, J.A., Deb, K.,
Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Har-
man, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A.,
Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp.
199–210. Springer, Heidelberg (2003)

3. de Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: Part I – Basic theory
and applications, Technical Report – RT DCA 01/99, School of Computing and
Electrical Engineering, State University of Campinas, Brasil (1999)

4. de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal
Selection Principle. IEEE Transaction on Evolutionary Computation 6(3) (2002)

5. de Castro, L.N., Timmis, J.I.: Artificial immune systems as a novel soft computing
paradigm. Soft Computing 7, 526–544 (2003)

6. Dasgupta, D., Forrest, S.: Artificial Immune Systems in Industrial Applications.
In: Proc. of the Second International Conference on Intelligent Processing and
Manufacturing of Materials, vol. 1, pp. 257–267 (1999)

7. Hertz, A., de Werra, D.: Using Tabu Search Techniques for Graph Coloring. Com-
puting 39, 345–351 (1987)

8. Kim, J., Bentley, P.: The Artificial Immune Model for Network Intrusion Detec-
tion. In: Proc. of the 7th European Conference on Intelligent Techniques and Soft
Computing EUFIT (1999)

9. Nossal, G.J.V.: Life, Death and the Immune System. Scientific American Special
Issue on the Immune System, 53–63 (September 1993)

10. Ong, Z.X., Tay, J.C., Kwoh, C.K.: Applying the Clonal Selection Principle to Find
Flexible Job-Shop Schedules. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I.
(eds.) ICARIS 2005. LNCS, vol. 3627, pp. 442–455. Springer, Heidelberg (2005)

3 http://www.task.gda.pl/

The Quantum Complexity of Group Testing�

Sebastian Dörn1 and Thomas Thierauf2

1 Inst. für Theoretische Informatik, Universität Ulm
Sebastian.Doern@uni-ulm.de

2 Fak. Elektronik und Informatik, HTW Aalen
Thomas.Thierauf@HTW-Aalen.de

Abstract. We present quantum query and time complexity bounds for
group testing problems. For a set S and a binary operation on S, we
consider the decision problem whether a groupoid, semigroup or quasi-
group is a group. Our quantum algorithms for these problems improve
the best known classical complexity bounds. We also present upper and
lower bounds for testing associativity, distributivity and commutativity.

1 Introduction

Quantum algorithms have the potential to demonstrate that for some prob-
lems quantum computation is more efficient than classical computation. A
goal of quantum computing is to determine for which problems quantum com-
puters are faster than classical computers. The most important known ba-
sic quantum algorithms are Shor’s and Grover’s algorithm. The first one is
Shor’s [Sho94] polynomial time quantum algorithm for the factorization of in-
tegers. The second one is Grover’s search algorithm [Gro96]. Since then, we
have seen some generalisations and applications of these two basic quantum
techniques. The Shor algorithm has been generalized to a quantum algorithms
for the hidden subgroup problem (see e.g. [CEMM98]). Grover’s search algo-
rithm can be used for quantum amplitude amplification [BHMT02] and quan-
tum random walk search [Amb04, Sze04, MNRS07]. The application of these
quantum search tools is a fast growing area in quantum computing. For ex-
ample, quantum algorithms have been presented for several problems from
computer science (see e.g. [BHT98, BDHHMSW01, Amb04]), graph theory
(see e.g. [DHHM04, MSS05, AS06, Doe07a, Doe07b]) and (linear) algebra (see
e.g. [MN05, BS06, DT07]).

In this paper we study the quantum complexity of group testing problems. For
a set S and a binary operation on S, we consider the decision problem whether a
groupoid, semigroup or quasigroup is a group. We also present upper and lower
bounds for testing associativity, distributivity and commutativity. In particular,
we improve the quantum query complexity for testing if a operation table is
associative or a quasigroup from [DT07].

The motivation for studying the query complexity of algebraic problems is
twofold. On the one hand side, these are fundamental and basic problems which
� Supported by DFG grants Scho 302/7-2.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 506–518, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Quantum Complexity of Group Testing 507

have many applications in computer science. For example, testing if a black box
is a group is very useful in cryptography. On the other hand, we can analyze
how powerful are our tools for the construction of lower and upper bounds for
the quantum query complexity of these problem. For many problems we can
find optimal quantum algorithms by a combination of Grover search, amplitude
amplification and quantum walk search. But for some problems this doesn’t seem
to work. Maybe this can be a motivation for the development of new quantum
techniques.

In this paper our input is a operation table for a set S of size n × n. In
Section 3 we consider several group problems. Given a groupoid, semigroup or
quasigroup S by its operation table, we have to decide whether S is a group.
We present lower and upper bounds for the quantum query complexity of these
group problems. In particular, we give nearly optimal quantum query algorithms
for testing whether a groupoid or quasigroup is a group.

In Section 4 we present several bounds for testing associativity, distributivity
and commutativity. For associativity testing we consider the binary operation
◦ : S×S → S′, where S′ ⊆ S. Dörn and Thierauf [DT07] constructed a quantum
query algorithm which is faster than the trivial Grover search over all triples of
S for |S′| < n3/8. Here we improve the quantum query complexity of their
algorithm, such that the algorithm is faster than the Grover search for |S′| <
n3/4. Moreover we determine the precise quantum query complexity for deciding
whether a groupoid, semigroup and monoid is commutative.

2 Preliminaries

2.1 Quantum Query Model

In the query model, the input x1, . . . , xN is contained in a black box or oracle
and can be accessed by queries to the black box. As a query we give i as input to
the black box and the black box outputs xi. The goal is to compute a Boolean
function f : {0, 1}N → {0, 1} on the input bits x = (x1, . . . , xN) minimizing the
number of queries. The classical version of this model is known as decision tree.

The quantum query model was explicitly introduced by Beals et
al. [BBCMW01]. In this model we pay for accessing the oracle, but unlike the
classical case, we use the power of quantum parallelism to make queries in super-
position. The state of the computation is represented by |i, b, z〉, where i is the
query register, b is the answer register, and z is the working register. A quantum
computation with T queries is a sequence of unitary transformations

U0 → Ox → U1 → Ox → . . . → UT−1 → Ox → UT ,

where each Uj is a unitary transformation that does not depend on the input x,
and Ox are query (oracle) transformations. The oracle transformation Ox can be
defined as Ox : |i, b, z〉 → |i, b ⊕ xi, z〉. The computations consists of the following
three steps:

508 S. Dörn and T. Thierauf

1. Go into the initial state |0〉.
2. Apply the transformation UT Ox · · · OxU0.
3. Measure the final state.

The result of the computation is the rightmost bit of the state obtained by the
measurement.

The quantum computation determines f with bounded error, if for every x,
the probability that the result of the computation equals f(x1, . . . , xN) is at least
1 − ε, for some fixed ε < 1/2. In the query model of computation each query
adds one to the query complexity of an algorithm, but all other computations
are free. The time complexity of the algorithm is usually measured in terms of
the total circuit size for the unitary operations Ui.

2.2 Tools for Quantum Algorithms

Here, we give three tools for the construction of our quantum algorithms.

Quantum Search. A search problem is a subset S ⊆ [N] of the search space [N].
With S we associate its characteristic function fS : [N] → {0, 1} with fS(x) = 1
if x ∈ S, and 0 otherwise. Any x ∈ S is called a solution to the search problem.
Let k = |S| be the number of solutions of S. It is a well known fact in quantum
computing (see [Gro96, BBHT98]), that for k > 0, the expected quantum query
complexity for finding one solution of S is O(

√
N/k), and for finding all solutions,

it is O(
√

kN). Furthermore, whether k > 0 can be decided in O(
√

N) quantum
queries to fS . The running time complexity of Grover search is larger than its
query complexity by a logarithmic factor.

Amplitude Amplification. The quantum amplitude amplification is a generaliza-
tion of Grover’s search algorithm. Let A be an algorithm for a problem with
small success probability at least ε. Classically, we need Θ(1/ε) repetitions of A
to increase its success probability from ε to a constant, for example 2/3. There
is a corresponding technique in the quantum case (see [BHMT02]). Let A be a
quantum algorithm with one-sided error and success probability at least ε. Then
there is a quantum algorithm B that solves A with success probability 2/3 by
O(1√

ε
) invocations of A.

Quantum Walk. Quantum walks are the quantum counterpart of Markov chains
and random walks. Let P = (pxy) be the transition matrix of an ergodic sym-
metric Markov chain on the state space X . Let M ⊆ X be a set of marked states.
Assume that the search algorithms use a data structure D that associates some
data D(x) with every state x ∈ X . From D(x), we would like to determine if
x ∈ M . When operating on D, we consider the following three types of costs:

– Setup cost s: The worst case cost to compute D(x), for x ∈ X .
– Update cost u: The worst case cost for transition from x to y, and update

D(x) to D(y).
– Checking cost c: The worst case cost for checking if x ∈ M by using D(x).

The Quantum Complexity of Group Testing 509

Theorem 1. [MNRS07] Let δ > 0 be the eigenvalue gap of an ergodic Markov
chain P and let |M|

|X| ≥ ε. Then there is a quantum algorithm that determines if
M is empty or finds an element of M with cost

s +
1√
ε

(
1√
δ
u + c

)
.

In the most practical applications (see [Amb04, MSS05]) the quantum walk takes
place on the Johnson graph J(n, r), which is defined as follows: the vertices are
subsets of {1, . . . , n} of size r and two vertices are connected iff they differ in
exactly one number. It is well known, that the spectral gap δ of J(n, r) is Θ(1/r)
for 1 ≤ r ≤ n

2 .
We apply the quantum walk on the graph categorical product of two Johnson

graphs. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, the graph categorical
product G = (V, E) = G1 × G2 of G1, G2 is defined as follows: V = V1 × V2, and
((g1, g2), (g′1, g

′
2)) ∈ E iff (g1, g

′
1) ∈ E1 and (g2, g

′
2) ∈ E2.

2.3 Tool for Quantum Query Lower Bounds

In this paper, we use the following special case of a method by Ambainis [Amb02]
to prove lower bounds for the quantum query complexity.

Theorem 2. [Amb02] Let F = {f : [n] × [n] → [n]} be the set of all possible
input function, and Φ : F → {0, 1}. Let A, B ⊂ F such that Φ(f) = 1 and
Φ(g) = 0 for all f ∈ A and g ∈ B. Let R ⊂ A × B, and m, m′, l, l′ be numbers
such that

1. for every f ∈ A, there are at least m different g ∈ B such that (f, g) ∈ R.
2. for every g ∈ B, there are at least m′ different f ∈ A such that (f, g) ∈ R.
3. for every f ∈ A and x, y ∈ [n], there are at most l different g ∈ B such that

(f, g) ∈ R and f(x, y) �= g(x, y).
4. for every g ∈ B and x, y ∈ [n], there are at most l′ different f ∈ A such that

(f, g) ∈ R and f(x, y) �= g(x, y).

Then every bounded-error quantum algorithm that computes Φ has quantum

query complexity Ω
(√

m·m′

l·l′
)
.

Let f, g : [n] × [n] → [n], we define d(f, g) = |{ x, y ∈ [n] | f(x, y) �= g(x, y) }|.
In some cases, we consider the special case A, B ⊂ {0, 1}n×n and (f, g) ∈ R if
and only if f and g differ in exactly one position. Then it is l = l′ = 1, and
every bounded-error quantum algorithm that computes f has quantum query
complexity of Ω

(√
m · m′

)
.

3 Group Problems

In this section we consider the decision problems whether a groupoid, semigroup
or quasigroup S of size n with a binary operation ◦ is in fact a group. A groupoid

510 S. Dörn and T. Thierauf

is a finite set S with a binary operation ◦ represented as operation table. The
groupoid is called a semigroup, if it is associative. A monoid is a semigroup with
an identity element. A quasigroup is a groupoid, where all equations a ◦ x = b
and x ◦ a = b have unique solutions, and a loop is a quasigroup with an identity
element.

3.1 Group Testing for Groupoids

We consider the problem whether a groupoid (S, ◦) is in fact a group. There is
a O(n2 log n) deterministic algorithm for this problem by [RS00]. We develop
a quantum algorithm that has time complexity O(n

13
12 log2 n). Furthermore, we

present an O(n log n) query algorithm for this problem, that has time complexity
O(n3/2 log n) however. The latter algorithm is nearly optimal with respect to the
query complexity, as we prove a linear lower bound for this problem.

We need a generalization of a lemma from [RS00].

Definition 1. Let (S, ◦) be a groupoid represented by its operation table T . A
row of T is called cancellative, if it is a permutation of S.

Lemma 1. [RS00] Let ◦ be cancellative in r rows. If ◦ is nonassociative then
it has at least r/4 nonassociative triples.

Theorem 3. Whether a groupoid is a group can be decided by a quantum algo-
rithm within O(n

13
12 logc n) expected steps, for some constant c.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . Note
that if S is a group, then every row of A is cancellative. Our first step is to
determine whether the operation is associative. To do so, we choose an arbitrary
subset A of S of size r. We determine r later. Then we check whether T is
cancellative in the rows indexed by A. This is not the case, if we find a row
with two equal elements. Hence we can solve this with a Grover search and the
element distinctness quantum algorithm by Ambainis [Amb04]. The quantum
query complexity of this procedure is O(

√
rn

2
3).

If any of the considered rows in not cancellative then we are done. Oth-
erwise we randomly choose three elements a, b, c ∈ S and check whether
(a ◦ b) ◦ c �= a ◦ (b ◦ c). If the operation is not associative, then the probability of
finding a nonassociative triple is at least r

4n3 by Lemma 1. By using the quan-
tum amplitude amplification we have an O(n

3
2 /

√
r) quantum query algorithm

for finding a nonassociative triple.
If there are no nonassociative triple, then (S, ◦) is a semigroup. Whether

this semigroup is a group can be decided with O(n
11
14 log n) quantum queries by

Theorem 6. The expected quantum query complexity of the whole algorithm
we get

O

(
√

rn
2
3 +

n
3
2√
r

+ n
11
14 log n

)
,

The Quantum Complexity of Group Testing 511

which is minimized for r = n
5
6 . Hence the expected time complexity of this algo-

rithm is O(n
13
12 logc n) for a constant c, since the element distinctness procedure

has running time of O(n2/3 logc n). �
We can further improve the query complexity of the problem if we allow a larger
running time.

Theorem 4. Whether a groupoid is a group can be decided with O(n log n) ex-
pected quantum queries.

Proof . Let (S, ◦) be a groupoid represented by its operation table T . A well
known fact from algebra is, that if (S, ◦) is a quasigroup, then a random subset
R ⊂ S with c logn elements is a set of generators with probability at least
1− exp(c) (see [RS00]). We choose a random subset R of O(log n) elements of S.
Then we check whether R is a generating set of (S, ◦). To do so, let S0 = R.
We compute inductively Si = Si−1 ∪ (R ◦ Si−1). This adds at least one element
in a step, until we reach some k ≤ n such that Sk = S. In this case, R is
a set of generators. For each element a added to some set Si, we query the
log n elements R ◦ a to look for further elements. In total we query at most the
O(n log n) elements of the R ×S submatrix of T . The quantum time is bounded
by O(n3/2 log n).

If R is a set of generators, we have to verify whether the multiplication table
is associative. Light observed (see [CP61]) that if R is a set of generators of S,
then it suffices to test all triples a, b, c in which b is an element of R. By using
Grover search, the quantum query for finding a nonassociative triple (if there is
one) is O(n

√
log n). By Theorem 6 we can decide whether this semigroup is a

group. The total quantum query complexity of is O(n log n). �
The upper bound of Theorem 4 almost matches the lower bound we have.

Theorem 5. Whether a groupoid is a group requires Ω(n) quantum queries.

Proof . We apply the Theorem 2. Let A be the operation table T of Zn and let
◦ be the addition modular n. Then T is a group. The set B consists of all n × n
matrices T ′, where one entry of T ′ is modified. Therefore the tables of B forming
no groups. The relation R is defined by R = { (T, T ′) ∈ (A, B) | d(T, T ′) = 1 }.
Then R satisfies that m = n2(n − 1), m′ = 1, l = n − 1 and l′ = 1. Therefore
the quantum query complexity is Ω(n). �

3.2 Group Testing for Semigroups and Quasigroups

Dörn and Thierauf [DT07] considered the problem whether a finite monoid (S, ◦)
is in fact a group. They showed that the problem can be solved with O(n

3
2)

queries by a (classical) randomized algorithm, and with O(n
11
14 log n) expected

queries by a quantum algorithm.
Now suppose that the input is only known to be a semigroup and we want

to decide whether it is in fact a group. To do so, we first search for an identity
element and then use the algorithm from [DT07]. To find the identity element,

512 S. Dörn and T. Thierauf

we start by choosing an element a of S and search for an element e ∈ S such that
a◦e = a. Then e is our candidate for the identity element. Recall that we finally
want to decide whether S is a group. In this case, the identity element is unique.
Hence if our candidate e doesn’t work we can safely reject the input, even in the
case that S actually has an identity element. To test our candidate e, it suffices
to check whether b ◦ e = b for all b ∈ S. Obviously the two steps can be done
in O(n) queries classically and O(

√
n) quantum queries with Grover search. We

summarize the observation:

Theorem 6. Whether a given semigroup is a group can be decided with

1. O(n
3
2) queries by a randomized algorithm.

2. O(n
11
14 log n) by a quantum query algorithm.

The result should be contrasted with the following: if we want to decide whether
a given semigroup is in fact a monoid, then the best known algorithms make
O(n2) queries classically and O(n) queries in the quantum setting.

Next we assume that the input (S, ◦) is a quasigroup. That is, every row in the
operation table is cancellative. To check associativity, we can apply Lemma 1
with r = n and the test from the proof of Theorem 3. This yields an O(n)
quantum query algorithm to test whether the operation is associative, and hence
a group. We show that this bound is tight up to constant factor.

Theorem 7. Whether a given quasigroup or a loop is a group can be decided
with quantum query complexity Θ(n).

Proof . For the lower bound, we apply Theorem 2 in connection with an idea
of [RS00] for proving an Ω(n2) lower bound for this problem in classical comput-
ing. The set A consists of the operation table T of the group (Zm

2 , +), where +
is the vector addition modulo 2. Let a, b, c ∈ Zm

2 with a �= 0. The set B consists
of all operation tables of (Zm

2 , ◦), where ◦ is equal to + except in the following
four positions:

1. b ◦ c = b + (a + c),
2. b ◦ (a + c) = b + c,

3. (a + b) ◦ c = b + c,
4. (a + b) ◦ (a + c) = a + b + c.

All tables of B are quasigroups because the above modifications simply ex-
change two elements in two rows of the table T , but they are not associative,
since

a + b = (c ◦ (a + b)) ◦ c �= c ◦ ((a + b) ◦ c) = b.

The relation R is defined by

R = { (T, T ′) ∈ (A, B) | T ′ originates of the above four modifications of T }.

Then R satisfies m = Ω(n3), m′ = 1, l = Ω(n) and l′ = 1. �

The Quantum Complexity of Group Testing 513

4 Testing Associativity, Distributivity and
Commutativity

4.1 The Semigroup Problem

We consider the following semigroup problem. We have given two sets S and
S′ ⊆ S and a binary operation ◦ : S ×S → S′ represented by a table. We denote
with n the size of the set S. One has to decide whether S is a semigroup, that
is, whether the operation on S is associative.

The complexity of this problem was first considered by Rajagopalan and
Schulman [RS00], who gave a randomized algorithm with time complexity of
O(n2 log 1

δ), where δ is the error probability. They also showed a lower bound
of Ω(n2). The previously best known algorithm was the naive Ω(n3)-algorithm
that checks all triples.

In the quantum setting, one can do a Grover search over all triples (a, b, c) ∈ S3

and check whether the triple is associative. The quantum query complexity of
the search is O(n3/2). Dörn and Thierauf [DT07] constructed a quantum query
algorithm which is faster than the Grover search for |S′| < n3/8. They also
proved a quantum query lower bound of Ω(n). Here we improve the quantum
query complexity of their algorithm by a more detailed analysis. Furthermore
our algorithm is faster than the Grover search for |S′| < n3/4.

Theorem 8. Let k = nα be the size of S′ with 0 < α ≤ 1. The quantum query
complexity of the semigroup problem is

⎧
⎪⎨

⎪⎩

O(n
5+α

4), for 0 < α ≤ 1
3 ,

O(n
6+2α

5), for 1
3 < α ≤ 3

4 ,

O(n
3
2), for 3

4 < α ≤ 1.

Proof . We use the quantum walk search scheme of Theorem 1. The quantum
walk is done on the categorical graph product GJ of two Johnson graphs J(n, r).
Let A and B two subsets of S of size r. We will determine r later. We search for
a pair (a, b) ∈ S2, such that a, b are two elements of a nonassociative triple. Then
the marked vertices of GJ correspond to pairs (A, B) with (A◦B)◦S �= A◦(B◦S).
In every step of the walk, we exchange one row and one column of A and B. The
database of our quantum walk is the set

D(A, B) = { (a, b, a ◦ b) | a ∈ A ∪ S′ and b ∈ B ∪ S′ }.

Now we compute the quantum query costs for the setup, update and checking.
The setup cost for the database D(A, B) is O((r + k)2) and the update cost is
O(r+k). To check whether a pair (A, B) is marked, we have to test if (A◦B)◦S �=
A ◦ (B ◦ S).

Now we claim, that the quantum query cost to check this inequality is
O(

√
nrk). Therefore we search for a pair (b, c) ∈ B×S with (A◦b)◦c �= A◦(b◦c).

The computation of A ◦ (b ◦ c) requires only one query, by using our database,
since (b◦c) ∈ S′. The result is a vector of size r, which we denote by (y1, . . . , yr).

514 S. Dörn and T. Thierauf

The evaluation of (A ◦ b) needs no queries by using our database, let (c1, . . . , cr)
be the result. This vector consists of at most k different entries (x1, . . . , xk). Now
we use Grover’s algorithm for searching an i ∈ [k], such that xi ◦ c �= yj for an
j ∈ [r] with xi = cj. This search can be done in O(

√
k) quantum queries. There-

fore, by applying two Grover search subroutines, the checking cost is O(
√

nrk).
The spectral gap of the walk on GJ is δ = O(1/r) for 1 ≤ r ≤ n

2 , see [BS06].
If there is a triple (a, b, c) with (a ◦ b) ◦ c �= a ◦ (b ◦ c), then there are at least(
n−1
r−1

)2
marked sets (A, B). Therefore we have ε ≥ r2/n2.

Let r = nβ for 0 < β < 1. Assuming r > k, then the quantum query com-
plexity of the semigroup problem is

O
(
r2 +

n

r

(√
r · r +

√
nrk

))
= O

(
n2β + n1+ β

2 + n
3+α−β

2

)
.

Now we choose β depending on α such that this expression is minimal. Suppose
that 2β ≤ 1+ β

2 , i.e. β ≤ 2
3 . From the equation 1+ β

2 = 3+α−β
2 , we get β = 1+α

2 .
Then the quantum query complexity of the semigroup problem is O(n

5+α
4) for

r = n
1+α

2 and α ≤ 1
3 . Otherwise if 2β > 1 + β

2 , i.e. β > 2
3 , we get β = 3+α

5 from
the equation 2β = 3+α−β

2 . Then the quantum query complexity is O(n
6+2α

5) for
r = n

3+α
5 and α > 1

3 . If α > 3
4 , the query complexity is bigger than O(n

3
2),

therefore we use Grover search instead of quantum walk search. �
Note that the time complexity of our algorithm is O(n1.5 log n).

4.2 The Distributivity Problem

In the distributivity problem we are given a set S and two binary operations
⊕ : S × S → S and ⊗ : S × S → S represented by tables. One has to decide
whether (S, ⊕, ⊗) is distributive, i.e. we have to test whether the two equation
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) are satisfied. A
triple (a, b, c) ∈ S3 that fulfills both equations is called a distributive triple. In
classical computing, it is not known whether this problem can be solved in less
than cubic time. In the quantum setting, one can do a Grover search over all
triples (a, b, c) ∈ S3 and check whether each triple is distributive. The quantum
query complexity of the search is O(n3/2). We show a linear lower bound on the
query complexity.

Theorem 9. The distributivity problem requires Ω(n) quantum queries.

Proof . Let S = {0, 1, . . . , n−1}. We apply the Theorem 2. The set A consists of
all pairs of n×n matrices T⊕ and T⊗, where T⊗ is the zero-matrix, and the entry
at position (1, 0) in T⊕ is 1, and 0 otherwise. It is easy to see, that the tables
of A are distributive, since x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) = 0 for all x, y, z ∈ S.
The set B consists of all pairs of n × n matrices T ′⊕ and T ′⊗, where the entry of
position (1, 0) in T ′

⊕, and (a, b) in T ′
⊗ is 1, for a, b ∈ S − {0, 1}, and 0 otherwise.

Then a ⊗ (b ⊕ c) = 0 and (a ⊗ b) ⊕ (a ⊗ c) = 1 with b �= c. Therefore the tables
of B are not distributive.

The Quantum Complexity of Group Testing 515

From each (T⊕, T⊗) ∈ A, we can obtain (T ′
⊕, T ′

⊗) ∈ B by replacing the entry 0
of T⊗ at (a, b) by 1, for any a, b /∈ {0, 1}. Hence we have m = Ω(n2). From each
(T ′⊕, T ′⊗) ∈ B, we can obtain (T⊕, T⊗) ∈ A, by replacing the entry 1 of T⊗ at
position (a, b) by 0, for a, b /∈ {0, 1}. Thus we have m′ = 1. By Theorem 2, the
quantum query complexity is Ω(

√
m · m′) = Ω(n). �

If (S, ⊕) is a commutative quasigroup, then we can get a faster algorithm to check
distributivity. The key is that one nondistributive triple implies the existence of
more such triples. Similar to Lemma 1, we have the following lemma.

Lemma 2. Let S be a set and ⊕, ⊗ be two binary operations on S, such that
(S, ⊕) is a commutative quasigroup. If (S, ⊕, ⊗) is nondistributive, then it has
at least Ω(n) nondistributive triples.

Proof . Let (a, b, c) be a nondistributive triple. Let a = a′ ⊕ a′′ and consider the
following cycle.

(a′ ⊕ a′′) ⊗ (b ⊕ c) = ((a′ ⊕ a′′) ⊗ b) ⊕ ((a′ ⊕ a′′) ⊗ c)
= ((a′ ⊗ b) ⊕ (a′′ ⊗ b)) ⊕ ((a′ ⊕ a′′) ⊗ c)
= (a′ ⊗ b) ⊕ (a′′ ⊗ b) ⊕ (a′ ⊗ c) ⊕ (a′′ ⊗ c)
= (a′ ⊗ b) ⊕ (a′ ⊗ c) ⊕ (a′′ ⊗ (b ⊕ c))
= (a′ ⊗ (b ⊕ c)) ⊕ (a′′ ⊗ (b ⊕ c))
= (a′ ⊕ a′′) ⊗ (b ⊕ c).

Suppose that a ⊗ (b ⊕ c) �= (a ⊗ b) ⊕ (a ⊗ c). Then at least one of the above
equations does not hold. Therefore at least one of the following triples must be
nondistributive:

(a′, a′′, b), (a′, a′′, c), (a′′, b, c), (a′, b, c), (a′, a′′, b ⊕ c).

Since (S, ⊕) is a quasigroup, a can be written as a′ ⊕ a′′ in n different ways. For
each of these, distributivity fails in at least one of the five categories from above.
Therefore there exists a category for which there are ≥ n/5 failures.

The case that (a ⊕ b) ⊗ c �= (a ⊗ c) ⊕ (b ⊗ c) can be handled similarly �
By using Lemma 2 in combination with the amplitude amplification (similar to
Theorem 3) we have

Theorem 10. Let (S, ⊕) be a commutative quasigroup and (S, ⊗) a groupoid.
Whether (S, ⊕, ⊗) is distributive can be decided with quantum query complexity
of O(n).

4.3 The Commutativity Problem

In the commutativity problem we have given a finite set S of size n with a binary
operation ◦ : S × S → S represented by a table. One has to decide whether S is
a commutative. In the quantum setting, one can solve the problem in linear time
by a Grover search over all tuple (a, b) ∈ S2 that checks whether the tuple is
commutative. We show that the commutativity problem requires Ω(n) quantum
queries, even when S is a monoid.

516 S. Dörn and T. Thierauf

Theorem 11. The quantum query complexity of the commutativity problem for
groupoids, semigroups, and monoids is Θ(n).

Proof . We start by showing the lower bound for semigroups via Theorem 2.
Let S = {0, 1, . . . , n − 1}. The set A consists of the zero matrix of order n. The
set B consists of all n × n matrices, where the entry of position (a, b) is 1, for
a �= b ∈ S −{0, 1}, and 0 otherwise. All operation tables of the sets A and B are
semigroups. Then we have m = Ω(n2), m′ = 1, and the quantum query lower
bound for testing if a given semigroup is commutative is Ω(n).

We reduce the commutativity problem for semigroups to the commutativity
problem for monoids. Let S be a semigroup represented as a operation table.
We define a monoid M = S ∪ {e} with the identity element e �∈ S, that is, with
a ◦ e = e ◦ a = a, for all a ∈ S. Then the semigroup S is commutative iff the
monoid M is commutative. �
Magniez and Nayak [MN05] quantize a classical Markov chain for testing the
commutativity of a black box group given by the generators. The constructed
an O(k2/3 log k) quantum query algorithm, where k is the number of generators
of the group. In the case when (S, ◦) is a quasigroup, a random set of c log n
elements will be a set of generators with probability at least 1 − exp(c) [RS00].
Therefore we obtain the following result:

Theorem 12. Whether a quasigroup, loop or group is commutative can be de-
cided with quantum query complexity O((log n)

2
3 log log n).

Conclusions

The table below summarizes the quantum query complexity (QQC) and the
quantum time complexity (QTC) of the algebraic problems considered in the
paper. Some of these results are proved in [DT07]. It remains open to close the
gaps between the upper and the lower bounds where they don’t match.

Problem Description QQC QTC
Semigroup Decide if S×S → S′ is a semigroup

for constant size of S′.
Ω(n)
O(n

5
4)

O(n
3
2 log n)

Identity Decide if a groupoid has an identity
element.

Θ(n) O(n log n)

Quasigroup Decide if a groupoid is a quasi-
group.

Ω(n)
O(n

7
6)

O(n
7
6 log n)

Group I Decide if a groupoid is a group. Ω(n)
O(n log n)

O(n
13
12 logc n)

Group II Decide if a semigroup is a group. O(n
11
14 log n) O(n

11
14 logc n)

Group III Decide if a quasigroup is a group. Θ(n) O(n log n)
Group
Commut. I

Decide if a groupoid/ semi-
group/monoid is commutative.

Θ(n) O(n log n)

Group
Commut. II

Decide if a quasigroup/group is
commutative.

Õ((log n)
2
3) Õ((log n)

2
3)

The Quantum Complexity of Group Testing 517

References

[Amb02] Ambainis, A.: Quantum Lower Bounds by Quantum Arguments.
Journal of Computer and System Sciences 64, 750–767 (2002)

[Amb04] Ambainis, A.: Quantum walk algorithm for element distinctness. In:
Proceedings of FOCS 2004, pp. 22–31 (2004)

[AS06] Ambainis, A., Špalek, R.: Quantum Algorithms for Matching and
Network Flows. In: Proceedings of STACS 2006, pp. 172–183 (2006)

[BBCMW01] Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum
lower bounds by polynomials. Journal of ACM 48, 778–797 (2001)

[BBHT98] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quan-
tum searching. Fortschritte der Physik 46(4-5), 493–505 (1998)

[BDHHMSW01] Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., San-
tha, M., de Wolf, R.: Quantum Algorithms for Element Distinctness.
In: Proceedings of CCC 2001, pp. 131–137 (2001)

[BHMT02] Brassard, G., Hóyer, P., Mosca, M., Tapp, A.: Quantum ampli-
tude amplification and estimation. AMS Contemporary Mathemat-
ics 305, 53–74 (2002)

[BHT98] Brassard, G., Hóyer, P., Tapp, A.: Quantum Cryptanalysis of Hash
and Claw-Free Functions. In: Lucchesi, C.L., Moura, A.V. (eds.)
LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg
(1998)

[BS06] Buhrman, H., Špalek, R.: Quantum Verification of Matrix Products.
In: Proceedings of SODA 2006, pp. 880–889 (2006)

[CEMM98] Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algo-
rithms revisited. In: Proceedings of the Royal Society of London,
Series A, pp. 339–354 (1998)

[CP61] Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups.
American Mathematical Society (1961)

[Doe07a] Dörn, S.: Quantum Complexity Bounds of Independent Set Prob-
lems. In: Proceedings of SOFSEM 2007 (SRF), pp. 25–36 (2007)

[Doe07b] Dörn, S.: Quantum Algorithms for Graph Traversals and Related
Problems. In: Proceedings of CIE 2007, pp. 123–131 (2007)

[DT07] Dörn, S., Thierauf, T.: The Quantum Query Complexity of Alge-
braic Properties. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007.
LNCS, vol. 4639, pp. 250–260. Springer, Heidelberg (2007)

[DHHM04] Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query
complexity of some graph problems. In: Dı́az, J., Karhumäki, J.,
Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
481–493. Springer, Heidelberg (2004)

[Gro96] Grover, L.: A fast mechanical algorithm for database search. In:
Proceedings of STOC 1996, pp. 212–219 (1996)

[MN05] Magniez, F., Nayak, A.: Quantum complexity of testing group com-
mutativity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1312–1324.
Springer, Heidelberg (2005)

[MNRS07] Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via Quantum
Walk. In: Proceedings of STOC 2007, pp. 575–584 (2007)

[MSS05] Magniez, F., Santha, M., Szegedy, M.: Quantum Algorithms for the
Triangle Problem. In: Proceedings of SODA 2005, pp. 1109–1117
(2005)

518 S. Dörn and T. Thierauf

[RS00] Rajagopalan, S., Schulman, L.J.: Verification of identities. SIAM J.
Computing 29(4), 1155–1163 (2000)

[Sho94] Shor, P.: Algorithms for quantum computation: discrete logarithms
and factoring. In: Proceedings of FOCS 1994, pp. 124–134 (1994)

[Sze04] Szegedy, M.: Quantum speed-up of Markov chain based algorithms.
In: Proceedings of FOCS 2004, pp. 32–41 (2004)

Quantum Walks: A Markovian Perspective

Diego de Falco1,2 and Dario Tamascelli1,2

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano,
Via Comelico 39/41, 20135 Milano, Italy

2 CIMAINA, Centro Interdipartimentale Materiali e Interfacce Nanostrutturati,
Università degli Studi di Milano

Abstract. For a continuous-time quantum walk on a line the variance
of the position observable grows quadratically in time, whereas, for its
classical counterpart on the same graph, it exhibits a linear, diffusive,
behaviour. A quantum walk, thus, propagates at a rate which is linear in
time, as compared to the square root rate for a classical random walk.
Indeed, it has been suggested that there are graphs that can be traversed
by a quantum walker exponentially faster than by the classical random
analogue. In this note we adopt the approach of exploring the condi-
tions to impose on a Markov process in order to emulate its quantum
counterpart: the central issue that emerges is the problem of taking into
account, in the numerical generation of each sample path, the causative
effect of the ensemble of trajectories to which it belongs. How to deal
numerically with this problem is shown in a paradigmatic example.

Keywords: continuous-time quantum walks, birth-and-death processes,
sample paths.

1 Paradigmatic Examples

The identity
+∞∑

x=−∞
Jx(t)2 = 1, (1)

satisfied by the Bessel functions of first kind and integer order Jx(t), shows that
the function

ρ(t, x) = Jx(t)2 (2)

is, for each time t, a probability mass function on the relative integers.
We raise here the question of finding examples of phenomena of probabilistic

time evolution described by this probability mass function.
We will give two distinct, apparently very different, answers to the above

question: finding the relationship between the two distinct examples we are going
to exhibit below and discussing the extent and generality of this relationship will
be the main focus of this paper.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 519–530, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

520 D. de Falco and D. Tamascelli

t

x

30

�30

0

0 30

Fig. 1. A density plot of ρ(t, x) = |ψ(t, x)|2. The profile of ρ(30, x) as a function of x
is shown on the right.

Example 1. The function
ψ(t, x) = ixJx(t) (3)

is the solution of the Schrödinger equation on the relative integers

i
d

dt
ψ(t, x) = −1

2
(ψ(t, x − 1) + ψ(t, x + 1)) (4)

under the initial condition
ψ(0, x) = δ0,x. (5)

Otherwise stated, the function ρ(t, x) = Jx(t)2 is, at every time t, the probability
distribution of a continuous-time quantum walk on the graph having the relative
integers as vertices, with edges between nearest neighbour sites [1]. This quantum
walk starts at time 0 from the origin.

Figure 1, a density plot of ρ(t, x) = Jx(t)2, clearly shows the linear propagation
expected in such a quantum walk. The reader more intersted in the phenomenon
than in the equation (in this case eq. (4)) will appreciate recognizing in figure 1
the intensity pattern of propagation of light in a waveguide lattice [2].

Example 2. Consider a birth-and-death random process q(t) on the relative in-
tegers, evolving according to the following rules:

Quantum Walks: A Markovian Perspective 521

i. geometric mean rule: for every edge {x, x+1} and every time t the fraction of
transitions per unit time taking place along this edge (number of transitions
x → x+1 plus number of transitions x+1 → x per unit time)/(sample size)
is equal to the geometric mean of the probability of the process being in x
and the probability of being in x + 1;

ii. local unidirectionality rule: for every edge {x, x+1}, and depending on time
t, only transitions x → x + 1 or only transitions x + 1 → x are allowed;

iii. “horror vacui” rule: for every site x, if at a time tx the probability of being
in x passes through the value 0, then there is an interval of time following tx
in which along the edges {x − 1, x} and {x, x + 1} only transitions toward x
are allowed; this time interval terminates as soon as the probability of being
in one of the two neighbours of x crosses the value 0 (at which instant the
“horror vacui” rule takes hold for such a neighbour).

As to the initial conditions, we suppose that there exists τ0 > 0 such that, for
every integer x,

ρ(t, x) ≡ P (q(t) = x) > 0, for 0 < t < τ0 (6)

and
lim

t→0+
ρ(t, x) = δ0,x. (7)

Together with the above initial condition on the position of the process, we
impose, as a condition on its initial “velocity”, the requirement that in the
time interval [0, τ0) only transitions taking the process away from the origin are
allowed.

We, finally, impose a left-right symmetry on the position of the process, in
the form

ρ(t, x) = ρ(t, −x) (8)

and a left-right symmetry on its “velocity” expressed in terms of its birth rate
λ(t, x) and its death rate μ(t, x) as

λ(t, x) = μ(t, −x). (9)

The transition probabilities per unit time λ(t, x) and μ(t, x) are defined, re-
spectively, by

p(t + τ, x + 1; t, x) = τ · λ(t, x) + o(τ) (10)

p(t + τ, x − 1; t, x) = τ · μ(t, x) + o(τ) (11)

for τ → 0+.
Here and elsewhere we indicate by p(t, x; t0, x0) the conditional probability

P (q(t) = x|q(t0) = x0)

of finding the process at time t in x, given that at time t0 it is in x0.

522 D. de Falco and D. Tamascelli

Condition (i) can, now, be written as the equation

λ(t, x)ρ(t, x) + μ(t, x + 1)ρ(t, x + 1) =
√

ρ(t, x)ρ(t, x + 1), (12)

relating the three unknown fields λ, μ and ρ. The left hand side is, indeed, the
probability per unit time of a transition along the link {x, x + 1}. Notice that,
because of (ii), equation (12) allows, locally, to express λ or μ as a function of
the values of ρ at two neighbouring points.

A further equation involving the unknown fields is the continuity equation

d

dt
ρ(t, x) = (μ(t, x + 1)ρ(t, x + 1) − λ(t, x)ρ(t, x)) + (13)

+ (λ(t, x − 1)ρ(t, x − 1) − μ(t, x)ρ(t, x)),

expressing the fact that the probability mass at x increases because of transitions
x ± 1 → x and decreases because of transitions x → x ± 1.

In the time interval [0, τ0), we can therefore write, using also the left-right
symmetry and the initial condition of allowing only transitions taking the process
away from the origin (namely, for 0 ≤ t < τ0, λ(t, x) > 0 for x ≥ 0 and μ(t, x) > 0
for x ≤ 0),

d

dt
ρ(t, 0) = −2

√
ρ(t, 0)ρ(t, 1) (14a)

d

dt
ρ(t, x) = +

√
ρ(t, x − 1)ρ(t, x) −

√
ρ(t, x)ρ(t, x + 1), for x > 0. (14b)

Equations (14) are satisfied by ρ(t, x) = Jx(t)2, for values of t such that Jx(t)
is positive for every non negative integer x. This determines the numerical value
of τ0 to be the smallest positive solution of the equation J0(t) = 0, namely

τ0 = 2.4048. (15)

For a suitable value of τ1 > τ0 condition (iii) will allow, in the time interval
[τ0, τ1), for transitions ±1 → 0, so that equations (14) are to be substituted, in
this interval, by

d

dt
ρ(t, 0) = +2

√
ρ(t, 0)ρ(t, 1), (16a)

d

dt
ρ(t, 1) = −

√
ρ(t, 0)ρ(t, 1) −

√
ρ(t, 2)ρ(t, 1) (16b)

d

dt
ρ(t, x) = +

√
ρ(t, x − 1)ρ(t, x) −

√
ρ(t, x)ρ(t, x + 1), for x > 1. (16c)

Equations (16) are again satisfied by ρ(t, x) = Jx(t)2, but, this time, for values
of t such that J0(t) < 0 and Jx(t) is positive for every positive integer x. This
determines the numerical value of τ1 to be the smallest positive root of J1(t) = 0,
namely

τ1 = 3.8317. (17)

Quantum Walks: A Markovian Perspective 523

The above considerations can be iterated: using the fact that between two con-
secutive zeroes of Jx(t) there is one and only one zero of Jx+1(t), one can control
the changes of sign determined by (iii) in the continuity equation, to the effect of
proving that the process q(t) described by the conditions posed above satisfies,
for every t, the condition

ρ(t, x) ≡ P (q(t) = x) = Jx(t)2. (18)

Figure 2, to be compared with figure 1, shows a few sample paths of the
process q(t).

30
t

�30

0

30

x

Fig. 2. A sample of 500 paths of the stochastic process of Example 2. For the purpose
of comparison with figure 1, the empirical distribution at time t = 30, of a sample of
5 · 104 trajectories, is shown on the right.

The reader more interested in the phenomenon than in the equations (in this
case the continuity equation (13) for the evolution of ρ(t, x) and the forward
Kolmogorov equation for the evolution of p(t, x; t0, x0)) will see, in section 3,
how the numerical procedure leading to figure 2 actually makes use only of a
step by step implementation of the dynamical rules (i), (ii), (iii).

2 Quantum Walks vs. Random Walks

In this section we look at quantum mechanics as a metaphor suggesting, at
the heuristic level, an interesting dynamical behaviour for a random (Markov)

524 D. de Falco and D. Tamascelli

process exploring a graph or decision tree. We base our work on the classical
results of Guerra and Morato [3] on the formulation of quantum-mechanical be-
haviour in terms of controlled stochastic processes; the picture of a quantum
walk that emerges through its stochastic analogue is that of a swarm of walk-
ers moving according to transition rules involving the distribution of the entire
swarm.

Consider a quantum system having as state space a Hilbert space the dimen-
sion of which we will indicate by s, and as generator of the time evolution a
Hamiltonian operator that we will indicate by H .

Having fixed an orthonormal basis, |φ1 〉, |φ2 〉, . . . , |φs 〉, a graph G is defined,
starting from the selected basis and from the selected Hamiltonian, by stating
that G has Λs = {1,, s} as its set of vertices and edges {k, j} such that j �= k
and |〈 φk |H | φj 〉| > 0.

In the context of this section, the graph G will play the role played, in the
more elementary context of Example 1 of section 1, by the linear graph having
the relative integers as vertices, with edges between nearest neighbour sites.
Similarly, the role played in section 1 by equation (4) will be played in this
section by the Schrödinger equation in the representation determined by the
selected basis:

i
d

dt
ψ(t, k) =

s∑

j=1

Hk,j · ψ(t, j) (19)

with
Hk,j = 〈 φk |H | φj 〉. (20)

We pose in the following terms the question of finding in the general context of
this section, an analogue of Example 2 of section 1:

Easy problem: find a constructive procedure associating with each solution ψ of
(19) a Markov process q(t) on the graph G having at each time t probability
distribution

ρ(t, k) = P (q(t) = k) = |ψ(t, k)|2. (21)

If this process exists and satisfies (for a suitable field ν of transition probabilities
per unit time) the condition, that we impose as an analogue of conditions (10)
and (11),

p(t + τ, j; t, k) ≡ P (q(t + τ) = j|q(t) = k) = τ · νj(t, k) + o(τ) (22)

for τ → 0+ and for each j being a neighbour of k in the graph G, then it will
satisfy the continuity equation

d

dt
ρ(t, k) =

∑

j∈N(k)

ρ(t, j)νk(t, j) − ρ(t, k)νj(t, k) = (23)

=
∑

j∈N(k)

(ρ(t, j)νk(t, j) + ρ(t, k)νj(t, k))
(

ρ(t, j)νk(t, j) − ρ(t, k)νj(t, k)
ρ(t, j)νk(t, j) + ρ(t, k)νj(t, k)

)
.

Quantum Walks: A Markovian Perspective 525

In the above equation, we have indicated by N(k) the set of neighbours in G
of the vertex k, namely the collection of vertices j such that j �= k and {j, k} is
an edge.

In the second line of equation (23) we have separated the term

ρ(t, j)νk(t, j) + ρ(t, k)νj(t, k),

symmetric in j and k (on the analogue of which we have imposed in Section 1
the geometric mean rule), from the antisymmetric term

ρ(t, j)νk(t, j) − ρ(t, k)νj(t, k)
ρ(t, j)νk(t, j) + ρ(t, k)νj(t, k)

,

of absolute value ≤ 1, representing the net relative flux of probability mass from
j into k.

If, now, the same ρ appearing in (23) satisfies also ρ(t, k) = |ψ(t, k)|2 for a ψ
satisfying (19), it must be

ψ(t, k) =
√

ρ(t, x) exp(i · S(t, k)) (24)

for some phase function S to be determined by inserting the Ansatz (24) into
equation (19). Doing so, and separating the real and imaginary parts of the
resulting equation, one gets two equations:

d

dt
S(t, k) = −Hk,k −

∑

j∈N(k)

hk,j

√
ρ(t, j)
ρ(t, k)

cos(βk,j(t)) (25)

and
d

dt
ρ(t, k) =

∑

j∈N(k)

2hk,j

√
ρ(t, k)ρ(t, j) sin(βk,j(t)), (26)

where we have set
hk,j = |Hk,j | (27)

and
βk,j(t) = Arg(Hk,j) + S(t, j) − S(t, k). (28)

In order to check that our Easy problem admits at least one solution, it is
sufficient to compare the purely kinematic relations

d

dt
ρ(t, k) =

∑

j∈N(k)

2hk,j

√
ρ(t, k)ρ(t, j) sin(βk,j(t)),

and

d

dt
ρ(t, k) =

∑

j∈N(k)

(ρ(t, j)νk(t, j)+ρ(t, k)νj(t, k))
(

ρ(t, j)νk(t, j) − ρ(t, k)νj(t, k)
ρ(t, j)νk(t, j) + ρ(t, k)νj(t, k)

)
,

526 D. de Falco and D. Tamascelli

viewed, for assigned ψ and therefore for assigned ρ and β, as constraints on
the unknown transition probabilities per unit time of the process q(t) to be
constructed. The simplest way to satisfy this constraint is by requiring term by
term equality in the sums that appear in the right hand sides, and by equating
in each term the symmetric and antisymmetric factors.

We thus get the equations

ρ(t, j)νk(t, j) + ρ(t, k)νj(t, k) = 2hk,j

√
ρ(t, k)ρ(t, j) (29)

ρ(t, j)νk(t, j) − ρ(t, k)νj(t, k) = 2hk,j

√
ρ(t, k)ρ(t, j) sin(βk,j(t)) (30)

that are solved by

νk(t, j) = hk,j

√
ρ(t, k)
ρ(t, j)

(1 + sin(βk,j(t))) =

= hk,j

√
ρ(t, k)
ρ(t, j)

(1 + sin(Arg(Hk,j) + S(t, j) − S(t, k))) (31)

for k ∈ N(j).
For more details, and for the physical motivation (related to questions of time

reversal invariance) of the merits of this particular choice, we refer to [4].
It is immediate to check that (29) is precisely the geometric mean rule (i) of

section 1.
It is also an easy exercise to check that (31) specializes, due to the phase factor

ix in equation (3), to conditions (ii) and (iii) in the simple context of section 1.

3 Autonomous Generation

The Hard problems, as opposed to the kinematical Easy problem reviewed in
section 2, are

I. understand (25) as a dynamical condition on the processes q(t) that solve
our Easy problem;

II. autonomously simulate these processes by actual implementation of this dy-
namical condition.

Problem I is discussed in full detail in [4] following the general approach of [3] in
which stochastic control theory is successfully proposed as a very simple model
simulating quantum-mechanical behaviour.

We are not able to tackle problem (II) in its generality. We can only go back
to section 1 and show that the three dynamical rules and the initial conditions
stated there in assigning Example 2 are enough to generate the sample paths of
figure 2.

This is far from obvious because of the geometric mean rule: it requires, in
the numerical generation of each sample path, to take into account the causative
effect (through the estimated probability distribution) on each trajectory of the
ensemble of trajectories to which it belongs [5] .

Quantum Walks: A Markovian Perspective 527

Even to show, as in figure 2, a small sample of trajectories, the need of carefully
estimating at each time step the density ρ imposes the simultaneous generation
of a large number Ntr. of trajectories.

The numerical procedure leading to figure 2, makes, by purpose, no refer-
ence to the solution of the continuity equation we have given in section 1, nor
to the solution of the Kolmogorov equations for the conditional probabilities
p(t, x; t0, x0) that can be easily found by similar techniques. We present here
this procedure in some detail because the challenges one meets in simulating the
process q(t) by implementing rules (i), (ii), (iii) and the initial conditions listed
in section 1 give an operational meaning to the notion of autonomous simulation.

The state of the system at each time t = τ · k, where the integer k runs from
1 to nsteps and τ is the time step, is described by the pair

– configuration array of length Ntr: its j-th element qj(t) indicates the cur-
rent position of the j-th trajectory; a space cut-off is introduced through
an integer parameter L such that each trajectory is followed as long as
−L ≤ q(t) ≤ L; the empirical density ρemp of the process at each time is
estimated from the configuration array;

– transition array indexed from −L to L: its x-th element is an ordered pair
of bits (mx, lx): if mx = 1 (resp. lx = 1) then transitions x → x − 1 (resp.
x → x+ 1) are allowed, whereas if mx = 0 (resp. lx = 0) they are forbidden.

In our implementation ntr. = 5 · 104, τ = 0.05, and the process has been
followed up to time tmax = τ ·nsteps = 100, well beyond the time window shown
in figure 2; the space cut-off has been set at L = 150.

The algorithm consists of the iteration nsteps times of the following steps:

1. estimate ρemp from the configuration array;
2. increment each qj(t) by Move(t, qj(t)), where the random variable Move(t, x)

takes the values −1, 0, +1 with probabilities τ ·μemp(t, x), 1−τ · (μemp(t, x)+
λemp(t, x)), τ · λemp(t, x), respectively.

The empirical transition rates λemp and μemp are here given by

λemp(t, x) =

√
ρemp(t, x + 1)

ρemp(t, x)
lx; (32a)

μemp(t, x) =

√
ρemp(t, x − 1)

ρemp(t, x)
mx, (32b)

3. estimate the new empirical distribution ρemp(t + τ, x);
4. if ρemp(t, x) > 0 and ρemp(t + τ, x) = 0 then update the transition array

following the “horror vacui” rule (iii), namely setting lx−1 = 1 and mx+1 =
1, and restore the local unidirectionality rule by setting (mx, lx) = (0, 0).

In the initialization step the transition array has been given the initial assign-
ment

(mx, lx) =

⎧
⎪⎨

⎪⎩

(1, 0) if x < 0
(1, 1) if x = 0
(0, 1) if x > 0

528 D. de Falco and D. Tamascelli

Before discussing the initialization of the configuration array, we observe that
the rough first order updating rule of step 2. runs into trouble if a proposed
transition involves a site at which ρemp vanishes, the problem being with zeroes
of the numerators under the square root of (32a) and (32b). The most evident
form of this fact is that, given that the process at time 0 is at position 0, the
probability that it moves at all in a time step is

1 − J2
0 (τ) =

τ2

2
+ O(τ4). (33)

We have found an inexpensive way out of this difficulty by initializing the
configuration array by the assignment:

qj(0) = 0, for j = (2L + 1) + 1 . . . , Ntr.

qj(0) = j − L − 1, for j = 1, . . . , 2L + 1

The first line says that most of the trajectories start from the origin; the
second that trajectory 1 starts from −L, . . ., trajectory 2L + 1 starts from L.
The second line makes sure that initially there is at least one trajectory per site;
this situation is restored, after step 4. by:

5. set qj(t + τ) = j − L − 1, for j = 1, . . . , 2L + 1.

5 10 15 20 25 30
t

�0.010

�0.005

0.000

0.005

0.010

x� 0

(a)

5 10 15 20 25 30
t

�0.010

�0.005

0.000

0.005

0.010

x� 10

(b)

5 10 15 20 25 30
t

�0.010

�0.005

0.000

0.005

0.010

x� 20

(c)

10 20 30 40
t

�0.010

�0.005

0.000

0.005

0.010

x� 30

(d)

Fig. 3. Thin solid lines: graphs of Jx(t) as a function of t for several values of x. Thick
dashed lines: graphs, as a function of t, of the fraction of trajectories that visit x at time t.

Quantum Walks: A Markovian Perspective 529

The dummy trajectories labelled by j = 1, . . . , 2L+1 provide some probability
mass when needed to prevent the first order procedure from getting stuck.

Comparison between figures 1 and 2 gives an idea of how well our simple
procedure fills the configuration array .

An analogous comparison is conducted in figure 3 for the transition array:
the issue there is how well our procedure catches the instants of time at which
the control mechanism expressed by the “horror vacui” rule takes hold, namely
the zeroes of Jx(t).

4 Conclusions and Outlook

If you give me a quantum walk efficiently exploring a graph or decision tree [6],
I take your computational basis, your initial condition and your Hamiltonian
and cook for you a stochastic process by computing its transition probabilities
per unit time according to the recipe of section 2 and its transition probabilities
p(t, x; t0, x0) by integration of the Kolmogorov equations (this can be done in
quite explicit terms for the Example 2 of section 1) or by a clever exploitation
of a few rules controlling the dynamics, as done in section 3. The discussion of
section 2 makes it clear that my random walk will, by construction, visit your
graph or decision tree as efficiently as your quantum walk.

Can the above statement be reconciled with the statement that the quantum
glued trees algorithm of [7] outperforms any classical algorithm? How are the
classical alternatives defined in the original literature on exponential speedup
by quantum walk? Does the causative effect of the ensemble disqualify a Markov
process from being classical ?

On these points, all we can do is to advance a conjecture: the cost of my
random simulation of your quantum walk is hidden in the size Ntr. of the sample
I am required to generate. We have indeed called attention, since section 1, on
the geometric mean rule: for every edge of your graph the probability per unit
time of a transition of my process along that edge is equal to the geometric mean
of the probabilities of the process at the two vertices joined by that edge.

We pose as a problem of future research the quantitative assessment of the
cost (as measured by Ntr.) of the density estimation step required before each
updating in the simulation.

References

1. Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum
and classical random walks. Quantum Information Processing 1, 35–43 (2002)

2. Perets, H., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Re-
alization of quantum walks with negligible decoherence in waveguide lattices,
arXiv:quant-ph/0707.0741v2 (2007)

3. Guerra, F., Morato, L.: Quantization of dynamical systems and stochastic control
theory. Phys. Rev. D 27, 1774–1786 (1983)

4. Guerra, F., Marra, R.: Discrete stochastic variational principles and quantum me-
chanics. Phys. Rev. D 29(8), 1647–1655 (1984)

530 D. de Falco and D. Tamascelli

5. Smolin, L.: Could quantum mechanics be an approximation to another theory?,
arXiv-quant-ph/0609109 (2006)

6. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58,
915–928 (1998)

7. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential
algorithmic speed up by quantum walk. In: STOC 2003. Proc. 35th ACM symp.,
pp. 59–68 (2003)

A Memetic Algorithm for Global Induction of

Decision Trees

Marek Krȩtowski

Faculty of Computer Science, Bia�lystok Technical University
Wiejska 45a, 15-351 Bia�lystok, Poland

mkret@wi.pb.edu.pl

Abstract. In the paper, a new memetic algorithm for decision tree
learning is presented. The proposed approach consists in extending an
existing evolutionary approach for global induction of classification trees.
In contrast to the standard top-down methods, it searches for the opti-
mal univariate tree by evolving a population of trees. Specialized genetic
operators are selectively applied to modify both tree structures and tests
in non-terminal nodes. Additionally, a local greedy search operator is em-
bedded into the algorithm, which focusses and speeds up the evolutionary
induction. The problem of over-fitting is mitigated by suitably defined
fitness function. The proposed method is experimentally validated and
preliminary results show that the proposed approach is able to effectively
induce accurate and concise decision trees.

1 Introduction

Evolutionary Computations is the name commonly used for describing a group of
optimization and search techniques inspired by the process of natural evolution.
Their main advantages over greedy search methods is their ability to avoid local
optima. On the other hand it is known that pure evolutionary methods are not
the fastest methods and a lot of effort is put into speeding them up. One of the
possible solutions is a combination of evolutionary approach with local search
techniques, which is known as Memetic Algorithms [10]. However, designing a
competent memetic algorithm for a given problem is not an easy task and a
number of important issues have to be addressed (e.g. where and when local
search should be applied during the evolutionary search).

In this paper, an evolutionary learning of decision trees based on the training
dataset is investigated. There are two main approaches to induction of decision
trees: top-down and global. In the first approach, the optimal test searches and
data splitting are recursively repeated to consecutive subsets of the training data
until the stoping condition is not met. Usually, the growing phase is followed by
the post-pruning. Apart of the classical top-down system like CART [3] or C4.5
[18], several EC-based systems which learn (mainly oblique) decision trees in
the top-down manner (e.g. BTGA [5], OC1-ES [4], DDT-EA [11]) have been
proposed so far.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 531–540, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

532 M. Krȩtowski

In this paper, the second approach to decision tree induction is advocated.
In contrast to the step-wise construction, the whole tree is being searched at
the time. It means the simultaneous search for an optimal structure of the tree
and for all tests in non-terminal nodes. This process is obviously much more
computationally complex but it can reveal hidden regularities, which are almost
undetectable by greedy methods

The global approach was initially proposed by Koza in [9], where genetic pro-
gramming was used for evolving LISP S-expressions that correspond to simple
decision trees. A similar idea was investigated in the GATree system [17] which
directly evolves classification trees with nominal tests. Fu et al. proposed a ge-
netic algorithm called GAIT [8], which evolves binary trees initially obtained
by applying C4.5 on small sub-samples of the original data. Two simple ge-
netic operator are utilized and individual performance is judged by measuring
classification accuracy on the validation set. It should be noted that only tests
from initial trees can be used in the internal nodes. Another interesting global
system is called GALE [15]. It is a fine-grained parallel evolutionary algorithm
for evolving both orthogonal and oblique decision trees. GALE uses squared re-
classification accuracy as a fitness and simple operators (one point cross-over
from genetic programming and random perturbation of the test).

In the paper, for the first time a memetic algorithm is proposed for global
induction of decision trees. It combines typical evolution of trees with the local
search for optimal tests in non-terminal nodes. The local optimality criteria
come from CART and C4.5 systems. This kind of hybridization should profit
from both global and greedy methods and should improve the efficiency of the
search.

The rest of the paper is organized as follows. In the next section the proposed
memetic algorithm for global induction of univariate decision trees is described.
Experimental validation of the method on artificial and real-life data is presented
in section 4. In the last section, the paper is concluded and possible future works
are sketched.

2 Memetic Algorithm for Global Induction

As the presented system evolved from our previous classical evolutionary al-
gorithm [12,13,14], the general structure of the memetic algorithm follows the
standard evolutionary framework [16]. The local search component responsible
of the optimal test search in internal nodes is introduced in the initialization and
embedded into the mutation operator.

2.1 Representation, Initialization and Termination Condition

Representation. There are two ways of representing candidate solutions in
the evolutionary search. In the first one, individuals are encoded in the fixed-
size (usually binary) chromosomes and standard genetic operators can be used.
The second possibility consists in applying more sophisticated representations

A Memetic Algorithm for Global Induction of Decision Trees 533

(e.g. variable-length) and developing specialized genetic operators. As a structure
of the optimal decision tree for a given learning set is not known a priori it is
obvious that the second approach is chosen for the global induction.

In the presented system, decision trees are represented in their actual form as
classical univariate trees where each test in a non-terminal node concerns only
one attribute (nominal or continuous valued). Additionally, in every node infor-
mation about learning vectors associated with the node is stored. This enables
the algorithm to perform more efficiently local structure and tests modifications
during applications of genetic operators.

In case of a nominal attribute at least one value is associated with each branch.
It means that an inner disjunction is built-in into the induction algorithm. For
a continuous-valued feature typical inequality tests are considered. Specialized
genetic operators consider only boundary thresholds [7] as potential splits. A
boundary threshold for the given attribute is defined as a midpoint between such
a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples belong to two different classes. All boundary
thresholds for each continuous-valued attribute are calculated before starting the
evolutionary induction [12]. It significantly limits the number of possible splits
and focuses the search process. It should be however noted that locally applied
the optimal test search can find a split, which is not based on a precalculated
threshold. In all internal nodes except from the root only limited sub-sample of
learning vectors can be used for the optimal test search.

Initialization. An initial population is usually randomly created with emphasis
on diversity of candidate solutions, which is especially useful when large search
space has to be penetrated. It is also known that proper initialization can focus
and significantly speed up the search process.

In the presented system, initial individuals are created by applying the classi-
cal top-down algorithm to randomly chosen sub-samples of the original training
data (10% of data, but not more then 500 examples). Additionally, for any
initial tree one of five test search strategies in non-terminal nodes is applied.
Three strategies come from the very well-known decision tree systems i.e. CART
[3] and C4.5 [18] and they are based on the corresponding optimality criteria:
GiniIndex, InfoGain and GainRatio. The fourth strategy is dipolar [11], where
a test splitting randomly selected mixed dipole (a pair of feature vectors from
different classes) is found. The last strategy is a random combination of all the
aforementioned strategies. The recursive partitioning is finished when all train-
ing objects in a node belong to the same class or the number of objects in a
node is lower than the predefined value (default value: 5). Finally, the resulting
trees are post-pruned according to the fitness function.

Termination condition. The evolution terminates when the fitness of the
best individual in the population does not improve during the fixed number
of generations (default value is equal 1000). This can be treated as a sign of
algorithm convergence. Additionally, the maximum number of generations is
specified, which allows limiting the computation time in case of a very slow
convergence (default value: 10000).

534 M. Krȩtowski

2.2 Genetic Operators

There are two specialized genetic operators corresponding to the classical mu-
tation and cross-over. Application of both operators can result in changes of
the tree structure and tests in non-terminal nodes. Additionally the local search
component is built into the mutation-like operator.

Mutation operator. A mutation-like operator [14] is applied with a given
probability to a tree (default value is 0.8) and it guarantees that at least one
node of the selected individual is mutated. Firstly, the type of the node (leaf or
internal node) is randomly chosen with equal probability and if a mutation of
a node of this type is not possible, the other node type is chosen. A ranked list
of nodes of the selected type is created and a mechanism analogous to ranking
linear selection [16] is applied to decide which node will be affected.

While concerning internal nodes, the location (the level) of the node in the
tree and the quality of the subtree starting in the considered node are taken into
account. It is evident that a modification of the test in the root node affects the
whole tree and has a great impact, whereas a mutation of an internal node in
lower parts of the tree has only a local impact. In the proposed method, nodes on
higher levels of the tree are mutated with lower probability and among nodes on
the same level the number of misclassified objects by the subtree is used to sort
them. Additionally, perfectly classifying nodes with only leaves as descendants
and with a test composed of one feature are excluded from a ranking, because
their mutation cannot improve the fitness.

As for leaves, the number of objects from other classes than the decision
assigned to the leaf is used to put them in order, but homogenous leaves are not
included. As a result, leaves which are worse in terms of classification accuracy
are mutated with higher probability.

Modifications performed by a mutation operator depend on the node type (i.e.
if the considered node is a leaf node or an internal node). For a non-terminal
node a few possibilities exist:

– A completely new test can be found. With the user defined probability (de-
fault value: 0.05) a new test can be locally optimized or can be chosen to
split a randomly drawn mixed dipole from the learning subset associated
with the node. The local search for the optimal test can be based on the
following criteria: GiniIndex, InfoGain and GainRatio. It should be noted
that for nominal features only tests with the maximal number of outcomes
(no inner disjunction) are analyzed due to the computational complexity
constraints.

– The existing test can be altered by shifting the splitting threshold (continuous-
valued feature) or re-grouping feature values (nominal features). These modifi-
cations can be purely random or can be guided by dipolar principles of splitting
mixed dipoles and avoiding to split pure ones.

– A test can be replaced by another test or tests can be interchanged,
– One sub-tree can be replaced by another sub-tree from the same node.
– A node can be transformed (pruned) into a leaf.

A Memetic Algorithm for Global Induction of Decision Trees 535

Modifying a leaf makes sense only if it contains objects from different classes.
The leaf is transformed into an internal node and a new test is chosen in the
aforementioned way.

Cross-over operator. There are also several variants of cross-over operators.
Three of them start with selecting of cross-over positions in two affected indi-
viduals. One node is randomly chosen in each of two trees. In the most straight-
forward variant, the subtrees starting in the selected nodes are exchanged. This
corresponds to the classical cross-over from genetic programming. In the second
variant, which can be applied only when non-internal nodes are randomly chosen
and the numbers of outcomes are equal, only tests associated with the nodes are
exchanged. The third variant is also applicable only when non-internal nodes
are drawn and the numbers of descendants are equal. Branches which start from
the selected nodes are exchanged in random order. There is also a variant of
crossover inspired by the dipolar principles. In the internal node in the first tree
a cut mixed dipole is randomly chosen and for the cross-over the node with the
test splitting this dipole is selected in the second tree.

Additional operations. The application of any genetic operator can result in a
necessity for relocation of the input vectors between parts of the tree rooted in the
modified node. Additionally the local maximization of the fitness is performed
by pruning lower parts of the sub-tree on the condition that it improves the
value of the fitness.

It was observed by Bennett et al. [2] that in oblique trees enlarging the margin,
it is profitable in terms of classification accuracy. In the presented system, a
simple mechanism called centering based on this observation is introduced and
it is applied to the best decision tree found. In case of an inequality test, the
threshold can also be shifted to half-distance between corresponding feature
values. It should be noted that such a post-processing does not change the fitness
corresponding to the final tree. The centering cannot be applied to tests based on
nominal features. For them, another kind of test improvement is used. If there is
an internal node with nominal test, and there are descendant leaves which have
the same decision, then such leaves are merged and inner disjunction is used in
the splitting node.

2.3 Selection

As a selection mechanism the ranking linear selection [16] is applied. Addition-
ally, the chromosome with the highest value of the fitness function in the iteration
is copied to the next population (elitist strategy).

2.4 Fitness Function

A fitness function drives the evolutionary search process and is the most im-
portant and sensitive component of the algorithm. The goal of any classification
system is the correct prediction of class labels of new objects, however such a

536 M. Krȩtowski

target function cannot be defined directly. Instead, the accuracy on the training
data is often used. However, it is well-known that their direct optimization leads
to an over-fitting problem. In a typical top-down induction of decision trees, the
over-specialization problem is mitigated by defining a stopping condition and by
applying a post-pruning [6].

In the presented approach a complexity term is introduced into the fitness
function preventing the over-specialization. The fitness function, which is maxi-
mized, has the following form:

Fitness(T) = QReclass(T) − α · (S(T) − 1), (1)

where QReclass(T) is the re-classification quality, S(T) is the size of the tree T
expressed as the number of nodes and α is a relative importance of the complexity
term (default value is 0.001) and a user supplied parameter. Subtracting 1.0
eliminates the penalty when the tree is composed of only one leaf (in majority
voting). It is worth to mention that the equation (1) is a form of regularization
with S(T) − 1 playing the role of a stabilizer and α the role of a regularization
parameter.

It is rather obvious that there is no optimal value of α for all possible datasets.
When the concrete problem is analyzed, tuning this parameter may lead to
the improvement of the results (in terms of classification accuracy or classifier
complexity).

3 Experimental Results

The proposed memetic approach (denoted as GDT-MA) to learning decision
trees is assessed on both artificial and real life datasets and is compared to the
well-known C4.5 system. It is also compared to the pure evolutionary versions of
the global inducer - GDT-AP. All prepared artificial datasets comprise training
and testing parts. Examples of artificial datasets are presented in Fig. 1. In case
of data from a UCI repository [1] for which testing data are not provided, a 10-
fold stratified cross-validation was employed. Each experiment on evolutionary
algorithms was performed 10 times and the average result of such an evaluation
was presented. All systems were tested with a default set of parameters.

3.1 Artificial Datasets

Results of experiments with artificial datasets are gathered in the Table 1. For
all domains GDT-MA and GDT-AP performed very well, both in terms of classi-
fication accuracy and tree complexity. Compared to the C4.5 system both global
inducers were able to find a proper decision trees when top-down system failed
and returned a default class.

3.2 Real-Life Datasets

Results obtained for the real-life datasets are gathered in Table 2. It can be
observed that in terms of the classification accuracy GDT-MA performs com-
parable to C4.5 (for certain datasets it is slightly better for other is slightly

A Memetic Algorithm for Global Induction of Decision Trees 537

chess2x2 chess3x3

house normchess

Fig. 1. Examples of artificial datasets

Table 1. Results on artificial data

C4.5 GDT-MA GDT-AP
Dataset size quality size quality size quality

chess2x2 1 50 4 99.9 4 99.8

chess2x2x2 1 50 8 99.8 8 99.7

chess3x3 9 99.7 9 99.8 9 99.7

chess3x3x3 54 99.3 27.2 99.0 27.1 98.9

house 21 97.4 12.1 96.4 13.3 96.6

normchess 1 50 4.1 95.5 4.2 95.5

normwave 15 94 8.8 92.6 9.1 93.5

worse than its competitor). However, it is easily noticeable that in terms of the
simplicity of the solution, the proposed memetic algorithm is significantly better

538 M. Krȩtowski

Table 2. Results on UCI datasets

C4.5 GDT-MA GDT-AP
Dataset size quality size quality size quality

balance-scale 57 77.5 20.8 79.8 32.8 78.2

bcw 22.8 94.7 5.7 95.6 6.6 95.8

bupa 44.6 64.7 33.6 63.7 69.3 62.8

cars 31 97.7 3 97.9 4 98.7

cmc 136.8 52.2 19.2 55.7 13.1 53.8

german 77 73.3 18.4 74.2 16.5 73.4

glass 39 62.5 35.3 66.2 40.4 63.6

heart 22 77.1 29 76.5 44.9 74.2

page-blocks 82.8 97 7.4 96.5 7.5 96.4

pima 40.6 74.6 14.8 74.2 14.3 73.8

sat 435 85.5 18.9 83.8 19.2 83

vehicle 138.6 72.7 43.2 71.1 45.1 70.3

vote 5 97 10.9 96.2 13.5 95.6

waveform 107 73.5 30.7 71.9 36.2 72.3

wine 9 85 5.1 88.8 5.2 86.3

95

96

97

98

99

100

100000 200000 300000 400000 500000
0

5

10

15

20

25

30

35

40

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 o

n
te

st
 d

at
a

In
du

ct
io

n
tim

e
[s

] /
 1

03

Dataset size

Accuracy - chess2x2
Time - chess2x2

Accuracy - chess3x3
Time - chess3x3

Fig. 2. Performance of the memetic algorithm on large datasets

that C4.5. It is also worth to mention that GDT-MA was more accurate than
its pure evolutionary rival for 12 out of 15 analyzed real-life datasets.

A Memetic Algorithm for Global Induction of Decision Trees 539

3.3 Evaluation of Algorithm Performance on Large Datasets

In order to verify that the proposed method can be applied to large datasets, a
performance test is conducted. The experiment was performed on two variants
of the chess dataset: ches2x2 and chess3x3, with increasing number of generated
observations (starting from 100000 learning vectors up to 500000). In Fig. 2
obtained results in terms of the classification accuracy and the induction time
are presented.

The promising outcome of this experiment is that it shows that the GDT−MA
system can deal with relatively large datasets (500000 observations) in acceptable
time - 7 hours as measured on a typical machine (Xeon 3.2GHz, 2GB RAM).
It should be noticed that for all datasets, optimal trees were found, both in
terms of the classification accuracy and the tree size. It can be also observed
that induction times scale almost linearly with the dataset size.

4 Conclusions

In the paper, for the first time a specialized memetic algorithm is developed
for global induction of decision trees. The local search for optimal tests in non-
terminal nodes based on the classical optimality criteria is embedded into the
evolutionary search process. The necessary modification encompasses the ini-
tialization and the mutation operator. Even preliminary experimental validation
shows that such a hybridization is profitable and improves the efficiency of the
evolutionary induction.

The presented approach is still under development. First of all, the influence of
the local search operator on the performance of the global inducer must be stud-
ied in more details. Furthermore, additional optimality criteria (e.g. TwoingRule
from the CART system) are planned to be implemented.

Acknowledgments

This work was supported by the grant W/WI/5/05 from Bia�lystok Technical
University.

References

1. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases
(1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

2. Bennett, K., Cristianini, N., Shave-Taylor, J., Wu, D.: Enlarging the margins in
perceptron decision trees. Machine Learning 41, 295–313 (2000)

3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth Int. Group (1984)

4. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation 7(1), 54–68 (2003)

http://www.ics.uci.edu/~mlearn/MLRepository.html

540 M. Krȩtowski

5. Chai, B., Huang, T., Zhuang, X., Zhao, Y., Sklansky, J.: Piecewise-linear classifiers
using binary tree structure and genetic algorithm. Pattern Recognition 29(11),
1905–1917 (1996)

6. Esposito, F., Malerba, D., Semeraro, G.: A comparative analysis of methods for
pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 19(5), 476–491 (1997)

7. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Proc. of IJCAI 1993, pp. 1022–1027. Morgan
Kaufmann, San Francisco (1993)

8. Fu, Z., Golden, B., Lele, S., Raghavan, S., Wasil, E.: A genetic algorithm-based
approach for building accurate decision trees. INFORMS Journal on Comput-
ing 15(1), 3–22 (2003)

9. Koza, J.: Concept formation and decision tree induction using genetic programming
paradigm. In: Schwefel, H.-P., Männer, R. (eds.) PPSN I. LNCS, vol. 496, pp. 124–
128. Springer, Heidelberg (1991)

10. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computa-
tion 9(5), 474–488 (2005)

11. Krȩtowski, M.: An evolutionary algorithm for oblique decision tree induction. In:
Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004.
LNCS (LNAI), vol. 3070, pp. 432–437. Springer, Heidelberg (2004)

12. Krȩtowski, M., Grześ, M.: Global learning of decision trees by an evolutionary
algorithm. In: Information Processing and Security Systems, pp. 401–410. Springer,
Heidelberg (2005)

13. Krȩtowski, M., Grześ, M.: Evolutionary learning of linear trees with embedded
feature selection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M.
(eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 400–409. Springer, Heidelberg
(2006)

14. Krȩtowski, M., Grześ, M.: Evolutionary induction of mixed decision trees. Inter-
national Journal of Data Warehousing and Mining 3(4), 68–82 (2007)

15. Llora, X., Garrell, J.: Evolution of decision trees. In: Proc. of CCAI 2001, pp.
115–122. ACIA Press (2001)

16. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Heidelberg (1996)

17. Papagelis, A., Kalles, D.: Breeding decision trees using evolutionary techniques.
In: Proc. of ICML 2001, pp. 393–400. Morgan Kaufmann, San Francisco (2001)

18. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

Geometric Rates of Approximation

by Neural Networks

Věra Kůrková1 and Marcello Sanguineti2

1 Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věž́ı 2, Prague 8, Czech Republic

vera@cs.cas.cz
2 Department of Communications, Computer, and System Sciences (DIST)

University of Genova, Via Opera Pia 13, 16145 Genova, Italy
marcello@dist.unige.it

Abstract. Model complexity of feedforward neural networks is studied
in terms of rates of variable-basis approximation. Sets of functions, for
which the errors in approximation by neural networks with n hidden
units converge to zero geometrically fast with increasing number n, are
described. However, the geometric speed of convergence depends on pa-
rameters, which are specific for each function to be approximated. The
results are illustrated by examples of estimates of such parameters for
functions in infinite-dimensional Hilbert spaces.

1 Introduction

Feedforward neural networks can be formally described as devices producing
input-output functions depending on flexible parameters. Often input-output
functions have the form of linear combinations of functions computable by units
specific for the given type of a network. Both coefficients of the linear combina-
tions and parameters of the computational units are adjustable in the process
of learning.

Networks with a moderate number of computational units have been success-
fully used in many pattern recognition and classification tasks, some of them
high-dimensional. So in some cases, networks with a relatively small model com-
plexity can provide a good approximation of functions with a large number of
variables. Thus neural networks seem to be more suitable for high-dimensional
tasks than linear models, whose model complexity grows exponentially with im-
provements of accuracy in approximation of functions defined by certain smooth-
ness conditions [1]. In linear models, merely coefficients of linear combinations
of the first n elements from a basis with a fixed ordering are adjustable. Neural
networks belong to the class of nonlinear models, which are sometimes called
variable-basis ones. During learning in addition to coefficients of linear combina-
tions, also parameters of computational units are searched for. Thus a suitable
n-tuple of functions corresponding to the type of network units (such as percep-
trons or radial-basis functions) is chosen.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 541–550, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

542 V. Kůrková and M. Sanguineti

Some insight why in solving high-dimensional tasks variable-basis models can
perform better than linear models can be obtained from an estimate of rates of
variable-basis approximation by Maurey, Jones, and Barron [2,3,4]. For functions
from the convex hull of a bounded subset G of a Hilbert space, they derived an up-
per bound on the square of the error in approximation by convex combination of n
elements of G. The bound has the form 1

n

(
s2

G − ‖f‖2
)
, where sG is the supremum

of norms of elements of G and ‖f‖ is the norm of the function to be approximated.
Several authors derived tight improvements of Maurey-Jones-Barron’s esti-

mate for various sets G (e.g., G orthogonal [5,6], G formed by function com-
putable by sigmoidal perceptrons [7] or G with certain property of covering
numbers [8]). However, all these tightness results are worst-case estimates (they
give upper bounds holding for all functions from convex hulls). Thus one can
expect that for some subsets of such hulls, much better rates might hold.

The first step to description of such subsets was done by Lavretsky [9]. He no-
ticed that when in the iterative construction derived by Jones [3] and improved
by Barron [4], in each step only functions satisfying a certain angular condition
are chosen, then the term 1

n in the Maurey-Jones-Barron upper bound can be
replaced with (1 − δ2)n−1, where δ ∈ (0, 1] is the arccosine corresponding to the
angular constraint. However, Lavretsky left open the problem of characteriza-
tion of functions satisfying the angular condition. He illustrated his result by
one example, which, however, sounds as a sort of tautology: he showed that a
function that can be expressed as a series formed by orthonormal functions with
geometrically decaying coefficients can be approximated by the partial sums with
geometrically fast rate.

In this paper we extend Lavretsky’s result by showing that for every function f
in the convex hull of G there exists δf ∈ (0, 1] such that the rate of approximation
of f by convex combinations of n functions from G is bounded from above by (1 −
δ2
f)n−1

(
s2

G − ‖f‖2
)
. However, we do not prove that every function in the convex

hull satisfies the angular condition implyingLavretsky’s estimate, insteadwederive
the geometric rate by further modifying the incremental construction originally
used by Jones [3] and later improved by Barron [4] and refined by Lavretsky [9].

The paper is organized as follows. In section 2, Maurey-Jones-Barron’s the-
orem and its improvements are stated together with necessary terminology. In
Section 3 our main theorem on geometric rates of approximation for functions
in convex hulls together with its corollary are proven. In Section 4, examples of
functions in convex hulls of orthonormal sets with estimates of the parameters
determining geometric rates are given. Section 5 is a brief discussion.

2 Maurey-Jones-Barron’s Theorem and Its Improvements

Many computational models used in soft-computing can be mathematically de-
scribed as variable-basis schemes. Such models compute functions from sets of
the form

spann G =

{
n∑

i=1

wigi

∣∣wi ∈ R, gi ∈ G

}
,

Geometric Rates of Approximation by Neural Networks 543

where G is the set of functions that can be computed by computational units
of a given type and R denotes the set of real numbers. Note that for G linearly
independent, sets spannG are not convex.

A useful tool for estimation of rates of decrease of errors in approximation
by spann G with n increasing is Maurey-Jones-Barron’s theorem [2,3,4]. This
theorem is formulated for approximation by

convn G =

{
n∑

i=1

aigi

∣∣ ai ∈ [0, 1],
n∑

i=1

ai = 1 , gi ∈ G

}
.

The following estimate is a version of Jones’ result [3] as improved by Barron
[4] and also of an earlier estimate derived by Maurey [2]. For a subset M of a
normed linear space (X, ‖.‖) and f ∈ X , we denote by ‖f −M‖ = infg∈M ‖f −g‖
the distance of f from M . By cl we denote the closure with respect to the
topology induced by ‖.‖.

Theorem 1 (Maurey-Jones-Barron). Let (X, ‖.‖) be a Hilbert space, G its
bounded subset, sG = supg∈G ‖g‖ and f ∈ cl conv G. Then for every positive
integer n,

‖f − convn G‖2 ≤ s2
G − ‖f‖2

n
.

In [10] (see also [11]), Theorem 1 was extended using the concept of G-variation
defined for all functions f ∈ X as

‖f‖G = min
{

c > 0 | f

c
∈ cl conv(G ∪ −G)

}
.

Note that ‖.‖G is the Minkowski functional of the set cl conv(G ∪ −G) and so
it is a norm on the linear subspace of X containing those f ∈ X , for which
‖f‖G < ∞. It is easy to check that Theorem 1 implies that for a Hilbert space
(X, ‖.‖), G its bounded subset with sG = supg∈G ‖g‖, and f ∈ X ,

‖f − spann G‖2 ≤ (sG ‖f‖G)2 − ‖f‖2

n
. (1)

Lavretsky [9] noticed that the argument derived by Jones [3] and Barron [4]
can yield better rates, when applied to functions satisfying a certain angular
relationship with respect to G. For δ > 0, he defined

Fδ(G) =
{
f ∈ cl conv G | (∀h ∈ conv G, f �= h)(∃g ∈ G)

(
(f − g) · (f − h) ≤ −δ ‖f − g‖ ‖f − h‖)}

. (2)

Note that for all δ > 0, G ⊆ Fδ (indeed, for every f ∈ G setting g = f , we get
(f − f) · (f − h) ≤ −δ‖f − h‖ ‖f − f‖).

Lavretsky realized that the incremental construction developed by Jones and
Barron uses in each step a certain property of functions from the convex hulls,
which restated in his terminology says that conv G = F0(G). Strengthening the

544 V. Kůrková and M. Sanguineti

condition on the function f to be approximated by assuming that f ∈ Fδ(G) for
some δ > 0, he derived the following geometric estimate of rates of approximation
by sets convnG [9, Theorem 1].

Theorem 2 (Lavretsky). Let (X, ‖ · ‖) be a Hilbert space, G its bounded
symmetric subset containing 0, sG = supg∈G ‖g‖ and δ > 0. Then for every
f ∈ Fδ(G), and every positive integer n,

‖f − convn G‖2 ≤ (1 − δ2)n−1(s2
G − ‖f‖2) .

Unfortunately, the definition (2) of Fδ does not enable an easy verification
whether a function is in Fδ. Even, it is not clear whether sets Fδ contain other
functions than the elements of G. Only for finite-dimensional Hilbert spaces and
G satisfying certain conditions, Lavretsky [9, Theorem 2] described subsets of
conv G, called “affine interiors”, with the property that for each their element f
there exists δf ∈ (0, 1], for which f ∈ Fδ. For a convex subset M of a normed
linear space (X, ‖.‖) such that 0 ∈ M , Lavretsky defined its affine interior as

IAff (M) = {f ∈ M | (∃εf > 0)(∀h ∈ spanM)(‖h‖ < εf ⇒ f + h ∈ M}.

Theorem 3 (Lavretsky). Let (X, ‖ · ‖) be a finite-dimensional Hilbert space,
G its bounded symmetric subset such that 0 ∈ G and cardG ≥ dim X, and
sG = supg∈G ‖g‖. Then IAff (G) �= ∅ and for every f ∈ IAff (G), there exists
δf ∈ (0, 1] such that f ∈ Fδf

(G).

Thus under the assumptions of Theorem 3, for every f ∈ IAff (G) there exists
δf ∈ (0, 1] such that

‖f − convn G‖2 ≤ (1 − δ2
f)n−1(s2

G − ‖f‖2) . (3)

3 Geometric Rates of Variable-Basis Approximation

In this section, we show that for every function f in the convex hull of any
bounded subset G of any Hilbert space there exists δf ∈ (0, 1] such that (3)
holds. Thus we considerably extend Lavretsky’s result (Theorem 3) on functions
admitting geometric rates of approximation.

Theorem 4. Let (X, ‖.‖) be a Hilbert space, G its bounded subset, sG =
supg∈G ‖g‖. Then for every f ∈ conv G there exists δf ∈ (0, 1] such that for
every positive integer n

‖f − convn G‖2 ≤ (1 − δ2
f)n−1

(
s2

G − ‖f‖2
)
.

Proof. Let f =
∑m

j=1 aj gj be a representation of f as a convex combination
of elements of G with all aj > 0 and let G′ = {g1, . . . , gm}. We shall construct a
sequence of functions {fn | n = 1, . . . , m} and a sequence of positive real numbers

Geometric Rates of Approximation by Neural Networks 545

{δn | n = 1, . . . , m} such that for each n = 1, . . . , m, fn ∈ convnG and ‖f −
fn‖2 ≤ (1 − δn)n−1

(
s2

G − ‖f‖2
)
.

We start with choosing some gj1 ∈ G′ satisfying ‖f − gj1 || = ming∈G′ ‖f −
g‖ and we set f1 = gj1 . As

∑m
j=1 aj‖f − gj‖2 = ‖f‖2 − 2f · ∑m

i=1 ajgj +∑m
j=1 aj‖gj‖2 ≤ s2

G − ‖f‖2, we get ‖f − f1‖2 ≤ s2
G − ‖f‖2 and so the state-

ment holds for n = 1.
Assuming that we already have fn−1, we define fn. When fn−1 = f , we set

fn = fn−1 and the estimate holds trivially.
When fn−1 �= f , we define fn as the convex combination

fn = αnfn−1 + (1 − αn)gjn , (4)

with gjn ∈ G′ and αn ∈ [0, 1] chosen in such a way that for some δn > 0

‖f − fn‖2 ≤ (1 − δ2
n)n−1‖f − fn−1‖2.

First, we choose a suitable gjn and then we find αn depending on our choice of
gjn . Denoting en = ‖f − fn‖, we get by (4)

e2
n = α2

ne2
n−1 + 2αn(1 − αn)(f − fn−1) · (f − gjn) + (1 − αn)2‖f − gjn‖2. (5)

For all j ∈ {1, . . . , m}, set

ηj = − (f − fn−1) · (f − gj)
‖f − fn−1‖ ‖f − gj‖

(the definition is correct as now we are considering the case when f �= fn−1 and
we have assumed that all aj > 0 and thus for all j, f �= gj). Note that for all j,
ηj ∈ [0, 1] as it is the arccosine of the angle between the vectors f − fn−1 and
f − gj.

As f =
∑m

j=1 aj gj, we have

m∑

j=1

aj(f − fn−1) · (f − gj) = (f − fn−1) · (f −
m∑

j=1

ajgj) = 0.

Thus either (i) there exist some g ∈ G′, for which (f − fn−1) · (f − g) < 0 or (ii)
for all g ∈ G′, (f − fn−1) · (f − g) = 0.

We show that the second possibility (ii) implies that f = fn−1. Indeed, fn−1 ∈
convn−1G

′ and thus it can be expressed as fn−1 =
∑n−1

k=1 bkgk with all bk ∈ [0, 1]
and

∑n−1
k=1 bk = 1. If for all g ∈ G′, (f − fn−1) · (f − g) = 0, then ‖f − fn−1‖2 =

(f − fn−1) · (f − ∑n−1
k=1 bkgk) =

∑n−1
k=1 bk(f − fn−1) · (f − gk) = 0.

So in the case now considered, i.e., f �= fn−1, (i) holds and thus the subset
G′′ = {g ∈ G′ | (f − fn−1) · (f − g) < 0} is nonempty. Let gjn ∈ G′′ be chosen so
that ηjn = maxj=1,...,m ηj and set δn = ηjn . As G′′ �= ∅, we have δn > 0.

Set rn = ‖f − gjn‖. By (5) we get

e2
n = α2

ne2
n−1 − 2αn(1 − αn)δnen−1rn + (1 − αn)2r2

n. (6)

546 V. Kůrková and M. Sanguineti

To define fn as a convex combination of fn−1 and gjn , it remains to find
αn ∈ [0, 1], for which e2

n is minimal as a function of αn. By (6) we have

e2
n = α2

n

(
e2

n−1 + 2δnen−1rn + r2
n

) − 2αn

(
δnen−1rn + r2

n

)
+ r2

n. (7)

Thus
∂e2

n

∂αn
= 2αn

(
e2

n−1 + 2δnen−1rn + r2
n

) − 2
(
δnen−1rn + r2

n

)

and
∂2e2

n

∂2αn
= 2

(
e2

n−1 + 2δnen−1rn + r2
n

)
.

As now we are considering the case when f �= fn+1, we have en−1 > 0 and hence
∂e2

n

∂2αn
> 0. So the minimum is achieved at

αn =
δnen−1rn + r2

n

e2
n−1 + 2δnen−1rn + r2

n

. (8)

Plugging (8) into (5) we get

e2
n =

(1 − δ2
n)e2

n−1r
2
n

e2
n−1 + 2δnen−1rn + r2

n

<
(1 − δ2

n)e2
n−1r

2
n

r2
n

= (1 − δ2
n)e2

n−1.

Letk = max{n ∈ {1, . . . , m} | fn �= fn−1}. Setting δf = min{δn | n = 1, . . . , k},
we get by induction the upper bound

‖f − convn G‖2 ≤ (1 − δ2
f)n−1

(
s2

G − ‖f‖2
)

holding for all n (for n > m it holds trivially with fn = f). �

Note that we do not claim that every f ∈ conv G is an element of Fδf
(conv G)

for some δf > 0. In each step of our proof, we merely need a suitable angular
relationship for one element of conv G (the one which was constructed as the
approximant in the previous step) instead of all elements of conv G as in the
case of membership in Fδf

(conv G).
Inspection of the proof of Theorem 4 suggests the incremental procedure

(Fig. 1) constructing a sequence of approximants fn ∈ convnG for a function
f =

∑m
j=1 ajgj ∈ conv G.

Theorem 4 implies an estimate holding for all functions in spanG.

Corollary 1. Let (X, ‖.‖) be a Hilbert space, G its bounded subset, sG =
supg∈G ‖g‖, and f ∈ spanG. Then for every b > 0 with f ∈ conv(b(G ∪ −G))
there exists δf,b ∈ (0, 1] such that for every positive integer n

‖f − spann G‖2 ≤ (1 − δ2
f,b)

n−1
(
(sG b)2 − ‖f‖2

)
.

Proof. By Theorem 4, there exists δf,b ∈ (0, 1] such that for every positive
integer n, ‖f − convn(b(G ∪ −G))‖2 ≤ (1 − δ2

f,b)
n−1

(
(sG b)2 − ‖f‖2

)
. As ‖f −

spannG‖ ≤ ‖f − convn

(
b(G ∪ −G)

)‖ the statement follows. �

Note that we cannot extend Corollary 1 to bf = inf{b > 0 | f ∈ conv(b(G∪−G))}
as inf{δf,b | b > 0 & f ∈ conv(b(G ∪ −G))} might be equal to zero.

Geometric Rates of Approximation by Neural Networks 547

1. Initialization:

– choose gj1 ∈ {gj | j = 1, . . . , m} such that ‖f − gj1‖ = minj=1,...,m ‖f − gj‖;
– f1 = gj1

2. For n = 2, . . . , m − 1 :

(a) for j = 1, . . . , m, compute ηj := − (f−fn−1)·(f−gj)
‖f−fn−1‖ ‖f−gj‖

(b) if for j = 1, . . . , m one has ηj = 0, then

– f∗ := fn−1;

– n∗ := n − 1;
– end.

(c) else

– δn := max{ηj > 0 | j = 1, . . . , m};
– choose some gjn

with δn = ηjn
;

– compute en−1 := ‖f − fn−1‖;
– compute rn := ‖f − gjn

‖;
– compute αn := δnen−1rn+r2

n

e2
n−1+2δnen−1rn+r2

n
;

– fn := αn fn−1 + (1 − αn) gjn ;

– n := n + 1.

Fig. 1. Incremental procedure

4 Sets of Functions with Geometric Rates of
Approximation

Inspection of the proof of Theorem 4 shows that δf is not defined uniquely:
it depends on the choice of a representation of f =

∑m
j=1 ajgj as a convex

combination of elements of G and on the choice of functions gjn for those n with
more than one gj with the same arccosine δn. For each δ ∈ (0, 1] define

Aδ(G) =
{
f ∈ conv G | ‖f − spannG‖2 ≤ (1 − δ2)n−1

(
s2

G − ‖f‖2
) }

.

Theorem 4 implies that
conv G =

⋃

δ∈(0,1]

Aδ(G).

The following proposition shows that when G is an orthonormal basis, then
there exists a sequence of functions {hk} ∈ conv G such that each sequence
{δk}, for which hk ∈ Aδk

for all k, converges to zero exponentially fast. Thus
the estimate (1 − δ2

k)n−1
(
1 − ‖hk‖2

)
guarantees sufficiently small error only for

rather large n.

Proposition 1. Let (X, ‖.‖) be an infinite-dimensional separable Hilbert space
and G its orthornormal basis. Then for every positive integer k there exists hk ∈
conv G such that ‖hk‖ = 1√

2k
, ‖hk − convkG‖ ≥ 1

2
√

k
and for every δk ∈ (0, 1]

for which hk ∈ Aδk
(G),

δ2
k ≤ 1 − 5

1
k−1 e−

ln(k−1)
k−1 .

548 V. Kůrková and M. Sanguineti

Proof. Let G = {gi}. For each positive integer k define hk = 1/(2k)
∑2k

i=1 gi.
Then hk ∈ conv G and ‖hk‖ = 1/

√
2k. It is easy to see that ‖hk − spankG‖ =

1/(2
√

k). Thus by Theorem 4, 1/(4k) = ‖hk − spankG‖2 ≤ ‖hk − convkG‖2 ≤
(1 − δ2

k)k−1 (1 − 1/(2k)) . So

δ2
k ≤ 1 −

(
1

2(2k − 1)

) 1
k−1

≤ 1 −
(

1
5(k − 1)

) 1
k−1

= 1 − 5−
1

k−1 e−
ln(k−1)

k−1 .

�

For r > 0 we denote by Br(‖.‖) the ball of radius r centered at 0, i.e., Br(‖.‖) =
{f ∈ X | ‖f‖ ≤ r}.

Corollary 2. Let (X, ‖.‖) be an infinite-dimensional separable Hilbert space and
G its orthornormal basis. Then for every δ ∈ (0, 1], Aδ(G) is not convex and for
every r > 0, Br(‖.‖) � Aδ(G).

Proof. As G ⊆ Aδ(G), if Aδ(G) were convex, we would get Aδ(G) = conv G,
which contradicts Proposition 1. Inspection of its proof shows that for each r > 0,
there exists some hk ∈ conv G with ‖hk‖ = 1√

2k
< r and for each δk > 0 with

hk ∈ Aδk
, δk < δ. �

For a subset M of a normed linear space (X, ‖.‖) such that X = span M and a
positive real number ε, define the ε-interior of M in (X, ‖.‖) as

Iε(M) = {f ∈ M |(∀h ∈ X) (‖h‖ ≤ ε ⇒ f + h ∈ M)}.

It is easy to see that ∪ε>0Iε(M) = IAff (M).
The next proposition is an extension of Lavretsky’s result [9, Theorem 2] (here

stated as Theorem 3) on a relationship of affine interiors of certain subsets of
finite-dimensional Hilbert spaces and sets Fδ(G) .

Proposition 2. Let (X, ‖ · ‖) be a Hilbert space, G its bounded subset with
spanG = X and ε, δ > 0 be such that ε = 2sGδ. Then Iε(conv G) ⊆ Fδ(G).

Proof. To prove the statement by contradiction assume that there exist f ∈
Iε(conv G) such that f /∈ Fδ(G). Then there exists h ∈ conv G such that for all
g ∈ G, (f − g) · (f − h) > −δ‖f − g‖ ‖f − h‖. Hence h �= f and we have

(g − f) · f − h

‖f − h‖ < δ‖f − g‖ ≤ 2sGδ = ε

for all g ∈ G. So for all g =
∑m

i=1 aigi ∈ conv G, we get
(

m∑

i=1

aigi − f

)
· f − h

‖f − h‖ =
m∑

i=1

ai(gi − f) · f − h

‖f − h‖ < ε

m∑

i=1

ai = ε.

Thus for any g ∈ conv G

(g − f) · f − h

‖f − h‖ < ε. (9)

Geometric Rates of Approximation by Neural Networks 549

Since f ∈ Iε(conv G), f + ε f−h
‖f−h‖ ∈ conv G. Setting g = f + ε f−h

‖f−h‖ , we get

(g − f) · f − h

‖f − h‖ =
(

f + ε
f − h

‖f − h‖ − f

)
· f − h

‖f − h‖ = ε,

which contradicts (9). �

Corollary 3. Let (X, ‖·‖) be a finite-dimensional Hilbert space and G its bounded
subset with spanG = X. Then there exist r > 0 and δ ∈ (0, 1] such that for all
f ∈ Br(‖.‖), ‖f − convn G‖2 ≤ (1 − δ2)n−1

(
s2

G − ‖f‖2
)

.

Proof. Any symmetric convex set is the unit ball of the norm defined by its
Minkowski functional, so in particular conv(G ∪ −G) is the unit ball of a norm
on X . As in a finite-dimensional Hilbert space all norms are equivalent, there
exists some c > 0 such that Bc(‖.‖) ⊆ conv(G ∪ −G). So for every r > 0 and
ε > 0 such that r + ε ≤ c, Br(‖.‖) ⊆ Iε(conv(G ∪ −G)). Thus the statement
follows from Proposition 2 and Theorem 2. �

5 Discussion

We have described sets of functions, for which errors in approximation by sets
convnG converge to zero geometrically fast. Our results show that for all func-
tions in the convex hull of G, the Maurey-Jones-Barron’s upper bound
1
n

(
s2

G − ‖f‖2
)

can be improved by replacing the term 1
n with (1−δ2

f)n−1, where
δf ∈ (0, 1] is specific for each function to be approximated. Geometric upper
bounds on rates of approximation by computational models of the variable-basis
type provide a theoretical insight into capabilities of neural networks. Such es-
timates can be combined with characterizations of functions belonging the cor-
responding convex hulls (see, e.g. [11]). The incremental procedure in Fig. 1,
which was obtained from an inspection of the proof of Theorem 4, may repre-
sent a first step towards a design of learning algorithms for networks with a low
model complexity.

Acknowledgements

V. K. was partially supported by Project 1ET100300517 of the program “Infor-
mation Society” of the National Research Program of the Czech Republic and
the Institutional Research Plan AV0Z10300504. M. S. was partially supported
by PRIN grants from the Italian Ministry for University and Research, projects
“Models and Algorithms for Robust Network Optimization” and “New Algo-
rithms and Methodologies for the Approximate Solution of Nonlinear Functional
Optimization Problems in a Stochastic Environment”. Collaboration between
V. K. and M. S. was partially supported by the 2007-2009 Scientific Agreement
among University of Genova, National Research Council of Italy, and Academy of
Sciences of the Czech Republic, Project “Learning from data by neural networks
and kernel methods as an approximate optimization”.

550 V. Kůrková and M. Sanguineti

References

1. Pinkus, A.: N-widths in Approximation Theory. Springer, New York (1986)
2. Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire

d’Analyse Fonctionnelle, vol. I(12), École Polytechnique, Centre de Mathématiques,
Palaiseau (1980–1981)

3. Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and conver-
gence rates for projection pursuit regression and neural network training. Annals
of Statistics 20, 608–613 (1992)

4. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Trans. on Information Theory 39, 930–945 (1993)

5. Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approxi-
mation of real–valued Boolean functions by neural networks. Neural Networks 11,
651–659 (1998)

6. Kůrková, V., Sanguineti, M.: Bounds on rates of variable-basis and neural-network
approximation. IEEE Trans. on Information Theory 47, 2659–2665 (2001)

7. Makovoz, Y.: Random approximants and neural networks. J. of Approximation
Theory 85, 98–109 (1996)

8. Kůrková, V., Sanguineti, M.: Estimates of covering numbers of convex sets with
slowly decaying orthogonal subsets. Discrete Applied Mathematics 155, 1930–1942
(2007)

9. Lavretsky, E.: On the geometric convergence of neural approximations. IEEE
Trans. on Neural Networks 13, 274–282 (2002)

10. Kůrková, V.: Dimension-independent rates of approximation by neural networks.
In Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Control and
Signal Processing. The Curse of Dimensionality. Birkhäuser, Boston, pp. 261–270
(1997)

11. Kůrková, V.: High-dimensional approximation and optimization by neural net-
works. In: Suykens, J., Horváth, G., Basu, S., Micchelli, C., Vandewalle, J. (eds.)
Advances in Learning Theory: Methods, Models and Applications, Ch. 4., pp. 69–
88. IOS Press, Amsterdam (2003)

A Sensitive Metaheuristic for Solving

a Large Optimization Problem

Camelia-M. Pintea1, Camelia Chira1, D. Dumitrescu1, and Petrica C. Pop2

1 Babeş-Bolyai University, Cluj-Napoca 400084, Romania
2 North University, Baia-Mare 430122, Romania

{cmpintea,cchira,ddumitr}@cs.ubbcluj.ro, pop petrica@yahoo.com

Abstract. A metaheuristic for solving complex problems is proposed.
The introduced Sensitive Robot Metaheuristic (SRM) is based on the
Ant Colony System optimization technique. The new model relies on
the reaction of virtual sensitive robots to different stigmergic variables.
Each robot is endowed with a particular stigmergic sensitivity level en-
suring a good balance between search diversification and intensification.
Comparative tests are performed on large-scale NP-hard robotic travel
problems. These tests illustrate the effectiveness and robustness of the
proposed metaheuristic.

1 Introduction

As real world problems demand increasing autonomies and more complex arti-
ficial systems, engineers often look to nature for a possible model. Social insects
with their limited structures and communication capabilities coordinate to con-
struct large and complex nests [2]. They provide potential powerful models for
collective robotic systems.

Stigmergic nest-building techniques used by many types of social insects are
an example of adaptive behavior that can be very useful in coping with complex-
ity and solving large scale computational problems. The construction of meta-
heuristics with several classes of specialized robots has the potential to produce
solutions to actual NP-hard problems.

The aim of this paper is to provide an effective metaheuristic to address com-
plex problems. The introduced technique is called Sensitive Robot Metaheuristic
(SRM) and combines elements of Ant Colony System (ACS) [3] and autonomous
mobile robots. The model relies on a collection of robots each of them being en-
dowed with a stigmergic sensitivity level that allows it to detect and react to
different stigmergic variables. SRM is applied to solve a robotic travel problem
that refers to the minimization of the drilling operations time on printed circuit
boards.

Extensive computational experiments and comparison of the proposed SRM
with Nearest Neighbor (NN), a composite heuristic [11], a Random Key Genetic
Algorithm (RKGA) [12] and Ant Colony System (ACS) for GTSP [10] indicate
the potential of the introduced metaheuristic.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 551–559, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

552 C.-M. Pintea et al.

2 Sensitive Stigmergic Robots

The proposed metaheuristic is called Sensitive Robot Metaheuristic (SRM) and
aims to address complex NP-hard problems. This section introduces the concept
of stigmergic autonomous robot and describes the proposed metaheuristic.

2.1 Stigmergy and Autonomous Robots

The proposed metaheuristic combines the concepts of stigmergic communication
and autonomous robot search. Stigmergy occurs when an action of an insect is
determined or influenced by the consequences of the previous action of another
insect [2].

Stigmergy [6] provides a general mechanism that relates individual and colony-
level behaviors: individual behavior modifies the environment, which in turn
modifies the behavior of other individuals. The behavior-based approach to de-
sign intelligent systems has produced promising results in a wide variety of areas
including military applications, mining, space exploration, agriculture, factory
automation, service industries, waste management, health care and disaster in-
tervention. Autonomous robots can accomplish real-world tasks without being
told exactly how.

Researchers try to make the coupling between perception and action as direct
as possible. This aim remains the distinguishing characteristic of behavior-based
robotics. The proposed SRM technique attempts to address this goal in an in-
telligent stigmergic manner.

2.2 Sensitive Robots

A stigmergic robot action is determined by the environmental modifications
caused by prior actions of other robots. Quantitative stigmergy regards stimulus
as a continuous variable. The value of such a variable modulates the intensity
or probability of future actions. Qualitative stigmergy [2,13,14] involves discrete
stimulus. In this case the action is not modulated but switched to a different
action, [2,13,14].

Qualitative stigmergic mechanism better suits our aims since robot stigmer-
gic communication does not rely on chemical deposition. The robot communica-
tion relies on local environmental modifications that can trigger specific actions.
”Micro-rules” define action-stimuli pairs for a robot. The set of all micro-rules
used by a homogeneous group of stigmergic robots defines their behavioral reper-
toire and determines the type of structure the robots will create [2,13,14].

Within the proposed model, Sensitive robots refers to artificial entities with
a Stigmergic Sensitivity Level (SSL) which is expressed by a real number in the
unit interval [0, 1].

Robots with small SSL values are highly independent and can be considered
environment explorers. They have the potential to autonomously discover new

A Sensitive Metaheuristic for Solving a Large Optimization Problem 553

promising regions of the search space. Therefore, search diversification can be
sustained.

Robots with high SSL values are able to intensively exploit the promising
search regions already identified. In this case the robot behavior emphasizes
search intensification. The SSL value can increase or decrease according to the
search space topology encoded in the robot experience.

3 Sensitive Robot Metaheuristic for Drilling Problem

The proposed Sensitive Robot Metaheuristic (SRM) can be implemented using
two teams of sensitive robots. Robots of the first team have small SSL val-
ues. These sensitive-explorer robots are called small SSL-robots (sSSL) and can
sustain search diversification. Robots of the second team have high SSL val-
ues. These sensitive-exploiter robots called high SSL-robots (hSSL) intensively
exploit promising search regions already identified by the first team.

SRM is applied for solving a robotic travel problem called drilling problem.
This problem can be viewed as an instance of the Generalized Traveling Salesman
Problem.

3.1 Generalized Traveling Salesman Problem

Let G = (V, E) be an n-node undirected graph whose edges are associated with
non-negative costs. We assume that G is a complete graph. Let V1, ..., Vp be a
partition of V into p subsets called clusters. The cost of an edge (i, j) ∈ E is cij .

The generalized traveling salesman problem refers to finding a minimum-cost
tour H spanning a subset of nodes such that H contains exactly one node from
each cluster Vi, i ∈ {1, ..., p}. The problem involves two related decisions: choos-
ing a node subset S ⊆ V , such that |S ∩ Vk| = 1, for all k = 1, ..., p and finding
a minimum cost Hamiltonian tour in S.

3.2 Drilling Problem

The considered robotic travel problem refers to minimizing the drilling opera-
tions time on a large printed circuit boards (Figure 1).

Fig. 1. A Printed Circuit Board

554 C.-M. Pintea et al.

Fig. 2. A schematic representation of the drilling problem on a Printed Circuit Board

The process of manufacturing the printed circuit board (PCB) is difficult and
complex. Each layer of the PCB requires the ability of one layer to connect to
another layer achieved through drilling small holes. These holes require precision
and are done with the use of an automated drilling machine driven by computer
programs.

The large drilling problem is a particular class of the generalized traveling
salesman problem involving a large graph and finding the minimal tour for
drilling on a large-scale printed circuit board (Figure 2.).

3.3 SRM for Solving a Large Drilling Problem

Initially the robots are placed randomly in the search space. In each iteration
a robot moves to a new node and the parameters controlling the algorithm are
updated.

A robot chooses the next move with a probability based on the distance to the
candidate node and the stigmergic intensity on the connecting edge. Each time
unit evaporation takes place. This is to stop the stigmergic intensity increasing
unboundedly.

In order to prevent robots visiting a cluster twice in the same tour a tabu
list [3] is maintained. The stigmergic value of an edge is denoted by τ and the
visibility value is η.

Let us consider Jk
i to be the unvisited successors of node i by robot k and

u ∈ Jk
i. The sSSL robots probabilistically choose the next node. Let i be the

current robot position (the current node). Similarly to the ACS technique [3],
the probability of choosing u as the next node is given by:

pk
iu(t) =

[τiu(t)][ηiu(t)]β

Σo∈Jk
i
[τio(t)][ηio(t)]β

, (1)

where β is a positive parameter, τiu(t) is the stigmergic intensity and ηiu(t) is
the inverse of the distance on edge (i, u) at moment t.

The membership of robots to one of the two teams is modulated by a random
variable uniformly distributed over [0, 1]. Let q be a realization of this random
variable and q0 a constant, 0 ≤ q0 ≤ 1. The sSSL robots are characterized by
the inequality q > q0 while for the hSSL robots q ≤ q0 holds.

A Sensitive Metaheuristic for Solving a Large Optimization Problem 555

A hSSL-robot uses the information supplied by the sSSL robots. hSSL robots
choose the new node j in a deterministic manner according to the following rule:

j = argmaxu∈Jk
i
{τiu(t)[ηiu(t)]β}, (2)

where the value of β determines the relative importance of stigmergy versus
heuristic information.

The trail stigmergic intensity is updated using the local stigmergic correction
rule:

τij(t + 1) = q2
0τij(t) + (1 − q0)2 · τ0. (3)

Only the elitist robot that generates the best intermediate solution is allowed
to globally update the stigmergic value. The elitist robot can take advantage of
global knowledge of the best tour found to date and reinforce this tour in order
to focus future searches more effectively. The global updating rule is:

τij(t + 1) = q2
0τij(t) + (1 − q0)2 · Δτij(t), (4)

where Δτij(t) is the inverse value of the best tour length. In the updating rules,
q0 is reinterpreted as the evaporation rate.

The robots work one by one in each step. A run of the algorithm returns the
shortest tour found. Termination criteria is given by a given number of iterations
(Niter).

The description of the Sensitive Robot Metaheuristic for solving the drilling
problem is depicted in Algorithm 1.

Algorithm 1. Sensitive Robot Algorithm
Begin
Set parameters, initialize stigmergic values of the trails;
For k=1 to m do
Place robot k on a randomly chosen node
from a randomly chosen cluster;

For i=1 to Niter do
Each robot incrementally builds a solution
based on the autonomous search sensitivity;
sSSL robots are characterized by the inequality q>q0
while the others are considered hSSL robots;
The sSSL robots probabilistically choose
the next node using (1)
A hSSL-robot uses the information supplied by
the sSSL robots to find the new node j using (2);
A local stigmergic updating rule (3);

A global updating rule is applied by the elitist robot (4);
Endfor

End

Let us consider n to be the number of nodes, e the number of edges and p
the number of clusters in the input graph, m the number of robots and NC the

556 C.-M. Pintea et al.

number of cycles. The complexity of this algorithm leads to O(p · n · m · NC),
[3]. For an exact algorithm obtained by trying all the (p − 1)! possible cluster
sequences [10], the complexity is O((p − 1)!(ne + nlogn)).

4 Numerical Experiments

The validation of SRM concerns the minimization of the drilling operations time
on printed circuit boards.

The numerical experiments are based on the TSP library [1] that provides
optimum objective values for each problem. The drill problems with Euclidean
distances have been considered.

In the SRM algorithm the values of the parameters were chosen as follows:
β = 5, τ0=0.01, q0 = 0.9. The parameters were chosen based on [3,10]. The
total number of robots considered is 25. The sensitivity level q for hSSL robots
is considered to be distributed in the interval (q0, 1), while sSSL robots have a
sensitivity level in the interval (0, q0).

The solutions of all algorithms represent the average of five consecutive runs
for each problem. Termination criteria are given by the maximum of 200 trials
and 100 tours.

Table 1 illustrates SRM results after five consecutive runs of the algorithm.
To divide the set of nodes into subsets we used the procedure proposed in [4].
This procedure sets the number of clusters nc = [n/5], identifies the nc farthest
nodes from each other (called centers) and assigns each remaining node to its
nearest center.

The program is implemented in java and run on a AMD Athlon 2600+,
333Mhz with 2GB memory.

Table 1. Sensitive Robotic Metaheuristic results for five runs. The table shows the
values of the reported optimum values [1], the minimum, maximum and the mean
value of SRM after five runs of the algorithm. The number of the optimum values
within the specified number of runs are also shown.

Drilling Reported No. Mean Minimum Maximum
Problem optimum optimum value value value

32U159 22664 5 22664 22664 22664
40D198 10557 5 10557 10557 10557
84FL417 9651 1 9654.4 9651 9657
89PCB442 21657 2 21659.6 21657 21662

To evaluate the performance of the proposed algorithm, the SRM has been
compared to Nearest Neighbor (NN) [11], a composite heuristic (GI3) [11], a
Random Key Genetic Algorithm (RKGA) [12] and Ant Colony System (ACS)
for GTSP [10]. The results of these algorithms for the average of five consecutive
runs for each problem have been considered.

A Sensitive Metaheuristic for Solving a Large Optimization Problem 557

In the Nearest Neighbor algorithm the rule is always to go next to the near-
est as-yet-unvisited location. The corresponding tour traverses the nodes in the
constructed order. The composite heuristic GI3 has three phases: the construc-
tion of an initial partial solution, the insertion of a node from each non-visited
node-subset, and a solution improvement phase, [11].

The Random Key Genetic Algorithm combines a genetic algorithm with a lo-
cal tour improvement heuristic. Solutions are encoded using random keys, which
circumvent the feasibility problems encountered when using traditional GA en-
codings, [12]. The Ant Colony System for GTSP has been introduced to solve the
Generalized Traveling Salesman Problem (GTSP) [10]. The basic idea of ACS
for GTSP is that of simulating the behavior of a set of agents that cooperate to
solve a problem by means of simple communications.

The comparative results are shown in Table 2.

Table 2. Sensitive Robotic Metaheuristic (SRM) versus other algorithms: Nearest
Neighbor (NN), a composite heuristic GI3, [11], a Random Key Genetic Algorithm
(RKGA), [12] and Ant Colony System (ACS) for GTSP. (Mean values).

Drilling Reported NN GI3 RKGA ACS SRM
Problem Optimum

32U159 22664 26869 23254 22664 22729.2 22664
40D198 10557 12038 10620 10557 10575.2 10557
84FL417 9651 10553 9697 9656 9766.2 9654.4
89PCB442 21657 26756 22936 22026 22137.8 21659.6

A statistical analysis is performed in the following. The Expected Utility Ap-
proach [5] technique has been employed to determine the most accurate heuristic.
Let x be the percentage deviation of the heuristic solution and the best known
solution of a particular heuristic on a given problem:

x =
heuristicsolution − bestknownsolution

bestknownsolution
× 100.

The expected utility function can be: γ − β(1 − bt)−c, where γ = 500, β = 100
and t = 0.05. b and c are the estimated parameters of the Gamma function.
Because four problems have been used for testing, the following notations are
used for Table 3: x = 1

4

∑4
j=1 xj , s2 = 1

4

∑4
j=1(xj − x)2, b = s2

x , c = (x
s)2.

The last column provides the rank 1 to 5 of the entries. As indicated in
Table 3, SRM has Rank 1 being the most accurate algorithm within the compared
algorithms.

The compared results from Table 2 indicated that the newly introduced SRM
algorithm outperforms the other heuristics considered.

The new model has to be improved in terms of execution time. Potential im-
provements regard the parameter values or an efficient combination with other

558 C.-M. Pintea et al.

Table 3. Statistical analysis. Calculations for the expected utility function for the
compared heuristics.

Heuristic x s2 b c γ − β(1 − bt)−c Rank

NN 16.5 31.25 1.8939 8.7122 262.0747 5
GI3 2.3956 4.8206 2.0123 1.1905 386.5441 4
RKGA 0.4385 0.5558 1.2675 0.3459 397.7087 2
ACS 0.97 0.6783 0.6993 1.3871 394.9359 3
SRM 0.01 0.0001 0.01 1.0000 399.9499 1

algorithms. Another way to improve the algorithm is making the robots working
full parallel in inner loop of the algorithm.

In the future we will perform also other numerical experiments to assess the
performance and speed of the new algorithm including Lin-Kernighan algorithm
and its variants(e.g. iterated Lin-Kernighan [8,9] and Helsgauns variant [7]).

5 Conclusions

A bio-inspired robot-based model for complex travel robotic problems is pro-
posed and tested, each robot with a stigmergic sensitivity level that facilitates
the exploration (by low-sensitive robots) as well as exploitation (by high-sensitive
robots) of the search space.

The computational results of the proposed Sensitive Robot Metaheuristic
(SRM) for the drilling problem, are good and competitive in both solution qual-
ity and computational time with the existing heuristics from the literature. This
result is furthermore certified by the statistical analysis performed based on
calculations for the expected utility function for the compared heuristics.

References

1. Bixby, B., Reinelt, G.: (1995),
http://nhse.cs.rice.edu/softlib/catalog/tsplib.html

2. Bonabeau, E., Dorigo, M., Tehraulaz, G.: Swarm intelligence from natural to arti-
ficial systems. Oxford University Press, Oxford, UK (1999)

3. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning ap-
proach to the Traveling Salesman Problem. IEEE Trans. Evol. Comp. 1, 53–66
(1997)

4. Fischetti, M., Gonzales, J.J.S., Toth, P.: A Branch-and-Cut Algorithm for the
Symmetric Generalized Travelling Salesman Problem. Oper. Res. 45(3), 378–394
(1997)

5. Golden, B.L., Assad, A.A.: A decision-theoretic framework for comparing heuris-
tics. European J. of Oper. Res. 18, 167–171 (1984)

6. Grassé, P.-P.: La Reconstruction du Nid et Les Coordinations Interindividuelles
Chez Bellicositermes Natalensis et Cubitermes sp. La Thorie de la Stigmergie:
Essai dinterpretation du Comportement des Termites Constructeurs. Insect Soc. 6,
41–80 (1959)

http://nhse.cs.rice.edu/softlib/catalog/tsplib.html

A Sensitive Metaheuristic for Solving a Large Optimization Problem 559

7. Helsgaun, K.: An effective implementation of the lin-kernighan TSP heuristic. Eu-
ropean Journal of Operations Research 126, 106–130 (2000)

8. Johnson, D.S., McGeoch, L.A.: Local Search in Combinatorial Optimization, chap-
ter The Traveling Salesman Problem: A Case Study in Local Optimization, pp.
215–310. John Wiley & Sons, New York (1997)

9. Johnson, D.S., McGeoch, L.A.: The Traveling Salesman Problem and its Variations,
chapter Experimental Analysis of Heuristics for the STSP, pp. 369–443. Kluwer
Academic Publishers, Dordrecht (2002)

10. Pintea, C-M., Pop, C.P., Chira, C.: The Generalized Traveling Salesman Problem
solved with Ant Algorithms. J.UCS (in press, 2007)

11. Renaud, J., Boctor, F.F.: An efficient composite heuristic for the Symmetric Gen-
eralized Traveling Salesman Problem. Euro. J. Oper. Res. 108(3), 571–584 (1998)

12. Snyder, L.V., Daskin, M.S.: A Random-Key Genetic Algorithm for the Generalized
Traveling Salesman Problem. INFORMS, San Antonio, TX (2000)

13. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial Life 5(2),
97–116 (1999)

14. White, T.: Expert Assessment of Stigmergy: A Report for the Department of Na-
tional Defence,
http://www.scs.carleton.ca/∼arpwhite/stigmergy-report.pdf

http://www.scs.carleton.ca/~arpwhite/stigmergy-report.pdf

Domain Name System as a Memory and
Communication Medium

Dušan Bernát

Institute of Computer Systems and Networks,
Faculty of Informatics and Information Technology, STU Bratislava,

Ilkovičova 3, 842 16 Bratislava, Slovakia
dusan.bernat@fiit.stuba.sk

Abstract. This article describes the way how some amount of informa-
tion can be stored into DNS, particularly in the cache of DNS server.
Then it can be retrieved back, possibly by another host in the network.
Based on this principle we can construct a communication channel, hid-
den in the usual traffic, or a memory medium. Considering this kind
of media, some basic characteristics and limits, like capacity, transfer
speed, error rate, persistence of information, etc., are discussed here.
Simple algorithm deciding whether a bit in the memory has been set or
not was proposed and implemented. Its performance and optimal setting
was examined. The results show that under some circumstances error
rates about 0.003, when retrieving the information, can be achieved.

Keywords: DNS, cache, security, covert channel, memory.

1 Introduction

Idea of communication between processes sharing common cache has appeared
in [1]. It was based on measuring access time of the processor cache and the
difference for cached and uncached addresses. This approach can be generalised
to other types of shared cache (not only hardware cache of processor). Reference
to DNS cache appeared in [2] and [3]. Based on these ideas we have proposed
and implemented algorithm, which proved the ability to transfer some amount
of information between processes on different subnetworks. It is based entirely
on the response time examination and does not consider content of the DNS
response. We have also analysed properties of the algorithm and find the opti-
mal setting of algorithm parameters minimising error rate. This value strongly
depends on server type and configuration as well as variety of network condi-
tions. As a result, dependency of error rate on the parameter, perhaps drawn
in a graph, is an unique fingerprint of each DNS server. Nevertheless it was not
our intention to provide complete analyses of all possible factors. The aim is just
to show that the communication in this way is possible and that the described
algorithm is useful for examining some of the DNS server properties.

First a brief summary of basic DNS properties and principles is given, as well
as a description of memory model. Details about the algorithm and properties

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 560–571, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Domain Name System as a Memory and Communication Medium 561

of resulting communication media follow. Finally we provide results based on
measurements for a couple of name servers and its respective error rates.

1.1 Domain Name System

As people usually prefer using some symbolic name rather than numeric address,
we need some mechanism for translating between these two representations. In
the Internet, Domain Name System (DNS) serves for this purpose. It is exten-
sible, hierarchical, distributed system which provides host or domain name to
address mapping as well as some other functions (e.g. denotes mail exchanger
for the domain).

A domain name consists of several parts delimited by the dot. Not only hier-
archy of names may reflect organisational structure of companies or institutions,
but also the address name space is distributed among corresponding DNS servers
in hierarchical manner. Consequently, several name servers may be involved in
resolution of a single name. In order to limit the traffic among name servers and
improve the response time for DNS requests, caching in DNS is widely deployed [4].

If the required record is stored in the cache (or if the server is authoritative
for given name), server responds immediately. Otherwise, some other server has
to be consulted (regardless of iterative or recursive approach). Each record in
the cache has specified a time to live (TTL). Records older than its TTL must
not be used again. They are released from the cache and must be obtained from
other servers. This provides the only coherence mechanism for DNS cache. If
someone changes record in the authoritative server, its new value is not visible
until cached record expires. Thus the TTL value makes a trade off between
performance and update period. Although RFC 1034 says “Access to information
is more critical than instantaneous updates or guarantees of consistency” [4],
requirements of mobile applications and dynamic DNS tend to decreases TTL
value of corresponding records significantly.

There is also substantial amount of requests for non-existent domain names,
resulting in name error or no data error. Caching these negative answers, i.e.
the knowledge that a name does not exist, can decrease the traffic and reduce
the response time too. Hence RFC 2308 proposed the negative caching of DNS
queries not to be optional [6]. This mechanism and the fact that cache is shared
among all clients allowed to access the server, provide basis for construction of
a potentially hidden communication channel.

1.2 Memory Model

Storing of information is fundamental to all computing systems. Memory medium
(M) can be usually viewed as a function1, i.e. a set of pairs, where the first part is
an address and the second one is a value bound to this address M ≡ {(ai, vi); ∀i ∈
I}. Perhaps there are some exceptions, e.g. auto-associative memory, which an-
swers the data based upon incomplete input value, without explicitly specified

1 Moreover, it is a sequence, as the address space (i.e. the domain) is ordered.

562 D. Bernát

address. We restrict further considerations to practical cases of finite memory,
where |I| ∈ �. Moreover the memory address space A ≡ ({ai; ∀i ∈ I}, <), repre-
sented by ordered set of all addresses, as well as the value range V ≡ {vi; ∀i ∈ I},
is usually constituted by a continuous integer region, starting from zero with the
length equal to some power of two. However, in general, we can think of address
space and value range as arbitrary sets.

To operate the memory we need some methods to store and read data values
from particular address. We denote this functions

read(a) → vi, i : ai = a,

and
write(a, v), vi := v, i : ai = a.

If the memory medium is shared among processes and the read and write op-
erations can be performed by different ones, exchange of information, i.e. com-
munication, is possible. It would be nice if we always can read the same value
which we have written before under particular address. But in reality, we can
occasionally observe that retrieved value doesn’t match the original one. If the
number of mismatched write and read operations performed on certain address
during N read-write cycles is denoted e, then we say that error rate E is

E =
e

N
.

We are going to consider some other characteristics of memory and its physical
implementation later.

1.3 Covert Channel

Communication in an unusual way, using a shared medium which was not in-
tended for this purpose, possibly breaking security policy, is typical character-
istics of a covert channel. It is not only hiding the data to be transferred, but
also the fact that there is any communication between the two processes. DNS
cache of a server, willing to accept connections from the outside world, provides
appropriate shared medium. If one process can force the record of particular
domain name to be loaded into the server cache and another process, possibly
running on another host in the network, can find this out, hidden communication
is possible.

Any caching name server can be used, without the need to change its configu-
ration or take control over it. Communicating processes sends only regular DNS
requests to specified server. Since such a communication is realised indirectly via
some server, communicating processes need not to know about their network (IP)
addresses. Rather the domain name is used in the role of address, where we can
store one bit of information. The record for this name is either cached or not. Nev-
ertheless, the two communicating processes must be aware of common address
space, i.e. the sequence of domain names, beforehand. So they have to exchange
the information about which addresses will be used throughout the transfer.

It is also possible to create a tunnel by inserting data into the fields of DNS
protocol request and response packets. But this is outside the scope of this article.

Domain Name System as a Memory and Communication Medium 563

2 Implementation of Memory Algorithm

2.1 Principle

To create a memory medium, we need a realisation of our read and write
methods. If we make a standard DNS query to a server which is not authoritative
for requested record, it must either search for corresponding record on another
server (recursive) or replies with a name of server which the client should contact
instead (iterative). Anyway, communication with other servers is required. We
can measure the time interval between sending the query and obtaining the
response. In typical occasion this may range from milliseconds to seconds. To
reduce the time needed to serve subsequent requests for the same name, caching
name server can store the record it the cache. Now if we send the same request
again, response time may be significantly, and measurably, lower.

Implementation of write operation is straightforward. It simply sends DNS
request when the bit has to be set, and doesn’t send any request for the bit which
is left unset. The read operation always performs two consecutive requests. Then
it has to decide whether the difference in response times (speedup) is caused by
storing the record into the cache meanwhile. Otherwise it is caused by a random
delay while both replies were served from the cache (possibly due to previous
write). We can agree that a bit has been set, if the two times are similar, i.e.
difference is smaller than some sufficiently small constant value |t1 − t2| < D.
Alternatively, we can check how many times is the second response faster than
the first one. This is measured by the ratio t2 · M < t1. We have chosen the
second approach.

Note that there are other ways, some of them perhaps more reliable, to find
out whether record has been cached. For more information please see [2], [3].
Algorithm we proposed allows us to investigate some interesting properties of
DNS system, thought it is not the best design for real data transfers.

2.2 General Properties of Memory

Capacity. Memory capacity in our model is equal to number of elements in the
address space multiplied by amount of information stored in each value. Thus
we have

CM = |A| · log2 |V |.
Here we have the set of addresses equivalent to all legitimate domain names. It
is described in RFC 1034, chapter 3.1 Name space specifications and terminology
[4]. Domain names are de facto case insensitive, restricted to 255 ASCII char-
acters in length and neighbouring nodes in hierarchy cannot be identical. Some
other limits and details may be found in RFC 1035 [5]. Anyway, the address
space seems to be for all practical purposes inexhaustible2, regardless of the fact
that each address points only to a single bit. On the other hand, the address
itself needs several bits to be encoded as we need to communicate the address
2 Number of possible strings with length 255 would give a rough approximation.

564 D. Bernát

space to the other processes before we can transfer the data. This may seem
ineffective, but fortunately we can encode large continuous blocks of addresses
very efficiently.

The total range of address space is limited by several factors. If we want
our communication not to be disturbed by regular DNS traffic, we must chose
addresses which are not likely to be used on particular DNS server. Furthermore,
if we decide to use negative caching [6], address space is restricted to nonexistent
domain names. And if we choose to use reverse records only3, then our address
space shrinks rapidly to the set of legitimate IP addresses. Note that there is a
lack of free IPv4 addresses in the past years.

From the practical viewpoint, the capacity is limited by the amount of memory
which is the server willing to allocate for cache. Naturally, this is implementation
dependent. However, the servers usually provide space for at least few tens of
thousands of records. Moreover, our address space can be split and deployed on
several DNS servers. Thus we can increase available space and in the same time
make the detection harder.

Persistence of Information. Each record stored in DNS cache has attached
the TTL value, which is a 32-bit integer4 [5]. After specified amount of seconds,
record expires and must not be used again [4]. As we have already mentioned,
the specification of DNS protocol prefers accessibility over consistency of infor-
mation. This yields relatively high values of TTL (in range of days or weeks). On
the other hand, when we make a change in DNS record, we don’t want to wait
a long time, until all cached records expires. This is especially true for applica-
tions with mobile addresses or temporal names (e.g. assigned by DHCP). Thus
we can usually find a default server TTL ranging from 1 or 3 hours to several
days. For changing records the value is about 10 minutes or even less, minute or
two. Stable, well known and long running names may have their records TTL
as high as few weeks. Default TTL value on the server applies also to negative
responses stored in the cache. Actual value for given server can be measured or
simply read from DNS response [7].

Of course, this has several implications for our memory medium. If we want
to store the information for longer time than is the minimal TTL value, it has
to be written again, just when the previous records expired. To accomplish this
some synchronisation mechanism would be useful, as it follows that reading the
information when it is being renewed, or just before it is renewed, yields invalid
results. This is a nice analogy to DRAM (Dynamic Random Access Memory)
technology widely used in computer operation memory, which needs a regular
read or refresh cycle (during which each memory location is addressed) in order
to retain the information.

Another point is that information in the cache is destroyed while it is read.
After read operation completes on a subset of address space, all records corre-
sponding to names within this subset are present in the cache. So subsequent
3 Names within the domain .IN-ADDR.ARPA.
4 Maximum TTL value spans over 60 years. Zero value means that record should not

be cached.

Domain Name System as a Memory and Communication Medium 565

read cannot recognise what was written into the cache. This feature resembles
quantum mechanical computing systems. In some applications (e.g. security or
authentication) the read-once behaviour may be quite useful. However, if we
could look inside the server carefully, we would see that age value for original
records stored during former write operation doesn’t match the value for records
cached during later read. After the original records expire, the information ap-
pears again, but in inverted manner.

The write operation behaves similarly. It destroys (sets to one) data in all
processed addresses. Although this read-once/write-once behaviour may be im-
practical for general purpose memory it is quite usual when we consider a com-
munication channel. A bit just placed into the medium (whether it is wire, optics
or something else) cannot be reverted. But we can achieve this using appropriate
higher level protocol which will resend new value if needed.

If we need to store the information in DNS cache for longer time, we have
to choose the server with high value of default TTL, or to read or refresh it
regularly. The record stored in cache may also be released before expiration if
the server is heavily loaded (or flooded) and needs space in the cache for new
records. Server restart destroys all of its content as well.

Access Time. It always takes some time to store or retrieve information from
the memory. Here it depends mainly on the time of DNS request processing.
If the average response time for uncached domain names is tu seconds and the
probability of occurrence of symbol 1 is p, than we will need Tw = N · tu · p
seconds to write a message N bits long, assuming that all of N operations are
executed sequentially.

Although several DNS requests per one bit will be always needed, the through-
put can be increased by launching several DNS requests in parallel by indepen-
dent threads. Thus we can eliminate the process blocking while waiting for par-
ticular response. Moreover, we would not need to block on waiting for the result
of write request, if for some reason the error status doesn’t matter. Thought
in principle we can access all addresses of our memory in one instant (there are
no dependencies imposed by DNS protocol) in reality we are always limited (in
lower layers) by number of threads we can run. Also the server cannot answer
at once when it is flooded with multiple requests. In the same time, this will
generate more unusual communication which is more likely to be detected. This
is the usual trade-of between transfer speed and visibility.

Nevertheless DNS response time per request ranges from milliseconds to sec-
onds (depending on the server setting and network conditions) and sequential
writing of 1kB block can take about ten minutes.

Read operation takes Tr = N · [(1 − p) · tu + (1 + p) · tc]. For the optimal case
p = 0.5, where each symbol bears one bit of information, we get Tw = N/2 · tu
and Tr = N/2 · (tu + 3 · tc). Thus if access to cached records is M times faster,
then read operation takes 1 + 3/M times longer than the write,

Tr =
(

1 +
3
M

)
· Tw.

566 D. Bernát

If the response times of cached and uncached record tc and tu respectively are
constant and known, it should be possible to make decision in read operation
based only on one response time, thus reducing overall read time to Tr1 =
N/2 · (tu + tc), yielding Tr1 = Tw · (1 + 1

M

)
. But the assumption need not to be

met in general, as the response time includes erratic network delay.
Observed delay of DNS response may have several reasons. If the server which

we are asking doesn’t have required record for abc.example.com, but knows that
name of another server in hierarchy which should know about it, is ns2.dns.net,
the name of this server must be resolved, before the original resolution process
can continue. This can be avoided by providing glue5 for ns2.dns.net. However,
if the glue is missing in the server configuration, resolution takes additional time
to resolve name of ns2.dns.net. Moreover, some older implementations of DNS
server (BIND 8.2.x) encounter problem resolving subsequent requests without a
glue. In BIND 8.3.0, if a glue for the server ns2.dns.net is missing, it will be re-
solved, but server doesn’t reply to the original request for abc.example.com. Just
after resolver times out, it resends its original request again. This time the ad-
dress of ns2.dns.net is present in the cache, hence request for abc.example.com
can be completed. But resolver time out period can take several seconds. If the
server configuration has more levels of gluelessness than the number of times the
resolver resends the query after time out, the name could not be resolved at all,
thought it is reachable. This issue was pointed out by Bernstein in [8] and also
recognised by others, e.g. [9].

3 Measurements and Results

3.1 Response Analyses

We have implemented program, with asynchronous read and write operations
as described in Section 2.1. It generates a random block of data D which is then
scattered over the defined address space. Subsequently the block is read back,
bit by bit, from the same address space and all response times are saved. Finally,
the error rate is evaluated for a parameter values M ranging over some interval.
This gives us the graph of E(M) for particular server (assuming that whole
address space is located in one server). This procedure was repeated typically
1000 times, for blocks with length N varying from one to 64 bytes on various
servers.

Evaluating the relational expression

B1(M, t1, t2) ≡ ¬(t2 · M < t1)

for given value of parameter M and for all pairs of measured response times
(t1, t2) respectively, gives the read data block

Dr(M) ≡ (B1(M, t1[i], t2[i]))
N
i=1 .

5 Glue is the address of referred server, which should be stored in server config, in
order to avoid additional requests.

Domain Name System as a Memory and Communication Medium 567

Simply put, B1 is true, and evaluates to 1, if measured responses corresponds to
reading value 1 from memory for given value of parameter M . It evaluates to 0
otherwise. Now we can compute the error rate as follows:

E(M) =
|D, Dr(M)|H

N
,

where |., .|H stands for Hamming distance6.

0 1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M

E
(M

)

Fig. 1. Error rate as a function of algorithm parameter. Block size is 1 byte, 1000
repetitions.

We can see the graph of error rate as a function of parameter M in the
figure 1. We can readily recognise three regions there. For M < 1 the relation
B1 is satisfied only when the second response time is greater than the first one.
Clearly this makes no sense as it breaks design of the algorithm and it can
randomly happen only as a result of various delays or errors in the network.
Thus

M < 1 ⇒ B1(M, t1, t2) → 0, ∀(t1, t2),

as it is quite improbable that t2 > t1 unless a rare error occurs. This situation has
no practical importance. Since the algorithm doesn’t work, memory is unusable
and we only get almost constant value 0 from it. During experiments we have writ-
ten uniformly distributed random bits, so comparing to constant yields E → 0.5.

For the value M = 1 we can observe a phase transition in the memory system.
Error rate rapidly falls down as we move to values of M > 1. Here is where
6 Hamming distance here designates the number of distinct bits in corresponding po-

sitions in two bit vectors.

568 D. Bernát

the memory is working properly. Its performance, measured through error rate,
depends on correct value of parameter

Mopt : Emin ≡ E(Mopt) = min{E(M); M > 1}.

Optimal value is unique and guarantees minimal average number of errors.
The second disruption in performance is not so clearly defined as the one we

found in M = 1, since it is not rooted either in our algorithm nor parameters.
It is dependent on the behaviour of the other side, i.e. a DNS server, and on the
network conditions. However, we can define the width of region ΔMe where the
error rate is less than some acceptable value e. Sometimes we may find it useful
to choose this value with concern to minimal error rate, e.g. eδ = Emin + δ, so
we can use ΔMe and ΔMδ interchangeably. Now, formally we have7

ΔMe = M2 − M1, E(M1) = E(M2) = e ∧ (M2 > M1).

The third region in the graph is now designated by M � M2 where the error rate
eventually converges to 0.5 again, as for sufficiently large value of M , relation
B1 is always satisfied, regardless of response times. Thus we have

M � M2 ⇒ B1(M, t1, t2) → 1, ∀(t1, t2) ⇒ E(M) → 0.5.

Based on the measurements with memory algorithm, it is possible to assign
a set of characteristics, as (Mopt, Emin, δ, ΔMe), to each DNS server. Note that
the set is redundant.

3.2 Characteristics Evaluation and Comparison

We can observe distinguishing shape of curve depicted in Fig. 1 also in responses
from other servers. For the sake of comparison, several of them are drawn in
Fig. 2. The test set contained some randomly chosen DNS servers from the
Internet in order to find out what will be the value of error rate for distant (non-
local) servers. Thus we cannot provide detailed information about their settings.
Anyway, for each we can find out optimal parameter value and corresponding
error rate. It is summarised in the following table.

Server Mopt Emin δ ΔMδ

f1 1.325 0.0055 ± 0.0131 0.05 0.425
f2 1.375 0.0519 ± 0.0674 0.05 0.600
f3 1.100 0.0363 ± 0.0952 0.05 0.325
f4 1.225 0.1244 ± 0.0742 0.05 0.275
f5 1.300 0.0043 ± 0.0170 0.05 1.025
l1 1.975 0.0049 ± 0.0135 0.05 1.850

Procedure of obtaining the graph of E(M) can be used for evaluation pur-
poses. From the table with results and picture of E(M) we can see that mea-
surement on f1, f5 and l1 shows small minimal error rate and f2, f5 and l1
7 In theory, it would suffice to write ΔMe = M − 1, E(M) = e ∧ (M > 1).

Domain Name System as a Memory and Communication Medium 569

Fig. 2. Comparison of the error rate functions for several DNS servers. Block size is 1
byte.

have relatively wide range of ΔMe. It is worth to mention that l1 is one of our
local DNS servers, so network weather doesn’t influence it too much. Measure-
ments on larger blocks show even smaller error rates about 0.003, under similar
conditions.

Evaluating Communication Channel. Considering a selection of appropri-
ate DNS server for communication, as described in section 2.1, we can first obtain
the graphs of candidates8 (by procedure described in section 3.1) and then choose
the one with smallest value of Emin. In turn, we can conveniently fix the value
of parameter to Mopt, to guarantee the lowest possible average error rate. Since
its value is known, we could use some additional error correcting mechanism in
higher layer in order to achieve desired performance (this goes on the expanse
of decreased transfer speed).

On the other hand, the width ΔMe not only says for how large interval of
parameter values will be low error rate retained, but conversely, it shows how
much may response times vary for a fixed value of M , while the error rate remains
at acceptable level. Thus the higher the value of ΔMe is, the more robust is the
data transfer.

Evaluating DNS Servers. The same criteria described above can be used if we
are just looking for a good performance DNS server, somewhere in the Internet,
with no regards of hidden communication. The low error rate essentially means
that with high probability we can find a record in the cache, if we had already
8 Perhaps measurement should be performed from both potential sides of communi-

cation.

570 D. Bernát

0 2 4 6 8 10 12 14 16 18 20
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M

E
(M

)

Fig. 3. Distinguishing shape of response from DNS server designated f2

requested it before. The low values of E(M) shows efficiency of caching in the
particular server. The ΔMe parameter says, how many times can be the response
of cached record faster, compared to uncached one. Thus we want this value for
our server to be as large as possible.

Distinguishing the Servers. Beside the numerical quantities presented above,
each server possess a unique curve shape. Good example of this is the graph
designated f2, in Fig. 2, which seems to converge to some value less than 0.5 in
given range. But evaluating the graph further on, shows the step towards higher
values (see Fig. 3), in accordance with results from section 3.1. Also other curves
show individual characteristic features which might be used for the purpose of
server identification. Perhaps the shape is connected to implementation details
of particular server. This interesting effect is beyond the scope of the article, but
should be the matter of future research.

4 Conclusions

We have used the procedure of storing and retrieving the data into the cache of
DNS server. A brief reasoning revealed some basic properties of such a medium.
It is distinguished by relatively high capacity but rather slow access, especially
in sequential mode. This might be overcome by using several concurrent threads
for access. The relation between write and read access time was given too.
The information stored is not persistent. Medium allows indirect and possibly
hidden communication of nodes in the network. However, the external ad hoc

Domain Name System as a Memory and Communication Medium 571

synchronisation used in experiments is not sufficient for general purpose trans-
fers. Similarly, the error rates for bare channel are still quite high.

We showed the way in which the optimal parameter setting for algorithm may
be found, bringing the lowest possible error rate. However, this algorithm was not
intended for real data transfer as there are perhaps more reliable ones. Instead
we have used the resulting graphs to evaluate various DNS servers and compare
their general caching properties, based only on the responses obtained by our
algorithm (without a priory knowledge about the server). Another application
may be in distinguishing the servers based on this fingerprint.

Acknowledgements. Thanks goes to Slovak Science Agency VEGA, which
supported this work by the project No. 1/3104/06.

References

1. Percival, C.: Cache Missing for Fun and Profit 2005 (August 22, 2007),
http://www.daemonology.net/papers/htt.pdf

2. Kaminsky, D.: Black Ops 2004 @ LayerOne 2004 (August 22, 2007),
http://www.doxpara.com/bo2004.ppt

3. DNS Covert Channels and Bouncing Techniques, (designated as Phrack, Volume
0x0b, Issue 0x3d, but not included in Phrack archive) (May 22, 2007),
http://archives.neohapsis.com/archives/fulldisclosure/2005-07/att-0472
/p63_dns_worm_covert_channel.txt

4. Mockapetris, P.: Domain Names - Concepts and facilities, STD 13, RFC 1034
(November 1987), http://www.ietf.org/rfc/rfc1034.txt

5. Mockapetris, P.: Domain Names - implementation and specification, STD 13, RFC
1035 (November 1987), http://www.ietf.org/rfc/rfc1035.txt

6. Andrews, M.: Negative Caching of DNS Queries (DNS NCACHE), RFC 2308 (March
1998), http://www.ietf.org/rfc/rfc2308.txt

7. dnstracer online manual (August 23, 2007),
http://www.mavetju.org/unix/dnstracer.php

8. Bernstein, D.J.: Notes on the Domain Name System (August 21, 2007),
http://cr.yp.to/djbdns/notes.html

9. Minda, M.: Using In-bailiwick Nameservers (February 2005) (August 23, 2007),
http://www.nanog.org/mtg-0501/pdf/minda.pdf

http://www.daemonology.net/papers/htt.pdf
http://www.doxpara.com/bo2004.ppt
http://archives.neohapsis.com/archives/fulldisclosure/2005-07/att-0472/p63_dns_worm_covert_channel.txt
http://archives.neohapsis.com/archives/fulldisclosure/2005-07/att-0472/p63_dns_worm_covert_channel.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc2308.txt
http://www.mavetju.org/unix/dnstracer.php
http://cr.yp.to/djbdns/notes.html
http://www.nanog.org/mtg-0501/pdf/minda.pdf

Strong Authentication over Lock-Keeper

Feng Cheng and Christoph Meinel

Hasso Plattner Institute, University of Potsdam,
P.O.Box 900460, 14440, Potsdam, Germany

{feng.cheng, christoph.meinel}@hpi.uni-potsdam.de

Abstract. Based on the principle that ”the ultimate method to secure
a network is to disconnect it”, the Lock-Keeper technology has been
known as an efficient approach to guarantee the high-level security and
prevent online network attacks by physically separating the protected
hosts or networks. Because of its simple idea and extensible architec-
ture, the Lock-Keeper system can be easily and seamlessly integrated
with other security methods or solutions to provide thorough protection
for most actual network-based applications. This paper will propose an
advanced strong authentication framework based on the Lock-Keeper.
Thanks to Lock-Keeper’s physical disconnection, all the credentials, pri-
vacies and policies required by the authentication mechanism can be
securely stored and manipulated by being completely isolated with both
the external and the internal networks. The whole authentication pro-
cedure can be performed in the clean and trusted Lock-Keeper GATE
component. Based on the proposed framework, a prototypical platform
is implemented in the Lock-Keeper to enhance the security of the Lock-
Keeper Web Service module, which is one of important Lock-Keeper ap-
plication modules, and can be applied to secure most web applications
in Service-Oriented-Architecture environment.

1 Introduction

The levels of authentication strength rely mostly on the value or sensitivity of
the system and information that are protected [1]. Unlike traditional knowledge
based authentication, e.g. user-password authentication, which remains perva-
sive in spite of its known shortcoming and vulnerability to be attacked, strong
authentication meets the increased security requirements and enables organiza-
tions to verify user identities with high degree of certainty to intensify the online
trust. Some credentials-based, multi-factor authentication approaches, such as
X.509 [2], SAML-Token [3], physical token like smart cards [4] and even biomet-
ric authentication [5], etc., have been proposed as strong authentication solutions
and widely used in business and industry [6], [7].

Within these implementations of strong authentication, a centralized Identity
and Access Management (IAM) system [8] is usually used to store the creden-
tials related components, e.g. user profiles, privacies or certificates, and provides
high efficient authentication services [9]. Unfortunately, the possibility to at-
tack the IAM and in depth the protected resources comes along while the IAM

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 572–584, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Strong Authentication over Lock-Keeper 573

host exposes connections to outside. Stealing the privacy as well as influencing
the practical authentication process have been attractive goals for hackers. To
protect the IAM system and its hosted authentication procedure against those
malicious attacks has been a main challenge for most of strong authentication
approaches.

On the other hand, complete physical separation with the external world
is recognized as an alternative for most organizations with high-level security
requirements to protect their sensitive IT infrastructures. The idea of ”Physical
Separation” that ”the ultimate method to secure a network is to disconnect it”
[10] is simple and easy to understand. The main task is to separate the private
network at both logical and physical levels, and simultaneously permit secure
data exchange. To provide services through such a special ”Physical Separation”
mechanism, a feasible strong authentication is demanded.

Driven by these requirements, an advanced authentication strategy, which
combines both the software-based ”Strong Authentication” technology and the
hardware-based ”Physical Separation” technology, is proposed in this paper.
Lock-Keeper, which is a new implementation of ”Physical Separation”, is used
to host the IAM system and perform the authentication process. Such new ideas
as ”Offline Authentication” and ”Offline Maintaining” are realized by this Lock-
Keeper Strong Authentication Framework. To present the applicability and us-
ability of our idea, a secure Web Service authentication platform is implemented
in which the strong authentication IAM system, the Web Service Server and its
host network are protected well while Web Services are provided normally.

The paper is organized as follows. Section 2 provides some background knowl-
edge. The Lock-Keeper architecture is introduced as well in this section. Section
3 describes the architecture and working principles of our Lock-Keeper Strong
Authentication Framework. In Section 4, an implemented Web Service authen-
tication platform is presented to demonstrate the applicability and usability of
the proposed Lock-Keeper Strong Authentication Framework. We conclude the
paper and preview future works in the last section.

2 Background

In this section, we briefly introduce some new challenges of ”Strong Authentica-
tion” and then discuss the necessities to deploy ”Strong Authentication” in the
case of ”Physical Separation” protected scenarios.

2.1 Strong Authentication

As an example of the most popular weak authentication method, the traditional
user-password authentication, which only requires the information of ”something
you know” from the user, is vulnerable to many attacks [7], including Keystroke
Monitoring, Dictionary Attacks, Network Sniffing, Man-in-Middle attack, Social
Engineering attack, etc. In comparison, the advanced strong authentication de-
mands many additional information, such as knowledge on ”something you have”
and ”something you are”. For the instance of the security model established for

574 F. Cheng and C. Meinel

ATM cards and machines, the PIN (”something you know”) and possession of the
bank card (”something you have”) are both necessary for a user to pass through
the authentication procedure and access the banking services (e.g. drawing or
transferring money). To this effect, ”Strong Authentication” is also defined as
two or multiple factors authentication [6].

With the rapid growth of e-Commerce, e-Banking and e-Government, more
and more enterprises, financial sections and governmental organizations have de-
ployed strong authentication solutions to protect their online resources and pro-
vide secure services to end users. To realize and perform strong authentication in
the network environment, some new assistant techniques and methods have been
proposed in recent years. For example, X.509, which describes standard ways to
formulate and validate Public Key Infrastructure (PKI) certificates required by
online strong authentication, has been used for many software companies and
services vendors to guarantee the security while providing the XML-based Web
Services [2]. Security Assertion Markup Language (SAML) has also been sug-
gested as a standard for exchanging strong authentication data between different
domains, which probably belong to different organizations, in the federated Ser-
vice Oriented Architecture (SOA) environment [3]. IAM system is used to hold
the authentication credentials and manage the authentication procedure at the
edge of the protected target, i.e. the border of a sensitive network [8]. Therefore,
how to securely set up and protect the online IAM system as well as reliably
perform the strong authentication in the loosely coupled SOA environment has
been one of new challenges.

2.2 Physical Separation

As a simple but intuitive security concept, the principle of ”Physical Separation”
is to find a way to transmit data between two different networks without having
to establish a direct and physical connection. Currently, there are many different
”Physical Separation” implementations, such as e-GAP-based Intelligent Appli-
cation Gateway (IAG) [11], DualDiode [12], NRL Pump [13], etc. Lock-Keeper is
also implemented based on this ”Physical Separation” idea. It works as a sluice
to guarantee that hackers and malign data have no opportunities to break into
the internal network by any means of online attacks. we use a SingleGate Lock-
Keeper system as an prototype to briefly explain what the Lock-Keeper is and
how it works [10], [14].

As shown in Figure 1, a SingleGate Lock-Keeper system consists of three
independent Single Board Computers (SBCs): INNER, OUTER and GATE,
which are connected using a patented switch unit. This hardware based switch
unit restricts the connection so that GATE can be connected with only one
partner at any time, either INNER or OUTER. Besides these hardware com-
ponents, there are also Lock-Keeper Secure Data Exchange (LK-SDE) software
running in the Lock-Keeper system. LK-SDE software includes several appli-
cation modules located on INNER and OUTER, which work as interfaces and
provide popular network services to outside users. Currently, there are four LK-
SDE application modules implemented, i.e. File eXchange (File-X) Module, Mail

Strong Authentication over Lock-Keeper 575

Fig. 1. Conceptual Architecture of the SingleGate Lock-Keeper

eXchange (Mail-X) Module, Database Replication (DB-Rep) Module and Web
Service (WS) Module. Normal communication protocols, such as FTP, SMTP,
HTTP, etc., are stopped and analyzed respectively by these application mod-
ules. Then, standard file-based Lock-Keeper Message Containers (LKMC) can
be created to carry the data for the received network traffic. These LKMCs will
be transferred to the other side by ”Basic Data Exchange Module”. In particu-
lar, because GATE is also a normal PC, it is possible to integrate Third-Party
security software, e.g. virus scanning software, mail analysis tools, or content fil-
tering methods, etc. into LK-SDE architecture, which help to check data traffic
and prevent offline attacks, e.g. virus, malicious codes, etc.

2.3 Our Motivations

According to previous discussions, we are motivated to propose an advanced
authentication framework by integrating ”Strong Authentication” into the Lock-
Keeper system. Many benefits are expected. Firstly, credentials required by the
strong authentication, such as user information databases, privacy database and
certificate store, etc., can be saved safely on GATE and are impossible to be
directly accessed by both internal and external users. Secondly, the authentica-
tion methods or cryptography algorithms can be flexibly deployed on GATE and
are impossible to be changed or abused. Thirdly, the authentication operations
and procedures can be performed unaffectedly in an isolated environment, i.e.
Lock-Keeper GATE, which is called as ”offline authentication”. Fourthly, the
internal resources including all the internal hosts and the network infrastructure
are protected well while normal network services are provided simultaneously.

576 F. Cheng and C. Meinel

At last, based on the Lock-Keeper Authentication Framework, it is possible for
Lock-Keeper to support more web based applications, especially most newly ap-
peared SOA applications, and proffer protection for more practical scenarios,
which can significantly improve the Lock-Keeper’s usability.

3 The Lock-Keeper Strong Authentication Framework

As shown in Figure 2, there are two main components in this framework, i.e.
Authentication Proxies on INNER/OUTER and an IAM system on GATE. ”Au-
thentication Proxy” works like other Lock-Keeper application modules to analyze
and parse the incoming network traffic. The IAM system composes of an ”Au-
thentication Management Engine” and a ”Credential Virtual Machine” where
the credential related databases and stores can be safeguarded.

Fig. 2. The Lock-Keeper Strong Authentication Framework

3.1 Authentication Proxy on INNER and OUTER

External users communicate with the ”Authentication Proxy” using normal net-
work connections. For instance, a customer can send a signed and encrypted
request to the Lock-Keeper ”Authentication Proxy” through SSL-based tunnel,
e.g. using HTTPS. The proxy will parse the data traffic belongs to this received
request, i.e. network-level packets, and then reconstruct it into the application-
level LKMC, which includes a message body and a message header with several
additional information required by communication and security. As shown in
Figure 3, the header of a standard LKMC consists of a ”Routing Section”, an
”Authentication Section” and an additional section for containing other infor-
mation, which may probably be used in next steps. The architecture of LKMC is

Strong Authentication over Lock-Keeper 577

Fig. 3. The Lock-Keeper Message Container for Strong Authentication

flexible to be easily extended to satisfy other requirements. The ”Authentication
Proxy” on OUTER is also responsible for forwarding responses, either successful
or failed, back to end customers or potential hackers.

After being preprocessed on OUTER, the LKMC is transferred to GATE
through the Lock-Keeper ”Basic Data Exchange Module”. As soon as it com-
pletely arrives at GATE, the ”Authentication Management Engine” will pass it
to the IAM system.

The ”Authentication Proxy” on INNER forwards the LKMC message to the
protected service host (i.e. the internal server), which is located in the internal
network. If necessary, the request will be verified again by the server and then
the response message can be generated after the invocation of requested applica-
tions. Similar to the incoming request message, the outgoing response message
is also required to be issued, signed, and encrypted by the internal server with
the specified policy, which is identical to security policies on both GATE and the
client side so that it can successfully pass through the same authentication pro-
cedure. The data traffic for the response will be translated into LKMC message

578 F. Cheng and C. Meinel

by the ”Authentication Proxy” on INNER when it arrives at Lock-Keeper on its
way back.

3.2 IAM System on GATE

The LKMC message is required to be authenticated by the IAM System on
GATE, which is designed based on ”Strong Authentication”. The whole authen-
tication procedure is started and controlled by the ”Authentication Management
Engine”, which decrypts the LKMC and extracts authentication information.
Then the further authentication operations can be performed by communica-
tions between the ”Authentication Management Engine” and the corresponding
credential components. Besides, the content of message body can also be scanned
using other application-level security software to prevent offline attacks. For this
purpose, a content scanning software with its affiliated virus pattern library
should be integrated. The ”Authentication Management Engine” can also be
implemented according to the different practical application scenarios.

As shown in Figure 2, a ”Certificates Store”, a ”Policy DB” and a ”Log DB”
are contained in the Credential VM on the GATE. As normal authentication
approaches, these components need to be updated regularly. However, the Lock-
Keeper’s special switch mechanism makes it impossible to remotely access and
update these sensitive parts because any kinds of normal connections have been
prevented. So we proposed a method, called ”Offline Maintaining”, which makes
it possible for administrators to easily configure and update these credentials
using the Virtual Machine (VM) technology [15]. Thanks to some helpful features
of such VM implementions as User-Mode-Linux (UML) [16], we can realize the
”Credential VM ” by a main VM file and a Copy-On-Write (COW) VM file.
The main VM file contains a pure operating system where the basic storage
architecture is installed for carrying authentication credentials. A same copy
of this file must be backed up in the administrator side. If new updates or
configurations are required, the administrator firstly makes modifications on the
backup VM locally and generates the modified COW file, which is usually not
too large (about 20-50 MB), and then sends it to GATE to replace the currently
used VM COW file. However, all the operations must be done offline, i.e. at
the moment when the Lock-Keeper is not working and completely disconnected.
We only provide the privilege for the administrator to access the GATE locally
by traditional I/O devices such as keyboard and monitor. As an alternative, a
mobile harddisk can also be installed on GATE so that the administrator can
flexibly take it out if necessary and plug it in again after updating. By such an
implementation of Authentication Credential Storage, the security of sensitive
authentication data is enhanced again because the instinctive feature of the VM
technology on ”OS Isolation” provides another layer of security.

If the LKMC message is verified to be invalid, a fault message with a rejection
indicator will be generated and then sent back to the customer through OUTER,
who is probably a hacker in this case. When the LKMC passes the verification
process, it will be transferred to INNER.

Strong Authentication over Lock-Keeper 579

4 Security Enhancement of Lock-Keeper Web Service
Module

In this section, a secure Web Service providing platform, which is applicable
for most SOA application scenarios with high-level security requirements [17], is
implemented based on the previously proposed Lock-Keeper strong authentica-
tion framework. As shown in Figure 4, the Lock-Keeper Web Service providing
platform is basically composed of a consumer, Lock-Keeper Web Service Module
and a provider.

Fig. 4. A Secure Platform for Providing Web Services over Lock-Keeper

The consumer acts as a legally registered user who is supposed to have all
the necessary security materials required by the strong authentication. Figure 5
shows a Web Service client on the consumer side. Using this client, consumers
can import and manage registered certificates on the ”Certificates Panel”, cre-
ate and compose security policies using the imported certificates or the sup-
ported encryption algorithms on the ”Policy Panel”. For example, there are two
composed policies shown in the Figure 5. One of them is called as ”secure”,
which requires encryption using certificate ”gate” and signature using certificate
”client”. This client also provides the interface to create, edit, send out the Web
Services request and later receive the response. These tasks will be managed on
the ”Monitor Panel”, explained in the next section.

The ”Web Service Provider”, indicated in Figure 4, offers a desired service.
As usual Web Service server, it receives the Web Service request, triggers Web
Methods and creates the Web Service response.

4.1 A Secure Lock-Keeper Web Service Providing Platform

The Web Service Module inside the Lock-Keeper system consists of a ”Web Ser-
vice Proxy” and a ”Web Service Routing Module” on OUTER, which co-realize

580 F. Cheng and C. Meinel

Fig. 5. Policy Panel and Certificates Panel in the Web Services Test Client

the functionality of ”Authentication Proxy” described in the previously proposed
framework, a ”SOAP Verification Module” on GATE to actually act as IAM sys-
tem, and a ”Web Service Invocation Module” on INNER, which works as another
”Authentication Proxy”. The ”Web Service Proxy” exposes the Web Methods
hosted on the internal provider to the external network. The incoming SOAP
requests are accepted over HTTP or SMTP by the ”Web Service Proxy” and
then translated into the LKMC. The ”Web Service Routing Module” forwards
the LKMC to the Lock-Keeper ”Basic Data Exchange Module”. On GATE, the
”SOAP Verification Module” performs the concrete authentication procedure.
The architecture of the ”SOAP Verification Module” is illustrated in the Fig-
ure 6. It has realized functionalities of both ”Trust Management” and ”Threat
Protection”, specified in most popular WS-Security standards (see [18] and [19]).
The ”Policy Store” provides essential information to guide decisions and actions
performed by the ”Trust Management” and the ”Threat Protection”. Specified
in a certain policy, certificates or private keys are required, which are available
from the Certificate Store. The verified LKMC is transferred to INNER. For
failed verifications, the original request, supposed to be malicious, will be re-
moved as soon as possible and a response with a error message will be sent
back to the consumer over OUTER. The information during the whole process
is recorded into the ”Logging File”.

After receiving the successfully verified SOAP request, the ”Web Service In-
vocation Module” on the INNER invokes the corresponding Web Method hosted
in the Web Service provider.

This platform is implemented based on our proposed Lock-Keeper Strong
Authentication Framework. The design of the whole architecture does exactly

Strong Authentication over Lock-Keeper 581

Fig. 6. SOAP Verification Module on GATE

satisfy the well-known Web Services security model proposed in [19], which di-
vides the Web Services security into three layers: ”Secure Network”, ”Secure
Web Service Host” and ”Secure Web Service Message”.

4.2 Experiment Result

The proposed platform has been successfully deployed in a real world ”Online-
Police-Station” project. As a sensitive governmental department, the police has
the high-level security requirement to physically separate its internal network
with Internet. However, there should be a secure way provided for original cit-
izens to send such reports as traffic accidents, information on new residential
places, criminal cases, etc.

In our experiment, the ”Online-Police-Station” is realized on an internal police
Web Service server, which is ”connected” with Internet through Lock-Keeper. As
a simple example, we just install a Web Method, called ”String”, on this server,
which is used to file the incoming case report and send acknowledges back to
citizens. The Web Service client, especially the ”Monitor Panel”, which has been
mentioned before and is practically realized on the police’s public portal outside
Lock-Keeper, offers citizens an interface to create, sign and encrypt the SOAP
request as well as check the response.

As indicated in the Figure 7, the original SOAP message, shown in the top-
left dialog box, embeds a simple request with a case report, e.g. ”My Car was
stolen”. After enforcing a composed policy called ”secure”, which would be re-
quired by later strong authentication on Lock-Keeper, a secured SOAP request
is generated in the top-right box. By clicking the button ”Invoke Soap Request”,
the encrypted SOAP request can be sent to the Web Service Provider. Then it
will be processed by the strong authentication process. After a couple of seconds
(the required Round-Trip-Time mostly depends on the length of the Lock-Keeper
switch interval [10]), the secured response can be received in the bottom-right

582 F. Cheng and C. Meinel

Fig. 7. A Web Service Request and its successful Response shown in Web Service Client

box. The plain-text result (i.e. ”Thanks, Your case report has been filed. We
will contact you soon”) will be displayed after being decrypted by enforcing
the corresponding policy ”secure”. In the case of failed authentications due to
any kinds of errors, faults or probable attacks, the SOAP request is impossible
to pass through the Strong Authentication system on GATE and intrude into
the internal network of the police. A fault response with the indicator, such
as ”The Request is Illegal”, can be generated and sent back to the client from
Lock-Keeper.

5 Conclusions

In the paper, we present several benefits on the combination of the ”Strong Au-
thentication” technology with ”Physical Separation” technology and propose an
advanced Lock-Keeper Strong Authentication Framework. Through this frame-
work, all the authentication components, user profile, privacy and policy are
protected well on GATE, which are impossible to be actively accessed from
outside. The whole authentication procedure is performed on GATE and impos-
sibly to be affected, which demonstrates the idea of ”Offline Authentication”.
The Credential VM in the integrated IAM system can be easily and securely
updated, which realizes the concept of ”Offline Maintaining” as well. Both the
incoming request and the outgoing response are required to be verified by the au-
thentication module so that the insider attacks can be prevented. Meanwhile, an

Strong Authentication over Lock-Keeper 583

applicable Strong Authentication system, realized in the ”Physical Separation”
device, i.e. Lock-keeper, can significantly improve the usability of this high-level
security solution. The secure Web Service Providing platform shown in this paper
illustrates the applicability and usability of our proposed Strong Authentication
Framework. However, there are still many open issues to be solved around this
topic. The Lock-Keeper can be used as a suitable host for the federated authenti-
cation proxy to exchange and translate the different authentication information
required by different organizations. A Lock-Keeper-based federated authentica-
tion approach would be a promised security solution for SOA applications. Other
special authentication [20] and access control schemes can also be integrated in
Lock-Keeper to enhance security of existing applications. Development of a uni-
fied authentication client, e.g. a plugin or extension for normal web browsers,
also makes great senses to popularize this idea.

References

1. Zviran, M., Haga, W.J.: A Comparison of Password Techniques for Multilevel
Authentication Mechanisms. Computer Journal 36(3), 227–237 (1993)

2. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF - Network Working Group, The Internet Society,
RFC 2459 (January 1999)

3. Cantor, S., Moreh, I.J., Philpott, S.R., Maler, E.: Metadata for the OASIS Security
Assertion Markup Language (SAML), V2.0. OASIS SSTC, oasis-open.org (2005)

4. Rankl, W., Effing, W.: Smart Card Handbook, 3rd edn. John Wiley and Sons,
Ltd., Hoboken, NJ (2003)

5. Wayman, J.L.: Fundamentals of Biometric Authentication Technologies. Interna-
tional Journal of Image and Graphics 1(1), 93–113 (2001)

6. RSA Security, Inc. Strong Authentication: An Essential Component of Identity
and Access Management. White Paper, RSA Security, Inc.: SA-WP-0804 (2004)

7. Lobel, M.: Case for Strong User Authentication White Paper, TRS, Princewater-
haouseCoopers: CSUA-WP-0200 (2005)

8. Witty, R.J., Wagner, R.: The Growing Need for Identity and Access Management.
White Paper, Gartner, Inc.: AV-21-4512 (2003)

9. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Springer, Berlin, Germany (2004)

10. Cheng, F., Meinel, Ch.: Research on the Lock-Keeper Technology: Architectures,
Applications and Advancements. International Journal of Computer & Information
Science 5(3), 236–245 (2004)

11. IAG 2007 website in Microsoft (2006-2007), www.microsoft.com/iag
12. Menoher, J.: Owl Computing Product Overview: Secure One-Way Data Transfer

Systems. White Paper, Owl Computing Technologies, Inc. (2007)
13. Kang, M.H., Moskowitz, I.S.: A Pump for Rapid, Reliable, Secure Communication.

In: CCS 1993. Proceedings of 1st ACM Conference on Computer & Communica-
tions Security, Fairfax, VA (1993)

14. Lock-Keeper WebSite of Siemens Switzerland (2005-2007), www.siemens.ch
15. Cheng, F., Meinel, C.: Deployment Virtual Machines in Lock-Keeper. In: WISA

2006. LNCS, vol. 4298, Springer, Heidelberg (2006)

www.microsoft.com/iag
www.siemens.ch

584 F. Cheng and C. Meinel

16. User Mode Linux Core Team: User Mode Linux HOWTO,
http:user-mode-linux.sourceforge.net

17. Cheng, F., Menzel, M., Meinel, Ch.: A Secure Web Services Providing Framework
based on Lock-Keeper. In: APNOMS2007. LNCS, vol. 4773, Springer, Heidelberg
(2007)

18. ForumSystems: Forum Xwall - XML Firewall Product Data Sheet (2005),
www.forumsystems.com/papers/

19. Curphey, M., Scambray, J., Olson, E., Howard, M.: Improving Web Application
Security: Threats and Countermeasures. Microsoft Press, Washington (2003)

20. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authenti-
cation System Kerberos RFC4120, kerberos.info (July 2005)

http:user-mode-linux.sourceforge.net
www.forumsystems.com/papers/

Short Ballot Assumption and Threeballot Voting
Protocol�

Jacek Cichoń, Mirosław Kutyłowski, and Bogdan Wȩglorz

Institute of Mathematics and Computer Science, Wrocław University of Technology
jacek.cichon@pwr.wroc.pl, miroslaw.kutylowski@pwr.wroc.pl

pungabw@wp.pl

Abstract. We analyze the Threeballot voting system proposed recently by
R. Rivest. We investigate the relation between the number of the candidates in
a race and effectiveness of Strauss’ attack. We also show that in a reasonable sce-
nario it is impossible to reconstruct voters’ preferences for a single race with two
candidates.

Keywords: e-voting, anonymity.

1 Introduction

Recently, there has been a lot of interest in paper based voting schemes that offer addi-
tional features such as verifiability of the results. This is due, among others, by recent
problems with voting machines (see e.g. California Report [13]). In this situation, pa-
per based methods with no black box electronic devices may contribute to more social
acceptance and transparency of elections. New schemes should also provide better re-
silience to election frauds. This concerns also classical paper based methods, where
verifiability is quite limited, once the ballots have been exchanged in a ballot box. New
paper based schemes should prevent this: if a voter gets a receipt of the ballot cast, then
removing his ballot from the ballot box and replacing it with a different one might be
detected. However, we get a new problem: the receipt must not show the voting pref-
erences of the voter. Failing this requirement could have profound consequences, like
enabling vote-selling or forcing a voter to vote in a certain way.

It has also been pointed out that a voting scheme and its security mechanism should
be understandable for an average voter. Furthermore, Rivest [9] argues that it is desir-
able to avoid any kind of cryptographic encoding on the receipts. There are at least
two reasons for that: cryptographic methods can be broken so that a receipt may betray
the voter’s choice. Second, some voters may believe that cryptographic codes may leak
information in a malicious way (via a subliminal or kleptographic channel [6]).

Somewhat surprisingly, it has turned out that major improvements over the tradi-
tional schemes are possible. A number of schemes have been designed: Punchscan [8],
Prêt à Voter (see [4] and later publications), Threeballot [9], VAV and TWIN [10].

Unfortunately, none of these schemes is yielding the best solution in all aspects. For
Punchscan and Prêt à Voter, a voter can doubt whether her or his vote can be retrieved

� Partially supported by Polish Ministry of Science and Education, grant 3 T11C 011 26.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 585–598, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

586 J. Cichoń, M. Kutyłowski, and B. Wȩglorz

once one of the sheets is destroyed. In this situation some people may believe that the
elections are simply fake.

Also TWIN can be hard to accept from psychological point of view. Even if at the
beginning some voters leave the polling station without receipts, the first voters may
feel uncomfortable knowing that the next person may get a copy of one part of his
ballot. Note that nontrivial information can be revealed if an organized group of voters
is coming to a polling station together: they may derive at lot of information on the
contents of the ballot box at the moment when they arrive. So a conscious voter may
prefer to vote at the end of an election day. Finally, some fraction of voters will not
appear at the polling station.

For VAV also some sociotechnical attacks are possible. The voters may catch the
idea that taking an antivote as a receipt guarantees that no information about her or his
preferences can be derived no matter how other people vote. If all voters follow this
strategy, then the tallying committee can match the votes with the antivotes and modify
some number of votes that do not match to any antivote. As for Threeballot, it might be
problematic to check that a ballot has the desired form. If control is ineffective, a voter
may vote twice for his candidate and revoke a vote for another candidate.

The main problem with Threeballot is necessity to adopt Short Ballot Assumption
(SBA) [10]: if the list of candidates in a race is long, or there are many races on the
same ballot, then privacy of a vote is endangered. This has been observed shortly after
presenting Threeballot [11] (for details see Section 3). The other problem is complexity
of procedure; understanding of how to vote might be a non-trivial issue for some voters
[3]. Problems of this kind are discussed also in [12]. Other problems have been pointed
out in [1]. The idea of the attack performed in the case of two candidates race (say, with
candidates Alice and Bob) is to pay for a specific behavior. Then the attacker exchanges
some number of ballots containing a mark for Alice with ballots containing a mark for
Bob. In [5] it was observed that if the voters fill the ballots at random (except for the
final mark that indicates the voter’s choice), then the conditional probabilities for voting
preferences change, if the receipt of a voter is taken into consideration. This observation
was further generalized in [7]. Similar problems have been reported in [2].

Main Problem. Our goal is to find analytically appropriate parameters for Short Ballot
Assumption and make Threeballot immune against the attack from [11]. Of course,
a rough approximation can be obtained from the experiments (like in [11]), but this does
not apply to security margin: failure of an attack observed many times is not a strong
argument in favor of a protocol. This problem was already considered for the case of
2 candidate races and multiple races in one ballot [7]. We focus on the problem of a
single race on one ballot, since for security reasons the races should be separated.

Results. In Section 2 we show that even in the simplest situation (all but one voter
choose the same candidate), it is impossible to say which receipt is owned by the voter
who has chosen a different candidate, as long as the number of voters is reasonable.

In Section 3 we develop almost exact formulas for the expected number of valid 3-
ballots with a vote for a given candidate that can be reconstructed from the published set
of ballots and the receipt held by a voter. The main outstanding problem is to estimate
the variation of this number.

Short Ballot Assumption and Threeballot Voting Protocol 587

Overview of Threeballot System. Each paper ballot, called 3-ballot, contains three
columns and as many rows as the candidates in a race (see Fig. 1). Each row corresponds
to one candidate. In a row there are three “bubbles”, one bubble per column.

Cichon

Kutylowski

Weglorz

12A645C4D34 8D7384A4907 C07724FAD65

Fig. 1. A 3-ballot with candidates Cichon, Kutylowski and Weglorz, a vote cast for Weglorz

In order to vote for a candidate A the voter has to fill exactly 2 bubbles in the row
corresponding to A. In each of the other rows the voter must fill exactly one bubble. The
choice which bubbles to fill in a row is arbitrary. A ballot that does not obey these rules
is rejected by a checker device. If a ballot is correct, an ID is printed in each column; the
ID’s in different columns are unrelated and random. Then the columns are separated;
each column (together with the ID) forms a ballot. The voter chooses one of them and
gets its copy.

Finally, the voter casts all his ballots into the ballot box. After opening the ballot box
all ballots found inside are published on a bulletin board. The number of the votes for
the candidate A is computed as m − n/3, where m is the number of ballots containing
a filled bubble in the row of A and n is the total number of ballots in the ballot box.

The most important feature of Threeballot is that no matter which candidate has
been chosen by the voter, the receipt may have any possible pattern of filled bubbles.
So a receipt preserves privacy in the information-theoretic sense as long as a single
receipt is concerned.

2 Two Candidates Case

Assume now that Threeballot is used in a race with two candidates, say A and B, and
a small group of voters (say, for electing a chairman in a small faculty). A ballot can
take one of the forms: •

• , •
◦ , ◦

• , ◦
◦ ; a 3-ballot is a triple, for instance (•• ; •

◦ , ◦
◦), where the

first element denotes the ballot copied into a receipt, and the order of the second and
the third elements is immaterial. We assume that we know the receipt of each voter- the
scheme was designed to offer anonymity even if the receipts become revealed. Also, all
ballots cast are known to the public (otherwise the election results cannot be checked).

Assume that person P has voted for candidate A. Then:

– If P has a receipt •
• , then the other columns of his 3-ballot are •

◦ and ◦
◦ .

– If P has a receipt •
◦ , then the other columns of his 3-ballot are either ◦

• , •
◦ , or •

• , ◦
◦ .

– If P has a receipt ◦
• , then the other columns of his 3-ballot are •

◦ , •
◦ .

– If P has a receipt ◦
◦ , then the other columns of his 3-ballot are •

• , •
◦ .

If P votes for candidate B, then the situation is dual.

588 J. Cichoń, M. Kutyłowski, and B. Wȩglorz

The above restrictions and data available after elections (the number of votes cast
for each candidate, the ballots cast, and the receipts held by the voters) may be used to
deduce some information on the voters’ preferences. The most promising case seems
to be the election outcome in which there is a single vote for candidate B - in this case
one might be tempted to determine who voted against A. The attack should be regarded
as successful even if we merely eliminate some people as possible voters for B and
thereby reduce the anonymity set of the voter who has chosen B.

Assume that Alice is the only voter who has chosen B and all other voters have
chosen A. First consider the case that Alice has prepared her vote in the form (◦• ; •

• ,
◦
◦), where ◦

• is her receipt. We would like to find a set of 3-ballots for which the same
information would be available for an external observer, but the voter who has chosen
B holds a receipt different from ◦

• . First we make the following steps:

Step 1: Replace the 3-ballot of Alice by (◦• ; •
◦ , •

◦).
In this way we have used two extra ballots •

◦ , •
◦ and we have extra ballots •

• ,
◦
◦ which are not assigned to any voter. Also, at this moment we have no voter that
has chosen B.

Step 2: We find a voter that has chosen 3-ballot (•◦ ; •
◦ , ◦

•) (with receipt •
◦). We change

his 3-ballot to (•◦ ; •
• , ◦

◦). So this voter still chooses option A. We have used the
extra ballots •

• , ◦
◦ from Step 1, one ballot •

◦ that was removed in this step can be
used to cover deficit of •

◦ ballots from Step 1. So after Step 2 we have still a deficit
of one ballot •

◦ and a surplus of one ballot ◦
• .

Step 3: Execute one of the steps:
Step 3A: We find a voter X with 3-ballot (◦◦ ; •

• , •
◦) and change it to (◦◦ ; •

• , ◦
•).

Step 3B: We find a voter Y with 3-ballot (•◦ ; ◦
• , •

◦) and change it to (•◦ ; ◦
• , ◦

•).
Step 3C: We find a voter Z with 3-ballot (•• ; ◦

◦ , •
◦) and change it to (•• ; ◦

◦ , ◦
•).

After Step 3, there is no deficit and no surplus of ballots, and we have changed the vote
of, respectively, person X , Y or Z from A to B. Since the set of ballots in the ballot box
as well as the receipts of the voters do not change during the transformations described,
we cannot exclude any person from being a voter of B. The only technical prerequisite
is that there is at least one voter with 3-ballot (◦◦ ; •

• , •
◦).

Similarly, if Alice votes with (◦• ; ◦
• , •

◦), then we may transform the 3-ballots as
follows:

– we replace the 3-ballot of Alice by (◦• ; •
◦ , •

◦),
– we find a voter with 3-ballot (•◦ ; •

◦ , ◦
•) and change it to (•◦ ; ◦

• , ◦
•).

Let us consider an undirected graph G where nodes are the possible 3-ballots with
a vote for B, namely v1 =(◦• ; •

• , ◦
◦) v2 =(◦◦ ; •

• , ◦
•), v3 =(•◦ ; ◦

• , ◦
•), v4 =(•• ; ◦

◦ , ◦
•),

v5 =(◦• ;◦• , •◦) (we ignore here the ordering of the second and the third ballot in a 3-
ballot). We say that there is an edge between nodes u, v, if one of the transformations
described above starts with 3-ballots such that the voter for B uses 3-ballot u and after-
ward the voter of B uses 3-ballot v. Let us observe that due to Steps 3A, 3B, 3C in the
above procedure the graph G contains the following edges: (v1, v2), (v1, v3), (v1, v4)
and (v5, v3) (due to the last remark). Hence G is connected, and so a few transforma-
tions can convert the set of 3-ballots chosen by the voters to a set of 3-ballots with the

Short Ballot Assumption and Threeballot Voting Protocol 589

same receipts and the same set of ballots where a person voting for B holds any speci-
fied receipt. So for an external observer, the anonymity set of the voter of B remains the
whole set of voters. The only prerequisite is that the number of voters must be reason-
ably large to contain the following votes for A: (•◦ ; •

◦ , ◦
•), (◦◦ ;•• , •◦), (•◦ ;◦• , •◦), (•• ;◦◦ , •

◦).
Observe that if this is not true, anonymity can be broken in some cases. For instance,

if there are just two voters and they choose, respectively, (•• ; ◦
◦ , ◦

•), and (•◦ ; •
• , ◦

◦), then
from ballots •

• , •
• , •

◦ , ◦
• , ◦

◦ , ◦
◦ and receipts •

• , •
◦ an observer can reconstruct the votes:

– receipt •
• cannot occur with another •

• in the same 3-ballot, so one ballot •
• occurs

with receipt •
◦ .

– for •
◦ and •

• inside the same 3-ballot, the only option for the third ballot is ◦
◦ .

So we see that we can reconstruct completely the 3-ballots used.

Extension to the Three Candidates Case. As before, we consider the case that all
voters but Alice vote for A. We show that for any receipt W we can find a set of 3-
ballots with the same set of ballots in the ballot box and the same receipts such that the
vote for B was cast by a voter with receipt W . Let the 3-ballot cast by Alice for B have
receipt V . Let us fix an arbitrary row of the 3-ballot of Alice, say z (if W and V have
the same value in some row, then we choose one of these rows). Consider a set Z of all
3-ballots where the row z is filled as the row z of the 3-ballot of Alice.

Let us notice that the transformations for the two candidates case have the following
property: a ballot removed from a column i of a 3-ballot is inserted into the same column
i of a 3-ballot of another voter. So we can perform analogous operations on 3-ballots
from the set Z and the resulting 3-ballots will be in Z .

First, we make transformations on the 3-ballots from Z such that after the change the
3-ballot for B has a receipt U that agrees with W in the rows different than z. During
the second stage (which is necessary if U �= W), we fix a row s �= z and consider a set
S of all 3-ballots which have row s filled in the same way as the 3-ballot for B in the
transformed set of 3-ballots. Then on S we perform transformations so that finally the
3-ballot for B has a receipt that agrees with W in the rows different from s. Since row
s does not change during transformations, finally the 3-ballot for B has receipt W .

One can perform all described transformations provided that Z and S contain certain
3-ballots (as for the 2-candidate case). Each of these sets contains on average 1

3 of all
3-ballots, so they contain the 3-ballots necessary for transformations if the number of
voters is big enough.

A similar procedure can be applied for races with more than 3 candidates, but the
number of voters necessary to perform the transitions grows exponentially with the
number of candidates in a run (at least for the procedure just sketched).

3 Stochastic Analysis for SBA

From now on we shall consider Threeballot scheme used for elections with a single race
(for elections with different races, a voter may get different paper ballots for each race).
By k we will mean the number of candidates in a race, N will denote the number of
votes cast into a ballot box. We assume that N is a relatively small number (in Poland

590 J. Cichoń, M. Kutyłowski, and B. Wȩglorz

the average value is 420, but sometimes it can drop to about 100). We assume that the
list of the ballots cast is published separately for each ballot box.

For the sake of clearness of presentation we assume that the process of filling the
bubbles by a voter consists of two phases. During the first phase the voter chooses one
bubble per row uniformly at random, independently from the choices in different rows.
Then the voter fills the chosen bubbles. During the second phase the voter fills one
bubble in the row corresponding to the preferred candidate – which of two bubbles to
fill is chosen uniformly at random. This bubble is called additional.

We shall use notation (A, B, C) for a 3-ballot consisting of the ballots A, B, C, if
we do not indicate which of them serves as the receipt, and (A; B, C) if A serves as the
receipt.

Overview of Strauss Attack. The attack from [11] considers ballots as published on
the bulletin board and a single receipt. Assume that we have a receipt R of Alice and
that it contains a filled bubbles. (Of course, a is not fixed in advance; we shall see that
possibility to recover the choice of Alice depends slightly on a.)

We call a ballot B related to ballot A, if the set of rows of B containing filled bubbles
is disjoint with the set of rows of A containing filled bubbles. Let R(R) be the set of
all ballots related to R from the list published by the poll site of Alice. Note that R(R)
contains one of the ballots of the 3-ballot of Alice different from R.

Given a receipt R of Alice and a ballot B ∈ R(R) we look for a ballot C that has
filled bubbles in all rows where R and B have no filled bubble, and that has one more
filled bubble in the remaining rows. Then obviously (R; B, C) is a candidate for a 3-
ballot filled by Alice. The point is that it might be quite difficult to find such a C in a
pool of random ballots. If there are several rows in a ballot, then the probability to fill
the bubbles at random in the way described is quite low. Consequently, there are not
many triples (R, B, C) of this kind, but one of them is the 3-ballot of Alice!

Even if there is more than one candidate 3-ballot for receipt R, we still have a chance
to recover exactly the 3-ballot of Alice. Namely, we consider each receipt. If there is
a receipt such that there is only one valid triple containing it, we know that this is a 3-
ballot cast by some voter and we may remove its ballots from the list of ballots. If
a removed ballot U occurred only once there, we may disregard all candidate triples
computed before that contain U . Now may be for some voter only one triple remains.
So we may continue in this way until we cannot find a receipt for which there is only
one valid triple.

Experiments from [11] show that for an appropriate choice of parameters, if we
manage to start removing ballots, then most 3-ballots can be reconstructed.

The attack of Strauss is based on the fact that two random ballots are unlikely to fit
into the same 3-ballot. Obviously, this approach fails, if the number of candidates in a
race is small. Failure of the attack for a small number of candidates has been already
reported in [11] (green fields in the diagrams).

The main question considered here is to find a bound for the number of candidates
in a race up to which Threeballot protocol is still secure regrading voter’s privacy. We
formulate the following necessary condition on voting secrecy:

Short Ballot Assumption and Threeballot Voting Protocol 591

Definition 1. We say that the set of ballots B provides weak anonymity for a receipt
R, if for every candidate x there are ballots B, C ∈ B such that (R; B, C) is a valid
3-ballot with a vote for candidate x.

Of course, weak anonymity is a necessary condition – if it is violated, then we can say
something about preferences of at least one voter. It is not a sufficient condition, since
it is not necessarily the case that there is a global assignment of ballots to 3-ballots that
contains (R; B, C). Sufficient conditions were investigated in Section 2.

Our main goal now is to analyze influence of the number of candidates k and the
number of voters N on weak anonymity. We develop formulas that enable us to com-
pute the expected number of 3-ballots mentioned in Definition 1. This is a step towards
understanding quite intriguing combinatorial nature of the Strauss’ attack. This is nec-
essary since we observe experimentally that anonymity level drops rapidly with k and
cannot be compensated easily by the increase of the number of the voters N .

The process of estimating required probabilities is quite delicate and tedious, there
are many subtle dependencies that make it difficult. Therefore the way to final esti-
mations goes through several auxiliary results. However, these lemmas show certain
surprising phenomena that can be confirmed experimentally.

Analysis. For the rest of this section, we consider elections with a single race with k
candidates. We also assume that the receipt R held by Alice contains a filled bubbles.

There are two ways to build a valid 3-ballot (R; B, C) for a receipt R: if B and
C do not belong to the same 3-ballot generated by some voter, we call (R; B, C) an
incidental 3-ballot. Otherwise we call (R; B, C) a non-incidental 3-ballot.

Probability of Non-Incidental 3-Ballots

Lemma 1. Let (A, B, C) be a random 3-ballot. Then the probability that R together
with two ballots from (A, B, C) forms a valid 3-ballot with a vote for candidate x
equals

qR = 2k−a

3k−1 · k−a+2
k ,

if R contains a filled bubble in the row of x. If R does not contain a filled bubble in the
row of x, this probability equals

qnR = 2k−a−1

3k−1 · 1
k .

Proof. First consider the case that R contains a filled bubble in the row of x. W.l.o.g.
we may assume that R contains bubbles in the first a rows and the row of x is a.

Consider the first phase of generating (A, B, C) during which a voter fills exactly one
bubble in each row. W.l.o.g we may assume that A contains a filled bubble in row 1. Of
course, A cannot be used together with R to form a vote for x. So we have to consider
only (R; B, C). If it is a vote for x, then B and C contain no filled bubbles in rows
2, . . . , a − 1, and therefore A must contain filled bubbles in these rows. Similarly, rows
a + 1, . . . , k must contain bubbles in either B or C. Probability of such a configuration
equals (1

3)a−2 · (2
3)k−a.

Now consider the additional bubble filled to indicate the candidate chosen by the
voter while creating (A, B, C). There are two subcases. The first one is that row a al-
ready contains a filled bubble inside A. Then, in order to get a vote for x from (R, B, C),

592 J. Cichoń, M. Kutyłowski, and B. Wȩglorz

the additional bubble must be placed in row a (hence either in ballot B or C). In the
second subcase row a contains a filled bubble either in B or in C. So the additional
filled bubble cannot be placed in rows 1 through a − 1 (it would be placed either in B
or in C!). If the additional bubble is placed in row a, then it should be placed in A. If it
is placed in the rows a + 1 through k, then again it should be placed in ballot A.

It follows that the probability that after filling the additional bubble we get a 3-ballot
(R, B, C) as a vote for x equals

(1
3)a−2 · (2

3)k−a · (
1
3 · 1

k + 2
3 · (1

k · 1
2 + k−a

k · 1
2)

)
= 2k−a

3k−1 · k−a+2
k .

The second case is that R does not contain a filled bubble in the row of x. During the
first phase of creating (A, B, C) within the rows 1 through a only the bubbles from
A can be filled (otherwise the vote (R, B, C) would be not for x). Similarly, in the
rows a + 1 through k no bubble can be filled inside A. It happens with probability
(1
3)a−1 · (2

3)k−a. In the second phase the voter must choose candidate x. There are
two ballots with unfilled bubble in this row - A and either B or C. We succeed, if the
additional ballot is not placed in A. This happens with probability 1

k · 1
2 . ��

After considering non-incidental 3-ballots we shall see that the probability given by
Lemma 1 does not contribute much to the overall probability of composing a 3-ballot
from R with a vote for x. We can also see that qnR is substantially smaller than qR for
the parameters values of practical interest.

Probability of Getting an Element from R(R). Our first goal is to estimate prob-
ability that from a random 3-ballot we get an element of R(R). First we inspect quite
carefully the case that exactly one ballot falls into R(R), later we shall see that the
opposite case occurs with a much lower probability.

Lemma 2. Let (A, B, C) be a random 3-ballot. The probability that exactly one of the
ballots A, B, C belongs to R(R) and contains exactly b filled bubbles is at most

(
k−a

b

) · 2k−b−1

3k−1 · k+3b
k .

Proof. There are two cases for which it is possible that (A, B, C) has the properties
stated. The first one is that during the first phase the voter fills bubbles in rows 1 through
a using exactly two ballots. The number of choices to do it in this way is

(
3
2

) · (2a − 2)
against the total number of choices equal to 3a.

Now let us consider the second phase. W.l.o.g. we may assume that the ballot C does
not contain a filled bubble in rows 1, . . . , a. Probability that C contains b filled bubbles
after the first phase equals

(
k−a

b

) · (1
3)b · (2

3)k−a−b =
(
k−a

b

) · 2k−a−b

3k−a .

In this case the additional bubble has to be added in a row where C has already a bubble
(in this case C will not be changed for sure) or in the remaining rows and C must be
not chosen for filling a bubble. So the second phase does not change C with probability

b
k + k−b

k · 1
2 = k+b

2k .

Short Ballot Assumption and Threeballot Voting Protocol 593

After the first phase C may contain b − 1 filled bubbles. This occurs with probability

(
k−a
b−1

) · (1
3)b−1 · (2

3)k−a−b+1 =
(
k−a
b−1

) · 2k−a−b+1

3k−a .

In order to get C with b filled bubbles, all in the rows a + 1, . . . , k, the voter must
choose one of k − a − b + 1 rows, and choose a ballot from C for filling. This occurs
with probability

k−a−b+1
k · 1

2 .

We see that finally C contains b filled bubbles, all in rows a+1, . . . , k, with probability

(
k−a

b

) · 2k−a−b

3k−a · k+b
2k +

(
k−a
b−1

) · 2k−a−b+1

3k−a · k−a−b+1
2k

=
(
k−a

b

) · 2k−a−b

3k−a ·
(

k+b
2k + b

k−a−b+1 · 2 · k−a−b+1
2k

)

=
(
k−a

b

) · 2k−a−b−1

3k−a · k+3b
k .

Taking into account the probability of filling bubbles in exactly two ballots (from A,
B, C) in the rows 1, . . . , a, we get the final probability of success in the first case
considered:

2a−2
3a−1 · (

k−a
b

) · 2k−a−b−1

3k−a · k+3b
k . (1)

The second case is that during the first phase the voter fills bubbles in only one
ballot in rows 1 through a. This happens with probability 1

3a−1 . For the sake of analysis
we reverse a little the process of generating (A, B, C). First the voter fills one bubble
in each of the rows 1, . . . , a; then she chooses where to fill a bubble pointing to the
candidate chosen; finally she fills one bubble in each of the rows a + 1, . . . , k. So in
this case the situation described by the lemma occurs when the voter chooses one of the
candidates 1, . . . , a – then the second ballot gets excluded from R(R). So the overall
probability of the event of interest equals

1
3a−1 · a

k · (
k−a

b

) · (1
3)b · (2

3)k−a−b =
(
k−a

b

) · 2k−a−b

3k−1 · a
k . (2)

It is easy to see that the sum of expressions from (1) and (2) is smaller than

(
k−a

b

) · 2k−b−1

3k−1 · k+3b
k . ��

Lemma 3. Let (A, B, C) be a random 3-ballot. The probability that exactly two of the
ballots A, B, C belong to R(R) and at least one of them has b filled bubbles is at most

2k−a−b

3k−1 · (k−a
b

) · k−a+2b
k .

Proof. Assume that during the first phase the bubbles in rows 1, . . . , a are filled first.
They must go to the same ballot, w.l.o.g. assume that it is A. This happens with proba-
bility (1

3)a−1.
We estimate the probability that (A, B, C) fulfills the properties stated and that B

contains b filled bubbles. There are two cases: the first one is that during the first phase
B gets b filled bubbles. During the second phase, if the voter chooses one of the b rows,

594 J. Cichoń, M. Kutyłowski, and B. Wȩglorz

where B already contains filled bubbles, then we get a 3-ballot with the properties
stated. If the voter chooses one of the rows 1, . . . , a, then either B or C will not belong
to R(R). If the voter chooses one of k − a − b remaining rows, then with probability
1
2 the voter fills a bubble in A and not in B. So the overall probability of getting into
a proper configuration in this case equals

(1
3)a−1 · (

k−a
b

) · (1
3)b · (2

3)k−a−b · (k−a−b
k · 1

2 + b
k) . (3)

Now assume that during the first phase b − 1 bubbles are filled inside B. During the
second phase one bubble must be filled in B in one of k − a − (b − 1) rows. So the
overall probability of getting into a proper configuration in this case equals

(1
3)a−1 · (k−a

b−1

) · (1
3)b−1 · (2

3)k−a−b+1 · k−a−b+1
k · 1

2 . (4)

By summing up the expressions (3) and (4) we get the expression

2k−a−b

3k−1 · 1
2k ·

((
k−a

b

) · (k − a − b + 2b) +
(
k−a
b−1

) · (k − a − b + 1)
)

.

Since
(
k−a
b−1

)
=

(
k−a

b

) · b
k−a−b+1 , the last expression equals

2k−a−b

3k−1 · 1
2k · (

k−a
b

) · (k − a + 2b) .

Since also C may have the form required, we multiply this probability by 2 in order to
get the estimation from the lemma. ��

Probability of Incidental 3-Ballots. Now we turn our attention into probability of
composing a valid 3-ballot from receipt R, a ballot B ∈ R(R), and a random 3-ballot
(U, V, W).

Lemma 4. Let B ∈ R(R) and B contain b filled bubbles. Let Z be a ballot from a
ballot different from those containing originally R and B. Let x be a candidate such
that row x contains a filled bubble in either R or B. Then with the probability

2a+b−2

3k · 4k−3a−3b+3
k

(R, B, Z) forms a valid 3-ballot with a vote in row x.

Proof. Let us use the following terminology: By filled rows we mean the a + b rows
where either R or B contains a filled bubble, except row x. All remaining rows are
called unfilled rows.

Note that ballot Z must contain filled bubbles in the unfilled rows and no filled bubble
in the filled rows. It must also contain a filled bubble in row x. There are two ways to
get such a configuration. The first case is that Z gets filled bubble in all unfilled rows
and in row x during the first phase of creating (U, V, W). This occurs with probability

(1
3)k−(a+b−1) · (2

3)a+b−1 = 2a+b−1

3k .

Then, during the second phase, the voter must not put an additional bubble in Z , which
occurs with probability 1 − a+b−1

k · 1
2 .

Short Ballot Assumption and Threeballot Voting Protocol 595

The second case is that Z receives all but one filled bubble during the first phase, and
it gets the missing filled bubble in the second phase. This case occurs with probability

(k − (a + b − 1)) · (1
3)k−a−b · (2

3)a+b · 1
k · 1

2 = 2a+b−1

3k · k−a−b+1
k .

We see that together the probability of getting such a ballot Z equals

2a+b−1

3k · 2k−a−b+1
2k + 2a+b−1

3k · k−a−b+1
k = 2a+b−2

3k · 4k−3a−3b+3
k . ��

Remark 1. We can immediately see that it is impossible to form a valid 3-ballot vote
from R, B for a candidate y that corresponds to an unfilled row.

Now we estimate the probability that we can build an incidental 3-ballot with a vote for
x from two random 3-ballots.

Lemma 5. Let x be a row where R has a filled bubble. Then probability that from
two random 3-ballots B1, B2 we can build a vote (R, B, C), where B ∈ R(R), for
candidate x is at most

pR = 22k−3

32k−2 · (4c0 + 2c1 · (k − a) − c2 · (k − a)(k − a + 1)) ,

where c0 = (1 + 1
2a+1)4k−3a+3

k , c1 = 3(4k−3a+3)
k2 − 3

k (1 + 1
2a+1), c2 = 9

k2 .

Proof. First observe that according to Lemmas 2, 3 and 4, the probability of getting
a 3-ballot (R, B, C) with the properties claimed such that B contains exactly b filled
bubbles is at most

((
k−a

b

) · 2k−b+1

3k−1 · k+3b
k + 2k−a−b

3k−1 · (k−a
b

) · k−a+2b
k

)
· 2a+b−2

3k · 4k−3a−3b+3
k · 3

=
(
k−a

b

) · 2k+a−1

32k−2 · (k+3b
k + 1

2a+1) · 4k−3a−3b+3
k (5)

Our goal is to estimate the sum of expressions (5) for all possible values of b:

∑k−a
b=0

((
k−a

b

) · 2k+a−1

32k−2 · (k+3b
k + 1

2a+1) · 4k−3a−3b+3
k

)

= 2k+a−1

32k−2 · ∑k−a
b=0

(
k−a

b

) · (
c0 + c1 · b − c2 · b2

)
, (6)

where

c0 = (1 + 1
2a+1)4k−3a+3

k , c1 = 3(4k−3a+3)
k2 − 3

k (1 − 1
2a+1), c2 = 9

k2 .

Recall that
∑n

i=0

(
n
i

)
= 2n,

∑n
i=0

(
n
i

) · i = n · 2n−1, and
∑n

i=0

(
n
i

) · i2 = 2n−2 · n · (n + 1).

Hence the expression (6) can be rewritten as follows:

2k+a−1

32k−2 · (2k−a · c0 + (k − a) · 2k−a−1 · c1 + (k − a)(k − a + 1)2k−a−2 · c2

)

= 22k−3

32k−2 · (4 · c0 + (k − a) · 2 · c1 + (k − a)(k − a + 1) · c2) . (7)

��

596 J. Cichoń, M. Kutyłowski, and B. Wȩglorz

A nice feature of approximation (7) is that its main term 22k−3

32k−2 depends neither on a
nor on b. This yields a rough estimation of probability of forming an incidental 3-ballot
from R.

Now we turn our attention to the case when R does not contain a filled bubble in the
row of candidate x. The following lemma can be shown similarly to Lemma 5.

Lemma 6. Let x be a row where R has no filled bubble. Then the probability that from
two random 3-ballots B1, B2 we can build a vote (R, B, C), where B ∈ R(R), for
candidate x is at most

pnR = 22k−4

32k−2 · (4c0 + 2c1 · (k − a + 1) − c2 · (k − a) · (k − a + 3)) ,

where c0 = (1 + 1
2a+1)4k−3a+3

k , c1 = 3(4k−3a+3)
k2 − 3

k (1 + 1
2a+1), c2 = 9

k2 .

Proof. The proof is similar as the proof of Lemma 5. The difference is that instead of
(5) we have

(
k−a

b

) · b
k−a · 2k+a−1

32k−2 · (k+3b
k + 1

2a+1) · 4k−3a−3b+3
k

(the term b
k−a is due to the additional condition in Lemmas 2, 3 that the ballot from

R(R) has to contain a filled bubble in row x). So instead of (6) we have

pnR =
∑k−a

b=0

((
k−a

b

) · 2k+a−1

32k−2 · b
k−a · (k+3b

k + 1
2a+1) · 4k−3a−3b+3

k

)

= 2k+a−1

32k−2 · 1
k−a · ∑k−a

b=0

(
k−a

b

) · (
c0 · b + c1 · b2 − c2 · b3

)
, (8)

Recall that
∑n

i=1

(
n
i

) · i3 = 2n−3 · n2 · (n + 3). Hence

pnR = 22k−4

32k−2 · (4c0 + 2c1 · (k − a + 1) − c2 · (k − a) · (k − a + 3)) . ��
Comparing the results of Lemma 5 and 6 we see that pR ≈ 2 · pnR. This has some
strange consequences: a conscious voter may be tempted to hide his choice and avoid
unbalance between pR and 2 · pnR by taking a = k. However, if all voters behave like
this, then it becomes evident which ballots in the ballot box correspond to the receipts.
Then an adversary may safely replace some of the ballots in the ballot box.

Estimating the Number of Possible Votes. The results of the previous subsections
lead to quite precise estimations of the expected number of valid 3-ballots composing a
vote for a given candidate x.

Theorem 1. Let R be a receipt with a filled bubbles in k candidate race and N votes
cast. If R contains a filled bubble in row x, then the expected number of non-incidental
3-ballots with a vote for x is at most

2k−a

3k−1 · k−a+2
k · (N − 1)

and the expected number of incidental 3-ballots with a vote for x is at most

22k−4

32k−2 · (4c0 + 2c1 · (k − a) − c2 · (k − a)(k − a + 1)) · (N − 1) · (N − 2) ,

2 where c0 = (1 + 1
2a+1)4k−3a+3

k , c1 = 3(4k−3a+3)
k2 − 3

k (1 + 1
2a+1), c2 = 9

k2 .

Short Ballot Assumption and Threeballot Voting Protocol 597

If R does not contain a filled bubble in row x, then the expected number of non-
incidental 3-ballots with a vote for x is at most

2k−a−1

3k−1 · 1
k · (N − 1)

and the expected number of incidental 3-ballots with a vote for x is at most

22k−5

32k−2 · (4c0 + 2c1 · (k − a + 1) − c2 · (k − a) · (k − a + 3)) · (N − 1) · (N − 2) .

Conclusions. The formulas for expected values from Theorem 1 depend on two main
terms: (2

3)k and N . While (2
3)k and (2

3)2k reduce the number of ballots, the terms N −1
and (N − 1)(N − 2) may compensate for this. We see that the phase transition point is
close to N ≈ (3

2)k, however the neglected terms are important for small parameters.
In the tables below we inspect some values obtained from Theorem 1. We see from

Table 1 that non-incidental ballots are negligible for voter’s privacy. Also, if we increase
the number of filled bubbles on a receipt, then voter’s privacy decreases. One can also
see that the case k ≥ 9 is hopeless from privacy point of view. On the other hand, it
seems that k ≤ 7 might provide sufficient privacy level due to high expected values.

Table 1. Upper estimation for the expected number of non-incidental 3-ballots for candidate x for
a receipt R with a filled bubbles, when R does not contain a filled bubble in a row x, N = 100

a = 1 a = 2 a = 3 a = 4 a = 5 a = 6 a = 7

k = 5 1.96 .98 .49 .24 .12
k = 6 1.08 .54 .27 .014 .068 .034
k = 7 .62 .31 .16 .077 .039 .019 .0097

Table 2. Upper estimation for the expected number of incidental 3-ballots for candidate x for a
receipt R with a filled bubbles, when R does not contain a filled bubble in a row x

a = 1 a = 2 a = 3 a = 4 a = 5 a = 6 a = 7 a = 8 a = 9 a = 10

N = 100

k = 5 1250 934 688 494 340
k = 7 248 199 160 127 100 76 57
k = 9 49 41 34 29 24 20 16 13 10
k = 10 22 18.6 15.9 13.6 11.6 9.87 8.27 6.83 5.51 4.41

N = 50

k = 7 60 48 39 31 24 18 14
k = 9 11.9 9.97 8.39 7.07 5.92 4.90 3.99 3.18 2.48

References

1. Appel, A.W.: How to defeat Rivest’s ThreeBallot voting system. Draft (October 2006),
http://www.cs.princeton.edu/ appel/papers/
DefeatingThreeBallot.pdf

http://www.cs.princeton.edu/~appel/papers/DefeatingThreeBallot.pdf
http://www.cs.princeton.edu/~appel/papers/DefeatingThreeBallot.pdf

598 J. Cichoń, M. Kutyłowski, and B. Wȩglorz

2. Araújo, R., Custódio, R.F., van de Graaf, J.: A Verifiable Voting Protocol based on Farnel.
In: Proceedings of Workshop On Trustworthy Elections(WOTE) (2007),
http://research.microsoft.com/conferences/WOTE2007/
papers/07.pdf

3. Belote, G., Jones, H., Juang, J.: Threeballot in the field. Draft (2006),
http://theory.lcs.mit.edu/classes/6.857/projects/
threeBallotPaper.pdf

4. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election Scheme. In: di
Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp.
118–139. Springer, Heidelberg (2005)

5. Clark, J., Essex, A., Adams, C.: On the Security of Ballot Receipts in E2E Voting Systems.
In: Proceedings of Workshop On Trustworthy Elections (WOTE) (2007),
http://research.microsoft.com/conferences/WOTE2007/
papers/08.pdf

6. Gogolewski, M., Klonowski, M., Kutyłowski, M., Kubiak, P., Lauks, A., Zagórski, F.: Klep-
tographic Attacks on E-voting Schemes. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995,
pp. 494–508. Springer, Heidelberg (2006)

7. Henry, K., Stinson, D.R., Sui, J.: The Effectiveness of Receipt-Based Attacks on ThreeBallot.
Cryptology ePrint Archive, http://eprint.iacr.org/2007/287

8. Hosp, B., Popoveniuc, S.: An introduction to Punchscan. In: Threat Analysis for
Voting System. A Workshop on Rating Voting Methods VSRW 2006 (2006),
http://vote.cs.gwu.edu/vsrw2006/papers/9.pdf

9. Rivest, R.L.: The Threeballot voting system. Draft, Version 10/1/06 (2006)
10. Rivest, R., Smith, W.: Three Voting Protocols: ThreeBallot, VAV, and Twin. In: EVT. Pro-

ceedings of USENIX/ACCURATE Electronic Voting Technology Workshop (2007)
11. Strauss, Ch.: A critical review of the triple ballot voting system. part 2: Cracking the triple

ballot encryption. Draft (October 8, 2006),
http://www.cs.princeton.edu/˜appel/voting/Strauss-ThreeBallot
Critique2v1.5.pdf

12. Strauss, Ch.: The trouble with triples: A critical review of the triple ballot (3ballot) scheme,
part 1. Draft (October 5, 2006),
http://www.cs.princeton.edu/˜appel/voting/Strauss-Trouble
WithTriples.pdf

13. Top-To-Bottom Review,
http://www.sos.ca.gov/elections/elections vsr.htm

http://research.microsoft.com/conferences/WOTE2007/papers/07.pdf
http://research.microsoft.com/conferences/WOTE2007/papers/07.pdf
http://theory.lcs.mit.edu/classes/6.857/projects/threeBallotPaper.pdf
http://theory.lcs.mit.edu/classes/6.857/projects/threeBallotPaper.pdf
http://research.microsoft.com/conferences/WOTE2007/papers/08.pdf
http://research.microsoft.com/conferences/WOTE2007/papers/08.pdf
http://eprint.iacr.org/2007/287
http://vote.cs.gwu.edu/vsrw2006/papers/9.pdf
http://www.cs.princeton.edu/~appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf
http://www.cs.princeton.edu/~appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf
http://www.cs.princeton.edu/~appel/voting/Strauss-TroubleWithTriples.pdf
http://www.cs.princeton.edu/~appel/voting/Strauss-TroubleWithTriples.pdf
http://www.sos.ca.gov/elections/elections_vsr.htm

Practical Deniable Encryption�

Marek Klonowski, Przemysław Kubiak, and Mirosław Kutyłowski

Institute of Mathematics and Computer Science,
Wrocław University of Technology

{Marek.Klonowski, Przemyslaw.Kubiak, Miroslaw.Kutylowski}@pwr.wroc.pl

Abstract. A party using encrypted communication or storing data in
an encrypted form might be forced to show the corresponding plaintext.
It may happen for law enforcement reasons as well as for evil purposes.
Deniable encryption scheme introduced by Canetti et al. shows that cryp-
tography can be used against revealing information: the owner of the data
may decrypt it in an alternative way to a harmless plaintext. Moreover,
it is impossible to check if there is another hidden plaintext.

The scheme of Canetti is inefficient in the sense that it is a special
purpose scheme and using it indicates that there is some hidden message
inside. We show that deniable encryption can be implemented in a dif-
ferent way so that it does not point to exploiting deniable encryption.
Moreover, it is quite straightforward, so it can be used for both good and
evil purposes.

Apart from that we show that even the special purpose original scheme
canbe extended to allow, in some circumstances, any “depth” of deniability.

Keywords: deniable encryption.

1 Introduction

Regular encryption schemes are aimed at hiding contents of encrypted data.
Many of them meet very high security against an adversary that is given a
ciphertext and would like to learn the corresponding plaintext. However, in the
real world situation might be more complex. After gaining access to encrypted
data, an adversary can demand presenting decryption keys or the corresponding
plaintext (in the latter case the adversary may demand a proof that the plaintext
is the right one). This may happen due to law enforcement procedures as well
as a part of a criminal action. In many countries citizens are obliged by law to
reveal these data on demand of appropriate authorities. One cannot simply refuse
claiming that the decryption keys are lost or forgotten – in such a case the person
might be considered as guilty by default. For most encryption schemes (ElGamal,
RSA, DES . . .), neither a receiver (we call him Bob), nor the sender (Alice)
of encrypted data can cheat and disclose an incorrect plaintext. An incorrect
decryption key would give senseless data.
� The paper is partially supported by EU within the 6th Framework Programme under

contract 001907 (DELIS).

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 599–609, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

600 M. Klonowski, P. Kubiak, and M. Kutyłowski

The main step for solving the problems mentioned is the idea of deniable en-
cryption proposed in [3]. In this scheme, the sender can reveal fake parameters
like random strings and private keys that yield a plaintext mf , instead of the
original plaintext m. More precisely, if a ciphertext c = E(m, r) of message m is
composed with parameter r (which is the key and, may be, some additional pa-
rameters), then the goal is to present rf and mf �= m, such that c = E(mf , rf).
Moreover, mf should be a reasonable plaintext, in order to convince the ad-
versary. The protocol for finding such mf and rf is called a faking algorithm,
while the whole cryptosystem is named deniable encryption scheme. In case
of asymmetric schemes, we can distinguish between sender-deniable, receiver-
deniable and sender-and-receiver deniable schemes. However, it is shown in [3]
that one can convert any sender-deniable encryption scheme into a receiver-
deniable scheme, and vice versa. In that conversion the scheme is transformed
into a two-phase one, with the inverted roles of the sender and the receiver in
the first phase. In the same paper it is also presented how to construct a sender-
and-receiver deniable scheme on top of a sender-deniable scheme under some
additional assumptions.

Applications. Deniable encryption schemes can be used not only in the basic
scenario described. They might be useful for multiparty secure computation
[4], electronic voting protocols and many other problems (cf. [3], [2]). Deniable
encryption can be also combined with ring signatures [10].

Our Contribution. In this paper we present a few schemes aimed at providing
deniable encryption. First, we present a modification of the protocol of Canetti
et al. Our modification, if not used on a large scale, allows to hide messages at
any depth. We also present other practical solutions – one can be regarded as an
extension of the one-time-pad idea, other are based on the ElGamal encryption
scheme.

2 Deniable Encryption by Canetti et al.

Public-KeyDeniableEncryption.According to [3] public-key sender-deniable
encryption scheme should fulfill the following requirements:

1. Only the receiver possesses the decryption key.
2. With overwhelming probability the value decrypted by the receiver contains

no flipped bits, i.e. is exactly the same as the one that was being encrypted.
3. The protocol should be semantically secure.
4. The sender should have an efficient faking algorithm φ such that for a given

quadruple (m, r, c, mf), where c is a transcript of sending ciphertext of m
using random parameter r and mf is an arbitrary, but plausible message,
can produce rf such that c is a transcript of sending message mf using rf .
In other words, it means that the sender can convince the attacker that mf

might be the message sent.

Practical Deniable Encryption 601

Shared-Key Deniable Encryption. Although the authors of [3], [2] concen-
trate on the public-key deniability, they give two examples of shared key encryp-
tion. The first one is the obvious one-time pad, the second one (given in [2])
is a plan-ahead deniable scheme. That means that the sender chooses mf (or
generally � − 1 such fake messages, for some � ≥ 2) at the time of encryption,
and all these information is put into the resulting ciphertext. Thus the size of
the ciphertext is proportional to �. Obviously, plan-ahead shared-key deniable
encryption is weaker than the one in which mf might be chosen at the time of
coercion (for convenience we call such a scheme mf -ad-hoc deniable encryption).

A Translucent Set. The public key scheme from [3] is based on so called
translucent set. St is called a translucent set if all the following conditions are
satisfied:

– St ⊂ {0, 1}t and |St| < 2t−k, for sufficiently large k (say k = 40).
– It is easy to find a random element x ∈ St.
– Given x ∈ {0, 1}t and trapdoor information dt, it is easy to check if x ∈ St.
– Without dt it is computationally infeasible to decide whether x ∈ St.

Construction of a Translucent Set. The following construction from [3]
is based on a trapdoor permutation f : {0, 1}s → {0, 1}s and its hard-core
predicate B : {0, 1}s → {0, 1}.

Let t = s + k. Represent each x ∈ {0, 1}t as x = x0||b1||b2|| . . . ||bk, where
x0 ∈ {0, 1}s is followed by k bits. Then the translucent set is defined as:

St =
{
x = x0||b1||b2|| . . . ||bk ∈ {0, 1}s+k| (∀i≤k)B(f−i(x0)) = bi

}
.

The trapdoor information dt plays the role of a private key.

The Parity Scheme. In this sender-deniable scheme n randomly chosen t-bit
strings are used to encode a single bit. Let St ⊂ {0, 1}t be a translucent set.
According to [3] elements drawn uniformly from St (respectively, from {0, 1}t)
are named S-elements (respectively, R-elements). Note that the probability that
an R-element is also an S-element is 2−k.

Encryption: To encrypt bit b a random number i ∈ 0, . . . , n such that i =
b mod 2 is chosen. A ciphertext of b consists of i subsequent S-elements
followed by n − i R-elements.

Decryption: Return b according to parity of the number of S-elements in the
ciphertext.

Honest Opening: The sender reveals random choices used during encoding.
Dishonest Opening: The sender claims that she has chosen i − 1 elements

instead of i. It changes the parity, and consequently the encoded bit is flipped.
If i = 0, cheating fails.

It has been proved in [3], [2] that the parity scheme is a 4
n -sender deniable

encryption scheme, which means that the probability of a successful attack of
a coercer vanishes linearly in the security parameter n. However, both in [3],

602 M. Klonowski, P. Kubiak, and M. Kutyłowski

[2] a “flexibly deniable scheme” is given for n = 2. Construction of that scheme
ensures that the probability of a successful attack is negligible even for such a
small value of n. The construction is as follows: for deniable encryption only the
sequences C1 = {S, R}, C0 = {S, S} are chosen, and at the time of coercion each
of them might be opened as any of T0 = {R, R}, T1 = {S, R} (more precisely,
C0, C1 will always be opened as T0, T1, and honest opening means that Ci is
opened as Ti for i = 0, 1). Clearly, to make the opening believable the pair T0, T1

cannot be precluded from being used for encryption instead of the pair C0, C1

– the sender does not have to preserve deniability of a particular plaintext. It
is also said in the paper that in general such an approach allows to construct
efficient deniable schemes.

3 Our Solutions

Note that for n = 2 the above flexibly deniable scheme has some deficiency.
Namely, {S, S} never appears in the opening phase. Accordingly, after opening
sufficiently many bits the coercer will be convinced that the flexibly deniable
scheme is used.

Assume that going through the pair of plaintexts (m, mf) and reading the pair
(b, bf) of corresponding bits we get all four cases equally often. Then for n > 2 it is
easy to design a protocol in which each of n + 1 n-element strings {R, R, . . . , R},
{S, R, . . . , R}, . . . , {S, S, . . . , S} occurs equally often in the opening phase (from
now on we assume that C0 contains exactly 2·�n

2 	 S-elements, whereas C1 contains
2 · �n−1

2 	 + 1 of them, and exactly one of C0, C1 contains a single R-element at
the end). For example for n = 3 bit b = 0 would be encrypted as C0 = {S, S, R},
and b = 1 as C1 = {S, S, S}. Then bf = 0 would be opened as {R, R, R} for C0

and {S, S, R} for C1, and bf = 1 as {S, R, R} for C0 and {S, S, S} for C1. So
the coercer cannot distinguish usage of the flexibly deniable scheme from honest
application of the parity scheme. The increase of n (reasonable for the scheme that
appears to be the parity one) enlarges the volume of the ciphertext. This might
be utilized by a solution from Subsect. 3.4.

3.1 A Nested Construction

In this subsection we present a public-key, mf -ad-hoc sender-deniable encryption
scheme that partially extends the protocol from [3]. Our motivation is as follows:
this scheme provides deniable encryption, however a coercer also knows that it is
a deniable encryption scheme. So after obtaining a plaintext mf he can continue
to demand the real one. In such a situation a good solution for Alice would be to
confess to sending a “slightly” banned contents, instead of the original contents.
Such an approach seems to be much more convincing than the one from the
original scheme.

Description of the Modified Protocol. Assume that f, f� are two indepen-
dent trapdoor permutations such that

f : {0, 1}s+k → {0, 1}s+k, f� : {0, 1}s → {0, 1}s.

Practical Deniable Encryption 603

Denote the trapdoors of f , f� as dt, d�
t respectively. Let t = s + 2k. Represent

each x ∈ {0, 1}t as x = x0||b�
1|| . . . ||b�

k||b1|| . . . ||bk, where x0 ∈ {0, 1}s is followed
by 2k bits. Then we define translucent sets as:

S�
t = {x = x0||b�

1|| . . . ||b�
k||b1|| . . . ||bk ∈ {0, 1}s+2k

| (∀i≤k) B((f�)−i(x0)) = b�
i },

St = {x = x0||b�
1|| . . . ||b�

k||b1|| . . . ||bk ∈ {0, 1}s+2k

| (∀i≤k) B(f−i(x0||b�
1|| . . . ||b�

k)) = bi}.

Define S�-elements as elements of S�
t chosen at random. We say that x ∈

{0, 1}s+2k is an R�-element, if the first s + k bits of x are drawn uniformly
at random from {0, 1}s+k. Suppose that the sender knows dt (to be able to cal-
culate bits bi when the string x0||b�

1|| . . . ||b�
k is already determined by f�). Then

for each pair of elements (U, V) = (S�, S), (S�, R), (R�, S), (R�, R) she is able
to find x such that x ∈ U ∩ V .

The construction reminds Russian dolls: x0||b�
1|| . . . ||b�

k, that is the internal
doll, can be claimed to be a random string used for the original scheme. The
whole construction (we will refer to it as to Matryoshka) describes a single el-
ement from the Cartesian product {S�, R�} × {S, R}. The external doll, build
on the basis of f , is to protect the internal one build on the basis of f�. As in
the original scheme, f must be a public key trapdoor permutation, otherwise the
coercer would know that the sender could have inverted f (in the case of a public
key trapdoor permutation the sender might plausibly deny that she knows f−1).
Consequently, s + k must be considerably large, thus s must be relatively large.
This gives some space for the extension described subsequently.

Note that some attention must be paid to implementation details. If for ex-
ample f is a permutation based on the factorization problem, then f : ZN → ZN

for some composite modulus N . Since b�
i are single bits attached to x0, values

y = x0||b�
1|| . . . ||b�

k are usually not uniformly distributed in ZN . These values are
taken as arguments of f to calculate bi = B(f−i(x0)) when an S-element is to
be encoded. Consequently, if x should be opened as an S-element, then y must
be revealed. Hence the non-uniform distribution of values y would be evident for
the coercer. To hide this we slightly modify the definition of St:

St = {x = E(x0||b�
1|| . . . ||b�

k) ||b1|| . . . ||bk ∈ ZN ||{0, 1}k

| (∀i≤k) B(f−i(E(x0||b�
1|| . . . ||b�

k))) = bi},

where E is RSA encryption modulo N with the “public” asymmetric exponent
known to the sender. Then the most significant bits of x0||b�

1|| . . . ||b�
k are not

available to the coercer (cf. [11, Chap. 4]). Now let us describe details of the
scheme:

Preliminaries: At the beginning trapdoor dt must be established between Al-
ice and Bob. Let m, mf , m�, m�

f be pairs of plaintexts, where m is only
slightly banned, and m� is strictly prohibited (mf , m�

f can be devised at the
time of coercion). Assume that bit-lengths of the plaintexts are equal. For
n > 2 define strings C�

0 , C�
1 like C0, C1 from the beginning of Sect. 3, but

604 M. Klonowski, P. Kubiak, and M. Kutyłowski

use S� and R� instead of S and R. (In fact, we should not preclude usage of
strings like T0, T1, but we skip this issue for brevity). Let the length of the
strings C�

b� , Cb for b�, b ∈ {0, 1}, be the same.
Encryption: To deniably encrypt both m� and m the sender encodes �log2 m�	+

1 = �log2 m	 + 1 pairs of bits (b�, b). Each pair determines a pair (C�
b� , Cb) of

strings of length n. The pair (C�
b� , Cb) is encoded as a sequence of n separable

Matryoshkas. In each consecutive Matryoshka a single element (belonging to
the Cartesian product {S�, R�} × {S, R}) from a consecutive position in the
pair of strings is encoded.

Decryption: is straightforward.
Dishonest Opening: In the case of coercion the sender might “reveal” mf . If

she is coerced harder, she can even reveal m (because of the form of C0, C1

the coercer is convinced that m is genuine). If despite of this the coercion
is still continued, Alice might reveal f−1, the true arguments for encryption
E and a fake m�

f . Note that according to the encoding procedure m�
f looks

like honest opening of the message encoded according to the parity scheme.

Nested contents. One can easily see that for sufficiently large t it is possible to
embed more than two translucent sets into {0, 1}t in a straightforward manner.
Let us note that we can simply iteratively use the above idea. Then the trapdoors
for all except the innermost layer must be shared between the receiver and the
sender.

There is one limitation: at each iteration layer we cut off a number of k bits
from a sequence that was regarded as a random string for the previous level. So
finally we cannot cut off any bits - the s-bit string becomes too short for the
basic scheme to work. However, even then the coercer cannot be sure that the
innermost layer of nested encryption has been reached. Simply, Alice and Bob
may use multiple transmissions and concatenate these short “random” strings
to a long string that again has been constructed in the way described. Let us
stress that preparing elements belonging to appropriate translucent sets can be
performed off-line, i.e. in advance, without knowing messages to be encrypted.

One can easily see that the original scheme as well as its extension share a
serious drawback – many bits are needed to encode a single bit of a message
intended to be sent. We partially address this problem in Subsect. 3.4.

Most importantly, a single addressee should not use the above scheme on a
large scale: each sender knowing the trapdoors to external layers would also know
content of these layers in messages encrypted by the others. On the other hand,
if the addressee would have several public keys, each one dedicated for another
sender, then the protocol would be suspicious-looking.

3.2 Postponed One-Time-Pad

This scheme is shared-key, mf -ad-hoc, sender-or/and-receiver-deniable (“-and-”
if they coordinate their stories).

Let R be a large finite ring, say |R| ≥ 264, in which every nonzero element is
invertible (so, R is a field) or in which a randomly chosen element is invertible
with overwhelming probability (e.g. R = ZN , where N is a RSA number).

Practical Deniable Encryption 605

Preliminaries: Let E : R → R be an encryption scheme. If E is a block cipher
with the block-length equal to � bits, then it would be convenient to take R
being a field F2� . Let a1, a2 be two distinct elements of the ring R. Suppose
that the sender and the receiver share:
– a secret generator R of pseudorandom numbers R : R → R; as we shall

see, in case of dishonest opening of a ciphertext a fake generator Rf will
be presented to the coercer; Rf will be constructed as a polynomial of
some degree df , hence to make Rf convincing we must assume that the
generator R might be, but do not have to be, a random polynomial of
some degree d,

– a secret b ∈ R being the current internal state of R,
– F (a1) being a value at point a1 of some straight line F : R → R, F will

be freshly determined during encryption of a new message.
Encryption: The sender calculates b := R(b). If b = a, then she makes a

new update b := R(b). Then she calculates a straight line determined by two
points (a1, F (a1)), (b, E(m)). With overwhelming probability F is a bijection
on the ring R, i.e. E(m) − F (a1) is invertible in R. The ciphertext is F (a2).

Decryption: The receiver updates b := R(b), and if necessary repeats the up-
date. Then on the basis of a fixed pair (a1, F (a1)) and a pair (a2, F (a2))
with the second coordinate freshly received, determines F (b). The plaintext
is E−1(F (b)).

Dishonest Opening: Suppose that the receiver (or the sender) has to reveal in
a court of law or to the coercer the plaintexts of the ciphertexts obtained. At
this point he originates a set of df + 2 sensible plaintexts m

(1)
f , . . . , m

(df+2)
f

and for each i ∈ {1, . . . , df + 2} calculates b
(i)
f = F−1

i (E(m(i)
f)), where Fi

are straight lines obtained in the last df + 2 transmissions. Now he can
build a chain of df + 1 pairs (b(1)

f , b
(2)
f), (b(2)

f , b
(3)
f),. . . , (b(df+1)

f , b
(df+2)
f) and

treating the second coordinate of each pair as a value at point b
(i)
f of some

polynomial Rf gets this polynomial. Due to pseudorandomness of the output
of E Bob might suppose that all b

(i)
f are random, and that with overwhelming

probability he will get a polynomial of degree df . If the degree is smaller,
then as a bonus he adds additional points to the chain, making himself even
more credible.

Now, by revealing b
(1)
f and the polynomial Rf , he can convince of legality

of the last df + 2 ciphertexts Fi(a2), as well as of legality of any subset of
these ciphertexts. If the court of law has earlier straight lines Fi than the
F1, then Bob might testify that the polynomial Rf was generated recently,
the earlier one has been destroyed and obviously he does not remember it.

As we see, having received a summons to appear in, Bob generates a key Rf

for his one-time-pad encryption of freshly devised messages m
(1)
f , . . . , m

(df+2)
f .

Although the one-time-pad appears also in [2], [3], the above approach provides
some explanation of the sources of randomness used, i.e. provides the generator
Rf . This explanation, however, is of limited plausibility, which depends of the
number of ciphertexts that must be proved to be legal.

606 M. Klonowski, P. Kubiak, and M. Kutyłowski

Last but not least, using the scheme presented can be explained as a security
measure: note that it does not reveal directly any ciphertext transmitted. So even
known-ciphertext methods cannot be applied directly to break the encryption.

3.3 Deniable Encryption Based on the ElGamal Cryptosystem

In this subsection we present a fairly practical plan-ahead, shared-key, receiver-
deniable encryption scheme that is based on the ElGamal cryptosystem. Using
it has some advantages over the classical scheme of Canetti et al. First of all,
this cryptosystem is widely known – we avoid using obscure scheme obviously
aimed at deniable encryption. Another reason is that the scheme generates much
less overhead in terms of size of the ciphertext. Moreover, this receiver-deniable
scheme is much simpler than the two-phase one depicted in [3].

The ElGamal Encryption Scheme. This algorithm was introduced in [5], [6].
Let us recall it briefly: Consider the multiplicative group of some finite field, i.e.
a group F∗

pr , such that the Discrete Logarithm Problem (DLP) in this group is
hard. In particular pr−1 must have some large prime factor. Note that |F∗

pr | must
then itself be a large number, what is particularly useful for our purposes. In this
subsection, unless otherwise stated, all arithmetic operations are done in F∗

pr .
Let g be a generator of F∗

pr . The private key is a number x ∈ {2, 3, . . . , ordg −1}
chosen uniformly at random. The public key is a triple: F∗

pr , g, y = gx. To
encrypt a message M ∈ F∗

pr the sender chooses a number k ∈ {2, 3, . . . , ordg−1}
uniformly at random, and then puts α := gk and β = M · yk. The pair (α, β)
is a ciphertext of M . To decrypt (α, β) the receiver uses his private key and
calculates β · α−x = (M · yk) · g−kx = M .

The Deniable Encryption Scheme
Preliminaries: We assume that there is an established secret s shared by Alice

and Bob, and that the Bob’s private key x ∈ {2, 3, . . . , ordg − 1} is known
to Alice (the fact of sharing the private key allows to create a broad-band
subliminal channel, in [1, p.2] some similar broad-band channel was created
in the ElGamal signature scheme). Rest of the settings is exactly as in the
ElGamal protocol.

Encryption: To encrypt a message mf and an illegal message m ∈ 〈g〉 a number
k = HASH(s||mf) is computed. We assume that HASH(·) is a regular hash
function with values uniformly distributed in the set {0, 1, . . . , ordg − 1}.
Then Alice computes

α := gk · m, β := (yk · mx) · mf .

Note that the pair (α, β) is a regular ElGamal ciphertext of mf . Moreover,
the greater bit-length of the number |F∗

pr | is, the longer m can be sent sub-
liminally.

Decryption: First of all, the receiver should retrieve the “legal” message mf :

β · α−x = (yk · mx) · mf · (gk · m)−x = mf .

Then he can compute k := HASH(s||mf), and m := α · g−k.

Practical Deniable Encryption 607

Dishonest Opening: Bob, if coerced, can reveal his key x. The coercer can
check that (α, β) is in fact a regular, valid ElGamal encryption of the message
mf . So Bob mimics decryption of the fake message mf .

It is easy to see that the above scheme provides perfect receiver deniability, i.e.
the transcript of the procedure of sending m is indistinguishable from sending
mf . Obviously, the above scheme is not sender-deniable: the sender has no ef-
fective procedure that for an argument α = gk · m returns an exponent k′ such
that α = gk′

(otherwise she could solve DLP in F∗
pr). However, the scheme has

some limitations: similarly like in Subsect. 3.1, a single addresse should not use
the scheme on a large scale – key x is known to the sender.

3.4 A Covert Channel Hidden in Deniable Encryption

In Subsect. 3.3, a broadband subliminal channel is depicted. Another, very broad
subliminal channel can be embedded into McEliece cryptosystem in straightfor-
ward manner (as encoding of an error). Let us remind that McEliece Public
Key Cryptosystem was introduced in [8]. Detailed discussion about its security
can be found for example in [7] as well as references in this paper. Both broad-
band channels might be used to transfer deniable ciphertext, constructed e.g.
according to the flexibly deniable scheme (hence we would get an analogy to
the nested construction from Subsect. 3.1). However, due to the volume of such
ciphertexts they need to be transferred in parts. And again, attention must be
paid to implementation issues: for example some freedom of choice could be left
in the ciphertexts for the Bias Removal Method (cf. [13], [12]) to ensure uniform
distribution of the ciphertexts in the domain of the subliminal channel.

Note that another covert channel might independently be hidden in the deni-
able ciphertexts. Hence, if deniable encryption is embedded in some covert chan-
nel, we again get a Russian nesting dolls analogy. Deniable encryption might
also be performed stand-alone, like for example the nested construction from
Subsect. 3.1. Nevertheless, a covert channel embedded in deniable encryption
can save much of the capacity not used so far.

In general, all the plaintexts carried in the underlying deniable scheme might
constitute a smokescreen, and the real, true plaintext can be transferred en-
crypted in a covert channel embedded in the deniable scheme. Let us again take
a look at the construction of a translucent set recalled in Sect. 2: For each x ∈ St

we have x0 = fk(a) and bi = B(fk−i(a)) for some a ∈ {0, 1}s. Hence a might
itself be a s-bit ciphertext of some plaintext, and as such looks random. More-
over, a might be a public key ciphertext or a result of an application of a hybrid
scheme (cf. [9], [14, Sect. 7]). On top of that, each x ∈ {0, 1}s+k intended to
define an R-element might additionally transfer each of 2k − 1 nonzero mes-
sages: let x �∈ St, define x0 = fk(a), and b′i = B(fk−i(a)), then the binary
string (bk . . . b1)2 is defined as (b′k . . . b′1)2 ⊕ (ck . . . c1)2 for the nonzero additional
message (ck . . . c1)2. The message should be a part of some ciphertext – it should

608 M. Klonowski, P. Kubiak, and M. Kutyłowski

look random. Since the receiver can invert f , he can retrieve bits b′i on the basis of
x0 and will be able to reconstruct (ck . . . c1)2. Obviously, such x truly indicates an
R-element, but the sender must claim that x is randomly chosen from {0, 1}s+k.
This is necessary to preserve deniability in the underlying scheme.

It is easy to see that if the nested construction from Subsect. 3.1 is applied,
then the ciphertext a can be transferred in the s-bit kernel of the most nested
doll, but the nonzero “random” strings (ck . . . c1)2 might be passed in every layer
that indicate an R-element from the layer’s set {R, S}.

4 Conclusions

We have proposed a few solutions of deniable encryption problem tailored for
various scenarios. However, some problems seems to be remained open. For exam-
ple, let us note that the most interesting public-key mf -ad-hoc deniable schemes
generate significant overhead.

References

1. Anderson, R.J., Vaudenay, S., Preneel, B., Nyberg, K.: The Newton channel. In:
Anderson, R.J. (ed.) Information Hiding. LNCS, vol. 1174, pp. 151–156. Springer,
Heidelberg (1996)

2. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption (preliminary
version) (May 10, 1996)

3. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

4. Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended abstract).
In: FOCS, pp. 504–513. IEEE Comp. Soc, Los Alamitos (1996)

5. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

6. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

7. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems-
conversions for McEliece PKC. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 19–35. Springer, Heidelberg (2001)

8. McEliece, R.J.: A public-key system based on algebraic coding theory. In: DSN
Progress Report 42-44, pp. 114–116. Jet Propulsion Lab (1978)

9. Möller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In:
Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS,
vol. 3193, pp. 335–351. Springer, Heidelberg (2004)

10. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002)

11. Näslund, M.: Bit Extraction, Hard-Core Predicates, and the Bit Security of RSA.
Doctoral Thesis, Royal Institute of Technology, Department of Numerical Analysis
and Computing Science, Stockholm (August 1998)

Practical Deniable Encryption 609

12. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997)

13. Young, A., Yung, M.: Malicious cryptography: Kleptographic aspects. In: Menezes,
A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 7–18. Springer, Heidelberg (2005)

14. Young, A., Yung, M.: A space efficient backdoor in RSA and its applications. In:
Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897, pp. 128–143. Springer,
Heidelberg (2006)

Taming of Pict

Matej Koš́ık

Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

kosik@fiit.stuba.sk

Abstract. This article presents additional necessary measures that en-
able us to use Pict as an object-capability programing language. It is
desirable to be able to assess the worst possible threat that we—users—
risk if we run a given program. If we know the threat, we are able to
decide whether or not we are willing to risk running the program. The
cost of a security audit that reveals such an assessment will be non-zero
but it need not to be directly dependent on the size of the whole original
program. It is possible to write programs in such a way that this analysis
can be reliably performed on a fraction of the original program—on the
trusted computing base. This technique does not always give the most
accurate assessment but it gives sound and interesting assessment rel-
atively cheaply. It does not prevent usage of other techniques that can
further refine the initial assessment.

1 Introduction

There are two different points of view of a computer system. We can view it from
an administrator’s point of view and from a user’s point of view. Users should be
regarded as primary because the purpose of computers is not to be administered
but to be used. The goal of the administrator is to ensure that none of the users
is given excess authority. The goal of the user is (should be) to ensure that each
of the processes runs with appropriate authority. Security mechanisms provided
by operating system are practical for administrator but they do not help users
with their security goals. Microsoft “Immutable” Law #1 states:

If a bad guy can persuade you to run his program on your computer, it’s
not your computer anymore.

The problem is, how to decide who is a good guy and who is a bad guy. More
importantly, even good guys can make mistakes and their programs can cause
damage. The purpose of the computer is that we—users—can run programs on
it. This rule basically says that we are safe as long as we do not run any program
on it. Let us stop here and think how ridiculous it is.

Noticeable progress has been made in the area of designing programming
languages with respect to security. Outstanding example is the E programming
language [1]. From the security point of view1, it is interesting because it enables
1 The E programming language addresses also other important problems.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 610–621, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Taming of Pict 611

programmers to follow the principle of the least authority (POLA). Multiple
aspects of the language contribute to this fact:

– the authority to invoke methods of a particular object is an unforgeable
capability

– when some subsystem decides to keep some capabilities as private, there
are no language constructs that would enable other untrusted subsystems to
“steal” them

– the reference graph can evolve only according to rules of allowed reference
graph dynamics presented in Section 9.2 of [1]

The contribution of this paper is that it shows how, through a refactorization
of the libraries of the Pict programming language [2], the “ambient authority”
is reduced to a minimum, and Pict can provide many of the benefits of existing
object-capability languages. Provided examples illustrate the technique for deter-
mining authority of untrusted subsystems without the need to analyze their code.

2 Related Work

While this article is mostly concerned with taming of Pict—turning Pict into an
object-capability programming language—this is not the first work of this kind.
See for example: Oz-E [3], Emily [4], Joe-E [5].

The Raw Metal occam Experiment (RMoX) [6] can be regarded as a source of
inspiration that languages, based on process calculi, can be used for defining of
behavior of various operating system’s components and their mutual interaction.
Using programming language constructs as a mechanism for isolation of various
subsystems from each other instead of relying on awkward hardware support is
also one of the points of the Singularity project [7].

3 The Pict Programming Language

The goal of the authors of the Pict programming language was to create a
language that could play for the π-calculus a similar role as Haskell plays for
the λ-calculus. It is defined in layers, see Figure 1. Syntax of the core language
is formally described in the Pict Language Definition [8] in Chapter 3; see rules
tagged as C (as Core). Some of the syntactically correct programs can be further
rejected by the typing rules at compile time. Semantics of the core language is
defined in Chapter 13 of that document. It defines:

– structural congruence relation
– reduction relation

These together define behavior of all Pict programs.
Programs written in the core Pict cannot break rules of allowed reference

graph dynamics. Derived forms make functional and sequential programming in
Pict more convenient. By definition, they do not add expressivity to the core

612 M. Koš́ık

Fig. 1. Layers of the Pict programming language. Programs that are composed solely
from core constructs, derived forms and import directives are completely harmless
because they have minimal authority.

Pict language and thus can be used without concerns that the rules of allowed
reference graph dynamics could be broken.

The import directive is one of the two extralinguistic constructs of Pict. It
enables us to split the whole program into multiple, separately compilable mod-
ules. These modules are related via import construct. This relation forms partial
order with the biggest element—it is the main module of a complete program.
There is no export directive via which the programmer could explicitly specify
which bindings he wants to export from a given module. All the variables that
are bound in the outer-most scope are automatically exported. The effect of the
import directive is that all the variables exported by the imported module are
visible in the importing module.

The ccode construct is the second of the two extralinguistic constructs of
Pict. It enables the programmer to inline arbitrary C code into Pict programs.
This is very useful and very dangerous at the same time. It is the sole mecha-
nism that Pict programs can use to interact with their (non-Pict) environment
such as the operating system. It is also used for implementation of certain oper-
ations in an efficient way. This is not absolutely essential2 but it is pragmatic.
Additional rules presented later in the text ensure that this construct cannot
be directly or indirectly abused by untrusted modules to gain excess authority.
These additional rules ensure that untrusted modules cannot break the rules of
allowed reference graph dynamics.

The Standard Pict Library [9] provides several reusable components. Figure 2
shows some modules that are part of this library. Some aspects of this original
organization are logical and some are not logical. The import directive binds
them into a partially ordered set. Minimal elements (Misc, Prim) are shown on
the left. Maximal elements (Random, Ref, Signals, Array2, Queue, Args, IO) are
shown on the right. The A ≺ B means that module A is imported by module B.
2 The core language can model integers, booleans, strings and other values of basic

data types together with operations with them.

Taming of Pict 613

Fig. 2. Partial ordering of modules with respect to the import relation. These modules
are described in detail elsewhere [9]. This figure is provided only for general impression
concerning the structure of modules. Not all the aspects of this original version are
completely logical.

Those names that are bound in the outer-most scope of some module are
also exported by that module. Let en(A) denote a function that maps a given
module A to the set of names that it exports. Then, by definition of the semantics
of the import directive:

A ≺ B ⇒ en(A) ⊆ en(B)

That is, all the names bound in the outer-most scope of module A are also bound
in the outer-most scope of module B that imports A.

When bn(A) denotes the set of all names bound in any scope within module A
then for all modules A, by definition of the import construct, holds:

en(A) ⊆ bn(A)

All the names bound in A need not to be, and usually indeed are not, exported.

4 Refactorization of the Original Pict Library

The attempt to minimize the trusted computing base is inherently a good idea.
In this light, the organization of the original Pict library is not optimal. Each
module that employs the ccode construct must be considered as part of the
trusted computing base. And, as you can see in Figure 2, there are many such
modules. Additionally, the original set of primitives, expressed via ccode con-
struct, is not orthogonal. Many of the existing primitives can be rewritten in
terms of a pure Pict code. After we removed those superfluous primitives and
we concentrated the originally scattered primitives in a few dedicated modules,
the situation is different, see Figure 3. Now it has sense to discriminate among
trusted and untrusted modules as follows:

614 M. Koš́ık

– trusted modules can contain any (compilable) code
– untrusted modules:

• cannot use the ccode construct
• cannot import any trusted module except for the Prim module which

provides harmless primitives

Due to the inherent properties of the Pict programming language, these measures
are sufficient to ensure that rules of allowed reference graph dynamics hold for
all our untrusted modules.

Fig. 3. Refactored standard library of Pict with respect to security

After all these measures, by minimal authority of untrusted modules written
in Pict we mean:

– Trusted modules have no straightforward way to influence policy how much
memory can various sub-components allocate from the common heap of free
memory which in Pict is bounded—it’s size is by default 1 MB. When un-
trusted components exhaust it, the Pict runtime prints out a relevant error
message and terminates the whole system.

– Trusted modules have no straightforward way how influence the scheduling
policy that would define rules for CPU utilization by untrusted modules. At
present, there is a scheduler. It ensures fairness of the CPU utilization but
this is not what we always want.

– Untrusted modules can make run-time errors (such as division by zero or
they might attempt to access non-existent element of some array). These
run-time errors are always detected and result in calling the error function
that performs appropriate actions. At present, this means that some error
message will be printed on the screen and the whole system will terminate.
So indirectly, untrusted modules have the authority to terminate the whole
system.

Taming of Pict 615

This situation is not at all fully satisfactory. But this is still far better than
ambient authority of trusted modules. To address these remaining issues the
whole Pict runtime must be redesigned with these problems in mind.

5 Powerbox

Powerbox is a fundamental security pattern. Its origin can be traced to the
DarpaBrowser described in [10] and in [11]. It enables us to dynamically raise
the level of authority of untrusted subsystems to a sufficient and acceptable level.

If we are concerned with some single purpose program then we have to identify
the authority this program needs. There is nothing inherently wrong that various
programs require some authority. As long as it is explicitly declared, users or
security auditors can efficiently judge whether it is acceptable for us to grant
such authority to the actual program.

To be able to follow POLA, the whole program must be split in at least two
modules. The first of them will be trusted and the other one will be untrusted.
The purpose of the trusted module is to communicate part of its ambient au-
thority to the untrusted module. The purpose of the untrusted module is to use
the authority it is given and to do what we expect from it. It receives required
capabilities “by introduction”. What kind of capabilities are communicated and
through which channel depends on the contract between the trusted and the
untrusted part.

Let us show a very simple example. We keep the untrusted module in the
Untrusted/Guest.pi file and the trusted module in the Trusted/Host.pi file.
The Untrusted/Guest module might look as follows:

new contract : ^!String

run contract?logger = (logger!"0123456789"
| logger!"0123456789"
| logger!"0123456789"
| logger!"0123456789"
| logger!"0123456789"
)

It creates a fresh channel contract that can be used for passing values of the
!String type3. The process in the untrusted module blocks until it receives a
3 Pict is a strongly typed programming language. Each channel has a type. This

type determines what kind of values can be communicated over a given channel. An
attempt to send a wrong type of value over some channel is detected at compile time.
The contract capability has a type ^!String. Our process holds this capability by
initial conditions. The initial ^ character means that this capability can be used for
sending as well as for receiving values of the !String type. Our process uses this
capability to receive a value from it and binds this value to the logger capability.
This capability is of !String type. That means that the logger capability can be
used for sending strings along it. It cannot be used for receiving strings from this
channel.

616 M. Koš́ık

value from the contract channel. When such value arrives, it will be bound to
the logger variable. The untrusted guest then has all the authority it needs to
do its job. In this case it prints 50 characters on the screen. The above program
is not very useful but it could very well perform various simulations and then
print out the simulation report. The above code fragment is a mere illustration.

The Trusted/Host module is responsible for selecting parts of its ambient
authority and communicating appropriate capabilities to the untrusted module.
For example:

import "Untrusted/Guest"
import "Trusted/Fd"

run contract!print

It imports two modules. The first one is Untrusted/Guest. This means that
it will see the contract capability bound in that module. It also imports the
Trusted/Fd module. It means that it will see the print capability bound in that
module. It is up to this trusted module to select proper capabilities. In this case
it selects the print capability and sends it over the contract channel. Of course,
there may be situations where some guest needs more than one capability. In
those cases the trusted host sends an n-tuple of capabilities.

Appropriate makefile for building executable out of these two modules can
look as follows:

Host: Trusted/Host.pi Untrusted/Guest.px
pict -o $@ $<

Untrusted/Guest.px: Untrusted/Guest.pi
isUntrusted $< && pict -reset lib -set sep -o $@ $<

Please notice two things:

– Untrusted/Guest.pimodule is checkedwith the isUntrusted scriptwhether
it indeed can be regarded as untrusted4

– we compile the Untrusted/Guest.pimodule with the -reset lib flag that
inhibits inclusion of the standard prelude5.

These two actions give us enough confidence to believe that the Untrusted/Guest
module has initially minimal authority. Its authority is later raised to be able to
print characters on the standard output. It is not given any other authority. It can-
not tamper with files that can be accessed by the user that runs this program. The
untrusted module cannot communicate with other processes on your local system.
Neither it can communicate over network. It can only print as many characters on
4 Untrusted modules cannot employ the ccode constructs. Untrusted modules cannot

import trusted modules except for the Trusted/Prim module.
5 Precise information concerning the “standard prelude” can be found in [12]. Basi-

cally, it is a default sequence of import directives that is desirable in case of trusted
modules but it is undesirable in case of untrusted modules.

Taming of Pict 617

the standard output as it wishes. For some programs this kind of authority might
be completely sufficient and as you can see it can be trivially implemented.

The same scheme has many variants. The derived forms make certain useful
things such as functional programming as well as sequential programming easier.
If we express our trusted host and our untrusted guest in so called “continuation
passing style” then it would appear that the trusted host gives the untrusted
guest the capability to call certain functions. In this case, it is completely up to
the trusted host to choose the right set of function-capabilities. The chosen set
determines the authority of the untrusted guest.

The Powerbox pattern can also be used in situations when our system consists
of multiple untrusted subsystems. In that case, each subsystem will be placed in a
separate powerbox. This way, each untrusted component can be given different
capabilities and thus we can determine the authority of particular untrusted
modules independently. The complexity of the trusted part is determined by the
complexity of our security policy. It is independent from the complexity of the
untrusted part that does the real job.

6 Experiments in the Kernel Space

Capability-secure languages are useful not only in user-space but they can have
interesting applications in the kernel space, too. They can be a precursor to mak-
ing progress in monolithic (in the traditional sense) kernels. We have a flexible
alternative to the classical microkernel-based operating system architecture. In
our preliminary experiment we use the Pict programming language because it
was easier to adapt to run on a bare metal. From the security point of view Pict
is in principle as good as E. From the concurrency point of view, the E program-
ming language is much better. It provides more advanced synchronization mech-
anisms than Pict so E is a very good alternative for the future. Figure 4 shows
the structure of modules with respect to the import relationship. This relation-
ship determines the connectivity by initial conditions according to the semantics
of the import directive. Capabilities that are exported from module A are also
visible in module B if module A is imported by module B. Modules Memory, IRQ
and IO provide various powerful primitives. For example the Trusted/Memory
module exports a function

(memory.write.byte offset value)

that enables (those who see this function-capability) to write any value of byte
size to any offset within current data segment (that spans through the whole
physical memory). The Trusted/IO module exports two functions:

(io.write.byte port value)
(io.read.byte port)

Those who see the first function can write any value (byte) to any I/O port.
Those who see the second function can read any I/O port of byte size.

618 M. Koš́ık

Fig. 4. Structure (with respect to the import relation) of modules that form our ex-
perimental kernels. Test2 is the main module.

The trusted Test2 module has a single task, to disseminate proper capa-
bilities to proper modules via the Powerbox pattern according to POLA. For
example, one thing that the VGA module needs is the authority to write to the
I/O port number 980 (0x3D4 in hexadecimal system). The Test2 module sees
the io.write.byte procedure so it could give the VGA module this capability.
However, with respect to POLA, it gives it a different capability:

\(value) = (io.write.byte 980 value)

This abstraction (unnamed function, lambda-expression) is given to the VGA
module. It gives it the authority to write any byte to the I/O port 980. The
Test2 module gives the VGA module few other similar capabilities. As a result,
the VGA module has the authority:

– to write any byte to the I/O port 980
– to write any byte to the I/O port 981
– to read a byte from the I/O port 981
– to write any byte to the Video RAM (nowhere else)

This is enough for the VGA module to be able to provide expected services. Vari-
ous abstractions created by the Test2 module that act as proxies to more power-
ful capabilities are denoted as small numbered rectangles in the
Trusted/Test2 module in Figure 5.

If we have a complete and correct6 knowledge concerning behavior of func-
tions, procedures and processes in all the trusted modules (Memory, IO, IRQ,
Test2), then we can safely assess the upper bound of authority of all untrusted

6 This is why we should try to keep the trusted computing base as small as possible.

Taming of Pict 619

Fig. 5. The actual reference graph in the Test2 kernel

powerboxed modules (Timer, VGA, ClockMorph) safely only with regard to the
reference graph shown in Figure 5. It is possible because rules of allowed refer-
ence graph dynamics hold for our untrusted modules. In case of VGA and Timer
modules the situation is trivial. We have complete knowledge about behavior of
functions that we give to these two modules. Recall that we give the VGA module
the following capability.

\(value) = (io.write.byte 980 value)

Since we have a complete information concerning the io.write.byte function,
we also have a complete information concerning the behavior of the above ab-
straction. So the authority of the VGA and the Timer can be determined pre-
cisely; regardless of their actual implementation. These drivers provide various
functions. One of them is:

(vga.putChar x y ch attribute)

When called, it puts any given character ch with any attribute anywhere on
the screen. This is its assumed effect we believe it does.

In a similar way can we also give appropriate authority to the ClockMorph
component. It is supposed to show the number of seconds from the boot-time
in HH:MM:SS format. This kind of component obviously needs the authority to
print eight consecutive characters somewhere on the screen. If we want to follow
POLA also in this case, we have to implement a proxy function that will drop

620 M. Koš́ık

most of the vga.putChar authority and it will provide the ability to change eight
consecutive characters on the screen, not more. We have defined the putChar
function in the Test2 module that does exactly this. It relies on the vga.putChar
function, see Figure 5. Regardless how perfectly our trusted proxy function im-
plements additional restrictions, unless we verify the correct behavior of the
original untrusted vga.putChar function, we cannot claim anything stronger
than: “The ClockMorph component has as much authority as the VGA driver
plus it can receive messages from the tick channel.” But even with this simple
technique, without studying the code of particular untrusted modules, we can
see that the authority of the ClockMorph component is fairly limited.

7 Conclusion and Future Work

Our immediate goal is to address two immediate problems concerning minimal
authority:

– there is no way how to give particular untrusted components only limited
share of the CPU bandwidth

– there is no way how to give particular untrusted components only limited
amount of memory

At present, when some of the untrusted components uses up the whole available
memory, the runtime terminates the system. This is a show-stopper for using
Pict for writing robust, from the traditional point of view, monolithic operating
system kernels.

Sophisticated proof-techniques were developed for proving correctness of func-
tional code, sequential (procedural) code. These can be very useful in analysis
of procedures that are made visible to untrusted powerboxed modules. From the
formally proved effects of these procedures (or processes) we can determine the
authority of untrusted powerboxed modules that are part of the system.

Acknowledgments. This work was partially supported by the Slovak Research
and Development Agency under the contract No. APVV-0391-06 and by the
Scientific Grant Agency of Slovak Republic, grant No. VG1/3102/06.

References

1. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA (2006)

2. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.
In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner, MIT Press, Cambridge (2000)

3. Spiessens, F., Roy, P.V.: A Practical Formal Model for Safety Analysis in
Capability-Based Systems, Revised Selected Papers. In: De Nicola, R., Sangiorgi,
D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 248–278. Springer, Heidelberg (2005)

Taming of Pict 621

4. Stiegler, M., Miller, M.: How Emily Tamed the Caml. Technical Report HPL-2006-
116, Advanced Architecture Program. HP Laboratories Palo Alto (2006)

5. Mettler, A.M., Wagner, D.: The Joe-E Language Specification (draft). Technical
Report UCB/EECS-2006-26, EECS Department, University of California, Berkeley
(2006)

6. Barnes, F., Jacobsen, C., Vinter, B.: RMoX: A raw-metal occam experiment. In:
Broenink, J., Hilderink, G. (eds.) Communicating Process Architectures 2003. Con-
current Systems Engineering Series, vol. 61, pp. 269–288. IOS Press, Amsterdam,
The Netherlands (2003)

7. Aiken, M., Fähndrich, M., Hawblitzel, C., Hunt, G., Larus, J.: Deconstructing
process isolation. In: MSPC 2006. Proceedings of the 2006 workshop on Memory
system performance and correctness, pp. 1–10. ACM, New York (2006)

8. Pierce, B.C., Turner, D.N.: Pict language definition (1997)
9. Pierce, B.C., Turner, D.N.: Pict libraries manual. Available electronically (1997)

10. Wagner, D., Tribble, E.D.: A Security Analysis of the Combex DarpaBrowser Ar-
chitecture (2002)

11. Stiegler, M., Miller, M.S.: A Capability Based Client: The DarpaBrowser. Technical
Report Focused Research Topic 5 / BAA-00-06-SNK, Combex, Inc. (2002)

12. Pierce, B.C., Turner, D.N.: Pict libraries manual. Available electronically (1997)

Classification, Formalization and Verification of

Security Functional Requirements

Shoichi Morimoto1, Shinjiro Shigematsu2, Yuichi Goto2, and Jingde Cheng2

1 School of Industrial Technology, Advanced Institute of Industrial Technology
1-10-40, Higashi-oi, Shinagawa-ku, Tokyo, 140-0011, Japan

morimoto-syoichi@aiit.ac.jp
2 Department of Information and Computer Sciences, Saitama University

Saitama, 338-8570, Japan
{shigematsu, gotoh, cheng}@aise.ics.saitama-u.ac.jp

Abstract. This paper proposes a new hybrid method to formally verify
whether the security specification of a target information system satisfies
security functional requirements defined in ISO/IEC 15408 evaluation
criteria for security. We classify at first the security functional require-
ments of ISO/IEC 15408 into two classes: static requirements concerning
static properties and dynamic requirements concerning dynamic behav-
ior of target systems, and then formalize the static requirements with Z
notation and the dynamic requirements with temporal logic. Thus, we
can verify static properties using theorem-proving and dynamic behavior
using model-checking. As a result, developers can easily use the method
to verify whether the security specification of a target information sys-
tem satisfies both static and dynamic security functional requirements
defined in ISO/IEC 15408. The new method is an evolution and improve-
ment of our early verification method where only Z notation was adapted
and to verify dynamic behavior of target systems is difficult.

1 Introduction

We have already succeeded in formalization of the security functional require-
ments, defined in ISO/IEC 15408 common criteria (CC) [8], and formal verifi-
cation of specifications with them [11]. In the research, we used Z notation, a
formal method that produces actual results in the verification of software relia-
bility with theorem-proving [9].

We formalized beforehand all 251 security functional requirements of the CC
as formal criteria templates which are necessary to any verification of security
specifications. However, it is difficult to formalize some criteria of the CC only in
Z, because the CC have many types of security criteria to comply with various
security requirements. Some criteria require a system to have various security
functions or data for security, while the others define conditions which a system
must keep after some specified operations. In the paper [11], we formalized in a
sort of way such criteria in Z. This brute force approach makes the formalization

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 622–633, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Classification, Formalization and Verification 623

and the verification of target systems complicated and difficult. In particular,
we failed to discriminate between static properties and dynamic behavior for the
formalization and the verification.

Therefore, we classify the security functional requirements into static and
dynamic requirements. Moreover, we redefine a new hybrid formal verification
method to verify information systems including both static and dynamic secu-
rity functional requirements defined in the CC. Consequently, we can easily and
precisely verify whether a specification of an information system respectively sat-
isfies static and dynamic requirements of the security functional requirements.
The classification not only improves the method of [11], but also makes devel-
opers easy to implement properly the security functional requirements.

2 Classification and Formalization of Security Functional
Requirements

Here we describe the improvements of the verification method.

2.1 Classification of Security Functional Requirements

The CC establish a set of functional components, providing a standard way of
expressing the functional requirements for target systems. The CC describe the
requirements for functions that implement the security policies of the information
system. In other words, the CC offer the functions information systems should
use to ensure security, i.e., security functional requirements.

For example, the original text of the security functional requirement, named
FIA SOS.1.1, is as follows [8].

FIA SOS.1 Verification of secrets
FIA SOS.1.1 The TSF shall provide a mechanism to verify that secrets meet
[assignment: a defined quality metric].

In the original text, TSF refers to a system security function, and the assignment
is the specification of an identified parameter in the system. FIA SOS.1.1 speci-
fies that a system must have a defined quality metric and a mechanism to verify
that secrets meet it. Thus, the majority of the requirements inquire whether a
system has security functions or data.

On the other hand, some requirements define an action or state which a sys-
tem should validate with a specific change. For instance, there is the following
dynamic requirement [8].

FPT RCV.1 Manual recovery
FPT RCV.1.1 After a failure or service discontinuity, the TSF shall enter a
maintenance mode where the ability to return the TOE to a secure state is
provided.

624 S. Morimoto et al.

FPT RCV.1.1 requires that a system must have a maintenance mode and shift
to the mode after a failure or service discontinuity.

Judging from the above, security functional requirements in different aspects
are scattered in the CC. Therefore, we classified the requirements into static
and dynamic requirements on the basis of the above difference and temporal
keywords, e.g., ‘when,’ ‘before,’ and ‘after.’ As a result, it turned out that 77
security functional requirements out of 251 are dynamic requirements. The dy-
namic requirements are listed in Appendix A.

2.2 Formalization of Security Functional Requirements

In our early research [11], all the 251 requirements of the CC were formalized into
inspection formulas in Z notation. The formalized requirements are published
in the web site [1]. However, because Z notation is unfit to describe temporal
concepts, it is difficult to formalize all the security functional requirements only
in Z. The formalization of the dynamic security functional requirements in our
early research is somewhat unnatural translation.

Thus, we reformalized the 77 dynamic security functional requirements in tem-
poral logic, after we had extracted their substantive meaning from the context
of many public specifications [5] that have been certified by ISO/IEC 15408.

Here we show the formalization of the dynamic security functional require-
ments of the CC. For example, we formalized FPT RVM.1.1 in the paper [11]
as follows.

Template FPT RVM.1.1
∀ System ′′ | TSP enforcement functions o

9 TSC functions
• present state ∈ Sa ∧ present state′ /∈ S ′

a ∧ present state′′ /∈ S ′′
a

∧ present state /∈ Sb ∧ present state′ ∈ S ′
b ∧ present state′′ /∈ S ′′

b
∧ present state /∈ Sc ∧ present state′ /∈ S ′

c ∧ present state′′ ∈ S ′′
c

The original FPT RVM.1.1 specifies that a system must not execute any func-
tions until it executes TSP enforcement functions. In the paper [11], we defined
Sa as the state prior to TSP enforcement functions, and Sb as the state following
TSP enforcement functions. TSC functions are permitted only after performing
TSP enforcement functions, i.e., when the system’s state is Sb . This template
formula means that after performing TSP enforcement functions and TSC func-
tions in the given order, the state of the System changes from Sa to Sb and Sb to
Sc. That is, we assumed that the state of the system changes with the execution
of TSP enforcement functions from state Sa to state Sb , and with the execution
of TSC functions from state Sb to state Sc. We asserted that the transition
from Sa to Sb is equivalent with TSP enforcement functions being performed.
However, the formula is verbose and merely denotes that a state changes in the
order.

Therefore, we rewrote all the 77 dynamic security functional requirements in
temporal logic. The formalized FPT RVM.1.1 is reformalized as follows.

� (¬ TSC functions W TSP enforcement functions)

Classification, Formalization and Verification 625

The formula � p means that p is always true and the formula p W q means
that q must be true as long as p is false [4]. That is, the formula means that TSP
enforcement functions are invariably performed before execution of TSC functions
(any function in a system). Thus, the template FPT RVM.1.1 becomes simple
and meaningful.

3 The Hybrid Verification Method

With the reformalization, we also modified the verification procedure of our
early method. To verify formally the dynamic requirements, we introduce model-
checking into our early verification method. Model-checking can verify that a
specification satisfies dynamic behavior formalized in temporal logic [4].

3.1 Outline of the Improved Verification Method

The following is the new verification procedure.

1) Select the formalized criteria (i.e., templates) required in a target system.
2) Formalize the system’s static specification in Z notation and its dynamic

specification in model-checking tools.
3) Instantiate the selected criteria templates.
4) Verify the formalized specifications against the instantiated criteria.

To verify a security specification, a verifier first selects the required criteria,
which we have formalized as templates. Secondly, the verifier formalizes a static
specification besides dynamic aspects of a target system in Z and the dynamic
aspects in a model-checking tool. After the formalization, each criterion is cor-
rectly verifiable.

In the third step, the verifier must instantiate the selected criteria templates to
fit them into the target specification. Then he verifies whether the instantiated
criteria are deducible from the given axioms and the formalized specification

Fig. 1. The new procedure of the verification method

626 S. Morimoto et al.

as premises with theorem-proving and model-checking, e.g., the theorem-prover
Z/EVES [12] and the model-checkers [2] (cf., Fig. 1). We will demonstrate details
of these steps in Section 4, giving a concrete example.

3.2 Separation of Static and Dynamic Specifications

In the second step of the method, verifier must formalize static specifications
of a verification target in Z and its dynamic specifications in model-checking
tools respectively. If the target system includes the following specification, it
is necessary to separate it. The separated dynamic specification can be easily
formalized in model-checking tools.

The state machine diagram in Fig. 2 is an excerpt from Chapter 6 of the
reference [9].

Fig. 2. Therapy control cascade: state transition

We can generally formalize the diagram in Z as follows.

STATE ::= patients | fields | setup | ready | beam on
EVENT ::= select patient | select field | enter | start | stop | ok | intlk
FSM == (STATE × EVENT) �→ STATE

no change, transitions, control : FSM

control = no change ⊕ transitions
no change = {s : STATE ; e : EVENT • (s, e) �→ s}
transitions = {(patients, enter) �→ fields,
(fields, select patient) �→ patients, (fields, enter) �→ setup,
(setup, select patient) �→ patients,
(setup, select field) �→ fields, (setup, ok) �→ ready,
(ready, select patient) �→ patients,
(ready, select field) �→ fields,
(ready, start) �→ beam on, (ready, intlk) �→ setup,
(beam on, stop) �→ ready, (beam on, intlk) �→ setup}

Although the state transition is not so complicated, the Z description is very ver-
bose. In addition, since general information systems include many specifications

Classification, Formalization and Verification 627

besides state transition, the description will become more complicated. There-
fore, our method makes verifiers separate state transition from Z descriptions.

4 Application

To show utility of the improved verification procedure, we present an example
of the verification according to the above steps. Using Z notation and model-
checking together, we herein briefly verify an example specification with UML
diagrams. In this paper we use the theorem prover Z/EVES and model checker
NuSMV [3].

The diagrams in Fig. 3 show a part of the certified specifications in a database
from [5], which meets the criteria FIA UID.1.2, FIA USB.1.1, and FIA UAU.5.2.

[checkUserInfo() = true]

Resource

+ execute()

- resourcename

- contents

- Read()

- Write()

- Delete()

- ID

Process

+ accessResource()

+ Create()

User

+ authenticate()

+ authorized()

AdministratorOrdinary User

+ adminLogin()

Login Manager

+ readResource()

+ showUserInfo()

+ changeUserInfo()

+ deleteUserInfo()

- checkUserInfo()

+ writeResource()

+ ordinaryLogin()

+ deleteResource()

+ initializeUserInfo()

User Information

+ getUserInformation()

+ changeUserInformation()

+ deleteUserInformation()

- password

- role

- biometric_id

- username

+ initializeUserInformation()

<<create>>

authorized()

： LoginManager

： User

： User Information

： Process

： Resource

authenticate()

checkUserInfo()

getUserInformation(username)

ordinaryLogin(username,password)

accessResource(read,resourcename)
execute(read)

read(resourcename)

Read()

accessResource(write,resourcename)
execute(write)

write(resourcename)

Write()

accessResource(delete,resourcename)
execute(delete)

delete(resourcename)

Delete()

[User = OrdinaryUser]
alt

[User = Administrator]

adminLogin(username,biometric_id)

Not_login Login

[checkUserInfo() = false]

Fig. 3. The example specification in UML

System users are classified according to their role, ordinary users or administ-
rators. An ordinary user is authenticated by a password and an administrator
is authenticated by a biometric id. The system allows the authenticated user
to change his id. Administrators are permitted to create, change, and delete re-
sources in the database. Ordinary users are only permitted to refer the resources.
The database does not permit any operations until a user logs in.

628 S. Morimoto et al.

4.1 Example Verification with Theorem-Proving

In order to verify a class diagram with theorem-proving, RoZ was proposed [6].
RoZ can semi-automatically convert a class diagram to skeleton codes in Z. Each
class or its operation in a class diagram is formalized as a schema in Z by RoZ.
The following is the description which we added the details to the skeleton codes
of Fig. 3.

[Char , PartsInformation, Contents]
User ::= Ordinary user | Administrator
Role ::= ordinary user | administrator
Operation ::= read | write | delete
Bool ::= TRUE | FALSE
String == seq1 Char
username == String; Password == String

UserInformation
password : username → Password
biometric id : username → PartsInformation
role : username → Role

initializeUserInformation
ΔUserInformation
Password Policy
u? : username
input role? : Role
input biometric id? : PartsInformation

password′ = {(u? �→ input password?)}
biometric id′ = {(u? �→ input biometric id?)}
role′ = {(u? �→ input role?)}

getUserInformation
ΞUserInformation
u? : username
output password! : Password
output role! : Role
output biometric id! : PartsInformation

u? ∈ dom password
u? ∈ dom biometric id
u? ∈ dom role
output password! = passwordu?
output biometric id! = biometric idu?
output role! = roleu?

changeUserInformation
ΔUserInformation
u? : username
new password? : Password
new role? : Role
new biometric id? : PartsInformation

u? ∈ dom password
u? ∈ dom biometric id
u? ∈ dom role
password′ = password

⊕{(u? �→ new password?)}
biometric id′ = biometric id

⊕{(u? �→ new biometric id?)}
role′ = role ⊕ {(u? �→ new role?)}

deleteUserInformation
ΔUserInformation
u? : username

u? ∈ dom password; u? ∈ dom role
u? ∈ dom biometric id
password′ = {u?} −� password
biometric id′ = {u?} −� biometric id
role′ = {u?} −� role

LoginManager
Not login, Login : P User

Not login ∩ Login = ∅

ordinaryLogin
login user? : User
input username?, u! : username
input password? : Password

u! = input username?

adminLogin
login user? : User
input username?, u! : username
input biometric id? : PartsInformation

u! = input username?

OrdinaryUserFlow =̂
ordinaryLogin>>getUserInformation

AdminUserFlow =̂
adminLogin>>getUserInformation

checkOrdUserInfo
OrdinaryUserFlow ; judge! : Bool

login user? = Ordinary user
if input password? = output password!

∧ output role! = ordinary user
then judge! = TRUE
else judge! = FALSE

Classification, Formalization and Verification 629

checkAdminUserInfo
AdminUserFlow ; judge! : Bool

login user? = Administrator
if input biometric id?

= output biometric id!
∧ output role! = administrator

then judge! = TRUE
else judge! = FALSE

checkUserInfo =̂
checkOrdUserInfo ∨ checkAdminUserInfo

authorized
ΔLoginManager ; checkUserInfo

login user? ∈ Not login
if judge! = TRUE
then Login′ = Login ∪ {login user?}
else Login′ = Login

Resource
resourcename : String
contents : Contents

Read
ΞResource
. . .

Write
ΔResource
. . .

Delete
ΔResource
. . .

execute
Read; Write; Delete
kind? : Operation

if kind? = read then Read
else if kind? = write then Write
else if kind? = delete then Delete
else ΞResource

Process
ID : N

accessResource
execute
argument? : Operation

execute[argument?/kind?]

changeUserInfo
LoginManager ; changeUserInformation
changeUser? : User
change user? : username
new password? : Password
new biometric id? : PartsInformation
new role? : Role

change user? ∈ Login
changeUserInformation

[change username?/u?]

deleteUserInfo
LoginManager ; deleteUserInformation
delete user? : User
delete username? : username

delete user? ∈ Login
deleteUserInformation

[delete username?/u?]

showUserInfo
LoginManager ; getUserInformation
display user? : User
display username! : username
display password! : Password
display role! : Role

display user? ∈ Login
getUserInformation[display user?/u?]
display username! = output username!
display password! = output password!
display role! = output role!

read
input operation?, argument! : Operation

input operation? = read
argument! = input operation?

write
input operation?, argument! : Operation

input operation? = write
argument! = input operation?

delete
input operation?, argument! : Operation

input operation? = delete
argument! = input operation?

readResource =̂ read>>accessResource

writeResource =̂ write>>accessResource

deleteResource =̂ delete>>accessTable

630 S. Morimoto et al.

We now verify whether or not the specification satisfies the static require-
ments FIA UAU.5.2 and FIA USB.1.1 for login functions. The formalized FIA
UAU.5.2 as a set of templates is as follows.

Template FIA UAU.5.2
∀TSF ′ | users • authentication mechanisms

∧ condition for authentication • authorized state
∀TSF ′ | users • authentication mechanisms

∧ ¬ condition for authentication • ∧ ¬ authorized state

The template formulasmean that the state of users becomes authorized state when
users satisfy condition for authentication according to authentication mechanisms
by TSF. When it does not satisfy the condition, it does not become so. In the spec-
ification, since TSF corresponds to the schema LoginManager which presides over
user authentication, TSF is replaced by LoginManager. The authentication mech-
anisms correspond to the schema checkUserInfo, which is the actual authentica-
tion (identification) function to check the inputted identification. The condition
or authentication is that the inputted identification is right. Ordinary users must
be authenticated with their password and administrators must be authenticated
with their biometric id. If a user is u, the authorized state will be that u′ is included
in the state Login. Thus, the templates are instantiated so that they fit into the
specification, as follows:

∀LoginManager ′ | ∀ u : User | u = Ordinary user • checkUserInfo
∧ input password? = output password! • u′ ∈ Login

∀LoginManager ′ | ∀ u : User | u = Administrator • checkUserInfo
∧ input biometric id? = output biometric id! • u′ ∈ Login

∀LoginManager ′ | ∀ u : User | u = Ordinary user • checkUserInfo
∧ input password? �= output password! • u′ /∈ Login

∀LoginManager ′ | ∀ u : User | u = Administrator • checkUserInfo
∧ input biometric id? �= output biometric id! • u′ /∈ Login

These four formulas mean that each user is authorized according to the rule
of FIA UAU.5.2 if the right identification is inputted. These are deducible by
Z/EVES, thus it can be said that the example satisfies FIA UAU.5.2.

The formalized FIA USB.1.1 as a template is as follows.

Template FIA USB.1.1
∀ ΔResource • a resource access operation

This formula means that Resource is always accessed via a resource access op-
eration, because the change of Resource can be caused only by a resource access
operation. In the specification, the schema Resource corresponds to Resource,
and the schema accessResource corresponds to a resource access operation. The
template is instantiated so that it can fit into the specification, as follows:

∀ Δ Resource • accessResource

This formula is deducible; it can be said that the example satisfies FIA USB.1.1.

Classification, Formalization and Verification 631

4.2 Example Verification with Model-Checking

The formalized security functional requirements are easily verifiable if the UML
diagrams are formalized according to the well-established practices, which verify
UML diagrams for behavior with model-checking [10, 13]. The following is the
description of dynamic behavior in Fig. 3 with NuSMV.

MODULE main
VAR
input_username:boolean;
input_password:boolean;
User:{Login,Not_login};
operation:{nothing,login,display,

create,change,delete};
DEFINE
CheckUserInfo:=input_username

& input_password;
ASSIGN
--transition of input_username
init(input_username):={0,1};
next(input_username):={0,1}

--transition of input_password
init(input_password):={0,1};

next(input_password):={0,1};
--transition of User
init(User):=Not_login;
next(User):= case
operation!=login :User;
CheckUserInfo :Login;
1 :User;
esac;

--transition of operation
init(operation):=nothing;
next(operation):= case
User=Login :{nothing,display,

create,change,delete};
User=Not_login:{nothing,login};
1 :nothing;
esac;

The variables input username and input password are the user’s inputs in the
example system. Since it is not necessarily the right information, they assume 0
or 1 non-determinatively. The variable User denotes users in the example sys-
tem. The initial state of the User is Not login. If the inputted information when
login was tried is right, User will transit from Not login to Login. The variable
operation denotes operations that users can do. In the state Not login, the op-
eration may choose nothing or login non-determinatively. In the state Login, it
may choose nothing, display, create, change or delete non-determinatively.

The security functional requirement FIA UID.1.2 specifies that a system must
authenticate users before any operation [8]. The formalized FIA UID.1.2 is as
follows:

Template FIA UID.1.2
� (¬ any actions occur W authorized state)

That is, this template means that any actions occur is never satisfied until users
become authorized state after satisfying condition for authentication.

In the description, the authorized state is that User transits from Not login
to Login. The any actions occur is any operation from among display, create,
change or delete. Therefore, the formula is instantiated so that it can fit into the
description above, as follows:

� (¬ (operation=display ∨ operation=create
∨ operation=change ∨ operation=delete) W User=Login))

This formula is evaluated as true by NuSMV. Thus, the example certainly sat-
isfies FIA UID.1.2.

632 S. Morimoto et al.

5 Discussion

In this paper, we showed an example verifying the certified specification by
ISO/IEC 15408 with UML diagrams. In the second step of the procedure, veri-
fiers must formalize their system specifications. To mitigate difficulties in formal-
izing verification targets, we used RoZ & UML and NuSMV descriptions which
are intuitive and easy to read [2]. If the target specifications are represented with
UML, they are semi-automatically formalized to Z specifications with RoZ [6].

Moreover, recently theorem-proving and model-checking environments are be-
ing unified and various hybrid verification tools are being proposed [14]. Thus,
we are discussing whether the security functional requirements can be described
in CSP-OZ. CSP-OZ is the combination of Communicating Sequential Processes
and Object-Z [7]. Our method will probably be able to verify static and dynamic
requirements in a lump, if we can describe temporal operators in Z.

6 Concluding Remarks

In this paper, we have proposed a hybrid formal verification method of security
specifications, based on the security functional requirements defined in ISO/IEC
15408 common criteria. We classified the requirements into static and dynamic
requirements. After the classification, we formalized static requirements in Z no-
tation and dynamic requirements in temporal logic. We also defined a formal
verification procedure using theorem-proving with the formalized static require-
ments and model-checking with the formalized dynamic requirements. Conse-
quently, one can test precisely and strictly whether specifications satisfy not
only the static requirements but also the dynamic requirements (i.e., all the
security functional requirements of ISO/IEC 15408) respectively. The verifica-
tion becomes more precise and simple. Additionally, the classification also makes
ISO/IEC 15408 easy to implement. We will publish the formalized requirements
on our web site [1].

References

1. Advanced Information Systems Engineering Laboratory, Saitama University: For-
mal Descriptions of ISO/IEC 15408 Part 2,
http://www.aise.ics.saitama-u.ac.jp/

2. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P.: Systems and Software Verification –Model-Checking Techniques and
Tools. Springer, Heidelberg (1999)

3. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a New Symbolic
Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

5. Common Criteria Project: Evaluated Product Files,
http://www.commoncriteriaportal.org/public/files/epfiles/

http://www.aise.ics.saitama-u.ac.jp/
http://www.commoncriteriaportal.org/public/files/epfiles/

Classification, Formalization and Verification 633

6. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An Overview of RoZ: A Tool for Inte-
grating UML and Z Specifications. In: Wangler, B., Bergman, L.D. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 417–430. Springer, Heidelberg (2000)

7. Fischer, C.: CSP-OZ: a Combination of Object-Z and CSP. In: Proceedings of
the 2nd IFIP Workshop on Formal Methods for Open Object-Based Distributed
Systems, pp. 423–438. Chapman & Hall, Australia (1997)

8. ISO/IEC 15408 Standard: Information Technology - Security Techniques - Evalu-
ation Criteria for IT Security (1999)

9. Jacky, J.: The Way of Z: Practical Programming with Formal Methods. Cambridge
University Press, Cambridge (1997)

10. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Subset
of UML Statechart Diagrams using the SPIN Model Checker. Formal Aspects of
Computing 11(6), 637–664 (1999)

11. Morimoto, S., Shigematsu, S., Goto, Y., Cheng, J.: Formal Verification of Security
Specifications with Common Criteria. In: Proceedings of the 22nd Annual ACM
Symposium on Applied Computing, pp. 1506–1512. ACM Press, New York (2007)

12. Saaltink, M.: The Z/EVES System. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

13. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collab-
orations. Electronic Notes in Theoretical Computer Science 55(3), 357–369 (2001)

14. YAHODA: Verification Tools Database, http://anna.fi.muni.cz/yahoda/

A The Dynamic Security Functional Requirements

FAU ARP.1.1, FIA UAU.7.1, FIA UID.1.1, FIA UID.1.2, FIA UID.2.1,
FAU SAA.2.3, FMT MSA.3.2, FAU SAA.3.3, FMT MTD.2.2, FAU SAA.4.3,
FMT SAE.1.2, FAU STG.2.3, FAU STG.3.1, FAU STG.4.1, FCO NRO.1.1,
FCO NRO.2.1, FCO NRR.1.1, FCO NRR.2.1, FPR UNO.2.2, FPT AMT.1.1,
FPT FLS.1.1, FDP ETC.1.1, FDP ETC.2.1, FDP ETC.2.3, FDP ETC.2.4,
FPT PHP.2.3, FPT PHP.3.1, FDP IFF.1.2, FPT RCV.1.1, FPT RCV.2.1,
FPT RCV.3.1, FDP IFF.2.2, FPT RPL.1.2, FPT RVM.1.1, FDP IFF.2.7,
FDP ITC.1.1, FDP ITC.1.2, FDP ITC.1.3, FPT SSP.1.1, FDP ITC.2.1,
FPT SSP.2.1, FDP ITC.2.5, FDP ITT.1.1, FDP ITT.2.1, FPT TRC.1.2,
FDP ITT.2.2, FPT TST.1.1, FRU FLT.1.1, FRU FLT.2.1, FRU PRS.1.1,
FRU PRS.1.2, FRU PRS.2.1, FRU PRS.2.2, FRU RSA.1.1, FRU RSA.2.1,
FRU RSA.2.2, FDP SDI.2.2, FTA MCS.1.1, FTA MCS.1.2, FTA MCS.2.1,
FTA MCS.2.2, FTA SSL.1.1, FTA SSL.1.2, FIA AFL.1.1, FTA SSL.2.1,
FIA AFL.1.2, FTA SSL.2.2, FTA SSL.3.1, FTA TAB.1.1, FTA TAH.1.1,
FTA TAH.1.2, FIA UAU.1.1, FIA UAU.1.2, FIA UAU.2.1, FTP ITC.1.2,
FTP ITC.1.3, FTP TRP.1.2

http://anna.fi.muni.cz/yahoda/

ONN the Use of Neural Networks

for Data Privacy

Jordi Pont-Tuset1, Pau Medrano-Gracia1, Jordi Nin2,
Josep-L. Larriba-Pey1, and Victor Muntés-Mulero1

1 DAMA-UPC, Computer Architecture Dept.
Universitat Politècnica de Catalunya

Campus Nord UPC, 08034, Barcelona, Spain
{jpont,pmedrano,larri,vmuntes}@ac.upc.edu
2 IIIA, Artificial Intelligence Research Institute

CSIC, Spanish National Research Council
Campus UAB s/n, 08193, Bellaterra, Spain

jnin@iiia.csic.es

Abstract. The need for data privacy motivates the development of new
methods that allow to protect data minimizing the disclosure risk with-
out losing valuable statistical information. In this paper, we propose
a new protection method for numerical data called Ordered Neural Net-
works (ONN). ONN presents a new way to protect data based on the use
of Artificial Neural Networks (ANNs). The main contribution of ONN is
a new strategy for preprocessing data so that the ANNs are not capable
of accurately learning the original data set. Using the results obtained
by the ANNs, ONN generates a new data set similar to the original one
without disclosing the real sensible values.

We compare our method to the best methods presented in the liter-
ature, using data provided by the US Census Bureau. Our experiments
show that ONN outperforms the previous methods proposed in the lit-
erature, proving that the use of ANNs is convenient to protect the data
efficiently without losing the statistical properties of the set.

Keywords: Perturbative protection methods, Data preprocessing, Ar-
tificial Neural Networks, Privacy in statistical databases.

1 Introduction

Managing confidential data is a common practice in any organization. In many
cases, these data contain valuable statistical information required by third par-
ties and, thus, privacy becomes essential, making it necessary to release data
sets preserving the statistics without revealing confidential information. This is
a typical problem, for instance, in statistics institutes.

In this scenario, an intruder might try to re-identify a percentage of the pro-
tected individuals by applying Record Linkage (RL) techniques [1,2] between
some attributes in the protected data set and some attributes obtained from

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 634–645, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ONN the Use of Neural Networks for Data Privacy 635

other data sources which includes at least one identifier1. Depending on the
non-protected attributes obtained by the intruder from other sources, the prob-
ability of re-identifying individuals increases, in other words, the larger the num-
ber of attributes known, the higher the probability to reveal the identity of the
individuals in the protected data set.

Special efforts have been made to develop a wide range of protection methods.
These methods aim at guaranteeing an acceptable level of protection of the
confidential data. The number of techniques applied to protect data is very
large, ranging from simply swapping values of the data set [3] to using complex
data models [4].

We present a new type of perturbative protection method (according to the
classification presented in [5]) called Ordered Neural Networks (ONN). ONN is
based on the use of an array of Artificial Neural Networks (ANNs) to protect
the numerical values of a data set. ONN consists of a set of steps which includes
data preprocessing, the learning process using the ANNs array and the protec-
tion step. The combination of these parts reproduces the original data in an
inaccurate way. This approximation of the real data constitutes our protected
values, our goal is to learn a pseudo-identity function.

If we consider the type of data that ONN can protect, ONN is considered a
numerical protection method because arithmetic operations can be performed
with both original and protected data (e.g. age or income). Note that a numer-
ical attribute does not necessarily have an infinite range, as in the case of age.
However, categorical data where standard arithmetic operations do not make
sense, like academic degree or hair color, are unsuitable for ONN and they have
to be protected using other techniques.

This paper is organized as follows. Section 2 presents some ANNs basics and
a brief introduction to protection methods. In Section 3, we present a detailed
description of the ONN method. Section 4 presents some results. Finally, Section
5 draws some conclusions and presents some future work.

2 Preliminaries

In this section, we introduce the basic knowledge necessary to follow the details
of our method. First, we give a brief description of a general ANN. Second, we
point out the basic characteristics of the Backpropagation algorithm needed to
understand this work. Third, we present some protection methods found in the
literature. Finally, we describe the score method to evaluate them.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is an interconnected network of simple pro-
cessing elements which are also called neurons. Each artificial neuron computes
the output by weighting all of its inputs and then applying a final output function
1 The identifier attributes are used to identify the individual unambiguously. A typical

example is the passport number.

636 J. Pont-Tuset et al.

called activation function. By changing the values of these connection weights
the network can collectively produce complex overall behavior. The process of
changing these values is called training. In this work, we use the Backpropagation
algorithm presented in [6] for the training phase.

M1 M2

i1
i2

iM1-1

iM1

o1

o2

oMN-1

oMN

MN-1 MNN

Hidden LayersInput Layer Output Layer

Fig. 1. Artificial Neural Network schema

As we can observe in Figure 1, neurons are arranged in groups called lay-
ers. Generally, the pth network layer contains Mp neurons and each processing
element (k = 1, ..., Mp) computes a single stimulated response as follows:

op
k = fp

k (netpk) netpk =
Mp−1∑

j=1

wp
jkij + θp

k

where op
k is the final output value returned by each neuron in the pth layer, fp

k

is the activation function, wp
jk is the weight assigned to the connection between

neurons j and k, and θp
k is called bias and it is further detailed in [7]. Note that

fp
k is applied to the netpk value that each neuron receives from the neurons of a

previous layer (ij , j = 1, ..., MP−1) weighted with a certain wp
jk.

Here, for all layers and for k = 1, ..., Mp, we consider a sigmoid activation
function:

fp
k (x) =

1
1 + e−cx

c ≥ 0 (1)

where parameter c modifies the shape of this function and it is directly propor-
tional to the slope at the origin of the activation function. Thus, increasing c,
the ability of the ANN to separate patterns is higher, but the stability of the
iterative algorithm decreases.

Although they have the same structure, layers are classified into three types:
the input layer, that receives the external values; the hidden layers, that receive
the information from a previous layer in the ANN and pass the results on to
the next layer; and the output layer, that returns the results of the ANN. The
number of hidden layers is arbitrary and depends on the scenario.

The number of neurons in the hidden layers influences the complexity of the
patterns that the net will be able to learn. The larger the number of neurons
considered, the larger the complexity of the patterns an ANN is able to recog-
nize. Note that, increasing the number of neurons, the complexity of the ANN
structure becomes larger.

ONN the Use of Neural Networks for Data Privacy 637

We assume that there are neither feedback connections between neurons nor
layer-bypassing connections. This means that the inputs of each layer depend
exclusively on the previous layer outputs.

2.2 The Backpropagation Algorithm

The Backpropagation algorithm allows the ANN to learn from a predefined set
of input-output example pairs. The basic idea of this method is to adjust the
weights of each processing element iteratively.

After initializing the network weights using uniformly distributed random
numbers, the input data are propagated throughout the ANN. An error value
is then computed at the output layer (first cycle) and, afterwards, at all the
hidden layers (second cycle). In this work, for the lth training vector, the error
(El) is computed as the sum of the squared difference between the desired and
the actual output of each neuron. The overall error (E) for all the training set
is then the sum of all these errors (E =

∑
l El).

Based on this error, connection weights are updated using an iterative steepest
descent method. To apply this method, we consider the direction −∇El and the
learning-rate parameter η so that weights are updated from step t to step t + 1
as follows:

wjk(t + 1) = wjk(t) − η
∂El

∂wjk
(2)

Note that parameter η tunes the norm of the vector that modifies the weight
values. This parameter has an effect on the range of the weights explored and
the probability of divergence. Weights in hidden layers are similarly adjusted [6].

In this paper, we assume that the learning process is complete when the
overall error E is below a certain tolerance factor. When the learning process
is complete, the ANN has theoretically internalized the hidden patterns in the
provided examples, meaning that it should be able to approximate the given
training examples.

2.3 Data Protection Methods

Good surveys about protection methods can be found in the literature [8,9]. The
experiments presented in these previous works conclude that, among a wide range
of protection methods, Rank Swapping (RS-p) [3] and Microaggregation (MIC-
vm-k) [10] obtain the best protection rates for numerical data. Other protection
method like noise addition, lossy compression, data distortion or resampling are
usually poorly ranked and, therefore, they are not considered further in this paper.

RS-p sorts the values of each attribute. Then, each value is swapped with
another sorted value chosen at random within a restricted range of size p. MIC-
vm-k builds small clusters from v variables of at least k elements and replaces
original values by the centroid of the clusters that the record belongs to.

In this paper, we compare ONN with these two methods. Specifically, we have
chosen the best five parameterizations for RS-p and MIC-vm-k as presented in [9].

638 J. Pont-Tuset et al.

2.4 Scoring Protection Methods

In order to measure the quality of a protection method, we need a protection
quality measurement that assigns a score to a method depending on its capacity
to: (i) make it difficult for an intruder to reveal the original data and (ii) to
avoid the information loss in the protected data set. In this paper, we use the
score defined in [5] which has been used in several other works.

In order to calculate the score, we must first calculate some statistics:

– Information Loss (IL): Let X and X ′ be matrices representing the original
and the protected data set, respectively. Let V and R be the covariance
matrix and the correlation matrix of X , respectively; let X be the vector of
variable averages for X and let S be the diagonal of V . Define V ′, R′, X

′
,

and S′ analogously from X ′. The information loss is computed by averaging
the mean variations of X − X ′, V − V ′, S −S′, and the mean absolute error
of R − R′ and multiplying the resulting average by 100.

– Disclosure Risk (DR): We use the three different methods presented in [2]
in order to evaluate DR: (i) Distance Linkage Disclosure risk (DLD), which is
the average percentage of linked records using distance based Record Linkage
(RL), (ii) Probabilistic Linkage Disclosure risk (PLD), which is the average
percentage of linked records using probabilistic based RL and (iii) Interval
Disclosure risk (ID) which is the average percentage of original values falling
into the intervals around their corresponding masked values. The three values
are computed over the number of attributes that the intruder is assumed to
know. Disclosure Risk is computed as DR = 0.25·DLD+0.25·PLD+0.5·ID.

– Score: The final score measure is computed by weighting the presented
measures and it was also proposed in [5]: score = 0.5 IL + 0.5 DR.

A simplified version of the score can be used without involving PLD. In this
case, the score is scoresimp = 0.5 IL + 0.25 DLD + 0.25 ID.

Due to the large execution cost of PLD, we use the scoresimp to save execution
time of the experiments run in the next section. This simplified score was used in
[11] for similar reasons. It is important to highlight that the better a protection
method, the lower its score.

3 Ordered Neural Networks

We propose a new protection method called Ordered Neural Networks (ONN).
ONN uses an array of ANNs for learning the numerical data set to be protected.
ANNs themselves would be able to perfectly learn all data using a structure
as complex as necessary. However, this is not our goal. We want to obtain an
inaccurately learned data set which is similar enough to be representative of
the original data set, but different enough not to reveal the original confidential
values. In order to fulfill these requirements, our new proposal is based on the
use of simple ANN structures combined with preprocessing techniques.

As shown in Figure 2, ONN can be decomposed in several steps, namely (i) vec-
torization, (ii) sorting, (iii) partitioning, (iv) normalization, (v) learning and (vi)

ONN the Use of Neural Networks for Data Privacy 639

Vectorization Partitioning NormalizationSorting

Back-
propagation

D

V VS {Pm} {Pm}

Data
Pre-processing Learning

Data set
propagation

Data Set
Protection

De-
normalization

{pm,n}

{pm,n}

N = R · a
P

k

R

a

Fig. 2. ONN general schema

protecting data. Steps (i) through (iv) preprocess data in order to facilitate the
learning in step (v). Once the learning process finishes, data are protected in step
(vi). Following, we go into further detail about the process steps mentioned above.

(i) Vectorization

The vectorization step gathers all the values in the data set in a single vector,
independently from the attribute they belong to. This way, we ignore the at-
tribute semantics and, therefore, the possible correlation between two different
attributes in the data set.

Formally speaking, let D be the original data set to be protected. We denote
by R the number of records in D. Each record consists of a numerical attributes
or fields. We assume that none of the registers contains blanks. We denote by N
the total number of values in D. As a consequence, N = R · a.

Let V be a vector of size N . ONN treats values in the data set as if they
were completely independent. In other words, the concept of record and field is
ignored and the N values in the data set are placed in V .

(ii) Sorting

Since the values in the vectorized data set belong to different source attributes,
they present a pseudo-random aspect and it becomes very difficult for an ANN
to learn patterns from them. In order to simplify the learning process, ONN sorts
the whole data set. This way, the accuracy level increases, since the ANN has to
learn an easy non-decreasing function instead of a more complex function.

Formally, V is sorted increasingly. Let us call Vs the sorted vector of size N
containing the sorted data and vi the ith element of Vs, where 0 ≤ i < N .

(iii) Partitioning

Once the data in the vector is sorted, we could start the learning process. How-
ever, given that the size of the data set may be very large, using a single ANN
would make this process very difficult. Because of this, we use an array of ANNs.
The main idea is to let each ANN learn a single disjunct chunk of the data set.
This way, the learning process is faster and the system is able to fit better the
original data set.

640 J. Pont-Tuset et al.

We define 1 ≤ P ≤ N as the number of partitions (subvectors) into which Vs

is divided. All the partitions contain the same number of values (P must divide
N). We call k = N/P the number of values in each partition.

We denote by Pm the mth partition (0 ≤ m < P). Let vm,n be defined as the
nth element of Pm: vm,n := vmk+n n = 0 . . . k − 1 m = 0 . . . P − 1.

(iv) Normalization

The ability of an ANN to learn depends on the range of values of the input data
set and the activation function. In order to make the learning process possible,
it is necessary to normalize the input data set. An input value x is desired to
range between two fitted values −Bin and Bin, where Bin ∈ R+, so that the
output values of the activation function fall between a certain B1out and B2out.
The basic idea is to adjust the boundaries (Bin) in order to make the normalized
input values fit in the range where the slope of the activation function is relevant,
as explained in [7]. Figure 3 shows the activation function used and the range of
values after normalization.

-Bin Bin

B1out

B2out

x

f(x)= 1
1+e-cx

1

0

Fig. 3. Activation function and range of values after normalization

More formally, using Equation (1):

B1out =
1

1 + ec(Bin)
B2out =

1
1 + e−c(Bin)

Let maxm and minm be the maximum and the minimum values in the mth
partition:

maxm := max
0≤i<k

{vm,i} minm := min
0≤i<k

{vm,i}

Let V s be the sorted vector containing the normalized input data and vi the ith
element of V s. Analogously, let Pm be the mth normalized partition and vm,n

the nth element of Pm.
The normalized input values are defined as:

{
vm,n := 2 Bin

vm,n−minm

maxm −minm
− Bin if maxm �= minm

vm,n := 0 if maxm = minm

where 0 ≤ m < P and 0 ≤ n < k.

ONN the Use of Neural Networks for Data Privacy 641

Note that maxm = minm means that all the values in the partition are the
same. In this case, the normalized value is set to 0, in other words, it is centered
in the normalization range.

Analogously, the desired output, which it is denoted by ym,n, where 0 ≤ m <
P, 0 ≤ n < k, is normalized between B1out and B2out:

{
ym,n := (B2out − B1out)

ym,n−minm

maxm −minm
+ B1out

ym,n := 0.5

where the first component of this expression is used when maxm �= minm and
the second component is used otherwise.

The range of values of the desired outputs is then (B1out, B2out). Notice
that, in the input layer, the outputs fall in the same range, making the training
process easier.

(v) Learning

Finally, ONN creates an array of ANNs in order to learn the whole data set,
where each ANN is associated to a partition. Therefore, the array contains P
ANNs. The objective for each ANN is to learn the values in its corresponding
partition. However, an specific ANN is not only fed with the values in that
partition, but uses the whole data set to learn. In some sense, using the whole
data set, we are adding non-linear noise to the learning process by using input
data that is not correlated with the data to be learned.

This learning process, in conjunction with the preprocessing techniques previ-
ously explained, make the ANNs internalize the data patterns distortedly. This
way, the reproduced data are resembling enough to the original, to maintain
their statistical properties, but dissimilar enough not to disclose the original
confidential values.

Specifically, the ANN that learns the values of a partition Pm receives the
nth value of that partition, vm,n, together with the P − 1 nth values of the
remaining partitions. Since the network is intended to learn all values vm,n in
Pm, the desired output is set to ym,n = vm,n. This process is repeated iteratively
until the learning process finishes.

In our proposal, each ANN contains three layers: the input layer, a single
hidden layer and the output layer, which can be described as follows:

Input Layer. The input layer consists of M1 = P neurons. Each of them takes
the data from a different partition as input. That is, input of the ith neuron
comes from partition P i.

Hidden Layer. The hidden layer has M2 = nh neurons. As explained in [7],
nh has an effect on the speed of the learning process and the ability of the
network to learn complex patterns.

Output Layer. The output layer consists of one single neuron (M3 = 1).

The structure of the array of ANNs is shown in Figure 4.

642 J. Pont-Tuset et al.

M1=P M2=nh

P

v0,i

v1,i

vP-2,i

vP-1,i

p0,i

M3=1

M1=P M2=nh

v0,i

v1,i

vP-2,i

vP-1,i

pP-1,i

M3=1

Fig. 4. Array of ANNs used by ONN

All networks learn the original data updating their weights by using the it-
erative Backpropagation algorithm explained in Section 2.2. The quality of the
data protection depends basically on the ANN structure and the preprocessing
parameters.

(vi) Protecting Data

Once the ANNs have been trained, and therefore the weights updated, the last
step obtains the protected values for the data set. This includes the data set
propagation and the de-normalization, as explained below.

Let pm,n be the protected value for vm,n. As mentioned before, the mth ANN
of the array has been trained to reproduce vm,n when the values in the P input
neurons is v0,n, ..., vP−1,n. This way, pm,n is defined as the output obtained when
having v0,n, ..., vP−1,n as input of the mth already trained ANN.

Finally, the protected value pm,n for vm,n is obtained by de-normalizing pm,n

as follows:

pm,n = minm +
(pm,n − B1out)(maxm − minm)

B2out − B1out

If maxm = minm the expression used is pm,n = (pm,n + 0.5)vm,n.
The protected values pm,n are placed in the protected data set in the same

place occupied by the corresponding vm,n in the original data set. This way, we
are undoing the sorting and vectorization steps.

4 Experiments

In order to test ONN, we use a data set provided by the US Census Bureau,
described in detail in [12]. The Census data set is used in other works like [13,14].
This data set contains 1080 records consisting of 13 attributes (which is equal to

ONN the Use of Neural Networks for Data Privacy 643

14040 values to be protected). We compare ONN with the best ranked protection
methods presented in the literature, called Rank Swapping and Microaggregation,
described in Section 2.3.

The ONN parameters are: number of attributes used by an intruder to reveal
data using RL techniques (V), number of partitions (P), normalization range
size (B), learning rate parameter (E), activation function slope parameter (C)
and number of neurons in the hidden layer (H).

We have divided our experiments into two different scenarios. First, we assume
that the intruder only has half of the original protected attributes (V = 7), this
scenario was used in [15]. Second, we assume that the intruder is able to obtain
all the original attributes (V = 13). This scenario could be considered the most
favorable scenario for the intruder.

The values selected for each factor were chosen according to empirical re-
sults in order to use reasonable and realistic values. The best-score parameters
set, for both cases of the V parameter, are presented in Table 1. These sets of
configurations are later referred to as ONN-A, ONN-B, etc.

We have run RS-p and MIC-vm-k using their best five parameterizations,
extracted from [9], so we can fairly compare to them.

Table 1. ONN parameters used in the experiments

P B E C H

A 8 0.8 0.4 4.0 8
B 10 0.8 0.1 3.5 8
C 10 0.8 0.1 3.0 8
D 10 0.8 0.1 4.0 8
E 8 0.8 0.1 4.0 2

P B E C H

a 8 0.8 0.4 4.0 8
b 8 0.8 0.3 4.0 8
c 8 0.8 0.1 4.0 2
d 10 0.8 0.1 3.5 8
e 8 0.8 0.1 3.5 2

(V = 7) (V = 13)

Table 2.a shows the scores in the first scenario. As we can observe, the IL
when protecting data using ONN is, in general, lower than that obtained using
RS-p or MIC-vm-k. This means that ONN is able to fit the data set better than
the other two approaches. These results are coherent with the methodology used
by ONN to protect data. Since ONN is trained using the data set after being
preprocessed, the patterns learned depend on values that come from different
individuals in the original data set. Because of this, an intruder should know the
values in each partition to be able to understand the learned patterns. Since this
information is no longer available after protecting the data, ONN can get lower
ILs while preserving relatively good rates of DR.

Regarding DR, the best disclosure risk corresponds to RS-p. These results
make sense because when the intruder has a reduced set of variables, it is very
difficult to re-identify individuals because, by swapping, RS-p mixes values from
different individuals. ONN presents a good DR, better than that obtained by
MIC-vm-k. However, due to the RS-p simplicity, a specific record linkage method
for Rank Swapping can be performed, as presented in [15]. There the authors

644 J. Pont-Tuset et al.

Table 2. Average results of IL, DLD, PLD, ID using (a) 7 variables and (b) 13 variables

Method IL DR SCR

RS-14 23.83 24.21 24.02
RS-17 27.40 21.87 24.64
RS-12 21.08 27.83 24.45
RS-15 27.44 23.62 25.53
RS-13 25.39 26.35 25.87

MIC4m17 23.98 31.67 27.82
MIC4m19 26.10 31.09 28.59
MIC4m11 21.27 36.22 28.74
MIC3m20 21.95 35.85 28.90
MIC3m15 18.98 39.33 29.15

ONN-A 20.42 26.25 23.33
ONN-B 20.59 26.95 23.77
ONN-C 20.31 27.26 23.78
ONN-D 20.66 26.96 23.81
ONN-E 22.38 25.65 24.01

Method IL DR SCR

RS-14 23.83 31.32 27.58
RS-17 27.40 28.43 27.92
RS-12 21.08 35.83 28.46
RS-15 27.44 30.51 28.98
RS-13 25.39 33.79 29.59

MIC4m17 23.98 40.80 32.39
MIC4m19 26.10 40.10 33.10
MIC4m11 21.27 46.45 33.86
MIC3m20 21.95 46.70 34.33
MIC3m15 18.98 50.94 34.96

ONN-a 21.45 33.52 27.49
ONN-b 22.23 32.99 27.61
ONN-c 22.38 33.04 27.71
ONN-d 20.59 34.88 27.73
ONN-e 22.56 33.20 27.88

(a) (b)

show that the real DR of the RS-p is much larger than the values presented in
this work using general RL methods.

Observing the scores, ONN shows to be the best protection method among
those presented in this work and, therefore, all the methods studied in [9]. The
scores obtained by ONN are better than those obtained by RS-p and MIC-vm-k.
Note that, although the DR is lower for RS-p, the scores show that ONN is better
ranked, meaning that the benefits obtained by avoiding the IL compensate for
the increase in the DR.

Table 2.b shows similar results for the second scenario, where the intruder
has all the variables. As we can observe, the results are very similar to the first
scenario. It is important to notice that the larger the number of variables known
by the intruder the more similar the DR presented by RS-p and ONN.

5 Conclusions and Future Work

In this paper, we have presented ONN, a new method for protecting data mini-
mizing the information loss. To our knowledge, no previous attempts had been
made to use ANNs for this purpose.

The use of ANNs, combined with other preprocessing techniques, to create a
protected data set from the original data has shown to be better than previous
techniques. Specifically, we have proven that ONN reduces the combined disclo-
sure risk and the information loss metric beyond the best approaches presented
in the literature.

Future directions of this work include the establishment of a set of criteria
that allow to automatically tune the parameters of our method.

ONN the Use of Neural Networks for Data Privacy 645

Acknowledgments

The authors from UPC want to thank Generalitat de Catalunya for its support
through grant number GRE-00352 and Ministerio de Educación y Ciencia of
Spain for its support through grant TIN2006-15536-C02-02. Jordi Nin wants to
thank the Spanish Council for Scientific Research (CSIC) for his I3P grant and
the Spanish MEC for its support through ARES CONSOLIDER INGENIO 2010
CSD2007-00004 and eAEGIS-TSI2007-65406-C03-02.

References

1. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Trans. on KDE 19(1), 1–16 (2007)

2. Torra, V., Domingo-Ferrer, J.: Record linkage methods for multidatabase data min-
ing. In: Information Fusion in Data Mining, pp. 101–132. Springer, Heidelberg (2003)

3. Moore, R.: Controlled data swapping techniques for masking public use microdata
sets. U.S. Bureau of the Census (Unpublished manuscript) (1996)

4. Burridge, J.: Information preserving statistical obfuscation. Statistics and Com-
puting 13, 321–327 (2003)

5. Domingo-Ferrer, J., Torra, V.: Disclosure control methods and information loss
for microdata. Confidentiality, Disclosure, and Data Access: Theory and Practical
Applications for Statistical Agencies, 111–133 (2001)

6. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Heidelberg (1996)
7. Freeman, J.A., Skapura, D.M.: Neural Networks: Algorithms, Applications and

Programming Techniques, pp. 1–106. Addison-Wesley Publishing Company, Read-
ing (1991)

8. Adam, N.R., Wortmann, J.C.: Security-control for statistical databases: a compar-
ative study. ACM Computing Surveys 21, 515–556 (1989)

9. Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure control
methods for microdata. In: Confidentiality, Disclosure, and Data Access: Theory
and Practical Applications for Statistical Agencies, pp. 111–133. Elsevier Science,
Amsterdam (2001)

10. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation
for statistical disclosure control. IEEE Trans. on KDE 14, 189–201 (2002)

11. Sebé, F., Domingo-Ferrer, J., Mateo-Sanz, J.M., Torra, V.: Post-masking optimiza-
tion of the tradeoff between information loss and disclosure risk in masked micro-
data sets. In: Domingo-Ferrer, J. (ed.) Inference Control in Statistical Databases.
LNCS, vol. 2316, pp. 187–196. Springer, Heidelberg (2002)

12. CASC Project, http://neon.vb.cbs.nl/casc/
13. Domingo-Ferrer, J., Mateo-Sanz, J.M., Torra, V.: Comparing sdc methods for mi-

crodata on the basis of information loss and disclosure risk. In: Pre-proceedings of
ETK-NTTS 2001, vol. 2, pp. 807–826. Eurostat (2001)

14. Yancey, W., Winkler, W., Creecy, R.: Disclosure risk assessment in perturbative
microdata protection. In: Domingo-Ferrer, J. (ed.) Inference Control in Statistical
Databases. LNCS, vol. 2316, pp. 135–152. Springer, Heidelberg (2002)

15. Nin, J., Herranz, J., Torra, V.: Rethinking rank swapping to decrease disclosure
risk. In: DKE (in press, 2007)

http://neon.vb.cbs.nl/casc/

Threshold Privacy Preserving Keyword Searches

Peishun Wang1, Huaxiong Wang1,2, and Josef Pieprzyk1

1Centre for Advanced Computing – Algorithms and Cryptography
Department of Computing, Macquarie University, Australia

{pwang, hwang, josef}@ics.mq.edu.au
2Division of Mathematical Sciences

School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

hxwang@ntu.edu.sg

Abstract. We consider the following problem: users of an organization
wish to outsource the storage of sensitive data to a large database server.
It is assumed that the server storing the data is untrusted so the data
stored have to be encrypted. We further suppose that the manager of the
organization has the right to access all data, but a member of the organi-
zation can not access any data alone. The member must collaborate with
other members to search for the desired data. In this paper, we investi-
gate the notion of threshold privacy preserving keyword search (TPPKS)
and define its security requirements. We construct a TPPKS scheme and
show the proof of security under the assumptions of intractability of
discrete logarithm, decisional Diffie-Hellman and computational Diffie-
Hellman problems.

Keywords: Keyword search, threshold, key distribution, secure index.

1 Introduction

Threshold privacy preserving keyword searches are particularly useful in the fol-
lowing scenario. Assume that users of an organization wish to outsource storage
of their sensitive information to a large database server. However, the server stor-
ing the data is untrusted, and other members of the organization alone cannot
be trusted. Hence, all data have to be submitted in an encrypted form. Only the
manager of the organization has the right to access all data, and any member of
the organization must collaborate with others to search for the desired data. For
example, big intelligence or police organizations (such as CIA and FBI) normally
use one central server, where all information is being stored. It is reasonable to
assume that the access to the data on the server has to be managed according
to the organization security policy. It is clear that all the IT technical staff who
maintains the server should not have an access to data stored. However, teams
working on specific cases should have access to the relevant data. Each team is
normally led by a head officer. The head is responsible for the enforcement of
security policy, and depending on the sensitivity of data, she may use secret shar-
ing to control the access to appropriate data. In particular, the head generates

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 646–658, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Threshold Privacy Preserving Keyword Searches 647

the secret and distributes shares of the secret among the members of the team
according to the access structure derived from the security policy. Note that now
any group of officers belonging to the access structure can access (collectively)
a relevant data.

There are a lot of solutions in literature for a single-user and multi-users
keyword search over encrypted data, but there is no scheme for threshold access.
In particular, we consider the following scenario. Every member uses her share of
the secret to generate a share of a trapdoor for a list of keywords. After receiving
the encrypted data from the server, all members compute their decryption shares,
and then pool them together in order to recover the plaintext. The validity of
every member’s share has to be checked. Note that the shares of the members
must be used in such a way that precludes a leak of any information about the
shares. In this paper, we study the threshold privacy preserving keyword search,
and provide a practical solution to this problem.

Contributions. The contribution of this paper is three-fold. (1) We define the
notion of threshold privacy preserving keyword search (TPPKS) and propose
suitable privacy requirements, i.e. data privacy and privacy of the secret and
its shares. (2) We construct a TPPKS scheme based on Shamir secret sharing,
Boneh and Franklin’s ID-based cryptosystem and the group computation, and
prove the security under the assumptions of intractability of discrete logarithm,
decisional Diffie-Hellman and computational Diffie-Hellman problems. (3) Our
scheme has the following attractive properties: shares are verified without leaking
any information about them, any invalid share fails the verification, and there
is no information disclosed about the shares after they have been used.

Organization. In Section 2, we review the related work. Section 3 provides mod-
els and necessary background. In Section 4, we construct a TPPKS scheme.
Section 5 proves the security of the proposed scheme. Finally Section 6 includes
a conclusion and future research.

2 Related Works

There is a number of research works investigating privacy preserving keyword
search over encrypted data. For the single-user setting, the protocols based on
single keyword search were studied in [1,6,10] and conjunctive keyword search
schemes were proposed in [3,4,7]. For the multi-user setting, there are two pro-
tocols published in [9,11].

Song, Wagner, and Perrig [10] introduced a model of privacy preserving key-
word search over encrypted data. In their searchable symmetric key encryption
scheme, each word is encrypted separately and extra information is embedded
into the ciphertext such that it is used in conjunction with a piece of trapdoor
for a keyword to test whether the keyword is present in a document. The scheme
needs a computation overhead that is linear in the size of a document, fails to deal
with compressed data, and reveals statistical information about the distribution

648 P. Wang, H. Wang, and J. Pieprzyk

of the plaintext. To address these shortcomings, Goh [6] presented a scheme
called secure indices, in which each keyword in a document is processed by a
pseudo-random function twice, and the final output is inserted into a Bloom
filter. The trapdoor consists of an indicator of what bits in the secure index
should be tested. An immediate consequence of application of Bloom filters is
that the Goh’s scheme introduces false positives. Boneh et al. [1] presented public
key schemes for keyword search over encrypted data. Their main idea is that each
keyword is encrypted under the public key in such a way that the user is able
to generate the trapdoor for any particular keyword with her private key. Their
schemes require the server to perform a linear scan through all the document
contents for every query, need secure channels to transmit trapdoors, and never
refresh the trapdoor for a keyword.

Golle et al. [7] pioneered the construction of conjunctive keyword search over
encrypted data. In their first scheme, the server checks the two hash codes of
the group points associated with the keywords to find the desired data. In the
second scheme, the server verifies the two outputs of bilinear pairing that takes
the keywords as an input and checks if the keyword is in the document or not.
Note that there is a substantial overhead related to the transmission of the trap-
doors, and their second construction is arguably inefficient, particularly for a
large collection of documents. Byun et al. [4] designed a conjunctive keyword
search scheme in the random oracle model, which requires only constant com-
munication and storage costs. In their scheme, each keyword is hashed to a
group, and then mapped into another group by bilinear pairing. On receiving a
trapdoor, the server tests two results of bilinear pairing and guesses if the docu-
ment contains the keywords. Recently Boneh and Waters [3] further developed a
public-key encryption scheme for conjunctive keyword search from a generaliza-
tion of anonymous identity based encryption. The scheme supports comparison
queries (such as greater-than) and general subset queries.

Based on Goh’s scheme [6], Park et al. [9] proposed keyword search schemes
for groups. The main idea is to use one-way hash chain in reverse order to
make group session keys, encryption keys and index generation keys. All group
members use identical secret keys to make secure indices and trapdoors, and a
set of new group keys must be generated for each session. Therefore, the size
of a query becomes larger as the number of sessions increases. Wang et al. [11]
address the shortcomings of the schemes from [9], propose a new model called
common secure index for conjunctive keyword-based retrieval (CSI-CKR), which
is based on dynamic accumulators, Pailliers cryptosystem and blind signatures.

It should be noted that, to prove the security, all existing schemes assume
that the number of keywords associated with a document remains fixed. This
constraint can be satisfied by simply adding null keywords to the list.

3 Preliminaries

Notation. Throughout this paper, we use the following notation. Let a
R←− A

denote that an element a is chosen uniformly at random from the set A. PPT

Threshold Privacy Preserving Keyword Searches 649

denotes probabilistic polynomial time. For any positive integer k, [k] denotes the
set of integers {1, . . . , k}. Concatenation of two binary strings x and y is denoted
by x||y.

3.1 TPPKS

In this section, we introduce the notion of the TPPKS scheme. Basically, a
TPPKS scheme consists of five algorithms defined as follows.

System Instantiation: The manager takes a security parameter and generates
the system public parameters and the secret keys.

Key Distribution: The manager selects secret keys at random, creates shares
for the secret key and distributes the shares among the members. Shares
are used to generate the trapdoor for a list of keywords and broadcasts
verification keys.

Data Encryption and Secure Index Generation: Each user applies the
system public parameters in order to encrypt her data, to generate the cor-
responding secure index, and to upload them to the server.

Trapdoor Generation and Data Search: First each one of the collaborat-
ing members generates a share of a trapdoor for the target keywords. Then
the collaborating members verify their shares. After all shares have passed
the verification, they are combined to make the trapdoor for the target key-
words.

Data Decryption: On receiving the encrypted data from the server, each col-
laborating member uses her secret share to generate a decryption share of
encrypted data. If all decryption shares are valid, the collaborating members
can compute the plaintext.

3.2 Security Model

A TPPKS scheme usually has to provide data privacy and privacy of the se-
cret key and shares. Data privacy means that, all queries, secure indices and
encrypted data leak no information about the plaintexts. Privacy of secret key
and shares means that, a group of members of size less than the threshold is not
able to find the secret key, and the use of a share discloses no information about
the share. To satisfy these privacy requirements, we need to make some specific
assumptions about the security of the components and building blocks used in
our protocols.

To prove the security of search protocol, we use the Golle et al.’s security game
[7] namely, the indistinguishability of ciphertext from limited random string
(ICLR). It captures a secure notion – Semantic Security against Adaptive Chosen
Keyword Attacks (IND-CKA) [6], which guarantees that an adversary cannot
recover the contents of a document from its secure index and the indices of other
documents.

Since secure indices and trapdoors only concern the keyword list L in a data,
and not the data, for convenience, we denote the secure index of the data by

650 P. Wang, H. Wang, and J. Pieprzyk

IL. We assume that the number of keywords associated with a document is m.
Let Rand(L, V) denote a randomized keyword list formed from the keyword list
L = (w1, . . . , wm) by replacing the keywords of L that are indexed by a subset
V ⊂ {1, . . . , m} by random values.

Definition 1. A trapdoor T is distinguishable for keyword lists Li and Lj if the
result of searching with T on the secure index of Li is different from that of Lj.

Definition 2. ICLR is a game between an adversary A and a challenger C:

Setup. A adaptively selects a polynomial number of keyword lists, {L∗}, and
requests the secure indices, {IL∗}, from C.

Queries. A may query C to get the trapdoor TL′ of a keyword list L′. With TL′,
A can search on a secure index IL∗ to determine if all keywords in the list
L′ are contained in L∗ or not.

Challenge. After making a polynomial number of queries, A decides on chal-
lenge by picking a keyword lists L, a subset V ⊂ [m] and a value v ∈ V such
that A must not have asked for any trapdoor distinguishing Rand(L, V) from
Rand(L, V − {v}), and sending them to C. Then C chooses b

R←− {0, 1}. If
b = 0, A is given I0 of L0 = Rand(L, V − {v}). If b = 1, A is given I1 of
L1 = Rand(L, V). After the challenge of determining b for A is issued, A
is allowed again to query C with the restriction that A may not ask for the
trapdoor that distinguishes L0 from L1.

Response. Eventually A outputs a bit bA, and is successful if bA = b. The
advantage of A in winning this game is defined as AdvA = |Pr[b = bA]−1/2|,
and the adversary is said to have an ε-advantage if AdvA > ε.

3.3 Complexity Assumptions

In this section, we briefly review three well-known hardness assumptions, which
are Discrete Logarithm (DL), Decisional Diffie-Hellman (DDH) and Computa-
tional Diffie-Hellman (CDH).

Definition 3 (DL Assumption). Given a finite cyclic group G = 〈g〉 of prime
order q with a generator g. For a given random number x ∈ G, the DL problem
is to find an integer t (0 ≤ t < q) such that x = gt. An algorithm A is said to
have an ε-advantage in solving the DL problem if

Pr[A(g, gt) = t] > ε.

The DL assumption holds in G if no PPT algorithm has advantage at least ε in
solving the DL problem in G.

Definition 4 (DDH Assumption). Let G = 〈g〉 be a cyclic group of prime or-
der q and g a generator of G. The DDH problem is to distinguish between triplets
of the form (ga, gb, gab) and (ga, gb, gc), where a, b, c

R←− Zq. An algorithm A is
said to have an ε-advantage in solving the DDH problem if

|Pr[A(ga, gb, gab) = yes] − Pr[A(ga, gb, gc) = yes]| > ε.

Threshold Privacy Preserving Keyword Searches 651

The DDH assumption holds in G if no PPT algorithm has advantage at least ε
in solving the DDH problem in G.

Definition 5 (CDH Assumption). Let G = 〈g〉 be a cyclic group of prime
order q and g a generator of G. The CDH problem is to compute gab for given
g, ga, gb ∈ G, where a, b

R←− Zq. An algorithm A is said to have an ε-advantage
in solving the CDH problem if

Pr[A(g, ga, gb) = gab] > ε.

The CDH assumption holds in G if no PPT algorithm has advantage at least ε
in solving the CDH problem in G.

3.4 The Bilinear Pairings

Let G1, G2 be two cyclic groups of some large prime order q. A bilinear pairing
is defined as a function e : G1 × G1 → G2 with the following properties:

1. Bilinear: for all P, Q ∈ G1 and a, b ∈ Zq, e(aP, bQ) = e(P, Q)ab.
2. Non-degenerate: there exist P, Q ∈ G1 such that e(P, Q) 	= 1, where 1 is the

identity of G2.
3. Computable: for all P, Q ∈ G1, e(P, Q) is computable in polynomial time.

A Bilinear Pairing Parameter Generator is defined as a polynomial-time al-
gorithm BPPG, which takes as input a security parameter k and outputs a
uniformly random tuple (e, G1, G2, q) of bilinear pairing parameters.

4 Construction of TPPKS

4.1 System Instantiation Algorithm

1. The manager C runs a BPPG with a security parameter k to generate bi-
linear pairing parameters (q, G1, G2, e), where G1 is an additive group of
large prime order q with a generator P , q′ = q−1

2 is also a prime, G2 is a
multiplicative group of order q and the DL and CDH assumptions hold in
both G1 and G2.

2. C chooses two cyclic groups: a multiplicative group G of prime order q with
a generator g, in which the DDH assumption holds, and an additive group
G0 = 〈P0〉 of prime order q′, in which the computation is based on the
modulus q and the DL assumption holds.

3. C chooses three cryptographic hash functions:

H : {0, 1}∗ → Z∗
q , H1 : {0, 1}∗ → G1, and H2 : G2 → {0, 1}l,

where {0, 1}l is the plaintext space.
4. C chooses Q

R←− G1, and five different values λ, σ, r, d, s
R←− Z∗

q \ {1} and
computes P ′ = λP, Q′ = (λ − σ)Q, g′ = g

r
d , g̃ = g′s and u = s

d .
5. C publishes system’s public parameters {e, G, G0, G1, G2, q, q

′,g, g′, g̃, u,P0,
P, P ′, Q, Q′,H, H1, H2} and keeps {λ, σ, r, d, s} secret.

652 P. Wang, H. Wang, and J. Pieprzyk

4.2 Key Distribution Algorithm

1. Every member Mi (1 ≤ i ≤ n) has an unique identity number IDi, and C
computes xi = H(IDi) (i = 1, . . . , n).

2. C randomly generates three secret polynomials f0, f1, f2 of degree t − 1 of
the form

f0(x) = r + a
(0)
1 x + · · · + a

(0)
t−1x

t−1,

f1(x) = d + a
(1)
1 x + · · · + a

(1)
t−1x

t−1,

f2(x) = σ + a
(2)
1 x + · · · + a

(2)
t−1x

t−1,

where {a
(i)
j } (i = 0, 1, 2; j = 1, · · · , t−1) are secretly random numbers in Z∗

q .
3. For every member Mi, C lets ri = f0(xi), di = f1(xi), σi = f2(xi), and

delivers the secret shares ri, di, σi to Mi (1 ≤ i ≤ n) via a secure channel.
4. C computes

ν
(r)
i = riH1(IDi), ν

(d)
i = diH1(IDi), and ν

(σ)
i = e(σiH1(IDi), P),

and publishes (ν(r)
i , ν

(d)
i , ν

(σ)
i) as the verification keys of Mi (1 ≤ i ≤ n).

4.3 Data Encryption and Secure Index Generation Algorithm

1. A user encrypts her data M as follows: chooses γ
R←− Z∗

q \ {1}, computes

X = γP and, Y = M ⊕ H2(e(Q, P ′)γ),

and let R = (X, Y) be the ciphertext of M.
2. The user chooses α

R←− Z∗
q \ {1} and computes W ′ = g−α and W̄ = g′α. For

each keyword wj in M, the user computes Wj = g̃αH(wj)P0 .
3. The user lets I = {W ′, W̄ , W1, W2, . . . , Wm} be the secure index of the data

M, and uploads {I, R} to the server.

4.4 Trapdoor Generation and Data Search Algorithm

1. The t members {Mij}j=1,···,t with identities {IDii}j=1,···,t together compute

cij =
t∏

m′=1,m′ �=j

H(IDim′)
H(IDim′) − H(IDij)

,

choose β
R←− Z∗

q \ {1}, and compute A(0) = βP0 in G0.

For every queried keywordw′
m′ in the queried keyword list L′ = {w′

m′}m′=1,...,l

(l ≤ m), they compute A(m′) = (uH(w′
m′) + β)P0 in G0.

Threshold Privacy Preserving Keyword Searches 653

2. Each member Mij computes in G0

A
(0)
ij

= cij rij A
(0) and A

(m′)
ij

= cij dij A
(m′) (m′ = 1, · · · , l),

and takes them as her share of the trapdoor of L′.
3. The t members verify every member’s shares by checking whether it holds

for j = 1, · · · , t that

e(H1(IDij), A
(0)
ij

P) = e(cij ν
(r)
ij

, A(0)P) and

e(H1(IDij), A
(m′)
ij

P) = e(cij ν
(d)
ij

, A(m′)P) (m′ = 1, · · · , l).
If it holds for all j = 1, · · · , t, this means that all search shares are valid,
then they go to next step. If it does not hold for some j, this means that
Mij provides a invalid search share, then they terminate the protocol.

4. The t members compute

A0 =
t∑

j=1

A
(0)
ij

and Am′ =
t∑

j=1

A
(m′)
ij

(m′ = 1, · · · , l),

and sends (A0, {Am′}l
m′=1) as the trapdoor of L′ to the server.

5. On receiving the trapdoor, the server tests on a secure index for every m′ ∈ [l]
if there exists some i ∈ [m] such that

W ′A0 · W̄Am′ = Wi.
If so, the server puts the data R in a collection. After all secure indices are
checked, if the collection is not empty, the server returns the collection to
the member; otherwise, returns No Data Matched to the t members.

4.5 Data Decryption Algorithm

When the t members receive a data R = (X, Y), they do the following.

1. Each member Mij (j = 1, · · · , t) chooses y
R←− Z∗

q \ {1}, computes

y
(1)
ij

= e(Q, X)y, y
(2)
ij

= e(H1(IDij), P)y, p̃ij = H(y(1)
ij

||y(2)
ij

),
zij = p̃ij σij + y and vij = e(Q, X)σij ,

and provides {y
(1)
ij

, y
(2)
ij

, zij , vij } as her decryption share.

2. The t members compute p̃ij = H(y(1)
ij

||y(2)
ij

) (j = 1, · · · , t) and check whether
it holds that

e(Q, X)zij = v
p̃ij

ij
y
(1)
ij

and e(H1(IDij), P)zij = (ν(σ)
ij

)p̃ij y
(2)
ij

.

If it holds for all j = 1, · · · , t, this means that all decryption shares are valid,
then they go to next step. If it does not hold for some j, this means that
Mij provides a invalid decryption share, then they terminate the protocol.

3. Finally, the t members compute Dij = v
cij

ij
(j = 1, · · · , t), and then output

the plaintext

M = Y ⊕ H2(
t∏

j=1

Dij · e(Q′, X)).

654 P. Wang, H. Wang, and J. Pieprzyk

Note. Although we use intersection operations to do a conjunctive keyword
search in the above scheme, that is, a secure index is tested for one keyword
at first, and then, upon the test result, the server decides if it keeps testing for
the next keyword. In fact, our scheme can also deal with conjunctive keyword
searches in the same way as all existing conjunctive keyword search schemes
do, that is, secure indices use keyword fields, and the positions where the con-
junctive keywords appear in secure indices are given in a trapdoor. The details
are as follows. A member has an above trapdoor (A0, {Aij }l

j=1) for a list of
keywords L = {wij }l

j=1, where ij is the position where the keyword wij ap-
pears in the secure index, this means, {ij}l

j=1 ⊂ [m]. The member computes

A
(c)
0 = (A0)l, A

(c)
1 =

∑l
j=1 Aij and sends {A

(c)
0 , A

(c)
1 , i1, · · · , il} as the trapdoor

of L to the server. The sever checks if it holds that W ′A(c)
0 · W̄A

(c)
1 =

∏l
j=1 Wij

to guess whether all the keywords {wij }l
j=1 are in the secure index or not.

5 Security

The following four theorems state the security of the proposed TPPKS scheme.

Theorem 1. The secret key distribution process in the proposed TPPKS is se-
cure against impersonation and a coalition of up to (t − 1) adversaries.

Proof. First we prove two claims.

Claim 1. Anyone excluding the manager and t collaborating members cannot
recover the secret keys r, d, σ in the key distribution process. The security is
unconditional.

Proof. Let’s consider the case of the secret key r firstly, and the cases of d, σ can
be discussed in the same way.

We use the Shamir (t, n)-threshold Secret Sharing scheme in the construction
of secret key distribution in a straightforward way, that is, the manager selects
t−1 numbers (a1, . . . , at−1) at random along with the secret key r and constructs
the polynomial f0 of degree t − 1, so

f0(x) = r + a
(0)
1 x + · · · + a

(0)
t−1x

t−1.

Each member is given the private key si over a secure channel, so any PPT
adversary excluding the manager and t collaborating members cannot recover the
coefficients of the polynomial f0(x), that means, he cannot compute r = f0(0).

Next, we consider the security of r when it is used to generate a trapdoor. An
adversary can get a polynomial sample of pairs (P, rP) of G0 by observing the
input and output of the trapdoor generation algorithm. However, the security
of r is still kept based on the DL assumption.

Hence, it is computationally impossible for any adversary excluding the man-
ager and t collaborating members to reveal the secret key r in the key distribution
process.

Threshold Privacy Preserving Keyword Searches 655

Claim 2. Any PPT adversary excluding the manager and t collaborating mem-
bers cannot computationally forge a member’s secret shares ri, di, σi in the key
distribution process.

Proof. As in Claim 1, we only take r as an example to discuss.
From the Claim 1, we know that no body (excluding the manager and t

collaborating members) can construct f0(x). So, it is computationally impossible
to compute ri from f0(x). When ri is used to generate a share of a trapdoor, an
adversary can get a polynomial of element pairs (P, riP) of G0 by observing the
input and output of Mi. Because DL assumption holds in G0, no PPT adversary
excluding the manager and t collaborating members can compute ri. So, we have
the claim.

From the Claim 1 and Claim 2, we have the theorem immediately.

Theorem 2. The secret share verification algorithms used in the proposed
TPPKS are secure under the DL and CDH assumptions.

Proof. First we check correctness of the verification algorithm for the secret
share ri.

e(H1(IDi), A
(0)
i P) = e(H1(IDi), A(0)P)ciri = e(ciν

(r)
i , A(0)P),

this means, if the member Mi is honest, the verification algorithm gives a positive
answer. If Mi replaces ri with a forged share r̃i, then we see that

e(H1(IDi), A
(0)
i P) = e(H1(IDi), A(0)P)cir̃i 	= e(H1(IDi), A(0)P)ciri = e(ciν

(r)
i , A(0)P),

the verification algorithm gives a negative answer.
Because the manager publishes every member’s verification key, so an adver-

sary can easily get (H1(IDi), riH1(IDi)). As DL assumption holds in G1, so he
cannot compute ri in PPT. If an adversary can get the ri from the verification al-
gorithm, we can interact with the adversary in the same way as in [12] (Theorem
1: Case 1: Non-interaction with Signer) to break the CDH assumption.

The case of di is similar to the case of ri, we omit the discussion.
Now let’s analyze the case of σi.
Since the verification key ν

(σ)
i is published, an adversary can get a pair of

elements in G2 (e(H1(IDi), P), e(σiH1(IDi), P)). Similarly, σi is secure under
the DL assumption. We use the non-interactive zero-knowledge protocol of Fiat
and Shamir [5] to construct the verification algorithm for σi, so the verification
algorithm is secure.

Theorem 3. The data cryptosystem used in the proposed TPPKS is semanti-
cally secure.

Because the cryptosystem used in our scheme follows from the ID-based cryp-
tosystem of Boneh and Franklin [2] and its variation [8] in a straightforward way,
we have this theorem immediately.

656 P. Wang, H. Wang, and J. Pieprzyk

Theorem 4. The search process in the proposed TPPKS is semantically secure
under the DDH assumption according to the security game ICLR.

Proof. To describe conveniently, we omit all information concerning the thresh-
old setting, and only concern the keyword search process, so the member’s share
(ri, di) and P0 don’t occur in our proof.

Suppose that the scheme is not semantically secure under the security game
ICLR. Then there exists an adversary A that wins the ICLR game with an ε-
advantage. We build an adversary A′ that uses A as a subroutine and breaks
the DDH assumption with the ε

2m -advantage.
Let (ga, gb, gc) be A′’s DDH challenge. A′’s goal is to break the DDH assump-

tion, or in other words to decide whether c = ab. A′ guesses a value z for the
position v that A will choose in the phase Challenge of the game ICLR, by
picking z

R←− [m]. Then A′ works by interacting with A in the ICLR game as
follows:

Setup: A makes a polynomial number of requests for secure indices, which A′

answers as follows. Let one of A’s keyword lists be L∗ = (w∗
1 , . . . , w∗

m). A′

chooses r, d, s, α
R←− Z∗

q and lets g′ = g
r
d , g̃ = g′s = g

rs
d and u = s

d , and
computes W ′ = g−α and W̄ = g′α. For every word w∗

j ∈ L∗ (1 ≤ j ≤ m),

A′ picks a value x∗
j

R←− Z∗
q and associates it with w∗

j . Then A′ computes
Wj = g̃αx∗

j (j = 1, . . . , z −1, z+1, . . . , m) and Wz = (gb)
rs
d αx∗

z . Note that A′

is given gb as part of the DDH challenge, so she can compute all the values.
To be consistent across different queries, A′ keeps track of the corresponding
pair (w∗

j , x∗
j). Finally, it returns the secure index IL∗ = (W ′, W̄ , W1, . . . , Wm)

to A.
Queries: A queries for a keyword list L′ = (w′

1, . . . , w
′
l) (1 ≤ l ≤ m) with the

restriction that she may not make a query that are distinguishing Rand(L, V)
from Rand(L, V − {v}). A′ chooses β

R←− Z∗
q , computes A0 = rβ and Aj =

sx′
j + dβ for each word w′

j ∈ L′, where x′
j takes the previously used value

if the keyword w′
j previously appeared in any one of queried trapdoors or

secure indices, or x′
j

R←− Z∗
q otherwise (also the corresponding pair (w′

j , x
′
j)

has to be kept in memory for future use). Finally, A′ returns the trapdoor
TL′ = {A0, A1, . . . , Al} to A. Because A′ consistently uses the same value
for the same keyword, TL′ is a valid trapdoor for L′. By searching on the
secure indices with TL′ , A can get the right result.

Challenge: After making polynomially many index and trapdoor queries, A de-
cides on a challenge by submitting the challenge keyword listL = (w1, . . . , wm)
along with a subset V ⊂ {1, . . . , m} and a value v ∈ V . If z 	= v, A′ returns a
random value in reply to the DDH challenge. With probability 1/m, we have
z = v and in that case A′ proceeds as follows. Let Wv = (gc)

rs
d αxv . For

j ∈ V and j 	= v, let Wj = Rj for a random value Rj . For j /∈ V , let
Wj = (ga)

rs
d αxj . Where, xj (1 ≤ j ≤ m) takes a value in the same way

as in Queries. A′ computes W ′ = (ga)−α and W̄ = (ga)
r
d α, and returns

I = (W ′, W̄ , W1, . . . , Wm) to A. Observe that, although A′ does not know

Threshold Privacy Preserving Keyword Searches 657

a, c, she can compute all the values, since ga, gc is given as part of the DDH
challenge. Check that this index is an encryption of keyword in every po-
sition j /∈ V . If c = ab, this index is also an encryption of keyword w in
position v; otherwise it is not. Now A is again allowed to ask for queries
with the restriction that A may not make a query that are distinguishing
Rand(L, V) from Rand(L, V − {v}).

Response: Finally, A outputs a bit bA. If bA = 0, A′ guesses that {ga, gb, gc}
is not a DDH triplet. If bA = 1, A′ guesses that {ga, gb, gc} is a DDH triplet.

Let triplet be the event that {ga, gb, gc} is a DDH triplet. From the definition
of DDH we have

Pr(triplet) = Pr(triplet) =
1
2
.

Let succA′ and succA be the events the A′ and A win their respective games.
Because A′ returns a random value in reply to the DDH challenge when z 	= v,
the output must be independent of b, we have

Pr(succA′ |z 	= v) =
1
2
.

When z = v, in the case that the event triplet occurs, A′ solves the DDH
challenge with the same advantage that A has in winning game ICLR. So we
have

Pr(succA′ |z = v|triplet) = Pr(succA).

When z = v, in the case that the event triplet occurs, that is, the input for A
to guess b is a uniformly random element in G. So, the output is independent of
b, we have

Pr(succA′ |z = v|triplet) =
1
2
.

As the event z = v is independent of the event triplet or triplet, so we have

Pr(z = v|triplet) = Pr(z = v|triplet) =
1
m

.

We know that Pr(z 	= v) = m−1
m . Putting them together, we have

Pr(succA′) = Pr(succA′ |z 	= v)Pr(z 	= v)
+Pr(succA′ |z = v|triplet)Pr(z = v|triplet)Pr(triplet)
+Pr(succA′ |z = v|triplet)Pr(z = v|triplet)Pr(triplet)

= 1
2 · m−1

m + Pr(succA) · 1
m · 1

2 + 1
2 · 1

m · 1
2

= 2m−1
4m + 1

2mPr(succA)

Therefore, the advantage of A′ in solving the DDH problem is

Pr(succA′) − 1
2 = 2m−1

4m + 1
2mPr(succA) − 1

2
= 1

2mPr(succA) − 1
4m

= 1
2m (Pr(succA) − 1

2)
> ε

2m

658 P. Wang, H. Wang, and J. Pieprzyk

6 Conclusion and Future Research

We present a definition of threshold privacy preserving keyword searches, called
TPPKS, and described its security requirements. We constructed an efficient
TPPKSschemeandproved its security.However, in theproposedscheme, themem-
bers are fixed, maybe somewant to leave or somenew members want to join in some
cases, so designing the scheme for a dynamic group is still a challenging problem.

Acknowledgments

The work was in part supported by Australian Research Council Discovery grants
DP0663452, DP0558773 and DP0665035. Huaxiong Wang’s research was in part
supported by Singapore Ministry of Education grant T206B2204.

References

1. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

2. Boneh,D., Franklin,M.: Identity-BasedEncryption from theWeil Pairing. In:Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

3. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

4. Byun, J.W., Lee, D.H., Lim, J.: Efficient Conjunctive Keyword Search on En-
crypted Data Storage System. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006.
LNCS, vol. 4043, pp. 184–196. Springer, Heidelberg (2006)

5. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solution to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–189. Springer, Heidelberg (1987)

6. Goh, E.-J.: Secure indexes, in Cryptology ePrint Archive, Report 2003/216 (Febru-
ary 25, 2004), http://eprint.iacr.org/2003/216/

7. Golle, P., Staddon, J., Waters, B.: Secure Conjunctive Search over Encrypted Data.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–
45. Springer, Heidelberg (2004)

8. Liu, S., Chen, K., Qiu, W.: Identity-Based Threshold Decryption Revisited. In:
ISPEC 2007. LNCS, vol. 4464, pp. 329–343. Springer, Heidelberg (2007)

9. Park, H.A., Byun, J.W., Lee, D.H.: Secure Index Search for Groups. In: Katsikas,
S.K., Lopez, J., Pernul, G. (eds.) TrustBus 2005. LNCS, vol. 3592, pp. 128–140.
Springer, Heidelberg (2005)

10. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55 (May
2000)

11. Wang, P., Wang, H., Pieprzyk, J.: Common Secure Index for Conjunctive Keyword-
Based Retrieval over Encrypted Data. In: SDM 2007. LNCS, vol. 4721, pp. 108–123.
Springer, Heidelberg (2007)

12. Zhang, F., Kim, K.: ID-Based Blind Signature and Ring Signature from Pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

http://eprint.iacr.org/2003/216/

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 659–671, 2008.
© Springer-Verlag Berlin Heidelberg 2008

3D_XML: A Three-Dimensional XML-Based Model

Khadija Ali1 and Jaroslav Pokorný2

1 Czech Technical University, Faculty of Electrical Engineering, Praha, Czech Republic
alik1@fel.cvut.cz

2 Charles University, Faculty of Mathematics and Physics, Praha, Czech Republic
jaroslav.pokorny@mff.cuni.cz

Abstract. Much research work has recently focused on the problem of
representing historical information in XML. In this paper, we describe an
ongoing work to represent XML changes. Our model is a three-dimensional
XML-based model (3D_XML in short) for representing and querying histories
of XML documents. The proposed model incorporates three time dimensions,
valid time, transaction time, and efficacy time without extending the syntax of
XML. We use XQuery to express complex temporal queries on the evolution of
the document contents. We believe that native XML databases (NXDs) present
a viable alternative to relational temporal databases when complex time
dependent data has to be manipulated and stored. So NXDs will be our choice.

Keywords: XML, 3D_XML model, transaction time, valid time, efficacy time,
XQuery, three-dimensional element, native XML databases.

1 Introduction

Recently, the amount of data available in XML [1] has been rapidly increasing. Much
research work has recently focused on adding temporal features to XML [2, 3, 5, 6, 7,
11]. Temporal information is supported in XML much better than in relational tables.
This property is attributed to the hierarchical structure of XML which is perfectly
compatible with the structure of temporal data. Recently, only few works capture the
notion of time explicitly in this context. Technically, to develop an XML temporal
data model, it is necessary to extend a XML data model by a time dimension. The
problem is that there is more XML data models (e.g. Infoset, XPath data model,
XQuery data model, etc.) and more times (usually valid and transaction times). The
main aim of this paper is to propose a temporal extension of XML. We propose a new
scheme to represent XML changes, and show how temporal queries can be supported
on this scheme.

An important issue of each data model is its implementation. There are two different
ways to store XML documents in a database: XML-enabled databases and native XML
databases (NXDs) [10]. The former map the data to existing (relational) database
systems. The latter are XML-database systems whose inner data representation is
XML-compliant. (NXDs) preserve data hierarchy and meaning of XML documents. So

660 K. Ali and J. Pokorný

(NXDs) will be our choice (particularly eXist [12]). In the following points we
summarize the motivation of this choice:

1. eXist is open-source, and free to use. It uses the numbering scheme which
supports quick identification of relationships between nodes as well as
navigation through the document tree.

2. It is schema independent. It is also very user friendly. It has been chosen best
XML database for InfoWorld's 2006 Technology of the Year awards. It’s a
worthwhile open source project for people who are interested in programming,
since it’s still incomplete.

The paper is organized as follows. After a discussion of related work in the next
section, in Section 3 we define formally a new model (3D_XML). In Section 4, we
deal with current-time (now), and show how it is supported in 3D_XML. We describe
the temporal constructs of 3D_XML in Section 5. In Section 6 we illustrate that
XQuery is capable of expressing complex temporal queries, but the expression of
these queries can be greatly simplified by a suitable library of built-in temporal
functions. Finally, in Section 7, we present our conclusions and future investigations.

2 Related Work

In the following subsections we provide a comparison of some works which have
made important contributions in providing expressive and efficient means to model,
store, and query XML-based temporal data models [2, 3, 5, 6, 7, 11] according to the
following properties: time dimension (valid time, transaction time), support of
temporal elements and attributes, querying possibilities, association to XML
Schema/DTD, and influence on XML syntax [9].

Time dimension. All the models are capable to represent changes in an XML
document by supporting temporal elements, and incorporating time dimensions. Two
time dimensions are usually considered: valid time and transaction time. There are
several other temporal dimensions that have been also mentioned in the literature in
relation to XML. In [7] a publication time and efficiency time in the context of legal
documents are proposed.

Temporal elements and attributes. Time dimensions may be applied to elements
and attributes. All the models are capable to support temporal elements. In [3] and
[11] the temporal attributes are supported. In [3] versions of an element are explicitly
associated as being facets of the same (multidimensional) element. Grouping facets
together allows the formulation of cross-world queries, which relate facets that hold
under different worlds [14].

Influence on XML syntax. Only in [3] the syntax of XML is extended in order to
incorporate not only time dimensions but also other dimensions such as language,
degree of detail, etc. So the approach in [3] is more general than other approaches as
it allows the treatment of multiple dimensions in a uniform manner.

Querying possibilities. The model’s power depends also on supporting powerful
temporal queries. In [5] and [11] powerful temporal queries expressed in XQuery
without extending the language are supported. In [6] a valid time support is added to

 3D_XML: A Three-Dimensional XML-Based Model 661

XPath. This support results in an extended data model and query language. In [7]
querying uses combination of full text retrieval and XQuery extended by some
constructs to deal with time dimensions. The other models in [2] and [3] did not discuss
the issue of temporal queries; in [2] elements have timestamps if they are different from
the parent nodes. This fact complicates the task of writing queries in XPath/XQuery.

Association to XML Schema/DTD. A significant advantage will be added to the
model if it is not only representing the history of an XML document but also the history
of its corresponding XML schema or DTD as well. In [3], [7], and [11] the temporal
XML schema/DTD is supported by extending the existing XML schema/DTD.

3 3D_XML Formalism

We shortly introduce three time dimensions in Section 3.1 as they are usually used in
temporal databases. Then in Section 3.2 and Section 3.3, we describe our time and
data models.

3.1 Time Dimensions

Three temporal dimensions are considered; valid time, transaction time, and efficacy time.

• Valid time: the valid time of the fact is the time when the fact is valid, or true in
the modeled reality.

• Transaction time: it concerns the time the fact was present in the database as stored
data. In other words, the transaction time of the fact identifies the time when the
fact is inserted into the database and the time when that fact is removed from the
database.

• Efficacy time: it usually corresponds to the valid time, but it can be a case that an
abrogated data continues to be applicable to a limited number of cases. Until such
cases cease to exit, the data continues its efficacy [7].

We extend the above efficacy time definition by assuming that it can be a case that
valid data stops to be applicable to a limited number of cases. When such cases cease
to exit, the data stops its efficacy.

Example 1: Consider a company database. Suppose the manager mgr of Design
department is Esra from "2002-01-01" till "2006-09-25". Due to some
unexpected circumstances, another person started managing Design department
from "2002-09-08". Esra stopped managing Design department from
"2002-09-08" till "2006-09-25"; this case represents when valid data stops
to be applicable. Suppose the efficacy time start is the same as the valid time start. The
element mgr is timestamped by "2002-01-01", "2006-09-25", "2002-
01-01", and "2002-09-07" which represent valid time start, valid time end,
efficacy time start, efficacy time end, respectively. In this example, the valid time end
"2006-09-25" is greater than efficacy time end "2002-09-07". Figure 1
represents the valid time interval when Esra is a manager of Design department, its
efficacy time interval, while the last part represents the time interval when Esra
stopped managing Design department. Figure 2 depicts valid and efficacy times

662 K. Ali and J. Pokorný

relationship. Valid time is represented by a time interval (vtStart, vtEnd).
Efficacy time is represented by a time interval (etStart, etEnd). The relationship
between valid time and efficacy time falls into three categories:

1. (vtStart < etStart) or (vtEnd > etEnd); it represents a case valid
data stops to be applicable.

2. (vtStart > etStart)or (vtEnd < etEnd); it represents a case data is
applicable although it is not valid.

3. (vtStart = etStart), and (vtEnd = etEnd); it represents the normal case.

Valid time start

2002-01-01

Valid time end

2006-09-25

Efficacy time start

2002-01-01

 Efficacy time end

2002-09-07

2002-09-08 2006-09-25

The time interval when Esra stopped

managing Design department

 vtStart fact vtEnd

 etStart etEnd

Fig. 1. Valid and efficacy times of mgr in
Example 1

Fig. 2. Valid and efficacy times relationship

3.2 Time Model

In order to represent the changes in an XML document we encode this document as a
3D_XML document in which the syntax of XML is not extended to incorporate the
three time dimensions. Instead of retaining multiple instances of the XML document,
we retain a single representation of all successive versions of the document. Although
time itself is perceived by most to be continuous, the discrete model is generally used.
The time can be bounded in the past and in the future. A finite encoding implies
bounds from the left (i.e., the existence of time start) and from the right (time end). In
any specific application, the granularity of time has some practical magnitude. For
instance, the time point of business event, such as a purchase, is associated with a
date, so that a day is the proper granule for most business transactions.

Our assumptions

• The time domain T is linear and discrete. A time constant t = [a, b], is either a time
instant or a time interval. In a time instant constant, a = b, whereas in an interval
constant b > a. It is clear that the time constant is represented with the beginning
and ending instants, in a closed representation. In other words a and b are included
in the interval. A bounded discrete representation as integer count of the instants
since the origin is our option.

• We limit our event measures to dates (granularity = one day).
• now is a special symbol, such that t < now for every t ∈T, representing current

time. We will highlight supporting now in 3D_XML in Section 4.

 3D_XML: A Three-Dimensional XML-Based Model 663

• The valid time constant vt = [vtStart, vtEnd], vtStart, and vtEnd represent the valid
time start and valid time end, respectively. The efficacy time constant et = [etStart,

etEnd], etStart, and etEnd represent the efficacy time start and efficacy time end,
respectively. The transaction time constant tt = [ttStart, ttEnd], ttStart, and ttEnd
represent the transaction time start and transaction time end, respectively.

Definition 1. Valid time of an element/attribute in 3D_XML document D is
represented as n valid time constants vt1, vt2,…, vtn, where each vti represents a time
constant when the element/attribute is valid. Each vti, is called the ith version of D. For
each pair (vti, vtj), i, j∈ [1, n] and i ≠ j, the following constraint is held:

vti ∩ vtj = ø (valid time constants disjunction)

Definition 2. Efficacy time of an element/attribute in 3D_XML document D is
represented as n efficacy time constants et1, et2,…, etn, where each eti represents a time
constant when the element/attribute is efficient. For each pair (eti, etj), i, j∈ [1, n] and
i ≠ j, the following constraint is held:

eti ∩ etj = ø (efficacy time constants disjunction)

The efficacy time usually corresponds to valid time; in this case,
elements/attributes are retrieved by their valid time. Otherwise, if efficacy time is
different from valid time, elements/attributes will be retrieved by their efficacy time.

Definition 3. (Inheritance constraints). An element e with a valid time constant vt and
an efficacy time constant et having m children e1, e2, …, em, where child ei has k valid
time constants vti1, vti2, …, vtik, and q efficacy time constants eti1, eti2,…, etiq, is
consistent if the following conditions hold:

 ∪ vtij vt (valid time inheritance constraint)
 1≤ j ≤ k

 ∪ etij et (efficacy time inheritance constraint)
 1≤ j ≤ q

Data manipulation system of 3D_XML (left as future work) preserves the above
constraints, i.e. inheritance /disjunction constraints, via user-defined functions.

3.3 Data Modeling

A time-varying XML document records a version history, which consists of the
information in each version, along with timestamps indicating its lifetime.

Definition 4. A three-dimensional XML document (3D_XML document in short) is an
XML document in which the three time dimensions, valid time, transaction time, and
efficacy time are applied to at least one element/attribute.

Definition 5. A three-dimensional element/attribute (3D_XML element/attribute in
short) is an element/attribute whose content depends on all the three time dimensions.

We will show how temporal elements and temporal attributes can be represented in
3D_XML. A temporal element can be specified in DTD notation as one of the
following two structures:

664 K. Ali and J. Pokorný

(1) <!ELEMENT element_name+>
 <!ATTLIST element_name vtStart CDATA #REQUIRED

 vtEnd CDATA #REQUIRED
 ttStart CDATA #REQUIRED
 ttEnd CDATA #REQUIRED
 etStart CDATA #REQUIRED
 etEnd CDATA #REQUIRED>

(2) <!ELEMENT element_name+>
 <!ATTLIST element_name inherits CDATA #REQUIRED>

We can infer from the above two structures the following observations:

1. A temporal element is represented with one or more elements having the same
name; each element represents one version.

2. The three time dimensions are added to a temporal element as attributes. For
instance, vtStarti, vtEndi, ttStarti, ttEndi, etStarti, and
etEndi represent valid time start, valid time end, transaction time start,
transaction time end, efficacy time start, and efficacy time end, respectively, in the
ith version, i ∈ [1, n]. The absence of the above three time dimensions implies that
the element inherits them from one of its ancestors; the optional special attribute
inherits = (1, 2, …, n) represents the first ancestor (parent), second ancestor
(parent of parent),…, and the root, respectively.

In [2] elements have timestamps if they are different from the parent nodes. This fact
complicates the task of writing queries in XPath/XQuery. We preferred to keep track of
timestamps of such kind of elements having their timestamps are not different from the
parent (or ancestor) nodes by a special attribute inherits representing the ancestor’s
level. The advantage of this approach is obvious; it facilitates the task of writing
powerful queries in XQuery, beside supporting a more effective implementation.

To declare a temporal attribute, the following DTD syntax is used:

<!ELEMENT temporal_Attribute+>
<!ATTLIST temporal_Attribute name CDATA #REQUIRED

value CDATA #REQUIRED
vtStart CDATA #REQUIRED
vtEnd CDATA #REQUIRED
ttStart CDATA #REQUIRED
ttEnd CDATA #REQUIRED
etStart CDATA #REQUIRED
etEnd CDATA #REQUIRED>

We infer from the above form:

• A temporal attribute can be supported in our 3D_XML model by representing it by
a special empty element temporal_Attribute. Representing time
dimensions is similar to time dimensions in temporal elements.

• The name and value of the temporal attribute are represented by special attributes
name and value. The transformation from a temporal_Attribute element
to an attribute is simple and can be implemented in XQuery.

 3D_XML: A Three-Dimensional XML-Based Model 665

Example 2: Assume that the history of an employee is described in a 3D_XML
document called employee1.xml as shown in Figure 3, where we shortened
Start and End substrings to S and E, respectively, due to the space limitations. The
element employee has five subelements: emp_no, name, dept, job and salary.

1. emp_no, name, and dept inherit their time dimensions, i.e. valid time,
transaction time, and efficacy time from the first ancestor (parent); this fact is
represented by assigning 1 to the attribute inherits (inherits = "1").

2. Notice that salary contains a temporal attribute currency. Let us assume that
the salary is paid in crown before "2015-01-01", and in euro after that date due
to the expected change of currency in Czech Republic. Notice that the used
currency crown will be valid till 2014-12-31; valid time end of
temporal_Attribute element (with the value crown) is 2014-12-31.

3. Anas’s job is changed from Engineer to Sr Engineer on 2005-09-02.
Subsequently, his salary is changed from 60000 to 90000, in the same date. In this
case the old version of salary (salary=60000) is definitely no longer
applicable, hence efficacy time has been stopped to "2005-09-01" like validity.

<employee vtS="2000-01-01" vtE="now" ttS="2000-01-01"
ttE="now" etS="2000-01-01" etE="now">
<emp_no inherits=”1”>111</emp_no>
<name inherits=”1”>Anas</name>
<dept inherits=”1”>Design</dept>
<job vtS="2000-08-31" vtE="2005-09-01" ttS="2000-08-31"

 ttE="2005-09-30" etS="2000-08-31" etE="2005-09-01">
 Engineer</job>
<job vtS="2005-09-02" vtE="now" ttS="2005-10-01"
 ttE="now" etS="2005-09-02" etE="now">Sr Engineer</job>
<salary vtS="2000-08-31" vtE="2005-09-01" ttS="2000-08-
 31" ttE="2005-09-30" etS="2000-08-31" etE="2005-09-
 01">60000

<temporal_Attribute name="currency" value="crown"
 vtS="2000-08-31" vtE="2014-12-31" ttS="2000-09-01"
 ttE="now" etS="2000-08-31" etE="2014-12-31"/>
<temporal_Attribute name="currency" value="euro"
 vtS= "2015-01-01" vtE="now" ttS="2000-09-01"
 ttE="now" etS="2015-01-01" etE=="now"/>

</salary>
<salary vtS="2005-09-02" vtE="now" ttS="2005-10-01"
 ttE="now" etS="2005-09-02" etE="now">90000

<temporal_Attribute name="currency" value="crown"
 vtS="2000-08-31" vtE="2014-12-31" ttS="2000-09-01"
 ttE="now" etS="2000-08-31" etE="2014-12-31"/>
<temporal_Attribute name="currency" value="euro"
 vtS="2015-01-01" vtE="now" ttS="2000-09-01"
 ttE="now" etS="2015-01-01" etE=="now"/>

</salary> </employee>

Fig. 3. employee1.xml: information about an employee encoded in 3D_XML

666 K. Ali and J. Pokorný

4 Supporting for “now”

Now-relative data are temporal data where the end time of their validity follows the
current time. Now-relative data are natural and meaningful part of every temporal
database as well as being the focus of most queries [13]. Different approaches are
used to represent current time in XML temporal databases. A common approach is to
represent current time as unrealistic large date most often used “9999-12-31“. Due to
the nature of XML and native XML databases to store all data as text, it is possible to
represent current time by words such as “now“ or “UC“ or “∞“; “UC“ means
(untilchanged). We express a right-unlimited time interval as [t, now]; although
“now“ is often used in temporal database literature for valid time, we will use it for all
the three time dimensions. Usage of the following user-defined function check-now
ensures that the temporal query yields the correct answer when a right-unlimited time
interval [t, now] is included in the query.

declare function check-now ($d)as xs:date
{if ($d = "now") then xs:date(current-date())
 else xs:date($d)};

As “now” can only appear as a time end of an interval, in case of valid and efficacy
time intervals it means a fact is valid and efficient until now, respectively, while in the
case of transaction time interval it means no changes until now.

5 Temporal Constructs

For simplicity, in all the following temporal constructs, we omitted the above user-
defined function check-now.

5.1 Get Time Dimensions

The user-defined functions: get_vtStart, get_vtEnd, get_etStart,
get_etEnd, get_ttStart, and get_ttEnd retrieve valid time start, valid
time end, efficacy time start, efficacy time end, transaction time start, and transaction
time end, respectively. The absence of the above time dimensions implies that the
element inherits them from one of its ancestors; note that the level of the ancestor is
identified by the special attribute inherits. Because of space limitation, we define
only get_vtStart. The other functions can be defined in a similar way.

declare function get_vtStart ($s)
{ let $g := string($s/@inherits)
 return if ($g)
 then xs:date($s/ancestor::node()[$g]/@vtStart)
 else xs:date($s/@vtStart)};

5.2 Fixed Duration

XML and XQuery support an adequate set of built-in temporal types, including date,
dayTimeDuration, making the period-based query convenient to express in XQuery.
A user-defined function fixedDuration is defined as follows:

 3D_XML: A Three-Dimensional XML-Based Model 667

declare function fixedDuration($node, $length as
xdt:dayTimeDuration)
{let $dur := get_vtEnd($node)- get_vtStart($node)
 return (if ($dur eq $length) then true()
 else false())};

It checks the length of the valid time interval of the element ($node), and returns true
if this length equals a given length ($length), and false otherwise.

5.3 Valid/Efficient Times Relationships Constructs

Here we focus on the temporal constructs related to Valid/efficacy times relationship.

declare function valid-notEfficient($a)
{if (get_etStart($a) > get_vtStart($a) or get_etEnd($a)<
 get_vtEnd($a)) then true()else false()};
valid-notEfficient is a user-defined function which checks if the element

($a) is valid but not efficient (if $a/@etStart > $a/@vtStart or
$a/@etEnd < $a/@vtEnd (see Figure 1 and Figure 2)).

5.4 Snapshot Data

Snapshot data – in the literature of databases – in the simplest sense, is the
database state in a specific time point. The time point can be the current date
(now), or any time point in the past, it can also be in the future, if it is expected
that some facts will be true at a specified time after now. Next, we define the
snapshot function dataShot which can be used to construct snapshots of 3D-
XML documents.
declare function dataShot ($e, $v)
{ if (get_vtStart($e)<= xs:date($v) and
 get_vtEnd($e) >= xs:date($v))
 then element {name($e)}
 {$e/text(),$e/@* except
 $e/@*[string(name(.))="vtStart" or string(name(.))=
 "vtEnd" or string(name(.))="etStart" or
 string(name(.))="etEnd" or string(name(.))="ttStart"
 or string(name(.))= "ttEnd"], for $c in $e/*
 return dataShot ($c, $v)} else () };

Here dataShot is a recursive XQuery function that checks the valid time interval
of the element and only returns the element and its descendants if vtStart <= $v
<= vtEnd. (vtStart, vtEnd) represent valid time interval of the element
($e) , while $v represnts a specific time point. Note that except is an XQuery
function discarding the attributes: vtStart, vtEnd, etStart, etEnd,
ttStart, and ttEnd from the query’s result.

668 K. Ali and J. Pokorný

5.5 Interval Comparison Operators

A small library of interval comparison operators is defined to help users with interval-
based queries. Due to space limitation we define only three interval comparison
operators: Tcontains, Toverlaps, and TmeeTs, respectively.

declare function Tcontains ($x, $y)
if (get_vtStart($x)) <= get_vtStart($y) and
get_vtEnd($x)>= get_vtEnd($y))then true() else false()};

Tcontains returns true if one element contains another one and false otherwise;
it checks if the valid time interval $x contains the valid time interval of $y.

declare function Toverlaps($x, $y)
{if (get_vtStart($x) <= get_vtEnd($y) and
 get_vtStart($y) <= get_vtEnd($x))
 then true() else false() };

 Toverlaps checks if the element ($x) overlaps the element ($y).
declare function TmeeTs ($x as xs:date, $y as xs:date)
{let $d := $y - $x
 return if(compare($d,"P1D")=0)then true()
 else false()};

TmeeTs is a user-defined function checks if the first date ($x) precedes the
second date($y) by one day; "P1D" is a duration constant of one day in XQuery.
Note that compare is an XQuery function returning -1, 0, or 1, depending on
whether the value of ($d) is respectively less than, equal to, or greater than one day.

5.6 Break Construct

The valid time constants, efficacy time constants belonging to an element/attribute
may appear either with breaks, or without breaks. An occurrence of a break implies
that there exist at least two versions of the element/attribute, i and i+1, such that their
valid time constants are not adjacent.

Definition 6 (Breaks). An element e with a valid time constant vt and an efficacy time
constant et, is said to have breaks if there exist at least two versions of vt, i and i+1,
such that: vtStarti+1 - vtEndi is greater than one day ("P1D"), (i ∈ [1, n-1], n
represents the number of versions). If no such versions exist, the element e is said to
have no breaks.

declare function Tbreak($g)
{ let $c := count($g) - 1
 let $o := for $i in (1 to $c)
 let $j := $i +1

 return if (TmeeTs(get_vtEnd($g[$i]),
 get_vtStart($g[$j])))
 then() else ”break”
 return count ($o)};

 3D_XML: A Three-Dimensional XML-Based Model 669

The function of Tbreak is to check if the temporal element($g) has breaks. It
calls TmeeTs to check every two consecutive versions of the element ($g).
Tbreak returns the number of breaks if exist. TmeeTs is defined in Section 5.5.

6 Temporal Queries with XQuery

In all next temporal queries, we omitted the user-defined function check-now.
Note that, collection C1 consists of XML documents as employee1.xml.

Query 1. Find the employees (their names) who when worked as Engineer, their
salaries were 60000 at any time during that period.

for $j in collection ("C1")//employee/job[.="Engineer"]
for $s in collection ("C1")//employee/salary[.="60000"]
where $j/../emp_no = $s/../emp_no and Toverlaps($j,$s)
return $j/../name

Query 1 checks if the time interval of the job element with value Engineer
overlaps the valid time interval of the salary element with value 60000.
Toverlaps is defined in Section 5.5

Query 2. Retrieve employees assigned as Sr Engineer but they actually started work
in the new position later, return also the inefficient period’s length.

for $s in collection ("C1")//job[.= "Sr Engineer"]
let $diff := get_etStart($s) - get_vtStart($s)
where (valid-notEfficient ($s))
return if (days-from-duration($diff)>0)

 then <name inefficient_period="{$diff}">
 {data($s/../name)} </name> else ()

Query 2 returns the employee name along with the inefficient period length if
valid-notEfficient returns true. Note that days-from-duration is an
XQuery function which returns an xs:integer representing the days component in the
canonical lexical representation of the value of $diff.

Query 3. The next query returns the average of Ebtehal’s salaries (paid in crown).
for $d in collection ("C1")//employee[name="Ebtehal"]
return <avg>{avg($d//temporal_Attribute[@value="crown"
 and Tcontains(., ..)]/..)} </avg>

Query 3 checks if the valid time interval of temporal_Attribute element
(with the value crown) contains the valid time interval of its parent (salary); note
that temporal_Attribute is special empty subelements representing the
temporal attribute of an element, so the parent covering constraints is not considered
here.

Query 4. Return employee’s names who have one break in their employment
histories (fired and rehired) and their salaries have been changed for the first time at
any time when they are assigned in “Design“ department as “Sr Engineer“.

670 K. Ali and J. Pokorný

for $t in collection ("C1")//employee/job[.= "Engineer"]
for $dep in collection("C1")//employee/dept[.="Design"]
where $t/../emp_no = $dep/../emp_no
return if (Tcontains($dep, $t) and Toverlaps($dep/../
salary[1],$t)and Tbreak($dep/../job)= 1) then $dep/../
name else ()

Query 4 shows how a complex query can be greatly simplified by using a number
of user-defined functions, i.e., Tcontains, Toverlaps, and Tbreak.

7 Conclusions and Future Work

In this paper, we have introduced a new scheme to represent XML changes without
extending the syntax of XML. NXDs represent a suitable storage platform when
complex time dependent data has to be manipulated and stored, so we chose to
implement temporal queries directly in NXDs (particularly DBMS eXist). Although
NXDs provide many functionalities to support XML data (particularly temporal XML
data), supporting efficiently temporal queries/updates is a challenging issue. XQuery
is natively extensible and Turing-complete [8], and thus any extensions needed for
temporal queries can be defined in the language itself. This property distinguishes
XML temporal querying from that one in relational temporal languages, e.g. TSQL.
So, any syntax extension of XQuery towards temporalness, e.g. τXQuery [4], makes
only queries easier to write. We conclude that XML provides a flexible mechanism to
represent complex temporal data without extending the current standards [9]. The
future work is directed to add more temporal constructs in order to support more
powerful temporal queries. Many research issues remain open at the physical level,
including the support of updates on historical data. Updates will be a real area of
future investigation. Also, in order to improve the performance of our system, we plan
to evaluate the effectiveness of the temporal queries.

Acknowledgement. This paper was partly supported by the National programme of
research (Information society project 1ET100300419).

References

1. W3C: Extensible Markup Language (XML) 1.1. 3rd edn. W3C Recommendation
(February 04, 2004), http://www.w3.org/TR/xml11/

2. Buneman, P., Khanna, S., Tajima, K., Tan, W.: Archiving scientific data. In: Proc. of
ACM SIGMOD Int. Conference, pp. 1–12 (2002)

3. Gergatsoulis, M., Stavrakas, Y.: Representing Changes in XML Documents using
Dimensions. In: Proc. of 1st Int. XML Database Symposium, pp. 208–221 (2003)

4. Geo, D., Snodgrass, R.: Temporal slicing in the evaluation of XML queries. In: Proc. of
VLDB, Berlin, Germany, pp. 632–643 (2003)

5. Wang, F., Zaniolo, C.: XBIT: An XML-based Bitemporal Data Model. In: Proc. of 23rd
Int. Conference on Conceptual Modeling, Shanghai, China, pp. 810–824 (2004)

 3D_XML: A Three-Dimensional XML-Based Model 671

6. Zhang, S., Dyreson, C.: Adding Valid Time to XPath. In: Proc. of 2nd int. Workshop on
Database and Network Information Systems, Aizu, Japan, pp. 29–42 (2002)

7. Grandi, G., Mandreoli, F., Tiberio, P.: Temporal Modelling and Management of
Normative Documents in XML Format. Data and Knowledge Engineering 54(3), 227–254
(2005)

8. Kepser, S.: A Simple Proof of the Turing-Completeness of XSLT and XQuery. In: Proc. of
Extreme Markup Languages, Montréal, Québec (2004)

9. Ali, K., Pokorný, J.: A comparison of XML-based Temporal Models. In: SITIS 2006.
Proc. of 2nd int. conference on Signal-Image Technology & Internet–based Systems,
Hammamet, Tunisia, December 17-21, pp. 1–12 (2006)

10. Bourret, R.: Going native: making the case for XML Databases,
http://www.xml.com/pub/a/2005/03/30/native.html

11. Wang, F., Zaniolo, C.: Temporal Queries in XML Document Archives and Web
Warehouses. In: Proc. of 10th Int. Symposium on Temporal Representation and Reasoning,
pp. 47–55 (2003)

12. eXist Home page, http://exist.sourceforge.net/
13. Stantic, B., Governatori, G., Sattar, A.: Handling of Current Time in Native XML

Databases. In: Proc. of 17th Australian Database Conference, pp. 1–8 (December 2005)
14. Gergatsoulis, M., Stavrakas, Y., Doulkeridis, C., Zafeiris, V.: Representing and querying

histories of semistructured databases using multidimensional OEM. Inf. Syst. 29(6),
461–482 (2004)

Visual Exploration of RDF Data�

Jǐŕı Dokulil1 and Jana Katreniaková2

1 Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

jiri.dokulil@mff.cuni.cz
2 Faculty of Mathematics, Physics and Informatics,

Comenius University, Bratislava, Slovakia
katreniakova@dcs.fmph.uniba.sk

Abstract. We have developed and implemented [1,2] infrastructure and
RDF storage for the Semantic Web. When we filled it with data the need
for some tool that could explore the data became evident. Unfortunately,
none of existing solutions fulfills requirements imposed by the data and
users expectations. This paper presents our RDF visualizer that was
designed specifically to handle large RDF data by means of incremental
navigation. A detailed description of the algorithm is given as well as
actual results produced by the visualizer.

1 Introduction

The RDF [3] is one of data formats of the Semantic Web. In RDF the informa-
tion is encoded as a set of statements about resources. These statements may
abstractly be viewed as a graph. The data storage for RDF data is at the core of
the Semantic Web infrastructure that was created at the Faculty of Mathematics
and Physics of the Charles University in Prague [4]. Since its creation a lot of
RDF data was loaded into the storage and a query API is available to access the
data. However, not knowing the exact structure of the data even programmers
using the infrastructure find it difficult to create a meaningful query. We have
therefore decided that some kind of visualization tool is definitely necessary to
support further development.

Working with RDF data brings up several issues. Most important of them is
the size of the data. The data can be huge (millions of nodes and edges) and
contain nodes with extremely high degree (thousands or even hundreds of thou-
sands). This not only limits the possibilities of drawing the graph but also the
acceptable complexity (both time and space) of the drawing algorithm. Tradi-
tional graph-based techniques work very well for small graphs. Unfortunately, the
difficulty of finding readable layout extremely increases with the size of graph.
We have therefore focused on finding an approach that is effective both from
complexity and user point of view. One possibility to partially overcome the

� This research was supported in part by the National programme of research (Infor-
mation society project 1ET100300419) and VEGA 1/3106/06.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 672–683, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Visual Exploration of RDF Data 673

problem with large data is an incremental navigation [5]. We decided to use the
incremental navigation enhanced by our novel node merging technique so that
we can draw even nodes with large degree. To make the drawing easily readable
we proposed a triangle layout algorithm [6,7].

The structure of the paper is as follows. Section 2 gives the overview and
comparison of known layout algorithms. It also gives a detailed description of
our triangle layout. Implementation issues—including the node merging—are
described in Section 3. Closing remarks appear in Section 4.

2 Visualization Algorithm

Since the RDF data can be extremely large, some kind of incremental exploration
and visualization technique [5] is necessary. The user is given the possibility to
explore the neighborhood of the displayed subgraph by extending the displayed
part of the graph by one (or more) nodes. This way a navigation tree for the
data is created. This tree stores the nodes and edges that are currently displayed
to the user. We focus on drawing of the navigation tree. The non-tree edges can
easily be drawn as lines between corresponding vertices.

2.1 Comparison

There are more approaches to drawing of trees. One of the common techniques
is layered drawing where nodes are placed on layers that contain nodes with the
same depth. This layers can have different shapes (lines, circles, squares, . . .).
Examples include:

Vertical Layered Drawing (Fig. 1(a)). The layers are vertical lines. It is a
very simple approach with good results. The paths in the tree are very easy
to follow. The disadvantage is that it is not easy to add not-tree edges to
the graph. This approach is used by Experimental RDF Visualizer created
in HP labs [8] that avoids non-tree edges by duplicating parts of the graph
and transforming it to a tree. Another example is IsaViz [9].

Horizontal Layered Drawing. Is a variant of the vertical layered drawing. It
is rarely used because unlike vertical drawing, that offers plenty space for
node and edge labels, long node labels make this layout impractical.

Radial Drawing (Fig. 1(b)). The nodes are placed on concentric circles with
increasing diameters. The root of the tree is placed in the center. The nodes
are usually displayed as circles but as radial drawing is an extremely common
technique, there are plenty of variants. Examples of uses of this technique
include gnutellavision [10] and GViz [11].

Square Layout (Fig. 1(c)). Square layout is a variant of the radial layout
that uses concentric squares instead of circles. It is better suited for drawing
rectangular nodes [6].

Triangle Layout (Fig. 1(d)). Triangle layout was introduced as a modifica-
tion of square layout that uses only the first quadrant of the plane (with
coordinate origin in the center of the squares). It is further described in the
following parts of this paper.

674 J. Dokulil and J. Katreniaková

(a) Vertical Layered Drawing (b) Radial Drawing (c) Square Layout

(d) Triangle Layout (e) Ferris-Wheel Layout

Fig. 1. Layout algorithms

There are more approaches to drawing trees than just layered drawing, in-
cluding:

Ferris-Wheel Layout (Fig. 1(e)). The Ferris-Wheel layout is inspired by the
radial layout but only leaves that are direct neighbors of a node are displayed
on a circle around the node. Other nodes are positioned in the drawing space
without any sophisticated layout algorithm and positioning them to a ’good’
position is left to the user. To handle nodes with high degree, the user is given
the option to zoom in on one of the circles (called wheels) and gradually
explore the nodes by rotating the wheel. This approach is used in PGV [12].

Spring Embedding. Spring Embedding does not specify an exact algorithm
for positioning of the nodes. The nodes are connected by springs that either
pull them together or push them apart. Then the effect of the springs is sim-
ulated until a stable position is reached. In the basic version, the connected
nodes are connected by springs that pull them together and unconnected
nodes with ones that push them apart. By changing power or direction of
the springs, layouts with more complex characteristics can be achieved. This
approach is used for instance in RDF Gravity [13].

Although many different techniques can be used for the visualization, it is dif-
ficult to find a precise way of evaluating them. We have set up several criteria
to compare different layout techniques. Some of these criteria are requirements
imposed on the layout algorithms by the nature of the RDF data while other
criteria were set up to improve user-friendliness of the resulting application. Note

Visual Exploration of RDF Data 675

that numbers in parentheses after the criteria definitions correspond to numbers
of columns in the Table 1.

Data-imposed criteria. Based on the experience with real RDF data we can
assume that the data will contain nodes with high degree. Even such nodes
should be displayable without making the visualization unreadable to the user
(1). For the same reason the area that can be used to draw children of a node
should not be too limited (2). Although it may not always be the case, there is
a significant chance that number of nodes on each level will be much larger than
on the previous one. Thus the size of the layers increase gradually (3).

User-imposed criteria. The visualization should be well-arranged. But there is no
general understanding of what that means [14]. We have picked several criteria
we believe are important when working with RDF data.

The user should be able to easily locate ancestor and descendants of a node
(4). If the user follows a certain path through the tree, then the whole path
should at least roughly maintain the same direction (5). Last but not least, the
area required to draw the graph should not be too large (6).

Table 1. Comparison of different layout techniques

1 2 3 4 5 6

Radial Layout � part of annulus wedge � � C A

Vertical Layered Drawing B whole layer � � to the right �
Horizontal Layered Drawing B whole layer � � downwards �
Square Layout � limited � +/– � �
Triangle Layout � whole layer � � C �
Ferris-Wheel Layout � not limited 0 � � �
Spring Embedding B not limited 0 � � �
A: The radial layout is best suited for drawing circular nodes. With rectangular nodes

the available area can be used inefficiently if the nodes are placed onto the layer
in a wrong order. If incremental navigation is used, the correct order cannot be
maintained without reordering the nodes.

B: The node merging – can be used to handle nodes with high degree.
C: Although the path does not follow a direct route from the center, it generally

follows a certain direction without significant deflections.

We have evaluated the listed drawing techniques according to the selected cri-
teria. The results are summarized in the Table 1. The presented results are either
claimed by the authors of the individual algorithms or can be easily deduced by
examining the algorithms. Although this is certainly not a definitive comparison
of existing tree drawing techniques, the results show that the idea of triangle

676 J. Dokulil and J. Katreniaková

layout is worth exploring. We have created an experimental implementation.
There is currently no other implementation we are aware of.

The next part of the text gives a more detailed description of the triangle layout
algorithm and it’s properties while Section 3 is focused on the implementation.

2.2 Triangle Layout Algorithm

The purpose of the algorithm is to determine positions of the part of the graph
that is visible at the moment. The edges of the graph that the user used to reach
the visible nodes form a navigation tree T with root rT . The children of node v
are nodes that were reached by exploring edges connecting them to the node v.
The order of the children is the same as the order in which they were reached. All
nodes with the same distance from the root form a layer. A node with distance
i from the root is placed in layer li (by L(h) we denote nodes on the level h of
the tree and L(0) = {rT }). Layers are represented as lines connecting [ri, 0] and
[0, ri], where the value ri is called radius of layer li.

The nodes are drawn as rectangles Γ (v) that are H(v) pixels high and W (v)
pixels wide. They are labeled by URI or literal value of the node they represent
and also display a list of edges that start or end in the node (for further details
see Subsection 3.1). The rectangle Γ (v) representing node v ∈ L(i) is placed
from the outside of the line representing li (we place the lower left corner of the
vertex onto the line). The corner of the rectangle Γ (v) that lies on the layer is
denoted γ0(v) in the following text, while the opposite corner is denoted γ1(v).
The radius ri of each level is computed so that ri+1 > ri and to make sure there
is enough space to place all nodes that belong to the layer li.This is influenced by
the fact that we place descendants of node v into a so called angle of influence of
the node v. The angle of influence is actually defined by two angles that define
lower and upper boundary where all descendants (even indirect ones) must fit.
This way each path in the tree is given a certain direction to follow, which
was one of the user-imposed criteria defined in the previous section. Having
α1(v), α2(v) ∈ 〈0, 90〉 and radius r the vertical range (height of the available
space in pixels) available to node v is

D(v) = r.

(
sin α1(v)

sin α1(v) + cos α1(v)
− sin α2(v)

sin α2(v) + cos α2(v)

)

We fit the successors of v into this vertical range. Let v1 . . . vk be the children
of the vertex v and let vi have a size of H(vi) × W (vi). If the minimal distance
between vertices is δ, then the minimal required vertical space for the children
of v is Σk

i=1(H(vi) + δ). Hence the inequality D(v) > Σk
i=1(H(vi) + δ) should

hold.
The layout algorithm first displays the root on the coordinate origin (i.e.

r0 = 0). For each depth h of the tree (beginning with h = 1) the algorithm
works as follows (see also Fig. 2):

Visual Exploration of RDF Data 677

(a) The vertical range (b) Vertical range distribution

Fig. 2. Layout algorithm – explanation

Let rcont be such radius, that triangle [rcont, 0], [0, 0], [0, rcont] completely con-
tains all vertices in layers l1 . . . lh−1. For each vertex v ∈ L(h − 1) the angle of
influence has already been computed. Let v1 . . . vk be the children of v and
H(v1) . . . H(vk) their heights. From the inequality D(v) > Σk

i=1(H(vi) + δ) we
compute the minimal required radius rmin for the children of v. Let r be the
maximum of the minimal required radii and the radius rcont. The vertices from
L(h) will be placed on layer with radius r. Radius r of the square and the angle
of influence of vertex v determine the vertical range D(v) for the sub-tree rooted
in v. The distance δ(v) between children of v has to be recomputed from the
inequality D(v) > Σk

i=1(H(vi) + δ(v)). Now, having global parameter r – radius
of the layer and for each vertex v ∈ L(h − 1) the parameter δ(v), we can com-
pute the display coordinates of children of v and their angles of influence. More
formally, for each vi with height H(vi) we determine the angle of influence of vi

and the coordinates of γ0(vi).
The angle of influence of the node v is divided among the children of v ac-

cording to a function f : V → 〈0, 1〉 where Σk
i=1f(vi) = 1.

Layout algorithm(T)
1 γ0(rT) ← [0, 0] //P lace the root vertex rT to the coordinates origin
2 α1(rT) ← 0, α2(rT) ← 90
3 for each h in {1, 2, . . .}
4 do
5 for each v in L(h − 1)
6 do COUNT(rmin(v))
7 r ← max{rcont, max{rmin(v) | v ∈ L(h − 1)}}
8
9 for each v in L(h − 1)

10 do COUNT(δ(v))

11 D(v) ← r ·
(

sin α2(v)
sin α2(v)+cos α2(v) − sin α1(v)

sin α1(v)+cos α1(v)

)

12 for each v in L(h − 1)
13 do α1(v0) ← α2(v), γ ← α2(v)
14 for i = 1 to k

678 J. Dokulil and J. Katreniaková

15 do
16 yaux ← r · sin γ

sin γ+cos γ
− H(vi) − δ(v)

17 γ ← arctg yaux
r−yaux

18 y(vi) ← yaux + δ(v)
2

19 x(vi) ← r − y(vi)
20
21 α2(vi) ← α1(vi−1)

22 yaux ← r · sin α2(vi)
sin α2(vi)+cos α2(vi)

− f(vi) · D(v)

23 α1(vi) ← arctg yaux
r−yaux

2.3 Vertical Range Distribution

The angle of influence of a node is divided among its children according to the
function f . Let v be a node and u1 . . . uk children of v. The only constraint for
the function f imposed by the algorithm is that Σk

i=1f(ui) = 1. The choice of
the function greatly affects the behavior of the visualization algorithm. In [6] we
proposed the following definition of f .

f(ui) =
H(ui) + δ

∑k
j=1(H(uj) + δ)

In the following text we use rreq
i (v) to denote the minimal radius of layer li

such that all children of node v ∈ L(i − 1) fit into the angle of influence of the
node v. We also use rreq

i for max{rreq
i (v) | v ∈ L(i − 1)}.

Consider a tree (see Figure 3) Tk,p = (V, E) where all nodes are of the same
size (H and W) and

V = {v0,1} ∪ {vi,j | i ∈ {1 . . . p} ∧ j ∈ {1 . . . k}}
E = {(vi,1, vi+1,j) | i ∈ {0 . . . p − 1} ∧ j ∈ {1 . . . k}}

On every level of the tree, there is a critical node v such that rreq
i+1(v) = rreq

i+1.
Clearly v0,1 . . . vp−1,1 are critical nodes. We denote vi,1 as vi in the following text.

For a critical node vi the angle of influence covers
(∏i−1

j=0 k
)−1

of the total
vertical range of level li+1. We need to place k children of vi into this fraction
of the vertical range. Thus rreq

i+1 of the level li+1 is rreq
i+1 = rreq

i+1(vi) = H.
∏i

j=0 k.

(a) Tk,p = (V, E) (b) Tree T3,3

Fig. 3. Example of a tree that requires large area

Visual Exploration of RDF Data 679

The number of nodes in the tree Tk,p is N = k.p + 1, so the radius of lp is

rp ≥ rreq
p = H · kp = H ·

(
N − 1

p

)p

So the area required to draw the graph grows exponentially with the number
of nodes. This is not a good result from the theoretical point of view and it was
also confirmed by the implementation of the algorithm using real-world data.

A better choice seems to be such function f where the value of f(ui) is the
number of nodes of T (ui) (the tree rooted in ui) divided by the number of
nodes of T (v). In the following text we will prove, that this function produces
better drawings of the tree. The number of the nodes of T (v) is denoted N(v)
while N denotes the number of nodes in the whole tree. First, we compute
H = max{H(v) + δ | v ∈ V } and W = max{W (v) + δ | v ∈ V } and use them
as the heights and widths of all nodes in the graph and use δ = 0.

Lemma 1. Every node v is assigned at least N(v)
N of the vertical range available

to the whole layer that the v is positioned on.

Proof. For the root rT the statement holds (N(v)
N = 1).

Let v be a child of rT . Then v is assigned N(v)
N−1 of the vertical range and

N(v)
N−1 > N(v)

N so the statement holds.

Let v be a child of u. We already know, that u was assigned at least N(u)
N of the

vertical range. This vertical range is divided among the children of u. The node v

is assigned N(v)
N(u)−1 of the range of u, which totals to N(u)

N
N(v)

N(u)−1 = N(u)
N(u)−1

N(v)
N .

Since N(u)
N(u)−1

N(v)
N > N(v)

N the statement holds. 	

Lemma 2. For every node v ∈ L(i − 1) the required radius rreq
i (v) is at most

N · H.

Proof. The node v is assigned at least N(v)
N of the vertical range. The range has

to be divided among the children of v which means at most N(v) − 1 nodes.
Height of each child is H so the total height of the children of v is at most
H · (N(v) − 1). The N(v)

N fraction of the whole vertical range has to cover the
height of the children and since the total vertical range is equal to the radius ri

the value of ri must be big enough for ri
N(v)

N ≥ H(N(v) − 1) to hold. This is
equivalent to ri ≥ H N(v)−1

N(v) N . The value ri = N · H fulfills this condition. The
condition ri ≥ max{rreq

i (v) | v ∈ L(i)} implies rreq
i (v) ≤ ri = H · N . 	

For every layer li of the tree, the radius rreq
i required to fit all children is lesser

than N · H . The actual radius of layer li is one of the following

– rreq
i if ri−1 + (H + W) < rreq

i

– (H + W) · i if the path to the root contains no layer j where rreq
j = rj .

– rreq
j +(i − j − 1) · (H +W) where lj is the first layer on the path to the root

where rreq
j = rj .

680 J. Dokulil and J. Katreniaková

The maximal number of layers is N − 1. For the last layer lp, the rp is one of
the values:

– rreq
p ≤ N · H (inequation holds due to Lemma 2)

– (H + W) · p ≤ (H + W) · N since p ≤ N − 1.
– rreq

j +(p− j −1) · (H +W) ≤ rreq
1 +(p−2) · (H +W) ≤ N ·H +N · (H +W)

(Lemma 2 and p ≤ N − 1).

Thus rp ≤ N · H + N · (H + W) = N(2 · H + W). The area required to
draw the graph grows quadratically with the number of nodes but also with the
value of H and W . Since for rooted trees the layered drawings have quadratic
area requirement [15], the area is optimal. The widths of the nodes are limited
by the length of the longest label in the data. The heights are limited by the
highest node degree present in the data. Although both of these numbers could be
potentially very large (causing H and W to be large), for practical reasons they
can be limited by much lower threshold (only first part of the labels and some
of the edges are displayed). The user may still be given another way of accessing
the complete information. This approach is used in our implementation.

3 Implementation

We have implemented the proposed algorithm using the Semantic Web infras-
tructure developed at the Faculty of Mathematics and Physics of the Charles
University in Prague [4,1,2].

The layout algorithm is implemented independent of the data-source and the
user interface. At the moment, there is only a SDL-based user interface. This
interface displays the drawing to the user and enables him or her to scroll through
the whole drawing (it may not fit on the screen) and expand edges by clicking
their label in a merged node. For implementation reasons, the drawing is turned
upside down, so the origin of the coordinate system is in the upper left corner
and the y-axis grows downwards.

3.1 Node Merging

We use our novel technique called node merging to help the user navigate the
graph. Vertex does not contain only its label but also list of incoming and out-
going edges. This allows us to present the neighbors of the vertex to the user
without using too much space. Important advantage of this approach is the fact
that the user picks only the neighbors he or she is interested in and the view is
then extended only by these vertices. This way we eliminate problem that a RDF
node can have thousands (or even hundreds of thousands) of neighbors. Without
node merging we would either have to display all of the neighbors which would
hardly create a well-arranged and readable drawing of graph or the algorithm
would have to pick only a few of the neighbors to display. If node merging is used

Visual Exploration of RDF Data 681

Fig. 4. Example of a two-layered tree

and the number of neighbors is small, the neighbors can be displayed directly in
the vertex. If the number is higher, the list of neighbors is displayed in a separate
window with the option to filter the displayed entries, which allows handling of
even nodes with large number of neighbors.

Node merging is also useful for displaying certain special type of nodes. RDF
data usually contain nodes representing certain object with outgoing edges rep-
resenting its properties, e.g. a person together with his or her name, date of birth,
etc. Merged node for the person will contain the name and other information
directly so the user can see them without expanding the neighbors. Furthermore
a lot of drawing space is conserved since the user will probably be interested in
these values and would expand all of the neighbors which may mean adding tens
of vertices.

3.2 Animation

When the users expands an edge so that a new node is displayed a drawing of
the new tree has to be computed and displayed. To improve the user’s experience
the transition between the old drawing and the new drawing is animated in real-
time. This not only ‘looks nice’ but more importantly it helps the user maintain
connection between objects in the old and the new drawing. Using animation
between time-slices to show how nodes and edges are moved to the new positions
may also assist in preserving the mental map over time [16].

682 J. Dokulil and J. Katreniaková

Fig. 5. Example of a large tree

The animation is a simple linear transition of rectangles that represent nodes
and lines that represent edges.

3.3 Examples

We have tested the application using the data described in [17]. Figures 4 and 5
are screenshots of some of the visualizations produced by the system.

Darker nodes represent URIs while white nodes are literals. In the list of
incoming and outgoing edges, the black can be clicked and new node is displayed,
the gray ones represent edges that are already expanded.

4 Conclusion and Future Work

We have designed and implemented a visualization tool to supplement the se-
mantic web infrastructure. The visualization is capable of handling even very
large data. We believe it will aid in development of applications that use the
infrastructure.

The visualizer could be extended to generate queries based on the displayed
data (e.g. by making a query pattern that mirrors the currently displayed graph
but literals are converted to query parameters) creating a kind of query by ex-
ample system.

There is still room for improvement in the visualizer itself, especially handling
of non-tree edges. Although it is not a significant issue the number of intersec-
tions between edges and nodes can be further reduced or even eliminated.

Visual Exploration of RDF Data 683

References

1. Dokulil, J., Tykal, J., Yaghob, J., Zavoral, F.: Semantic Web Repository And In-
terfaces. In: UBICOMM 2007 (includes SEMAPRO 2007), pp. 223–228. IEEE, Los
Alamitos, California (2007)

2. Dokulil, J., Tykal, J., Yaghob, J., Zavoral, F.: Semantic Web Infrastructure.
In: First IEEE International Conference on Semantic Computing, Los Alamitos,
California, pp. 209–215 (2007)

3. Carroll, J.J., Klyne, G.: Resource description framework: Concepts and abstract
syntax. W3C Recommendation (2004)

4. Yaghob, J., Zavoral, F.: Semantic web infrastructure using datapile. In: Proceedings
of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and
Itelligent Agent Technology, pp. 630–633. IEEE, Los Alamitos (2006)

5. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in
information visualization: A survey. IEEE Trans. Vis. Comput. Graph 6(1), 24–43
(2000)

6. Dokulil, J., Katreniaková, J.: Visualization of large schemaless RDF data. In:
UBICOMM 2007 (includes SEMAPRO 2007), pp. 243–248. IEEE, Los Alamitos,
California (2007)

7. Dokulil, J., Katreniaková, J.: Vizualizácia RDF dát pomocou techniky zlučovania
vrcholov. In: Proc. of ITAT 2007: Information Technologies-Applications and The-
ory, Seňa, Slovakia, PONT, pp. 23–28 (2007)

8. Sayers, C.: Node-centric rdf graph visualization. Technical Report HPL-2004-60,
HP Laboratories Palo Alto (April 2004)

9. Pietriga, E.: IsaViz: A Visual Authoring Tool for RDF, http://www.w3.org/2001/
11/Isaviz/

10. Yee, K.P., Fisher, D., Dhamija, R., Hearst, M.A.: Animated exploration of dynamic
graphs with radial layout. In: INFOVIS, pp. 43–50 (2001)

11. Wood, J., Brodlie, K., Walton, J.: gViz - Visualization Middleware for e-Science. In:
VIS 2003. Proceedings of the 14th IEEE Visualization 2003, p. 82. IEEE Computer
Society, Washington, DC, USA (2003)

12. Deligiannidis, L., Kochut, K.J., Sheth, A.P.: User-Centered Incremental RDF Data
Exploration and Visualization. In: ESWC 2007 (submitted, 2006)

13. Goyal, S., Westenthaler, R.: RDF Gravity (RDF Graph Visualization Tool),
http://semweb.salzburgresearch.at/apps/rdf-gravity/user doc.html

14. Huang, W., Eades, P.: How people read graphs. In: Hong, S.H. (ed.) APVIS. CR-
PIT, vol. 45, pp. 51–58. Australian Computer Society, Australia (2005)

15. Reingold, E., Tilford, J.: Tidier Drawings of Trees. IEEE Transactions on Software
Engineering SE-7, 223–228 (1981)

16. Purchase, H.C., Hoggan, E., Görg, C.: How Important Is the ”Mental Map”? – An
Empirical Investigation of a Dynamic Graph Layout Algorithm. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg
(2007)

17. Dokulil, J.: Transforming Data from DataPile Structure into RDF. In: Proceedings
of the Dateso 2006 Workshop, Desna, Czech Republic, pp. 54–62 (2006)

http://www.w3.org/2001/11/Isaviz/
http://www.w3.org/2001/11/Isaviz/
http://semweb.salzburgresearch.at/apps/rdf-gravity/user_doc.html

Creation, Population and Preprocessing of

Experimental Data Sets for Evaluation
of Applications for the Semantic Web

György Frivolt, Ján Suchal, Richard Veselý,
Peter Vojtek, Oto Vozár, and Mária Bieliková

Institute of Informatics and Software Engineering,
Faculty of Informatics and Information Technologies,

Slovak University of Technology
Ilkovičova 3, 842 16 Bratislava, Slovakia

Name.Surname@fiit.stuba.sk

Abstract. In this paper we describe the process of experimental ontol-
ogy data set creation. Such a semantically enhanced data set is needed
in experimental evaluation of applications for the Semantic Web. Our re-
search focuses on various levels of the process of data set creation – data
acquisition using wrappers, data preprocessing on the ontology instance
level and adjustment of the ontology according to the nature of the eval-
uation step. Web application aimed at clustering of ontology instances
is utilized in the process of experimental evaluation, serving both as an
example of an application and visual presentation of the experimental
data set to the user.

1 Introduction

Exponentially growing volume of information on the Web forces designers and de-
velopers to solve navigation and search problems with novel approaches. Faceted
browsing, clustering and graph visualizations are only a few possibilities which
can be – or even are – currently used. Nevertheless, in order to evaluate how any
of these approaches improve navigation or searching, experimental data sets are
always needed. Such data sets can be created either by generating artificial data
or – as it is in our case – by acquiring data from existing real data sources. While
using data from real data sources seem to be an attractive solution, a creation
of such experimental data set comes with problems of its own.

We describe the process of creating an experimental evaluation ontology from
existing data sources that represents a generalization of the process that we
applied in the domain of scientific publications1. This process is influenced by
the fact that the ontology is used as an experimental evaluation data set for
clustering in an application for the Semantic Web. The major contribution of
this work is design and experimental evaluation of a framework dedicated to
data acquisition, ontology creation, data preprocessing and clustering.
1 Project MAPEKUS: http://mapekus.fiit.stuba.sk/

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 684–695, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://mapekus.fiit.stuba.sk/

Creation, Population and Preprocessing of Experimental Data Sets 685

1.1 Process of Data Set Development

Our approach exploits real data from existing resources as a basis for data set
creation. In the process of creating such a data set firstly, suitable data sources,
e.g., from the Web, are identified and data from these sources are retrieved (Sec-
tion 2). Unfortunately, data acquired from various sources rarely share a per-
fectly common data model definition (ontology) thus a unified ontology is usually
created and mappings between other data models are defined (Section 3).

There exist several methodologies of an ontology building process.
In [1] following reuse processes are combined together: fusion/merge and

composition/integration. Using fusion/merge approach, the ontology is built
by unifying knowledge from two or more different ontologies. In the compo-
sition/integration approach each reused ontology is a module of the resulting
ontology.

Having the unified data model filled with data from all selected sources a clean-
ing process needs to be started in order to remove, duplications, inconsistencies
or even completely wrong data (Section 3.2). Finally, such cleaned data set can
be used to evaluate the semantic web-based application. In this paper, we discuss
the usage of a data set to evaluate a semantic web application in the domain of
scientific publications which exploits graph clustering methods based on graphs
extracted from data set ontology (Section 4).

1.2 Domain for Experimentation

We have used proposed approach for an experimental data set development in
our research project in the domain of scientific publications. In this project
three major scientific publication portals (ACM, www.acm.org/, DBLP,
www.informatik.uni-trier.de/∼ley/db/ and Springer, www.springer.com/)
have been selected as the relevant sources for a large common scientific publica-
tion database. Acquisition of metadata from these sources resulted into a large
amount of instances of authors, publications, journals, etc. Table 1 shows basic
statistics indicating the scale of the acquired data sets.

This database serves as an ontology-based meta-data repository in our pub-
lication portal which aims at improving the navigation in such large informa-
tion spaces by utilizing faceted and visual navigation by exploiting the faceted

Table 1. Instance counts of data sets acquired from ACM, DBLP and Springer

Data Set

Instance ACM DBLP Springer

Author 126 589 69 996 57 504
Organization 17 161 — 6 232
Publication 48 854 47 854 35 442

Keyword 49 182 — —
Reference 454 997 — —

www.acm.org/
www.informatik.uni-trier.de/~ley/db/
www.springer.com/

686 G. Frivolt et al.

browser and visual navigation in clusters. While faceted browser operates di-
rectly on the base ontology, clustering is done on graphs extracted from this
ontology. Figure 1 shows the overall process of data acquisition via wrapping,
ontology integration, data cleaning, and finally graph extraction and clustering
using as an example its special instance for our research project domain.

Fig. 1. Overview of the process of data set creation from three various data sources

2 Data Acquisition

The purpose of the data acquisition stage is to create and populate the exper-
imental data set of the respective domain with domain specific data. For eval-
uation purposes it is necessary to acquire a large amount of data, ideally from
several different data sources, in order to create a statistically relevant sample.

2.1 Acquisition Methods

We considered the use of different data acquisition methods ranging from manual
approaches through assisted or semi-automatic approaches with only minimum
user intervention required to set the specific initialization parameters to fully
automatic approaches.

Extraction via web scraping. We employ two types of web scraping as suit-
able means for automatic extraction of huge data sets targeted at predetermined
web sources, which contain suitable domain data:

– In case of wrapper induction the developer specifies positive and negative
examples and the system produces extraction rules [2].

– Special-purpose automated data gathering is hand-written and thus custom
tailored for a specific purpose – most commonly for the scraping of a partic-
ular web site.

Creation, Population and Preprocessing of Experimental Data Sets 687

Manual data entry. While tedious and not overly effective it is also possible
to acquire data manually by data entry workers. This method was considered
supplementary and was feasible for small sets of data only, albeit of a high quality.
Manual data entry was used in our project scarcely and only when automatic
acquisition was not possible.

2.2 Wrapper Induction from User Examples

The wrapper inducer learns the wrapper from positive examples gained from
the user. The problem of wrapper induction, the verification and comparison
of wrapping approaches was introduced by Kushmerick [3]. The wrappers are
induced from examples gained from the user. The process of learning is outlined
as Algorithm 1.

Algorithm 1. Wrapper induction learning process
1: open the web page you wish to wrap
2: repeat
3: select the example which is an instance of the pattern
4: the wrapper inducer shows the generalization of the examples
5: until not all instances of the pattern are listed after the generalization

We call document information pieces we wish to wrap document patterns.
A pattern is a coherent part of the document. Patterns are filtered out by filters
learnt during the training process. The form and representation of the filter is the
matter of the learning method. Patterns are often repeating structures, such as
items on web pages listing publications of an author or institution. The patterns
can be defined in recursive manner.

We describe a document as a set of elements called subdocuments. The sub-
documents have attributes. We distinguish several possible document represen-
tations. The document representations can differ in a) the way of partitioning
the documents into subdocuments, b) the attributes describing the subdocu-
ments and c) the relation among the subdocuments. We considered two types of
subdocuments so far in our project:

– XML representation – the subdocument is represented as W3C Document
Object Model (DOM, www.w3.org/DOM/) structure. The elements of the doc-
uments are addressable by XPath expression. We operate on the XPath ex-
pression of the subdocument.

– Attributed elements – the subdocuments are also elements of the DOM-tree.
The attributes of the subdocuments are type (name) of the element, style
class, depth of the element in the DOM-tree and an index (if the element is
included in a table).

Recently wrapping from visual web page representation is being researched [4].
Visual representation concerns the visual features visible by the user browsing

www.w3.org/DOM/

688 G. Frivolt et al.

a web page. Relying on the HTML structure of the document does not reflect
always the web pages’ visual features as creators of web pages often do not want
the page to be wrapped. Visual representation aims to tackle such situations.

The wrapper inducer is trained on the user examples (subdocuments). The
result of the training is a generalization of the examples. We set the follow-
ing conditions on the generalization: a) each positive example must be in the
resulting selection; b) no negative example can be in the resulting selection.

We proposed and implemented two learning strategies for generalization of
the document pattern.

Simple XPath learning strategy. The strategy generalizes only from positive
examples and operates on the XML document representation. The process of
learning starts with an empty filter. The examples are XPath expressions. The
algorithm of the learning process is outlined as Algorithm 2.

Algorithm 2. Process of generalization of the XPath expressions in simple
XPath learning strategy
1: Generalization ← receive the first example from the user
2: while the training process is not terminated do
3: NewExample ← a new example from the user
4: update Generalization with NewExample
5: end while

Updating the generalization is realized by one of the following actions: a) index
removal – both XPath expressions are compared element by element from the left
side of the expressions. If any index on this path differs this index is removed from
the generalization; b) XPath truncation – if any tag in the XPath expressions
differ, the tag and the path after the tag is truncated.

Attribute selection learning strategy. We apply machine learning methods on the
attributes (listed in description of the document representation) of the subdoc-
ument. The strategy is able to learn from positive and negative examples. The
“positivity” of an example is used as the next attribute of the examples. If any
of the attribute is missing, its value is set to special value !missing and is used
in the process of classification [2].

3 Data Preprocessing

Data preprocessing includes methods and procedures which transform the data
obtained in the process of data acquisition to a form which is more appropriate
for data processing and experimentation.

3.1 Data Integration

In the first phase of data preprocessing it is necessary to integrate data from
different sources and thus different models into the one. It includes:

Creation, Population and Preprocessing of Experimental Data Sets 689

– Unified data model definition – data model should be strong enough to repre-
sent all instances and their relations from all input sources. For this purpose
the domain ontology for publications metadata was created based on gener-
alizations of relevant parts of source data models.

– Data mapping definition – for every data source a definition of data mapping
between source data model and unified data model is required. In our case,
this transformation is executed already in wrappers.

3.2 Data Cleaning

This part of the process is aimed at cleaning of inconsistencies, which are present
in data because of:

– Inconsistencies in the source data model – inconsistencies and other flaws like
data duplicities, incomplete or wrong data can be transferred from source
model.

– Inconsistencies due the source integration – because data are integrated from
many sources, duplicities of instances for example authors or publications
may occur.

– Inconsistencies created in the wrapping process – there is a chance that du-
plicates are created during the wrapping process, for example not all links to
the authors can be followed and checked due to high increase of the process
duration.

Single-pass instance cleaning. This phase is designed to correct data flaws
in scope of one instance like:

– correcting the format of some data types, e.g., names, which should start
with capital letter;

– separating data fields, e.g., separating first names and surname;
– filtering of instances with insufficient data to work with them;
– filtering of data fields, e.g., conjunctions from key terms.

The instance cleaning is realized as a set of filters, one for each particular
task. This solution is based on pipes and filters architecture. Whole process
can be realized by one pass through all instances and therefore has linear time
complexity. It is effective to realize it directly after acquisition of each instance
using a wrapper yet before storing it because the processor is only lightly loaded
while downloading data from sources.

3.3 Duplicates Identification

The aim of this phase is to identify instances that are describing identical en-
tity (e.g., author or publication). As the acquisition process is based on the
semantics of the domain and extracts data together with their meaning to com-
mon domain ontology no approaches for comparing concepts and discovering a
mapping between them [5] are needed.

690 G. Frivolt et al.

We combine two methods, comparing data itself (in terms of ontology data
type properties) and working with relations between data (object type proper-
ties), which was already described in [6].

The overall similarity of the instances is computed from similarity of their
properties that are not empty. For each property of an instance we use weight-
ing method with positive and negative weight. This is more general than simple
weighting, which in many cases is not sufficient. For example, consider the coun-
try property of two authors – if the similarity is low it means that the authors
are not likely the same person (need for strong weight), but if it is high, it does
not mean, the authors likely are the same person (need for low weight). The
parameters are three values, positive weight p, negative weight n, and threshold
t, which determines where to use positive weight and where to use negative.
Overall similarity S ∈< 0, 1 > is calculated as:

S =

n∑

i=1

Fi (si) + ni

n∑

i=1

pi − ni

(1)

where n is number of properties, si represents the similarity of i-th properties
(si ∈< 0, 1 >), pi stands for positive weight, ni for negative (values between 0
and 100) and Fi represents step function, which is calculated as

Fi(x) =
{

pix if x ≥ ti
−ni (1 − x) if x < ti

(2)

where i is the index of property, pi is positive weight, ni negative and ti stands
for threshold of i-th property (value between 0 and 1).

To decide whether the instances are identical a threshold is applied. If the
similarity is above its value the instances are evaluated as identical.

Every instance is compared to every other instance of its class, which leads
to quadratic asymptotic time complexity. To shorten the duration of comparing
process we use a simple clustering method for authors and divide them into
groups by the first letter of their surnames.

Comparison of data type properties. This method is based on comparison
of corresponding data type properties of two instances of the same class. For the
data comparison there are used several string similarity metrics like QGrams,
Monge-Elkan distance, Levenshtein distance and many other2. Different method
can be specified for each property including so called composite metric, which
is weighted combination of several metrics (for example QGrams with weight
of 0.6 and Monge-Elkan, weight 0.4), where weights are set according to the
results of the experiments. We also use special metrics for some properties, e.g.,
2 Chapman, S.: SimMetrics, www.dcs.shef.ac.uk/∼sam/stringmetrics.html, Cohen,

W.: Record Linkage Tutorial: Distance Metrics for Text, www.cs.cmu.edu/~wcohen/
Matching-2.ppt

www.dcs.shef.ac.uk/~sam/stringmetrics.html
file:www.cs.cmu.edu/~wcohen/Matching-2.ppt
file:www.cs.cmu.edu/~wcohen/Matching-2.ppt

Creation, Population and Preprocessing of Experimental Data Sets 691

names where we consider abbreviations of their parts. Some properties needs to
be compared only for identity, e.g., ISBN of the books.

Comparison of object type properties. The principle of this method is to
compare the relations to neighboring instances in the ontology. With increasing
number of mutual instances the probability that compared instances are the
same grows.

For each object property (e.g., authors of two books) we compare their datatype
properties to determine how close to each other they are. Each match is included
in computing the overall similarity. Thus if two books have three mutual authors,
all three partial similarities are counted. The same approach also applies on the
authors that are different.

3.4 Duplicates Resolving

We identified several possibilities when two instances were identified as identical:

– mark instances as identical via special object property,
– manually resolve (this possibility is appropriate, when small number of du-

plicates was found),
– delete the instance with less information,
– join instances, take the data type properties with higher length, join non-

functional object properties.

3.5 References Disambiguation

Aim of this phase is to identify and disambiguate identical references between
publications [7]. Parts of references can be recognized using regular expressions
and set of experimentally discovered rules. The process of identity identification
between two references consists of three steps:

1. Comparison of titles – the title similarity is identified using the Levenshtein
distance. If the ratio of this value and the length of both strings greater
than 5% (value set as a result of experiments with publications metadata)
references are considered not to be identical. Otherwise the process continues
with the next step.

2. Comparison of years – if the years in references are different, references are
not identical. If they are equal proceed to step three.

3. Comparison of authors – if at least one author is mutual for both references,
they are considered to be identical.

4 Data Processing

After the proceprocessing is done, processing and presentation are applied. In
our case user navigation in the metadata enhanced data set is employed, e.g.
faceted navigation [8] and visual navigation in clusters of data instances. We
describe as an example of processing the instance clustering.

692 G. Frivolt et al.

4.1 Extracting Graphs from Ontologies

While data instances usually incorporate complex representation of a state-space,
clustering all the instances bound together with all types of properties is com-
putationally demanding. In such cases, it is worth utilizing a graph extraction
from the ontology.

We represent ontology by the Web Ontology Language (OWL, www.w3.org/
TR/owl-features/). The OWL representation consists of triplets (RDF based
subject-predicate-object construction [9]), which serve as the basis for graph
representation of ontology.

Example in Figure 2 shows a scientific publication ontology which consists of
instances which belong to classes “Author”, “Paper” and “Keyword” and prop-
erties between instances are “hasKeyword”, “isWrittenBy” and “references”, and
extraction of all vertices of class “Author” and edges defined by the property
“isWrittenBy”.

Fig. 2. Extraction of graph of papers and authors from ontology of publications

4.2 Clustering

The process of clustering utilizes the unsupervised learning schema [10], which
is advantageous when no exact taxonomy of data set exists. The disadvantage of
involvement of clustering is that created clusters usually do not have attached
semantic labels, hence resolving why particular data instances were grouped
together can be hard in some cases. An example of graph-based clustering is
depicted in Figure 3.

Composing hierarchy of clusters. We represent the information in a space
of hierarchical clusters. While many clustering methods were invented over the
time [11], almost any clustering method can be simply used when it is properly
implemented according to the JUNG library (Java Universal Network/Graph
Framework, jung.sourceforge.net/), used during the clustering. Hierarchi-
cal composition of clusters is implicitly used. Clustering of the input graph is
following:

1. Input graph is loaded from relational database and converted to a graph
representation using the JUNG library.

jung.sourceforge.net/

Creation, Population and Preprocessing of Experimental Data Sets 693

2. Clustering parameters are determined, e.g., which clustering method is used,
number of cluster layers in the hierarchy, number of vertices in cluster (if the
selected clustering method is designed to be parameterized in such way).

3. Layers of the cluster hierarchy are created sequentially from bottom to top.
4. Whole hierarchy of clusters is stored in relational database. With the aim to

allow any operations with the clusters, also inverted hierarchy is generated
and stored.

Fig. 3. Example of two layered graph clustering

5 Evaluation – Duplicate Identification

To measure the effectiveness of duplicity identification process data from DBLP
together with artificially created duplicates were used. The instances were ran-
domly selected and the duplication of one instance included:(i) Mutation of
randomly selected datatype properties with one of these operations: words ex-
change, letter exchange, word deletion, letter deletion, letter duplication; (ii)
For each object property there is a chance to be deleted or its reference to be
duplicated and its datatype properties mutated like in previous step.

Ten measurements were made for each data set of 1 000, 5 000, 10 000 and
20 000 publications, with 100 injected duplicities. Surname clustering for authors,
Levenstein metric for publication titles, special name metric for author given and
family names and exact string comparison for ISBN were used. These metrics
were weighted for each property to achieve best results. Similarity threshold of
0.8 was used (each pair of instances, that achieved score of 0.8 and greater on
the scale from 0 to 1 were considered to be duplicity).

In Table 2 there are columns with number of identified duplicities (column
correct), wrong identified duplicities so called false positives (column wrong) and
unidentified duplicities (column missing). It contains also statistical measures
such as precision, recall and F1 measure. Each cell contains average value and
standard deviation.

Only instances that could be identified after clustering are considered in these
measures, because clustering is not a part of identification method. Without
clustering, the results should be same for all 100 duplicates, but the whole process
would be much more time consuming.

694 G. Frivolt et al.

Precision is almost constant in each data set. There is a linear growth in
number of false positives, but number of compared instances grows also linear
and number of comparisons grows quadratic.

Table 2. Results of duplicate identification experiment on various DBLP sample sizes

Duplicity identification

Sample size Correct Wrong Missing Precision Recall F1

1 000 53.2 ± 4.23 5.7 ± 7.52 14.1 ± 4.37 0.79 ± 0.06 0.90 ± 0.08 0.84 ± 0.04
5 000 70.6 ± 5.93 6.6 ± 5.95 18.8 ± 7.05 0.79 ± 0.07 0.92 ± 0.05 0.85 ± 0.05

10 000 74.5 ± 6.07 20.7 ± 5.20 17.7 ± 4.19 0.81 ± 0.05 0.78 ± 0.04 0.80 ± 0.04
20 000 81.3 ± 4.38 24.7 ± 5.58 13.9 ± 2.98 0.85 ± 0.03 0.77 ± 0.02 0.81 ± 0.02

Number of duplicates in real data was also measured. Data from each source
and data combined from all sources were used (Table 3). Found duplicates were
checked manually and over 90% of them were correct.

Table 3. Result of duplicate identification experiment on real data

Sample size ACM DBLP Springer Combined

1 000 44 5 10 24
2 000 96 7 24 36
3 000 133 25 41 48
4 000 154 26 55 62
5 000 175 29 68 78

Some interesting facts have been discovered in the domain of publications:

– Many duplicities of the publications are present only because of capital let-
ters.

– Chinese names are hard to distinguish, because they are very short.
– There is a problem with various editions and re-editions of books, their title

differs only in one number or short word.
– The family members, e.g. brothers writing the same books and having mutual

collaborators are hard to distinguish.

6 Conclusions

The data integration process is important when evaluating applications for the
Semantic Web on real data sets from various sources. However, only involvement
of powerful data acquisition and preprocessing methods can ensure the quality
of the resulting data set.

Creation, Population and Preprocessing of Experimental Data Sets 695

In our research, we focused on integration of the data from various large
scale data sources in the domain of scientific publications, from which relevant
data was acquired using two different web scraping approaches and stored in the
ontological repository for further processing and support of navigation.

During the evaluation we also encountered several bottlenecks that currently
seriously limit experimenting and widespread deployment of applications for the
Semantic Web, mainly the general immaturity of ontological repositories in terms
of their processing speed of ontological queries. Having hundred thousands of
instances in the ontology, preprocessing realized along with data gathering from
their source proved as well-suited approach.

Several of proposed methods for data preprocessing presented in this paper
are also suitable for merging various sources of meta-data in particular domain
order to provide effective visualization and navigation in data.

Acknowledgment. This work was partially supported by the Slovak Research
and Development Agency under the contract No. APVT-20-007104 and the Sci-
entific Grant Agency of Slovak Republic, grant No. VG1/3102/06.

References

1. Pinto, H.S., Peralta, D.: Combining Ontology Engineering Subprocesses to Build
a Time Ontology. In: K-CAP 2003, pp. 88–95. ACM Press, New York (2003)

2. Čerešňa, M.: Interactive Learning of HTML Wrappers Using Attribute Classifica-
tion. In: Proc. of the First Int. Workshop on Representation and Analysis of Web
Space, Prague, Czech Republic, pp. 137–142 (2005)

3. Kushmerick, N.: Wrapper Induction: Efficiency and expressiveness. Artificial Intel-
ligence 118(1), 15–68 (2000)

4. Simon, K., Lausen, G.: ViPER: Augmenting Automatic Information Extraction
with Visual Perceptions. In: CIKM 2005, pp. 381–388. ACM Press, New York
(2005)

5. Weinstein, P.C., Birmingham, W.P.: Comparing Concepts in Differentiated On-
tologies. In: KAW 1999 (1999)

6. Andrejko, A., Barla, M., Tvarožek, M.: Comparing Ontological Concepts to
Evaulate Similarity. In: Návrat, P., et al. (eds.) Tools For Acquisition, Organi-
sation and Presenting of Information and Knowledge, STU, pp. 71–78 (2006)

7. Rado, L.: Sharing of Research Results on Portal based on Semantic Web. Master’s
thesis project report, Bieliková, M. (supervisor), Slovak University of Technology
in Bratislava (2007)

8. Tvarožek, M., Bieliková, M.: Adaptive Faceted Browser for Navigation in Open
Information Spaces. In: WWW 2007, pp. 1311–1312. ACM Press, New York (2007)

9. Beckett, D.: Redland RDF Storage and Retrieval. In: SWAD-Europe Workshop on
Semantic Web Storage and Retrieval (2004)

10. Hinton, G., Sejnowski, T.J.: Unsupervised Learning and Map Formation: Founda-
tions of Neural Computation. MIT Press, Cambridge (1999)

11. Frivolt, G., Pok, O.: Comparison of Graph Clustering Approaches. In: Bieliková,
M. (ed.) IIT.SRC 2006, Bratislava, Slovakia, pp. 168–175 (2006)

Algorithm for Intelligent Prediction of Requests

in Business Systems

Piotr Kalita, Igor Podolak, Adam Roman, and Bartosz Bierkowski

Institute of Computer Science, Jagiellonian University, Krakow, Poland
{kalita,roman,bierkows}@ii.uj.edu.pl,uipodola@theta.uoks.uj.edu.pl

Abstract. We present an algorithm for intelligent prediction of user re-
quests in a system based on the services hosted by independent providers.
Data extracted from requests is organized in a dynamically changing
graph representing dependencies between operations and input argu-
ments as well as between groups of arguments mutually coexisting in
requests. The purpose of the system is to suggest the possible set of
future requests basing on the last submitted request and the state of
the graph. Additionally the response time may be shortened owing to
the background executing and caching of the requests most likely to
be asked. The knowledge extracted from the graph analysis reveals the
mechanisms that govern the sequences of invoked requests. Such knowl-
edge can help in semi-automatic generation of business processes. The
algorithm is a part of ASK-IT (Ambient Intelligence System of Agents for
Knowledge-based and Integrated Services for Mobility Impaired users)
EU project1.

1 Introduction

Systems that predict the user requests are widely investigated [1,3,4,5,7,8,9].
Their purposes are twofold: firstly recommending the user some action that he
is likely to submit as an option and in consequence dynamic customization of
his environment and secondly so called prefetching - decreasing the request la-
tency by obtaining in advance the response to the request likely to be issued
or intelligent caching - caching the responses to most popular requests. Typi-
cal areas of applications are web usage mining [3] or prediction of web service
calls [8].

Typically the prediction algorithms are based on Markov chain approach.
There are many variants of Markovian algorithms: point–based (where the sub-
mitted request is assumed to depend only on the previous one), path–based
(where the predicted query is based on several preceding ones) [9], cascading
Markov models (being the combination of former two) [1], classification pruning
algorithms [7], algorithms that use generalized sequences of requests [3], Markov
models with aging [4]. Markov approach is highly memory consuming and has

1 This research was partially funded by the European Union 6th Framework project
ASK-IT (IST-2003-511298).

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 696–707, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algorithm for Intelligent Prediction of Requests in Business Systems 697

large computational complexity, untolerable if the requests are invocations of
some operations with changing arguments. Also, it is not scalable: typically the
request prediction is based on the analysis of the server log and not the real time
request processing. Another approach is through frequent sets and association
rules [5]. All requests are searched and the subsets where the probability density
of the individual values of requests is relatively high are found. Then, using for
example the Apriori algorithm (see [6] Chapt. 8.2), frequent sets (X, Y) are par-
titioned and translated into rules of type X ⇒ Y . Still this methodology consists
of inspecting the server log files.

The objective of this article is to propose the new prediction algorithm that is
faster and less memory consuming than above ones. Implementation of proposed
algorithm is the part of the system implemented in ASK-IT [2] EU project. The
general goal of the ASK-IT system is to help mobility impaired users while mov-
ing and traveling. Each user is supposed to have a PDA device (e.g. a palmtop,
mobile phone) through which he submits queries about the route to another
place, places of interest, help calls, etc. The reply is provided by a system of
services. Since the number of users in the system is high and their requests are
similar, the system can be optimized with the help of proposed algorithm by
intelligent caching and storing the information for a number of users with sim-
ilar objectives. At the same time the request prediction system helps mobility
impaired user with taking up decisions by suggesting the most probable request
basing on historical data stored in the graph structure. It is assumed that the
request is an invocation of the operation (method) with some arguments. Used
prediction algorithm is graph based that highly reduces the complexity since the
graph operations are performed locally and furthermore independent parts of
the graph can be accessed in parallel. Therefore the real time prediction and
updating of the structures is possible. This is crucial in the ASK-IT system as it
is required not to store any user related data on the server side (in particular the
history of the requests). Also aging is taken into account in proposed algorithms.

2 System Architecture

The architecture of the system that takes advantage of the proposed request
prediction algorithm, as it is going to be implemented in ASK-IT is depicted
in the Fig.1. The client system (1), which is possibly a PDA mobile device is-
sues a service request to the Management Module (2) that is also responsible
for matchmaking, i.e. associating one of the service providers with the issued
request. Request Prediction System RPS (3), and service providers (4) are avail-
able to the Management Module as web services. Once the management module
receives a client request, it issues it to the provider that delivers the reply and,
concurrently, its filtered copy to RPS that delivers the predicted further requests.
Independently it is possible that, in idle time, RPS submits the most popular
requests to the providers and pre-fetches the replies to the cache memory. Then,
if the set of suggested requests contains the ones with cached answers, RPS sends
the answers to the user together with the queries.

698 P. Kalita et al.

Fig. 1. Overview of service based system that includes the prediction of requests. 1.
Client machine (PDA). 2. Management Module that associates the client request with
the service provider and issues the request to the provider and the prediction system.
3. Request Prediction System (RPS). 4. Service provider.

The message that is sent to RPS consists of the name of the previous operation
issued by the user, and the name of the current operation (method) together
with the values of its parameters that together constitute the instance of a
method call. The operation and parameters names are the part of the set of
namespaces which constitutes the system ontology. The answer that is issued by
RPS is constituted by the number of operations and parameters. Such selection is
combined with the actual reply from the service provider and sent back to client
as a suggestion for future possible requests. If the answer to some of the suggested
requests is cached in RPS, then the user receives it instantly together with the
request suggestion. Reply sent back by RPS is constructed basing on the graph
data structure stored therein - Request Prediction Graph (RPG) and the user
request. RPG is also updated basing on the request data. In its data structures
RPS remembers the logical dependence between two consecutive operations,
since the name of the previous request is included in the RPS call. We remark
that no personal user data is remembered by RPS.

Web service architecture is recommended for RPS: then the input (request
and previous request operation) and output (collection of suggested requests)
are represented by SOAP messages described by Schema contained in WSDL
interface of RPS. The Schema depends on the Schemas of the service providers
of the system.

Algorithm for Intelligent Prediction of Requests in Business Systems 699

We remark that in presented model predicted requests depend on the request
only and not on the answer to this request. RPS predicts next user queries basing
on:

– frequency of associations of argument values with the name of operation,
– frequency of mutual coexistence of argument values in the request,
– frequency of the succeeding pairs of operations.

The first two of above frequencies are stored as weights of vertices in RPG
and the third one, represents the automatic detection of logical dependence of
between two consecutive operations, is remembered in a matrix.

3 RPG Graph

Request Prediction Graph (RPG) is a 6-tuple (G, cons, popm, parw, kind, ord),
where:

1. G = (MET ∪ PAR, WM ∪ WP), MET ∩ PAR = ∅, WM ∩ WP = ∅;
2. WM ⊆ MET × PAR, WP ⊆ (

PAR
2

)
;

3. cons : N2 → Q, popm : MET → Q, parw : PAR → Q;
4. kind : MET → N ;
5. ord : MET × PAR → N;
6. ∀m ∈ MET {ord(m, p) : (m, p) ∈ WM} = {1, 2, ..., deg(m)}.

N is the set of all methods (or, more general, operations) available in the
system. Graph G consists of two sets of vertices (two layers), MET and PAR.
Each vertex from MET represents an instance of a method from N . MET
consists of methods called in the system. Each vertex from PAR represents an
argument (parameter). Function kind assigns to each instance M ∈ MET a
method (from N) represented in G by vertex M . WM and WP are the edges:
edges in WM , between method and parameter, denote that parameter was used
in a method call as an argument, while edges in WP , between pairs of parameters
denote that they mutually appeared in a call.

There are three different types of weights between the elements of G:

– each parameter p ∈ PAR has its weight parw(p),
– each M ∈ MET has it’s weight popm(M), representing the ’popularity’ of

a method,
– each pair (M1, M2) ∈ MET 2 has it’s weight cons(kind(M1), kind(M2)),

which represents the connection between two methods invoked consecutively.
This value is also defined for kind(M1) = kind(M2). Function cons can be
represented as a square matrix of size N × N , called Method Consequence
Matrix.

Invocation of a method X(p1, p2, ..., pk) with k parameters is represented in
G by the subgraph GX = ({M, p1, ..., pk}, EP ∪ EM) such that:

700 P. Kalita et al.

1. M ∈ MET , ∀1 ≤ i ≤ k pi ∈ PAR;
2. EP ⊂ WP , EM ⊂ WM ;
3. EP = {{pi, pj} : 1 ≤ i, j ≤ k, i �= j};
4. EM = {(M, pi) : 1 ≤ i ≤ k}, ord(M, pi) = i.

In other words, all elements from {p1, ..., pk} form a k-clique and each of them
is connected with M . Function ord remembers the order of the parameters.

4 Algorithms

We introduce two operations on RPG. The first one is connected with a graph
update. Graph is updated whenever a request is invoked by the client. The
second operation is used for actual prediction of the user’s future request. This
prediction, in the simplest version, is based on the last request submitted by the
same user.

UpdateGraph (listing 1) presents the algorithm which performs the first
operation. Whenever a new request R = M(p1, ..., pk) is submitted (where M
is a method, pi its arguments), we add to PAR all the vertexes representing
arguments pi, which does not belong to PAR yet. Also, if the request has not
been issued before we add to MET the vertex R representing the instance of
method M . Then the edges are added between all pairs of pi’s and each of
pi’s and R. The subgraph GR that contains pi’s and R with associated edges
corresponds to M(p1, ..., pk). Next three weights are increased we increase (by
1): 1) weights for each argument pi, 2) weight for R and 3) the (L, M)-entry in
Method Consequence Matrix, where L is the method invoked by the same user
just before invoking R. If at least one of the weights exceeds a given threshold,
all the weights of this type in RPG are to be divided by 2 (thus the aging is
introduced).

PredictRequest (listing 2) presents the algorithm for request prediction.
The idea is as follows: suppose that user issued in the request the operation L
(arguments are irrelevant) and then another request, represented by M(p1, ..., pk).
The algorithm takes the 1-neighborhood N in PAR layer of the set P =
{p1, ..., pk} ⊂ PAR, that is, the set of all vertexes v ∈ PAR such that the distance
between v and at least one of pi is at most 1. 1-neighborhood is required in order
to produce requests that are highly associated with the current one. Larger neigh-
borhoods could lead to results loosely connected with the original request. Then,
M∗ ⊂ MET is chosen in a following manner: we choose all method instances with
sets of parameters totally included in N . We remove M from M∗. Next, for each
method from M∗ we compute it’s rank regarding to the corresponding weights in
RPG. For each m ∈ M∗, representing method m(p1, ..., pk), we take the mean of
the weights of edges forming the clique (p1, ..., pk), multiply it by the ’popularity’
of method m and, finally, multiply the result by the (M, m)-entry of Method Con-
sequence Matrix. Methods with highest ranks are suggested to the user. Ranking
function is simplistic in order to simplify the process of prediction that is com-
plicated already. Of course other heuristic ranking formulas are possible and the
best formula is going to be chosen basing on the system performance.

Algorithm for Intelligent Prediction of Requests in Business Systems 701

The construction of this algorithm comes from the nature of ASK-IT system,
for which it is designed and implemented. In this system the sets of parameters in
consecutive methods, invoked by user, have usually nonempty intersection. For
example, if user wants first to find route from A to B, next he(she) usually wants
to find some points of interest in B or the route from B to C. The parameter
’B’ is present in consecutive requests. Therefore the algorithm is designed in a
’parametric-oriented’ manner that motivates the use of 1-neighborhood.

5 Example

In this section we provide a very simple example that elucidates the algorithm
work. Let us suppose that the tourist recently asked the system for the route
from Wieliczka to Cracow. Next he(she) wants to get from Cracow to Auschwitz
and submits a request to the system on the preferred route. On this request RPS
updates the RPG and predicts a new request.

Fig. 2. Initial RPG graph. Numbers in brackets over vertexes representing instances
of the methods are the popm weights, indicating ’popularity’ of individual instances.
Numbers below arguments represent their weights, parw.

Fig.2 presents the graph before the request FindRoute(Cracow,Auschwitz)
and Fig.3 shows the graph modification after the user’s request.

Fig. 3. Graph modified by request M5

702 P. Kalita et al.

Algorithm 1. UpdateGraph(R = (M, P), L)
1: Input: Current request R (method M and parameters list P) and a previous request

L submitted by the same user
2:
3: begin
4: foreach p ∈ P do // update the set of parameters
5: if p �∈ PAR then PAR ← PAR ∪ {p};
6: foreach p, q ∈ P : p �= q do
7: if {p, q} �= WP then WP ← WP ∪ {p, q}; //make a clique P
8: t ← 0;
9: foreach p ∈ P do // update weights in the parameters layer

10: parw(p) ← parw(p) + 1;
11: if parw(p) > threshold parw then t ← 1;
12: if t = 1 then ModifyParW();
13: Y ← P ;
14: y ← take from(Y); //take first element from the list and remove it
15: // X1 is the set of methods for which y is the first parameter
16: X1 ← {m ∈ MET : kind(m) = M ∧ (m,y) ∈ WM ∧ ord(m, y) = 1};
17: i ← 1;
18: if Y �= ∅ then
19: repeat
20: y ← take from(Y);
21: i ← i + 1;
22: // Xi is the set of methods for which y is the i-th parameter
23: Xi ← Xi−1∩{m ∈ MET : kind(m) = M∧(m, y) ∈ WM∧ord(m,y) = i};
24: until Xi = ∅ ∨ Y = ∅;
25: // Xi is the set of all methods with parameters set P and with the same order as

in method M . If Xi = ∅ then add a vertex representing instance of M .
26: if Xi = ∅ then // notice that |Xi| = 0 or |Xi| = 1
27: MET ← MET ∪ instance(M); // instance(M) is a vertex representing M
28: foreach p ∈ P do
29: WM ← WM ∪ (instance(M), p);
30: popm(instance(M)) ← 1; // initialize the weight of a new method
31: cons(L, M) ← cons(L, M) + 1;
32: if cons(L, M) > threshold cons then ModifyCons();
33: else // M is already present in MET , so update weights only
34: e ← take from(Xi);
35: popm(e) ← popm(e) + 1;
36: if popm(e) > threshold popm then ModifyPopM();
37: cons(kind(e), M) ← cons(kind(e), M) + 1;
38: if cons(kind(e), M) > threshold cons then ModifyCons();
39: end.

Finally, in Fig.4 prediction result is presented:

1. The set of parameters of the current request is P = {Cracow, Auschwitz};
2. Vertex M5 is added to MET , because no user has submitted such request

before. The popm value for M5 is set to 1;

Algorithm for Intelligent Prediction of Requests in Business Systems 703

Algorithm 2. PredictRequest(R = (M, P))
1: Input: Request R (method M and parameters list P)
2:
3: begin
4: // in lines 5.-12. we find the vertex representing the instance of M (there can be

at most one such vertex)
5: Y ← P ;
6: y ← take from(Y);
7: X1 ← {m ∈ MET : kind(m) = M ∧ (m,y) ∈ WM ∧ ord(m, y) = 1};
8: i ← 2;
9: while Y �= ∅ ∧ Xi−1 �= ∅ do

10: y ← take from(Y);
11: Xi ← Xi−1 ∩ {m ∈ MET : kind(m) = M ∧ (m,y) ∈ WM ∧ ord(m, y) = i};
12: i ← i + 1;
13: Z ← Xi−1; // notice that |Z| = 0 or |Z| = 1;
14: //if |Z| = 0 then M or some of it’s parameters were removed from the graph
15: if Z = ∅ return 0; // we predict nothing
16: else
17: Neigh ← P ; // Neigh will represent P and its 1-neighborhood
18: PR ← ∅; // PR will be the set of methods whose parameters sets are totally

included in Neigh (lines 19.-23.)
19: foreach p ∈ P do Neigh ← Neigh ∪ {r ∈ PAR : {p, r} ∈ WP};
20: foreach n ∈ Neigh do
21: T ← {m ∈ MET : (m, n) ∈ WM};
22: foreach t ∈ T do
23: if {p ∈ PAR : (t, p) ∈ WM} ⊂ Neigh then PR ← PR ∪ {t};
24: PR ← PR\take from(Z); // exclude current request from the set of predictions
25: foreach q ∈ PR do // compute ranks of all request from PR

26: v ← 0;
27: foreach p ∈ P : (q, p) ∈ WM do
28: v ← v + parw(p);
29: v ← v/|P |; //v = mean weight in clique of parameters
30: rank(q) ← cons(M, kind(q)) · popm(q) · v;
31: SortAndCut(PR); //sort requests regarding their ranks and leave only
32: //a fixed number of requests with the highest rank
33: end.

Algorithm 3. ModifyParW()
//used for parameters layer weights adaptation

1: begin
2: foreach p ∈ PAR do
3: parw(p) ← parw(p)/2;
4: if parw(p) < min threshold parw then parw(p) ← min threshold parw;
5: end.

704 P. Kalita et al.

Algorithm 4. ModifyCons()
//used for Method Consequence Matrix weights adaptation

1: begin
2: foreach m ∈ N do
3: foreach n ∈ N do
4: cons(m, n) ← cons(m, n)/2;
5: if cons(m, n) < min thresh cons then cons(m, n) ← min thresh cons;
6: end.

Algorithm 5. ModifyPopM()
//used for request ’popularity’ weights adaptation

1: begin
2: foreach m ∈ MET do
3: popm(m) ← popm(m)/2;
4: if popm(m) < min threshold popm then
5: P ← {p ∈ PAR : (m, p) ∈ WM};
6: foreach p ∈ P do
7: WM ← WM \ (M, p);
8: if {t ∈ M : (t, p) ∈ WM} = ∅ then
9: foreach q : {q, p} ∈ WP do

10: WP ← WP \ {q, p};
11: PAR ← PAR \ {p};
12: MET ← MET \ {m};
13: end.

3. The neighborhood of P is found and added to P ; now P = {Cracow,
Auschwitz, Wieliczka};

4. For each p ∈ P we find the set M∗ of methods with arguments included in P .
We have M∗ = {M0, M1, M2, M3}. Notice that M4 �∈ M∗, because one of it’s
parameters, Bochnia, does not belong to P ={Cracow,Auschwitz,Wieliczka}.
M5 �∈ M∗ because M5 is the current request and there is no sense in including
it in the prediction set.

5. Algorithm computes the ranks of all m ∈ M∗. We have rank(M0) = 3 ·1 ·3 =
9, rank(M1) = 5·2·3 = 30, rank(M2) = 5·3·3 = 45, rank(M3) = 3·1·3 = 9.

Fig. 4. Prediction of a future request

Algorithm for Intelligent Prediction of Requests in Business Systems 705

Therefore the most probable request found by the algorithm is FindPOI

(Auschwitz). The next one is FindPOI(Cracow).

6 Algorithm Optimization and Tests

Implementation remarks. In order to provide scalability, the system should
be able to switch into the mode of queueing graph updates and performing them
off-line in idle time. It is possible to store the requests of individual users in one
global queue and then update the structure when the system is free, since the
system evolves at much slower time scale then the one at which the requests are
issued.

Since graph algorithms are used, the implementation is straightforward with
on-line structure update. The system can provide concurrent access to distinct
parts of the graph that allows for higher efficiency.

Simulations. In order to check the predictive effectiveness of the algorithm
a simple experiment was performed. It was assumed that the set of methods
was given by N = {M1, M2, M3, M4} and the set of parameters by PAR =
{p1, p2, p3, p4}. Furthermore the set MET of all requests (method instances) that
can be issued were consists of 5 elements: I1 = M1(p1, p2), I2 = M2(p1, p3), I3 =
M3(p2), I4 = M4(p2, p3, p4), I5 = M1(p1, p4). The RPG graph (without weights)
corresponding to those instances is given in the Fig. 5.

Fig. 5. The RPG graph (without weights) used in the experiment

The arbitrary Markov matrix M(i, j)i,j=1,...,5 over the set of states {I1, . . . , I5}
was selected and according to this matrix the chain that simulates the sequence
of user requests was built. According to this chain the request prediction system
was taught, using the UpdateGraph algorithm. Then for each of 5 states the
PredictRequest algorithm was issued. As the result, for each instance the
ranking of the succeeding calls was produced. Two criteria were used to evaluate
the algorithm performance. First, the instance that has the highest rank (i.e. is
predicted to be most likely to be issued) was compared with the highest entry in
the corresponding row of the Markov matrix. The performance measure was the
number of instances for which the most probable request is predicted. Second

measure was the Euclidean norm S =
√∑5

i=1

∑5
j=1(M(i, j) − M ′(i, j))2, where

706 P. Kalita et al.

Fig. 6. A. Markov matrix used in the tests. B. Matrix of weighed instance ranks ob-
tained after learning with the chain of length 1000. C. Dependence of the S measure
on the length of the Markov chain used to learn.

M ′(i, j) is the matrix that as the rows has vectors of ranks of all succeeding
predicted requests normalized to 1.

The matrix M used in the test is depicted in Fig.6A and M ′ obtained by
learning with the chain of length n = 1000 is presented in Fig.6B. In 3 instances
out of 5 request predicted as most likely to be issued has the highest probability
in Markov matrix. The measure S between M and M ′ as the function of the
length of the chain used by the algorithm to learn is depicted in the Fig.6C. In
particular for n = 830 we obtain S = 0.3944. We also observe that the S measure
quickly converges to some optimal efficiency and is not further improved.

7 Concluding Remarks

The article presents the algorithm for predicting user requests in web service
environment. Algorithm takes into account the dependencies between operations
as well as between arguments. Also aging of the data is taken into account. Data
structures and algorithms are designed in such a way that the system is scalable
with respect to the number of users. The system is being implemented now
within the ASK-IT project [2].

Prediction of requests is typically considered in the framework of web usage
where the request is understood as the retieval of a static web page. In such
context the resource ranking algorithms, like the HITS algorithm (see [6] Chapt.
8.8) or the web usage analysis algorithms, like the mining path-traversal patterns
(see [6] Chapt. 8.9) are efficient. The approach presented in this article strongly
takes into account the context of each request, i.e. the values of the arguments
used in the current call. Therefore our approach is rather uncomparable to the
mentioned ones.

Presented approach predicts several requests that are most likely to be issued.
It is therefore possible that the call patterns that are useful, although unfrequent,
will be hidden from the user. This issue is partially resolved by aging introduced

Algorithm for Intelligent Prediction of Requests in Business Systems 707

in UpdateGraph algorithm through division the weights by 2 while keeping
their increasing by 1. This flattens differences between weights.

Some improvements and extensions will be the subject of future research. In
particular the further tests are required in order to tune the algorithms and
verify their scalability. We plan to run tests that use larger number of methods,
in particular methods and arguments from ASK-IT ontology, multiple number
of short Markov chains in order to simulate multi user behavior, finally use the
real user requests. We also plan a verification system in an open environment,
where a user ranks the predicted requests himself. This verification could then
be used for the system fine-tuning, allowing to develop the automatic, dynamical
change of the parameters, such as thresholds or calculation of weights.

Semantics of parameters is currently represented through the position in the
issued request and association with the parameters of other requests that have
the same semantic type, however further incorporation of semantics into the
model is also planned.

References

1. Ashamala, J.: User modelling on the world wide web. Master’s thesis, Monash Uni-
versity, Melbourne (2004)

2. ASK-IT: Ambient Intelligence System of Agents from Knowledge Based and In-
tegrated Services for Mobility Impaired Users, Eurepean Union 6th Framework
project, http://www.ask-it.org

3. Gery, M., Haddad, H.: Evaluation of web usage mining approaches for user’s next
query prediction. In: Proceedings of WIDM 2003, pp. 74–81 (2003)

4. Haffner, E.-G., Roth, U., Engel, T., Meinel, C.: Modeling of time and document
aging for request prediction - one step further. In: Proceedings of Symposium on
Applied Computing ACM SAC, pp. 984–990 (2000)

5. Hastie, H., Tibshiranie, R., Friedman, J.: The elements of statistical learning.
Springer, Heidelberg (2001)

6. Kantardzic, M.: Data Mining, Concepts, Models, Methods and Algorithms. IEEE
Computer Society, Wiley-Interscience (2003)

7. Li, I.T., Yang, Q., Wang, K.: Clasification pruning for web request prediction. In:
WWW 2001. Proceedings of the 10th World Wide Web Conference (2001)

8. Mancini, E., Villano, U., Mazzocca, N., Rak, M., Torella, R.: Performance-driven
developement of a web services application using metapl/hesse. In: PDP 2005. Pro-
ceedings of 13th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, pp. 12–19 (2005)

9. Su, Z., Yang, Q., Lu, Y., Zhang, H.-J.: Whatnext: A prediction system for web
requests using n-gram sequence models. In: WISE 2000. Proceedings of the 1st
International Conference on Web Information System and Engineering, pp. 200–
207 (2000)

http://www.ask-it.org

Mining Personal Social Features

in the Community of Email Users

Przemys�law Kazienko and Katarzyna Musia�l

Institute of Applied Informatics, Wroc�law University of Technology,
Wyb.Wyspiańskiego 27, 50-370 Wroc�law, Poland
{kazienko, katarzyna.musial}@pwr.wroc.pl
http://www.zsi.pwr.wroc.pl/~kazienko

Abstract. The development of structure analysis that constitutes the
core part of social network analysis is continuously supported by the
rapid expansion of different kinds of social networks available in the In-
ternet. The network analyzed in this paper is built based on the email
communication between people. Exploiting the data about this commu-
nication some personal social features can be discovered, including per-
sonal position that means individual importance within the community.
The evaluation of position of an individual is crucial for user ranking and
extraction of key network members.

The new method of personal importance analysis is presented in the
paper. It takes into account the strength of relationships between net-
work members, its dynamic as well as personal position of the nearest
neighbours. The requirements for the commitment function that reflects
the strength of the relationship are also specified. In order to validate the
proposed method, the dataset containing Enron emails is utilized; first
to build the virtual social network and afterwards to assess the position
of the network members.

Keywords: email communication, user ranking, social network analysis,
personal importance, social features in community.

1 Introduction

The various kinds of e-commerce and e-business solutions that exist in the mar-
ket encouraged the users to utilize the Internet and available web-based services
more willingly in their everyday life. Many customers look for services and goods
that have high quality. Thus, not only the information provided by vendors is
important for potential customers but also the opinions of other users who have
already bought the goods or used the particular service. It is natural that users,
to gather other people opinions, communicate with each other via different com-
munication channels, e.g. by exchanging emails, commenting on forums, using
instant messengers, etc. This information flow from one individual to another
is the basis for the social network of users (SNU). This network can be repre-
sented as a directed graph, in which nodes are the users and the edges describe
the information flow from one user to another. One of the most meaningful and

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 708–719, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mining Personal Social Features in the Community of Email Users 709

useful issue in social network analysis is the evaluation of the personal impor-
tance within the network. Since the social network describes the interactions
between people, the problem of assessment the personal importance becomes
very complex because humans with their spontaneous and social behavior are
hard predictable. However, the effort should be made to evaluate their status
because such analysis would help to find users who are the most influential
among community members, possess the highest social statement and probably
the highest level of trust [12], [21]. These users can be representatives of the
entire community. A small group of key persons can initiate new kinds of ac-
tions, spread new services or activate other network members [18]. On the other
hand, users with the lowest position should be stimulated for greater activity
or be treated as the mass, target receivers for the prior prepared services that
do not require the high level of involvement. In order to calculate the position
of the user, the new measure called personal importance is introduced in the
further sections. It enables to estimate how valuable the particular user within
the SNU is. In contrary to the PageRank algorithm that is designed to assess
the importance of the web pages, the presented personal importance measure
take into account not only the significance of the direct connections of a person
but also the quality of the connection.

2 Related Work

The main concept of a regular social network can be described as a finite set
of nodes that are linked with one or more edges [10], [13], [24]. A node of the
network is usually defined as an actor, an individual, corporate, collective social
unit [24], or customer [26] whereas an edge named also a tie or relationship,
as a linkage between a pair of nodes [24]. The range and type of the edge can
be extensive [13], [24] and different depending on the type and character of the
analyzed actors.

The social networks of users somewhat differ from the regular ones and be-
cause of that they yield for new approaches to their definition and analysis. SNU
is also called an online social network [10], computer-supported social network
[25], or web community [11]. Note that there is no one coherent definition of
SNU. Some researchers claim that a web community can also be a set of web
pages relevant to the same, common topic [11]. Adamic and Adar argue that a
web page must be related to the physical individual in order to be treated as a
node in the online social network. Thus, they analyze the links between users’
homepages and form a virtual community based on this data. Additionally, the
equivalent social network can also be created from an email communication sys-
tem [1]. Others declare that computer-supported social network appears when a
computer network connects people or organizations [10], [25].

In order to analyze the social networks, the social network analysis (SNA)
should be performed. It focuses on understanding the connections among peo-
ple and the implications of these connections [24]. Thus, the main goal of SNA
can be defined as follows: “a methodology for examining the structure among

710 P. Kazienko and K. Musia�l

actors, groups, and organizations and aides in explaining variations in beliefs,
behaviours, and outcomes” [14]. SNA provides some measures useful to assess
the personal importance within the social network. To the most commonly used
belong: centrality, prestige, reachability, and connectivity [13], [24]. There exist
many approaches to evaluation of person centrality [9]: degree centrality, close-
ness centrality, and betweeness centrality. Degree centrality takes into account
the number of neighbors that are adjacent from the given person [13]. The close-
ness centrality pinpoints how close an individual is to all the others within the
social network [2]. It tightly depends on the shortest paths from the given user
to all other people in the social network. The similar idea was studied for hyper-
text systems [3]. Finally the betweeness centrality of a member specifies to what
extend this member is between other members in the social network [9]. Member
a is more important (in-between) if there are many people in the social network
that must communicate with a in order to make relationships with other network
members [13]. The second feature that characterizes an individual in the social
network and enables to identify the most powerful members is prestige. Prestige
can be also calculated in various ways, e.g. degree prestige, proximity prestige,
and rank prestige. The degree prestige takes into account the number of users
that are adjacent to a particular user of the community [24]. Proximity prestige
shows how close are all other users within the social community to the given
one [24]. The rank prestige [24], is measured based on the status of users in the
network and depends not only on geodesic distance and number of relationships,
but also on the status of users connected with the user [15].

Another popular measures used for internet analysis is PageRank, which was
introduced by Brin and Page to assess the importance of web pages [4], [6],
[7]. The PageRank value of a web page takes into consideration PageRanks of
all other pages that link to this particular one. Google uses this mechanism to
rank the pages in their search engine. The main difference between PageRank
and personal importance proposed in this paper is the existence and meaning of
commitment function. In PageRank, all links have the same weight and impor-
tance whereas personal importance makes the quantitative distinction between
the strengths of individual relationships.

3 Mining Personal Importance in the Community

Many different personal social features can be considered in the context of com-
puter communication. However, in this paper, we will focus on the centrality
measures, particularly on the personal importance. Before the new method for
personal importance measure is presented, the definition of social network of
users should be established.

3.1 Social Network of Users

The various kinds of definitions of the social network of users (see Sec. 2) yields
for the creation of one consistent approach.

Mining Personal Social Features in the Community of Email Users 711

Definition 1. Social network of users is a tuple SNU=(UID,R), where UID is
a finite set of non-anonymous user identities i.e. the digital representation of
a person, organizational unit, group of people, or other social entity, that com-
municate with one another or participate in common activities, e.g. using email
system, blogs, instant messengers. R is a finite set of relationships that join pairs
of distinct user identities: R = {(uidi, uidj) : uidi ∈ UID , uidj ∈ UID , i �= j}.
Note that relationships are asymmetric, i.e. (uidi, uidj) �= (uidj , uidi). The set
of user identities UID must not contain isolated members – with no relationships
and card(UID)> 1.

Fig. 1. Two social networks of users

The example of two separate social network of users is presented in Fig. 1. Note
that an individual human can simultaneously belong to many social networks in
the Internet. Moreover, they can also maintain several Users IDs – see person
d in Fig. 1. The user identity is a digital representation of the physical social
entity. These are objects that can be unambiguously ascribed to one person (in-
dividual identity), to a group of people or an organization (group identity). This
representation must explicitly identify the social entity (a user, group of users
or an organization). This mapping enables to define the connections between
social entities based on the relationships between their identities. An individual
identity possesses individuals, whereas a group identity corresponds to a group
of people, e.g. family that use only one login to the family blog, as well as to
an organization, e.g. all employees use one e-mail account to respond customers’
requests. Such group identities can by identified by content analysis.

A relationship connects two user identities based on their common activities.
Every social entity that is represented by the user identity can be conscious of
such relationship or not, depending on the profile of activities. Three kinds of
social relationships can be distinguished: Direct relationship – it connects two

712 P. Kazienko and K. Musia�l

user identities with a direct connector. The direct connector is an object that is
addressed to the specific type of user identities and related communication, e.g.
email addresses (user identities) are connected with messages exchanged among
them. Thus, the direct connector can be email communication, phone calls (or
VoIP), etc. Quasi–direct relationship – two user identities are aware of the fact
that they are in the relationship but they do not maintain the relationship, e.g.
people who comment on the same blog. Indirect relationship – the user identity
is not aware of the fact that is similar to other user identity. Two user identities
are connected by indirect relationship when their profiles are similar, e.g. people
who examine and similarly rate the same photos published in the Internet. The
examples of SNU based on the established definition are: a set of people who date
using an online dating system [5], a group of people who are linked to one another
by hyperlinks on their homepages [1], the company staff that communicate with
one another via email [8], [22], etc.

3.2 Personal Importance Evaluation

Based on the data derived from the source system, we can build a graph that
represents the connections between users and then analyze the position of each
person within such network. Nodes of the graph represent the users who interact,
cooperate or share common activities within the web-based systems while edges
correspond to the relationships extracted from the data about their common
communication or activities.

Definition 2. Personal importance function PI(a) of user a respects both the
value of personal importance of user’s a connections as well as their contribution
in activity in relation to a, in the following way:

PI (a) = (1 − ε) + ε · (PI (b1) · C(b1 → a) + ... + PI (bm) · C(bm → a)) (1)

where: ε — the constant coefficient from the range [0, 1], the same for all a ∈
UID. The value of ε denotes the openness of personal importance on external
influences: how much personal importance is more static (small ε) or more in-
fluenced by others (greater ε); b1,...,bm — acquaintances of a, i.e. users that
are in the direct relation to a; m — the number of a’s acquaintances;
C(b1 → a),...,C(bm → a) — the function that denotes the contribution in activ-
ity of b1,...,bm directed to a.

In general, the greater personal importance one possesses the more valuable this
member is for the entire community. It is often the case that we only need to
extract the highly important persons, i.e. with the greatest personal importance.
Such people surely have the biggest influence on others. As a result, we can focus
our activities like advertising or marketing solely on them and we would expect
that they would entail their acquaintances. The personal importance of a user is
inherited from others but the level of inheritance depends on the activity of the
users directed to this person, i.e. intensity of common interaction, cooperation
or communication. Thus, the personal importance depends also on the number

Mining Personal Social Features in the Community of Email Users 713

and quality of relationships. To calculate the personal importance of the person
within the social network the convergent, iterative algorithm is used. This means
that there have to be a fixed appropriate stop condition τ .

3.3 Commitment Function in Email Communication

The commitment function C(b → a) is a very important element in the process
of personal importance assessment, thus it needs to be explained in more detail.

Definition 3. The commitment funcion C(b → a) reflects the strength of the
connection from user b to a. In other words, it denotes the part of b’s activity
that is passed to a. The value of commitment function C(b → a) in SNU(UID,R)
must satisfy the following set of criteria:

1. The value of commitment is from the range [0; 1]: ∀(a, b ∈ UID)
C(b → a) ∈ [0; 1].
2. The sum of all commitments has to equal 1, separately for each user of the
network:

∀(a ∈ UID)
∑

b∈UID

C(a → b) = 1. (2)

3. If there is no relationship from b to a then C(b → a) = 0.
4. If a member b is not active to anybody and other n members ai, i = 1,...,n
are active to b, then in order to satisfy criterion 3, the sum 1 is distributed
equally among all the b’s acquaintances ai, i.e. ∀(a ∈ UID) C(b → ai) = 1/n.

Since the relationships are reflective and with respect to criterion 3, the com-
mitment function to itself equals 0: ∀(a ∈ UID) C(a → a) = 0. The example
of network of users with values of commitment function assigned to every edge
is presented in Fig. 2. According to the above criteria all values of commitment
are from the range [0; 1] (criterion 1) as well as the sum of all commitments
equals 1, separately for each user of the network (criterion 2). Moreover, there
is no relationship from b to a so C(b → a) = 0 (criterion 3). Note also that
user c is not active to anybody but b and d are active to c, so according to con-
dition 4, the commitment of c is distributed equally among all c’s connections
C(c → b) = C(c → d) = 1/2.

The commitment function C(a → b) of member a within activity of their ac-
quaintance b can be evaluated as the normalized sum of all contacts, cooperation,
and communications from a to b in relation to all activities of a:

C(a → b) =
A(a → b)∑m

j=1 A(a → bj)
(3)

where: A(a → b) – the function that denotes the activity of user a directed to
user b, e.g. number of emails sent by a to b; m – the number of all users within
the SNU. In the above formula the time is not considered. The similar approach
is utilized by Valverde et al. to calculate the strength of relationships. It is
established as the number of emails sent by one person to another person [23].

714 P. Kazienko and K. Musia�l

Fig. 2. Example of the social network of users with the assigned commitment values

However, the authors do not respect the general activity of the given individual.
In the proposed approach, this general, local activity exists in the form of de-
nominator in formula 3. In another version of commitment function C(a → b)
all member’s activities are considered with respect to their time. The entire time
from the first to the last activity of any member is divided into k periods. For
instance, a single period can be a month. Activities in each period are considered
separately for each individual:

C(a → b) =
∑k−1

i=0 (λ)iAi(a → b)
∑m

j=1

∑k−1
i=0 (λ)iAi(a → bj)

(4)

where: i — the index of the period: for the most recent period i = 0, for the
previous one: i = 1,..., for the earliest i = k − 1; Ai(a → b) — the function that
denotes the activity level of user a directed to user b in the ith time period, e.g.
number of emails sent by a to b in the ith period; (λ)i -– the exponential function
that denotes the weight of the ith time period, λ ∈ (0; 1]; k — the number
of time periods. The activity of user a is calculated in every time period and
after that the appropriate weights are assigned to the particular time periods,
using (λ)i factor. The most recent period (λ)i = (λ)0 = 1, for the previous one
(λ)i = (λ)1 = (λ) is not greater than 1, and for the earliest period (λ)i = (λ)k−1

receives the smallest value. The similar idea was used in the personalized systems
to weaken older activities of recent users [16].

One of the activity types is the communication via email or instant messenger.
In this case, Ai(a → b) is the number of emails that are sent from a to b in the
particular period i; and

∑m
j=1 Ai(a → bj) is the number of all emails sent by a

in the ith period. If user a sent many emails to b in comparison to the number
of all a’s sent emails, then b has greater commitment within activities of a,

Mining Personal Social Features in the Community of Email Users 715

i.e. C(a → b) will have greater value than other a’s neighbors. In consequence
personal importance of user b will grow. However, not all of the elements can be
calculated in such a simple way. Other types of activities are much more complex,
e.g. comments on forums or blogs. Each forum consists of many threads where
people can submit their comments. In this case, Ai(a → b) is the number of
user a’s comments in the threads in which b has also commented, in period i,
whereas the expression

∑m
j=1 Ai(a → bj) is the number of comments that have

been made by all others on threads where a also commented, in period i.

4 Experiment on Enron Dataset

The experiments that illustrate the idea of personal importance assessment were
carried out on the Enron dataset, which consists of the employees’ mail boxes.
Enron Corporation was the biggest energy company in the USA. It employed
around 21,000 people before its bankruptcy at the end of 2001. A number of other
researches have been conducted on the Enron email dataset [20], [22]. First, the
data has to be cleansed by removal of bad and unification of duplicated email
addresses. Additionally, only emails from within the Enron domain were left.
Every email with more than one recipient was treated as 1/n of a regular email,
where n is the number of its recipients. The general statistics related to the
processed dataset are presented in Table 1.

Table 1. The statistical information for the Enron dataset

No of emails before cleansing 517,431

Period (after cleansing) 01.1999-07.2002

No. of removed distinct, bad email addresses 3,769

No. of emails after cleansing 411,869

No. of internal emails (sender and recipient from
the Enron domain) 311,438

No. of external emails (sender or recipient outside Enron) 120,180

No. of distinct, cleansed email addresses 74,878

No. of isolated users 9,390

No. of distinct, cleansed email addresses from
the Enron domain (social network users) without
isolated members the set UID in SNU=(UID, R) 20,750

No. of network users within UID with no activity 15,690 (76%)

Percentage of all possible relationships 5.83%

After data preparation the commitment function is calculated for each pair of
members. To evaluate relationship commitment function C(a → b) both of the
presented formulas – 3 and 4 - were used. Formula 3 was utilized to calculate
personal importance without respecting time (PI) whereas formula 4 serves to
evaluate personal importance with time factor (PIwTF). The initial personal
importance for all members was established to 1 and the stop condition was as

716 P. Kazienko and K. Musia�l

Fig. 3. The number of iterations and processing time in relation to ε

Fig. 4. Average PI and PIwTF, standard deviation of PI and PIwTF, mean squared
error between PI and PIwTF calculated for different values of ε

follows τ = 0.00001. The personal importance without and with time coefficient
was calculated for six, different values of the ε coefficient, i.e. ε = 0.01, ε = 0.1,
ε = 0.3, ε = 0.5, ε = 0.7, ε = 0.9.

The conducted case study revealed that the time necessary to calculate the
personal importance for all users tightly depends on the ε value, i.e. the greater
ε is the greater processing time is (Fig. 3). The similar influence has the value
of ε coefficient on the number of iterations required to fulfill the stop condition.
Some additional information about the values of personal importance provides
the average personal importance within the SNU and the standard deviation of
both personal importance values PI and PIwTF (Fig. 4). The average personal

Mining Personal Social Features in the Community of Email Users 717

Table 2. The percentage contribution of members in the Enron social network with
PI ≥ 1 and PI where time factor is not included in relation to ε

ε 0.01 0.1 0.3 0.5 0.7 0.9

PI ≥ 1 6.973 6.973 6.188 5.494 2.251 0.906

PI < 1 93.027 93.027 93.812 94.506 97.749 99.094

Table 3. The percentage contribution of members in the Enron social network with
PIwTF ≥ 1 and PIwTF where time factor is not included in relation to ε

ε 0.01 0.1 0.3 0.5 0.7 0.9

PIwTF ≥ 1 5.865 4.723 4.443 4.371 4.173 0.906

PIwTF < 1 95.135 95.277 95.557 95.629 95.827 99.094

Fig. 5. The percentage contribution of members with PI≥PIwTF and PI<PIwTF
within the Enron social network in relation to ε

importance does not depend on the value of ε. In all cases, it equals around
1 (Fig. 4). It convergence to 1 is formally proved [19]. However, the standard
deviation differs depending on the coefficient ε value. The greater ε is, the bigger
standard deviation is. It shows that for greater ε the value of the distance between
the members’ personal importance increases, and this can be noticed for both
PI and PIwTF. It can be noticed that the value of personal importance PI for
over 93% (see also Table 2) and PIwTF for over 95% (see also Table 3) of the
community is less than 1 (see also Table 2). It means that only few members
exceed the average value that equals 1. This confirms that personal importance
can be the good measure to extract the key users in SNU [18]. The comparison
of the values of PI and PIwTF (Fig. 5) reveals that more users obtain higher
PIwTF position than PI. It means that people who have greater PIwTF were
more active in the latest periods. personal importance PI denotes the general
position of a user regardless of time. Hence, PI will be the same for a person a

718 P. Kazienko and K. Musia�l

that received n emails from b three years ago and for a user c that also received n
emails from b but all in the latest month. Such situation will not appear during
calculation of PIwTF. In such case the importance of user a will be lower then
of the user c, because the weight assigned to the earlier period will be lower than
the weight assigned to the latest period.

5 Conclusions

Personal importance of a user in SNU reflects the characteristic of the user’s
neighbourhood. Its value for a given individual respects both personal impor-
tance of the nearest acquaintances as well as their attention directed to the con-
sidered user. Thus, PI measure is an important personal social feature within
the community of members who communicate each other. It provides the oppor-
tunity to analyze the SNU with respect to social behaviours of individuals. This
personal importance appears to be a powerful measure, which can be success-
fully used to select users for project teams [18], find new potential employees,
search the consumers for advertising campaigns, recommender systems [17], and
finally for use in target marketing [26].

Acknowledgements

This work was partly supported by The Polish Ministry of Science and Higher
Education, grant no. N516 037 31/3708.

References

1. Adamic, L.A., Adar, E.: Friends and Neighbors on the Web. Social Networks 25(3),
211–230 (2003)

2. Bavelas, A.: Communication patterns in task – oriented groups. Journal of the
Acoustical Society of America 22, 271–282 (1950)

3. Botafogo, R.A., Rivlin, E., Shneiderman, B.: Structural analysis of hypertexts:
identifying hierarchies and useful metrics. ACM Transaction on Information Sys-
tems 10(2), 142–180 (1992)

4. Berkhin, A.: A Survey on PageRank Computing. Internet Mathematics 2(1), 73–
120 (2005)

5. Boyd, D.M.: Friendster and Publicly Articulated Social Networking. In: CHI 2004,
pp. 1279–1282. ACM Press, New York (2004)

6. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

7. Brinkmeier, M.: PageRank Revisited. ACM Transactions on Internet Technol-
ogy 6(3), 282–301 (2006)

8. Culotta, A., Bekkerman, R., McCallum, A.: Extracting social networks and contact
information from email and the Web. In: CEAS 2004, First Conference on Email
and Anti-Spam (2004)

9. Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

Mining Personal Social Features in the Community of Email Users 719

10. Garton, L., Haythorntwaite, C., Wellman, B.: Studying Online Social Networks.
Journal of Computer-Mediated Communication 3(1) (1997)

11. Gibson, D., Kleinberg, J., Raghavan, P.: Inferring Web communities from link
topology. In: 9th ACM Conference on Hypertext and Hypermedia, pp. 225–234
(1998)

12. Golbeck, J., Hendler, J.A.: Accuracy of Metrics for Inferring Trust and Reputation
in Semantic Web-Based Social Networks. In: Motta, E., Shadbolt, N.R., Stutt, A.,
Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 116–131. Springer,
Heidelberg (2004)

13. Hanneman, R., Riddle, M.: Introduction to social network methods (2006),
http://faculty.ucr.edu/∼hanneman/nettext/

14. Hatala, J.P.: Social Network Analysis in Human Resources Development: A New
Methodology. Human Resource Development Review 5(1), 45–71 (2006)

15. Katz, L.: A new status derived from sociometrics analysis. Psychometrica 18, 39–43
(1953)

16. Kazienko, P., Adamski, M.: AdROSA - Adaptive Personalization of Web Adver-
tising. Information Sciences 11, 2269–2295 (2007)

17. Kazienko, P., Musia�l, K.: Recommendation Framework for Online Social Net-
works. In: AWIC 2006. Studies in Computational Intelligence, vol. 23, pp. 111–120.
Springer, Heidelberg (2006)

18. Kazienko, P., Musia�l, K.: On Utilizing Social Networks to Discover Representa-
tives of Human Communities. International Journal of Intelligent Information and
Database Systems (to appear, 2007)

19. Kazienko, P., Musia�l, K.: Social Position of Individuals in Virtual Social Networks
(to appear, 2008)

20. Priebey, C.E., Conroy, J.M., Marchette, D.J., Park, Y.: Scan Statistics on Enron
Graphs. Computational & Mathematical Organization Theory 11, 229–247 (2005)

21. Rana, O.F., Hinze, A.: Trust and reputation in dynamic scientific communities.
IEEE Distributed Systems Online 5(1) (2004)

22. Shetty, J., Adibi, J.: Discovering Important Nodes through Graph Entropy The
Case of Enron Email Databases. In: 3rd International Workshop on Link Discovery,
pp. 74–81. ACM Press, New York (2005)

23. Valverde, S., Theraulaz, G., Gautrais, J., Fourcassie, V., Sole, R.V.: Self-
organization patterns in wasp and open source communities. IEEE Intelligent Sys-
tems 21(2), 36–40 (2006)

24. Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cam-
bridge University Press, New York (1994)

25. Wellman, B., Salaff, J.: Computer Networks as Social Networks: Collaborative
Work, Telework, and Virtual Community. Annual Review of Sociology 22, 213–238
(1996)

26. Yang, W.S., Dia, J.B., Cheng, H.C., Lin, H.T.: Mining Social Networks for Tar-
geted Advertising. In: HICSS 2006, Track 6, p. 137a. IEEE Computer Society, Los
Alamitos (2006)

http://faculty.ucr.edu/~hanneman/nettext/

Proofs of Communication and Its Application for
Fighting Spam�

Marek Klonowski�� and Tomasz Strumiński

Institute of Mathematics and Computer Science,
Wrocław University of Technology,

ul. Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

marek.klonowski@pwr.wroc.pl, tomasz.struminski@pwr.wroc.pl

Abstract. In this paper we present a communicational proof-of-work – a new
tool that can be used, among others, for filtering messages and limiting spam.
Our idea can be regarded as an analogue of regular proofs-of-work introduced
by Dwork and Naor. The idea presented in our paper is as follows: the prover
has to provide a convincing evidence that he had communicated with other, ran-
domly chosen entity. This approach is essentially different from previous proofs-
of-work, because fulfilling this requirement does not depend on resources owned
by the prover (e.g. sender) only. Thanks to this, even if the adversary (e.g. spam-
mer) has an access to much more efficient computers, he does not have any im-
portant advantage over regular, honest users of the system. We also demonstrate
some other applications of the presented idea as well as some extensions based
on its combination with regular proofs-of-work. Together with algorithms we also
briefly describe a proof of our concept i.e. working implementation. We present
some experimental data and statistics obtained during tests of our application.

1 Introduction

According to the latest statistics, as much as 85 to 95% of all e-mail messages are
spam nowadays [5]. The main reason for this situation is very low sender-side cost of e-
mail messages, which makes sending e-mails a perfect way of advertising. For average
users it has some serious consequences. First of all, spam lowers users productivity and
devalues an e-mail itself as a way of communication. Moreover spam increases costs of
e-mail related infrastructure – servers, anti-spam facilities etc.

Many approaches have been investigated to tackle spam problem, but the most im-
portant (and widely used) methods for detecting and removing spam are still based on:
source address filtering (blacklists, graylists and whitelists), keyword filtering (pattern
matching, Bayes filters) and e-mail address hiding (confusing harvesters). Keyword fil-
tering seems to be the most powerful among mentioned methods, but using it causes
the risk of classifying a legitimate e-mail as spam. Moreover, content filtering meth-
ods needs to be developed and upgraded constantly in order to achieve a high spam
� Partially supported by EU within the 6th Framework Programme under contract 001907

(DELIS).
�� Beneficiary of Domestic Grant for Young Scientists awarded by The Foundation for Polish

Science.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 720–730, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proofs of Communication and Its Application for Fighting Spam 721

detection rate. Recent outbreak of pdf spam (i.e. spam in pdf attachments) illustrates
how important are up-to-date methods. For now (August 2007), filters are not prepared
sufficiently to remove such spam from our mailboxes.

As an alternative for classical techniques, Dwork and Naor suggested new method
that makes sending spam more expensive and time consuming [1]. The core idea is as
follows: to each message an unique proof-of-work (POW) is attached. It is a short string
which is an evidence that the sender devoted some computational resources to create
a kind of electronic stamp. Checking validity of such a stamp should be easy for the
verifier. Moreover creating reasonable number of POWs should also be accessible for
regular user. However preparing bulk number of these stamps should be infeasible. This
idea can be realized for example by using simple, one-way hash function.

In this paper we extend an idea of POW. Our approach is essentially different from
previously presented proofs-of-work, because fulfilling its requirement does not depend
on resources owned by the prover (e.g. sender) only. Namely the sender has to prove
that he has communicated with particular entity designated in pseudorandom manner.
Similarly as in regular proofs-of-work, content of the message as well as some meta-
data like actual time and receiver’s identity is taken into account during pointing the
entity in order to ensure that previously created POW cannot be re-used for other mes-
sages. The implementation that we are going to present below is based on downloading
particular data from publicly accessible servers.

1.1 Organization of the Paper

In section 2 we briefly outline previous concepts. In particular we recall how regular
POWs can be used for fighting spam. We also mention other applications of POWs. In
section 3 we present the idea of proofs-of-communication outlined above. Section 4is de-
voted for presenting the implementation of our concept as well as short analysis of experi-
mental results. We point out possible threats and drawbacks of proofs-of-communication
in section 5. In section 6 the promising idea of realization proof-of-communication sys-
tem in P2P networks is shortly presented. We conclude in section 7.

2 Previous Works

In 1992 Dwork and Naor proposed first proof-of-work scheme for controlling access to
a shared resource [1] based on computation of a pricing function. Authors suggested
several pricing functions with different computational complexity: extracting square
roots modulo prime number, function based on the Fiat-Shamir signature scheme, and
on the Ong-Shnorr-Shamir signature scheme.

Independently, Back described and implemented the Hashcash – the system for mak-
ing a computational proof of works based on partial collisions of the SHA-1 hash func-
tion [2]. The idea of spending processor time to prove a good intention of the sender
was the same as presented in Dwork and Naor article.

An important property of all proof-of-work protocols is that they provide task that is
relatively difficult to solve, but it is easy to verify the correctness of its solution. Compu-
tational proof-of-works can be computed completely off-line, however the time needed

722 M. Klonowski and T. Strumiński

to accomplish the computation hardly depends on processing power. To address this
problem, Dwork, Goldberg and Naor proposed usage of a memory-bound functions [3].
To efficiently compute values of these functions one needs also memory as a resource.
For that reason it is not possible to produce such POWs having fast processor only.

There were also doubts if proof-of-work systems can help fighting the spam in real
world scenarios[9]. Laurie and Clayton estimated how long should a creation of a proof
take to have a noticeable impact on spammers’ profits. Their calculations led to conclu-
sion, that the time needed for making such a proof is unacceptable for honest users [9].

2.1 Proofs-of-Work for Fighting Spam

To show how proof-of-works are computed let us recall Hashcash system [2]. To send
a message message at time time to destination recipient, the sender needs to find
k such that the l most significant bits of y = SHA-1(time||message||recipient||k)
are zeros. The easiest way to do this is to choose the random k and check if l most
significant bits of y are in fact zeros. The pseudocode of this procedure is shown below.

// computing a Hashcash proof-of-work
// l is a parameter indicating the hardness of this proof-of-work
function ComputeProofOfWork(message, recipient, time) : k;
begin

do
trial := Random();
hashed := SHA-1(time||message||recipient||trial);
zeros := CountMostSignificantZeros(hashed);

while (zeros < l);
return trial;

end;

When following this procedure, the average number of random tries for finding ap-
propriate k is 2l−1. After successful computation, k is attached to an e-mail as a proof-
of-work. The recipient makes usage of attached proof k and computes the hash function
only once to check if the l most significant bits are zeros in fact. If the proof is correct,
the e-mail message is found to be legitimate.

2.2 Other Applications of POWs

Except fighting spam Proofs-of-work have several other applications. Among others
they can be used for preventing denial-of-service attacks [7], providing incentives in
peer-to-peer systems [6] and metering visits to websites [8]. Generally, access control
provided by a POW systems can be used in other situations in which it is important to
limit access to shared resources or services.

2.3 Disadvantagies of Computional Proofs-of-Work

The main idea of using proof-of-works for fighting spam is to increase the reliability of
legitimate e-mail by attaching them with an evidence of using sender’s resources. Up

Proofs of Communication and Its Application for Fighting Spam 723

to now, the processor time was the only resource considered to be useful for making
such an evidence and thus, all proof-of-works developed so far can be described as
computational proof-of-works.

However this kind of proof delays sending e-mail messages for average user, it can
be computed faster if only spammer decided to use a better processor. It is one-time
investment and it may guarantee him that the future effort of computing proof-of-work
will be only slightly increased (compared to sending e-mails without attached proof).

3 Proofs-of-Communication

In this section we introduce proofs-of-communication or POC, for short. Instead of com-
puting a moderate hard function [1], a sender is required to process the communication
with randomly chosen entity for proving his good intention. In this case the resource used
for making a proof is an access to information, i.e. access to some data that can be re-
trieved from the Internet (or other Network). The creation of those proofs is constrained
by both sender’s and data owner’s throughput (i.e. throughput of Internet connections),
so unlike computational POWs, proofs of communication do not depend only on resource
under sender sole control. We believe this property helps with fighting spam, because a
simple increase of spammer’s throughput will not help him with faster proofs creation.

There are several more advantages of using proofs-of-communication: they do not
depend on processor speed and they can be combined with other proof-of-works (i.e.
with computational POW). On the other hand, the communication overhead is the most
important drawback of POC systems. Potential disadvantages of POC are discussed in
section 5.

It is needed to mention that usage of POC apart will not rather be a solution for a
spam problem in a real world. Instead, we find POC to be a tool, that combined with
other antispam methods may significantly help fighting spam.

3.1 Requirements

Proof-of-communication have to meet several requirements analogical to those defined
for regular proofs-of-work in [1]. In particular

1. for a given e-mail it should be moderately hard to create a POC,
2. with given POC and an e-mail it should be very easy to check if POC is correct,
3. any preprocessing should not essentially help to create POC.

Moreover proof-of-communication should meet some additional requirements spe-
cific for POCs:

low traffic generation – additional communication load caused by creating POCs
should be negligible for all parties operating in the system except the POC creator.

dynamic content tolerance – if creation and verification of POC is based on down-
loading particular data, proposed solution should take into account that some con-
tent can be dynamically changed in the period between POC creation and its veri-
fication.

no dedicated infrastructure – solutions should be based only on existing servers and
communicational patterns.

724 M. Klonowski and T. Strumiński

3.2 Internet/HTTP-Based POC

In this section we present a simple realization of proof-of-communication dedicated for
the Internet and based on HTTP protocol. The idea is as follows: from prepared e-mail
body, timestamp, recipient’s and sender’s address sender generates a list of webpage lo-
cations and after transfering all documents from these addresses, he calculates a kind of
digest from them. The digest is then attached to an e-mail as a proof-of-communication.
The verifier checks the attached proof following the sender’s procedure, with the ex-
ception that he does not transfer all the documents from generated locations but only its
randomly chosen, relatively small subset.

The description above is still not quite exact, but it shows the general concept and
leads to following actions that will be investigated more precisely later:

– generating a random list of webpage locations for particular e-mail,
– making a digest from transfered documents,
– verifying proof attached to an e-mail.

3.3 Procedures

Location Generation. Firstly, we need to generate a list of locations from the e-mail
body, sender’s and recipient’s addresses and a timestamp. We must assure, that this lo-
cations are generated in unpredictable for the sender manner, i.e. manipulating e-mail
body etc. does not enable sender to get a list of locations that he wants. For that rea-
son collision–free hash function is used. In the next step we must generate a concrete
location from series of pseudorandom bytes. One of possible solutions is to map pseu-
dorandom bits into subset of words from simple, commonly used dictionary and than
use a web page indexing service (search engine). Careful design of query should results
in millions of possible web locations. To generate a list of locations, we simply iterate
hashing function on a concatenated input.

A pseudocode of generating locations list is as follows:

// generating web locations list from an e-mail
function GenerateLocations(message, sender, recipient, time, n) : locations;
begin
i := 0;
byteSequence := time||message||recipient||sender;

do
byteSequence := Hash(byteSequence);
word := dictionary[byteSequence mod dictionarySize];
additionalData := ExtractData(byteSequence);
query := MakeQuery(word, additionalData);

// get first location returned by indexing service
locations[i] := SearchService(query);
i := i + 1;

while (i < n);
return locations;

end;

Proofs of Communication and Its Application for Fighting Spam 725

Careful preparation of the right parameters in this procedure seems to be a key point
in POC-system design. Some details can be found in the description of our implemen-
tation in section 4.

Preparing Proofs. After transferring resources from generated locations, the next im-
portant step is to make a short digest, that would be attached to an e-mail as a proof. This
digest is made using all transfered resources. On the other hand system must guarantee
flexibility in the sense that attached proof would be accepted with significant proba-
bility, even if some of designated resources have changed in the period between POC
creation and its verification.

This problem can be solved using some small range hash functions (e.g. regular hash
function with the range truncated to only few most significant bytes). After hashing
every transfered resource, we simply concatenate them into one list of bytes.

A pseudocode for this solution is shown below:

// makes proof from transfered resources
function MakeProof(resources) : proof;
begin

i:=0;
do

proof := Concatenate(proof, Hash(resources[i]);
i := i + 1;

while (i < resourcesNumber);
return proof;

end;

Verifing POC. An efficient verification procedure is essential for every proof-of-work
system as well as for proof-of-communication. To provide efficiency as well as high
level of correctness we assume that the verifier downloads only random subset of the
content pointed by the hash function. This trick is similar to approach for verifying
MIX-servers behavior described in [4].

Below we show a pseudocode for verifying proofs-of-communication.

// verifies the given proof, checks only subsetSize resources,
// for completly correct proof returns 1
function Verify(proof, subsetSize, message, sender, recipient, time, n) : real;
begin

i := 0;
correctParts := 0;
locations := GenerateLocations(message, sender, recipient, time, n);
// generate a random subset of 0, ..., n-1
subset := GenerateSubset(0, n, subsetSize);
do

// proof[n] returns a n-th part of proof
if (proof[i] == Hash(resources[subset[i]])

correctParts := correctParts + 1;

726 M. Klonowski and T. Strumiński

while (i < n);
return (correctParts / subsetSize);

end;

Assume that sender wants to cheat and does not transfer all resources needed to make
a proof. Let f be the number of resources’ digest forged by the sender, k be the number
of resources which correctness is checked by the verifier and n be the number of all
resources used for making a proof, then the probability of founding the forgery is

Pr(forgery found) = 1 − Pr(forgery not found) =

= 1 −
(

n − f

k

)/(
n

k

)
= 1 − (n − f)!(n − k)!

n!(n − k − f)!
.

(1)

Using the equation above, we can easily calculate the number of resources that
should be checked by the verifier, so that cheating would be unprofitable for sender
and the communication effort for the verifier would be still low.

If we need a verification procedure that returns value from the interval [0, 1], the
correctness indicator can be used - i.e. the ratio of correct answers. However, sometimes
we may need verification that returns true for correct proof and false when attached
proof should be treated as incorrect. In this situation the threshold value needs to be
determined. It cannot be too low, because spammers may forge proofs, but also cannot
be too high, because some correct proofs may rely on higher then average numbers of
dynamic pages. The concrete threshold value would depend on proof parts count and
the number of parts checked in verification procedure. In our experiments proofs were
composed from 20 parts and during the verification we randomly checked 5 of them.
We agreed, that in this situation, all proofs with correctness indicator greater or equal
to 0.4 should be treated as correct.

4 Proof of Concept

To show that proofs-of-communication may work even in a presented, simple form, we
implement working system in Java. Our system consists of two packages: one for creat-
ing and verifying proofs-of-communication in general, and the second one for sending
and receiving e-mails with attached proofs.

Our implementation covers exactly the idea presented above, but for precision we
list some specific details of the application below:

– we have chosen SHA-1 as a hash function; when we need a hash function with
a small range, we take only few most significant bits from the output of SHA-1
(depended on contex in which we used hash function, e.g. while generating queries
for Google we used SHA-1 truncated to 40 most significant bits),

– as a indexer service we have chosen Google, because it has indexed the amount of
unique resources, which guarantee impossibility of collecting them by spammers;
we have made usage of Google’s ”I’m feeling lucky” option, which redirects the
request to the first web page found,

– queries for the indexer service are generated using a word from an English dictio-
nary and the pseudorandom number (the pseudorandom number was obtained from
hashed e-mail),

– to limit the time needed for creating POC, we limit the size of any resource to 2MB.

Proofs of Communication and Its Application for Fighting Spam 727

4.1 Experimental Results

Experiments with working implementation of our idea results in some interesting ob-
servations. Although obtained results refer to our particular proposal and not to proof-
of-communication in general, they can be instructive for further models.

Stability of Webpage Positions. We silently assumed that positions of webpages (or
other resources) would not change between creating and verifying proofs. In other
words, to make a verifiable proofs we need our indexer service to return the same lo-
cations for certain words for at least, say 24 hours (assumed time between sending and
receiving an e-mail).

To check if our assumption was correct, we decided to check the stability of webpage
positions in Google. The testing procedure was as follows:

1. we generated a random e-mail message M ,
2. for message M we computed and collected 2,000 webpage locations using proce-

dure GenerateLocations described before,
3. after 24 hours, we once again computed 2,000 webpage locations for message M .

Our test show that 1976 (it is about 98.8%) webpage locations was the same as
generated from the same words 24 hours before. It means that the stability of webpage
positions is high enough to use it in proof-of-communication system.

Dynamic Pages. As shown above, changes in webpage positions have not high influ-
ence on a proof-of-communication repetitiveness. Dynamic pages seem to be a much
greater problem. In order to create a verifiable proof, we need to ensure, that any re-
source transfered from generated locations two times would contain the same data.
Nowadays, when almost every webpage has some dynamic content, it can be a real
issue.

To measure the repetitiveness of generated proofs we made usage of correctness
indicator, i.e. the number of correct parts of proof divided by the total numbers of parts.
We repeated the following procedure 500 times

1. we generated a random e-mail message M ,
2. we obtained a proof-of-communication POC1 for the message M following all

mentioned procedures,
3. once again we followed all procedures in order to get proof POC2,
4. we assumed POC1 to be a model proof and we computed the correctness indicator

for POC2.

We built a histogram of repetitiveness distribution using computed correctness indi-
cators, which is shown in figure 1. The average repetitiveness for proofs-of-
communication based on investigated samples was 0.67 (on average 67% of again gen-
erated proofs was the same as generated previously), while the minimal repetitivness
was 0.2 (for some proof POC2 matched with POC1 in 20% only). It is worth to men-
tion that, the queries used to generate the webpage location were built exactly in a way
described in the previous section.

728 M. Klonowski and T. Strumiński

Fig. 1. Distribution histogram of the proof-of-communication repetitiveness

The low repetitiveness of generated proofs is caused by the dynamic contents of
webpages. In order to improve the situation, we decided to add a file format filter to
generated queries, which would constrain the search results to ”html” files only. Then
we repeated the whole repetitiveness test. The average repetitiveness has grown up to
0.76. What is more, the minimal repetitiveness was as high as 0.45, which is a far better
result then in the previous test. The histogram of repetitiveness distribution for proofs
with extended queries is shown in figure 1.

5 Potential Threats and Drawbacks

The usage of proof-of-communication system is obviously connected with a commu-
nication overhead. For systems, in which lots of proofs would be created, the increase
of network traffic can become a real issue. What is more, there are some potential situ-
ations in which the creation of proofs-of-communication would be too expensive for a
regular user (e.g. when user has to pay for the amount of data transfered from Network).

The other threat for proof-of-communication users is a possibility of DoS attack.
Assume that the attacker sends hundreds of e-mails with faked proofs and the receiver
checks every one of them. If the verification requires significant amount of computa-
tion, it can slow down or even completely block receiver’s network connection. In our
particular proposal situation can be even worse – the high number of faked proofs re-
sults in the high number of queries for Google and that may leads to a ban from Google

Proofs of Communication and Its Application for Fighting Spam 729

web search. In order to protect from DoS attacks, we suggest combining proofs-of-
communication with computational proofs-of-work – i.e. only if POW is valid than
POC is taken into account. Thanks to this trick, the adversary is not able to to force his
victim to verify number of POC so easily.

6 Proofs-of-Communication in P2P Networks

Proofs-of-communication seems to be very useful in P2P-networks. Since operations
like searching, transferring and consistency checking are already implemented for P2P-
networks, only small changes in protocols and clients’ software would be needed.

Some improvements we can achieve when using P2P-networks for creating POC
instead of HTTP are as follows:

– higher efficiency for verification of POC; we assume, that in P2P-networks we can
ask resource’s owners about its digest,

– easier generating of resources’ addresses; In particular in DHT paradigm (like
Chord or CAN), instead of using indexing service, we could make usage of search-
ing for resource with given hash,

– higher repetitiveness of POC; resources in P2P-networks are more static then web-
pages – they may appear or disappear but they rather are not changed,

– more fair load balance; instead of utilizing webpage servers, the real clients are
involved in creating of POC in P2P-networks.

7 Conclusions

We described a new kind of proving ”electronic efforts” and proposed it as a tool for
fighting spam. In this proposal the prover (spammer) have limited possibilities of taking
advantages over regular users, since creating of proof does not entirely depend on re-
sources owned by him. This property can make spamming even more unprofitable than
in case of using computational proof-of-works. Of course, the presented idea have some
drawbacks. However we believe that this tool can be very efficient and powerful when
combined with other mechanisms e.g. regular computational proof-of-works. We have
also pointed out some other possible applications for POCs. Especially using them in
P2P networks seems to be very promising.

References

1. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, p. 139. Springer, Heidelberg (1993)

2. Back, A.: The Hashcash Proof-of-Work Function Network Working Group, INTERNET-
DRAFT (2003), http://hashcash.org

3. Dwork, C., Goldberg, A., Naor, M.: On Memory-Bound Functions for Fighting spam. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Heidelberg (2003)

4. Jakobsson, M., Juels, A., Rivest, R.L.: Making Mix Nets Robust For Electronic Voting By
Randomized Partial Checking. In: Proceedings of the 11th USENIX Security Symposium, pp.
339–353 (2002)

http://hashcash.org

730 M. Klonowski and T. Strumiński

5. Spam-o-meter Statistics By Percentage: Spam statistics,
http://www.spam-o-meter.com

6. Serjantov, A., Lewis, S.: Puzzles in P2P Systems. In: 8th CaberNet Radicals Workshop, Cor-
sica (2003)

7. Mankins, D., Krishnan, R., Boyd, C., Zao, J., Frentz, M.: Mitigating Distributed Denial of Ser-
vice Attacks with Dynamic Resource Pricing. In: ACSAS 2001. Proceedings of 17th Annual
Computer Security Applications Conference (2001)

8. Franklin, M.K., Malkhi, D.: Auditable Metering with Lightweight Security. In: FC 1997.
LNCS, vol. 1318, pp. 151–160. Springer, Heidelberg (1997)

9. Laurie, B., Clayton, R.: ”Proof-of-Work” Proves Not to Work. In: WEIS 2004. Proceedings of
the Workshop on Economics and Information Security (2004),
http://www.cl.cam.ac.uk/%7Ernc1/proofwork.pdf

http://www.spam-o-meter.com
http://www.cl.cam.ac.uk/%7Ernc1/proofwork.pdf

Web Pages Reordering and Clustering

Based on Web Patterns

Miloš Kudělka1, Václav Snášel1, Ondřej Lehečka1,
Eyas El-Qawasmeh2, and Jaroslav Pokorný3

1 Department of Computer Science, VŠB – Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{milos.kudelka, vaclav.snasel, ondrej.lehecka}@vsb.cz
2 Computer Science Dept., Jordan University of Science and Technology,

Irbid, Jordan
eyas@just.edu.jo

3 Depatment of Software Engineering, Charles University of Prague,
Czech Republic

pokorny@ksi.ms.mff.cuni.cz

Abstract. In this paper was proposed a method for the description of
web pages using web patterns. We will explain what we mean by the
term ”web pattern”. We will present a taxonomy web patterns and a
description of some their types. In the description of web patterns we
will focus on properties which are useful for automatic detection on web
pages. As a result of the detection we get a description of a web page
using found web patterns. The description can be used for reordering
and clustering of a web page set.

1 Introduction

One way to assist the user, in orientation within a big amount of non-structured
data, is clustering according to common key properties. The biggest problem,
however, remains in the definition what is the key property which is useful for
definition of similarity [12]. In our approach, we work with web pages and web
patterns which are presented on these web pages. The web patterns provide, on
a certain level, a formalized mechanism for the description of common features
of an object which is commonly visible on web pages. For this purpose we have
developed some new web patterns, extended web pattern description, and created
their taxonomy. The obvious assumption of web page availability is its presence in
search engines indexes. The presence of the web page in the index does not mean
that the page is always available through simple query. Different methods are
used for measuring the relevance of a web page against the query. Considering the
huge amount of web pages, it is obvious that current methods are not sufficient.
One important feature of our approach is that it provides new information about
web pages which is not currently used, but the information is readable for users
(users understand it). Using this information, it is possible to provide additional
criteria for gauging the relevance of the web page, and for comparing these

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 731–742, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

732 M. Kudělka et al.

criteria to user expectations. Our tests and experiments with users [10,18,11]
prove the presented approach can assist with orientation of a large amount of
nonstructural data. If we can reveal which web patterns a web page contains,
user can immediately create a notion of the kind of information they can expect
(see Fig. 1). Web patterns are detected using analysis and segmentation of text
content [10]. The entire process is displayed in Fig. 2.

Fig. 1. A sample of three searched pages on the query ”nokia” in our experimental
search engine www.pattrio.net. There is a ”tie-on label” on the right side of each web
page. The label contains a list of automatically detected web patterns (font weight
was used to designate the relevance of the detection; bold font is designating high
relevance). Web page snippets contain best segments from the web patterns found on
the page. The segments are highlighted in italics.

HTML
Extraction

Text
tokenizing

Pattern
segments
extraction

Pattern
segments
evaluating

Pattern
weight

evaluating

Fig. 2. Web pattern detection process

The rest of the paper is organized as follows. Section 2 presents related work.
Section 3 introduces the web patterns basics. Section 4 presents samples of web
patterns from our pattern catalogue. In section 5, we describe page similarity
based on web patterns. Section 6 and 7 contain a description of experiments and
a results analysis. Section 8 is our conclusion.

2 Related Work

In the field of non-structured data analysis there are various approaches (for
example information retrieval, semantic web, information extraction . . .). The
construction of web information extraction systems is an approach similar to
ours. There web pages are transformed into program-friendly structures such
as a relational database. In our approach we need to analyze the structure and
templates of the web page. The survey of major web data extraction approaches
is presented in [3]. An interesting approach is mentioned in [12]. By empirically

Web Pages Reordering and Clustering Based on Web Patterns 733

studying web pages across web sites about the same type of objects, the authors
found out many HTML template independent features. In [13] there is presented
a method for extracting objects from the web. The authors have written that
the main challenge for extraction is that objects of the same type are distributed
among diverse web sources, whose structures are highly heterogeneous. In this
point our method is related to theirs. The next approach related to ours is de-
scribed in [21]. The authors propose a vision-based page segmentation algorithm
to detect the semantic content structure in a web page. The next similar approach
is mentioned in [8]. It analyzes chosen parts of pages to obtain structured do-
main specific information (tourism domain). Other similar approaches are based
on an automatic transformation of arbitrary table-like structures into knowledge
models [14] or domain-oriented approach to web data extraction based on a tree
structure analysis [15]. There is an interesting conjunction with the paper [7]. Its
authors analyzed web pages focusing on web site patterns. In three different time
intervals they observed how web designers have changed web design practices.
They also realized that the content of web pages remains the same whereas a
form is being developed so it better fulfils users’ expectation. Our work confirms
results mentioned in the paper. For us such characteristics of web patterns that
are independent of the web page design are very important.

3 Web Pattern

In this section, we first introduce the concepts of a web pattern and pattern
extraction. By the term ”web pattern” we mean any high-level object which is on
a certain (relatively high) level of abstraction presented often and repeatedly on
web pages. We especially consider the web pattern only such an object which can
be named, so it is clear from the name what the pattern describes (both users and
developers should agree on this). Examples of such web patterns are the Price
information pattern or the Purchase possibility pattern (see their descriptions
below). These web patterns come along with pages about selling products or
services. Both mentioned web patterns provide semantic information to the user.
This is one of the key features. There are also web patterns which do not contain
any semantic content. An example of such a web pattern can be the Something to
read pattern describing pages which contain a bigger amount of text. Another
example is the Link list pattern which describes pages containing a group of
links. Descriptions of those web patterns can be also found below. It is very
important to state, for the purpose of this paper, that we only work with those
web patterns which can be automatically found on a web page based on their
description with a relatively high relevance. For example, the Welcome page can
also be considered a web pattern. However, the detection of this pattern would
be much more difficult (or even impossible due to the designer creativity).

3.1 Web Pattern Taxonomy

We divide web patterns into two groups (many details about patterns and pat-
tern classification are in [4]). In first group there, are web patterns providing

734 M. Kudělka et al.

semantic information to the user (Domain patterns). This information is con-
nected to a certain domain which the page and expected users belong to. The
domain is considered to be composed by web pages with specific content, and
users with specific requirements and expectations. The selling product and ser-
vices domain, tourism domain, culture domain, newscast domain, etc., can serve
as examples of domains. The advantage of mentioned domains is that there are
a lot of patterns described in domain catalogs [6,19]. Some web patterns which
we use in our approach are adopted from these catalogs. The second group con-
tains web patterns independent of a domain. They describe more structural and
technical features of typical solutions (Structural patterns).

3.2 Pattern Description and Structure

Patterns are designated for users (web designers in this case) who work with
them and use them in production. A pattern description is composed from parts
and each part describes a specific pattern feature. Authors usually use the pat-
tern structure introduced in [1]. In the description there is a pattern name,
problem description, context, solution and examples of use. Usually, these are
also consequences of the use of the pattern and related patterns which relate
somehow with the pattern being used. For our description we use the section-
oriented structure originated by Kent Beck (http://c2.com/cgi/wiki?BeckForm).
There is also a Forces section describing details which can help in the auto-
matic detection of web pattern on a web page. The description of such de-
tails is derived from our experiments with web pattern detection in a large
amount of web pages. This description also helps us to understand how to de-
sign detecting algorithms. The example descriptions and examples themselves,
presented in a Solution section show how different designers can proceed in
the implementation of pages. In the following text, we will describe some web
patterns.

Title: An appropriate pattern name.
Problem: A single brief sentence describing the problem which pattern solves.
Context: A list of situations where the pattern occurs.
Forces : A list of details which influence the pattern identification. We are focus-
ing especially on features useful for automatic detection.
Solution: Description of the solution with examples.

The related patterns are also very important. If there is such a pattern name
in the description, we highlight it in italic for clarity.

4 Web Pattern Samples

We choose patterns from a collection (or corpus) C which we use for automatic
detection on web pages. We use more than twenty web patterns (domain and
structural) for the analysis. We choose three domain and two structural patterns.

Web Pages Reordering and Clustering Based on Web Patterns 735

4.1 Domain Patterns

Price Information
Problem: How can sales information be displayed to the user, graphically?
Context : Selling products, services, etc.
Forces : A lone page fragment is usually bound to a small space. Keywords are
used to label a price. Numbers are used with currency symbols. A picture is
displayed near the product description on the page. All mentioned elements are
displayed within a small space for a current product offer.
Solution: In different contexts there should be more different implementations. It
is the case of pages with a single offer or pages with more offers (a catalogue with
offers). The patterns may occur at a page border as an advert. The pattern is
usually present with patterns Purchase possibility, Special offer and Repayment.
See Fig. 4(a) (left).

Technical Details
Problem: How can a product’s technical details be shown lucidly?
Context : Selling products like electronics, appliances (fridge, etc.). Personal web-
site (for example a product fan). Manufacturer’s website.
Forces : A page fragment with a headline and a list of single rows describing prod-
uct parameters. Key words labeling details section on the page (details, param-
eters. . .). Keywords labeling parameters (size, weight, frequency. . .). Numbers
in combination with unit s symbols (cm, kg, MHz. . .). All mentioned pattern
elements are placed on a larger section of the page so the user can read them
continuously.
Solution: Usually an implementation using a table layout (or similar technology
leading to the same-looking result) is used. If the pattern is on a selling product
website there are usually Purchase possibility, Selling information patterns and
often Login pattern. See Fig. 4(a) (right).

Discussion (Forum)
Problem: How can a discussion about a certain topic be held? How can a sum-
mary of comments and opinions be displayed?
Context : Social field, community sites, blogs, etc. Discussions about products
and service sales. Review discussions. News story discussion.
Forces : A page fragment with a headline and repeating segments containing in-
dividual comments. Keywords to labeling discussion on the page (discussion,
forum, re, author,. . .). Keywords to labeling persons (first names, nicknames).
Date and time. There may be a form to enter a new comment. Segments with
the discussion contributions are similar to the mentioned elements view, in form.
Solution: Usually, an implementation using a table layout with an indentation
for replies (or similar technology leading to the same-looking result) is used.
The pattern is often together with the Login pattern. If the pattern is on a
selling product website there are usually Purchase possibility, Price information
patterns. The pattern can be alone on the page. In other case there is also the
Something to read pattern. In different domains the pattern can be displayed
with patterns Review, News, etc. See Fig. 4(c).

736 M. Kudělka et al.

4.2 Structural Patterns

Something to Read
Problem: How can text be lucidly displayed on the web page?
Context : The pattern is used often and regardless of the domain.
Forces : A fragment occupying almost a whole page. There are usually longer,
continuous paragraphs. If the text is long there can be a short heading among
some paragraphs. Within paragraphs, there may be a few links or images.
Solution: It is simply implemented using line spacing and headings of a certain
level. See Fig. 4(c).

Link List
Problem: How to lucidly show list of links to related pages?
Context : The pattern is used often and regardless of the domain.
Forces : The page fragment with links. Each link is usually in the form of in-
telligible text within the scope of single sentence (few words). Each link can be
appended with a short text or URL address. Each link is on a single row.
Solution: There is usually implementation with single continuing rows or a simi-
lar strategy leading to the same-looking result (for example using enumerations,
lists, table layouts). See Fig. 4(d).

5 Page Similarity

5.1 Human View

With the assumption that it is possible to detect web patterns automatically
on the web pages, it is possible to describe each page with the patterns. Using
pattern names the description may look like this example: ”The page contains the
Price information, the Purchase possibility and the Special offer. There are also
Technical details and the Discussion at the bottom.” Using such a description,
the user does not know which product is presented on the page. However, the
user, as well as the page designer, can imagine how the page looks. So the
group of patterns characterizes a relatively wide set of pages which has a similar
purpose (and belongs to the same domain). We call such a group of patterns a
page profile.

5.2 Technical View

Concerning pattern detection, in the paper [10] we provided a general descrip-
tion of algorithm based on Gestalt principles (proximity, closure, similarity, con-
tinuity [19]). The algorithm can detect domain patterns on web pages with a
high relevance (about 80%). As described above the algorithm makes the con-
tent segmentation and segment extraction of a web page, segment evaluation
and evaluation of relevance (weight) of the found pattern. In page segmentation
we work with dynamic generated dictionaries of patterns containing frequently

Web Pages Reordering and Clustering Based on Web Patterns 737

used words and data types in the pattern context. In the papers [5,20] was pro-
posed algorithm for identification of design patterns as part of the reengineer-
ing process. The identification of implemented design patterns could be useful for
the comprehension of an existing design and provides the ground for further im-
provements. This idea is very similar to our approach. For the detection of struc-
tural patterns we use specialized algorithms. In the HTML code extraction phase,
we preserve only few elements for example links and paragraphs. These elements
are foundations for algorithms design. Page representation is in the vector model
[16,17]. There a document (web page) Wj ∈ W (a collection of web pages) is repre-
sented as a vector wj of pattern weights, which record the extent of importance of
the pattern for the web page. To portrait the vector model, we usually use an n×m
pattern-by-page matrix A, having n rows pattern vectors p1, . . . , pn where n is the
total number of patterns in collection C and m columns page vectors w1, . . . , wm,
where m is the size of collection W . The dimension n is never too big. The source
for patterns is a catalogue C. These catalogues are not too large. However, the
web patterns are not described with regard to automatic detection. This is a rea-
son why we have our own catalogue and describe web patterns according to the
patterns described in our paper. Weights of patterns are obtained as the result of
the pattern detection algorithm application. Such a value determines the level of
certainty whether a searched pattern was detected on th e web page (a pattern
weight). The similarity between two web page vectors wj and wk can be deter-
mined by computing the cosine of angle between them:

Sim(wi, wj) =
wi · wj

||wi|| · ||wj ||

6 Experiment: Reordering

We wanted to prove our approach with a chosen set of users. We were interested
in whether the automatic web pattern detection on web pages may be useful
for the users. It may help then with orientation while searching through a vast
amount of web pages. We designed an experimental web interface which is similar
to a common search engine (www.pattrio.net). In the interface the user could
write a query in a common way. For the purpose of this experiment we use data
provided by the Czech search engine www.jyxo.cz. After that the search engine
returned a set of 100 pages including page text content. The set was analyzed.
For each web page the vector was computed which represents the page and
which aggregated the best segments from found web patterns. Then the page
set was displayed to the users in the original order from the search engine. The
vector (page profile) was displayed as a tie-on label (see Figure 1). Altogether
we used 13 domain and 5 structural patterns. By clicking on the tie-on label the
result set would be reordered according to the profile of the selected page and
less according to the original order. The selected page was on the first position
in the result set and the least similar page was moved to the end of the set.
In this reordering there were many pages from the second half of the original
order moved to the first ten of pages. The users (students and teachers) were
instructed that by clicking on the tie-on label of the web page the result set will

738 M. Kudělka et al.

be reordered. The interaction between the user and the result set was completely
recorded for further analysis. The users were asked to answer three questions.
The answer could be only Yes or No. There were 34 users answering.

1. Is the information about the searched page which was being displayed useful
for selecting the page? There were richer snippets below the title and the
tie-on label on the right side.

2. Does the displayed information correspond with the page content?
3. Is the reordering, according to the tie-on label, helpful in searching?

We got 21 Yes answers on the first question. For the second question there
were 34 users answering Yes with one note. The note is that what was written on
the tie-on label was mostly O.K. but some web patterns presented on the page
were sometimes not detected. For the last questions we got 26 positive answers
with a note that the reordering was useful but only for pages where web patterns
were detected. The most common comments were:

1. It is good that the pages which I am not interested in at the moment are
moved to the end of the result set.

2. There are too many pages with no web pattern detected and the reordering
according to their profile does not bring the expected result (in the sense of
similarity with selected page).

3. The pages are not always ordered as I expected.
4. Sometimes the result set is reordered toward product selling but I get pages

about a different product than I wanted.

The third criticism relates with use of cosine measure. The best results can
not always be reached with this measure.

According to the last point we added links with words from a title below each
title. By clicking on the link the word was added to the query (see Figure 1).
The idea that the title usually contains words important for the page content
can be considered as a web pattern.

7 Experiment: Profiles and Clusters

In the previous experiment we worked with a profile of each page in the reorder-
ing of the result set. The goal of the second experiment was to find whether
some static or common profiles exist. The profiles can be used for reordering
of the resulting set. Intuition suggests that there should be profiles for internet
shops, advertising and forums for sharing experiences For this experiment we
used the recorded pages from querying products. The analysis was performed on
23,422 pages. Each page contained at least one domain pattern from the selling
products domain (altogether there was 9 domain patterns). We wanted to visu-
alize the analysis results so, we used the SOM method. The self-organizing map
(SOM) is a type of neural network. This network is trained using unsupervised
learning and produces low dimensional representation of the training samples
while preserving the topological properties of the input space. The model is also

Web Pages Reordering and Clustering Based on Web Patterns 739

Fig. 3. SOM — web pages from selling product domain

Table 1. Found clusters

Patterns Pages
1 Price, Purchase, Special, Details 260
2 Price, Purchase, Special 1280
3 Review 1380
4 Price, Purchase, Special, Repayment, Details, Login 170
5 Price, Purchase, Special, Advert 200
6 Price, Special 630
7 Price, Purchase, Login 580
8 Price, Purchase, Special, Login 650
9 Price, Purchase, Details, Login 200
10 Price, Purchase, Special, Details, Login 340
11 Price, Special, Advert 270
12 Price, Advert 360
13 Price 1410
14 Price, Login 240
15 Login 660
16 Discussion, Login 340
17 Discussion 750
18 Price, Purchase, Special, Repayment 350
19 Price, Purchase, Advert 220
20 Price, Purchase, Details 260
21 Price, Purchase 1360
22 Discussion, Review, Login 300
23 Discussion, Review 800
24 Price, Purchase, Special 350
25 Price, Purchase, Special, Repayment, Details 140

known as a Kohonen map [9]. In Fig. 3, the Kohonen map is displayed with
numbered clusters.

In each cluster there are pages which

1. contain mentioned web patterns in the table (moreover with weight greater
than 0.6),

2. do not contain other web patterns (with weight lesser than 0.3).

740 M. Kudělka et al.

Fig. 4. Samples of web patterns

The clusters are numbered and described in Table 1. The web patterns names
are abbreviated. There are four profile types represented by searched cluster:

1. Selling: 1, 2, 4, 6, 7, 8, 9, 10, 18, 20, 21, 24, 25 (6,570 pages)
2. Information: 3, 16, 17, 22, 23 (3,570 pages)

Web Pages Reordering and Clustering Based on Web Patterns 741

3. Advertising: 5, 11, 12, 19 (1,050 pages)
4. Some clusters: 13, 14, 15 (2,310 pages)

There are approximately 13,500 pages in all the mentioned clusters. For ap-
proximately 11,200 pages it is possible to assign their type (Selling, Information,
and Advertising). On approximately 2,300 pages, it is undecidable whether they
are from another domain or if it is an error in the web pattern detection. The
pages are probably from a different domain than the selling product domain.
They may be pages from a tourism domain which requires different web pat-
terns for use (patterns Price and Login can occur). Aside from the discussed
pages, there are approximately 10,000 pages which are not in any cluster. This
is the case when a different combination of detected web patterns with different
weights was detected.

8 Conclusion

We were focusing on selecting and describing web patterns with regard to the
analysis of the web pages. The key factor for us is the human factor. We are
convinced that using the web patterns which are developed within interaction
between users and web page designers is very useful. Our experiments show that
there are two perspectives. The first perspective is purely technical. It is possible
to extend meta- information about a web page with a page profile (extracted from
web patterns). The information should be used for search engines. The second
perspective is user based. In web interface tests, we tried to involve users for the
process of searching and reordering the result set. Our experiments imply that
users understand the interface. Currently, we are preparing other experiments
using web pattern detection in web searching.

References

1. Alexander, Ch.: A Pattern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press, New York (1977)

2. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann Publishers, San Francisco (2003)

3. Chang, Ch.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A Survey of Web Infor-
mation Extraction Systems. IEEE Transactions on Knowledge and Data Engineer-
ing 18(10), 1411–1428 (2006)

4. Dearden, Finlay, J.: Pattern Languages in HCI: A critical review. Human-
Computer Interaction 21(1), 49–102 (2006)

5. Dong, J., Zhao, Y.: xperiments on Design Pattern Discovery. In: PROMISE 2007.
Third International Workshop on Predictor Models in Software Engineering, p. 12
(2007)

6. Van Duyne, D.K., Landay, J.A., Hong, J.I.: The Design of Sites: Patterns, Prin-
ciples, and Processes for Crafting a Customer-Centered Web Experience. Pearson
Education (2002)

7. Ivory, M.Y., Megraw, R.: Evolution of Web Site Design Patterns. ACM Transac-
tions on Information Systems 23(4), 463–497 (2005)

742 M. Kudělka et al.

8. Kiyavitskaya, N., Zeni, N., Cordy, J.R., Mich, L., Mylopoulos, J.: Text Mining
Through Semi Automatic Semantic Annotation. In: PAKM 2006, pp. 143–154
(2006)

9. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2006)
10. Kudělka, M., Snášel, V., Lehečka, O., El-Qawasmeh, E.: Semantic Analysis of Web

Pages Using Web Patterns. In: WI 2006. International Conference on Web Intelli-
gence, Hong Kong, pp. 329–333 (2006)

11. Kočibova, J., Klos, K., Lehečka, O., Kudělka, M., Snášel, V.: Web Page Analysis:
Experiments Based On Discussion and Purchase Web Patterns. In: WI 2006. In-
ternational Conference on Web Intelligence, Silicon Valley, CA, USA, pp. 221–225
(2007)

12. Nie, Z., Wen, J-R., Ma, W-Y.: Object-level Vertical Search. In: CIDR 2007, Asilo-
mar, CA, USA, pp. 235–246 (2007)

13. Nie, Z., Ma, Y., Shi, S., Wen, J-R., Ma, W-Y.: Web Object Retrieval. In: WWW
2007, pp. 81–90 (2007)

14. Pivk, A.: Automatic Ontology Generation from Web Tabular Structures, PhD
thesis, University of Maribor (2005)

15. Reis, D.C., Golgher, P.B., Silva, A.S., Laender, A.F.: Automatic web news extrac-
tion using tree edit distance. In: WWW 2004, pp. 502–511. ACM Press, New York
(2004)

16. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613–620 (1975)

17. Snášel, V., Řezanková, H., Húsek, D., Kudělka, M., Lehečka, O.: Semantic Analysis
of Web Pages Using Cluster Analysis and Nonnegative Matrix Factorization. In:
AWIC 2007, Fontainebleau, France, pp. 328–336. Springer, Heidelberg (2007)

18. Snášel, V.: GUI Patterns and Web Semantics. In: CISIM 2007, pp. 14–19. IEEE,
Elk, Poland (2007)

19. Tidwell, J.: Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly
Media, Inc. (2006)

20. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design Pat-
tern Detection Using Similarity Scoring. IEEE Transactions on Software Engineer-
ing 32(11), 896–909 (2006)

21. Yu, S., Cai, D., Wen, J-R., Ma, W-Y.: Improving Pseudo-Relevance Feedback in
Web Information retrieval Using Web Page Segmentation. In: World Wide Web
conference (WWW 2003), Hungary, pp. 203–211 (2003)

Compression of Concatenated Web Pages Using

XBW�

Radovan Šesták and Jan Lánský

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
radofan@gmail.com, zizelevak@gmail.com

Abstract. XBW [10] is modular program for lossless compression that
enables testing various combinations of algorithms. We obtained best
results with XML parser creating dictionary of syllables or words com-
bined with Burrows-Wheeler transform - hence the name XBW. The
motivation for creating parser that handles non-valid XML and HTML
files, has been system EGOTHOR [5] for full-text searching. On files of
size approximately 20MB, formed by hundreds of web pages, we achieved
twice the compression ratio of bzip2 while running only twice as long. For
smaller files, XBW has very good results, compared with other programs,
especially for languages with rich morphology such as Slovak or German.
For any big textual files, our program has good balance of compression
and run time.

Program XBW enables use of parser and coder with any implemented
algorithm for compression. We have implemented Burrows-Wheeler trans-
form which together with MTF and RLE forms block compression, dictio-
nary methods LZC and LZSS, and finally statistical method PPM. Coder
offers choice of Huffman and arithmetic coding.

1 Introduction

In this article we list results of compression of big XML files. Motivation for
this work has been compression of data from web. Speed is very important for
full-text searching and hence compression is not always the best choice. On the
other hand archiving of old versions of web pages requires vast amount of space
on disk. Also this data is not often used and hence compression could help with
insufficient dist space. XML format is very redundant and therefore very good
compression ratio can be achieved. Furthermore related web pages, with regard
to its origin, contain long sequences of identical data. These properties of data
enabled us to compress the data to tenth of original size.

We used for testing XML files from system EGOTHOR [5]. These files have
size around 20MB and were formed by concatenation of hundreds of web pages
and contain lots of text. Big files can be compressed more effectively due to
� This work was supported by Charles University Grant Agentur in the project ”Text

compression” (GAUK no. 1607, section A) and by the Program ”Information Soci-
ety” under project 1ET100300419.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 743–754, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

744 R. Šesták and J. Lánský

following reasons. With the use of dictionary there is better ratio of size of
dictionary to size of file. And most importantly entropy of text files is decreasing
which means that following characters can be better predicted. Problematic is
the fact that these files do not have valid XML structure and often they are not
well formed. This lead us to creating our own parser since the parsers we know
of could not handle these files.

In the next section we describe parts of program XBW and their influence on
compression. Then we list results of measurements and comparison with common
compression programs.

1.1 Conflicting Name XBW

The XBW method was not named very appropriately, because it can be easily
mistaken by the name xbw used by the authors of paper [4] for XML trans-
formation into the format more suitable for searching. In another article these
authors renamed the transformation from xbw to XBW. Moreover they used it
in compression methods called XBzip and XBzipIndex.

Another confusion comes from the fact that originally XBW stood in our arti-
cles for combination of methods BWT+MTF+RLE using alphabet of syllables for
valid XML files. In what we know present as XBW the main idea of compression
XML using BWT is present, but otherwise significantly differs from original work.

2 Implemented Methods

In Figure 1 the connections of parts of program is shown. All parts are optional.
From algorithms RLE, LZC, LZSS and PPM at most one can be used because all
of these algorithms use coder. In XBW Huffman (HC) and arithmetic coder (AC)
are implemented. We have obtained the best results with combination of Parser
+ BWT + MTF + RLE + AC, which is used as default settings of the program.

Fig. 1. XBW architecture

2.1 Parser and TDx

Implemented parser uses syntax of XML files for shortening the output. It omits
closing characters and dynamically creates dictionary of tags and attributes. The
rest of the data is split into characters, syllables or words and these are added to

Compression of Concatenated Web Pages Using XBW 745

trie. This choice is one of the parameters of parser. The use of words as alphabet
is quite common for text compression, but its use for XML is not. The splitting
into words or syllables and coding of dictionary is based on work of Lnsk [11].

It is also possible to use parser in text mode in which the structure of XML
files is not taken into account and the input is only split into symbols of chosen
alphabet (characters, syllables or words). Another parameter for parser is the
choice of file coding; supported are dozens of codings for which we used library
iconv [16].

Dictionary, that is stored in memory in form of trie during processing the
file, is saved to output by coding its structure using methods TD1, TD2 or TD3
[12]. In method TD1 for each node we code the distance from left son, number
of sons and boolean value which determines if the node represents a string.
Methods TD2 and TD3 take advantage of the fact that we are coding syllables
and words from natural languages which satisfy special conditions and hence
better compression is achieved. Default method is TD3.

2.2 Block Compression

The class of methods for compression based on work of Burrows and Wheeler
[1], uses reversible transformation which is called Burrows-Wheeler Transform
(BWT). Often the combination of this transformation together with following
effective coding is called block compression. The name comes from the fact that
the input is split into block of fixed size and BWT is performed for each block. In
default settings of our implementation we combine BWT with algorithms MTF
and RLE. Decoding is significantly faster for BWT than coding.

Very important parameter of BWT is size of block to used. Larger blocks
have better compression ratio at cost of longer run time and higher memory
requirements. For example, in bzip2 algorithm, the maximum block size is 900
KB. In our program we use default setting of 50MB which can be changed.

Algorithm MTF used after BWT renumbers input and the result is string
which contains relatively small numbers and sequences of zero. We implemented
MTF using splay tree [7] which improves its speed especially for large alphabet.
After MTF algorithm RLE is run which outputs the character and number of
its occurrences. This is written in form of bits using coder.

We have RLE in three variants RLE1, RLE2 and RLE3 using RLE2 as default.
In variant RLE1 sequence of repeating characters is replaced by three symbols.
First one is escape sequence followed the character and number of occurrences.
Alphabet used is increased by this escape symbol. In variant RLE2 each character
there is also special escape symbol hence the resulting alphabet is twice the size
of original. Repeating sequence of characters is replaced by escape symbol of
the character and number of occurrences. In variant RLE3 we add to alphabet
for each character special symbol for each possible number of repeatings of the
character. We limit the length of sequence by fixed number. Hence in output
we replace each sequence by special symbol. This method is suitable for small
alphabets with small limit to length of sequence.

746 R. Šesták and J. Lánský

2.3 Dictionary Methods

Dictionary compression methods are usually adaptive; during coding they up-
date dictionary of phrases. During compression we search for longest match of
uncoded part of input with some phrase from dictionary. These methods work
especially well for inputs where short sequences are (max 5-15 characters) re-
peating which is true for textual data. These algorithms are frequently used,
because they are relatively fast and use little memory. When these algorithms
are used, XBW has similar results as Gzip which also uses dictionary methods.

There are two main types of methods one based on LZ77 [17] and on LZ78
[18]. Method LZ77 has dictionary represented by compressed part of document in
form of sliding window of fixed size which is moving right during compression.
Method LZ78 builds the dictionary explicitly. In each step of compression a
phrase from dictionary used for coding is lengthened by one character which
follows after this phrase in uncompressed part of input.

LZC. LZC [6] is an improved version of LZ78 which uses trie data structure for
dictionary and the phrases are numbered by integers in order of adding. During
initialization, the dictionary is filled with all characters from the alphabet. In
each step we search for maximal string S in dictionary being a prefix of non-coded
part of input. The number of phrase S is then sent to the output. Actual input
position is moved forward by the length of S. If the compression ratio starts to
get worse the dictionary is cleaned. During decoding, if we get number of phrase
that is in the dictionary we output the phrase. If the number does not stand for
any phrase in the dictionary we can create that phrase by a concatenation of the
last added phrase with its first character.

LZSS. LZSS [15] is improved version of LZ77 where the dictionary is repre-
sented by sliding window which we shift to the right during compression. We
search for the longest prefix of non-coded input which matches string S from
sliding window. LZ77 outputs always ordered triple < D, L, N >, where D is
the distance of found string S in sliding window from its beginning, L is the
length of S and N is the symbol following S in non-coded part of input. LZ77
has the disadvantage that if no match is found, hence S has zero length, output
has been unnecessarily long. So in LZSS minimal threshold value is used when to
code string S using D and L. If it is shorter, we code it as sequence of characters
N . We use one bit to signal if the match for S has been long enough. So the
output in each step is either < 0, D, L > or several tuples < 1, N >.

2.4 PPM Method

The newest implemented method is statistical method called Prediction by Par-
tial Matching (PPM) [2], which codes characters based on their probability after
some context. Probabilities of characters after contexts are counted dynami-
cally. This method, designed for compression of texts in natural languages, is
quite slow and requires lots of memory. We have implemented variants PPMA,
PPMB, PPMC with optional exclusions and setting for maximal context.

Compression of Concatenated Web Pages Using XBW 747

2.5 Coder

Final bit output is provided by coder. We implemented Huffman and arithmetic
coder. Both variants are implemented in static and adaptive version. Arithmetic
coder uses Moffat data structure and Huffman coder is implemented in canonic
version. The choice of either Huffman or arithmetic coder is given at compile
time. Default is the arithmetic coder, because it yield slightly better compression
ratio than Huffman, and it is significantly faster when adaptive versions are used.

Huffman coding is compression method which assigns symbols codes of fixed
length. It generates optimal prefix code which means that no code is a prefix
of another code. Codes of all symbols are in binary tree and the edges have
values 0 and 1. The code for symbol is given by the path from root to node
representing the symbol. In static version we know the frequencies of symbols
before construction of the tree. We sort symbols by their frequencies. In each
step we take two symbols A and B with the smallest frequencies and create new
one C which has frequency the sum of A and B they are his sons. In adaptive
version we start with tree with one node representing escape symbol which is used
for insertion of unencountered symbols. When adding node for unencountered
symbol we create node A for this symbol and node B for escape symbol. Both
have frequency one C representing original escape sequence is their father. When
we increase frequency for symbol we first move its node to the right of nodes
with equal frequencies. Then we increase its frequency and recursively repeat
this step on its father.

The idea of arithmetic coding is to represent input as number from interval
[0, 1). This interval is divided into parts which stand for probability of occurrence
of symbols. Compression works by specifying the interval. In each step interval
is replaced by subinterval representing symbols of alphabet. Since the arithmetic
coding does not assign symbols codes of fixed length, arithmetic coding is more
effective than Huffman coding.

3 BWT

We describe Burrows-Wheeler transform in more detail, because its use in opti-
mized version with input modified by parser allowed to get results we present.
BWT during coding requires lexicographical order of all suffixes. The resulting
string has on i-th place last symbol of i-th suffix. We assume that we have linear
order on set of symbols Σ, which we call alphabet. Symbol in this sense can be
character, syllable or word.

X ≡ x0x1...xn−1, ∀i ∈ {0, .., n − 1}, xi ∈ Σ is string of length n. i-th suffix
of string X is string Si = xixi+1..xn−1 = X [i..n − 1] . i-th suffix is smaller than
j-th suffix, if first symbol in which they differ, is smaller, or i-th suffix is shorter.
Si < Sj ⇐⇒ ∃k ∈ 0..n − 1 : Si[0..k − 1] = Sj [0..k − 1] & (Si[k] < Sj [k]
∨ (i + k = n & j + k < n)). We store the order of suffixes in suffix array SA, for
which the following holds: ∀i, j ∈ {0..n − 1}, i < j → SSA[i] ≤ SSA[j].

The result of BWT for string X is X̃. X̃ ≡ x̃0..x̃n−1 where x̃i = x|SA[i]−1|n .
Absolute values stand for modulo n, which is necessary in case SA[i] = 0.

748 R. Šesták and J. Lánský

Repetitiveness of the file influences the compression ration and run time of
coding phase of BWT. We denote longest common prefix or match length by
lcp(Si, Sj) = max{k; Si[0..k − 1] = Sj [0..k − 1]}. Average match length
AML ≡ 1

n−1

∑n−2
i=0 lcp(SSA[i], SSA[i+1]) is the value we use in text for measuring

repetitiveness of files.
We have implemented a few algorithms for sorting suffixes with different asymp-

totic complexity. The fastest algorithm for not too much repetitive files is (AML <
1000) is Kao’s modification of Itoh algorithm [9], which has time complexity
O(AML·n·log n). For very repetitive files algorithm due to Krkkainen and Sanders
[8] with complexity O(n). Note that the choice of algorithm for BWT does not in-
fluence compression ratio, but only time and memory requirements.

In block compression the file is split into blocks of fixed size and BWT is run
on each block. This method is used to decrease memory and time requirements,
because BWT requires memory linear in size of input. Time complexity of most
of algorithms for BWT is asymptotically super linear and BWT is the slowest
part of block compression during compression. However, use of smaller blocks
worsens the compression ratio.

The main reason why XBW has significantly better compression ration than
bzip2 is the use of BWT on whole file at once. Our program runs in reasonable
time thanks to preprocessing of the input by parser and the use of alphabet of
words, which shortens the input for BWT. Very important consequence of the
use of parser is the decrease of the value of AML. However use of parser requires
use of algorithms, which do not work with byte alphabet of size 256 characters,
but can work with 4 byte alphabet. When words are used as alphabet, for the
tested files, the size of alphabet created by parser is approximately 50 thousand.

4 Corpora

Our corpus is formed by three files which come from search engine EGOTHOR.
The first one is formed by web pages in Czech, the second in English and third
in Slovenian. Their size in this order are: 24MB, 15MB, 21MB and the values
of AML, describing their repetitiveness, are approximately 2000. Information
about compression ratio of XBW on standard corpora Calgary, Cantebury and
Silesia can be found in [10].

5 Results

First we list results of program XBW for various compression methods and the
effect of parser on the results. Then we show influence of alphabet. At the end
we compare results of XBW using optimal parameters with commonly used
programs Gzip, Rar and Bzip2.

All results have been obtained using arithmetic coder. BWT has been run
over whole input at once followed by MTF and RLE (parameter RLE=2). PPM
has run with parameters PPM exlusions=off a PPM order=5.

Compression of Concatenated Web Pages Using XBW 749

The size of compressed files includes coded dictionary which is created always
when parser is used. Compression ratio is listed in bits per byte.

The run time has been measured under Linux and stands for sum of system
and user time. This implies that we list time without waiting for disk. Measure-
ments has been performed on PC with processor AMD Athlon X2 4200+ with
2GB of RAM. The data is in megabytes in second where the uncompressed size
of file is used both for compression and decompression.

Table 1 shows the results of compression ratio for various methods for alphabet
of characters. These results show effect of XML, which improves the compression
ratio by approximately ten percent.

Next in Tables 2 and 3 we list the speed of program with and without parser
using alphabet of characters. Results show that in almost all cases the parser
degrades the speed. The reason is that we have to work with dictionary and the
time saved by slightly shortening the input does not compensate for the work
with dictionary. The exception is compression using BWT. Here the shortening
the input and decreasing its repetitiveness significantly fastens BWT, which is
the most demanding part of block compression.

Method commonly used for text compression is the use of words as symbols of
alphabet. In Table 4 we show the influence of alphabet on compression ratio. For
textual data in English best compression ratio is achieved with using words and
method BWT. For Czech and Slovenian the syllables are better, because these
languages have rich morphology. One word occurs in text in different forms and
each form is added into dictionary. With the use of syllables core of the word is
added, which can be formed by more syllables, and the end of word. But these
last syllables of words are common for many words and hence there are more
occurrences of then in the text. For dictionary methods LZx the words are by
far the best choice.

The effect of large alphabet on speed varies and is shown in Tables 5 and 6. For
all algorithms the decompression is faster for words than for characters. On the
other hand decompression when parser with words has been used is still slower
than decompression without parser see Table 1. The use of words increases the
speed of compression only when BWT is used. Significant increase in speed for
BWT is due to shortening the input and decreasing approximately three times
AML. Results for PPM and words are not shown since the program did not
finish within hour.

Previous results show that the best compression ratio has the algorithm BWT.
Also it is evident that parser improves compression ratio for all algorithms. The
fastest compression is achieved using LZC and fastest decompression using LZSS.

Our primary criterion is compression ratio and since method BWT has by
far the best compression ratio, we focus mainly on BWT. In case the speed is
priority choice of dictionary methods is advisable.

Table 7 contains comparison of compression ratios for different choices of
parser, which shows that words are best for English and syllables for Czech
and Slovenian. The choice of either words or syllables depends on the size of
file and on morphology of the language. For languages with rich morphology,

750 R. Šesták and J. Lánský

Table 1. Influence of parser on compression ratio for alphabet of symbols

bpB No Parser Text Parser XML Parser
BWT LZC LZSS PPM BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0,907 2,217 2,322 1,399 0,906 2,206 2,296 1,395 0,894 2,073 2,098 1,320
xml en 0,886 2,044 2,321 1,292 0,887 2,044 2,321 1,292 0,874 1,915 2,115 1,239
xml sl 0,710 1,982 2,010 1,205 0,710 1,979 2,003 1,204 0,700 1,850 1,797 1,129

TOTAL 0,834 2,093 2,213 1,305 0,833 2,087 2,200 1,303 0,822 1,957 1,998 1,234

Table 2. Influence of parser on compression speed

MB/s No Parser XML Parser - Symbols

BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0,368 3,587 1,498 0,106 0,457 2,668 1,418 0,091
xml en 0,419 4,028 1,297 0,125 0,544 2,915 1,249 0,104
xml sl 0,386 4,258 1,638 0,119 0,500 2,915 1,497 0,091

TOTAL 0,386 3,906 1,485 0,115 0,491 2,810 1,397 0,094

Table 3. Influence of parser on decompression speed

MB/s No Parser XML Parser - Symbols

BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 4,260 4,724 5,257 0,117 2,577 3,156 3,415 0,096
xml en 4,417 4,999 5,417 0,142 2,705 3,397 3,606 0,110
xml sl 4,918 5,236 5,946 0,134 3,012 3,299 3,672 0,097

TOTAL 4,509 4,960 5,519 0,128 2,747 3,263 3,548 0,099

Table 4. Influence of alphabet on compression ratio

bpB XML Parser
Symbols Syllables Words

BWT LZC LZSS PPM BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0,894 2,073 2,098 1,320 0,854 1,796 1,841 N/A 0,857 1,683 1,654 N/A
xml en 0,874 1,915 2,115 1,239 0,836 1,626 1,785 N/A 0,830 1,514 1,558 N/A
xml sl 0,700 1,850 1,797 1,129 0,664 1,559 1,541 N/A 0,668 1,457 1,390 N/A

TOTAL 0,822 1,957 1,998 1,234 0,783 1,672 1,723 N/A 0,785 1,563 1,539 N/A

Table 5. Influence of Alphabet on compression speed

MB/s XML Parser - Symbols XML Parser - Words
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0,457 2,668 1,418 0,091 1,587 0,279 1,477 N/A
xml en 0,544 2,915 1,249 0,104 2,009 0,920 1,093 N/A
xml sl 0,500 2,915 1,497 0,091 1,566 0,443 1,349 N/A

TOTAL 0,491 2,810 1,397 0,094 1,666 0,399 1,319 N/A

Compression of Concatenated Web Pages Using XBW 751

Table 6. Influence of Alphabet on decompression speed

MB/s XML Parser - Symbols XML Parser - Words
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 2,577 3,156 3,415 0,096 3,986 3,951 3,923 N/A
xml en 2,705 3,397 3,606 0,110 4,006 4,443 4,523 N/A
xml sl 3,012 3,299 3,672 0,097 4,241 4,157 4,237 N/A

TOTAL 2,747 3,263 3,548 0,099 4,076 4,135 4,167 N/A

Table 7. Compression ratio for BWT

bpB No Parser Text Parser XML Parser
Symbols Syllables Words Symbols Syllables Words

xml cz 0,907 0,906 0,859 0,862 0,894 0,854 0,857
xml en 0,886 0,887 0,842 0,836 0,874 0,836 0,830
xml sl 0,710 0,710 0,669 0,672 0,700 0,664 0,668

TOTAL 0,834 0,833 0,789 0,790 0,822 0,783 0,785

Table 8. Compression speed for BWT

MB/s No Parser Text Parser XML Parser
Symbols Syllables Words Symbols Syllables Words

xml cz 0,368 0,324 1,056 1,767 0,457 1,073 1,587
xml en 0,419 0,364 1,225 2,128 0,544 1,330 2,009
xml sl 0,386 0,331 1,102 1,790 0,500 1,135 1,566

TOTAL 0,386 0,336 1,110 1,853 0,491 1,150 1,666

Table 9. Decompression speed for BWT

MB/s No Parser Text Parser XML Parser
Symbols Syllables Words Symbols Syllables Words

xml cz 4,260 2,628 4,277 4,817 2,577 3,710 3,986
xml en 4,417 2,494 4,612 4,764 2,705 3,981 4,006
xml sl 4,918 2,639 4,686 5,442 3,012 3,685 4,241

TOTAL 4,509 2,598 4,494 5,002 2,747 3,765 4,076

Table 10. Running time for different parts of XBW

Seconds Compression Decompression
Parser BWT MTF RLE Parser BWT MTF RLE

xml cz 4,668 7,788 0,748 0,72 1,98 0,764 0,868 1,328
xml en 2,364 3,800 0,388 0,448 1,112 0,716 0,440 0,796
xml sl 3,352 7,404 0,496 0,504 1,592 0,676 0,556 0,916

TOTAL 10,384 18,992 1,632 1,672 4,684 2,156 1,864 3,04
Parser in text mode using words; BWT using Itoh; RLE - version 3

752 R. Šesták and J. Lánský

Table 11. Comparison of compression ratio

bpB XBW Gzip Bzip2 Rar

xml cz 0,857 1,697 1,406 1,161
xml en 0,830 1,664 1,299 0,851
xml sl 0,668 1,373 1,126 0,912

TOTAL 0,785 1,584 1,275 0,998
XBW: parser in text mode using words, Kao’s algoritm for BWT

Gzip: gzip -9; Rar: rar -m5; Bzip2: bzip2 -9

Table 12. Comparison of compression speed

MB/s Compression Decompression
XBW Gzip Bzip2 Rar XBW Gzip Bzip2 Rar

xml cz 1,732 10,320 3,170 2,708 4,087 25,004 9,430 3,955
xml en 2,058 11,587 3,454 2,689 4,309 46,926 11,722 6,137
xml sl 1,758 13,713 3,245 3,190 4,614 46,986 13,132 4,775

TOTAL 1,812 11,634 3,262 2,853 4,313 34,629 11,045 4,640
XBW: parser in text mode using words, Kao’s algoritm for BWT

Gzip: gzip -9; Rar: rar -m5; Bzip2: bzip2 -9

and for smaller files the syllables are better. Choice of either words or syllables
effects the number of occurrences of symbols from dictionary for the input text.
In program XBW we have implemented a few methods for splitting words into
syllables. Results have been obtained using the choice Left. More details can be
found in [10]. Interesting is the fact that the XML mode of parser has small
influence on compression ratio. This is not due to incorrect implementation of
parser, but due to properties of BWT for large blocks. For example for LZx
methods the effect is significant. Again more detailed results are in [10].

Table 8 show the influence of parser on the speed of program. The fastest by far
is the choice of words as symbols of alphabet for compression. For decompression
(see table 9) the differences are small. In order to improve the speed it is better
to use parser in text mode instead of XML mode for words.

There are many algorithms for sorting suffixes in BWT. The choice of this
algorithm has big impact of overall performance of compression. Without the
use of parser, sorting suffixes for big blocks amount up 90% of run time of whole
program. More details are in [14]. For all files the fastest is Kao’s modification
of Itoh’s algorithm [9] and it has been used in all measurements when BWT has
been used.

Run time of separate parts of program are in Table 10. These times show in
which parts there is the most room for improvement.

6 Comparison with Other Programs

For comparison we show the results of programs Gzip, Rar and Bzip2. Programs
for compression of XML data such as XMLPPM [3] and Xmill [13] can not cope

Compression of Concatenated Web Pages Using XBW 753

with non-valid XML files. Hence we could not get their results on our data.
For programs Gzip, Rar and Bzip2 we used parameters for the best available
compression. In Table 11 we list compression ratios. Our program compresses
all files the best and is significantly better for files which are not in English.

In Table 12 are the results for speed of compression and decompression. The
fastest is Gzip, but it also has the worst compression ratio and hence we compare
speed of XBW only with Rar and Bzip2. Compression for XBW takes less twice
the minimum of Rar and Bzip2. Decompression if comparably fast as for Rar
and Bzip2 is approximately three times faster.

The performance of XBW is sufficient for common use, however it is slower
than the speed of hard disks, and hence where speed is priority, it is better
to use program based on dictionary methods such as Gzip. XBW has the best
compression ratio and therefore it is suitable especially for long term archiving.

7 Future Work

In future work on XBW we aim to focus on two directions. The first is creation
of parser which could be used also on binary data. The later is improving the
run time of program where again we see the biggest potential in parser.

References

1. Burrows, M., Wheeler, D.J.: A Block Sorting Loseless Data Compression Algo-
rithm. Technical report, Digital Equipment Corporation, Palo Alto, CA, U.S.A
(2003)

2. Cleary, J.G., Witten, I.H.:Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications COM-32(4), 396–402 (1984)

3. Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In:
Storer, J.A., Cohn, M. (eds.) Proceedings of 2001 IEEE Data Compression Confer-
ence, p. 163. IEEE Computer Society Press, Los Alamitos, California, USA (2001)

4. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: FOCS 2005. Proc. 46th Annual IEEE
Symposium on Foundations of Computer Science, pp. 184–193 (2005)

5. Galamboš, L.: EGOTHOR, http://www.egothor.org/
6. Horspool, R.N.: Improving LZW. In: Storer, J.A., Reif, J.H. (eds.) Proceedings of

1991 IEEE Data Compression Conference, pp. 332–341. IEEE Computer Society
Press, Los Alamitos, California, USA (1991)

7. Jones, D.W.: Application of splay trees to data compression. Communications of
the ACM 31(8), 996–1007 (1988)

8. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

9. Kao, T.H.: Improving suffix-array construction algorithms with applications. Mas-
ter Thesis. Gunma University, Japan (2001)

10. Lánský, J., Šesták, R., Uzel, P., Kovalčin, S., Kumičák, P., Urban, T., Szabó, M.:
XBW - Word-based compression of non-valid XML documents,
http://xbw.sourceforge.net/

http://www.egothor.org/
http://xbw.sourceforge.net/

754 R. Šesták and J. Lánský

11. Lánský, J., Žemlička, M.: Compression of a Dictionary. In: Snášel, V., Richta, K.,
Pokorný, J. (eds.) Proceedings of the Dateso 2006 Annual International Workshop
on DAtabases, TExts, Specifications and Objects. CEUR-WS, vol. 176, pp. 11–20
(2006)

12. Lánský, J., Žemlička, M.: Compression of a Set of Strings. In: Storer, J.A., Mar-
cellin, M.W. (eds.) Proceedings of 2007 IEEE Data Compression Conference, p.
390. IEEE Computer Society Press, Los Alamitos, California, USA (2007)

13. Liefke, H., Suciu, D.: XMill: an Efficient Compressor for XML Data. In: Proceedings
of ACM SIGMOD Conference, pp. 153–164 (2000)

14. Šesták, R.: Suffix Arrays for Large Alphabet. Master Thesis, Charles University in
Prag (2007)

15. Storer, J., Szymanski, T.G.: Data compression via textual substitution. Journal of
the ACM 29, 928–951 (1982)

16. The Open Group Base: iconv. Specifications Issue 6. IEEE Std 1003.1 (2004),
http://www.gnu.org/software/libiconv/

17. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE
Transactions on Information Theory 23(3), 337–342 (1977)

18. Ziv, J., Lempel, A.: Compression of Individual Sequences via Variable-Rate Coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

http://www.gnu.org/software/libiconv/

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 755–765, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Dynamic Web Presentations with a Generality
Model on the News Domain

Hyun Woong Shin1, Eduard Hovy2, and Dennis McLeod3

1 SAMSUNG ELECTRONICS CO., LTD.,
416 Maetan-3Dong, Yeongtong-Gu, Suwon-City, Gyeonggi-Do, Korea 443-742

hws52.shin@samsung.com
2 Information Sciences Institute of the University of Southern California

4676 Admiralty Way. Marina del Rey, CA, USA
hovy@isi.edu

3 Computer Science Department, Integrated Media Systems Center,
University of Southern California, 941 W. 37th Place, Los Angeles, CA, USA

mcleod@usc.edu

Abstract. Over the last decade, Web and multimedia data have grown at a stag-
gering rate. Users of new media now have great expectations of what they can
see on the Web. In addition, most information retrieval systems, including Web
search engines, use similarity ranking algorithms based on a vector space model
to find relevant information in response to a user’s request. However, the re-
trieved information is frequently irrelevant, because most of the current infor-
mation systems employ index terms or other techniques that are variants of term
frequency. This paper proposed a new approach, named “the dynamic multime-
dia presentations with a Generality Model,” to offer a customized multi-modal
presentation for an intended audience. Moreover, we proposed a new criterion,
“generality,” that provides an additional basis on which to rank retrieved docu-
ments. To support multi-modal presentation, our proposed story model created
story structures that can be dynamically instantiated for different user requests
from various multi-modal elements. The generality is a level of abstraction to
retrieve results based on desired generality appropriate for a user’s knowledge
and interests. We compared traditional web news search functions and our story
model by using usability test. The result shows that our multimedia presentation
methodology is significantly better than the current search functions. We also
compared our generality quantification algorithm with human judges’ weight-
ing of values to show that the developed algorithm is significantly correlated.

1 Introduction

The rapid growth of online digital information over the last decade has made it diffi-
cult for a typical user to find and read information he/she wants. A recent study shows
there are around 40 million Web sites. The amount of digital media, nontextual in-
formation including images, audio, and video on the World Wide Web is enormous
and is growing at a staggering rate. Users of new media now have great expectations
about what they can access online and are demanding more powerful technologies. To

756 H.W. Shin, E. Hovy, and D. McLeod

satisfy those user’s expectations, there have been several studies for multimedia pres-
entations in various domains [4, 8]. One way to address the problem of information
overload is to tailor that information to specific user interests, needs and knowledge
base. If there is an approach that responds to individual information requests with an
original, dynamically built story, several problems are solved.

First, in today’s Web service industry, information presentations and collections of
data are static and having limited multi-modal presentations. Critically, there is little
capability to dynamically adapt an integrated presentation of information to a user.
We believe that a user engages deeply into a story when he/she not only reads text
articles but also watches videos and/or listens to audio clips in a coordinated manner.
Second, most of current web search engines deliver a huge amount of hyperlinks.
Although this helps improve accuracy (recall), an end user has a trouble deciding
which results are what he/she wants. Finally, most web services do not instantiate and
customize (for an individual user) “generic” stories. Even though the accuracy of
results in terms of precision and recall may be acceptable, the results might not be
relevant to a user’s intention(s). The crux of retrieving more-relevant information is
better characterizing a user’s request. Unfortunately, this is not a simple problem
Most traditional IR systems operationalize “relevant” as the word frequency in a
document of a set of keywords (or index terms) [3, 12, 13, 19]. In other words, they
characterize a user’s request as a term frequency. However, there is another aspect to
characterizing a user’s request: the appropriate level of generality that is specification
of desired information based on a user’s knowledge and interests.

The proposed system creates story structures that can be dynamically instantiated
for different user requests from various multi-modal elements. In addition, the pro-
posed system focuses on quality of the results not quantity of results. Furthermore, the
system leverages information so that a user reads an appropriate level of story de-
pending upon the user’s intention level ranging from general to specific. For example,
a user might impress the USC football game, but the user has very little knowledge of
the USC football team. The user then wants to read very general information instead
of specific information regarding the team. When the user requests a general level of
the USC football team, the system delivers a customized (in this case, a general story)
dynamically generated multi-modal story.

To determine a user’s intention and goal, a general knowledge-based process, with
selection (information filtering) heuristics, is used. A key to the successful use of
story types is the ability to relate and connect the user requests to the Content Data-
base. A domain dependent ontology is essential for capturing the key concepts and
relationships in an application domain [1, 9, 11]. Finally, meta-data descriptions con-
nect a modified user request (by using domain ontology) to the Content Database for
retrieving proper content elements.

The remainder of this paper is organized as follows. Section 2 provides an architec-
tural overview of the proposed system. Section 3 introduces a new story model with
visual techniques and presentation constraint specifications. Section 4 delineates a
new criterion, generality, for measuring the generality of documents. In Section 5,
experiments methodology and metrics are explained. In Section 6, discussion and
results are illustrated. Concluding Remarks are presented in Section 7.

 The Dynamic Web Presentations with a Generality Model on the News Domain 757

2 Overall Functional Architecture

The overall functional architecture of a proposed system is illustrated in figure 1. The
model has two key phases: story assembly and content query formulation. In the story
assembly phase, a structured rule-based decision process is introduced to determine a
proper story type and to invoke a primary search and a secondary search in the con-
tent query formulation phase. At the beginning, the story assembly module receives a
modified user’s request from a query processing procedure, which consists of related
concepts, a level of generality spectrum, media types that a user prefers and so on.
Note that a requirement for a query processing procedure is to include a domain de-
pendent ontology so that all involved components can understand the semantics of
parameters without other overheads. These inputs then invoke a primary search to
retrieve multimodal content objects, along with a constraint-based k-nearest neighbor
search. These results are sent to the story type decision module to determine a proper
story type and then fill in the chosen story type with multi-modal elements (content
objects). If it is necessary, this decision module also invokes a secondary search to get
extra elements.

Fig. 1. Overall functional Architecture

3 Story Model

The proposed story model defines four story types that lay out an appropriate presen-
tation style depending on a user’s intention and goal. In order to provide an efficient
presentation, the story model needs quantification for the size of each icon based on
ranking in the retrieved content objects. Furthermore, the story model employs visual
techniques that solve layout problems such as combining and presenting different
types of information and adopts presentation constraint specifications to abstract
higher levels of presentation so that lower levels of presentation can automatically
generate a story that meets those specifications.

758 H.W. Shin, E. Hovy, and D. McLeod

A visual technique depends on traditionally accepted visual principles to provide
an arrangement of layout components [2]. This conventional arrangement, called a
layout grid, consists of a set of parallel horizontal and vertical lines that divide the
layout into units that have visual and conceptual integrity [14].

According to Vanderdonckt et al. [16], there are five sets of visual techniques:
physical techniques (e.g. balanced vs. unbalanced layout), composition techniques
(e.g. simple vs. complex layout), association and dissociation techniques (e.g.
grouped vs. splitted layout), ordering techniques (e.g. sequential vs. random layout),
and photographic techniques (e.g. round vs. angular layout). We focus only on bal-
ance and symmetry of physical techniques because balance is a highly recommended
technique evoked by many authors [5, 7, 10]. Balance is a search for equilibrium
along a vertical or horizontal axis in layouts. Symmetry consists of duplicating visual
images along with a horizontal and/or vertical axis [6, 10]. Thus, achieving symmetry
automatically preserves balance.

Presentation constraints are typically expressed in terms of a timeline, screen lay-
out, or navigation structure. In most constraint systems, only certain aspects of the
presentation are adapted to satisfy each constraint. Multimedia presentation structures
consist of multiple dimensions, primarily including space, time and navigation [15,
17, 18]. Our approach is only concerned with a spatial constraint because time and
navigational constraints are not relevant to our presentation goal. Our presentation
goal is to deliver an integrated multi-modal presentation with a balanced layout in
response to a user’s objective. Thus, timeline and navigation constrains are not con-
siderable constraint specifications of our approach.

Graphical icons, including a scrollable box for a text, a fixed size window for im-
ages, and control boxes for audio and video clips are containers of elements in story
types. In spatial constraint specifications, each container has a fixed size to be filled in
by an element. This higher level of abstraction allows a consistent final presentation
for the user.

4 Generality Model

The degree of generality can be quantified by the number of index terms in the docu-
ment that belong to specific word sets which distinguishes a subject from others. For
its quantification, we introduced the concept “specific word set” that consists of index
terms not belonging to any other ontology nodes. Here, generality is quantified by the
appearance of specific index terms it within document jD .

The following is the formal definition of the algorithm.
Let }|{ JjDD j ∈= be a document containing a set of words from an index set J ,

and }|{ IitS i ∈= be a set of specific terms from an index set I . The index set J is

used to differentiate documents and the index set I contains specific words.
Define a characteristic function }1,0{: →× JIχ

by
⎪⎩

⎪
⎨
⎧

∉

∈
=

ji

ji

Dt

Dt
ji

,0

,1
),(χ .

 The Dynamic Web Presentations with a Generality Model on the News Domain 759

By using the characteristic function, we define the generality of a document jD as

follows:

j

Ii
j

D

ji
g

∑
∈=

),(χ
for the number jD of terms in jD

If ∅=∩ SD j , then 0=jg as a special case.

Once the degree of generality is determined for each document, we adjust the de-
gree of generality based on the concept hierarchy. The concept hierarchy is a hierar-
chical structure of related concepts. For example, “Sports” may have a child node,
the Olympic-Sports (which we abbreviate to “Olympics”). In addition, the node
“Olympics” may have the children nodes “Boxing” and “Taekwondo.” In this case,
there is a conceptual hierarchy starting from “Sports” to “Olympics” to “Boxing” and
“Taekwondo”.

Fig. 2. Sample ontology with weights iw , index term lists iD , and specific term lists iS

In many IR systems that utilize ontologies, a user submits a query, and the system
determines the proper ontology node(s) that is (are) best matched with a given query.
After the appropriate node(s) is (are) determined, the system retrieves the information
from the concept hierarchy that is rooted at the chosen node. In a domain dependent
ontology, an instance of a child node is also an instance of a parent node. Thus, the
parent node might provide its own instances and instances of children. The generality
of its own, direct instances can be calculated utilizing the above algorithm. For the
other instances, the algorithm needs to adjust the degree of generality based on their
position in the concept hierarchy. This adjustment is necessary for two reasons.

First, a child node represents more specific information than a parent node does. In
other words, the degree of generality for all documents in a parent node must be as-
signed a higher value (be more general) than the documents in the child node. This

760 H.W. Shin, E. Hovy, and D. McLeod

assumption we base on the intuition that domain-specific Ontologies will generally lie
mostly below the level of Basic Concepts [19], and hence tend to become of more
general interest as one moves upward through them.

Second, documents at the top level of a domain dependent ontology are in practice
the most general stories, using the journalism definition. These documents should
contain the largest number and variety of specific words. However, it is very unlikely
that a document will contain all specific words. To overcome the problem, an ad-
justed value needs to be added to the degree of generality for each document in child
nodes.

Figure 2 depicts a sample ontology graph with weights (for adjusting generality),
index term lists, and specific term lists. The basic idea behind the degree of general-
ity reflects the differences of specific word sets within the concept hierarchy. Unlike
the basic generality computation that focused on each document, the adjustment is
determined by the specificity of the ontology node. In other words, it focused on node
itself. The adjustment is calculated by the number of specific words over the number
of index term set on each ontology node. The following is the formal definition for
the adjustment algorithm:

Suppose that kS and ikS + are sets of specific terms of a parent node and its chil-

dren nodes, respectively cifor ...,,2,1= (number of the children node for parent

node kN . Let }|{ AkNN k ∈= be a set of nodes for an index set A and k is ordering

by depth, and }|{ , ImandAig mi ∈∈ be a set of the degree of generality, mig , for a

document md in a node iN . The adjusted generality of a document md on an ontol-

ogy node kN is defined as follows:

ikmik wgmkd ++ += ,),(

where
k

ikk
ik

D

SS
w

+
+

−
= for the number kD of terms in a node kN and some child

node ikN + containing the document md . The node kN is a parent node of a child

node ikN + and the kD is the total number of index terms that are used in the parent

node kN .

5 Experiments

5.1 Evaluation Plan for Story Model

To exam the usability of our system, we designed a controlled experiment. In our
experiments, the total 25 students from the engineering and journalism schools (17
and 8, respectively) were selected and asked to fill up a questionnaire after experienc-
ing the system. Appendix A shows the sample questionnaire and the figure of our
system used in the experiment. The subjects were provided by an experimenter with a

 The Dynamic Web Presentations with a Generality Model on the News Domain 761

brief instruction about the experiment and asked to have experience with two sites -
the traditional news search functions such as CNN, LA Times, and Washington Post
and our systems. 13 subjects began with the traditional news search function site and
then our system site, while the other 12 subjects started with our system site and then
the traditional web news search function site in order to avoid any possible order
effect. At the end of each site, the subjects were asked to fill out an online question-
naire, which was hyperlinked from the last page of each site, with radio-button scaled
responses and some open-ended questions which asked him/her to evaluate the four
categories - Overall satisfaction; Functionality and capability; Learnability; and Inter-
face design. Finally, all subjects were debriefed and thanked.

Table 1. Index terms and specific words

 D S 'S

Sports 3148 2222
Olympics 1727 976 819
Baseball 757 303
Football 960 420
Golf 616 248
Tennis 700 275
Olympics-boxing 469 147
Olympics-Basketball 424 111
Olympics-Taekwondo 249 78
Olympics-Running 597 222
Olympics-Hockey 475 165
Olympics-Baseball 381 96

5.2 Corpus Analysis for Generality Model

Having developed a method to quantify generality, we now determine whether it
conforms to human intuitions. Before starting work on the system, we collected and
analyzed terms from a corpus to empirically guide the design of generality and gen-
eration of the domain dependent ontology. We studied the terms and conceptual hier-
archy used to convey information from multiple sources including Associated Press,
ESPN, and current newswire. We created a hierarchy of 12 nodes and three levels
based on 62 articles.

In order to generate the proper degree of generality, we analyzed the underlying
corpus. Table 1 depicts the total number of index terms and specific words in the
corpus. In the table, D indicates the total number of index terms at or below a node.
The total number of specific terms for each node alone is in S. S ' is a summation of

children node’s specific terms. It is safe to say that S ≥ S' between a parent node and
children nodes because some specific words S of the parent node are general words
for children nodes. For example, the parent node “Olympics” contains “Olympiad,”
“Gold,” “Bronze,” and some country names that repeat in children nodes. Those spe-
cific words, however, are not included in the specific word set for children nodes.

762 H.W. Shin, E. Hovy, and D. McLeod

For the node “Sports,” specific terms cannot be determined because this node is the
summation of all other nodes. In the node “Olympics,” the number of specific terms
(S = 976) is more than the summation of children’s specific terms (S' = 819). Accord-
ing to our assumption, it indicates that the node “Olympics” may contain more topics
than the summation of topics in children nodes.

5.3 Evaluation Plan for Generality Model

Our verification of the measure of generality is performed between a domain depend-
ent ontology and human judges. Given documents, human judges were asked to mark
the degree of generality for each document. The judges used a ten-point scale (as a
continuous value) and assigned a score for each document based on their observation
of the degree of generality. The judges were instructed that there are no right or
wrong answers.

Since the human judges’ values are critical to evaluate the algorithm, the selection
of human judges is a huge problem. How many human judges are necessary? How
should we adjust for individual variability? To lessen the problem, professional jour-
nalists were chosen as human judges. If random people from the general population
were included, individual variation would be huge due to their backgrounds and edu-
cation levels. This variation would increase the standard deviation and bring errors
into the study. However, professional journalists are trained to obtain proper writing
and reading skills in terms of journalism, so we assume that the individual variation
among them in scoring new articles is not too large. The judges are a professor and a
graduate student in the school of journalism at USC. We assumed that they already
have developed adequate comprehension and writing skills, so no training session was
carried out.

We used the Pearson correlation coefficients to evaluate the relationship between
the scores from two human judges as well as from the human judges and from the
algorithm. Also, we used a t-test (t distribution and n-2 degrees of freedom) to deter-
mine whether these relationships are statistically significant. If a p-value from the
t-test is less than 0.05, we conclude there is a statistically significant correlation be-
tween the judges and the system.

6 Results and Discussion

6.1 Story Model

The online questionnaire was composed of based on the Cronbach’s alpha showing
that the questions in each category are highly reliable (Table 1). All questions are
included in the results.

The paired t-tests were performed at each category, and the results were showed in
table 2. In the all categories, our system is statistically significantly batter than the
traditional web search engines (all p-values are less than 0.05). Our system’s overall
satisfaction, functionality and capability and interface design were more than one
level up than the traditional ones’.

 The Dynamic Web Presentations with a Generality Model on the News Domain 763

Table 2. Cronbach’s alpha value of two sessions

Cronbach’s alpha

Session 11 Session 22

Overall .8690 .9150

Functionality and Capability .7747 .6941

Learnability .8027 .7829

Interface Design .8392 .8056

Table 3. Paired t-test value

 Mean of Paired
Differences

t (df = 16) Sig. (2-tailed)

Pair 1 Q101 -
Q111

2.35 6.305 .000

Pair 2 Q111 -
Q131

-2.29 -5.376 .000

Pair 3 Q102 -
Q112

1.71 3.237 .005

Pair 4 Q112 -
Q132

-1.88 -4.157 .001

6.2 Generality Model

The Pearson correlation coefficient always lies between -1 and +1 ()11 ≤≤− r , and

the values 1=r and 1−=r mean that there is an exact linear relationship between
the two values. Over 70% is generally considered a good correlation. Also, the sig-
nificance of a correlation coefficient is examined by a t-test (n-2 degree of freedom).

We first test the generality between two judges’ value to show that there is a com-
mon generality between human judges. This evaluation assures us that there is a phe-
nomenon to be modeled and computationalized.

Table 4. Pearson correlation coefficient between two human judges3

Level 0
(n=62)

Level 1
(n=62)

Level 2
(n=29)

Pearson correlation coefficient (r) 0.84 0.81 0.81

p-value from the t-test
< .0001
(df=60)

< .0001
(df=60)

<.0001
(df=27)

1 Traditional Web Search Functions.
2 Our system.
3 n= number of articles used for the test, df= degrees of freedom.

764 H.W. Shin, E. Hovy, and D. McLeod

Table 4 shows the Pearson coefficients and the corresponding p-values from the t-
test between the two human judges. This result shows that their evaluations are statis-
tically significantly (more than 80%, p<.001), in spite of individual variability. Level
0 is a parent node of Level 1, Level 1 is a parent node of Level 2, and so on. Although
the human judges and the algorithm assign scores for each document in an ontology
node, the correlation should be tested among siblings (i.e. same level nodes) because
a correlation of each mode cannot provide the correlation in general. Table 5 shows
the Pearson coefficients and the corresponding p-values from the t-test between hu-
man judges and the algorithm.

The results show that there are 73% and 68% correlations between the two at Level
1 and Level 2, respectively, and these relationships are statistically significant
(p<0.0001). The scores from the human judges are competitive with those from our
algorithm. At the top level, however, the correlation between human judges and the
algorithm is very low because no matter what the algorithm calculates as the degree
of generality, the judges determine it as 10.

7 Concluding Remarks

We have proposed a new dynamic generation of user-customized multimedia presen-
tations. The proposed system defined four domain independent story types to generate
a dynamic multimedia presentation in response to a user’s intension. – a summary
story type, a text-based story type, a non-text based story type and a structured collec-
tion story type. We conducted an experiment to examine user satisfaction of our sys-
tem comparing with that of traditional web news search functions. The experimental
result shows that our system is statistically significantly better in user satisfaction.

In addition to the story model, we introduced, defined, and confirmed the notion of
generality that is used to indicate how general or specific a document is. A basic idea
for quantification of generality and the algorithm has been devised and developed. We
employed the Pearson’s correlation coefficient to evaluate the relationships of the
degrees of generality between the human judge and the algorithm. The experimental
results show these relationships are statistically significant (p < .0001). As seen in
Table 5, the Pearson correlation coefficients are 73% and 68% for Level 1 and Level
2, respectively.

References

[1] Alexakos, K., Vassiliadis, B., Likothanassis, S.: A Multilayer Ontology Scheme for Inte-
grated Searching in Distributed Hypermedia. Springer, Heidelberg (2006)

[2] Bodart, F., Vanderdonckt, J.: Visual Layout Techniques in multimedia Applications. In:
CHI Companion 1994, pp. 121–122 (1994)

[3] Buckley, C., Walz, J.: SMART in TREC 8. In: Proc. Eighth Text Retrieval Conf., pp.
577–582 (November 1999)

[4] Colineau, N., Phalip, J., Lampart, A.: The delivery of multimedia presentations in a
graphical user interface environment. In: Proceedings of the 11th international conference
on Intelligent user interfaces (2006)

 The Dynamic Web Presentations with a Generality Model on the News Domain 765

[5] Davenport, G., Murtaugh, M.: ConText: Towards the Evolving Documentary. Proceed-
ings ACM Multimedia, 381–389 (1995)

[6] Dondis, D.A.: A Primer of Visual Literacy. The MIT Press, Cambridge (1973)
[7] Dumas, J.S.: Designing User Interface for Software. Prentice-Hall, Englewood Cliffs

(1988)
[8] Elias, S., Easwarakumar, K., Chbeir, R.: Dynamic consistency checking for temporal and

spatial relations in multimedia presentations. In: Proceedings of the 2006 ACM sympo-
sium on Applied computing (2006)

[9] Khan, L., McLeod, D., Hovy, E.H.: Retrieval effectiveness of an ontology-based model
for information selection. The VLDB Journal 13(1), 71–85 (2004)

[10] Kim, W.C., Foley, J.D.: Providing High-Level Control and Expert Assistance in the User
Interface Presentation Design. In: Proceedings of Inter-CHI 1993, pp. 430–437. ACM
Press, New York (1993)

[11] Mao, M., Peng, Y., He, D.: DiLight: an ontology-based information access system for e-
learning environments. In: Proceedings of the 29th annual international ACM SIGIR con-
ference on Research and development in information retrieval (2006)

[12] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Informa-
tion Processing and Management 24(5), 513–523 (1988)

[13] Salton, G.: Automatic Text Processing – the Transformation, Analysis and Retrieval of
Information by Computer. Addison-Wesley Publishing Co., Reading, MA (1989)

[14] Shneiderman, B., Kang, H.: Direct Animation: A Drag and Drop Strategy for Labeling
Photos. In: VI2000. Proceedings of International Conference on Information Visualiza-
tion, pp. 88–95 (2000)

[15] Smolensky, P., Bell, B., King, R., Lewis, C.: Constraint-based Hypertext for Argumenta-
tion. In: Proceedings of Hypertext, pp. 215–245 (1987)

[16] Vanderdonckt, J., Gillo, X.: Visual Techniques for Traditional and Multimedia Layouts.
In: Proceedings of the workshop on advanced visual interfaces (1994)

[17] Weitzman, L., Wittenberg, K.: Automatic Presentation of Multimedia Documents Using
Relational Grammars. Proceedings of ACM Multimedia, 443–451 (1994)

[18] Zhouh, M.X.: Visual Planning: A Practical Approach to Automated Presentation Design.
In: IJCAI. Proceedings of the International Joint Conference on Artificial Intelligence, pp.
634–641 (1999)

[19] Zobel, J., Moffat, A.: Exploring the Similarity Space. In: Proc. ACM SIGIR Forum,
vol. 32, pp. 18–34 (Spring 1998)

A Highly Efficient XML Compression Scheme

for the Web

Przemys�law Skibiński1, Jakub Swacha2, and Szymon Grabowski3

1 University of Wroc�law, Institute of Computer Science
Joliot-Curie 15, 50–383 Wroc�law, Poland

inikep@ii.uni.wroc.pl
2 Institute of Information Technology in Management, Szczecin University

Mickiewicza 64, 71–101 Szczecin, Poland
3 Technical University of �Lódź, Computer Engineering Department

Politechniki 11, 90–924 �Lódź, Poland

Abstract. Contemporary XML documents can be tens of megabytes
long, and reducing their size, thus allowing to transfer them faster, poses
a significant advantage for their users. In this paper, we describe a new
XML compression scheme which outperforms the previous state-of-the-
art algorithm, SCMPPM, by over 9% on average in compression ratio,
having the practical feature of streamlined decompression and being al-
most twice faster in the decompression. Applying the scheme can signif-
icantly reduce transmission time/bandwidth usage for XML documents
published on the Web. The proposed scheme is based on a semi-dynamic
dictionary of the most frequent words in the document (both in the an-
notation and contents), automatic detection and compact encoding of
numbers and specific patterns (like dates or IP addresses), and a back-
end PPM coding variant tailored to efficiently handle long matching se-
quences. Moreover, we show that the compression ratio can be improved
by additional 9% for the price of a significant slow-down.

Keywords: XML compression, semi-structural data compression, text
transform, prediction by partial matching.

1 Introduction

Year after year, XML consolidates its hold as a standard for interchange of struc-
tured information. With the recent international standardization of the Open-
Document format and the introduction of the Open XML format in Microsoft
Office 2007, this trend can only be accelerated.

As the information technology usage becomes more and more Web-centric,
there is a considerable amount of XML documents exchanged through the Web
every day. Contemporary XML documents can be tens of megabytes long, and
although, from the standpoint of Internet providers, they represent only a small
share of traffic dominated by video sharing websites and peer-to-peer file ex-
change networks, reducing the size of XML documents, thus allowing to transfer
them faster, poses a significant advantage for their users.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 766–777, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Highly Efficient XML Compression Scheme for the Web 767

There are several XML compression algorithms available, renowned for their
high compression ratios. The ratios are high in absolute terms, still, XML data
can be squeezed further with more advanced techniques.

In this paper, we describe a new XML compression scheme which sets the new
state-of-the-art in XML compression. The scheme attains impressive compression
ratios with reasonable compression/decompression times and supports streamed
decompression, which makes it especially suitable for web applications.

The outline of this paper is as follows. Section 2 presents earlier achievements
in XML compression. Section 3 compares transform-based approach to XML
compression against other possibilities. The next section presents in detail our
proposal, XWP transform designed for efficient PPM-like compression, and two
compressors that we use together with XWP. Results of our experiments are
shown in Section 5. The final section concludes.

2 Related Work

The high redundancy of XML documents makes them easily compressible even
with general-purpose compressors. Among the streamlined compression methods
(which are highly welcome in web applications), the two most important families
are LZ77 [20] and PPM algorithms [4].

The former ones parse the text into literals and matches to text sequences
seen earlier. There are plenty of LZ77 variants, differing, e.g., in literal and
match encoding, or parsing strategies. Let us mention only two of them, Deflate
[6], used in the extremely popular zip and gzip formats, and LZMA [12], the
current state-of-the-art in LZ77 compression.

Unlike LZ77 compressors, the algorithms from prediction by partial matching
(PPM) family [4,18] encode characters on their context basis. This approach
usually provides higher compression, but may be unsatisfactory for texts with
many long matches, mostly due to physical (CPU time, memory occupation)
limitations imposed on PPM models in practice.

Yet another line of general-purpose compressors are those employing the
Burrows–Wheeler transform (BWT) [2], interesting in their own, but their block-
oriented nature seriously hampers their use in web applications.

Still, XML can be compressed better with dedicated schemes. The first truly
successful dedicated XML compressor was XMill [9], compressing data-centric
documents to about half their gzipped size, and to even less in a human-assisted
regime. It was achieved thanks to three features of XMill. The first was splitting
XML document content into three distinct parts containing respectively: element
and attribute symbol names, plain text, and document tree structure. Every part
has different statistical properties, therefore it helps compression to process them
with separate models. The second idea was to group contents of same XML el-
ements into so-called containers. In this way similar data are stored together,
helping compression algorithms with limited history buffer, such as LZ77 deriva-
tives. Finally, each container was compressed with a dedicated method, exploit-
ing the type of data stored within it (such as numbers or dates). What makes

768 P. Skibiński, J. Swacha, and S. Grabowski

this feature not so useful is that XMill requires the users themselves to choose
methods to encode specific containers. Such human-assisted compression can
hardly be regarded practical. XMill originally used gzip to compress the trans-
form output. Although newer versions added support for BWT-based bzip2 and
PPM implementations, yet in these modes XMill succumbs to other programs
employing such algorithms, for instance, those described below.

The first published XML compression scheme based on a high-compression
PPM algorithm was XMLPPM [3]. XMLPPM replaces element and attribute
names with their dictionary indices, removes closing tags as they can be re-
constructed in a well-formed XML document only provided their positions are
marked. The most vital trait of XMLPPM is multiplexed hierarchical modeling
which consists in encoding data with four distinct PPM models: one for element
and attribute names, one for element structure, one for attribute values, and one
for element contents. In order to exploit some correlation between data going to
different models, the previous symbol, regardless of the model it belongs to, is
used as a context for the next symbol.

XMLPPM was extended into SCMPPM [1], in which a separate PPM model
is maintained for every XML element. This helps only in case of large XML
documents, as every PPM model requires a due number of processed symbols to
become effective. The main flaw of SCMPPM is its very high memory usage.

Exalt [19], presented in 2004 by Toman, was a pionieering work in compressing
XML by inferring a context-free grammar describing its structure. Among the
following solutions along these lines, the most successful was probably XAUST
[8] by Hariharan and Shankar, employing finite-state automata (FSA) to encode
XML document structure. In XAUST, element contents are put into containers
and encoded incrementally with arithmetic encoding based on a single statistical
model of order 4 (i.e., treating at most four preceding symbols as the context
for the next one). The published results show that XAUST beats XMLPPM on
some test files, yet the great drawback of this scheme is that it requires the XML
document to have a document type definition (DTD) to which it conforms, as
the compressor needs to construct the FSA.

There are many XML compressors that allow search without a need for full
XML document decompression (references can be found e.g. in [7]). Nevertheless,
these compressors achieve compression ratios only comparable to XMill , with
the positive exception of XBzip, which is based on a variant of the Burrows–
Wheeler transform adapted to tree structures [7]. In this line of our research we
focus on publishing XML datasets on the Web, not on processing them server-
side, therefore we omit the design issues related to fast query execution. See [17]
for a description of another scheme suited for such applications, offering fast
query processing at the cost of compression ratio.

3 Transform-Based Approach to XML Compression

There are three ways to improve the efficiency of general-purpose compression al-
gorithms on XML documents: use a dedicated algorithm (e.g., XAUST); modify

A Highly Efficient XML Compression Scheme for the Web 769

an existing algorithm to exploit the specifics of XML (e.g., XMLPPM); or, de-
fine a transform whose output can be handled better by the general-purpose
compression algorithms than actual XML is (e.g., XMill).

The first of the aforementioned approaches leads to solutions which are per-
fectly tuned for XML, but it requires large amount of work, and, after imple-
mented, it cannot benefit from the improvement in general-purpose compression.
In the second approach the XML specialization can go almost as far as in the
first one, and the amount of work is (theoretically) smaller as we modify ex-
isting code. Still, additional work is required to make such scheme benefit from
improvements in the underlying algorithm, and not every algorithms source code
is available and free to modify. In the third case the role of the transform is to
transcode an XML document in a way exposing its redundancy to the subse-
quent general-purpose compression algorithm. The level of specialization is much
lower, as it is impossible to expose every kind of redundancy to the back-end
compressor. Still, once implemented, this sort of solution can be used with any
general-purpose compressor, no matter if it existed when the transform was im-
plemented or whether its source code is available. However, being ready to work
with any general-purpose compression algorithm does not mean that it cannot
be tuned for a specific one, or that a specific algorithm cannot be tuned for the
transform output.

The transform can help the subsequent compressor in several ways: by effi-
cient representation of XML structure, better to handle than the robust textual
tagging; by replacing with mere flags those tokens which can be reconstructed
based on XML constraints (like closing tags); by separating contents of different
XML elements, so that the algorithms which prefer short-range correlation (like
the LZ77-based) can do better; by separating content tokens which have low
frequency and break the context for the subsequent data; by efficient represen-
tation of content tokens which have long textual form (like words, numbers or
dates).

The logical separation of the transform stage from the compression stage does
not imply two levels of coders/decoders; for most practical purposes, a better
solution is that a single coder/decoder should perform both stages. Moreover,
most web applications require the decoder to support streaming. That is, the op-
erations of decompression and reverse transform should be interleaved for small
blocks of data. This brings additional constraints for the transform architecture.

4 XWP: A Web-Compression-Oriented XML Transform

In this section we present XWP (short from XML-WRT+PPM), a compression-
oriented XML transform designed with two goals in mind: very high compression
efficiency and suitability for web applications.

XWP is derived from the root of XML-WRT [15], a basic compression-oriented
XML transform lacking the desired features of XWP. Another line of research
was aimed at fast decompression capability through the use of LZ-based back-
end compressors (XWRT2) [16], and its variant offering partial decompression for

770 P. Skibiński, J. Swacha, and S. Grabowski

faster search (QXT) [17]. This line lead to solutions which are not perfect for web
usage, as XWRT2 is an off-line transform, and QXT reduces compression ratio
for the sake of partial decompression which is irrelevant if the whole document
is to be decompressed anyway.

Since the introduction of the XMLPPM compression scheme in 2001 [3], the
PPM algorithm has been used in several successful XML-specialized compressors
(including SCMPPM [1] and XBzip [7]).

Unfortunately, pairing up XML-WRT with PPM was not an easy task. Most
of the techniques developed for XWRT2 worked only for LZ-based compressors,
and could even hurt compression efficiency of compressors of other type. This is
due to the differences between PPM and LZ77-based compressors behavior, as
given in Table 1.

Table 1. A comparison of LZ77 and PPM compressors

LZ77 PPM

Short sequences Will not be substituted unless
longer than minimum match
length

Encoded efficiently
thanks to context
modeling

Long sequences Encoded efficiently provided the
original sequence is within the
sliding window

Coding efficiency limited
by maximum PPM order
bound

Distance between a
match and its source

Longer distance decreases
compression efficiency (as the
distance must be encoded);
distance larger than the sliding
window size makes it impossible
to find a match

Practically irrelevant

Inserting unusual
symbols in typical
contexts

Irrelevant, as a contextless model
is used to encode single symbols

Coding efficiency hurt as
the context is disrupted

4.1 Transform Components

The backbone of the proposed transform is to replace the most frequent words
with references to a dictionary. XWP works in two passes. The dictionary is ob-
tained in a preliminary pass over the data, and contains sequences of length at
least lmin characters that appear at least fmin times in the document. The dictio-
nary is sorted by word frequency and divided into four groups in a way described
in the next section. Then each group of words is sorted alphabetically. The com-
plete dictionary is front compressed [14] and stored within the compressed file,
thus making the reverse operation faster. We set lmin = 2 and fmin = 64, as
these values gave good results for most files used in the experiments.

A Highly Efficient XML Compression Scheme for the Web 771

We have also tried a fully dynamic (one-pass) transform variant, but it gives
much worse compression ratio. Also using a static dictionary (i.e., a single dic-
tionary embedded in the coder/decoder) is questionable because of the practical
impossibility to select a set of words relevant across a wide range of real-world
XML documents.

In the second pass, the parsed data items are encoded in a byte-oriented
manner (words with a prefix code; numbers, IP numbers, dates, and times with
respective coding schemes; details will be presented later), and then compressed
with a context-based compression algorithm and written to disk. We chose two
algorithms of this kind: PPMVC and FastPAQ, which are described in detail in
the following sections.

Our notion of a “word” is broader than its common meaning. Namely, XWP
dictionary contains items from the following classes:

– ordinary words – sequences of lowercase and uppercase letters (a–z, A–Z) and
128–255 (which supports, e.g., all languages with a Latin-based alphabet);

– start tags – sequences of characters that start with <, contain letters, digits,
underscores, colons, dashes, or dots, and end with >. Start tags can also
include one or more preceding spaces as XML documents usually have regular
arrangements of the lines in which individual tags very often begin in the
same column, preceded with the same number of spaces,

– URL address prefixes – sequences of the form http://domain/, where domain
is any combination of letters, digits, dots, and dashes,

– e-mails – patterns of the form login@domain, where login and domain are
any combination of letters, digits, dots, and dashes,

– words in form “&data;”, where data is any combination of letters, represent-
ing XML entities,

– special digrams – sequences =" and ">, which appear very frequently with
attribute values,

– runs of spaces – sequences of spaces that are not followed by start tags (for
documents with regular layouts).

XWP also employs several heuristics known from other schemes, such as re-
placing end tags with a flag, and omitting single spaces before encoded words, as
they can be reconstructed on decompression provided only the positions where
they should not be inserted are marked with a respective flag.

The transform can handle any XML documents with 7-bit or 8-bit encodings.
It can be adapted to handle 16-bit encoded documents as well.

XWP is truly lossless, i.e., the decoded file is an exact copy of the encoded
one. Some XML compressors ignore the document layout (e.g., trailing spaces),
but preserving it may be useful for human editors of a document. Moreover, the
exact fidelity of the decompressed document allows to use a cyclic redundancy
check or hash functions to verify the document integrity.

4.2 Token Encoding

Succinct word encoding appears to be the most important idea in our scheme.
Dictionary references are encoded using a byte-oriented prefix code, where the

772 P. Skibiński, J. Swacha, and S. Grabowski

length varies from one to four bytes. Although it produces slightly longer output
than, for instance, Huffman coding, the resulting data can be easily compressed
further, which is not the case with the latter. Obviously, more frequent words
should be assigned shorter codewords. What is less obvious is that the dictionary
encoding should be different for back-end LZ77 and PPM compressors [14].

The codeword alphabet consists of symbols very rarely used in most XML
documents: byte values above 127 and most values in range 0–31, plus a few
more. If, however, one of those symbols occurs in the document, and is not part
of an encoded word, the coder prepends it with a special escape symbol.

The XWP dictionary encoding is less dense than the LZ77-optimized one used
in XWRT2 [16], and uses non-intersecting value ranges for different codeword
bytes. The four ranges are of size w, x, y and z, respectively.

Namely, we have w one-byte codewords, x · w two-byte codewords, y · x · w
three-byte codewords, and z · y · x · w four-byte codewords. The first byte of a
codeword unambiguously defines its length. For instance, when encoding a two
byte long codeword, a byte from the range of size x will be followed by a byte
from the range of size w. The parameters w, x, y, z are selected according to the
size of the created dictionary, with the principle of maximizing the number of
short codewords.

Certain non-word patterns are also encoded in a special way, and their col-
lection has been broadened compared to XWRT2 [16]. Numbers (e.g., “1978”,
“102.01”, “1.2”), IP numerical addresses (e.g., “129.121.34.214”), dates (e.g.,
“1980-02-31”, “01-MAR-1920”), times (e.g. “11:30pm”, “23:20”, “23:30:59”),
and numerical ranges (e.g. “1020-1042”) are encoded densely as binary num-
bers (base 256). For example, any integer in the range from 1900 to 2155 is
considered to be a year, and encoded on a single byte. Numbers from 1 to 12
followed by the suffix “am” or “pm” (e.g., “11:30pm”) are interpreted as times,
and encoded on three bytes: the first byte is a flag signaling a time pattern (con-
forming to the presented notation), the second is the hour in 24-hour convention,
the other specifies the minutes. Some documents, e.g. containing bibliographi-
cal information, are flooded with page ranges. They are usually in the format
x–y, and usually 0 < y − x < 256. If this happens, four bytes are enough to
encode such a range: a flag, two bytes for x, one byte for the difference y − x.
Several other pattern types are handled similarly. Note that this is an exten-
sion of the features found in XMill. As opposed to it and the other mentioned
schemes, XWP automatically detects such data types, with neither DTD nor
user assistance.

4.3 Back-End Compression Algorithms

To avoid confusion, we shall refer to the XML transform preceding statistical
compression as XWP, and to the entire compression scheme (including the XWP
transform and back-end compression) as XWRT3 (with XWRT1 standing for the
original, non-specialized scheme [15], and XWRT2 for the scheme specialized for
LZ-based compressors).

A Highly Efficient XML Compression Scheme for the Web 773

The XWRT3 implementation provides two back-end compressors to choose:
PPMVC and FastPAQ. Both have been implemented by the first author. PP-
MVC is faster while FastPAQ provides better compression ratios. We present
both algorithms in the following subsections.

PPMVC. PPM is an adaptive statistical compression method. A statistical
model accumulates counts of symbols (usually 8-bit characters) seen so far in a
given context. Thanks to that, an encoder can predict probability distribution
for new symbols from the input data. Increasing the context length is beneficial
for encoding symbols known in a given context, but amplifies the problem of
efficient encoding of the symbols yet unseen.

XML data contain long repeated strings. These data are compressed with
most PPM variants in a way far from optimal, as the highest order used by
e.g. Shkarin’s PPMd is only 16. In 2004 Skibiński and Grabowski [13] presented
the PPMVC algorithm (PPM with variable-length contexts), a variant of PPM*
[5] adapted to cooperate with modern PPM mechanisms. PPMVC extends the
character-based PPM with LZ-style string matching.

The PPMVC mechanism works on maximum order contexts only; in shorter
contexts the current symbol is encoded with an ordinary PPM model (namely,
Sharkin’s PPMd [18] model was used). In PPMVC (called PPMVC2 in [13])
each maximum order context holds a pointer to reference context (the previous
occurrence of the context) and the minimum left match length. The left match
length (LML) is the length of the common part of the active context and the
reference context. LML, by definition, is always at least as large as the max-
imum PPM order. The right match length (RML) is defined as the length of
the matching sequence between symbols to encode and symbols followed by the
reference context.

When a character is encoded from the maximum order context, the longest
LML is evaluated, using the last contexts appearance. If it is below the minimal
left match length (minLML), then the encoder uses ordinary PPM encoding
(without emitting any escape symbol). In the other case, the encoder uses this
context to find the RML (zero or more) and encodes it using an additional global
RML model. Length is truncated to the closest multiple of the parameter d. For
example, if there is a match of length 14, and d is 3, then only the first 12
characters of the match are encoded (the truncated characters might however
be part of the next RML).

The higher is the order, the better is the PPM effectiveness in determinis-
tic contexts, so the parameters d, minLML and minRML must respectively be
greater. In the PPMVC variant implemented in XWRT3 (i.e., tuned for XWP
output), the parameter d was set to 2 · (maxOrder + 1). The other parameters,
minLML and minRML, are set to 2 · (maxOrder − 1) and 2 · d, respectively.

The decoder basically mimics the steps of the encoder.

FastPAQ. PAQ [10] is a family of compressors, originally developed by Matthew
Mahoney, based on context modeling. As opposed to most PPM variants, PAQ
works on the bit level, thus avoiding the fundamental zero-frequency problem

774 P. Skibiński, J. Swacha, and S. Grabowski

[4]. Mahoney’s algorithm uses several predicting models, including (as in PAQ8
[11]), e.g., order-n models (n up to 16), similar to the one used in PPM; a string
matching model, similar to one used in the LZ77 algorithm; and a number of text,
multimedia, tabular, or binary data oriented models (e.g., for x86 executables
or BMP images).

Mixing the prediction of individual models in PAQ8 is performed with several
neural networks. The outputs of these networks are combined using a second-
level neural network. Before submitted to an arithmetic coder, the outputs go
through two stages of adaptive probability maps (APM). The APM mechanism
is related to the secondary symbol probability estimation (SSE), known from the
PPMII algorithm [18]. It updates the probability considering previous experience
and the current context.

The main disadvantage of the PAQ8 algorithm are very high resource re-
quirements, both in memory and CPU computing power. It makes this algo-
rithm totally impractical, at least at current hardware. This is why we prepared
FastPAQ, a stripped-down version of PAQ8, intended to improve compression
and decompression speed. From PAQ8 we have left only the order-n models,
and we have also simplified APM stages, in overall making it more similar to
PPM. FastPAQ is still much slower than fast PPM variants, but achieves better
compression ratios.

5 Experimental Results

To compare the performance of our scheme with existing, XML-specialized and
general-purpose, compressors, we measured the compression ratio and compres-
sion and decompression times on individual files from Wratislavia XML Corpus
(http://www.ii.uni.wroc.pl/˜inikep/research/Wratislavia/index.htm), created to
provide a diverse collection of large XML files: it comprises textual, numerical and
mixed-content documents, most of which have been used for benchmarking in
earlier papers.

The test machine was an Intel Core 2 Duo E6600 2.40 GHz system with 1 GB
memory and two Seagate 250 GB SATA drives in RAID mode 1, running Win-
dows XP 64-bit edition. We tested the current version of software implementing
our transform, XWRT 3.1, available from http://www.ii.uni.wroc.pl/˜inikep/re-
search/XML/XWRT31.zip.

In Table 2, the compression results obtained for XWP-transformed datasets
using PPMVC and FastPAQ as back-end compressors are compared to those
achieved by the same compression algorithms on the datasets in their original
form. Existing XML-aware compressors are represented in the results with the
fast XMill 0.9, and the current state-of-the-art XML compressors, XMLPPM
0.98.2 and SCMPPM 0.93.3. We used maximum compression settings (-9/-l9)
for all these compressors; also, the preserve spaces option was turned on, where
it was available. We were not able to test XBzip, as it crashes on files larger
than 100 MB on our test machine. For a reference, we also present results of the
LZ77-optimized version of XWRT (2.1) [16]. The same settings of model order

A Highly Efficient XML Compression Scheme for the Web 775

Table 2. Compression test results

File XWRT2

Defl.

XWRT2

LZMA

XMill

PPM

XML-

PPM

SCM-

PPM

PPM-

VC

XWRT3

PPMVC

F.PAQ XWRT3

F.PAQ

all shakes 1.481 1.348 1.459 1.295 1.293 1.245 1.199 1.219 1.180
dblp 0.864 0.747 0.863 0.802 0.693 0.726 0.687 0.638 0.593
enwikibooks 1.734 1.505 1.707 1.621 1.621 1.555 1.471 1.328 1.257
enwikinews 1.590 1.300 1.533 1.379 1.398 1.277 1.191 1.149 1.080
lineitem 0.276 0.243 0.262 0.261 0.242 0.346 0.243 0.236 0.226
swissprot 0.475 0.388 0.455 0.416 0.417 0.392 0.362 0.389 0.312
uwm 0.315 0.278 0.310 0.259 0.274 0.313 0.240 0.254 0.228
Average 0.962 0.830 0.941 0.862 0.848 0.836 0.770 0.745 0.697

Comp. time 49.22 141.48 75.34 90.54 180.01 90.89 117.83 2321.3 924.37
Dcmp. time 15.88 20.05 78.92 – 179.37 97.94 96.61 2324.1 890.35

Compression and decompression bitrates are expressed in output bits per input char-
acter (lower values are better). Compression and decompression times are given in sec-
onds. XMLPPM failed to decompress two of the test files (enwikibooks and enwikinews).

Fig. 1. Decompression and transmission times (s)

(8) and size (64 MB) were used for PPMVC and XWRT3-PPMVC. FastPAQ
(also in XWRT3-FastPAQ) memory usage was limited to 74 MB.

As Table 2 shows, XWP transform managed to improve the compression ratio
of both PPMVC and FastPAQ – notice that the original compression ratios
attained by these algorithms were in almost all cases already better than those
of the remaining XML-specialized compressors. XWRT3-FastPAQ sets the new
state-of-the-art in XML compression; however, although its processing times are

776 P. Skibiński, J. Swacha, and S. Grabowski

over two times shorter than the original FastPAQs, they are still far too long
for practical applications, especially for the Web. For a more practical-minded
comparison of the results, see Fig. 1 showing the time required to download the
whole test suite and have it decompressed (on the test machine). The bars are
divided into sections representing decompression time, transmission time over a
1 Mbps connection, the transmission delay if a 384 Kbps connection was used
instead, and the additional delay from using a 128 Kbps connection.

XWRT3-PPMVC appears to be the best available solution for transmission
speeds of 384 Kbps and below. For a 1 Mbps connection it succumbs only to our
previous scheme, XWRT2. Yet the streamlined decompression introduced with
XWP may be started as soon as the compressed header is downloaded (thus
reducing the users perceived document acquisition time), which is not the case
with XWRT2, requiring off-line decompression. Also, the documents compressed
with XWRT3 are shorter (see Table 2 again), thus saving server storage space
and available bandwidth.

6 Conclusions

We presented a lossless XML transform designed for subsequent compression.
The main components of XWP are semi-dynamic dictionary of frequent alphanu-
merical phrases (not limited to “words” in a conventional sense), and binary
encoding of popular patterns, like numbers, dates or IP addresses. We believe
that those ideas, albeit quite familiar in the XML compression community, have
not been fully exploited in earlier research.

The transform, XWP, together with a suitable PPM variant (PPMVC) en-
ables to outperform the compression ratio of the state-of-the-art SCMPPM al-
gorithm by 9% on average, using only up to 86 MB of memory. This result
can be improved by another 9%, when PPMVC is replaced by a stronger but
much slower back-end compressor, FastPAQ. The transform requires no meta-
data (such as XML Schema or DTD) nor human assistance, and its decoding is
streamlined, which is a precious feature in web applications. We also show that
using XWP with PPMVC for XML documents gives the greatest time saving
to an end user, measured as the time to retrieve the (compressed) document
and to decompress it, if the network transfer is slow (up to 384 Kbps), while
for moderate-speed transfers (1 Mbps) it loses only to another variant of our
transform with LZMA compression as the back-end.

References

1. Adiego, J., de la Fuente, P., Navarro, G.: Using Structural Contexts to Compress
Semistructured Text Collections. Information Processing and Management 43(3),
769–790 (2007)

2. Burrows, M., Wheeler, D.J.: A block-sorting data compression algorithm. SRC
Research Report 124. Digital Equipment Corporation, Palo Alto, CA, USA (1994)

A Highly Efficient XML Compression Scheme for the Web 777

3. Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In:
Proceedings of the IEEE Data Compression Conference, Snowbird, UT, USA, pp.
163–172 (2001)

4. Cleary, J.G., Witten, I.H.: Data Compression Using Adaptive Coding and Partial
String Matching. IEEE Trans. on Comm. 32(4), 396–402 (1984)

5. Cleary, J.G., Teahan, W.J., Witten, I.H.: Unbounded length contexts for PPM. In:
Proceedings of the IEEE Data Compression Conference, Snowbird, UT, USA, pp.
52–61 (1995)

6. Deutsch, P.: DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (1996), http://www.ietf.org/rfc/rfc1951.txt

7. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and search-
ing XML data via two zips. In: WWW. Proceedings of the International World
Wide Web Conference, Edinburgh, Scotland, pp. 751–760 (2006)

8. Hariharan, S., Shankar, P.: Compressing XML documents with finite state au-
tomata. In: CIAA. Proceedings of the Tenth International Conference on Imple-
mentation and Application of Automata, Antipolis, France, pp. 285–296 (2005)

9. Liefke, H., Suciu, D.: XMill: an efficient compressor for XML data. In: Proceedings
of the 19th ACM SIGMOD International Conference on Management of Data,
Dallas, TX, USA, pp. 153–164 (2000)

10. Mahoney, M.: Adaptive Weighing of Context Models for Lossless Data Compres-
sion. Technical Report TR-CS-2005-16, Florida Tech., USA (2005)

11. Mahoney, M.: The PAQ Data Compression Programs (2007),
http://www.cs.fit.edu/∼mmahoney/compression/paq.html

12. Pavlov, I.: LZMA Software Development Kit (2007),
http://www.7-zip.org/sdk.html

13. Skibiński, P., Grabowski, Sz.: Variable-length contexts for PPM. In: Proceedings of
the IEEE Data Compression Conference, Snowbird, UT, USA, pp. 409–418 (2004)

14. Skibiński, P., Grabowski, Sz., Deorowicz, S.: Revisiting Dictionary-Based Com-
pression. Software – Practice and Experience 35(15), 1455–1476 (2005)

15. Skibiński, P.: Grabowski, Sz., Swacha, J.: Fast transform for effective XML com-
pression. In: CADSM. Proceedings of the IXth International Conference, Lviv,
Ukraine, pp. 323–326 (2007)

16. Skibiński, P.: Grabowski, Sz., Swacha, J.: Effective Asymmetric XML Compression.
Software – Practice and Experience (to appear)

17. Skibiński, P., Swacha, J.: Combining efficient XML compression with query pro-
cessing. In: ADBIS 2007. LNCS, vol. 4690, pp. 330–342. Springer, Heidelberg (2007)

18. Shkarin, D.: PPM: One step to practicality. In: Proceedings of the IEEE Data
Compression Conference, Snowbird, UT, USA, pp. 202–211 (2002)

19. Toman, V.: Syntactical compression of XML data. In: Presented at the doctoral
consortium of the 16th International Conference on Advanced Information Systems
Engineering, Riga, Latvia (2004),
http://caise04dc.idi.ntnu.no/CRC CaiseDC/toman.pdf

20. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE
Trans. Inform. Theory 23(3), 337–343 (1977)

http://www.ietf.org/rfc/rfc1951.txt
http://www.cs.fit.edu/~mmahoney/compression/paq.html
http://www.7-zip.org/sdk.html
http://caise04dc.idi.ntnu.no/CRC_CaiseDC/toman.pdf

Improving Semantic Search Via Integrated

Personalized Faceted and Visual
Graph Navigation

Michal Tvarožek, Michal Barla, György Frivolt,
Marek Tomša, and Mária Bieliková

Institute of Informatics and Software Engineering, Faculty of Informatics
and Information Technologies, Slovak University of Technology

Ilkovičova 3, 842 16 Bratislava, Slovakia
{Name.Surname}@fiit.stuba.sk

Abstract. Growing need for information retrieval, information process-
ing, and the associated need for navigation in existing information spaces
resulted in several approaches that aim to improve efficiency of the re-
spective user tasks. However, problems related to user navigation and
orientation in large open information spaces still persist possibly due to
increasing demands and the imperfections of individual approaches. We
propose an integrated search and navigation solution that takes advan-
tage of the faceted browsing paradigm and visual navigation in graphs
both extended with support for automatic personalization based on user
context also taking advantage of a user’s social network. The proposed so-
lution is primarily evaluated in the domain of scientific publications, i.e.
digital libraries, with possible extensions to other application domains.

1 Introduction

Growing information processing requirements continuously challenge our infor-
mation retrieval, navigation and visualization capabilities. Effective use of the
available information is becoming ever more difficult as the size, changeability
and complexity of the information space increase as do the diversity of users and
their requirements.

Consequently, issues such as the infamous navigation problem, high naviga-
tion recurrence, information overload or insufficient personalization support arise
and significantly decrease overall user productivity in demanding information
processing tasks [1]. The typical steps performed by users when seeking infor-
mation are the query, selection, navigation and query modification. However,
most current approaches provide very little support for the crucial navigation
step where users locate the desired information. For example, current web search
engines are able to locate a set of good starting points for navigation yet offer
users no navigation support that would help them in realizing their goals [1].

Moreover, several studies indicated that keyword-based queries tend to be
short (two to three words) [2] and that advanced search interfaces of keyword-
based search engines are impractical to use [3], while also being unsuitable for

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 778–789, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improving Semantic Search Via Integrated Personalized Faceted 779

browsing and exploratory tasks [4]. Thus more advanced search and navigation
paradigms such as faceted and visual graph navigation were explored:

– Faceted navigation used in faceted browsers is based on the use of faceted
classification – an orthogonal multidimensional classification of information
artifacts, which was originally developed in library sciences [5]. Its basic
principle lies in the use of facets, describing individual properties of instances
in an information space, to specify the desired properties of instances in the
visible information space. The final search query combines restrictions from
individual facets via the logical AND function resulting in an unordered list
of instances that satisfy all specified restrictions.

– Graph navigation is based on a graph representation of the information
space. A graphical visualization of the respective (sub)graph of the informa-
tion space is used, where individual nodes are annotated to aid user naviga-
tion. Two modes of operation can be used. Vertical navigation in the graph
based on, for example hierarchical clustering of instances, where multiple
clustering criteria can be used to select subspaces of the original informa-
tion space similarly to faceted navigation. Horizontal navigation in the graph
allows users to explore the relations between individual instances (nodes),
typically employing either a local cluster, centered on a specific instance or
a window, which displays instances and relations up to a certain distance.

In this paper we aim to improve existing navigation approaches by combining
personalized faceted navigation with visual navigation in graphs, taking advan-
tage of ontologies and users’ social networks. Section 2 describes current ap-
proaches that improve upon existing navigation methods, while our extensions
to faceted navigation and its corresponding extension with visual navigation
in search results and associated instances are described in sections 3 and 4. We
describe our evaluation in section 5 and summarize the contribution in section 6.

2 Related Work

The field of generic information retrieval has already been explored in much
detail resulting in several methods and commercially successful search engines.
However, the specific area of navigation also in Semantic Web data has not yet
been sufficiently explored. Thus our focus is information navigation in ontological
instances taking advantage of semantic metadata available in OWL ontologies.

In [6], the authors describe BrowseRDF – a faceted browser for RDF data,
which generates the faceted browsing interface from the supplied RDF data. They
extend the faceted query model with new types of queries (e.g., existential, inverse
existential, inverse join) and define metrics and algorithms for automatic facet
ranking based on statistics computed from the source RDF data to prevent infor-
mation overload. However, since only RDF data without additional metadata are
used, all properties are used as facets disregarding their semantics (e.g., numbers,
dates, enumerations, hierarchies, direct/indirect properties of the desired search
results) making efficient use for large information spaces impractical.

780 M. Tvarožek et al.

Similarly, the Semantic Web portal tool OntoViews [7] publishes RDF content
via a predefined faceted browser interface and provides the user with a content-
based search engine and link generation/recommendation based on relationships
between ontological concepts. OntoViews also presents results in clusters based
on the semantic similarity of instances (i.e., sharing some common properties).

Authors in [4] stress the importance of user interface usability and divide
the faceted search process into three phases. The opening gives users a broad
overview of the scope, size and content of the collection, the middle game allows
users to narrow down the result set by refining the query, the end game shows the
final search result and allows users to navigate laterally through the collection.

Neither of these solutions however provides personalized features based on
individual users’ characteristics nor their context. Furthermore, the faceted clas-
sification of an information domain can be somewhat difficult to understand
resulting in orientation problems, while the access to popular items possibly
nested deep within a classification hierarchy can be tedious and impractical.
Moreover, from the Semantic Web perspective, none of these approaches take
advantage of semantic metadata (i.e., OWL), which in addition to instances also
describe the structure of the information domain, thus being of only limited use
for search and navigation in OWL ontologies.

Navigation in a graph heavily depends on the adequate visualization of the
graph, i.e., on the use of suitable graph drawing styles. In force-directed algo-
rithms nodes repel each other while edges are interpreted as springs exerting at-
tracting forces on the nodes they connect. The algorithm then iteratively moves
some nodes according to the overall force acting on each of them until a rea-
sonably stable configuration is found [8]. Layered drawing is another drawing
style where the majority of the edges follows some overall direction that shall be
emphasized by drawing as many edges as possible in one specific direction, e. g.,
form top to bottom.

Drawing clustered graphs is more complicated because of the additional inclu-
sion hierarchy. Possible solutions to use an additional dimension or to emphasize
the underlying graph by drawing the inclusion tree as nested regions (inclusion
edges are not drawn explicitly, but they are visualized through the geometric
nesting of the corresponding regions – mostly rectangles or circles).

Another vital issue is the visualization of graph changes – how efficiently can
users follow the expansion or contraction of the graph as they they interact with
it. With poor visualization it takes the user considerable time to become familiar
with the graph’s drawing again. This means that searching for details of inter-
est has to be performed without losing orientation within the graph. According
to [9], this is one of the main problems, when exploring large structures. There-
fore, often different representations for overview and detail are linked together in
such a way that manipulating one view automatically updates the others. When
the user searches for some structures of interest in one view, these structures are
also accentuated in the other views, e.g. by highlighting or color-coding. Working
with different views at once, the user can effectively change the representations
and choose the best for the task at hand.

Improving Semantic Search Via Integrated Personalized Faceted 781

In our approach, we build upon existing solutions – we assume an ontolog-
ical domain and user model representation in accordance with the Semantic
Web initiative [10], and propose an integrated navigation approach combining
faceted navigation and visual navigation in graphs with support for personaliza-
tion based on an automatically acquired user model.

3 Personalized Faceted Navigation

Faceted browsers provide graphical user interfaces which enable users to inter-
actively select one or more restrictions in the set of available facets thus visually
constructing (semantic) search queries via navigation instead of inventing and
writing keywords. In practice, faceted browsers can be effectively used for faceted
browsing of an information space without a specific goal, e.g. to get an overview
of what information is available, or for faceted search if the specific properties
of the desired search results are known, e.g. if journal papers on adaptive hyper-
media and the Semantic Web not older than 3 years should be returned.

Some disadvantages of faceted browsers include a somewhat more complex
user interface, the need to understand the used faceted classification and faceted
browsing paradigm as well as the possibly difficult access to popular items, which
might be nested deep in the classification hierarchy.

Refresh facet state

Log user action with semantics

Generate output

Annotate search results

Create and execute

database query

Retrieve search results

from the database

Generate the resulting

browsing state

[update facets and

restrictions]

[update search results]

Adapt search results

Adapt facets and restrictions

Recommend facets and restrictions

Generate dynamic facets

[insufficient facets]

[facets are suitable]

Annotate facets and restrictions

Fig. 1. Request handling of the adaptive faceted semantic browser, extensions in gray

782 M. Tvarožek et al.

We proposed personalization, adaptation, and the use of ontologies to address
the aforementioned shortcomings of “classical” faceted browsers, and to improve
user orientation and guidance, and overall search efficiency [11]. The request pro-
cessing of our adaptive faceted semantic browser, which allows users to navigate
in a domain ontology (in OWL format) and adapts the navigation based on an
automatically acquired user model [12], is shown in Figure 1.

– Dynamic facet generation takes advantage of metadata stored in the domain
ontology to create at run-time new facet descriptions relevant to the user’s
information goals and characteristics in the user model (Figure 1, center).

– Facet and restriction adaptation, annotation and recommendation adapt the
set of available facets and restrictions based on the in-session user behav-
ior and based on more long term user characteristics stored in the user
model also considering the characteristics of other users. Individual facets
are hidden or disabled if they seem less relevant to the current user task,
or reordered based on their relevance. Restrictions are annotated with ad-
ditional information (e.g., instance count or relevance based on the user
model) and/or recommended (e.g., shown with different background color)
(Figure 1, left).

– Search results annotation and adaptation improve user orientation and guid-
ance by providing additional information about individual search results
(e.g., how close is the topic of a paper to the user’s interests) and displaying
only relevant attributes of instances. (Figure 1, right)

– User action logging with semantics facilitates automatic user characteristics
acquisition by logging evidence of user actions with the associated semantics
via a user modeling server (Figure 1, bottom right).

We also enhanced the faceted browser with support for nested facets for in-
direct properties of instances, derived from ontological metadata describing the
structure of the domain ontology (i.e., classes), and additional facet combination
functions (e.g., OR, NOT).

Since relations between users represented as social networks can significantly
improve the user model and thus indirectly improve user experience, we ex-
tend the existing relevance evaluation model of the adaptive faceted semantic
browser [12] with support for social networks of users who may be associated
via different relationships (e.g., friend, coauthor, colleague).

We use social network data to:

– recommend and annotate search results based on social networks of individ-
ual users (e.g., sorting of results based on others’ ratings);

– recommend and annotate restrictions based on social networks of individual
users (e.g., highlighting restrictions popular with the user’s colleagues);

– create new facets and restrictions based on social networks of individual users
(e.g., a facet which restricts the information space to publications which were
visited and/or rated by the user’s colleagues).

Improving Semantic Search Via Integrated Personalized Faceted 783

4 Integrating Visual Navigation with Faceted Browsers

Faceted browsers typically present detailed information about search results in
tables or simple textual overviews. However, this approach becomes ineffective
for more complex information spaces, which consist of many tightly intercon-
nected instances (e.g., data in OWL ontologies).

We employ visual navigation in graphs to present data about individual search
results (ontological instances) and their respective associated instances. For ex-
ample, in the domain of scientific publications, papers might represent search
results, while authors, conferences, or individual research fields might represent
associated instances.

Ontologies serve as initial data sources for both faceted navigation and navi-
gation in graphs which use the semantics of the stored information. Furthermore,
we take advantage of personalization based on the user context, which is auto-
matically constructed, e.g., based on observed user behavior by specialized user
modeling server and the corresponding user modeling agents, or based on the
used device.

Our integrated navigation approach is outlined by these steps:

1. The user starts a navigation session by using the faceted browser interface
and narrowing down the visible information space via the use of facets and
restrictions.

2. The list of search results is displayed either in “classical” textual visualization
or using a personalized hierarchically grouped textual or visual view based on
a given grouping/clustering criterion. During this stage, the user can either
further refine the query via facets or by selecting a group/cluster of search
results.

3. Once the level of individual instances is reached, the user can view detailed
information about specific instances and their associated instances using vi-
sual navigation in the graph starting from the selected search result instance.
Alternatively, a (nested) “classical” textual table of attributes and their val-
ues can be used.

4.1 Hierarchical Search Results Refinement

Currently the most predominant browsing model is based on hierarchically orga-
nized information spaces. Multidimensional faceted navigation integrated with
hierarchical search results refinement introduces new alternative views on the
available information spaces. Moreover, a visual view of the information space
restricted via facets, based on a cluster hierarchy, improves user orientation.

We visualize the internal structure, i.e. the relations between the nodes in
clusters (see Figure 2) by showing related vertices closer to each other. Since
we visualize only two levels of clustering simultaneously – the current level and
the level directly below, multiple layers are not mixed together and thus do
not confuse users. This is further supported by visualizing the relations between
clusters on the current level only implicitly via the structure of the next level.

784 M. Tvarožek et al.

Fig. 2. Example of visual graph navigation in clusters. After selecting the right cluster
(top), the view shows its internal structure divided into three smaller clusters (bottom).

Since users choose clusters for further navigation based on their annotations
and the annotations of individual nodes, their proper choice is crucial for any
successful visual navigation approach. Node and cluster annotations must be
distinctive from other annotations of and should clearly describe the respective
instance or instances (for a cluster).

In the domain of scientific publications, nodes are authors, which are con-
nected by edges if a relation such as co-author, friend, colleague, or reviewer
exists between them. The authors’ publications are indexed using keywords and
topics. Consequently, clusters are annotated with the keywords and topics of the
respective authors’ publications contained within a cluster.

These visualization techniques describing the features of nodes are used:

– Tooltips1 provide extended information about nodes. In the domain of pub-
lications this information may include the most frequent authors or institu-
tions, number of publications in the cluster or the most frequent conferences,
workshops where the papers where presented.

– Font size emphasizes the size of the cluster (i.e., the number of instances).
– Background color used for personalization indicates suitability similarly as

in [13]. For example, clusters often visited by related users can be recom-
mended over less popular clusters.

1 Tooltips are small boxes with supplementary information that appear when the user
hovers the cursor over an item.

Improving Semantic Search Via Integrated Personalized Faceted 785

4.2 Horizontal Navigation in Instances

Horizontal navigation is traditionally considered as the main benefit of hyper-
text. Browsing instances/groups of instances visually by taking advantage of
their similarity improves orientation and usability over the classical tabular view
of faceted browsers.

In [14] we proposed incremental browsing of an ontology’s structure. We use
the same principle is for instances/group of instances visualized in a graph. In
every moment only a specific part of the information space – a window is visible,
based on the evaluation of the presented entities (e.g., ontology instances). The
rest of the graph is visualized on demand when needed (e.g., based on further user
clicks navigation). Entity evaluations are computed based on user interaction
with the ontology (e.g., people browsing manually or applications).

4.3 User Modeling

The acquisition of user characteristics is fundamental for personalization and can
be performed implicitly, e.g. by monitoring and analyzing an individual user’s
activity, by evaluating his or her activities in the context of social relations, or
explicitly by getting feedback from users either by answering manually prepared
or system generated questions based on a domain ontology, or by evaluating
other forms of feedback (numeric content rating). All knowledge about the user
is stored in a centralized user model separated from the rest of the adaptive
system using a user modeling server.

Characteristics Based on Social Networks. We consider social networks
to be an interesting and valuable source of characteristics about users since we
can infer information from the size and nature of the social network or import
user characteristics from other known members of the network.

One important property of the scientific publications domain is that users who
search for publications can also be authors. Furthermore, there are social rela-
tions between authors which can be reflected in a social relation model between
users and used for personalization.

Present day social portals usually provide only a single type of relation – a-
friend-of. However, it seems appropriate to take advantage of typed relations
(e.g., a colleague, close friend, co-author and friend) for potential publication
authors and use these typed relations to detect additional user interests or to
make recommendations. Individual relations can be strongly-typed (i.e., defined
by an ontology) or labeled as tags created by users.

Detection of social relations can be automated or performed manually using
forms. Certainty can be achieved only if users provide explicit confirmation of
detected relationships.

Authorship identification. A possible exception is the co-authorship relation,
which can be reliably detected without its explicit definition. However, we use
explicit confirmation of publication authorship to eliminate cases of name coin-
cidence or ambiguity.

786 M. Tvarožek et al.

Information about publication authorship is gained from users during their
profile creation. If a user claims to be the author of at least one scientific pub-
lication he or she gets a list of publications from the information space he or
she may have possibly authored. This list is obtained by selecting publications
with author names similar to or derived from the name provided by the user,
who then confirms publication authorship by selecting and checking publications
from the offered list, thus updating the corresponding user model. If all selected
publications share the same author instance, equality between the user identity
and the author instance in the domain model can be assumed.

Usage of authorship information to solve the cold start problem. We derive initial
weights for user interests from properties (keywords, index terms etc.) of publi-
cations for which a user confirms authorship. Furthermore, using co-authorship
information we extend interests in the user model provided that people who
co-authored some publication share some common interests.

Navigation-Related Characteristics. The filling-in of questionnaires is often
considered an annoying and time-consuming activity. Therefore, we minimize
user involvement required for the user modeling process and employ automated
means of user model construction based on the monitoring and evaluation of
user behavior.

Our approach is similar to other user modeling server based approaches [15].
Each (adaptive) application (either the faceted browser, cluster navigator or their
combination) sends records about user actions (evidence) performed within the
application to a user modeling server. Each record contains information about
the respective event, its attributes and the consequence of the event (change of
the user interface) as well as the timestamp and user–session identification [16].

Our logging approach is unique as it preserves the semantics of user interac-
tion and allows for better separation (and thus re-usability) of user modeling
functionality from the rest of the system. Interaction records are processed by
user modeling agents which perform knowledge inference based on the collected
evidence and update the user model respectively. Our inference agent is driven
by a set of rules [17] which were devised to capture various interesting naviga-
tional, domain and system dependent or independent patterns, and to connect
them with a set of consequences on user characteristics stored in the user model.
The example of a rule (heuristic) is e.g., result browsing when user starts to ex-
plore the details of displayed instances without changing any restrictions in the
faceted browser. We can reason that the currently selected restrictions represent
user interests and incorporate this knowledge into the user model.

5 Evaluation

We evaluate the proposed approach in the domain of scientific publications in
project MAPEKUS (mapekus.fiit.stuba.sk), where we developed the Publi-
cation Presentation Portal – P3 based on the portal engine part of the Cocoon
framework (cocoon.apache.org).

mapekus.fiit.stuba.sk
cocoon.apache.org

Improving Semantic Search Via Integrated Personalized Faceted 787

P3 provides its users with several options for exploring and navigating in
the information space in accordance with the personalized presentation layer
approach [18]. Users use either a special portlet for faceted browsing by means of
the tool Factic (see Figure 3) or a portlet for visual graph navigation (tool Cluster
navigator), which operates on domain clusters prepared by the Clusterer tool.
Graph navigation is realized using Prefuse (prefuse.org) – a Java framework
for graph visualization, which works as a Java applet. A third portlet allows users
to use the combined approach of faceted and graph navigation. All presentation
tools can take advantage of an ontology-based user model and contribute to it
by logging user interaction via the user modeling server part of the system.

Fig. 3. Sample GUI of an enhanced faceted browser

Our underlying publication ontology was populated with metadata acquired
from two well-known digital libraries (ACM DL and SpringerLink) and the sci-
entific publications portal DBLP. We wrapped metadata about 83,000 publi-
cations (A-Box) (49,000 from ACM DL, 35,000 from SpringerLink, and 48,000
from DBLP) which were conceptualized into 390 classes in our ontology (T-Box).
We used Sesame (openrdf.org) as an RDF data store.

For graph navigation, we extract instances of the class Author from the do-
main ontology, while the edges between the authors are defined by the property
isAuthorOf. As the graph is too large, we applied off-line clustering of the

prefuse.org
openrdf.org

788 M. Tvarožek et al.

network. Raising the number of instances stored in Sesame led to serious degra-
dation of user experience with the whole system since query response times
increased exponentially. We consider the lack of proper and mature technologies
for Semantic Web applications as a serious drawback for successful widespread
acceptance of RDF/OWL and the Semantic Web.

6 Conclusions

We presented an original approach for personalized navigation via integrated
faceted and visual graph navigation in Semantic Web data taking advantage of
personalization together with a user’s social network. Semantic Web technologies
allowed us to enhance the traditional approaches either directly, for example by
introducing features like dynamic facet generation or indirectly by enhancing
the underlying data (e.g., intelligent clustering of semantically described data).

An important feature of our approach is adaptivity. Both navigation ap-
proaches log user interaction via the user modeling server and take advantage
of the created user model to improve the user’s browsing experience and offer
navigation support and guidance.

Acknowledgment. This work was partially supported by the State programme
of research and development ”Establishing of Information Society” under the
contract No. 1025/04, the Slovak Research and Development Agency under the
contract No. APVT-20-007104, and the Cultural and Educational Grant Agency
of the Slovak Republic, grant No. KEGA 3/5187/07.

References

1. Levene, M., Wheeldon, R.: Navigating the World-Wide-Web. In: Levene, M., Poulo-
vassilis, A. (eds.) Web Dynamics: Adapting to Change in Content, Size, Topology
and Use, pp. 117–151. Springer, Heidelberg (2004)

2. Jansen, B.J., Spink, A., Bateman, J., Saracevic, T.: Real life information retrieval:
a study of user queries on the web. SIGIR Forum 32(1), 5–17 (1998)

3. Markkula, M., Sormunen, E.: End-user searching challenges indexing practices in
the digital newspaper photo archive. Inf. Retr. 1(4), 259–285 (2000)

4. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search
and browsing. In: CHI 2003. Proc. of the SIGCHI conf. on Human factors in com-
puting systems, pp. 401–408. ACM Press, New York (2003)

5. Wynar, B.S., Taylor, A.G.: Introduction to Cataloging and Classification. Libraries
Unlimited Inc. (1992)

6. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for rdf data. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg
(2006)

7. Mäkelä, E., Hyvönen, E., Saarela, S., Viljanen, K.: Ontoviews - a tool for creating
semantic web portals. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 797–811. Springer, Heidelberg (2004)

Improving Semantic Search Via Integrated Personalized Faceted 789

8. Raitner, M.: Efficient Visual Navigation of Hierarchically Structured Graphs. PhD
thesis, University of Passau (2004)

9. Schulz, H.J., Schumann, H.: Visualizing Graphs - A Generalized View. In: IV 2006.
10th International Conference on Information Visualisation, pp. 166–173 (2006)

10. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intel-
ligent Systems 21(3), 96–101 (2006)

11. Tvarožek, M., Bieliková, M.: Adaptive faceted browser for navigation in open in-
formation spaces. In: WWW 2007: Proc. of the 16th Int. Conf. on World Wide
Web, pp. 1311–1312. ACM Press, New York (2007)

12. Tvarožek, M., Bieliková, M.: Personalized faceted navigation for multimedia collec-
tions. In: SMAP 2007: Proc. of the 2nd Int. Workshop on Semantic Media Adap-
tation and Personalization (accepted, 2007)

13. Brusilovsky, P., Rizzo, R.: Map-based horizontal navigation in educational hyper-
text. In: HYPERTEXT 2002. Proc. of the 13th ACM Conf. on Hypertext and
Hypermedia, pp. 1–10. ACM Press, New York (2002)

14. Bielikova, M., Jemala, M.: Incremental visual browsing of ontology structure based
on metadata evaluation and usage. In: HYPERTEXT 2007. Proc. of the 13th ACM
Conf. on Hypertext and Hypermedia, ACM Press, New York (2007)

15. Yudelson, M., Brusilovsky, P., Zadorozhny, V.: A User Modeling Server for Contem-
porary Adaptive Hypermedia: An Evaluation of the Push Approach to Evidence
Propagatation. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007, Corfu,
Greece. LNCS (LNAI), vol. 4511, pp. 27–36 (2007)

16. Andrejko, A., Barla, M., Bieliková, M., Tvarožek, M.: User Characteristics Ac-
quisition from Logs with Semantics. In: Kelemenová, A., Kolář, D., Meduna, A.,
Zendulka, J. (eds.) ISIM 2007. 10th Int. Conf. on Information System Implemen-
tation and Modeling, Hradec nad Moravićı, Czech Republic, pp. 103–110 (2007)

17. Barla, M., Bieliková, M.: Estimation of User Characteristics using Rule-based Anal-
ysis of User Logs. In: UM 2007. Data Mining for User Modeling, Proc. of Workshop
held at the Int. Conf. on User Modeling, Corfu, Greece, pp. 5–14 (2007)

18. Tvarožek, M., Barla, M., Bieliková, M.: Personalized Presentation in Web-Based
Information Systems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel,
C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 796–807.
Springer, Heidelberg (2007)

Author Index

Alessi, Fabio 124
Ali, Khadija 659
Ambainis, Andris 1, 485
Andrews, James H. 198
Arvind, V. 136

Barla, Michal 778
Bell, Paul 148
Bernát, Dušan 560
Bernet, Julien 162
Bieliková, Mária 684, 778
Bierkowski, Bartosz 696
Böckenhauer, Hans-Joachim 50
Bollig, Beate 174
Brisaboa, Nieves 186
Brusilovsky, Peter 5
Burrell, Michael J. 198

Ceccato, Mariano 83
Cheng, Feng 572
Cheng, Jingde 622
Chira, Camelia 551
Cichoń, Jacek 585
Cristau, Julien 211
Cyganek, Bogus�law 222
Czyzowicz, Jurek 234

Da̧browski, Jacek 497
Daley, Mark 198
de Falco, Diego 519
Dobrev, Stefan 234, 247
Dokulil, Jǐŕı 672
Dolog, Peter 23
Dörn, Sebastian 506
Dragoi, Cezara 259
Dumitrescu, D. 551
Duraj, Lech 271
Dzbor, Martin 34

El-Qawasmeh, Eyas 731
Escoffier, Bruno 280

Foryś, Wit 448
Frivolt, György 684, 778

Gaži, Peter 292
Goto, Yuichi 622
Grabowski, Szymon 766
Gunia, Christian 304
Gutowski, Grzegorz 271

Hashimoto, Kazuo 364
Horn, Florian 211
Hovy, Eduard 755
Hromkovič, Juraj 50

Iliopoulos, Costas S. 316
Inenaga, Shunsuke 364
Ishino, Akira 364

Janin, David 162
Joglekar, Pushkar S. 136
Jonoska, Natasha 66

Kalita, Piotr 696
Kari, Jarkko 74
Katreniaková, Jana 672
Kazienko, Przemys�law 708
Klonowski, Marek 599, 720
Koprowski, Adam 328
Koš́ık, Matej 610
Královič, Rastislav 247
Kranakis, Evangelos 234
Krȩtowski, Marek 531
Krizanc, Danny 234
Kubiak, Przemys�law 599
Kudělka, Miloš 731
Kůrková, Věra 541
Kuty�lowski, Miros�law 585, 599

Lánský, Jan 743
Larriba-Pey, Josep-L. 634
Lehečka, Ondřej 731
Lekavý, Marián 340

Majster-Cederbaum, Mila 352
Matsubara, Wataru 364
McColm, Gregory L. 66
McLeod, Dennis 755
Medrano-Gracia, Pau 634

792 Author Index

Meinel, Christoph 572
Minnameier, Christoph 352
Mömke, Tobias 50
Monnot, Jérôme 280
Morimoto, Shoichi 622
Mramor-Kosta, Neža 376
Muntés-Mulero, Victor 634
Musia�l, Katarzyna 708

Nakamura, Tomoyuki 364
Návrat, Pavol 340
Nedbal, Radim 388
Nin, Jordi 634
Nuccio, C. 400

Ofek, Yoram 83

Pardubská, Dana 247
Pedreira, Oscar 186
Petersen, Holger 406, 418
Pieprzyk, Josef 646
Pintea, Camelia-M. 551
Podolak, Igor 696
Pokorný, Jaroslav 659, 731
Pont-Tuset, Jordi 634
Pop, Petrica C. 551
Potapov, Igor 148

Radmacher, Frank G. 424
Rahman, M. Sohel 316
Rakow, Astrid 436
Range, Niko 174
Rivosh, Alexander 485
Rodaro, E. 400
Roman, Adam 448, 696
Rovan, Branislav 292

Sadeghi, Ahmad-Reza 98
Sanguineti, Marcello 541
Seco, Diego 186

Šesták, Radovan 743
Severi, Paula 124
Shigematsu, Shinjiro 622
Shin, Hyun Woong 755
Shinohara, Ayumi 364
Siirtola, Antti 460
Skibiński, Przemys�law 766
Snášel, Václav 731
Solar, Roberto 186
Spanjaard, Olivier 280
Spillner, Andreas 473
Stefanescu, Gheorghe 259
Strumiński, Tomasz 720
Suchal, Ján 684
Swacha, Jakub 766

Tamascelli, Dario 519
Thierauf, Thomas 506
Thomas, Wolfgang 118
Tomša, Marek 778
Tonella, Paolo 83
Trenklerová, Eva 376
Tvarožek, Michal 778

Uribe, Roberto 186

Valenta, Michal 460
Veselý, Richard 684
Vojtek, Peter 684
Vozár, Oto 684

Wang, Huaxiong 646
Wang, Peishun 646
Wegener, Ingo 174
Wȩglorz, Bogdan 585
Widmayer, Peter 50
Wolff, Alexander 473

Zantema, Hans 328

	Title page
	Preface
	Organization
	Table of Contents
	Quantum Random Walks – New Method for Designing Quantum Algorithms
	Quantum Algorithms: An Overview
	Quantum Walks

	Social Information Access: The Other Side of the Social Web
	Introduction
	The Emergence of Social Information Access
	A Taxonomy of Social Information Access Technologies
	Social Browsing
	Social Search
	Social Visualization
	Conclusions
	References

	Designing Adaptive Web Applications
	Introduction
	Adaptive eLearning Applications.
	Business to Business Interaction.

	Web Application Design
	Common and Variable Features in Multiple Domains
	Feature Modeling.
	Multiple Domains.
	Feature Models for Content Intensive Adaptive Web Applications.
	Feature Models for Web Services and Business Transactions.

	Dynamic Connectors between Domains
	Adaptivive Navigation in Connected Domains

	Further Challanges

	Best of Both: Using Semantic Web Technologies to Enrich User Interaction with the Web and Vice Versa
	Background
	User Interactions with the Semantic Web
	Familiarity of Tools Supporting Users
	Towards Universal Usability

	Familiar Tools for the (Unfamiliar) Semantic Web
	Navigation in Semantic Graphs
	Navigation in Multidimensional Facets
	Navigation Using Styles and Templates
	Navigation by Means of Semantic Layering

	Enhancing Semantic Layering
	Positive Experiences with Semantic Layering in Magpie
	Negative Experiences with Semantic Layering in Magpie
	Future of Semantic Browsing

	Conclusions and Discussion
	References

	On the Hardness of Reoptimization
	Introduction
	Problem Definitions
	NP-Hardness of Reoptimization
	Improving Constant-Factor Approximations
	Polynomial-Time Approximation Schemes
	Approximation Hardness of Reoptimization
	Conclusion

	Describing Self-assembly of Nanostructures
	The General Set-Up
	Automata
	Structures through Words
	Summary

	On the Undecidability of the Tiling Problem
	Introduction
	Mortality Problems of Turing Machines and Piecewise Affine Maps
	Reduction into the Euclidean Tiling Problem
	Reduction into the Tiling Problem on the Hyperbolic Plane

	Remote Entrusting by Run-Time Software Authentication
	Introduction
	Related Works

	Basic Approach
	General Architecture
	Pure Software Approach
	Hardware Assisted Approach
	Monitor

	Attacks and Analysis
	Possible Attacks
	Analysis of Attack Resistance

	Discussion

	Trusted Computing — Special Aspects and Challenges
	Introduction
	Main Aspects of the TCG Specification
	Core Components and Functionalities
	Trust Model and Assumptions
	Trusted Network Connect (TNC)
	Mobile Trusted Module (MTM)

	Property-Based Attestation and Sealing
	Secure Data Management
	Trusted Channels --- Beyond Secure Channels
	Compliance and Conformance
	Virtual TPM
	Integrity Measurement
	New Processor Generation
	Security Architectures --- Possible Approach
	Applications
	Conclusion and Future Work

	Optimizing Winning Strategies in Regular Infinite Games
	Introduction
	Reducing Memory in Winning Strategies
	Minimizing Waiting Times in Liveness Conditions
	Conclusion

	Recursive Domain Equations of Filter Models
	Introduction
	Domain-Theoretic Preliminaries
	Intersection Type Theories and Filter Models
	Classification of Recursive Domain Equations

	Algorithmic Problems for Metrics on Permutation Groups
	Introduction
	A 2O(n) Algorithm for MWP over l Metric
	Weight Problems for Hamming Metric
	MWP Is Reducible to SDP for Solvable Permutation Groups
	Limits of Hardness

	Periodic and Infinite Traces in Matrix Semigroups
	Introduction
	Preliminaries
	Two-Counter Minsky Machines
	Periodicity in Counter Machines

	Fixed Element PCP
	Applications of FEPCP and Periodicity of Computations
	Any Diagonal Matrix Problem
	The Recurrent Matrix Problem
	The Vector Ambiguity Problem
	The Infinite Post Correspondence Problem

	From Asynchronous to Synchronous Specifications for Distributed Program Synthesis
	Notations
	Distributed Games
	From Asynchronous Game to Synchronous Game
	Synchronizing Linear Game

	Exact OBDD Bounds for Some Fundamental Functions
	Introduction and Results
	Tight Bounds for the OBDD Size of the Multiplexer
	Tight Bounds for the OBDD Size of Binary Addition

	Clustering-Based Similarity Search in Metric Spaces with Sparse Spatial Centers
	Introduction
	Previous Work on Clustering-Based Similarity Search
	The Problem of Pivots and Cluster Centers Selection
	Previous Work
	Sparse Spatial Selection (SSS)

	SSSTree: Sparse Spatial Selection Tree
	Construction
	Estimation of the Maximum Distance M
	Searching

	Experimental Results
	Experimental Environment
	Search Efficiency

	Conclusions and Future Work

	A Useful Bounded Resource Functional Language
	Introduction
	Previous Work
	Programming Language
	Catamorphisms
	Tuples
	Natural Numbers

	Operational Semantics
	Termination
	Computational Power
	Conclusion and Future Work

	On Reachability Games of Ordinal Length
	Introduction
	Definitions
	Ordinals and Automata on Words of Ordinal Length
	Infinite Games
	Games of Ordinal Length

	Solving Ordinal Reachability Games
	Reduction to Muller Games
	Strategy Translation: From Muller to Ordinal Reachability

	Complexity
	Reduction to Emerson-Lei Games
	Hardness Results

	Conclusion

	An Algorithm for Computation of the Scene Geometry by the Log-Polar Area Matching Around Salient Points
	Introduction
	Computation of the Scene Geometry from Multiple Images
	Salient Points from the Structural Tensor
	Image Matching in the Log-Polar Domain
	Experimental Results
	Conclusions

	The Power of Tokens: Rendezvous and Symmetry Detection for Two Mobile Agents in a Ring
	Introduction
	Results and Outline of the Paper
	Mobile Agent Model
	Related Work

	Mobile Agents with at Most Two Tokens
	Upper Bounds for Rendezvous with Detection
	Impossibility Results
	Lower Bounds for Rendezvous

	Mobile Agents with More Than Two Tokens
	Upper Bounds for Rendezvous with Detection
	Lower Bounds for Rendezvous in Unidirectional Rings

	Conclusion and Open Problems

	How Much Information about the Future Is Needed?
	Introduction
	Definitions and Preliminaries
	Paging
	Diff-Serv
	Conclusion

	On Compiling Structured Interactive Programs with Registers and Voices
	Introduction
	Scenarios
	Specifications and Scenarios
	Operations with Scenarios

	Rv-Programs
	Structured rv-Programs
	Syntax, Examples
	Operational Semantics

	The Translation
	The Translation Correctness

	Optimal Orientation On-Line
	Introduction and Off-Line Results
	On-Line Results
	Lower Bound
	Upper Bound

	Some Tractable Instances of Interval Data Minmax Regret Problems: Bounded Distance from Triviality
	Introduction
	Upper Bounded Minmax Regret
	Upper Bounded Number of Interval Intersections
	Upper Bounded Reduction Complexity
	Upper Bounded Treewidth and Max Degree
	Concluding Remarks

	Assisted Problem Solving and Decompositions of Finite Automata
	Introduction
	Definitions and Notation
	Relations between Types of Decompositions
	Degrees of Decomposability

	Energy-Efficient Windows Scheduling
	Introduction
	Model and Notation
	Related Work
	Contributions

	Cyclic and Acyclic Schedules
	Broadcasts on a Single Channel
	Broadcasts on Multiple Channels
	Conclusions and Open Problems

	A New Model to Solve the Swap Matching Problem and Efficient Algorithms for Short Patterns
	Introduction
	Preliminaries
	A Graph-Theoretic Model for Swap Matching
	Algorithm for Swap Matching
	Shift-Or Algorithm
	Modifying Shift-Or Algorithm for Swap Matching

	Conclusion

	Certification of Proving Termination of Term Rewriting by Matrix Interpretations
	Introduction
	Theory of Matrix Interpretations
	Preliminaries
	Monotone Algebras
	Matrix Interpretations

	Coq Formalization
	CoLoR: Certification of Termination
	Monotone Algebras
	Matrices
	Matrix Interpretations

	Evaluation
	Conclusions

	Extension of Rescheduling Based on Minimal Graph Cut
	Introduction
	The RAPORT System
	Optimal Rescheduling as Minimal Graph Cut
	Rescheduling as Graph Cut
	Cost of the Edges
	Minimal Cut and Time Complexity

	Future Work
	Conclusions

	Deriving Complexity Results for Interaction Systems from 1-Safe Petri Nets
	Introduction
	Definitions
	1-Safe Petri Nets
	Interaction Systems
	Isomorphism up to a Label Relation R

	Translating 1-Safe Nets to Interaction Systems
	Translating Interaction Systems to 1-Safe Nets
	Conclusion and Related Work

	Computing Longest Common Substring and All Palindromes from Compressed Strings
	Introduction
	Preliminaries
	Computing Longest Common Substring of Two SLP Compressed Strings
	Overlaps between Two Strings
	The FM Function
	Efficient Computation of Longest Common Substrings

	Computing Palindromes from SLP Compressed Strings
	Succinct Representation of Pals(T)
	Efficient Computation of Pals(Xi)
	Results

	Basic Sets in the Digital Plane
	Introduction
	Digital Basic Sets
	An Application
	Digital Approximations of Basic Sets in I2

	Algebraic Optimization of Relational Queries with Various Kinds of Preferences
	Introduction
	User Preferences
	Preference Operator
	Basic Properties
	Multidimensional Composition

	Algebraic Optimization
	Commuting with Selection
	Commuting with Projection
	Distributing over Cartesian Product
	Distributing over Union
	Distributing over Difference
	Push Preference

	Related Work
	Conclusions

	Mortality Problem for 2 × 2 Integer Matrices
	Introduction
	Preliminaries
	Reduction of the Problem
	Main Result

	Element Distinctness and Sorting on One-Tape Off-Line Turing Machines
	Introduction
	Preliminaries
	Nondeterministic Turing Machines
	Deterministic Turing Machines
	Open Problems

	Improved Bounds for Range Mode and Range Median Queries
	Introduction
	Results
	Summary

	An Automata Theoretic Approach to Rational Tree Relations
	Introduction
	Preliminaries
	Rational Tree Relations
	Definition of Rational Tree Relations Via Rational Expressions
	Asynchronous Tree Automata
	The Equivalence Theorem
	Properties of Rational Tree Relations

	Separate-Rational Tree Relations
	Conclusion

	Slicing Petri Nets with an Application to Workflow Verification
	Introduction
	Basic Definitions
	The Slicing Algorithm
	Firing Sequences of the slice
	Verification and Falsification Results

	Example and Test Results
	Conclusions, Related Work and Future Work

	Lower Bound for the Length of Synchronizing Words in Partially-Synchronizing Automata
	Introduction
	Previous Results and Generalization
	Main Result
	Proof of Theorem 5
	Example
	Proofs of Lemmata 1 and 2

	Verifying Parameterized taDOM+ Lock Managers
	Introduction
	Notation and Model of Computation
	taDOM+ Protocols
	Modelling taDOM+ Lock Manager
	Bounding the Parameters
	Verification Results
	Discussion

	Untangling a Planar Graph
	Introduction
	Previous and Related Work
	Preliminaries and Overview
	The Main Theorem
	Finding a Suitable Path
	An Upper Bound for Outerplanar Graphs

	Quantum Walks with Multiple or Moving Marked Locations
	Introduction
	Definitions
	Moving Marked Locations
	Exceptional Case: Marked Locations on Diagonal
	Conclusion and Open Problems

	Parallel Immune System for Graph Coloring
	Introduction
	Biological Inspirations
	Clonal Selection Algorithm for GCP
	Experimental Results
	Population Size
	The Number of Clones
	Parallel Speedup
	Results for Benchmark Graphs

	Conclusions

	The Quantum Complexity of Group Testing
	Introduction
	Preliminaries
	Quantum Query Model
	Tools for Quantum Algorithms
	Tool for Quantum Query Lower Bounds

	Group Problems
	Group Testing for Groupoids
	Group Testing for Semigroups and Quasigroups

	Testing Associativity, Distributivity and Commutativity
	The Semigroup Problem
	The Distributivity Problem
	The Commutativity Problem

	Quantum Walks: A Markovian Perspective
	Paradigmatic Examples
	Quantum Walks vs. Random Walks
	Autonomous Generation
	Conclusions and Outlook

	A Memetic Algorithm for Global Induction ofDecision Trees
	Introduction
	Memetic Algorithm for Global Induction
	Representation, Initialization and Termination Condition
	Genetic Operators
	Selection
	Fitness Function

	Experimental Results
	Artificial Datasets
	Real-Life Datasets
	Evaluation of Algorithm Performance on Large Datasets

	Conclusions

	Geometric Rates of Approximation by Neural Networks
	Introduction
	Maurey-Jones-Barron's Theorem and Its Improvements
	Geometric Rates of Variable-Basis Approximation
	Sets of Functions with Geometric Rates of Approximation
	Discussion

	A Sensitive Metaheuristic for Solving a Large Optimization Problem
	Introduction
	Sensitive Stigmergic Robots
	Stigmergy and Autonomous Robots
	Sensitive Robots

	Sensitive Robot Metaheuristic for Drilling Problem
	Generalized Traveling Salesman Problem
	Drilling Problem
	SRM for Solving a Large Drilling Problem

	Numerical Experiments
	Conclusions

	Domain Name System as a Memory and Communication Medium
	Introduction
	Domain Name System
	Memory Model
	Covert Channel

	Implementation of Memory Algorithm
	Principle
	General Properties of Memory

	Measurements and Results
	Response Analyses
	Characteristics Evaluation and Comparison

	Conclusions

	Strong Authentication over Lock-Keeper
	Introduction
	Background
	Strong Authentication
	Physical Separation
	Our Motivations

	The Lock-Keeper Strong Authentication Framework
	Authentication Proxy on INNER and OUTER
	IAM System on GATE

	Security Enhancement of Lock-Keeper Web Service Module
	A Secure Lock-Keeper Web Service Providing Platform
	Experiment Result

	Conclusions

	Short Ballot Assumption and Threeballot Voting Protocol
	Introduction
	Two Candidates Case
	Stochastic Analysis for SBA

	Practical Deniable Encryption
	Introduction
	Deniable Encryption by Canetti et al.
	Our Solutions
	A Nested Construction
	Postponed One-Time-Pad
	Deniable Encryption Based on the ElGamal Cryptosystem
	A Covert Channel Hidden in Deniable Encryption

	Conclusions

	Taming of Pict
	Introduction
	Related Work
	The Pict Programming Language
	Refactorization of the Original Pict Library
	Powerbox
	Experiments in the Kernel Space
	Conclusion and Future Work

	Classification, Formalization and Verification of Security Functional Requirements
	Introduction
	Classification and Formalization of Security Functional Requirements
	Classification of Security Functional Requirements
	Formalization of Security Functional Requirements

	The Hybrid Verification Method
	Outline of the Improved Verification Method
	Separation of Static and Dynamic Specifications

	Application
	Example Verification with Theorem-Proving
	Example Verification with Model-Checking

	Discussion
	Concluding Remarks
	The Dynamic Security Functional Requirements

	ONN the Use of Neural Networks for Data Privacy
	Introduction
	Preliminaries
	Artificial Neural Networks
	The Backpropagation Algorithm
	Data Protection Methods
	Scoring Protection Methods

	Ordered Neural Networks
	Experiments
	Conclusions and Future Work

	Threshold Privacy Preserving Keyword Searches
	Introduction
	Related Works
	Preliminaries
	TPPKS
	Security Model
	Complexity Assumptions
	The Bilinear Pairings

	Construction of TPPKS
	System Instantiation Algorithm
	Key Distribution Algorithm
	Data Encryption and Secure Index Generation Algorithm
	Trapdoor Generation and Data Search Algorithm
	Data Decryption Algorithm

	Security
	Conclusion and Future Research

	3D_XML: A Three-Dimensional XML-Based Model
	Introduction
	Related Work
	3D_XML Formalism
	Time Dimensions
	Time Model
	Data Modeling

	Supporting for “now”
	Temporal Constructs
	Get Time Dimensions
	Fixed Duration
	Valid/Efficient Times Relationships Constructs
	Snapshot Data
	Interval Comparison Operators
	Break Construct

	Temporal Queries with XQuery
	Conclusions and Future Work
	References

	Visual Exploration of RDF Data
	Introduction
	Visualization Algorithm
	Comparison
	Triangle Layout Algorithm
	Vertical Range Distribution

	Implementation
	Node Merging
	Animation
	Examples

	Conclusion and Future Work

	Creation, Population and Preprocessing of Experimental Data Sets for Evaluation of Applications for the Semantic Web
	Introduction
	Process of Data Set Development
	Domain for Experimentation

	Data Acquisition
	Acquisition Methods
	Wrapper Induction from User Examples

	Data Preprocessing
	Data Integration
	Data Cleaning
	Duplicates Identification
	Duplicates Resolving
	References Disambiguation

	Data Processing
	Extracting Graphs from Ontologies
	Clustering

	Evaluation -- Duplicate Identification
	Conclusions

	Algorithm for Intelligent Prediction of Requests in Business Systems
	Introduction
	System Architecture
	RPG Graph
	Algorithms
	Example
	Algorithm Optimization and Tests
	Concluding Remarks

	Mining Personal Social Features in the Community of Email Users
	Introduction
	Related Work
	Mining Personal Importance in the Community
	Social Network of Users
	Personal Importance Evaluation
	Commitment Function in Email Communication

	Experiment on Enron Dataset
	Conclusions

	Proofs of Communication and Its Application for Fighting Spam
	Introduction
	Organization of the Paper

	Previous Works
	Proofs-of-Work for Fighting Spam
	Other Applications of POWs
	Disadvantagies of Computional Proofs-of-Work

	Proofs-of-Communication
	Requirements
	Internet/HTTP-Based POC
	Procedures

	Proof of Concept
	Experimental Results

	Potential Threats and Drawbacks
	Proofs-of-Communication in P2P Networks
	Conclusions

	Web Pages Reordering and Clustering Based on Web Patterns
	Introduction
	Related Work
	Web Pattern
	Web Pattern Taxonomy
	Pattern Description and Structure

	Web Pattern Samples
	Domain Patterns
	Structural Patterns

	Page Similarity
	Human View
	Technical View

	Experiment: Reordering
	Experiment: Profiles and Clusters
	Conclusion

	Compression of Concatenated Web Pages Using XBW
	Introduction
	Conflicting Name XBW

	Implemented Methods
	Parser and TDx
	Block Compression
	Dictionary Methods
	PPM Method
	Coder

	BWT
	Corpora
	Results
	Comparison with Other Programs
	Future Work

	The Dynamic Web Presentations with a Generality Model on the News Domain
	Introduction
	Overall Functional Architecture
	Story Model
	Generality Model
	Experiments
	Evaluation Plan for Story Model
	Corpus Analysis for Generality Model
	Evaluation Plan for Generality Model

	Results and Discussion
	Story Model
	Generality Model

	Concluding Remarks
	References

	A Highly Efficient XML Compression Scheme for the Web
	Introduction
	Related Work
	Transform-Based Approach to XML Compression
	XWP: A Web-Compression-Oriented XML Transform
	Transform Components
	Token Encoding
	Back-End Compression Algorithms

	Experimental Results
	Conclusions

	Improving Semantic Search Via Integrated Personalized Faceted and Visual Graph Navigation
	Introduction
	Related Work
	Personalized Faceted Navigation
	Integrating Visual Navigation with Faceted Browsers
	Hierarchical Search Results Refinement
	Horizontal Navigation in Instances
	User Modeling

	Evaluation
	Conclusions

	Author Index

