
Towards Alternative Approaches to
Reasoning About Goals

Patricia H. Shaw and Rafael H. Bordini

Department of Computer Science,
University of Durham, U.K.

{p.h.shaw,r.bordini}@durham.ac.uk

Abstract. Agent-oriented programming languages have gone a long way
in the level of sophistication offered to programmers, and there has also
been much progress in tools to support multi-agent systems development
using such languages. However, much work is still required in mechanisms
that can reduce the burden, typically placed on programmers, of ensur-
ing that agents behave rationally, hence being effective and as efficient
as possible. One such mechanisms is reasoning about declarative goals,
which is increasingly appearing in the agents literature; it allows agents
to make better use of resources, to avoid plans hindering the execution
of other plans, and to be able to take advantage of opportunities for re-
ducing the number of plans that have to be executed to achieve certain
combinations of goals. In this paper, we introduce a Petri-net based ap-
proach to such reasoning, and we report on experimental results showing
that this technique can obtain comparable improvements on an agent’s
behaviour to other existing approaches (our experiments do not yet cover
reasoning about resource usage). Our long-term goal is to provide a num-
ber of alternative approaches for such reasoning, evaluate and compare
their performances under different configurations, and incorporate them
into interpreters for agent-oriented programming languages in such a way
that the most appropriate approach is used at given circumstances.

1 Introduction

Recent years have seen an astonishing progress in the level of sophistication
and practical use of various different agent-oriented programming languages [3].
These languages provide constructs that were specifically created for the im-
plementation of systems designed on the basis of the typical abstractions used
in the area of autonomous agents and multi-agent systems, therefore of much
help for the development of large-scale multi-agent systems. However, the bur-
den of ensuring that an agent behaves rationally in a given application is left to
programmers (even though the languages do offer some support for that task).

Clearly, it would make the work of multi-agent systems developers much eas-
ier if we could provide (semi-) automatic mechanisms to facilitate the task of
ensuring such rationality, provided, of course, that they are sufficiently fast to
be used in practical agent programming languages. One important issue for a
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rational agent is that of deliberation — that is, deciding which goals to adopt
in the first place (see [15,9,2] for some approaches to agent deliberation in the
context of agent programming languages). Besides, once certain goals have been
adopted, the particular choice of plans to achieve them can cause a significant
impact in the agent’s behaviour and performance, as particular plans may inter-
fere with one another (e.g., through the use of particular resources, or through
the effects they have in the environment). The general term that has been used
to refer to the reasoning that addresses these issues, which requires declarative
goal representations [25,24], is reasoning about goals.

Much work has been published recently introducing various approaches which
contribute to addressing this problem [7,21,22,23,11,16]. In most cases, in par-
ticular in the work by Thangarajah et al. and Clement et al., the idea of “sum-
mary information” is used in the proposed techniques for reasoning about goals.
However, the size of such summary information can potentially grow exponen-
tially on the number of goals and plans the agent happens to be committed to
achieve/execute [8]. It remains to be seen how practical those approaches will
be for real-world problems.

In our work, we are interested in mechanisms for goal reasoning which do not
require such summary information, yet can reproduce the reasoning that has
been proposed in the literature. Avoiding the use of summary information, of
course, does not guarantee that those alternative techniques will be more efficient
than the existing approaches. In fact, our approach is to try and use well-known
formalisms with which to attempt to model the goal reasoning problem, then
experimentally evaluating the various different approaches. We aim, in future
work, to combine those approaches in such a way that agents can use one mech-
anism or another in the circumstances where each works best, if that turns out
to be practically determinable.

So far, we have been able to model the goal reasoning problem using two
different approaches, neither of which requires summary information as in the
existing literature on the topic (the next section gives a detailed description of
such work). First, we have modelled goal-adoption decision making as a reach-
ability problem in a Petri net [14]. Then, using the idea and method suggested
in [18,17] for translating a Hierarchical Task Network (HTN) plan into a Con-
straint Satisfaction Problem (CSP), we have also developed a method for, given
an agent’s current goals and plans (possibly including a goal the agent is con-
sidering adopting), generating an instance of a CSP which can produce a valid
ordering of plans — if one exists — to help the agent avoid conflicts (and take
advantage of opportunities) when attempting to achieve all its goals.

For reasons of space, in this paper we focus on presenting the Petri-net based
technique only, and we also give initial experimental analysis of an agent’s per-
formance when using such goal reasoning in two different scenarios; the results
of the CSP-based technique will be reported in a separate paper. The remainder
of this paper is organised as follows. Section 2 gives an overview of the types
of goal reasoning and various approaches to that problem that have appeared
in the literature. Then, in Section 3, we look at how such reasoning can be
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represented as a Petri net. Section 4 provides an experimental analysis of the
Petri-net based reasoning. Finally, we give conclusions and a summary of future
work in Section 5.

2 Reasoning About Goals

There are multiple types of conflicts that rational agents need to be aware of;
these can be internal to the individual agent, or external between two or more
agents [10]. While conflicts can occur in social interactions, when attempting to
delegate or collaborate over a set of given tasks [5], the main focus of this paper
is to look at conflicts between goals within an individual agent.

The conflicts arise within a single agent when it has taken on two or more
goals that are not entirely compatible [10]. The conflicts may be caused if there
is a limited amount of resources available [23,16], or it may be due to the effects
the actions involved in achieving the goals have on the environment; the actions
in the plans being executed to achieve concurrent goals can cause effects which
can hinder, or even prevent altogether, the successful completion of some of those
plans [21,22].

In all the work by Thangarajah et al. referred above, a Goal-Plan Tree (GPT)
is used to represent the structure of the various plans and sub-goals related to
each goal (see Figure 1). In order for a plan within the tree to be completed,
all of its sub-goals must first be completed. However, to achieve a goal or a
sub-goal, only one of its possible plans needs to be executed. At each node
on the tree, summary information is used to represent the various constraints
under consideration. The reasoning done in their approach is solely internal to
an individual agent.

SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)

P3: AnalyseSoilPlan(A) P5: TransmitResultsPlan2P4: TransmitResultsPlan1

SG4: TransmitData

P6: TransmitDataPlan

SG6: TransmitData

P8: TransmitDataPlan

SG5: MoveCloseToLander

P7: MoveClosePlan

P1: SoilExpPlan

G1: PerformeSoilExpAt(A)

Fig. 1. Goal-Plan Tree for a Mars rover as used by Thangarajah et al. Goals and
sub-goals are represented by rectangles, while plans are represented by ovals.
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Reasoning about effects of actions needs to consider both positive and nega-
tive impacts in relation to other plans, and causal links that may exist between
goals. In the first paper by Thangarajah et al. where reasoning about effects
is considered, they show how to detect and avoid negative interference between
goals [21]. By using additional types of summary information, similar to those
developed in [7], such as summaries for definite or potential pre-conditions and
in-conditions along with post-conditions or effects, they monitor the causal links
between effects produced by a plan which are used as pre-conditions of another
to ensure these are not interfered with. To derive these effects, a formal notation
based on set theory is defined, to allow agents to produce the summary informa-
tion in order to reason about conflicting actions between its current goals and
any new goals the agent might consider adopting.

When conflicts occur, often they can be handled by scheduling the plan exe-
cution so as to protect the causal links until they are no longer required. Also
in [21], the authors determine a sequence of steps for an agent to schedule plan
execution so as to avoid interference, including checks that need to be performed
before an agent can accept to adopt a new goal. Empirical results from experi-
ments using the reasoning described in that paper are given in [19], comparing
the performance of an agent with and without such reasoning, varying the level
of interaction between goals and the amount of parallelism. The results show the
improvement in number of goals successfully achieved, and only slight increase
in time taken to perform the additional reasoning.

In [22], Thangarajah et al. focus on exploiting positive interaction between
goals. This is where two or more plans cause the same effect, so rather than
executing both, it might be possible to merge the two plans, thereby improving
the agents’ performance. To represent this form of reasoning, they again use
the goal-plan tree with summary information including definite and potential
effects of the plans and goals; they also define a particular method to derive
such summaries. They then describe how an agent can decide if it is feasible
to merge the plans, and how to avoid waiting too long if one of the two plans
selected for merging is reached considerably sooner than the other or the second
plan is never reached, in case it was a “potential” merge rather than a “definite”
merge. Results from experiments using this type of reasoning are once again
presented in [19].

Horty and Pollack also consider positive interaction between plans [11]. In
their work, an agent evaluates the various options it has between its goals within
the context of its existing plans. They use estimates for the costs of plans, and
where there is some commonality between some plans, those plans will be con-
sidered for merging. If the estimated merged cost is less than the sum of the two
separate estimated costs, then the plans are actually merged. The example they
give to illustrate this is an “important” plan for going to a shopping centre to
buy a shirt, while also having a less important goal of buying a tie. Both plans
involve getting money and travelling to a shopping centre, so if the overall cost
of buying the tie at the same time as the shirt is less than that of buying the tie
separately, then the plans will be merged, even though the goal of having a tie
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is not as important. In this way, they look for the least expensive execution of
plans involved in achieving the goals.

When referring to reasoning about resource usage in a GPT [23], Thangarajah
et al. consider both reusable and consumable resources. For example, a commu-
nication channel is a reusable resource, while energy or time is consumed so they
cannot be reused. Summaries of the resource requirements are passed up the tree
towards the goal, describing which resources are necessary in order to achieve
the goals, and also which resources are used only potentially. They introduce
a notation, based on set theory, allowing the derivation of summaries for the
resource requirements of each goal and plan with sub-goals. These can then be
used to reason about where conflicts might occur, so that they can be avoided
by choosing suitable alternative plans or appropriately ordering plan execution.
An algorithm is given to compute whether it is feasible to add a new goal to the
existing set of goals without rendering them unachievable. The initial formula-
tion of the goal-plan tree and summary information for an agent is produced at
compile time, and the highlighted conflicts are then monitored at runtime in an
attempt to avoid conflict.

Empirical results from experiments done using such reasoning are given in [20].
They consider goal-plan trees of depth 2 and depth 5, varying the amount of
parallelism between multiple goals, and the amount of competition for the re-
sources either by reducing their availability or increasing the number of goals
competing for the same resources. The reasoning is implemented as an exten-
sion to the JACK agent development system [4]; the extended system is called
X-JACK. The performance of X-JACK is compared against the performance of
JACK without any of the additional reasoning, and shows an improvement in
performance regarding the number of goals successfully achieved, typically with
only a half-second time increase in the computation cost.

In comparison, [16] consider the use of limited resources when deliberating
and performing actions in a multi-agent environment, where coordination and
negotiation with the other agents is required. In their attempt to address the
problem of limited resources within meta-level control, they make use of rein-
forcement learning to improve the agents’ performance over time.

To our knowledge, while Thangarajah et al. have reported on experimental
results for reasoning separately about each of the types of interactions between
plans and goals as well as resource usage, no results appear in the literature
showing what is the performance obtained when an agent is doing all those
forms of reasoning simultaneously. All results are given for the individual types,
to demonstrate the sole effects from the individual reasoning and the (typically
very small) amount of added computational costs associated with it. The lack
of combined results seem to suggest the possibility of there being interference
between the different forms of reasoning presented in their approach. For exam-
ple, if one reasoning suggests that performing a particular plan will cause one
type of conflict (say, lack or resources), while another reasoning suggests that
the only alternative plan for that goal will also cause a conflict (say, a negative
interference with another goal), the agent may be unable to decide between the
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two without some additional overriding reasoning. It also remains unknown if
their approach is still equally efficient when the various types of reasoning are
combined.

The results were also limited in the depth of trees tested. In the real world,
it is likely the plans (and hence the goals) would be far more complex, leading
to trees of significantly greater sizes. However, using the summary information,
as a goal-plan tree grows, the amount of summary information to handle could
potentially grow exponentially [8], which would have a significant impact on the
performance of the agent for larger problems.

Prior to the time that the work by Thangarajah et al. was published, the
Distributed Intelligent Agents Group led by Edmund Durfee, produced some
similar research for modelling — and reasoning about — plan effects, extending
their work to cover multi-agent systems rather than individual agents [6,7,8]. In
their work, they were interested in reasoning about conflicts to coordinate the
actions of agents that use HTN planning, while the work by Thangarajah was
based around BDI agents (focusing on individual agents instead). In [7], Clement
et al. present the summary information for pre-, in-, and post-conditions of plans,
which is adopted by Thangarajah et al. and used within goal-plan trees to reason
about both resources and effects.

3 Reasoning About Goals Using Petri Nets

Petri nets are mathematical models, with an intuitive diagrammatic represen-
tation, used for describing and studying concurrent systems [14]. They consist
of places that are connected by arcs to transitions, with tokens that are passed
from place to place through transitions. Transitions can only fire when there
are sufficient tokens in each of the input places, acting as pre-conditions for the
transition. A token is then removed from each input place, and one is placed
in each of the output places. Places are graphically represented as circles, while
transitions are represented as rectangles.

There are many variations on the basic Petri net representation, and many of
these have been used in a variety of agent systems [13,1]. Arcs can have weights
associated with them, the default weight being one. Greater weights on arcs
either require the place to have at least that many tokens for the transition to fire,
or the transition adds to the output place that number of tokens as its output.
Coloured Petri Nets are able to hold tokens of different types, representing for
example different data types. The weightings on the arcs then match up and
select the relevant tokens to fire. Reference nets allow nets to contain sub-nets.
Renew is a Petri net editor and simulator that is able to support high-level Petri
nets such as coloured and reference nets [12].

We have developed a method to represent an agents’ goals and plans using
Petri nets. Essentially, we are able to represent the same problems as expressed
by goal-plan trees in the work by Thangarajah et al. (see Figure 2 for an exam-
ple). According to the method we have devised, goals and plans are represented
by a series of places and transitions. A plan consists of a sequence of actions that
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starts with a place, and has a transition to another place to represent each of
the atomic actions that occur in sequence within that plan. Goals and subgoals
are also set up as places with transitions linked to the available plans for each
goal. In Figure 2, the plans are enclosed in dark boxes, while the goals and sub-
goals are in light boxes. The plans and subgoals are nested within each other,
matching the hierarchical tree structure of the GPT.

Fig. 2. Petri Net Representation of the
Mars Rover GPT in Figure 1

The goal reasoning that we have incor-
porated into the Petri nets is to allow an
agent to handle both positive and nega-
tive interactions between multiple goals;
we are in the process of incorporating rea-
soning about resources on top of these.
Our aim is to be able to reason about
these three aspects together whilst also
avoiding the use of any “summary infor-
mation” as in the work by Thangarajah
et al. and Clement et al.. This reasoning
and the representation of the plans and
goals themselves can each be seen as an
interlinked module, as will be discussed
below. This modularisation of the method
we use to represent goals and plans as
(sub) Petri nets allows an agent to dynam-
ically produce Petri-net representations of
goals and plans (and their relationship to
existing goals and plans) that can then
be used by an agent to reason on-the-fly
about its ability to adopt a new goal given
its current commitments towards existing
goals.

Currently, the Petri nets are being gen-
erated manually, but they have been de-
signed in such modular way with the aim
of being able to automate this process. An
agent will then be able to generate new
Petri nets to model new goals as the agent

generates them or receive requests to achieve goals, allowing it to reason about
whether it is reasonable to accept the new goal. If the goal is accepted then
the Petri nets can be used to advise plan selection to avoid interference and to
benefit from positive interactions. Figure 3 shows the main modules being used
in the Petri nets. Some of the notation used in the Petri nets is specific to the
Renew Petri net editor.

The negative interference reasoning protects the effects that have been caused
in the environment until they are no longer required by the goal that caused
the change. When an agent executes a plan that produces an effect in the
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:protect()

:unprotect()

Protected

Action

Plan

Variable v

v:protect()

v:set()

:set()

Protect Module

v:unprotect()

Plan

Action

:read()

v:read()

(a) Protect module for negative inter-
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(c) Merge module for positive interaction.

Fig. 3. Petri-Net Representation of Modules for Reasoning about Goals

environment, and that effect will be required by a later plan, the effect is im-
mediately marked as protected until it is no longer required. This is done by
using a protect module (Figure 3(a)) that adds a set of transitions and places
to the Petri nets so that when the relevant effect takes place, a transition is
fired to protect it, then when it is no longer needed another transition is fired to
release the protected effect. If another plan attempts to change something that
will impact on the protected effects, then it will be blocked and forced to wait
until the effects are no longer protected (i.e., until the release transition fires).

In the Mars Rover example, negative interference occurs when two or more
goals require taking samples at different locations and after having moved to
the first location, a second goal interferes to take the rover to another location
before the sample is taken to satisfy the fist goal. To avoid this, the causal link
is identified based on the effects and preconditions of the plans when Petri nets
are generated, and a protect module is added to ensure other goals and plans
cannot interfere with the casual link until the necessary plans have executed. In
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the Petri nets, the protect module is implemented by adding a place that holds
a token to indicate if a variable (i.e., effect) is protected or not, with transitions
that the plan fires to protect the variable at the start of the causal link, then
another transition to unprotect the variable when it is no longer required.

The positive interaction reasoning checks whether the desired effects have
already been achieved (such as a Mars rover going to a specific location to
perform some tests), or whether multiple goals can all be achieved by a merged
plan rather than a plan for each goal, such as the Mars Rover transmitting all
the data back in one go instead of transmitting separately individual results
obtained by separate goals. When two or more plans achieve the same effect,
only one of the plans has to be executed. This can greatly reduce the number
of plans that are executed, especially if one of the plans has a large number of
subgoals and plans. As a result, this can speed up the completion and reduce the
costs of achieving the goals, particularly if there is a limited amount of resources.

In the Mars rover example, positive interaction can take place in both ways.
First, when moving to a different location the rover may have several goals all of
which required going to the same location; however, only one plan needs to be
actually executed to take the rover there. In the Petri nets, this is handled by a
pre-check module (Figure 3(b)) that first checks whether another plan is about
to, or has already, moved the rover to the new location, and if not it then fires
a transition to indicate that the rover will be moving to the new location so the
similar plans for other parallel goals do not need to be executed.

The second form of positive interaction is the direct merging of two or more
plans. In the Mars rover scenario, this can occur when two or more goals are
ready to transmit the data they have collected back to the base station. A merge
module (Figure 3(c)) is added to indicate that when a goal is ready to transmit
data back, it also checks to see if other goals are also ready to transmit their
data. If so, all data that is ready is transmitted by the one plan rather than each
goal separately executing individual plans to transmit the data.

4 Experimental Results and Analysis

We have used two different scenarios in our evaluation: the first is an abstract
example and the other is the simple Mars rover example.

Scenario 1: Abstract Example

In this scenario, the goal structure in Figure 4 was used for each of the goals
that were initiated. In the experiments reported here, we have opted for not
considering varying structures, but this will be considered in future experiments.
The experiments we conducted with Scenario 1 aimed to match, to the extent
we could understand and reproduce, the settings of the experiments conducted
in [19] to evaluate the GPT and summary information method that they intro-
duced, in particular their experiments to compare the performance of JACK and
X-JACK.
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Goal/Subgoal

Plan

Fig. 4. Goal-Plan Tree
Used for all Goals in Sce-
nario 1

In our experiments using Scenario 1, ten goal types
were defined adjusting the selection of plans within
the goal plan tree that would interact with those of
other goals. The interaction was modelled through a
set of common variables to which each goal was able
to assign values. The variables and values are used to
represent the different effects that plans can have in
the environment.

To stress-test the Petri nets, tests were set up that
involved high levels of interaction, using a set of 5
variables, or low levels of interaction, using a set of 10
variables. Out of the 10 goal types, 5 of the goal types
used 3 variables, while the remaining 5 goals types
only altered 1 variable. During testing, 20 instanti-
ations of the 10 possible goal types were created at
random intervals and running concurrently. The Petri
nets were implemented using Renew 2.1 [12], and each
experiment was repeated 50 times.

Four experimental setups were used, with “High & Long” in the graphs (see
Figure 5) corresponding to High Levels of Negative Interference for Long Peri-
ods, down to “Normal & Random” corresponding to Normal Levels of Negative
Interference for Random Length Periods. The periods are controlled by defining
the levels within the GPT that the interaction occurs at; so, for example, in
the positive interaction, the duration over which the positive interaction takes
place can be maximised by making plans in the top levels of the GPT with the
greatest depth to interact.

A dummy Petri net was set up using the same goal structure and set of goal
types, but without any of the reasoning for positive or negative interaction. The
results from running this against the Petri net where such reasoning was included
could then be compared to show the improvements obtained by the reasoning.

Negative Interference. Each goal was given a set of 1 or 3 variables to which
it was to assign a given value and then use it (recall that this represents the
effects of plan execution in the environment). The positions in the goals where
the variables were set and then used were varied either randomly or set to require
the variables to be protected for the longest possible periods (meaning the state
of the world caused by a plan is required to be preserved for longer periods
before the interfering plans can be executed). The selections of plans in each goal
are designed to cause interference for other goals being pursued simultaneously.
This is done by ensuring a significant overlap in the variables which the goals are
setting, particularly under high levels of interaction. The effect of the reasoning
is measured by counting the number of goals achieved both by the “dummy”
and by the “reasoning” Petri nets.

The results are shown in Figure 5(a). The graphs show the averages for the
number of goals achieved by the reasoning Petri net and the dummy Petri net
from the 50 runs for each of the experiment settings, also showing the standard
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Scenario 1: Negative Interference
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Scenario 1: Positive Interaction
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interaction.

Fig. 5. Results for Negative Interference and Positive Interaction in an Abstract
Scenario

deviation. The effects of the negative reasoning are immediately obvious by the
fact that the Petri nets with goal reasoning were consistently able to achieve
all the goals, while the dummy Petri nets achieved, on average, very few goals,
particularly when there were high levels of interference and variables that had
to be protected for a long time, where it was only able to achieve approximately
21% of the goals, on average. Even at normal levels of interaction and random
depth positioning, it was still only able to achieve, on average, 46% of the goals.
The standard deviation shows that the performance of the dummy Petri nets
was highly variable within the 50 runs of this experiment.

Positive Interaction. To measure the effects of reasoning about positive inter-
actions, each goal was again given a set of 1 or 3 variables, with overlap between
the goals, so that we can determine a selection of plans for each goal which can
potentially be achieved by just executing one of the plans. Each goal contains
25 plans (in its GPT), of which at least 21 would have to be executed if the goal
was being pursued on its own. This is due to two subgoals having a choice of
plans to execute in the GPT. The scenario was set up to ensure all the goals are
achievable without any reasoning, so the effects of the reasoning are measured
by the number of plans that are required to execute in order to achieve all the
goals.

As with the negative interference, the depth of the plans within the goal-plan
structure at which merging can occur is varied. Plans with more subgoals will
have a greater impact on the number of plans executed when merged than plans
with no or very few subgoals. The tests were set with mergeable plans either
high up in the GPT, or randomly placed within the tree.

The results are shown in Figure 5(b). The graphs show the averages for the
number of plans executed by an agent using the Petri net with goal reasoning
and a dummy agent; the averages are taken from the 50 runs for each of the
experiment setups, and the graphs also show the standard deviations. There is
clearly a major improvement between the dummy and the reasoning agents in all
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of the simulation settings, with the reasoning agent requiring significantly fewer
plans to be executed than the dummy, whilst still achieving the same goals. For
high levels of interaction and mergeable plans at high levels in the GPT, there
is an average drop of 47% in the number of plans being executed. Even with
lower levels of interaction, and randomly placed mergeable plans, there is still
a decrease of 30% on average. This could lead to large savings in the time and
resources required by an agent to achieve its goals. While the standard deviation
shows there is more variance in the performance of the reasoning agent than the
dummy, this is due to the variations in depth and GPT of the merged plans. Even
with the variance, the reasoning consistently caused a significant improvement
in the performance in comparison to the dummy agent.

Negative and Positive Interaction. In this section, the two types of reason-
ing have been combined into one Petri net with a scenario that causes negative
interference as well as it provides opportunities for positive interaction. To main-
tain exactly the same levels of interaction, both positively and negatively, the
same GPT has been used again and the variables are duplicated for this abstract
scenario. One set of variables is used for positive interaction, while the other is
used for negative interference. This has been done, in the abstract scenario, to
maintain the levels of interaction to allow for a clear comparison, but in the
second scenario both forms of reasoning are applied to the same variables to
represent a more realistic scenario.

Each goal is given 1 or 3 variables to assign values to for the negative inter-
ference, and we use the same number of variables for positive interaction. The
number of goals achieved and the plans required are then measured to compare
the expected performance of an agent that uses the Petri-net based reasoning
against a dummy agent (i.e., an agent without any goal reasoning).

The four sets of tests were combined, in particular the negative interference
at high levels of interaction over long periods was combined with the positive
interference at high levels of interaction and at high levels within the GPT,
while the negative interference at high levels of interaction over random periods
was combined with the positive interference at high levels of interaction and at
random levels within the GPT. The experiment for interaction at normal levels
was combined in the same way.

The results are shown in Figure 6. These are broken down into three groups:
6(a) goals achieved, 6(b) plans executed, and 6(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.

The reasoning agent is once again able to achieve all of its goals, while the
dummy agent is still only able to achieve 57–83% of its goals. Not only is the
dummy agent failing to achieve all its goals, it is also attempting to execute
almost all its plans in an effort to achieve those goals. This means the effects of
the positive interaction reasoning are also very obvious with a drop of 50% in
the number of plans executed by the reasoning agent for high levels of negative
interference with positive interaction for long periods in the GPT, while still
maintaining a 32% decrease in plans at lower levels of interference. The plan
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Scenario 1: Positive and Negative Interaction
Comparing Goals Achieved
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(a) Comparison of goals
achieved across the four
experimental setups.

Scenario 1: Positive and Negative Interaction
Comparing Plans Executed
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(b) Comparison of plans
executed across the four
experimental setups.

Scenario 1: Positive and Negative Interaction 
Comparing Plans per Goal Ratio
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(c) Comparison of ratio
between plans executed
and goals achieved.

Fig. 6. Experimental Results for Combined Positive and Negative Interaction in an
Abstract Scenario

to goal ratio shows that the reasoning agent only had to execute on average 10
plans at high levels of interaction, and 14 plans at lower levels of interaction,
to achieve its goals, while the dummy agent had to execute on average 39 plans
at high levels of interaction and 25 at normal levels. Recall that while in the
GPT there are only 25 plans available to achieve the main goal on its own, the
dummy agent was still executing plans in goals that failed, and the ratio shows
all the plans executed compared to the goals actually achieved. The standard
deviation shows that, in general, the performance of the reasoning agent is very
consistent, whereas the dummy agent is highly erratic, particularly when there
are high levels of interaction for long periods.

Scenario 2: Mars Rover

To show the reasoning being used in a more concrete example, a Mars rover
scenario has also been used. In this scenario, the rover is given a set of locations
and a set of tests (or tasks) to perform at each location. Each task at each
location is represented by a separate goal, as shown in Figure 2, offering much
opportunity for both negative and positive interactions. All of the plans contain
a set of preconditions that must be true for it to be able to execute, and these
preconditions are satisfied by the effects of other plans. So while there may be
less plans involved than in Scenario 1, there is still a lot of interaction taking
place. The preconditions lead to a partial ordering of the plans for the goal
to be achieved. In our experiments, 2, 4, and 6 locations were used, with 5
tests carried out at each location, in order to evaluate the performance of the
reasoning over different levels of concurrency, specifically 10, 20, or 30 goals being
simultaneously pursued.

For the interests of comparison, the negative and positive reasoning have
again been separated out before being combined together in the final set of
experiments.

Negative Interference. Negative interference is caused when the rover goes
to a location ready to perform its tasks, but is then interrupted by another goal
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that required going to a different location before the tasks required at the first
location by the previous goal had been completed. The effects of the reasoning
is again measured by the number of goals achieved. The results are shown in
Figure 7(a).

Scenario 2: Negative Interference
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(a) Reasoning about negative interfer-
ence.

Scenario 2: Positive Interaction
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(b) Reasoning about positive interac-
tion.

Fig. 7. Results for Negative Interference and Positive Interaction in the Mars Rover
Example

The results again show a definite improvement obtained by adding the rea-
soning about negative interference, whereby all goals were achieved, while the
dummy agent is still only able to achieve on average 75% of its goals, across all
the levels of goal concurrency, even at the lowest levels.

Positive Interaction. In the Mars Rover example, there are two main places
for positive interaction. The first is when multiple goals all require the rover to
perform tests/tasks at the same location, while the second is when the goals
require transmitting their results back to the mission control team, after having
performed the tests. When the goals have all obtained their test results, these
can either be transmitted back to the base individually, or one goal can assume
the responsibility of transmitting all the results back at the same time. This
means only one plan has to be executed whereas without the reasoning an agent
ends up executing one plan per goal.

The negative interference was removed from this setup to ensure all goals could
be achieved without any reasoning. This meant the number of plans executed
could be compared more fairly. The results are shown in Figure 7(b).

A clear reduction in the average number of plans executed can again be ob-
served in these results, with higher levels of concurrency giving a 32% reduction
in the number of plans executed to achieve the same goals. Even the lowest level
of concurrency offers a 28% reduction that could be highly beneficial when there
are many constraints imposed on an agent, such as time and resource availability.
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Combined Negative and Positive Interaction. While both types of rea-
soning can be effectively used on their own, the combined effects of both types
of reasoning give the best results, particularly in highly constrained conditions.
In the final set of results reported here, we show the results of the combined
reasoning about negative interference and positive interaction in the Mars rover
scenario.

The results are shown in Figure 8. These are broken down into three groups:
8(a) goals achieved, 8(b) plans executed, and 8(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.
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Scenario 2: Positive and Negative Interaction
Comparing Plans Executed
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(b) Comparing plans exe-
cuted.

Scenario 2: Positive and Negative Interaction
Comparing Plans per Goal Ratio
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Fig. 8. Experimental Results for Reasoning about Negative and Positive Interaction
in the Mars Rover Example

While the results all show that there is only a slight improvement in the
number of plans executed, the number of goals achieved by the reasoning agent
is significantly more, and the plan to goal ratio is almost half that of the agent
without any reasoning, increasing from a 34% reduction in the number of plans
per goal to a 47% reduction as the level of goal concurrency increases. The
reasoning agent is again consistently achieving all the goals it has been given,
while the proportion the dummy agent was able to achieve dropped from 67% to
54% as the amount of concurrency increased. The standard deviation also shows
that the reasoning agent is more consistent in its results in this scenario, with a
lower range of variation.

5 Conclusions and Future Work

In this paper we have presented an alternative approach to reasoning about
negative and positive interactions between goals. The results clearly show a
significant improvement in the number of goals being achieved, and the number
of plans required to achieve them. To the best of our knowledge, this is the first
time the two types of reasoning have been combined together to show the joint
effects of reasoning about both positive and negative goal interactions working
in tandem for an individual agent. As only a small extra computing cost is
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expected to result from the added reasoning, the benefits are very likely to
outweigh any costs. However, in future work, we aim to analyse in detail the costs
associated with the reasoning and compare this cost with alternative approaches
such as a CSP representation and existing approaches such as the approach by
Thangarajah et al. using a GPT [21,22,23]. In all experiments reported in this
paper, such costs appeared to be negligible.

Preliminary work has been done in representing the same type of reasoning
approached in this paper as a CSP, in order to provide further sources of com-
parison. A further type of reasoning that can be used to improve an agent’s
performance is reasoning about resources, particularly when there is a limited
supply of consumable resources available. We are currently in the process of in-
cluding that type of reasoning in both our Petri-net and CSP-based techniques
for reasoning about goals.

Currently, the Petri nets are being produced manually, but their modular de-
sign provides scope for automating this process, so that it can be incorporated
into an agent architecture for on-the-fly reasoning about new goals to be poten-
tially adopted. This will also be possible for the CSP-based approach, offering
the agents a choice of reasoners if one proves to be better suited for particular
situations (e.g., the structure/scale of the agent’s GPT, or specific properties
of the environment) than the others. Our long-term objective is to incorporate
such reasoners into the interpreters of agent-oriented programming languages.

Acknowledgements

We gratefully acknowledge the support of EPSRC’s DTA scheme. Many thanks
to Berndt Farwer for recommending the Renew tool and the help in using it.

References

1. Bonnet-Torrès, O., Tessier, C.: From team plan to individual plans: a petri net-
based approach. In: AAMAS 2005. 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 797–804. ACM Press, New York
(2005)

2. Bordini, R.H., Bazzan, A.L.C., de Oliveira Jannone, R., Basso, D.M., Viccari,
R.M., Lesser, V.R.: AgentSpeak(XL): Efficient intention selection in BDI agents
via decision-theoretic task scheduling. In: Castelfranchi, C., Johnson, W. (eds.)
AAMAS 2002, pp. 1294–1302. ACM Press, New York (2002)

3. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. In: Number 15 in Multiagent
Systems, Artificial Societies, and Simulated Organizations, Springer, Heidelberg
(2005)
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agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,
M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–94. Springer, Heidelberg
(2005)

16. Raja, A., Lesser, V.: Reasoning about coordination costs in resource-bounded
multi-agent systems. In: Proceedings of AAAI 2004 Spring Symposium on Bridging
the multiagent and multi robotic research gap, pp. 25–40 (March 2004)

17. Surynek, P.: On state management in plan-space planning from CP perspective. In:
ICAPS. Proceedings of Workshop on Constraint Satisfaction Techniques for Plan-
ning and Scheduling Problems, International Conference on Automated Planning
and Scheduling, AAAI Press, Stanford (2006)

18. Surynek, P., Barták, R.: Encoding HTN planning as a dynamic CSP. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, p. 868. Springer, Heidelberg (2005)

19. Thangarajah, J.: Managing the Concurrent Execution of Goals in Intelligent
Agents. PhD thesis, School of Computer Science and Informaiton Technology,
RMIT University, Melbourne, Victoria, Australia (December 2004)

http://www.renew.de/


Towards Alternative Approaches to Reasoning About Goals 121

20. Thangarajah, J., Padgham, L.: An empirical evaluation of reasoning about resource
conflicts in intelligent agents. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AA-
MAS 2004. LNCS (LNAI), vol. 3394, pp. 1298–1299. Springer, Heidelberg (2005)

21. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: IJCAI. Proceedings of 18th International
Joint Conference on Artificial Intelligence, pp. 721–726. Morgan Kaufmann, San
Francisco (2003)

22. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and exploiting positive
goal interaction in intelligent agents. In: AAMAS 2003. Proceedings of the second
international joint conference on Autonomous agents and multiagent systems, pp.
401–408. ACM Press, New York (2003)

23. Thangarajah, J., Winikoff, M., Padgham, L.: Avoiding resource conflicts in intelli-
gent agents. In: van Harmelen, F. (ed.) ECAI 2002. Proceedings of 15th European
Conference on Artifical Intelligence, IOS Press, Amsterdam (2002)

24. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C.: Semantics of declarative goals
in agent programming. In: AAMAS 2005. Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pp. 133–140. ACM
Press, New York (2005)

25. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: KR2002. Proceedings of the Eighth
International Conference on Principles of Knowledge Representation and Reason-
ing, 22–25 April, Toulouse, France, pp. 470–481(2002)


	Towards Alternative Approaches toReasoning About Goals
	Introduction
	Reasoning About Goals
	Reasoning About Goals Using Petri Nets
	Experimental Results and Analysis
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




