Composing High-Level Plans
for Declarative Agent Programming

Felipe Meneguzzi and Michael Luck

Department of Computer Science
King’s College London
felipe.meneguzzi@kcl.ac.uk,
michael.luck@kcl.ac.uk

Abstract. Research on practical models of autonomous agents has
largely focused on a procedural view of goal achievement. This allows for
efficient implementations, but prevents an agent from reasoning about
alternative courses of action for the achievement of its design objectives.
In this paper we show how a procedural agent model can be modified
to allow an agent to compose existing plans into new ones at runtime
to achieve desired world states. This new agent model can be used to
implement a declarative goals interpreter, since it allows designers to
specify only the desired world states in addition to an agent’s basic ca-
pabilities, enhancing the agent’s ability to deal with failures. Moreover
our approach allows the new plans to be included in the plan library,
effectively enabling the agent to improve its runtime performance over
time.

1 Introduction

The notion of autonomous intelligent agents has become increasingly relevant
in recent years both in relation to numerous real applications and in drawing
together different artificial intelligence techniques. Perhaps the best known and
most used family of agent architectures is that based around the notions of
beliefs, desires and intentions, which is exemplified by such systems as PRS[I],
dMARSJ2] and AgentSpeak [3]. For reasons of efficiency and real-time operation,
these architectures have been based around the inclusion of a plan library con-
sisting of predefined encapsulated procedures, or plans, coupled with information
about the context in which to use them [3]. However, designing agents in this
way severely limits an agent’s runtime flexibility, as the agent depends entirely
on the designer’s previous definition of all possible courses of action associated
with proper contextual information to allow the agent to adopt the right plans
in the right situations.

Typically, agent interpreters select plans using more or less elaborate algo-
rithms, but these seldom have any knowledge of the contents of the plans, so
that plan selection is ultimately achieved using fixed rules, with an agent adopt-
ing black box plans based solely on the contextual information that accompanies
them. Alternatively, some agent interpreters allow for plan modification rules to

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 69 , 2008.
© Springer-Verlag Berlin Heidelberg 2008

70 F. Meneguzzi and M. Luck

allow plans to be modified to suit the current situation [4], but this approach
still relies on a designer establishing a set of rules that considers all potentially
necessary modifications for the agent to achieve its goals. The problem here is
that for some domains, an agent description must either be extremely extensive
(requiring a designer to foresee every possible situation the agent might find
itself in), or will leave the agent unable to respond under certain conditions.

This procedural response to goal achievement has been favoured to enable
the construction of practical systems that are usable in real-world applications.
However, it also causes difficulties in cases of failure. When a procedural agent
selects a plan to achieve a given goal it is possible that the selected plan may
fail, in which case the agent typically concludes that the goal has also failed,
regardless of whether other plans to achieve the same goal might have been
successful. By neglecting the declarative aspect of goals in not considering the
construction of plans on-the-fly, agents lose the ability to reason about alterna-
tive means of achieving a goal, making it possible for poor plan selection to lead
to an otherwise avoidable failure.

In this paper we describe how a procedural agent model can be modified to
allow an agent to build new plans at runtime by chaining existing fine-grained
plans from a plan library into high-level plans. We demonstrate the applica-
bility of this approach through a modification to the AgentSpeak architecture,
allowing for a combination of declarative and procedural aspects. This modi-
fication requires no change to the plan language, allowing designers to specify
predefined procedures for known tasks under ideal circumstances, but also al-
lowing the agent to form new plans when unforeseen situations arise. Though
we demonstrate this technique for AgentSpeak, it can be easily applied to other
agent architectures with an underlying procedural approach to reasoning, such as
JADEX or the basic 3APL [5]. The key contribution is a method to augment an
agent’s runtime flexibility, allowing it to add to its plan library to respond to new
situations without the need for the designer to specify all possible combinations
of low-level operators in advance.

The paper is organised as follows: in Section 2 we briefly review relevant
aspects of AgentSpeak, in order to introduce the planning capability in Section 3
in Section @ a classic example is provided to contrast our approach to that
of traditional AgentSpeak; in Section [f] we compare our work with similar or
complementary approaches that also aim to improve agent autonomy; finally, in
Section [l a summary of contributions is provided along with further work that
can be carried out to improve our system.

2 AgentSpeak

AgentSpeak [3] is an agent language that allows a designer to specify a set of
procedural plans which are then selected by an interpreter to achieve the agent’s
design goals. It evolved from a series of procedural agent languages originally
developed by Rao and Georgeff [6]. In AgentSpeak an agent is defined by a
set of beliefs and a set of plans, with each plan encoding a procedure that is

Composing High-Level Plans for Declarative Agent Programming 71

assumed to bring about a desired state of affairs, as well as the context in which
a plan is relevant. Goals in AgentSpeak are implicit, and plans intended to fulfil
them are invoked whenever some triggering condition is met in a certain context,
presumably the moment at which this implicit goal becomes relevant.

The control cycle of an AgentSpeak interpreter is driven by events on data
structures, including the addition or deletion of goals and beliefs. These events
are used as triggering conditions for the adoption of plans, so that adding an
achievement goal means that an agent desires to fulfil that goal, and plans whose
triggering condition includes that goal (i.e. are relevant to the goal) should lead
to that goal being achieved. Moreover, a plan includes a logical condition that
specifies when the plan is applicable in any given situation. Whenever a goal
addition event is generated (as a result of the currently selected plan having
subgoals), the interpreter searches the set of relevant plans for applicable plans;
if one (or more) such plan is found, it is pushed onto an intention structure for
execution. Elements in the intention structure are popped and handled by the
interpreter. If the element is an action it is executed, while if the element is a
goal, a new plan is added into the intention structure and processed. During this
process, failures may take place either in the execution of actions, or during the
processing of subplans. When such a failure takes place, the plan that is currently
being processed also fails. Thus, if a plan selected for the achievement of a given
goal fails, the default behaviour of an AgentSpeak agent is to conclude that the
goal that caused the plan to be adopted is not achievable. This control cycle is
illustrated in the diagram of Figure IIIE| and strongly couples plan execution to
goal achievement.

The control cycle of Figure[Mlallows for situations in which the poor selection of
a plan leads to the failure of a goal that would otherwise be achievable through
a different plan in the plan library. While such limitations can be mitigated
through meta-level [8] constructs that allow goal addition events to cause the
execution of applicable plans in sequence, and the goal to fail only when all
plans fail, AgentSpeak still regards goal achievement as an implicit side-effect of
a plan being executed successfully.

3 Planning in an AgentSpeak Interpreter

In response to these limitations, we have created an extension of AgentSpeak that
allows an agent to explicitly specify the world-state that should be achieved by
the agent. In order to transform the world to meet the desired state, our extension
uses a propositional planner to form high-level plans through the composition
of plans already present in the agent’s plan library. This propositional planner
is invoked by the agent through a regular AgentSpeak action, and therefore
requires no change in the language definition. The only assumption we make is
the existence of plans that abide by certain restrictions in order to be able to
compose higher-level plans, taking advantage of planning capabilities introduced
in the interpreter.

! For a full description of AgentSpeak, refer to d’Inverno et al. [1].

72 F. Meneguzzi and M. Luck

@ o

Goal addition/deletion

(Find applicable plans)

——\ iled)
(GoaIAchleved (Goal Failed No plan found

L L Applicable plan found

(Push plan into Intentions)

Plan failed

Plan executed (_Process Intention)

Fig. 1. AgentSpeak control cycle

Whenever an agent needs to achieve a goal that involves planning, it uses a
special planning action that converts the low-level procedural plans of AgentS-
peak into STRIPS operators and invokes the planning module. If the planner
succeeds in finding a plan, it is converted back into a high-level AgentSpeak plan
and added to the intention structure for execution. Here, we liken the low-level
procedural plans of AgentSpeak to STRIPS operators, connecting the agent in-
terpreter to the planner by converting one formalism into the other and wvice
versa. We have chosen to use STRIPS as the planning language in this paper for
simplicity reasons, and this approach would not lose applicability if one was to
use PDDL [J] (or another language) as the planning language.

3.1 The Planning Action

In order to describe the connection of the planning component with AgentSpeak,
we need to review the main constructs of this agent language. As we have seen,
an AgentSpeak interpreter is driven by events on the agent’s data structures
that may trigger the adoption of plans. Additions and deletions of goals and
beliefs are represented by the plus (+) and minus (—) sign respectively. Goals
are distinguished into test goals and achievement goals, denoted by a preceding
question mark (?), or an exclamation mark (!), respectively. For example, the
addition of a goal to achieve g would be represented by +!g. Belief additions and
deletions arise as the agent perceives the environment, and are therefore outside
its control, while goal additions and deletions only arise as part of the execution
of an agent’s plans.

In our approach, in addition to the traditional way of encoding goals for an
AgentSpeak agent implicitly as triggering events consisting of achievement goals

Composing High-Level Plans for Declarative Agent Programming 73

Table 1. Planner invocation plan

+goal conj(Goals) : true «— plan(Goals).

(lgoal), we allow desires including multiple beliefs (b1, ...,b,) describing a de-
sired world-state in the form goal conj([b1,...,b,]). An agent desire description
consists of a conjunction of beliefs the agent wishes to be true simultaneously at
a given point in time. The execution of the planner component is triggered by
an event +goal conj([by,...,bs]) as shown in Table [Tl

Now, the key to our approach to planning in AgentSpeak is the introduction of
a special planning action, denoted plan(G), where G is a conjunction of desired
goals. This action is bound to an implementation of a planning component,
and allows all of the process regarding the conversion between formalisms to be
encapsulated in the action implementation, making it completely transparent to
the remainder of the interpreter.

Planning Action

EAI—

‘ plan(Goals)
A4
. oo o\
Plan Library §— — >(_Create STRIPS Problem)

Clnvoke DPlanner Plan Failed / Reassess Initial State

Planner faile @ Plan Executed

Planner succeeded Trigger Added

/P (Strips Problem)
|
|
|
|
|
|
|
\

Convert STRIPS Plan Plan Created Trigger Plan Execution
Intention Structure f[<— — — — — — — — — — — — — — — —

Fig. 2. Operation of the planning action

As illustrated in Figure [, the internal action to plan takes as an argument
the desired world-state, and uses this, along with the current belief database and
the plan library, to generate a STRIPS [I0] planning problem. This action then
invokes a planning algorithm; if a plan is found, the planning action succeeds,
otherwise the planning action fails. If the action successfully yields a plan, it
converts the resulting STRIPS plan into a new AgentSpeak plan to be added to
the plan library, and immediately triggers the adoption of the new plan. If the

74 F. Meneguzzi and M. Luck

Table 2. Movement plans

+!move to(A, B) : available(car)
— get(car);
drive(A, B).

+!move to(A, B) : mavailable(car)
— walk(A, B).

newly created plan fails, the planner may then be invoked again to try and find
another plan to achieve the desired state of affairs, taking into consideration any
changes in the agent beliefs.

It is important to note that the planning action is included in a standard
AgentSpeak plan with the same triggering condition as the plans generated by
it. Moreover, new plans are always added to the plan library before the plan that
executes the planning action. With this arrangement, previously-created plans
are consulted first when the interpreter searches for relevant plans, hence having
higher priority for execution, and if no such plan is found to be applicable, the
plan containing the planning action is invoked as the last remaining option.

3.2 Chaining Plans into Higher-Level Plans

The design of a traditional AgentSpeak plan library follows a similar approach
to programming in procedural languages, where a designer typically defines fine-
grained actions to be the building blocks of more complex operations. These
building blocks are then assembled into higher-level procedures to accomplish
the main goals of a system. Analogously, an AgentSpeak designer traditionally
creates fine-grained plans to be the building blocks of more complex operations,
typically defining more than one plan to satisfy the same goal (i.e. sharing the
same trigger condition), while specifying the situations in which it is applicable
through the context part of each plan. Here, we are likening STRIPS actions
to low-level AgentSpeak plans, since the effects of primitive AgentSpeak actions
are not explicitly defined in an agent description. For example, an agent that
has to move around in a city could know many ways of going from one place
to another depending on which vehicle is available to it, such as by walking or
driving a car, as shown in Table

Modelling STRIPS operators to be supplied to a planning algorithm is similar
to the definition of these building-block procedures. In both cases, it is important
that operators to be used sequentially fit. That is, the results from applying one
operator should be compatible with the application of the possible subsequent
operators, matching the effects of one operator to the preconditions of the next
operator.

Composing High-Level Plans for Declarative Agent Programming 75

Once the building-block procedures are defined, higher-level operations must
be defined to fulfil the broader goals of a system by combining these building
blocks. In a traditional AgentSpeak plan library, higher-level plans to achieve
broader goals contain a series of goals to be achieved by the lower-level opera-
tions. This construction of higher-level plans that make use of lower-level ones
is analogous to the planning performed by a propositional planning system. By
doing the planning themselves, designers must cope with every foreseeable sit-
uation the agent might find itself in, and generate higher-level plans combining
lower-level tasks accordingly. Moreover, the designer must make sure that the
subplans being used do not lead to conflicting situations. This is precisely the
responsibility we intend to delegate to a STRIPS planner.

Plans resulting from propositional planning can then be converted into se-
quences of AgentSpeak achievement goals to comprise the body of new plans
available within an agent’s plan library. In this approach, an agent can still have
high-level plans pre-defined by the designer, so that routine tasks can be handled
exactly as intended. At the same time, if an unforseen situation presents itself
to the agent, it has the flexibility of finding novel ways to solve problems, while
augmenting the agent’s plan library in the process.

Clearly, lower-level plans defined by the designer can (and often will) include
the invocation of atomic actions intended to generate some effect on the envi-
ronment. Since the effects of these actions are not usually explicitly specified in
AgentSpeak (another example of reasoning delegated to the designer), an agent
cannot reason about the consequences of these actions. When designing agents
using our model, we expect designers to explicitly define the consequences of
executing a given AgentSpeak plan in terms of belief additions and deletions in
the plan body as well as atomic action invocations. The conversion process can
then ignore atomic action invocations when generating a STRIPS specification.

3.3 Translating AgentSpeak into STRIPS

Once the need for planning is detected, the plan in Table [l is invoked so that
the agent can tap into a planner component. The process of linking an agent
to a propositional planning algorithm includes converting an AgentSpeak plan
library into propositional planning operators, declarative goals into goal-state
specifications, and the agent beliefs into the initial-state specification for a plan-
ning problem. After the planner yields a solution, the ensuing STRIPS plan is
translated into an AgentSpeak plan in which the operators resulting from the
planning become subgoals. That is, the execution of each operator listed in the
STRIPS plan is analogous to the insertion of the AgentSpeak plan that corre-
sponded to that operator when the STRIPS problem was created.

Plans in AgentSpeak are represented by a header comprising a triggering con-
dition and a context, as well as a body describing the steps the agent takes when
a plan is selected for execution. If e is a triggering event, by,..., b, are belief
literals, and hq,...,h, are goals or actions, then e : b1& ... &b, < hi;...;hy.
is a plan. As an example, let us consider a triggering plan for accomplishing
Imove(A,B) corresponding to a movement from A to B, where:

76 F. Meneguzzi and M. Luck

— e is !move(A,B);

— at(A) & not at(B) are belief literals; and

— —at(A); +at(B). is the plan body, containing information about belief ad-
ditions and deletions.

The plan is then as follows:

+!'move (A,B) : at(A) & not at(B)
<- -—at(4);
+at (B).

When this plan is executed, it results in the agent believing it is no longer
in position A, and then believing it is in position B. For an agent to rationally
want to move from A to B, it must believe it is at position A and not already
at position B.

In the classical STRIPS notation, operators have four components: an iden-
tifier, a set of preconditions, a set of predicates to be added (add), and a set
of predicates to be deleted (del). For example, the same move operator can be
represented in STRIPS following the correspondence illustrated in Figure [3 in
which we convert the AgentSpeak invocation condition into a STRIPS operator
header, a context condition into an operator precondition, and the plan body is
used to derive add and delete lists.

+!move(A4,B) C—> opname: move(A,B)
:at(A) & not at(B) ——> pre: at(A)Anotat(B)
<--at(4); add: at(B)
+at(B). :> del: at(A)
AgentSpeak STRIPS
Plan Operator

Fig. 3. Correspondence between an AgentSpeak plan and a STRIPS operator

A relationship between these two definitions is not hard to establish, and we
define the following algorithm for converting AgentSpeak plans into STRIPS
operators. Let e be a triggering event, b1& ... &b, a conjunction of belief liter-
als representing a plan’s context, and a1, ..., a, be belief addition actions and
dy,...,d, be belief deletion actions within a plan’s body. All of these elements
can be represented in a single AgentSpeak plan. Moreover let opname be the
operator name and parameters, pre be the preconditions of the operator, add the
predicate addition list and del the predicate deletion list. Mapping an AgentS-
peak plan into STRIPS operators is accomplished as follows:

opname = e
pre =b1& ... &b,
add = ai,...,an
del =di,...,do

Ll o

Composing High-Level Plans for Declarative Agent Programming 7

In Section B] we introduced the representation of a conjunction of desired
goals as the predicate goal conj([b1,...,by]). The list [by,...,by,] of desires is
directly translated into the goal state of a STRIPS problem. Moreover, the initial
state specification for a STRIPS problem is generated directly from the agent’s
belief database.

3.4 Executing Generated Plans

The STRIPS problem generated from the set of operators, initial state and goal
state is then processed by a propositional planner. If the planner fails to gen-
erate a propositional plan for that conjunction of literals, the plan in Table [I]
fails immediately and this goal is deemed unachievable, otherwise the result-
ing propositional plan is converted into an AgentSpeak plan and added to the
intention structure.

A propositional plan from a STRIPS planner is in the form of a sequence
op1,...,0p, of operator names and instantiated parameters. We define a new
AgentSpeak plan in Table Bl where goal conj(Goals) is the event that initially
caused the planner to be invoked.

Table 3. AgentSpeak plan generated from a STRIPS plan

+goal conj (Goals) : true
—lopi;...;lopn.

Immediately after adding the new plan to the plan library, the event
goal conj(Goals) is reposted to the agent’s intention structure, causing the gen-
erated plan to be executed. Plans generated in this fashion are admittedly simple,
since the development of a complete process of plan generalisation is not a trivial
matter since, for instance, it involves solving the issue of deriving the context
condition adequately. An extremely simple solution for this problem uses the en-
tire belief base of the agent as context for that plan, but this solution includes a
great number of beliefs that are probably irrelevant to the goal at hand, severely
limiting this plan’s future applicability.

Another solution involves replicating the preconditions of the first operator for
the new plan, but this could also lead the agent to fail to execute the plan later
on. We have developed an algorithm to derive a minimal set of preconditions,
which we omit here due to space constraints, showing instead the simple solution
of using a constantly true context. Another possible refinement to the conversion
of a STRIPS plan into an AgentSpeak plan is to allow the same generated plan
to be reused to handle side-effects of the set of goals that led to its generation.
For example, a plan for a conjunction of goals g can be used to achieve any
subset ¢’ of g.

78 F. Meneguzzi and M. Luck

In the ensuing execution of the generated plan, the fact that multiple con-
current plans might be stacked in an agent’s intentions structure must also be
addressed. There are multiple ways of addressing this issue, namely:

1. delegate the analysis and resolution of conflicting interaction between plans
to the designer;

2. implement provisions to ensure that the plans used by the planner process
are executed atomically;

3. drop the entire intention structure before plan adoption, invoking some for-
ward recovery plan, and prevent new intentions from being adopted during
plan execution; and

4. analyse the current intention structure and prospective plan steps during
planning to ensure they do not interfere with each other.

The first way to resolve concurrency problems, by delegating resolution to
the designer, is the traditional solution in an AgentSpeak context, but it is
clearly not acceptable, since the main goal of our extension is to diminish the
amount of designer tasks. On the other hand, the last alternative, avoiding plan
interference, involves the introduction of a complex analysis procedure to solve
a very limited number of potential conflicts. In the third option, an agent drops
its intentions to prevent concurrently executing plans from interfering with the
new plan, which was created without regard for the current intention structure.
This alternative requires the existence of forward recovery abort plans, such as
those described by Thangarajah et al. [11].

For our experiments we considered the second and third ways of dealing with
concurrency problems and, in the prototype described in Section [l we opted to
enable the agent to execute dynamically generated plans atomically (by prevent-
ing other intentions from being selected from the stack while a dynamic plan is
being executed).

3.5 Coping with Failure

The possibility of generating new plans at runtime can also be used as an alter-
native when plans previously selected from the plan library have failed to achieve
a certain goal. Constructs for handling these failures are available in Jason [12]
and CANPLAN [I1], and consist of associating an abort plan to be executed
when the plan selected to handle an event or goal fails. In Jason this construct
is expressed as a goal deletion (—!g). For example, in our system, when a newly
generated plan to achieve lgoal conj([dgy, ..., dgn]) fails, we can attempt to in-
voke the planner again to find an alternative plan to achieve these declarative
goals by including the plan shown in Table [l

In addition, the application of our planning approach would be beneficial for
agents that use a more flexible commitment strategy, such as in the case of CAN-
PLAN2 [I3]. In this architecture, multiple plan-library plans are attempted in
sequence, until either the agent interpreter concludes that the goal is impossible
or all known plans have failed. In these situations, an external planner can be

Composing High-Level Plans for Declarative Agent Programming 79

Table 4. Using the planner action to recover from plan failure

—lgoal conj([dg,...,dgn]) : true < plan([dg1, ..., dgn]).

invoked to try to generate new plans until it also finds that the desired goals are
impossible.

4 Experiments and Results

We have implemented the planning action described in Section [B] using Jason
[14], which is an open-source Java implementation of AgentSpeak that includes
a number of extensions, such as facilities for communication and distribution.
In addition to providing an interpreter for the agent language, Jason has an
object-oriented API for the development of actions available to the agents being
developed. Since planning is to be performed as part of a regular AgentSpeak
plan, the planning action encapsulates the conversion process of Section 3.3 using
Jason’s internal actions.

This implementation was used in a number of toy problems, such as the Blocks
world used with the original STRIPS planner [10], as well as some examples from
the AgentSpeak literature [3]. Solutions for these problems were created using
both a procedural approach characteristic of traditional AgentSpeak agents, and
a declarative one, in which high-level plans are omitted and left to be derived by
the planning system. This switch in the method for describing agents results in
a reduction of the plan description size, as it is no longer necessary to enumerate
relevant combinations of lower-level plans for the agent to be able to react to
different situations.

In terms of complexity the most computationally demanding part of our ar-
chitecture is the planning process, which can vary significantly depending on the
specific planner being used. The complexity of solving propositional planning
problems depends on the number of pre-conditions and post-conditions of the
operators in a certain domain [I5], varying from polynomial to NP-complete and
PSPACE-complete complexity. On the other hand, the conversion process into
STRIPS is clearly very simple, having linear complexity on the number of pre-
conditions and post-conditions of the operators being converted. The same linear
complexity applies to the conversion from a STRIPS plan into an AgentSpeak
plan.

Rao [3] uses a simple example agent to describe the derivations performed by
an AgentSpeak interpreter. This agent detects when waste appears in a particular
road lane, and disposes of it in a waste bin. The original plan library for the agent
is as follows:

80 F. Meneguzzi and M. Luck

% Plan 1

+location(waste, X)
location(robot,X) &
location(bin,Y)

<- pick(waste);

!location(robot,Y);
drop(waste) .
% Plan 2
+!location(robot, X)
location(robot,X)

<- true.

% Plan 3
+!location(robot, X)

: location(robot,Y) &
not X =Y &
adjacent(Y,Z)&
not location(car,Z)

<- move(Y, Z);

!location(robot, X).

Using Plan 1, whenever an agent detects waste in its current position, the
agent will pick up the waste, move to the location of the waste bin and drop
it. In this plan library, the agent’s movement is achieved by an internal action,
move(Y,Z), and the agent has no way of explicitly reasoning about it. Moreover,
if an agent has to perform multiple moves, recursive instantiations of Plan 3
in this library are stacked in the agent’s intention structure, until the recursion
stop condition is reached in Plan 2.

In order to be able to call a planner we need to modify the portion of the
plan library responsible for the agent’s movement (i.e. the last two plans) into
a declarative description yielding the following plan library:

+location(waste, X)
location(robot, X) &
location(bin, Y)
<- pick(waste);
+goal_conj([location(robot,Y)]1);
drop(waste) .

+!move (X,Y)
location(robot,X) &
not X =Y &
not location(car,Y) &
adjacent (X,Y)
<- -location(robot,X);
+location(robot,Y);
move (X,Y).

The new plan library includes a description of the preconditions and effects of
the move (X,Y) action. This is the action that is to be handled by the planning
process, and the agent derives the sequence of movements required to reach

Composing High-Level Plans for Declarative Agent Programming 81

the waste bin by desiring to be in the position of the bin. In order to specify
this desire, the plan to dispose of the waste includes a step to add the desire
+goal_conj([location(robot,Y)]), which causes the planner to be invoked.
Here, the atomic action to move(X,Y) is also included in the plan specification
so that when !'move(X,Y) is invoked, the agent not only updates its beliefs about
the movement, but actually moves in the environment. Unlike the original plan
library, however, the agent can plan its movements before starting to execute
them, and will only start carrying out these actions if it has found the entire
sequence of movements required to reach the desired location.

5 Related Work

Work on the declarative nature of goals as a means to achieve greater auton-
omy for an agent is being pursued by a number of researchers. Here we consider
the approaches to declarative goals currently being investigated, namely those
of Hiibner et al. (Jason) [I6], van Riemsdijk et al. [I7] and Meneguzzi et al.
[18]. There are multiple interpretations as to the requirements and properties of
declarative goals for an agent interpreter, and while some models consist of an
agent that performs planning from first principles whenever a goal is selected,
others argue that the only crucial aspect of an architecture that handles declar-
ative goals is the specification of target world states that can be reached using
the traditional procedural approach.

5.1 Jason

A notion of declarative goals for AgentSpeak that takes advantage of the context
part of the plans (representing the moment an implicit goal becomes relevant)
was defined by Hiibner et al. [16], and implemented in Jason [I4]. More specif-
ically, plans that share the same triggering condition refer to the achievement
of the same goal, so that a goal can only be considered impossible for a given
agent if all plans with the same triggering condition have been attempted and
failed. In this extended AgentSpeak interpreter, these plans are modified so that
the last action of every plan consists of testing for the fulfilment of the declared
goal, and then the plans are grouped and executed in sequence until one fin-
ishes successfully. A plan only succeeds if at the end of its execution an agent
can verify that its intended goal has been achieved. This approach retains the
explicitly procedural approach to agent operation (a pre-compiled plan library
describing sequences of steps that the agent can perform to accomplish its goals),
only adding a more robust layer for handling plan-failure.

5.2 X-BDI

X-BDI [19] was the first agent model that includes a recognisably declarative goal
semantics. An X-BDI agent is defined by a set of beliefs, a set of desires, and a
set of operators that manipulate the world. The agent refines the set of desires

82 F. Meneguzzi and M. Luck

through various constraints on the viability of each desire until it generates a set
containing the highest priority desires that are possible and mutually consistent.
During this process the agent selects the operators that will be applied to the
world in order to fulfil the selected desires in a process that is analogous to
planning. The key aspect of X-BDI is that desires express world-states rather
than triggers for the execution of pre-defined plans, leaving the composition of
plans from world-changing operators to the agent interpreter.

5.3 Formalisations of Declarative Goals

Several researchers have worked on a family of declarative agent languages and
investigated possible semantics for these languages [200T7]. All of these languages
have in common the notion that an agent is defined in terms of beliefs, goals
and capabilities, which are interpreted in such a way as to select and apply
capabilities in order to fulfil an agent’s goals. These approaches have evolved
from GOAL [20] into a declarative semantics very similar to that of X-BDI [19)],
in which an agent’s desires express world-states which must be achieved by the
agent selection and application of capabilities.

5.4 Discussion

In addition to the models described in this section, variations of the way an agent
interpreter handles declarative goals have also been described. These approaches
advocate the use of fast propositional planners to verify the existence of a se-
quence of actions that fulfil a declarative goal [I8]. The planning process in this
setting allows the consideration of the entire set of available operators to create
new plans, providing a degree of flexibility to the agent’s behaviour. Our research
has not dealt with multi-agent issues so far, but the approach taken by Coo-BDI
[21] to share plans between agents might provide an interesting extension to our
architecture. The exchange of new plans might offset the sometimes significant
time needed to create plans from scratch by allowing agents to request the help
of other planning-capable agents.

The approaches in Sections Bl and B3] deal with important aspects of declara-
tive goals in agent systems, such as the verification of accomplishment and logical
properties of such systems. However, support for declarative goals in Jason still
requires a designer to specify high-level plans, while the formalisms described
by van Riemsdijk lack any analysis of the practicality of their implementation.
Though X-BDI implements a truly declarative agent specification language, the
language is very far from mainstream acceptance, and the underlying logic sys-
tem used in X-BDI suffers from a stream of efficiency problems.

6 Concluding Remarks

In this paper we have demonstrated how the addition of a planning component
can augment the capabilities of a plan library-based agent. In order to exploit

Composing High-Level Plans for Declarative Agent Programming 83

the planning capability, the agent uses a special planning action to create high-
level plans by composing specially designed plans within an agent’s plan library.
This assumes no modification in the AgentSpeak language, and allows an agent
to be defined so that built-in plans can still be defined for common tasks, while
allowing for a degree of flexibility for the agent to act in unforseen situations.
Our system can also be viewed as a way to extend the declarative goal semantics
proposed by Hiibner et al. [16], in that it allows an agent designer to specify only
desired world-states and basic capabilities, relying on the planning component
to form plans at runtime. Even though the idea of translating BDI states into
STRIPS problems is not new [I8], our idea of an encapsulated planning action
allows the usage of any other planning formalism sufficiently compatible with
the BDI model.

Recent approaches to the programming of agents based on declarative goals
rely on mechanisms of plan selection and verification. However, we argue that
a declarative model of agent programming must include not only constructs for
verifying the accomplishment of an explicit world-state (which is an important
capability in any declarative agent), but also a way in which an agent designer
can specify only the world states the agent has to achieve and the description
of atomic operators allowing an underlying engine to derive plans at runtime.
In this paper we argue that propositional planning can provide one such engine,
drawing on agent descriptions that include atomic actions and desired states,
and leaving the derivation of actual plans for the agent at runtime.

The addition of a planning component to a BDI agent model has been recently
revisited by other researchers, especially by Sardina et al. [22] and Walczak et al.
[23]. The former describes a BDI programming language that incorporates Hi-
erarchical Task Networks (HTN) planning by exploring the similarities between
these two formalisms, but this approach fails to address the fact that designers
must specify rules for HT'N planning in the same way in which they would de-
compose multiple plans in a traditional BDI agent. The latter approach is based
on a specially adapted planner to support the agent, preventing the model from
taking advantage of novel approaches to planning.

The prototype implemented for the evaluation of the extensions described
in this paper has been empirically tested for a number of small problems, but,
further testing and refinement of this prototype is still required, for instance,
to evaluate how interactions between the addition of new plans will affect the
existing plan library. The system can also be improved in a number of ways
in order to better exploit the underlying planner component. For example, the
effort spent on planning can be moderated by a quantitative model of control,
so that an agent can decide to spend a set amount of computational effort into
the planning process before it concludes the goal is not worth pursuing. This
could be implemented by changing the definition of goal conj(Goals) to include
a representation of motivational model goal conj(Goals, Motivation), which can
be used to tune the planner and set hard limits to the amount of planning effort
devoted to achieving that specific desire.

84 F. Meneguzzi and M. Luck

As indicated above, the key contribution of this paper is a technique that
allows procedural agent architectures to use state-space (and hence, declarative)
planners to augment flexibility at runtime, thus leveraging advances in planning
algorithms. It is important to point out that previous efforts exploring the use
of HTN planning do not change the essential procedural mode of reasoning of
the corresponding agent architectures, as argued by Sardina et al. [22]. State-
space planners operate on a declarative description of the desired goal state, and
our conversion process effectively allows a designer to use an AgentSpeak-like
language in a declarative way, something which previous planning architectures
do not allow. Finally, we are currently working on addressing some of the limi-
tations we have identified regarding the generation and execution of concurrent
plans for multiagent scenarios, considering the use of external imported plans
such as in Coo-AgentSpeak [24].

Acknowledgments. The first author is supported by Coordenagao de Aper-
feigpamento de Pessoal de Nivel Superior (CAPES) of the Brazilian Ministry of
Education. We would like to thank Rafael Bordini and Jomi Hiibner for their
support regarding the programming of AgentSpeak agents in their Jason im-
plementation, as well as the discussion of many issues regarding planning and
declarative goals.

References

1. Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning
and system control. IEEE Expert, Knowledge-Based Diagnosis in Process Engi-
neering 7(6), 33-44 (1992)

2. d’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS
Architecture: A Specification of the Distributed Multi-Agent Reasoning System.
Autonomous Agents and Multi-Agent Systems 9(1-2), 5-53 (2004)

3. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42-55. Springer, Heidelberg (1996)

4. van Riemsdijk, B., van der Hoek, W., Meyer, J.J.C.: Agent programming in dribble:
from beliefs to goals using plans. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 393-400. ACM
Press, New York (2003)

5. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. In: Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations, vol. 15, Springer, Heidelberg (2005)

6. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings
of the First International Conference on Multiagent Systems, San Francisco, pp.
312-319 (1995)

7. d’Inverno, M., Luck, M.: Engineering AgentSpeak(L): A formal computational
model. Journal of Logic and Computation 8(3), 233-260 (1998)

8. Georgeff, M.P., Ingrand, F.F.: Monitoring and control of spacecraft systems us-
ing procedural reasoning. In: Proceedings of the Space Operations and Robotics
Workshop, Houston, USA (1989)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Composing High-Level Plans for Declarative Agent Programming 85

. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal

Planning Domains. Journal of Artificial Intelligence Research 20, 61-124 (2003)
Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4), 189-208 (1971)
Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Aborting tasks in BDI
agents. In: Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 8-15 (2007)

Bordini, R.H., Hiibner, J.F.: Bdi agent programming in agentspeak using jason. In:
Toni, F., Torroni, P. (eds.) Computational Logic in Multi-Agent Systems. LNCS
(LNAI), vol. 3900, pp. 143-164. Springer, Heidelberg (2006)

Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning.
In: Proceedings of the Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 16-23 (2007)

Bordini, R.H., Hiibner, J.F., Vieira, R.: Jason and the golden fleece of agent-
oriented programming. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni,
A.E. (eds.) Multi-Agent Programming: Languages, Platforms and Applications, pp.
3-37. Springer, Heidelberg (2005)

Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2), 165-204 (1994)

Hiibner, J.F., Bordini, R.H., Wooldridge, M.: Programming declarative goals using
plan patterns. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI),
vol. 4327, pp. 123-140. Springer, Heidelberg (2006)

van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of declarative goals in
agent programming. In: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, pp.
133-140. ACM Press, New York (2005)

Meneguzzi, F.R., Zorzo, A.F., Méra, M.D.C.: Propositional planning in BDI agents.
In: Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia,
Cyprus, pp. 58-63. ACM Press, New York (2004)

Moéra, M.d.C., Lopes, J.G.P., Vicari, R.M., Coelho, H.: BDI models and systems:
Bridging the gap. In: Rao, A.S., Singh, M.P., Miiller, J.P. (eds.) ATAL 1998. LNCS
(LNAI), vol. 1555, pp. 11-27. Springer, Heidelberg (1999)

Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming
with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000.
LNCS (LNAI), vol. 1986, pp. 228-243. Springer, Heidelberg (2001)

Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity.
In: Leite, J.A., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS
(LNATI), vol. 2990, pp. 109-134. Springer, Heidelberg (2004)

Sardina, S., de Silva, L., Padgham, L.: Hierarchical Planning in BDI Agent Pro-
gramming Languages: A Formal Approach. In: Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pp.
1001-1008. ACM Press, New York (2006)

Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI Agents
with Deliberative Planning Techniques. In: Programming Multi-Agent Systems,
4th International Workshop. LNCS, vol. 4411, pp. 113-127 (2006)

Ancona, D., Mascardi, V., Hiibner, J.F., Bordini, R.H.: Coo-agentspeak: Cooper-
ation in agentspeak through plan exchange. In: Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pp.
696-705 (2004)

	Composing High-Level Plansfor Declarative Agent Programming
	Introduction
	AgentSpeak
	Planning in an AgentSpeak Interpreter
	The Planning Action
	Chaining Plans into Higher-Level Plans
	Translating AgentSpeak into STRIPS
	Executing Generated Plans
	Coping with Failure

	Experiments and Results
	Related Work
	Jason
	X-BDI
	Formalisations of Declarative Goals
	Discussion

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

