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Preface

The 15th International Symposium on Graph Drawing (GD 2007) was held in
Sydney, Australia, September 24–26, 2007.

In response to the call for papers, the Program Committee received 74 sub-
missions. Each submission was reviewed by at least three Program Committee
members. After an extremely rigorous review process and extensive discussions,
the committee accepted 27 long papers and 9 short papers. All these 36 papers
were presented at the conference. In addition, six posters were accepted and
displayed throughout the conference.

Two distinguished speakers invited by the Program Committee Chairs deliv-
ered impressive talks during the conference. Brendan D. McKay from Australian
National University gave the presentation on“Computing Symmetries of Com-
binatorial Objects,” while Norishige Chiba from Iwate University talked about
“Large-Scale Graphics: Digital Nature and Laser Projection.”

The traditional graph drawing contest was successfully held under the
direction of Christian Duncan. The report of the contest is included in the pro-
ceedings. A one-day workshop on Constraint-Based Layout of Diagrams and
Documents was held in conjunction with the conference.

The year 2007 marks the 60th birthday of Takao Nishizeki. The sympo-
sium celebrated his vast contribution to graph drawing, graph algorithms, graph
theory and security.

The conference received generous support from the hosting organization, the
University of Sydney, and from our gold sponsors: Tom Swayer, ILOG, and
HxI Initiative which includes NICTA, CSIRO, DSTO, as well as from the silver
sponsor: yWorks.

We would like to thank all the Program Committee members and external
referees for their excellent work, especially given the time constraints. We also
thank all those who submitted papers for consideration, thereby contributing to
the high quality of the conference.

Finally, we would like to express our deep gratitude to the Organizing Com-
mitte members, Sharon Chambers, Peter Eades, Wei-Ying Ho and Tony Huang,
for their hard work in making the conference a great success.

Next year, the symposium will be held on Crete, Greece September 22–24,
organized by Ioannis Tollis.

October 2007 Seok-Hee Hong
Takao Nishizeki

Wu Quan

,
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Eva Jeĺınková, Jan Kára, Jan Kratochv́ıl, Martin Pergel,
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Computing Symmetries of

Combinatorial Objects

(Abstract)

Brendan D. McKay

Department of Computer Science,
Australian National University

bdm@cs.anu.edu.au

We survey the practical aspects of computing the symmetries (automorphisms)
of combinatorial objects. These include all manner of graphs with adornments,
matrices, point sets, etc.. Since automorphisms are just isomorphisms from an
object to itself, the problem is intimately related to that of finding isomorphisms
between two objects.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Large-Scale Graphics: Digital Nature and

Laser Projection

(Abstract)

Norishige Chiba

Department of Computer Science, Faculty of Engineering,
Iwate University, Japan

nchiba@cis.iwate-u.ac.jp

In this talk, I will sketch out two challenging research topics by showing computer
generated visual materials. One is raster-graphics technologies on how to repre-
sent large-scale natural sceneries, and the other is laser projection technologies
enabling us to display large-scale vector graphics. The former topic includes the
modeling and rendering techniques having the both abilities of LOD (Level-Of-
Detail) and anti-aliasing indispensable for efficiently and effectively representing
large-scale scenes including a huge amount of fine objects like botanical trees,
and the efficient real-time animation techniques implemented by utilizing 1/f -
noise for defeating the computational time required for strict physically-based
simulation. The latter topic is the exploratory research on laser projection where
there is almost no researcher yet. Laser graphics has strong relation to pen and
ink illustration in the field of NPR (Non-Photorealistic-Rendering) and might
be usable to represent Graph Drawing.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Crossing Number of Graphs

with Rotation Systems

Michael J. Pelsmajer1, Marcus Schaefer2, and Daniel Štefankovič3

1 Illinois Institute of Technology, Chicago, IL 60616, USA
pelsmajer@iit.edu

2 DePaul University, Chicago, IL 60604, USA
mschaefer@cs.depaul.edu

3 University of Rochester, Rochester, NY 14627, USA
stefanko@cs.rochester.edu

Abstract. We show that computing the crossing number of a graph
with a given rotation system is NP-complete. This result leads to a new
and much simpler proof of Hliněný’s result, that computing the crossing
number of a cubic graph (without rotation system) is NP-complete. We
also investigate the special case of multigraphs with rotation systems on
a fixed number k of vertices. For k = 1 and k = 2 the crossing number
can be computed in polynomial time and approximated to within a factor
of 2 in linear time. For larger k we show how to approximate the crossing
number to within a factor of

(
k+4
4

)
/5 in time O(mk+2) on a graph with

m edges.

Keywords: crossing number, computational complexity, computational
geometry.

1 Introduction

Computing the crossing number is NP-complete, as shown by Garey and John-
son [5]. Hliněný recently showed, using a rather complicated construction, that
even determining the crossing number of a cubic graph is NP-complete [6], a
long-standing open problem [1].

We investigate a new approach to cubic graphs through graphs with rotation
systems. We show that determining the crossing number of a graph with a given
rotation system is NP-complete, and then prove that this problem is equivalent
to determining the crossing number of a cubic graph. This also gives a new
and easy proof that determining the minor-monotone crossing number (defined
in [2]) is NP-complete.

Graphs with rotation systems are of interest in their own right; we have en-
countered them several times during recent research projects [12,14,13]. Indeed,
at the core of our separation of the crossing number from the odd crossing num-
ber is a loopless multigraph on two vertices with rotation [13]. In Section 4 we will
see that the crossing number can be computed efficiently for one-vertex graphs
with rotation and at least approximated efficiently for loopless multigraphs on

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 3–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



4 M.J. Pelsmajer, M. Schaefer, and D. Štefankovič

two vertices (the problem is in polynomial time for two-vertex multigraphs but
requires linear programming [14]). We also show some interesting connections
to string matching problems. Finally, we give an approximation algorithm to
compute the crossing number of k-vertex multigraphs with rotation to within a
factor of O(k4). We do not know whether this problem can be solved exactly in
polynomial time.

2 NP- Hardness

Consider a graph drawn in the plane (or any orientable surface). The rotation
of a vertex is the clockwise order of its incident edges. A rotation system is the
list of rotations of every vertex. We are interested in drawings of a graph in the
plane with a fixed rotation system.

We also consider “flipped” rotations (previously seen in [13]). Given a rotation
of a vertex v, the flipped rotation reverses the cyclic order of the edges incident
to v.

Theorem 1. Computing the crossing number of a graph with a given rotation
system is NP-complete. The problem remains NP-complete if we allow the ro-
tation at each vertex to flip independently.

Proof. We adapt Garey and Johnson’s reduction from OPTIMAL LINEAR AR-
RANGEMENT to CROSSING NUMBER [5]. Given a graph G = (V, E), a linear
arrangement is an injective function f : V → 1, . . . , |V |, and the value of the
arrangement is computed as

∑

uv∈E

|f(u) − f(v)|.

Given G and k, deciding whether G allows a linear arrangement of value at most
k is NP-complete [5, GT42].

Let us fix a connected graph G = (V, E), with V = v1, . . . , vn, m = |E|, and k.
We may assume that n ≤ m. From G we construct an edge-weighted graph H
with fixed rotation system, as shown in Figure 1. The use of weighted edges
simplifies the construction; later we will replace each weighted edge by a small
unweighted graph, obtaining a simple graph H ′ with a fixed rotation system.
Note that for a fixed drawing of a weighted graph, a crossing of an edge of
weight k with an edge of weight l contributes kl to the crossing number.

We start with a cycle (u1, . . . , u4n), and a single vertex u0 connected to each
vertex on the cycle. We choose the edge-weights of this part of the graph so high
that it has to be embedded without any intersections.

For every 1 ≤ i ≤ 2n we connect ui to u4n+1−i by a path Pi of length 2 and
edges of weight w. Furthermore, we connect the midpoints of Pi and P2n+1−i by
a path Qi of length 3 with edges of weight w′, whose middle edge aibi has been
replaced by two edges of weight w′/2 (1 ≤ i ≤ n).

Finally, we encode G as follows: for each edge vivj ∈ E we add an edge from
ai to bj (with i < j, an arbitrary choice). The rotation of H is as shown in
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u0

u1

u2

u3
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un+1

u2n−2

u2n−1

u2n

u4n

u4n−1

u4n−2

u3n+1

u3n

u2n−2

u2n+2

u2n+1
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b4
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b1

a2

b2

a3

b3

w w

w′

w′ w′ w′

Fig. 1. The graph H

Figure 1. At ai, each edge from E is inserted into the rotation at ai between the
two ai, bi-edges of weight w′/2; we do likewise at every bi. The edges of E at ai

can be ordered arbitrarily (same at bi).
This concludes the description of H . We let k′ = n(n − 1)ww′ + kw′ + m2,

where w = 5m4 and w′ = 2m2. We claim that G allows a linear arrangement of
value at most k if and only if H (with the rotation system shown in the drawing)
has crossing number at most k′.

If G has a linear arrangement of value at most k, we can draw H using the
order of the vi in that linear arrangement to obtain a drawing of crossing number
at most k′ (the m2 term compensates for the potential pairwise crossings of the
edges in H that represent edges in E).

For the reverse implication, consider a drawing of H with crossing number
at most k′ = n(n − 1)ww′ + kw′ + m2. Then k′ < n2ww′ + m2w′ + m2, and
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by choice of w and w′ this is at most 10m8 + 2m4 + m2 < w2. Hence, in our
drawing, no two edges of weight w intersect each other, and, therefore, the paths
Pi (1 ≤ i ≤ 2n) are drawn as shown in Figure 1.

Next, consider the modified paths Qi. Qi must intersect each of the paths
Pi+1 through P2n−i, contributing (2n−2i)ww′ to the crossing number. Summing
these values for i = 1, . . . , n, we observe a contribution of at least n(n − 1)ww′

by intersections between the Qi and the Pi to the crossing number. This leaves
k′ − n(n − 1)ww′ = kw′ + m2 < m2w′ + m2 = (w′/2)w′ + w′/2 < w′w′ < w′w
crossings, implying that there cannot be any further intersections between a
Qi and a Pi (since it would contribute w′w to the crossing number, more than
is left). By the same reasoning, we also do not have intersections between any
two Qi.

Finally, we want to argue that all the ai and bi lie between Pn and Pn+1. Since
Qn lies entirely between Pn and Pn+1 (as we argued earlier), so do an and bn.
Consider any ai or bi. As G is connected by assumption, there is a path from an

to ai using edges encoding G and edges of weight w′/2. If this path intersects
Pn or Pn+1, it contributes w or more to the crossing number. However, since
k′ − n(n − 1)ww′ = kw′ + m2 < m2w′ + m2 = 2m4 + m2 < 5m4 = w, this is not
possible. Therefore, ai and bi are also located between Pn and Pn+1.

In summary, the drawing of H looks as shown in Figure 1. This drawing
clearly indicates a linear arrangement f of G. An edge e = uv contributes at least
|f(u)−f(v)|w′ to the crossing number of H , so

∑
uv∈E |f(u)−f(v)| ≤ kw′+m2.

Since m2 < w, the value of the linear arrangement is at most k.
The last step is to replace each edge e of weight x by x parallel edges, and

then subdivide each of those edges: the effect is that e is replaced by a copy of
K2,x with the endpoints of e identified with the partite set of size 2. The new
edges are inserted in the rotation at where e was, and the new edges are ordered
as indicated in Figure 2. Thus we obtain an unweighted graph H ′ from H . Since
we can draw any of the parallel edges alongside whichever one is involved in the
smallest number of crossings, we may assume that an optimal drawing of H ′ has
all parallel edges routed in parallel; also, subdivisions do not affect the crossing
number. Therefore, cr(H ′) = cr(H), and H ′ is an unweighted graph with fixed
rotation system for which is it is NP-hard to determine the crossing number.

Note that the argument showing that the drawing of H looks as shown in
Figure 1 did not make any assumptions about the rotation at a vertex. Therefore,
even if we allow flipped rotations, we can still conclude that the drawing of H
yields a linear arrangement of value at most k. Consequently, computing the
crossing number of graphs with rotation systems remains NP-complete if we
allow rotations to flip.

Remark 1. The construction in the proof of Theorem 1 can be modified to work
for other crossing number variants, such as odd-crossing number, pair-crossing
number, and rectilinear crossing number (for which all edges of the graph have
to be realized as line segments).
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→ . . .

Fig. 2. Replacing an edge by parallel paths

3 Cubic Graphs

We can use Theorem 1 to prove that computing the crossing number of a cubic
graph is NP-complete. This was a long-standing open question that was solved
only recently by Petr Hliněný, using a rather complicated construction. The
idea of the proof is to replace each vertex of a graph with rotation system with
a hexagonal grid, simultaneously making the graph cubic and mimicking the
rotation system. (Hexagonal grids are used in Hliněný’s original proof as well.)

Theorem 2 (Hliněný [6]). Computing the crossing number of a 3-connected,
cubic graph is NP-complete.

Remark 2. The argument of Theorem 2 also works for straight-line drawings.
Combining this observation with Remark 1 shows that it is NP-hard to compute
the rectilinear crossing number of a cubic graph.

As Hliněný observes, Theorem 2 also implies that computing the minor-monotone
crossing number is NP-complete [6]. Another result, which follows immediately
(as observed in [3]) is that it is NP-hard to find a drawing of a directed graph in
which all incoming (and therefore all outgoing) edges at a vertex are consecutive
and which minimizes the crossing number.

Our Theorem 1 is in turn derivable from Hliněný’s result, as we will show in
the full version of the paper.

4 Parameterization

One way to parameterize the crossing number problem is by the number of ver-
tices of the graph. The question becomes interesting if we allow multiple edges
and loops. Without rotation, the problem is equivalent to computing the crossing
number of a weighted graph without multiple edges and loops, with the cost of an
intersection being the product of the weights of the edges involved: Given a graph
G = (V, E) with multiple edges and loops, note that in a crossing-number optimal
drawing any two edges with the same endpoints can be routed in parallel. If we
let G′ be the complete graph on V with edge weights w(uv) equal to the number
of edges in E between u and v, then the weighted crossing number of G′ equals
cr(G). Moreover, that weighted crossing number of G′ can be easily computed by
exhaustively trying all possible drawings in time O(2|V |2(log |E| + |V |2)).
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The problem becomes nontrivial if the graph G is given with a rotation system
of its edges. In the following sections we discuss the cases of one and two vertices
connecting them with well-known problems such as determining the number of
inversions in a permutation and finding the edit distance of two cyclic words.
We also include a weak approximation result for the general case. We start by
investigating the case of two vertices.

4.1 Two Vertices

In this section we consider graphs on two vertices, allowing multiple edges, but
no loops. The crossing number of a two-vertex graph can be expressed as the
solution of an integer linear program whose relaxation can be used to compute
the optimal integer solution in polynomial time as we showed earlier [13].

Here we want to give a fast and simple 2-approximation algorithm for the
two-vertex case. To do so, we look at the crossing number problem as an edit-
distance problem on words. The edit distance between two words is the smallest
number of operations transforming one word into the other. There are numerous
variants of this problem depending on which operations are allowed and what the
associated costs are [15,9]. There are also several papers studying objects other
than words, such as trees and cyclic words (also known as necklaces) [10,11,7],
but it seems the particular variant we find needful here—allowing only swaps (at
unit cost) on cyclic words—has not so far been considered at all. A swap is the
transposition of two adjacent letters in a word. A cyclic word is the equivalence
class of a word under cyclic shifts (we will use the letter ρ to denote the cyclic
shift of a word by one position to the right). The last and first letter of a cyclic
word are considered adjacent. Let ds(u, v) be the smallest number of swaps
transforming u into v, where u and v are normal words. Similarly, let dρ

s(u, v) be
the smallest number of swaps transforming u into v allowing cyclic shifts at no
cost. Then dρ

s(u, v) is the swapping distance of the two cyclic words represented
by the words u and v. E.g. dρ

s(abcd, cdba) = 1, while ds(abcd, cdba) = 5.
Computing ds is easy (see [15]). Our goal is the computation of dρ

s(u, v).

Swapping distance of Cyclic Words
Instance: Two words u, v, integer k.
Question: Is dρ

s(u, v) ≤ k?

We do not know how hard this problem is in general; however, with the
restriction that the words contain each letter exactly once, we can solve the
problem. Indeed, in that case it is equivalent to computing the crossing number
of a graph G with rotation system on two vertices (details will appear in the
journal version).

We rephrase the restricted swapping-distance problem as follows: we can as-
sume that u = 123 · · ·m and v = σ(1)σ(2) · · · σ(m) for some permutation σ of
Zm (the cyclic group of m elements). Letting G be the 2-vertex multigraph de-
fined by the clockwise rotations u and vR, we define cr(σ) := cr(G). We call two
permutations σ, τ circular-equivalent if there exists a k such that σ(i) = τ(i+ k)
for all i ∈ Zn. Each equivalence class is a circular permutation (this corresponds
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exactly to the cyclic words). We will use σ to represent a permutation as well as
the corresponding circular permutation. If σ and τ are circular equivalent, then
cr(σ) = cr(τ).

We next define a function c̃r on circular permutations σ which will be seen to
be related to the crossing number of the corresponding 2-vertex multigraph G.
Consider a fixed permutation τ . We wish to consider “forward” and “backward
distance” from i to τ(i) in Zm, as if the the elements in the list τ were placed
clockwise along a circle with the same distance between each consecutive pair
(including τ(m) and τ(1)). We define d+(i) to be τ(i)− i mod m; note that 0 ≤
d+(i) < m. Also let d−(i) = i − τ(i) mod m and let d(i) = min(d+(i), d−(i)).
Note that if the aforementioned circle has circumference m, then d+(i) measures
the clockwise distance along the circle from i to τ(i), and d−(i) measures the
counterclockwise distance from i to τ(i). Finally, we define d(τ) to be the sum
of d(i) over 1 ≤ i ≤ m.

For a circular permutation σ, let c̃r(σ) be the minimum of d(τ) over all τ ≡ σ.
Equivalently, c̃r(σ) = min1≤i≤m d(σ ◦ ρi), where ρi(j) = i + j for all 1 ≤ i ≤ m.

We claim that c̃r approximates the cyclic swapping distance of two words to
within a factor of 2. We leave the proof to the journal version.

Theorem 3. For a 2-vertex loopless multigraph G represented by a circular
permutation σ,

cr(G) ≤ c̃r(σ) ≤ 2 cr(G).

Remark 3. The bounds of Theorem 3 are asymptotically optimal: for σn :=
(1 2)(3 4) · · · (2n−1 2n) we have c̃r(σ) = 2n and cr(G) = n; for the lower bound
consider τn := (1 n) (as a permutation of numbers 1, . . . , 2n), then c̃r(τn) =
2n − 2 and cr(G) = 2n − 3.

Remark 4. We have seen that the crossing number of a two-vertex graph equals
the swapping distance of two cyclic words. If instead of cyclic words we consider
normal words, the swapping distance still equals the crossing number of a two-
vertex graph where both vertices lie on the boundary of a disk (and all the edges
are within the disk). In that context, the analogue of Theorem 3 is known as
Spearman’s Footrule and was first proved by Diaconis and Graham [4].

Theorem 3 gives us a fast and easy way to approximate cr(G) for a 2-vertex
multigraph with rotation system. Computing c̃r(σ) from the definition can be
done in quadratic time; however, this can easily be improved by first sorting the
d(i) (which can be done in linear time) and then trying all rotational shifts ρj

of σ. We keep the optimal shifts sorted by value and distinguish between two
different types of optimal shift: forward and backward. Updating the optimal
shift and its direction might not be constant time for adding a single shift, but
an amortized analysis shows that the whole algorithm can be made to run in
linear time.

Corollary 1. The crossing number of a 2-vertex loopless multigraph with rota-
tion system can be approximated to within a factor of 2 in linear time.
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4.2 One Vertex

Given a graph with a rotation system on a single vertex (with loops), it is quite
straightforward to compute its crossing number in quadratic time.

In contrast, a linear time algorithm for the one-vertex case would come as
a surprise, since the problem contains as a special case a well-studied problem:
computing the number of inversions of a permutation. Given a permutation π
over {1, . . . , n}, an inversion of π is a pair (i, j) such that i < j and π(i) >
π(j). It is well-known that the number of inversions of a permutation π equals
ds(123 . . . n, π(1)π(2) . . . π(n)) (see, for example [8, Section 5.1.1]). The best-
known algorithms for either problem run in Θ(n log n).1

The inversion problem is easily encoded as a crossing number problem on a
single vertex: simply let the rotation at the vertex be 12 . . . nπ(n)π(n − 1) . . .
π(2)π(1).

However, the one-vertex case can also be considered a special case of the
two-vertex case (split the vertex into two and connect the two vertices with
a large number of neighboring parallel edges). Hence we can approximate the
crossing number of a one-vertex graph and therefore the number of inversions
of a permutation in linear time to within a factor of 2 using our approximation
algorithm. As we mentioned in Remark 4, this result is known as Spearman’s
Footrule.

We can compute the crossing number of a one-vertex graph exactly in time
Θ(n log n), which extends the algorithm for computing the number of inversions
of a permutation. The proof will appear in the journal version.

Theorem 4. The crossing number of a one-vertex graph with rotation system
can be computed in time O(n log n).

4.3 Several Vertices

There is little we can say at this point about how hard it is to compute the
crossing number of a graph with a rotation system on a fixed number k of
vertices when k ≥ 3. Using results from a previous paper [12], however, we can
give at least an approximation result. In this section we allow both loops and
multiple edges.

Theorem 5. We can approximate the crossing number of a multigraph G =
(V, E) with rotation system on k vertices to within a factor of

(
k+4
4

)
/5 in time

O(mk+2) where k = |V | and m = |E|.

In [12] we showed that cr(G) ≤ ocr(G)
(

k+4
4

)
/5, where ocr(G) is the odd-crossing

number of G, that is, the smallest number of pairs of edges that cross an odd
number of times in any drawing of G. In fact, the proof applies to a multigraph
G with rotation system π, yielding cr(G, π) ≤ ocr(G, π)

(
k+4
4

)
/5. The proof works

by choosing a sequence of k edges e1, . . . , ek and contracting G along those edges
1 See [8, Exercises 5.1.1-6 and 5.2.4.-21]. Wagner’s linear time algorithm [15] for com-

puting the swapping distance of words is wrong.
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obtaining a graph G′ with rotation system π′ on a single vertex. For graphs on
a single vertex crossing number and odd crossing number are the same, hence,
cr(G′, π′) = ocr(G′, π′). Furthermore, the sequence of edges is chosen such that
cr(G′, π′) ≤ ocr(G, π)

(
k+4
4

)
/5. In other words, ocr(G, π) ≥ cr(G′, π′)/(

(
k+4
4

)
/5).

The redrawing procedure of the proof establishes that ocr(G, π) ≤ ocr(G′, π′).
Introducing c := ocr(G′, π′) allows us to summarize the discussion as

c/(
(

k + 4
4

)
/5) ≤ ocr(G, π) ≤ c.

Since ocr(G, π) ≤ cr(G, π) ≤ ocr(G, π)
(

k+4
4

)
/5, we conclude that

c/(
(

k + 4
4

)
/5) ≤ cr(G, π) ≤ c

(
k + 4

4

)
/5.

Now c can be computed in time O(m2) using the trivial algorithm for one-vertex
graphs if we know G′ and π′. The only remaining problem is that we do not know
the sequence of edges that determines G′ and π′. Hence we have to try all possible
sequences, giving a running time of O(mk+2).
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Abstract. The celebrated Crossing Lemma states that, in every draw-
ing of a graph with n vertices and m ≥ 4n edges there are at least
Ω(m3/n2) pairs of crossing edges; or equivalently, there is an edge that
crosses Ω(m2/n2) other edges. We strengthen the Crossing Lemma for
drawings in which any two edges cross in at most O(1) points.

We prove for every k ∈ N that every graph G with n vertices and
m ≥ 3n edges drawn in the plane such that any two edges intersect in
at most k points has two disjoint subsets of edges, E1 and E2, each of
size at least ckm2/n2, such that every edge in E1 crosses all edges in E2,
where ck > 0 only depends on k. This bound is best possible up to the
constant ck for every k ∈ N. We also prove that every graph G with n
vertices and m ≥ 3n edges drawn in the plane with x-monotone edges has
disjoint subsets of edges, E1 and E2, each of size Ω(m2/(n2 polylog n)),
such that every edge in E1 crosses all edges in E2. On the other hand,
we construct x-monotone drawings of bipartite dense graphs where the
largest such subsets E1 and E2 have size O(m2/(n2 log(m/n))).

1 Introduction

The crossing number cr(G) of a graph1 G is the minimum number of crossings
in a drawing of G. A drawing of a graph G is a planar embedding which maps
the vertices to distinct points in the plane and each edge to a simple continuous
arc connecting the corresponding vertices but not passing through any other
vertex. A crossing is a pair of curves and a common interior point between the
two curves (the intersections at endpoints or vertices do not count as cross-
ings). A celebrated result of Ajtai et al. [ACNS82] and Leighton [L84], known as
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the Crossing Lemma, states that the crossing number of every graph G with n
vertices and m ≥ 4n edges satisfies

cr(G) = Ω

(
m3

n2

)
. (1)

The best known constant coefficient is due to [PRTT06]. Leighton [L84] was mo-
tivated by applications to VLSI design. Szekély [S97] used the Crossing Lemma
to give simple proofs of Szemerédi-Trotter bound on the number of point-line in-
cidences [ST83], a bound on Erdős’s unit distance problem and Erdős’s distinct
distance problem [E46]. The Crossing Lemma has since found many important
applications, in combinatorial geometry [D98, KT04, PS98, PT02, STT02], and
number theory [ENR00, TV06].

The pairwise crossing number pair-cr(G) of a graph G is the minimum number
of pairs of crossing edges in a drawing of G. The lower bound (1) also holds
for the pairwise crossing number with the same proof. It follows that in every
drawing of a graph with n vertices and m ≥ 4n edges, there is an edge that
crosses at least Ω(m2/n2) other edges. Conversely, if in every drawing of every
graph with m ≥ 3n edges some edge crosses Ω(m2/n2) others, then we have
pair-cr(G) = Ω(m3/n2) for every graph G with m ≥ 4n edges. Indeed, by
successively removing edges that cross many other edges, we obtain the desired
lower bound for the total number of crossing pairs. In this note, we prove a
bipartite strengthening of this result for drawings where any two edges intersect
in at most a constant number of points.

Theorem 1. For every k ∈ IN, there is a constant ck > 0 such that for every
drawing of a graph G = (V, E) with n vertices and m ≥ 3n edges, no two of
which intersect in more than k points, there are disjoint subsets E1, E2 ⊂ E,
each of size at least ckm2/n2, such that every edge in E1 crosses all edges in E2.

We have k = 1 in straight-line drawings, k = (� + 1)2 if every edge is a polyline
with up to � bends, and k = d2 if the edges are sufficiently generic algebraic
curves (e.g., splines) of degree at most d. Note also that every graph G has a
drawing with cr(G) crossings in which any two edges cross at most once [V05].

The dependence on k in Theorem 1 is necessary: We show that one cannot
expect bipartite crossing families of edges of size Ω(m2/n2) if any two edges
may cross arbitrarily many times, even if the graph drawings are restricted to
be x-monotone. An x-monotone curve is a continuous arc that intersects every
vertical line in at most one point. A drawing of a graph is x-monotone if every
edge is mapped to an x-monotone curve.

Theorem 2. For every n, m ∈ N with m ≤ n2/4, there is a bipartite graph
G = (V, E) with n vertices, m edges, and an x-monotone drawing such that any
two disjoint subsets E1, E2 ⊂ E of equal size |E1| = |E2| = t, where every edge
in E1 crosses all edges in E2, satisfy

t = O

(
m2

n2 log(m/n)

)
.
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We present the tools used for the bipartite strengthening of the Crossing Lemma
in the next section. Theorem 1 is proved in Section 3. Our construction of x-
monotone drawings are discussed in Section 4. Finally, Section 5 contains a
weaker analogue of Theorem 1 for x-monotone drawings and a further strength-
ening of the Crossing Lemma for graphs satisfying some monotone property.

2 Tools

The proof of Theorem 1 relies on a recent result on the intersection pattern of
k-intersecting curves. For a collection C of curves in the plane, the intersection
graph is defined on the vertex set C, two elements of C are adjacent if the
(relative) interiors of the corresponding curves intersect. A complete bipartite
graph is balanced if the vertex classes differ in size by at most one. For brevity,
we call a balanced complete bipartite graph a bi-clique.

Theorem 3. [FPT07a] Given m curves in the plane such that at least εm2 pairs
intersect and any two curves intersect in at most k points, their intersection
graph contains a bi-clique with at least ckε64m vertices where ck > 0 depends
only on k.

If follows from the Crossing Lemma that in every drawing of a dense graph,
the intersection graph of the edges is also dense. Therefore, Theorem 3 implies
Theorem 1 in the special case that G is dense. This connection was first observed
by Pach and Solymosi [PS01] who proved Theorem 1 for straight-line drawings
of dense graphs.

If a graph G is not dense, we decompose G recursively into induced subgraphs
with an algorithm reminiscent of [PST00] until one of the components is dense
enough so that Theorem 3, like before, implies Theorem 1. The decomposition
algorithm successively removes bisectors, and we use Theorem 4 below to keep
the total number of deleted edges under control.

The bisection width, denoted by b(G), is defined for every simple graph G with
at least two vertices. It is the smallest nonnegative integer such that there is a
partition of the vertex set V = V1 ∪∗ V2 with 1

3 · |V | ≤ Vi ≤ 2
3 · |V | for i = 1, 2,

and |E(V1, V2)| = b(G). Pach, Shahrokhi, and Szegedy [PSS96] gave an upper
bound on the bisection width in terms of the crossing number and the L2-norm
of the degree vector (it is an easy consequence of the weighted version of the
famous Lipton-Tarjan separator theorem [LT79, GM90]).

Theorem 4. [PSS96] Let G be a graph with n vertices of degree d1, d2, . . . , dn.
Then

b(G) ≤ 10
√

cr(G) + 2

√√√
√

n∑

i=1

d2
i (G). (2)

3 Proof of Theorem 1

Let G = (V, E) be a graph with n vertices and m ≥ 3n edges. Since a graph with
more than 3n−6 edges cannot be planar, it must have crossing edges. Hence, as
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long as 3n ≤ m < 106n, Theorem 1 holds with |E1| = |E2| = 1 ≥ 10−12m2/n2.
We assume m ≥ 106n in the remainder of the proof.

Let D be a drawing of G. To use the full strength of Theorem 4, we transform
the drawing D into a drawing D′ of a graph G′ = (V ′, E′) with m edges, at
most 2n vertices, and maximum degree at most �2m/n�, so that the intersection
graph of E′ is isomorphic to that of E. If the degree of a vertex v ∈ V is above
the average degree d̄ = 2m/n, split v into �d/d̄� vertices v1, . . . , v�d/d̄� arranged
along a circle of small radius centered at v. Denote the edges of G incident to
v by (v, w1), . . . , (v, wd) in clockwise order in the drawing D. In G′, connect wj

with vi if and only if d̄(i− 1) < j ≤ d̄i, where 1 ≤ j ≤ d and 1 ≤ i ≤ �d/d̄�. Two
edges of G′ cross if and only if the corresponding edges of G cross. Also, letting
d(v) denote the degree of vertex v in G′, the number of vertices of G′ is

∑

v∈V

�d(v)/d̄� <
∑

v∈V

1 + d(v)/d̄ = 2n.

Hence the resulting G′ and D′ have all the required properties.
We will decompose G′ recursively into induced subgraphs until each induced

subgraph is either a singleton or it has so many pairs of crossing edges that
Theorem 3 already implies Theorem 1. Theorem 3 implies that the intersection
graph of the edges of an induced subgraph H of G′ contains a bi-clique of size

at least ck

(
p(H)
e(H)2

)64
e(H), where p(H) is the number of pairs of crossing edges

in H in the drawing D′, e(H) is the number of edges of H , and ck > 0 is the
constant depending on k only in Theorem 3. So the intersection graph of the
edge set of G′ (and hence also of G) contains a bi-clique of size Ωk(m2/n2) if
there is an induced subgraph H of G′ with

εk
m2

n2 ≤
(

p(H)
e(H)2

)64

e(H), (3)

where εk > 0 is any constant depending on k only. We use εk = (109k)−64 for
convenience. Assume, to the contrary, that (3) does not hold for any induced
subgraph H of G′.

Every induced subgraph H has at most kp(H) crossings in the drawing D′,
hence cr(H) ≤ kp(H). It is enough to find an induced subgraph H for which

e(H)2−1/64

109

(m

n

) 1
32 ≤ cr(H), (4)

since this combined with cr(H) ≤ kp(H) implies (3).
Next, we decompose the graph G′ of at most 2n vertices and m edges with

the following algorithm.

Decomposition Algorithm

1. Let S0 = {G′} and i = 0.
2. While (3/2)i ≤ 4n2/m and no H ∈ Si that satisfies (4), do

Set i := i + 1. Let Si := ∅. For every H ∈ Si−1, do
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• If |V (H)| ≤ (2/3)i 2n, then let Si := Si ∪ {H};
• otherwise split H into induced subgraphs H1 and H2 along a bisector

of size b(H), and let Si := Si ∪ {H1, H2}.
3. Return Si.

For every i, every graph H ∈ Si satisfying the end condition has at most
|V (H)| ≤ (2/3)i 2n vertices. Hence, the algorithm terminates in t ≤ log(3/2) 2n
rounds and it returns a set St of induced subgraphs. Let Ti ⊂ Si be the set of
those graphs in Si that have more than (2/3)i 2n vertices. Notice that |Ti| ≤
(3/2)i. Denote by Gi the disjoint union of the induced subgraphs in Si.

We use Theorem 4 for estimating the number of edges deleted throughout
the decomposition algorithm. Substituting the upper bound for cr(H) and using
Jensen’s inequality for the concave function f(x) = x1−1/128, we have for every
i = 0, 1, . . . , t,

∑

H∈Ti

√
cr(H) ≤

∑

H∈Ti

√
e(H)2−1/64

109

(m

n

) 1
32

= 10−
9
2

(m

n

) 1
64 ∑

H∈Ti

e(H)1−
1

128

≤ 10−
9
2

(m

n

) 1
64 |Ti|

1
128 m1− 1

128 ≤ 10−
9
2

(
3
2

) i
128 m1+1/128

n1/64 .

Denoting by d(v, H) the degree of vertex v in an induced subgraph H , we have

∑

H∈Ti

√ ∑

v∈V (H)

d2(v, H) ≤
√

|Ti|
√ ∑

v∈V (Gi)

d2(v, Gi)

≤
√

(3/2)i

√
n · (d̄)2 ≤ 2m√

n

√
(3/2)i.

In the first of the two above inequalities, we use the Cauchy-Schwartz inequality
to get

∑
H∈Ti

√
xH ≤

√
|Ti|

√∑
H∈Ti

xH with xH =
∑

v∈V (H) d2(v, H).
By Theorem 4, the total number of edges deleted during this process is

t−1∑

i=0

∑

H∈Ti

b(H) ≤ 10
t−1∑

i=0

∑

H∈Ti

√
cr(H) + 2

t−1∑

i=0

∑

H∈Ti

√ ∑

v∈V (H)

d2(v, H)

≤ 10−
7
2
m1+1/128

n1/64

t−1∑

i=0

(3/2)
i

128 + 4
m√
n

t−1∑

i=0

√
(3/2)i

≤ m1+1/128

4n1/64

(
n2

m

)1/128

+ 100m1/2n1/2 ≤ m

2
.

The second inequality uses the earlier upper bounds for
∑

H∈Ti

√
cr(H) and

∑
H∈Ti

√∑
v∈V (H) d2(v, H), the third inequality uses the geometric series for-

mula and the upper bound t ≤ log(3/2) 2n, while the last inequality follows from
the fact that m ≥ 106n.
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So at least m/2 edges survive and each of the induced subgraphs in St has at
most (2/3)t 2n ≤ 2n/(4n2/m) = m/2n vertices. Also G′ has at most 2n vertices,
so using Jensen’s inequality for the convex function g(x) =

(
x
2

)
, the total number

of vertex pairs lying in a same induced subgraph of St is less than

2n

m/2n

(m/2n)2

2
=

m

2
,

a contradiction. We conclude that the decomposition algorithm must have found
an induced subgraph H satisfying (4). This completes the proof of Theorem 1. �

4 Drawings with Edges as x-monotone Curves

It is known that Theorem 3 does not hold without the assumption that any two
curves intersect in at most a constant number of points. Using a construction
from [F06], Pach and G. Tóth [PT06] constructed for every n ∈ IN, a collection
of n x-monotone curves whose intersection graph is dense but every bi-clique it
contains has at most O(n/ log n) vertices. Theorem 2 shows a stronger construc-
tion holds: the curves are edges in an x-monotone drawing of a dense bipartite
graph, where Θ(n2) curves have only n distinct endpoints.

The proof of Theorem 3 builds on a crucial observation: Golumbic et al.
[GRU83] noticed a close connection between intersection graphs of x-monotone
curves and partially ordered sets. Consider n continuous functions fi : [0, 1] → R.
The graph of every continuous real function is clearly an x-monotone curve.
Define the partial order ≺ on the set of functions by fi ≺ fj if and only if
fi(x) < fj(x) for all x ∈ [0, 1]. Two x-monotone curves intersect if and only if
they are incomparable under this partial order ≺.

Lemma 1. [GRU83] The elements of any partially ordered set ({1, 2, . . . , n}, ≺)
can be represented by continuous real functions f1, f2, . . . , fn defined on the in-
terval [0, 1] such that fi(x) < fj(x) for every x if and only if i ≺ j (i = j).

Proof. Let ({1, 2, . . . , n}, ≺) be a partial order, and let Π denote the set con-
sisting of all of its extensions π(1) ≺ π(2) ≺ . . . ≺ π(n) to a total order. Clearly,
every element of Π is a permutation of the numbers 1, 2, . . . , n. Let π1, π2, . . . , πt

be an arbitrary labeling of the elements of Π . Assign distinct points xk ∈ [0, 1]
to each πk such that 0 = x1 < x2 < . . . < xt = 1. For each i (1 ≤ i ≤ n), define
a continuous, piecewise linear function fi(x), as follows. For any k (1 ≤ k ≤ t),
set fi(xk) = π−1

k (i), and let fi(x) be linear over each interval [xk, xk+1].
Obviously, whenever i ≺ j for some i = j, we have that π−1

k (i) ≺ π−1
k (j)

for every k, and hence fi(x) < fj(x) for all x ∈ [0, 1]. On the other hand, if i
and j are incomparable under the partial order ≺, there are indices k and k′

(1 ≤ k = k′ ≤ m) such that fi(xk) < fj(xk) and fi(xk) > fj(xk′ ), therefore,
by continuity, the graphs of fi and fj must cross at least once in the interval
(xk, xk′ ). This completes the proof. �
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The following lemma is the key for the proof of Theorem 2. It presents a partially
ordered set of size n2 whose incomparability graph contains bi-cliques of size at
most O(n2/ log n), yet it can be represented with x-monotone curves having only
2n endpoints.

Lemma 2. For every n ∈ IN, there is a partially ordered set P with n2 elements
satisfying the following properties

1. every bi-clique in the incomparability graph of P has size at most O(n2/ logn),
2. there are equitable partitions P = P1 ∪ . . . ∪ Pn and P = Q1 ∪ . . . ∪ Qn

such that
(a) for each i, there is a linear extension of P where the elements of Pi are

consecutive,
(b) there is a linear extension of P where the elements of each Qj are con-

secutive, and
(c) for every i and j, we have |Pi ∩ Qj | = 1.

We now prove Theorem 2, pending the proof of Lemma 2. Note that it suffices
to prove Theorem 2 in the case m = n2/4, that is, when G is a bi-clique. By
deleting some of the edges of this construction, we obtain a construction for
every m ≤ n2/4, since edge deletions also decrease the intersection graph of the
edges. So it is enough to prove the following.

Lemma 3. There is an x-monotone drawing of Kn,n such that every bi-clique
in the intersection graph of the edges has size at most O(n2/ log n).

Proof. Let P be a poset described in Lemma 2. Represent P with x-monotone
curves as in the proof of Lemma 1 such that the last linear extension πt has
property (b) of Lemma 2, that is, the elements of each Qj are consecutive in πt.

We transform the n2 x-monotone curves representing P into an x-monotone
drawing of Kn,n. We introduce two vertex classes, each of size n, as follows.
Along the line x = 1, the right endpoints of the x-monotone curves in each
Qj are consecutive. Introduce a vertex on x = 1 for each Qj , and make it the
common right endpoint of all curves in Qj by deforming the curves over the
interval (xt−1, 1] but keeping their intersection graph intact. These n vertices
along the line x = 1 form one vertex class of Kn,n.

For each i, there is a vertical line x = xi along which the x-monotone curves
in Pi are consecutive. Introduce a vertex for each Pi on line x = xi, and make
it the common left endpoint of all curves in Pi by deforming the curves over
the interval [xi, xi+1) and erasing their portion over the interval [0, xi). These
n vertices, each lying on a line x = xi, form the second vertex class of Kn,n.
After truncating and slightly deforming the n2 curves representing P , we have
constructed an x-monotone drawing of Kn,n.

Note that the intersection graph of the edges of this drawing of Kn,n is a
subgraph of the incomparability graph of P , so every bi-clique of the intersection
graph of the edges has size at most O(n2/ logn). �
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Proof of Lemma 2. We start out with introducing some notation for directed
graphs. For a subset S of vertices in a directed graph G, let N+(S) denote the
set of vertices x in G such that there is a vertex s ∈ S with an edge (s, x) in G.
Similarly, N−(S) is the set of vertices y in G such that there is a vertex s ∈ S
with an edge (y, s) in G. A directed graph has path-girth k if k is the smallest
positive integer for which there are vertices x and y having at least two distinct
walks of length k from x to y. Equivalently, denoting the adjacency matrix of G
by AG, it has path-girth k if A1

G, . . . , Ak−1
G are all 0-1 matrices, but the matrix

Ak
G has an entry greater than 1.
A directed graph H = (X, E) is an ε-expander if both N+(S) and N−(S) has

size at least (1 + ε)|S| for all S ⊂ V with 1 ≤ |S| ≤ |V |/2. An expander is a
directed graph with constant expansion.

We will use that for every v ∈ IN, there is a constant degree expander with
v vertices and path-girth Ω(log v). This can be proved by a slight alteration
of a random constant degree directed graph. We suppose for the remainder of
the proof that H = (X, E) is an ε-expander with v vertices, maximal degree at
most d, and path-girth greater than c log v, where ε, c, and d are fixed positive
constants.

For every a ∈ IN, we define a poset P (a, H) with ground set X ×{1, 2, . . . , a},
generated by the relations (j1, k1) ≺ (j2, k2) whenever k2 = k1 + 1 and (j1, j2)
is an edge of H .

Let P0 = P (a, H) with a = �min
(
c, (10 log d)−1

)
· log v�. One can show, by

essentially the same argument as in [F06], that the partially ordered set P0 has
the following three properties.

1. P0 has a|X | = Θ(v log v) elements,
2. each element of P0 is comparable with fewer than da ≤ v1/10 other elements

of P0, and
3. the largest bi-clique in the incomparability graph of P0 has size at most

O(|X |) = O(v).

Since the path-girth of H is greater than a, if x, y, z, w ∈ P0 satisfy both
w ≺ y ≺ x and w ≺ z ≺ x, then y and z must be comparable. That is, the poset
in Figure 1(a) cannot be a subposet of P0. The poset P required for Lemma 2
will be a linear size subposet of P0. We next describe the construction of P .

A chain is a set of pairwise comparable elements. The maximum chains in
P0 each have size a, having one element from each of X × {i}, i = 1, 2, . . . , a.
Greedily choose as many disjoint chains of size a as possible from P0, denote
the set of chains by C = {C1, . . . , Cw}, where w is the number of chains. By the
expansion property of H , we have w = Θ(|X |) = Θ(v).

We choose greedily disjoint subsets P1, . . . , Pha of P , each of which is the
union of h = Θ (

√
v) chains of C. Each Pi has the property that, besides the

comparable pairs within each of the the h chains, there are no other compara-
ble pairs in Pi. We can choose the h chains of each Pi greedily: after choosing
the kth chain in Pi, we have to choose the (k + 1)th chain such that none of its
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x

w

yz

(a) (b)

Ai

Pi

Bi

a

x

Fig. 1. (a) The Hasse diagram of a four element excluded subposet of P0. (b) A linear
extension of P where Bi ≺ Pi ≺ Ai.

elements are comparable with any element of the first k chains of Pi. Since at
most kav1/10 ≤ hav1/10 = v3/5+o(1) of the w − (i − 1)h − k = Θ(v) remaining
chains contain an element comparable with the first k chains of Pi, almost any
of the remaining chains can be chosen as the (k + 1)th chain of Pi. Finally,
let P = P1 ∪ . . . ∪ Pha. As mentioned earlier, we have |P | = Θ(|P0|), and the
largest bi-clique in the incomparability graph of P is of size O(|P0|/ log |P0|) =
O(|P |/ log |P |).

Since the poset in Fig. 1(a) is not a subposet of P0, no element of P0 \ Ck,
Ck ∈ C, can be both greater than an element of Ck and less than another element
of Ck. By construction, if two elements of Pi are comparable, then they belong
to the same chain. Therefore, no element of P \ Pi can be both greater than an
element of Pi and less than another element of Pi.

Consider the partition P = Ai ∪ Pi ∪ Bi, where an element a ∈ P \ Pi is
in Ai if and only if there is an element x ∈ Pi such that x ≺ a. There is a
linear extension of P in which the elements of Ai are the largest, followed by the
elements of Pi, and the elements of Bi are the smallest (see Fig. 1(b)). This is
because no element of P \ Pi can be both greater than an element of Pi and less
than another element of Pi.

Partition P into subsets P = X1 ∪ . . .∪Xa, where Xj consists of the elements
(j, x) ∈ P with x ∈ X . Each Xj contains exactly h2a elements, h elements from
each Pi. Arbitrarily partition each Xj into h sets Xj = Q(j−1)h+1 ∪ . . . ∪ Qjh

such that each Qk contains one element from each Pi. Since the elements in each
Xj form an antichain (a set of pairwise incomparable elements), any linear order
of the elements of P for which the elements of Xj are smaller than the elements
of Xk for 1 ≤ j < k ≤ a is a linear extension of P . Hence, there is a linear
extension of P such that, for each j, the elements of every Qj are consecutive.

We have established that P has all the desired properties. We can choose v
such that n ≤ ha and ha = O(n), so v = Θ(n2/ log n). If ha is not exactly n, we
may simply take the subposet whose elements are (P1∪. . .∪Pn)∩(Q1∪. . .∪Qn).
This completes the proof of Lemma 2. �
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5 Concluding Remarks

We can prove a weaker form of Theorem 1 for x-monotone curves, since our
main tools (Theorems 3 and 4) are available in weaker forms in this case. It
was recently shown in [FPT07b] that there is a constant c > 0 such that the
intersection graph G of any n x-monotone curves, at least εn2 pairs of which
intersect, contains a bi-clique with at least cε2n/(log 1

ε log n) vertices. The Cross-
ing Lemma implies that the intersection graph of the edges of a dense topological
graph is dense, so we have the following corollary.

Corollary 1. For every x-monotone drawing of a graph G = (V, E) with n
vertices and m = Ω(n2) edges, there are disjoint subsets E1, E2 ⊂ E, each of
size at least Ω(n2/ log n), such that every edge in E1 crosses all edges in E2.

Corollary 1 is tight up to a constant factor by Theorem 2. Similar to Theorem 4,
Kolman and Matoušek [KM04] proved an upper bound on the bisection width in
terms of the pairwise crossing number and the L2 norm of the degree sequence
d1, d2, . . . , dn:

b(G) = O

⎛

⎝

⎛

⎝
√

pair-cr(G) +

√√√
√

n∑

i=1

d2
i (G)

⎞

⎠ log n

⎞

⎠ .

Using the same strategy as in the proof of Theorem 1, with the above men-
tioned tools instead of Theorems 3 and 4, it is straightforward to establish the
following.

Theorem 5. For every x-monotone drawing of a graph G = (V, E) with n ver-
tices and m ≥ 3n edges, there are disjoint subsets E1, E2 ⊂ E, each of cardinality
at least m2/(n2 log5+o(1) n), such that every edge in E1 crosses every edge in E2.

In a special case, we can prove the same bound as in Theorem 1.

Proposition 1. Given a bipartite graph G with n vertices and m ≥ 3n edges,
and an x-monotone drawing where the vertices of the two vertex classes lie on
the lines x = 0 and x = 1, respectively, then the intersection graph of the edges
contains a bi-clique of size Ω(m2/n2).

Proof. Consider the two dimensional partial order ≺ on the edges of G, where an
edge e1 is greater than another edge e2 if and only if, for j = 0, 1 the endpoint of
e1 on the line x = j lies above that of e2. Two edges of G must cross if they are
incomparable by the partial order ≺. Also notice that there is an x-monotone
drawing of G with the vertices in the same position where two edges of G cross
if and only if they are incomparable under ≺. Indeed, this is done by drawing
the edges as straight line segments.

By the Crossing Lemma, there are at least Ω(m3/n2) pairs of crossing edges
in this straight-line drawing of G. Hence, there are at least Ω(m3/n2) pairs of
incomparable elements under the partial order ≺. In [FPT07b] (Theorem 3), we
prove that any incomparability graph with m vertices and at least dm edges
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contains a bi-clique of size at least d, so the intersection graph of the edges of G
must contain a bi-clique of size Ω(m2/n2). �

Proposition 1 implies that Theorem 1 holds for x-monotone drawings if the
vertex set lies in a bounded number of vertical lines. Indeed, an x-monotone
drawing of a graph with all vertices contained in the union of d vertical lines
can be partitioned into

(
d
2

)
x-monotone drawings of bipartite graphs with each

vertex class lying on a vertical line.

Monotone properties. If a graph is drawn with at most k crossings between any
two edges and the graph has some additional property, then one may improve
on the bound of Theorem 1.

A graph property P is monotone if whenever a graph G satisfies P , every
subgraph of G also satisfies P , and whenever graphs G1 and G2 satisfy P , then
their disjoint union also satisfies P . The extremal number ex(n, P) denotes the
maximum number of edges that a graph with property P on n vertices can have.
For graphs satisfying a monotone graph property, the bound (1) of the Cross-
ing Lemma can be improved [PST00]. In particular, if P is a monotone graph
property and ex(n, P) = O(n1+α) for some α > 0, then there exist constants
c, c′ > 0 such that for every graph G with n vertices, m ≥ cn log2 n edges, and
property P , the crossing number is at least cr(G) ≥ c′m2+1/α/n1+1/α. Further-
more, if ex(n, P) = Θ(n1+α), then this bound is tight up to a constant factor.
A straightforward calculation shows, using the same strategy as in the previous
section, the following strengthening of Theorem 1.

Theorem 6. Let P be a monotone graph property such that ex(n, P) = O(n1+α)
for some α > 0. For every k ∈ IN, there exist positive constants c and ck such that
for any drawing of a graph G = (V, E) satisfying property P, having n vertices
and m ≥ cn log2 n edges, no two of which intersecting in more than k points,
there are disjoint subsets E1, E2 ⊂ E, each of cardinality at least ck(m/n)1+1/α,
such that every edge in E1 crosses all edges in E2.

Acknowledgment. We thank the anonymous referee for bringing a paper by
Golumbic, Rotem, and Urrutia [GRU83] to our attention.
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Abstract. We prove that the crossing number of a graph decays in a
“continuous fashion” in the following sense. For any ε > 0 there is a
δ > 0 such that for n sufficiently large, every graph G with n vertices
and m ≥ n1+ε edges has a subgraph G′ of at most (1 − δ)m edges and
crossing number at least (1 − ε)cr(G). This generalizes the result of J.
Fox and Cs. Tóth.

1 Introduction

For any graph G, let n(G) (resp. m(G)) denote the number of its vertices (resp.
edges). If it is clear from the context, we simply write n and m instead of n(G)
and m(G). The crossing number cr(G) of a graph G is the minimum number of
edge crossings over all drawings of G in the plane. In the optimal drawing of G,
crossings are not necessarily distributed uniformly among the edges. Some edges
could be more “responsible” for the crossing number than some other edges. For
any fixed k, it is not hard to construct a graph G whose crossing number is k,
but G has an edge e such that G \ e is planar. Richter and Thomassen [RT93]
started to investigate the following general problem. We have a graph G, and we
want to remove a given number of edges. By at least how much does the crossing
number decrease? They conjectured that there is a constant c such that every
graph G with cr(G) = k has an edge e with cr(G \ e) ≥ k − c

√
k. They only

proved that G has an edge with cr(G \ e) ≥ 2
5cr(G) − O(1).

Pach, Radoičić, Tardos, and Tóth [PRTT06] proved that for every graph G

with m(G) ≥ 103
16 n(G), we have cr(G) ≥ 0.032m3

n2 . It is not hard to see [PT00]
that for any edge e, we have cr(G−e) ≥ cr(G)−m+1. These two results imply
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an improvement of Richter–Thomassen bound if m ≥ 8.1n, and also imply the
Richter–Thomassen conjecture for graphs of Ω(n2) edges.

J. Fox and Cs. Tóth [FT06] investigated the case where we want to delete a
positive fraction of the edges.

Theorem A. [FT06] For every ε > 0, there is an nε such that every graph G
with n(G) ≥ nε vertices and m(G) ≥ n(G)1+ε edges has a subgraph G′ with

m(G′) ≤
(
1 − ε

24

)
m(G)

and

cr(G′) ≥
(

1
28

− o(1)
)

cr(G).

In this note we generalize Theorem A.

Theorem. For every ε, γ > 0, there is an nε,γ such that every graph G with
n(G) ≥ nε,γ vertices and m(G) ≥ n(G)1+ε edges has a subgraph G′ with

m(G′) ≤
(
1 − εγ

2394

)
m(G)

and
cr(G′) ≥ (1 − γ)cr(G).

2 Proof of the Theorem

Our proof is based on the argument of Fox and Tóth [FT06], the only new
ingredient is Lemma 1.

Definition. Let r ≥ 2, p ≥ 1 be integers. A 2r-earring of size p is a graph
which is a union of an edge uv and p edge-disjoint paths between u and v, each
of length at most 2r − 1. Edge uv is called the main edge of the 2r-earring.

Lemma 1. Let r ≥ 2, p ≥ 1 be integers. There exists n0 such that every graph
G with n ≥ n0 vertices and m ≥ 6prn1+1/r edges contains at least m/3pr edge-
disjoint 2r-earrings, each of size p.

Proof. By the result of Alon, Hoory, and Linial [AHL02], for some n0, every
graph with n ≥ n0 vertices and at least n1+1/r edges contains a cycle of length
at most 2r.

Suppose that G has n ≥ n0 vertices and m ≥ 6prn1+1/r edges. Take a maximal
edge-disjoint set {E1, E2, . . . , Ex} of 2r-earrings, each of size p. Let E = E1 ∪
E2 ∪ · · · ∪ Ex, the set of all edges of the earrings and let G′ = G \ E. Now let
E′

1 be a 2r-earring of G′ of maximum size. Note that this size is less than p.
Let G′

1 = G′ \ E′
1. Similarly, let E′

2 be a 2r-earring of G′
1 of maximum size and

let G′
2 = G′

1 \ E′
2. Continue analogously, as long as there is a 2r-earring in the
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remaining graph. We obtain the 2r-earrings E′
1, E

′
2, . . . , E

′
y , and the remaining

graph G′′ = G′
y does not contain any 2r-earring. Let E′ = E′

1 ∪ E′
2 ∪ · · · ∪ E′

y .
We claim that y < n1+1/r. Suppose on the contrary that y ≥ n1+1/r. Take

the main edges of E′
1, E

′
2, . . . , E

′
y. We have at least n1+1/r edges so by the result

of Alon, Hoory, and Linial [AHL02] some of them form a cycle C of length at
most 2r. Let i be the smallest index with the property that C contains the main
edge of E′

i. Then C, together with E′
i would be a 2r-earring of G′

i−1 of greater
size than E′

i, contradicting the maximality of E′
i.

Each of the earrings E′
1, E

′
2, . . . , E

′
y has at most (p − 1)(2r − 1) + 1 edges so

we have |E′| ≤ y(p − 1)(2r − 1) + y < (2pr − 1)n1+1/r. The remaining graph,
G′′ does not contain any 2r-earring, in particular, it does not contain any cycle
of length at most 2r, since it is a 2r-earring of size one. Therefore, by [AHL02],
for the number of its edges we have e(G′′) < n1+1/r.

It follows that the set E = {E1, E2, . . . , Ex} contains at least m−2prn1+1/r ≥
2
3m edges. Each of E1, E2, . . . , Ex has at most p(2r−1)+1 ≤ 2pr edges, therefore,
x ≥ m/3pr. ��

Lemma 2. [FT06] Let G be a graph with n vertices, m edges, and degree se-
quence d1 ≤ d2 ≤ · · · ≤ dn. Let � be the integer such that

∑�−1
i=1 di < 4m/3 but

∑�
i=1 di ≥ 4m/3. If n is large enough and m = Ω(n log2 n) then

cr(G) ≥ 1
65

�∑

i=1

d2
i .

Proof of the Theorem. Let ε, γ ∈ (0, 1) be fixed. Choose integers r, p such that
1
r < ε ≤ 2

r and 132
p < γ ≤ 133

p . Then there is an nε,γ with the following
properties: (a) nε,γ ≥ n0 from Lemma 1, (b) (nε,γ)1+ε > 6pr · (nε,γ)1+1/r,

Let G be a graph with n ≥ nε,γ vertices and m ≥ n1+ε edges.
Let v1, . . . , vn be the vertices of G, of degrees d1 ≤ d2 ≤ · · · ≤ dn and define

� as in Lemma 2, that is,
∑�−1

i=1 di < 4m/3 but
∑�

i=1 di ≥ 4m/3. Let G0 be the
subgraph of G induced by v1, . . . , v�. Observe that G0 has at least m/3 edges.
Therefore, by Lemma 1 G0 contains at least m/9pr edge-disjoint 2r-earrings,
each of size p.

Let M be the set of the main edges of these 2r-earrings. We have |M | ≥
m/9pr ≥ εγ

2394m. Let G′ = G \ M and G′
0 = G0 \ M .

Take an optimal drawing D(G′) of the subgraph G′ ⊂ G. We have to draw the
missing edges to obtain a drawing of G. Our method is a randomized variation of
the embedding method, which has been applied by Leighton [L83], Richter and
Thomassen [RT93], Shahrokhi et al. [SSSV97], Székely [S04], and most recently
by Fox and Tóth [FT06]. For every missing edge ei = uivi ∈ M ⊂ G0, ei is
the deleted main edge of a 2r-earring Ei ⊂ G0. So there are p vertex-disjoint
paths in G0 from ui to vi. For each of these paths, draw a curve from ui to vi

infinitesimally close to that path. Call these p curves potential uivi–edges and
call the resulting drawing D.
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To get a drawing of G, for each ei = uivi ∈ M , choose one of the p potential
uivi–edges at random, independently and uniformly, with probability 1/p, and
draw the edge uivi as that curve.

There are two types of new crossings in the obtained drawing of G. First cat-
egory crossings are infinitesimally close to a crossing in D(G′), second category
crossings are infinitesimally close to a vertex of G0 in D(G′).

The expected number of first category crossings is at most
(

1 +
2
p

+
1
p2

)
cr(G′) =

(
1 +

1
p

)2

cr(G′).

Indeed, for each edge of G′, there can be at most one new edge drawn next
to it, and that is drawn with probability at most 1/p. Therefore, in the close
neighborhood of a crossing in D(G′), the expected number of crossings is at most
(1 + 2

p + 1
p2 ). See figure 1(a).

(a)

vi

(b)

Fig. 1. The thick edges are edges of G′, the thin edges are the potential edges. Figure
shows (a) a neighborhood of a crossing in D(G′) and (b) a neighborhood of a vertex
vi in G′.

In order to estimate the expected number of second category crossings, con-
sider the drawing D near a vertex vi of G0. In the neighborhood of vertex vi

we have at most di original edges. Since we draw at most one potential edge
along each original edge, there can be at most di potential edges in the neigh-
borhood. Each potential edge can cross each original edge at most once, and any
two potential edges can cross at most twice. See figure 1(b). Therefore, the total
number of first category crossings in D in the neighborhood of vi is at most 2d2

i .
(This bound can be substantially improved with a more careful argument, see
e. g. [FT06], but we do not need anything better here.) To obtain the drawing
of G, we keep each of the potential edges with probability 1/p, so the expected
number of crossings in the neighborhood of vi is at most 1

p2d2
i .

Therefore, the total expected number of crossings in the random drawing of
G is at most (1 + 2

p + 1
p2 )cr(G′) + 2

p

∑�
i=1 d2

i .
There exists an embedding with at most this many crossings, therefore, by

Lemma 2 we have
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cr(G) ≤
(

1 +
1
p

)2

cr(G′) +
2
p

�∑

i=1

d2
i ≤

(
1 +

1
p

)2

cr(G′) +
130
p

cr(G).

It follows that (
1 − 130

p

)
cr(G) ≤

(
1 +

1
p

)2

cr(G′)

so (
1 − 130

p

) (
1 − 1

p

)2

cr(G) ≤ cr(G′)

consequently

cr(G′) ≥
(

1 − 132
p

)
cr(G) ≥ (1 − γ)cr(G). ��

Remark. In the statement of our Theorem we cannot require that every sub-
graph G′ with (1 − δ)m(G) edges has crossing number cr(G′) ≥ (1 − γ)cr(G),
instead of just one such subgraph G′. In fact, the following statement holds.

Proposition. For every ε ∈ (0, 1) there exist graphs Gn with n(Gn) = Θ(n)
vertices and m(Gn) = Θ(n1+ε) edges with subgraphs G′

n ⊂ Gn such that

m(G′
n) = (1 − o(1))m(Gn)

and
cr(G′

n) = o(cr(Gn)).

Proof. Roughly speaking, Gn will be the disjoint union of a large graph G′
n with

low crossing number and a small graph Hn with large crossing number. More
precisely, let G = Gn be a disjoint union of graphs G′ = G′

n and H = Hn, where
G′ is a disjoint union of Θ(n1−ε) complete graphs, each with nε vertices and
H is a complete graph with n(3+5ε)/8 vertices. We have m(G) = Θ(n1+ε) and
m(H) = Θ(n(3+5ε)/4) = o(m(G)), since 3+5ε

4 < 1+ε. By the crossing lemma (see
e. g. [PRTT06]), cr(G) ≥ cr(H) = Ω(n(3+5ε)/2), but cr(G′) = O(n1−ε · n4ε) =
O(n1+3ε) = o(cr(G)), because 3+5ε

2 > 1 + 3ε. ��

On the other hand, we conjecture that we can require that a positive fraction
of all subgraphs G′ of G with (1 − δ)m(G) edges has crossing number cr(G′) ≥
(1 − γ)cr(G). The simplest form of our conjecture is the following.

Conjecture. For every ε > 0, there is an nε and δ such that every graph G with
n(G) ≥ nε vertices and m(G) ≥ n(G)1+ε edges has the following property. Let G′

be a random subgraph of of G such that we choose each edge of G independently
with probability p = 1 − δ. Then

Pr [cr(G′) ≥ (1 − ε)cr(G)] > δ.
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[FT06] Fox, J., Tóth, Cs.: On the decay of crossing numbers. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 174–183. Springer, Hei-
delberg (2007)

[L83] Leighton, T.: Complexity issues in VLSI. MIT Press, Cambridge (1983)
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[SSSV97] Shahrokhi, F., Sýkora, O., Székely, L., Vrt’o, I.: Crossing numbers: bounds
and applications. In: Intuitive geometry, Budapest (1995) Bolyai Soc.
Math. Stud. 6, 179–206 (1997)
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Abstract. The odd crossing number of G is the smallest number of pairs
of edges that cross an odd number of times in any drawing of G. We
show that there always is a drawing realizing the odd crossing number
of G that uses at most 9k crossings, where k is the odd crossing number
of G. As a consequence of this and a result of Grohe we can show that
the odd crossing number is fixed-parameter tractable.

1 Introduction

The crossing number of a graph G, denoted cr(G), is the smallest number of
intersections in any drawing of G. There are many variants of this fundamental
notion; in this paper we concentrate on the odd crossing number which counts
pairs of edges that intersect an odd number of times. More formally, ocr(G) is
the smallest number of pairs of edges in any drawing of G that cross an odd
number of times. Similarly, we can define the pair crossing number of G, pcr(G),
as the smallest number of pairs of edges that intersect in any drawing of G. For
historical background and summary on different notions of crossing numbers,
see the paper by Pach and Tóth [4].

From the definition we have

ocr(G) ≤ pcr(G) ≤ cr(G).

We also know that cr(G) ≤ 2 ocr(G)2 ([4], for a new proof, see [6]) and cr(G) ≤
2 pcr(G)2/ log2 pcr(G) [9,8]. And while we do know that ocr(G) �= cr(G) in
general [5], it is possible that pcr(G) = cr(G) for all G.

This suggests the question of how close we can come to realizing this suspected
equality in a drawing; that is, what can we say about the number of crossings
needed in a pcr-optimal drawing? Maybe surprisingly, the best upper bounds we
know are exponential [7] (see the end of Section 3 for a discussion).

To the extent that we believe that pcr(G) = cr(G) this is a bit of an embar-
rassment, since the bound should be the identity. On the other hand, the pair
crossing number does tie in very closely with the string graph problem, and a
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proof that pcr(G) = cr(G) based on redrawing would have to change which pairs
of edges intersect: if we restrict redrawing moves to those that do not change
which pairs of edges intersect, there is an exponential separation between pair-
crossing number and crossing number due to due to Kratochv́ıl and Matoušek [3]
(they phrased their example for string graphs).

In this paper we address the question of how many crossings are needed to
realize an ocr-optimal drawing. We prove an exponential upper bound, similar
to what was shown in the case of pcr. It is not inconceivable that the actual gap
is exponential; this would be a very interesting result indeed.

Grohe showed that cr(G) ≤ k can be decided in quadratic time for any fixed
k [1]. This means that the crossing number problem is fixed-parameter tractable: it
can be solved in time O(nc) for some constant c not depending on the parameter
k. In Section 3 we show how to combine our exponential upper on crossings in an
ocr-optimal drawing with Grohe’s proof to conclude that ocr can also be decided in
quadratic time. This result is somewhat unsatisfactory in that it relies on Grohe’s
proof rather than establishing a reduction that would allows us to transfer the
fixed-parameter tractability result from cr to ocr automatically (such reductions
are known as fpt-reductions). If we had such a reduction, Grohe’s result could be
replaced when a better fixed-parameter algorithm for crossing number is found.
Indeed, Grohe’s result has very recently been improved from quadratic to linear
time by Kawarabayashi and Reed [2]. Kawarabayashi and Reed also claim (albeit
without supplying details) that ocr and pcr are fixed-parameter tractable. They
do not have a reduction either, but have to verify that their constructions work
for ocr and pcr in place of cr. We believe that their missing details can be filled in,
for example, by using Theorem 1 and Theorem 3.2 from [7].

One motivation behind the introduction of the crossing number variants pcr
and ocr was the hope that they would turn out to be easier objects to deal with
than the crossing number itself. For example, the odd crossing number problem
can be rephrased as a shortest vector problem in an appropriately chosen vector
space. The hope remains that through these alternative approaches we might
obtain feasible approximation algorithms or parameterized algorithms solving
the crossing number problem (the results by Grohe, Kawarabayashi and Reed
do not yield feasible algorithms).

2 ocr-Critical Drawings

In this section we show that a drawing of a graph realizing the odd crossing
number has at most an exponential number of crossings.

Theorem 1. For any graph G there is a drawing of G with odd-crossing number
c = ocr(G) and crossing number at most 9c.

The core of the proof is a redrawing idea: consider a drawing of G, and a par-
ticular edge e of G. Imagine that e is drawn as a horizontal line segment, and
consider an arbitrary subsegment I. Consider the intersections of e with other
edges that occur within I. Without changing the odd-crossing number of the
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drawing, we can rearrange these intersections within I such that for each edge
f �= e, the intersections of f and I are consecutive along I: We can do this by
simply pushing intersections to the left or the right. Whenever an intersection
of f with e is pushed past an intersection of f ′ with e, it yields two new inter-
sections between f and f ′, which does not change the odd-crossing number of
the drawing. Next, we claim that we can redraw G such that each edge f �= e
has at most 2 intersections with I, without changing the odd-crossing number
of the drawing. Consider every edge f that intersects I, one at a time. Split f at
each intersection with I, creating a set of curves SI with endpoints in I, except
that two of the curves have one endpoint at an endpoint of f .

Let α and ω be the two curves in SI that have one end at an endpoint of f .
Let Sα be the set of curves in SI that begin and end on the same side of I where
α ends. Let S′

α be the set of curves in SI that begin and end on the other side
of I, and let S be the set of curves that begin and end at opposite sides of I.

Our goal is to reconnect the parts of f so that the resulting curve traverses
all of the original parts of f except on a small neighborhood of I, and intersects
I at most twice. We proceed as follows: Start by following α from an endpoint
of f to its intersection with I. Continue by following all of the curves in Sα,
one after the other, then the curves of S, then the curves of S′

α and end by
following ω to the other endpoint of f . Move the endpoints of the curves at I
slightly, and connect consecutive curves in a small neighborhood of I such that
the resulting curve f ′ intersects I as few times as possible. (For the moment, we
ignore self-intersections of f ′.) The only steps at which intersecting I may be
unavoidable occur when going from S to S′

α and when going from S′
α to ω. Thus

f ′ redraws f using at most two intersections with I. Observe that the redrawing
f ′ intersects I exactly once if and only if either 1) α and ω approach I from
opposite sides and |S| is even, or 2) α and ω approach I from the same side
and |S| is odd. Before redrawing, the number of intersections between f and I
is 1 + 2|Sα| + |S| if α and ω approach I from opposite sides and 2 + 2|Sα| + |S|
if α and ω approach I from the same side. Thus, the number of intersections
between f and I is odd if and only if the number of intersections between f ′ and
I is now one. Also, the parity of intersection of the redrawing f ′ with any other
edge is the same as the parity of f with that edge, since f ′ and f agree except
for in a small neighborhood of I, where f intersects only I.

As we mentioned earlier, the redrawing f ′ might contain self-intersections,
however, these can easily be removed (see [6], for example). Repeating this pro-
cess for each edge that intersects I results in at most 2i intersections of edges
with I, where i is the number of edges f �= e that intersected I an odd number
of times before the redrawing.

We now apply this idea to bound the number of crossings necessary to realize
a particular odd crossing number.

We begin with a drawing of G achieving ocr(G). Applying Theorem 2.1
from [6] allows us to assume that all even edges are without intersections. Then
there are at most k := 2 ocr(G) edges, e1, . . . , ek, involved in intersections in
the drawing of G under consideration. We will redraw these edges such that
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for 1 ≤ i < j ≤ k, the number of intersections between ei and ej is at most
2(3i−1). We redraw the edges in order, as follows: Begin by applying the proce-
dure described earlier to e1; then each other edge intersects e1 at most twice,
as desired. We want to keep the intersections along e1 now, so we should not
apply our procedure to subsequent edges. Instead, during the jth step we split
ej into segments at every intersection with an edge ei with i < j, and apply the
procedure to each of those segments.

By induction, the number of intersections of ej and all ei with i < j is at
most

∑j−1
i=1 2(3i−1), which equals 3j−1 −1. Hence ej is split up into at most 3j−1

segments, and after applying the procedure to each segment, each ei with i > j
has at most 2(3j−1) intersections with ej, as desired.

The total number of crossings is
∑

1≤i<j≤k 2(3i−1), or
∑k

j=1
∑j−1

i=1 2(3i−1) =
∑k

j=1(3
j−1 − 1) ≤ 3k.

3 The Parameterized Complexity of ocr

In this section we will derive a quadratic time algorithm for computing ocr by
adapting Grohe’s result [1].

Grohe showed that for a fixed k it can be decided in quadratic time whether
the crossing number of a graph G is at most k [1]. Grohe’s algorithm proceeds
as follows: for some function w(k) only depending on k it tests whether the
tree-width of G is at most w(k); if that is not the case, then either the crossing
number of G is larger than k or we can find a part of G that is not involved in
any crossing in a cr-optimal drawing. If the crossing number is larger than k, we
are done; otherwise we can replace G with a smaller graph and keep track of its
crossing-free part. Repeating this procedure we will eventually reach a graph of
bounded tree-width for which we can decide whether cr(G) ≤ k using Courcelle’s
theorem (details to be explained below).

This central result of Grohe’s paper is contained in his Corollary 8 [1] which
we reproduce nearly verbatim below. Here, a k-good drawing with respect to F
of G is a drawing of G with crossing number at most k in which none of the
edges of F are involved in a crossing.

Proposition 1 (Grohe [1]). There is a quadratic time algorithm that, given a
graph G and an edge set F ⊆ E(G), either recognizes that the crossing number
of G is greater than k or computes a graph G′ and an edge set F ′ ⊆ E(G′) such
that the tree-width of G′ is at most w(k) and G has a k-good drawing with respect
to F if and only if G′ has a k-good drawing with respect to F ′.

We cannot immediately apply Grohe’s result as stated to help us settle the param-
eterized complexity of computing the odd crossing number, since it is not clear how
the odd crossing number of G′ (with the planarity restriction on F ′) relates to the
oddcrossingnumber ofG (with theplanarity restrictiononF ).Fortunately, a closer
look at Grohe’s proof shows that a stronger version of the proposition is true.

For a graph G let a (k, �)-good drawing with respect to F be a drawing of G
with crossing number at most k and odd crossing number at most � in which
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none of the edges of F are involved in any crossings. An inspection of Grohe’s
proof of his Corollary 8 shows that it is true for (k, �)-good drawing in place of
k-good drawings. The reason is that in the core step of the proof [1, Lemma 5]
the redrawing is local and does not increase the odd crossing number.

Lemma 1. There is a quadratic time algorithm that, given a graph G and an
edge set F ⊆ E(G), either recognizes that the crossing number of G is greater
than k or computes a graph G′ and an edge set F ′ ⊆ E(G′) such that the tree-
width of G′ is at most w(k) and G has a (k, �)-good drawing with respect to F if
and only if G′ has a (k, �)-good drawing with respect to F ′.

By Theorem 1, G has odd crossing number at most k if and only if G has a
(9k, k)-good drawing with respect to F = ∅. We can now proceed as in Grohe’s
algorithm to look for such a drawing of G. We either find that the crossing
number of G is larger than 9k, which implies that the odd crossing number is
larger than k (actually, much larger by the quadratic bound between odd crossing
number and crossing number due to Pach and Tóth [4]) or we obtain a graph
G′ of tree-width at most w(k) and an edge set F ′ such that G has odd crossing
number at most k if and only if G′ has a (9k, k)-good drawing in which none of
the edges of F ′ are involved in an intersection.

If we can now show that “having a (9k, k)-good drawing with respect to F”
can be expressed in the second-order monadic logic of graphs, we can apply
Courcelle’s theorem which states that formulas of second-order monadic logic
can be decided in linear time for graphs of bounded tree-width (remember that
the tree-width w(k) of G′ depends on k only, and is therefore considered fixed).
Consider a (9k, k)-good drawing of G if it exists. Replacing every crossing with a
new vertex yields a planar drawing; adding four more vertices and edges around
this vertex we can ensure that a planar drawing of the resulting graph corre-
sponds to a (9k, k)-good drawing of G. (See Figure 1.)

Fig. 1. Two crossings, before (left) and after (right)

Using monadic second order logic we can specify a set of at most 2k edges
(not in F ) and subdivide each of those 2k edges 3(9k) times. These subdivided
edges can now be used to express that there is a (9k, k)-good drawing of G with
respect to F : We can express that the ith intersection along edge e is also the jth
intersection along edge f by identifying the 3i−1st vertex along the subdivided e
with the 3j−1st vertex along the subdivided f and adding edges between vertices
3i − 2 and 3i on e and f to build the 4-cycle in the right half of Figure 1 to
ensure e and f actually cross (rather than just touch) at their intersection point.
Using this, we can write down explicitly a formula describing the order in which
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edges cross every particular edge. While this leads to a formula exponentially
large in 9k, this is not a problem, since k is fixed. Since we are specifying how the
crossings occur explicitly, we can restrict ourselves to those formulas describing
a drawing with odd crossing number at most k.

Theorem 2. For a fixed k we can decide ocr(G) ≤ k in quadratic time.

What about the pair-crossing number? A drawing of a graph can always be
redrawn without making two pairs of edges intersect that did not intersect in
the original drawing while reducing the crossing number of the drawing to at
most k2k (where k is the number of edges involved in crossings) [7]. If we start
with a drawing that realizes the pair-crossing number of the graph, this shows
that we can always assume that a pair-crossing critical drawing has crossing
number at most k2k. With this result we can repeat the argument we used for
odd crossing numbers, allowing us to conclude that the pair crossing number is
fixed-parameter tractable.

Theorem 3. For a fixed k we can decide pcr(G) ≤ k in quadratic time.

Acknowledgments. We would like to thank Martin Grohe for suggesting this
problem, and Petr Hliněný for helpful discussions.
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Abstract. We present the set of planar graphs that always have a si-
multaneous geometric embedding with a strictly monotone path on the
same set of n vertices, for any of the n! possible mappings. These graphs
are equivalent to the set of unlabeled level planar (ULP) graphs that are
level planar over all possible labelings. Our contributions are twofold.
First, we provide linear time drawing algorithms for ULP graphs. Sec-
ond, we provide a complete characterization of ULP graphs by showing
that any other graph must contain a subgraph homeomorphic to one of
seven forbidden graphs.

1 Introduction

Simultaneous embedding enables the visualization of multiple graphs on the
same set of vertices. In order to preserve the “mental map,” graphs are overlaid
so that corresponding vertices have the same location. The mapping between
vertices may be fixed, or may not be given, or may change and dynamically
evolve as in the case of colored simultaneous embeddings [1]. To accommodate
this, we consider all possible 1-1 mappings between graphs. Embeddings that
use no edge bends and in which no pair of edges of the same graph cross are
known as simultaneous geometric embeddings [2].

Determining which graphs share a simultaneous geometric embedding has
proved difficult. While Geyer et al. [7] have shown this cannot always be done
for tree-tree pairs, the question remains open for tree-path pairs. Estrella et
al. [5] partially answer this question by characterizing the set of trees that have
a simultaneous geometric embedding with a strictly monotone path. We now
extend those results by characterizing the set of all planar graphs that have a
simultaneous geometric embedding with a strictly monotone path. The impor-
tance of this result lies in the fact that all positive results showing that certain
pairs of graphs allow simultaneous geometric embeddings rely on reducing at
least one of the graphs in the pair under consideration to a path which is real-
ized in strictly monotone fashion. Thus, our result captures the largest possible
class of graphs that can be embedded using this technique.

Rotating or stretching a drawing along a single direction does not affect cross-
ings. As a result, we assume that the path will be drawn in a zig-zag fashion
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Non-ULP Graphs containing
Generalized
Caterpillars

Radius-2
Stars

Gδ

T9

G5

T8

Gκ

Gα

G6

Extended

Spiders
Degree-3

2-Connected

Spiders
Degree-3
Extended

Fig. 1. A Venn diagram of the set of graphs characterized by the seven forbidden graphs
T8, T9, G5, G6, Gα, Gδ, and Gκ in F . Graphs that do not contain a subgraph home-
omorphic to of any of these are generalized caterpillars, radius-2 stars, and extended
degree-3 spiders.

with a difference of +1 between the y-coordinates of two successive vertices. This
allows us to frame the problem of drawing the planar graph in terms of placing
the vertices along a set of parallel horizontal lines, called tracks, with one vertex
per track. For an n-vertex planar graph, we label the vertices from 1 to n in
which the label is the y-coordinate. If a planar graph has a straight-line drawing
without crossings for all n! permutations of the labels, then it has a simultaneous
geometric embedding with a strictly monotone path for any mapping.

A related problem is that of level planarity [9]. Our labeling forms a partition
of vertices into levels with one vertex per level. If we consider a graph in which
the y-coordinate of each level is distinct and all the edges are y-monotone, then
we have a level drawing. If the drawing is planar, then the graph is level planar for
that labeling. If this holds for each of the n! labelings, then the graph is unlabeled
level planar (ULP). ULP graphs are precisely those that have a simultaneous
geometric embedding with strictly monotone paths for any labeling. Hence, we
can also phrase our problem in terms of level planarity.

Any graph for which this cannot be done must have some subgraph homeo-
morphic to a forbidden graph, or obstruction, that will induce a crossing when
drawn on tracks for a particular labeling. In this paper we show that ULP graphs
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fall into three categories: radius-2 stars, generalized caterpillars, and extended
degree-3 spiders. Furthermore, we show how to simultaneously embed any ULP
graph with a monotone path in linear time. Finally, we complete the character-
ization in terms of a minimal set of seven forbidden graphs, F := {T8, T9, G5,
G6, Gα, Gδ, Gκ}; see Fig. 1.

2 Preliminaries

Two planar n-vertex graphs G1(V, E1) and G2(V, E2) have a simultaneous embed-
ding with mapping if they can be drawn in the xy-plane with bijection f : V �→ V
in which v and f(v) have the same xy-coordinates while maintaining the pla-
narity of each graph. If this can be done for some bijection f , then G1 and
G2 are simultaneously embeddable. If edges of both E1 and E2 are drawn with
straight-line edges, then G1 and G2 have a simultaneous geometric embedding.

Let an n-vertex graph G(V, E) have a labeling φ : V �→ [1..n] in which φ(u) �=
φ(v) for all (u, v) ∈ E. A horizontal line �j = {(x, j) | x ∈ R} for some j ∈ [1..n]
is track j. In a realization of G, each vertex v ∈ V is placed along track φ(v) and
each edge (u, v) is strictly y-monotone. Edge bends b1, b2, . . . , bk may naturally
occur at any point edge (u, v) intersects a track provided φ(u) < φ(b1) < · · · <
φ(bk) < φ(v) or φ(u) > φ(b1) > · · · > φ(bk) > φ(v) in which b1 is adjacent to u,
bk is adjacent to v, and bi lies between bi−1 and bi+1 for 1 < i < k.

A realization without crossings is a planar realization of G. A planar realiza-
tion with one straight-line segment for each edge (u, v) is a straight-line planar
realization of G. While any planar realization with bends can be “stretched out”
in the x-direction to form a straight-line planar realization in O(n) time as shown
by Eades et al. [4], the area of the realization can become exponential.

A level graph G(V, E, φ) is a directed graph with leveling φ : V �→ [1..k] that
assigns every vertex to one of k levels so that φ(u) < φ(v) for every edge (u, v).
In a level drawing all vertices in a level have the same y-coordinate and each
edge is y-monotone. If the level drawing can be drawn without crossings, then
G is level planar. The level planarity of G for a given leveling is independent of
its orientation: First take an n-vertex undirected graph G. Then label G with
labeling φ : V �→ [1..n]. Next orient each edge (u, v) of G so that φ(u) < φ(v) to
form the level graph G̃(V, Ẽ, φ) with the leveling φ on n levels with one vertex
per level. Then ask is G̃ level planar? If yes, repeat this process for all other
labelings of G. If one never encounters a level nonplanar graph, the graph G
is called unlabeled level planar (ULP). Hence, a ULP graph has a simultaneous
embedding with a strictly y-monotone path for any labeling φ; see Fig 2.

The vertices placed along a track correspond to the levels in a level graph. An
undirected graph with a labeling φ has a “planar realization” if and only if the
corresponding level graph is “level planar”. These two terms are interchangeable
only if edge bends do not matter. If we need a simultaneous geometric embedding
we use the more restrictive term “straight-line planar realization”.

A chain C of G is a simple path denoted v1--v2-- · · · --vt. The vertices of
C are denoted V (C). A vertex v of C is φ-minimal (or φ-maximal) if it has a
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Fig. 2. Simultaneous embeddings of a path and a ULP tree with and without bends

minimal (or maximal) track number of all the vertices of V (C). Such a vertex is
φ-extreme if it is φ-minimal or φ-maximal.

In a graph G(V, E), subdividing an edge (u, v) ∈ E replaces edge (u, v) with
the pair of edges (u, w) and (w, v) in E by adding w to V . A subdivision of G is
a graph obtained by performing a series of subdivisions of G. A graph G(V, E)
is isomorphic to a graph G̃(Ṽ , Ẽ) if there exists a bijection f : V �→ Ṽ such that
(u, v) ∈ E if and only if

(
f(u), f(v)

)
∈ Ẽ. A graph G(V, E) is homeomorphic to

a graph G̃(Ṽ , Ẽ) if a subdivision of G is isomorphic to a subdivision of G̃. The
distance between vertices u and v in a graph is the length of the shortest path
from u to v. The eccentricity of a vertex v is the greatest distance to any other
vertex. The radius of a graph is the minimum eccentricity of any vertex.

A leaf vertex is any degree-1 vertex. A caterpillar is a tree in which the removal
of all leaf vertices yields a path (the empty graph is a special case of a path).
The remaining path forms the spine. A lobster is a tree in which the removal of
all leaf vertices yields a caterpillar. A claw is a K1,3, whereas, a star is a K1,k

for some k ≥ 3. A double star is a star in which each edge has been subdivided
once. A radius-2 star (R-2 S) is any subgraph of a double star with radius 2.
A degree-3 spider is an arbitrarily subdivided claw. The following six types of
“edges” in Fig. 3 allow us to generalize a caterpillar and to extend a degree-3
spider to include cycles.

Definition 1

(a) A K3 edge is the cycle u--v--w--u on vertices {u, v, w}
(b) A C4 edge is the cycle u--s--v--t--u on vertices {u, v, s, t}.
(c) A kite edge is the cycle u--s--v--t--u with edge s--t on vertices {u, v, s, t}.
(d) A K∗

3 edge is set of cycles u--v--w′--u with edge u--v on vertices {u, v} ∪ W
where w′ ∈ W for some possibly empty vertex set W .

(e) A C+
4 edge is set of cycles u--w--v--w′--u on vertices {u, v, w} ∪ W where

w′ ∈ W for some non-empty vertex set W .
(f) A K4 edge is the complete graph on the vertices {u, x, y, z}.
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Fig. 3. The six types of H edges used to from a GC on the second line

Definition 2. A generalized caterpillar (GC) is a caterpillar in which each edge
u′--v′ along the spine can be replaced with a K∗

3 , C+
4 , or kite edge (and the two

edges at the end of the spine can also be replaced by a K4 edge) in which vertex
u (and v if present) replaces vertex u′ (and v′); see Fig. 3.

Definition 3

(a) A 1-connected extended degree-3 spider (1-CE 3-S) is a degree-3 spider with
two optional edges connecting

(i) two of three vertices adjacent to the degree-3 vertex and
(ii) two of the three leaf vertices; see Fig. 4(a).

(b) A 2-connected extended degree-3 spider (2-CE 3-S) is a cycle or a cycle with
one K3, C4 or kite edge, see Fig. 4(b).

(c) A extended degree-3 spider (E 3-S) is either a 1-connected extended degree-3
spider or a 2-connected extended degree-3 spider.

These definitions allows us to make the following observation.

Observation 4. Every spanning tree of a GC is a caterpillar. Every spanning
tree of a E3-S is a degree-3 spider or a path.

2-Connected

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1-Connected

Kite
Edge Edge

C4K3
Edge

(b)(a)

Fig. 4. A extended degree-3 spider is either (a) a 1-C E 3-S or (b) a 2-C E 3-S
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3 Graphs with Planar Realizations on Tracks

In this section we show that radius-2 stars (R-2 S), generalized caterpillars (GC),
and extended degree-3 spiders (E 3-S) are level planar for any labeling. We do
this by presenting linear time algorithms for straight-line, crossings-free drawing
of any such graph on the tracks determined by its labeling. More formally, we
show that P = {G : G is a R-2 S, GC, or E3-S} is ULP.

The next lemma from [5] shows this for a R-2 S.

Lemma 5 (Lemma 4 of [5]). An n-vertex radius-2 star can be straight-line
planarly realized in O(n) time on a (2n + 1) × n grid for any labeling.

The following lemmas show how a GC and the two types of a E 3-S also have
compact planar realizations on tracks. We give a proof sketch for the next lemma;
the full proof can be found in [6].

Lemma 6. An n-vertex generalized caterpillar can be straight-line planarly re-
alized in O(n) time within an n × n grid for any labeling.

Proof Sketch: We obtain the cut vertices of the GC using the vertices of its
spanning tree, which must be a caterpillar by Observation 4, as candidates.
With these we can draw each incident K∗

3 , C+
4 , kite, and K4 spine edge using at

most 4×n space for each one proceeding left to right along the spine; see Fig. 5.
If we were not constrained to an integer grid, one could place all the incident
edges with leaf vertices in a sufficiently narrow region above and below each cut

v1

v3
v4

v2

Fig. 5. The gray vertices are initial locations of vertices in a straight-line planar re-
alization of a GC on a 14 × 32 grid. The arrows avoid crossings or overlapping edges.
A leaf is initially placed to the right of its cut vertex except for the last one with its
leaves placed to the left. Overlaps are eliminated by moving leaves left and right, e.g.,
the leaves between v3 and v4. The K4 edges incident to v1 and v4 show initial locations
with dashed edges leading to crossings that are eliminated by switching the location
of the two incident vertices.
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vertex. Being restricted to integer coordinates, we shift the endpoint of a leaf
vertex left or right by one space as needed to avoid overlapping edges. �	

Lemma 7. An n-vertex 1-connected extended degree-3 spider can be planarly
realized in O(n) time on an n × n grid for any labeling.

Proof. We show how to draw G on tracks with at most one bend per edge for a
labeling φ. We first draw a subgraph that is a degree-3 spider T with an extra
edge in G between two of three vertices adjacent to the root vertex r (the unique
degree-3 vertex) of T . Next, we accommodate an extra edge in G connecting two
leaf vertices of T .

Let T ′ be portion of the T drawn so far. We maintain two invariants:

(1) two of the leaf vertices vmin and vmax of T ′ are φ-extreme and
(2) T ′ only intersects the track of the third leaf vertex vmid either to the

left or right of vmid.

Provided these invariants hold, we keep placing the next vertex v adjacent to
vmid in T −T ′ one space to the left or right of T ′ at x-coordinate vx depending on
which side of the track of vmid that T ′ intersects. By (2), T ′ does not intersect one
side of the track of vmid. Whenever we draw from v to w (in this case w = vmid),
we bend the edge at

(
vx, φ(w)−1

)
if φ(v) < φ(w) and at

(
vx, φ(w)+1

)
otherwise.

We keep doing this until v becomes φ-extreme. Either vmin or vmax becomes
vmid. Since that vertex was previously φ-extreme by invariant (1), T ′ now only
intersects its track either to the left or right, maintaining invariant (2).

We start drawing T until both invariants hold for T ′. Place r at
(
0, φ(r)

)
. Let

{u, v, w} be the neighbors of r in T . Let vmin, vmid and vmax be these vertices
such that φ(vmin) < φ(vmid) < φ(vmax). If φ(vmin) < φ(r) < φ(vmax), drawing
edges from r to vertices at

(
−1, φ(vmin)

)
,
(
1, φ(vmax)

)
, and

(
2, φ(vmid)

)
satisfies

both invariants. In this case, we can also add a straight-line edge between any
one pair of {u, v, w}. Otherwise, suppose w.l.o.g that φ(r) < φ(vmin). Let {a, b, c}
be the φ-maximal vertices of the portions of the chains in T from r to the point
each chain crosses the track of r such that φ(a) > φ(b) > φ(c). Assume w.l.o.g.
that u is first vertex of the chain with a. There are two cases:

(i) If edge (v, w) is not in G, assume w.l.o.g. edge (u, w) is in G. Extend the
chain starting with u to the right of r until it reaches a becoming vmax.
Place v one right of a with an edge bend at

(
vx, φ(r) + 1

)
.

(ii) If edge (v, w) is in G, then assume w.l.o.g. v is the first vertex of the chain
with b. Extend this chain to the right until it reaches b. Place u one right
of b with an edge bend at

(
ux, φ(r) + 1

)
and continue to extend the chain

to the right until it reaches a becoming vmax.

Place w at
(
−1, φ(w)

)
and extend the chain to the left until it becomes vmin.

Edge (u, w) or (v, w) can be drawn with a straight-line edge since u or v is one
right of r. In both cases, invariants (1) and (2) hold; see Fig. 6.

If an edge connects two leaf vertices to form a cycle C in T , we first draw
subtree T̃ in which two leaf vertices cmin and cmax of T̃ are the φ-extreme vertices
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Fig. 6. Examples of three 1-C E 3-Ss on 16 × 16 grids. The only difference is the edge
between one pair of the three vertices adjacent to the root. If this edge is incident to
u, the first vertex along chain with the vertex a, case (i) applies as in (a) and (b).
Otherwise, case (ii) applies as in (c).

of C. The above algorithm ensures the other chain of T̃ only intersects the
tracks of cmin and cmax to the right or left, blocking one direction, but not both.
Whichever cmin or cmax is leftmost or rightmost of T̃ , say that cmin is rightmost,
we extend the rest of C from cmin right until reaching v adjacent to cmax. Then
we draw an edge from v to cmax with a bend at

(
vx, φ(cmax) − 1

)
. �	

We next give a similar realization of a 2-CE 3-S with bends—the difference being
that most edges are straight except for one or two edges that might require a
bend.

Lemma 8. An n-vertex 2-connected extended degree-3 spider can be planarly
realized in O(n) time on an n × n grid for any labeling.

Proof. Let φ be a labeling of a 2-CE 3-S G. If G is merely a cycle C, then C
can be planarly realized on an n × n grid with one edge bend. Begin with the
φ-maximal vertex v1 at the first position and proceed left to right placing each
subsequent vertex in the cycle one to the right of the previous one until reaching
the last vertex vk that is also adjacent to v1. The edge v1--vk requires only one
bend directly above vk routing the edge above all the other vertices.

By Definition 3, a 2-CE 3-S is at worst a cycle with a kite edge between u and
v with common neighbors {s, t} connected by edge s--t such that φ(s) > φ(t). If
s and t are φ-extreme, then we can draw the cycle without t starting from s and
ending with v as above and place t below s drawing the straight edges s--t and
t--u. Then we draw t--v with a bend directly below v and route the edge below
all the others; see Fig. 7(a). Otherwise, either s or t is not φ-extreme in which
case the other φ-extreme one is used to draw the cycle so as to not end with u or
v; see Fig. 7(b). Suppose that s is not φ-maximal, then t can be placed directly
below s and the three additional edges can be added as straight edges. �	

We can remove the bends on the edges by stretching the layout which yields the
next corollary; the full proof can be found in [6].
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Fig. 7. Planar realizations of two 16-level 2-C E 3-Ss on 16 × 16 grids illustrating the
two cases in which s and t are φ-extreme

Corollary 9. An n-vertex 1-connected extended degree-3 spider with radius r
can be straight-line planarly realized in O(n) time on an O(r! 3r) × n grid for
any labeling, whereas, an n-vertex 2-connected extended degree-3 spider can be
straight-line planarly realized in O(n) time on an n2 × n grid for any labeling.

Combining Lemmas 5, 6, 7, 8, and Corollary 9, we have our first theorem.

Theorem 10. Any graph from P has a simultaneous geometric embedding with
a strictly monotone path for any labeling.

4 Forbidden Graphs

We give seven forbidden graphs F := {T8, T9, G5, G6, Gα, Gδ, Gκ} that do
not always have a simultaneous geometric embedding with a strictly monotone
path; see Fig. 8. For each we provide a labeling that forces self-crossings. As noted
previously for a given labeling, a graph has a straight-line planar realization if
and only if it also has a planar realization that allows edge bends provided the
edges remain strictly monotone [4]. Hence, it suffices to only consider straight-
line edges in this section.

T9 G5 G6T8 GδGα Gκ

Fig. 8. The seven forbidden graphs of F
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Fig. 9. Labelings that force self-crossings for G5, G6, Gα, Gκ, and Gδ

Lemma 11. There exist labelings that prevent each graph in F from having
planar realizations on tracks.

Proof. The labelings of T8 and T9 were shown not to have planar realizations
in [5]. We need to do the same for the labelings of the remaining five graphs in
F given in Figure 9.

Let C denote the chain a--b--c--d--e, which is highlighted in each of the graphs
in Figure 9. Observe that φ(a) > φ(d) > φ(c) > φ(b) > φ(e) in which C forms an
backwards ‘N’. If the rest of C intersects the track of c only on the left or right of
c, then some part of the chain a--b--c must cross the chain c--d--e. Hence, we only
need to consider embeddings in which c lies between the edge a--b and d--e, i.e.,
one of those edges intersect the track of c to the left, while the other intersects
on the right. To avoid a self crossing of C, a--b must intersect the tracks of c and
d on the same side of both vertices. The same goes for the d--e intersecting the
tracks of b and c on the same side. So we can assume w.l.o.g. that a--b intersects
the tracks of c and d to the their left while d--e intersects the tracks of b and c
to the their right as is the case in all the figures.

For G5, c and d being on the same side of a--b means that the edge b--d
must also lie between the two edges. The only question is whether b--d intersects
the track of c to the left or right. If it is to the left, then b--d must cross a--c,
otherwise, it must cross c--e as in Fig. 9(a).

For G6, from the assumptions, the edge c--f either crosses

(i) a--b if it intersects the track of b to the left since c is right of a--b,
(ii) d--e if it intersects the track of e to the right since c is left of d--e,
(iii) b--e otherwise since it must intersect the track of b to the right and e to

the left as in Fig. 9(b).

In Gα, Gδ and Gκ for c--f and c--g to avoid crossing C, c--f must intersect
the track of d to the left while c--g must intersect the track of b to the right.
Since φ(f) > φ(a) > φ(e) > φ(g) in Gα and Gκ, c--f must intersect the track
of a to the right while c--g must intersect the track of e to the left. However, in
Gδ φ(a) > φ(f) > φ(g) > φ(e) so that a--b must intersect the track of f to the
right while d--e must intersect the track of g to the left.
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This means in Gα for a--e to avoid crossing C, as in Fig. 9(c), it must either
intersect the track of d to the right in which case it must cross c--f or b to the
left in which case it must cross c--g.

This also means in Gκ if b--d intersects the track of c to the right as in Fig. 9(d),
it will cross c--g. Otherwise, b--d will cross c--f .

Finally, in Gδ if f--g intersects the track of c to the right as in Fig. 9(e), it
will cross c--d--e. Otherwise, f--g will cross a--b--c. �	

Corollary 12. A graph containing a subgraph homeomorphic to a graph in F
does not have a simultaneous geometric embedding with a strictly monotone path
for all labelings.

Proof. We provide a labeling φ of a graph G containing a subgraph homeomor-
phic to a graph G̃ ∈ F . Let h be the homeomorphism that maps an edge in G̃
to a path in G and a vertex in G̃ to the endpoint of such a path in G. Label
the vertices of G̃ using the appropriate labeling φ′ from Lemma 11 that forces
a self-crossing in G̃. We maintain the same relative ordering of the labels in G
as in G̃. In particular, we want φ

(
h(u)

)
< φ

(
h(v)

)
if and only if φ′(u) < φ′(v)

for each edge (u, v) in G̃. For each path h
(
(u, v)

)
= p(u,v) = v1--v2-- · · · --vk in G

that corresponds to an edge (u, v) in G̃, we want φ(v1) < φ(v2) < · · · < φ(vk)
if φ′(u) < φ′(v). We can assign the other vertices of G not in the image of h
arbitrary labels. Then every edge (u, v) in G̃ corresponds to a strictly monotone
path p(u,v) in G preserving the nonplanarity of the realization of G̃. �	

5 Completing the Characterization

The next lemma shows that the seven forbidden graphs of F are minimal; the
removal of any edge from any of the seven yields a graph from P .

Lemma 13. Each forbidden graph is minimal, in that the removal of any edge
yields one or more GCs, R-2Ss, or E3-Ss.

Proof. Showing that the removal of any edge from T8 or T9 yielded a caterpillar,
radius-2 star, or degree-3 spider, all members of P , was done in [5]. For G5
in which a--b--d--e--c--a, a--b--c--a, b--c--d--b, c--d--e--c all form cycles shown in
Fig. 9(a), the removal of edges b--c or c--d forms a 2-CE 3-S, while removing of
any other edge forms a GC. For G6 in which b--e--d--c forms a 4-cycle shown
in Fig. 9(b), the removal of any edge leaves a GC. For Gα shown in Fig. 9(c),
the removal of c--f or c--g leaves a E 3-S. Removing any other edge yields a GC.
For Gκ in which b--c--d--b forms a 3-cycle shown in Fig. 9(d), the removal of
c--f or c--g leaves a 1-CE 3-S, while removing any other edge leaves a GC. For
Gδ in which c--f--g--c forms a 3-cycle shown in Fig. 9(e), the removal of c--b or
c--d leaves a GC and a lone edge. Removing a--b, d--e, or f--g leaves a GC, and
removing c--f or c--g leaves a degree-3 spider. �	

Finally, the next theorem completes our characterization.
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Theorem 14. Every connected graph either contains a subgraph homeomorphic
to one of the seven forbidden graphs of F , or it is a generalized caterpillar,
radius-2 star, or a extended degree-3 spider, which form the collection of graphs
P that have simultaneous geometric embeddings with strictly monotone paths for
any labelings, the set of ULP graphs.

Proof Sketch: We sketch out the proof here; the complete proof can be found
in [6]. The high-level proof idea is to use induction on the number of edges in
which we have as an inductive hypothesis that any connected graph with fewer
than m edges that does not contain one of the seven forbidden subgraphs of F is
a GC, a R-2 S, or a E 3-S. As a base case are all connected graphs with two edges,
which is only the path of length 2, which is clearly a GC. Let G(V, E) be some
connected graph then with m edges. Remove a single edge e to form G′ = G−{e}
and the inductive hypothesis holds for G′. We then need to consider all the ways
of adding back in the edge e to form G′′ showing that no matter what G′′ is a
GC, a R-2 S, or a E3-S or contains a copy of one of the seven graphs of F . �	

6 Previous and Future Work

Level planar graphs are historically studied in the context of directed graphs,
which restricts the types of levelings that can be assigned. Additionally, they are
generally considered in the context of a particular leveling such as ones given by
hierarchical relationships with an emphasis on minimizing the number of levels
required to maintain planarity. In contrast, our application of level planarity has
been in terms of the underlying undirected graph with one vertex per level with
no consideration given to minimizing levels.

Many of the problems regarding level planarity have been addressed, including
the ability to recognize a level planar graph and produce an embedding in linear
time [9,10]. However, all of these results are for a particular leveling and do
not generalize to the context of considering the level planarity of all the level
graphs induced by all possible n! labelings of a given undirected graph. Running
either of these linear time algorithms for each possible level graph leads to an
exponential running time. Using our approach we achieve this in linear time.

We gave a characterization of ULP graphs akin to Kuratowksi’s characteriza-
tions of planar graphs [11]; we provided a forbidden set of graphs F that play
the same role with respect to ULP graphs that K5 and K3,3 play with respect to
planar graphs. Just as Kuratowksi’s theorem states that a graph is planar if and
only if it does not contain a subgraph that is a subdivision of K5 or K3,3, we
show a graph is ULP if and only if it does not contain a subgraph homeomorphic
to a forbidden graph of F .

The analogue of Kuratowksi’s theorem for level planar graphs are minimum
level non-planar patterns [8]. These are based on the characterization of hierar-
chies by Di Battista and Nardelli [3]. Unlike our characterization, these patterns
are not solely based upon the underlying graph, but also upon the given leveling.
The same graph with two different levelings that is level non-planar for each may
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very well match two distinct patterns since the reasons that a crossing is forced
in each can be entirely different.

Estrella et al. [5] presented linear time recognition algorithms for the class of
ULP trees. Providing the equivalent algorithms for general ULP graphs remains
for future work.
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Abstract. In this paper we introduce cyclic level planar graphs, which
are a planar version of the recurrent hierarchies from Sugiyama et al. [8]
and the cyclic extension of level planar graphs, where the first level is the
successor of the last level. We study the testing and embedding problem
and solve it for strongly connected graphs in time O(|V | log |V |).

1 Introduction

Cyclic level planar graphs receive their motivation from two sources: level planar
graphs and recurrent hierarchies.

A level graph is a directed acyclic graph with a level assignment for each
node. Nodes on the same level are placed on a horizontal line and edges are
drawn downwards from the upper to the lower end node. Level planarity has
been studied intensively in recent years. Jünger and Leipert [6] completed this
series and established a linear time algorithm for the level planarity testing and
embedding problem. Bachmaier et al. [1] extended level planarity to radial level
planarity. Here the levels are concentric circles and the edges are directed from
inner to outer circles. Again there are linear time algorithms for the testing and
embedding problem. Radial level planar graphs can also be drawn on a cylinder
where each level is a circle on the surface.

Recurrent hierarchies were introduced by Sugiyama et al. [8] over 25 years
ago. A recurrent hierarchy is a level graph with additional edges from the last to
the first level. Here two possible drawings are natural: The first is a 2D drawing
where the levels are rays from a common center, and are sorted counterclock-
wise by their number, see Fig. 1. All nodes of one level are placed on different
positions on the corresponding ray and an edge e = (u, v) is drawn as a mono-
tone counterclockwise curve from u to v wrapping around the center at most
once. The second is a 3D drawing of a level graph on a cylinder, see Fig. 2. A
planar recurrent hierarchy is shown on the cover of the book by Kaufmann and
Wagner [7], in which it is stated that recurrent hierarchies are “unfortunately
[...] still not well studied”. This paper will improve this situation.

We consider cyclic k-level graphs with edges spanning many levels. First, ob-
serve that every (undirected) planar graph with a given embedding and any
level assignment is a cyclic level planar graph, if the edges are arbitrary Jordan
curves. These curves can even be monotone, such that every edge goes either
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Fig. 2. Drawing of G on a cylinder

clockwise or counterclockwise around the center in the 2D drawing. This draw-
ing can be obtained by a variation of the algorithm of de Fraysseix et al. [3],
wrapping the graph |V | times round the center and successively moving each
node counterclockwise to its level. Thus we limit the edges as described above.

Healy and Kuusik [4] have presented an algorithm for level planarity testing
and embedding using the vertex-exchange graph. For proper graphs the algorithm
finds an embedding in O(|V |3). Every non-proper graph can be made proper by
adding at most O(|V |2) dummy nodes on the edges which leads to a running
time of O(|V |6) for non-proper graphs. We claim that this algorithm can be used
for testing and embedding cyclic k-level graphs without major modifications as
the algorithm can handle edges from level k to level 1 as any other edge.

In this paper we improve this result and show that cyclic level planarity testing
and embedding can be solved in O(|V | log |V |) time for strongly connected non-
proper graphs.

2 Preliminaries

A cyclic k-level graph G = (V, E, φ) (k ≥ 2) is a directed graph without self-loops
with a given surjective level assignment of the nodes φ : V → {1, 2, . . . , k}. For
two nodes u, v ∈ V let span(u, v) := φ(v)−φ(u) if φ(u) < φ(v) and span(u, v) :=
φ(v) − φ(u) + k otherwise. For an edge e = (a, b) ∈ E we define span(e) :=
span(a, b). A graph is proper if for all edges e ∈ E span(e) = 1 holds. For a
simple path or simple cycle P we define span(P ) :=

∑
e∈E(P ) span(e). A drawing

is (cyclic level) plane if the edges do not cross except on common endpoints. A
cyclic k-level graph is (cyclic level) planar if such a drawing exists. The right
outer face is the face of the 2D drawing containing the center and the left outer
face is the unbounded face. A cyclic level planar embedding consists of two lists
N−(v) and N+(v) for each node v ∈ V which contain the end nodes of ingoing
and outgoing edges, respectively, which are both ordered from left to right.

Proposition 1 (Euler, [4]). Let G be a planar cyclic k-level graph. Then |E| ≤
3|V | − 6. If G is proper, |E| ≤ 2|V | − k. Both inequalities are tight.
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3 Testing Strongly Connected Graphs

In this section we present our algorithm embedCyclicLevelPlanar(G) for cyclic
level planarity testing and embedding of strongly connected graphs. The algo-
rithm is quite technical; this seems to be inherent to level planarity and its
extensions. Algorithm 1 has some similarities to the planarity testing algorithm
by Hopcroft and Tarjan [5] and consists of three phases. The first phase (see
lines 1–2 and Sect. 3.1) searches for a simple cycle C0 in G and splits G \ C0
into its “connected” components C1, . . . , Cp which correspond to segments in [5].
The second phase (lines 3–12, Sect. 3.2) tries to find a cyclic level planar embed-
ding for each Ci, s.t. all nodes in V (Ci) ∩ V (C0) lie on the same border of the
embedding. If a component does not wrap around the center completely, a level
planarity test is applied. Otherwise the test is applied to each of its subcompo-
nents. The third phase (lines 13–23, Sect. 3.3) decides for each Ci whether it will
be embedded on the left or right side of C0.

Algorithm 1: embedCyclicLevelPlanar
Input: G: a cyclic k-level graph
Output: a cyclic level planar embedding H of G or abort

Let C0 be a simple cycle in G with embedding H // abort if span(C0) > k1
Let C := {C1, . . . , Cp} be the components of G sorted by increasing span2
foreach Ci ∈ C do3

if span(Ci) ≤ k then embedLevelPlanar(C′
i) // and thus Ci, abort if it fails4

else5
initialize NEXT_PAIRS6
while NEXT_PAIRS �= ∅ do7

(u, v) := remove(NEXT_PAIRS)8
Si := findSubcomponent(u, v) // abort if it fails9
embedLevelPlanar(S′

i) // and thus Si, abort if it fails10
add Si to the left side of the embedding of Ci11
update NEXT_PAIRS12

build the set R by constructing a rigid component R for each virtual edge of C013
foreach Ci ∈ C do14

traverse the border of R for consecutive nodes in link(Ci) // abort if it fails15
update R16

foreach R ∈ R do17
traverse the tree of R formed by rigid components and for each node Rj with18

Ci = component(Rj) set di to the number of RIGHT entries on its path19

foreach Ci ∈ C do20
if di is uninitialized then embed Ci to the side of H where its link nodes are21
else if di is even then embed Ci to the left side of H22
else embed Ci to the right side of H23

return H24
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3.1 Splitting the Graph

The first step of the algorithm is to find a simple cycle C0 in G. Such a cycle
exists as G is strongly connected. If span(C0) > k, the cycle C0 is not cyclic
level planar and the algorithm aborts. Otherwise span(C0) = k holds and C0
has exactly one possible embedding.

Definition 1. Let C0 be a simple cycle of G. Two edges e1, e2 ∈ E \ E(C0)
are part of the same component C if there exists an undirected path P con-
necting an end node of e1 to an end node of e2 s.t. V (P ) ∩ V (C0) = ∅. C has
at most two levels with exactly one node of C0 and no other nodes of C on
them and no edges of C crossing these levels. If C has exactly two such levels,
one of the nodes on them has no ingoing edges and one no outgoing edges. We
call these nodes upper(C) and lower(C), respectively. If C has exactly one such
node, we call it upper(C) = lower(C). In both cases we call C open and de-
fine span(C) := span(upper(C), lower(C)). Let link(C) be the set V (C) ∩ V (C0)
sorted from upper(C) to lower(C) by increasing level. If upper(C) = lower(C),
the first and the last element in link(C) is this node. If C has no such levels, we
call C closed and define span(C) := ∞ and link(C) as all nodes in V (C)∩V (C0)
sorted by increasing level with the (arbitrary) first and last node being the same.

Next all components C1, . . . , Cp are computed by a connectivity test which can
be done in time O(|V |). For each Ci we add a virtual edge for each pair of
consecutive nodes in link(Ci). Each virtual edge corresponds to a path in C0.
The virtual edges ensure that in the computed embedding of Ci all nodes in
link(Ci) are on the same side of the border. This is obviously necessary to obtain
a cyclic level planar embedding of C0 ∪ Ci as Ci is connected. The virtual edges
are deleted after an embedding of Ci is found.

See Fig. 1 as an example. Let (a, b, c, d, e, f, g, h) be the cycle C0. There
are components C1, . . . , C6 with E(C1) = {(a, c)}, E(C2) = {(b, d)}, E(C3) =
{(d, k), (k, f)} and E(C4) = {(g, a)}. C5 and C6 consist of the dashed and dotted
edges, respectively. C1 through C5 are open components and C6 is a closed com-
ponent, upper(C5) = b, lower(C5) = h, link(C5) = [b, d, h] and span(C5) = 6.
For C6 span(C6) = ∞ and link(C6) = [c, e, c] hold and upper(C6) and lower(C6)
are undefined. Without the edge (m, j) C6 would be an open component with
upper(C6) = lower(C6) = c and span(C6) = 8.

3.2 Embedding the Components

If C is an open component with span(C) < k, we set C′ = C. If span(C) = k,
we construct C′ by duplicating the level of upper(C) = lower(C) with upper(C′)
receiving all outgoing and lower(C′) all ingoing edges of the node upper(C) =
lower(C). After adding an edge (upper(C′), lower(C′)) the last phase of the lin-
ear time level planarity embedding algorithm of [6] is applied to the st-graph C′.
In the remaining case C is a closed component. We decompose C into subcom-
ponents and apply the last phase of the algorithm of [6] to each subcomponent.
This decomposition is possible because G is strongly connected.
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Definition 2. Let C be a closed component. The subcomponents S0, . . . , Sq are
an edge disjoint decomposition of C. S0 consists of the nodes in link(C) and the
virtual edges of C. Let Hj =

⋃j
i=0 Si (0 ≤ j ≤ q). We construct Sj (1 ≤ j ≤ q)

s.t. 1 ≤ |V (Sj)∩ V (Hj−1)| ≤ 2. If |V (Sj)∩V (Hj−1)| = 2, we call the two nodes
upper(Sj) and lower(Sj). If |V (Sj) ∩ V (Hj−1)| = 1 holds, we call this node
upper(Sj) = lower(Sj). In both cases Sj consists of all edges lying on a path
P from upper(Sj) to lower(Sj) with span(P ) = span(upper(Sj), lower(Sj)). Let
V ′(Sj) := V (Sj) \ {upper(Sj), lower(Sj)}. We call v ∈ V ′(Sj) externally active
if degSj(v) < degC(v) and Sj externally active if V ′(Sj) contains such a node.
We call a node v ∈ V (Hj−1) externally active if degHj−1(v) < degC(v).
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The closed component in Fig. 3 is split into the subcomponents S0, . . . , S4 with
S0 consisting of the virtual edges (1, 2) and (2, 1). E(S1) = {(1, 3), (3, 2)} and
E(S2) = {(2, 4), (4, 1)} hold. S3 and S4 consist of the dashed and dotted edges,
respectively. upper(S3) = 3 and lower(S3) = 4 hold and S3 is externally active
because the nodes 6 and 7 are externally active. Thus 6 and 7 have to be placed
on the left side of the embedding of S3.

To compute a cyclic level planar embedding for a closed component C, we
start with an embedding of H0 for the cycle of virtual edges. We then repeat the
following steps as long as there are edges to embed:

1. Find two (not necessarily different) nodes u and v on the left border of the
embedding of Hj−1 with unembedded outgoing and ingoing nodes, respec-
tively s.t. no externally active nodes lie between u and v.

2. Find the subcomponent Sj with upper(Sj) = u and lower(Sj) = v.
3. Try to embed the subcomponent to the left side of Hj−1, s.t. all externally

active nodes appear on the left border.
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We maintain a set NEXT_PAIRS of pairs of nodes to store the end nodes for
possible next subcomponents to embed. We initialize NEXT_PAIRS with those
virtual edges e = (u, v) ∈ E(C), where u and v have unembedded outgoing and
ingoing edges, respectively. We can now choose an arbitrary element (u, v) ∈
NEXT_PAIRS and determine whether there really are paths from u to v.

findSubcomponent(u, v) tries to find the subcomponent S with upper(S) = u
and lower(S) = v in time O(|E(S)| log |E(S)|) as follows: We examine untra-
versed paths from u downwards and from v upwards by taking edges alternately.
If the downwards phase finds a visited node, it starts again with the next highest
node with unvisited outgoing edges to which a path from u and v has been found
(thus priority queues and the logarithmic overhead are needed). The downwards
phase aborts the current path if it runs below the lowest node with unvisited
ingoing edges (at the latest v) or if no such node below the current path exists.
The upwards phase is symmetric. We ensure that the starting node of a path
of the downwards phase lies above the starting node of the upwards phase. If
one phase follows a path that will not belong to S, the running time can be ac-
counted to the path found by the other phase. If both phases follow such paths,
Lemma 2 shows that a crossing is then inevitable.

The next step is to find an embedding for the subcomponent S. If span(S) < k,
the subcomponent does not wrap around the center and we actually have the
problem of finding a level planar embedding for S′ = S. If span(S) = k, we create
a level planarity problem instance S′ by duplicating the level of upper(S) =
lower(S) and the node itself. One node (which we call upper(S′) from now on)
receives the outgoing edges and the other (lower(S′)) the ingoing edges. In both
cases we now have a level planarity problem instance with span(S)+1 levels. But
we also have to ensure that all externally active nodes of S′ lie on the left border
of the embedding. (We show in Lemma 1 that C is not cyclic level planar if such
an embedding does not exist.) To do so we add a node f to the level of lower(S′)
and connect all externally active nodes to f . We also add a node w below f and
lower(S′) and add the edges (f, w), (lower(S′), w) and (upper(S′), w) to obtain
an st-graph. Therefore, again the last phase of the embedding algorithm for level
planar graphs as described in [6] suffices. If the result is an embedding with all
externally active nodes lying on the right border, we flip the embedding. If the
level planarity testing algorithm fails, then S is not cyclic level planar and the
algorithm aborts. If it succeeds, we add the embedding of S to the left side of
the partial embedding of C.

As a last step we have to update the set NEXT_PAIRS. If the last so far
embedded subcomponent S was not externally active, we follow the left border
of the partial embedding of C from upper(S) upwards and search for the first
externally active node e1. Note that upper(S) itself can be externally active. If
we do not find such a node, the component has been embedded completely. We
also search from lower(S) downwards for the first externally active node e2. If
e1 has unembedded outgoing edges and e2 unembedded ingoing edges, we add
(e1, e2) to NEXT_PAIRS. Otherwise we add a short cut edge (e1, e2) to the left
border of the embedding to ensure that this path will not be traversed a second
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time. Short cut edges are removed as the last step of this phase. If S is externally
active, the same search is performed twice: from upper(S) and from lower(S) in
each case upwards and downwards. Note that both searches can find the same
pair of nodes which is added to NEXT_PAIRS only once.

In Fig. 3 NEXT_PAIRS is initialized with {(1, 2), (2, 1)}. Let (1, 2) be the first
taken pair. After embedding S1 both searches fail and after S2 the pair (3, 4) is
added. After treating S3 both searches find the pair (6, 7) which is added once.

Definition 3. We call a planar embedding of a subgraph of C (cyclic level)
planarity preserving if it can be expanded to a planar embedding of C without
changing the relative order in the N− and N+ lists if C is cyclic level planar.

Lemma 1. For a closed component the algorithm constructs only planarity pre-
serving embeddings. In particular each partial embedding can be extended, s.t.
new subcomponents are only added to the left outer face with all externally ac-
tive nodes lying on the left side.

Proof. We give the proof by induction over the number of embedded subcom-
ponents j. If j = 0, the cycle of virtual edges has only one embedding. Suppose
that the algorithm has embedded the subgraph Hj−1 and is about to embed Sj .
We have to show now that the chosen embedding for Sj is either the only one
possible or does not influence the planarity preserving property.

Let L be the left border of Hj−1 strictly between upper(Sj) and lower(Sj).
The algorithm will embed Sj to the left of L. Let us assume for contradiction
that it is possible to embed (a part of) Sj to the right of L (and the left of S0).
With induction assumption Hj−1 is planarity preserving. Thus a face F in the
current embedding Hj−1 on the right side of L has to exist on which upper(Sj)
and lower(Sj) lie. Note that the left border of F has to belong completely to an
already embedded subcomponent Si (i < j). But then Sj would be a part of Si.
A contradiction. If upper(Sj) and lower(Sj) both lie on S0, then embedding Sj to
the right of S0 seems to be an option. But all subcomponents of one component
have to be embedded on the same side as a component is connected.

The second possibility of choice regards the subcomponent itself: The sub-
component Sj can have several different embeddings but only the position of
the externally active nodes are important. The algorithm places all these nodes
on the left side of the subcomponent. Theoretically it would be possible to place
an externally active node to the right side of the subcomponent or in the middle
of it. But in both cases the path from the externally active node to either the
level of upper(Sj) or lower(Sj) could then not be embedded in a planar way. 
�

See Fig. 3 as an example: Embedding S1 or S2 to the right side of S0 is not
possible as the component is connected. Embedding (a part of) S3 to the right
side of L = {2} is not possible as no face between (S1, S2) and S0 exists to which
3 and 4 belong. The nodes 6 and 7 must lie on the left outer face to be able to
embed S4.

Lemma 2. If findSubcomponent(u, v) aborts while searching for a subcompo-
nent Sj of a component C, C is not cyclic level planar.
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Proof. The subalgorithm aborts when it finds two disjoint paths P1 and P2, s.t.
P1 is a path from u downwards to level φ(v) but misses v and P2 is a path from
v upwards to level φ(u) but misses u. (This has to be the case if there is no path
from u to v with length span(u, v) at all.) Let L be the current left border of the
partial embedding of C. The only possible way to embed P1 and P2 in a cyclic
level planar way is to put one path to the left and one to the right of L. If v lies
on C0, P2 has to be embedded on the same side as the rest of the component as
the component is connected (see Fig. 4). The case for P1 is analogous.

We will now show that P1 has to be embedded on the left of L if u does not
lie on C0 (see Fig. 4). The proof for P2 is analogous. Let P ′

1 be one shortest
extension of P1 to a node on L. If span(P ′

1) > k, then P ′
1 cannot be embedded

on the right of L obviously. Otherwise let w be the end node of P ′
1. Assume

for contradiction that a face to the right of L exists to which u and w belong,
s.t. P ′

1 fits into it. The left border of the face belongs completely to an already
embedded subcomponent Si (i < j). But then P ′

1 would have been found by the
same call of findSubcomponent as Si. A contradiction. 
�

3.3 Arranging the Components

This phase combines ideas from [2] and [5]. We have to decide which components
are embedded on the left side of C0 and which to the right side. Therefore we first
sort the components by increasing span. If there are several components with
the same span, then the components with exactly two link nodes are considered
last. The p components can be sorted by bucket sort in O(p + k).

We add one component at a time to the left side of C0. Let Ci be the com-
ponent to be embedded next. To do so it can be necessary to flip some already
embedded components to the other side of C0. Ci and all components which
have overlapping spanned levels with Ci form a rigid component (see the data
structure below) and are flipped simultaneously from now on. Among these a
component Cj could be, s.t. Cj is embraced by the new component Ci in such a
way, that Cj could lie on both sides of C0. In this case we now decide on which
side Cj will lie relative to Ci, too, by choosing an arbitrary side.

Definition 4. A rigid component R is a recursive data structure consisting of a
main component called component(R) and all other already constructed rigid
components R1, . . . , Rr with overlapping levels with component(R). For each
Ri a flag oi ∈ {LEFT, RIGHT } is stored, which indicates on which side Ri

lies relative to component(R), which is assumed to lie on the left side of C0.
rigidComponents(R) = {(R1, o1), . . . , (Rr, or)} stores this information. R also
has two nodes upper(R) and lower(R), which are its upper and lower end nodes.
We define span(R) := span(upper(R), lower(R)). Furthermore, R stores four
pointers to the nodes under upper(R) and over lower(R) on either side of the bor-
der called border pointers and one pointer to the next rigid component next(R).

Each node on the border has pointers to the predecessor and successor node on
the border. Note that when traversing a border we can determine on which side
of which rigid component we are when we encounter a border pointer.
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Definition 5. Let C1, . . . , Cp be all components sorted in the way described
above and let Ci be the component to be embedded next. We call a node v ∈ V (C0)
pertinent if v ∈ link(Ci). We call v ∈ V (C0) strongly externally active if the fol-
lowing conditions hold:

1. There exists a component Cj(j > i) s.t. v ∈ link(Cj).
2. The node v is not the upper end node of a rigid component.
3. If Ci is an open component, then v is strictly between φ(upper(C)) and

φ(lower(C)).

Note that all nodes satisfying the first condition have to be reachable from one
outer face after embedding Ci. But only nodes for which the second and third
condition hold can possibly be enclosed by Ci. A node can be pertinent and
strongly externally active at the same time. When embedding C5 in Fig. 1 the
nodes b, d and h are pertinent and c and e are strongly externally active.

We do not embed a component into another one. Therefore, we have to make
sure that all strongly externally active nodes of C0 stay reachable from at least
one outer face. To embed a component Ci all pertinent nodes have to be reachable
from the same side. After embedding an open component no node of C0 between
the levels of upper(Ci) and lower(Ci) (both not included) is reachable from the
left side. After embedding a closed component no node of C0 is reachable from
the left side.

We now have to flip all Rj which have overlapping spanned levels with Ci

s. t. all pertinent nodes on the border of Rj lie on the left side and all strongly
externally active nodes on the border of Rj lie on the right side.

Just looking through both sides of the border for each such rigid component
could yield a quadratic running time. But for each R we examine, one side of the
border of R will be enclosed by the component Ci we want to embed and will
therefore never be traversed again. So we can always traverse the shorter of the
two sides of the border of R. Further, we do not really flip a rigid component,
but store how often it should be flipped only.

For each edge e = (u, v) ∈ E(C0) we initialize a rigid component R with
upper(R) = u, lower(R) = v. Let Ci be the component to be embedded next.
We have to find a path from upper(Ci) to lower(Ci) along the borders of the rigid
components on which all pertinent nodes lie. Additionally no strongly externally
active nodes may lie on this path.

We use a method searchOneSide(source, target) if we already know which side
of a rigid component we have to follow and searchBothSides(source, target) if we
do not. We then follow both borders alternately. We search for paths connecting
each consecutive pair of nodes (u, v) in link(Ci): We call searchOneSide(u, v) if
u lies on the border of a rigid component and searchBothSides(u, v) if u is the
upper end of a rigid component. If searchOneSide(u, v) finds a strongly externally
active node, the algorithm aborts (even if the node is v). If it finds the node v, a
path from u to v has been found. If we reach φ(v) or a level below without finding
v, we know we are on the wrong side of the border and the algorithm aborts.
If it finds the lower end node w of a rigid component, searchBothSides(w, v) is
called.
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Due to performance restrictions in searchBothSides(u, v) we have to make
sure to completely traverse the side which will be enclosed only. We start taking
alternately one edge of the left and one of the right side of the rigid component
R whose upper end is u. If φ(v) is below φ(lower(R)), then we just have to
find one side which has no strongly externally active nodes on it. Thus, if we
reach the lower end of the rigid component R from one side, we take this side
and start searchBothSides(upper(next(R)), v). If we reach a strongly externally
active node, we only follow the other side from now on. If we encounter a strongly
externally active node on the other side as well, the algorithm aborts.

If φ(v) lies between φ(upper(R)) and φ(lower(R)), we additionally test the
following: If we find the node v from one side, we have found the path. Again,
if we miss v on one side, we know that v lies on the other side and we do not
follow this path any further.

If the algorithm did not abort, we have now found a path from upper(Ci)
to lower(Ci) on the sides of the rigid components. Due to the border point-
ers we know for each Ri which side we have used (except a special case dis-
cussed below). We can therefore test if upper(Ci) and lower(Ci) lie on different
sides of the same rigid component and abort if it is the case. We now create
a new rigid component R containing all visited Ri. Let Rlower be the rigid
component s.t. lower(Ci) is the lower end node of Rlower or lies on the bor-
der of it. (We can identify Rlower if we encountered a border pointer). We set
lower(R) := lower(Rlower) and upper(R) for upper(Rupper) accordingly. We
set component(R) := Ci and next(R) := next(Rlower). For each Rj between
upper(R) and lower(R) we add (Rj , LEFT ) to rigidComponents(R) if the left
side of Rj was used and (Rj , RIGHT ), otherwise. At last we have to construct
the left and right border of R. The left border is the path from upper(R) to
upper(Ci) with the left border of Ci and the path from lower(Ci) to lower(R).
The right border is the path from upper(R) to lower(R) which was not used. To
build this path we do not have to run through this path completely. It suffices
to update the pointers at the connections between two (old) rigid components.
If we have to merge a rigid component with itself, we only maintain a pseudo
rigid component with two cyclic lists for the borders from there on.

One special case remains: Let Ci be the component to be embedded next and
all nodes in link(Ci) lie on the same side of the same rigid component and no
strongly externally active nodes lie between them. We then know that Ci can
be embedded. But we do not know to which side, as we have not encountered
a border pointer. So we do not construct a new rigid component for Ci, but
update the border only.

Lemma 3. If the search for the paths on the borders of the rigid components
aborts for a component Ci, Ci cannot be added in a planar way.

Proof. In this case the link nodes of Ci cannot be reached from the same side
and so Ci cannot be added in the current situation. We show that all decisions
the arranging algorithm makes are planarity preserving. Choosing an arbitrary
side of a rigid component if both sides are not strongly externally active cannot
have an influence on later components. In the chosen order of the components
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embedding a component Ci to the inner side of an already embedded component
Cj is possible only if both are open and have the same upper and lower end nodes.
If Cj has more than 2 link nodes, Ci cannot be embedded on the inner side. Ci

having more than two link nodes and Cj having exactly two is not possible due
to our sorting. In the last case Ci and Cj have exactly two link nodes. This
cannot happen as then Ci could still be embedded on the outer side of Cj . 
�

After all components have been processed, the rigidComponents lists form a set
of trees. For each R we count with d how often the value RIGHT is stored on
the path from the root of its tree to R. If d is odd, we know we have to embed
component(R) to the right otherwise to the left. In the end, we go through the
list of components and embed it to the calculated side. If we find a component
for which we do not know the side, we embed it to the side on which its link
nodes lie.

Figure 5 shows the situation of embedding C5: On the left the component C5
is shown with bold virtual edges. In the middle we see the current rigid compo-
nents. The algorithm starts with searchOneSide(b, d) and finds d by using the
left side of R1. Then searchBothSides(d, h) is called and both sides of R2 are
searched. The right is not followed below e as e is strongly externally active. But
the left side can be used and searchBothSides(f, h) is called which will choose,
e. g., the left side of R3. The call of searchBothSides(g, h) will find h on the right
side. So we have found a path from b to h. In the new rigid component R5
we set rigidComponents(R5) = {(R1, LEFT ), (R2, LEFT ), (R3, LEFT ), (R4,
RIGHT )}. R5 is shown on the right in Fig. 5. Now we embed C6 and search for
paths from c to e and from e to c. We obtain a pseudo rigid component.

4 Correctness and Running Time

Theorem 1. Let G be a strongly connected cyclic k-level graph. G is cyclic level
planar if and only if embedCyclicLevelPlanar(G) does not abort.

Proof. If embedCyclicLevelPlanar(G) does not abort, the returned embedding
H is cyclic level planar as due to the construction of the algorithm no crossing
can be inserted.

We will now show that in all cases in which embedCyclicLevelPlanar(G)
aborts, G is not cyclic level planar. The cases are:

– span(C0) > k: Such a (simple) cycle can obviously not be cyclic level planar.
– embedLevelPlanar(C′

i) fails for a component Ci: As C′
i is a subgraph of G in

which paths on C0 are replaced by virtual edges, G cannot be planar then.
– findSubcomponent(u, v) fails: see Lemma 2.
– embedLevelPlanar(S′) fails for a subcomponent S: In this case S does not

have a level planar embedding with all externally active nodes on the same
border which we have shown to be necessary in Lemma 1.

– searching the borders of the rigid components fails for a component Ci: see
Lemma 3. 
�
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Theorem 2. embedCyclicLevelPlanar(G) runs in time O(|V | log |V |).

Proof. Finding a cycle and splitting G into its components can be done in O(|V |).
Next we consider the embedding of a component Ci. If span(Ci) ≤ k, a lin-

ear time level planarity embedding algorithm is applied. Otherwise the follow-
ing holds: Maintaining the set NEXT_PAIRS can be done in linear time. The
method findSubcomponent runs in time O(|E(S)| log |E(S)|) for a subcompo-
nent S. Finding an embedding for S is again done by a level planarity algorithm.
This yields a running time of O(|V (Ci)| log |V (Ci)|) for embedding a component
Ci. If findSubcomponent aborts, its running time is in O(|V | log |V |).

Deciding for each Ci to which side of C0 it will be embedded is possible in
O(|P |) with P being the path on the partial embedding of G which will be
enclosed by Ci. This and the arranging itself is therefore possible in O(|V |). 
�

5 Conclusion

In this paper we claim that the problem of finding a planar embedding can be
solved in O(|V |3) for proper cyclic k-level graphs and in O(|V |6) for non-proper
graphs by an algorithm presented in [4]. Our main result is a new algorithm
which solves the testing and embedding problem for non-proper and strongly
connected graphs in time O(|V | log |V |).

The major open problem is to improve this algorithm to linear running time
and to find algorithms with (near) linear running time for a larger class of graphs.
Combining the problems for radial level planarity and cyclic level planarity would
yield drawings on a torus and could also be a topic for further research.
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Abstract. We describe a practical method to test a leveled graph for
level planarity and provide a level planar layout of the graph if the test
succeeds, all in quadratic running-time. Embedding constraints restrict-
ing the order of incident edges around the vertices are allowed.

1 Introduction

A leveled graph, or one whose vertices have predetermined y-coordinates, is level
planar if and only if it can be drawn in the plane satisfying the predetermined
y-coordinates using straight-line edges without any edge crossings. We improve
a previous test for level planarity [4] so that it provides a level planar layout of
the graph if the test succeeds in quadratic running-time. We also handle a family
of embedding constraints [3] that restrict the order of incident edges around the
vertices.

There exists a level planarity testing and layout algorithm with linear running-
time [2,5,6]. However, it is quite complicated, involving iterative updating of a
set of PQ-trees, graph augmentations and an embedding algorithm for general
planar graphs [1]. Our method, while requiring quadratic running-time is much
simpler to understand and implement and can be naturally extended to handle
embedding constraints.

2 Preliminaries

A leveling of a graph G = (V, E) is a surjective mapping φ : V → {1, 2, . . . , k}
such that φ(u) �= φ(v), ∀{u, v} ∈ E. A leveling partitions the vertex set V =
V1 ∪V2 ∪ . . .∪Vk such that Vi = φ−1(i) and the edge set E = E1 ∪E2 ∪ . . .∪Ek−1
such that Ei ⊆ Vi × Vi+1. A leveling is proper if ∀{u, v} ∈ E : |φ(u) − φ(v)| = 1.
In the following we assume all levelings to be proper.

The vertex-exchange graph or ve-graph VE(G, φ) = (V , E) of a graph G =
(V, E) with leveling φ is a graph with vertex set V = V1 ∪ V2 ∪ . . . ∪ Vk where
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Vj = {〈u, v〉|u, v ∈ Vj} and edge set E = E1 ∪ E2 ∪ . . . ∪ Ek−1 where Ej =
{{〈t, w〉, 〈u, v〉}|{t, u}, {w, v} ∈ Ej , 〈t, w〉 ∈ Vj , 〈u, v〉 ∈ Vj+1}.

In other words, VE(G, φ) is constructed by taking the distinct pairs of vertices
on the same level of G as vertices of VE(G, φ) and joining two vertices in VE(G, φ)
whenever two pairs from the four corresponding vertices in G are joined by
independent edges (see Fig. 1).
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Fig. 1. A leveled graph, its ve-graph, and lve-graph

We augment the ve-graph VE(G, φ) = (V , E) with an edge labeling λ : E →
{‘+’, ‘-’} to produce the labeled vertex-exchange graph or lve-graph LVE(G, φ)
as follows. Choose some initial level layout L of G. For every edge e ∈ E we set
λ(e) = ‘-’ if the corresponding edges in G cross and λ(e) = ‘+’ if they do not
(see Fig. 1).

3 Testing and Layout

The ve-operation ve(〈u, v〉) switches the labeling of every edge incident to 〈u, v〉
in LVE(G, φ), i.e. ‘-’ becomes ‘+’ and ‘+’ becomes ‘-’. This loosely corresponds
to exchanging the position of the vertices u and v in the level layout L of G.

Theorem 1. [4]
A graph G with leveling φ is level planar if and only if there exists some sequence
of ve-operations that removes all ‘-’-labeled edges from LVE(G, φ), or equiva-
lently, LVE(G, φ) does not contain a cycle with an odd number of ‘-’-labeled
edges.

Level planarity can therefore be tested in quadratic running-time using a simple
depth-first search (DFS) traversal on the lve-graph. However, if the test succeeds,
we need to solve the 3-cycle problem in order to produce a level planar layout
within the same asymptotic running-time.
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3.1 The 3-Cycle Problem

Suppose three vertices 〈u, v〉, 〈v, w〉 and 〈u, w〉 in some lve-graph representing
the three vertices u, v and w in some leveled graph are not in the same connected
component of the lve-graph. If we perform ve-operations to remove all the ‘-’-
labeled edges using a DFS traversal then it may arise that u ≺ v ≺ w ≺ u where
≺ denotes the required order of the vertices along their respective level. Clearly,
this is impossible.

Consider the leveled graph G and its lve-graph LVE(G, φ) in Fig. 2. Note that
〈e, f〉, 〈f, g〉 and 〈e, g〉 are in different connected components of LVE(G, φ). Sup-
pose we begin the DFS traversal at 〈e, f〉, then visit 〈b, c〉 and perform ve(〈b, c〉)
so that e ≺ f . Suppose we continue the DFS traversal at 〈f, g〉, then visit 〈a, b〉
and perform ve(〈a, b〉) so that f ≺ g. Now, suppose we continue the DFS traver-
sal at 〈a, c〉, then visit 〈e, g〉 and perform ve(〈e, g〉) so that g ≺ e. We have
removed all ‘-’-labeled edges. However, e ≺ f ≺ g ≺ e.

G LVE(G,φ)
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Fig. 2. An instance of the 3-cycle problem

A book-keeping solution for every such triple of vertices in the level graph has
been suggested [4]. Every time we perform a ve-operation that results in a single
remaining vertex being constrained by another two, we queue that vertex and its
respective connected component to be traversed once we are finished with all the
vertices in the current connected component. Unfortunately there are O(|V |3)
such triples leading to cubic running-time.

Randerath et al. [7] have reduced the level planarity testing and layout prob-
lems to satisfiability problems. They reduced the level planarity testing problem
to a 2-SAT problem that is quadratic in the size of the leveled graph. However,
if a level planar layout is required, the solution must be ‘enhanced’ to avoid
the 3-cycle problem (or, in their terminology, to satisfy the transitivity clauses).
They show that such an enhancement is always possible but they do not show
how to find it within the same asymptotic running-time.

3.2 The 3-Cycle Solution

We solve the 3-cycle problem using a combination of a DFS traversal and a level-
by-level traversal. In this case the DFS traversal (Algorithm 1), given an initial
level layout L, constructs a mapping π that tells us the required relative order
of the vertices. For example, suppose 〈u, v〉 and 〈w, x〉 are in the same connected



Practical Level Planarity Testing and Layout with Embedding Constraints 65

component of the ve-graph. The algorithm may decide that π(〈u, v〉) = [v, u]
and π(〈w, x〉) = [x, w]. In other words, v ≺ u ⇔ x ≺ w and u ≺ v ⇔ w ≺ x.
It does not change the initial layout L. If it returns false then it has found a
cycle with an odd number of ‘-’-labeled edges (Lines 19 and 22) and the leveled
graph is not level planar. If it returns true then it is level planar and we can
proceed to the level-by-level traversal to produce a level planar layout.

Algorithm 1: dfsTraversal
Input: VE(G, φ), L, π passed by reference
visited ← {};1
Initialize a stack S;2
foreach C ∈ connectedComponents(VE(G, φ)) do3

Choose some vertex 〈u, v〉 in C;4
if u ≺L v then π(〈u, v〉) ← [u, v];5
else π(〈u, v〉) ← [v, u];6
push(S, 〈u, v〉, false);7

while S not empty do8
〈u, v〉, value ← pop(S);9
visited(〈u, v〉) ← true;10
foreach 〈w, x〉 ∈ neighbors(〈u, v〉) do11

if λ({〈u, v〉, 〈w, x〉}) = ‘+’ then12
p ← [w, x], q ← [x, w];13
if visited(〈w, x〉) = false then push(S, 〈w, x〉, value);14

else15
p ← [x, w], q ← [w, x];16
if visited(〈w, x〉) = false then push(S, 〈w, x〉,¬value);17

if (w ≺L x ∧ value) ∨ (x ≺L w ∧ ¬value) then18
if visited(〈w, x〉) = true ∧ π(〈w,x〉) 	= p then return false;19
π(〈w,x〉) ← p;20

else21
if visited(〈w, x〉) = true ∧ π(〈w,x〉) 	= q then return false;22
π(〈w,x〉) ← q;23

return true;24

The level-by-level traversal (Algorithm 2) decides on the absolute order of
the vertices so that everything remains consistent between the connected com-
ponents of the ve-graph. The vertices of the ve-graph are grouped by the level
of the vertices in the leveled graph they represent. We traverse the vertices in
each group 1, . . . , k. Within each group the vertices are traversed in descending
order according to the distance between the vertices they represent in the layout
L of the leveled graph. This traversal proceeds left-to-right and top-to-bottom
along the dotted lines in Fig. 3(b). It is controlled by rows(L) (the number of
dotted lines), cols(L, i) (the number of vertices on the ith dotted line) and
vertexAt(L, i, j) (the vertex at the jth position on the ith dotted line). Note
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Fig. 3. (a) The initial level layout L of G and (b) the level-by-level traversal of
VE(G, φ))

that the position of some vertices may change after each update of L. However,
the traversal proceeds in this direction irrespectively.

On traversing a vertex 〈u, v〉, we count the number of neighbors it has in the
previous group that are joined by ‘+’ (plusCnt) and ‘-’-labeled edges (minusCnt).
If 〈u, v〉 belongs to a hitherto unvisited connected component C of the ve-graph
then we mark C as visited and record whether u ≺L v or v ≺L u. If C has been
previously visited and plusCnt+minusCnt = 0 then we use π to decide whether
or not we need to exchange u and v in L. Let 〈w, x〉 be the first vertex visited
in C. Our test match(L, π, visited, C, 〈u, v〉) returns true if any of the following
are true:

– π(〈w, x〉) = visited(C) and u ≺L v and π(〈u, v〉) = [u, v]
– π(〈w, x〉) = visited(C) and v ≺L u and π(〈u, v〉) = [v, u]
– π(〈w, x〉) �= visited(C) and u ≺L v and π(〈u, v〉) = [v, u]
– π(〈w, x〉) �= visited(C) and v ≺L u and π(〈u, v〉) = [u, v]

and false otherwise. Finally, if minusCnt > 0 (and hence plusCnt = 0), we
exchange u and v in L and proceed to the next vertex in the traversal. Note
that it cannot arise that minusCnt > 0 and plusCnt > 0 since this would mean
the presence of a cycle with an odd number of ‘-’-labeled edges. Algorithm 2
makes L level planar one level at a time. To keep its running-time linear in the
size of the ve-graph we determine the label of an edge (Line 8 of Algorithm 2)
dynamically instead of precomputing a lve-graph and updating the labels every
time we change L.

4 Embedding Constraints

Embedding constraints, restricting the order of incident edges around the ver-
tices, can be specified using constraint trees [3]. A constraint tree T (v) (see
Fig. 4) is an ordered tree rooted at v where inner vertices (except the root),
called c-vertices, impose embedding constraints on their children and the leaves
are v’s incident edges between v and the next successive level. There are three
types of c-vertices:
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Algorithm 2: levelByLevelTraversal
Input: VE(G, φ),L passed by reference, π
visited ← {};1
for i from 1 to rows(L) do2

for j from 1 to cols(L, i) do3
〈u, v〉 ← vertexAt(L, i, j);4
plusCnt ← 0, minusCnt ← 0;5
foreach w ∈ neighbors(〈u, v〉) do6

if row(w) < i ∨ (row(w) = i ∧ col(w) <= j) then7
if λ({〈u, v〉, w}) = ‘+’ then plusCnt ← plusCnt + 1;8
else minusCnt ← minusCnt + 1;9

C ← connectedComponent(VE(G, φ), 〈u, v〉);10
if C 	∈ domain(visited) then11

if u ≺L v then visited(C) ← [u, v];12
else visited(C) ← [v, u];13

else if plusCnt + minusCnt = 0 ∧ ¬match(L, π, visited,C, 〈u, v〉) then14
Exchange u and v in L;15

if minusCnt > 0 then16
Exchange u and v in L;17

– gc-vertices (grouping) allow children to be arbitrarily permuted,
– mc-vertices (mirroring) allow children to be reversed, and
– oc-vertices (orientation) fix the order of children in T (v).

T (v) constrains the order of its leaves (from left to right) and thus v’s incident
edges between v and the next successive level. For every constraint tree T (v), we
expand the graph G by replacing the subgraph induced by v and its successive
neighboring vertices with T (v) and assigning the c-vertices to sub-levels as shown
in Fig. 4. Note that this new leveling may not be proper so we add ‘dummy’
vertices to the long edges at the bottommost sub-level and only allow edge
crossings involving the long edges to occur between this sub-level and the next
successive level. This suffices since constraint trees do not share c-vertices. The
ve-graph of the expanded leveled graph is constructed as before, treating c-
vertices and sub-levels as regular vertices and levels respectively and with the
following additions:

– A loop is added to every vertex in the ve-graph whose corresponding vertices
in the leveled graph are children of the same oc-vertex.

– Every subgraph of the ve-graph induced by vertices whose corresponding
vertices in the leveled graph are children of the same mc-vertex is made
biconnected.

Constraining the order of v’s incident edges between v and the previous level is
handled analogously. When choosing an initial layout L of the expanded leveled
graph it must satisfy the constraint trees. To begin with, the additional loops
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sub−levels

mirrormirror

orientation grouping

grouping

T (v)

mcmc

oc gc

gc

v v

Fig. 4. A constraint tree T (v) and the corresponding restriction on the order of v’s
incident edges between v and the next successive level

and edges are labeled ‘+’. The additional loops preserve the order of the children
of the oc-vertices while the additional edges allow the order of the children of the
mc-vertices to be reversed altogether or none at all. The level planarity testing
and layout algorithms remain unchanged. If we find a level planar layout we then
contract the expanded graph back to G.
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Abstract. Minimum level nonplanar (MLNP) patterns play the role for
level planar graphs that the forbidden Kuratowksi subdivisions K5 and
K3,3 play for planar graphs. We add two MLNP patterns for trees to the
previous set of tree patterns given by Healy et al. [4]. Neither of these
patterns match any of the previous patterns. We show that this new set
of patterns completely characterizes level planar trees.

1 Introduction

Level graphs model hierarchical relationships. A level drawing has all vertices in
the same level with the same y-coordinates and has all edges strictly y-monotone.
Level planar graphs have level drawings without edge crossings. Hierarchies are
special cases in which every vertex is reachable via a y-monotone path from a
source in the top level. Planar graphs are characterized by forbidden subdivisions
of K5 and K3,3 by Kuratowksi’s Theorem [5]. The counterpart of this character-
ization for level planar graphs proposed by Healy, Kuusik, and Liepert [4] are
the minimum level nonplanar (MLNP) patterns. These are minimal obstructing
subgraphs with a set of level assignments that force one or more crossings.

Di Battista and Nardelli [1] provided three level nonplanar patterns for hi-
erarchies (HLNP patterns); cf. Fig. 2. Healy et al. adapted these HLNP pat-
terns to MLNP patterns for level graphs. However, the completeness of their
characterization was based on the claim that all MLNP patterns must contain a
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HLNP pattern. We provide a counterexample to this claim based on the level
nonplanar assignment for the forbidden tree T9 used by Estrella et al. [2] to
characterize the set of unlabeled level planar (ULP) trees; cf. Fig. 1. Healy et
al. provide two of the MLNP patterns, P1 and P2, for trees that are also HLNP
patterns; cf. Fig. 3(a) and (b). We provide two more MLNP patterns, P3 and
P4 for level nonplanar trees; cf. Fig. 3(c) and (d) using our counterexample.

2 Preliminaries

A k-level graph G(V, E, φ) on n vertices has leveling φ : V → [1..k] where every
(u, v) ∈ E either has φ(u) < φ(v) if G is directed or φ(u) �= φ(v) if G is
undirected. This leveling partitions V into V1 ∪ V2 ∪ · · · ∪ Vk where the level
Vj = φ−1(j) and Vi ∩ Vj = ∅ if i �= j. A proper level graph only has short edges
in which φ(v) = φ(u) + 1 for every (u, v) ∈ E. Edges spanning multiple levels
are long. A hierarchy is a proper level graph in which every vertex v ∈ Vj for
j > 1 has at least one incident edge (u, v) ∈ E to a vertex u ∈ Vi for some i < j.

A path p is a non-repeating ordered sequence of vertices (v1, v2, . . . , vt) for
t ≥ 1. Let min(p) = min{φ(v) : v ∈ p}, max(p) = max{φ(v) : v ∈ p}, and
P(i, j) =

{
p : p is a path where i ≤ min(p) < max(p) ≤ j

}
are the paths

between levels Vi and Vj . A linking path, or link, L ∈ L(i, j) is a path x � y in
which i = min(L) = φ(x) and max(L) = φ(y) = j, and L(i, j) ⊆ P(i, j) are all
paths linking the extreme levels Vi and Vj . A bridge b is a path x � y in P(i, j)
connecting links L1, L2 ∈ L(i, j) in which b ∩ L1 = x and b ∩ L2 = y.

A level drawing of G has all of its level-j vertices in the jth level Vj placed
along the track �j = {(x, k − j) | x ∈ R}, and each edge (u, v) ∈ E is drawn
as a continuous strictly y-monotone sequence of line segments. A level drawing
drawn without edge crossings shows that G is level planar. A pattern is a set
of level nonplanar graphs sharing structural similarities. Removing any edge
from the underlying graph matching a minimum level nonplanar (MLNP) pattern
gives a level planar graph. A hierarchy level nonplanar (HLNP) pattern is a
level nonplanar pattern in which every matching graph is a hierarchy. The next
theorem gives the set of the three distinct HLNP patterns.

Theorem 1. [Di Battista and Nardelli [1]] A hierarchy G(V, E, φ) on k levels
is level planar if and only if there does not exist three paths L1, L2, L3 ∈ L(i, j)
linking levels Vi and Vj for 1 ≤ i < j ≤ k where one of the following hold:

(PA) L1, L2, and L3 are completely disjoint and pairwise connected by bridges
b1, b2, b3 where b1 ∩ L2 = b2 ∩ L1 = b3 ∩ L1 = ∅; cf. Fig. 2(a).

(PB) L1 and L2 share a path C = L1 ∩ L2 from p ∈ Vi ∪ Vj where L1 ∩ L3 =
L2 ∩ L3 = ∅ are connected by bridges b1 from L1 to L3 and b2 from L1 to
L3 such that b1 ∩ L2 = b2 ∩ L1 = ∅; cf. Fig. 2(b).

(PC) L1 and L2 share a path C1 = L1 ∩ L2 from p ∈ Vi and L2 and L3 share a
path C2 = L2 ∩ L3 from q ∈ Vj such that C1 ∩ C2 = ∅. Bridge b connects
L1 and L3 where b ∩ L2 = b ∩ C1 = b ∩ C2 = ∅; cf. Fig. 2(c).
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Fig. 2. The three patterns characterizing hierarchies

3 MLNP Patterns for Trees

Theorem 2. A level tree T (V, E, φ) on k levels is minimum level nonplanar if
(1) there are three disjoint paths L1, L2, L3 ∈ L(i, j) for 1 ≤ i < j ≤ k where PA

of Theorem 1 applies and the union of the three bridges b1 ∪ b2 ∪ b3 forms a
subdivided K1,3 subtree S with vertex c of degree 3 where either
(P1) c ∈ Vi (or Vj) and there is a leaf of S in Vj (or Vi) as in Fig. 3(a) or
(P2) one leaf of S is in Vi and another leaf of S is in Vj as in Fig. 3(b), or

(2) there are four paths L1, L2, L3, L4 ∈ L(i, j) for 1 ≤ i < j ≤ k where L1∩L4 =
∅, L1 ∩L2 ∈ Vj (or Vi) and L3 ∩L4 ∈ Vi (or Vj) where L1 ∪L2 and L3 ∪L4
form paths with both endpoints in Vi and Vj (or Vj and Vi), resp., and there
exist levels Vl and Vm for some i < l < m < j in which either L2 or L3
consists of subpaths C1 ∈L(i, m), C2 ∈L(l, m), and C3 ∈L(l, j) where either
(P3) L2 ∩ L3 = x where l ≤ φ(x) ≤ m as in Fig. 3(c), or
(P4) L2 ∩ L3 is path x � y where l ≤ {φ(x), φ(y)} ≤ m and L2 = c � x �

y � b where c ∈ Vi (or Vj) and b ∈ Vj (or Vi) as in Fig. 3(d).
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Fig. 3. Four MLNP patterns for trees

Proof. P1 and P2 are MLNP given they match T1 and T2 of Healy et al. The
argument in [2] used by Estrella et al. to show T9 is level nonplanar generalizes
for P3 and P4. To see that P3 is minimal (P4 is similar), we try the seven distinct
ways of removing an edge; cf. Fig. 4. In each case crossings can be avoided. 
�

The proof of Theorem 15 of Healy et al. [4] argues that every MLNP pattern
must match some HLNP pattern. We show why this argument fails for P3.
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Lemma 3. P3 augmented to form a hierarchy has a subtree matching P2.

Proof. Fig. 5 shows the highlighted subtrees that match P2 when P3 is aug-
mented to form a hierarchy. However, P2 does not match P3 by Theorem 2. 
�

The next lemma gives the minimal conditions for a MLNP tree pattern.

Lemma 4. A level nonplanar tree T (V, E, φ) on k levels contains three disjoint
paths L1, L2, L3 ∈ L(i, j) linking levels Vi and Vj for 1 ≤ i < j ≤ k with bridges
b1 from L1 to L2 and b2 from L2 to L3 with x = b1 ∩ L2 and y = b2 ∩ L2 so that
either (Pα) x = y, (Pβ) L2 = c � y � x � d, or (Pγ) L2 = c � x � y � d
hold where c ∈ Vi and d ∈ Vj as in Fig. 6(a), (b), (c).

Proof. Assume that P is an MLNP pattern between levels Vi and Vj in which
|i − j| is minimum and there are at most two disjoint paths L1, L2 ∈ L(i, j).
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There could be at most one bridge b joining L1 and L2 without forming a cycle.
Let w be the endpoint of b in L2. Let P ′ be P − (u, v) where (u, v) is the short
edge connecting L1 to Vj in which v ∈ Vj . In order for P to be MLNP, there
must exist two linking paths p1, p2 ∈ L(i, j) in P ′ with endpoints x, z ∈ Vi and
common endpoint y ∈ Vj such that for any level planar embedding of P ′, u is
contained in the region bounded by p1, p2 and the track �i; cf. Fig. 6(d). Assume
w.l.o.g. that L2 is p2. In order for p1 not to be embeddable on the other side
of p2 (allowing edge (u, v) to be drawn in P without crossing), there must be a
path p3 from s in L2 to t ∈ Vj in which s lies between z and w blocking this
direction. Then there are at least three disjoint paths in P in L(i, j): p1, L1 and
the path z � s � t, contradicting our assumption of there only being two.

Let L1, L2, L3 ∈ L(i, j) be three disjoint paths. At least one of the three paths,
say it is L2, must be joined by bridges b1 and b2 to the other two paths L1 or L3,
respectively, or P would be disconnected contradicting the minimality of P . If
b1 ∩ b2 form a nonempty path, then b1 ∪ b2 would form a subtree homeomorphic
to K1,3, yielding pattern P1 or P2 of Theorem 2. Thus, b1 and b2 can share at
most one vertex as in Pα of Fig. 6(a). Otherwise there must have been endpoints
x = b1 ∪ L2 and y = b2 ∪ L2 along the path c � d forming L2 where either y
proceeds x as in Pβ of Fig. 6(b) or x proceeds y as in Pγ of Fig. 6(c). 
�

We next show that P4 is easily derived from P3.

Lemma 5. P4 is the only distinct MLNP pattern for trees that can be formed
from P3 (by splitting the degree-4 vertex) not containing a subtree matching P2.

Proof. Fig. 7 shows the three ways the degree-4 vertex of P3 can be split into
two degree-3 vertices. Two contain subtrees that match P2. 
�

Finally we complete our characterization for level nonplanar trees.

Theorem 6. A level tree T is level nonplanar if and only if T has a subtree
matching one of the minimum level nonplanar patterns P1, P2, P3, or P4.

Proof Sketch: We sketch proof for the simplest case here; the full proof can be
found in [3]. Once a MLNP pattern P is augmented to form a hierarchy, one of
the HLNP patterns must apply. Since this augmentation does not introduce a
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cycle between levels Vi and Vj , either pattern P1 or P2 must match a subtree of
the augmented pattern by Lemma 5 of [4].

Assume there is a MLNP tree pattern P containing Pα of Lemma 4 that does
not match P1 or P2. We consider the simplest case of how the bridges of Pα in
P could spans levels between Vi and Vj . We augment P to form a hierarchy to
illustrate how either P must match P1 or P2 or contain a cycle.

Suppose that a bridge of Pα in P is not strictly y-monotone. Then P could
either have a bend at e in level Vl in one bridge or a bend at f in level Vm in
the other as in Fig. 8(a) for some i < l < m < j. Each bend would require
augmentation to a path from the source when forming a hierarchy from above
or below as was the case with P3 in Fig. 5.

We augment P with a path p � e from Vi to Vl to form P ′, a hierarchy,
that must match P1 or P2. We observe that between levels Vi and Vm, we have
four linking paths. A third bridge u � v must be present in P ′ that is part of
a subtree S homeomorphic to K1,3. Fig. 8(b) gives one such example. While P ′

matches P2 between levels Vi and Vm, we see that between levels Vi and Vj , P
must have had the cycle u � v � e � b � u, contradicting P being a tree
pattern. By inspection, any other placement of u � v to connect three of the
four linking paths to form P1 or P2 similarly implies a cycle in P .
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Hence, P cannot contain any more edges than those of Pα without matching
P1 or P2. We observe that Pα consists of two paths sharing a common vertex x.
Given the minimality of P in minimizing |i − j|, one path has both endpoints
in Vi with one vertex in Vj that can be split into linking paths L1, L2 ∈ L(i, j).
Similarly, the other has both endpoints in Vj with one vertex in Vi that can also
be split into the linking paths L3, L4 ∈ L(i, j). In P3 of Fig. 8(a), L1 is a � b,
L2 is b � e � x � c, L3 is d � x � f � g, and L4 is g � h.

For P to be level nonplanar, a crossing must be forced between these two
paths. This is done by having L2 or L3 meet the condition of P3 of three subpaths
C1 ∈ L(i, m) linking Vi to Vm, C2 ∈ L(l, m) linking Vl to Vm, and C3 ∈ L(l, j)
linking Vl to Vj . This is not the case for Pα in Fig. 8(a) since the x � c portion
of L2 does not reach level Vm, and the x � d portion of L3 does not reach level
Vl. So for P not to match P3, at least one subpath of both L2 and L3 from x to
Vi or Vj must strictly monotonic as was the case in Fig. 8(a). However, in this
case P can be drawn without crossings. This leaves P3 as the only possibility of
a MLNP pattern matching Pα that does not match P1 or P2. 
�
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Abstract. In this paper we provide upper and lower bounds on the
area requirement of straight-line orthogonal drawings of n-node binary
and ternary trees. Namely, we show algorithms for constructing order-
preserving straight-line orthogonal drawings of binary trees in O(n1.5)
area, straight-line orthogonal drawings of ternary trees in O(n1.631) area,
and straight-lineorthogonaldrawingsofcompleteternarytrees inO(n1.262)
area. As far as we know, the ones we present are the first algorithms
achieving sub-quadratic area for these problems. Further, for upward
order-preserving straight-line orthogonal drawings of binary trees and
for order-preserving straight-line orthogonal drawings of ternary trees
we provide Ω(n2) area lower bounds, that we also prove to be tight.

1 Introduction

The design of algorithms for constructing orthogonal and straight-line drawings
of binary and ternary trees, that are trees whose maximum degree is bounded
by three and four, respectively, has attracted considerable research efforts in the
Graph Drawing community. Orthogonal and straight-line planar drawings are
easily readable by the viewer and hence they are among the most studied drawing
standards. When dealing with orthogonal or straight-line tree drawings, it is
common to consider area minimization as an important aesthetic requirement
to satisfy. The study of area minimization for binary and ternary tree drawings
has been motivated by VLSI circuits design and it is still attractive for the sake
of rendering acyclic relationships on a screen limited by a finite resolution rule.
Nevertheless, the beauty of some combinatorial and geometric open problems
concerning area minimization of straight-line and orthogonal drawings of trees
justifies their study even looking at them from a purely theoretical point of view.

Almost thirty years ago, Valiant proved in [12] that every n-node ternary
tree admits a Θ(n) area orthogonal drawing. Such a result was strengthened
in [5], where Dolev and Trickey proved that ternary trees admit Θ(n) area order-
preserving orthogonal drawings. A Θ(n log log n) optimal bound for upward or-
thogonal drawings of binary trees was proved by Garg et al. in [6], while in [9]
Kim showed that Θ(n log n) area is an optimal bound for upward orthogonal
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drawings of ternary trees. Concerning the area requirement of planar straight-
line drawings, Garg and Rusu proved in [8] that linear area suffices for bounded
degree trees, while Θ(n log n) area is asymptotically optimal if the drawing is
required to be upward and order-preserving [7].

Drawings that are simultaneously straight-line and orthogonal provide ex-
tremely high readability of the combinatorial structure of a tree, and hence it is
a serious lack in the literature that only few results concerning area minimiza-
tion of straight-line orthogonal drawings of binary and ternary trees are known.
Chan et al. in [1], and Shin et al. in [11] have shown that O(n log log n) area suf-
fices for straight-line orthogonal drawings of binary trees. Further, it has been
shown in [3,1] that binary trees admit upward straight-line orthogonal drawings
in O(n log n) area. Such an area bound is worst-case optimal, as proved in [1].

In this paper we present the following results: (i) order-preserving straight-
line orthogonal drawings of binary trees can be constructed in O(n1.5) area
(Section 3); (ii) upward order-preserving straight-line orthogonal drawings of
binary trees require (and can be realized in) Ω(n2) area (Section 3); (iii) straight-
line orthogonal drawings of ternary trees can be constructed in O(n1.631) area
(Section 4); (iv) order-preserving straight-line orthogonal drawings of ternary
trees require (and can be realized in) Ω(n2) area (Section 4); (v) straight-line
orthogonal drawings of complete ternary trees can be constructed in O(n1.262)
area (Section 5); and (vi) there exist ternary trees for which the minimum side
of any straight-line orthogonal drawing is Ω(n0.438) and, for complete ternary
trees, such a bound is tight (Section 5).

Table 1. Summary of the best known area bounds for straight-line orthogonal drawings
of binary and ternary trees. For complete trees the order-preserving column is not
considered, since such trees are symmetric. Straight-line orthogonal upward drawings
of ternary trees cannot generally be constructed.

Upward Order-preserving Upper Bound Ref. Lower Bound Ref.
Complete Binary � O(n) [3] Ω(n) trivial
Complete Binary O(n) [10] Ω(n) trivial

Binary � � O(n2) [3] Ω(n2) Th. 1
Binary � O(n log n) [3,1] Ω(n log n) [1]
Binary � O(n1.5) Th. 2 Ω(n) trivial
Binary O(n log log n) [1,11] Ω(n) trivial

Complete Ternary � non-drawable
Complete Ternary O(n1.262) Th. 6 Ω(n) trivial

Ternary � � non-drawable
Ternary � non-drawable
Ternary � O(n2) Th. 4 Ω(n2) Th. 3
Ternary O(n1.631) Th. 5 Ω(n) trivial

2 Preliminaries

We assume familiarity with trees and their drawings (see also [4]).
A rooted tree T is a tree with one distinguished node, called root and denoted

by r(T ). In the following we assume that binary and ternary trees are rooted



78 F. Frati

at any node of degree at most two and three, respectively. A spine in T is a
path connecting r(T ) to a leaf. A double-spine in T is a path connecting two
leaves and passing through r(T ). A tree is ordered if an order of the children of
each node is specified. For an ordered binary tree we talk about left and right
child. For an ordered ternary tree we talk about left, middle, and right child.
The subtrees rooted at the left, middle, and right child of a node u are the left,
middle, and right subtree of u, respectively. The subtree of a given tree rooted
at node u is denoted by T (u). Removing a path P from a tree disconnects the
tree into connected components. The ones containing children of nodes in P
are subtrees of P . If the tree is ordered, then each component is a left, middle,
or right subtree of P , depending on whether the root of such subtree is a left,
middle, or right child of a node in P . We denote by |T | the number of nodes in
a tree T . The heaviest tree in a set of trees is the one with the greatest number
of nodes. A complete tree is such that all non-leaf nodes have the same degree
and all spines have the same number of nodes, called the height of the tree.

A straight-line orthogonal grid drawing of a binary or ternary tree is a map-
ping of its nodes to distinct points with integer coordinates and of its edges to
horizontal or vertical segments between such points. A drawing is planar if no
two segments cross, but, possibly, at common end-points. In the following we
use SO-drawing as short for straight-line orthogonal planar grid drawing. An
SO-drawing is upward if every node is drawn not below its children. An SO-
drawing Γ is order-preserving if, for every node u, the segments connecting u
to its left child, middle child, right child and parent appear in Γ in this order
around u. When we talk about order-preserving drawings, we suppose that trees
are ordered. Consider an SO-drawing Γ of a rooted tree T . Denote by l the ver-
tical half-line starting at r(T ) and directed upward. Then Γ has the top visibility
property if no node, but for r(T ), is placed on l and no edge crosses l. Denote
by r the horizontal line through r(T ). Then Γ has the side visibility property if
no node, but for r(T ), is placed on r and no edge crosses r. The width (height)
of a drawing is the number of vertical (horizontal) grid lines intersecting it. The
area of a drawing is its height multiplied by its width.

3 Straight-Line Orthogonal Order-Preserving Drawings
of Binary Trees

First, we show that order-preserving upward SO-drawings of binary trees gener-
ally require quadratic area. Such a bound is matched by an O(n2) upper bound
obtained by using the well-known h-v layout (see, e.g., [3]).

Theorem 1. There exists an n-node binary tree T requiring Ω(n2) area in any
upward order-preserving SO-drawing.

Proof: Assume n ≡ 0 mod 6. Tree T is composed of (see Fig. 1.a): (i) an n/6-
node spine C1 : (m0 = r(T ), m1, . . . , mn

6 −2, mn
6 −1), with mi left child of mi−1,

for 1 ≤ i ≤ n
6 − 1; (ii) an n/6-node spine C2 : (p0 = r(T ), p1, . . . , pn

6 −2, pn
6 −1),

with pi right child of pi−1, for 1 ≤ i ≤ n
6 − 1; (iii) the right child mr

i of each
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Fig. 1. (a) Tree T providing the lower bound of Theorem 1. (b)-(c)-(d) Possible place-
ments of r(T ) and its children.

node mi of C1, with 1 ≤ i ≤ n
6 − 2; (iv) the left child pl

i of each node pi of C2,
with 1 ≤ i ≤ n

6 − 2; (v) a path C3 of n/6 + 3 nodes, alternating between right
and left children, such that one end-vertex of C3 is mr

1; and (vi) n/6 + 3 leaves
attached to C3, alternating between left and right children.

Consider any upward order-preserving SO-drawing Γ of T . In [6] it is shown
that C3 and its attached leaves require Ω(n) height in any upward order-preserving
drawing. Consider the relative position of r(T ) and its children in Γ . Three are
the cases; either m1 is to the left of r(T ) and p1 is below r(T ) (see Fig. 1.b), or
m1 is below r(T ) and p1 is to the right of r(T ) (see Fig. 1.c), or m1 is to the left
of r(T ) and p1 is to the right of r(T ) (see Fig. 1.d). Suppose m1 is to the left
of r(T ). We prove by induction that each node mi of C1, with 1 ≤ i ≤ n

6 − 1,
is drawn at least one unit to the left of its parent. The claim holds in the base
case by the assumption that m1 is to the left of m0 = r(T ). If mi is to the left
of mi−1, then the edges from mi to its children are drawn towards the left and
the bottom. Since the drawing is order-preserving, mr

i must be below mi and
mi+1 to the left of mi. So each node mi, with 1 ≤ i ≤ n

6 − 1, is drawn at least
one unit to the left of its parent, implying a linear lower bound on the width of
Γ . If m1 is not to the left of r(T ) then p1 is to the right of r(T ) and a similar
argument shows that each node pi, with 1 ≤ i ≤ n

6 − 1, is at least one unit to
the right of its parent, again implying a linear lower bound on the width of Γ .
Hence both the height and the width of Γ are Ω(n). �
Now we turn to non-upward drawings, showing that sub-quadratic area suffices
for order-preserving SO-drawings:

Theorem 2. Any n-node binary tree T admits an O(n1.5) area order-preserving
SO-drawing.

Proof: We describe an inductive algorithm constructing an order-preserving SO-
drawing Γ of T satisfying the side visibility property. If n = 1, then Γ is trivially
constructed. Suppose n > 1. Select a double-spine π = (uk, uk−1, . . . , u1, u0 =
r(T ) = v0, v1, . . . , vm) in T . How to choose π is discussed later. Denote by pi the
non-spine child of a node ui ∈ π and by qj the non-spine child of a node vj ∈ π.
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Fig. 2. Illustrations for the algorithm in the proof of Theorem 2. Left (right) edges are
labeled l (r). Label l (r) inside a subtree shows the direction of the edge from the root
to its left (right) child.

Recursively construct drawings Γ (pi) of T (pi) and Γ (qj) of T (qj) satisfying
the side visibility property, for 1 ≤ i < k and 1 ≤ j < m. Let hv, h−1

v , and h1
v be

vertical grid lines with h−1
v (h1

v) one unit to the left (to the right) of hv. Draw
r(T ) on hv. For i = 1, 2, . . . , k − 1, if pi is the left child of ui rotate Γ (pi) of π
and place it so that the rightmost vertical line intersecting it is h−1

v and with the
lowest horizontal line intersecting it one unit above the highest horizontal line
intersecting Γ (pi−1) or ui−1; otherwise (pi is the right child of ui), place Γ (pi) so
that the leftmost vertical line intersecting it is h1

v and with the lowest horizontal
line intersecting it one unit above the highest horizontal line intersecting Γ (pi−1)
or ui−1. Draw ui on hv on the same horizontal line of its already drawn child (or
one unit above the highest horizontal line intersecting Γ (pi−1) or ui−1 if no child
of ui has been drawn). Draw uk on hv one unit above the highest horizontal line
intersecting Γ (pk−1) or uk−1. For j = 1, 2, . . . , m − 1, if qj is the right child of
vj rotate Γ (qj) of π and place it so that the rightmost vertical line intersecting
it is h−1

v and with the highest horizontal line intersecting it one unit below the
lowest horizontal line intersecting Γ (qj−1) or vj−1; otherwise (qj is the left child
of vj), place Γ (qj) so that the leftmost vertical line intersecting it is h1

v and with
the highest horizontal line intersecting it one unit below the lowest horizontal
line intersecting Γ (qj−1) or vj−1. Draw vj on hv on the same horizontal line of
its already drawn child (or one unit below the lowest horizontal line intersecting
Γ (qj−1) or vj−1 if no child of vj has been drawn). Draw vm on hv one unit below
the lowest horizontal line intersecting Γ (qm−1) or vm−1 (see Fig. 2.a).

It’s easy to see that the constructed drawing Γ is an order-preserving SO-
drawing satisfying the side visibility property. Let’s analyze the area requirement
of Γ . Concerning its height, there is at least one node of T on each horizontal
grid line intersecting Γ , hence the height of Γ is O(n). Denote by W (T ) the
width of the drawing constructed by the described algorithm when its input is
binary tree T . Let also W (n) = max{W (T )} over all binary trees T with n
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nodes. Since all subtrees drawn to the left (to the right) of π are aligned on their
right side (on their left side) and since W (n) is a non-decreasing function of n,
then W (n) = W (nl) + W (nr) + 1, where nl (nr) is the number of nodes in the
heaviest subtree drawn to the left (to the right) of π. To get a good bound for
W (n) we need to carefully choose π. A technique similar to the one we present
was introduced in [2] for selecting (single) spines. π is composed of two spines
U = (u0, u1, . . . , uk) and V = (v0, v1, . . . , vm). Spine U is iteratively selected as
follows: u0 = r(T ), u1 is the left child of u0. Denote by li and by ri the left
and right child of ui, respectively. Denote also by αi and by βi the heaviest left
subtree and the heaviest right subtree of path (u1, . . . , ui−1) (see Fig. 2.b). If
|αi| + |T (ri)| ≤ |βi| + |T (li)| then set ui+1 = li, otherwise set ui+1 = ri. Spine
V is iteratively selected as follows: v0 = r(T ), v1 is the right child of u0. Denote
by lj and by rj the left and right child of vj , respectively. Denote by αj the
one between the heaviest right subtree of path (v1, . . . , vj−1) and the heaviest
left subtree of U \ u0 that has the greatest number of nodes. Denote also by βj

the one between the heaviest left subtree of path (v1, . . . , vj−1) and the heaviest
right subtree of U \ u0 that has the greatest number of nodes (see Fig. 2.c).
If |αj | + |T (lj)| ≤ |βj | + |T (rj)| then set vj+1 = rj , otherwise set vj+1 = lj .
Similarly to [2], we get the following:

Lemma 1. For any left subtree α of U \ u0 or right subtree α of V \ v0 and for
any right subtree β of U \ u0 or left subtree β of V \ v0, |α| + |β| ≤ n/2.

Proof: If α and β are both subtrees of U \ u0 or if are both subtrees of V \ v0,
then the statement follows as in Lemma 4.1 of [2]. Otherwise, suppose α is a
left subtree of U \ u0 and β is a left subtree of V \ v0. Let vj be the parent of
β’s root. Denote by lj and rj the left and right child of vj , respectively. Notice
that rj = vj+1. Denote by αj the one between the heaviest right subtree of
path (v1, . . . , vj−1) and the heaviest left subtree of U \ u0 that has the greatest
number of nodes, and denote by βj the one between the heaviest left subtree of
path (v1, . . . , vj−1) and the heaviest right subtree of U \u0 that has the greatest
number of nodes. By construction |αj | + |T (lj)| ≤ |βj | + |T (rj)|. Moreover,
|αj | + |T (lj)| + |βj | + |T (rj)| ≤ n. Therefore, αj + |T (lj)| ≤ n/2. Since α ≤ αj

and β = T (lj), the statement follows. The case in which α is a right subtree of
V \ v0 and β is a right subtree of U \ u0 is analogous. �

Selecting π as just described, we get W (n) ≤ maxn1+n2≤n/2 W (n1)+W (n2)+1.
As already noticed in [2], by Hölder’s inequality n1 + n2 ≤ n/2 implies

√
n1 +√

n2 ≤
√

n and, by induction, W (n) ≤ c
√

n − 1, for some constant c depending
only on the values of W (n) with n small. �

4 Straight-Line Orthogonal Drawings of Ternary Trees

In this section we consider SO-drawings of ternary trees. First, we show that if
an order of the children of each node is fixed, then quadratic area is necessary
in the worst case.
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Theorem 3. There exists an n-node ternary tree T requiring Ω(n2) area in any
order-preserving SO-drawing.

Proof: Assume n ≡ 4 mod 9. Tree T is composed of (see Fig. 3.a): (i) a spine
C1 : (m0 = r(T ), m1, . . . , mn−4

9
, mn+5

9
), with m1 left child of r(T ) and mi middle

child of mi−1, for i=2, 3, . . . , n+5
9 ; (ii) a spine C2 : (p0 =r(T ), p1, . . . , pn−4

9
, pn+5

9
),

with pi middle child of pi−1, for i = 1, 2, . . . , n+5
9 ; (iii) a spine C3 : (q0 =

r(T ), q1, . . . , qn−4
9

, qn+5
9

), with q1 right child of r(T ) and qi middle child of qi−1,
for i = 2, 3, . . . , n+5

9 ; and (iv) a left and a right child for each node mi, pi, and
qi, for i = 1, 2, . . . , n−4

9 . Consider any order-preserving SO-drawing of C1 and of
the children of nodes mi, with 1 ≤ i ≤ n−4

9 . Suppose that m1 is to the left of
m0. Then, to preserve the order of the children of m1, mi is to the left of mi−1,
for i = 2, 3, . . . , n+5

9 . Analogously, if m1 is to the right, above, or below m0, then
mi is to the right, above, or below mi−1, respectively, for i = 2, 3, . . . , n+5

9 . Such
an argument applies to C2 (to C3), as well: If p1 (q1) is to the left, to the right,
above, or below p0 (q0), then pi (qi) is to the left, to the right, above, or below
pi−1 (qi−1), respectively, for i = 2, 3, . . . , n+5

9 . Since r(T ) has three children,
then at least one of them is above or below r(T ) and one of them is to the left or
to the right of r(T ). Hence, any order-preserving SO-drawing of T has at least
n+5

9 + 1 height and width. �
The proved bound is tight, as shown in the following:

Theorem 4. Any n-node ternary tree T admits an O(n2) area order-preserving
SO-drawing.

Proof: We show an inductive algorithm constructing an order-preserving SO-
drawing Γ of T satisfying the top visibility property. If n = 1, then Γ is trivially
constructed. Suppose n > 1. Let Tl, Tm, and Tr be the left, middle, and right
subtree of r(T ). By induction, drawings Γl, Γm, and Γr satisfying the top visi-
bility property can be constructed for Tl, Tm, and Tr, respectively. Draw r(T ) in
the plane. Rotate Γl of π/2 in clockwise direction. Place Γl with the rightmost
vertical line intersecting it one unit to the left of r(T ) and with r(Tl) on the same
horizontal line of r(T ). Rotate Γr of π/2 in counter-clockwise direction. Place
Γr with the leftmost vertical line intersecting it one unit to the right of r(T )
and with r(Tr) on the same horizontal line of r(T ). Place Γm with the highest
horizontal line intersecting it one unit below the lowest horizontal line intersect-
ing Γl or Γr and with r(Tm) on the same vertical line of r(T ) (see Fig. 3.b). It’s
easy to see that Γ is an order-preserving SO-drawing satisfying the top visibility
property. Since Γ has at least one node for each horizontal and vertical grid line
intersecting it, then its height and its width are O(n). �
For non-order-preserving drawings better bounds can be achieved:

Theorem 5. Any n-node ternary tree T admits an O(n1.631) area SO-drawing.

Proof: We show an inductive algorithm that constructs an SO-drawing Γ of T
satisfying the top visibility property. If n = 1, then Γ is trivially constructed.
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Fig. 3. (a) Tree T requiring Ω(n2) area in any order-preserving SO-drawing. (b) Illus-
tration for the algorithm in Theorem 4. (c) Illustration for the algorithm in Theorem 5.
Subtrees labeled by second or third are second or third heaviest subtrees, respectively.

Suppose n > 1. Select a double-spine π = (uk, uk−1, . . . , u1, u0 = r(T ) =
v0, v1, . . . , vm) in T such that: T (v1) is the heaviest subtree of r(T ); for j =
2, 3, . . . , m, T (vj) is the heaviest subtree of vj−1; T (u1) is the heaviest subtree
of r(T ) different from T (v1); for i = 2, 3, . . . , k, T (ui) is the heaviest subtree of
ui−1. For each node vj in π, with j = 0, 1, . . . , m−1, (for each node ui in π, with
i = 1, 2, . . . , k − 1), call second heaviest subtree S(vj) (S(ui)) and third heaviest
subtree R(vj) (R(ui)), the subtrees of vj (of ui) different from T (vj+1) (from
T (ui+1)) with the greater and the smaller number of nodes, respectively.

Recursively construct a drawing satisfying the top visibility property of each
subtree of π. Let h be an horizontal grid line. Draw r(T ) on h. Place the drawing
of R(v0) with the highest horizontal line intersecting it one unit below h and
with its root on the same vertical line of r(T ). For j = 1, 2, . . . , m − 1, rotate
of π the drawing of R(vj). Place the drawing Γ S

j of S(vj) and Γ R
j of R(vj) so

that the highest horizontal line intersecting Γ S
j is one unit below h, the lowest

horizontal line intersecting Γ R
j is one unit above h, their roots are on the same

vertical line, and the leftmost vertical line intersecting Γ S
j or Γ R

j is one unit to
the right of the rightmost vertical line intersecting Γ S

j−1, Γ R
j−1, or vj−1. Draw vj

on h on the same vertical line of its already drawn children (or draw vj one unit
to the right of the rightmost vertical line intersecting Γ S

j−1, Γ R
j−1, or vj−1 if no

child of vj has been drawn). Draw vm on h one unit to the right of the rightmost
vertical line intersecting Γ S

m−1, Γ R
m−1, or vm−1. For path (u1, u2, . . . , uk) and its

subtrees, analogously construct a drawing in which the path lies on h, to the
left of r(T ), and the S(ui)’s and the R(ui)’s are below and above h, respectively
(see Fig. 3.c).

It’s easy to see that Γ is an SO-drawing satisfying the top visibility property.
Let’s analyze the area of Γ . Since there is at least one node of T for each
vertical grid line intersecting Γ , then its width is O(n). Denote by H(T ) the
height of the drawing constructed by the algorithm when its input is T . Let also
H(n) = max{H(T )} over all ternary trees T with n nodes. Since all subtrees
drawn above π (below π) are aligned on their bottom side (on their top side) and
since H(n) is a non-decreasing function of n, then H(n) = H(na) + H(nb) + 1,
where na (nb) is the number of nodes in the heaviest subtree drawn above (below)
of π. We claim (1) na + nb ≤ 2n/3. Namely, we have (2) na ≤ nb, (3) nb ≤ n/2,
and (4) na ≤ n − 2nb. Inequality (2) holds since for each node w in π, |R(w)| ≤
|S(w)|; inequality (3) follows from the fact that, for each node vj and ui in π,
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|S(vj)| ≤ |T (vj+1)| and |S(ui)| ≤ |T (ui+1)|; inequality (4) follows by considering
any node vj (ui) in π and observing that |S(vj)| ≤ |T (vj+1)| (|S(ui)| ≤ |T (ui+1)|)
and that |R(vj)| + |S(vj)| + |T (vj+1)| ≤ n (|R(ui)| + |S(ui)| + |T (ui+1)| ≤ n).
By (3) we have nb = n

2 − α, with α ≥ 0. If α ≥ n/6, then by (2) nb + na ≤
2(n/2−α) ≤ 2n/3. If α < n/6, by (4) we have na ≤ n−2(n/2−α) = 2α. Hence
nb+na ≤ n/2−α+2α = n/2+α ≤ 2n/3. We claim that n

(1/ log2 3)
a +n

(1/ log2 3)
b ≤

n(1/ log2 3). Hölder’s inequality states that (5)
∑

aibi ≤ (
∑

ap
i )

1
p (

∑
bq
i )

1
q for every

p and q such that 1/p+1/q = 1. Substituting into (5) the values a1 = n
(1/ log2 3)
a ,

a2 = n
(1/ log2 3)
b , b1 = b2 = 1, 1/p = 1/ log2 3, and 1/q = 1 − 1/ log2 3, we get

n
(1/ log2 3)
a + n

(1/ log2 3)
b ≤

[(
n

(1/ log2 3)
a

)log2 3
+

(
n

(1/ log2 3)
b

)log2 3
](1/ log2 3)

· [1 +

1](1−1/ log2 3) = (na + nb)(1/ log2 3) · 2(1−1/ log2 3) ≤ (2n/3)(1/ log2 3) · 2(1−1/ log2 3) =
n(1/ log2 3)

(
21/ log2 3 · 2 · 2−1/ log2 3

)
/

(
31/ log2 3

)
= n(1/ log2 3)

(
2/(31/ log2 3)

)
=

n(1/ log2 3). Hence, H(n) ≤ maxn1+n2≤2n/3 H(n1)+H(n2)+1 by induction solves
to H(n) = c · n(1/ log2 3) − 1 for some constant c, depending only on the values
of H(n) with n small. It follows that H(n) = O(n(1/ log2 3)) = O(n0.631). �

5 Straight-Line Orthogonal Drawings of Complete
Ternary Trees

For complete ternary trees we present two algorithms constructing drawings
with better area bounds than the ones obtained for general ternary trees. Let
Γh be a drawing of a complete ternary tree Th with height h. In both algorithms
inductively suppose to have a drawing Γh−1 of Th−1 satisfying the top visibility
property, take three copies Γ ′

h−1, Γ ′′
h−1, and Γ ′′′

h−1 of Γh−1, rotate Γ ′
h−1 of π/2

and Γ ′′
h−1 of 3π/2 in clockwise direction. The algorithms differ in the geometric

construction of Γh. In Construction 1 draw r(Th) on any horizontal grid line lh.
Place Γ ′′′

h−1 with the highest horizontal line intersecting it one unit below lh and
with the root r(Th−1) in Γ ′′′

h−1 on the same vertical line of r(Th). Place Γ ′
h−1

with the rightmost vertical line intersecting it one unit to the left of the leftmost
vertical line intersecting Γ ′′′

h−1 and with the root r(Th−1) in Γ ′
h−1 on lh. Place

Γ ′′
h−1 with the leftmost vertical line intersecting it one unit to the right of the

rightmost vertical line intersecting Γ ′′′
h−1 and with the root r(Th−1) in Γ ′′

h−1 on lh
(see Fig. 4.a). In Construction 2 draw r(Th) on any horizontal grid line lh. Place
Γ ′

h−1 with the rightmost vertical line intersecting it one unit to the left of r(Th)
and with the root r(Th−1) in Γ ′

h−1 on lh. Place Γ ′′
h−1 with the leftmost vertical

line intersecting it one unit to the right of r(Th) and with the root r(Th−1) in
Γ ′′

h−1 on lh. Place Γ ′′′
h−1 with the highest horizontal line intersecting it one unit

below the lowest horizontal line intersecting Γ ′′
h−1, and with the root r(Th−1) in

Γ ′′′
h−1 on the same vertical line of r(Th) (see Fig. 4.b). We have the following:

Theorem 6. An n-node complete ternary tree Th admits an O(n1/ log4 3) =
O(n1.262) area SO-drawing.
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h-1

Γ  ’h-1
Γ ’’
h-1

Γ  ’’’

r(Th)
Γ  ’h-1

Γ ’’
h-1

h-1Γ  ’’’

r(Th)

(a) (b)

Fig. 4. Constructions 1 (a) and 2 (b) for SO-drawings of complete ternary trees

Proof: Construct a drawing Γh of Th by inductively using Construction 1. De-
noting by Wh and by Hh the width and the height of Γh, respectively, by con-
struction we have Wh = Wh−1 +2Hh−1 and Hh = max{Wh−1, Hh−1 +(Wh−1 +
1)/2}. Assume by inductive hypothesis that Wh−1 = 2h−1 − 1 and that Hh−1 =
2h−2. Notice that this holds in the base case, where W1 = H1 = 1. Observe also
that by inductive hypothesis Hh−1 + (Wh−1 + 1)/2 = 2h−2 + (2h−1 − 1+ 1)/2 =
2h−1 > Wh−1 = 2h−1−1. Hence, Hh = 2h−1 and Wh = 2h−1−1+2·2h−2 = 2h−1,
that proves the inductive hypothesis. The area of Γh is equal to (2h −1) ·2h−1 <
4h = 4O(log3 n) = O(n1/ log4 3). Inductively applying Construction 2 instead of
Construction 1 yields to a drawing with asymptotically the same area. �

Next, we show that n-node complete ternary trees have Ω(n0.438) minimum
side in any SO-drawing. This result sharply contrasts with the analogous for
binary trees. Namely, any binary tree admits an SO-drawing in which one side
is O(log n). Let Γh be any SO-drawing of Th. One of the children of r(Th), say
v1, is such that no other child of r(Th) is drawn on the line l through r(Th) and
v1. Moreover, for i = 1, 2, . . . , h − 2, node vi has exactly one child vi+1 drawn
on l. Hence, in any SO-drawing of Th, there is a spine of h nodes drawn all on
the same horizontal or vertical line l, such that no other child of r(Th) is on
l. We call leg of Γh such a spine. Analogously, in any SO-drawing of Th there
is a double-spine of 2h − 1 nodes that are drawn all on the same horizontal or
vertical line. We call arm of Γh such a double-spine. We have:

Lemma 2. The minimum side of any SO-drawing of an n-node complete ternary
tree is Ω(n0.438).

Proof: Let Γh be an SO-drawing of a complete ternary tree Th in which the
length of the leg is minimum. Let l(Γh) be the length of the leg in Γh. We claim
that l(Γh) ≥ l(Γh−1) + l(Γh−2). Consider the arms of the subtrees of r(Th).
Either two of such arms are vertical and one horizontal or vice versa. Assume,

r(Th)

S1 S2l

S3

r(Th)
S1

S2

S3
l

r(Th)

Th-2

Th-1

Th

r(Th)

Th-3

Th-7

Th-5

Th-1

Th

(a) (b) (c) (d)

Fig. 5. Illustrations for Lemma 2. Thick lines drawn inside subtrees represent their
legs.
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possibly rotating Γh of π/2, that two of such arms, say S1 and S2, are vertical
and one, say S3, horizontal. Consider the possible non-crossing placements of
S1, S2, and S3, and consider the lowest horizontal line l intersecting both S1
and S2. Two are the cases; either S3 is below l (Fig. 5.a), or not (Fig. 5.b). In
the first case we trivially have l(Γh) > l(Γh−1) + l(Γh−2) (see Fig. 5.c) and the
claim follows. In the second case we have l(Γh) > l(Γh−1) + l(Γh−3) + l(Γh−5) +
. . . + l(Γh/2−�h/2�+3) + l(Γh/2−�h/2�+1) (see Fig. 5.d). However, recurrence (1)
f(x) = f(x−1)+f(x−3)+f(x−5)+. . .+f(x/2−�x/2�+3)+f(x/2−�x/2�+1)
asymptotically provides for f(x) the same value provided by f(x) = f(x − 1) +
f(x − 2). Namely, from (1) we get f(x − 2) = f(x − 3) + f(x − 5) + . . . +
f((x − 2)/2 − �(x − 2)/2� + 3) + f((x − 2)/2 − �(x − 2)/2� + 1), and since
(x − 2)/2 − �(x − 2)/2� = x/2 − �x/2� we get f(x − 3) + f(x − 5) + . . . +
f(x/2−�x/2�+3)+ f(x/2−�x/2�+1) = f(x−2), that substituted in (1) gives
f(x) = f(x−1)+f(x−2). Hence, l(Γh) ≥ l(Γh−1)+l(Γh−2), implying that l(Γh)
grows at least as the terms of the Fibonacci series, for which it is well know that
the ratio of two consecutive terms lk+1 and lk tends to the golden ratio φ. Hence
l(Γh) = Ω(φh) = Ω(φlog3 n) = Ω(n1/ logφ 3) = Ω(n0.438). The statement follows
by observing that the minimum length of the arm of Γh grows asymptotically
at least as the leg of Γh and that each side of Γh is at least long as the leg or as
the arm of Γh. �

In the following we prove that, for complete ternary trees, the lower bound of
Lemma 2 is tight. Again, we introduce two constructions, called Constructions 1̂
and 2̂, defined as follows: Construction 1̂ has the same geometric inductive step
of Construction 1, but the side drawings are recursively constructed with Con-
struction 2̂ and the base drawing is recursively constructed with Construction
1̂; Construction 2̂ has the same geometric inductive step of Construction 2, but
the side drawings are recursively constructed with Construction 1̂ and the base
drawing is recursively constructed with Construction 2̂.

Lemma 3. The drawings built by Construction 1̂ have O(n0.438) height.

Proof: Denote by H1
h (by W 2

h ) the height (the width) of the drawing of a com-
plete ternary tree with height h built with Construction 1̂ (with Construction 2̂).
By simple geometric considerations, we have (1) H1

h = max{W 2
h−1, H

1
h−1 +

(W 2
h−1 + 1)/2} and (2) W 2

h = max{W 2
h−1, 2H1

h−1 + 1}. Suppose by induction
that H1

h−1 +(W 2
h−1 +1)/2 ≥ W 2

h−1 and that 2H1
h−1 +1 ≥ W 2

h−1. Such inductive
hypotheses are verified in the base case, where H1

1 = 1 and W 2
1 = 1. Due to the

inductive hypotheses, (1) and (2) turn in (1’) H1
h = H1

h−1 + (W 2
h−1 + 1)/2, and

(2’) W 2
h = 2H1

h−1+1, respectively. We have H1
h +(W 2

h +1)/2 = H1
h−1+(W 2

h−1 +
1)/2 + (2H1

h−1 + 1 + 1)/2 = 2H1
h−1 + (W 2

h−1)/2 + 3/2 > 2H1
h−1 + 1 = W 2

h , and
that 2H1

h +1 = 2H1
h−1 +W 2

h−1 +1+1 > 2H1
h−1 +1 = W 2

h . Hence, the inductive
hypothesis is verified and (1’) and (2’) hold. Substituting (2’) into (1’), we get
H1

h = H1
h−1+((2H1

h−2+1)+1)/2 = H1
h−1+H1

h−2+1. As in the proof of Lemma 2,
H1

h grows as the terms of the Fibonacci series, yielding H1
h = O(n0.438). �
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6 Conclusions and Open Problems

In this paper we have shown some upper bounds (Theorems 2, 4, 5, and 6) and
lower bounds (Theorems 1 and 3) concerning the area requirement of straight-
line orthogonal drawings of binary and ternary trees. As can be noticed from
Table 1 some of these bounds are asymptotically tight, whereas for others there
is still space for improvements. In particular, for order-preserving SO-drawings
of binary trees and for SO-drawings of ternary trees there are wide gaps between
the area upper bounds we provided and the actual lower bounds. For complete
ternary trees we conjecture that an algorithm combining Constructions 1 and 2
could improve the upper bound we provided here. However, the most fascinating
problem in this area still remains, in our opinion, the one of determining whether
binary trees admit straight-line orthogonal drawings in linear area.
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Polynomial Area Bounds for MST Embeddings of Trees

Michael Kaufmann
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Abstract. In their seminal paper on geometric minimum spanning trees, Monma
and Suri [6] gave a method to embed any tree of maximal degree 5 as a minimum
spanning tree in the Euclidean plane. They derived area bounds of O(2k2 × 2k2

)
for trees of height k and conjectured that an improvement below cn × cn is not
possible for some constant c > 0. We partially disprove this conjecture by giving
polynomial area bounds for arbitrary trees of maximal degree 3 and 4.

1 Introduction

As a classical concept, a minimum spanning tree (MST) of n points in the plane is
defined as being the smallest tree that spans all n points. As the distance between two
non-adjacent vertices must be at least as large as any distance between adjacent vertices
on the path between the two vertices, the MST reflects certain proximity relations be-
tween the points in the plane, it plays important roles in various fields. It recently gained
attention in the field of sensor networks where the positioning and energy consumption
of sensor nodes is an important issue. For example, in [4] the authors use the FIRST
ORDER RADIO MODEL as energy model, to develop heuristics for MSTs in the plane
with hop and degree constraints.

We reconsider the embedding question: Given a certain tree topology as an input,
find geometric positions in the Euclidean plane for the vertices of the tree, such that
the geometric MST for those points exactly corresponds to the given tree topology. We
call this problem the MST embedding problem. Monma and Suri [6] gave a method to
find such positions for trees of maximal degree 5, and they showed that their algorithm
uses an area of O(2k2 × 2k2

) for trees of height k and made a simple observation, that
trees of degree 7 cannot be drawn as Euclidean MST. Eades and Whitesides [3] filled
the gap by their result that the decision whether an MST embedding is possible for a
given tree of degree 6 is NP-hard. In both papers, the open problem is given whether or
not the area bounds can be improved to polynomial. Note that the algorithm of Monma
and Suri does not even give a polynomial bound for complete trees of maximal degree
5, their area bound there reads nO(logn), which is clearly superpolynomial.

Extensions of this work to 3D have been performed by Di Battista and Liotta [2] as
well as by King [5]. In the former paper, the authors proved that trees with maximal
degree 9 can be embedded as MSTs in three-dimensional space; this result has been
recently extended to trees of maximal degree 10.

In this paper, we concentrate on the area requirements for Euclidean MST embed-
dings. First, we give a simple technique for complete binary trees, which will be ex-
tended to the case of arbitrary binary trees. In the second part of the paper, we consider

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 88–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Polynomial Area Bounds for MST Embeddings of Trees 89

ternary trees, which are trees of maximum degree 4. Again, we develop a basic scheme
for the complete ternary tree, and generalize it afterwards to arbitrary ternary trees.

Note that we do not strive for the best polynomial bounds but try to keep the tech-
niques as simple as possible. Nevertheless, we achieve the first polynomial bounds dras-
tically improving from the previous exponential ones and solving long-standing open
problems.

2 Preliminaries

A minimum spanning tree MST of a set of n points in the plane is defined to be a tree
with lowest total cost where the cost of each edge (u, v) is defined by the Euclidean
distance between u and v. Given a tree T , the MST embedding problem now asks for a
mapping of the vertices in T to points in the plane such that the MST of this point set is
exactly the input tree T . This problem can be solved for trees of maximum degree 5, it
cannot be solved for trees of maximum degree larger than 6, and it is NP-hard to decide
whether there exists a MST embedding for a given tree of maximum degree 6. Further-
more it is known that Euclidean MSTs have the properties that all edges on the path in
the tree between non-adjacent vertices v and w are not longer than the distance between
v and w in the plane. We call this the MST condition. In our constructions, we have
to prove that the MST condition has been observed. It is clear that the edges are non-
crossing when drawn straight-line. We define the area consumption of an embedding to
be the area of the rectangle enclosing the embedding.

3 The Complete Binary Case

Let T be a complete binary tree of size n and let n = 2k − 1 for some integer k. It
consists of a root vertex r and two subtrees T1 and T2 rooted at the direct children r1
and r2 of the root. We recursively embed the subtrees of size n/2 into two equal-sized
cones with angle of 90 degrees where the roots are located at the top of the cones of
the corresponding subtree. We place the two cones of the subtrees next to each other
separated by a distance of d where d will be chosen later. Let L denote the side length of
the cones of the subtrees. Then we place the root r on top of the two cones connecting
the two roots by edges of length c · L such that those edges again form an angle of 90
degrees. Clearly, the whole construction again gives a cone of side length (c + 1) · L
where the root r is placed at the top, cf. Figure 1.

By the construction, the distance d between the inner corners of the cones is d =√
2(c − 1)L. To ensure the conditions for the MST, we choose c such that d is larger

than the length cL of the two longest edges which is incident to the root. All other
distances obey the MST conditions by induction. This is true if c ≥

√
2/(

√
2 − 1).

Hence we obtain a recursion for the sidelength S(n)=(c+1)S(n/2)=(2
√

2−1√
2−1

)log n

which is n
log 2

√
2−1√
2−1 ≤ nlog 4.415 ≤ n2.2. From this, we obtain an area bound of O(n4.4).

Theorem 1. We can embed a complete binary tree of n vertices in an area of size
O(n4.4) such that the embedding obeys the MST conditions.
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T1 T2

r

L

cL

d

Fig. 1. The recursive construction for the complete binary case. Note that the figure should be
seen as a sketch, the actual values in the figure violate the MST condition.

4 The Arbitrary Binary Case

This case is more involved. Before, our analysis relied on the fact that the depth of the
tree and hence the recursion had only depth log n, which results in a polynomial bound
for the area. The basic schema remains the same. We recursively embed the subtrees
into cones with uniform angles of 90 degrees and try to combine two subtrees with two
sibling vertices as roots by placing the common ancestor such that they form another
larger cone observing the necessary distances. The two subtrees and hence their cones
might differ more or less in size. If their cones differ by at most a constant factor each
time, we can use an analogous construction as before to achieve a depth still logarithmic
in n. If not, we have to introduce an alternative technique.

More exactly, let P = v1, v2, . . . vk be the path from root v1 to leaf vk where vi+1
is defined as the root of the larger of the two subtrees of vi for each 1 ≤ i < k. For
each such vi on this path, we consider the two subtrees Til and Tir, and we assume
that Til is at least as big as Tir. If |Til|/|Tir| ≤ 3 we call this a balanced step, and the
step is called unbalanced otherwise. Clearly, there are at most O(log n) balanced steps.
Between any two balanced steps there is a sequence vf , ..., vg of unbalanced steps, of
course there are at most O(log n) such sequences.

Realization of a balanced step at the vertex vi with subtrees Til and Tir . Let Ll

and Lr be the lengths of the two cones where the subtrees Til and Tir are embedded
and let Ll ≥ Lr.

We scale the smaller cone up by a factor of Ll/Lr such that the two cones have the
same size and the same analysis as in the complete binary case can be done. Since the
number of nodes in the larger subtree Til is at most 3/4 times the number of nodes in
the original tree rooted at vi this case can occur only log4/3 n times.

Realization of a maximal sequence of unbalanced steps. Let the sequence be
vf , ..., vg with intermediate edges (vi, vi+1) for i = f, . . . , g−1. This sequence with the
edges is called chain. The final node vg is either a leaf or it is the root of two balanced
subtrees. We assume that the subtree rooted at vg has been recursively embedded into
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cone Cg by a balanced step. At each intermediate vertex vi, there will be a relatively
small subtree, say Tir embedded recursively into cone Ci of side length Li.

If the sequence is very short (g − f ≤ 2), say only one or two unbalanced steps,
followed by a balanced one, we will just neglect it and perform one or two ordinary
balanced steps instead as described above. If g − f > 2 is odd, we perform the layout
of the topmost two trees of the chain by balanced steps, while if g − f > 2 is even,
we perform only one balanced step and then add the remaining unbalanced steps of
the chain in one step. This is done to make sure that the last subtree of the chain with
unbalanced layout lies towards the left of the chain.

It is clear, that the number of balanced recursion steps increases only by a factor of
at most 3, so it is still O(log n), more exactly the number is at most 3 log4/3 n. We will
use this fact again by correcting the following construction:

10

80

f

vf

g

C

C

Fig. 2. The global recursive structure when adding a whole chain and the cone Cf

Let ei = (vi−1, vi) for g ≥ i ≥ f . We embed the chain of edges ei in a zig-zag
way with constant angles of 120 degrees, while the length of ei will be chosen roughly
proportional to the size of the adjacent cone. Consider an arbitrary vertex vi. Opposite
to the 120 degree angle, we have an angle of 240 degrees, which we subdivide into three
disjoint cones of 90, 60, and 90 degrees. We place the cone Ci adjacent to vi of size Li

together with its connecting segment si in the middle angle of 60 degrees such that the
side of Ci which is closer to ei is perpendicular to segment si. Furthermore we choose
the length of si such that the small cone just fits into the angle of 60 degrees. Hence
si = Li/ tan(30) ≤ 1.8Li.

Note that by construction the MST condition is observed for the distances between
Ci and Cj for |i − j| odd, namely between cones that lie on opposite sides of the chain.

We consider the horizontal distance between two adjacent cones Ci−1 and Ci+1.
The intermediate edges are si−1, ei, ei+1 and si+1. Clearly we have distance di =
len(ei) · cos(30) + len(ei+1) · cos(30) − Li+1 ≥ 0.8c(Li + Li+1) − Li+1, if we
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choose len(ei) = cLi. Now to observe the MST condition, we have to choose c such
that di ≥ len(ei), and di ≥ len(ei+1) as well. Therefore, we require that len(ei) ≥
max{cLi, 0.5len(ei+1)} and len(ei+1) ≥ 0.5len(ei) as well for all i.

Then we can conclude that di ≥ 0.8 · 1.5 · cLi+1 − Li+1 ≥ cLi+1 for c ≥ 5. If
len(ei) > 0.5len(ei+1) then c can be chosen even smaller. The case that len(ei) ≥
len(ei+1) is simpler.

120
ei

120

vi

vi+2
ei+1

ei+2

Ci

d

Li

d

i

i+1

Fig. 3. Adding a chain of unbalanced vertices together with their adjacent subtrees

Note that segment si+1 is smaller than len(ei+1), and hence it is smaller than di,
and si−1 is smaller than 1.8Li−1. Furthermore len(ei−1) ≥ 5Li−1, which means that
len(ei) ≥ 0.5len(ei−1) ≥ 2.5Li−1 ≥ len(si−1).

Lemma 1. The distances between the vertices within the chain augmented by the ad-
jacent subtrees observe the MST conditions.

Ideally, the length of the chain should be bounded proportional to the sum of the lengths
of the adjacent small cones. The requirement that the lengths of adjacent edges should
differ by at most factor of 2 makes an estimation more difficult, but the following amor-
tisation argument shows that this increases the total edge length of the chain at most by a
factor of 3: ei is chosen to be of length max{c ·Li, c ·Li−1/2, c ·Li+1/2, ..., c ·Li+j/2j .
Hence each Li at most contributes to the segment ei, with half of its length to ei−1 and
ei+1 and with 1/2jth of its length to ei−1 and ei+1 in general. Overall it is accounted
at most three times. So, all Li’s together are accounted at most 3

∑
Li.

Lemma 2. The total length of the chain with cones Ci of length Li is at most 15∑g
i=f+1 Li.

Next, we sketch the way how to complete the recursion and achieve again an appropriate
cone of 90 degrees.

Completing the recursion step. The next Figure 4 gives an intuition how to rebuild
the giant cone including the chain of small cones and the first cone Cf as well: We add
the first cone Cf of the chain in a way similar to a balanced step. Since the construction
of the chain require some width, basically, we keep the angle between the two edges
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incident to the root of the two subtrees a little smaller than 90 degrees, namely 80
degrees. This leads to an increase of the lengths of the two topmost edges by a small
constant factor to keep the necessary distance between the left and the right subtree.
We keep the triangle between the root vf and the two innermost points between the left
and the right subtree to be equilateral. An equilateral triangle has angles of 60 degrees,
hence we assign the remaining 20 degrees to the two subtrees, such that each of them
lies within a cone of 10 degrees.

The edge ef which connects vf and vf+1 is routed using the same slope, as the left
side of the cone Cg which is constructed recursively by a balanced step. The whole
chain lies within a cone, called CC of 60 degrees whose middle axis extends the left
side of Cg . The remaining 10 degrees of the final 90 degree cone are used to cover the
small subtrees that stick out to the left of the line between the left side of the large cone
Cg and the root vf . We can easily verify that this small angle of 10 degrees is enough
to include the whole substructure by observing the restrictions on the size of the small
subtrees and the sufficient lengths of the edges from the chain to the root.

We have to embed all three parts, the cone Cf , the chain plus the cone Cg , and the
small cones like Cf+1 sticking out to the left, within cones of 10 degrees each. The
final size of the giant cone depends on the actual sizes of the three components, at the
end, we maximize over those three components. We give the analysis for the case that
the chain dominates the final size, assuming that Cf is small and the other small cones
are also small enough. The other cases are much simpler:

The length of the chain is at most 15
∑g

i=f+1 Li, we call it LC. Largely overesti-
mating, we require this value also for the cathetus opposite from the 10 degrees angle
at vf . Hence we get a bound of LC/tan(10) ≤ 5.7LC for the length of (vf , vf+1).

Note that this can be slightly larger, if the chain starts at the upper end of its upward
directed cone CC, but not in the center. Furthermore we neglected the fact, that due to

gC

vf

10
10 60

10

d

CfLC
CC

45

45

Fig. 4. The giant cone which is rotated such that the three parts Cf , the chain and the leftmost
small cones are enclosed into cones of angles of 10 degrees, and the equilateral triangle keeps the
distance
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the separating equilateral triangle and the additional angle of 10 degrees on the left hand
side, the sidelength of the final giant cone is larger than LC + 5.7LC by an additional
small factor. This factor can be bounded using more elementary trigonometry by 1.16.

Hence the new giant cone has a side length of 1.16 · (5.7 + 1)15
∑g

i=f Li ≤
117

∑g
i=f Li. Summarizing, we have

Lemma 3. Adding a chain causes an increase of the side length, which is proportional
to the sum of the lengths of its subtrees, with 117 as the multiplicative constant.

We conclude the discussion by the recursion on the side length S(n): We had at most
log4/3 n balanced steps, and before each balanced step, there might be the insertion
of a maximal chain consisting of unbalanced steps, hence only log4/3 n subsequent
insertions of chains. In total, this means a maximal recursion depth of 2 log4/3 n, we

get S(n) ≤ 1172 log4/3 n ≤ O(n32.4).

Theorem 2. We can embed an arbitrary binary tree of n vertices in an area of size
polynomial in n such that the embedding obeys the MST conditions. The degree of the
polynomial is at most 65.

Note that this analysis above is a rough estimation. E.g., in balanced steps we have a
constant factor, much smaller than 117, and in unbalanced steps and long chains, the
larger subtrees are much smaller than 3n/4. We leave this for further improvement.

5 The Complete Ternary Case

Instead of maintaining cones for the subtrees, we maintain diamonds. Consider proper
subtree Tr rooted at vertex r. Vertex r is placed in the centre of its corresponding di-
amond of side length L. The diamond for Tr is partitioned into an upper and a lower

r

L

L’

e

e’

d

y

Fig. 5. The recursive scheme for complete ternary trees
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half. The lower half contains the diamonds for the three subtrees, such that the edges
from r to the diamonds maximize the angles between two adjacent edges.

This is a simple recursive scheme and we only have to choose the lengths of the
edges appropriately such that the MST property still holds. Furthermore, we have to
consider the ratio between the long edge e′ from r to its parent and the shorter edges e
to its children. It will then provide the area bound.

Now let the side length of the small diamonds be L. The length of edge e is len(e)
while the distance from vertex v to the upper / lower corners of the left and right dia-
monds is denoted by y. Note that y is larger than len(e).

Clearly, the lower corner of the say left diamond and the left corner of the middle
diamond should have a distance d of at least len(e). Since y ≥ len(e) it is sufficient to
ensure that d = y. The key observation is that under this condition the vertex r together
with the lower corner of the left diamond and the left corner of the middle diamond
forms a equal-sided triangle. All angles in this triangle have 60 degrees. Hence, the three
small angles between the edges from r and the lines from r to the corners of the two
diamonds complete the right angle, hence they have 10 degrees. So, we can use more
trigonometry: tan(10) = (L/

√
2)/len(e). Hence len(e) = (L/

√
2)/tan(10) < 4.1L.

Furthermore,the distance from the parent of r to the upper corners of the diamonds
on the side is larger than the length of the edge e′ = (p, r). Next, we compute the
side length L′ of the large diamond which encloses r and the three small diamonds.
More exactly, we will compute the length of the horizontal axis through vertex r. We
know from the construction before that the segment which extends the edge e from
the centre of the diamond to the left end has length 4.1L + L/

√
2. The angle between

this segment and the horizontal line has 10 degrees. Hence the cathetus opposite of this
angle has length sin(10) · (4.1L + L/

√
2) < 0.84L, we call it z. The length of the

horizontal axis from r to the left corner is z + z/tan(10) ≤ 5.6L, since it consists of
two subsequent parts.

From this consideration, we know the ratio between subsequent diamonds, and hence
we can conclude the needed side length S(n) ≤ 5.6S(n/3) = 5.6log3 n ≤ n3.94 and
hence the area is polynomial in n.

Theorem 3. We can embed a complete ternary tree of n vertices in an area of size
O(n7.88) such that the embedding obeys the MST conditions.

6 The Case of Arbitrary Ternary Trees

As in the binary case, we have to consider the case that the subtrees of the vertices
might have different sizes, leading to a much larger depth than in the complete ternary
case. Note that the case of binary trees might have been omitted after all, since it is just
a subcase of the ternary case. The techniques used are similar to those for the general
binary case, but they are even more involved. Therefore we omit the calculation of
concrete exponents of the polynomials.

Consider a vertex v root of a subtree T of size n′ divided into three subtrees T1, T2
and T3 of sizes n1, n2 and n3 respectively, such that n1 ≥ n2 ≥ n3 ≥ 0. Ti is called
’large’ if ni ≥ n′/4 and ’small’ otherwise, for i = 1, 2, 3.
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We consider 2 cases: If we have at least 2 large subtrees, we proceed similar to the
complete ternary case. Observe that if we would be in this case each time, then the
maximal size of a subtree would shrink in each iteration at least by a constant fraction
3/4 or so. area if we only follow the scheme as in the complete ternary case. This cor-
responds to the balanced recursion step in the binary case. We take the size of the three
diamonds identical by scaling up the sizes of the edge lengths in the smaller subtrees.
Since the recursion depth remains O(log n), the area size will still be polynomial.

The second case is much more interesting: We assume to have 2 small subtrees.
We walk down into the large subtree and check, if there are at least two large subtrees
starting from there. If this is true for either this step or the next step, such that there are
again at least 2 large subtrees, we can neglect the area loss of the 2 small subtrees by
scaling them up as before and make a balanced recursion step. Hence the number of
large recursion steps at most triples by this effect but it still remains logarithmic.

Constructing a chain of small diamond twins. If not, we construct a maximal chain
of vertices v1, ..., vk with small subtrees represented by small diamonds. The indexing
of the chain starts at the lowest vertex v1, which actually has one large subtree and two
small subtrees. In general, vi has two small and one large subtree with root vi+1, which
again has one large subtree and two small subtrees. The vertex vk is either the root, or
its parent has two large subtrees, such that we can apply a balanced recursion step.

v1

v2

v3

v
4

L2

L4

110

110
110

70

70

70

Fig. 6. Embedding a chain of small diamonds

To embed the chain with the twin diamonds appended at each vertex we take an
appproach similar to the general binary case: We embed the chain in a zig-zag way with
angles of 110 degrees and the lengths are suitably chosen roughly proportional to the
size of the adjacent diamonds. We will determine the exact edge lengths lateron.

Consider vertex vi. Opposite of the 110 degree angle, we install a cone of 70 degrees
where we place the two small diamonds adjacent to vi. First of all, we scale the smaller
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diamond such that both diamonds have the same size. The diamonds are connected with
edges gi and g′i and they are placed tangent to the two sides of the cone. The lengths
of the edges have to be chosen such that the distance di between the two diamonds is
at least as large as the lengths of gi and g′i. We ensure this by enlarging the lengths
such that together with vi the two corners of the diamonds opposite to each other form
an equilateral triangle. Hence the two diamonds have to be placed within the cones of
degree 5 on the sides of the equilateral triangle. Solving tan(2.5) = Li/(

√
2len(gi))

where Li is the width of the largest of the two diamonds, and len(gi) gives the lengths
of the two connecting edges. Hence len(gi) = Li/(

√
2tan(2.5)) ≈ 16.2 · Li.

Note that by the choice of the cone for the two diamonds, they are farer away from
the position of vi−1 resp. vi+1 independent of the lengths of ei−1 and ei in the chain.

The case of uniform sizes. To actually choose the length of the edges ei, assume
for a moment, that we have uniform side lengths Li of the diamonds. Then we can
choose the lengths of the gi’s and those of the ei’s as being uniform. To keep the dis-
tance between the diamonds at vi and vi+2 large enough, we consider the triangle with
cathetus ei+1 and angle of 20 degrees at vertex vi+1, and call the other cathetus D.
If D ≥ len(gi+2) +

√
2Li+2 ≥ 17.5Li+2, the distance between the two diamonds

is large enough. So, D = tan(20) · len(ei+1) ≥ 0.37len(ei+1), and furthermore
len(ei+1) = 17.5 · Li+2/0.37 ≥ 47.3Li+2.

The general case. Unfortunately, this is not sufficient since we want to have the total
length of the chain to be proportional to the sum of the Li’s. So we have to observe the
different sizes of the diamonds. We introduce another restrictive piece of construction.

The following calculation shows how much we can reduce the edge length within
one step. Consider vertices vi, vi+1 and vi+2 with connecting edges ei and ei+1. We
choose len(ei) = 47.3Li, and want to reduce the length len(ei+1) of the next edge to
3/4 · len(ei). Let D be the cathetus opposite of the 20 degrees angle at vi+1, where
the small diamonds at vi+2 should be placed. Then len(D) = len(ei+1 · tan(20) ≥
0.36len(ei+1) = 0.36 · 3/4 · len(ei) ≥ len(ei)/4. By this 20 degree angle, we in-
troduced a line ri+1 parallel to the right border of the cone at vi at the distance of
len(ei+1), keeping the diamonds incident to vi and vi+2 respectively sufficiently apart
from each other. Hence it is safe to embed at vertex vi+2 diamonds of size at most
Li+2 = Li/4, and the connecting edges having length len(gi+2) = 17.5Li+2 while
reducing the length of ei+1 by factor 3/4.

In general, we introduce lines ri and pi at each vertex vi parallel to the cone bound-
aries at the neighboring vertices vi−1 and vi+1, extending the two lines of the cone at
vi to the other side of the chain. We require that the small diamonds adjacent to vi and
more specifically the length of gi are restricted by the lines ri−1 and pi+1, which is
critical especially if the lengths of the edges ei change. The above calculation showed
to which extend edge ei+1 can be shortened if Li+2 ≤ Li/4. But note that the line pi+2
comes then closer to the edge ei+1 such that it might intersect the diamonds at vi+1.
This problem can be resolved by requiring that the edge ei+1 can only be shorted if the
diamonds at both vi+1 and vi+2 as well are smaller by at least a factor of 4 compared
to the diamonds at vi.

We conclude the analysis and and summarize the arguments for the correctness.
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Fig. 7. A detailed look to the chain of small diamonds when the size of the diamonds and the
length of the edges shrink. Notice the lines pi and ri parallel to the sides of the cones.

Lemma 4. Proceeding from vi to vi+2, we can shrink the length of the second edge
ei+1 by a factor of 4/3 compared to ei, if the widths of the diamonds at vi+1 and vi+2
shrink by at least a factor of 4.

1. The Scaling up procedures do not violate any MST condition.
2. Cones at adjac. vertices do not conflict.They are strictly separated by construction.
3. Diamonds within the same cone do not interfere since they are separated by an

equilateral triangle.
4. Diamonds adjacent to vi do not interfere with those adjacent to vi+2; here we can

argue using the separating lines parallel to the sides of the cone.

The final length of the chain. Note that we did not fix the length of ei, its lower bound
was 47.3Li, according to the lemma, the length depends on the size of the diamonds in
the close or further vicinity. So we do the same with vi−1 and vi+1 and then maximize.

More precisely, for each vi, we receive a lower bound of 47.3Li for the two incident
edges ei−1 and ei respectively. Furthermore, we have the dependency between neigh-
boring edges ei and ei+1, namely that the ratio of the lengths can be chosen to be either
3/4, 1 or 4/3. Remark that we could also choose some intermediate value, but for the
clarity of exposition we take only those discrete values.

Finally, we argue that the sum over the lengths of the edges ei on the chain is poly-
nomial in the number of vertices involved (more exactly in the sum over the lengths of
all small diamonds). We have to cover the diamonds involved with a sequence of larger
diamonds of a certain size such that adjacent groups might either be identical or differ
by a ratio of 1/4 or 4. In these cases, the edge lengths stay either identical, shrink or
enlarge by a factor of 4/3 respectively.

By an amortization argument which is not much more complicated than the one
above, we can show that the sum of the edge lengths is still O(L), where L =

∑k
i=1 Li,

hence linear in the sum of the side lengths of the diamonds involved.
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Fig. 8. Placing the chain of small diamonds plus the large diamond within the giant diamond

The recursive construction and its complexity. Finally, we use the construction from
Figure 8 to combine the last large diamond of size n0 with the chain of diamonds of
sizes n1, . . . , nk and get the following recursion for the resulting side length:

S(n) = c0S(n0) + c1 ·
∑k

i=1 S(ni) for appropriate constants c0 and c1. Since we
have at most O(log n) levels of recursion while n =

∑k
i=0 ni and ni <= 3/4n for any

i = 0, . . . , k we conclude in the same way as in the general binary case:

Theorem 4. Let T be any tree with n vertices of maximal degree 4. We can find an
MST-embedding for T in a grid of size O(nd) for a suitable large constant d.

7 Discussion and Conclusion

We have shown some techniques for constructing and analysing area-efficient MST-
embeddings of trees. Our goal was to prove polynomial area bounds improving the
previously known exponential bounds. A more detailed analysis of course could provide
exact constants for the exponents. We started with binary trees and some basic analysis.
The complexity of the analysis increased when proceeding to ternary trees where the
vertices have maximum degree 4. It is known that trees with maximum degree 5 also
have MST-embeddings. For this case we expect an exponential area lower bound.
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Abstract. In John Tantalo’s on-line game Planarity the player is given
a non-plane straight-line drawing of a planar graph. The aim is to make
the drawing plane as quickly as possible by moving vertices. In this paper
we investigate the related problem MinMovedVertices which asks for
the minimum number of vertex moves. First, we show that MinMoved-

Vertices is NP-hard and hard to approximate. Second, we establish
a connection to the graph-drawing problem 1BendPointSetEmbed-

dability, which yields similar results for that problem. Third, we give
bounds for the behavior of MinMovedVertices on trees and general
planar graphs.

1 Introduction

It is somewhat surprising that many people still draw graphs by hand, usually
not on a piece of paper but on a computer display. Modern technology gives us
the means to edit a drawing by dragging vertices. Even when we use an automatic
graph-drawing tool, we often do some manual polishing to obtain nicer drawings.

In this paper, we consider the problem of editing a given drawing to obtain
another drawing that fulfills a certain criterion. We restrict ourselves to straight-
line drawings of planar graphs. Our edit operation is “moving vertices.” When

� This work was started on the 9th “Korean” Workshop on Computational Ge-
ometry and Geometric Networks organized by A. Wolff and X. Goaoc, July 30–
August 4, 2006 in Schloß Dagstuhl, Germany. Further contributions were made
at the 2nd Workshop on Graph Drawing and Computational Geometry organized
by W. Didimo and G. Liotta, March 11–16, 2007 in Bertinoro, Italy.

�� Partially supported by Grant-in-Aid for Scientific Research from Ministry of Ed-
ucation, Science and Culture, Japan, and Japan Society for the Promotion of
Science.

� � � Supported by Research Grant 2007 of the Hankuk University of Foreign Studies.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 101–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



102 X. Goaoc et al.

we move a vertex v to a new position, the incident edges are redrawn so that v is
again connected to its adjacent vertices by straight-line segments. Our criterion
is planarity. According to the famous theorem of Wagner [15], Fáry [2], and
Stein [12] every planar graph has a plane straight-line drawing. We want to
obtain such an embedding from a given (usually non-plane) straight-line drawing.
Our goal is to minimize the number of vertices to move. This is a natural question
because the less vertices we move the better the mental map [8] of an observer
is preserved when making a given drawing plane, e.g., in a step-by-step fashion.
Note that for a given straight-line drawing the minimum number of moves can
also be seen as the edit distance from the closest plane drawing.

δ δ′

Fig. 1. Two drawings of
K4: δ is not plane, δ′ is
plane; d(δ, δ′) = 1

At the 5th Czech-Slovak Symposium on Combina-
torics in Prague in 1998, Mamoru Watanabe asked the
following question, which concerns a special case of our
problem: Is it true that every polygon P with n ver-
tices can be untangled, i.e., turned into a non-crossing
polygon, by moving at most εn of its vertices for some
absolute constant ε < 1? Pach and Tardos [9] have an-
swered this question in the negative by showing that
there must be polygons where at most O((n log n)2/3)
of the vertices can be kept fixed. They also gave a sim-
ple algorithm (which can be implemented in O(n log n)
time) that always keeps more than

√
n vertices. In a

longer version of this paper [3] we show that their algorithm is not optimal.
Pach and Tardos [9] in turn asked the following question: can any straight-line
drawing of any planar graph with n vertices be made plane by vertex moves
while keeping Ω(nγ) vertices fixed for some absolute constant γ > 0? We still
do not know the answer to this question, but we report some progress.

There is a popular on-line game that is related to the problem of Pach and
Tardos. In John Tantalo’s game Planarity [13] the player is given a non-plane
straight-line drawing of a planar graph. The player can move vertices, which
always keep straight-line connections to their neighbors. The aim is to make the
drawing plane as quickly as possible. We study the game from three view points:
(a) algorithms, (b) mathematics (upper-bound constructions), and (c) complex-
ity. Our complexity results (detailed below) made us understand why it is so
hard to play the game well.

Formalization. In this paper, a drawing of a graph G = (V, E) will always mean
a straight-line embedding of G in the plane R

2. Since such an embedding is
completely defined by the position of the vertices, it corresponds to an injective
map δ : V → R

2. A drawing is plane if no two edges cross, i.e., they are only
allowed to intersect in a common endpoint. A graph is planar if it admits a plane
drawing; trivially not every drawing of a planar graph is plane.

The vertex-moving distance d between two drawings δ and δ′ of a graph G is
defined as the number of vertices of G whose images under δ and δ′ differ:

d(δ, δ′) =
∣
∣{v ∈ V | δ(v) �= δ′(v)}

∣
∣.
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This distance can easily be computed. Given our edit operation, d represents the
edit distance for straight-line drawings of graphs. Figure 1 shows an example.
Using d we can express the central question of this paper as follows.

How close is a given drawing of a planar graph to being plane with
respect to the vertex-moving distance d?

For a drawing δ of a planar graph G, denote by MMV(G, δ) the minimum number
of vertices that need to be moved in order to make δ plane. MMV measures
distance from planarity: MMV(G, δ) = minδ′ d(δ, δ′), where δ′ ranges over all
plane drawings of G. This gives rise to the following computational problem.

MinMovedVertices(G, δ): Given a drawing δ of a planar graph G, find
a plane drawing δ′ of G with d(δ, δ′) = MMV(G, δ).

Sometimes this question is better studied from the symmetric point of view.
Given a drawing δ of a graph G, we denote by MKV(G, δ) the maximum number
of vertices that remain fixed when making δ plane. We refer to such vertices as
fixed vertices. Obviously it holds that MKV(G, δ) = n − MMV(G, δ), where n
is the number of vertices of G. MKV measures similarity with the closest plane
drawing. The corresponding problem is defined as follows.

MaxKeptVertices(G, δ): Given a drawing δ of a planar graph G, find
a plane drawing δ′ of G with MKV(G, δ) fixed vertices.

Let MKV(G) = min δ drawing of G MKV(G, δ) denote the maximum number of
vertices of G that can be kept fixed when starting with the worst-possible draw-
ing of G.

Our results. First, we prove that the decision versions of MaxKeptVertices

and equivalently MinMovedVertices are NP-hard, see Section 2. We also
prove that MinMovedVertices is hard to approximate. Namely, for any ε ∈
(0, 1] there is no polynomial-time n1−ε-approximation algorithm for MinMoved-

Vertices unless P = NP .
Second, we establish a connection to a well-known graph-drawing problem,

namely 1BendPointSetEmbeddability. Given a planar graph G = (V, E)
with n vertices we say that a graph is k-bend (point-set) embeddable if for any
set S of n points in the plane there is a one-to-one correspondence between V
and S such that G can be k-bend (point-set) embedded on S, i.e., the edges of
G can be drawn as non-crossing simple polygonal chains with at most k bends.
Kaufmann and Wiese [5] showed that (a) every 4-connected planar graph is 1-
bend embeddable, (b) every planar graph is 2-bend embeddable, and (c) given
a planar graph G = (V, E) and set S of n points on a line, it is NP-complete
to decide whether there is a correspondence between V and S that makes it
possible to 1-bend embed G on S. We strengthen their result by showing that
the problem remains hard even if the correspondence is given. We also show that
an optimization version of the problem is hard to approximate.

Third, we give bounds on MKV(G) for trees and general planar graphs, see
Sections 3 and 4, respectively. Table 1 summarizes the best known bounds. A
lower bound of k means: we can make any drawing of any graph G in the given
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Table 1. Best known bounds for MKV(G), where n is the number of vertices of G

graph class where lower bound upper bound

cycles Pach & Tardos [9] �√n � O((n log n)2/3)

trees Section 3 | [3] �
√

n/3 � �n/3� + 4

outerplanar graphs Spillner & Wolff [11]
√

n − 1
/
3 2

√
n − 1 + 1

planar graphs Section 4 3 �
√

n − 2 � + 1

Spillner & Wolff [11] 1
3

√
2(log n)−2
log log n

− 1

graph class plane while keeping at least k vertices fixed. An upper bound of k
means: there is an arbitrarily large graph G in the given graph class and a
drawing δ of G such that at most k vertices can stay fixed when making δ plane.

Independent recent results. In May 2007, Verbitsky [14] considered the func-
tion MMV(G) = max δ plane drawing of G MMV(G, δ), to which he refers as the
shift complexity of a graph. He, too, observed that MMV(G) ≤ n − 3 (i.e.,
MKV(G) ≥ 3) for any planar graph G with n ≥ 3 vertices. Further he gave
two linear lower bounds on MMV(G) depending on the connectivity of G. By
reduction from independent set in line-segment intersection graphs he showed
that computing MMV(G, δ) is NP-hard.

In June 2007, Kang et al. [4] investigated the problem of straightening the
edges of a given plane drawing (with curved edges) through vertex moves. They
showed that for arbitrary large n, there exist an n-vertex graph Gn and a plane
(curved-edge) drawing δn of Gn with MKV(Gn, δn) = O(n2/3). Our upper bound
of O(

√
n ) (see Theorem 7) is stronger, but our initial drawings are not plane.

In September 2007, Spillner and Wolff [11] showed that MKV(G) actually
grows with the size of G and gave asymptotically tight bounds for outerplanar
graphs, see Table 1.

2 Complexity

v1 v2 v3 v4 v5 v6

Fig. 2. Embedding of a pla-
nar 3-SAT formula

In this section, we investigate the complexity of
MinMoveVertices and of 1BendPointSetEm-

beddability with given vertex–point correspon-
dence.

Theorem 1. Given a planar graph G, a drawing δ
of G, and an integer K > 0, it is NP-hard to decide
whether MMV(G, δ) ≤ K.

Proof. Our proof is by reduction from Planar3SAT, which is known to be
NP-hard [7]. An instance of Planar3SAT is a 3SAT formula ϕ whose variable-
clause graph is planar. Note that that graph can be laid out (in polynomial time)
such that variables correspond to points on the x-axis and clauses correspond
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connection to
clause gadget

. . .m

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

variable
gadget

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2-switch

q1

q2

a

bc

d

a′

b′c′

d′

q

Fig. 3. Edge positions in variable gadget: immobile (thin solid black) and mobile (very
thick solid gray). The predestined positions of mobile edges either correspond to true
(thick solid blue) or to false (thick dotted red).

to non-crossing three-legged “combs” above or below the x-axis [6], see Fig. 2.
Let v and c be the numbers of variables and clauses of ϕ, respectively. We now
construct a graph Gϕ with a straight-line drawing δϕ such that the following
holds: δϕ can be made plane by moving at most K vertices if and only if ϕ is
satisfiable. We fix K later.

Our graph Gϕ consists of two types of substructures (or gadgets), modeling the
variables and clauses of ϕ. In our gadgets, see Figs. 3 and 4, there are two types of
vertices and edges; those that may move and those that are meant not to move.
We refer to the two types as mobile and immobile. If ϕ has a satisfying truth
assignment, all immobile (and a few mobile) vertices are fixed, otherwise at least
one immobile vertex must move. In the figures, immobile vertices are marked by
black disks, mobile vertices by circles, and their predestined positions by little
squares. Immobile edges are drawn as thin solid black line segments, mobile
edges as very thick solid gray line segments, and their predestined positions are
drawn as thick colored line segments.

Now consider the gadget for some variable x in ϕ, see the shaded area in
Fig. 3. The gadget consists of a horizontal chain of a certain number of roughly
square blocks. Each block consists of 28 vertices and 32 edges. Each block has
four mobile vertices, each incident to two very thick gray edges. In Fig. 3 the
four mobile vertices of the leftmost block are labeled in clockwise order a, d, b,
and c. Note that the gray edges incident to a and b intersect those incident to c
and d. Thus either both a and b or both c and d must move to make the block
plane. Each mobile vertex w ∈ {a, b, c, d} can move into exactly one position



106 X. Goaoc et al.

pp1

p2

p3

p̄

3-switch

Fig. 4. A clause gadget consists of three big 2-switches and two 3-switches. Each 3-
switch contains another small 2-switch. Note that not all immobile vertices are marked.

w′ (up to wiggling). The resulting incident edges are drawn by thick dotted red
and thick solid blue line segments, respectively. Note that neighboring blocks in
the chain are placed such that the only way to make them plane simultaneously
is to move corresponding pairs of vertices and edges. Thus either all blocks of
a variable gadget use the blue line segments or all use the red line segments.
These two ways to make a variable gadget plane correspond to the values true
and false of the variable, respectively.

For each of the 3c literals in ϕ we connect the gadget of the corresponding
variable to the gadget of the clause that contains the literal. Each block of
each variable gadget is connected to a specific clause gadget above or below the
variable gadget, thus there are 3c blocks in total. Each connection is realized by
a part of Gϕ that we call a 2-switch. A 2-switch consists of 15 vertices and 14
edges. The mobile vertex q of the 2-switch in Fig. 3 is incident to two very thick
gray edges that intersect two immobile edges of the 2-switch. Thus q must move.
There are (up to wiggling) two possible positions, namely q1 and q2, see Fig. 3.

The 2-switch in Fig. 3 corresponds to a positive literal. For negated literals
the switch must be mirrored either at the vertical or at the horizontal line that
runs through the point m. Note that a switch can be stretched vertically in order
to reach the right clause gadget. Further note that if a literal is false, the mobile
vertex of the corresponding 2-switch must move away from the variable gadget
and towards the clause gadget to which the 2-switch belongs. In that case we
say that the 2-switch transmits pressure.

A clause gadget consists of three vertical 2-switches and two horizontal 3-
switches. A 3-switch consists of 23 vertices and 18 edges plus a small “inner”
2-switch, see the shaded area in Fig. 4. Independently from the other, each of the
two 3-switches can be stretched horizontally in order to reach vertically above
the variable gadget to which it connects via a 2-switch. The mobile vertex p of
the left 3-switch in Fig. 4 is incident to two very thick gray edges that intersect
two immobile edges of the 3-switch. Thus p must move. There are (again up to
wiggling) three possible positions, namely p1, p2, and p3. Note that we need the
inner 2-switch, otherwise there would be a forth undesired position for moving
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p, namely the one labeled p̄ in Fig. 4. By construction a clause gadget can be
made plane by only moving the mobile vertices of all switches if and only if at
most two of the three big 2-switches transmit pressure, i.e., if at least one of the
literals in the clause is true.

The graph Gϕ that we have now constructed has O(c) vertices, O(c) edges,
and X = 26c crossings; 4·3c in blocks and 2·7c in switches. By moving any mobile
vertex to any of its predestined positions, a pair of original crossings disappears.
If ϕ is satisfiable, Gϕ can be made plane by moving K = X/2 mobile vertices
since no new crossings are introduced. If ϕ is not satisfiable, there is at least
one pair of crossings that cannot be eliminated by moving the corresponding
mobile vertex alone since all its predestined positions are blocked. Thus at least
two vertices must be moved to eliminate that pair of crossings—and still all the
other K − 1 pairs of crossings must be eliminated by moving at least one vertex
per pair, totaling in at least K +1 moves. Thus ϕ is satisfiable if and only if Gϕ

can be made plane by moving exactly K (mobile) vertices.
Since there is enough slack in our construction, it is possible to place vertices

at integer coordinates whose total length is polynomial in the length L of a
binary encoding of ϕ. This and the linear size of Gϕ yield that our reduction is
polynomial in L. �	

We now consider the approximability of MinMovedVertices. Since MMV(G, δ)
= 0 for plane drawings, we cannot use the usual definition of an approxima-
tion factor unless we slightly modify our objective function. Let MMV′(G, δ) =
MMV(G, δ) + 1 and call the resulting decision problem MinMovedVertices

′.
Now we can modify the above reduction to get a non-approximability result.

Theorem 2. For any fixed real ε ∈ (0, 1] there is no polynomial-time n1−ε-
approximation algorithm for MinMovedVertices

′ unless P = NP.

Proof. Let nϕ be the number of vertices of the graph Gϕ with drawing δϕ that
we constructed above. We go through all immobile vertices v of Gϕ. Let Nv be
the neighborhood of v. We replace v by a star with central vertex v adjacent
to the vertices in Nv and n

(3−ε)/ε
ϕ additional new vertices infinitesimally close

to v. Let G be the resulting graph, δ its drawing, and n ≤
(
n

(3−ε)/ε
ϕ +1

)
·nϕ the

number of vertices of G. Note that ϕ is satisfiable if and only if MMV′(G, δ) =
MMV′(Gϕ, δϕ) = K+1. Otherwise, additionally at least one complete star has to
be moved, i.e., MMV′(G, δ) ≥ K +n

(3−ε)/ε
ϕ +2. Note that G can be constructed

in polynomial time since ε is fixed.
Now suppose there was a polynomial-time n1−ε-approximation algorithm A

for MinMovedVertices
′. We can bound its approximation factor by n1−ε ≤(

(n(3−ε)/ε
ϕ +1) ·nϕ

)1−ε ≤
(
2n

(3−ε)/ε
ϕ ·nϕ

)1−ε = 21−εn
(3−3ε)/ε
ϕ ≤ 2n

(3−3ε)/ε
ϕ . Now

let M be the number of moves that A needs to make δ plane. If ϕ is satisfiable,
then M ≤ MMV′(G, δ) · n1−ε = (K + 1) · n1−ε ≤ (nϕ + 1) · 2n

(3−3ε)/ε
ϕ =

2n
(3−2ε)/ε
ϕ + O

(
n

(3−3ε)/ε
ϕ

)
. On the other hand, if ϕ is unsatisfiable, then M ≥

MMV′(G, δ) ≥ n
(3−ε)/ε
ϕ . Since we can assume that nϕ is sufficiently large, the

result of algorithm A (i.e., the number M) tells us whether ϕ is satisfiable. So
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eC e′C

many many

b

Fig. 5. Gadget of clause C for the non-approximability proof concerning the number of
edges with one bend. The edges eC and e′

C can now be drawn in four combinatorially
different ways (thin solid blue vs. thick solid blue vs. dotted red vs. dashed green). This
makes sure that there always is a drawing with at most one bend per edge. However,
if the given planar 3SAT formula ϕ has no satisfying truth assignment, then for every
truth assignment there is a clause that evaluates to false, and in the corresponding
gadget a large number of edges of type b needs a bend.

either our assumption concerning the existence of A is wrong, or we have shown
the NP-hard problem Planar3SAT to lie in P , which in turn would mean that
P = NP . �	

We now state a hardness result that establishes a connection between MinMove

Vertices and the well-known graph-drawing problem 1BendPointSetEmbed-

dability. The proof uses nearly the same gadgets as in the proof of Theorem 1:
Set G′

ϕ to a copy of Gϕ where each length-2 path (u, v, w) containing a mobile
vertex v is replaced by the edge {u, w}. The vertices of G′

ϕ are mapped to the
corresponding vertices in δϕ. Then it is not hard to see that G′

ϕ has a 1-bend
drawing iff the given planar-3SAT formula ϕ is satisfiable.

Theorem 3. Given a planar graph G = (V, E) with V ⊂ R
2, it is NP-hard to

decide whether G has a plane drawing with at most one bend per edge.

Now suppose we already know that G has a plane drawing with at most one
bend per edge. Then it is natural to ask for a drawing with as few bends as
possible. Let β(G) be 1 plus the minimum number of bends over all plane one-
bend drawings of G. Then we can show the following hardness-of-approximation
result concerning bend minimization.

Corollary 1. Given a fixed ε ∈ (0, 1] and a graph G = (V, E) with V ⊂ R
2

that has a plane one-bend drawing, it is NP-hard to approximate β(G) within a
factor of n1−ε.

For the proof we slightly change the clause gadget in the proof of Theorem 1,
see Figure 5. For the calculations, see the proof of Theorem 2.
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Fig. 6. The ordering of vertices in L0

3 Trees

In this section we give a lower bound on MKV for trees. We use the following
well-known theorem.

Theorem 4 (Erdős and Szekeres [1]). Let A = (a1, . . . , an) be a sequence
of n different real numbers. If n ≥ sr + 1 then A has an increasing subsequence
of s + 1 terms or a decreasing subsequence of r + 1 terms.

In particular, this theorem implies that a sequence of n distinct integers always
contains a monotone subsequence of length at least

√
n − 1 + 1 ≥ �

√
n �.

Theorem 5. MKV(T ) ≥ �
√

n/3� for any n-vertex tree T .

Proof. Let δ be an arbitrary drawing of T . We pick an arbitrary root r of T . Let
h ≥ 0 be the height of T with respect to r. For i = 0, . . . , h let level �i be the
set of vertices of T that are at tree distance i from r. For j ∈ {0, 1, 2} let Lj be
the union of all �i with i ≡ j mod 3. According to the pigeon-hole principle at
least one of the three sets, say L0, contains at least n/3 vertices. We label the
vertices of L0 with the integers from 1 to |L0| such that (i) all vertices in the
same level are consecutive in alternating directions, i.e., from left to right for
every even-numbered level in L0 and from right to left for every odd-numbered
level in L0, and (ii) a level closer to the root gets smaller labels, see Fig. 6.

Let � be a line, say the x-axis, such that the projection π orthogonal to � does
not map any two vertices of the drawing δ to the same point. The image of π
induces an ordering of the vertices in L0. By Theorem 4, this ordering contains
a monotone subsequence F0 ⊂ L0 of at least �

√
n/3� vertices.

We fix the vertices in F0. First we move the vertices in L0 \ F0. Let B be an
axis-parallel rectangle such that F0 ⊂ B and no point of F0 lies on the boundary
of B. If 1 �∈ F0 (|L0| �∈ F0), move it to any point on the left (right) edge of B.
For any two vertices j, k that are consecutive in F0 ∪ {1, |L0|}, move vertices
j + 1, . . . , k − 1 in an equidistant manner on the line segment jk.

We draw nested �-shaped corridors between vertices in �i and their respective
children in �i+3 if i is even. If i is odd, we use 	-shaped corridors, see Fig. 7.
Due to our labeling scheme no two such corridors intersect. Finally, the vertices
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1
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12
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5
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Fig. 7. Corridors connect the vertices in L0. Vertices in F0 are marked by black disks.

in L1 ∪L2 go to positions near the bends of the corridors (see levels �1 and �2 in
Fig. 7), which allows us to connect vertices in �i and �i+3 by two-bend edges. �	

Remark 1. The proof of Theorem 5 yields an O(n log n)-time algorithm for mak-
ing drawings of trees plane. It uses that the longest monotone subsequence of a
sequence of n integers can be found in O(n log n) time [10].

4 Planar Graphs

We now give bounds for the case of general planar graphs. We start with a rather
trivial lower bound.

Theorem 6. MKV(G) ≥ 3 for any planar graph G with n ≥ 3 vertices.

Proof. Let δ be any drawing of G. Any planar graph admits a plane drawing δ1 in
which no three points are collinear and a plane drawing δ2 in which some triplet
of points is collinear. If there are three vertices v1, v2, and v3 whose images
under δ are not collinear, we can find an affine transform L that maps δ1(vi) to
δ(vi). Since L ◦ δ1 is a plane drawing of G that agrees with δ on {v1, v2, v3} it
follows that MKV(G, δ) ≥ 3. If the images of all vertices are aligned under δ, we
apply the same argument with δ2. �	

We now give an upper bound for general planar graphs that is better than the
upper bound O((n log n)2/3) of Pach and Tardos [9] for cycles. Our construction
uses the sequence σq =

(q−1)q, (q−2)q, . . . , 2q, q, 0, 1+(q−1)q, . . . , 1+q, 1, . . . , q2−1, . . . , (q−1)+q, q − 1.

Note that σq can be written as (σ0
q , σ1

q , . . . σq−1
q ), where σi

q = ((q − 1)q + i, (q −
2)q + i, . . . , 2q + i, q + i, i) is a subsequence of length q. Thus σq consists of q2

distinct numbers. Note that the longest monotone subsequence of σq has length q.

Theorem 7. For any integer n0 there exists a planar graph G with n ≥ n0
vertices and MKV(G) ≤ �

√
n − 2 � + 1.
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Fig. 8. Drawings of graph Gq (proof of Theorem 7)

Proof. For q ≥ 1 we define the graph Gq as a chain of q2 vertices all connected
to the two endpoints of an edge {a, b}, see Fig. 8a. Let δ be the drawing of Gq

where the vertices forming the chain are placed on a vertical line � in the order
given by σq. We place the vertices a and b below the others on �, see Fig. 8b.
Let δ′ be a plane drawing of Gq with MMV(Gq, δ) = d(δ, δ′). Since all faces of
Gq are 3-cycles, the outer face in δ′ is a triangle. All faces of Gq contain a or
b. This has two consequences. First, a and b must move to new positions in δ′,
otherwise all other vertices would have to move. Second, at least one of them,
say a, appears on the outer face.

Case 1: Vertex b also lies on the outer face.
Then there are just two possibilities for the embedding of Gq: as in Fig. 8a or
with the indices of all vertices reversed, i.e., vertex i becomes q2 − i− 1. Now let
0 ≤ i < j < k ≤ q2−1 be three fixed vertices. By symmetry we can assume that j
lies in Δ(a, b, i). Then k also lies in Δ(a, b, i) since the chain connecting j to k
does not intersect the sides of this triangle. Note that k cannot lie between i and j
on � as otherwise one of the edges {a, k} and {b, k} would intersect the polygonal
chain connecting i to j. Thus, each triplet of fixed vertices forms a monotone
sequence along �. This in turn yields that all fixed vertices in {0, . . . , q2−1} form
a monotone sequence along �. Due to the construction of σq such a sequence has
length at most q = �

√
n − 2 �.

Case 2: Vertex b does not lie on the outer face.
Then the outer face is of the form Δ(a, k, k + 1) with 0 ≤ k ≤ q2 − 2. The
three edges {b, a}, {b, k}, and {b, k + 1} incident to b split Δ(a, k, k + 1) into
the three triangles Δ(a, k, b), Δ(a, b, k +1), and Δ(b, k, k +1), see Fig. 8c. Every
vertex of δ′ lies in one of them. Since δ′ is plane, vertex k − 1 must belong
to Δ(a, k, b) and, by induction, so do all vertices i ≤ k; similarly, all vertices
i ≥ k + 1 lie in Δ(a, b, k + 1). We can thus apply the argument of case 1 to each
of the two subgraphs contained in Δ(a, b, k) and Δ(a, b, k + 1). This yields two
non-overlapping monotone sequences of length q each. Note, however, that both
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most be increasing or both decreasing, since one type forces a to the left and b to
the right of � and the other does the opposite. Now Observation 2 of [11] yields
that at most q + 1 vertices can remain fixed. �	

Remark 2. The drawing δ in the proof of Theorem 7 can be slightly perturbed
so that no three vertices are aligned.

5 Conclusion

Inspired by John Tantalo’s on-line game Planarity we have introduced a new
and apparently simple graph-drawing problem, which turned out to be rather
difficult. There are many open questions. On the computational side, we showed
inapproximability for MinMovedVertices. However, this does not imply any-
thing for the approximability of MaxKeptVertices, which remains open.

Are the problems in NP? Are they hard for cycles? What about parameterized
complexity? On the combinatorial side, there are large gaps to be filled and other
classes of planar graphs to be studied.
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Abstract. Given a graph G with n vertices and a set S of n points
in the plane, a point-set embedding of G on S is a planar drawing such
that each vertex of G is mapped to a distinct point of S. A geometric
point-set embedding is a point-set embedding with no edge bends. This
paper studies the following problem: The input is a set S of n points, a
planar graph G with n vertices, and a geometric point-set embedding of
a subgraph G′ ⊂ G on a subset of S. The desired output is a point-set
embedding of G on S that includes the given partial drawing of G′. We
concentrate on trees and show how to compute the output in O(n2 log n)
time and with at most 1+2�k/2� bends per edge, where k is the number
of vertices of the given subdrawing. We also prove that there are instances
of the problem which require at least k − 3 bends for some of the edges.

1 Introduction

Let G be a planar graph with n vertices and let S be a set of n points in the
plane. A point-set embedding of G on S is a crossing-free drawing of G such that
each vertex is represented as a distinct point of S and the edges are polygonal
chains. The problem of computing a point-set embedding of a graph, also known
as the point-set embeddability problem, has been extensively studied both when
the mapping of the vertices to the points is chosen by the drawing algorithm and
when it is partially or completely given as part of the input. A limited list of
papers about different versions of the point-set embeddability problem includes,
for example, [1,2,3,5,6,7,8,12,15].

This paper studies a natural extension of the point-set embeddability problem.
It is assumed to have a mapping of some edges of G to segments defined on S
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for massive information structures and data streams” and by NSERC.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 113–124, 2007.
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and the goal is to compute a point-set embedding of G that includes the given
segments. More precisely, we focus on trees and study the following question: The
input is a set S of n points, a tree T with n vertices, and a point-set embedding of
a subtree T ′ ⊂ T on a subset of S such that all edges of this partial drawing are
straight-line segments. The desired output is a constrained point-set embedding
of T on S, i.e. a point-set embedding of T on S that includes the given partial
drawing of T ′.

From the application point of view, the point-set embeddability problem is
relevant in those contexts where the display of the vertices is constrained to use
a set of prescribed locations. Our variant adds the constraint that a portion of
the graph is already drawn; this can be important for example to preserve the
user’s mental map when a certain subgraph of an evolving network does not
change over time. Again, representing certain edges as straight-line segments
and placing their end-vertices at specific locations can be used to emphasize the
importance of these objects with respect to other objects of the graph.

We recall that a recent paper on extending a partial straight-line drawing
is [16]. Given a planar graph G and a planar straight-line drawing Γ of a sub-
graph of G, the author of [16] shows that it is NP-hard deciding whether G
admits a planar straight-line drawing including Γ . The main difference between
the problem studied in [16] and the one investigated in this paper is that, when
extending the partial straight-line drawing, we have fixed locations for the ver-
tices and we allow bends along the edges.

The main contribution of this paper is to provide lower and upper bounds to
the maximum number of bends per edge in a constrained point-set embedding
of a tree. An outline of the results is as follows.

– We prove that a constrained point-set embedding of a tree on a set of points
can require one edge bend even if the partial drawing consists of just a single
edge. We recall that every tree with n vertices admits a straight-line point-set
embedding onto any set of n points in general position [3,8].

– We extend the above result by showing a lower bound that depends on
the number of vertices of the given subdrawing of the tree. Namely we prove
there exist trees with n > 7 vertices and partial drawings with k < n vertices
such that any constrained point-set embedding has at least n−k edges, each
having at least k − 3 bends.

– We describe a drawing algorithm that computes a constrained point-set em-
bedding of a tree in O(n2 log n) time and with at most 1 + 2�k/2� bends
per edge, where n is the number of vertices of the tree and k is the number
of vertices of the given subdrawing. We remark that the difference between
such an upper bound and the lower bound mentioned above is at most 5.

The proof of the upper bound is based on the partial solution of a computa-
tional geometry problem that in our opinion is of independent interest. Kaneko
and Kano [9,10] studied the problem of computing a point-set embedding with
straight-line edges of a forest F of rooted trees such that the location of the root
of each tree of F is part of the input. Kaneko and Kano show that the drawing
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can always be computed for special types of forests (rooted star forests or forests
of trees where the sizes of any two trees differ by at most one) but the problem
is still open in the general case.

One of the basic ingredients of our upper bound technique sheds more light
on the problem described above. Namely, let T0, . . . , Th−1 be a forest of trees
with n vertices in total. Let S = {p0, . . . , pn−1} be a set of n points in general
position such that p0, . . . , ph−1 are points of the convex hull of S. We describe
an O(n2 log n) time procedure to compute a straight-line point-set embedding
of the forest such that the root of Ti is on pi (i = 1, . . . , h − 1).

The remainder of this paper is organized as follows. Preliminary definitions
are in Section 2. The study of the constrained point-set embeddability problem
for trees is in Section 3: Lower bounds are provided in Subsection 3.1 and an
upper bound is given in Subsection 3.2. Conclusions and open problems are in
Section 4.

2 Preliminaries

We assume familiarity with basic notions of graph drawing and of computational
geometry (see, e.g., [4,11,13,17]).

Let G = (V, E) be a planar graph with n vertices and let S be a set of n points
in the plane. A point-set embedding of G on S, denoted as Γ (G, S), is a planar
drawing of G such that each vertex is mapped to a distinct point of S. Γ (G, S)
is called a geometric point-set embedding if each edge is drawn as a straight-line
segment.

Let D(S) be a straight-line drawing whose vertices are points of a subset of
S. We say that D(S) is a partial drawing of G on S if it represents a graph
isomorphic to a subgraph of G. A constrained point-set embedding Γ (G, D(S)) is
a point-set embedding of G on S such that D(S) is a subdrawing of Γ (G, D(S)).

For example, Figure 1 shows a graph G, a partial drawing D(S) of G on a set
S of points, and a constrained point-set embedding Γ (G, D(S)).

In the remainder of the paper, we say that the points of S are in general
position if no three points of S lie on the same line. A corner v of a polygon

G D(S) Γ (G, D(S))

Fig. 1. A planar graph G. A set S of points and a partial drawing D(S) of G. A
constrained point-set embedding Γ (G,D(S)) with at most one bend per edge.
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in the plane is said to be a reflex corner if the angle at v inside the polygon is
greater than 180 degrees.

3 Constrained Point-Set Embeddings of Trees

In this section we investigate the constrained point-set embeddability problem for
a tree T on a set S of points. We present lower and upper bounds to the maximum
number of bends per edge in a constrained point-set embedding Γ (T, D(S)).
These bounds depend on the number of vertices of the partial drawing D(S).

3.1 Lower Bounds

We first show that there exist a tree and a set of points such that, even for a
partial drawing consisting of a single edge, a constrained point-set embedding
requires at least one edge bend. A more general lower bound is then provided.

Lemma 1. There exist a tree T of n vertices, a set S of n points, and a partial
drawing D(S) of T on S consisting of a single edge, such that every constrained
point-set embedding Γ (T, D(S)) has an edge with at least 1 bend.

Sketch of Proof: Consider the tree T and the drawing D(S) in Figure 2. Let s
denote the single edge of D(S). Let v0, v1, v2, and v3 denote four vertices of
T as illustrated, i.e., v0, v1, v2, and v3 form a path from the root of T to a
leaf. Assume that we have a drawing Γ (T, D(S)) without bends. Notice that no
point above s can be connected to a point below s without a bend. Because of
symmetry we only need consider three cases: either (v0, v1), (v1, v2), or (v2, v3)
is mapped to s.

(v0, v1) is mapped to s: Removal of v0 and v1 splits T into three sub-trees,
one with 3 vertices and two with 4 vertices each. Each sub-tree either has to be
drawn above or below s. This cannot be done since there are 6 points above and
5 points below s and no combination of {3, 4, 4} adds up to 5.

(v1, v2) is mapped to s: Removal of v1 and v2 splits T into three sub-trees,
two with 1 and one with 9 vertices. No combination of {1, 1, 9} adds up to 5.

(v2, v3) is mapped to s: Removal of v2 and v3 splits T into two sub-trees,
one with 1 and one with 10 vertices. No combination of {1, 10} adds up to 5. �

Lemma 2. There exist a tree T with n > 7 vertices, a set S of n points, and
a partial drawing D(S) of a tree with 7 ≤ k < n vertices, such that every
constrained point-set embedding Γ (T, D(S)) has n− k edges each having at least
k − 3 bends.

Sketch of Proof: Consider a tree T consisting of a path v0, v1, . . . , vk−3 of k − 2
vertices, a vertex u adjacent to v1, a vertex w adjacent to v2 and n − k vertices
adjacent to vk−3 (see Figure 3 for an illustration with k = 9 and n = 14). Let
T ′ be the subgraph of T containing all vertices of T except the n − k vertices
adjacent to vk−3. There is exactly one subgraph in T isomorphic to T ′, and the
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T

s

D(S)v0

v1

v2

v3

Fig. 2. A tree T , a set S of points, and a partial drawing D(S) with a single edge s

remaining n− k vertices of T are adjacent to vk−3 which is the only leaf node of
T ′ with a degree 2 neighbor. Notice that for such a leaf to exist we require k ≥ 7.
Let D(S) be a partial drawing of T on S constructed as shown in Figure 3; the
edges of D(S) (the solid edges in the figure) form a tree isomorphic to T ′. Since,
as already observed, there is only one subgraph in T isomorphic to T ′, the edges
that we must add to D(S) to get a drawing Γ (T, D(S)) are those adjacent to
vk−3 (see, e.g., edge e in Figure 3). As also shown in the figure, it is not hard to
see that each of these edges requires at least k − 3 bends. �

v4

v0

v6 = vk−3

v1

v6

v5

v2

e

e

v0

v1

v2

v3

v4

v5

T D(S)

v3

u

w

u

w

Fig. 3. Illustration of the proof of Lemma 2. A tree T with n = 14 vertices, a set S
of n points, and a partial drawing D(S) (with solid edges) with k = 9 vertices. Every
Γ (T, D(S)) requires n − k = 5 edges each having at least k − 3 = 6 bends (see for
example the dashed edge).

3.2 Upper Bound

Let T be a tree with n vertices and let S be a set of n points. In this section we
show that if D(S) is a partial drawing of T on S such that D(S) represents a tree
with k vertices, then we can always construct a constrained point-set embedding
Γ (T, D(S)) with at most 1 + 2�k/2� bends per edge. This means that each edge
of T that we add to complete D(S) is drawable with a number of bends that is
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linear in the number of vertices of D(S) and that does not depend on the size
of T . Notice that the bound 1 + 2�k/2� is equal either to k + 1 (if k is even) or
to k + 2 (if k is odd). This implies that the difference between this upper bound
and the lower bound given in Lemma 2 is at most 5.

We start by providing two lemmas that are the technical foundation of our
drawing technique. The first lemma sheds more light on a point-set embeddabil-
ity problem studied by Kaneko and Kano [9,10].

Lemma 3. Let G consist of a forest of trees T0, T1, . . . , Th−1. Let Ti = (Vi, Ei)
for all 0 ≤ i < h. Let S = {p0, p1, . . . , pn−1} be a set of points in general
position such that p0, p1, . . . , ph−1 are points of the convex hull of S. There exists
an O(n2 log n)-time algorithm that computes a geometric point-set embedding
Γ (G, S) such that the root of Ti is on pi (0 ≤ i < h).

Sketch of Proof: Let CH(S) be the convex hull of S. Without loss of generality,
assume that p0, p1, . . . , ph−1 occur in this order on the boundary of CH(S) in
clockwise order (if this is not the case, we can simply reorder them).

We first show that we can find a line a with the following properties: (i) a
does not intersect any point pi of S and there are points from S on both sides
of a; (ii) denoted by I ⊂ {0, 1, . . . , h − 1} the set of indices for which all convex
hull points pj , with j ∈ I, lie on one side of a, we have that the total number of
points on that side is equal to

∑
j∈I |Vj |.

We call such a line a dividing line. An example of dividing line is shown in
Figure 4. We can use a ham-sandwich type argument to prove that a dividing
line exists. We say that a side of a is too light if we have convex hull points pj

with j ∈ I ⊂ {0, 1, . . . , h − 1} to that side of a and the total number of points
to that side of a is smaller than

∑
j∈I |Vj |. If one side of a is too light, the other

side is said to be too heavy.
Consider points p0 and p1 on CH(S). Let a0 and a1 be lines through p0 and

p1 and such that any other point of a0 and a1 is outside the polygon defined by
CH(S) (refer to Figure 4 for an illustration). Let p be the intersection point of
a0 and a1 (the proof will still work if p is a point at infinity). We start with line
a = a0 and rotate a around p in the counterclockwise direction until a = a1.
We can always slightly perturb a0 and a1 (and hence p) in such a way that a
never intersects two points of S at the same time. Without loss of generality
assume that the range of motions for a does not include a horizontal line and
that when a = a0, all remaining points of S lie to the right of a when moving
along a toward p. If we rotate a slightly away from a0, only p0 lies to the left of
a. If T0 consists only of its root, a is a dividing line and we are done; otherwise
the left side of a is too light. If we place a such that only p1 is on its right, then
either T1 consists only of a root and we are done, or the left side of a is too
heavy. If the left side of a is too light and during the rotation of a from a0 to
a1 it passes a point pj with 0 ≤ j < h, the left side of a remains too light. Since
during rotation at any time at most one point moves from the right to the left
side of a, and since in the beginning the left side of a is too light and at the end
the left side of a is too heavy, it follows that at some moment a is a dividing line.
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3 4 4

left side

right side

a0

p0

a1

p

p1

p2

a

T1 T2

T0

CH(S)

Fig. 4. An example of dividing line a. G consists of three trees T0, T1, and T2, where
T0 has 3 vertices and T1, T2 have 4 vertices each. On one side of a there are the root
points p0 and p2 for trees T0 and T2, and a total number of points equal to the number
of vertices of T0 and T2; on the other side of a there are the points for drawing T1.

The complexity of finding a dividing line is O(n log n), because we can first
radially sort the points of S around p and then execute a scan-line algorithm
from a0 to a1 to find a dividing line. Also, if p must be perturbed by an ε > 0
to avoid that it is collinear with any two points of S before starting the search
of a dividing line, such an ε can be determined in O(n) time, using the radial
sorting of the points around p itself.

Once we have found a dividing line, the polygon whose boundary is CH(S) is
divided into two subregions. By recursively applying the same procedure on each
of the two subregions we can find dividing lines that split CH(S) into convex
subregions P0, P1, . . . , Ph−1 such that each Pi contains |Vi| vertices. Therefore
we find the required drawing by executing the following algorithm:

Step A. Divide CH(S) into convex subregions P0, P1, . . . , Ph−1 such that each
Pi contains |Vi| vertices.

Step B. Draw each Ti inside Pi with the technique of Bose et al. [3].

Since all h dividing lines can be found in O(h · n log n) time, where h ≤ n,
and the algorithm of Bose et al. [3] runs in O(n log n) time, it follows that the
given algorithm runs in O(n2 log n). �

The next lemma extends the previous result to the case where the roots of the
trees are placed on the boundary of a non-convex polygon. In this case, the
number of bends along the edges depend on the number of reflex corners of the
polygon.

Lemma 4. Let G consist of a forest of trees T0, T1, . . . , Th−1. Let Ti = (Vi, Ei)
for all 0 ≤ i < h. Let S = {p0, p1, . . . , pn−1} be a set of points in general
position such that p0, p1, . . . , ph−1 are points along the boundary of a polygon P
and the remaining points of S are inside P . Also, let k be the number of reflex
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corners of P . There exists an O(n2 log n)-time algorithm that computes a point-
set embedding Γ (G, S) inside P such that the root of Ti is on pi (0 ≤ i < h) and
each edge of Γ (G, S) has at most 2�k/2� bends.

Sketch of Proof: For an illustration of this proof, refer to Figure 5. In the figure
the forest to be drawn consists of two trees, T0 and T1, and the polygon P has
three reflex corners. We prove the lemma by construction:

Step 1. We partition P into k + 1 convex polygons, for example by iteratively
drawing a bisector from each reflex vertex until this bisector hits another
line segment. We perturb the subdivision in such a way that no point from
S lies on any of the added subdivision edges and so that none of the convex
polygons has an angle equal to π. We call the added subdivision edges dummy
edges (the dashed edges in the figure).

Step 2. Consider the dual graph of this subdivision, find a spanning tree T of
the dual graph and select a node r of T with the property that the number
of edges in T from r to any leaf node of T is at most �k/2�. Make r the root
of T . In the following, for any node v of T , Pv will denote the convex polygon
corresponding to v (Pr is the convex polygon corresponding to the root). In
the figure, the nodes of the dual graph of the subdivision are represented by
big squares and the edges of the selected spanning tree are in bold.

Step 3. The objective of this step is to add extra points on the boundary of
Pr so that each of these points corresponds to a distinct point of S that
does not lie in Pr. Let S′ = S. We add dummy points to S′ by executing a
post-order traversal of T . For each visited node v of T distinct from r we do
the following. Let e be the dummy edge that separates Pv from the polygon
corresponding to its parent node in T . Recall that no points from S lie on
e, except possibly at its end-points. Let Sv be the set of points in S′ ∩ Pv

except possibly those at some end-point of e (we include every other point
of S that is on the boundary of Pv). Place |Sv| dummy points on e in such
a way that none of the points on e lies on a line through two points from
Sv. Construct a straight-line perfect planar matching from the |Sv| points
in Pv to the |Sv| points on e. Add to S′ the dummy points placed on e. In
the figure, the dummy points are represented by empty circles.

Step 4. After the execution of Step 3 all nodes of T have been visited except the
root r of T . Notice that there are n points in S′ ∩ Pr. In order to guarantee
that no three points of S′ are collinear, we slightly modify the boundary of
Pr, by replacing each dummy edge of Pr with a “slightly convex” polygonal
chain. More precisely, if e is a dummy edge of Pr such that ne dummy points
are placed on e, we replace e with a convex polygonal chain Ce such that
Ce has ne vertices and it does not change the inside/outside relations of the
points of S with respect to Pr. Then we move each of the ne dummy points
on a distinct vertex of Ce, in such a way that the linear ordering of these
points along Ce is the same they had along e.

Step 5. Compute a straight-line drawing of Γ (G, S′ ∩ Pr) inside Pr by using
Lemma 3; the root of each Ti (i ∈ {0, . . . , h − 1}) is placed either on pi (if
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pi belongs to the boundary of Pr) or on the dummy point of the boundary
of Pr that corresponds to pi. Finally, we replace all edges of the drawing
connected to a dummy point by narrow tunnels and we use these tunnels to
planarly draw the edges of the tree; the number of dummy nodes traversed
by an edge of the tree corresponds to the number of bends of that edge in
the final drawing.

In Step 5, any edge of G is drawn from a point p of S via dummy points until
it reaches Pr. Every time an edge passes through a point on a dummy edge, a
bend is added. Since the longest path in the spanning tree T of the subdivision
passes through �k/2� dummy edges and an edge of the drawing of G may connect
two points that lie in two (possibly coincident) polygons whose corresponding
nodes are at distance �k/2� from the root r of T , the number of bends per edge
is at most 2�k/2�.

Step 1

Step 3 Step 4 Step 5

Step 2

T0 T1

p1p1

p1 p1

Pr

p1

p0 p0

p0 p0 p0

r

Pr

Fig. 5. Steps of the constructive proof of Lemma 4

We now briefly discuss the time complexity of the drawing algorithm described
above. Step 1 can be performed in O(n2) time by using standard partitioning
techniques of a polygon into convex regions (see, e.g., [14]). Step 2 is executed
in O(k) time, because T has k + 1 vertices. Regarding Step 3, for each polygon
Pv 	= Pr we need to project the points of Sv on a dummy edge e of the boundary
of Pv, so that the straight-line edges used in the projection do not intersect. To
accomplish this we can for example radially sort the points of Sv by rotating
counterclockwise the line containing e around the middle point q of e, and then
project all points of Sv with slope less than π/2 onto points of e to the right of q,
and points of Sv with slope greater than π/2 onto points of e to the left of q (see
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Figure 6 for an example). Since each Sv contains at most n points, this step can
be executed in O(n2 log n) time. Step 4 can be executed in O(n) time, and the
complexity of Step 5 is dominated by the complexity of the drawing algorithm
of Lemma 3, which is O(n2 log n). �

π/2

Pv

q
e

Fig. 6. Illustration of the technique used in Step 3 in the proof of Lemma 4

We can now prove the following theorem.

Theorem 1. Let T be a tree with n vertices and let S be a set of n points in
general position. Let D(S) be a partial drawing of T representing a subtree with
k vertices. There exists a constrained point-set embedding Γ (T, D(S)) with at
most 1 + 2�k/2� bends per edge, which can be computed in O(n2 log n) time.

Sketch of Proof: Since D(S) is a partial drawing of T on S, it is a straight-line
drawing of a subtree T ′ of T . We first construct a polygon P that follows the
boundary of T ′ and that leaves T ′ outside (refer to Figure 7 for an illustration).
More precisely, draw a convex polygon P that properly contains S and then
modify it as follows: Find a location p on a side of P from which we can draw a
straight-line segment to a location q on an edge of D(S). Cut P at p and draw
a line segment from p in the direction of q until it almost reaches q. We then
continue to draw line segments that trace around the edges of D(S). Once we
have gone around the tree T ′ and are almost back at q, we draw a line segment
back to the original boundary of P , close to p; in other words we have cut a
tracing of T ′ out of P , while keeping inside the polygon all other points of S.
For each vertex v of T ′, polygon P has deg(v) corners close to v, where deg(v)
denotes the degree of v in T ′. At the corner of P closest to a leaf of T ′ there
is an angle almost equal to 2π (i.e., this vertex is a reflex corner of P ). At the
corners of P close to an internal vertex of T ′ there is at most one angle larger
than π. Near the points p and q the polygon P has angles less than π. Therefore,
P has at most one reflex corner for each vertex of T ′, and hence it has at most
k reflex corners.

We now place k dummy points on the boundary of P close to the k vertices of
T ′. Namely, for each vertex v of T ′ we place a dummy point pv close to v on the
boundary of P . For a vertex v of T ′, let Tv denote the subtree of T rooted at v
and consisting only of the edges of T that do not belong to T ′. Using Lemma 4,
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we construct each subtree Tv so that its root is placed on pv instead of v. From
Lemma 4 we know that this drawing has at most 2�k/2� bends per edge, and
can be computed in O(n2 log n) time. Then, for each v we connect pv to v with
a straight-line segment and remove the dummy point pv, thus creating one more
bend per edge. The theorem follows. �

p

q

P

Fig. 7. Cutting a tree out of a polygon P . The tree is represented by solid edges while
P has dashed segments.

The next result is a consequence of the proof of Theorem 1. Indeed, in that proof
T ′ is an arbitrarily chosen subtree of T among those isomorphic to D(S).

Corollary 1. Let T be a tree with n vertices, S a set of n points in general
position, and T ′ any subtree of T with k vertices. If Γ (T ′, S) is a geometric
point-set embedding of T ′ on a subset of S, then T has a point-set embedding
Γ (T, S) on S such that Γ (T ′, S) ⊂ Γ (T, S) and every edge that does not belong
to T ′ has at most 1+2�k/2� bends. Also, Γ (T, S) can be computed in O(n2 log n)
time.

4 Conclusions and Open Problems

This paper introduced the problem of computing a point-set embedding of a
graph G on a set S of points, with the constraint that a partial straight-line
planar drawing of G on a subset of S is given. We concentrated on trees, and
presented lower and upper bounds to the maximum number of bends per edge.
We showed a lower bound equal to k−3 and an upper bound equal to 1+2�k/2�,
where k is the number of vertices of the partial drawing. The upper bound is
proved by means of an O(n2 log n)-time drawing algorithm. The drawing tech-
nique exploits a partial solution of a well-investigated and still unsolved compu-
tational geometry problem.

We mention in the following three open problems related to the results of
this paper and that could be the subject of further investigation: (i) Extend the
study to families of graphs other than trees. (ii) Compute constrained point-set
embeddings with the minimum number of bends. (iii) Study the constrained
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point-set embeddability problem in the case that the partial drawing to be ex-
tended contains some bends along its edges.
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Abstract. Many representation theorems extend from planar graphs
to planar hypergraphs. The authors proved in [10] that every planar
graph has a representation by contact of triangles. We prove here that
this representation result extend to planar linear hypergraphs. Although
the graph proof was simple and led to a linear time drawing algorithm,
the extension for hypergraphs needs more work. The proof we give here
relies on a combinatorial characterization of those hypergraphs which
are representable by contact of segments in the plane, We propose some
possible generalization directions and open problems, related to the order
dimension of the incidence posets of hypergraphs.

1 Introduction

1.1 Hypergraphs

A hypergraph H is an ordered pair (X, E) where X is a finite set whose elements
are called vertices and E is a collection of nonempty subsets E of X called
edges whose union is X . Two vertices x, y ∈ X (resp. two edges E, E′ ∈ E) are
adjacent if {x, y} is included in some edge of H (resp. if E ∩ E′ is not empty).
A hypergraph is linear if any two edges have at most one common element:
∀E, E′ ∈ E : |E ∩ E′| ≤ 1. A loop of a hypergraph is an edge of cardinality 1. A
loopless linear hypergraph is said to be simple. We note n(H) = |X | the order of
H and m(H) = |E| its size. The sub-hypergraph of H induced by a subset A ⊆ X
is the hypergraph HA = (A, EA), where EA = {E ∩A : E ∈ E ; E ∩A �= ∅}. The
representative graph B(H) of H is the black and white colored bipartite graph
whose set of white vertices is X , whose set of black vertices is E and whose edges
are those pairs {x, E} such that x ∈ E ∈ E . For terms in Hypergraph Theory,
not specifically defined here, we refer the reader to [2].

Different generalizations of the concept of graph planarity to hypergraphs have
been considered (See [13], for instance). Zykov proposed to represent the edges
of a hypergraph by a subset of the faces of a planar map [28]. Walsh has shown
that Zykov’s definition (as well as another definition by Cori [4]) is equivalent
to the following: A hypergraph is planar if and only if its representative graph
B(H) is planar [26] (See also [5,14,27]). In the figures, hypergraphs are displayed
by mean of their representative graph.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 125–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.2 Geometrical Representations

Geometrical representations of planar graphs gained much attention these last
three decades, particularly since planar graphs have been proved to have a
straight line representation on a linear size grid [11,12,23]. Other geometrical
representations have been proposed, like rectilinear representations (a.k.a. vis-
ibility representations) [19,24], representations by contacts of convex sets (for
instance, circles [1,15] or triangles [10]) and representations by contacts or inter-
sections of Jordan arcs or of straight line segments [7,9,8,21].

Contacts systems of segments are studied in [9,8]. For instance, it is proved
there that a graph is the contact graph1 of a family of segments if and only if
any subgraph induced by a subset of p ≥ 2 vertices has at most 2p − 3 edges.
In particular any triangle-free planar graph is the contact graph of a family of
segments (and this result extends to “triangle-free” planar hypergraphs). Not
every planar graph (thus not every planar linear hypergraph) is representable
by contacts of segments. The characterization of those planar linear hypergraphs
which are contact hypergraphs of segments and points is recalled and discussed
in Section 2.

A possible relaxation stands in allowing intersections. In [20], Scheinerman
asked whether any planar graph could be represented as the intersection graph
of a family of segments. Chalopin, Gonçalves and Ochem recently claimed to have
proved this conjecture. The authors have proposed the following strengthening
of Scheinermann’s conjecture.

Conjecture 1. Any planar linear hypergraph is the intersection hypergraph of a
family of segments.

Another possible relaxation stands in considering triangles instead of straight
line segments. Actually, it is well known that any planar graph is the contact
graph of a family of convex sets in the plane. Different kinds of convex sets
have been considered, like circular disks [1,15]. However, as no three circular
disks can be in contact at a common point, this representation fails to extend
to hypergraphs. In [10], it is proved that any planar graph can be represented
as the contact graph of a family of triangles in the plane. The aim of this paper
is to extend this later result to planar linear hypergraphs.

1.3 Further Definitions on Graphs

For a subset X of vertices of a plane graph G, we denote N (X) the union of X
and the set of the neighbors of the vertices in X in G, by G[X ] the subgraph of
G induced by X . The set of edges incident to a vertex in X and a vertex out of
X is denoted by ω(X). When G is directed, ω−(X) denotes the set of the edges
of ω(X) which are oriented toward X .

We denote by Extr(X) the vertex set of the outer face of G[X ]. The Closure
of X is the union of all the subsets Y such that Extr(Y ) = Extr(X). Notice that

1 To be precise, we only allow one-sided contacts, see Section 2 for more details.
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Clos(X) = Clos(Y ) if and only if Extr(X) ⊆ Y ⊆ Clos(X). The subset X is
closed if X = Clos(X). The subset X of vertices is a disk of G if X is closed, has
cardinality at least 3, and the outer face of G[X ] is a cycle.

2 Contacts of Segments or Pseudo-segments

A finite set of Jordan arcs is called a family of pseudo-segments if every pair
of arcs in the set intersects in at most one point. In particular, any family of
segments is a family of pseudo-segments. A one-sided contact family of pseudo-
segments and points is a couple (A, P ), where A is a family of pseudo-segments
that may touch (only on one side at each contact point) but may not cross and
whose union is connected, and where P is a set of points in the union of the
pseudo-segments including all the extremities of the pseudo-segments. For the
sake of simplicity we shall use the term of contact system instead of “one-sided
contact family” in the remaining of the paper.

Each contact system (A, P ) defines a connected bipartite plane graph G =
(V ◦ , V • , E), its incidence graph, where V ◦ corresponds to the pseudo-segment
set, V • corresponds to the point set and E corresponds to the set of incidences
between points and pseudo-segments.

The graph G has no cycle of length 4 (as two pseudo-segments share at most
one point) thus has girth at least 6. The planar linear hypergraph H whose
representative graph is G is the contact hypergraph of (A, P ). When no three
pseudo-segments of A touch at a single point, the contact hypergraph actually
is a graph, which we shall call the contact graph of (A, P ). Contact hypergraphs
of pseudo-segments have been characterized in [7] and contact hypergraphs of
segments have been characterized in [8] and [9].

Moreover, the contact system also defines an orientation of G: if x ∈ V •
corresponds to a point p on a pseudo-segment S corresponding to y ∈ V ◦ , the
edge {x, y} is oriented from x to y if p is an extremity of S and from y to x,
otherwise. This orientation is such that the indegree of a vertex in V ◦ is exactly
2 and the indegree of a vertex in V • is at most 1. We call such an orientation a
(2, ≤1)-orientation. The converse is quite simple to prove (see [7]):

Theorem 1. A directed bipartite plane graph G = (V ◦ , V • , E) is the incidence
graph of a contact system of pseudo-segments and points with the embedding and
the orientation induced by the contact system if and only if G has girth at least
6, and the orientation of G is a (2, ≤1)-orientation. 
�
The characterization of incidence graphs of segments and points given in [8]
(Theorem 38) can be stated in a similar way:

Theorem 2. A directed bipartite plane graph G = (V ◦ , V • , E) is the incidence
graph of a contact system of segments and points with the embedding and the
orientation induced by the contact system if and only if G has girth at least 6,
the orientation of G is a (2, ≤1)-orientation and each subset A ⊆ V ◦ which has
cardinality at least two is such that G[N (A)] has at least three sources on its
outer face. 
�
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To consider disks instead of neighborhoods in the last condition, we intro-
duce a new function. For a subset X of vertices, σ(X) denotes be the sum
of ω−(Clos(X)) and the number of sources of G in Extr(X).

Lemma 1. Let G = (V ◦ , V • , E) be a directed bipartite plane graph with girth
at least 6, whose orientation is a (2, ≤1)-orientation.

Then G is the incidence graph of a contact system of segments and points with
the embedding and the orientation induced by the contact system if and only if
σ(D) ≥ 3 for every disk D of G.

Proof. Assume G is the incidence graph of a contact system of segments and
points with the embedding and the orientation induced by the contact system
and let D be a disk of G. It is easily checked that σ(D) is the number of sources
of G[N (D∩V ◦ )] lying on its outer face. Thus σ(D) ≥ 3 according to Theorem 2.

Conversely, assume σ(D) ≥ 3 for every disk D of G and let A ⊆ V ◦ be a subset
of a least two white vertices of G. It is easily checked that the number of sources
of G[N (A)] lying on its outer face is equal to σ(N (A)). As σ(X) = σ(Clos(X))
and as G has girth at least 6, the inequality σ(N (A)) ≥ 3 will follow from the
statement that σ(X) ≥ 3 for every closed subset X such that

∣
∣Extr(X) ∩ V ◦

∣
∣ ≥

2, that we shall prove by induction on
∣
∣Extr(X) ∩ V ◦

∣
∣.

If
∣
∣ Extr(X) ∩ V ◦

∣
∣ = 2 then G[X ] includes no cycle, thus

∣
∣ Extr(X) ∩ V ◦

∣
∣ = 2

and σ(X) ≥ 3, by an easy case analysis. Assume σ(X) ≥ 3 for every closed
subset X such that 2 ≤

∣
∣ Extr(X) ∩ V ◦

∣
∣ ≤ k and let X be a closed subset with

(k + 1) ≥ 3 white vertices. If G[X ] is disconnected, then either one connected
component G[X ′] of G[X ] has at least two white vertices on its outer face and
the result follows from σ(X) ≥ σ(X ′) and the induction, or G has at least one
connected component G[X ′] with exactly one white vertex on its outer face, and
the result follows from σ(X) ≥ σ(X \X ′) and the induction. If G[X ] has a vertex
v of degree 1 on its outer face, it is easily checked that σ(X) ≥ σ(X − v) thus
σ(X) ≥ 3 according to the induction. Otherwise, if the outer face of G[X ] is a
cycle, then X is a disk and σ(X) ≥ 3 by assumption. Otherwise, there exists
closed subsets X1, X2 such that |X1 ∩ X2| = 1 and X = X1 ∪ X2 and each
of G[X1] and G[X2] includes at least a cycle (thus includes at least two white
vertices on its outer face). By induction, σ(X1) ≥ 3 and σ(X2) ≥ 3. As it is
easily check that σ(X) ≥ σ(X1) + σ(X2) − 2, we get σ(X) ≥ 4.

3 Contacts of Triangles and Segments

Main Theorem. Any planar linear hypergraph is the contact hypergraph of a
family of triangles and segments.

We shall first state some preliminary lemmas and explicit a few transformations
on bipartite plane graphs. First recall the following orientation lemma, whose
proof has been included for the sake of completeness.

Lemma 2 ([16]). Let G be a multigraph, let λ be a mapping from V (G) to
IN. Then there exists an orientation of G such that each vertex v ∈ V (G) has
indegree bounded by λ(v) if and only if
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∀A ⊆ V (G) :
∣∣ E(G[A])

∣∣ ≤
∑

v∈A

λ(v). (1)

Moreover, this orientation is such that each vertex v has indegree λ(v) if and
only if we also have the global condition

∣
∣ E(G)

∣
∣ =

∑
v∈V (G) λ(v).

Proof. If every vertex v has indegree bounded by λ(v) then the number of edges
of G[A] is bounded by

∑
v∈A λ(v) for any subset A of vertices.

Conversely, assume (1) holds. To any orientation O associates the non negative
integer value f(O) =

∑
v: d−(v)>λ(v)(d

−(v)−λ(v)). Let O be an orientation of G

such that f(O) is minimal. If f(O) = 0 then any vertex v has indegree bounded
by λ(v). Assume f(O) > 0. Let x0 be a vertex such that d−(x0) > λ(x0)
and let I(x0) be the set of the vertices v ∈ V (G) such that there exists a
directed path (with respect to O) from v to x0. As no vertex in I(x0) has an arc
coming from the outside of I(x0), we get

∣
∣ E(G[I(x0)])

∣
∣ =

∑
v∈I(x0) d−(v). As∣

∣E(G[I(x0)])
∣
∣ ≤

∑
v∈I(x0) λ(v) (according to (1)) and as I(x0) includes at least

a vertex v such that d−(v) > λ(v) (namely x0) we deduce that I(x0) also includes
a vertex y such that d−(y) < λ(y). By construction there exists a directed path
from y to x0. By reversing the orientation of the edges of this directed path we
get a new orientation O′ for which all the indegrees but those of y and x0 remain
the same, the indegree of y increases by one and the indegree of x0 decreases by
one. Thus f(O′) < f(O), a contradiction. 
�

Given a 2-connected bipartite plane graph G = (V ◦ , V • , E(G)) with girth 6
whose faces have length 6, we define:

– the bipartite plane graph G+ = (V ◦ ∪ {r}, V • , E(G+)) obtained from G by
adding a vertex r in the outer face linked to the black vertices of this face,

– the bipartite plane multigraph G+
‖ = (V ◦ ∪ {r}, V • , E(G+

‖ )) obtained from
G+ by doubling every edge.

Lemma 3. The graph G+
‖ has an orientation O+

‖ such that every vertex in
V ◦ ∪ V • has indegree 3 and r is a source.

Proof. For every A ⊆ V ◦ ∪ V • we have 2
∣∣E(G+)[A]

∣∣ ≤ 3|A| − 6, according
to Euler’s formula. Hence

∣∣ E(G+
‖ )[A]

∣∣ ≤ 3|A| − 6. Let λ is the mapping from
V (G+

‖ ) to IN defined by λ(v) = 0 if v = r, and λ(v) = 3 otherwise. Then, for any
A ⊆ V (G+

‖ ), we have
∣
∣ E(G+

‖ )[A]
∣
∣ ≤

∑
v∈A λ(v). As

∣
∣ E(G+

‖ )
∣
∣ =

∑
v∈V (G+

‖ ) λ(v),

it follows from Lemma 2 that G+
‖ has an orientation O+

‖ such that d−(v) = λ(v)
for every vertex. 
�

Given such an orientation O+
‖ of G+

‖ , we define:

– Υ (O+
‖ ) is the set of the edges {x, y} of G+ such that both (x, y) and (y, x)

are arcs of G+
‖ ,
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– Ω(O+
‖ ) is the orientation of G+ such that an edge {x, y} is oriented from x

to y if either both arcs linking x and y in G+
‖ are oriented from x to y with

respect to O+
‖ , or {x, y} ∈ Υ (O+

‖ ) and y is white.
– the type of a vertex v as 1 if either v has two incoming edges coming from one

of its neighbors, or as 2 if the three incoming edges of v come from different
neighbors of v.

Fact 1. Assume every vertex in V ◦ ∪V • is of type 1 in G+
‖ with respect to O+

‖ .
Then:

– The vertex r is a source of G+ with respect to Ω(O+
‖ ),

– the set Υ (O+
‖ ) is a perfect matching of G,

– each vertex v ∈ V • has exactly one incoming edge in G+, and this edge does
not belong to M ,

– each vertex v ∈ V ◦ has exactly two incoming edge in G+, exactly one of
which belongs to M .

Proof. The vertex r is a source of Ω(O+
‖ ) by construction, as it is a source of

O+
‖ . Also, no edge incident to r in G+ belongs to Υ (O+

‖ ). Every vertex different
from r has indegree 1 in G+ \ Υ (O+

‖ ) with respect to Ω(O+
‖ ) as it is of type 1 in

G+
‖ . The set Υ (O+

‖ ) is a perfect matching of G as it is obviously a 1-factor (each
vertex of G = G+ − r has degree 1 in Υ (O+

‖ )). The last two items also follows
directly from the definition of Ω(O+

‖ ). 
�

Lemma 4. Let O+
‖ be an orientation of G+

‖ such that r is a source and every
vertex in V ◦ ∪ V • has indegree 3 and type 1. Consider the orientation Ω(O+

‖ )
of G+. Each disk D of G is such that

∣
∣ω−(D)

∣
∣ ≥ 3.

Proof. Let M = Υ (O+
‖ ), let γ be the outer face of G+[D] and 2l its length, let

ω ◦ (resp. ω • ) be the subset of ω(D) formed by the edges having an endpoint
in D ∩ V ◦ (resp. D ∩ V • ).

The summation of the indegrees of the vertices in the subgraph G+
‖ [D] gives:

2
∣
∣E(G+[D])

∣
∣ = 3

∣
∣D

∣
∣−2

∣
∣ω−(D) \ M

∣
∣−

∣
∣ω(D) ∩ M

∣
∣. The value 2

∣
∣E(G+[D])

∣
∣

is also the sum of the length of the faces of H thus, as all the interior faces have
length 6 and as the outer face as length 2l, we get 2

∣
∣E(G+[D])

∣
∣=6(

∣
∣ E(G+[D])

∣
∣−∣

∣D
∣
∣+1)+2l, that is: 2

∣
∣E(G+[D])

∣
∣ = 3

∣
∣D

∣
∣−l−3. Hence 3

∣
∣D

∣
∣−2

∣
∣ω−(D) \ M

∣
∣−∣

∣ω(D) ∩ M
∣
∣ = 3

∣
∣A

∣
∣ − l − 3. As

∣
∣ ω−(D)

∣
∣ =

∣
∣ ω−(D) \ M

∣
∣ +

∣
∣ ω ◦ ∩ M

∣
∣, we

deduce ∣∣ ω−(D)
∣∣ = l + 3 −

(∣∣ ω−(D) \ M
∣∣ +

∣∣ω • ∩ M
∣∣) (2)

Let t (resp. z) denotes the number of white vertices of γ which are matched
in γ and is a sink of γ (resp. not a sink of γ). Obviously t + z = |γ ∩ M |. Every
sink of γ has indegree 2 in γ hence is a white vertex of γ and is matched in γ.
It follows that t is the number of sinks of γ hence also the number of sources of
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γ. Let e ∈ ω− \ M . Then either e is incident to a source of γ, or it is incident
to a white vertex which is matched in γ and which is not a sink of γ. It follows
that

∣
∣ ω−(D) \ M

∣
∣ ≤ t + z = |γ ∩ M |. Also,

∣
∣ γ ∩ M

∣
∣ +

∣
∣ω • ∩ M

∣
∣ ≤ l as this

is the number of black vertices of γ matched in ω • ∪ γ. Altogether, we get∣
∣ω−(D) ∩ M

∣
∣ +

∣
∣ ω • ∩ M

∣
∣ ≤

∣
∣ γ ∩ M

∣
∣ +

∣
∣ ω • ∩ M

∣
∣ ≤ l. Thus

∣
∣ ω−(D)

∣
∣ ≥ 3,

according to (2). 
�

Definition 1. Le v be a vertex of type 2, and let x1, y
1
1 , . . . , y

a1
1 , x2, y

1
2 , . . . , y

a2
2 ,

x3, y
1
3, . . . , y

a3
3 be the neighbors of v in circular order, where x1, x2, x3 are the

three neighbors of v incident to an arc oriented to v. The splitting of v is obtained
by replacing v by three vertices v1, v2, v3 and dispatching the arcs incident to v
to v1, v2, v3: for i ∈ {1, 2, 3}, the arcs incident to vi are: one arc to xi, one arc
from xi, for each j = 1, . . . , a1 two arcs to yj

i , and two arcs coming from xi+1
(if i < 3, or x1 if i = 3).

v

x1

y1
1

y
a1
1

x2
y1
2 y

a2
2

x3

y1
3

y
a3
3

��

x1

y1
1

y
a1
1

x2
y1
2 y

a2
2

x3

y1
3

y
a3
3

v2

v1 v3

Remark that the splitting of a vertex v of type 2 into v1, v2, v3 preserves the
length of the faces and the indegrees. After the splitting, each of v1, v2, v3 is of
type 1.

Lemma 5. Let O+
‖ be an orientation of G+

‖ such that r is a source and every
vertex in V ◦ ∪ V • has indegree 3 and such that every vertex in V ◦ has type 1.
Consider the orientation Ω(O+

‖ ) of G+. Each disk D of G is such that σ(D) ≥ 3.

Proof. We proceed by induction on the number of vertices in V • which have
type 2. If no vertex in V • has type 2, the result follows from Lemma 4. Assume
that the result holds if V • includes at most k vertices of type 2 (k ≥ 0) and
assume V • includes k +1 vertices of type 2. Let v be one of them. Let G′ be the
multigraph obtained from G+

‖ by splitting v into three vertices v1, v2, v3. Let H

be the unique plane graph such that H+
‖ = G′. Let F be the circuit of length 6

including v1, v2, v3 arising in H+ from the splitting of v. Let D be a disk of G.
If v /∈ Extr(D) then the result follows from the induction applied to the graph
H+

‖ obtained from G+
‖ by splitting v (the σ-value of D in G+ will be the same

has the σ-value of Clos(Extr(D)) in H+). Otherwise, let D′ be the disk of H+

obtained from D − v by adding those of v1, v2, v3 having at least two neighbors
in D − v. Then the set of edges ω−(D′) (in H+) is the union of the set ω−(D)
(computed in G+) and of the set of edges in ω−(D′) ∩ F . As the outer face of
H+[D′] meets F on an interval (possibly reduced to a vertex) and as F is a
circuit, |ω−(D′)∩F | ≤ 1. As v was a source of G+ and none of v1, v2, v3 are, we
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get that the σ-value of D in G+ is at least equal to the σ-value of D′ in H+,
which in turn is at least 3 by induction. Hence σ(D) ≥ 3, what completes the
proof of the induction. 
�

Lemma 6. Let O+
‖ be an orientation of G+

‖ such that r is a source and every
vertex in V ◦ ∪ V • has indegree 3 and such that every vertex in V ◦ has type 1.
Consider the orientation Ω(O+

‖ ) of G+ and its restriction to G. Then G is the
incidence graph of a contact system of segments and points with the embedding
and the orientation induced by the contact system.

Proof. This is a direct consequence of Lemma 5 and Lemma 1. 
�

Consider a contact family F of triangles and segments. Each triangle is formed
by three segments. The contact family thus defines a bipartite incidence graph
of segments and points, in which the segments of F appear as vertices, and the
triangles of F appear as faces of length 6.
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Fig. 1. Representation of a planar linear hypergraph by contacts of triangles and seg-
ments. First figure is the representative graph B of the hypergraph, second figure is the
orientation of B+

‖ −r, third figure is the orientation of Γ+
‖ −r obtained from B+

‖ −r by

splitting of vertices of type 2 (here c is split into c1, c2, c3), fourth figure is the associ-
ated orientation of Γ . The last figure is the deduced representation of the hypergraph.

Conversely, to represent planar linear hypergraph as the incidence graph of
a family of triangles and segments in contacts, we will derive from the repre-
sentative plane graph B of the hypergraph a bipartite plane graph Γ , so that
each vertex of B will correspond either to a vertex or a face of length 6 of Γ ,
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and deduce the representation of B from a representation of Γ as the incidence
graph of a family of segments and points (see Fig. 1 and 2).

Although the exact details of the construction of an actual family of segments
and points whose incidence graph is Γ can be found in [8], we shall give some
intuition of how it works: By using augmentations one reduces to the case where
Γ have exactly 3 sources lying on the outer face. Then these vertices are em-
bedded into 3 points of the plane in general position forming a triangle T0. The
orientation and plane embedding of the bipartite graph are translated into a lin-
ear system which resolution gives the embedding of the remaining black vertices
in the interior of T0. In this embedding, the white vertices correspond to the
straight line segments which endpoints will be the points corresponding to the 2
incoming black vertices. This construction is described in [8]. A hint of these two
steps is given in the last two drawings of Fig. 1. According to the construction of
Γ , a representation of the hypergraph H by contacts of triangles and segments
follows.

Proof of the Main Theorem. Let H be a planar linear hypergraph. We may
assume without loss of generality that H has order and size at least 3. We may
also assume that the representative plane graph B = (V ◦ , V • , E(B)) of H is
2-connected and that every face of B have length 6, as this may be achieved by
adding some dummy vertices to H without creating any additional adjacencies
between the original vertices of H. A representation of H by contact of triangles
is then deduced from a representation of the augmented hypergraph by deleting
the triangles corresponding to the dummy vertices:

� x � x �

According to Lemma 3, B+
‖ has an orientation such that every vertex in

V ◦ ∪ V • has indegree 3 and r is a source. By splitting all the vertices in V ◦
having type 2, we get a graph Γ+

‖ (associated with a bipartite plane graph Γ )
and an associated orientation of Γ+, so that each vertex of B corresponds either
to a vertex or a face of length 6 of Γ whose edges are oriented from the black
vertices. According to Lemma 6, the graph Γ is the incidence graph of a contact
system of segments and points with the embedding and the orientation induced
by the contact system. As the faces of length 6 coming from splittings are then
empty triangles, we deduce a representation of H. 
�

4 Extensions and Open Problems

The incidence poset of a graph (or more generally of a hypergraph) is the poset
where the only covers are defined by x < e if x is a vertex, e is an edge and e is
incident to x. The dimension dimP of P = (X, P ) is the least positive integer
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Fig. 2. From the representative graph to the contact representation. Neighborhoods of
vertices are shown in B (first row), in B+

‖ (second row), in B+
‖ with orientation O+

‖
(third row), in Γ+

‖ with orientation O+
‖ (fourth row), in Γ+ with orientation O+ where

dashed edges representing M (fifth row), in the contact representation (sixth row).
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t for which there exists a family R = (<1, <2, . . . , <t) of linear extensions of P
so that P =

⋂
R =

⋂t
i=1 <i. This concept has been introduced by Dushnik and

Miller in [6]. A family R = (<1, <2, . . . , <t) of linear orders on X is called a
realizer of P on X if P =

⋂
R. For an extended study of partially ordered sets,

we refer the reader to [25].
A celebrated theorem of Schnyder states that a graph is planar if and only if

its incidence poset has dimension at most 3 [22]. Although the incidence poset
of a simple planar hypergraph H has dimension at most 3 (what follows from
[3]), the converse is false: The linear hypergraph H with vertices 1, . . . , 5 and
edge set {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3, 5}, {2, 4, 5}}. is not planar (B(H) is a
subdivision of K3,3) though its incidence poset has a realizer2 of size 3.

Schnyder’s theorem is generalized in [17] to a sufficient condition for the ge-
ometric realizability of an abstract simplicial complex and in [18] to a general
representation theorem for posets. From this later theorem, it is easily deduced
that the vertices of simple hypergraphs with incidence posets of dimensions d
can be represented by convex sets of the Euclidean space of dimension d − 1, in
such a way that the edges of the hypergraph are exactly the maximal subsets of
vertices, such that the corresponding subset of convexes has a non-empty inter-
section. Thus, in some way, hypergraphs with incidence poset of dimension 3,
although not necessarily planar, still have a strong relation with the plane. This
encourages the following conjecture:

Conjecture 2. Any linear hypergraph with incidence poset of dimension at most
3 is the intersection hypergraph of a family of triangles and segments in the
plane.
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Abstract. An abstract topological graph (briefly an AT-graph) is a pair
A = (G, R) where G = (V, E) is a graph and R ⊆

(
E
2

)
is a set of pairs

of its edges. An AT-graph A is simply realizable if G can be drawn in
the plane in such a way that each pair of edges from R crosses exactly
once and no other pair crosses. We present a polynomial algorithm which
decides whether a given complete AT-graph is simply realizable. On the
other hand, we show that other similar realizability problems for (com-
plete) AT-graphs are NP-hard.

1 Introduction

A topological graph T = (V (T ), E(T )) is a drawing of an (abstract) graph G in
the plane with the following properties. The vertices of G are represented by a
set V (T ) of distinct points in the plane and the edges of G are represented by
a set E(T ) of simple curves connecting the corresponding pairs of points. We
call the elements of V (T ) and E(T ) vertices and edges of T . The edges cannot
pass through any vertices except their end-points. Any intersection point of two
edges is either a common end-point or a crossing, a point where the two edges
properly cross (“touching” of the edges is not allowed). We also require that
any two edges have only finitely many intersection points and that no three
edges pass through a single crossing. A topological graph is simple if every two
edges have at most one common point (which is either a common end-point or a
crossing). A topological graph is complete if it is a drawing of a complete graph.

An abstract topological graph (briefly an AT-graph), a notion established in [7],
is a pair (G, R) where G is a graph and R ⊆

(
E(G)

2

)
is a set of pairs of its edges.

For a topological graph T which is a drawing of G we define RT as a set of pairs
of edges having at least one common crossing and we say that (G, RT ) is an AT-
graph of T . A topological graph T is called a realization of (G, R) if RT = R.
If RT ⊆ R, then T is called a weak realization (or also a feasible drawing)
of (G, R). If (G, R) has a (weak) realization, we say that (G, R) is (weakly)
realizable. We say that (G, R) is simply (weakly) realizable if (G, R) has a simple
(weak) realization, that is, a drawing which is a simple topological graph. We

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 137–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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say that (G, R) is weakly rectilinearly realizable if it has a weak realization T
with edges drawn as straight-line segments (such drawing T is called a weak
rectilinear realization of (G, R)).

Complete topological graphs are one of the most studied classes of topo-
logical graphs [5,11,12,13,15], especially in connection to the crossing number
problems [1,4,16,19,20].

We study the complexity of various realizability problems for AT-graphs and
also for complete AT-graphs. For example, the realizability problem is defined
as follows: the instance is an AT-graph A and the question is whether A is
realizable. Similarly the weak realizability, the simple realizability, the simple
weak realizability and the weak rectilinear realizability problems are defined.

Kratochv́ıl [9] proved that the realizability and the weak realizability are NP-
hard problems (for the class of all AT-graphs). For a long time, the decidability
of these problems was an open question. Pach and Tóth [14] and Schaefer and
Štefankovič [18] independently found a first recursive algorithm for the recogni-
tion of string graphs, which is polynomially equivalent to the realizability [9] and
the weak realizability [6]. Later Schaefer, Sedgwick and Štefankovič [17] showed
that the recognition of string graphs and the weak realizability are in NP, which
implies the following corollary.

Theorem 1. [9,17] The weak realizability and the realizability of AT-graphs are
NP-complete problems.

We extend these results by finding the complexities of the other mentioned prob-
lems, for the class of all AT-graphs and also for the class of complete AT-graphs.
All these results are summarized in the following table.

Theorem 2

AT-graphs complete AT-graphs
realizability NP-complete [9,17] NP-complete
weak realizability NP-complete [9,17] NP-complete
simple realizability NP-complete polynomial
simple weak realizability NP-complete NP-complete
weak rectilinear realizability NP-hard NP-hard

The weak realizability of AT-graphs is polynomially equivalent to the simulta-
neous drawing problem [3]. The instance of this problem is a graph G given as a
union of planar graphs G1, G2, . . . , Gk sharing some common edges. The question
is whether G can be drawn in the plane so that each of the subgraphs Gi is drawn
without crossings. The simultaneous drawing of three planar graphs is known
to be NP-complete [3]; this gives an alternative proof of the NP-completeness
of the weak realizability. The complexity of simultaneous drawing of two planar
graphs remains open.

The rest of this paper is devoted to the proof of Theorem 2.
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2 Additional Definitions

A face of a topological graph T is a connected component of the set R
2 \ E(T ).

A rotation of a vertex v ∈ V (T ) is the clockwise cyclic order in which the edges
incident with v leave the vertex v. A rotation system of the topological graph T is
the set of rotations of all its vertices. Similarly we define a rotation of a crossing
c as the clockwise order in which the four portions of the two edges crossing at
c leave the point c (note that each crossing has exactly two possible rotations).
An extended rotation system of a topological graph is the set of rotations of all
its vertices and crossings.

Assuming that T and T ′ are drawings of the same abstract graph, we say that
their (extended) rotation systems are inverse if for each vertex v ∈ V (T ) (and
each crossing c in T ) the rotation of v and the rotation of the corresponding
vertex v′ ∈ V (T ′) are inverse cyclic permutations (and so are the rotations of c
and the corresponding crossing c′ in T ′). For example, if T ′ is a mirror image of
T , then T and T ′ have inverse (extended) rotation systems.

Topological graphs G and H are weakly isomorphic if there exists an incidence
preserving one-to-one correspondence between V (G), E(G) and V (H), E(H)
such that two edges of G cross if and only if the corresponding two edges of
H do. In other words, two topological graphs are weakly isomorphic if and only
if they are realizations of the same abstract topological graph.

Topological graphs G and H are isomorphic if (1) G and H are weakly iso-
morphic, (2) for each edge e of G the order of crossings with the other edges
of G is the same as the order of crossings on the corresponding edge e′ in H ,
and (3) the extended rotation systems of G and H are the same or inverse. This
induces a one-to-one correspondence between the faces of G and H such that the
crossings and the vertices incident with a face f of G appear along the boundary
of f in the same (or inverse) cyclic order as the corresponding crossings and
vertices in H appear along the boundary of the face f ′ corresponding to f .

Assuming that the topological graphs G and H are drawn on the sphere, it
follows from Jordan-Schönflies theorem that G and H are isomorphic if and only
if there exists a homeomorphism of the sphere which transforms G into H .

Unlike the isomorphism, the weak isomorphism can change the faces of the
involved topological graphs, as well as the order in which one edge crosses other
edges.

3 The NP-Hard Problems

In this extended abstract, we give only a sketch of the reduction for the NP-hard
problems, the details are postponed to the Appendix.

Our proof is based on the Kratochv́ıl’s [9] reduction from planar 3-connected
3-SAT (P3C3-SAT), which is known to be an NP-complete problem [10]. The
question is the satisfiability of a CNF formula φ with a set of clauses C and a
set of variables X , such that each clause consists of exactly 3 distinct variables
and the bipartite graph Gφ = (C ∪ X, {cx; x ∈ X, c ∈ C, x ∈ c}) is planar and
3-connected.
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The main idea is essentially the same as in Kratochv́ıl’s proof [9]—given the
formula φ, we construct an AT-graph Aφ, which consists of vertex and clause
gadgets connected by joining edges. The only variation is that we use different
clause and vertex gadgets for different problems.

The evaluation of each vertex gadget is encoded by one of the two possible
orders of joining vertices (two for each neighbor in Gφ). These orders are trans-
lated by the pairs of joining edges onto the orders of joining vertices of clause
gadgets. For each clause gadget there are, theoretically, eight possible orders of
the joining vertices, but only those seven corresponding to the satisfying evalu-
ation can occur in the drawing. An example of variable and clause gadgets for
the simple realizability problem is in the Figure 1. The set R of pairs of edges
in the corresponding AT-graph is precisely the set of crossing pairs of edges in
the drawing.

TRUE FALSE

TRUE TRUE

FALSE

Fig. 1. Variable and clause gadgets for the simple realizability problem

4 Recognition of Simply Realizable Complete AT-Graphs

In this section we present a polynomial algorithm which decides whether a given
complete AT-graph A is simply realizable. In the affirmative case, it also provides
a description of the isomorphism class of one simple realization of A. For the sake
of simplicity, we do not try to optimize the order of the polynomial bounding
the computing time of the algorithm.

We need the following key observation.

Proposition 3. (1) If two simple complete topological graphs are weakly iso-
morphic, then their extended rotation systems are either the same or inverse.

(2) For each edge e of a simple complete topological graph G and for each pair
of edges f, f ′ ∈ E(G) which have a common end-point and cross e, the AT-
graph of G determines the order of crossings of e with the edges f, f ′.

The proof is postponed to the Appendix.
We will denote the rotation system of a topological graph G as R(G) and we

will represent it as a sequence of rotations of its vertices. The rotation R(v) of a
vertex v will be represented by a cyclic sequence of the labels of the remaining
vertices.

Now we introduce a star-cut representation of the graph G. Choose an arbi-
trary vertex v and denote by w1, w2, . . . , wn−1 the remaining vertices of G so
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that R(v) = (w1, w2, . . . , wn−1). Let S(v) denote the union of all the edges vwi

of G (S(v) is a “topological star” with the central vertex v). If we consider G
drawn on the sphere S2, the set S2\S(v) is mapped by a homeomorphism Φ onto
an open regular 2(n − 1)-gon D in the plane. We can visualize this by cutting
the sphere along the edges of the star S(v) and then unpacking the resulting
surface in the plane. The map Φ−1 can be continuously extended to the closure
of D, giving a natural correspondence between the vertices and edges of D and
the vertices and edges in S(v): each vertex wi corresponds to one vertex w′

i of
D and the vertex v of G corresponds to n − 1 vertices v′1, v

′
2, . . . , v

′
n−1 of D.

If Φ preserves the orientation, the counter-clockwise order of the vertices of D
is v′1, w′

1, v
′
2, w

′
2, . . . , v

′
n−1, w

′
n−1. Each edge vwi ∈ E(G) splits into two adjacent

edges v′iw
′
i and v′i+1w

′
i; see Figure 2. During the cutting operation every edge

ek of G not incident with v can be cut into several pieces. Since ek crosses each
edge of S(v) at most once, it is cut into at most n pieces ek,j . Every crossing
of the edge ek with an edge vwi corresponds to two end-points of two different
pieces ek,j ,ek,j′ lying on the edges v′iw

′
i and v′i+1w

′
i.

v

w1w2

w3

w4
v′1

v′4

v′3

v′2
w′

1
w′

2

w′
3

w′
4

Fig. 2. A simple drawing of K5 and its star-cut representation

The Algorithm

Suppose that we are given a complete AT-graph A with the vertex set {1, 2, . . .,
n}. The first step of the algorithm is the computation of the (abstract) rotation
system R(A), i.e., the rotation system of a simple realization of A, if it exists:

– In order to R(A) being determined uniquely, we assume that R(1), the
(abstract) rotation of the vertex 1, contains a subsequence (2, 3, 4).

– Order the quintuples of the vertices of A lexicographically and denote them
by Q1, Q2, . . . , Q(n

5).

– For every induced subgraph Bk = A[Qk], k = 1, 2, . . . ,
(
n
5

)
, check if it is one

of the five simply realizable 5-vertex AT-graphs (their drawings are in the
Figure 10). If not, the algorithm terminates and answers “NO”, i.e., that A
is not simply realizable. Otherwise we determine the rotation system R(Bk):
we choose one of the two possible mutually inverse rotation systems, which
is compatible with the rotation systems R(B1),R(B2), . . .,R(Bk−1). (By the
choice of the ordering of the quintuples Qi, there exists k′ < k such that
|Qk ∩Qk′ | = 4. If u, v, w, z are the vertices of the intersection Qk ∩Qk′ , then
R(Bk) determines the order of the elements v, w, z in the rotation of u in
Bk′ , which then determines R(Bk′ ).)
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– For each vertex v ∈ V (A), compute the rotation R(v) from the rotation
systems R(Bk), such that v ∈ Qk: we choose a “reference vertex” u �= v and
consider all subsequences of elements u, w, z (w, z ∈ V (A) \ {u, v}, w �= z)
in the rotations of v in the rotation systems R(Bk). These ordered triples
determine a complete oriented graph Gu,v on the set V (A) \ {u, v}. The
rotation of v is then determined by the topological order of the vertices of
Gu,v, which can be found in linear time. If Gu,v has an oriented cycle, the
algorithm terminates and answers “NO”.

At this stage we know that if A is simply realizable, then it has a simple
realization with the computed rotation system R(A). But it may still happen
that R(A) is not realizable as a rotation system of a simple complete topolog-
ical graph. To decide this, we try to find an isomorphism class of some simple
realization of A by constructing its star-cut representation.

By Proposition 3, we can determine the order of crossings of each edge with
an arbitrary star S(v), and also the rotation of all crossings on the edges of S(v).

– Fix an arbitrary vertex v ∈ V (A) and denote the other vertices of A by
w1, w2, . . . , wn−1, such that R(v) = (w1, w2, . . . , wn−1).

– Fix an orientation for each edge wiwj , i < j, by choosing wi as an initial
vertex.

– For every edge e = wiwi′ and every two edges vwj , vwj′ which cross e,
determine the order Oe(j, j′) of crossings of e with vwj and vwj′ from the
AT-graph A[{v, wi, wi′ , wj , wj′}].

– For every edge e = wiwi′ , the orders Oe(j, j′) define a complete oriented
graph on the sv(e) edges incident with v and crossing e. If this graph has an
oriented cycle, terminate and answer “NO”, otherwise construct a topological
order Oe of its vertices (i.e., the order in which e crosses the edges incident
with v). If e crosses one (or no) edge incident with v, then Oe is a one-element
(or an empty) sequence.

– For every crossing cj
e of the edges e = wiw

′
i and vwj determine its rotation

R(cj
e), from the rotation system R(A[wi, wi′ , wj , v]).

Now we are ready to start a construction of a star-cut representation of a
possible simple realization of A, which would be obtained by cutting the sphere
along the edges of the star S(v).

– Draw a convex 2(n − 1)-gon D and denote its boundary cycle as C. Denote
the vertices of C counter-clockwise by v1, w1, v2, w2, . . . , vn−1, wn−1. For i =
1, 2, . . . , n−1, denote by f2i−1 the open edge viwi, and by f2i the open edge
wivi+1 (where vn = v1).

– Denote the edges of A not incident with v by e1, e2, . . . , e(n−1
2 ). For each edge

ei define sv(ei)+1 pseudochords ei,1, ei,2, . . . , ei,sv(ei)+1. We interpret ei,j as
a portion of the edge ei between the (j − 1)-th and the j-th crossing of ei

with some edge incident with v (where the 0-th and (sv(ei) + 1)-th crossing
is the initial and the terminal vertex of ei), and we consider ei,j oriented
consistently with ei. Denote the initial vertex of ei,j by ai,j and the terminal
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vertex by bi,j . Note that ai,j+1 and bi,j correspond to the same crossing (the
j-th crossing of the edge ei with some edge incident with v), which we denote
by ci,j .

– From the orders Oei and from the rotations of the crossings ci,j determine,
for each k = 1, 2, . . . , 2(n−1), the set of the end-points ai,j , bi,j lying on the
edge fk.

– For each k = 1, 2, . . . , n − 1, construct a sequence Owk
of the one-element

sets {ai,1}, {bi,sv(ei)+1} containing the end-points lying at wk, such that
their order in Owk

is the same as the clockwise order of the corresponding
pseudochords incident with wk, which is determined by the rotation R(wk).
Note that we consider the end-points of the distinct pseudochords as distinct
objects, even if they are all identical with wk.

– Construct a cyclic sequence OC , as a concatenation of the sequences {f1},
Ow1 , {f2, f3}, Ow2 , {f2, f3}, . . ., Own−1 , {f2(n−1)}.

– For every pseudochord ei,j , construct its type t(ei,j) which is defined as a pair
(X, X ′) such that the sets X, X ′ are elements of OC and ai,j ∈ X , bi,j ∈ X ′.
Note that if (X, X ′) is a type of some pseudochord ei,j , then X �= X ′.

We claim that the knowledge of the types t(ei,j) now suffices to determine the
realizability of the AT-graph A (in a polynomial time).

We say that the types (X, X ′) and (Y, Y ′) are

interlacing if all the sets X, X ′, Y, Y ′ are distinct and if one of the cyclic
sequences (X, Y, X ′, Y ′), (X, Y ′, X ′, Y ) is a subsequence of OC ,

avoiding if they are not interlacing and all the sets X, X ′, Y, Y ′ are distinct,
parallel if (X, X ′) = (Y, Y ′) or (X, X ′) = (Y ′, Y ), and
adjacent otherwise, i.e., if exactly one of the following equalities holds: X = Y ,

X = Y ′, X ′ = Y or X ′ = Y ′.

See Figure 3 for examples.

w2 w1

w4w3

v1

v2

v3

v4
interlacing avoiding parallel adjacent

Fig. 3. Pairs of pseudochords with four different pairs of types

Clearly, if the types of two pseudochords ei,j , ei′,j′ are interlacing, then ei,j

and ei′,j′ are forced to cross (if drawn inside D), and if the types t(ei,j), t(ei′,j′)
are avoiding, then the pseudochords ei,j and ei′,j′ have no common crossing.
The crossing status of two pseudochords with parallel or adjacent types is not
uniquely determined, it depends on the order of their end-points on the edge(s)
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fk, containing an end-point of both pseudochords. However, we can deduce some
information about these pseudochords if we group them into larger structures.

Let ei,e′i be two fixed edges. We define a positive (i, i′)-ladder as an inclusion-
maximal sequence ((ei,j , ei′,j′), (ei,j+1, ei′,j′+1), . . ., (ei,j+k, ei′,j′+k)), such that
k ≥ 1 and for each l ∈ {0, 1, . . . , k − 1} the two end-points bi,j+l and bi′,j′+l

(ai,j+l+1 and ai′,j′+l+1) lie on a common edge fp of C. It means that for each
l ∈ {1, . . . , k − 1}, the edges ei,j+l and ei′,j′+l have parallel types, and the
edges ei,j and ei′,j′ have adjacent types, as well as the edges ei,j+k and ei′,j′+k.
Similarly we define a negative (i, i′)-ladder as an inclusion-maximal sequence
((ei,j , ei′,j′), (ei,j+1, ei′,j′−1), . . ., (ei,j+k, ei′,j′−k)), such that k ≥ 1 and for each
l ∈ {0, 1, . . . , k−1} the two end-points bi,j+l and ai′,j′−l (ai,j+l+1 and bi′,j′−l−1)
lie on a common edge fp of C. Each (positive or negative) (i, i′)-ladder corre-
sponds to two maximal portions of the edges ei, ei′ which cross the same edges
incident with v in the same order and from the same direction.

We call the (i, i′)-ladder crossing if the two corresponding portions of edges
are forced to cross, and non-crossing otherwise; see Figure 4. We can deter-
mine whether the (i, i′)-ladder is crossing or not from the types of its pairs of
pseudochords (we show that only for positive ladders, the other case is similar).

ei

ei′

ei

ei′

Fig. 4. A crossing and a non-crossing (i, i′)-ladder (the fat lines represent distinct edges
of the star S(v))

Lemma 4. Let L = ((ei,j , ei′,j′ ), (ei,j+1, ei′,j′+1), . . . , (ei,j+k, ei′,j′+k)) be a pos-
itive (i, i′)-ladder, let t(ei,j) = (X, Z), t(ei′,j′ ) = (Y, Z), t(ei,j+k) = (P, Q), and
t(ei′,j′+k) = (P, R). Define t(L) as a number from {0, 1} such that t(L) = 0 if and
only if the sequences (X, Y, Z) and (P, Q, R) have the same orientation in OC ,
i.e., either (X, Y, Z) and (P, Q, R) are both subsequences of OC or both (X, Z, Y )
and (P, R, Q) are subsequences of OC . Then L is non-crossing if k+t(L) is even,
and crossing if k + t(L) is odd.

Proof. The proof is quite straightforward; the statement follows from the fact
that for each l ∈ {0, 1, . . . , k − 1} the order of the end-points bi,j+l, bi′,j′+l on
the common edge fk of the cycle C is opposite to the order of the end-points
ai,j+l+1, ai′,j′+l+1 on the edge fk+o (o ∈ {−1, 1}) adjacent to fk and representing
the same edge of the star S(v). �	

Clearly, every pair (ei,j , ei′,j′) of pseudochords with adjacent or parallel types be-
longs to exactly one (i, i′)-ladder. It follows that the set Pi,i′ = {(ei,j , ei′,j′); 1 ≤
j ≤ sv(ei) + 1, 1 ≤ j′ ≤ sv(ei′) + 1} can be uniquely partitioned into (i, i′)-
ladders and one-element sets consisting of pairs of pseudochords with interlacing
or avoiding types. For each set Q from this partition, we are able to determine the
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parity of the total number of crossings between the pairs of pseudochords from
Q. Hence, we are able to determine the parity of the total number of crossings
between the edges ei and ei′ , and also a lower bound for this number.

We are now ready to describe the last steps of the recognition algorithm.

– For every two edges ei, ei′ (1 ≤ i < i′ ≤
(
n−1

2

)
) do the following:

• determine the partition of Pi,i′ into (i, i′)-ladders and pairs with in-
terlacing or avoiding types. For each (i, i′)-ladder from this partition,
determine whether it is crossing or non-crossing.

• Compute cr(ei, ei′), the sum of the number of crossing (i, i′)-ladders and
the number of pairs of pseudochords from Pi,i′ with interlacing types.

• Define crA(ei, ei′) ∈ {0, 1} such that crA(ei, ei′) = 0 if the edges ei, ei′

form a non-crossing pair in the abstract graph A and crA(ei, ei′) = 1 if
the edges ei, ei′ form a crossing pair in A.

– If there exist edges ei, ei′ such that cr(ei, ei′) �= crA(ei, ei′), terminate and
answer “NO”. Otherwise answer “YES”.

Clearly, if the algorithm answers “NO”, the abstract graph A is not re-
alizable. It remains to prove that if for every two edges ei, ei′ the equality
cr(ei, ei′) = crA(ei, ei′) holds, then there exists a choice of the counter-clockwise
orders Ofk

of the end-points of the pseudochords on the edges fk, such that the
induced number of crossings between any two edges ei, ei′ attains the lower
bound cr(ei, ei′). The orders Ofk

, together with the orders Owk
, determine a

counter-clockwise (perimetric) order POC of all the end-points ai,j , bi,j on the
cycle C. For each pair of the pseudochords, POC determines whether they cross
or not. Note that for every given perimetric order POC the arrangement of the
pseudochords can be realized, e.g., the pseudochords can be drawn as straight-
line segments (i.e., as actual chords of the polygon D).

For every k = 1, 2, . . . , (n − 1), the edges f2k−1 and f2k represent the same
edge, vwk, of the graph A. Thus, the order Of2k

is an almost-inverse of Of2k−1 ,
i.e., Of2k

is the inverse of the order, which we obtain from Of2k−1 by replacing
each end-point ai,j (bi,j) with the end-point bi,j−1 (ai,j+1) corresponding to the
same crossing on the edge vwk. Hence, POC is now uniquely determined by the
orders Of2 , Of4 , . . . , Of2(n−1) .

Lemma 5. Let Of2 , Of4 , . . . , Of2(n−1) be the orders which minimize the total
number of crossings between pseudochords induced by POC . Then for every two
edges ei, ei′ , the order POC induces exactly cr(ei, ei′) crossings together on all
the pairs of pseudochords from Pi,i′ .

Proof. Suppose that it is not the case. Then for some two edges ei, ei′ , there exists
an (i, i′)-ladder L with at least two crossings induced by POC . Suppose, with-
out loss of generality, that L is a positive ladder ((ei,j , ei′,j′), (ei,j+1, ei′,j′+1), . . .,
(ei,j+k, ei′,j′+k)). Let q < r be the least integers such that POC induces a cross-
ing cq between ei,j+q and ei′,j′+q, and a crossing cr between ei,j+r and ei′,j′+r.
In the topological graph G represented by this pseudochord arrangement, the
two portions e′i, e

′
i′ of the edges ei, ei′ between the crossings cq and cr form an
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empty lens Lq,r, i.e., a region bounded by the curves e′i, e
′
i′ , which contains no

vertex of G. Hence, the total number of crossings of every other edge of G with
the curves e′i and e′i′ is even. Assume that the lens Lq,r is inclusion-minimal
(over all pairs of edges ei, ei′). Then every connected component of every edge
intersecting Lq,r has one end-point on e′i and the other end-point on e′i′ . Hence,
every edge of G has the same number of crossings with e′i as with e′i′ . It follows
that by redrawing e′i along the curve e′i′ , we decrease the total number of cross-
ings in G by two (we get rid of the crossings cq and cr) and we do not change the
type of any pseudochord in the corresponding star-cut representation of G; see
Figure 5. The redrawing of the curve e′i corresponds to the translations of the
end-points bi,j+q, bi,j+q+1, . . ., bi,j+r−1 (ai,j+q+1, ai,j+q+2, . . ., ai,j+r) next to the
end-points bi′,j′+q, bi′,j′+q+1, . . ., bi′,j′+r−1 (ai′,j′+q+1, ai′,j′+q+2, . . ., ai′,j′+r) in
the corresponding orders Ofk

(the translated end-point is moved “just behind”
the other end-point). We have constructed a perimetric order PO′

C which in-
duces less crossings than POC , a contradiction. �	

ei′

ei

cq cr

ei′

ei

Fig. 5. An empty lens allows us to decrease the number of crossings by 2

Corollary 6. If the algorithm answers “YES”, then the abstract graph A is
realizable. �	

The proof of Lemma 5 also gives an idea of an algorithmic construction of the
perimetric order of a star-cut representation of a simple realization of A:

– Choose an arbitrary set of orders Of2 , Of4 , . . ., Of2(n−1) and compute the
related orders Of1 , Of3 , . . . , Of2n−3 .

– while there exists some (i, i′)-ladder with at least two induced crossings, find
an inclusion-minimal lens Lq,r and change the orders of the corresponding
end-points in the corresponding orders Ofk

, as in the proof of Claim 5.
– Return the resulting perimetric order POC .

It is quite straightforward to verify that each step of the algorithm can be
performed in polynomial time. Using a bounded number of quantifications over
subsets (of vertices, edges, etc.) of bounded size, each step can be decomposed
into a polynomial number of elementary tasks; either those solvable in constant
time, or simple subroutines such as searching in a polynomial list or topological
sorting of a partially ordered set. More concrete estimates on running time would
require to describe the particular implementation and data structures in much
more detail, and it would only increase the technical complexity of the paper.
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The algorithm can be extended so that it finds some isomorphism class of
the arrangement with the perimetric order POC . That is, it finds the order of
crossings of the pseudochords with the other pseudochords. It is then an easy
task to compute the orders of the crossings on the edges of the simple realization
of A represented by the constructed arrangement.

Some difficulties with the computation of the orders may occur if the pseu-
dochords were drawn as straight-line segments, because we could obtain pairs of
crossings very close to each other (closer than the precision of our representation
of real numbers), and they would become indistinguishable for the algorithm. So
we choose a different approach and compute the orders recursively:

– Choose an arbitrary pseudochord p and from the perimetric order POC

identify the set {p1, p2, . . . , pk} of all pseudochords that cross p.
– Cut the circle C into two arcs, C1 and C2, by the end-points of p and define

two circles C′
1 = C1 ∪p and C′

2 = C2 ∪p. Partition the perimetric order POC

into two orders OC1 and OC2 of the end-points on the arcs C1 and C2.
– Cut each pseudochord pi, i = 1, 2, . . . , k, into two portions with one end-point

on p and the second end-point on C. Define two mutually almost-inverse
orders O1

p and O2
p of these new end-points on p such that the portions of the

pseudochords pi between p and C1 do not cross (O1
p is a counter-clockwise

order with respect to the circle C′
1 and it can be deduced from OC1).

– Define POC′
1
as a concatenation of OC1 and O1

p, and POC′
2
as a concatenation

of OC2 and O2
p.

– Recursively compute the orders of crossings on the pseudochords in the two
arrangements with the perimetric orders POC′

1
, POC′

2
and merge the com-

puted orders for the portions of pseudochords pi together.

Since we cut along each pseudochord at most once, this procedure also runs
in polynomial time.
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12. Kynčl, J., Valtr, P.: On edges crossing few other edges in simple topological com-
plete graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp.
274–284. Springer, Heidelberg (2006)
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A Appendix

A.1 Reduction from P3C3-SAT

First we describe the main idea of the reduction and then we show the specific
modifications for each of the considered problems.

Let φ be a given instance of P3C3-SAT with the set of clauses C and the set
of variables X . Chrobak and Payne [2] proved that it is possible to construct a
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rectilinear planar drawing Dφ of Gφ on the integer (2n − 4) × (n − 2) grid in
time O(n) (where n is the number of vertices of Gφ).

Based on the drawing Dφ, we construct an abstract topological graph Aφ =
((Vφ, Eφ), Rφ) as follows. We replace every clause vertex c ∈ C by an AT-
graph Hc = ((Vc, Ec), Rc) and each variable vertex x ∈ X by an AT-graph
Hx = ((Vx, Ex), Rx). Each graph Hc will have six joining vertices L

xi(c)
c , R

xi(c)
c ,

i ∈ {1, 2, 3}, where x1(c), x2(c), x3(c) are the neighbors of c in the drawing Dφ

in clockwise order. Similarly, each graph Hx will have 2 · deg(x) joining ver-
tices L

ci(x)
x , R

ci(x)
x , i ∈ {1, 2, . . . , deg(x)}, where deg(x) is the number of clauses

containing x and c1(x), c2(x), . . . , cdeg(x)(x) are these clauses ordered clockwise
according to the drawing Dφ. Then, for each clause c and variable x ∈ c (i.e.,
for each edge in Dφ) we add a joining AT-graph Jc,x = ((Vc,x, Ec,x), Rc,x)
on four vertices (Vc,x = {Rx

c , Lx
c , Rc

x, Lc
x}) and with two (joining) edges: if x

has a positive occurrence in c, then Ec,x = {{Rx
c , Rc

x}, {Lx
c , Lc

x}}, otherwise
Ec,x = {{Rx

c , Lc
x}, {Lx

c , Rc
x}}. We do not allow these two edges to intersect, so

we put Rc,x = ∅. Note that we neither allow two edges from two different graphs
Hc, Hx, Jc,x to intersect.

Now, let A′
φ = ((V ′

φ, E′
φ), R′

φ), where

V ′
φ =

⋃

c∈C

Vc ∪
⋃

x∈X

Vx,

E′
φ =

⋃

c∈C

Ec ∪
⋃

x∈X

Ex ∪
⋃

c∈C,x∈X,x∈c

Ec,x,

R′
φ =

⋃

c∈C

Rc ∪
⋃

x∈X

Rx.

In case of non-complete graphs we put Aφ = A′
φ, in case of complete graphs

we well need to add all the missing edges and allow (or force) them intersect
some other edges; we will specify this later.

The graphs Hc and Hx may be different for each of the considered problems,
but we require that they satisfy the following common conditions (where the
term “drawing” is a substitution for “realization”, “simple realization”, “weak
realization”, “simple weak realization” or “weak rectilinear realization”):

(C1) Every drawing of the graph Hc is connected (i.e., Hc need not be connected
itself, but the union of the points and arcs in its drawing in the plane must
be a connected set).

(C2) Suppose that Hc has a drawing where the vertices L
xi(c)
c , R

xi(c)
c , i∈{1, 2, 3},

are all incident with the outer face and their clockwise cyclic order Oc is
(Y1, Z1, Y2, Z2, Y3, Z3), where for each i ∈ {1, 2, 3}, we have {Yi, Zi} =
{L

xi(c)
c , R

xi(c)
c }. There are exactly 8 such possible orders. Hc does not

have a drawing with Oc = (Lx1(c)
c , R

x1(c)
c , L

x2(c)
c , R

x2(c)
c , L

x3(c)
c , R

x3(c)
c ) and

has a drawing with all the 7 remaining orders.
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(X1) Every drawing of the graph Hx is connected.
(X2) Suppose that Hx has a drawing where the vertices L

ci(x)
x , R

ci(x)
x , for i ∈ {1,

2, . . ., deg(x)}, are all incident with the outer face and their clockwise
cyclic order Ox is (Y1, Z1, Y2, Z2, . . . , Ydeg(x), Zdeg(x)), where for each i ∈
{1, 2, . . . , deg(x)}, we have {Yi, Zi} = {L

ci(x)
x , R

ci(x)
x }. Then Ox = (Lc1(x)

x ,
R

c1(x)
x , L

c2(x)
x , R

c2(x)
x , . . ., L

cdeg(x)(x)
x , R

cdeg(x)(x)
x ) or Ox = (Rc1(x)

x , L
c1(x)
x ,

R
c2(x)
x , L

c2(x)
x , . . ., R

cdeg(x)(x)
x , L

cdeg(x)(x)
x ). On the other hand, Hx has a

drawing with both these cyclic orders of the joining vertices.

We claim that these conditions imply that A′
φ has a drawing if and only if φ is

satisfiable (the only exception is the backward implication in the “weak rectilin-
ear realization” case, with which we will deal separately, using more constraints
on the graphs Hx and Hc):

Suppose that φ is satisfiable and let f : X → {TRUE, FALSE} be the satisfy-
ing evaluation of the variables. We replace each vertex x ∈ X in the drawing Dφ

by a small drawing of Hx such that the joining vertices of Hx lie on the outer face
and their cyclic clockwise order is (Lc1(x)

x , R
c1(x)
x , L

c2(x)
x , R

c2(x)
x , . . . , L

cdeg(x)(x)
x ,

R
cdeg(x)(x)
x ) if f(x) = TRUE and (Rc1(x)

x , L
c1(x)
x , R

c2(x)
x , L

c2(x)
x , . . . , R

cdeg(x)(x)
x ,

L
cdeg(x)(x)
x ) if f(x) = FALSE. Similarly, we replace each vertex c ∈ C by a small

drawing of Hc such that the joining vertices of Hc lie on the outer face and their
clockwise cyclic order is Y1, Z1, Y2, Z2, Y3, Z3 where {Yi, Zi} = {L

xi(c)
c , R

xi(c)
c },

and Yi = R
xi(c)
c if and only if the evaluation f(xi(c)) satisfies the clause c. Then

we draw the edges of the graphs Jc,x along the edges of the drawing Dφ (from
the construction it is clear that we can draw them without crossings).

Now suppose that A′
φ has a drawing. The 3-connectivity of Gφ and the condi-

tions (C1) and (X1) imply that the drawing of each of the graphs A′
φ[V ′

φ \Vc] and
A′

φ[V ′
φ \Vx] is connected. Since the joining edges (Ex,c) are without crossings, for

each graph Hc and Hx its joining vertices lie on the boundary of a common face,
which is without loss of generality the outer face. After contracting the edges
of the graphs Hc and Hx and replacing each pair of parallel joining edges by
a single edge we get a planar drawing of Gφ. The 3-connectivity of Gφ implies
that this drawing has the same or the inverse rotation system as the drawing
Dφ (and so we can assume that they are the same). This allows only 8 possi-
ble clockwise cyclic orders of the joining vertices of the graphs Hc and, by the
condition (X2), only two such possible orders for the graphs Hx. According to
the orientation of the pairs L

ci(x)
x , R

ci(x)
x in the drawings of the graphs Hx we

define an evaluation f of the variables such that f(x) = TRUE if and only if
Ox = (Lc1(x)

x , R
c1(x)
x , L

c2(x)
x , R

c2(x)
x , . . . , L

cdeg(x)(x)
x , R

cdeg(x)(x)
x ). These orders are

uniquely “translated” by the joining edges into the cyclic clockwise orders Oc of
the joining vertices of the graphs Hc. Since each of these graphs has a drawing,
the cyclic order Oc corresponds to some of the 7 satisfying evaluations of the 3
variables contained in c; see Figure 6.

Now we construct the clause and variable gadgets Hc and Hx for each of the
considered types of realization.
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Hc

Hx1(c)

Hx2(c)

Hx3(c)

TRUE
TRUE

FALSE

c = (x1(c) ∨ ¬x2(c) ∨ ¬x3(c))

R
ci(x)
x

L
ci(x)
xL

x1(c)
c

R
x1(c)
c

Fig. 6. Variables x1(c) and x2(c) satisfy the clause c

A.2 Realizability

For this problem we use almost the same variable and clause gadget as Kra-
tochv́ıl [9]. For every c ∈ C let

Vc =
3⋃

i=1

{Di
c, L

xi(c)
c , Kxi(c)

c , Rxi(c)
c , P xi(c)

c },

di
c = {Di

c, D
i+1
c }, lic = {Lxi(c)

c , Kxi(c)
c }, ri

c = {Rxi(c)
c , P xi(c)

c },

Ec =
3⋃

i=1

{di
c, l

i
c, r

i
c},

Rc =
3⋃

i=1

{{di
c, l

i
c}, {di

c, r
i
c}, {lic, l

i+1
c }, {ri

c, r
i+1
c }, {lic, r

i+1
c }}

(the indices are taken modulo 3). For every x ∈ X let

Vx =
deg(x)⋃

i=1

{Ai
x, Bi

x, Lci(x)
x , Rci(x)

x },

lix = {Lci(x)
x , Ai

x}, ri
x = {Rci(x)

x , Bi
x},

Ex =
deg(x)⋃

i=1

{{Ai
x, Bi

x}, {Bi
x, Ai+1

x }, lix, ri
x},

Rx =
⋃

2≤i�=j≤deg(x)

{{lix, ljx}, {ri
x, rj

x}, {lix, rj
x}}.
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The conditions (C1) and (X1) are obviously satisfied. The existence of the
realizations of Hc for the 7 cyclic orders of the joining vertices from the condition
(C2) is proved in [9] and the non-realizability of Hc with the cyclic order Oc =
(Lx1(c)

c , R
x1(c)
c , L

x2(c)
c , R

x2(c)
c , L

x3(c)
c , R

x3(c)
c ) is proved in [8]. The condition (X2)

for the realizability of the graph Hx is proved in [9]. Note that we cannot use
this variable gadget for the simple realizability problem, since for the order Ox

corresponding to the positive evaluation of the variable x some pairs of edges in
the realization of Hx have to cross an even number of times. However, we will
use this AT-graph as the variable gadget for all three considered weak versions
of realizability.

To obtain a complete AT-graph Aφ, we add all the missing edges to the graph
A′

φ and force them to intersect all the other edges, i.e., we put

Vφ = V ′
φ, Eφ =

(
Vφ

2

)
,

Rφ = R′
φ ∪ {{e, f}; e ∈ Eφ \ E′

φ, f ∈ Eφ, e �= f}.

Clearly, if Aφ is realizable, then A′
φ is realizable too, since it is an induced

subgraph of Aφ. On the other hand, every realization of A′
φ can be extended

into a realization of Aφ by drawing the remaining edges such that they intersect
every other edge (although some pairs of edges may have to cross many times).
This proves that the realizability is NP-hard for complete AT-graphs. The NP-
completeness then follows from the fact that the realizability of AT-graphs is in
NP [17].

A.3 Simple Realizability

We use the same clause gadget Hc as in the realizability case, since Hc can be
simply realized for any satisfying evaluation of its variables [9]. We define Hx as
follows:

Vx = {C} ∪
deg(x)⋃

i=1

{Lci(x)
x , Rci(x)

x , P i
x},

lix = {Lci(x)
x , C}, ri

x = {Rci(x)
x , P i

x},

Ex =
deg(x)⋃

i=1

{lix, ri
x},

Rx =
deg(x)⋃

i=1

⋃

1≤j≤deg(x),j �=i

{rj
x, lix}.

Figure 7 shows simple realizations of Hx with the two cyclic orders Ox from
condition (X2). It remains to show that these two orders are the only possible.
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Fig. 7. A variable gadget for the simple realizability problem

Let Dx be a realization of Hx satisfying the assumptions of (X2). We may assume
that all the joining vertices of Dx lie on a circle q and all the edges of Dx lie
inside q. The edges lix form a topological star which divides the interior of q
into deg(x) regions. For each edge rj

x there are exactly two possible orders in
which it crosses the edges lix, i �= j, either the clockwise or the counter-clockwise
order. The order also uniquely determines the position of the vertex R

cj(x)
x on

q (according to the vertices L
ci(x)
x ). Now if the edge rj

x crosses the edges of the
star in clockwise order, then so does the edge rj+1

x , since rj
x and rj+1

x must be
disjoint. By induction, all the edges rj

x cross the edges lix in the same direction,
so there are only two possible orders Ox. This finishes the proof of the NP-
completeness of the simple realizability problem (it is trivially in NP, since the
simple realizations have polynomial number of crossings).

A.4 Weak Types of Realizability

We use the same clause and variable gadgets for the weak realizability, the sim-
ple weak realizability and the weak rectilinear realizability. As we mentioned
before, the variable gadget will be the same AT-graph Hx as for the realizability
problem. It is easy to see that the weak realizations of Hx satisfying the as-
sumptions of the condition (X2) can have only two possible orders of the joining
vertices (depending on the orientation of the cycle A1

x, B1
x, . . . , Bdeg x

x ). On the
other hand, Hx has a weak rectilinear realization with both these orders; see
Figure 8. It follows that (X2) is satisfied for all three weak versions of realiz-
ability. However, we will need weak rectilinear realizations of Hx with another
restrictions.

We define Hc as follows:

Vc =
3⋃

i=1

{Lxi(c)
c , Rxi(c)

c } ∪ {X, Y, Z},

Ec = {a, b, e, f, u, v, x, y}
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Fig. 8. A variable gadget for the weak realizability problem

where

a = {Lx3(c)
c , Y }, b = {Rx2(c)

c , Y }, e = {Lx1(c)
c , Y }, f = {Rx1(c)

c , Y },

u = {Rx1(c)
c , X}, v = {Lx1(c)

c , Z}, x = {Rx3(c)
c , X}, y = {Lx2(c)

c , Z},

Rc = {{x, y}, {x, b}, {y, a}, {u, a}, {u, b}, {v, a}, {v, b}}.

Suppose that Hc has a weak realization satisfying the assumptions of the
condition (C2) and that the order of the joining vertices is (Lx1(c)

c , R
x1(c)
c , L

x2(c)
c ,

R
x2(c)
c , L

x3(c)
c , R

x3(c)
c ). We can assume that all the six joining vertices lie on a

common circle q and that Hc is contained inside q. All the four edges starting
at the vertex Y are disjoint, hence they divide the interior of q into four regions;
see Figure 9. The vertex R

x3(c)
c lies between L

x3(c)
c and L

x1(c)
c and the edge x can

not intersect edges a and e, so x lies in the region bounded by the edges a and
e. Similarly, y lies in the region bounded by b and f . It implies that x and y are
disjoint. According to the order of the vertices L

x1(c)
c , R

x1(c)
c , L

x2(c)
c , R

x3(c)
c on

q, the paths xu and yv must have at least one crossing. But the only pair of the
edges x, u, y, v which is allowed to intersect, is the pair {x, y}; a contradiction.

For each satisfying evaluation of the clause c, the AT-graph Hc has a weak
rectilinear realization with the corresponding order of the joining vertices. See
Figure 9 for the five non-symmetric cases.

The proof of the NP-hardness of the weak realizability and the simple weak
realizability of AT-graphs is now finished. In case of the weak rectilinear realiz-
ability we must ensure that the edges of the joining graphs Jc,x can be drawn as
straight-line segments.

First, for each vertex v of the drawing Dφ, we choose a line tv going through
v such that tv is not parallel to any edge of Dφ. This line determines a direction
in which the corresponding gadget Hv will be oriented. For each variable vertex
x we choose a line tx such that the edge xc1(x) is the first in the clockwise order
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Fig. 9. A clause gadget for the weak realizability problem

of the edges xci(x) in one of the half-planes determined by tx. For each clause
vertex c we choose a line tc such that among the three edges incident with c
one edge, {c, x(c)}, is separated from the other two edges. Then we change the
labeling of the neighbors of c such that x1(c) = x(c).

Figure 9 certifies the validity of the following condition for Hc:

(C3) For each of the 7 orders of the joining vertices from condition (C2) there
exists a weak rectilinear realization Dc of Hc which lies inside a rectangle
Mc, and all the joining vertices of Dc lie on the perimeter of Mc on two
opposite (parallel) edges, such that L

x1(c)
c and R

x1(c)
c lie on one edge, e(Mc),

and the other four joining vertices lie on the opposite edge, f(Mc).

When drawing the AT-graph A′
φ, we place each clause gadget Hc over the

original vertex c of Dφ such that e(Mc) is parallel with tc and lies in the same
half-plane as the vertex x1(c), while f(Mc) lies in the opposite half-plane. Then
each neighbor xi(c) can be connected by a straight-line segment with the corre-
sponding joining vertices L

xi(c)
c and R

xi(c)
c without crossing.

We deal similarly with the variable gadgets. We require the following condition
to be satisfied:

(X3) For both orders of the joining vertices from condition (X2) and for every
integer k ∈ {0, 1, . . . , deg(x)} there exists a weak rectilinear realization
Dx of Hx which lies inside a rectangle Mx, and all the joining vertices of
Dx lie on the perimeter of Mx on two opposite (parallel) edges, such that
the vertices {L

ci(x)
x , R

ci(x)
x ; i ≤ k} lie on one edge, e(Mx), and the other

2(deg(x) − k) joining vertices lie on the opposite edge, f(Mx).
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If (X3) holds for each variable x, we place each variable gadget Hx over the
vertex x of Dφ such that e(Mx) is parallel with tx and lies in the same half-
plane as the vertex c1(x), while f(Mc) lies in the opposite half-plane. Then it is
safe to add all the joining edges as straight-line segments and we obtain a weak
rectilinear realization of A′

φ.
Examples of the drawings satisfying condition (X3) for k = 0 are in the

Figure 8. But it is not hard to transform them into the drawings satisfying (X3)
for other values of k: all the intersections of the half-lines Ai

xL
ci(x)
x , Bi

xR
ci(x)
x lie

inside the rectangle Mx and their directions are changing monotonously with i.
For a given k ∈ {0, 1, . . . , deg(x)}, we choose a direction α between the directions
of the k-th and the (k + 1)-th pair of the half-lines. We choose two lines e(α)
and f(α) with the direction α such that the rectangle Mx lies inside the strip
bounded by these two lines and the half-line A1

xL
c1(x)
x intersects e(α). Then the

half-lines Ai
xL

ci(x)
x , Bi

xR
ci(x)
x , where i ≤ k, intersect e(α) and the other half-lines

intersect f(α). We prolong the half-lines by translating the joining vertices to
the corresponding intersections with the border lines e(α) and f(α). We obtain
a drawing of Hx which satisfies (X3) with a given parameter k. The proof of the
NP-hardness of the weak rectilinear realizability is now finished.

For the case of complete AT-graphs, we put

Vφ = V ′
φ, Eφ =

(
Vφ

2

)
,

Rφ = R′
φ ∪ {{e, f}; e ∈ Eφ \ E′

φ, f ∈ Eφ, e �= f}.

It is now easy to prove that the resulting complete AT-graph Aφ = ((Vφ, Eφ),
Rφ) is weakly (simply, rectilinearly) realizable if and only if the AT-graph A′

φ is.
Indeed, we have proved that all the three weak versions of the realizability are
equivalent for the AT-graph A′

φ, the weak realizability of Aφ implies the weak
realizability of its induced subgraph A′

φ, and every weak rectilinear realization of
A′

φ can be extended to a weak rectilinear realization of Aφ by slightly perturbing
the vertices into a general position and adding all the remaining edges as straight-
line segments. This finishes the proof of the NP-hardness of all the three versions
of the weak realizability of complete AT-graphs.

Since the weak realizability and the simple weak realizability are in NP, they
are NP-complete problems for the class of AT-graphs and also for the class of
complete AT-graphs.

A.5 Proof of Proposiotion 3

(1) Let G and G′ be two weakly isomorphic simple complete topological graphs
on n vertices. First we prove that the rotation systems R(G) and R(G′) are
either the same or inverse.

For n ≤ 3 it is trivial, for n = 4 and n = 5 it follows from the fact
that for the simple complete topological graphs with 4 or 5 vertices the
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Fig. 10. All five non-isomorphic simple drawings of K5 [5]

isomorphism classes coincide with the weak isomorphism classes: there are
two non-isomorphic simple drawings of K4 and five non-isomorphic simple
drawings of K5 (see [5] or Figure 10) and each of them is a realization of a
different AT-graph.

Now we use the case n = 5 to extend the statement to graphs with
more than five vertices. Let A be a simply realizable complete AT-graph
with the vertex set {1, 2, . . . , n}, where n ≥ 6. We know that each complete
5-vertex subgraph of A has only two possible rotation systems. Suppose that
the rotation system of A[{1, 2, 3, 4, 5}], the induced subgraph of A with the
vertices 1, 2, 3, 4, 5, is fixed (in some simple realization of A). We show that
then the rotation system of every other 5-vertex complete subgraph of A is
uniquely determined.

Lemma. Let B and C be two 5-vertex complete subgraphs of A with exactly
4 common vertices. Then the rotation system R(B) uniquely determines the
rotation system R(C).

Proof of lemma. Without loss of generality, let V (B) = {1, 2, 3, 4, 5}, V (C) =
{1, 2, 3, 4, 6} and let the rotation of the vertex 1 in R(B) be (2, 3, 4, 5). Then
the rotation of 1 in A[{1, 2, 3, 4}] is (2, 3, 4) and it must be a subsequence
of a rotation of 1 in R(C). But this always happens for exactly one of the
pair of inverse cyclic permutations of the set {2, 3, 4, 6}. It follows that the
rotation of 1 in C is uniquely determined and so is the whole rotation system
of C. �	

By repeated use of this lemma we obtain that the rotation system of every
complete subgraph of A on 5 (and also 4) vertices is uniquely determined by
R(A[{1, 2, 3, 4, 5}]). It remains to show that this also uniquely determines
the rotation of each vertex in A. But this easily follows from the fact that
a cyclic order of a finite set X is uniquely determined by the cyclic order
of all 3-element subsets of X (actually, it suffices to know the orders of the
triples containing one fixed vertex). It follows that a simple realization of A
can have only two possible rotation systems.

Since G and its mirror image have inverse extended rotation systems,
it remains to prove that R(G) uniquely determines the rotation R(c) of
each crossing c of G. Let uv, wz be the edges that cross at c. Then R(c)
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is determined by the drawing of the induced subgraph H = G[{u, v, w, z}].
Since every two weakly isomorphic simple drawings of K4 are isomorphic,
and an isomorphism preserves or inverts the extended rotation system, it
follows that R(c) is determined by R(H), which is trivially determined
by R(G).

(2) The edges e, f, f ′ are contained in a complete 5-vertex subgraph H of G, so
the order of crossings of e with f and f ′ is determined by the isomorphism
class of H , which is determined by the AT-graph of H . �	
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Abstract. A graph is planar if and only if it does not contain a Kura-
towski subdivision. Hence such a subdivision can be used as a witness for
non-planarity. Modern planarity testing algorithms allow to extract a sin-
gle such witness in linear time. We present the first linear time algorithm
which is able to extract multiple Kuratowski subdivisions at once. This is
of particular interest for, e.g., Branch-and-Cut algorithms which require
multiple such subdivisions to generate cut constraints. The algorithm
is not only described theoretically, but we also present an experimental
study of its implementation.

1 Introduction

A planar drawing of a graph is an injection of its vertices onto points in the
plane, and a mapping of the edges into open curves between their endpoints.
These curves are not allowed to touch each other, except in their common end-
points. Graphs which admit such a planar drawing, are called planar graphs, and
recognizing this graph class has been a vivid research topic for the past decades.
Hopcroft and Tarjan [11] showed in 1974 that this problem can be solved in lin-
ear time, using sophisticated data structures and intricate algorithms. Current
planarity testing algorithms like the ones by Boyer and Myrvold [4,5] and de
Fraysseix et al. [9,10] are less complex but still quite involved.

As shown by Kuratowski [13] in 1930, a graph is planar if and only if it
does not contain a K3,3 or a K5 subdivision, i.e., a complete bipartite graph
K3,3 or complete graph K5 with edges replaced by paths of length at least one.
Such subgraphs are called Kuratowski subdivisions. The efficient extraction of
such a witness of non-planarity was non-trivial in the context of the first linear
planarity tests. A linear algorithm for such an extraction was later presented, e.g.,
by Williamson [15]. Modern planarity testing algorithms like the ones by Boyer
and Myrvold, and de Fraysseix et al. can directly extract a single Kuratowski
subdivision, if the given graph is non-planar.

In ILP-based Branch-and-Cut approaches which try to solve, e.g., the Maxi-
mum Planar Subgraph problem [12] or the Crossing Minimization problem [6],
the identification of multiple such witnesses is a crucial part. Thereby, we look
at some intermediate solution and try to find Kuratowski subdivisions. For each
such subdivision, we can try to generate a cut constraint, necessary to efficiently
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solve the ILP. Experience shows that it is desirable to find multiple Kuratowski
constraints at once, as they strengthen the LP-relaxation of the problem.

In the following, let G = (V, E) be a non-planar undirected graph, without
selfloops and multi-edges. Current planarity tests are able to extract a single
Kuratowski subdivision in linear time O(n), n := |V |. We address the problem
of finding multiple Kuratowski subdivisions in efficient time. As there may ex-
ist exponentially many Kuratowski subdivisions in general, it is not practical
to enumerate all of them. A basic approach would be to obtain k Kuratowski
subdivisions through calling a planarity test k times and subsequently deleting
an involved Kuratowski edge. This approach has a superlinear runtime of O(kn),
but we are not aware of any algorithm faster than this approach, up until now.

In this paper, we propose an algorithm which extracts multiple Kuratowski
subdivisions in optimal time O(n + m +

∑
K∈S |E(K)|), with S being the set

of identified Kuratowski subdivisions and m := |E|. This runtime is linear in
the graph size and the extracted Kuratowski edges. The algorithm is based on
the planarity test of Boyer and Myrvold [5] which is one of the fastest planarity
tests today [3]. We will only give a short introduction into this planarity test
in Section 2; for a full description of the original test see [5]. The main part
of this paper focuses on the description on how to modify and extend all steps
to obtain multiple subdivisions in linear time, which requires both algorithmic
changes, as well as a heavily modified runtime analysis. Finally, Section 4 gives
a short computational study which shows the effectiveness of this algorithm.

2 The Boyer-Myrvold Planarity Test

The test starts with a depth first search on the (not necessarily connected) input
graph, which divides the edge set into DFS-forest edges and into backedges,
pointing to nodes with smaller depth first index DFI. The aim is to construct a
planar drawing based on the DFS-forest, by successively embedding all backedges
in descending DFI order of their end vertices. Throughout this paper, let v be the
current vertex to embed. Any backedge ending on v is called pertinent and will
be embedded, if this is possible while maintaining planarity. In the beginning,
each DFS-edge is separated from its adjacent vertex with lower DFI and joined to
a new virtual vertex. Therefore it represents a biconnected component (bicomp)
in the beginning, which grows when backedges are embedded.

To identify involved bicomps during such an embedding, the Walkup is called
for each start node of a pertinent backedge. A bicomp consisting of only one
DFS-edge and its adjacent vertices is called degenerated. The Walkup marks the
involved subgraph and classifies nodes as pertinent and external : a node w is
called pertinent, if there exists a pertinent backedge {w, v} or if w has a child
bicomp in the DFS-tree which contains a pertinent node. A node w is called
external, if there exists a backedge {w, u} with u having a smaller DFI than
v, or if w has a child bicomp containing an external node. Bicomps are called
pertinent or external if they contain pertinent or external vertices, respectively.
The Walkup traverses a unique path from w to v on the external faces of bicomps
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for every pertinent backedge {w, v}. We denote this path as the backedge path
of {w, v}.

The Walkdown attempts to embed each pertinent backedge and merges the
bicomps between its start and end vertex in the DFS-tree to a new, larger bi-
comp. It is invoked twice for each child bicomp of v: once in a counterclockwise
direction around the external face of the child bicomp, and once in the clockwise
direction. Using the classification of nodes from the Walkup, the Walkdown em-
beds only backedges which preserve planarity in the embedding. If any backedge
cannot be embedded, the graph is not planar and a subdivision is extracted; oth-
erwise a planar embedding is found. Since non-embeddable backedges can only
occur when both Walkdowns stop on external vertices which are not pertinent,
such a situation is called a stopping configuration. We call unembedded perti-
nent backedges caused by a stopping configuration critical. Let b = {w, v} such a
critical backedge. The first node in the backedge path of b which is contained in
the same bicomp as both stopping vertices are, is called critical node. We denote
the part of the backedge path from w to this critical node critical back path.

3 Extracting Multiple Kuratowski Subdivisions in Linear
Time

As opposed to the Boyer-Myrvold planarity test, the number of edges cannot be
bounded linearly by the number of vertices. Since every algorithm has to read
the input graph and to output all identified Kuratowski subdivisions, Ω(n+m+∑

K∈S |E(K)|) is a lower bound for the runtime and our algorithm is therefore
optimal for the extracted number of Kuratowski edges.

3.1 Overview

The original planarity test terminates when a stopping configuration is found. It
is possible to extract a Kuratowski subdivision for each critical backedge of this
stopping configuration. To obtain more, we have to proceed with the algorithm.
This bears problems, since the embedding has to be maintained planar, which is
impossible if it contains Kuratowski subdivisions. The idea is to identify all crit-
ical backedges in the given stopping configuration and delete them. After that,
the bicomp B containing the stopping configuration is not pertinent anymore
and it is necessary to continue at the situation directly before the planarity test
descended to B. This allows finding the next stopping configuration, provided
that there exists any on the current embedding step of vertex v. See Algorithm 1
for an overview of these steps for the embedding of a single vertex v.

Unfortunately, almost all time-bounds given in [5] loose validity with this
approach, and a new runtime analysis of this extended algorithm is necessary.
The key to a linear time bound is to compensate additional costs during Walkup,
Walkdown and extraction by the amount of extracted Kuratowski edges.

We will first describe how to find the correct reentry point after a stopping
configuration was found and removed. In Section 3.3, we discuss how to modify
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Algorithm 1. Embedding tasks of a vertex v

1: for all pertinent backedges p ending at v do
2: Walkup(p) � Sect. 3.3
3: end for
4: for all DFS-children c of v do
5: stop ← Walkdown(c) � original Walkdown
6: while stop �= ∅ do
7: Find all critical backedges of the stopping configuration stop � Sect. 3.4
8: Extract multiple subdivisions for each critical backedge � Sect. 3.4
9: Delete critical backedges and update the classification of nodes � see [5]

10: Find reentry_point for further embedding � Sect. 3.2
11: stop ← Walkdown(reentry_point) � iterated Walkdowns
12: end while
13: end for

the Walkup, in order to allow efficient operations used in the later steps of
the algorithm. Section 3.4 deals with the efficient extraction phase. Finally, the
overall runtime of the extended algorithm is analyzed in Section 3.5.

Of course there are graphs with exactly one Kuratowski subdivision. Hence,
we do not ensure any lower bound other than 1 for the number of extracted
Kuratowski subdivisions of non-planar graphs. But in practice, the quantity is
high as discussed in Section 4. Formally, our algorithm guarantees:

Lemma 1. We find at least one unique Kuratowski subdivision for each critical
backedge per stopping configuration.

Lemma 2. Whenever the algorithm extracts a Kuratowski subdivision using a
critical backedge b, and there exists at least one additional Kuratowski subdivision
without b, we will find such a subdivision.

3.2 Finding the Reentry Point for Further Embeddings

Let v′ be the virtual node of v adjacent to the DFS-child c of v from the current
Walkdown. We call the bicomp which has v′ as its root, the forebear bicomp, the
others are called non-forebear bicomps. The Walkdown can be run unmodified,
as long as no stopping configuration occurs. The same holds if a stopping con-
figuration occurs on the forebear bicomp due to embedded pertinent backedges,
since this represents the last stopping configuration in the Walkdown.

Otherwise, the Walkdown has to be modified. Let A be the non-forebear
bicomp containing the stopping configuration, T the subtree of all pertinent
bicomps with the bicomp containing v′ as root and D the parent bicomp of A
in T (cf. Figure 1). Any bicomp in T has exactly those bicomps as children
which are referenced in the PertinentRoots lists of its nodes, as proposed in
[5]. In Figure 1, the bicomp tree T consists of the (degenerated) forebear bicomp
{v′, c} and the non-forebear bicomps A, B, C and D. The Walkdown stops at
A, deleting the critical backedges incident to w1 and w2 after the extraction of
all Kuratowski subdivisions induced by these backedges. Afterwards, A is not
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pertinent anymore and its PertinentRoots list entry on the parent node z1
in D must be deleted. As there exists another item in that list, we continue
the Walkdown at z1 and find another stopping configuration in bicomp B. The
general rule is that the Walkdown continues on z1 until the PertinentRoots list
of z1 is empty.

Fig. 1. Finding reentry points.
Square nodes refer to external
vertices; circular, light gray nodes
denote pertinent vertices. Virtual
vertices are depicted by a dotted
line.

At last, z1 is not pertinent anymore. Fur-
thermore, short-circuit edges from the root r
of D to both external vertices in each direc-
tion (z1 and z2) have been embedded.These
short-circuit edges permit an O(1)-traversal
to the other external vertex z2, where the
Walkdown extracts all stopping configura-
tions of child bicomps (bicomp C in Fig-
ure 1), analogously to z1. Finally, we check
whether D itself contains a stopping config-
uration by extracting all remaining critical
edges. In our example, the backedge start-
ing at w5 induces a subdivision and can
be deleted after the subdivision’s extraction.
This procedure is iterated for the next father
bicomp in the DFS-tree until the forebear bi-
comp is reached or a pertinent backedge is
embedded. In the latter case, all preceding bi-
comps are embedded and the Walkdown con-
tinues at the forebear bicomp.

The crucial point in this scheme is the traversal to a bicomp, where no
backedge can be embedded, i.e., a bicomp that contains a stopping configuration:
we modify the embedding to what it would have been, if no critical backedges
on this bicomp would have existed. Finally, the Walkdown is restarted on the
very node where the previous Walkdown started to descent to this bicomp.

3.3 Walkup

Additionally to the PertinentRoots list and BackedgeFlags of the original pla-
narity test, we now have to collect some more information during the Walkup. For
every visited node n, we store a link LinkToRoot to the root node of the bicomp of
n. This can be done efficiently by using a stack for all visited nodes of the bicomp
during the Walkup. Furthermore, a list named PertinentNodesAfterWalkup of
all pertinent nodes of each bicomp B is created. This is stored at the root node
of B by collecting the nodes during the Walkup in a list. Whenever we reach the
bicomp root or a node with set LinkToRoot, we can add the collected vertices
in O(1) time to the list of the bicomp root. Once established, this list is not
modified until v is completely embedded.

It is useful to be able to distinguish the backedges incident to different virtual
vertices v′ of v, since they will be embedded in different subtrees later on. This
can be done by storing v′ as the HighestVirtualNode for each backedge {w, v}.
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To obtain v′ for a given backedge p, Walkup(p) marks each visited node with
p. If the Walkup ends on a virtual node of v, we can store this node as the
HighestVirtualNode(p). Otherwise, Walkup(p) stopped on an already visited
vertex which was traversed during the Walkup of another backedge q. Since both
Walkups met, the subtrees are identical and so are the HighestVirtualNodes
of p and q. The latter can be looked up in O(1), and we hence identified
HighestVirtualNodes(p). This allows us to easily generate a list Backedges-
OnVirtualNode for each virtual node v′ of v containing the backedges belonging
to the pertinent subtree with root v′.

3.4 Extraction

Overview. The extraction starts whenever the Walkdown halts on some stop-
ping configuration in a bicomp B. We describe how the critical backedges of this
stopping configuration can be computed in the next subsection “Extraction of
Critical Backedges”. Each critical back path of those backedges induces one or
more Kuratowski subdivisions of a specific minor-type, which has to be known
prior to the extraction. To obtain this minor-type, a path from each stopping
vertex to a node with lower DFI than v is selected in time linearly to its length.

Additionally, the highest-xy-path of the critical node w is needed to determine
the minor-type. As defined by Boyer and Myrvold, the highest-xy-path obstructs
the inner face of B and consists of the external face part on the top of the for-
mer, now embedded, bicomp which contains w. This path can be computed in
O(n), but this would result in a superlinear overall runtime. Hence we develop
a more efficient way by first extracting the more general highest-face-path ef-
ficiently and use it to obtain the highest-xy-paths for all critical nodes. These
steps are described in the subsections “Extraction of the Highest-Face-Path” and
“Extraction of all Highest-XY-Paths”. After the minor-type is determined, all
remaining parts of the Kuratowski subdivision can be extracted from the DFS-
tree using only external faces of involved bicomps. This requires time linearly to
their lengths. Finally, all critical backedges of the stopping configuration as well
as the involved PertinentRoots and BackedgeFlags are deleted. We will give
a rather high level description of the extraction, referring the reader to [7,14] for
technical details and case distinctions.

Extraction of Critical Backedges. Let x and y be the two stopping vertices
on the bicomp B, and r the root of B. Neither x, nor y, nor any node on
the external face paths r → x and r → y can be pertinent; otherwise the
Walkdown would not have stopped at x and y. The critical back paths of the
critical backedges end on the external face of B between x and y. We distinguish
between two cases depending on the type of B.

If B is a forebear bicomp, all pertinent backedges of the current Walkdown
are contained in the BackedgesOnVirtualNode(r) list. For each entry, we can
check in O(1) whether it is embedded. If not, the backedge is critical. This yields
an overall running time of O(n + m) over all embedding steps, since all critical
backedges are deleted afterwards and no further stopping configuration can exist.
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If B is a non-forebear bicomp, consider the DFS-subtree T of pertinent bi-
comps with B as root bicomp. We start a preorder traversal through T by using
the PertinentNodesAfterWalkup lists on the roots of all bicomps. These lists
can contain nodes that are not pertinent any more due to extractions of other
stopping configurations. Hence we have to check each item for pertinence; every
non-pertinent entry is deleted. The remaining nodes are the critical nodes and
we check their BackedgeFlag property. If this flag is set, the associated backedge
must be critical and is therefore included in the list of critical backedges. Note
that the remaining nodes, independent of their BackedgeFlag, may have non-
empty PertinentRoots lists. After all critical backedges starting at the current
bicomp were found, the preorder traversal iterates the process on each child
bicomp given by its PertinentRoots lists recursively.

All tests on the nodes can be performed in constant time. The size of the tree T
itself is bounded by the costs of the corresponding Walkup invocations, because
at least one node was traversed for each pertinent bicomp. Moreover, a non-
pertinent node in the PertinentNodesAfterWalkup list can only happen as a
result of an earlier extracted stopping configuration. The only other reason would
be that a pertinent backedge has been embedded on B, which contradicts the as-
sumption. Each of the at most m stopping configurations in all embedding steps
produces at most one non-pertinent entry in a PertinentNodesAfterWalkup
list. Hence the overall runtime is bounded by the Walkup time.

Independent of the case distinction on B, all critical nodes in B are nec-
essary for the minor-type classification and for the extraction of Kuratowski
subdivisions. We can obtain all critical nodes in B efficiently by testing the
BackedgeFlag for each entry of the PertinentNodesAfterWalkup list of r. From
the above description we can conclude:

Lemma 3. The asymptotic runtime for obtaining all critical backedges of a stop-
ping configuration is bounded by the Walkup costs.

Extraction of the Highest-Face-Path. In order to extract all highest-xy-
paths efficiently, we first require a highest-face-path of the bicomp B. See Figure 2
for a visualization of the following explanations. We obtain the highest-face-path
by temporarily deleting all edges incident to its root r except for the two edges
s = (r, a) and t = (r, b) on the external face (ignoring any short-circuit edges).
Thereby, B breaks into multiple sub-bicomps; we also delete all separated sub-
bicomps, i.e., the sub-bicomps which do not contain r. Consider the inner face f
containing a, r, and b. The highest-face-path is the path a → b on the boundary
of f not traversing r.

It is possible to extract the highest-face-path in time O(|B|), if B is properly
embedded. But since the planarity test performs implicit flips on bicomps, we do
not know whether the adjacency lists of the nodes are in clockwise or counter-
clockwise order, and we would have to establish the correct orientation for each
node of B first. This requires a traversal of the underlying DFS-tree, resulting
in a superlinear overall runtime. Hence, this approach is not suitable and we will
identify the highest-face-path with inconsistent node orientations instead.
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Fig. 2. The structure of the bicomp B containing former bicomps. The hatched former
bicomps form the bottom chain. The extraction of the highest-face-path starts at the
inner vertex c in both directions (thick dotted arrow lines) and ends on nodes a and b.

Therefore, it is not possible to easily walk along f . The idea is to reuse the
external face links, which were introduced in the original planarity test, of the
former, now merged bicomps in B. These external-links of a node referred to
the two incident edges on the boundary and could be used in a traversal of
the external face in order to find the correct direction to proceed, even when
some nodes are not oriented correctly. Unfortunately, the Walkdown will usually
modify those external-links. Therefore, we store a backup copy old-links of the
external-links on each bicomp root during the Walkup.

To use the former external-links in a traversal inside of a non-degenerated B,
we have to analyze the general structure of B first: the external face of every
non-degenerated forebear bicomp contains at most one embedded backedge for
each of the two Walkdowns formerly started at r. It may also contain an edge
connecting the root and the non-root node with least DFI. However, in all cases
these edges are incident to the virtual root node. The remaining set of edges on
the external face consists of the lower parts of now connected, former bicomps.
We denote this sequence of former bicomps which lie on the external face the
bottom chain of B, cf. Figure 2. A merge node is a node shared between two
adjacent bicomps of the bottom chain (e.g. the nodes q in Figure 2), or one of
the two end nodes a and b. Given a former bicomp U in the bottom chain, the
path on the upper part of U connecting the two contained merge nodes resembles
the highest-xy-path of a critical back path ending at U . This fact is the key for
the later extraction of all highest-xy-paths.

Let c be the unique non-virtual node of B with smallest DFI. Let E be the
former bicomp of the bottom chain which contains the node with smallest DFI:
if c is not contained in E, inner bicomps exist. Hence, we can summarize the
necessary traversal as follows: We start with the traversal at c. If neither s nor t
is an external-link of c, c is either an inner vertex or the root of E which lies on
the external face of B. The former induces inner bicomps along a path from c to



Efficient Extraction of Multiple Kuratowski Subdivisions 167

the root of E. In both cases, we traverse the boundary of former bicomps in both
directions. If an external-link of c is either s or t, c lies on the external face, and
we have to traverse only one direction, following the other external-link of c. If we
use two traversal directions, E can be determined as the last bicomp, whose root
node is visited by both traversals. Starting with this root, all traversed nodes
are stored in two separate lists, one for each traversal direction. We obtain the
highest-face-path of B by appending the reversed second list to the first one. All
walks check on each visited node z whether z is identical to a or b in O(1). If so,
the walk is finished. During the traversal, all visited nodes are saved on a stack.
If a node is visited twice, this node is a merge node to an inner, separated sub-
bicomp, whose boundary is not part of the highest-face-path. Then, all nodes
between the two occurrences are deleted from the stack.

We store the highest-face-path on the unique vertex c in B, since later extrac-
tions might need it as well. Whenever a highest-face-path has to be computed
in consequence of an embedding of B within a larger bicomp B∗, B will play
the role of a former bicomp. Since we only traverse the external faces of former
bicomps, we will never again traverse the interior of B. Hence, and since the
traversals require O(1) time for each vertex, we obtain:

Lemma 4. All highest-face-paths which occur during the algorithm can be com-
puted and maintained in O(n + m).

Extraction of all Highest-XY-Paths. For every given critical node w be-
tween two stopping vertices of a stopping configuration, we have to compute
its highest-xy-path. Let D be the former bicomp of the bottom chain of B. By
traversing the external face of D from w in parallel, using again the old-links,
we find the merge nodes and extract the highest-xy-path in linear time of its
length. For details see [7].

Extraction of Kuratowski Subdivisions. The prior sections dealt with the
problem of efficiently obtaining and classifying multiple stopping configurations.
We now address the problem to extract multiple Kuratowski subdivisions out
of a single stopping configuration. Whenever a stopping configuration occurs,
an appropriate critical back path for each critical backedge is computed. Along
with the highest-xy-path, the minor-type of the induced Kuratowski subdivision
is obtained. Additionally to the basic 9 minor-types of [5], we can define 7 more
minor-types, by augmenting the types B, C, D and E1–E4 with a non-empty
path v → r as in type A. We call the resulting minor-types AB, AC, AD and
AE1–AE4, respectively. It turns out that the Kuratowski subdivisions of these
additional minor-types constitute the largest part of the extracted subdivisions
in practice, see Section 4. Clearly, more than one minor-type can exist for a
single critical back path.

To further increase the number of extracted subdivisions, we will start with
focussing on the critical back paths, since nearly all minor-types need them
for constructing the subdivision. In general, such a path consists of external
face parts between the roots of multiple consecutive bicomps. We can therefore
extract the other parts of these external faces and combine these to obtain
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potentially exponentially many different critical back paths, which yield different
Kuratowski subdivisions. As a side effect, those subdivisions are all similar which
can be beneficial for the application area of Branch-and-Cut algorithms. The
same technique can be used to obtain multiple external backedge paths and
multiple paths starting at the so-called external z-nodes [5] in the minor-types
E1–E5 and AE1–AE4.

All extracted Kuratowski subdivisions of a stopping configuration are unique.
This holds for subdivisions of different stopping configurations as well, except
for the minor-types E2 and AE2, which do not include the critical back path
and thus might be extracted as minor-type A later on. This can be avoided by a
special marker on the external backedges, to prohibit its classification as a future
critical backedge in A.

Bundle Variant. Moreover, we can extend our algorithm by a bundle variant
in which all root-to-root paths of each involved bicomp on a critical back path
are extracted. This approach increases the number of identified subdivisions dra-
matically, albeit on the cost of the running time. To speed up the backtracking
subroutine, it is possible to use algorithms for dynamic connectivity for pla-
nar graphs [8]. This increases the overall runtime only by a factor of log(n) in
comparison to the linear time approach in terms of output complexity.

3.5 Runtime Analysis

All steps described so far guaranteed an overall linear runtime. It remains to
show that the modified Walkup can be bound by a linear total of O(n + m +∑

K∈S |E(K)|). We will only give a brief sketch of the proof, and omit a number
of rather technical case differentiations (see [7,14]).

It is sufficient to consider the costs of the Walkup, which cannot be com-
pensated by new embedded faces or new short-circuit edges. Therefore, we only
consider Walkup costs on critical backedge paths. If these are part of stopping
configurations on non-forebear bicomps, the sum of all critical backedge-path
costs on all forebear bicomps can be estimated as follows: we spend at most
O(n +m +

∑
K∈S |E(K)|) time on the external face, and at most O(m) time on

inner faces containing the forebear root. Moreover, all other costs caused by stop-
ping configurations in non-forebear bicomps are compensated by the inevitably
induced minor A which contains all other traversed edges.

Otherwise, the stopping configuration is contained in a forebear bicomp B.
Since most minor-types do not contain the whole external face of B in their
Kuratowski subdivisions, all not yet compensated costs arise on its external face.
The only exception to this rule are the critical paths on minors E2, AE2, which
can be bound by a linear total as well. These remaining costs are compensated
by the extracted Kuratowski paths of the different minor-types. Hence we yield
Theorem 1, which is optimal in terms of output complexity. Based on this, we
can furthermore deduce a corresponding result for the bundle variant.

Theorem 1. The overall running time of the algorithm is bounded by O(n +
m +

∑
K∈S |E(K)|) and therefore linear.
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Corollary 1. The overall running time of the bundle variant is O(n + m +
log n

∑
K∈S |E(K)|).

4 Experimental Analysis

We implemented the algorithm and its bundle variant as part of the open-source
C++-based Open Graph Drawing Framework [1]. All tests were performed on an
Intel Core2Duo with 1.86 GHz and 2GB RAM using the GNU-compiler gcc-3.4.4
(-o1). Due to the algorithmic complexities, we simplified the steps to compute the
critical backedges and highest-xy-paths by correctly orienting B in time O(|B|).
Although this simplification breaks the provable linear runtime, our experiments
show that it does not influence the running time negatively in practice, since the
number of extracted Kuratowski edges becomes the dominant term. The bundle
variant uses a traditional back-tracking scheme and therefore does not guarantee
the theoretical logarithmic bound. We use the Rome Graph Library [2], which
contains 11528 real-world graphs with 10 to 100 nodes, 8249 of which are non-
planar graphs. We also use random graphs (n = 10 . . .500, m = 2n) generated
by OGDF. Thereby we start with an empty graph on n vertices and iteratively
add an edge with random start and end node, until m unique edges are added.

Each Rome graph is processed in less than 11 ms (on average: 1.3 ms). The
average amount of extracted Kuratowski subdivisions per 100-node graph is 255,
containing in total 12214 Kuratowski edges. It is interesting that the average
size of the subdivisions grows approximately with n/2 throughout all tests. More
Kuratowski subdivisions are obtained by the bundle variant. Thereby, each graph
is processed in less than 1 sec (but on average less than 7 ms), extracting up
to 3.5 million Kuratowski edges at some graphs (see Figure 3). There are 2912
subdivisions on average per 100-node graph with 136027 Kuratowski edges.

On the random graphs, the number of identified Kuratowski subdivisions in-
creases dramatically for the bundle variant, such that a full computation becomes
prohibitive. In practice, one can of course stop the computation after a certain
amount of extracted subdivisions. Hence, we restrict our test to the linear vari-
ant for these random graphs (see Figure 3). Each graph needs less than 430 ms

Fig. 3. Running times. The linear variant for the Rome Library would be nearly invis-
ible in the very left corner of the figure.
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(126 ms on average), extracting up to 25000 Kuratowski subdivisions per graph
containing 5 million Kuratowski edges. The average number of Kuratowski sub-
divisions is 8813 per graph with 1.3 million Kuratowski edges.

Overall, the experiments show a linear running time, despite the aforemen-
tioned simplifications of the algorithm. The minor-types are dominated by the
types AE1–AE4, which constitute 60%–90% of all subdivisions on graphs with
at least 100 nodes.
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Abstract. We study problems that arise in the context of covering cer-
tain geometric objects (so-called seeds, e.g., points or disks) by a set of
other geometric objects (a so-called cover, e.g., a set of disks or homo-
thetic triangles). We insist that the interiors of the seeds and the cover
elements are pairwise disjoint, but they can touch. We call the contact
graph of a cover a cover contact graph (CCG). We are interested in
two types of tasks: (a) deciding whether a given seed set has a connected
CCG, and (b) deciding whether a given graph has a realization as a CCG
on a given seed set. Concerning task (a) we give efficient algorithms for
the case that seeds are points and covers are disks or triangles. We show
that the problem becomes NP-hard if seeds and covers are disks. Con-
cerning task (b) we show that it is even NP-hard for point seeds and disk
covers (given a fixed correspondence between vertices and seeds).

1 Introduction

Koebe’s theorem [9,11], a beautiful and classical results in graph theory, says that
every planar graph can be represented as a coin graph, i.e., a contact graph of
disks in the plane. In other words, given any planar graph with n vertices, there
is a set of n disjoint open disks in the plane that are in one-to-one correspondence
to the vertices such that a pair of disks is tangent if and only if the corresponding
vertices are adjacent. Koebe’s theorem has been rediscovered several times, see
the survey of Sachs [12]. Collins and Stephenson [4] give an efficient algorithm
for numerically approximating the radii and locations of the disks of such a
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(a) disk seeds (b) disk cover of (a) (c) CCG induced by (b)

Fig. 1. Seeds, cover, and CCG

representation of a planar graph. Their algorithm relies on an iterative process
suggested by Thurston [13].

Since Koebe there has been a lot of work in the graph-drawing community
dedicated to the question which planar graphs can be represented as contact or
intersections graphs of which geometric object. As a recent example, Fraysseix
and Ossona de Mendez [5] showed that any four-colored planar graph without
an induced four-colored C4 is the intersection graph of a family of line segments.

On the other hand, there has been a lot of work in the geometric-optimization
community dedicated to the question how to (optimally) cover geometric objects
(usually points) by other geometric objects (like convex shapes, disks, annuli).
As an example take Welzl’s famous randomized algorithm [15] for finding the
smallest enclosing ball of a set of points.

In this paper we combine the two previous problems: we are looking for ge-
ometric objects (like disks or triangles) whose interiors are disjoint, that cover
given pairwise disjoint objects called seeds (like points or disks) and at the same
time represent a given graph or graph property by the way they touch each other.
Other than in geometric optimization each of our covering objects contains only
one of the seeds. We are not interested in maximizing the sizes of the covering
objects; instead we want them to jointly fulfill some graph-theoretic property
(like connectivity). Compared to previous work on geometric representation of
graphs we are more restricted in the choice of our representatives.

Let us get a bit more formal. Given a set S of pairwise disjoint seeds of some
type, a cover of S is a set C of closed objects of some type with the property that
each object contains exactly one seed and that the interiors of no two objects
intersect. Figure 1b depicts a disk cover of the disk seeds in Figure 1a. Now the
cover contact graph (CCG) induced by C is the contact graph of the elements
of C. In other words, two vertices of a CCG are adjacent if the corresponding
cover elements touch, i.e., their boundaries intersect. Figure 1c depicts the CCG
induced by the cover in Figure 1b. Note that the vertices of the CCG are in
one-to-one correspondence to both seeds and cover elements. We consider seeds
to be topologically open (except if they are single points). Then seeds can touch
each other. (Note that we require cover objects to be closed. This makes sure
that a cover actually contains a point seed that lies on its boundary.)

In this paper we investigate the following questions.

Connectivity: Given a seed set, does it have a (1- or 2-) connected CCG?
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Realizability: Given a planar graph and a set of seeds, can the given graph
be realized as a CCG on the given seeds?

A third type of question is treated in the long version of this article [3]:

Enumeration: For a given number of vertices, how many graphs of a certain
graph class can be realized as a CCG?

However, we do consider in this paper an interesting restriction of the above
problems where seeds and cover elements must lie in the half plane R

2
+ above

and including the x-axis. Seeds are additionally restricted in that each must
contain at least one point of the x-axis. In this restricted setting we call the
contact graph of a cover a CCG+. See Figures 7b and 9 for examples.

Our results. First, we consider arbitrary sets of point seeds, see Section 2. Con-
cerning connectivity we show that we can always cover a set of point seeds using
disks or using homothetic triangles such that the resulting CCG is 1- or even
2-connected. Our algorithms run in O(n log n) expected and O(n2) worst-case
time, respectively. Concerning realizability we give some necessary conditions
and then show that it is NP-hard to decide whether a given graph can be re-
alized as a disk-CCG if the correspondence between vertices and point seeds is
given. Second, we consider the restriction where we are given a set S of points
on the x-axis as seeds. We show that in this case 1-connectivity is easy: we can
realize Cn as a CCG on S and there are trees that can be realized as a CCG+ on
S. For the case that the correspondence between seeds and vertices is given, we
give an algorithm that decides in O(n log n) time which trees can be realized as
CCG+. Third, we consider disk seeds, see Section 4. We show that even deciding
whether a set of disk seeds has a connected disk-CCG is NP-hard. We can only
sketch proofs here. We refer the reader to the long version [3] of this paper.

Related work. Abellanas et al. [1] proved that the following problem, which they
call the coin placement problem, is NP-complete. Given n disks of varying radii
and n points in the plane, is there a way to place the disks such that each disk
is centered at one of the given points and no two disks overlap?

Abellanas et al. [2] considered a related problem. They showed that given a
set of points in the plane, it is NP-complete to decide whether there are disjoint
disks centered at the points such that the contact graph of the disks is connected.

Given a pair of touching (convex) cover elements, we can draw the corre-
sponding edge in the CCG by a two-segment polygonal line that connects the
incident seeds and uses the contact point of the cover elements as bend. This is
a link to the problem of point-set embeddability. We say that a planar graph G
is k-bend (point-set) embeddable if for any point set P ⊂ R

2 there is a one-to-
one correspondence between V and P such that the edges of G can be drawn
as non-crossing polygonal lines with at most k bends. Kaufmann and Wiese [8]
showed that (a) every 4-connected planar graph is 1-bend embeddable, (b) every
planar graph is 2-bend embeddable, and (c) given a planar graph G = (V, E)
and a set P of n points on a line, it is NP-complete to decide whether G has a
1-bend embedding that maps V one-to-one on P .
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2 The Seeds Are Points in the Plane

In this section we study point seeds which may take any position in the plane.
If not stated otherwise our results hold for both disk covers and (homothetic)
triangle covers. We focus on the two questions raised before: connectivity and
realizability.

2.1 Connectivity

It is known to be NP-hard to decide whether a given set of points can be covered
by a set of pairwise disjoint open disks, each centered on a point, such that the
contact graph of the disks is connected [2]. In contrast to that result we give a
simple sweep-line algorithm that covers point seeds by (non-centered) disks such
that their contact graph is connected.

Proposition 1. Every set S of n point seeds has a connected CCG. Such a CCG
can be constructed in O(n log n) time and linear space.

Proof. After sorting S by decreasing ordinate we proceed incrementally from
top to bottom. For the first point, we place a cover element (disk or triangle,
depending on the case) of fixed size with the seed as its bottommost point. If
the k − 1 topmost points are already connected, then for the k-th point p we
inflate a cover element Cp with p as the bottommost point until Cp touches one
of the previously placed cover elements.

The implementation for disk-CCGs is similar to Fortune’s sweep [6] for con-
structing the Voronoi diagram of a set of weighted points. For triangle-CCGs we
repeatedly determine the size of the new triangle in O(log n) time by a segment-
dragging query [10] and two very simple ray-shooting queries. ��

In fact, even more can be obtained as the following proposition assures.

Proposition 2. Any set S of n point seeds has a biconnected CCG. Such a
CCG can be constructed in O(n2 log n) time using linear space.

Proof. We first consider disks as cover elements. Let D1, D2, and D3 be three
congruent disks that touch each other. They delimit a pseudo-triangular shape R.
Choose the three disks such that each disk Di contains a unique point pi ∈ S
and such that S \ {p1, p2, p3} ⊂ R, see Figure 2 (left).

In order to cover the remaining points we assume that disks D4, . . . , Di−1 have
been placed such that each covers a unique point of S and touches two previously
placed disks, see Figure 2 (middle). Thus the contact graph of D1, . . . , Di−1 is
biconnected. Let Rj be a connected component of R \

⋃i−1
j=4 Di that contains

at least one uncovered point. Use Fortune’s sweep [6] to compute the combined
Voronoi diagram of the disks incident to Rj and the points in S ∩Rj . This takes
O(n log n) time and the resulting Voronoi diagram has complexity O(n). The
part of the Voronoi diagram in Rj is the locus of the centers of all disks that lie
in Rj and touch ∂Rj ∪(S∩Rj) in at least two points, where ∂Rj is the boundary
of Rj . Now we make a simple but crucial observation: if D is a disk that (a) lies
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Fig. 2. Three steps in the construction of a biconnected disk-CCG

in Rj , (b) contains a seed s ∈ S ∩Rj on its boundary, and (c) touches two of the
previous disks, then D is centered at a vertex of the Voronoi diagram. Thus a
disk D� fulfilling (a)–(c) can be found in linear time and, by construction, does
not contain any point of S in its interior. (If by any chance all such disks touch
more than one point of S, we re-start the whole computation with three slightly
wiggled initial disks D1, D2, and D3. Then the probability of this degeneracy
becomes 0.) Now set Di = D�, and repeat the process until all seeds are covered.
This takes O(n2 log n) time in total.

The case of triangles can be handled analogously. Choosing any reference point
in the triangular shape, a structure similar to the medial axis can be computed
in O(n log n) and updated in O(n) time in each of the n − 3 phases. ��

2.2 Realizability

In this section we first give two necessary conditions that a planar graph must
fulfill in order to be realizable as a disk-CCG on a given seed set. Then we
construct a plane geometric graphs on six vertices that cannot be represented
as disk-CCG. Finally we investigate the complexity of deciding realizability.

To formulate our necessary conditions for realizability we define a graph on
the given seed set S. Our graph is inspired by the sphere-of-influence graph
defined by Toussaint [14]. Given a seed set S and a point p ∈ S let the influence
area of p be the closure of the union of all empty open disks D (i.e., D ∩ S = ∅)
that are centered at vertices of the Voronoi region of p, see Figure 3. We call
the intersection graph of these influence areas the hyperinfluence graph of S and
denote it by HI (S), see Figure 4.

Proposition 3. Let S be a set of point seeds and let G be a graph realizable as
a disk-CCG on S. Then

(i) G is a subgraph of HI (S), and
(ii) G has a plane drawing where each vertex is mapped to a unique point in S

and each edge is drawn as a polygonal line with at most two segments (i.e.,
with at most one bend per edge).
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Fig. 3. Influence area of p ∈ S (shaded)
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Fig. 4. The hyperinfluence graph HI (S)

Proof. Both facts are straightforward to obtain. (i) is based on the observation
that any possible covering disk of p is contained in the influence area of p. Thus,
if the covering disks of two seeds are in contact, their influence areas intersect.

(ii) is obtained by representing each edge of the CCG by two line segments
that connect the seeds with the point of tangency of the covering disks. ��

While Proposition 3 (ii) is difficult to verify even if all seeds lie on a line [8],
Proposition 3 (i) gives us a way to show non-realizability of certain geometric
graphs as the one depicted in Figure 5. That graph is connected and thus cannot
be realized as a CCG with its vertices as seeds, because the shaded influence areas
of p1 and p2 do not intersect. The graph has eight vertices. On the other hand
it is easy to see that any three-vertex graph can be realized on any three-point
seed set. Now it is interesting to ask for the least n for which there is an n-vertex
geometric graph G such that the straight-line drawing of G is plane but G cannot
be realized as CCG.

p1 p2

Fig. 5. Non-realizable
bipartite graph

We show that there is a set S = {a, b, . . . , f} of six
points in convex position such that their Delaunay trian-
gulation is not representable as a CCG, see the underlying
graph in Figure 6. The covering disks Da and Dd of the
points a and d must touch each other in one of two ways.
Either the tangent point of the disks lies inside the convex
hull of S, or Da and Dd are very large and lie to the left
of a and to the right of d, in which case they touch far above or below S, see
Figure 6. In the first case there is no disk covering c and touching Da. In the
second case we can assume that the boundaries of Da and Dd are two almost
parallel lines in the vicinity of the six points. The disks Dc and Df covering c
and f must both touch Da and Dd. But if c and f are close enough to a and d
then Dc and Df cannot be disjoint.

So we have seen that there are pairs of (quite small) graphs and seed sets such
that the graph cannot be realized on the seed set as disk CCG. Thus we would
like to decide whether a given graph is realizable as CCG on a given seed set
or not. Of course Koebe’s theorem [9] guarantees that for any planar graph G
we can find a seed set S such that it is possible to realize G on S. However, if
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Fig. 6. Non-realizable Delaunay triangulation of six points in convex position

the seeds and the vertex–seed correspondence are given, the problem becomes
NP-hard.

Theorem 1. Given a set S of points in the plane and a planar graph G = (S, E),
it is NP-hard to decide whether G is realizable as disk-CCG on S.

The proof is by reduction from the NP-hard problem Planar3SAT. There
are gadgets for each variable and each clause of the given Boolean formula.
The gadget of a variable v is such that it allows two combinatorially different
ways to represent the given subgraph as disk-CCG. These correspond to the
two Boolean values of v. The clause gadget is locally symmetric with respect to
120◦-rotations and designed such that some cover disks must overlap if and only
if the corresponding three literals are all false.

3 The Seeds Are Points on a Line

In this section, seed sets consist of points on the x-axis. Connectivity follows
from some of our realizability results, so we focus on the latter. We consider the
following four questions. Note that seeds now correspond to real numbers, so we
can use the natural order < in R to compare them. All covers consist of disks
unless stated otherwise (e.g., in Q4).

Q1. Given a graph class C (e.g., the class of trees), does it hold that for any seed
set S there is a graph in C that is realizable as CCG or CCG+ on S?
We show: This is true for (cycles, CCG) and (trees, CCG+).

Q2. Given a graph class C, does it hold that for any graph G in C there is a seed
set S such that G can be realized as CCG or CCG+ on S?
We show: This is true for the combination (trees, CCG+).

Q3. Let C be a fixed graph class. Given a graph G ∈ C with a labeling λ : V →
{1, . . . , n}, is there a sequence s1 < . . . < sn of seeds in R

1 and a realization
of G that maps each vertex v to the corresponding seed sλ(v)?
We show: There is an O(n log n) decision algorithm for (trees, CCG+).
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Fig. 7. Graphs that can be realized on a given one-dimensional n-point seed set S

Q4. Let C be a fixed graph class. Given a seed set S and a graph G(S, E) ∈ C,
can G be realized on S as triangle CCG or CCG+?
We show: There is an O(n log n)-time decision algorithm for (trees, CCG+).

Note that the above questions require more and more concrete information about
the seed set, ranging from no information (Q2) via a fixed order (Q3) to complete
information (Q4). We start with question Q1.

Proposition 4. Let S be a set of n point seeds on a line, then

(i) the n-vertex cycle Cn can be realized as CCG on S, and
(ii) there is a tree T (S) that can be realized as CCG+ on S.

Figures 7a and 7b give some intuition about how our algorithms work; for details
see the long version of this paper [3].

In terms of this paper, a coin graph is obtained when seeds are points and
cover elements are disks centered at seeds, and thus Koebe’s theorem establishes
that it is always possible to choose seeds in the plane such that any given plane
graph is realizable as a coin graph on them. We have seen in Proposition 4 that
Cn is realizable as a CCG on any seed set on a line. One can ask whether a
Koebe-type theorem also holds in this restricted setting. However, Kaufmann
and Wiese [7] have shown that there is a plane triangulated 12-vertex graph
(see Figure 8) that cannot be drawn with only one bend per edge if vertices
are restricted to a line. Now Proposition 3 (ii) implies that that graph is not
realizable as CCG if seeds lie on a line. On the positive side, we can show that a
Koebe-type theorem holds for the combination (trees, CCG+). This is an answer
to Q2 and in a way dual to Proposition 4 (ii). See Figure 9 for a sketch of our
recursive construction.

Proposition 5. For any tree T there is a seed set S(T ) ⊂ R
1 such that T is

realizable as CCG+ on S(T ).
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Fig. 8. Kaufmann–Wiese graph [8] Fig. 9. Constructing a seed set S(T )

In Proposition 5 above, we had complete freedom to choose the seeds. Now we
turn to question Q3, where we are not just given a tree, but also an order of its
vertices that must be respected by the corresponding seeds. Kaufmann and Wiese
[7] have investigated a related problem. They showed that it is NP-complete to
decide whether the vertices of a given (planar) graph can be put into one-to-one
correspondence with a given set of points on a line such that there is a plane
drawing of the graph with at most one bend per edge. We call such a drawing a
1d-1BD. If additionally all bends lie on one side of the line, we call the drawing
a 1d-1BD+.

Note that the hardness result of Kaufmann and Wiese does not yield the
hardness of the one-dimensional CCG realizability problem, since not every
graph that can be one-bend embedded on a set of points on a line is realizable
as CCG, let alone as CCG+. Our next result explores the gap between Kauf-
mann and Wiese’s one-dimensional embeddability problem and the situation in
Proposition 5.

More formally, given an n-vertex tree T and a (bijective) labeling λ : V →
{1, . . . , n} of its vertices, we say that T is λ-realizable (as CCG, CCG+, 1d-
1BD, 1d-1BD+) if there is a sequence s1 < . . . < sn of seeds in R

1 and a
realization of T (as CCG, CCG+, 1d-1BD, 1d-1BD+) that maps each vertex v
to the corresponding seed sλ(v).

In order to obtain a characterization of trees that are λ-realizable as CCG+, we
need the following definition. Given a graph G = (V, E) with vertex labeling λ,
a forbidden pair is a pair of edges

{
{a, b}, {c, d}

}
such that λ(a) < λ(c) <

λ(b) < λ(d). Note that it is impossible to embed the edges of a forbidden pair
simultaneously above the x-axis.

Theorem 2. For a λ-labeled tree T the following statements are equivalent:

(i) T is λ-realizable as a CCG+.
(ii) T is λ-realizable as a 1d-1BD+.
(iii) T does not contain any forbidden pair.

Given the tree, statement (iii) can be checked in O(n log n) time using an interval
tree, therefore the following corollary is straightforward.
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Fig. 10. Binary tree not realizable as CCG+ on given seeds

Corollary 1. Given a λ-labeled tree T , we can decide in O(n log n) time whether
T is λ-realizable as CCG+.

We now turn to question Q4. So given a set of seeds S and a tree T (S, E) our
answer is a decision algorithm for the realizability of T as a triangle CCG+ on
S. Note that in our series of results about realizability we have required more
and more concrete information about the seed set, ranging from no information
(Proposition 5) via a fixed order (Theorem 2) to complete information now. We
call a triangle V-shaped if it is symmetric to a vertical line and if its bottom-
most vertex is unique. In the following we will consider all triangles as V-shaped.
First note that there are trees T and seed sets S for which the answer to question
Q4 is negative even if the mapping between vertices and seeds is not fixed in
advance. Figure 10 shows a complete binary tree T on seven vertices and the one-
dimensional point set S = {a(0), b(2), c(5), d(11), e(13), f(16), g(33)}. A case dis-
tinction on the seed that represents the root vertex 1 shows that it is not possible
to find a representation of T as a triangle CCG+ on S. The example in Figure 10
shows the case where seed g represents the root. In this case any two covers of
points in S\{g} that touch the cover of g will overlap, e.g., the covers of a and f .

On the other hand, there is always a tree that can be realized on a given set
of seeds as Proposition 4 (ii) shows. We can give an algorithm that decides this
realizability for a pair (S, T ) with T = (S, E) in O(n log n) time, where n = |S|.

Theorem 3. Given a set of seeds S and a tree T = (S, E) we can decide in
O(n log n) time whether T can be realized as a V-shaped triangle CCG+ on S.

The decision algorithm is based on the observation that the covers for the clos-
est pair of seeds must touch each other as otherwise this CCG+ would not be
connected. Thus the algorithm adds the edge between the closest pair of seeds,
removes one of the two seeds, and continues this process as long as it complies
with T . We can use the same algorithm to generate all trees that can be realized
as CCG+ on S by branching on the seed to remove in each iteration.

Although Theorem 3 is stated for a very restricted class of triangles, the result
can easily be extended to homothetic triangles whose top sides are parallel to
the x-axis.

4 The Seeds Are Disks in the Plane

In this section, we consider disks in the plane as seeds and cover them using
disks, too. In contrast to point seeds the minimal size of each cover element is
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(a) seed set without connected CCG+ (b) seed set without connected CCG

Fig. 11. Disk seed sets without connected disk covers

now bounded from below by the size of the corresponding seed. Therefore the
results in this section differ a lot from those obtained in previous sections.

Unlike the connectivity results for points we can neither guarantee the exis-
tence of a connected CCG+ for disk seeds touching a line nor the existence of a
connected CCG for disk seeds in the plane, see Figure 11. Deciding whether a
given set of disk seeds has a connected CCG turns out to be hard.

Theorem 4. Given a set S of disk seeds, it is NP-hard to decide whether there
is a connected CCG on S, even if there are only four different seed radii.

The proof is again by reduction from Planar3SAT. The main trick is to use
what we call a stopper element, a cluster of three congruent pairwise touch-
ing disks as in Figure 11b. Observe that these disks can only be covered by
themselves—any larger cover of any disk would intersect the others. We use
small copies of these stopper elements to discretize the way in which other seeds
can be covered. In the center of our clause gadget there is stopper element that
is connected to the remaining cover as long as any of the corresponding three
literals is true.

Concerning realizability, the hardness result of Theorem 1 clearly still holds
for disk seeds. The necessary conditions for realizability in Proposition 3 can be
adapted to the case of disk seeds.

5 Open Problems

This paper has opened a new field with many interesting questions.

1. We know that every 3-vertex graph can be represented as CCG on any set
of three points. We have given an example of six points whose Delaunay
triangulation is not representable as a CCG. What about plane geometric
graphs with four or five vertices? Do they always have a representation?

2. Does any set of point seeds in convex position have a triangulation that can
be represented as CCG?

3. We know that any set of point seeds has a 2-connected CCG. What about
3-connectivity?

4. Is it NP-hard to decide whether a set of disks touching a line has a connected
CCG+?

5. Is there an equivalent to Theorem 2 for CCG’s, i.e., can we characterize
vertex-labeled trees that have a realization as CCG on a set of seeds on a
line which respect the vertex order prescribed by the labeling?

6. What about other classes of seeds and covers?



182 N. Atienza et al.

References

1. Abellanas, M., Bereg, S., Hurtado, F., Olaverri, A.G., Rappaport, D., Tejel, J.:
Moving coins. Comput. Geom. Theory Appl. 34(1), 35–48 (2006)

2. Abellanas, M., de Castro, N., Hernández, G., Márquez, A., Moreno-Jiménez, C.:
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Leipzig, Math.-Phys. Klasse 88, 141–164 (1936)

10. Mitchell, J.S.B.: L1 shortest paths among polygonal obstacles in the plane. Algo-
rithmica 8, 55–88 (1992)

11. Pach, J., Agarwal, P.K.: Combinatorial Geometry. John Wiley and Sons, New York
(1995) (contains a proof of Koebe’s theorem)

12. Sachs, H.: Coin graphs, polyhedra, and conformal mapping. Discrete Math. 134(1-
3), 133–138 (1994)

13. Thurston, W.P.: The Geometry and Topology of 3-Manifolds. Princeton University
Notes, Princeton (1980)

14. Toussaint, G.T.: A graph-theoretical primal sketch. In: Toussaint, G.T. (ed.) Com-
putational Morphology: A Computational Geometric Approach to the Analysis of
Form, North-Holland, pp. 229–260 (1988)

15. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991)

http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2007/18


Matched Drawings of Planar Graphs�

Emilio Di Giacomo1, Walter Didimo1, Marc van Kreveld2, Giuseppe Liotta1,
and Bettina Speckmann3

1 Dip. di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia
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Abstract. A natural way to draw two planar graphs whose vertex sets
are matched is to assign each matched pair a unique y-coordinate. In
this paper we introduce the concept of such matched drawings, which are
a relaxation of simultaneous geometric embeddings with mapping. We
study which classes of graphs allow matched drawings and show that (i)
two 3-connected planar graphs or a 3-connected planar graph and a tree
may not be matched drawable, while (ii) two trees or a planar graph and
a planar graph of some special families—such as unlabeled level planar
(ULP) graphs or the family of “carousel graphs”—are always matched
drawable.

1 Introduction

The visual comparison of two graphs whose vertex sets are associated in some
way requires drawings of these graphs that highlight their association in a clear
manner. Drawings of this type are of use for various areas of computer science,
including bio-informatics, web data mining, network analysis, and software engi-
neering. Of course each drawing individually should be as clear as possible, using,
for example, few bends and crossings. But, most importantly, the positions of
associated vertices in the two drawings should be “close”. This makes it possi-
ble for the user to easily identify structurally identical and structurally different
portions of the two graphs, or to maintain her “mental map” [17]. Structural
changes between two graphs and their visualizations arise, for example, when
collapsing or expanding clusters in clustered drawings, during the navigation
of very large graphs with a topological window, in the analysis of the evolving
relationships among the actors of a social network, and in the comparison of
multiple gene trees (see, for example, [1,6,7,11,14,16,18]).

Two positions are definitely “close” if they are identical. Hence a substantial
research effort has recently been devoted to the problem of computing straight-
line drawings of two graphs on the same set of points. More specifically, assume
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we are given two planar graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2|,
together with a one-to-one mapping between their vertices. A simultaneous geo-
metric embedding with mapping (introduced by Brass et al. in [3]) of G1 and G2
is a pair of straight-line planar drawings Γ1 and Γ2 of G1 and G2, respectively,
such that for any pair of matched vertices u ∈ V1 and v ∈ V2 the position of u in
Γ1 is the same as the position of v in Γ2. Unfortunately, only pairs of graphs be-
longing to restricted subclasses of planar graphs admit a simultaneous geometric
embedding with mapping. Brass et al. [3] showed how to simultaneously embed
pairs of paths, pairs of cycles, and pairs of caterpillars, but they also proved
that a path and a graph or two outerplanar graphs may not admit this type of
drawing. Geyer, Kaufmann, and Vrt’o [15] recently proved that even a pair of
trees may not have a simultaneous geometric embedding with mapping. These
negative results motivated the study of relaxations of simultaneous geometric
embeddings. One possibility is to introduce bends along the edges [4,8,9,13],
another, to allow that the same vertex occupies different locations in the two
drawings [2,3], introducing ambiguity in the mapping.

In this paper we consider a different interpretation of two positions being
“close”. Instead of requiring that matched vertices occupy the same location,
we assign each matched pair a unique y-coordinate. This enables the user to
unambiguously identify pairs of matched vertices but, at the same time, leaves
us more freedom to draw both graphs clearly. Specifically, let again G1 = (V1, E1)
and G2 = (V2, E2) be two planar graphs with |V1| = |V2|. G1 and G2 are matched
if there is a one-to-one mapping between V1 and V2. If a vertex u ∈ V1 is matched
with a vertex v ∈ V2 then we say that u is the partner of v and that v is the
partner of u. A matched drawing of G1 and G2 is a pair of straight-line planar
drawings Γ1 and Γ2 of G1 and G2, respectively, such that for any pair of matched
vertices u ∈ V1 and v ∈ V2 the y-coordinate of u in Γ1 is the same as the y-
coordinate of v in Γ2, and this y-coordinate is unique. If two matched graphs
have a matched drawing, then we say that they are matched drawable. Matched
drawings can be viewed as a relaxation of simultaneous geometric embedding
with mapping. An example of a matched drawing of two trees is shown in Fig. 1.

Results and Organization. We start by presenting pairs of graphs that are
not matched drawable. In particular, in Section 2.1 we describe two isomorphic
3-connected planar graphs that both have 12 vertices and that are not matched
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Fig. 1. A matched drawing of two trees
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drawable. We also present a 3-connected planar graph and a tree that both have
620 vertices and that are not matched drawable. This construction can be found
in Section 2.2.

We continue by describing drawing algorithms for classes of graphs that are
always matched drawable. In particular, in Section 3.1 we show that a planar
graph and an unlabeled level planar (ULP) graph that are matched are always
matched drawable. In Section 3.2 we extend these results to a planar graph and
a graph of the family of “carousel graphs”. Finally, in Section 3.3 we prove that
two matched trees are always matched drawable.

2 Graphs That Are Not Matched Drawable

2.1 Two 3-Connected Graphs

We start by stating a simple property of planar straight-line drawings.

Property 1. Let G be an embedded planar graph and let Γ be a straight-line
planar drawing of G. Let u be the vertex of G with the highest y-coordinate in
Γ and let v be the vertex of G with the lowest y-coordinate in Γ . Vertices u and
v belong to the external face of G.

Now assume that G1 and G2 are two matched graphs with the following prop-
erties: (i) G1 contains two vertex-disjoint simple cycles C1 = {u1, . . . , un} and
C′

1 = {u′
1, . . . , u

′
m}, (ii) G2 contains two vertex-disjoint simple cycles C2 =

{v1, . . . , vn} and C′
2 = {v′1, . . . , v

′
m}, and (iii) ui is the partner of vi (1 ≤ i ≤ n)

and u′
j is the partner of v′j (1 ≤ j ≤ m). If Ψ1 is a planar embedding of G1

such that C′
1 is inside C1 and if Ψ2 is a planar embedding of G2 such that C2 is

inside C′
2, then we call Ψ1 and Ψ2 interlaced embeddings and C1, C

′
1, C2, and C′

2
interlaced cycles.

Lemma 1. Let G1 and G2 be two matched graphs with interlaced embeddings
Ψ1 and Ψ2. There is no matched drawing Γ1 and Γ2 of G1 and G2 such that Γ1
preserves Ψ1 and Γ2 preserves Ψ2.

Proof. Denote by C1, C
′
1, C2, and C′

2 the interlaced cycles of Ψ1 and Ψ2. Suppose
by contradiction that Γ1 and Γ2 exist. Denote by Γ1 the subdrawing of Γ1 re-
stricted to the subgraph C1 ∪ C′

1 and by Γ2 the subdrawing of Γ2 restricted to
the subgraph C2 ∪ C′

2.
Since in Ψ1 cycle C′

1 is inside cycle C1, by Property 1 the top-most and the
bottom-most vertices of Γ1 belong to C1; denote these two vertices by ut and
ub. Since Γ1 is planar and since the drawing of C′

1 is completely inside the
drawing of C1, every vertex u′

j of C′
1 has a y-coordinate that is greater than

the y-coordinate of ub and smaller than the y-coordinate of ut. Since Γ1 and
Γ2 are matched drawings, every vertex v′j of C′

2 in Γ2 has a y-coordinate that
is greater than the y-coordinate of vb (i.e., the partner of ub) and smaller than
the y-coordinate of vt (i.e., the partner of ut). However, since in Ψ2 cycle C2 is
inside cycle C′

2, by Property 1 the top-most and the bottom-most vertices of Γ2
belong to C′

2, a contradiction. ��
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Fig. 2. Two 3-connected planar graphs that are not matched drawable. The partner
of a vertex of G1 is any vertex in G2 that has the same label.

Theorem 1. There exist two 3-connected planar graphs that are not matched
drawable.

Proof (sketch). Consider the two 3-connected planar graphs G1 and G2 in Fig. 2.
The partner of a vertex of G1 is any vertex in G2 that has the same label. To prove
that G1 and G2 are not matched drawable, we show that all planar embeddings
of G1 and G2 are interlaced embeddings. The proof uses a case analysis on the
choice of the external faces and is omitted for reasons of space. ��

2.2 A 3-Connected Graph and a Tree

The two graphs described in Theorem 1 are both 3-connected. Hence the question
arises if two planar graphs, at least one of which is not 3-connected, are always
matched drawable. This is unfortunately not the case: in the following we present
a planar graph and a tree that are not matched drawable.

Given a vertex v of a graph G and a drawing Γ of G, we denote by x(v) and
y(v) the x- and y-coordinate of v in Γ . Let T ∗ = (V ∗, E∗) be the tree depicted
in Fig. 3. Estrella-Balderrama et al. [10] proved the following lemma:

Lemma 2 (Estrella-Balderrama et al. [10]). Let T ∗ be the tree depicted in
Fig. 3. A straight-line planar drawing Γ of T ∗ such that y(v0) < y(v7) < y(v3) <
y(v2) < y(v4) < y(v1) < y(v5) < y(v6) in Γ does not exist.

Let T ∗ be rooted at vertex v0, and for each vertex vi, denote by d(vi) the graph-
theoretic distance of vi from the root (i = 0, 1, . . . , 7). We construct a tree T
by using T ∗ as a model. T has 3d(vi) copies of each vertex vi (i = 0, 1, . . . , 7).
The 3d(vi) copies of vi are denoted as vi,0, vi,1, . . . , vi,3d(vi)−1. Vertex vh,k is a
child of vertex vi,j in T if and only if vh is a child of vi in T ∗ and j = �k/3�
(0 ≤ i, h ≤ 7), (0 ≤ j ≤ 3d(vi) − 1), (0 ≤ k ≤ 3d(vh) − 1). So T has one copy of
v0 whose children are the three copies v1,0, v1,1, and v1,2 of v1. The children of
each copy of v1 are three of the nine copies of v2, and so on. Three vertices of T
with the same parent are called a triplet of T . The total number of vertices of
T is 310.
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v0

v1

v2

v3 v4

v5 v6 v7

Fig. 3. A tree that does not have a straight-line
planar drawing with y(v0) < y(v7) < y(v3) <
y(v2) < y(v4) < y(v1) < y(v5) < y(v6) [10]

Table 1. Matching between the
vertices of T and the vertices of
G103

vertex copies triplets levels
v7 81 27 1 . . . 27

v3 27 9 28 . . . 36

v2 9 3 37 . . . 39

v4 27 9 40 . . . 48

v1 3 1 49

v5 81 27 50 . . . 76

v6 81 27 77 . . . 103

The tree T is matched with a nested-triangles graph, which is defined as fol-
lows. A single vertex v is a nested-triangles graph denoted by G0. A triangulated
planar embedded graph Gk (k > 0) is a nested-triangles graph if the external
face of Gk has exactly three vertices and the graph Gk−1, obtained by removing
the vertices on the external face, is still a nested-triangles graph. A levelling of
the vertices is naturally defined for the vertices of Gk: level i of Gk contains the
vertices that are on the external face of Gi (i = 0, 1, . . . , k). Note that Gk has
3k + 1 vertices and k + 1 levels. Thus, G103 has 310 vertices and 104 levels.

T and G103 are matched in the following way. Vertex v0 is mapped to the
(only) vertex of level 0. Each triplet of T is mapped to three vertices of G103
such that the level of these three vertices is the same in G103. Also, all triplets
formed by vertices that are copies of the same vertex of T ∗ are mapped to
consecutive levels of G103. The exact mapping is described in Table 1. Each row
of the table refers to a different vertex of T ∗ and shows the number of copies of
that vertex in T , the number of triplets in T , and the levels of G103 to which
these triplets are mapped (a triplet for each level).

We now prove that, with the mapping described by Table 1, T and G103
are not matched drawable if we insist that the drawing of G103 preserves the
embedding of G103. We start with a useful property.

Property 2. Let ΓG103 be any planar straight-line drawing of G103 that preserves
the embedding of G103. For each level i (0 ≤ i ≤ 103) there exists a vertex of
level i that has y-coordinate greater than the y-coordinates of all the vertices
having level less than i.

Lemma 3. A matched drawing ΓT and ΓG103 of the tree T and the graph G103
such that ΓG103 preserves the embedding of G103 does not exist.

Proof (sketch). Let ΓG103 be any planar straight-line drawing of G103 that pre-
serves the embedding of G103. By exploiting Property 2, we can show that ΓG103

induces an ordering λ of the vertices of T along the y-direction such that there
exists a subtree T ′ of T isomorphic to T ∗ for which the ordering λ restricted to
the vertices of T ′ is the ordering given in Lemma 2 (the proof about how T ′ is
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defined is omitted). This implies that T ′ (and hence T ) does not have a planar
straight-line drawing that respects the ordering induced by ΓG103 . ��

According to Lemma 3, T and G103 are not matched drawable in the case that
one wants a drawing of G103 that preserves the embedding of G103. In the fol-
lowing theorem we show that T and G103 can be used to construct a new tree
and a new 3-connected planar graph that are not matched drawable even if we
allow the embedding to be changed.

Theorem 2. There exist a tree and a 3-connected planar graph that are not
matched drawable.

Proof (sketch). Let T be a tree that consists of two copies of T whose roots are
adjacent. Let G be a graph obtained by taking two distinct copies of G103 and
connecting the vertices of their external faces in such a way that the obtained
graph is a triangulated planar graph. The matching of the vertices is such that
a copy of T matches a copy of G103 as before. We observe that any embedding
of G leaves one of the copies of G103 as in Lemma 3. ��

3 Matched Drawable Graphs

In this section we describe drawing algorithms for classes of graphs that are
always matched drawable. In particular, in Section 3.1 we show that a planar
graph and an unlabeled level planar (ULP) graph that are matched are always
matched drawable. In Section 3.2 we extend these results to a planar graph and
a graph of the family of “carousel graphs”. Finally, in Section 3.3 we prove that
two matched trees are always matched drawable.

These results show that matched drawings do indeed allow larger classes of
graphs to be drawn than simultaneous geometric embeddings with mapping (a
path and a planar graph may not admit a simultaneous geometric embedding
with mapping [3] and the same negative result also holds for pairs of trees [15]).

3.1 Planar Graphs and ULP Graphs

ULP graphs were defined by Estrella-Balderrama, Fowler, and Kobourov [10].
Let G be a planar graph with n vertices. A y-assignment of the vertices of G is
a one-to-one mapping λ : V → N. A drawing of G compatible with λ is a planar
straight-line drawing of G such that y(v) = λ(v) for each vertex v ∈ V . A planar
graph G is unlabeled level planar (ULP) if for any given y-assignment λ of its
vertices, G admits a drawing compatible with λ.

Theorem 3. A planar graph and an ULP graph are always matched drawable.

Proof (sketch). Let G1 be a planar graph and let G2 be an ULP graph. Compute
a planar straight-line drawing of G1 such that each vertex has a different y-
coordinate, for example with a slight variant of the algorithm of de Fraysseix,
Pach, and Pollack [5]. The drawing of G1 together with the mapping between
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G1 and G2 defines a y-assignment λ for G2. Since G2 is ULP it admits a drawing
compatible with λ. It follows that G1 and G2 are matched drawable. ��

ULP trees are characterized in [10]. A complete characterization of ULP graphs
has very recently been given in [12]. A planar graph is ULP if and only if it is
either a generalized caterpillar, or a radius-2 star, or a generalized degree-3 spider.
These graphs are defined as follows (see also [12]). A graph is a caterpillar if
deleting all vertices of degree one produces a path, which is called the spine of
the caterpillar. A generalized caterpillar is a graph that contains cycles of length
at most 4 in which every spanning tree is a caterpillar such that no three cut
vertices are pairwise adjacent and no pair of adjacent cut vertices belong to the
same 4-cycle. A radius-2 star is a K1,k, k > 2, in which every edge is subdivided
at most once. The only vertex of degree k is called the center of the star. A
degree-3 spider is an arbitrary subdivision of K1,3. A generalized degree-3 spider
is a graph with maximum degree 3 in which every spanning tree is either a path
or a degree-3 spider.

Corollary 1. Let G1 and G2 be two matched graphs such that G1 is a planar
graph and G2 is either a generalized caterpillar, or a radius-2 star, or a gener-
alized degree-3 spider. Then G1 and G2 are matched drawable.

3.2 Planar Graphs and Carousel Graphs

In this section we extend the result of Theorem 3 by describing a family of graphs
that also includes non-ULP graphs and whose members have a matched drawing
with any planar graph. Let G be a planar graph, let v be a vertex of G, and
let Γ be a planar straight-line drawing of G. Γ is v-stretchable if: (i) there is a
vertical ray from v going to +∞ that does not intersect any edge of Γ , and (ii)
for any given Δ > 0, there exists a value Δ′ ≥ Δ such that the drawing obtained
by translating each vertex u with x(u) ≥ x(v) to point (x(u) + Δ′, y(u)) is still
planar. Graph G is ULP v-stretchable if for every given y-assignment λ of its
vertices, G admits a v-stretchable drawing compatible with λ.

A carousel graph is a connected planar graph G consisting of a vertex v0,
called the pivot of G, and of a set of disjoint subgraphs S1, . . . , Sk (k > 1) such
that each Si has a single vertex vi adjacent to v0 (i = 1, . . . , k) and Si is ULP
vi-stretchable. Each subgraph Si is called a seat of G. Vertex vi is called the
hook of Si.

Theorem 4. Any planar graph and any carousel graph that are matched are
always matched drawable.

Proof. Let G1 be a planar graph and let G2 by a carousel graph. Let v0 be the
pivot of G2 and let u be the partner of v0 in G1. Compute a planar straight-line
drawing of G1 such that all vertices have different y-coordinates and u has the
largest y-coordinate. The drawing of G1 together with the mapping between G1
and G2 defines a y-assignment λ for G2. Clearly λ(w) < λ(v0) = yM for all
vertices w �= v0 of G2.
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In the following we describe an incremental method to compute a drawing
of G2 compatible with λ. Let S1, . . . , Sk (k > 1) be the seats of G2 and let vi

be the hook of Si (1 ≤ i ≤ k). Let λi be the y-assignment of the vertices of Si

induced by λ. As a preliminary step we compute a drawing Γi for each Si that
is compatible with λi and that is vi-stretchable. Such a drawing exists because
Si is ULP vi-stretchable. We further assume that the distance between any two
different x-coordinates is at least 1 unit.

We initialize the drawing by placing v0 at position (0, yM ), which results in
drawing Γ 0

2 . Drawing Γ i
2 is constructed from drawing Γ i−1

2 by adding drawing
Γi at a suitable x-location and possibly translating some of its vertices further
in x-direction (see Fig. 4). Hence the final drawing respects λ.

Let Ri−1 be the bounding box of Γ i−1
2 and let (xM , yM ) be the coordinates of

its top-right corner. Further let Ri be the bounding box of Γi. Place the drawing
Γi such that the left side of Ri is contained in the vertical line x = xM + 1. Let
R′

i be the (possibly empty) sub-rectangle of Ri delimited by the x-coordinates
xM + 1 and x′

M = x(vi) − 1. Further let y′
M denote the maximum y-coordinate

of any vertex of Γ i−1
2 or Γi different from v0 and let p = (x′

M + 1, y′
M ). The line

� through v0 and p crosses neither Γ i−1
2 nor the portion of Γi contained in R′

i

(see Fig. 4(a)). Let q denote the intersection of � with the horizontal line at y(vi)
and let Δ = x(q) − x(vi). Since Γi is vi-stretchable, there exists a value Δ′ ≥ Δ
such that we can translate the portion of Γi contained in Ri \ R′

i to the right by
Δ′ without creating any crossing (see Fig. 4(b)). It can easily be verified that
we can now connect vi to v0 without creating any crossings. ��

Lemma 4. Let G be a simple cycle and let v be any vertex of G. G is ULP
v-stretchable.

Proof. Let λ be any y-assignment of the vertices of G and let u be the ver-
tex of G that has the smallest y-coordinate. Let u = v0, v1, . . . , vn−1 be the
vertices of G in the order they are encountered when walking clockwise along
G. Place each vertex vi at point (i, λ(vi)). Clearly none of the edges (vi, vi+1)
(i = 0, 1, . . . , n − 2) cross each other. To avoid crossings between edge (v0, vn−1)
and the other edges we translate vn−1 to the right until the segment connecting
v0 to vn−1 does not cross any other segment. It is immediate to see that such a
drawing is v-stretchable for every vertex v of G. ��

Corollary 2. Let G1 and G2 be two matched graphs such that G1 is a planar
graph and G2 is a cycle. Then G1 and G2 are matched drawable.

The drawing techniques in [10] imply the following two lemmata.

Lemma 5. Let G be a caterpillar and let v be a vertex of its spine. G is ULP
v-stretchable.

Lemma 6. Let G be a radius-2 star and let v be the center of G. G is ULP
v-stretchable.

Corollary 3. Let G1 and G2 be two matched graphs such that G1 is a planar
graph and G2 is a carousel graph. If each seat of G2 is either a caterpillar with
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Fig. 4. Adding Γi to Γ i−1
2

a vertex of its spine as its hook, a radius-2 star with its center as its hook, or a
cycle, then G1 and G2 are matched drawable.

The family of carousel graphs described by Corollary 3 contains graphs that are
not ULP. For example, the graph depicted in Fig. 3 is a carousel graph with
pivot v2, the three seats are caterpillars.

3.3 Two Trees

Theorem 5. Any two matched trees are matched drawable.

Proof. Let T1 and T2 any two matched trees. We prove by construction that
T1 and T2 are matched drawable. Let the y-coordinates to be used be 1, . . . , n,
we will assign matched vertices from T1 and T2 consecutively to coordinates
n, 1, n − 1, 2, n − 2, 3, . . . until all vertices are placed.

Let Ti be a tree with a subset of its vertices placed. Then the maximal con-
nected unplaced parts of Ti are incident to one, two, or more placed vertices. We
call a maximal connected unplaced part of a tree a chunk.

We maintain the following invariant for T1: after every odd placement, every
chunk of T1 is incident to at most two placed vertices of T1. For T2 we maintain a
similar invariant: after every even placement, every chunk of T2 is incident to at
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Fig. 5. The eight cases for placement at i (and at n − i in three cases)

most two placed vertices of T2. We call this the topological invariant. Intuitively,
tree T1 determines which vertex is placed in odd placements at n, n − 1, n − 2,
. . ., and tree T2 determines which vertex is placed in even placements at 1, 2, 3,
. . .. The other tree just follows with the matched vertex.

The topological invariants are needed for two reasons. Most importantly, they
make sure that the algorithm cannot get stuck, in the sense that the placement
of a vertex leads to an intersection. Secondly, they limit the number of cases
that must be analyzed.

Consider T1 after an odd placement and assume that it satisfies the invariant.
Then a chunk can be one of five types : (1) it has one incident placed vertex at
a high coordinate; (2) it has one incident placed vertex at a low coordinate; (3)
it has two incident placed vertices at high coordinates; (4) it has two incident
placed vertices at low coordinates; (5) it has one incident placed vertex at a high
coordinate and one incident placed vertex at a low coordinate.

An even placement (at the bottom) may cause violation of the invariant for
T1 unless the next odd placement restores it. So for the case analysis of T1 we
will consider all possibilities of an even placement and the corresponding odd
placement. If the even placement is at i, then the next odd placement is at
n − i. There are eight cases to be distinguished for an even placement at i;
they are shown in Fig. 5. In the three (.)b cases, which vertex to place at n − i
is determined by the fact that the topological invariant must be restored for
T1. It is the unique vertex of T1 where the path from the just placed vertex
meets the path between the two vertices that bound the chunk. It is easy to see
from the figure that in the three (.)b cases the invariant can be restored for T1 by
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Fig. 6. Scaling and shearing a wide rectangle into a narrow parallelogram

placing this vertex at n − i. In the five other cases, we can assure the invariant
to hold after placement at n − i by choosing to place any unplaced vertex that
is a neighbor of a placed vertex.

The situation is completely analogous for T2, where an odd placement may
cause a violation of the invariant if the next even placement is not chosen well.

Next we must show that there is actually space to draw the trees without
crossings and with straight edges. For this we need a geometric invariant: after
the placement at n − i + 1, there is a parallelogram between the horizontal lines
at n − i and i in which the whole chunk can be drawn without crossings and
with straight edges. The parallelograms must have positive width and have an
“alignment” that corresponds to the needs of the chunk. For example, for type
(1) the incident placed vertex must be able to connect to any point on the far
horizontal side of the parallelogram without going outside the parallelogram. It
remains to show that every chunk can be drawn inside its parallelogram and
that, if a chunk is split into several chunks, their resulting parallelograms are
disjoint. In essence this is the case because any parallelogram can be scaled and
sheared to fit, see Fig. 6. The formal statement of the geometric invariant and
the remainder of the proof are omitted due to space limitations. ��

4 Conclusions and Open Problems

In this paper we introduced the concept of matched drawings, which are a natural
way to draw two planar graphs whose vertex sets are matched. Since this is the
first study of these drawings, many interesting and challenging open problems
remain. First of all, in the light of Theorems 2 and 4, we would like to characterize
the subclass of planar graphs that admit a matched drawing with any planar
graph. Secondly, the drawing techniques of Theorems 4 and 5 may give rise to
drawings where the area is exponential in the size of the graphs. It would be
interesting to study the area requirement of matched drawings that use straight-
line edges. On a related note, some of our drawing techniques rely on a planar
straight-line drawing of a planar graph where each vertex has a different y-
coordinate. How big a grid is necessary to guarantee such a drawing with integer
coordinates? And finally, given any two matched graphs, what is the complexity
of testing whether they are matched drawable?
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Abstract. This paper presents an extensive study on the problem of
computing maximum upward planar subgraphs of embedded planar di-
graphs: Complexity results, algorithms, and experiments are presented.
Namely: (i) We prove that the addressed problem is NP-Hard; (ii) A fast
heuristic and an exponential-time exact algorithm are described; (iii) A
wide experimental analysis is performed to show the effectiveness of our
techniques.

1 Introduction

The upward drawing convention is commonly used to display hierarchical struc-
tures so that all edges flow in a common direction according to their orientation.
More precisely, let G be a directed graph (also called a digraph); an upward draw-
ing of G is such that each edge is drawn as a simple Jordan curve monotonically
increasing in the upward direction. In particular, a wide research effort has been
devoted so far to the design of algorithms for computing upward planar draw-
ings, i.e, upward drawings without crossings. Indeed, there is a general consensus
that the number of crossings between edges is one of the most critical aesthetic
requirements for the readability of a drawing. A digraph that admits an upward
planar drawing is called an upward planar digraph. Fig. 1(a) and 1(b) show a
planar digraph G and an upward planar drawing of G. The planar digraph in
Fig. 1(c) is not upward planar.

Bertolazzi et al. [2] proved that if a digraph G with n vertices has a fixed pla-
nar embedding, then testing whether G admits an upward planar drawing that
preserves its embedding can be done in O(n2) time. On the other side, Garg
and Tamassia [10] proved that the upward planarity testing problem in the vari-
able embedding setting (i.e., over all planar embeddings of the input digraph) is
NP-Complete. In this scenario, several polynomial-time upward planarity testing
algorithms have been described in the literature for specific sub-families of pla-
nar digraphs [3,8,12,14], and exponential-time algorithms for the same problem
can be found in [1,4,11].
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Fig. 1. (a) A planar digraph G with a given planar (bimodal) embedding. (b) An
embedding preserving upward planar drawing of G. (c) A digraph G′ that is not upward
planar; (d) A maximum upward planar subgraph of G′.

When a planar digraph G is not upward planar, an interesting problem that
naturally arises is the one of computing a maximum upward planar subgraph
of G, i.e., an upward planar subgraph with maximum number of edges. From
the application side, solving this problem is important to find large hierarchi-
cal sub-structures in the digraph and to convey them visually. In the variable
embedding setting, computing a maximum upward planar subgraph is NP-Hard
as an immediate consequence of the hardness of the upward planarity testing
problem [10]. If the embedding of the digraph is fixed, however, the complexity
of the problem is still unknown. Recall that in this case the upward planarity
testing problem is polynomially solvable [2].

We present an extensive study on the problem of computing a maximum
upward planar subgraph of an embedded planar digraph. Namely:

(i) We prove that finding a maximum upward planar subgraph of a planar
digraph remains NP-Hard, even in the fixed embedding scenario (Section 3).
Our proof uses a reduction from Planar 3-SAT [13]. With the same reduction we
also prove that finding the maximum bimodal subgraph of an embedded planar
digraph is NP-Hard. Recall that an embedded digraph is bimodal if the incoming
and the outgoing edges of each vertex never alternate (see, e.g., Fig. 1(a)). Notice
that the bimodality is necessary (but not sufficient) for the upward planarity.

(ii) Motivated by the above negative results, we describe both a polynomial-
time heuristic and a branch-and-bound exact algorithm to compute a maximum
upward planar subgraph of an embedded planar digraph (Section 4). The input
digraph is not necessarily bimodal and acyclic. Our heuristic adopts a greedy
approach for computing a large bimodal subgraph and then extracts from it an
upward planar subgraph by using a combination of the techniques given in [1,2].
Notice that, in the variable embedding setting any heuristic that uses an upward
planarity testing as a key tool would still require exponential time.

(iii) We perform a wide experimental study, which shows how our heuristic is
pretty fast and effective in practice; it achieves the optimum in many cases and
definitively outperforms a simple technique that incrementally tries to insert an
edge per time while preserving upward planarity (Section 5).
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2 Basic Definitions

We assume familiarity with basic concepts of graph planarity and graph draw-
ing [5]. We denote by GΦ an embedded planar digraph, i.e., a planar digraph G
with a given planar embedding Φ, where Φ describes the set of (internal and ex-
ternal) faces for G in the plane. For each vertex v of G, Φ also fixes the circular
clockwise ordering of the edges incident to v. An embedding preserving subgraph
G′

Φ′ of GΦ is an embedded planar digraph obtained from GΦ by removing a
subset of its edges. Notice that, for each vertex v of G′

Φ′ , the circular clockwise
ordering of the edges incident to v in G′

Φ′ is the same as in GΦ.
A vertex v of GΦ is bimodal if all incoming edges of v (and hence all outgoing

edges of v) appear consecutive in the circular clockwise ordering around v. If
all vertices of GΦ are bimodal, Φ is called a planar bimodal embedding and GΦ

is called a planar bimodal embedded digraph. A planar digraph G is bimodal if
it admits a planar bimodal embedding. The digraph in Fig. 1(a) is a planar
bimodal embedded digraph.

An upward planar drawing of GΦ is a planar drawing of G that preserves the
embedding Φ and such that all the edges of G are drawn as curves monotoni-
cally increasing in the upward direction. We say that GΦ is upward planar if it
admits an upward planar drawing. It is known that acyclicity and bimodality
are necessary (but not sufficient) conditions for the upward planarity [2]. For
example, the planar digraph in Fig. 1(c) is acyclic and bimodal, but it does not
admit an upward planar drawing.

A maximum upward planar subgraph G′
Φ′ of GΦ is an embedding preserving

subgraph of GΦ with the following two properties: (a) G′
Φ′ is upward planar;

(b) G′
Φ′ has the maximum number of edges among the embedding preserving

subgraphs of GΦ that are upward planar. Fig. 1(d) shows a maximum upward
planar subgraph of the embedded digraph in Fig. 1(c).

3 Complexity Results

We define the Fixed Embedding Maximum Upward Planar Subgraph (FE-MUPS )
problem as follows.

Problem FE-MUPS: Given a pair 〈GΦ, K〉, where GΦ = (V, E) is an embedded
planar digraph and K is an integer number such that 0 < K < |E|, does GΦ

admit an embedding preserving subgraph G′
Φ′ = (V, E′) such that |E′| = K and

G′
Φ′ is upward planar?
We prove that FE-MUPS is NP-Complete. The hardness proof uses a reduc-

tion from Planar 3-SAT, a restricted version of 3-SAT [9]. To fix notation, we
recall the definitions of 3-SAT and Planar 3-SAT.

Problem 3-SAT: Let 〈X, C, Ψ〉 be a tuple such that X = {x1, . . . , xn} is a
set of boolean variables, C = {c1, . . . , cm} is a set of clauses such that ci =
(�i,1 ∨ �i,2 ∨ �i,3) (i ∈ {1, . . . , m}), each �i,j (j ∈ {1, 2, 3}) is a literal that can
be equal either to a boolean variable x ∈ X or to the negation x of a boolean
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variable, and Ψ is a boolean formula of the form Ψ = c1 ∧ c2 ∧ · · · ∧ cm. Is there
a truth assignment for the variables of X such that Ψ is satisfied?

An instance of Planar 3-SAT is any instance of 3-SAT for which a special
graph HΨ , associated with Ψ , is planar. The question of Planar 3-SAT is the
same as for 3-SAT. Graph HΨ is defined as follows (refer to Fig. 2): For each
variable x ∈ X , HΨ has a vertex associated with x and a vertex associated
with its negation x.1 HΨ has a vertex for each clause c ∈ C, called a clause-
vertex. HΨ has an edge (�i,j , ci) for each literal �i,j of ci (i ∈ {1, . . . , m}, j ∈
{1, 2, 3}). HΨ has an edge (x, x) for each variable x ∈ X . HΨ has a cycle of edges
(x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1).

2c 1x 3x 5x

3c 5x2x1x= (                           )

4c 2x 4x3x= (                           )

5c 3x 4x 5x= (                           )

1c 1x 3x2x
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= (                           )
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H Ψ
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Fig. 2. (a) An instance of Planar 3-SAT. (b) The planar graph HΨ associated with Ψ .

Lemma 1. Problem FE-MUPS is NP-Hard.

Proof. We define a polynomial-time reduction from a generic instance 〈X, C, Ψ〉
of Planar 3-SAT to an instance 〈GΦ, K〉 of FE-MUPS, and then we show that Ψ is
satisfied if and only if GΦ has an embedding preserving upward planar subgraph
with K edges. Let HΨ be the planar graph associated with Ψ along with an
arbitrary planar embedding. The embedded planar digraph GΦ is constructed
from the embedded graph HΨ as follows: (refer to Fig. 3 for an illustration):

(a) Remove the cycle of edges (x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1); assign
to each edge (�i,j , ci) a label equal to �i,j (i ∈ {1, . . . , m}, j ∈ {1, 2, 3}), and
then contract each edge (xr , xr), (r ∈ {1, . . . , n}). Denote by yr the vertex that
originates from the contraction of (xr , xr), and orient every edge (yr, ci) from yr

to ci (see Fig. 3(a)). The edges (yr, ci) will be called variable edges.
(b) For each clause vertex ci add six new vertices ci,1, . . . , ci,6 and the six

directed edges (ci, ci,h) (i ∈ {1, . . . , m}, h ∈ {1, . . . , 6}). The new edges are
embedded around ci in such a way that there are exactly two of them between
every pair of circularly consecutive incoming edges of ci. Also, for each vertex
yr (r ∈ {1, . . . , n}) add two new vertices yr,1, yr,2 and the two directed edges

1 In the original formulation of the Planar 3-SAT problem there is only one vertex per
variable, which represents both x and x. Lichtenstein [13] proved that the Planar
3-SAT problem remains NP-Complete if one considers distinct vertices for x and x
(see Lemma 1 of [13]); we use this variant.



Maximum Upward Planar Subgraphs of Embedded Planar Digraphs 199

(yr,1, yr), (yr,2, yr); these two edges are embedded around yr in such a way
that they separate the (possibly empty) sequence of edges labeled xr from the
(possibly empty) sequence of edges labeled xr (see Fig. 3(b)). Every edge added
during this step will be called a dangling edge.
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Fig. 3. Reduction from the graph associated with an instance of Planar 3-SAT to the
graph of an instance of FE-MUPS. The reduction is done from planar graph HΨ of
Fig. 2(b). The edges incident to the small black vertices are the dangling edges.

The transformation described above to construct GΦ from HΨ preserves the
planarity, and thus GΦ is an embedded planar digraph. Also, this transformation
can be easily performed in O(m+n) time, i.e., in a time linear in the size of Ψ . To
complete the reduction, we have to fix a value for K. We choose K = 7m + 2n.

Before proving that Ψ is satisfiable if and only if GΦ has an embedding pre-
serving upward planar subgraph with K edges, we prove that, with our choice
of K, every embedding preserving subgraph G′

Φ′ of GΦ with K edges is upward
planar if and only if G′

Φ′ is bimodal. Clearly, if G′
Φ′ is upward planar then it is

necessarily bimodal. Suppose vice-versa that G′
Φ′ has K edges and is bimodal.

We claim that G′
Φ′ contains necessarily m variable edges and all the 6m + 2n

dangling edges. Namely, GΦ consists of 3m variable edges (3 edges incident to
each clause-vertex) and 6m+2n dangling edges: If G′

Φ′ had less than m variable
edges, then it would have less than K edges in total. On the other hand, suppose
that G′

Φ′ consists of m + h variable edges (1 ≤ h ≤ 2m). Each variable edge is
an incoming edge of a clause-vertex; also, if a clause-vertex has 1 + p incom-
ing edges in G′

Φ′ (0 ≤ p ≤ 2), then it has at most 6 − 2p outgoing edges (i.e.,
incident dangling edges) in G′

Φ′ , otherwise the bimodality of the clause-vertex
would be violated. Since there are exactly m clause-vertices in GΦ, it follows
that if G′

Φ′ consisted of m + h variable edges, the number of dangling edges
that we can hope to have in G′

Φ′ without violating the bimodality would be at
most 6m − 2h + 2n, and therefore the number of edges of G′

Φ′ would be at most
m + h + 6m − 2h + 2n = 7m + 2n − h < K, which contradicts the hypothesis
that G′

Φ′ has K edges. Hence, if G′
Φ′ is an embedding preserving bimodal sub-

graph of GΦ with K edges, it consists of exactly m variable edges and of all
6m + 2n dangling edges, which proves the claim. ¿From the bimodality of G′

Φ′ ,
there is exactly one variable edge incident to each clause-vertex and each vertex
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yr (r ∈ {1, . . . , n}) cannot have incident edges labeled xr and incident edges
labeled xr at the same time. Observe now that the undirected underlying graph
of such a bimodal subgraph G′

Φ′ does not contain simple cycles; indeed, a simple
cycle can only consist of variable edges, but each variable edge connects some
clause-vertex ci to some vertex yr, and each clause-vertex has only one incident
variable edge in G′

Φ′ . Since every planar embedded bimodal digraph whose un-
derlying graph is acyclic is also upward planar, we conclude that G′

Φ′ is upward
planar.

We now prove that if Ψ is satisfiable then there exists an embedding preserving
upward planar subgraph of GΦ with K edges. For what we have proved so far, it is
sufficient to construct, from the truth assignment of Ψ , an embedding preserving
bimodal subgraph G′

Φ′ with K edges. G′
Φ′ consists of all vertices and all dangling

edges of GΦ; furthermore, add to G′
Φ′ m variable edges as follows: For each

clause ci of Ψ (i ∈ {1, . . . , m}), select exactly one literal �i,j of ci having value
true (j ∈ {1, 2, 3}) and add to G′

Φ′ the variable edge with label �i,j , incident to
clause-vertex ci. By construction, G′

Φ′ has m + 6m + 2n = 7m + 2n = K edges,
and the bimodality of G′

Φ′ is implied by two properties: (i) each clause-vertex has
exactly one incoming edge; (ii) each vertex yr (r ∈ {1, . . . , n}) has at most one
circular sequence of consecutive outgoing edges and two circularly consecutive
incoming edges, because xr and xr cannot be true at the same time.

Suppose vice-versa that G′
Φ′ is an embedding preserving upward planar sub-

graph with K edges. As proved above, G′
Φ′ has exactly one variable edge incident

to each clause-vertex and it contains all dangling edges of GΦ. This implies that
each vertex yr (r ∈ {1, . . . , n}) cannot have incident edges labeled xr and inci-
dent edges labeled xr at the same time. Therefore, a valid truth assignment that
satisfies Ψ can be derived by simply assigning value true to those literals that
correspond to labels of the variable edges of G′

Φ′ . �	

The proof of the next lemma is easy and it is omitted for space limitations.

Lemma 2. Problem FE-MUPS belongs to NP.

From Lemma 1 and Lemma 2 we have the following result.

Theorem 1. Problem FE-MUPS is NP-Complete.

With the reduction used in the proof of Lemma 1, finding an embedding pre-
serving upward planar subgraph of GΦ with K edges is equivalent to find an
embedding preserving bimodal subgraph of GΦ with K edges. This immediately
implies that also finding a maximum embedding preserving bimodal subgraph
of an embedded digraph is a hard problem. More formally, the problem Fixed
Embedding Maximum Bimodal Planar Subgraph is defined as follows.

Problem FE-MBPS: Given a pair 〈GΦ, K〉, where GΦ = (V, E) is an embedded
planar digraph and K is an integer number such that 0 < K < |E|, does GΦ

admit an embedding preserving subgraph G′
Φ′ = (V, E′) such that |E′| = K and

G′
Φ′ is bimodal?
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The NP-Hardness of FE-MBPS is implied by the proof of Lemma 1. Also, it
is easy to see that FE-MBPS belongs to NP.

Theorem 2. Problem FE-MBPS is NP-Complete.

4 Algorithms

Motivated by Theorem 1, we designed a polynomial-time heuristic (Subsec-
tion 4.1) and an exponential-time exact algorithm (Subsection 4.2) for computing
maximum upward planar subgraphs of embedded planar digraphs. Both these
algorithms accept in input an embedded planar digraph GΦ that is not neces-
sarily acyclic and bimodal. Before describing our techniques, we observe that a
straightforward algorithm to compute a maximal upward planar subgraph of GΦ

is as follows: Remove all edges from GΦ and then try to reinsert an edge per time;
each time a new edge e is selected for possible insertion, an upward planarity
testing algorithm for fixed embedding is applied on the current subgraph plus
edge e; if the test is positive, e is added to the subgraph otherwise e is defini-
tively discarded. Such an algorithm, which we refer to as SimpleAlgorithm, is
easy to implement and runs in time O(n3) if one uses the O(n2)-time upward
planarity testing technique of Bertolazzi et al. [2]. However, SimpleAlgorithm
is rather slow in practice, because it applies the upward planarity testing algo-
rithm for each edge of GΦ (see also Section 5). Instead, we designed an algorithm
that is much faster in practice and also more effective than SimpleAlgorithm.
Furthermore, it represents a key basic tool for the design of the exact algorithm.

4.1 A Fast and Effective Heuristic

Our heuristic, which we call BendAlgorithm, computes a maximal upward planar
subgraph of the input digraph GΦ = (V, E) in three main steps, described below.

− Step 1 computes an embedding preserving subgraph G′
Φ′ ⊆ GΦ that is

bimodal and that contains as much edges as possible. Since by Theorem 2 the
problem of finding a maximum bimodal subgraph of GΦ is NP-Hard, we designed
for this step an algorithm that just computes a maximal bimodal subgraph G′

Φ′ .
This algorithm first removes a minimal subset of edges from GΦ until the digraph
becomes bimodal, and then it tries to reinsert each of the removed edges in a
random order; an edge is reinserted iff it does not violate the bimodality. The
removal of a minimal subset of edges to get the bimodality is based on a greedy
procedure. Namely, let v be a vertex of GΦ and let E(v) be the circular sequence
of edges incident to v. If v is not bimodal, denote by E′(v) a minimum subset
of edges of E(v) whose removal makes v bimodal. We associate with v a cost
c(v) = |E′(v)|. Subset E′(v) is computed in time O(|E(v)|2) by considering all
possible splits of E(v) into two linear lists, E1(v) and E2(v), and by adding
to E′(v) all the incoming edges of v that belong to E1(v) and all the outgoing
edges of E(v) that belong to E2(v). The removal of the edges of E′(v) from
GΦ makes v bimodal, because the remaining edges of E1(v) will be outgoing
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edges of v, while the remaining edges of E2(v) will be incoming edges of v. Since∑
v∈V |E(v)|2 ≤ (

∑
v∈V |E(v)|)2 = (2|E|)2, all costs c(v) can be computed in

time O(|E|2). At each phase of the greedy procedure, a non-bimodal vertex v
with minimum cost c(v) is selected, and all the edges of E′(v) are temporarily
removed. Also, for each edge (u, v) or (v, u) in E′(v), cost c(u) and set E′(u)
are updated. We use a binary heap priority queue to efficiently store and update
the costs of the non bimodal vertices and to extract their minimum value at
each phase. Hence, the greedy procedure consists of at most |V | phases, each
requiring O(|E|2) = O(|V |2) time. The edges temporarily removed during the
greedy procedure are possibly reinserted incrementally, one per time; this is
done in O(|E|2), because the bimodality can be tested efficiently for each edge
reinsertion. Hence, Step 1 takes O(|V |3) time.

− Step 2 temporarily removes from G′
Φ′ a minimal number of edges in order

to get an upward planar subgraph G′′
Φ′′ ⊆ G′

Φ′ . To do this, it applies a global
strategy. More precisely, in [1] the concept of quasi-upward planar drawing of
an embedded bimodal digraph is introduced. Roughly speaking, a quasi-upward
planar drawing is an upward drawing that allows some bends along the edges,
where a bend represents an inversion of direction of an edge. If one removes
all the bent edges in a quasi-upward planar drawing, the remaining drawing is
upward planar. In [1] an O(|V |2 log |V |) flow-based algorithm is described for
the computation of a quasi-upward planar drawing of an embedded bimodal
digraph, having the minimum number of bends. In general this is not equal to
determine the minimum number of edges whose removal leads to the upward
planarity, but it typically behaves as an effective heuristic to this aim. Thus, to
compute G′′

Φ′′ we apply on G′
Φ′ the flow-based algorithm of [1] and temporarily

remove the bent edges.
− Step 3 tries to incrementally reinsert in a random order the edges removed

in Step 2, by testing each edge reinsertion for upward planarity. Each test is done
by applying the O(|V |2)-time algorithm of Bertolazzi et al. [2]. The number of
tests executed is equal to the number of edges removed during Step 2, which will
be proved to be rather small in practice (see Section 5).

The following lemma summarizes the discussion above.

Lemma 3. Let GΦ be an embedded planar digraph and let n be the number of
vertices of GΦ. BendAlgorithm computes a maximal upward planar subgraph of
GΦ in O(n3) time.

4.2 An Exact Algorithm

Our exact algorithm, which we call BBAlgorithm, is based on a branch-and-
bound technique. Let GΦ = (V, E) be the input digraph and let E = {e1, . . . , em}
be the set of its edges. To encode any subset E′ of E we use an array of binary
variables XE′ = {x1, x2, . . . , xm}, where xi = 0 if edge ei does not belong to E′,
and xi = 1 if ei belongs to E′. The optimal solution is an array XE′ such that sub-
graph (V, E′) is upward planar and the number of variables of XE′ having value 0
is minimized (in the following a variable of value 0 will be called a zero variable).
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The branch-and-bound tree T is a complete binary tree with levels 0, 1, . . . , m,
where the leaves represent all subsets of E. Each leaf of T is an array XE′ , for
some E′ ⊆ E. An internal node μ of T at level i (1 ≤ i < m) is associated
with an array of i binary variables Xμ = {x

(μ)
1 , x

(μ)
2 , . . . , x

(μ)
i }; in the subtree Tμ

rooted at μ, each leaf is an array XE′ = {x
(μ)
1 , x

(μ)
2 , . . . , x

(μ)
i , xi+1, . . . , xm}, i.e.,

it represents a subset E′ ⊆ E such that ej ∈ E′ iff x
(μ)
j = 1 (1 ≤ j ≤ i).

The algorithm visits T from the root to the leaves, and an array X correspond-
ing to the current best solution is kept updated during the visit (X always coin-
cides with a leaf of T ). At the beginning of the visit, X is set equal to a solution
computed with the BendAlgorithm. Each time a new internal node μ at a level
i is visited, the subgraph induced by the non-zero variables x

(μ)
1 , x

(μ)
2 , . . . , x

(μ)
i

is tested for upward planarity; if the test is negative Tμ is cut and it will be
not visited in the following; otherwise an upper bound u(μ) and a lower bound
l(μ) to the number of zero variables contained in any leaf of Tμ are computed.
In particular, u(μ) will correspond to the number of zero variables in some leaf
XE′ of Tμ, representing an upward planar subgraph. If u(μ) is smaller than the
number of zero variables of X, then X is updated with XE′ . If l(μ) is greater
than or equal to the number of zero variables of X, then subtree Tμ is cut and it
will be not visited. To visit T the algorithm applies a depth-first-search, which
uses a stack to store the visited nodes. At any time of the visit, the number of
nodes stored in the stack is O(m) (i.e., order of the depth of T ). At the end of
the visit, X will represent an optimal solution. We now describe how u(μ) and
l(μ) are computed.

The upper bound u(μ) is determined by applying a technique similar to the
one used by BendAlgorithm. Namely, we first complete the array Xμ to an array
XE′ corresponding to a maximal bimodal subgraph of the input digraph; this is
done by incrementally testing for insertion all the edges ei+1, . . . , em. After that,
we apply on the subgraph associated with XE′ the flow-based algorithm in [1], so
to get a quasi-upward planar drawing; the bent edges are temporarily removed
and then incrementally tested for possible reinsertion with the algorithm in [2].
To guarantee that none of the edges ej for which x

(μ)
j = 1 is removed (1 ≤ j ≤ i),

we constrain these edges to have no bend in the computed quasi-upward planar
drawing; this is done by imposing a suitable flow constraint.

The lower bound l(μ) is computed by performing m − i steps. For each h =
i + 1, . . . , m, we test if the subgraph induced by the non-zero variables of Xμ

plus edge eh is bimodal and upward planar; a negative test implies that eh is
not contained in any of the upward planar subgraphs represented by the leaves
of Tμ, and then we increment l(μ) by one unit.

5 Experimental Study

We implemented SimpleAlgorithm, BendAlgorithm, and BBAlgorithm and ex-
perimentally compared their performances. For the implementation we used
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C++ and the GDToolkit graph drawing library2. The experiments were exe-
cuted under Linux OS, on a machine with an Intel Centrino 1.66 GHz and 2GB
of RAM. For the experiments we used three different test suites of connected
planar digraphs. The first test suite, which we call BimodalAcyclic, is a set of
800 embedded planar digraphs that are bimodal and acyclic, and having num-
ber of vertices in {10, 20, . . . , 200}. Since we observed that the performances of
our algorithms are strongly influenced by the density of the input digraph, we
generated 10 different digraphs for each fixed number of vertices and distinct
density value in {1.2, 1.6, 2.0, 2.4}. Each digraph in BimodalAcyclic was ob-
tained by randomly generating an embedded upward planar digraph with the
algorithm described in [7] and then changing at random the orientation of the
50% of the edges, while preserving bimodality and acyclicity; if the resulting di-
graph was still upward planar it was discarded and generated again. The second
test suite, which we call Any, consists of 800 embedded planar digraphs with no
additional restriction. As a consequence, a digraph in this test suite is in general
not bimodal and not acyclic. Again, digraphs in Any have number of vertices in
{10, 20, . . . , 200} and density in {1.2, 1.6, 2.0, 2.4}. Each digraph in Any was gen-
erated at random by first generating a tree and then adding a number of edges
between the vertices of the tree, until the desired value of density was achieved.
Each edge was then randomly oriented with a uniform probability distribution.
Finally, we used a third test suite, called Rome, derived from the well known set
of graphs defined in [6], and often recognized as “Rome Graphs”. The Rome
Graphs have number of vertices in [10, 100], are not directed and, in general, not
planar. At the web site http://www.dia.uniroma3.it/∼gdt/, an oriented version
of the Rome Graphs is available, where each edge has been oriented at random.
We randomly selected 50 of these digraphs for each fixed number of vertices
in {10, 15, 20, . . . , 95, 100}, for a total of 1000 digraphs. Then, for each of these
digraphs, we planarized it (by possibly adding dummy vertices) and randomly
chose a planar embedding. The average density of such digraphs is about 1.4.

We first compared BendAlgorithm and SimpleAlgorithm on the first two
test suites. BendAlgorithm runs pretty fast and outperforms SimpleAlgorithm.
Indeed, SimpleAlgorithm executes the O(n2) upward planarity testing described
in [2] for each edge insertion, while BendAlgorithm applies the same test only
for those edges having some bends in the quasi-upward drawing computed in
Step 2, which are a small percentage of the whole set of edges (around 2.5% for
low density digraphs and about 8 − 10% for high density digraphs). Also, the
running times of Steps 1 and 2 of BendAlgorithm are in practice negligible with
respect to the time taken from the reinsertion process in Step 3, even for the
digraphs in Any (Steps 1-2 take about 0.01 seconds for graphs of 200 vertices
and density 1.6, and 0.2 seconds for graphs of 200 vertices and density 2.4).

The effectiveness of the two heuristics is measured in terms of the size of
their solutions, i.e., the number of edges in the computed maximal upward pla-
nar subgraphs; we express such a size as a percentage of the whole set of edges
of the input digraph. We observed that this percentage does not depend on

2 http://www.dia.uniroma3.it/∼gdt/
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(a) (b)

Fig. 4. Average CPU time of BendAlgorithm (solid line) and SimpleAlgorithm (dashed
line) on the BimodalAcyclic and Any instances. For space reasons, we group the data
on densities 1.2, 1.6 and omit the data for higher densities.

the number of vertices of the input digraph, but only on the density of the di-
graphs (see Table 1). One can observe that BendAlgorithm is more effective
than SimpleAlgorithm and the difference in the effectiveness of the two heuris-
tics grows with the increasing of the density. We also observe that the solutions
computed for the digraphs in Any have smaller size than those computed for the
digraphs in BimodalAcyclic. This because the digraphs in Any are typically not
bimodal and not acyclic, and therefore require more edges to be deleted. The
computations on the Rome test suite confirmed the behavior of the two heuristics
on the digraphs with densities 1.2−1.6 in the Any test suite; BendAlgorithm and
SimpleAlgorithm inserted 93.02% and 90.18% of the total edges, respectively.

Table 1. Average percentage (size) of number of edges in the solutions computed by
BendAlgorithm and SimpleAlgorithm for each density value. The differences between
the sizes of the solutions computed with the two algorithms are also shown.

BimodalAcyclic Any

Density BendAlg SimpleAlg Diff

1.2 97.87% 97.32% 0.55%

1.6 95.79% 93.52% 2.27%

2.0 94.42% 91.50% 2.92%

2.4 93.83% 89.96% 3.87%

Density BendAlg SimpleAlg Diff

1.2 94.78% 94.18% 0.59%

1.6 88.01% 85.27% 2.74%

2.0 81.95% 77.79% 4.16%

2.4 77.43% 73.02% 4.40%

We now analyze the performances of the exact method BBAlgorithm and com-
pare its solutions with those of BendAlgorithm. The running time required by
BBAlgorithm is often too long for digraphs with more than 100 edges. Therefore,
we decided to run BBAlgorithm only on the digraphs having up to 100 vertices
and density up to 1.6; also, we stopped the computation in any case after a time
t of 3 minutes. In total we have 65.5% of the instances in BimodalAcyclic (i.e.,
131 instances) and 40.5% of the instances in Any (i.e., 81 instances). For the
Rome digraphs, the percentage of instances solved within t is 48.7% (i.e., 487
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instances). For all solved instances, we compared the size of the optimal solu-
tions with those computed by BendAlgorithm to get an estimation of how much
BendAlgorithm approximates the optimum: BendAlgorithm achieves the opti-
mum on 92.37% of the BimodalAcyclic instances, on 67.9% of the Any instances,
and on 83.98% of the Rome instances. In the remaining 7.63% of BimodalAcyclic
instances, the optimum has in the average 2.35% edges more than the solution
of BendAlgorithm; this percentage grows to 4.02% for the remaining 32.1% of
the Any instances, and to 3.78% for the remaining 16.02% of the Rome instances.
BendAlgorithm is therefore a good approximation of the optimum in many cases.
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Abstract. Straight-line grid drawings of bounded size is a classical topic
in graph drawing. The Graph Drawing Challenge 2006 dealt with mini-
mizing the area of planar straight-line grid drawings. In this paper, we
show that it is NP-complete to decide if a planar graph has a planar
straight-line drawing on a grid of given size. Furthermore, we present
a new iterative approach to compactify planar straight-line grid draw-
ings. In an experimental study, we evaluate the quality of the compact-
ified drawings with respect to the size of the area as well as to other
measures.

1 Introduction

A planar straight-line grid drawing of a planar graph is an assignment of the
nodes of the graph to integral points in the plane, such that the edges of the
graph are mapped to non-crossing straight-lines. The size of such a drawing is
typically measured by the number of grid points contained in the bounding box
of the drawing, i.e. the smallest axis-parallel rectangle covering the drawing.
Minimizing the size of planar straight-line grid drawings has a long tradition.
De Fraysseix et al. [1] and Schnyder [2] were the first, who independently showed
that every (3-connected) plane graph with n nodes has a straight-line grid draw-
ing on a grid of size (2n− 4)× (n − 2) and (n − 2)× (n − 2), respectively. Zhang
and He [3] showed, that every plane graph with n nodes has a straight-line grid
drawing on a grid of size (n−Δ0 −1)×(n−Δ0 −1), where 0 ≤ Δ0 ≤ �(n−2)/2�
is the number of cyclic faces of the graph with respect to its minimum Schny-
der realizer. Minimizing the area has been shown to be NP-complete in several
orthogonal drawing models, e.g. by Kramer and van Leeuwen in [4]. However,
it has remained open if NP-completeness applies to minimizing the area for
straight-line grid drawings as well.

In this paper, we close this gap and show that it is NP-complete to decide if
a planar graph has a planar straight-line drawing on a grid of a given size. In
order to come up with compact straight-line grid drawings nevertheless, we pro-
pose a novel iterative compaction algorithm. The algorithm starts with a planar
straight-line grid drawing and computes a more compact drawing by iteratively
evaluating new positions for each node. Moreover, we evaluate the algorithm
based on a sample of 400 graphs, which were generated using a common planar
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graph generator. We will show that the proposed algorithm is capable of pro-
ducing substantially compactified drawings with additional nice properties.

2 NP-Completeness

Let G be a planar graph. We will consider the problem of finding a planar
straight-line grid drawing E for G with minimal size, where the size of the draw-
ing is measured by the number of grid points inside the bounding box B(E),
denoted by |B(E)|. We will refer to this problem as Minimum Area Planar

Straight-Line Grid Drawing and we will consider the following related de-
cision problem:

Minimum Area Planar Straight-Line Grid Drawing

INSTANCE: A planar graph G and an integer A.
QUESTION: Is there a planar straight-line grid drawing E for G, such that
|B(E)| ≤ A?

Theorem 1. Minimum Area Planar Straight-Line Grid Drawing is
NP-complete.

Proof. We will only outline the main idea of the proof here, a full proof can be
found in [5]. It is obvious, that Minimum Area Planar Straight-Line Grid

Drawing is in NP. We will prove NP-hardness by reduction from 3-Partition,
which is defined as follows:

3-Partition

INSTANCE: 3m positive integers A={a1, . . . , a3m}, a positive integer bound
b, such that b/4 < ai < b/2 for all i = 1, . . . , 3m
QUESTION: Can A be partitioned into m disjoint sets A1, . . . , Am, such that∑

ai∈Aj
ai = b for all j = 1, . . . , m?

In [6] Garey and Johnson proved that 3-Partition is NP-complete. It is essen-
tial for the reduction that 3-Partition is NP-complete in the strong sense, i.e.
it remains NP-complete, even if b is bounded by a polynomial in m. We will
assume that b ≥ 8 since the problem is trivial for smaller values of b.

For an instance I = (A, m, b) of 3-Partition we will construct an instance
I ′ = (GI , AI) of Minimum Area Planar Straight-Line Grid Drawing,
such that AI = 3p, where p is the smallest prime greater or equal to l + 17 with
l = (m + 1)(2b + 2) − m. By the Bertrand-Chebyshev theorem such a prime
number does exist in the interval [l + 17, 2(l + 17)]. It is vital for the proof, that
the only grid of size AI is a grid of width p and height three, or vice versa. Each
number ai will be represented as a path of length 2ai, and the graph GI is given
by the union of the paths representing the numbers in A and the frame graph
Fm,b,p associated with the instance I. A drawing of the frame graph on a grid
of size p × 3 is illustrated in Fig. 1. It consists of a linked sequence of m + 2
diamond-shaped graphs D1, . . . , Dm+2, which are additionally belted by a path.
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Each Di (i < m + 2) consists of two adjacent nodes with degree 2b + 3 sharing
2b + 2 common neighbors. These common neighbors are linked as two disjoint
paths of length b + 1 each. The graph Dm+2 is constructed analogously with
l − p+1 common neighbors. Up to rotation and reflection, there is only one way
of drawing the frame graph on a grid of size AI , assuming that none of the grid
points may be covered by an edge, i.e. as illustrated in Fig. 1. Since the number
of nodes of GI equals AI , this condition holds for any drawing of GI on any
grid of size AI . The given drawing of the frame graph leaves exactly m boxes

B1 Bm

l = (m + 1)(2b + 2) − m ≥ 18

D1 D2 Dm Dm+1 Dm+2

Fig. 1. The frame graph used in the reduction from 3-Partition: The diamond-shaped
graphs Di are accentuated in grey

B1, . . . , Bm of width 2b and height one unoccupied, such that Bi ∩ Bj = ∅ for
i �= j. Therefore, we obtain a one-to-one correspondence between the problem
of deciding, if the set A can be partitioned according to 3-Partition and the
problem of deciding, if the paths representing the numbers in A can be drawn
into the boxes Bi, i.e. if GI has a straight line drawing on a grid of size AI ,
which concludes the proof. 	


Note, that the proof also yields that it is NP-complete to decide if a graph has
a straight-line drawing on a grid with given width and height, and that the
problem remains NP-complete if restricted to plane graphs, i.e. graphs with a
given combinatorial embedding.

3 Compaction Algorithm

In this section, we will present an iterative algorithm for the compaction of
planar straight-line grid drawings. The algorithm takes a plane graph as an
input and produces a more compact drawing. It works in iterations and rounds.
The number of iterations is a parameter of the algorithm. At the beginning
of each iteration, we compute the bounding box of the current drawing and
randomly select a grid point � inside the bounding box, which we refer to as
the reference point for this iteration. Each iteration then consists of a certain
number of rounds. In each round, the nodes of G are examined with ascending
distance to the reference point �. For each node v, the algorithm considers a
set Pv of possible new positions for v according to an evaluation function ϕv,�

on Pv. Both Pv and ϕv,� will be explained below. For each grid point p in
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Pv, the algorithm computes ϕv,�(p) and tentatively assigns v to the grid point
with the smallest negative value. If the resulting drawing is planar v will be
permanently assigned to this grid point for the rest of this round. Otherwise the
grid point will be discarded and the next best grid point with respect to ϕv,�

will be considered. If there is no grid point p in Pv such that ϕv,�(p) < 0, the
next node will be considered and no action will be taken for v. If none of the
nodes could be assigned to a new grid point in one round, the current iteration
ends. In our implementation we considered the set Pv of unoccupied grid points
p with distance less than or equal to D =

√
2 to the current position of v. Note,

that a different choice of Pv is also possible. The evaluation function is given by

ϕv,�(p) = ψv,�(p) − ψv,�(v), (1)

where
ψv,�(p) = (p − �)2 +

∑

{v,w}∈E

(p − w)2 . (2)

The intuition behind the evaluation function is to group the nodes around the
reference point thereby compactifying the drawing while simultaneously enforc-
ing short edges in order to prevent the algorithm from running into a local
optimum. By randomly choosing reference points in each iteration, we further
seek to make the algorithm more robust against local minima.

Since the number of rounds performed during one iteration is not bounded,
we must ensure, that the algorithm terminates. To this end, we will consider a
global evaluation function F� for a given drawing and a given reference point �.
We will define F� as

F�(E) =
∑

v∈V

(v − �)2 +
∑

{v,w}∈E

(v − w)2 . (3)

Suppose that the new drawing E ′ is obtained from the drawing E by moving the
node v from p to p′, such that ϕv,�(p′) < 0 as imposed by the algorithm. Then,

F�(E ′) − F�(E) = ψv,�(p′) − ψv,�(p) = ϕv,�(p′) < 0 . (4)

Hence, moving a node can only decrease F� and F� ≥ 0 by definition.

4 Experimental Evaluation

We have performed an extensive experimental study based on more than 5,000
graphs generated using a variety of different planar graph generators. However,
due to limitations of space, we will only present a small fraction of our results
here. We will restrict ourselves to the sample of graphs generated using the
LEDA random planar graph function. We generated graphs with n nodes where
n ∈ {250, 500, 750, 1000}. For each n we generated 20 graphs with m edges each,
where m ∈ {n, 3

2n, 2n, 5
2n, 3n−6}, resulting in a total of 400 graphs. The graphs

were initially drawn on a grid of size (n − 2) × (n − 2) using the algorithm
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proposed by Schnyder in [2]. The performance of the algorithm is measured by
the compaction factor γ, which relates the area A0 of the initial drawing to the
area A of the final drawing, i.e. γ = A0

A . A high compaction factor indicates,
that the algorithm substantially compactified the initial drawing. We performed
20 iterations of the compaction algorithm on all initial drawings.

The observed compaction factors range from 1.5 up to 135. For more than
50% of the graphs the compaction factors achieved exceed a value of 10, i.e. the
area of the compactified drawings occupies merely less than 1

10 -th of the initially
required area. However, 4% of the compactified drawings still occupy more than
half the area of the initial drawing.

Expectedly, the observed compaction factors depend on both the number of
nodes and the density of the graph. For a given number of nodes, a higher
density implies less degrees of freedom for the placement of nodes. Similarly,
depending on the structure of the graph, a larger number of nodes may imply
longer edges for a given density and, thus, less freedom for the placement of
nodes, e.g. the graph consisting of a nested sequence of k triangles. The lower
and upper quartiles as well as the median of the observed compaction factors
decrease as the number of nodes increases: More than 75% of the drawings of the
graphs with 250 nodes achieved compaction factors larger than 10, as opposed
to only 21% of the graphs with 1000 nodes. Similarly, the compaction factors
decrease as the density of the graphs increases: More than 80% of the drawings
of the very sparse graphs (m = n) and still more than 75% of those of the sparse
graphs (m = 1.5n) achieved compaction factors of 10 and larger, as opposed to
42% for graphs with high density (m = 2.5n) and only 26% for the graphs with
maximum density (m = 3n − 6).

The compactified drawings are satisfactory with respect to commonly used
measures for graph drawings (Fig. 2): The aspect-ratios of the compactified
drawings, i.e. the ratio of longer vs. shorter side of the bounding box, range
between 1 and 4. More precisely, in 95% of the drawings the aspect ratio does
not exceed a value of 2. In more than 65% of the compactified drawings the
angular resolution, i.e. the smallest angle between incident edges, is not worse
than in the initial drawings. As expected, the edge-length resolution, i.e. the

Fig. 2. Sample output of the compaction algorithm: Initial drawing (left) and scaled
(by a factor of ≈ 11) compactified drawing (right); γ ≈ 128
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ratio of longest vs. shortest edge-length is also improved by the compactified
drawings.

The running time of the algorithm is substantially influenced by the number
of rounds performed per iteration. The number of rounds performed during the
20 iterations of the algorithm seems to fit the model cnk with k > 1. Using
non-linear least squares fitting, we obtain c = 0.37 ± 10−4 and k = 1.4 ± 10−4,
i.e. the number of rounds per iteration seems to be slightly super-linear in the
number of nodes. However, this number tends to decrease with each iteration,
since it depends on the size of the drawing.

5 Conclusion and Outlook

We proved that it is NP-complete to decide if a given planar graph has a planar
straight-line grid drawing with a given size. We further proposed an iterative
algorithm for the compactification of planar straight-line grid drawings. Our
experimental evaluation of the algorithm reveals, that the performance of the
algorithm depends on both the number of nodes and the density of the graphs.
Due to the local nature of the algorithm, the initial drawing has a great influence
on the performance. In addition to that the tests for intersections which must be
performed after each update of a node may be costly since they may have to be
performed for a large number of edges. In order to speed up the computation,
the number of edges which have to be tested for intersections can be computed
using a logical indexing approach which uses the combinatorial embedding of
the graph. We were able to show, that the algorithm performs well on a large
number of graphs, i.e. more than 50% of the compactified drawings require less
than 1

10 -th of the space required for the initial drawing, starting from an already
compact drawing.
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Abstract. We present a linear time algorithm that produces a planar
polyline drawing for a plane graph with n vertices in a grid of size
bounded by (p + 1) × (n − 2), where p ≤ (� 2n−5

3 �). It uses at most
p ≤ � 2n−5

3 � bends, and each edge uses at most one bend. Compared
with the area optimal polyline drawing algorithm in [3], our algorithm
uses a larger grid size bound in trade for a smaller bound on the total
number of bends. Their bend bound is (n−2). Our algorithm is based on
a transformation from Schnyder’s realizers [6,7] of maximal plane graphs
to transversal structures [4,5] for maximal internally 4-connected plane
graphs. This transformation reveals important relations between the
two combinatorial structures for plane graphs, which is of independent
interest.

1 Introduction

We focus on planar graph drawings. Such graphs can be drawn without any
edge crossings. Several styles of drawings [1] have been introduced. Common
objectives include small area, few bends and good angular resolution. We deal
with polyline drawings [1]. A polyline drawing is a drawing of a graph in which
each edge is represented by a polygonal chain and every vertex is placed on a grid
point. Bonichon et al. [3] presented a linear time algorithm that produces polyline
drawings for a graph with n vertices within a grid of area (n−�p

2�−1)× (p+1),
where p ≤ 2n−5

3 . It is area optimal and each edge has at most one bend. However
the total number of bends used by this algorithm could be (n − 2).

Our goal is to have a tradeoff between the grid size and the number of bends.
We present a linear time algorithm that produces a polyline drawing in a grid
with size bounded by (p + 1) × (n − 2), where p ≤ � 2n−5

3 �, and each edge uses
at most one bend. Although the grid size is not as good as the algorithm in [3],
our algorithm only needs at most p ≤ � 2n−5

3 � bends.
A maximal plane graph G is associated with realizers R [6,7], which is a

partition of the set of interior edges into three particular trees. A maximal inter-
nally 4-connected plane graph G′ with four exterior vertices is associated with
transversal structures T [4,5], which is a partition of the set of interior edges
into two st-graphs. In this paper, we introduce a transformation from a max-
imal plane graph G to a maximal internally 4-connected plane graph G′ with
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four exterior vertices by a certain number of operations. These operations are
determined by a realizer of G and can be done in linear time. Then our algorithm
uses the derived G′ and its transversal structure to obtain the polyline drawing.

The present paper is organized as follows. In Section 2, we recall a few defini-
tions. In Section 3, we present the transformation from a realizer to a transversal
structure. Then we present our drawing algorithm.

2 Preliminaries

The graphs are simple graphs. We abbreviate “counter clockwise” and “clock-
wise” as ccw and cw respectively.

Definition 1. [6,7] Let G be a maximal plane graph of n vertices with three
exterior vertices v1, v2, v3 in ccw order. A realizer R(G) = {T1, T2, T3} of G is a
partition of its interior edges into three sets T1, T2, T3 of directed edges such that
the following holds: (1) for each i ∈ {1, 2, 3}, the interior edges incident to vi

are in Ti and directed toward vi; (2) for each interior vertex of G, v has exactly
one edge leaving v in each of T1, T2, T3. The ccw order of the edges incident to v
is: leaving in T1, entering in T3, leaving in T2, entering in T1, leaving in T3 and
entering in T2. Each entering block could be empty.
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Fig. 1. (1) A maximal plane graph G and a realizer R(G) of G. (2) A maximal internally
4-connected plane graph G′ with four exterior vertices and a transversal structure
T (G′) for G′.

Schnyder presented a linear time algorithm to construct a realizer for G. An
example of a maximal plane graph G, and one of its realizers is given in Fig. 1
(1). Next, we introduce the concept of transversal structures [4,5].

Definition 2. let G′ be a maximal internally 4-connected plane graph with four
exterior vertices v1,v4,v2, and v3 in ccw order. A transversal structure T (G′) of
G′ is a partition of its interior edges into two sets, say in red and blue edges,
such that the following conditions are satisfied:



On Planar Polyline Drawings 215

1. In cw order around each interior vertex v, its incident edges form: a non
empty interval of red edges entering v, a non empty interval of blue edges
entering v, a non empty interval of red edges leaving v, and a non empty
empty interval of blue edges leaving v.

2. All interior edges incident to v3 are red edges entering v3, all interior edges
incident to v4 are red edges leaving v4, all interior edges incident to v1 are
blue edges leaving v1, and all interior edges incident to v2 are blue edges
entering v2. Each such block is non empty.
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Fig. 2. (1) A straight-line grid drawing of the graph G′ in Fig. 1 (2). (2) A polyline
drawing of G in Fig. 1 (1).

Fig. 1 (2) shows an example of a transversal structure T (G′) for a maximal
internally 4-connected plane graph G′ with four exterior vertices. The subgraph
of G′ with all its red-colored edges (blue colored edges respectively) and all its
four exterior edges is called a red map (blue map respectively) of G′, it is de-
noted by G′

r (G′
b respectively). For any interior vertex v of G′, let Pb(v) be the

unique path from v1 to v2 in G′
b such that, the subpath of Pb(v) from v1 to v

is the rightmost one before arriving at v, and the subpath of Pb(v) from v to
v2 is the leftmost one after leaving v. Let y(v) be the number of faces in G′

b

enclosed by the path (v1, v4, v2) and Pb(v). Similarly, for any interior vertex v
of G′, let Pr(v) be the unique path from v4 to v3 in G′

r such that, the sub-
path of Pr(v) from v4 to v is the rightmost one before arriving at v, and the
subpath of Pr(v) from v to v3 is the leftmost one after leaving v. Let x(v) be
the number of faces in G′

r enclosed by the path (v4, v1, v3) and Pr(v).For exam-
ple, vertex k in Fig. 1 (2) satisfies Pr(k) = (v4, y, k, f, a, v3), so that x(k) = 3;
and Pb(k) = (v1, g, k, b, c, v2), so that y(k) = 5. Let x(T (G′)) be the number
of interior faces of G′

r. y(T (G′)) be the number of interior faces of G′
b. For the

vertices v1, v2, v3, v4, we define x(v1) = 0, y(v1) = y(T (G′)), x(v4) = 0, y(v4) = 0,
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x(v3) = x(T (G′)), y(v3) = y(T (G′)), and x(v2) = x(T (G′)), y(v2) = 0. We have
the following lemma from [4]:

Lemma 1. Let G′ be a maximal internally 4-connected plane graph with 4 ex-
terior vertices v1, v4, v2, v3 in ccw order. Then:

1. G′ admits a transversal structure T (G′), which is computable in linear time.
2. Applying T (G′), for each vertex v, embed it in the grid point (x(v), y(v)).

For each edge of G′, simply connect its end vertices by a straight line. The
drawing is a straight-line grid drawing for G′. Its drawing size is x(T (G′))×
y(T (G′)). This drawing is computable in linear time.

Fig. 2 (1) presents a straight-line grid drawing of the graph of G′ in Fig. 1 (2),
by applying Lemma 1 to T (G′) in Fig. 1 (2).

3 Transformation from Realizers to Transversal
Structures and Its Application in Planar Polyline
Drawing

Let G be a maximal plane graph with 3 exterior vertices v1, v2, v3 in ccw order.
Let R(G) = {T1, T2, T3} be one of its realizers. Ti is rooted at vi. Next, we
illustrate how to transform a realizer for G to a transversal structure for a
targeted maximal internally 4-connected plane graph G′ with 4 exterior vertices.
Our transformation uses a tree from R(G). Subject to a color and index rotation,
we only need to show the case of using T3. Let v be a leaf node of T3. v is an
interior vertex of G. Let p1(v) and p2(v) be its parents in T1 and T2 respectively.
The face f enclosed by {v, p1(v), p2(v)} is an interior face of G. Consider the
edge e = (p1(v), p2(v)). According to the property of realizer, e cannot be in T3.
Furthermore, e cannot be (v1, v3), neither can it be (v2, v3).

p
2
(v)p

1
(v) v

1
v
2v

4

p
2
(v)p

1
(v)

 v

(2)

v

(3)

split(v) split(v) = 

v

split(v)

(1)

Fig. 3. Step 1

We complete the transformation in the following three steps. We will use G′

to denote both the target graph and the intermediate forms.

Step 1: For every leaf node v of T3, insert a vertex split(v) in the middle of
e = (p1(v), p2(v)). split(v) splits e into two edges. Let the two edges keep the
original color and directions as e in G. Add a directed edge from split(v) to v,
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and color it by red. We have three different cases, as illustrated in (1), (2) and
(3) of Fig. 3. Note that, in Fig. 3 (3), for the case where e = (v1, v2), we denote
the inserted vertex by v4. v4 is an exterior vertex of G′. G′ has 4 exterior vertices
v1, v4, v2, v3 in ccw order.

Step 2: For each leaf v of T3, still consider the edge e = (p1(v), p2(v)), as if
it were not split. There are three cases to consider:

Case 1: e = (v1, v2). No additional operation needed.
Case 2: e is in T1. e is adjacent to another triangle g. Let u be the vertex

/∈ {p1(v), p2(v)} in g. According to the properties of realizer, only five scenarios
are possible. They are shown in Fig. 4. In Fig. 4 (1) or (2), we add a directed
edge from u to split(v), and color it by red. In Fig. 4 (3) or (4), consider p2(v), it
must also be a leaf in T3. Therefore, in Step 1, a vertex split(p2(v)) and an edge
(split(p2(v)), p2(v)) have been inserted for it already. In this step, we further
add an edge, directed from split(p2(v)) to split(v), and color it by red. Fig. 4
(5) is similar to Fig. 4 (3) or (4) except that u = v2.
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Fig. 4. Case 2 of Step 2

Case 3: e is in T2. This case is similar to Case 2.
Step 3: Reverse the direction of the blue-colored edges in G′. Recolor the

green-colored edges by blue.

The above coloring and directions of the edges of G′ is denoted by T3(G′). (If
we use T1, T2 instead, then we denote it by T1(G′), T2(G′) instead). The proof of
the following lemma is omitted here due to space limitation.

Lemma 2. Let G be a maximal plane graph with n vertices. v1, v2, v3 be its
exterior vertices in ccw order. R(G) = {T1, T2, T3} be one of its realizers. Ti is
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rooted at vi. Let li be the number of leaves of Ti, i ∈ {1, 2, 3}. Then for the above
introduced transformation:

1. Ti(G′) is a transversal structure of G′. x(Ti(G′)) = li + 1 and y(Ti(G′)) =
(n − 2), where i ∈ {1, 2, 3}.

2. The transformation from the realizer R(G) to Ti(G′), i ∈ {1, 2, 3} can be
done in linear time.

For the maximal plane graph G in Fig. 1 (1), Fig. 1 (2) shows a transversal struc-
ture T3(G′), constructed as above by using T3 in the realizer R(G) = {T1, T2, T3}.
The inserted vertices are represented by black squares. The inserted red-colored
edges are drawn in dashed lines.

Applying Lemma 1 to Ti(G′), we obtain a straight-line grid drawing of G′. By
removing the inserted edges and the inserted vertices, but keeping the split edges
in the drawing of G′, it becomes a polyline drawing of G. It is easy to see that,
only an edge in G which has had a vertex inserted in it during the transformation
maybe drawn as two-segment polylines. The total number of such edges is li, i.e.,
the number of leaves in Ti. In [2], Bonichon et al. proved that in any realizer,
l1 + l2 + l3 ≤ (2n−5). Combined with Lemma 2, we have the following theorem:

Theorem 1. A plane graph G with n vertices admits a polyline drawing in a
grid with size bounded by (p + 1) × (n − 2), where p ≤ � 2n−5

3 �. The number of
bends is at most p, and each edge has at most one bend. The drawing can be
constructed in linear time.

Fig. 2 (2) shows a polyline drawing of the original graph G in Fig. 1 (1), where
the edges represented as two-segment polylines are drawn in dashed lines.
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Abstract. Constrained stress majorization is a promising new tech-
nique for integrating application specific layout constraints into force-
directed graph layout. We significantly improve the speed and conver-
gence properties of the constrained stress-majorization technique for
graph layout by employing a diagonal scaling of the stress function. Di-
agonal scaling requires the active-set quadratic programming solver used
in the projection step to be extended to handle separation constraints
with scaled variables, i.e. of the form siyi + gij ≤ sjyj . The changes,
although relatively small, are quite subtle and explained in detail.

Keywords: constraints, graph layout.

1 Introduction

Researchers and practitioners in various fields have been arranging diagrams
automatically using physical “mass-and-spring” models since at least 1965 [1].
Typically, the objective of such force-directed techniques is to minimize the dif-
ference between actual and ideal separation of nodes [2], for example:

stress(X) =
∑

i<j

wij(||Xi − Xj || − dij)2 (1)

where wij is 1
dij

2 , Xi gives the placement in two or more dimensions of the ith

node and dij is the ideal distance between nodes i and j based on the graph
path length between them.

Recently, the force-directed model has been extended to allow separation con-
straints of the form u + g ≤ v, enforcing a minimum gap g between the posi-
tions u and v of pairs of objects in either the x or y dimensions in the draw-
ing [4]. The basic idea is to modify the iterative step in stress majorization [5,
Ch. 8] to solve a one-dimensional quadratic objective subject to the separation
constraints for that dimension. Separation constraints allow a wide variety of
aesthetic requirements—such as downward-pointing edges in directed graphs,
alignment or distribution of nodes, placement of nodes in horizontal or vertical
bands, non-overlap of nodes, orthogonal ordering between nodes, containment
of nodes in clusters, containment in a page, and edge straightening without

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 219–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Drawing of a directed graph illustrating the flexibility of constrained stress ma-
jorization. Separation constraints encode the aesthetic requirements that: (1) directed
edges point downwards; (2) selected nodes are horizontally or vertically aligned; (3) the
drawing fits within the page boundaries; and (4) nodes do not overlap edges or other
nodes. The “history of unix” graph data is from http://www.graphviz.org and this
drawing originally appeared in [3].

introduction of additional edge crossings–to be integrated into force-directed
layout [4]. Thus, constrained stress majorization provides an extremely flexible
basis for handling application specific layout conventions and requirements.

In majorization the value of the stress function (1) is reduced by alternately
minimizing quadratic functions in the horizontal and vertical axes that bound
the stress functions. These quadratic functions have the form:

f(x) ≡ 1
2
xT Qx + xT b (2)

where, for a graph with n nodes, x is the n dimensional vector of node positions
in the current dimension; the n × n Hessian matrix Q is the graph Laplacian
(see below); and the linear term b is computed before processing each axis based
on the difference between ideal separation of nodes and their actual separation
at the current placement (for details see [6]). Constrained stress majorization
extends this by additionally requiring that the solution returned satisfies the
separation constraints for that dimension.

In [4] we gave a specialized gradient-projection-based method for solving this
particular kind of quadratic program (QP) which was significantly faster than
standard QP algorithms. However, gradient projection (GP) based methods, like
other iterative optimization methods based on steepest descent, can display poor
convergence when working with badly conditioned Hessian matrices. A standard
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technique to improve convergence is to scale the variables so that the diagonal
entries of the scaled Hessian matrix are all equal. This works particularly well
if the Hessian, with entries Qij , is diagonally dominant, i.e. |Qii| ≥

∑
j �=i |Qij |,

which the graph Laplacian is by its definition:

Qij =
{

−wij i �= j∑
k �=i wij i = j

The main contribution of this paper is to demonstrate that using such diago-
nal scaling with GP is nearly twice as fast as the original unscaled GP algorithm
and, even more importantly, the rate of convergence is more robust. The main
technical difficulty is the need to modify the projection step to handle constraints
of the form sixi + g ≤ sjxj where si and sj are the positive scaling factors for
xi and xj , respectively. We detail the necessary modifications to the projection
algorithm. Although these modifications are quite subtle, they make little dif-
ference to the implementation difficulty. Thus, there seems no reason to use the
original unscaled GP algorithm in preference to the GP algorithm with diagonal
scaling presented here. Another contribution of the paper is to provide more
details of the gradient projection algorithm presented in [4].

2 Diagonally-Scaled Gradient Projection

The core step in constrained stress majorization is to solve a quadratic program
with an objective of the form given in Equation 2 subject to some separation
constraints c ∈ C on the variables where each separation constraint c is of form
xi +g ≤ xj where g is the minimum gap between the variables xi and xj . We call
this the Quadratic Programming with Separation Constraints (QPSC) problem.

Previously we gave an iterative gradient-projection algorithm for solving a
QPSC problem [4]. This works by first decreasing f(x), by moving x in the
direction of steepest descent, i.e. opposite to the gradient ∇f(x) = Qx + b.
While this guarantees that—with appropriate selection of step-size α—the stress
is decreased by this first step, the new positions may violate the constraints. This
is corrected by applying the function project, which returns the closest point x̄
to x which satisfies the separation constraints, i.e. it projects x on to the feasible
region. A vector p from the initial position x̂ to x̄ is then computed and the
algorithm ensures monotonic decrease in stress when moving in this direction by
computing a second stepsize β = arg minβ∈[0,1]f(x+ βp) which minimizes stress
in this interval.

Unfortunately, GP-based methods, like other iterative methods based on
steepest descent, can display poor convergence when working with poorly con-
ditioned Hessian matrices. One remedy is to perform a linear scaling on the
problem. The basic idea is to use an n × n scaling matrix S and transform the
problem into one on new variables y s.t. x = Sy.

If we choose S = Q−1 = (∇2f(x))−1 then steepest descent on the transformed
problem is equivalent to performing Newton’s method on the original problem.
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Thus, at least in the unconstrained problem convergence will be quadratic. How-
ever, computing the inverse of Q is quite expensive and it also means that scaling
of the separation constraints results in full-fledged linear constraints, so that the
projection operation becomes considerably more complex and expensive.

Thus, an approach which approximates Q−1 is often used in practice [7].
Specifically, we choose S to be a diagonal matrix such that the diagonal entries
in ST QS are all 1, i.e. Sii = 1√

Qii
and for i �= j, Sij = 0. This is called diagonal

scaling. We refer below to the diagonal entries in S as si = Sii. Note that for all
i, si > 0 and, clearly, S is very quick to compute.

It is straightforward to change the main gradient-projection routine,
solve QPSC, from [4] to use diagonal scaling. The modified routine is given
in Fig. 2.

The chief difficulty is modifying the projection routine project called by
solve QPSC. We have that xi = siyi so a separation constraint of form xi+g ≤ xj

becomes, in the scaled space, siyi + g ≤ sjyj. We call such linear inequalities
positively scaled separation constraints.

After computing an unconstrained descent direction the scaled GP algorithm
calls project to find the nearest point to d = ŷ − αg satisfying the positively
scaled separation constraints C′. That is, it must solve:

minimize F (y) =
∑n

i=1(yi − di)2

subject to positively scaled separation constraints C′

In [4] we described an active-set algorithm for incrementally finding a solution
to the projection problem subject to (unscaled) separation constraints. Here
we extend this to handle positively scaled separation constraints. Although the
changes are minor, they are quite subtle. The complete algorithm is given in
Fig. 2. Note that if c is a positively scaled separation constraint of form su+g ≤
tv we refer to u, v, s, t and g by lvc, rvc, lsc, rsc, gapc, respectively.

The method works by building up blocks of variables spanned by a tree of
active (or set at equality) constraints. At any point in time the block to which
a variable yi belongs is given by blki. If a block has k variables the tree of active
constraints has k − 1 linear equations so variable elimination can be used to
eliminate all but one variable and the position of all other variables is a linear
function of that single unknown reference variable. This contrasts to the unscaled
case in which the variables are simple offsets from the reference variable and are
not scaled.

For each block B the algorithm keeps: the set of variables VB in the block;
the set of active constraints CB ; the current position YB of the block’s reference
variable; and the scaling factor SB for the reference variable. For each variable
yi in block B = blki we have a variable dependent scaling factor ai and offset bi

giving its position relative to YB, i.e. it is an invariant that yi = aiYblki + bi. As
we shall see it is also an invariant that ai = Sblki

si
.

Each block B is placed at the position minimizing F =
∑

i∈VB
(yi − di)2

subject to the active constraints CB . Now,
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∂F

∂YB
=

∑

i∈VB

∂yi

∂YB

∂F

∂yi
=

∑

i∈VB

ai
∂F

∂yi
=

∑

i∈VB

ai(2(yi−di)) =
∑

i∈VB

2ai(aiYB+bi−di)

The minimum occurs when ∂F
∂YB

= 0 so the optimum value is YB = ADB−ABB

A2B

where ADB =
∑

i∈VB
aidi, ABB =

∑
i∈VB

aibi, and A2B =
∑

i∈VB
a2

i .
Initially, each variable yi is placed in its own block Bi where it is the block’s

reference variable. This is done in the procedure init blocks called at the start
of solve QPSC. After this the blocks persist between the calls to project and are
incrementally modified in the routine project.

The function project(C, d) works as follows. First the routine split blocks
updates the position of each block B to reflect the changed value of d. The
routine then splits the block if this will allow the solution to be improved. The
procedure split block is straightforward. The only point to note is that we define
left(c, B) to be the variables in VB connected to the variable lvc by constraints
in CB \ {c} and we define right(c, B) symmetrically.

Determining where and when to split a block is a little more difficult. It is
formalized in terms of Lagrange multipliers. Recall that if we are minimizing
function F with a set of convex equalities C over variables y, then we can as-
sociate a variable λc called the Lagrange multiplier with each c ∈ C. Given a
configuration y∗ feasible with respect to C we have that y∗ is a locally minimal
solution iff there exist values for the Lagrange multipliers satisfying for each yi

that
∂F

∂yi
(y∗) =

∑

c∈C

λc
∂c

∂yi
(y∗) (3)

Furthermore, if we also allow inequalities, the above statement continues to
hold as long as λc ≥ 0 for all inequalities c of form t ≥ 0. By definition an
inequality c which is not active has λc = 0. Thus we need to split a block at
active constraint c if λc < 0 since this tells us that by moving the two sub-blocks
apart we can improve the solution.

One key to the efficiency of the projection algorithm is that the Lagrange mul-
tipliers can be computed efficiently for the active constraints in a block in linear
time using the procedure comp dfdv. The justification for this is the following
lemma which is proved in [8]:

Lemma 1. Let y∗ place all blocks at their optimum position. If c is an active
constraint in block B then

λc = −
∑

k∈left(c,B)

1
sk

∂F

∂yk
(y∗

k) =
∑

k∈right(c,B)

1
sk

∂F

∂yk
(y∗

k)

Of course, after moving the blocks to their new location and perhaps split-
ting some blocks, there is no guarantee that the placement satisfies all of the
constraints. Thus, after splitting the procedure project repeatedly modifies the
blocks until a feasible solution is reached. The constraints are processed in de-
creasing order of violation until no more violated constraints are found and
therefore a feasible solution has been obtained.
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procedure solve QPSC(Q, b, C, x)
s ← ( 1√

Q11
, 1√

Q22
, . . . , 1√

Qnn
)

S ← n × n diagonal matrix with Sii = si

global y ← Sx
init blocks()
Q′ ← ST QS
b′ ← Sb
C′ ← {siyi + g ≤ sjyj |(xi + g ≤ xj) ∈ C}
repeat

g ← Q′y + b′

α ← gT g

gT Q′g

ŷ ← y
d ← ŷ − αg
nosplit ←project(C′, d)
ȳ ← y (y modified by project)
p ← ŷ − ȳ

β ← min( gT d

dT Q′p
, 1)

y ← ŷ − βp
until ‖ŷ, y‖ sufficiently small and nosplit

return S−1y

function project(C, d)
nosplit ← split blocks(d)
c ← maxc∈C violation(c)
while violation(c) ≥ 0 do

if blklvc �= blkrvc then
merge block( c)

else expand block(c)
c ← maxc∈C violation(c)

return nosplit

procedure init blocks()
for i = 1, ..., n do

let Bi be a new block s.t.
VBi

← {i}
YBi

← yi

SBi
← si

ADBi
← yi

A2Bi
← 1

ABBi
← 0

CBi
← ∅

ai ← 1
bi ← 0
blki ← Bi

return

procedure split blocks(d)
nosplit ← true
for each active block B do

ADB ← P
i∈VB

aidi

ABB ← P
i∈VB

aibi

A2B ← P
i∈VB

a2
i

YB ← ADB−ABB
A2B

for i ∈ VB do
yi ← aiYB + bi

for each c ∈ CB do λc ← 0
choose v ∈ VB

comp dfdv(v, CB , NULL)
sc ← minc∈CB

λc

if λc ≥ 0 then break
nosplit ← false
split block(c)

return nosplit

function violation(c) =
let c ≡ siyi + g ≤ sjyj in
sjyj − (siyi + g)

procedure merge block(c)
let c ≡ siyi + g ≤ sjyj

LB ← blki

RB ← blkj

for k ∈ VRB do
blkk ← LB
ak ← SLB/sk

bk ← bk + g
ABLB ← ABLB + akbk/sk

ADLB ← ADLB + akdk

A2LB ← ADLB + akak

YLB ← ADLB−ABLB
A2LB

CLB ← CLB ∪ CRB ∪ {c}
VLB ← VLB ∪ VRB

for i ∈ VLB do
yi ← aiYB + bi

return

procedure expand block(c̃)
B ← blklvc̃
for each c ∈ CB do λc ← 0
comp dfdv(lvc̃, CB , NULL)
[v1, ..., vk] := comp path(lvc̃,rvc̃,CB)
ps ← {c ∈ CB | ∃j s.t. lcc = vj and rcc = vj+1}
if ps = ∅ then error % constraints unsatisfiable
sc ← minc∈ps λc

split block(sc)
merge block(c̃)
return

procedure split block(c)
B ← blklvc
let RB be a new block s.t.
SRB ← SB

VRB ← left(c, B)
CRB ← {c′ ∈ CB | lvc′ , rvc′ ∈ VRB}
for i ∈ VRB do blki ← RB
ADRB ← P

i∈VRB
aidi

ABRB ← P
i∈VRB

aibi

A2RB ← P
i∈VRB

a2
i

YRB ← ADRB−ABRB
A2RB

for i ∈ VRB do yi ← aiYRB + bi

let LB be a new block s.t.
symmetric construction to RB
return

function comp dfdv(i, AC, c̃)
dfdv ← 2

si
(yi − di)

for each c ∈ AC s.t. i = lvc and c �= c̃ do
λc ←comp dfdv(rvc, AC, c)
dfdv ← dfdv + λc

for each c ∈ AC s.t. i = rvc and c �= c̃ do
λc ← −comp dfdv(lvc, AC, c)
dfdv ← dfdv − λc

return dfdv

Fig. 2. Diagonal scaling Gradient-Projection-based algorithm to find an optimal so-
lution to a QPSC problem with variables x1, . . . , xn, symmetric positive-semidefinite
matrix Q, vector b and separation constraints C over the variables
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If a constraint c is violated there are two cases. Either the variables in c, lvc

and rvc, belong to different blocks, in which case merge block is used to merge
the two blocks, or else lvc and rvc, belong to the same block, in which case
expand block is used to modify the block.

The code for merge block is relatively straightforward. If the merge is because
of the violated constraint c ≡ siyi + g ≤ sjyj then it merges the block RB =
blkj into block LB = blki (the direction is arbitrary and in practice we always
move variables from the smaller to the larger block). The reference variable
YLB becomes the reference variable of the new block. Now, rewriting the active
version of c, sjyj = siyi + g, in terms of YLB and YRB gives sj(ajYRB + bj) =
si(aiYLB + bi) + g. Thus,

YRB =
siai

sjaj
YLB +

sibi − sjbj + g

sjaj
=

SLB

SRB
YLB +

sibi − sjbj + g

SRB
.

Taking a = SLB

SRB
and b = sibi−sjbj+g

SRB
, we can express the variables of RB in

terms of the reference variable YB = YLB as:

yk = akYRB + bk = ak(aYLB + b) + bk = a′
kYLB + b′k

where
a′

k = (aka) =
SRB

sk

SLB

SRB
=

SLB

sk
=

SB

sk

and b′k = akb + bk.
The procedure expand block(b, c̃) is probably the most complex part of the

algorithm. It deals with a case where a previously constructed block now causes
a constraint c̃ between two variables in the block to be violated. To fix this we
must identify where to split the current block and then rejoin the sub-blocks
using c̃, in effect expanding the block to remove the violation by choosing a
different spanning tree of active constraints for the block. To do so, the algorithm
computes the best constraint sc in the active set on which to split based on its
Lagrange multiplier, λc. The intuition for this is that the value of λc gives the
rate of increase of the goal function as a function of cgap. Thus, the smaller
the value of λc the better it is to split the block at that constraint. However,
not all constraints in the active set are valid points for splitting. Clearly we
must choose a constraint that is on the path between the variables lvc̃ and
rvc̃. The call to the function comp path returns the list of variables [v1, ..., vk]
on this path. Furthermore, to be a valid split point the constraint c must be
oriented in the same direction as c̃, i.e. for some j, lcc = vj and rcc = vj+1. If
there are no such constraints then the constraints (and the original separation
constraints) are infeasible so the algorithm terminates with an error. Otherwise,
the split constraint sc is simply the valid split constraint with the least Lagrange
multiplier. The remainder of expand block uses split block to split the block by
removing sc from the active set CB and then uses merge block to rejoin the two
sub-blocks with constraint c̃.

Clearly, project will only terminate if either no constraints are violated, or
expand block terminates with an error. We show that if expand block gives rise
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to an error then the original separation constraints are unsatisfiable. It gives rise
to an error if there is a scaled constraint c̃ of form s′1v1 + g ≤ s′nvn and a path
of active constraints from v1 to vn of form

s′2v2 + g1 ≤ s′1v1, s
′
3v3 + g2 ≤ s′2v2, ..., s

′
nvn + gn−1 ≤ s′n−1vn−1

since the orientation of the constraints is opposite that of c̃. Thus, a consequence
of the path constraints is that s′nvn + g′ ≤ s′1v1 where g′ =

∑n−1
i=1 gi. The

current placement of v1 and vn satisfies s′nvn + g′ = s′1v1 but does not satisfy
s′1v1 + g ≤ s′nvn. Thus s′nvn + g′ = s′1v1 and s′1v1 + g > s′nvn and so s′nvn +
g′ + g > s′nvn. Thus, g + g′ > 0 and so the original scaled constraints are
unsatisfiable since s′nvn +g′ ≤ s′1v1 and g +g′ > 0 implies s′1v1 +g > s′nvn which
contradicts s′1v1 + g ≤ s′nvn. This also means the original separation constraints
are unsatisfiable since we have in the unscaled space x′

1+g ≤ x′
n and x′

1+g′ ≥ x′
n.

Thus, project always returns a feasible solution if one exists. The feasible solu-
tion is optimal in the case that nosplit is true and the solution has not changed.
Thus although the call to project is not initially guaranteed to return the optimal
solution it will converge towards it. Using this it is relatively straightforward to
show that solve QPSC converges towards the optimal solution.

Unfortunately, as for the unscaled gradient projection algorithm, we have
yet to provide a formal proof of termination of the project function, though
we conjecture that it does always terminate. The potential problem is that a
constraint may be violated, added to the active set, then removed from the
active set due to block expansion, and then re-violated because of other changes
to the block. Note that we have tried thousands of very different examples and
have never encountered non-termination.

Another potential source of non-termination, which arises in most active set
approaches, is that it may be possible for the algorithm to cycle by removing a
constraint because of splitting, and then be forced to add the constraint back
again. This can only occur if the original problem contains constraints that are
redundant in the sense that the set of equality constraints corresponding to the
separation constraints C, namely {u + a = v | (u + a ≤ v) ∈ C}, contains
redundant constraints. We could remove such redundant separation constraints
in a pre-processing step by adding εi to the gap for the ith separation constraint
or else use a variant of lexico-graphic ordering to resolve which constraint to
make active in the case of equal violation. We can then show that cycling cannot
occur. In practice however we have never found a case of cycling.

3 Results

To investigate the effect of diagonally scaled gradient projection on running
time and convergence of constrained stress-majorization layout, we compared
it against a number of other optimization methods for various graphs with a
range of degree distributions. Table 3 gives results in terms of running times and
numbers of iterations for a selection of graphs all of size around |V | = 1000. The
optimization methods tested were:
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(a) Unconstrained (b) Constrained

Fig. 3. A randomly generated tree as used in our tests, with 1071 nodes of varying
degree, drawn with and without constraints. The vertical constraints enforce downward-
pointing edges while the horizontal constraints are simply generated by an in-order
traversal of the tree.

CG. Unconstrained conjugate gradient (as recommended by [6] for (uncon-
strained) functional majorization).

Int. Pnt. A commercially available QP solver based on the interior point method
(Mosek1).

Unscaled GP. Gradient projection without scaling.
Scaled GP. Gradient projection with scaling.

Four different graphs were chosen with a range of different node-degree distri-
butions. The graphs were a randomly generated tree with |V | = 1071 and node
degree ranging from 1 to 4 (Fig. 3); an Erdõs–Rényi random graph of poisson
degree distribution [9] and |V | = 1000; a random graph with power-law degree
distribution generated using the Barabási–Albert model [10] (e.g. Fig. 4); and a
graph from the Matrix Market2 that we have used before in performance testing
of constrained layout methods [4].

For all methods except CG (which can not easily be extended to handle con-
straints) we ran both with and without a basic set of downward pointing edge
constraints [4]. For the tree graph we also included ordering constraints over the
x-node positions based on a simple in-order traversal of the graph. The con-
straints were chosen to be simple to generate, easy to visually verify, and to
be similar to the types of constraints that might be useful in practical layout
situations.

Numbers of stress-majorization iterations are given for each graph, with and
without constraints. These are the same across all solvers since each solves the
quadratic-program subproblems to optimality. For CG and GP solver methods
we also give the total number of iterations required. This helps to explain the
1 http://www.mosek.org
2 http://math.nist.gov/MatrixMarket/
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(a) Unconstrained (b) Constrained

Fig. 4. A randomly generated scale-free graph as used in our tests. It has 500 nodes with
power-law distribution of degree and is drawn with and without vertical downward-
pointing edge constraints.

Table 1. Results of applying stress majorization using various different techniques to
solve the quadratic problems at each iteration

Graph Constraints Solver Stress Maj. Total Total time
Hor. Vert. Iterations Iterations (secs)

Random 0 0 CG 48 646 8.82
Tree 0 0 Int. Pnt. 48 N/A 42.69

0 0 Unscaled GP 48 1607 19.97
|V | = 1071 0 0 Scaled GP 48 833 13.88

1070 1070 Int. Pnt. 38 N/A 341.69
1070 1070 Unscaled GP 38 2650 33.12
1070 1070 Scaled GP 38 1071 17.31

Poisson 0 0 CG 83 908 12.52
random 0 0 Int. Pnt. 83 N/A 62.17

0 0 Unscaled GP 83 1907 23.51
|V | = 1000 0 0 Scaled GP 83 1244 19.34

0 1478 Int. Pnt. 46 N/A 175.93
0 1478 Unscaled GP 46 2336 20.88
0 1478 Scaled GP 46 1717 15.81

Power-law 0 0 CG 91 983 13.45
random 0 0 Int. Pnt. 91 N/A 68.21

0 0 Unscaled GP 91 2140 26.3
|V | = 1000 0 0 Scaled GP 91 1287 20.43

0 1598 Int. Pnt. 101 N/A 390.07
0 1598 Unscaled GP 101 1914 48.9
0 1598 Scaled GP 101 1717 28.21

Bus 1138 0 0 CG 48 848 10.58
0 0 Int. Pnt. 48 N/A 49.08

|V | = 1138 0 0 Unscaled GP 48 1904 25.03
0 0 Scaled GP 48 875 16.49
0 1458 Int. Pnt. 43 N/A 190.06
0 1458 Unscaled GP 43 2697 36.12
0 1458 Scaled GP 43 1148 19.97

differences in running time between the different methods. Without constraints
CG was clearly fastest, solving the problem in fewer iterations and having to do
slightly less work in each iteration. This is to be expected since CG is known to
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Fig. 5. Rate of convergence
|xk+1−x∗|

|xk−x∗| shown for each iteration k of the first gradient-
projection iterate when applying stress majorization to the 1138bus graph. Note that
x∗ is simply taken as the final configuration before the threshold is reached so the final
tail-off in both curves should be disregarded.

achieve super-linear convergence. Of the remaining methods, across all graphs,
constrained or not scaled GP was the fastest (converging in significantly fewer
iterations), followed by unscaled GP and the interior point method was slowest
by several fold. In all cases scaling improved the running time by at least 20%.
Interestingly, the improvement in speed in GP when scaling was applied was
more marked when constraints were also solved, e.g. for the tree example it was
almost twice as fast. To check scalability we also repeated the tests for random
graphs between 50 and 2000 nodes and the speed improvement observed with
scaling remained a fairly constant factor between 1.5 and 2.

Fig. 5 gives a graphic explanation of how scaling improves the convergence of
the GP method. The figure shows rate of convergence by iteration for the first
QP solved by the GP method in a stress majorization layout of the 1138bus
graph. Convergence rate is, as usual, defined as the distance from an optimal
solution at iteration k + 1 divided by the distance at iteration k. As shown in
Fig. 2 we stop the GP procedure when the descent vector has length smaller than
some threshold τ and for this test, to ensure a reasonable number of iterations
we set τ very small (10−15). With scaling convergence is roughly constant and
the threshold is reached after 25 iterations. Without scaling, the convergence
rate oscillates and the threshold is not reached until 44 iterations.

4 Conclusion

Constrained stress majorization is a promising new technique for integrating ap-
plication specific layout constraints into force-directed graph layout. The method
previously suggested for solving the special kind of quadratic program arising
in constrained stress majorization is a specialized gradient projection algorithm
for separation constraints. We have demonstrated that by performing diagonal
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scaling on the quadratic programming and generalizing the projection algorithm
to handle positively scaled separation constraints, we can significantly improve
the speed and convergence properties of the constrained stress-majorization tech-
nique. Importantly, this improvement comes at very little extra implementation
effort. Thus, we believe that gradient projection with diagonal scaling is the
method of choice for solving constrained stress majorization.

Our results have greater scope than graph layout since constrained stress ma-
jorization is immediately applicable to constrained multidimensional scaling (as
the two problems are analogous). We also believe that the use of diagonal scal-
ing may benefit other force-directed layout methods that are based on steepest
descent.

References

1. Fisk, C.J., Isett, D.D.: ACCEL: automated circuit card etching layout. In: DAC
1965. Proceedings of the SHARE design automation project, pp. 9.1–9.31. ACM
Press, New York (1965)

2. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. In-
formation Processing Letters 31, 7–15 (1989)

3. Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed
layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 8–19.
Springer, Heidelberg (2007)

4. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for
separation constraint layout of graphs. IEEE Transactions on Visualization and
Computer Graphics 12, 821–828 (2006)

5. Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: theory and applications,
2nd edn. Springer, Heidelberg (2005)

6. Gansner, E., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach,
J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

7. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)
8. Dwyer, T., Marriott, K.: Constrained stress majorization using diagonally scaled

gradient projection. Technical Report 217, Clayton School of IT, Monash Univer-
sity (2007)
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Abstract. We consider the problem of drawing a set of simple paths
along the edges of an embedded underlying graph G = (V, E), so that
the total number of crossings among pairs of paths is minimized. This
problem arises when drawing metro maps, where the embedding of G de-
picts the structure of the underlying network, the nodes of G correspond
to train stations, an edge connecting two nodes implies that there ex-
ists a railway line which connects them, whereas the paths illustrate the
lines connecting terminal stations. We call this the metro-line crossing
minimization problem (MLCM).

In contrast to the problem of drawing the underlying graph nicely,
MLCM has received fewer attention. It was recently introduced by
Benkert et. al in [4]. In this paper, as a first step towards solving MLCM
in arbitrary graphs, we study path and tree networks. We examine several
variations of the problem for which we develop algorithms for obtaining
optimal solutions.

Keywords: Metro Maps, Crossing Minimization, Lines, Paths, Trees.

1 Motivation

We consider a relatively new problem that arises when drawing metro maps
or public transportation networks in general. In such drawings, we are given
an undirected embedded graph G = (V, E), which depicts the structure of the
underlying network. In the case of metro maps, the nodes of G correspond to the
train stations whereas an edge connecting two nodes implies that there exists a
railway line which connects them. The problem we consider is motivated by the
fact that an edge within the underlying network may be used by several metro
lines. Since crossings are often considered as the main source of confusion in a
visualization, we want to draw the lines along the edges of G, so that they cross
each other as few times as possible.
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In the graph drawing literature, the focus has been so far exclusively on draw-
ing the underlying graph nicely and not on how to embed the bus or the metro
lines along the underlying network. The latter problem was recently introduced
by Benkert et. al in [4]. Following their approach, we assume that the underly-
ing network has already received an embedding. The problem of determining a
solution of the general metro-line routing problem, in which the graph drawing
and line routing are solved simultaneously would be of particular interest as a
second step in the process of automated metro map drawing.

2 Problem Definition

We are given an undirected embedded graph G = (V, E). We will refer to G
as the underlying network. We are also given a set L = {l1, l2, . . . , lk} of simple
paths of G (in the following, referred to as lines). Each line li consists of a
sequence of edges e1 = (v0, v1), . . . , ed = (vd−1, vd) of G. The nodes v0 and vd

are referred to as the terminals of line li. We also denote by |li| the length of line
li. The main task is to draw the lines along the edges of G, so that the number of
crossings among pairs of lines is minimized. We call this the metro-line crossing
minimization problem (MLCM). Formally, the MLCM problem is defined as a
tuple (G, L), where G is the underlying network and L is the set of lines.

One can define several variations of the MLCM problem based on the type
of the underlying network, the location of the crossings and/or the location of
the terminals. In general, the underlying network is an undirected graph. In this
paper, as a first step towards solving MLCM problem in arbitrary graphs, we
study path and tree networks.

For aesthetic reasons, we insist that the crossings between lines that traverse
a node of the underlying network should not be hidden under the area occupied
by that node. This implies that the relative order of the lines should not change
within the nodes and therefore, all possible crossings have to take place along
the edges of the underlying network.

In our approach, we assume that the nodes are drawn as rectangles, which is
a quite usual convention in metro maps. Each line that traverses a node u has
to touch two of the sides of u at some points (one when it “enters” u and one
when it “leaves” u). These points are referred to as tracks. In general, we may
permit tracks to all four side of the node, i.e. a line that traverses a node may
use any side of it to either “enter” or “leave”. This model is referred to as 4-side
model (see Figure 1). A more restricted model referred to as 2-side model is the
one, where all lines that traverse a node use only its left and right sides (see
Figure 2). In the latter case, we only allow tracks at the left and right sides of
the node. Note that a solution for the MLCM problem should first specify the
number of tracks that enter each side of each station and, for each track, the
line of L that uses it.

A further refinement of the MLCM problem concerns the location of the
terminals at the nodes. A particularly interesting case - that arises under the
2-side model - is the one where the lines that terminate at a station occupy its
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Fig. 1. 4-side model Fig. 2. 2-side model

Top station ends

Bottom station ends

Middle tracks

Fig. 3. Station ends, middle tracks

topmost and bottommost tracks, in the following referred to as top and bottom
station ends, respectively. The remaining tracks on the left and right sides of
the station are referred to as middle tracks and are occupied by the lines that
traverse the station. Figure 3 illustrates the notions of station ends and middle
tracks on the left and right sides of a station (solid lines correspond to lines
that terminate, whereas the dashed lines correspond to lines that traverse the
station). Based on these we introduce the following two variants of the MLCM
problem:

(a) The MLCM problem with terminals at station ends (MLCM-SE), where we
ask for a drawing of the lines along the edges of G so that (i) all lines
terminate at station ends and (ii) the number of crossings among pairs of
lines is minimized.

(b) The MLCM problem with terminals at fixed station ends (MLCM-FixedSE),
where all lines terminate at station ends and the information whether a line
terminates at a top or at a bottom station end in its terminal stations is
specified as part of the input. We ask for a drawing of the lines along the
edges of G so that the number of crossings among pairs of lines is minimized.

2.1 Related Literature

The problem of drawing a graph with a minimum number of crossings has been
extensively studied in the graph drawing literature. For a quick survey refer to
[2] and [6]. However, in the problems we study in this paper we assume that the
underlying graph has already received an embedding and we seek to draw the
lines along the graph’s edges, so that the number of crossings among pairs of
lines is minimized.

This problem was recently introduced by Benkert et. al in [4]. In their work,
they proposed a dynamic-programming based algorithm that runs in O(n2) time
for the one-edge layout problem, which is defined as follows: Given a graph G =
(V, E) and an edge e = (u, v) ∈ E, let Le be the set of lines that traverse e. Le

is divided into three subsets Lu, Lv and Luv. Set Lu (Lv) consists of the lines
that traverse u (v) and terminate at v (u). Set Luv consists of the lines that
traverse both u and v and do not terminate either at u or at v. The lines for
which u is an intermediate station, i.e., Luv ∪ Lu, enter u in a predefined order
Su. Analogously, the lines for which v is an intermediate station, i.e., Luv ∪ Lv,
enter v in a predefined order Sv. The number of pairs of intersecting lines is
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then determined by inserting the lines of Lu into the order Sv and by inserting
the lines of Lv into the order Su. The task is to determine appropriate insertion
orders so that the number of pairs of intersecting lines is minimized. However,
Benkert et. al [4] do not address the case of larger graphs and they leave as an
open problem the case where the lines that terminate at a station occupy its
station ends.

For the latter problem, Asquith et al. [1] proposed an integer linear program,
which always determines an optimal solution regardless the type of the underly-
ing network. They mention that their approach can be generalized to support the
case where the set of the lines consists of subgraphs of the underlying network
of maximum degree 3.

A closely related problem to the one we consider is the problem of drawing
a metro map nicely, widely known as metro map layout problem. Hong et al.
[5] implemented five methods for drawing metro maps using modifications of
spring-based graph drawing algorithms. Stott and Rodgers [9] have approached
the problem by using a hill climbing multi-criteria optimization technique. The
quality of a layout is a weighted sum over five metrics that were defined for eval-
uating the niceness of the resulting drawing. Nöllenburg and Wolff [8] specified
the niceness of a metro map by listing a number of hard and soft constraints
and they proposed a mixed-integer program which always determines a drawing
that fulfills all hard constraints (if such exists) and optimizes a weighted sum of
costs corresponding to the soft constraints.

In Section 3, we consider the MLCM problem on a path. We show that the
MLCM-SE problem is NP -Hard and we present a polynomial time algorithm
for the MLCM-FixedSE problem. In Section 4, we consider the MLCM problem
on a tree and we present polynomial time algorithms for two variations of it.
We conclude in Section 5 with open problems and future work. Due to lack of
space, Theorem proofs are either sketched or omitted. Detailed proofs can be
found in [3].

3 The Metro-line Crossing Minimization Problem on a
Path

We first consider the case where the underlying network G is a path and its
nodes are restricted to lie on a horizontal line. We adopt the 2-side model where
each line uses the left side of a node to “enter” it and the right one to “leave”
it. Then, assuming that there exist no restrictions on the location of the line
terminals at the nodes, it is easy to see that there exist solutions without any
crossing among lines. So, we further assume that the lines that terminate at
a station occupy its top and bottom station ends. In particular, we consider
the MLCM-SE problem on a path. Since the order of the stations is fixed as
part of the input of the problem, the only remaining choice is whether each line
terminates at the top or at the bottom station end in its terminal stations. In
the following, we show that under this assumption, the problem of determining a



Line Crossing Minimization on Metro Maps 235

solution so that the total number of crossings among pairs of lines is minimized
is NP -Hard, by reducing to it the fixed linear crossing number problem [7].

Definition 1. Given a simple graph G = (V, E), a linear embedding of G is a
special type of embedding in which the nodes of V are placed on a horizontal line
L and the edges are drawn as semicircles either above or bellow L.

Definition 2. A node ordering (or a node permutation) of a graph G is a
bijection δ : V → {1, 2, . . . , n}, where n = |V |. For each pair of nodes u and v,
with δ(u) < δ(v) we shortly write u < v.

Masuda et al. [7] proved that it is NP -Hard to determine a linear embedding
of a given graph with minimum number of crossings, even if the ordering of the
nodes on L is fixed. The latter problem is referred to as fixed linear crossing
number problem.

Theorem 1. The MLCM-SE problem on a path is NP -Hard.

Proof. Let I be an instance of the fixed linear crossing number problem, consist-
ing of a graph G=(V, E) and a horizontal input line L, where V={u1, u2, . . . , un}
and E = {e1, e2, . . . , em}. Without loss of generality, we assume that u1 < u2 <
. . . < un. We construct an instance I ′ of the MLCM-SE problem on a path as
follows: The underlying network G′ = (V ′, E′) is a path consisting of n+2 nodes
and n+1 edges, where V ′ = V ∪{u0, un+1} and E′ = {(ui−1, ui); 1 ≤ i ≤ n+1}.
The set of lines L is partitioned into two sets LA and LB:

– LA consists of a sufficiently large number of lines (e.g. 2nm2 lines) connecting
u0 with un+1.

– LB contains m lines l1, l2, . . . , lm one for each edge of G. Line li which cor-
responds to edge ei of G, has terminals at the end points of ei.

u1 u2 u3 u4 u5 u6
L

Fig. 4. A linear embedding

u1 u2 u3 u4 u5 u6u0 u7

Fig. 5. An instance of MLCM-SE problem

Figures 4 and 5 illustrate the construction. First observe that all lines of LA

can be routed “in parallel” without any crossing among them (see Figure 5).
Also observe that in an optimal solution none of the lines l1, l2, . . . , lm crosses
the lines of LA, since that would contribute a very large number of crossings.
Thus, in an optimal solution each line of LB has both of its terminals either at
top or at bottom station ends. So, in a sense, we exclude the case where a line
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li ∈ LB has one of its terminals at a top station end, whereas the second one
at a bottom station end. It is easy to see now that there exists an one-to-one
correspondence between the crossings among the edges of I and the crossings
among the lines in I ′, as desired. ��

3.1 The Metro-line Crossing Minimization Problem with Fixed
Positioned Terminals

Theorem 1 implies that, unless P = NP , we can not efficiently determine an
optimal solution of MLCM-SE problem on a path. The main reason for this is
that the information whether each line terminates at the top or at the bottom
station end in its terminal stations is not known in advance. In the following,
we assume that this information is part of the input, which is a reasonable
assumption, since terminals may represent physical locations within a station.
In particular, we show that the MLCM-FixedSE problem on a path can be solved
in polynomial time.

To simplify the description of our algorithm, we assume that each node ui

of the path G is adjacent to two nodes ut
i and ub

i , each of which will be the
terminal of the lines that terminated at the top and bottom terminal tracks of
node ui, respectively1. In the drawing of G, ut

i is placed directly on top of ui

(top leg of ui), whereas ub
i directly bellow it (bottom leg of ui), see Figure 6a. So,

instead of restricting each line to terminate at a top or at a bottom station end
in its terminal stations, we will equivalently consider that it terminates to two
leg nodes. We refer to this special type of graph which is implied by the addition
of the leg nodes as caterpillar with at most two legs per node.

A caterpillar with at most two legs per node consists of two sets of nodes. The
first set, denoted by Vb, contains n nodes u1, u2, . . . , un (referred to as backbone
nodes), which form a path. In the embedding of G, these nodes are collinear and
more precisely they are located on a horizontal line so that u1 < u2 < . . . < un.
The second set of nodes, denoted by Vl, contains n′ nodes v1, v2, . . . vn′ of degree
1 (referred to as leg nodes or simply as legs) each of which is connected to one
backbone node. In the embedding of G, we assume that for each backbone u one
of its legs is placed directly on top of it, whereas the second one directly bellow
it. Since each backbone node is adjacent to at most two legs, n′ ≤ 2n.

If v is a leg node, we will refer to its neighbor backbone node as bn(v). Edges
that connect backbone nodes are called backbone edges. Edges that connect back-
bone nodes with legs are called leg edges.

Definition 3. Let l ∈ L be a line that connects two terminals v and v′. If v is
located to the left of v′ in the embedding of the underlying network, i.e. v < v′,
then we consider v to be the origin of line l, whereas v′ to be its destination. We
also denote by Lt

i (Lb
i ) the lines that have as origin the top (bottom) leg node

adjacent to backbone node ui.
1 In the degenerated case, where there exists no lines terminating either at the top or

bottom terminal tracks of node ui, we assume that either ut
i or ub

i does not exist,
respectively.
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Definition 4. Let l and l′ be a pair of lines that have the same origin w and
destination nodes v and v′, respectively. We say that l precedes l′, if when we
start moving from w along the external face of G in counterclockwise direction
we meet v before v′. The notion of precedence defines an order � among the
lines that have the same origin, namely l � l′, if and only if l precedes l′.

Lemma 1. The number of tracks in the left and right side of each backbone node
that are needed in order to route all lines in L can be computed in O(n+

∑|L|
i=1 |li|)

time.

Proof. The number of tracks in the right side of the leftmost backbone node u1
is |Lt

1| + |Lb
1|. Due to the fact that no lines have as terminal a backbone node,

the same number of tracks are needed in the left side of node u2. We index
the needed tracks from top to bottom (refer to Figure 6b). We compute the
number of tracks in the left side of any backbone node ui as the number of lines
originating at nodes < ui and destined for nodes ≥ ui. Similarly, we compute
the number of tracks in the right side of any backbone node ui as the number
of lines originating at nodes ≤ ui and destined for nodes > ui.

Assuming that Lui is the set of lines that traverse a backbone node ui, then
the tracks at the left and right side of backbone node ui can be computed in
O(|Lui |) time, yielding to a total O(n +

∑|L|
i=1 |li|) time. ��

The lines of L are drawn incrementally by performing a left to right pass over
the set of backbone nodes and by extending them from station to station with
small horizontal or diagonal line segments. Therefore, each line l ∈ L is drawn
as a polygonal line.

In each leg edge, that connects leg node v to bn(v), we use |Lv| tracks indexed
from right to left (refer to Figure 6b), where set Lv consists of the lines that
either originate at or are destined for leg node v. These tracks will be used in
order to route the lines that either originate at or are destined for leg node v.

In each backbone node ui, we have to route the newly “introduced” lines, i.e.
the ones that originate either at the top or at bottom leg of ui. This procedure is
illustrated in Figure 6b. We first consider the top leg node ut

i of ui. We sort the
set Lt

i of the lines that originate at ut
i in increasing order � of their destinations

and store them in Sort(Lt
i). Based on this sorting we route the j-th line l in

Sort(Lt
i) through the j-th rightmost track at the top of ui. l is then routed to

the j-th top track in the right side of ui. We proceed by considering the bottom
leg node ub

i of ui. Again, we sort the set Lb
i of the lines that originate at ub

i in
decreasing order � of their destinations and store them in Sort(Lb

i ). Based on
the sorting, we route the j-th line l in Sort(Lb

i ) through the j-th rightmost track
at the the bottom of ui and then to the j-th bottom track in the right side of
ui. We then route the lines that go from the tracks of the left side to the tracks
of the right side of ui, by preserving their relative positions.

The next step is to route the lines from the right side of ui to the left side of
ui+1. This is done by performing three passes over the set of tracks of the right
side of ui.
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(a)

2nd track from top

2nd track from bottom

1st track from top

1st track from bottom

1st track from right

ui

(b)

ui ui+1

right side of ui

left side of ui+1

(c)

Fig. 6. (a) A caterpillar with at most 2 legs per node, (b) Introducing new lines to a
station, (c) Routing lines along a backbone edge

In the first pass, we consider the tracks of the right side of ui from top to
bottom and we check whether the line l that occupies the j-th track is destined
for the leg node ut

i+1. In this case, we route l to the topmost available track of
the right side of ui+1 and then to the leftmost available track in the leg edge
which connects ui+1 with ut

i+1 (see the dotted lines of Figure 6c). In the second
pass, we consider the remaining tracks of the right side of ui from bottom to top
and we check whether the line l that occupies the j-th track is destined for the
leg node ub

i+1. In this case, we route l to the bottommost available track of the
right side of ui+1 and then to the leftmost available track in the leg edge which
connects ui+1 with ub

i+1 (see the dash dotted lines of Figure 6c).
The remaining tracks of the right side of ui are obviously occupied by the lines

that are not destined for either ut
i+1 or for ub

i+1. We consider these tracks from
top to bottom and we route the line l that occupies the j-th track to the topmost
available track of the right side of ui+1 (see the dashed lines of Figure 6c). The
construction of our algorithm guarantees the following two properties:

Property of common destinations: Lines that are destined for the
same top (bottom) leg node ut

i (ub
i ) do not cross each other along the

backbone edge which connects ui−1 with ui.
Property of parallel routing: Two lines that both traverse a backbone
node ui (i.e. none of them are destined either for ut

i or for ub
i) do not

cross each other along the backbone edge which connects ui−1 with ui.

By combining the property of common destinations and the property of par-
allel routing, we easily obtain the following lemma.

Lemma 2. In a solution produced by our algorithm the followings hold:

(i) Two lines l and l′ cross each other at most once.
(ii) Two lines l and l′ with the same origin do not cross each other.
(iii) Two lines l and l′ with the same destination do not cross each other.
(iv) Let l and l′ be two lines that cross each other and let l (l′) be destined

for leg node v (v′), where v is to the left of v′ in the embedding of G.
Then, l and l′ will cross along the backbone edge which connects uk−1
and uk, where uk = bn(v).
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By using Lemma 2, we can show that our algorithm produces an optimal solution,
in terms of line crossings. Theorem 2 summarizes our result.

Theorem 2. An instance (G, L) of the MLCM-FixedSE problem on an n-node
path P can be solved in O(n +

∑|L|
i=1 |li|) time.

4 The Metro-line Crossing Minimization Problem on a
Tree

In this Section, we consider the MLCM problem on a tree T = (V, E), where
V = {u1, . . . , un} and E = {e1, . . . , en−1}. In the embedding of T , we assume
that the neighbors of each node u of T are located either to the left or to the
right of u. In particular, we consider a “left-to-right tree structured network” to
represent the underlying network. In such a network, we do not allow lines which
make “right-to-right” or “left-to-left” turns, which implies that all lines should
be x-monotone. This assumption is motivated by the fact that a train can not
make an 180◦ turn within a station. We seek to route all lines along the edges
of T , so that the total number of crossings along the lines is minimum.

We adopt the 2-side model, where each line uses the left side of a node to
“enter” it and the right one to “leave” it. We refer to the edges that are adjacent
to the left (right) side of node u in the embedding of T as incoming (outgoing)
edges of u. Since we assume that the lines are x-monotone, the notions of the
origin and the destination of a line, as defined in Section 3.1, also apply in the
case of line crossing minimization on “left-to-right tree structured network”.

We consider the case where all terminals are located only at nodes of degree 1
and the lines can terminate at any track of their terminal stations2.

Assuming that the edges of T are directed from left to right in the embedding
of T , we first perform a topological sorting over the nodes of T . We will use
this sorting later on when we route all lines along the edges of T . We proceed
by numbering all nodes of T with outdegree zero3 according to the order of
appearance when moving clockwise along the external face of T starting from
the first node obtained from the topological sort. Note that such a numbering
is unique and we refer to it as the Euler tour numbering of the destination
nodes.

Since the number of lines that “enter” an internal node is equal to the number
of lines that “leave” it, we simply have to specify either the order of the lines
that enter the node or the corresponding order when they leave it. Recall that
we do not permit crossings inside the nodes. As in the preceding section, we
route the lines along the edges of T incrementally. We consider the nodes of T in
their topological order. This ensures that whenever we consider the next node u
all of its incoming lines have already been routed up to its left neighbor nodes.
We distinguish the following cases:
2 Recall that, in the case of a path network, this problem was quite easy due to the

structure of the path.
3 Such nodes are possible line destinations.
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Fig. 7. A sample routing obtained from our algorithm

Case 1: indegree(u) = 0
If node u is of indegree zero (i.e. u is a leaf containing the origins of some
lines), we simply sort the lines that originate from u based on the Euler tour
numbering of their destinations in ascending order.

Case 2: indegree(u) = 1
We simply pass the lines from the left neighbor node of u to u without
introducing any crossing (i.e. by keeping the order of the lines unchanged).

Case 3: indegree(u) > 1
In the case where node u is of indegree greater than one, we have to “merge”
its incoming lines and thus, we may introduce crossings. We “stably merge”
the incoming lines based on the Euler tour numbering of their destinations
so that:
– Lines coming along the same edge do not change order.
– If two lines with the same destination come along different edges, the

one coming from the topmost edge is considered to be smaller.

Figure 7 illustrates a sample routing produced by our algorithm. We use
different types of lines to denote lines that originate at a common leaf node. The
construction of our algorithm supports the following Lemma:

Lemma 3. In a solution produced by our algorithm the following hold:

(i) Two lines l and l′ cross each other at most once.
(ii) Two lines l and l′ with the same origin do not cross each other.
(iii) Two lines l and l′ with the same destination do not cross each other.
(iv) Let l and l′ be two lines that cross each other. Then, l and l′ will cross

along their leftmost common edge.
(v) Let l and l′ be two lines that cross each other. Then, l and l′ will cross

just before entering their leftmost common node.

By using Lemma 3, we can show that our algorithm produces an optimal solution,
in terms of line crossings. Theorem 3 summarizes our result.
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Theorem 3. Assuming that each line terminates at leaf nodes, an instance
(T, L) of the MLCM problem on a “left-to-right” n-node tree T can be solved
in O(n +

∑|L|
i=1 |li|) time.

4.1 The MLCM-SE and MLCM-FixedSE Problems on a Tree

Since a path can be viewed as a degenerated case of a tree, Theorem 1 im-
plies that MLCM-SE problem on a tree is NP -Hard . However, for the MLCM-
FixedSE problem we can obtain a polynomial time algorithm adopting a similar
approach as the one of Section 3.1. For each node u of T we introduce at most
four new nodes ut

L, ub
L, ut

R and ub
R adjacent to u. Node ut

L (ub
L) is placed on

top (bellow) and to the left of u in the embedding of T and contains all lines
that originate at u’s top (bottom) station end. Similarly, node ut

R (ub
R) is placed

on top (bellow) and to the right of u in the embedding of T and contains all
lines that are destined for u’s top (bottom) station end. In the case where any
of the ut

L, ub
L, ut

R or ub
R does not contain any lines we ignore its existence. So,

instead of restricting each line to terminate at a top or at a bottom station end
in its terminal stations, we equivalently consider that it terminates to some of
the newly introduced nodes. Note that the underlying network remains a tree
after the introduction of the new nodes, so our algorithm can be applied in this
case, too. The following Theorem summarizes our result.

Theorem 4. An instance (T, L) of the MLCM-FixedSE problem on a “left-to-
right” n-node tree T can be solved in O(n +

∑|L|
i=1 |li|) time.

5 Conclusions

Clearly, our work is a first step towards solving the MLCM problem and its vari-
ants in arbitrary graphs. Extending the work of Benkert et al. [4] we studied path
and tree networks. However, we did not consider the case where the underlying
network is an arbitrary graph. Additionally, for the case where the underlying net-
work is a tree we only considered the case, where the terminals are located at nodes
of degree 1. No results are known regarding the case where we permit terminals
at internal nodes of the tree. Another line of research would be to develop approx-
imation algorithms for the MLCM-SE problem on paths and trees. The problem
of determining a solution of the general metro-line routing problem, in which the
graph drawing and line routing are solved simultaneously is also of particular in-
terest as a second step in the process of automated metro map drawing.
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Abstract. We present new algorithms for labeling a set P of n points
in the plane with labels that are aligned to the left of the bounding box
of P . The points are connected to their labels by curves (leaders) that
consist of two segments: a horizontal segment, and a second segment
at a fixed angle with the first. Our algorithm finds a collection of non-
intersecting leaders that minimizes the total number of bends, the total
length, or any other ‘badness’ function of the leaders. An experimental
evaluation of the performance is included.

1 Introduction

Presentations of visual information often make use of textual labels for features
of interest within the visualizations. Examples are found in diverse areas such
as cartography, anatomy, engineering, sociology etc. Graphics in these areas
may have very dense regions in which objects need textual labels to be fully
understood. A lot of research on automatic label placement has concentrated on
placing labels inside the graphic itself, see the bibliography on map labeling by
Wolff and Strijk [6]. However, this is not always possible: sometimes the labels
are too large, the labeled features lie to close to each other, or the underlying
graphic should remain fully visible. In such cases it is often necessary to place
the labels next to the actual illustration and connect each label to its object by a
curve—see Figure 1. This is also denoted as a call-out, and the curves are called
leaders. Geographic maps that depict metropolitan areas and medical atlases are
examples where call-outs are used.

To produce a call-out, we have to decide where exactly to place each object’s
label and how to draw the curves such that the connections between objects and
labels are clear and the leaders do not clutter the figure. Clearly, leaders should
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Nöllestadt

Haverdorf

Benkersund

Krollberg

Nöllestadt

Haverdorf

Benkersund

Krollberg

Fig. 1. Examples of call-outs with bends of 90◦ (po-leaders) or 120◦ (do-leaders), re-
spectively. The leaders for Haverdorf are direct leaders.

not intersect each other to avoid confusion, and several authors have designed
algorithms to produce non-intersecting leaders in several settings. Fekete and
Plaisant [5] label point objects with polygonal leaders with up to two bends
in an interactive setting, Ali et al. [1] describe heuristics to label points with
straight-line and rectilinear leaders. Bekos et al. use rectilinear leaders with up
to two bends. They study settings with labels arranged on one, two, or four
sides of the bounding box of the illustration [4], in multiple stacks to the left [2],
or where the objects to be labeled are polygons rather than points [3]. Maybe
surprisingly, relying exclusively on straight-line leaders is not always the best
choice. The reason is that the variety of different slopes among the leaders may
clutter the figure, especially if the number of labels is large. Leaders tend to look
less disturbing if their shape is more uniform and a small number of slopes is
used, like with rectilinear leaders. On the other hand, leaders appear easier to
follow if their bends are smooth, so 90◦ angles may rather be avoided.

In this work we study how to label points with labels on one side of the
illustration and leaders with at most one bend. Bekos et al. [4] only studied
how to minimize the total leader length with rectilinear leaders in this setting;
their algorithm runs in O(n2) time. In this paper we consider other optimization
criteria, we consider leaders with smoother bends (using obtuse angles), and
for the case of rectilinear leaders with minimum total length, we improve the
running time to O(n log n). We will now state our problem more precisely.

Problem statement. We are given a set P of n points and n disjoint rectangles,
possibly of different sizes, called labels. The right edges of the labels all lie on
a common vertical line, which lies to the left of all points in P . No two labels
touch each other.

Labels can be connected to points by leaders that consist of two line segments:
a horizontal segment, called the arm, that is attached to the right edge of the
label and extends to the right, and a second segment, called the hand, that
connects the arm to the point. In all leaders the angle between the arm and the
hand must be some constant α. If α = 90◦ the leaders are called po-leaders ; if
α > 90◦, we call them do-leaders1. Both leader types are illustrated in Figure 1.
If the arm connects the label directly to the point, omitting a hand, the leader is
a direct leader. When α is fixed, a leader l is fully specified by its point p(l) and
the height (y-coordinate) of its arm. We assume that the ‘badness’ of a leader l is
given by a function bad(l). Natural choices for bad(l) would be, for example, the

1 Following the naming scheme of Bekos et al. [4].
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length of l or the number of bends (0 or 1), or functions taking the interference
of leaders with the underlying map into account. A labeling L is a set of n leaders
that connects all points to a unique label and all labels to a unique point. If no
two leaders in L intersect each other, we say that L is crossing-free.

The problem we want to solve is the following: for a given set of points, a
given set of labels, a given angle α, and a given badness function bad(), find a
crossing-free labeling L such that

∑
l∈L bad(l) is minimized.

Our results. In Section 2 we present algorithms for po-leaders (α = 90◦): an
O(n3)-time algorithm that works with arbitrary badness functions, and an
O(n log n)-time algorithm for labelings with minimum total leader length (thus
improving the O(n2)-bound of Bekos et al. [4]).

In Section 3 we present algorithms for do-leaders (α > 90◦): again first a
general algorithm, which runs in O(n5) time, and then a faster algorithm for
minimum total leader length, which takes O(n2) time. In Section 4 we present
the results of some preliminary experiments with our algorithms, and in Section 5
we briefly discuss possible extensions.

2 One-Sided Boundary Labeling Using po-leaders

In this section we study how to compute an optimal crossing-free labeling with
leaders that have 90◦ bends. In Section 2.1 we describe a general solution that
works for any badness function bad(). In Section 2.2 we will give a faster solution
for the case where bad(l) is simply the length of l.

For simplicity we assume that no two points lie on a horizontal or a vertical
line and no point lies on a horizontal line with an edge of a label (otherwise care
should be taken to break ties in a consistent manner).

2.1 A Dynamic Program for General Badness Functions

We present a dynamic programming solution based on the following idea. Let r
be the rightmost point to be labeled. Consider any optimal crossing-free labeling
L; let � be the label associated with r in L. Then L consists of an optimal leader l
connecting � to r, an optimal crossing-free labeling for the remaining labels and
points below the arm of l, and an optimal crossing-free labeling for the remaining
labels and points above the arm of l—see Figure 2.

Consider the subdivision of the plane into O(n) strips, induced by the hori-
zontal lines through the points and the horizontal edges of the labels. Note that
the bottommost strip is unbounded in downward direction, and the topmost
strip is unbounded in upward direction. To decide which labels and points lie
below the leader l to r, we only need to know in which strip the arm of l lies;
we do not need to know where exactly it is in the strip. When an arm lies on a
strip boundary, we can consider it to lie in the strip above the boundary or in
the strip below; the choice determines whether a point on the strip boundary is
considered to lie above or below the leader.
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k

k

σ

β

τ

σ

r(β, τ)
r(P )

Fig. 2. The recursive structure of an optimal solution. By the choice for the strip that
contains the arm of the leader to the rightmost point, the problem is separated into
two subproblems. As illustrated by strip σ in the lower subproblem, not all choices for
the separating strip σ yield feasible subproblems: in this case there are two points and
only one label below σ.

Hence an optimal crossing-free labeling can be found by trying all possible
choices of the strip σ in which to place the arm of the leader to r, and for each
choice, compute the optimal leader to r that has its arm in σ, and compute the
optimal crossing-free labelings below and above the arm recursively. Note that
we only need to consider feasible choices of σ, that is, choices of σ such that the
number of labels and the number of points below σ and to the left of r are the
same (for other choices of σ no labeling would be possible). In this case, as can
be seen in Figure 2, the points to be matched below σ are simply the leftmost
k points in the region defined by the strips below σ, where k is the number of
labels below σ; analogously, the points to be labeled above σ are the leftmost
points in the region defined by the strips above σ.

Let us denote by S(β, τ) the set of strips between strip β (bottom) and τ
(top), excluding β and τ . Let r(β, τ) be the k-th leftmost point in S(β, τ), where
k is the number of labels k(β, τ) that lie completely inside S(β, τ). Our recursive
approach thus solves subproblems of the following form: for the set of strips
S(β, τ), compute the optimal matching between the labels that lie completely
inside S(β, τ) and the matching number of leftmost input points inside (and on
the boundary of) S(β, τ). The minimum total badness BAD [β, τ ] of the optimal
crossing-free labeling for S(β, τ) is zero if k(β, τ) = 0, and otherwise it can be
expressed as:

min
feasible σ∈S(β,τ)

bad(l∗(r(β, τ), σ)) + BAD [β, σ] + BAD [σ, τ ]

where l∗(r(β, τ), σ) is the optimal leader to r(β, τ) with its arm in strip σ.

Theorem 1. Assume we are given a set of points P , a set of labels as described
in Section 1, and a badness function bad() such that we can determine, in O(n)
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time, the badness and the location of an optimal po-leader to a given point with
its arm in a given height interval (independent of the location of other leaders).
We can compute a crossing-free labeling with po-leaders for P with minimum
total badness in O(n3) time and O(n2) space.

Proof. We first sort all labels and points by y-coordinate, and all points by x-
coordinate, which requires O(n log n) time. We also compute and store l∗(p, σ)
and bad(l∗(p, σ)) for every point p and every strip σ, in O(n3) time and O(n2)
space. Then we compute the optimal crossing-free labeling by dynamic program-
ming with memoization. Apart from the recursive calls, solving a subproblem
requires deciding for which choices of σ the number of labels below σ matches the
number of points below σ, and looking up l∗(r(β, τ), σ) and bad(l∗(r(β, τ), σ))
for those strips. Given the list of all points sorted by x-coordinate and the list of
labels and points by y-coordinate, we can construct a list of all labels and points
in the given subproblem sorted by y-coordinate in O(n) time. By scanning this
list, we can determine in O(n) time which choices of σ yield feasible subprob-
lems. The number of different subproblems that need to be solved is quadratic
in the number of strips, so we need to solve O(n2) subproblems which are solved
in O(n) time each, taking O(n3) time in total. �

2.2 A Sweep-Line Algorithm for Minimizing the Total Leader Length

For the special case of minimizing the total leader length one can do better than
in O(n3) time. We will give an algorithm that runs in O(n log n) time and show
that this bound is tight in the worst case. However, before giving our algorithm,
we first prove the following Lemma, which we need for the proof of correctness
of our fast algorithms in this section and in Section 3.2.

Lemma 1. For any labeling L∗ with po- or do-leaders that may contain cross-
ings and has minimum total leader length, there is a crossing-free labeling L
whose total leader length does not exceed the total leader length of L∗. This la-
beling L can be constructed from L∗ in O(n2) time.

The idea for proving this lemma is to show that we can eliminate all crossings in
L∗ by iteratively swapping the labels of two points whose leaders intersect. Any
of these swaps does not increase the total leader length; the complete proof can
be found in a full version of this paper.

We now describe our O(n log n)-time algorithm to compute a crossing-free
labeling with po-leaders of minimum total length. The algorithm first scans the
input to divide it into parts that can be handled independently; then it uses a
sweep line algorithm for each of these parts.

The initial scan works as follows. Consider the horizontal strips defined in
the previous subsection. We traverse these strips in order from bottom to top,
counting for each strip σ:

– paσ: number of points above σ (incl. any point on the top edge of σ);
– �aσ: number of labels above σ (incl. any label intersecting σ);
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�

Fig. 3. Left: Classification of strips in the plane sweep algorithm: neutral strips are
shaded, downward and upward strips are marked by arrows. When the sweep line
reaches the label �, the two black points are in W . Right: The completed minimum-
length labeling.

– pbσ: number of points below σ (incl. any point on the bottom edge of σ);
– �bσ: number of labels below σ (incl. any label intersecting σ).

Note that for every strip, paσ + pbσ = n, and �aσ + �bσ is either n or n + 1.
We classify the strips in three categories and then divide the input into maximal
sets of consecutive strips of the same category (see Figure 3):

– downward: strips s such that paσ > �aσ (and therefore pbσ < �bσ);
– upward: strips s such that pbσ > �bσ (and therefore paσ < �aσ);
– neutral: the remaining strips; these have paσ = �aσ and/or pbσ = �bσ.

Neutral sets are handled as follows: any point p that lies in the interior of a
neutral set is labeled with a direct leader.

Points in an upward set S (including any points on its boundary) are labeled
as follows. We use a plane sweep algorithm, maintaining a waiting list W of
points to be labeled, sorted by increasing x-coordinate. Initially W is empty.
We sweep S with a horizontal line from bottom to top. During the sweep two
types of events are encountered: point events (the line hits a point p) and label
events (the line hits the bottom edge of a label �). When a point event happens,
we insert the point in W . When a label event happens, we remove the leftmost
point from W and connect it to � with the shortest possible leader. Using the
leftmost point for labeling � prevents producing crossings in the further run of
our algorithm.

Points in downward sets are labeled by a symmetric plane sweep algorithm,
going from top to bottom.

Theorem 2. Given a set of points P and a set of labels as described in Section 1,
computing a crossing-free labeling with po-leaders of minimum total length for P
takes Θ(n log n) time and O(n) space in the worst case.
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The proof of Theorem 2 will be available in a full version of the paper and shows
that the algorithm sketched above produces a crossing free labeling of minimum
length.

3 One-Sided Boundary Labeling Using do-leaders

In this section we study how to compute an optimal labeling with leaders that
have bends with a fixed angle α > 90◦. In section 3.1 we describe a general
solution that works for any badness function bad(). In section 3.2 we will give a
faster solution for the case where bad(l) is simply the length of l. For simplicity
we assume that no two points lie on a line that makes an angle of 0◦, 90◦, or
α with the x-axis, and no point lies on a horizontal line with an edge of a label
(otherwise care should be taken to break ties in a consistent manner).

3.1 A Dynamic Program for General Badness Functions

We use the same approach as for po-leaders, solving subproblems of the form: for
a given region R, label the k points with the k labels in that region, where R is
bounded from above and below by two leaders, and R is bounded on the right by
the vertical line through the rightmost point connected to those leaders. In fact
a subproblem was fully defined by specifying the strips β and τ that contain the
arms of the leaders: this determined which labels lie inside R, and consequently
which point defines the vertical boundary line on the right.

In addition to specify β and τ we now also have to specify the points b and t
to which the leaders that bound a subproblem are connected. This is illustrated
by Figures 4a and 4b: the subproblem defined by β, τ, b and t contains the point
r while the subproblem defined by β, τ, b′ and t contains the point r′ instead.
The total number of different subproblems may thus increase to O(n4).

r

b

β

τ

(a)

r

r′

β

τ

(b)

r

(c)

�
r′

b′

t

b

b′

t

Fig. 4. (a) The subproblem defined by β, τ, b and t. (b) The subproblem defined by
β, τ, b′ and t. (c) Because leaders have limited slope, no leader from r can reach �.

An additional complication is that as a result of the limited slope of leaders,
not every subproblem with the right number of labels and points can be solved—
see Figure 4c. The details are easily filled in and we get:
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Theorem 3. Assume we are given a set of points P , a set of labels as described
in Section 1, a bend angle α, and a badness function bad() such that we can
determine, in O(n) time, the badness and the location of an optimal do-leader to
a given point with its arm in a given height interval (independent of the location
of other leaders). We can now compute a crossing-free labeling with do-leaders
with bend angle α and minimum total badness for P , if such a labeling exists, in
O(n5) time and O(n4) space.

3.2 Minimizing the Total Leader Length

Like with po-leaders, we can use a plane sweep algorithm instead of dynamic
programming to improve the running time for the special case of minimizing the
total leader length. In the description of our algorithm we distinguish downward
diagonals (lines of negative slope that make an angle of α with the x-axis) and
upward diagonals (lines of positive slope that make an angle of α with the x-axis).
For each label � we can define three regions in the plane:

– A(�) is the relatively open half plane above the upward diagonal through the
upper right corner of �;

– B(�) is the relatively open half plane below the downward diagonal through
the lower right corner of �;

– R(�) is the complement of A(�) ∪ B(�).

Note that a do-leader from a point p to � is possible if and only if p ∈ R(�).
The core of our approach is a recursive sweep-and-divide algorithm that takes

as input a list of labels L and points P sorted in the order in which they would
be (first) hit by a downward diagonal sweep line that sweeps the plane bottom-
up and from left to right. For any line d, let L(d) be the set of labels whose
lower right corners lie below or on d, and let P (d) be the set of points that lie
below or on d. The algorithm sweeps the plane with a downward diagonal d up
to the first point where we have |P (d)| = |L(d)|. Observe that we will have to
find a one-to-one matching between P (d) and L(d), since no leaders are possible
between points below d and labels above d. We find such a matching as follows.

If P (d) �= P , we make a recursive call on P (d) and L(d), and a recursive call
on the remaining input (P \ P (d) and L \ L(d)), see Figure 5a.

If P (d) = P , we find the lowest label � ∈ L. If no point of P lies in R(�), we
report that no labeling can be found and terminate the algorithm. Otherwise we
make a leader from � to the lowest point p in P ∩ R(�) (see Figure 5b and 5c);
then, if P \ {p} is not empty, we make a recursive call on P \ {p} and L \ {�}.

The full algorithm is now as follows. We first sort L and P into the order as
described above. We then run the recursive sweep-and-divide algorithm described
above. If the algorithm does not fail, the computed set of leaders has minimum
total length (as we will prove below), but it may contain crossings. We eliminate
these intersections with the algorithm described in the proof of Lemma 1.

Theorem 4. Assume we are given a set of points P , a set of labels as described
in Section 1, and a bend angle α. If there is a labeling for P with do-leaders with
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p

(a) (b)

p p

(c)

q r

�

Fig. 5. Illustration of the length-minimization algorithm for do-leaders. (a) When the
sweep line hits p, we make recursive calls on the input under the sweep line and the
input above the sweep line. (b) The result of the recursive call under the sweep line.
(c) The result of the recursive call above the sweep line. Although q is the lowest point,
� is attached to r, since q cannot reach �.

bend angle α, we can compute a crossing-free labeling of minimum total leader
length in O(n2) time and O(n) space in the worst case. If such a labeling does
not exist, we can report infeasibility within the same time and space bounds.

The proof of the correctness of our algorithm is based on the idea to show that
any (not necessarily crossing-free) labeling can be transformed into the labeling
constructed by our recursive algorithm without increasing the total leader length.
Then Lemma 1 can be applied to eliminate the crossings of our solution. The
proof will be available in a full version of the paper.

4 Experimental Evaluation

We implemented three variants of our algorithms: length minimization, bend
minimization and a hybrid method combining both objectives. The correspond-
ing badness functions bad len, badbend, and badhyb are defined as follows.

bad len(l) = |l|, (1)

badbend(l) =

{
0 if l is direct
1 otherwise

, (2)

badhyb(l) =
|hand(l)|
|arm(l)| + λbendbadbend(l), (3)

where | · | denotes the Euclidean length. Note that in badhyb we do not simply
reuse bad len but rather include the length ratio of the hand and the arm of a
leader which is motivated by the observation that a long hand on a short arm
looks worse than on a long arm. The parameter λbend is used to adjust the weight
of badbend.

Furthermore, we implemented another badness term bad cls that measures how
close points in P lie to a leader l within a neighborhood strip Nγ(l) of width
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γ around l. This term can be added to the previous badness functions to avoid
that leaders pass by points with too little clearance. It is defined as

badcls(l) = λcls

∑

p∈Nγ(l)

(
1 − d(p, l)

γ

)2

, (4)

where λcls is a weight parameter and d(p, l) is the distance between p and l.
Adding badcls helps to reduce confusion when understanding the assignment of
points and labels, see Figure 6a generated using bad len and Figure 6b generated
using bad len + badcls.

We implemented our algorithms as a Java applet2 and tested them on a map
showing the 21 mainland regions of France, see Figure 6. The labelings were
computed on an AMD Sempron 2200+ with 1GB main memory, which took
between 1 and 5 ms for the po-leaders and 12ms for the do-leaders with bend
angle α = 135◦. Running the dynamic programs in a top-down fashion, for po-
leaders 39% of O(n2) table entries were computed, while for the do-leaders only
0.21% of O(n4) entries were computed. We also ran the algorithms on artificially
generated instances of 100 points uniformly distributed in a unit square. Here
the computation of the po-leaders took 234ms averaged over 30 instances and
on average 22% of the table entries were computed. The average running time
for the do-leaders on the same instances was 3328ms and on average 0.01% of
the table entries were computed.

po-leaders vs. do-leaders. Both po-leaders and do-leaders in Figure 6 have advan-
tages and disadvantages. Obviously, it is not possible to judge whether po-leaders
or do-leaders are generally superior based on our single example map. The answer
depends both on the labeled image and on personal taste. Still, an advantage of
the do-leaders is that due to the smoother angle their shape is easier to follow
visually, which simplifies finding the correct label for a point and vice versa.

Optimizing for length vs. bends. Minimizing the total leader length seems to
give more comprehensible and visually more pleasing results than minimizing
the total number of bends. One reason for this is that minimizing the length
favors having each label close to the point being labeled. This results in a label
assignment where the vertical order of the labels tends to reflect the vertical
order of the points in the figure fairly well. In contrast, when minimizing the
number of bends this correspondence is more easily lost, which can be confusing,
compare Figures 6b and 6c. In addition, the longer the hand segments are, the
harder they are to follow and this is not considered in badbend. Nevertheless,
although direct leaders are easy to read, their number should not be maximized
without considering the shape and length of the non-direct leaders. Therefore
the hybrid badness function applied in Figures 6d and 6f is designed to find a
good compromise between both optimization goals.

2 The applet is available at http://i11www.iti.uni-karlsruhe.de/labeling

http://i11www.iti.uni-karlsruhe.de/labeling
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(a) po-leaders and badness bad len. (b) po-leaders and badness bad len +badcls.

(c) po-leaders and badness badbend +
badcls.

(d) po-leaders and badness badhyb+badcls.

(e) do-leaders and badness bad len +badcls. (f) do-leaders and badness badhyb+badcls.

Fig. 6. One-sided labelings for the mainland regions of France



254 M. Benkert et al.

Conclusion. We find that minimizing the length is more important for the aes-
thetic quality of a labeling than minimizing the bends. Combining both aspects
in a hybrid badness function leads to a good compromise between the two objec-
tives. Furthermore the closeness term bad cls turned out to be of great importance
for good labelings.

5 Concluding Remarks

An interesting future task is to reflect the interference of a leader and the back-
ground image in the badness function.

We also looked at the case where the labels are placed on two opposite sides
of the point-containing rectangle. Using dynamic programming and similar ideas
as for the one-sided case (a split line that splits a subproblem into two two-sided
subproblems), we could establish an O(n8)- and O(n14)-time algorithm for the
po- and do-leaders, respectively. Unfortunately, not only the asymptotical run-
ning times of these algorithms were bad, it also turned out that these algorithms
are useless in practice since they do not compute a result in acceptable time.

Hence, for producing two-sided labelings in practice we suggest to use the
O(n2)-time po-leader length-minimization algorithm of Bekos et al. [4] or to split
the instance in the middle and solve the resulting one-sided problems. We leave
it as an open problem to find efficient algorithms for dividing points between
the left and the right side in an appropriate fashion to find good two-sided
po- and do-labelings. Note that splitting in the middle does in general not yield
aesthetically good results. For the do-leaders a feasible instance can even become
infeasible by splitting in the middle.
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Abstract. We propose a layout algorithm for micro/macro graphs, i.e.
relational structures with two levels of detail. While the micro-level graph
is given, the macro-level graph is induced by a given partition of the
micro-level vertices. A typical example is a social network of employ-
ees organized into different departments. We do not impose restrictions
on the macro-level layout other than sufficient thickness of edges and
vertices, so that the micro-level graph can be placed on top of the macro-
level graph. For the micro-level graph we define a combinatorial multi-
circular embedding and present corresponding layout algorithms based
on edge crossing reduction strategies.

1 Introduction

An important aspect in the visualization of many types of networks is the inter-
play between fine- and coarse-grained structures. Think, for instance, of low-level
interaction giving rise to emergent features at a larger scale, or people imple-
menting organizational relations. Assuming that the structure on the micro level
is a graph, a macro-level graph may originate from a group-level network analysis
such as clustering or role analysis (e.g., [5]), from an attribute-based partitioning
of the vertices, or may just be given in advance.

Depending on the particular application domain and other contexts, different
layout methods will be appropriate for the macro graph. Since we only require
large nodes and thick edges, we assume it is given. Either the macro-level layout
algorithm can handle varying vertex size (e.g., [12,21]) and edge thickness (e.g.,
[7]), or some post-processing is applied (e.g., [11]).

Given a drawing of the macro-level graph with large nodes and thick edges,
each vertex of the micro-level graph is drawn in the area defined by the macro
vertex it belongs to, and each micro edge is routed through its corresponding
macro edge. We propose a multi-circular layout model for the micro graph.
Each micro vertex is placed on a circle inside of the area of its corresponding
macro vertex and micro edges whose end vertices belong to the same macro
vertex are drawn inside of these circles. All other micro edges are then drawn
inside of their corresponding macro edges and at constant but different distances
from the border of the macro edge, i.e. in straight-line macro edges they are
� Research partially supported by DFG, grants Wa 654/13-2 and Br 2158/2-3.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 255–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



256 M. Baur and U. Brandes

(a) geometric grouping and straight-
line edges

(b) multi-circular layout

Fig. 1. (a) Example organizational network with geometric grouping and straight-line
edges (redrawn from [15]). In our multi-circular layout (b), all details are still present
and the macro structure induced by the grouping becomes visible. The height and
width of the vertices reflects the number of connections within and between groups.

drawn as parallel lines. These edges must also be routed inside the area of macro
vertices to connect to their endpoints, but are not allowed to cross the circles.
In principle, an arbitrary layout strategy can be used as long as it complies with
these requirements. Figure 1 shows a concrete example of this model. Micro edges
connecting vertices in the same macro vertex are drawn as straight lines. Inside
of macro vertices, the other edges spiral around the circle of micro vertices until
they reach the area of the macro edge. We give a combinatorial description of the
above model and then focus on the algorithmically most challenging aspect of
these layouts, namely crossing reduction by cyclic ordering of micro vertices and
choosing edge winding within macro vertices. Finally, we apply the multi-circular
layout to an email communication network to exemplify its use case.

While the drawing convention consists of proven components (geometric
grouping is used, e.g., in [15,20], and edge routing to indicate coarse-grained
structure is proposed in, e.g., [13,3]), our approach is novel in the way we or-
ganize micro vertices to let the macro structure dominate the visual impression
without cluttering the micro-level details too much. Note also that the setting is
very different from layout algorithms operating on structure-induced clusterings
(e.g., [14,1]), since we cannot make any assumptions on the structure of clus-
ters (they may even consist of isolates). Therefore, we neither want to utilize
the clustering for better layout, nor do we want to display the segregation into
dense subregions or small cuts. Our aim is to represent the interplay between a
(micro-level) graph and a (most likely extrinsic) grouping of its vertices.

After defining some basic terminology in Sect. 2, we state required properties
for macro-graph layout in Sect. 3. Multi-circular micro-graph layout is discussed
in more detail in Sect. 4 and crossing reduction algorithms for it are given in
Sect. 5. We conclude with an application in Sect. 6.
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2 Preliminaries

Throughout this paper, let G = (V, E) be a simple undirected graph with n = |V |
vertices and m = |E| edges. Furthermore, let E(v) = {{u, v} ∈ E : u ∈ V }
denote the incident edges of a vertex v ∈ V , let N(v) = {u ∈ V : {u, v} ∈ E}
denote its neighbors, and let sgn : R → {−1, 0, 1} be the signum function.

Since each micro-vertex is required to belong to exactly one macro-vertex,
the macro structure defines a clustering, or partitioning, of the micro-vertices.
Contrary to this top-down approach, we can also start from the bottom. A
partition assignment φ : V → {0, . . . , k − 1} for G subdivides the (micro-)vertex
set V into k pairwise disjoint subsets V = V0∪̇ . . . ∪̇Vk−1, where Vi = {v ∈
V : φ(v) = i} = φ−1(i). An edge e = {u, v} ∈ Vi× ∈ Vj is called an intra-
partition edge iff i = j, otherwise it is called an inter-partition edge. The set of
intra-partition edges of a partition Vi is denoted by Ei, the set of inter-partition
edges of two partitions Vi, Vj by Ei,j . We use G = (V, E, φ) to denote a graph
G = (V, E) and a related partition assignment φ.

A circular order π = {π0, . . . , πk−1} defines for each partition Vi a vertex order
πi as a bijective function πi : Vi → {0, . . . , |Vi| − 1} with u ≺ v ⇔ πi(u) < πi(v)
for any two vertices u, v ∈ Vi. An order πi can be interpreted as a counter-
clockwise sequence of distinct positions on the circumference of a circle.

3 Macro Layout

A prototypical macro graph, the quotient graph, is defined by a partition assign-
ment. Given a partition assignment φ : V → {0, . . . , k − 1}, the corresponding
quotient graph Q(G, φ) = (VQ, EQ) contains a vertex for each partition of G and
two vertices Vi, Vj ∈ VQ are connected iff E contains at least one edge between
a vertex in Vi and a vertex in Vj .

We do not require a specific layout strategy for the macro graph as long as
its elements are rendered with sufficient thickness to draw the underlying micro
graph on top of them. To achieve this, post-processing can be applied to any
given layout [11] or methods which consider vertex size (e.g., [12,21]) and edge
thickness (e.g., [7]) have to be used.

From a macro layout we get partition orders Πi : VQ \Vi → {0, .., deg(Vi)−1}
for each partition Vi, defined by the sequence of its incident edges in Q(G, φ),
and a partition order Π = {Π0, . . . , Πk−1} for G. For each macro vertex this
can be seen as a counter-clockwise sequence of distinct docking positions for its
incident (macro) edges on its border.

4 Micro Layout

Before we discuss the multi-circular layout model for the micro graph, let us
recall the related concepts of (single) circular and radial embeddings. In (single)
circular layouts all vertices are placed on a single circle and edges are drawn as
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(a) some incident
edges

(b) node 4 is at po-
sition 0

(c) node 4 rotated
to position 2

(d) without part-
ing

Fig. 2. Radial layouts. Edges are labeled with their winding value.

straight lines. Therefore, a (single) circular embedding ε of a graph G = (V, E)
is fully defined by a vertex order π, i.e. ε = π [4]. Two edges e1, e2 ∈ E cross in
ε iff the end vertices of e1, e2 are encountered alternately in a cyclic traversal.

4.1 Radial Layout

In radial layouts the partitions are placed on nested concentric circles (levels)
and edges are drawn as curves between consecutive partitions. Therefore, only
graphs G = (V, E) with a proper partition assignment φ : V → {0, . . . , k − 1}
are allowed, i.e. |φ(u)− φ(v)| = 1 for all edges {u, v} ∈ E. For technical reasons,
edges are considered to be directed from lower to higher levels.

Recently, Bachmaier [2] investigated such layouts. They introduced a ray from
the center to infinity to mark the start and end of the circular vertex orders.
Using this ray it is also possible to count how often and in which direction an
edge is wound around the common center of the circles. We call this the winding
ψ : E → Z of an edge (offset in [2]). |ψ(e)| counts the number of crossings of the
edge with the ray and the sign reflects the mathematical direction of rotation.
See Figure 2 for some illustrations. Finally, a radial embedding ε of a graph
G = (V, E, φ) is defined to consist of a vertex order π and an edge winding ψ, i.e.
ε = (π, ψ). Note that the rotation of a partition without permuting the vertices
changes the positions and winding values but not the number of crossings.

Crossings between edges in radial embeddings depend on their winding and
on the order of the end vertices. There can be more than one crossing between
two edges if they have very different winding. We denote the number of crossings
between two edges e1, e2 ∈ E in an radial embedding ε by χε(e1, e2). The (radial)
crossing number of an embedding ε and a level graph G = (V, E, φ) is then
naturally defined as χ(ε) =

∑
{e1,e2}∈E,e1 �=e2

χε(e1, e2) and χ(G) = min{χ(ε) : ε

is a radial embedding of G} is called the radial crossing number of G.

Theorem 1 ([2]). Let ε = (π, ψ) be a radial embedding of a 2-level graph
G = (V1∪̇V2, E, φ). The number of crossings χε(e1, e2) between two edges e1 =
(u1, v1) ∈ E and e2 = (u2, v2) ∈ E is
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χε(e1, e2) = max
{

0,
∣
∣∣ψ(e2) − ψ(e1) +

b − a

2

∣
∣∣ +

|a| + |b|
2

− 1
}

,

where a =sgn(π1(u2) − π1(u1)) and b = sgn(π2(v2) − π2(v1)) .

Bachmaier also states that in crossing minimal radial embeddings every pair of
edges crosses at most once and incident edges do not cross at all. As a conse-
quence, only embeddings need to be considered where there is a clear parting
between all edges incident to the same vertex u. The parting is the position of
the edge list of u that separates the two subsequences with different winding
values. See Figure 2 for layouts with and without proper parting.

4.2 Multi-circular Layouts

Unless otherwise noted, vertices and edges belong to the micro-level in the fol-
lowing. In the micro layout model each vertex is placed on a circle inside of its
corresponding macro vertex. Intra-partition edges are drawn within these cir-
cles as straight lines. Inter-partition edges are drawn inside their corresponding
macro edges and at constant but different distances from the border of the macro
edge. To connect to their incident vertices, this edges must also be routed inside
of macro vertices. Since they are not allowed to cross the circles, they are drawn
as curves around them. We call such a drawing a (multi-)circular layout.

Since intra- and inter-partition edges can not cross, all crossings of intra-
partition edges are completely defined by the vertex order πi of each partition
Vi. Intuitively speaking, a vertex order defines a circular layout for the intra-
partition edges. In the following we thus concentrate on inter-partition edges.

The layout inside each macro vertex Vi can be seen as a 2-level radial layout.
The orders can be derived from the vertex order πi and the partition order Πi.
Similar to radial layouts we introduce a ray for each partition and define the
beginning of the orders and the edge winding according to these rays. Note that
for each edge e = {u, v} ∈ E, u ∈ Vi, v ∈ Vj , two winding values are needed,
one for the winding around partition Vi denoted by ψi(e) = ψu(e), and one
for the winding around partition Vj denoted by ψj(e) = ψv(e). If the context
implies an implicit direction of the edges we call windings either source or target
windings respectively. Since radial layouts can be rotated without changing the
embedding, rays of different partitions are independent and can be arbitrary
directed. Finally, a multi-circular embedding ε is defined by a vertex order π, a
partition order Π , and the winding of the edges ψ, i.e. ε = (π, Π, ψ).

Observation 2. For each partition Vi in amulti-circular embedding ε = (π, Π, ψ)
a 2-level radial embedding εi = ((πi, π

′), ψi) is defined by the vertex order πi, the
partition order Πi, and the edge winding ψi, where π′(v) = Πi(φ(v)), v ∈ V \ Vi.

There is another connection between radial and multi-circular layouts. A 2-level
radial layout can easily be transformed in a 2-partition circular layout and vice
versa. Given a graph G = (V1∪̇V2, E, φ) and a radial embedding ε = (π, ψ) of G,
the 2-partition circular embedding ε∗=(π∗, Π∗, ψ∗) defined by π∗

1 =π1, π∗
2 =−π2,
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Fig. 3. A 2-level radial layout and its corresponding 2-circular layout

Π∗
1 = 0, Π∗

2 = 0, and ψ∗
1(e) = ψ(e), ψ∗

2(e) = 0 realizes exactly the same crossings.
See Figure 3 for an example. Intuitively speaking, the topology of the given radial
embedding is not changed if we drag the two circles apart and reverse one of
the vertex orders. If a 2-partition circular embedding ε∗ = (π∗, Π∗, ψ∗) is given,
a related radial embedding ε = (π, ψ) is defined by π1 = π∗

1 , π2 = −π∗
2 , and

ψ(e) = ψ1(e) − ψ2(e).

Observation 3. There is a one-to-one correspondence between a 2-level radial
embedding and a 2-circular embedding.

Crossings in the micro layout are due to either the circular embedding or crossing
macro edges. Since crossings of the second type can not be avoided by changing
the micro layout, we do not consider them in the micro layout model. Obviously,
pairs of edges which are not incident to a common macro vertex can only cause
crossings of this type. For pairs of edges which are incident to at least one
common macro vertex we can define corresponding 2-level radial layouts using
Observations 2 and 3 and compute the number of crossings by modifications of
Theorem 1.

Theorem 4. Let ε = (π, Π, ψ) be a multi-circular embedding of a graph G =
(V, E, φ) and let e1 = {u1, v1}, e2 = {u2, v2} ∈ E be two inter-partition edges.

If e1 and e2 share exactly one common incident macro vertex, e.g., Vi =
φ(u1) = φ(u2), φ(v1) �= φ(v2), then the number of crossings of e1 and e2 is

χε(e1, e2) =max
{

0,
∣
∣
∣ψi(e2) − ψi(e1) +

b − a

2

∣
∣
∣ +

|a| + |b|
2

− 1
}

,

where a =sgn(πi(u2) − πi(u1)) and b = sgn(Π(φ(v2)) − Π(φ(v1))) .

If e1 and e2 belong to the same macro edge, e.g., Vi = φ(u1) = φ(u2), Vj =
φ(v1) = φ(v2), then the number of crossings of e1 and e2 is

χε(e1, e2) =max
{

0,
∣
∣∣ψ′(e2) − ψ′(e1) +

b − a

2

∣
∣∣ +

|a| + |b|
2

− 1
}

,

where a =sgn(πi(u2) − πi(u1)) , b = sgn(πj(v1) − πj(v2)) , and
ψ′(e) =ψi(e) + ψj(e) .
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(a) parting (b) edge {u, v} violates parting

Fig. 4. Not all winding combinations for the incident edges of u result in a good layout

Similar to radial layouts, in a crossing minimal multi-circular embedding incident
edges do not cross and there is at most one crossing between every pair of edges.
Therefore, only embeddings need to be considered where there is a clear parting
between all edges incident to the same vertex u ∈ Vi. Since in multi-circular
layouts winding in different macro vertices can be defined independently, we
split the edge list E(u) of u by target partitions and get edge lists E(u)j =
{{u, v} ∈ E(u) : v ∈ Vj}. For each list E(u)j , we get a position �j that separates
the two subsequences with different values of winding ψj and defines the parting
for this partition. Furthermore, there is also a parting for Vi defined on the edge
list E(u). The order of E(u) for this parting depends on the partings �j in the
target partitions Vj . Edges are sorted by the partition order, and for edges to
the same partition Vj , ties are broken by the reverse vertex order started not at
the ray but at the parting position �j . Then, the parting for Vi is the position �i

which separates different values of winding ψi in the so ordered list. See Figure 4
for a layout with parting and a layout where the edge {u, v} violates the parting.

Corollary 1. Multi-circular crossing minimization is NP-hard.

Proof. Single circular and radial crossing minimization [2,17] are NP-hard. As
we have already seen, these two crossing minimization problems are subproblems
of the multi-circular crossing minimization problem, proofing the corollary. �	

As a consequence, we do not present exact algorithms for crossing minimization
in multi-circular layouts. Instead, we propose extensions of some well known
crossing reduction heuristics for horizontal and radial crossing reduction.

5 Layout Algorithms

Since the drawing of inter-partition edges inside a macro vertex can be seen
as a radial drawing, a multi-circular layout can be composed of separate radial
layouts for each macro vertex (for instance using the techniques of [20,10,2]. Such
a decomposition approach, however, is inappropriate since intra-partition edges
are not considered at all and inter-partition edges are not handled adequately
due to the lack of information about the layout at the other macro vertices. E.g.,
choosing a path with more crossings in one macro vertex can allow a routing
with much less crossings on the other side.
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Nevertheless, we initially present in this section adaptations of radial layout
techniques because they are quite intuitive, fast, and simple, and can be used
for the evaluation of more advanced algorithms.

5.1 Barycenter and Median Layouts

The basic idea of both the barycenter and the median layout heuristic is the
following: each vertex is placed in a central location computed from the positions
of its neighbors - in either the barycenter or the median position - to reduce
edge lengths and hence the number of crossings. For a 2-level radial layout, the
Cartesian Barycenter heuristic gets the two levels and a fixed order for one of
them. All vertices of the fixed level are set to equidistant positions on a circle and
the component-wise barycenter for all vertices of the second level is computed.
The cyclic order around the center defines the order of the vertices and the edges
are routed along the geometrically shortest-path. The Cartesian Median heuristic
is defined similar. Running time for both heuristics is in O(|E| + |V | log |V |).

Both heuristics are easily extended for multi-circular layouts. The layout in
each macro vertex Vi is regarded as a separate 2-level radial layout as described
in Observation 3 and the partition orders Πi are used to define the orders of
the fixed levels. Because of the shortest-path routing, no two edges cross more
than once and incident edges do not cross at all in the final layout. On the other
hand are crossings avoided by the used placement and winding strategies only
indirectly by edge length reduction.

5.2 Multi-circular Sifting

To overcome the drawbacks of the radial layout algorithms described before, we
propose an extension of the sifting heuristic which computes a complete multi-
circular layout and considers edge crossings for optimizing both vertex order and
edge winding, and thus is expected to generate better layouts.

Sifting was originally introduced as a heuristic for vertex minimization in
ordered binary decision diagrams [19] and later adapted for the layered one-
sided, the circular, and the radial crossing minimization problems [18,4,2]. The
idea is to keep track of the objective function while moving a vertex along a
fixed order of all other vertices. The vertex is then placed in its (locally) optimal
position. The method is thus an extension of the greedy-switch heuristic [8]. For
crossing reduction the objective function is the number of crossings between the
edges incident to the vertex under consideration and all other edges. In multi-
circular layouts this function depends on both the vertex order and the edge
winding. Therefore, we have to find for each position of a vertex the winding
values for its incident edges which result in the minimal crossing number.

The efficient computation of crossing numbers in sifting for layered and single
circular layouts is based on the locality of crossing changes, i.e. swapping con-
secutive vertices u ↪→ v only affects crossings between edges incident to u with
edges incident to v. In multi-circular layouts this property clearly holds for intra-
partition edges since they form (single-)circular layouts. For inter-partition edges
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the best routing path may require an update of the windings. Such a change can
affect crossings with all edges incident to the involved partitions.

Since swapping the positions of two consecutive vertices (and keeping the
winding values) only affects incident edges, the resulting change in the number
of crossings can be efficiently computed. Therefore, we need an efficient update
strategy for edge windings while u ∈ Vi moves along the circle. We do not
consider each possible combination of windings for each position of u. but keep
track of the parting of the edges. Note that we have to alter simultaneously the
parting for the source partition and all the partings for the target partitions
because for an edge, a changed winding in the source partition may allow a
better routing with changed winding in the target partition. Intuitively speaking,
the parting in the source partition should move around the circle in the same
direction as u, but on the opposite side of the circle, while the parting in the
target partitions should move in the opposite direction. Otherwise, edge lengths
increase and with it the likelihood of crossings. Thus, we start with winding
values ψu(e) = 1 and ψv(e) = 1 for all e = {u, v} ∈ E(v) and iteratively
move parting counters around the circles and mostly decrease this values in the
following way:

1. First try to improve the parting at Vi, i.e. the value of ψu for the current
parting edge is decreased and the parting moved counter-clockwise to the
next edge, until this parting can no longer be improved.

2. For edges whose source winding were changed in step one, there may be
better target windings which can not be found in step three, because the
value of ψj has to be increased, i.e. for each affected edge, the value of ψj

for the edge is increased until no improvement is made.
3. Finally try to improve the parting for each target partition Vj separately, i.e.

for each Vj the value of ψj for the current parting edge is decreased and the
parting moved clockwise to the next edge, until this parting can no longer
be improved.

After each update, we ensure that all counters are valid and that winding values
are never increased above 1 and below −1.

Based on the above, the locally optimal position of a single vertex can be
found by iteratively swapping the vertex with its neighbor and updating the
edge winding while keeping track of the change in crossing number. After the
vertex has past each position, it is placed where the intermediary crossing counts
reached their minimum. Repositioning each vertex once in this way is called a
round of sifting.

Theorem 5. The running time of multi-circular sifting is in O(|V | · |E|2).

Proof. Computing the difference in cross count after swapping two vertices re-
quires O(|E|2) running time for one round of sifting. For each edge the winding
changes only a constant number of times because values are bounded, source
winding and target winding are decreased in steps one and three resp., and the
target winding is only increased for edges whose source winding decreased be-
fore. Counting the crossings of an edge after changing its winding takes time
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Fig. 5. Drawings of the email network generated by a force-directed method (left) and
by multi-dimensional scaling (MDS, right)

O(|E|). For each vertex u ∈ V the windings are updated O(|V | · deg(u)) times,
once per position and once per shifted parting. For one round, this results in
O(|V ||E|) winding changes taking time O(|V | · |E|2). �	

6 Application: Email Communication Network

The strength of a multi-circular layout is the coherent drawing of vertices and
edges at the two levels of detail. It reveals structural properties of the macro
graph and allows identification of micro level connections at the same time. The
showcase for the benefits of our micro/macro layout is a email communication
network of a department of the Universität Karlsruhe. The micro graph consists
of 442 anonymized department members and 2,201 edges representing at least
one email communication in the considered time frame of five weeks. At the
macro level, a grouping into 16 institutes is given, resulting in 66 macro edges.

We start by inspecting drawings generated by a general force-directed ap-
proach similar to [9] and by multi-dimensional scaling (MDS) [6], see Figure 5.
Both methods tend to place adjacent vertices near each other but ignore the
additional grouping information. Therefore, it is not surprising that the draw-
ings do not show a geometric clustering and the macro structure can not be
identified. Moreover, it is difficult or even impossible to follow edges since they
overlap each other.

More tailored for the drawing of graphs with additional vertex grouping are
the layout used by Krebs [15], and the force-directed attempts to assign vertex
positions by Six and Tollis [20] and Krempel [16]. All three methods place the
vertices of each group on circles inside of separated geometric areas. While some
efforts are made to find good vertex positions on the circles, edges are simply
drawn as straight lines. Figure 6 (a) gives a prototypical example of this layout
style. Although these methods feature a substantial progress compared to general
layouts and macro vertices are clearly visible, there is no representation of macro
edges and so the overall macro structure is still not identifiable.

Finally, we layouted the email network according to the micro/macro draw-
ing convention. Its combinatorial descriptions allows for an enrichment with an
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(a) straight line (b) random (75.400 crossings)

(c) barycenter (68.300 crossings) (d) sifting (57.400 crossings)

Fig. 6. Multi-circular layouts of the email network

analytical visualization of the vertices. In the Figures 1 and 6 the length of the
circular arc a vertex covers is proportional to its share of the total inter-partition
edges of this group. The height from its chord to the center of the circle reflects
the fraction of present to possible intra-edges.

To investigate the effect of improved vertex orders and appropriate edge wind-
ings, we compare two variations of multi-circular layouts: shortest-path edge
winding combined with random vertex placement and with barycenter vertex
placement, see Figure 6. The macro structure of the graph is apparent at first
sight. Since the placement of the vertex circles is the same as in Figure 6 (a),
this improvement clearly follows from the grouping of micro edges. A closer look
reveals the drawback of random placement: edges between different groups have
to cover a long distance around the vertex circles and are hard to follow. Also
a lot of edge crossings are generated both inside of the groups and in the area
around the vertex placement circles. Assigning vertex positions according to the
barycenter heuristic results in a clearly visible improvement and allows the dif-
ferentiation of some of the micro edges. Using sifting improves the layout even
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further, resulting from a decrease of the number of crossings from more than
75.000 to 57.400 in the considered email network. The time for computing the
layout of this quiet large graph is below half a minute.

7 Conclusion

We proposed a drawing convention for micro/macro graphs where micro-level
elements are drawn on top of the elements of the coarse macro graph, so that the
contribution of micro-level elements to macro-level structure becomes apparent.
Since there is no need to place restrictions on the layout of the macro graph, we
assumed it is given and focused on layouts of the micro graph. We presented a
multi-circular layout model and investigated layout strategies based on crossing
reduction techniques for it.

Backed by the visualizations of the email communication network computed
by an initial implementation of our algorithms we claim that the grouping of
micro-edges into macro-edges according to the micro/macro drawing convention
exhibits benefits over layouts which group the vertices. Furthermore, since vertex
orders and edge windings have a large effect on the readability of multi-circular
layouts, it is justified to spend a larger effort to improve them.

A major benefit of the multi-circular layout is it combinatorial description
since it allows the combination with other visualization techniques to highlight
some graph properties or to further improve the visual appearance. A very in-
teresting aspect would be the combination with Holten’s [13] edge bundling
technique.
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2 Wilhelm-Schickard-Institut für Informatik – Universität Tübingen, Germany
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Abstract. A geometric simultaneous embedding of two graphs G1 =
(V1, E1) and G2 = (V2, E2) with a bijective mapping of their vertex sets
γ : V1 → V2 is a pair of planar straight-line drawings Γ1 of G1 and Γ2 of
G2, such that each vertex v2 = γ(v1) is mapped in Γ2 to the same point
where v1 is mapped in Γ1, where v1 ∈ V1 and v2 ∈ V2.

In this paper we examine several constrained versions and a relaxed
version of the geometric simultaneous embedding problem. We show that
if the input graphs are assumed to share no common edges this does not
seem to yield large classes of graphs that can be simultaneously em-
bedded. Further, if a prescribed combinatorial embedding for each input
graph must be preserved, then we can answer some of the problems that
are still open for geometric simultaneous embedding. Finally, we present
some positive and negative results on the near-simultaneous embedding
problem, in which vertices are not mapped exactly to the same but to
“near” points in the different drawings.

1 Introduction

Graph drawing techniques are commonly used to visualize relationships between
objects, where the objects are the vertices of the graph and the relationships
are captured by the edges in the graph. Simultaneous embedding is a problem
that arises when visualizing two or more relationships defined on the same set
of objects. If the graphs corresponding to these relationships are planar, the aim
of simultaneous embedding is to find point locations in the plane for the vertices
of the graphs, so that each of the graphs can be realized on the same point-set
without edge crossings. To ensure good readability of the drawings, it is prefer-
able if the edges are drawn as straight-line segments. This problem is known as
geometric simultaneous embedding. It has been shown that only a few classes of
graphs can be embedded simultaneously with straight-line segments. Brass et
al. [1], Erten and Kobourov [5], and Geyer et al. [8] showed that three paths,
a planar graph and a path, and two trees do not admit geometric simultane-
ous embeddings. On the positive side, an algorithm for geometric simultaneous
embedding of two caterpillars [1] is the strongest known result.

As geometric simultaneous embedding turns out to be very restrictive, it is
natural to relax some of the constraints of the problem. Not insisting on straight-
line edges led to positive results such as a linear-time algorithm by Erten and
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Table 1. Known results and our contribution on geometric simultaneous embedding
(Geometric), geometric simultaneous embedding with no common edges (Disj. Edges),
geometric simultaneous drawing with fixed embedding (Fixed Embedding), geometric
simultaneous drawing with fixed embedding and no common edges (Disj. Edges, Fixed
Embedding).

Geometric Disj. Edges Fixed Emb. Disj. Edges, Fixed Emb.

path + path YES [1] YES [1] YES [1] YES [1]
star + path YES [1] YES [1] YES Sec. 4.1 YES Sec. 4.1

double-star + path YES [1] YES [1] ? YES Sec. 4.1

caterpillar + path YES [1] YES [1] ? ?

caterpillar + caterpillar YES [1] YES [1] NO Sec. 4.2 NO Sec. 4.2

3 paths NO [1] ? NO [1] ?
tree + path ? ? ? ?
tree + cycle ? ? ? ?

tree + caterpillar ? ? NO Sec. 4.2 NO Sec. 4.2

outerplanar + path ? ? NO Sec. 4.3 NO Sec. 4.3

outerplanar + caterpillar ? ? NO Sec. 4.2 NO Sec. 4.2

outerplanar + cycle ? ? NO Sec. 4.3 NO Sec. 4.3

tree + tree NO [8] ? NO [8] NO Sec. 4.2

outerplanar + tree NO [8] ? NO [8] NO Sec. 4.2

outerplanar + outerplanar NO [1] ? NO [1] NO Sec. 4.2

planar + path NO [5] NO Sec. 3 NO [5] NO Sec. 3

planar + tree NO [5] NO Sec. 3 NO [5] NO Sec. 3

planar + planar NO [5] NO Sec. 3 NO [5] NO Sec. 3

Kobourov for embedding any pair of planar graphs with at most three bends per
edge, or any pair of trees with at most two bends per edge [5]. In such results it
is allowed for an edge connecting a pair of vertices to be represented by different
Jordan curves in different drawings. As this can be detrimental to the readability
of the drawings, several papers considered a slightly more constrained version of
this problem, namely, simultaneous embedding with fixed edges, in which bends
are allowed, however, an edge connecting the same pair of vertices must be drawn
in exactly the same way in all drawings. Di Giacomo and Liotta [4] showed that
outerplanar graphs can be simultaneously embedded with fixed edges with paths
or cycles using at most one bend per edge. Frati [6] showed that a planar graph
and a tree can also be simultaneously embedded with fixed edges.

Studying the existing variants of simultaneous embedding led to practical em-
bedding algorithms for some graph classes and techniques for simultaneous em-
bedding have been used in visualizing evolving and dynamic graphs [2]. However,
many problems remain theoretically open and in practice algorithms applying
these ideas to evolving and dynamic graphs do not provide any guarantees on
the quality of the resulting layouts. With this in mind, we consider three further
variants of the geometric simultaneous embedding problem.

Most of the proofs about the non-existence of simultaneous embeddings ex-
ploit the presence of common edges between the input graphs. Hence, it is natural
ask if larger classes of graphs have geometric simultaneous embeddings when no
edges are shared. In Section 3 we answer in the negative for planar graph-path
pairs, generalizing the result in [5], where it is shown that a planar graph and a
path that share edges do not admit a geometric simultaneous embedding.

In Section 4 we consider the problem of geometric simultaneous embedding
in which the embeddings for the graphs are fixed. We call this setting geometric
simultaneous embedding with fixed embeddings. Clearly, negative results known



270 F. Frati, M. Kaufmann, and S.G. Kobourov

for geometric simultaneous embedding remain valid here. We show that some
classes of graphs that have geometric simultaneous embeddings do not admit
one with individually fixed embeddings. In particular, we prove such a negative
result for caterpillar-caterpillar pairs. Moreover, in the fixed embedding setting
we are able to solve problems that are still open for geometric simultaneous
embedding. Namely, we provide an outerplanar-path pair that has no geometric
simultaneous drawing with fixed embedding. All the negative results claimed
are still valid if the input graphs are assumed to not share edges. On the other
hand, we partially cover the known positive results for geometric simultaneous
embedding, by showing that a star and a path can always be realized and that
a double-star and a path can always be realized if they do not share edges.

In the quest for more practical setting where we can guarantee some properties
of the layouts, in Section 5 we study a variant we call geometric near-simultaneous
embedding. In this setting edges are straight lines and vertices representing the
same entity in different graphs can be placed not exactly in the same point but
just in “near” points. Assuming vertices are placed on the grid, we show that there
exist pairs of n-vertex planar graphs in which vertices that represent the same en-
tity in different graphs must be placed at distance Ω(n). We then consider graphs
“similar” in their combinatorial structure, describing algorithms which guarantee
that vertices representing the same entity have only constant displacement from
one drawing to the next. Such algorithms can be used to guarantee limited dis-
placement in dynamic graph drawings.

Due to space limitations, we leave out some proofs, that can be found in [7].

2 Preliminaries

We summarize basic terminology used in this paper; for more details see [3,11].
A straight-line drawing of a graph is a mapping of each vertex to a unique point
in the plane and of each edge to a segment between the endpoints of the edge.
A planar drawing is one in which no two edges intersect. A planar graph is
a graph that admits a planar drawing. A grid drawing is one in which every
vertex is placed at a point with integer coordinates in the plane. An embedding
of a graph is a circular ordering of the edges incident on each vertex of G.
An embedding of a graph specifies the faces in any drawing respecting such an
embedding, even though the embedding does not determine which one is the
external face. A graph is triconnected if for every pair of distinct vertices there
exist three vertex-disjoint paths connecting them. A triconnected graph has an
unique embedding, up to a reversal of its adjacency lists.

An outerplanar graph is a graph that admits a drawing in which all the vertices
are incident to the same face. A caterpillar is a tree in which the removal of all the
leaves and their incident edges yields a path. A star (double-star) is a caterpillar
with only one vertex (two vertices) of degree greater than one.

A geometric simultaneous embedding of two graphs G1 = (V1, E1) and G2 =
(V2, E2) with a bijective mapping γ of their vertex sets is a pair of planar
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straight-line drawings Γ1 of G1 and Γ2 of G2, such that each vertex v2 = γ(v1)
is mapped in Γ2 to the same point where v1 is mapped in Γ1, where v1 ∈ V1 and
v2 ∈ V2.

3 Simultaneous Embedding without Common Edges

We consider the geometric simultaneous embedding of graphs not sharing com-
mon edges, exhibiting a planar graph and a path that cannot be drawn simulta-
neously. We revisit the problem of embedding simultaneously graphs not sharing
edges in the conclusions (Section 6).

Let G∗ be the planar graph on vertices v1, v2, . . ., v9 shown in Fig. 1(a). Since
G∗ is triconnected, it has the same faces in any planar embedding. Let F ∗ denote
the triangular face Δv1v3v9 and P ∗ be the path (v1, v2, v3, v4, v5, v6, v7, v8, v9).

v3

v8

v6

v4v2

v7

v5
v1v9

v2

v4

v3

v9 v1

T*

F*

v3

v2

lv9 v1v4

T*
F*

G*1 G*2

u2

u1u3

v1
3 v2

3

v1
9v1

1 v2
9v2

1

(a) (b) (c) (d)

Fig. 1. (a) Planar graph G∗ drawn with solid edges and path P ∗ drawn with dashed
edges; (b)–(c) Illustrations for the proof of Lemma 1; (d) Planar graph G drawn with
solid edges and path P drawn with dashed edges.

Lemma 1. There does not exist a geometric simultaneous embedding of G∗ and
P ∗ in which the external face of G∗ is F ∗.

Proof: All vertices of G∗, other than v1, v3 and v9, are inside F ∗ as F ∗ is the
external face of G∗. Consider the triangle T ∗ formed by edges (v1, v2), (v2, v3) of
P ∗, and by edge (v1, v3) of G∗. Since v9 is incident to F ∗, it must lie outside T ∗.
Let l be the line passing through v2 and v3; l separates the plane in two open half-
planes, one containing v9, called the exterior part of l, and one not containing v9,
called the interior part of l. Consider the possible placements of v4. If v4 is placed
inside T ∗ then the subpath of P ∗ composed of edges (v1, v2) and (v2, v3) crosses
the subpath of P ∗ connecting v4, that lies inside T ∗, and v9, that lies outside
T ∗; see Fig. 1(b). Suppose v4 is placed outside T ∗. Since vertex v4 (vertex v2)
must lie inside triangle Δv1v3v5 (inside triangle Δv3v5v9), the clockwise order of
edges (v3, v1), (v3, v5), (v3, v9) of G∗ and edges (v3, v4), (v3, v2) of P ∗ around v3
must be (v3, v1), (v3, v4), (v3, v5), (v3, v2), (v3, v9). Therefore v4 is in the interior
part of l and hence edge (v1, v2) crosses edge (v3, v4) in P ∗; see Fig. 1(c). �

Theorem 1. There exist a planar graph G, a path P , and a mapping between
their vertices such that: (i) G and P do not share edges, and (ii) G and P have
no geometric simultaneous embedding.
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Proof: We construct G and P out of two copies of G∗ and P ∗ described above.
Let G∗

1 and G∗
2 be two copies of G∗. Denote by vj

i the vertex of G∗
j that corre-

sponds to the vertex vi in G∗, where j = 1, 2 and i = 1, . . . , 9. Let G be the graph
composed of G∗

1 and G∗
2 together with three additional vertices u1, u2, and u3

and eight additional edges (u1, u2), (u1, u3), (u2, u3), (u1, v
2
1), (u2, v

1
3), (u2, v

2
3),

(u3, v
1
9), and (v1

1 , v2
9); see Fig. 1(d). Graph G is triconnected and therefore it has

exactly one planar embedding and it has the same faces in any plane drawing. Let
P be the path (u1, v

1
9 , v

1
8 , v1

7 , v
1
6 , v

1
5 , v1

4 , v
1
3 , v

1
2 , v1

1 , u2, v
2
9 , v

2
8 , v2

7 , v
2
6 , v

2
5 , v2

4 , v
2
3 , v

2
2 ,

v2
1 , u3). It is easy to verify that G and P do not share edges. Note that the

subpaths of P induced by the vertices of G∗
1 and by the vertices of G∗

2 play the
same role that path P ∗ plays for graph G∗ in Lemma 1.

Let F ∗
1 and F ∗

2 denote cycles (v1
1 , v

1
3 , v1

9) and (v2
1 , v2

3 , v
2
9); these cycles are faces

of G∗
1 and G∗

2. We now show that every plane drawing Γ of G determines a
non-planar drawing of P . Consider the embedding EG of G obtained by choosing
Δu1u2u3 as external face; see Fig. 1(d). Choosing any face external to F ∗

1 (F ∗
2 )

in EG as external face of Γ leaves G∗
1 (G∗

2) embedded with external face F ∗
1

(F ∗
2 ). Hence, we can apply Lemma 1 and conclude that there does not exist a

simultaneous embedding of G and P . �

4 Simultaneous Drawing with Fixed Embedding

Next, we examine the possibility of embedding graphs simultaneously with
straight-line edges and with fixed embeddings.

4.1 Simultaneous Drawing of Stars, Double-Stars and Paths with
Fixed Embedding

Let P be an n-vertex path and let S be an n-vertex star with center c and em-
bedding E . Let P = (a1, a2, . . . , al, c, b1, b2, . . . , bm), where one among sequences
(a1, a2, . . . , al) and (b1, b2, . . . , bm) could be empty. Draw S with c as leftmost
point and with all edges in an order around c consistent with E , so that edge
(c, b1), if it exists, is the uppermost edge of S. This can be done so that the
x-coordinate of a vertex bi is greater than the one of a vertex aj , with 1 ≤ i ≤ m
and 1 ≤ j ≤ l, the x-coordinate of a vertex bi is greater than the one of a vertex
bj, with 1 ≤ j < i ≤ m, and the x-coordinate of a vertex ai is greater than
the one of a vertex aj , with 1 ≤ i < j ≤ l; see Fig. 2(a). The resulting drawing
of S is clearly planar. Further, P is not self-intersecting as it is realized by two
x-monotone curves joined by an edge that is higher than every other edge of P .
This yields the following result:

Theorem 2. An n-vertex star and an n-vertex path admit a geometric simul-
taneous embedding in which the star has a fixed prescribed embedding.

Now let P be an n-vertex path and let D be an n-vertex double-star with centers
c1 and c2 and with embedding E . Suppose D and P do not share edges. Let
P = (a1, a2, . . . , al, c1, b1, b2, . . . , bm, c2, d1, d2, . . . , dp). Sequences (a1, a2, . . . , al)
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al a1

a2

b1

b2
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c
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B1(c1)

B1(c2)

B2(c2)

B2(c1)

bm

d1

(a) (b)

Fig. 2. (a) Simultaneous embedding of a star and a path; (b) Simultaneous embedding
of a double-star and a path not sharing edges

and (d1, d2, . . . , dp) could be empty, while m ≥ 2. Further, b1 is neighbor of
c2 and bm is neighbor of c1 in D; see Fig. 2(b). Group the edges incident to
c1 (incident to c2), except for (c1, c2), in two bundles B1(c1) and B2(c1) (resp.
B1(c2) and B2(c2)). B1(c1) is made up of the edges starting from (c1, bm) until,
but not including, (c1, c2) in the clockwise order of the edges incident to c1.
B2(c1) is made up of the edges starting from (c1, c2) until, but not including,
(c1, bm) in the clockwise order of the edges incident to c1. The other two bundles
B1(c2) and B2(c2) are defined analogously. P is divided into three subpaths, P1 =
(c1, al, al−1, . . . , a2, a1), P2 = (c1, b1, b2, . . . , bm, c2), and P3 = (c2, d1, d2, . . . , dp).

Draw (c1, c2) as an horizontal segment, with c1 on the left. B1(c1) and B2(c1)
(B1(c2) and B2(c2)) are drawn inside wedges centered at c1 (at c2) and directed
rightward (leftward), with B1(c1) above (c1, c2) and B2(c1) below (c1, c2) (with
B1(c2) above (c2, c1) and B2(c2) below (c2, c1)). Such wedges are disjoint and
they share an interval [x1, x2] of the x-axis, where [x1, x2] is a sub-interval of the
x-extension of the edge (c1, c2). Draw each edge inside the wedge of its bundle,
respecting E and so that the following rules are observed: the x-coordinate of a
vertex bi is greater than the one of a vertex aj , with 1 ≤ i ≤ m and 1 ≤ j ≤ l; the
x-coordinate of a vertex dk is greater than the one of a vertex bi, with 1 ≤ k ≤ n
and 1 ≤ i ≤ m; the vertices of P1, of P2, and of P3 have increasing, increasing,
and decreasing x-coordinates, respectively. Each vertex has an x-coordinate in
the open interval (x1, x2). Edge (c1, bm) ((c2, b1)) of D is drawn so high (so low)
that edge (c2, bm) ((c1, b1)) of P does not create crossings with other edges of the
path. The drawing of D is planar since the edges of D are drawn inside disjoint
regions of the plane. The absence of crossings in the drawing of P follows from
(1) the planarity of the drawings of its subpaths, which in turn follows from
the strictly increasing or decreasing x-coordinate of its vertices; and (2) from
the fact that the subpaths occupy disjoint regions, except for edges (c1, b1) and
(c2, bm) which do not create crossings, as already discussed. Thus, we have:

Theorem 3. An n-vertex double-star and an n-vertex path not sharing edges
admit a geometric simultaneous embedding in which the double-star has a fixed
prescribed embedding.
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4.2 Simultaneous Drawing of Two Caterpillars with Fixed
Embedding

Insisting on a fixed embedding when simultaneously embedding planar graphs
is a very restrictive requirement as shown by the following theorem:

Theorem 4. It is not always possible to find a geometric simultaneous embed-
ding for two caterpillars with fixed embeddings.

Proof: Let C1 and C2 be the two caterpillars with fixed embeddings E1 and E2
and a bijective mapping γ(x) = x between their vertices; see Fig. 3(a-b). We
now show that there does not exist a geometric simultaneous embedding of C1
and C2 in which C1 and C2 respect E1 and E2, respectively.
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Fig. 3. (a)–(b) Caterpillars C1 and C2; (c)–(e) Illustrations for the proof of Theorem 4

Construct a straight-line drawing Γ1 of C1. The embedding E1 of C1 forces the
vertices 1, 2, . . . , 18 to appear in this order around r in Γ1. Consider the subtrees
of C1 induced by the vertices r, 1, 2, . . . , 6, by the vertices r, 7, 8, . . . , 12, and by
the vertices r, 13, 14, . . . , 18. Since such subtrees appear consecutively around r,
then at least one of them must be drawn in a wedge rooted at r and with angle
less than π. Let CS be such a subtree and let k, k + 1, . . . , k + 5 be the vertices
of CS , with k = 1, 7 or 13. Without loss of generality, let r be the uppermost
point of this wedge. It follows that CS must be drawn downward. Denote by P
the polygon composed of the edges (r, k) and (r, k + 5) of C1 and of the edges
(k, k + 2), (k + 2, k + 3), and (k + 3, k + 5) of C2. Note that vertices k + 1 and
k + 4 must be either both inside or both outside P . In fact, placing one of these
vertices inside and the other outside P is not consistent with the embedding
constraints of E2; see Fig. 3(c). If both vertices k + 1 and k + 4 are placed inside
P , then the embedding constraints of E1 and E2 and the upwardness of CS imply
that edge (k + 2, k + 4) must cut edge (r, k + 3) and that edge (k + 1, k + 3)
must cut edge (r, k + 2). It follows that there is an intersection between edges
(k + 2, k + 4) and (k + 1, k + 3), both belonging to CS ; see Fig. 3(d). Similarly,
if both vertices k + 1 and k + 4 are placed outside P , then by the embedding
constraints of E1 and E2 vertex k + 2 is placed inside the polygon formed by the
edges (r, k + 1), (r, k + 5) of C1 and by the edges (k + 1, k + 3), (k + 3, k + 5) of
C2. Hence, edge (k + 2, k + 4) cuts such a polygon either in edge (k + 1, k + 3)
or in edge (k + 3, k + 5); see Fig. 3(e) and this concludes the proof. �
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4.3 Simultaneous Drawing of Outerplanar Graphs and Paths with
Fixed Embedding

Let O∗ be the outerplanar graph on vertices v1, v2, . . ., v7 shown in Fig. 4(a)
and E∗ be the embedding of O∗ shown in Fig. 4(b). Let F ∗ be the face of E∗ with
incident vertices v1, v3, and v7 and let P ∗ be the path (v1, v2, v3, v4, v5, v6, v7).
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Fig. 4. (a) Outerplanar graph O∗, drawn with solid edges, and path P ∗, drawn with
dashed edges. (b) Embedding E∗ of O∗. (c) Outerplanar graph O, drawn with solid
edges, and path P , drawn with dashed edges. (d) Embedding E of O.

Lemma 2. There does not exist a geometric simultaneous embedding of O∗ and
P ∗ in which the embedding of O∗ is E∗ and the external face of O∗ is F ∗.

Theorem 5. There exist an outerplanar graph O, an embedding E of O, a path
P , and a mapping between their vertices such that: (i) O and P do not share
edges, and (ii) O and P have no geometric simultaneous embedding.

Proof: Let O∗
1 and O∗

2 be two copies of the outerplanar graph O∗ defined above.
Denote by vj

i , with j = 1, 2 and i = 1, . . . , 7, the vertex of O∗
j that corre-

sponds to vertex vi of O∗ in O. Let E∗
1 and E∗

2 be the embeddings of O∗
1 and

O∗
2 corresponding to the embedding E∗ of O∗. Let O be the graph composed

of O∗
1 , of O∗

2 , and of edges (v1
7 , v2

1), (v1
1 , v2

7); see Fig. 4(c). Let the embedding
E for O be defined as follows: (i) each vertex of O∗

1 (of O∗
2) but for v1

1 and v1
7

(but for v2
1 and v2

7) has the same adjacency list as in E∗
1 (in E∗

2 ); (ii) the ad-
jacency lists of the remaining vertices are as follows: v1

1 → (v1
7 , v1

6 , v
1
4 , v1

3 , v
2
7),

v1
7 → (v2

1 , v1
3 , v1

2 , v
1
5 , v

1
1), v2

1 → (v2
7 , v

2
6 , v2

4 , v
2
3 , v1

7), v2
7 → (v1

1 , v2
3 , v

2
2 , v

2
5 , v2

1). Let
P be the path (v1

7 , v1
6 , v

1
5 , v

1
4 , v1

3 , v
1
2 , v

1
1 , v2

1 , v
2
2 , v

2
3 , v2

4 , v
2
5 , v2

6 , v
2
7). O and P do not

share edges, and the subpaths of P induced by the vertices of O∗
1 (O∗

2) play for
O∗

1 (O∗
2) the same role that path P ∗ plays for graph O∗ in Lemma 2.

Let F ∗
1 and F ∗

2 denote cycles (v1
1 , v1

3 , v
1
7) and (v2

1 , v2
3 , v

2
7), respectively. These

cycles are faces of O∗
1 and O∗

2 . We now show that every plane drawing ΓE of O
with embedding E determines a non-planar drawing of P . Consider the embed-
ding EO of O obtained by choosing (v1

1 , v
1
7 , v2

1 , v
2
7) as external face; see Fig. 4(d).

Choosing any face external to F ∗
1 (F ∗

2 ) in EO as external face of ΓE leaves O∗
1

(O∗
2) embedded with external face F ∗

1 (F ∗
2 ). Hence, we can apply Lemma 2 and

conclude that there is no simultaneous embedding of O and P . �
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5 Near-Simultaneous Embedding

In this section we study the variation of geometric simultaneous embedding in
which vertices representing the same entity in different graphs can be placed in
different points in different drawings. However, in order to preserve the viewer’s
“mental map” corresponding vertices should be placed as close as possible. This
turns out to be impossible for general planar graphs, as the first lemma of this
section shows. First, define the displacement of a vertex v between two drawings
Γ1 and Γ2 as the distance between the location of v in Γ1 and the location of v in
Γ2. Second, we show that there exist two n-vertex planar graphs G1 and G2 with
a bijection γ between their vertices such that for any two planar straight-line grid
drawings Γ1 and Γ2 of G1 and G2, respectively, there exists a vertex v that has a
displacement Ω(n) between Γ1 and Γ2.

1
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n/2+1

n/2+2 n/2+3
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n-2

nn-1

(a) (b)

Fig. 5. (a) Nested triangle graph G1; (b) Nested triangle graph G2

Let G1 and G2 be two n-vertex nested triangle graphs; see Fig. 5. A nested
triangle graph G is a triconnected planar graph with a triangular face F (G)
such that removing the vertices of F (G) and their incident edges leaves a smaller
nested triangle graph or an empty vertex set. Suppose the mapping γ(v1) = v2
between vertices v1 ∈ V (G1) and vertices v2 ∈ V (G2) is the one shown in
Fig. 5 and defined by the following procedure: embed G1 and G2 with external
faces F (G1) and F (G2), respectively. Starting from G1 (G2), for i = 1, . . . , n/3,
remove from the current graph the three vertices of the external face and label
them 3i − 2, 3i − 1, and 3i (3(i + 1)/2 − 2, 3(i + 1)/2 − 1, and 3(i + 1)/2 if i is
odd, or (n + 3i)/2 − 2, (n + 3i)/2 − 1, and (n + 3i)/2 if i is even). Then, for any
two planar straight-line grid drawings Γ1 of G1 and Γ2 of G2 and G2, we have:

Lemma 3. There exists a vertex representing the same entity in G1 and G2
that has displacement Ω(n) between Γ1 and Γ2.

The lower bound in Lemma 3 is easily matched by an upper bound obtained by
independently drawing each planar graph in O(n) × O(n) area: Each vertex is
displaced by at most the length of the diagonal of the drawing’s bounding box.
Clearly, such a diagonal has length O(n).

The above result shows that we cannot hope to guarantee near-simultaneous
embeddings for arbitrary pairs of planar graphs. It is possible, however, that for
graphs that are “similar”, near-simultaneous embeddings might exist. Similarity
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between graphs could be defined and regarded in several different ways, by mind-
ing both the combinatorial structure of the graphs and the mapping between
the vertices of the graphs. With this in mind, in the following we look for near-
simultaneous embeddings of similar paths and similar trees.

5.1 Near-Simultaneous Drawings of Similar Paths

Recall that two paths always have a geometric simultaneous embedding, while
three of them might not have one [1]. Therefore, in order to represent a sequence
of paths using a sequence of planar drawings, vertices that are in correspondence
under the mapping must be displaced from one drawing to the next.

Observing that a path induces an ordering of the vertices, call two n-vertex
paths P1 and P2 with orderings π1 and π2 of their vertices and with a bijective
mapping γ between their vertices k-similar if for each vertex v1 ∈ P1 the position
of v1 in π1 differs by at most k positions from the one of v2 = γ(v1) in π2. Drawing
the paths as horizontal polygonal lines with uniform horizontal distances between
adjacent vertices gives a near-simultaneous drawing. As any vertex vi if P1 occurs
within k positions in P2 (compared with its position in P1) then the extent of the
displacement of the vertex from one drawing to the next is limited by exactly k
units. More generally, this idea can be summarized as follows:

Theorem 6. A sequence of n-vertex paths P0, P1, ..., Pm, where each two con-
secutive paths are k-similar, can be drawn so that the displacement of any vertex
in a pair of paths that are consecutive in the sequence is at most k.

5.2 Near-Simultaneous Drawings of Similar Trees

Generalizing the idea of k-similarity to trees, call two rooted arbitrarily ordered
trees T1 and T2 with vertex sets V1 and V2 and with bijective mapping γ between
their vertices, k-similar if: (i) The depths of any vertex v1 ∈ V1 and of its
corresponding vertex γ(v1) ∈ V2 differ by at most k; (ii) The positions of any
two corresponding vertices in any pre-established traversal of the tree among
pre-, in-, post-order, or breadth-first-search traversal differ by at most k.

Given two trees T1 and T2 that are k-similar with respect to a pre-established
traversal order π, we can draw each of T1 and T2 as follows: (1) Assign to each
vertex vi its position π(vi) as an x-coordinate; (2) Assign to each vertex vi its
depth as a y-coordinate.

Such an algorithm produces layouts that are planar and layered. A drawing is
layered if (i) each vertex is assigned to a layer, (ii) for each layer an order of its
vertices is specified, and (iii) there are only edges joining vertices on consecutive
layers. Since subsequent trees are k-similar, the depth of any vertex and its
position in a tree traversal changes only by k in two consecutive trees; hence, we
have that the displacement of a vertex representing the same entity in different
drawings is at most

√
k2 + k2 = k

√
2. More generally, we have the following:

Theorem 7. A sequence of n-vertex trees T0, T1, ..., Tm, where each two consec-
utive trees are k-similar, can be drawn such that the displacement of any vertex
in a pair of trees that are consecutive in the sequence is at most k

√
2.
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Observe that an analogous definition of similarity between two graphs and the
same layout algorithm work more generally for level planar graphs [9,10] (and
hence for outerplanar graphs). Finally, the area requirement of the drawings
produced by the described algorithm is worst-case quadratic in the number of
vertices of a tree (or of a level planar graph).

6 Conclusions

In this paper we have considered some variations of the well-known problem of
embedding graphs simultaneously.

Concerning the geometric simultaneous embedding without common edges, we
provided a negative result that seems to show that the geometric simultaneous
embedding is not more powerful by assuming the edge sets of the input graphs
to be disjoint. Further, we believe that there exist two trees not sharing common
edges that do not admit a geometric simultaneous embedding. This would extend
the result in [8] where two trees that do not admit a simultaneous embedding and
that do share edges are shown. Consider two isomorphic rooted trees T1(h, k)
and T2(h, k) a mapping γ between their vertices defined as follows (see Fig. 6):
(i) the root of T1(h, k) (of T2(h, k)) has k children; (ii) each vertex of T1(h, k) (of
T2(h, k)) at distance i from the root, with 1 ≤ i < h, has a number of children
one less than the number of vertices at distance i from the root in T1(h, k) (in
T2(h, k)); (iii) one vertex of T1(h, k) (of T2(h, k)) at distance h from the root has
one child; (iv) each child of the root of T1(h, k) is mapped to a distinct child of
the root of T2(h, k); (v) for each pair of vertices v1 of T1(h, k) and v2 of T2(h, k)
that are at distance i from the root of their own tree and that are such that
v2 �= γ(v1), there exists a child of v1 that is mapped to a child of v2; (vi) the
only vertex of T1(h, k) (of T2(h, k)) that is at distance h + 1 from the root is
mapped to the root of T2(h, k) (to the root of T1(h, k)).

Conjecture 1. For sufficiently large h and k, T1(h, k) and T2(h, k) do not admit
a geometric simultaneous embedding with mapping γ between their vertices.

For the problem of drawing graphs simultaneously with fixed embedding, we pro-
vided more negative results than in the usual setting for geometric simultaneous

Fig. 6. Trees T1(3, 3) and T2(3, 3) with the mapping γ between their vertices. T1(3, 3)
has solid edges and T2(3, 3) has dashed edges.
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embedding, while providing only two positive results partially covering the ones al-
ready known for geometric simultaneous embedding. We believe that understand-
ing the possibility of obtaining a simultaneous embedding of a tree and a path in
which the tree has a fixed embedding could be useful for the same problem in the
non-fixed embedding setting.

Even in the more relaxed near-simultaneous setting, we have shown that with-
out assuming a similarity in the sequence of graphs to be drawn, it is difficult to
limit the displacement of a vertex from a drawing to the next. We have shown
that for paths, for trees, and for level planar graphs there exist reasonable sim-
ilarity measures that allow us to obtain near-simultaneous drawings. However,
in the case of general planar graphs it is not yet clear what kind of similarity
metric can be defined and how well can such graphs be drawn.
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Abstract. We consider the following problem known as simultaneous
geometric graph embedding (SGE). Given a set of planar graphs on a
shared vertex set, decide whether the vertices can be placed in the plane
in such a way that for each graph the straight-line drawing is planar. We
partially settle an open problem of Erten and Kobourov [5] by showing
that even for two graphs the problem is NP-hard.

We also show that the problem of computing the rectilinear crossing
number of a graph can be reduced to a simultaneous geometric graph
embedding problem; this implies that placing SGE in NP will be hard,
since the corresponding question for rectilinear crossing number is a long-
standing open problem. However, rather like rectilinear crossing number,
SGE can be decided in PSPACE.

1 Introduction

Simultaneous drawing deals with the problem of drawing two or more graphs at
the same time such that all drawings satisfy specific requirements. When two
planar graphs are given, the natural question arises whether a combined drawing
leads to two planar drawings [2,5,6,8,9,10]. This problem has been studied in dif-
ferent variations. While most work has been spent on deciding whether different
kinds of graphs allow such drawings, this paper focuses on the complexity ques-
tion. We study the geometric version which restricts the problem to straight-line
drawings.

Problem: Simultaneous Geometric Embedding Problem (SGE)
Instance: A set of planar graphs Gi = (V, Ei) on the same vertex set V .
Question: Are there plane straight-line drawings Di of Gi such that each

vertex is mapped to the same point in the plane in all such Di?
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The complexity of the SGE problem for two graphs is mentioned as an open
problem in [5]. We settle part of the problem by showing that it is NP-hard. It
remains open whether the problem lies in NP, but we show by a comparison to
the rectilinear crossing number and the existential theory of the real numbers
that settling the complexity of SGE will be hard, since determing the complexity
of calculating the rectilinear crossing number is a long-standing open problem.
Our result is related to an earlier paper, in which we showed that deciding the
simultaneous embeddability with fixed edges is NP-complete for three graphs
(Gassner et al. [8]).

It is easy to see that SGE is non-trivial; that is, there are two planar graphs
without a simultaneous geometric embedding. More surprisingly, there are even
two trees that cannot be simultaneously embedded geometrically [9].

2 NP-Hardness Proof

Theorem 1. Deciding whether two graphs have a simultaneous geometric em-
bedding is NP-hard.

Proof. We show that there exists a polynomial transformation from 3SAT, which
is well-known to be NP-complete, to SGE for two planar graphs G1 = (V, E1)
and G2 = (V, E2).

Problem: 3-Satisfiability Problem (3SAT)
Instance: A CNF-system with a set U of boolean variables and a set C

of clauses over U such that each clause in C has exactly three
literals.

Question: Is there a satisfying truth assignment for U?

Given an instance of 3SAT, we construct an instance (G1, G2) of SGE. Then
we prove that the instance of 3SAT is satisfiable if and only if there exists a
simultaneous geometric embedding of (G1, G2).

Construction: Let U = {u1, u2, . . . , un} be the variable set and C = {c1, c2,
. . . , cm} be the clause set where cj = (lj1 ∨ lj2 ∨ lj3) for literals lji = uh or lji = ūh

for some variable uh (j ∈ {1, 2, . . . , m}, h ∈ {1, 2, . . . , n}, i ∈ {1, 2, 3}). The
3SAT formula f can then be written f = c1 ∧ c2 ∧ . . . ∧ cm.

For our construction we assume an ordering of the clauses, say (c1, c2, . . . , cm).
Furthermore we choose an order of the three literals in each clause cj and hence
get an order of all literals in the following way (l11, l

1
2, l

1
3, l

2
1, . . . , l

m
3 ).

For each clause cj we define a clause box by introducing vertices rj
1, . . . , r

j
7, y1,j ,

y2,j, y3,j. These vertices are connected by edges of E1 (solid) and E2 (dashed)
such as shown in Figure 1.

Next, we introduce two global vertices R1 and R2. We add an edge (R1, R2)
to both graphs G1 and G2. Furthermore, R1 is connected to the clause box of
each clause cj by edges (R1, r

j
i ) in E1 ∩ E2 with i = 2, . . . , 6. We also connect

R2 to the clause box by edges (R2, r
j
1) and (R2, r

j
7) in E1.
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rj
1

rj
2 rj

3 rj
4 rj

5 rj
6

rj
7y1,j y2,j y3,j

Fig. 1. The clause box of clause cj . Edges of G1 are solid and edges of G2 are dashed.

R1

R2

r1
1

y1,1 y2,1 y3,1

r1
7 = r2

1

y1,2 y3,m

rm

7

r1
2

r1
3 r1

4 r1
5 r1

6 = r2
2 r2

3 rm

5

rm

6

c1 c2 cm

Fig. 2. The figure shows all vertices and all edges constructed so far. Edges which
belong to both E1 and E2 are drawn bold and solid, edges of E1\E2 are thin and solid
while edges of E2\E1 are dashed.

To make the construction more rigid we glue together neighboring clause
boxes. This is done by identifying rj+1

2 with rj
6 and rj+1

1 with rj
7 for j =

1, 2, . . . , m − 1.
Figure 2 gives an idea of the construction so far. Notice that the graph given

by the edges in E1 is a subdivision of a triconnected graph which will be used
later in the proof. Its planar embedding is unique up to a homomorphism of the
plane.

For every literal lji with i = 1, 2, 3, j = 1, 2, . . . , m, we define a literal gadget
that consists of thirteen vertices and eighteen edges in E1 and fifteen edges in
E2 as shown in Figure 3. Notice that the edges in E1 of each literal gadget are
a subdivision of a triconnected graph. The only two possible embeddings are
shown in Figure 3.

From now on in all figures the edges in E1 are represented by solid lines while
the edges in E2 are drawn dashed.

Furthermore, we define edge sets that link all literal gadgets that belong to
the same variable uh. Let lj1i1 , lj2i2 , . . ., l

jωh

iωh
be the set of all literals that belong

to variable uh, that is either ljα

iα
= uh or ljα

iα
= ūh. Assume that these literals are

given in the order defined above. Then we will link the gadgets of each pair of
literals neighbored in this ordered list by edges in E2 in the following way:

Let ljk

ik
and l

jk+1
ik+1

with k ∈ {1, 2, . . . , m−1} be two literals neighbored in the or-
dered list. We add three edges in E2. Their endpoints depend on the fact whether



Simultaneous Geometric Graph Embeddings 283

zi,j
6 zi,j

5 zi,j
4

zi,j
1

zi,j
2

zi,j
3

yi,j

xi,j
6

xi,j
5

xi,j
4

xi,j
1 xi,j

2 xi,j
3

(a)
zi,j
4 zi,j

5 zi,j
6

zi,j
3

zi,j
2

zi,j
1

yi,j

xi,j
4

xi,j
5

xi,j
6

xi,j
3 xi,j

2 xi,j
1

(b)

Fig. 3. Literal gadget for lji with corresponding variable uh. The edges in E1 are solid
and those in E2 are dashed. The two different drawings (a) and (b) will become im-
portant later.

the two literals are negated or unnegated. If both literals are negated or both
are unnegated, then we add the three edges (zik,jk

1 , z
ik+1,jk+1
6 ), (zik,jk

2 , z
ik+1,jk+1
5 ),

(zik,jk

3 , z
ik+1,jk+1
4 ). If one of the literals is negated and one is unnegated, we add

the three edges (zik,jk

1 , z
ik+1,jk+1
4 ), (zik,jk

2 , z
ik+1,jk+1
5 ), (zik,jk

3 , z
ik+1,jk+1
6 ) to graph

G2. For an example with three literals (ωh = 3) the linking edges are visualized
in Figure 4.

For each clause we define a clause gadget consisting of three literal gadgets,
the clause box and some additional vertices and edges. Let cj be a clause with
literals lj1, lj2 and lj3. Notice that the three literal gadgets are already connected
to the clause box using the vertices yi,j with i = 1, 2, 3. Further connections
are given by the additional edges (rj

3, x
1,j
2 ), (rj

4, x
2,j
2 ) and (rj

5, x
3,j
2 ) in E2. We

also add two vertices sj , tj and connect them to the literal gadgets via the new
edges (x1,j

3 , sj) ∈ E2, (sj , x2,j
1 ), (x2,j

3 , tj) ∈ E1 and (tj , x3,j
1 ) ∈ E2. A possible

simultaneous embedding of a clause gadget is shown in Figure 5.
In order to connect the clause gadget to the global vertex R2 we add vertices

wj , w1,j , w2,j and w3,j and connect them to vertices R2, z1,j
5 , z2,j

5 and z3,j
5 and

to each other as shown in Figure 5.
This completes the construction.
1. Assume that the 3SAT-instance is satisfiable. Thus we can fix a true/false-

assignment of the variables that satisfies the given formula and we construct an
instance of SGE as explained above. We prove that there exists a simultaneous
geometric embedding of the constructed instance. We say that a variable u makes
a clause c true if either u is a literal in c and u = true or if ū is a literal in c
and u = false. Since the instance of 3SAT is satisfiable there exists at least one
variable u in each clause c that makes c true. If variable u makes its clause true
we draw the corresponding literal gadget as shown in Figure 3 (a). Otherwise
we draw the gadget as shown in Figure 3 (b). The clause gadgets are drawn
side by side in their specific ordering with the global vertices R1 and R2 being
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6
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4

zi3,j3
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3
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4
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xi3,j3
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6

xi1,j1
1

xi1,j1
3

xi2,j2
1

xi2,j2
3

xi3,j3
3

xi3,j3
1

Fig. 4. All literal gadgets that belong to the same variable uh are linked with edges
in E2. Here, the first two gadgets belong to an unnegated literal uh whereas the third
belongs to a negated literal ūh.

positioned at the outer face as shown in Figure 2. Furthermore, the x-vertices
of each literal gadget lie inside the clause box of its corresponding clause and
the z-vertices lie outside. Moreover, every variable u gets its own horizontal
region for the z-vertices to avoid crossings of linking edges of different variables.
In Figure 4 the horizontal level is marked gray. Linking edges belonging to a
different variable are either positioned above or below this region.

Consider now different literal gadgets corresponding to one variable u. Either
all the unnegated or all the negated literals (if there exist such literals) make
their clauses true but not both. But that is sufficient for the linking edges to be
drawn without crossings (not counting crossings between an edge of G1 and an
edge of G2) as shown in Figure 4.

It remains to show that we can draw the edges inside the clause gadgets
without crossings of edges of the same graph.

Consider clause cj with literals lj1, lj2 and lj3 and corresponding variables ul,
um, ur. If ul makes cj true, there exists a simultaneous geometric embedding.
See Figure 6 for the case where ul is the only variable that makes cj true. Simple
modifications yield a simultaneous embedding for the case where ul is not the
only variable that makes cj true. Due to symmetry an analogous drawing can
be found for the case where ur makes cj true.

Finally, if um makes cj true, we can find a simultaneous embedding as shown
in Figure 5. Hence, we have found a simultaneous geometric embedding of the
constructed instance.

2. Now assume that we are given a 3SAT-formula and the constructed SGE
instance allows a simultaneous geometric embedding. We show that we can find
a satisfying truth assignment for the 3SAT-instance.
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Fig. 5. Clause gadget for clause cj plus global vertex R2

Notice that the subgraph of G1 shown in Figure 2 is a triconnected subdivision.
Consequently, it has a unique combinatorial embedding up to homomorphisms
of the plane. We choose the planar embedding with the edge (R1, R2) on the
boundary of the outer face such that the cycle (R1, r

1
2 , r

1
1 , R2, r

m
7 , rm

6 ) has the
same order as visualized in Figure 2.

Observe that each literal gadget in the construction has one of exactly two
possible planar embeddings shown in Figure 3. Let lj1i1 , lj2i2 , . . ., l

jωh
iωh

be the set
of all literals that belong to variable uh. Then due to the edges in E2 shown in
Figure 4 all unnegated literals of uh have the same embedding and all negated
literals have just the opposite embedding. We assign the value true to variable
uh if the ordering for unnegated literals is the same as in Figure 3 (a) and false
otherwise.

For each literal lji in each clause cj the vertex yi,j lies on the boundary of the
clause box. The edge (rj

3, x
1,j
2 ) is not allowed to cross any of the edges incident

to global vertex R1 (which is positioned outside the clause box). Hence x1,j
2 and

thus all vertices x1,j
i , with i = 1, . . . , 6, have to lie within the clause box. With

similar arguments the x-vertices of lj2 and lj3 lie within the clause box. But now
the vertices sj and tj must lie within the clause box which is surrounded by
edges in E2.

As soon as a literal gadget lji is connected to a literal gadget of the same
variable (see Figure 4) the vertices zi,j

k , with k = 1, . . . , 6, lie outside the cor-
responding clause box. This is particularly the case for all literal gadgets that
belong to a clause which is not true.
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Fig. 6. SGE of the clause gadget when ul is the only variable that makes cj true

Assume that there exists a clause cj that is not true. Since no variable makes
cj true all gadgets are of the form in Figure 3 (b). This case is shown in Figure 7.

Notice that in Figure 7 vertex sj must be placed in the light gray area as
vertex x1,j

3 lies in this area. Otherwise the edge (x1,j
3 , sj) ∈ E2 crosses one edge

of the cycle that surrounds the gray area, which is a contradiction. With similar
arguments tj lies inside the dark gray area on the right of this figure. Hence the
edge pair (rj

5, x
3,j
2 ) and (sj , x

2,j
1 ) or the edge pair (rj

3, x
1,j
2 ) and (x2,j

3 , tj) must
cross twice in order to avoid a crossing of two edges of the same graph. But
this is not possible in a straight-line drawing and leads to a contradiction to the
assumption that clause cj is not true. Thus all clauses are true and hence we
have found a satisfying truth assignment. ��

3 Simultaneous Straight-Line Drawings and the
Rectilinear Crossing Number

In this section we discuss the relationship between simultaneous geometric
embeddings and two famous problems, the rectilinear crossing number and
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Fig. 7. If a clause is false then there exist two edges in the corresponding clause
gadget that cross twice

existential theory of the reals. We show, that the complexity of SGE can be
placed in between these two problems.

Problem: Rectilinear Crossing Number Problem (RCR)
Instance: A graph G.
Question: What is the minimum number of crossings in a straight-line

drawing of G?

RCR is well-known to be NP-hard [7,1]. We will show that RCR reduces to
SGE via NP-many-one reductions, which are many-one reductions computed by
an NP-machine rather than a polynomial time machine:

Theorem 2. RCR NP-many-one reduces to SGE for an unbounded number of
graphs.

Proof. Let G = (V, E) be a graph. Guess k pairs of edges that are the potential
crossing pairs and let M be the set of these edge pairs.

We define graphs Ge,f = (V, Ee,f ) with Ee,f = {e, f} for each pair of edges e
and f which is not in M . If there exist an edge d which is not part of any of the
new graphs Ge,f we define a graph Gd = (V, Ed) with Ed = {d}.

Notice, that each edge (and each vertex) has been added to at least one graph
Ge,f or Gd. Furthermore, if one of the graphs Ge,f contains two edges e and
f they are not allowed to cross in a straight-line drawing as this pair is not
one of the k guessed pairs. Thus the decision problem whether G can be drawn
straight-line with only edge-crossings in M is equivalent to the problem of finding
a simultaneous geometric embedding of the graphs Ge,f and Gd. ��
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Since NP is closed under NP-many-one reductions, placing SGE in NP has
immediate consequence for RCR:

Corollary 1. If SGE lies in NP then RCR lies in NP.

Since placing RCR in NP is a long-standing open problem, we should not expect
any easy resolution of the complexity of SGE [3, pg. 389].

Next, we will show that SGE can be expressed in the language of the existential
theory of the reals. More, formally, SGE reduces to R∃, the set of existential first-
order sentences true over the real numbers.

Problem: Existential Theory of the Real Numbers (R∃)
Instance: An expression of the form

(∃x1 ∈ R) . . . (∃xn ∈ R) P (x1, . . . , xn)

where P is a quantifier-free Boolean formula with atomic pred-
icates of the form g(x1, . . . , xn)Δ0 where g is a real polynomial
and Δ ∈ {>, =}. Atomic predicates can be combined using ∨,
∧ and ¬.

Question: Is the given formula true?

Theorem 3. There exists a polynomial transformation from SGE to R∃.

Proof. Let G1 = (V, E1), . . . , Gk = (V, Ek) be an instance of SGE. Edge pairs
{e, f} belonging to the same graph Gi are not allowed to cross; we call such a
pair a forbidden pair. We define the graph G = (V, E) by E :=

⋃
i=1,...,k Ei.

We construct an instance of R∃ in the following way. For each vertex v ∈ V
we let two variables xv, yv ∈ R represent the coordinates of the vertex in the
final drawing (which leads to the embedding that we are looking for). An edge
(u, v) ∈ E is then represented by the set of points (xu+t(xv −xu), yu+t(yv−yu))
where t ∈ [0, 1].

We need to write constraints ensuring that the resulting drawing of G is good.
In particular, we have to guarantee that no two vertices coincide, that no edge
contains a vertex other than its endpoints, and that no two forbidden edges
intersect.

The constraints are all of the same form: two geometric objects are apart from
each other; we express this by requiring there to be a line separating them. For
example, for an edge e between points u = (xu, yu) and w = (xw, yw) and a
vertex v at (xv, yv) we can use the formula A(v, e):

( yu > av,exu + bv,e ∧
yw > av,exw + bv,e ∧
yv < av,exv + bv,e ) ∨

( yu < av,exu + bv,e ∧
yw < av,exw + bv,e ∧
yv > av,exv + bv,e ).
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Then A(v, e) is true if and only if v and e lie on opposite sides of the line
y = av,ex + bv,e, that is, if v does not lie on e. Similarly, we can write formulas
B(e, f) that express that e and f do not intersect and C(u, v) expressing that u
and v are distinct.

Define

A :=
∧

v∈V,e∈E,v �∈e

(∃av,e, bv,e ∈ R) Av,e,

B :=
∧

(e,f)∈X

(∃ae,f , be,f ∈ R) Be,f ,

C :=
∧

u,v∈V

(∃au,v, bu,v ∈ R) Cu,v,

where we let X be the set of forbidden edge pairs.
Let V = {v1, . . . , vn} and let (xi, yi) be the coordinates of vertex vi for i =

1, . . . , n, then
(∃x1, y1, . . . , xn, yn ∈ R) A ∧ B ∧ C

expresses that there exists a good straight-line drawing of G in which no forbid-
den pair of edges crosses. The drawing of G gives rise to a set of drawings for
each graph Gi (by deleting all other edges) and thus to a simultaneous geometric
embedding. As the forbidden edge pairs do not cross, each graph Gi has a planar
drawing.

Finally, note that the formula can easily be brought into the normal form
required for R∃. ��

Since it is known that R∃ can be decided in PSPACE [4], we can draw the
following conclusion about the complexity of SGE:

Corollary 2. SGE, for an arbitrary number of graphs, is NP-hard and lies in
PSPACE.
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Efficient C-Planarity Testing for Embedded Flat
Clustered Graphs with Small Faces�
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Abstract. Let C be a clustered graph and suppose that the planar embedding
of its underlying graph is fixed. Is testing the c-planarity of C easier than in the
variable embedding setting? In this paper we give a first contribution towards
answering the above question. Namely, we characterize c-planar embedded flat
clustered graphs with at most five vertices per face and give an efficient testing
algorithm for such graphs. The results are based on a more general methodology
that shades new light on the c-planarity testing problem.

1 Introduction

Determining the computational complexity of the c-planarity testing for clustered graphs
is one of the main Graph Drawing challenges. However, despite all the research efforts
spent, only for restricted families of clustered graphs polynomial-time testing algorithms
have been found, and the general problem is open.

A brief survey on the problem of testing the c-planarity of clustered graphs can be
found in [2]. The classes of clustered graphs for which the problem is known to be
polynomial-time solvable are the following. c-Connected clustered graphs, in which
each cluster induces a connected subgraph of the underlying graph; the first algorithm
for this class has been presented in [7]. Completely connected clustered graphs, that are
c-connected clustered graphs such that the complement of the subgraph induced by each
cluster is connected; an elegant characterization for this class is shown in [1]. Almost
connected clustered graphs, in which either all nodes corresponding to non-connected
clusters are in the same path in the cluster hierarchy, or for each non-connected cluster
its parent and all its siblings are connected [9]. Extrovert clustered graphs, a gener-
alization of c-connected clustered graphs with special restrictions on the cluster hier-
archy [8]. Cycles of clusters, in which the hierarchy is flat, the underlying graph is a
simple cycle, and the clusters are arranged in a cycle [3]. The clustering hierarchy is flat
if all clusters, but for the root, are at the same level. Clustered cycles, that are clustered
graphs in which the hierarchy is flat, the underlying graph is a simple cycle, and the
clusters are arranged into an embedded plane graph [4].

Let C be a clustered graph. Suppose that a planar embedding of its underlying graph
is fixed. Is testing the c-planarity of C easier than in the variable embedding setting?
This question is motivated by the existence of many NP-hard Graph Drawing problems
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on planar graphs that become polynomial-time solvable if the embedding is fixed. Test-
ing if a graph admits an orthogonal planar drawing with at most k bends or if a graph
admits an upward planar drawing are examples of such problems.

In this paper we give a first contribution towards answering the above question.
Namely, we characterize c-planar embedded flat clustered graphs with at most five ver-
tices per face and give an efficient testing algorithm for such graphs. Our approach is
to look for an augmentation of the embedded underlying graph with extra edges such
that the resulting graph is c-connected and c-planar. We call candidate saturating edges
those edges that are candidates for the augmentation. Two of such edges have a conflict
if using both of them in the augmentation causes a crossing. We present a character-
ization and an efficient c-planarity testing algorithm for single-conflict embedded flat
clustered graphs, that are embedded clustered graphs such that (i) the cluster hierarchy
is flat and (ii) each candidate saturating edge has a conflict with at most one other can-
didate saturating edge. Characterization and algorithm for clustered graphs with at most
five vertices per face are a consequence of such a more general result.

The paper is organized as follows: In Section 2 we give preliminaries. In Section 3
we characterize c-planar single-conflict embedded flat clustered graphs and c-planar
embedded flat clustered graphs with at most five vertices per face. In Section 4 we
present a linear time and space c-planarity test. Section 5 contains conclusions and open
problems. Because of space limits some proofs are in the full version of the paper [6].

2 Preliminaries

A graph G is vertex (edge) k-connected if the removal of any k − 1 vertices (edges)
leaves G connected. A separating edge is an edge whose removal disconnects G.

A drawing of a graph is a mapping of each vertex to a distinct point of the plane and
of each edge to a Jordan curve between the endpoints of the edge. A planar drawing is
such that no two edges intersect except, possibly, at common endpoints. A planar draw-
ing of a graph determines a circular ordering of the edges incident to each vertex. Two
drawings of the same graph are equivalent if they determine the same circular orderings
around each vertex. A planar embedding is an equivalence class of planar drawings. A
planar drawing partitions the plane into topologically connected regions, called faces.
The unbounded face is the outer face. Two planar drawings with the same planar em-
bedding have the same faces. However, such drawings could still differ for their outer
face. The dual graph D of a planar embedded graph G is the graph with a vertex for
each face of G and with an edge e(D) between two vertices if the corresponding faces
share an edge e(G); edge e(D) is dual to edge e(G). In the following we will deal both
with biconnected (that is vertex 2-connected) and with simply connected (that is vertex
1-connected) embedded planar graphs. In the former case, the “number of vertices in
a face” is trivially defined as the number of vertices incident to the face, while in the
latter one is meant to be the number of occurrences of vertices in the border of the face.

A clustered graph is a pair C(G, T ), where G is a planar graph and T is a rooted tree
whose leaves are the vertices of G. Graph G and tree T are called underlying graph and
inclusion tree, respectively. Each internal node μ of T corresponds to the subset V (μ)
(called cluster) of the vertices of G that are leaves of the subtree of T rooted at μ; G(μ)
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(a) (b) (c) (d)

Fig. 1. (a) An embedded flat clustered graph C and its candidate saturating edges. Different clus-
ters have different colors. (b)–(c)–(d) Multigraphs Gi for C.

denotes the subgraph of G induced by the vertices in V (μ). If each cluster induces a
connected subgraph of G, then C is c-connected, otherwise C is non-c-connected. An
embedded clustered graph is a clustered graph such that G is connected and the planar
embedding of the underlying graph of C is fixed. A flat clustered graph is such that the
number of nodes in any path from the root to a leaf of T is three. When referring to a
flat clustered graph, given a vertex v of the underlying graph we say that the cluster of
v is its parent in T . Also, we call clusters only the children of the root.

A drawing of a clustered graph C(G, T ) consists of a drawing of G and of a rep-
resentation of each node μ of T as a simple closed region R(μ) such that: (i) R(μ)
contains the drawing of G(μ); (ii) R(μ) contains a region R(ν) iff ν is a descendant of
μ in T ; and (iii) the borders of any two regions don’t intersect. Consider an edge e and a
node μ of T . If e crosses the boundary of R(μ) more than once, we say that edge e and
region R(μ) have an edge-region crossing. A drawing of a clustered graph is c-planar if
it does not have edge crossings or edge-region crossings. A clustered graph is c-planar
if it admits a c-planar drawing. An embedded clustered graph is c-planar if it admits a
c-planar drawing in which the embedding of G is preserved.

Consider an embedded flat clustered graph C(G, T ). For each face f of G a set of
candidate saturating edges is defined as follows: Let O be the clockwise circular order
of the vertices on the border of f . Subdivide such vertices into subsets such that each
subset Vi contains a maximal sequence of consecutive vertices in O belonging to the
same cluster. Introduce a candidate saturating edge for each Vi �= Vj such that (i) Vi

and Vj contain vertices of the same cluster μk and (ii) Vi and Vj are in different con-
nected components of G(μk). Candidate saturating edges are edges that can be added
to the clustered graph to make it c-connected (see Fig. 1). For a cluster μi of T we
define Gi as the embedded multigraph whose vertices are the connected components
of G(μi) and whose edges are the candidate saturating edges. The embedding of Gi is
given by the order of the faces around the vertices of G. Observe that Gi does not have
self-loops and is, in general, non-planar. However, possible crossings are only between
edges introduced in the same face of G. Two candidate saturating edges e1 and e2, join-
ing connected components G1(μi) and G2(μi) of G(μi), and G1(μj) and G2(μj) of
G(μj), respectively, with μi �= μj and with e1 and e2 in the same face f of G, have a
conflict if G1(μi), G1(μj), G2(μi), and G2(μj) appear in this order around the border
of f . Informally, two candidate saturating edges have a conflict if adding both of them
to the clustered graph causes a crossing. The following theorem shows the role of can-
didate saturating edges for the c-planarity of a flat embedded clustered graph. Even if
not explicitly stated, Theorem 1 has been used in [3].
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Theorem 1. An embedded flat clustered graph C(G, T ) is c-planar if and only if: (1)
G is planar; (2) there exists a face f in G such that when f is chosen as outer face
for G no cycle composed by vertices of the same cluster encloses a vertex of a different
cluster; (3) it is possible to augment G to a graph G′ by adding a subset of the candidate
saturating edges of C so that no two added edges have a conflict and each cluster
induces in G′ exactly one connected component.

Hence, given an embedded flat clustered graph C(G, T ), if Conditions 1 and 2 are
satisfied by G, the problem of testing the c-planarity of C can be restated as the problem
of testing if it is possible to select from multigraphs Gi a set of candidate saturating
edges to enforce Condition 3. If such a set exists, we call it a saturator of C.

Lemma 1. An embedded flat clustered graph C(G, T ) admits a saturator if and only if
it admits an acyclic saturator.

Hence, testing the c-planarity of an embedded flat clustered graph satisfying Condi-
tions 1 and 2 of Theorem 1 is the same of testing if there exists a spanning tree of each
Gi where no two edges in different spanning trees have a conflict.

3 A Characterization

We restrict ourselves to embedded flat clustered graphs in which each candidate sat-
urating edge has a conflict with at most one other candidate saturating edge. We call
single-conflict an embedded flat clustered graph satisfying such a property. Consider a
single-conflict embedded flat clustered graph C(G, T ) and the multigraph Gi for each
cluster μi in T . We have the following structural lemma.

Lemma 2. If a graph Gi contains two crossing edges e1 and e2, then e1 and e2 have
no conflict with edges of other multigraphs.

By Lemma 3, we can assume that in the interesting cases the Gi’s are connected.

Lemma 3. If there exists a Gi that is not connected, then C is not c-planar.

There are edges in the Gi’s that must be used in any saturator of C and edges that are
not used in any saturator. Further, there are edges that can be supposed to belong to a
saturator without altering the possibility to have one. Roughly speaking, such edges do
not belong to the “core” of the problem. Hence, in the following we simplify the Gi’s
with an algorithm that either returns that C is not c-planar or returns a structure where
there are no trivial choices. For this purpose, we define two operations on Gi.

The operation of removing an edge e from Gi corresponds to the choice of not using
e in the saturator of C. Notice that, when an edge e is removed from Gi, an edge of Gj ,
with i �= j, that possibly had a conflict with e does not have a conflict any longer.

The operation of collapsing an edge e with end-vertices u and v in Gi corresponds to
the choice of using e in the saturator of C. It consists of: (i) deleting vertices u and v,
(ii) removing from Gi all edges between u and v, and (iii) inserting in Gi a new vertex
whose incident edges are those of u and v. The embedding of Gi is preserved. The
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collapsing operation “preserves” the conflicts. Namely, let ei be an edge of Gi incident
to u or in v but not in both. Suppose that ei has a conflict (has not a conflict) with an
edge ej of Gj , with i �= j. After collapsing edge e in a new vertex w the edge incident
to w corresponding to ei has a conflict (resp. has not a conflict) with ej .

The algorithm is as follows. Repeatedly modify the Gi’s by applying one of the
following simplifications. From now on, Gi denotes the multigraph obtained from the
starting Gi after some simplifications have been performed. Simplification 1: If there
exists an edge e of a Gi that has no conflict, then collapse e in Gi. Simplification 2:
If there exist a separating edge ei and a non-separating edge ej that are in Gi and
Gj , respectively, and that conflict each other, then collapse ei in Gi and remove ej

from Gj . Simplification 3: If there exist two separating edges ei and ej that are in
Gi and Gj , respectively, and that conflict each other, then stop because C is not c-planar.

If the algorithm does not stop for non-c-planarity, we call the final Gi candidate
saturating graph for cluster μi and we denote it by G∗

i . Also, we say that μi admits a
candidate saturating graph. The following properties can be easily proved.

Property 1. None of Simplifications 1, 2, and 3 could disconnect any Gi.

Property 2. The subgraphs induced by the collapsed edges are acyclic.

Property 3. Candidate saturating graphs are planar embedded and edge 2-connected.

Property 4. Any edge of a candidate saturating graph has exactly one conflict with an
edge of a different candidate saturating graph.

We now prove that each simplification performed by the algorithm preserves the pos-
sibility of finding a saturator of C. Consider simplification sm, that is performed at a
certain step of the simplification phase. sm can be one of Simplification 1, 2, or 3. De-
note by s0, s1, . . . , sm−1 the simplifications performed before sm and denote by E the
set of edges collapsed while applying s0, s1, . . . , sm−1. Inductively, suppose that if an
acyclic saturator of C exists, there exists an acyclic saturator composed by the edges of
E plus some of the edges remaining in the Gi’s after simplifications s0, s1, . . . , sm−1.
This is indeed the case when no simplification has been performed yet.

Lemma 4. Consider an edge e of Gi with no conflict. We have that C admits a saturator
only if it admits an acyclic saturator containing e and containing the edges of E.

Proof: Suppose C admits a saturator. Then, by Lemma 1 and by inductive hypothesis,
it admits an acyclic saturator S such that E ⊆ S. If S contains e the statement follows.
Otherwise, observe that since S is a saturator, there exists a set S′ ⊆ S of edges forming
a path between the end-vertices u and v of e. Hence, the edges of S′ ∪{e} form a cycle.
Not all the edges of S′ belong to E, otherwise u and v would not have been distinct
vertices in Gi after simplifications s0, s1, . . . , sm−1. Hence, the set S∗ of edges obtained
from S by inserting e and by removing any edge of S′ not in E is an acyclic saturator
of C containing E and e. Namely, all the connected components of C are connected by
a path of edges in S∗ and since e has no conflict and S is a saturator, then no two edges
in S∗ have a conflict. �
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Lemma 5. Consider two edges ei and ej of two distinct multigraphs Gi for cluster μi

and Gj for cluster μj , respectively. Suppose that ei and ej conflict each other. Also,
suppose that ei is a separating edge, while ej is not. Then C admits a saturator only if
it admits an acyclic saturator containing ei, containing E, and not containing ej .

Proof: Suppose C admits a saturator. Then, by Lemma 1 and by inductive hypothesis,
it admits an acyclic saturator S such that E ⊆ S. Since at step sm end-vertices u and
v of ei are in Gi, then no path composed by edges of E connects u and v. Since ei is
a separating edge, then if ei is not in S adding the edges of S to G would not connect
G(μi). Hence ei ∈ S. Since no two conflicting edges can be in S, then ej /∈ S. �

Lemma 6. Consider two separating edges ei and ej of two distinct multigraphs Gi for
cluster μi and Gj for cluster μj , respectively. Suppose that ei and ej conflict each other.
We have that C is not c-planar.

Proof: Suppose that C admits a saturator. Then, by inductive hypothesis, it admits an
acyclic saturator S such that E ⊆ S. Since at step sm the end-vertices u and v of ei

(the end-vertices w and x of ej) are in Gi (are in Gj ), then no path composed by edges
of E connects u and v (connects w and x). Since ei and ej are separating edges, then
if ei (ej) is not in S, adding the edges of S to G would not connect G(μi) (G(μj)).
However, S cannot contain both ei and ej , that conflict each other. �
Let μi and μj be two distinct clusters admitting candidate saturating graphs G∗

i and G∗
j ,

respectively. We define graph G∗
i,j as the planar embedded subgraph of G∗

i induced by
the edges having a conflict with the edges of G∗

j . We have:

Theorem 2. A single-conflict embedded flat clustered graph C(G, T ) is c-planar iff:
(1) G is planar; (2) There exists a face f in G such that when f is chosen as outer face
for G no cycle composed by vertices of the same cluster encloses a vertex of a different
cluster; (3) Each cluster of C admits a candidate saturating graph; (4) For each pair of
distinct clusters μi and μj , G∗

i,j is edge 2-connected; and (5) For each pair of distinct
clusters μi and μj , G∗

i,j is dual to G∗
j,i.

Proof: Let S be an acyclic saturator of C and let u and v be two vertices of candidate
saturating graph G∗

i . Denote by S(u, v) the path of S connecting u and v. If edges ei

and ej of candidate saturating graphs G∗
i and G∗

j conflict each other, we write ei ⊕ ej .
The necessity of Conditions (1) and (2) descends from the one of Conditions 1 and 2

of Theorem 1. We prove the necessity of Condition (3). Suppose that C does not admit
candidate saturating graphs. Two cases are possible: Either before the simplification
phase one of the Gi’s is not connected, or during the simplification phase two separating
conflicting edges are found. In the former case the non-c-planarity of C descends from
Lemma 3, in the latter case from Lemma 6.

Now we deal with Condition (4). Suppose that G∗
i,j is not connected. Denote by

v1 and v2 vertices in different connected components. Suppose, for a contradiction,
that an acyclic saturator S of C exists. Consider S(v1, v2) (see Fig. 2.a). Since v1 and
v2 are in different components of G∗

i,j , there exists an edge (u, v) ∈ S(v1, v2) s. t.
(u, v) ⊕ (w, x), where (w, x) ∈ G∗

k , with k �= i, j. Consider S(w, x). Each edge of
S(w, x) cannot have a conflict with any edge of S(v1, v2), otherwise S would contain
two conflicting edges, and with any edge e of G∗

i,j , otherwise e would conflict with
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two candidate saturating edges. Hence, G∗
j,i has at least two connected components.

Let u1 and u2 be two vertices in such components, respectively. Then, S(u1, u2) either
contains an edge e1 s. t. e1⊕e2, with e2 ∈ S(v1, v2), or contains an edge e1 s. t. e1⊕e2,
with e2 ∈ S(w, x), implying that S contains two conflicting edges.

Now suppose that G∗
i,j has a separating edge (u, v). By construction (u, v) ⊕ (w, x),

where (w, x) ∈ G∗
j,i. Suppose, for a contradiction, that a saturator S of C exists.

1. If (u, v) /∈ S, then consider S(u, v) (see Fig. 2.b). Since (u, v) is a separating
edge for G∗

i,j , then there exists an edge (u′, v′) ∈ S(u, v) s. t. (u′, v′) ⊕ (w′, x′),
where (w′, x′) ∈ G∗

k , with k �= i, j. Hence, S(w′, x′) either contains an edge e1 s.
t. e1 ⊕ e2, with e2 ∈ S(u, v), implying that S contains two conflicting edges, or
contains an edge e1 conflicting with (u, v), implying that (u, v) conflicts with two
candidate saturating edges.

2. If (u, v) ∈ S, then consider S(w, x).
– If an edge (w′, x′) ∈ S(w, x) is s. t. (w′, x′) ⊕ (u′, v′), with (u′, v′) /∈ G∗

i,j , a
contradiction is obtained as in the previous case (see Fig. 2.c).

– Otherwise, consider any edge (w′, x′) ∈ S(w, x) and edge (u′, v′) ∈ G∗
i,j s. t.

(u′, v′)⊕ (w′, x′). Let v (v′) be the endpoint of (u, v) (resp. of (u′, v′)) outside
cycle S(w, x) ∪ (w, x).

• If u = u′ or if all edges of S(u, u′) have conflicts with edges of G∗
j,i (see

Fig. 2.d), consider S(v, v′). Then there exists an edge (u′′, v′′) ∈ S(v, v′)
s. t. (u′′, v′′) ⊕ (w′′, x′′), where (w′′, x′′) ∈ G∗

k , with k �= i, j, otherwise
(u, v) would not be a separating edge. Hence, S(w′′, x′′) either contains
an edge e1 s. t. e1 ⊕ e2, with e2 ∈ S(v, v′), implying that S contains two
conflicting edges, or an edge e1 s. t. e1 ⊕ e2, with e2 ∈ S(u, u′), implying
that S contains two conflicting edges, or an edge e1 s. t. e1 ⊕ (u′, v′),
implying that (u′, v′) conflicts with two candidate saturating edges, or an
edge e1 s. t. e1 ⊕ (u, v), implying that (u, v) conflicts with two candidate
saturating edges.

• If u �= u′ and S(u, u′) contains at least one edge (u′′, v′′) s. t. (u′′, v′′) ⊕
(w′′, x′′), where (w′′, x′′)∈G∗

k , with k �= i, j (see Fig. 2.e), then S(w′′, x′′)
contains either an edge e1 s. t. e1 ⊕ e2, with e2 ∈ S(w, x), implying
that S contains two conflicting edges, or an edge e1 s. t. e1 ⊕ e2, with
e2 ∈ S(u, u′), or an edge e1 s. t. e1 ⊕ (u′, v′), implying that (u′, v′) con-
flicts with two candidate saturating edges, or an edge e1 s. t. e1 ⊕ (w, x),
implying that (w, x) conflicts with two candidate saturating edges.

Now we prove the necessity of Condition (5). Each edge of G∗
i,j has a conflict with

(and hence is dual to) one edge of G∗
j,i and vice versa. By the necessity of Condition (4),

we can assume that both G∗
i,j and G∗

j,i are edge 2-connected. Hence G∗
i,j is not dual to

G∗
j,i only if there is a face of G∗

i,j that contains in its interior two vertices of G∗
j,i, or vice

versa. Suppose w.l.o.g. that a face f of G∗
i,j contains in its interior two vertices u and v

of G∗
j,i. Suppose, for a contradiction, that a saturator S of C exists. Consider S(u, v).

1. If the vertices of S(u, v) are in part inside f and in part outside f (see Fig. 2.f),
consider two vertices v1 and v2 in different connected components, disconnected
by S(u, v), of f . Consider S(v1, v2). There exists an edge (w, x) ∈ S(v1, v2) s. t.
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Fig. 2. Illustrations for the necessity of the conditions of Theorem 2. Edges of G∗
i are red, edges

of G∗
j are light blue, and edges of G∗

k are green.

(w, x) ⊕ (y, z), where (y, z) ∈ G∗
k , with k �= i, j, otherwise f would not be a

face. Hence, S(y, z) either contains an edge e1 s. t. e1 ⊕ e2, with e2 ∈ S(v1, v2),
implying that S contains two conflicting edges, or an edge e1 conflicting with an
edge e2 ∈ f , implying that e2 conflicts with two candidate saturating edges.

2. Otherwise, S(u, v) is composed by vertices all lying inside f .

– If there is an edge (u′, v′) ∈ S(u, v) s. t. (u′, v′) ⊕ (w′, x′), where (w′, x′) ∈
G∗

k , with k �= i, j (see Fig. 2.g), then S(w′, x′) either contains an edge e1 s.
t. e1 ⊕ e2, with e2 ∈ S(u, v), implying that S contains two conflicting edges,
or an edge e1 s. t. e1 ⊕ e2, with e2 ∈ f , implying that e2 conflicts with two
candidate saturating edges, or an edge e1 s. t. e1 ⊕ e2, with e2 dual to an edge
of f , implying that e2 conflicts with two candidate saturating edges.

– Otherwise, any edge of S(u, v) is dual to an edge of G∗
i,j . Consider any edge

(w, x) dual to an edge of S(u, v).
• If w ∈ f or if there exists a vertex w′ ∈ f s. t. any edge of S(w, w′)

conflicts with an edge of G∗
j,i (see Fig. 2.h), then x /∈ f and there exists

no vertex x′ in f s. t. all edges of S(x, x′) conflict with edges of G∗
j,i,

otherwise f would not be a face. Consider any vertex x′′ ∈ f and S(x, x′′).
Then, there exists an edge in S(x, x′′) that has a conflict with an edge
(y, z) in G∗

k , with k �= i, j. Hence, S(y, z) either contains an edge e1 s. t.
e1 ⊕e2, with e2 ∈ S(u, v), implying that S contains two conflicting edges,
or contains an edge e1 s. t. e1 ⊕ e2, with e2 ∈ S(x, x′′), implying that S
contains two conflicting edges, or contains an edge e1 s. t. e1 ⊕ e2, with
e2 ∈ f , implying that e2 conflicts with two candidate saturating edges, or
contains an edge e1 s. t. e1 ⊕ e2, with e2 dual to an edge in f , implying
that e2 conflicts with two candidate saturating edges.
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• If w /∈ f and there exists no vertex w′ ∈ f s. t. any edge of S(w, w′)
conflicts with an edge of G∗

j,i (see Fig. 2.i), then there exists a vertex w′′ ∈
f s. t. S(w, w′′) contains an edge e1 s. t. e1 ⊕ (y, z), with (y, z) ∈ G∗

k , with
k �= i, j, and a contradiction is derived as in the previous case.

We prove the sufficiency of Conditions 1, 2, 3, 4, and 5 for the c-planarity of C.
Consider any planar drawing of G satisfying Conditions 1 and 2 and hence satisfying
Conditions 1 and 2 of Theorem 1. We show how to construct an acyclic saturator S
of C satisfying Condition 3 of Theorem 1. Apply the simplification phase, choosing
an acyclic set E of edges to be in S and obtaining a candidate saturating graph G∗

i for
each cluster μi (this can be done since C satisfies Condition 3). Order the clusters in
whichever way μ1, μ2, . . . , μm. For any pair of clusters μi and μj , with i < j, choose
a spanning tree T ∗

i,j of G∗
i,j (T ∗

i,j can be found since, by Condition 4, G∗
i,j is edge 2-

connected). Remove from G∗
j,i all edges dual to edges of T ∗

i,j , obtaining a graph T ∗
j,i. We

claim that T ∗
j,i is a spanning tree of G∗

j,i. By Condition 5, G∗
i,j and G∗

j,i are dual graphs,
and the edges of a cycle in G∗

i,j are dual to the edges of a cutset in G∗
j,i, and vice versa

(Lemma 1.4 of [11]). Hence, if T ∗
j,i has more than one connected component, the edges

removed from G∗
j,i form a cutset for G∗

j,i, and those of T ∗
i,j form a cycle, contradicting

the hypothesis that T ∗
i,j is a tree. If a set of edges of T ∗

j,i is a cycle, the edges dual to such
a cycle form a cutset for G∗

i,j , contradicting the hypothesis that T ∗
i,j is spanning for G∗

i,j .
For any pair of clusters μi and μj , with i < j, add the edges of T ∗

i,j and of T ∗
j,i to S. We

claim that S is a saturator of C. Edges chosen in the simplification phase do not conflict
each other by construction. Such edges do not conflict with edges of trees T ∗

i,j . In fact,
an edge in T ∗

i,j conflicts only with an edge in G∗
j , with i �= j. By construction, edges of

the T ∗
i,j ’s do not conflict each other. Hence, S does not have two conflicting edges. It’s

easy to see that, after G has been augmented to a graph G′ by adding the edges of S
to it, each cluster μi has exactly one connected component. Namely, distinct connected
components of G(μi) are represented after the simplification phase by distinct vertices
in G∗

i , that is edge 2-connected and that is partitioned in edge 2-connected subgraphs
G∗

i,j . Since a spanning tree is chosen to be in S for any G∗
i,j , then

⋃
j T ∗

i,j is spanning for
G∗

i and G′(μi) has exactly one connected component. Finally, suppose that G′(μi) has
a cycle c containing an edge of S. By construction, edges chosen in the simplification
phase only join different connected components of G(μi) and no edge of c could belong
to some G∗

i,j , otherwise G′(μj) would be disconnected. �

Theorem 3. An embedded flat clustered graph C(G, T ) with at most five vertices per
face is c-planar if and only if: (1) G is planar; (2) There exists a face f in G such
that when f is chosen as outer face for G no cycle composed by vertices of the same
cluster encloses a vertex of a different cluster; (3) Each cluster of C admits a candidate
saturating graph; and (4) For each pair of distinct clusters μi and μj , G∗

i,j is edge
2-connected; and (5) For each pair of distinct clusters μi and μj , G∗

i,j is dual to G∗
j,i.

Proof: Consider any face f of G. Since f has at most five vertices, then it has at most
two connected components of each cluster, so it has at most one candidate saturating
edge per cluster. Since at least two vertices are necessary for each candidate saturating
edge, then f contains candidate saturating edges for at most two clusters. Hence, C is a
single-conflict embedded flat clustered graph and Theorem 2 applies. �
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4 An Efficient c-Planarity Testing Algorithm

We use Theorem 3 to derive a linear time and space c-planarity testing algorithm for
embedded flat clustered graphs with at most five vertices per face. The algorithm can
be extended to test the c-planarity of single-conflict embedded flat clustered graphs
relying on Theorem 2. The details of the extension are omitted for brevity. Anyway, we
will emphasize the steps of the algorithm that have to be modified for this purpose.

Let C(G, T ) be an n-vertex embedded flat clustered graph with at most five vertices
per face. To test Condition (1) of Theorem 3, it is sufficient to test if G is a planar
embedding. This can be done in O(n) time and space with the techniques in [10].

To test Condition (2), we observe that a face exists satisfying such a condition iff
the embedded clustered graph is hole-free, that is, chosen an arbitrary face as external,
a cycle c of G doesn’t exist composed by vertices of the same cluster μ such that c
has a vertex inside and a vertex outside both belonging to clusters different from μ. A
linear-time algorithm for checking if an embedded clustered graph is hole-free has been
provided in [5] in the case of c-connected clustered graphs. However, we can use the
same algorithm because of the following lemma.

Lemma 7. Let C(G, T ) be a clustered graph. Let C′(G, T ′) be the c-connected clus-
tered graph obtained from C as follows. Each node ν of T is replaced in T ′ by nodes
ν1, . . . , νh, one for each of the h ≥ 1 connected components of G(ν). Let μ1, . . . , μk

be the nodes replacing the parent μ of ν. The parent of νj in T ′ is the node μi such that
G(νj) is a subgraph of G(μi). We have that C is hole-free iff C′ is hole-free.

In order to test Condition (3) we create multigraphs Gi. This is done in O(n) time
as follows. Connected Components. For each node μ of T compute the connected
components of G(μ). This is done in linear time and space. Candidate saturating
edges. We insert candidate saturating edges inside the faces of G. Consider a face f .
Construct maximal sequences of vertices consecutive on the border of f and belonging
to the same cluster. For any two sequences S1 and S2 that have vertices belonging to the
same cluster, take a vertex v1 ∈ S1 and a vertex v2 ∈ S2. If the connected component
associated to v1 is different from the one associated to v2 (this can be tested in constant
time), then insert a candidate saturating edge between v1 and v2. At most two edges are
inserted inside f . The described insertion can be performed in constant time and hence
in linear time for all faces of G. This step is more tricky when considering single-
conflict clustered graphs. In this case, in order to achieve total linear time special care
must be put when considering groups of candidate saturating edges between vertices
of the same cluster and when determining the conflicts between candidate saturating
edges. Multigraphs Gi. Consider cluster μi. Add a vertex to Gi for each connected
component of G(μi). For each candidate saturating edge e insert an edge between the
connected components joined by e. The construction of the Gi’s can be done so that
their embeddings are those induced by the adjacencies of the faces of G. Further, such
a construction can be done in linear time and space because of the following:

Property 5.
∑

μi
|Gi| = O(n), where |Gi| is the size of the graph.

Property 5 does not hold when considering single-conflict embedded flat clustered
graphs, that can generally have faces with a linear number of incident vertices. However,
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the arrangement of the candidate saturating edges in the single-conflict setting allows to
reduce the size of the construction introducing only an overall linear number of them.

Now we show how to test if Condition (3) of Theorem 3 is satisfied. First, test if the
Gi’s are connected. If not, return non-c-planar.

We equip each Gi with a data structure supporting the following update and query
operations: remove an edge, collapse (identify the end-vertices of) an edge and merge
the embeddings of its end-vertices, answer if an edge is a separating edge, answer if
an edge has a conflict and in case output the conflicting edge. Observe the difference
between the above definition of the collapse operation and the one given in Section 3. A
data structure exists that can be set-up in linear time and that performs each of the above
operations in constant time. In fact, all of them are trivial graph operations, with the
exception of answering if an edge e is a separating edge. We equip each edge with two
pointers to the two identifiers of the incident faces. When an edge e is removed from Gi

we simply modify the identifier of one of the two faces former incident on e. To answer
the query in constant time we check if the two faces around e are the same face. Also,
we compute a set F of candidate saturating edges that have no conflict. For each edge
e of F we compute the set E of edges parallel to e. Such computations are performed
in linear time. We will show how to use F and sets E during the simplification steps.

We show how to apply Simplification 1. Construct the set F ′ of the edges of any
spanning forest of F . Set F ′′ = ∅. Take each edge e1 of F ′. Consider the set E of edges
parallel to e1. For each edge e2 �= e1 in E , if e2 has a conflict with an edge e∗2, add e∗2
to F ′′. After this work has been performed on all the edges of F ′, collapse all of such
edges, removing self-loops. Set F ′′ contains all the edges that became conflict-free after
the previous step. The edges of F ′′ do not have multiple edges:

Lemma 8. The edges of set F ′′ do not have multiple edges.

Perform Simplification 1 on the edges of F ′′. The above lemma guarantees that after
this second pass no new conflict-free edge can be originated.

Now, Simplification 2 is applied till the Gi’s are edge 2-connected or the non-c-
planarity of C is stated. First, construct a set H of separating edges as follows. For each
edge e in Gi verify if the faces incident to e are the same. If yes, then add e to H. This
computation takes time linear in the number of edges in the Gi’s. Now, for each edge
e in H, check if edge e∗ conflicting with e belongs to H. If yes, return non-c-planar,
otherwise delete e∗ and collapse e. After this has been done for all edges in H, other
separating edges could have been created in Gi. However, if this happens, then we can
conclude that C is not c-planar as stated in the following lemmas:

Lemma 9. Consider a face f of Gi. Suppose that f contains a separating pair com-
posed by edges (u1, u2) and (u3, u4). Suppose that (u1, u2) has a conflict with edge
(v1, v2) that is a separating edge, and that (u3, u4) has a conflict with edge (v3, v4).
We have that C is not c-planar.

Lemma 10. Suppose that each edge of H has a conflict with a non-separating edge.
Collapse the edges in H, repeatedly applying Simplification 2. Either the resulting
multigraphs Gi are edge 2-connected or C is not c-planar.
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For each pair of distinct clusters μi and μj , we check if G∗
i,j is edge 2-connected (Con-

dition (4) of Theorem 3) and if G∗
i,j is dual to G∗

j,i (Condition (5) of Theorem 3). This
is easily done in linear time because of the following property.

Property 6.
∑

|G∗
i,j | = O(n), where |G∗

i,j | is the size of the graph.

Hence, we can conclude the section with the following theorem.

Theorem 4. The c-planarity of an n-vertex embedded flat clustered graph C(G, T )
with at most five vertices per face can be tested in O(n) time and space.

5 Conclusions

We remark that the simplification phase described in Section 3 is a preprocessing that
can be performed on any embedded flat clustered graph. This allows to reduce the prob-
lem of testing the c-planarity of such graphs to the one of deciding whether a set of edge
2-connected candidate saturating graphs admits a set of non-conflicting spanning trees.
However, it’s rather easy to see that the characterization shown in Theorem 2 does not
hold for general embedded flat clustered graphs.

We conclude by providing a list of families of embedded clustered graphs for which,
in our opinion, determining the time complexity of a c-planarity testing is worth of inter-
est: (i) single-conflict general (non-flat) embedded clustered graphs; (ii) embedded flat
clustered graphs where each face of the underlying graph has at most two (or a constant
number of) vertices of the same cluster; and (iii) embedded flat clustered graphs.
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Eva Jeĺınková1, Jan Kára2, Jan Kratochv́ıl1,2, Martin Pergel1,�,
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Abstract. Wepresent several polynomial-time algorithms for c-planarity
testing for clustered graphs with clusters of size at most three. The most
general result concerns a special class of Eulerian graphs, namely graphs
obtained from a fixed-size 3-connected graph by multiplying and then sub-
dividing edges. We further give algorithms for 3-connected graphs, and for
graphs with small faces. The last result applies with no restrictions on the
cluster size.

1 Introduction

Clustered planarity (or shortly, c-planarity) has recently become an intensively
studied topic in the area of graph and network visualization. In many situa-
tions one needs to visualize a complicated inner structure of graphs and net-
works. Clustered graphs—graphs with recursive clustering structures over the
vertices—provide a possible model of such a visualization, and as such they
find applications in many practical problems, e.g., management information sys-
tems, social networks or VLSI design tools [4]. However, from the theoretical
point of view, the computational complexity of deciding c-planarity is still an
open problem and it is regarded as one of the challenges of the contemporary
graph drawing. Our aim is to add another pebble to the mosaic of known partial
results on c-planarity by studying the case of small clusters.

Regarding the graph notations, we follow standard notation on finite loopless
graphs. A graph is an ordered pair G = (V, E). By G we denote its edge com-
plement (i.e., (V,

(
V
2

)
\ E)). For a vertex v ∈ V by N(v) we denote its set of

neighbors.
Let G = (V, E) be a graph. A cluster set on G is a set C ⊆ P(V (G)) such

that for all C, D ∈ C, either C and D are disjoint or they are in inclusion. The
elements of C are called clusters. A clustered planar embedding of (G, C) is a
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planar embedding emb of G together with a mapping embc that assigns to every
cluster C ∈ C a planar region embc(C) whose boundary is a closed Jordan curve
and such that

– for each vertex v ∈ V and every cluster C ∈ C, it holds that emb(v) ∈
embc(C) if and only if v ∈ C,

– for every two clusters C and D, the regions embc(C) and embc(D) are disjoint
(in inclusion) if and only if C and D are disjoint (in inclusion, respectively),
and

– for every edge e ∈ E and every cluster C ∈ C, the curve emb(e) crosses the
boundary of embc(C) at most once.

The pair (G, C) is called clustered planar (shortly c-planar) if it allows a clustered
planar embedding.

It is well known that planar graphs can be recognized in polynomial (even
linear) time. For c-planarity determining the time-complexity of the decision
problem remains open; only partial results are known. For connected cluster
graphs (i.e., when all clusters induce connected subgraphs), the problem can be
solved in linear time [3]. This work was extended to “almost” connected clus-
tered graphs in [5,6] by designing an O(n2)-time algorithm. Another important
step was achieved by characterization of completely connected clustered graphs
(where each cluster and its complement induce connected subgraphs): A com-
pletely connected clustered graph is c-planar if and only if the underlying graph
is planar [1]. Another polynomially solvable case was identified in [2] (nested
triples of clusters).

We propose to study the situation when all clusters are small, which means
size at most 3. In Section 2 we first remind the notion of saturators and study
its meaning in the case of small clusters. As the first observation we prove that
c-planarity of vertex-3-connected graphs is solvable in polynomial time (small
clusters assumed). Our most general result is a polynomial time algorithm for
c-planarity of Eulerian graphs that can be obtained from vertex-3-connected
graphs of fixed size by cloning and subdividing edges. This algorithm is men-
tioned in Section 2. As can be expected, the cornerstone of this algorithm is
understanding the clustered planarity in the case of a single cycle as the under-
lying graph, since this sheds light on particular faces of the input graph. Though
at first sight this case might sound trivial, it turns out far from being obvious.
Our algorithm and further useful observations are presented in Section 3. The
unexpected complexity of a single cycle was also encountered by di Battista et
al. in [2] when solving c-planarity for small number (3) of clusters. Our last
result concerns the case of small faces rather than small clusters. In Section 5
we present a polynomial algorithm for deciding c-planarity of graphs with fixed
embeddings with all faces of size at most 4. This result applies to clusters of all
sizes, but only of a flat structure (i.e., when all clusters are on the same level,
none being in inclusion with any other).
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2 Saturators of Small Clusters

Cortese et al. introduced the following notion in [2]. A set F is a saturator
of (G, C) if F ⊆ E(G) and for each cluster C ∈ C, the vertices of C induce a
connected subgraph in GF = (V (G), E(G)∪F ). The saturator F is called planar
if GF is planar. Note that the notion of planar saturators is slightly different than
in [2]. The role of saturators is described by the following observation (stated in
[2] in an equivalent formulation).

Lemma 1. The pair (G, C) is c-planar if and only if there exists a saturator
F = F (G, C) such that (GF , C) is c-planar.

For a cluster A ∈ C, we call every pair of its vertices a cluster edge. We say that
a cluster edge e is present in a saturator F if e is an element of F . When it
is clear from the context which saturator is considered, we omit its name and
speak about present cluster edges only.

We further explore the meaning of saturators in certain special cases of graphs
G and cluster sets C. In Section 3, we employ this idea in reducing a special case
of c-planarity to the existence of a planar saturator of (G, C), and then further
to the bipartiteness and triangle-freeness of certain auxiliary graphs.

The following corollary of Lemma 1 is a first step in reducing c-planarity
to the existence of a planar saturator. It states that the existence of a planar
saturator is sufficient for clusters that do not induce a cycle.

Corollary 1. The pair (G, C) is c-planar if and only if there exists a saturator
F such that (GF , C′) is c-planar, where C′ = {C ∈ C : GF [C] contains a cycle}.

In this paper we mostly consider clusters of size at most three. We use the fact
that if clusters are small, then there are only few possibilities of choosing present
cluster edges in a saturator so that each cluster becomes connected.

A highly connected graph imposes other limitations on present cluster edges.
Namely, in a fixed planar embedding of a 3-connected graph, each cluster edge
can be drawn in at most one way. If we restrict ourselves both to 3-connected
graphs and to clusters of size at most three, then it is possible to test c-planarity
effectively. The c-planarity instance is transformed to a 2-SAT formula, where
a variable represents the presence of a cluster edge, and a clause expresses a
crossing.

Proposition 1. Let G be a 3-connected graph and C a cluster set containing
only clusters of size at most three. Then the c-planarity of (G, C) can be decided
in time O(|C|2 · |G|).

3 Three-Clusters on a Cycle

Definition 1. Let G be a cycle and C a set of at most three-element clusters on
V (G). We say that two cluster edges {a1, a2} and {b1, b2} conflict if the cyclic
order of their vertices is abab.
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We say that two three-vertex clusters A and B ∈ C

– intersect if the cyclic order of their vertices along G is aabbab,
– alternate if the cyclic order of their vertices along G is ababab.

Given two clusters A and B we say that the vertices ai ∈ A and bj ∈ B are
consecutive if there exists a path in G from ai to bj that uses no other vertices
of A or B.

Lemma 2. If G is a cycle and C contains only clusters of size at most three,
then (G, C) is c-planar if and only if there exists a planar saturator F .

The proof is a straightforward case analysis. It is omitted.

3.1 Construction of Auxiliary Graphs G1, GM
1 , and G2

We are given a pair (G, C), where G is a cycle and C contains only clusters of size
at most three. According to Lemma 2, deciding the c-planarity of (G, C) amounts
to finding a planar saturator F . Thus, we need to pick suitable cluster edges for F
so that the graph GF makes every cluster connected and has a planar embedding.

Since G is a cycle, we only distinguish two ways of drawing a cluster edge in
a planar embedding: inside or outside the cycle G.

Conflicts of cluster edges impose restrictions on their embedding. For two-
vertex clusters, the situation is evident: each cluster edge must be drawn on one
side of the cycle and any conflicting cluster edge must be drawn on the other side.

For three-vertex clusters the situation is more complicated, because we do
not know in advance which cluster edges are present in the sought saturator and
which are not. However, since F is a saturator, we know that every cluster C
is connected in GF . Hence, out of every pair of cluster edges of C, at least one
is present in F . Thus, we consider pairs of three-vertex-cluster edges; these be-
come vertices of an auxiliary graph G1. Edges of two-vertex clusters will become
vertices of G1 also.

The formal construction of G1 can be found below. There we also formal-
ize the correspondence of vertices of G1 and (pairs of) cluster edges. Here, for
convenience, we use the notion of correspondence in an intuitive way.

For some vertex pairs x and y of G1 the following holds: if any cluster edge
corresponding to x is present, then any present cluster edge corresponding to y
must be drawn on the other side of the cycle. Otherwise, a crossing would occur.
Figure 1 illustrates some of those cases. We represent such a case by the edge
between x and y in G1.

We observe that if a vertex x is non-isolated in G1, then all present cluster
edges corresponding to x must be drawn on a common side of the cycle. For ad-
jacent vertices the sides are distinct. Hence, if a bipartition of G1 exists, it deter-
mines the drawing of all present cluster edges corresponding to non-isolated ver-
tices (up to the choice of the inner and outer face of the cycle). Isolated vertices
in G1 are exceptional and we will not consider them to belong to any bipartity
of G1, because their corresponding cluster edges have, in a sense, more freedom.
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Fig. 1. Some of the situations when any cluster edge corresponding to x must be drawn
on the other side of the cycle than any cluster edge corresponding to y

The graph G1 does not capture well the restrictions caused by alternating
clusters—there may be several pairwise-alternating clusters that do not give rise
to any edge of G1. Hence, we define another auxiliary graph G2. The vertices of
G2 are three-vertex clusters, and edges {A, B} of G2 express that clusters A and
B alternate. We later prove that, for c-planarity, there may be no triangle in G2.

In some cases there are vertices of G1 whose corresponding cluster edges
“behave in the same way” in any planar drawing of a saturator: either all present
edges are drawn outside, or all inside, or all may be drawn on both sides. In the
bipartition language, such vertices must either belong to a common bipartity of
G1 in any bipartition, or they must be all isolated. We need to “unify” them.
Hence, we create the graph GM

1 from G1 by repeated merging of certain vertex
tuples into groups.

The formal construction of the graphs G1, G2 and GM
1 follows.

Algorithm: Creation of G1
Input: G = (V, E), a set C of clusters
Output: the graph G1
V (G1) := {xA,v : A ∈ C, |A| = 3, v ∈ A} ∪ {xA : A ∈ C, |A| = 2}
E(G1) := ∅

1. For every two clusters A = {a1, a2} and B = {b1, b2} whose vertices have
the cyclic order a1, b1, a2, b2, set E(G1) = E(G1) ∪ {{xA, xB}}.

2. For every two clusters A = {a1, a2} and B = {b1, b2, b3} whose vertices
have the cyclic order a1, b1, a2, b2, b3, set E(G1) = E(G1)∪{{xA, xB,b1}}.

3. For every two clusters A = {a1, a2, a3} and B = {b1, b2, b3} whose vertices
have the cyclic order a1a2b1b2a3b3, set E(G1) := E(G1)∪{{xA,a3 , xB,b3}}.

4. For every two alternating clusters A and B such that the vertices yA and
yB both have degree exactly one in G2, and for every pair of their vertices
ai ∈ A and bj ∈ B that are consecutive and both non-isolated in G1, set
E(G1) := E(G1) ∪ {{xA,ai , xB,bj }}.

V (G2) := {yA : A ∈ C, |A| = 3}

E(G2) := {{yA, yB} : A and B alternate}.
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Fig. 2. Illustration of rules 1, 2, 3, 4, 5, 6, and 7
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To formalize the correspondence of clusters and cluster edges with vertices of
G1 and G2, we introduce the following definition.

Definition 2. We say that a cluster edge e = {ai, aj} of a cluster A in G
corresponds to a vertex v of G1 if v = xA,ai or v = xA,aj , or if v = xA.

We say that a cluster B corresponds to a vertex u of G2 if u = yB.

The following algorithm creates the graph GM
1 from G1 together with a mapping

g : V (G1) → V (GM
1 ). The vertices of GM

1 will represent groups of vertices of G1
and the mapping g will assign to each vertex the group to which it belongs. For
short, we write gA,ai or gA instead of g(xA,ai) or g(xA), respectively.

The algorithm starts with one-vertex groups equal to vertices of G1 and then
merges certain groups using the following procedure.

Procedure: Merge
Input: vertex groups g1, g2, . . . , gk ∈ V (GM

1 )
Output: modifies GM

1

– Replace the groups g1, g2, . . . , gk with a newly created vertex group w,
and set the edges in GM

1 so that

N(w) = N(g1) ∪ N(g2) ∪ · · · ∪ N(gk) \ {g1, g2, . . . , gk}.

– If there were two indices 1 ≤ i, j ≤ k (not necessarily distinct) such that
gi and gj were adjacent then add a loop {w, w}.

– For all vertices v in g−1
(
g1 ∪ g2 ∪ · · · ∪ gk

)
set g(v) := w.

Algorithm: Creation of GM
1

Input: the graph G1
Output: the graph GM

1 , a mapping g : V (G1) → V (GM
1 )

GM
1 := G1, g := id

5. For each cluster A = {a1, a2, a3} which alternates with at least two other
clusters B = {b1, b2, b3} and C = {c1, c2, c3} in the way a1, c3, b3, a2, b1,
c1, a3, c2, b2, do merge(gA,a1, gB,b1 , gC,c1), merge(gA,a2, gB,b2 , gC,c2), and
merge(gA,a3, gB,b3 , gC,c3).

6. For every three-vertex cluster A having all corresponding vertices gA,ai

non-isolated in GM
1 , do merge(gA,a1, gA,a2 , gA,a3).

7. For every two clusters A′ = {a1, a2} and A = {a1, a2, a3} such that gA,a1

is not isolated in GM
1 , do merge(gA,a1, gA′).

Having created all the auxiliary graphs G1, GM
1 and G2, it is easy to decide

if the input pair (G, C) is c-planar, as stated in Theorem 1. Before stating the
theorem, we present several auxiliary lemmas.

Lemma 3. Let F be a planar saturator. Then in GF , the following is true:
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1. if there is an edge between the vertices x and y in G1, then any present
cluster edge corresponding to x is drawn inside the cycle G, and any present
cluster edge corresponding to y is drawn outside the cycle G, or vice versa.

2. the present cluster edges corresponding to vertices in g−1(v) such that v is
non-isolated in GM

1 are drawn either all inside or all outside the cycle G.
3. if there is an edge between the vertices x and y in GM

1 then any present
cluster edge corresponding to g−1(x) is drawn inside the cycle G, and any
present cluster edge corresponding to g−1(y) is drawn outside the cycle G,
or vice versa.

Proof. We follow the creation of G1 and prove that the first part of the Lemma
holds after every step. Before any rule is applied, there are no edges in G1 and it
holds trivially. Then a step according to rule 1, 2, or 3 adds one new edge, say,
xy. For all these rules, it is not hard to see that if an edge corresponding to x
and an edge corresponding to y are drawn on the same side of the cycle G, then
they cross each other. Hence, after a step 1, 2, or 3, the first part remains valid.

Let us consider a step according to rule 4. We use the same notation as in
the description of this step, so we have two clusters A and B, and let x = xA,a1

and y = xB,b1 . Note that by definition of rule 4, the vertices x and y are already
non-isolated. Thus all present cluster edges corresponding to x must be drawn
on the same side of the cycle, and the same holds for y.

Assume for contradiction that there are cluster edges corresponding to x and
y both inside the cycle G. Then it must be edges a1a3 and b1b2, because they
are the only pair without a crossing. By the above argument, the edge a1a2 can
only be drawn on the same side as a1a3; but that is not possible because of b1b2.
So a1a2 is not present. Then a2a3 is present and drawn outside. Similarly, b1b3
is not present, and there is no way to draw b2b3—a contradiction.

The second part is proved by a straightforward case analysis of the algorithm
steps. The third part is an easy consequence of the first two.

Lemma 4. If (G, C) contains three pairwise alternating clusters, then (G, C) is
not c-planar.

Proof. Let A, B, and C be the three clusters, and assume for contradiction that
(G, C) is c-planar. We use Lemma 2 to do a straightforward case analysis of the
cluster edges present in a planar drawing. If present cluster edges of A are all
drawn on the same side of the cycle, then present cluster edges of B must be
drawn on the other side, and there is no way to draw at least two cluster edges
of C without crossing. The other possibility is that A has one cluster edge drawn
inside and one outside the cycle. Then the same holds for B, and again, there is
no way to draw C.

Lemma 5. If G has a planar saturator, then GM
1 is bipartite and G2 is triangle-

free.

Proof. First assume that GM
1 is not bipartite. Then it contains an odd cycle C,

V (C) = {v1, v2, v3...v2k+1}, 0 ≤ k. Without loss of generality we can assume that
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cluster edges corresponding to vertices in g−1(v1) are drawn inside the cycle. By
Lemma 3 we know that g−1(v2) is outside, by the same argument g−1(v3) is
inside etc. But then both g−1(v1) and g−1(v2k+1) are drawn inside, which is not
possible again by Lemma 3, a contradiction.

If G2 contains a triangle, then there are three pairwise alternating clusters
and the instance is not c-planar by Lemma 4.

Lemma 6. If G2 is triangle-free and GM
1 is bipartite, then (G, C) has a planar

saturator F .

Proof. Let I be the set of isolated vertices of GM
1 . Let us fix a drawing of the

cycle G into the plane and some bipartition of GM
1 \I for the rest of this section.

As G is a cycle, any its drawing has well-defined inner and outer face, so drawing
an edge of GF inside or outside of the cycle is well defined. The idea behind our
drawing is that edges represented by non-isolated vertices of GM

1 in the first
part are drawn inside the cycle and edges in the second part are drawn outside
the cycle. Vertices of I do not impose any restriction and therefore the edges
represented by them can be drawn both inside or outside the cycle.

The rest of the proof, which is a long and technical case analysis, is omitted.

Theorem 1. Let G be a cycle, let C contain only clusters of size at most three,
and let GM

1 and G2 be the graphs constructed for (G, C) using the algorithms
above. Then the pair (G, C) is c-planar if and only if GM

1 is bipartite and G2 is
triangle-free.

Proof. By Lemma 2, a pair (G, C) satisfying the assumptions is c-planar if and
only if it has a planar saturator. Lemmas 5 and 6 provide the rest of the proof.

Corollary 2. Let G be a cycle and let C contain only clusters of size at most
three. Then the c-planarity of (G, C) can be decided in time O(|V (G)| + |C|3).

4 Three-Clusters on Rib-Eulerian Graphs

As a generalization of the previous section, in this section we mention the algo-
rithm for c-planarity of a special subclass of Eulerian graphs. Let k be a constant;
we call a graph k-Rib-Eulerian if it is Eulerian, and if it can be obtained from a
3-connected graph on k vertices by multiplying some edges, and then subdividing
some edges. Figure 3 gives an example of such a graph.

We say that a path whose inner vertices have degree two and the outer vertices
have degree larger than two is a rib. Thus a k-Rib-Eulerian graph consists of k
vertices of degree at least four that are interconnected by ribs. A vertex of degree
at least four is called a branching vertex. A cluster is called a branch cluster if
it contains a branching vertex, and non-branch cluster otherwise.

We want to decide the c-planarity of a pair (G, C), where G is a Rib-Eulerian
graph. First, we deal with the branch clusters. We try all the possibilities of
choosing saturator edges to those clusters, we add each chosen edge to G twice
(in order not to break its Eulericity) and we run the rest of the algorithm for
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Fig. 3. Example of a Rib-Eulerian graph created from K4

each of the posibilities. Clearly, the pair (G, C) is c-planar if and only if it is
c-planar for at least one of the saturator choices. Moreover there are constantly
many choices to check, since there can only be O(k) branch clusters in a k-Rib-
Eulerian graph and k is a constant. Hence the rest of the algorithm sketched
bellow only deals with non-branch clusters.

As a next step, we seek a suitable planar embedding of G. The planar em-
bedding of the underlying 3-connected graph is unique (up to the choice of the
outer face). Hence our main issue is to find the order of ribs originating from a
common edge of the underlying graph. This is done with respect to clusters in C,
because they force adjacencies of certain ribs.

When a suitable planar embedding of G is obtained, we utilize the algorithm of
Section 3 that deals with cycles. In a planar embedding of a Rib-Eulerian graph,
the boundary of each face is a cycle. All the restrictions for cluster edges on a
cycle apply in this case as well. And more of them appear, because in this case,
“the outside” of faces is more complex. Basically, we create the auxiliary graphs
G1 and GM

1 for the whole graph at once, applying the rules from the previous
section on (parts of) clusters lying in the same face. The graph G2 is created for
each face separately. We then reduce the c-planarity of (G, C) to the bipartiteness
of the graph GM

1 and the triangle-freeness of the graphs G2 for each face.
Due to space limitations, details of the algorithm and the proof of the correct-

ness and running time are omitted. We just mention the summarizing theorem.

Theorem 2. The c-planarity of (G, C) can be decided in time O(3k · n3) for G
being k-Rib-Eulerian with n vertices and C containing clusters of size at most 3.

5 Clustered Planarity on Graphs with Small Faces

In this section, we show that the c-planarity problem can be solved in polynomial
time for 3-connected graphs with faces of size at most 4 and with cluster sets
where every two clusters are disjoint. Thus in this section we always assume the
graph G is 3-connected with faces of size at most 4. First, we define the notion
of extended graph of a cluster A. Informally, the extended graph contains all
cluster edges that can be added to the drawing of G and can help connecting A.

Definition 3. Let G = (V, E) be a plane graph and C a cluster set. For a cluster
A ∈ C we define the extended graph of A, called GE(A), on the set of vertices
A. Two vertices u, v in GE(A) are adjacent if and only if either {u, v} ∈ E or u
and v are in the same face of G and in different connected components of G[A].
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Fig. 4. The extended graph of a cluster A in its unique embedding. Vertices of A are
depicted as solid black disks, other vertices of G are depicted as grey circles. Edges of
G are drawn as solid (either grey or black) lines, edges of GE(A) are drawn as black
lines (dashed in case the edge is not in G).

As seen in Figure 4, the drawing of G defines drawings of extended graphs:

Lemma 7. Let (G, C) be as above. Then for each A ∈ C the graph GE(A) is
planar and its (unique) planar embedding is defined by the embedding of G.

The key idea of our approach is to examine the drawing of the extended graph
GE(A) while forgetting about the edges of G itself. We continue by presenting
two lemmas about extended graphs.

Lemma 8. Let G be a 3-connected graph with each face of size at most four, C
be a cluster set, A ∈ C and GE(A) as above. Let f be a face of GE(A), B ∈ C
and B′ be the vertices of B inside face f . Then for every planar saturator F of
(G, C), the graph GF [B′] is connected.

The following lemma uses the notion of labeled dual of GE(A). Let C be a cluster
set such that every two clusters are disjoint. A labeled dual of GE(A), called
Gd

E(A), is a multigraph whose vertices are faces of GE(A). Edges of Gd
E(A) are

labeled by clusters of C, and Gd
E(A) contains an edge between f and f ′ labeled

by B if f , f ′ are adjacent and cluster B has vertices inside both these faces. See
Figure 5 for an illustration of labeled dual.

Lemma 9. Let G be as above, and C a cluster set such that every two clusters
in C are disjoint. If Gd

E(A) has a cycle whose edges have at least two different
labels for some A ∈ C, then (G, C) is not c-planar.

Now we are ready to show our main theorem.

Theorem 3. The c-planarity of (G, C), where G is a 3-connected planar graph
with faces of size at most 4 and C is a cluster set such that every two clusters
are disjoint, can be decided in time O(|V (G)|2).
Proof. (sketch) The idea of the proof is as follows: As every 3-connected graph
has a unique embedding into the plane (up to the choice of the outer face), we
can assume G has a fixed embedding. We pick arbitrary A ∈ C. By Lemma 8 in
each face f of GE(A), each cluster has to be connected by any saturator. Thus
in each face, we solve a small c-planarity problem. Then we connect parts of
clusters in different faces greedily and by planar-duality argument we show that
if there was no cycle using two labels in Gd

E(A) (otherwise by Lemma 9 (G, C)
is not c-planar), the cluster A can be still connected.
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Fig. 5. Left: A graph GE(A) (discs) together with extended graphs of clusters B, C
and D (circles, boxes, crosses). Right: A graph GE(A) (black) with its labeled dual
Gd

E(A) (grey) containing a cycle (light grey).
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Vertex Positions and Few Bends per Edge�
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Abstract. Hamiltonicity, book embeddability, and point-set embedda-
bility of planar graphs are strictly related concepts. We exploit the in-
terplay between these notions to describe colored sets of points and to
design polynomial-time algorithms to embed k-colored planar graphs on
these sets such that the resulting drawings have O(k) bends per edge.

1 Introduction

Let G be a planar graph with n vertices whose vertex set is partitioned into
subsets V0, . . . , Vk−1 for some positive integer 1 ≤ k ≤ n and let S be a set of n
distinct points in the plane partitioned into subsets S0, . . . , Sk−1 with |Vi| = |Si|
(0 ≤ i ≤ k − 1). We say that each index i is a color, G is a k-colored planar
graph, and S is a k-colored set of points compatible with G. This paper studies
the problem of computing a k-colored point-set embedding of G on S, i.e. a
crossing-free drawing of G such that each vertex of Vi is mapped to a distinct
point of Si. The problem has received considerable interest in the literature(see,
e.g., [1,3,5,6,8,9]), also motivated by the observation that these types of draw-
ings naturally model semantic constraints about the placement of the vertices.
Particular attention has been devoted to the curve complexity of the computed
drawings, i.e. the maximum number of bends along each edge. Namely, reducing
the number of bends along the edges is a fundamental optimization goal when
computing aesthetically pleasing drawings of graphs (see, e.g., [2,7]).

Two key references about k-colored point-set embeddings are the works by
Kaufmann and Wiese [8] and by Pach and Wenger [9]. Kaufmann and Wiese [8]
study the monochromatic version of the problem (i.e. the case when k = 1) and
prove that a planar graph with n vertices always admits a point-set embedding
with at most two bends per edge on any set of n distinct points in the plane;
they also proved that two bends per edge are necessary for some planar graphs
and some configurations of points. Pach and Wenger [9] study the n-chromatic
version of the problem and show that a linear number of bends is always sufficient
to compute an n-colored point-set embedding of an n-colored planar graph G
on any n-colored set of points compatible with G; also they show that Ω(n)
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bends per edge may be necessary even for n-colored paths when the points are
in convex position.

The gap between constant curve complexity for k = 1 and linear curve com-
plexity for k = n motivates the study of other values of k. In [5] it has been
proved that there exists a 2-colored planar graph G and a 2-colored set of points
S compatible with G such that any 2-colored points set embedding of G on S has
at least one edge with Ω(n) bends. This result has been extended in [1], where
it is proved that for k-colored point set embeddings such that 3 ≤ k ≤ n, there
may be cases requiring Ω(n) bends on Ω(n) edges. The two counterexamples
presented in [5] and [1] are either tri-connected or have outerplanarity O(n),
and thus a natural research direction is concerned with the curve complexity of
k-colored point set embeddings for (sub)-families of planar graphs that have a
simpler structure. In [3] it is proved that the curve complexity of 3-colored point-
set embeddings may not be constant even for 3-colored outerplanar graphs.

These negative results suggest two different research directions, both devoted
to studying k-colored point-set embeddings with curve complexity that does not
depend on the input size. From one side, instead of restricting the classes of
graphs to be drawn one can focus on special configurations of k-colored sets
of points that make it possible to compute k-colored point-set embeddings with
constant curve complexity for any k-colored planar graph. On the other side, one
can ask what is the size of a universal k-colored set of points that guarantees
curve complexity independent of n for any k-colored planar graph. This last
question can be asked both in the case that the points have real coordinates or
by restricting them to form an integer grid. The main results in this paper can
be outlined as follows.

• We study a special type of k-colored point-sets. Namely, let G be any k-
colored planar graph with n vertices (2 ≤ k ≤ n) and let S be a k-colored set of
n points compatible with G. We show that if S is ordered, i.e. for each color all
points of that color are consecutive along the x-direction, then there exists an
O(n log n + k n)-time algorithm that computes a k-colored point-set embedding
of G on S with curve complexity at most 3k + 7. This result generalizes to all
k-colored planar graphs a similar result presented in [3] for k-colored outerplanar
graphs and makes it possible to improve a related result of [1].

• We show the existence of k-colored sets of points having linear size and
supporting k-colored point-set embeddings of O(k) curve complexity. Namely,
let Fk be the family of all k-colored planar graphs with n vertices (1 ≤ k ≤ n).
For any G ∈ Fk and for any k-colored set of points S such that S contains
k n−k2 +1 points for each color, there exists an O(n log n+k n)-time algorithm
that computes a k-colored point-set embedding of G on S with curve complexity
at most 3k + 7. We recall that, even for 2-colored simple paths, a universal 2-
colored set of points that supports straight-line 2-colored point-set embeddings
may need a quadratic number of points [6].

• Since the above result implies a total number of k2n−k3 +k points in S, one
can ask whether n + o(n) points are sufficient to guarantee a curve complexity
that does not depend on n. We give a negative answer to this question for k = 2.
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Namely, let c be any constant such that c > 1. We prove that for k = 2 there exists
a set S of n + n

c points and a 2-colored planar graph G such that any 2-colored
point set embedding of G on S has an edge requiring at least Ω(n) bends.

• Finally, we show that every k-colored planar graph with n vertices admits
a k-colored points-set embedding with curve complexity 6k + 5 on a k-colored
grid whose size is O(k n2) × O(k n2). Such k-colored points-set embedding can
be computed in O(k n) time.

The above results are all based on a novel approach to the problem of com-
puting k-colored point-set embeddings of planar graphs. Namely we exploit the
notion of simultaneous k-colored book embedding of a k-colored planar graph and
a k-colored path and show how this notion can be used to compute a suitable
Hamiltonian circuit on the graph; in turn, we use the Hamiltonian circuit to com-
pute a point-set embedding with O(k) curve complexity. For reasons of space
some proofs have been sketched or omitted.

2 Preliminaries

Let G = (V, E) be a graph. A k-coloring of G is a partition {V0, V1, . . . , Vk−1}
of V where the integers 0, 1, . . . , k−1 are called colors. In the rest of this section
the index i is 0 ≤ i ≤ k − 1 if not differently specified. For each vertex v ∈ Vi we
denote by col(v) the color i of v. A graph G with a k-coloring is called a k-colored
graph. Let S be a set of distinct points in the plane. We always assume that the
points of S have distinct x-coordinates (this condition can always be satisfied
by means of a suitable rotation of the plane). For any point p in the Euclidean
plane we denote by x(p) and y(p) the x- and y-coordinates of p, respectively. A
k-coloring of S is a partition {S0, S1, . . . , Sk−1} of S. A set S of distinct points
in the plane with a k-coloring is called a k-colored set of points. For each point
p ∈ Si col(p) denotes the color i of p. A k-colored set of points S is compatible
with a k-colored graph G if |Vi| = |Si| for every i. Let G be planar. We say
that G has a k-colored point-set embedding on S if there exists a planar drawing
of G such that: (i) every vertex v is mapped to a distinct point p of S with
col(p) = col(v), (ii) each edge e of G is drawn as a polyline; a point shared by
any two consecutive segments of the polyline is called a bend of e. The curve
complexity of a drawing is the maximum number of bends per edge. Given a
vertex v of G we denote by pv the point representing v in the drawing. A k-
colored sequence σ is a linear sequence of (possibly repeated) colors c0, c1, . . . ,
cn−1 such that 0 ≤ cj ≤ k − 1 (0 ≤ j ≤ n − 1). We say that σ is compatible with
a k-colored graph G if, for every i color i occurs |Vi| times in σ. Let S be a k-
colored set of points and let p0, p1, . . . , pn−1 be the points of S ordered according
to their x-coordinates. Let P = (v0, v1, . . . , vn−1) be a path with n vertices such
that c(vi) = c(pi). We say that P is the path induced by S and denote it as
path(S). We also say that σ = c(p0), c(p1), . . . , c(pn−1) is the k-colored sequence
induced by S and denote it as seq(S).

A graph G has a Hamiltonian path if it has a simple path that contains all the
vertices of G. G has a Hamiltonian cycle if it has a simple cycle that contains all
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the vertices of G. If G is a k-colored graph and σ = c0, c1, . . . , cn−1 is a k-colored
sequence compatible with G, a k-colored Hamiltonian path of G consistent with
σ is a Hamiltonian path v0, v1, . . . , vn−1 such that col(vi) = ci (0 ≤ i ≤ n − 1).
A k-colored Hamiltonian cycle of G consistent with σ is a Hamiltonian cycle
v0, v1, . . . , vn−1 such that col(vi) = ci (0 ≤ i ≤ n − 1). A k-colored planar graph
G can always be augmented to a (not necessarily planar) k-colored graph G′

by adding to G a suitable number of dummy edges and such that G′ has a
k-colored Hamiltonian cycle C consistent with σ and that includes all dummy
edges. If G′ is not planar, we can apply a planarization algorithm (see, e.g., [2])
to G′ with the constraint that only crossings between dummy edges and edges
of G − C are allowed. Such a planarization algorithm constructs an embedded
planar graph G′′ where each edge crossing is replaced with a dummy vertex,
called division vertex. By this procedure each edge e of C can be transformed
into a path whose internal vertices are division vertices: let C′ be the resulting
cycle. Let e be an edge of C′ (notice that the endvertices of e are either vertices
of G or division vertices). The path H = C′ \ e is called an augmenting k-colored
Hamiltonian path of G consistent with σ. The graph G′′\e is called the augmented
Hamiltonian form of G and is denoted as Ham(G). If every edge e of G is crossed
at most d times in G′ (which implies that e is split by at most d division vertices
in Ham(G)), H is said to be an augmenting k-colored Hamiltonian path of G
consistent with σ and inducing at most d division vertices per edge. If G′ is
planar, then Ham(G) = G′ and H is defined as C \ e, where e is any edge of C.
Notice that the endvertices of H are on the same face f of Ham(G); we may
assume that f is the external face (if not we can choose an embedding of Ham(G)
such that f is the external face).

Let vd be a division vertex for an edge e of G. Since a division vertex corre-
sponds to a crossing between e and an edge of C, there are four edges incident on
vd in G′′; two of them are dummy edges that belong to C′, the other two are two
“pieces” of edge e obtained by splitting e with vd. Let (u, vd) and (v, vd) be the
latter two edges. We say that vd is a flat division vertex if it is encountered after
u and before v while walking along H; vd is a pointy division vertex otherwise.
Notice that there are exactly four edges incident on vd in G′′, but there can be
only three edges incident on vd in Ham(G) (this happens if the edge removed
from G′′ to obtain Ham(G) has vd as an endvertex, i.e. if vd is one of the two
endvertices of H). However the edge incident on vd that is removed is neither
(u, vd), nor (v, vd) because the removed edge is an edge of C′. It follows that the
definition of flat and pointy division vertex apply to vd also in the case when vd

is an endvertex of H. The following theorem has been proved in [1].

Theorem 1. [1] Let G be a k-colored planar graph, let σ be a k-colored sequence
compatible with G, and let H be an augmenting k-colored Hamiltonian path of
G compatible with σ inducing at most d division vertices per edge, dp of which
are pointy division vertices. Then G admits a k-colored point set embedding Γ
on any set of points that induces σ such that the curve complexity is d + dp + 1.
Furthermore, there exists an O(n log n)-time algorithm that computes Γ .
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A spine is an horizontal line. Let � be a spine and let p, q be two points of �.
An arc is a circular arc passing through p and q. We say that the arc is in the
top (bottom) page if it belongs to the half plane above (below) the spine. Let
G = (V, E) be a planar graph. A topological book embedding of G is a planar
drawing such that all vertices of G are represented as points of a spine � and
each edge can be either above the spine, or below the spine, or it can cross the
spine. Each crossing between an edge and the spine is called a spine crossing.
It is also assumed that in a topological book embedding every edge consists of
one or more arcs such that no two consecutive arcs are in the same page. An
edge e is said to be in the top (bottom) page of the spine if it consists of exactly
one arc and this arc is in the top (bottom) page. A monotone topological book
embedding is a topological book embedding such that each edge crosses the spine
at most once. Also, let e = (u, v) be an edge of a monotone topological book
embedding that crosses the spine at a point p; e is such that if u precedes v in
the left-to-right order along the spine then p is between u and v, the arc with
endpoints u and p is in the bottom page, and the arc with endpoints u and v
is in the top page. The edges that do not cross the spine are called u-shaped
edges, while edges that cross the spine are called s-shaped edges. The following
theorem has been proved in [4].

Theorem 2. [4] Every planar graph admits a monotone topological book em-
bedding. Also, a monotone topological book embedding can be computed in O(n)
time, where n is the number of the vertices in the graph.

Let Γ be a topological book emebedding of a planar graph G. A point p of the
spine � of Γ is accessible from the top (bottom) page of Γ if the vertical half-line
�′ starting at p that is in the half-plane above (below) � does not cross any arc
of Γ . If �′ crosses an arc a, we say that a covers p. The local top (bottom) page
width of Γ on p lwt(Γ, p) (lwb(Γ, p)) is the number of arcs in the top (bottom)
page of Γ that cover p. The cumulative local page width of Γ on p is clw(Γ, p) =
lwt(Γ, p) + lwb(Γ, p). The cumulative width of Γ is cw(Γ ) = maxp∈l{clw(Γ, p)}.
The top page width of Γ is wt(Γ ) = maxp∈l{lwt(Γ, p)}, and analogously the
bottom page width of Γ is wb(Γ ) = maxp∈l{lwb(Γ, p)}. Finally the width of Γ
is w(Γ ) = max{wt(Γ ), wb(Γ )}. Notice that the following inequality is always
satisfied w(Γ ) ≤ cw(Γ ) ≤ wt(Γ ) + wb(Γ ) ≤ 2 w(Γ ).

3 Overview of the Approach

In this section we give a high-level description of the approach followed through-
out the paper. We need some additional definitions. Let Γ be a topological book
embedding of a k-colored planar graph G and let v0, v1, . . . , vn−1 be the vertices
of G in the order they appear along the spine of Γ . The k-colored sequence
c(v0), c(v1), . . . , c(vn−1) is called the k-colored sequence induced by Γ . Let P be
a path and let v0, v1, . . . , vn−1 be the vertices of P in the order they appear
along P ; the k-colored sequence c(v0), c(v1), . . . , c(vn−1) is called the k-colored
sequence induced by P . Let ΓP be a topological book embedding of P . ΓP is
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external if both the endvertices of P are accessible either from the top page or
from the bottom page. Let G1 = (

⋃k−1
i=0 V1,i, E1) and G2 = (

⋃k−1
i=0 V2,i, E2) be two

planar k-colored graphs. We say that G1 and G2 are compatible if |V1,i| = |V2,i|
for every i = 0, . . . , k − 1. A simultaneous k-colored book embedding of two com-
patible planar graphs G1 and G2 is a pair of drawings < Γ1, Γ2 > such that: (i)
Γi is a topological book embedding (i = 1, 2); (ii) Γ1 and Γ2 use the same points
to represent the vertices; and (iii) the k-colored sequences induced by Γ1 and Γ2
coincide. We are now ready to describe our approach:

Step 1: Let P = path(S). Compute a simultaneous k-colored book embedding
< ΓG, ΓP > of G and P , such that ΓG is a monotone topological book embedding
of G and ΓP is external;

Step 2: By using < ΓG, ΓP >, compute a k-colored point-set embedding of G
on S. The curve complexity of the computed drawing is bounded by the width
of ΓP .

The idea behind the above described approach is based on Theorem 1 and
on the following lemma, that shows how to compute an augmenting k-colored
Hamiltonian path by using < ΓG, ΓP >. An illustration of such an idea is shown
in Figure 1.

(a) (b) (c)

Fig. 1. (a) A monotone topological book embedding ΓG of a planar 3-colored graph G.
(b) An external topological book embedding ΓP of a path P . Notice that < ΓG, ΓP >
is a simultaneous k-colored book embedding of G and P and that w(ΓP ) = 3. (c) An
augmenting k-colored Hamiltonian path of G consistent with the k-colored sequence
induced by P and inducing at most 5 division vertices per edge.

Lemma 1. Let G and P be a k-colored planar graph and a k-colored path that
are compatible. Let < ΓG, ΓP > be a simultaneous k-colored book embedding
of G and P , such that ΓG is a monotone topological book embedding and ΓP

is external. Let σ be the k-colored sequence induced by P . Then G admits an
augmenting k-colored Hamiltonian path consistent with σ that induces at most
2 w(ΓP )+cw(ΓP )+2 division vertices for every s-shaped edge of ΓG and at most
2 w(ΓP ) + 1 division vertices for every u-shaped edge of ΓG.



Drawing Colored Graphs with Constrained Vertex Positions 321

Sketch of Proof: Consider the simultaneousk-coloredbook embedding<ΓG,ΓP >.
Since ΓP is external the two endvertices u and v of P are accessible either from
the top page or from the bottom page. Vertices u and v can be connected by
means of an edge e′ consisting of at most two arcs. Namely, if they are both
accessible from the same page, say the top one, then we connect them with an
arc in the top page; if they are accessible from different pages, assume that u
is accessible from the top page and v is accessible from the bottom page (the
other case is symmetric). We create an arc connecting v to a point p of the
spine that is to the right of the rightmost point (vertex or spine crossing) of
ΓP ; then we add an arc connecting p to u. Γ ′ = ΓG ∪ ΓP ∪ e′ is a (possibly
non-planar) drawing of a (possibly non-planar) graph G′ such that C = P ∪ e′ is
a k-colored Hamiltonian cycle consistent with the k-colored sequence σ induced
by P . If G′ is not planar, since both ΓG and ΓP are planar, a crossing in Γ ′

is possible only between the edges of ΓG and the edges of ΓP . We replace each
crossing with a division vertex. It may happen that edge e′ is also subdivided
(this happens if the endvertices of P are not on the same face of ΓG). In all cases,
there exists a portion of e′ that is contained in a face of ΓG. The graph obtained
by removing this portion (possibly coincident with e′ itself) is the augmented
Hamiltonian form of G. The concatenation of P with the portion of e′ that is
not removed forms an augmenting k-colored Hamiltonian path of G consistent
with the k-colored sequence induced by P . In order to compute the number
of division vertices on each edge of G, we first count the number of crossings
between an edge of G and the edges of P , and then we count the extra division
vertices introduced when adding edge e′. Let e = (u, v) be an u-shaped edge of
ΓG. Assume that e is in the top page of ΓG. The number of crossings between
e and the edges of P is c = lwt(ΓP , pu) + lwt(ΓP , pv) ≤ 2 w(ΓP ). Let e = (u, v)
be an s-shaped edge and let a1 and a2 be the two arcs that form e. Arc a1 has
pu and d as its endpoints, where d is the point where e crosses the spine. Arc a2
has d and pv as its endpoints. The number of crossings between e and the edges
of P is c = lwt(ΓP , pu) + clw(ΓP , d) + lwb(ΓP , pv) ≤ w(ΓP ) + cw(ΓP ) + w(ΓP ) =
2 w(ΓP ) + cw(ΓP ). Since e′ consists of at most two arcs in different pages, each
arc of ΓG can have one additional division vertex caused by the addition of
e′. Therefore an u-shaped edge (s-shaped edge) can have at most 2 w(ΓP ) + 1
(2 w(ΓP ) + cw(ΓP ) + 2) division vertices per edge. ��

4 Ordered k-Colorings

Let S be a k-colored set of points such that for every pair of points p1 and
p2 with the same color, there is no point q such that x(p1) < x(q) < x(p2) and
c(q) �= c(p1) = c(p2). We say that S is an ordered k-colored set of points. In other
words, an ordered k-colored set of points is such that all points of each color are
consecutive according to the x-coordinate ordering. Analogously, we define an
ordered k-colored path P to be a path where all vertices of the same color appear
consecutively walking along P , and an ordered k-colored sequence to be a k-
colored sequence where all elements with the same color appear consecutively
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in the sequence. The technique behind this proof is a variant of the algorithm
used in [3] to compute an augmenting k-colored Hamiltonian cycle of a k-colored
simple cycle.

Lemma 2. Let G and P be a planar k-colored graph and an ordered k-colored
path that are compatible. There exists a simultaneous k-colored book embedding
< ΓG, ΓP > of G and P , such that ΓG is a monotone topological book embedding,
ΓP is external and cw(ΓP ) ≤ k. Furthermore, < ΓG, ΓP > can be computed in
O(k n) time.

Theorem 3. Let G be a planar k-colored graph, and let σ be an ordered k-
colored sequence. Then G admits an augmenting k-colored Hamiltonian path H
consistent with σ that induces at most 3k+2 division vertices per edge; at most 4
of these are pointy division vertices. Furthermore, H can be computed in O(k n)
time.

Sketch of Proof: Let P be an ordered k-colored path that is compatible with
G and such that the k-colored sequence induced by P coincides with σ. By
Lemma 1, G admits an augmenting k-colored Hamiltonian path H consistent
with σ and inducing at most 2 w(ΓP ) + cw(ΓP ) + 2 division vertices for every s-
shaped edge of ΓG and at most 2 w(ΓP ) + 1 division vertices for every u-shaped
edge of ΓG. Since by Lemma 2 cw(ΓP ) ≤ k and since w(ΓP ) ≤ cw(ΓP ), it
follows that H induces at most 3k + 2 division vertices for every s-shaped edge
and at most 2k + 1 division vertices for every u-shaped edge. We now count
the number of pointy division vertices. We first recall (see Lemma 1) that an
edge can have one or two division vertices caused by the addition of an edge
e′ that transforms P into a cycle. Such division vertices are necessarily pointy
division vertices. Namely, since a portion of e′ is removed to obtain H, then all
the division vertices caused by the addition of e′ appear at the beginning of H
or at its end. Let V ′

d be the set of these division vertices and let vd be one of
them. Let (u′, vd) and (vd, v

′) be the two edges incident to vd that are not in H.
Vertices (either real or division vertices) u′ and v′ are not in V ′

d and therefore
they are encountered both after vd or both before vd when walking along H′,
i.e. vd is a pointy division vertex. Concerning the division vertices that are not
created by the addition of e′, it can be proved that at most one, in the case of
u-shaped edges, or two, in the case of s-shaped edges, of these division vertices
are pointy. It follows that an u-shaped edge can have at most two pointy division
vertices and an s-shaped edge can have at most four pointy division vertices. ��
A consequence of Theorem 3 and Theorem 1 is the following.

Theorem 4. Let G be a k-colored planar graph with n vertices and let S be an
ordered k-colored set of points compatible with G. There exists an O(n log n +
k n)-time algorithm that computes a k-colored point-set embedding of G on S
having curve complexity at most 3k + 7.

Theorem 3 can be applied also to another special k-coloring. Namely, let G =
(
⋃k−1

i=0 Vi, E) be a k-colored planar graph; we say that the coloring of G is an
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unbalanced k-colorings if |Vi| = 1 (i = 0, 1, . . . , k − 2) and |Vk−1| = n − k + 1.
In [1] it has been proved that if a k-colored planar graph G has an unbalanced
k-colorings, then G admits a k-colored point-set embedding on any given set
of points compatible with G with curve complexity at most 9k − 1. We use
Theorem 3 to improve this bound.

Theorem 5. Let G be an n-vertex k-colored planar graph with an unbalanced
coloring and let S be a k-colored set of points compatible with G. There exists an
O(n log n + k n)-time algorithm that computes a k-colored point-set embedding
of G on S having curve complexity at most 6k + 4.

5 h-Bend k-Colored Universal Sets and Grids

Let F be a family of k-colored planar graphs such that every element of F has
n vertices and 1 ≤ k ≤ n; let S be a k-colored set of points. We say that S is an
h-bend k-colored universal set for F if, for every G ∈ F , G has a k-colored point-
set embedding on S having at most h bends per edge. In this section we shall use
Theorem 3 to describe h-bend k-colored universal sets of points that can either
have real coordinates (Subsection 5.1) or form an integer grid (Subsection 5.2).

5.1 h-Bend k-Colored Universal Sets

Let Fk be the family of all k-colored planar graphs with n vertices (1 ≤ k ≤ n).
In this section we show that there exist h-bend k-colored universal sets for Fk

such that the number of points in the sets is O(n) and h does not depend on n;
we also show a lower bound on the size of such sets for the family F2. We start
with a lemma that shows an h-bend k-colored universal set for a sub-family of
all k-colored planar graphs with n vertices. Let F ′

k be the family of k-colored
planar graphs such that every graph of F ′

k has n vertices and every two graphs
of the family have the same number of vertices with color i (1 ≤ i ≤ k). It is
known that every k-colored set S of n points compatible with the graphs in F ′

k

is an h-bend k-colored universal set for F ′
k with h = O(n) [1,9]. The next lemma

shows that by adding O(n) extra points to S, the curve complexity can become
independent of n.

Lemma 3. Let G = (
⋃k−1

i=0 Vi, E) be a k-colored planar graph with n vertices
(1 ≤ k ≤ n) with |Vi| = ni (i = 0, 1, . . . , k −1); let S =

⋃k−1
i=0 Si be any k-colored

set of points such that |Si| = k(ni −1)+1. There exists an O(n log n+k n)-time
algorithm that computes a k-colored point-set embedding of G on S having curve
complexity at most 3k + 7.

Sketch of Proof: We prove the statement by showing that it is possible to remove
(k − 1)(ni − 1) points from Si (i = 0, 1, . . . , k − 1) in such a way that the
remaining n =

∑k−1
i=0 ni points form a set S′ which induces an ordered k-colored

sequence compatible with G. This, along with Theorem 3, implies that G admits
an augmenting k-colored Hamiltonian path consistent with σ = seq(S′) that
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induces at most 3k + 2 division vertices; at most 4 of these division vertices
are pointy division vertices. Such an augmenting k-colored Hamiltonian path
can be computed in O(k n). By Theorem 1, there exists an O(n log n)-time
algorithm that computes a k-colored point-set embedding of G on S′ having
curve complexity at most 3k + 7. Since there is a one-to-one mapping between
the points of S and the elements of σk = seq(S), in the rest of this proof we
concentrate on the sequence σk and prove that elements can be removed from
σk in order to obtain an ordered k-colored sequence σ′

k compatible with G. More
precisely, we prove that given a k-colored sequence σk such that the number of
elements colored i is at least k(ni −1)+1, it is possible to remove some elements
from σk in order to create an ordered k-colored sequence σ′

k compatible with
G. The proof is by induction on the number of colors k. If k = 1 it is sufficient
to arbitrarily remove (k − 1)(n0 − 1) points (i.e. to remove no point) and the
obtained sequence is an ordered 1-colored sequence compatible with G. If k > 1,
let σk = c0, . . . , ck(n−k+1)−1. We denote as σi,j the subsequence ci, ci+1, . . . , cj of
σk. Let ji = min{j | σ0,j contains ni elements whose value is i } for i = 0, . . . , k−1
and let j = mini{ji}. Without loss of generality, assume that j = j0. The
sequence σ0,j contains n0 elements whose value is 0 and at most ni − 1 elements
whose value is i (i = 1, 2, . . . , k − 1). Therefore σj+1,k(n−k+1)−1 contains at least
(k − 1)(ni − 1) + 1 elements whose value is i (i = 1, 2, . . . , k − 1). The sequence
σ(k−1) = σj+1,k(n−k+1)−1 \ {cj | cj = 0} is a (k − 1)-colored sequence such
that the number of elements colored i is at least (k − 1)(ni − 1) + 1. Thus, by
induction, one can remove elements from σ(k−1) in order to obtain an ordered
(k − 1)-colored sequence σ′

k−1 compatible with G \ {v ∈ V | col(v) = 0}. It
follows that the sequence σ′

k = σ0,j \ {cj | cj �= 0}∪σ′
k−1 is an ordered k-colored

sequence compatible with G. ��

Theorem 6. Let Fk be the family of all k-colored planar graphs with n vertices
(1 ≤ k ≤ n). Any k-colored set of points S such that S contains k n−k2+1 points
for each color is a (3k+7)-bend k-universal set for Fk. Furthermore, there exists
an O(n log n+k n)-time algorithm that computes a k-colored point-set embedding
on S of any G ∈ Fk with curve complexity at most 3k + 7.

Sketch of Proof: Let G be a graph of Fk. For each color i, G has at most n−k+1
vertices of color i. Since S has k(n − k) + 1 points of color i, the result follows
from Lemma 3. ��
The total number of points in a k-colored set of points that satisfies the statement
of Theorem 6 is k2n− k3 + k. One can ask whether n+ o(n) points are sufficient
to guarantee a curve complexity that does not depend on n. As the next theorem
shows, this question has a negative answer for the case k = 2.

Theorem 7. Let c be a constant such that c > 1. For every integer n > 2 c
c−1

there exists a 2-colored planar graph G = (V0 ∪ V1, E) and a 2-colored set of
points S = S0 ∪ S1 consisting of n + n

c points such that: (i) |V0| = |V1| = n
2 ; (ii)

|S0| = |S1| = n
2 + � n

2c	; and (iii) any 2-colored point-set embedding of G on S
has one edge with at least 2

3

⌊
c−1
2c n

⌋
− 1 bends.
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5.2 h-Bend k-Colored Universal Grid

Let Fk be the family of all k-colored planar graphs with n vertices (1 ≤ k ≤ n).
An h-bend k-colored universal grid for Fk is a k-colored set of points S such
that: (i) S is an integer grid; (ii) any element of Fk has a k-colored point-set
embedding Γ on S with curve complexity at most h; and (iii) the bends of Γ are
at grid points. The drawing Γ is called a k-colored point-set grid embedding. In
this section we study the size of an h-bend k-colored universal grid that supports
k-colored point-set grid embeddings whose curve complexity does not depend on
the input size. Let S be the k-colored set of points that contains points p = (x, y)
such that x, y ∈ Z and 0 ≤ x, y < 2kN where N = (n − k + 1)(3n − 5). Let each
point p = (x, y) of S have color col(p) = 
 x

2N �. We call S the (n, k)-strip grid.

Theorem 8. Let Fk be the family of all k-colored planar graphs with n vertices
(1 ≤ k ≤ n). The (n, k)-strip grid is a (6k + 5)-bend k-universal grid for Fk.
Furthermore, there exists an O(k n)-time algorithm that computes a k-colored
point-set grid embedding on S of any G ∈ Fk with curve complexity at most
6k + 5.

Sketch of Proof: Let G be a k-colored planar graph with n vertices and m edges.
Let σ be an ordered k-colored sequence compatible with G and such that ele-
ments colored i appear before than elements colored i + 1 (i = 0, . . . , k − 2). By
Theorem 3, G admits an augmenting k-colored Hamiltonian path H consistent
with σ. Since the (n, k)-strip grid S contains more than n points for each color we
can arbitrarily choose a subset S′ of S such that seq(S) = σ and use Theorem 1
to compute a k-colored point-set embedding of G on S. However, the technique
behind Theorem 1 does not guarantee that the division vertices are at grid point
even if the point in S′ are grid points. We describe in the following a variant of
this technique that places bends at grid points. Let w0, w1, . . . , wn′ be the ver-
tices (either division vertices or real vertices) of H in the order they appear in
H. Since σ is ordered we have that the real vertices of G in H are ordered along
H except for the presence of the division vertices, i.e. if we ignore the division
vertices then all vertices of the same color appear consecutively walking along H.
Define the following indices: ji = max{ j | col(wj) = i }. All the division vertices
wj such that ji−1 < j < ji are given color i, where we set j−1 = −1. With this
coloring of the division vertices, we have that H is an ordered k-colored path,
i.e. it consists of a set of vertices (either division vertices or real vertices) colored
c0, followed by a set of vertices colored c1, etc. Since σ has been chosen so that
elements colored i appear before than elements colored i + 1 (i = 0, . . . , k − 2),
then ci = i (0 ≤ i ≤ k − 1), i.e. H consists of a set of vertices colored 0 followed
by a set of vertices colored 1, etc. The number of real vertices of a given color
i is at most n − k + 1 (because at least one vertex for any other color must
exist), and the number of division vertices between a pair of consecutive real
vertices is at most m (because each edge of H is crossed at most once by an edge
connecting two real vertices), which, in turn, is at most 3n−6 since the graph is
planar. It follows that we have at most (n − k + 1)(m + 1) ≤ N vertices of each
color. Let wj be a vertex (either a real or a division vertex) whose color is i,
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then ji−1 < j ≤ ji. Vertex wj is drawn at point having coordinates (2x, 2x)
where x = iN + (j − ji−1) − 1. Since 0 ≤ 2((j − ji−1) − 1) < 2N , then 
 2x

2N � = i,
i.e. point (2x, 2x) is colored i. Let e = (wja , wjb

) be an edge (either a real edge
of G or a portion of an edge of G). Since the endvertices of H are on the same
face of Ham(G), there exists a planar embedding of Ham(G) such that w0 and
wn′−1 are on the external face. In such an embedding every edge not in H is
either on the left-hand side of H or on the right-hand side of H when walking
from w0 to wn′−1. If e belongs to H, it is drawn as a straight-line segment. If
e is to the left of H, then it is drawn with only one bend whose coordinates
are (2xa + 1, 2xb − 1), where (2xa, 2xa) is the point representing vertex wja and
(2xb, 2xb) is the point representing vertex wjb

. If e is to the right of H, then it
is drawn with only one bend whose coordinates are (2xb − 1, 2xa + 1). ��

Corollary 1. Every n-vertex planar graph admits a k-colored point-set grid em-
bedding with curve complexity 6k +5 on a grid whose size is O(k n2)×O(k n2).
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Abstract. This paper studies the question: What is the maximum inte-
ger kb,n such that every kb,n-colorable graph has a b-bend n-dimensional
orthogonal box drawing?

We give an exact answer for the orthogonal line drawing in all di-
mensions and for the 3-dimensional rectangle visibility representation.
We present an upper and lower bound for the 3-dimensional orthogonal
drawing by rectangles and general boxes. Particularly, we improve the
best known upper bound for the 3-dimensional orthogonal box drawing
from 183 to 42 and the lower bound from 3 to 22.

1 Introduction

The visualization of relational information has many applications in various do-
mains. The domain entities are usually modeled as vertices and the relationships
among entities are represented by edges.

There have been many graph drawing styles studied in the literature. In this
paper we study the orthogonal box drawing. This drawing has received a wide
attention recently due to its applications: 2-dimensional variants in VLSI routing,
circuit board layout, CASE tools etc. and 3-dimensional variants for example in
packaging algorithms [1,5,6,12].

The orthogonal box drawing represents vertices by axis-parallel boxes. Every
edge is drawn as an axis-parallel polyline with ends on boundaries of boxes that
correspond to vertices of the edge. Edges don’t intersect other boxes and with
the exception of the 2D drawing an edge cannot intersect another edge.

We call the drawing b-bend if each edge consists of at most b+1 line segments.
A 0-bend drawing is called a straight-line drawing. If all edges in a straight-line
box drawing in IR3 are parallel then we can ignore the thickness of the boxes
in this direction. We obtain a representation known as a 3D rectangle visibility
drawing. The same operation in IR2 gives us a bar-visibility drawing.

It turns out that the recognition of graphs with the given type of orthog-
onal drawing is difficult. For example, Shermer [7] shows that the recognition
of graphs with 2-dimensional straight-line orthogonal drawing is NP-complete.
Fekete et al. [8] establish NP-completeness of recognition of graphs with a 3D
rectangle visibility drawing by squares.
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If we cannot effectively decide whether a graph has a drawing of the given type
then it is natural to look for classes of graphs for which this decision is possible.
The previous research was concentrated mainly on complete graphs e.g. on the
determination of the maximum size of a complete graph with a drawing [2,3,4].
Unfortunately such results don’t tell us much about drawing of graphs with more
vertices.

Our search for a more practical class of graphs has been inspired by the open
problem presented by Wood [1]:

What is the maximum k ∈ ZZ+ such that every k-colorable graph has
a straight-line 3D orthogonal box drawing?

We study graphs with bounded colorability in this paper. Every k-colorable
graph is a subgraph of a k-partite graph that is itself k-colorable. Therefore it
is sufficient to study drawing of k-partite graphs.

Definition 1. The multipartite number of the given type of drawing is the max-
imum k ∈ IN such that every k-partite graph has a drawing of that type. We say
that the multipartite number is infinite when every multipartite graph has such
a drawing.

Wood [1] proves that the multipartite number of the straight-line orthogonal box
drawing is at least 3. On the other hand Fekete and Meijer [2] shows that it is
at most 183.

We improve the lower bound from 3 to 22 and the upper bound from 183
to 42. We also determine the exact value of the multipartite number of the
orthogonal drawing by line segments and of the rectangle visibility drawing.
Table 1 summarizes the results presented in this work.

Table 1. Multipartite number of d-dimensional b-bend orthogonal drawing by
v-dimensional boxes

v d b multipartite number

1 1 0 1 Theorem 1
2 ≥ 2 ∞ Section 3.3

1 2 Theorem 2
0 1 Theorem 1

3 ≥ 1 ∞ Theorem 2
≥ 3 0 3 Theorem 1

2 2 ≥ 1 ∞ Section 4.3
0 1 Section 4.2

3 0 ∈ 〈22, 42〉 Theorems 4, 5

3 3 ≥ 1 ∞ Section 5.2
0 ∈ 〈22, 42〉 Theorems 4, 5

rectangle visibility drawing 8 Theorem 3
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2 Preliminaries

The next lemma is a simple application of the pigeon-hole principle. We include
it because we use this formulation several times in the sequel.

Lemma 1. Let k, n, c ∈ IN and G be a complete k-partite graph whose each part
has at least c(n − 1) + 1 vertices and each vertex has one of c colors. Then G
contains a complete k-partite subgraph whose each part is monochromatic and
contains at least n vertices.

Proof. Each part contains at least c(n − 1) + 1 vertices. Therefore there are at
least n vertices with the same color in each part. These monochromatic sets form
the k-partite subgraph with the required properties. ��

We use this lemma when each vertex from a drawing must have one property
from a finite set of properties and we have to ensure that the vertices from the
same part have the same property. A similar situation occurs when the properties
are assigned to edges.

Lemma 2. Let k, n, c ∈ IN and G be a complete k-partite graph whose each edge
has one of c colors. There exists Nk,n,c ∈ IN such that if each part of G has at
least Nk,n,c vertices then G contains a complete k-partite subgraph whose each
part has at least n vertices and for each pair of parts the edges among elements
of these parts are monochromatic.

Proof. Recall that the bipartite Ramsey number bc(H) is the minimum m such
that every c-coloring of E(Km,m) yields a monochromatic copy of H . Chvátal
[10] and Bieneke-Schwenk [11] proved that bc(Kp,q) ≤ (q − 1)cp + O(cp−1).

If we fix two parts P1 and P2 that have at least bc(Kn,n) vertices then there is
a subgraph of G that is also complete k-partite, has at least n vertices from Pi,
i = 1, 2 and the edges among these vertices are monochromatic. The required
subgraph can be obtained by a repeatable application of this fact. ��

Sometimes we need to separate the parts with respect to some function on the
set of vertices.

Lemma 3. Let k, n ∈ IN and G(V, E) be a complete k-partite graph whose each
part has at least (n−1)k+1 vertices. For each � : V → IR there exists a complete
k-partite subgraph G′ of G whose each part has at least n vertices and whose
parts are �-separated e.g. for each pair P1, P2 of parts it is either ∀x ∈ P1∀y ∈
P2 �(x) ≤ �(y) or ∀x ∈ P1∀y ∈ P2 �(y) ≤ �(x).

Proof. Sort the vertices v ∈ V according to their value �(v). Let P be the
part whose n-th vertex (with respect to this order) has the lowest index in the
sequence. Remove the vertices before the selected one from the sequence. Put
the first n vertices of P into G′ and remove the elements of P from the sequence.
Continue in the same way until the sequence is empty.

Let’s fix some part P . If P is not the selected part then at most n − 1 of
its vertices are removed from the sequence. Therefore at most (n − 1)(k − 1) of
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its vertices are removed before the part is selected. P has at least (n − 1)k + 1
elements. So, the described algorithm selects n vertices from each part. The
resulting graph G′ obviously has the required property. ��

Lemmas 1, 2 and 3 ensure the existence of a subgraph G′(V ′, E′) of a graph
G(V, E) such that |V ′| ≥ f(|V |), where f is a non-decreasing function un-
bounded from above. These properties of f ensure that the size of G′ can be
made arbitrarily big if we take the original graph G sufficiently large. We use
this fact many times in the sequel because we usually want to prove the existence
of a large graph G′ with some properties and are not interested in the exact size
of G that must be taken to find a subgraph of the required size.

3 Line Drawing

3.1 Straight-Line Line Drawing

In this section we determine the multipartite number of the straight-line line
drawing in the n-dimensional space e.g. the drawing where each vertex is repre-
sented by an axis-parallel line segment in IRn.

Lemma 4. The multipartite number of the straight-line line drawing in IRn is
at most 3 for n > 2 and it is 1 for n = 1, 2.

Proof. Let’s suppose that we have a straight-line line drawing in IRn of a k-partite
graph G. If we color the vertices according to their direction then Lemma 1 tells
us that there exists a large k-partite subgraph G′ with parallel vertices in the in-
dividual parts.

Now color the edges of the graph G′ according to their direction. Let G′′

denote the result of the application of Lemma 2 on the graph G′. The edges
between arbitrary two parts of G′′ are parallel.

We know that the vertices in the individual parts are parallel. We claim that
the vertices from the different parts cannot be parallel. Suppose that the opposite
holds e.g. there are parts P and Q such that the vertices from P ∪Q are parallel
(to a vector e1). The edges between P and Q are parallel (to a vector e2) due to
the definition of G′′. This means that P and Q together with the edges between
them lie in a plane (given by vectors e1 and e2). So, we have a bar-visibility
graph of K|P |,|Q|, but the sets P and Q can be made arbitrarily large. That is
in a contradiction with the planarity of bar-visibility graphs.

If P and Q are two parts of G′′, P parallel to e1, Q parallel to e2 and the
edges between P and Q parallel to e3 then the drawing of K|P |,|Q| lies in S =
p + e1IR + e2IR + e3IR, where p is a point of some line in P ∪ Q. If k > 3 then
there must exist a part R parallel to vector e4 
∈ e1IR + e2IR + e3IR. The edges
between P and R are parallel to a vector v.

Choose l ∈ R. |l ∩ S| ≤ 1 because e4⊥S.
If l ∩ S = {q} then the edges between P and R have one end in q. There can

be at most two such edges (from the directions v and −v). Therefore |P | ≤ 2,
but P can be arbitrarily large.
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If l ∩ S = ∅ then l + v IR intersects S in at most one point. This means that
l can be connected to at most one vertex from P and we have a contradiction
with the size of P again. Hence k ≤ 3.

The case n = 1 is obvious. If n = 2 then G(V, E) is a union of two planar bar-
visibility graphs and as such has less than 12|V | edges. Therefore no sufficiently
large bipartite graph has a 2D straight-line line drawing. ��

The previous proof utilizes the fact that we can choose from an arbitrary com-
plete multipartite graph a subgraph that is itself a complete multipartite graph,
has some specific property and can be made arbitrarily large if the original graph
is sufficiently big. The additional property allows us to simplify the proof. We
use this method in many of the following proofs.

The lower bound on the multipartite number that matches our upper bound
e.g. the construction of a 3-dimensional straight-line line drawing of Ka,b,c for
arbitrary positive integers a, b, c is given by Wood [1].

Theorem 1. The multipartite number of the straight-line line drawing in IRn is
3 for n > 2 and it is 1 for n = 1, 2.

3.2 1-Bend Line Drawing

Theorem 2. The multipartite number of the 1-bend line drawing in IRn is 2 for
n = 2 and is infinite for n > 2.

Proof. The proof is similar to the proof of Theorem 1. See [9] for details. ��

3.3 2-Bend Line Drawing

The Figure 1 shows that every complete graph has a 2-bend 2-dimensional line
drawing. Therefore the multipartite number of this drawing is infinite.

Fig. 1. 2-bend 2-dimensional line drawing of Kk

4 Rectangle Drawing

In this section we study rectangle drawing e.g. box drawing where vertices are
represented by 2D boxes. We work with rectangles in parallel planes as if they
were in the same plane. Operations on such rectangles should be understood as
operations on the projections (into one of the planes) and the projection of the
result of the operation (for example the intersection of some rectangles) back
into the individual planes of the rectangles.
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4.1 Rectangle Visibility Drawing

Definition 2. Let B be a box in an orthogonal drawing. x+(B) denotes the
maximum coordinate of a point in the box B. Similarly we define x−, y+, y−, z+

and z−.

Note that z+ = z− in the rectangle visibility drawing. We denote this function
simply by z there.

Lemma 5. The multipartite number of the rectangle visibility drawing is at
most 8.

Proof. Suppose that we have a rectangle visibility drawing of a complete k-
partite graph G. Apply Lemma 3 on this graph consecutively with functions
z, x+, x−, y+ and y−. We obtain a graph G′ with parts separated with respect
to these functions.

Take an arbitrary part Pi of G′ and sort its elements according to their z-
coordinates. Due to Erdős-Szekeres theorem we can choose from this sequence
a subsequence P ′

i of length at least |Pi|1/16 that is monotone in x+, x−, y+ and
y− coordinates. Denote by G′′ the complete k-partite graph with parts P ′

i . From
the construction of G′′ it is obvious that its parts can be made arbitrarily large
if we take G with sufficiently large parts.

We claim that we can suppose that the orthogonal projections (along the z-
axis) of rectangles from G′′ have a common intersection. Rectangles from the
different parts must intersect to be able to see each other. So, it is sufficient to
show that each part has a common intersection. That happens if and only if each
two rectangles from this part intersect.

Let P1 be a part without a common intersection. There must be two elements
r1, r2 ∈ P1 that don’t intersect. Without loss of generality it is x+(r1) < x−(r2).

r1 r2

r

S

c−x c+
x

Fig. 2.

G′′ is a complete k-partite graph. Hence a rectangle r from a different part
(to see both r1 and r2) must have x−(r) < x+(r1) and x+(r) > x−(r2).

Let’s modify the part P1 to have a common intersection. Let c+
x (respectively

c−x ) be a maximum (resp. minimum) x-coordinate of a point of a rectangle in
P1. Denote by S the y-parallel strip between c−x and c+

x (see Figure 2).
The proved inequalities together with the x+, x−-separability of parts ensures

that x−(r) < c−x and c+
x < x+(r) for each rectangle r 
∈ P1. Therefore if two
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c−x c+
x c−x c+

x
x

z

Fig. 3. Modification of stairs

rectangles not in P1 can see each other through a point (x, y) in the strip S
then they can see each other also through a point ((c−x − ε, y) or (c+

x + ε, y) for
a sufficiently small ε > 0) outside the strip.

The rectangles in P1 (ordered according to the z-coordinate) are monotone in
x+ and x− coordinates and don’t have a common intersection. So, they must be
either increasing or decreasing in both these coordinates - the rectangles form
stairs (see Figure 3).

We claim that if we change x+ and x− coordinates of the stair rectangles to
ensure a common intersection (as shown in Figure 3) then we don’t destroy the
completeness of the k-partite visibility representation of G′′.

Only the rectangles in the strip S are modified. So, the visibility among rect-
angles not in P1 is not affected because they can see each other through points
outside the strip. It remains to show that the rectangles from P1 can see all other
rectangles.

Sides y+ and y− of each rectangle not in P1 cross the whole width of the
strip S. They mark on the strip (orthogonal) sub-strips. The rectangles not in
P1 can see the rectangles from P1 only through their sub-strips.

No visibility is destroyed if we move the x+ and x− coordinates of rectangles
from P1 such that the same rectangles remain visible through each sub-strip,
but that is exactly what our stair-modification technique does.

We have shown that we can expect each part of G′′ to have a common inter-
section.

We know that if we sort the rectangles from some part P of G′′ according to
their z-coordinates then we obtain a sequence monotone also in x+, x−, y+ and
y− coordinates. Moreover if P has a common intersection then we can consider P
to form a frame with sides oriented up and down (see Figure 4). The orientation
determines the direction from which the corresponding sides of rectangles are
visible.

We also know that the parts are x+, x−, y+, y−-separated. Thus two corre-
sponding sides of frames cannot intersect (see Figure 5). The interiors of frames

up

up
u
p wn

do

Fig. 4. Transformation of one part into a frame and an oriented rectangle
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intersect because all rectangles have a common intersection. Due to these facts
we can shrink the frames into rectangles with oriented sides. Now two parts can
see each other if the boundaries of their oriented rectangles intersect and the
intersecting sides have a correct orientation.

(a) (b) (c) (d)

Fig. 5. Examples of invalid (a), (b) and valid (c), (d) intersections of frames

It remains to prove that a complete graph with this modified oriented rect-
angle visibility representation has at most 8 vertices.

Lemma 6. If Kn has a modified visibility representation by rectangles with ori-
ented sides (as described in the previous proof) then n ≤ 8.

Proof. We proceed in a similar way as Fekete et al. [3] in the proof of the non-
existence of a visibility representation of K8 by unit squares e.g. by a computer
search. Our algorithm is based on their algorithm. We modify it to generate
visibility representations with general rectangles (not only squares). We also
add a code that assigns an orientation to the individual sides. When the next
rectangle is added the new code also checks whether the orientation requirements
are satisfied. See [9] for details (including the source code).

We were able to process all valid configurations in 26 hours on Intel Centrino
1.7 GHz machine and verified that there is no representation of K9 with the
required properties.1 ��

Lemma 7. The multipartite number of the rectangle visibility drawing is at
least 8.

Proof. The Figure 6 shows (in the form of oriented rectangles) a rectangle vis-
ibility drawing of a complete 8-partite graph. The numbers in the lower right
corner determine the order of parts with respect to the z-coordinate. The thick
sides are oriented up, the thin sides are oriented down. The small circles show
areas where the individual parts see each other. ��

If we put together Lemmas 5, 6 and 7 we obtain the following theorem.

Theorem 3. The multipartite number of the rectangle visibility drawing is 8.

1 The algorithm was run several times on different hardware configurations in fact.
Check sums were used to recognize computations affected by a potential hardware
failure.
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1
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3
2

6
7

4
8

Fig. 6. Rectangle visibility representation of Ka,b,c,d,e,f,g,h

4.2 Straight-Line Rectangle Drawing

A graph with a 2-dimensional straight-line rectangle drawing is a union of two
planar bar-visibility graphs. Therefore the multipartite number of such a drawing
is one.

The 3-dimensional straight-line rectangle drawing has similar properties to the
3-dimensional straight-line box drawing. The upper bound on the multipartite
number of the 3-dimensional straight-line box drawing proved in the next section
is also the best known bound for the straight-line rectangle drawing. On the
other hand the following drawing of a complete 22-partite graph provides also
the best known lower bound on the multipartite number of the 3-dimensional
straight-line box drawing.

Theorem 4. The multipartite number of the straight-line rectangle drawing in
IR3 is at least 22.

Proof. The Figure 7 shows a rectangle visibility drawing of a complete 6-partite
graph. Take a copy of the construction from the Figure 6 and rotate it to be
parallel to xz-plane. Place the copy between the third and the fourth part. Ensure
that x+ (resp. x−) coordinates of the rectangles from the copy are bigger (resp.
smaller) than the coordinates of the rectangles from the 6-partite graph.

Take another copy of the construction from the Figure 6 and rotate it to be
parallel to yz-plane. Place the copy again between the third and the fourth part
either below or over the first copy. Ensure that y+ (resp. y−) coordinates of the
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1
2

3

4
5

6

Fig. 7. Straight-line rectangle drawing of a complete 22-partite graph

rectangles from this copy are bigger (resp. smaller) than the coordinates of the
rectangles from the 6-partite graph.

The copies are schematically displayed on the Figure 7 by the horizontal and
the vertical line. The small circles show the areas where the individual parts see
each other. It can be easily verified that the resulting construction is a straight-
line rectangle drawing of a complete 22-partite graph. ��

4.3 1-Bend Rectangle Drawing

It can be shown (using a construction similar to Figure 1) that the multipartite
number of 1-bend rectangle drawing in IR2 is infinite – if we place the rectangles
on a diagonal then we need only one bend to connect any pair of rectangles.

5 Box Drawing

5.1 Straight-Line Box Drawing

Definition 3. Let A and B be axis-parallel boxes in IR3. We write A ≺x B if
A and B can see each other and x+(A) < x−(B). Similarly we define A ≺y B
and A ≺z B.

It can be easily verified that these relations are partial orders on the boxes in a
straight-line box drawing of a complete graph. We say that some boxes from a
drawing form an x-chain (resp. x-antichain) if they form a chain (resp. antichain)
in the partial order ≺x.

Fekete and Meijer [2] showed the following properties of these orders.
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Lemma 8. Let C be a maximum length x-chain in a 3-dimensional orthogonal
box drawing of a complete graph. There cannot be an x-chain D of length greater
than 4 such that C ∩ D = ∅.
Lemma 9. If there is no chain (x-chain, y-chain or z-chain) longer than 4 in
a 3-dimensional orthogonal box drawing of a complete graph G then G can have
at most 18 vertices.

Lemmas 8 and 9 allow us to estimate the maximum size of a complete graph
with a drawing with the bounded length of chains.

Lemma 10. If k is the maximum length of a chain that appears in the partial
order ≺x, ≺y or ≺z in a 3-dimensional straight-line box drawing of Kn then
n ≤ 3k + 18.

Proof. Let Cx, Cy resp. Cz denotes the maximum x-chain, y-chain resp. z-chain
in the drawing. If we remove the boxes in Cx ∪ Cy ∪ Cz from the drawing then
by Lemma 8 there cannot remain a chain of length 5. There remain at most 18
boxes by Lemma 9. Hence, n ≤ |Cx| + |Cy| + |Cz | + 18 ≤ 3k + 18. ��
The presented properties of the partial orders ≺x, ≺y and ≺z can be utilized to
prove an upper bound for the multipartite number of a box drawing.

Theorem 5. The multipartite number of the straight-line box drawing in IR3 is
at most 42.

Proof. Let G be a large complete k-partite graph that has a 3D straight-line
box drawing. Color its edges by three colors according to their direction. Apply
Lemma 2 on G and denote by G′ the resulting graph.

Select one box from each part of G′. These boxes form a 3D straight-line box
drawing of Kk. We claim that this drawing doesn’t contain a chain of length
greater than 8. If we prove this then by the previous lemma k ≤ 3.8 + 18 = 42.

Suppose by contradiction that there exists an x-chain of length 9. The boxes
from the parts with a member in this chain also (due to the selection of G′) see
each other along the x-axis. Therefore they correspond to a rectangle visibility
representation of a 9-partite graph that can be made arbitrarily large if G is
taken sufficiently large. This is in a contradiction with Theorem 3. ��

5.2 1-Bend Box Drawing

The infinity of the multipartite number of the 1-bend box drawing comes imme-
diately from the infinity for the 1-bend 3D line drawing.

6 Conclusion

We determine the multipartite number of several types of drawings. This signif-
icantly enlarges the class of graphs that are known to have such drawings. For
example Fekete and Meijer show in [2] that each graph with at most 56 vertices
has a 3-dimensional straight-line orthogonal box drawing. Comparing to this we
prove that any 22-colorable graph has such a drawing.
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Abstract. Despite a long research effort, finding the minimum area for
straight-line grid drawings of planar graphs is still an elusive goal. A long-
standing lower bound on the area requirement for straight-line drawings
of plane graphs was established in 1984 by Dolev, Leighton, and Trickey,
who exhibited a family of graphs, known as nested triangles graphs, for
which (2n/3 − 1) × (2n/3 − 1) area is necessary. We show that nested
triangles graphs can be drawn in 2n2/9 + O(n) area when the outer
face is not given, improving a previous n2/3 area upper bound. Further,
we show that n2/9 + Ω(n) area is necessary for any planar straight-line
drawing of a nested triangles graph. Finally, we deepen our insight into
the 4/9n2 −4/3n+1 lower bound by Dolev, Leighton, and Trickey, which
is conjectured to be tight, showing a family of plane graphs requiring
more area.

1 Introduction

Area minimization is recognized to be an important aesthetic requirement in
Graph Drawing. Besides, drawing planar graphs in the minimum area is a long-
standing and fascinating combinatorial problem. In 1984, Dolev et al. [5] first
exhibited a family of graphs, called nested triangles graphs, to show an area lower
bound of (2n/3− 1)× (2n/3−1) for straight-line drawings of plane graphs, that
is, graphs with a fixed combinatorial embedding and a fixed outer face. Grids of
sizes (2n−4)×(n−2), (n−2)×(n−2), and �2(n−1)/3�×(4�2(n−1)/3�−1) were
shown to be sufficient for straight-line drawings of plane graphs by de Fraysseix,
Pach, and Pollack [4], Schnyder [8], and Chrobak and Nakano [3], respectively.

Very little is known when the combinatorial embedding and the outer face of
the graphs can be changed. Namely, while area upper bounds for plane graphs
trivially extend to planar graphs, there is, as far as we know, no non-trivial
lower bound for the area required by planar graphs. In particular, one could ask
whether the family of nested triangles graphs, used to show the lower bound for
plane graphs, is a good candidate for providing a lower bound in the variable
embedding setting. Thus determining the area requirements of nested triangles

� Work partially supported by EC - Fet Project DELIS - Contract no 001907 and by
MUR under Project “MAINSTREAM: Algoritmi per strutture informative di grandi
dimensioni e data streams”.
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graphs when the outer face can be changed is regarded as one among the most
challanging and interesting problems for the Graph Drawing community [2].

In this paper, we show an algorithm to produce straight-line drawings of
nested triangles graphs in (n

3 + 3) × (2n
3 + 6) = 2

9n2 + O(n) area (Section 3).
Such a bound improves the previous best bound of (n

2 ) × (2n
3 ) = n2

3 , due to
Ossona de Mendez [7]. In the same section we show that any planar straight-
line drawing of a nested triangles graph requires n2/9 + Ω(n). This result pro-
vides, as far as we know, the first non-trivial lower bound for the area required
by straight-line drawings of planar graphs in the variable embedding setting.
Section 2 contains some background and Section 4 contains our conclusions and
some open problems.

2 Preliminaries

A straight-line grid drawing of a graph (or drawing, for short) is a mapping of
each vertex to a distinct point of the plane with integer coordinates and of each
edge to a segment between its endpoints. The bounding box of a drawing Γ is
the smallest rectangle with sides parallel to the axes that completely covers Γ .
The height (width) of Γ is the height (width) of its bounding box. The area of Γ
is the height of Γ multiplied by its width.

A planar drawing is such that no two edges intersect except, possibly, at com-
mon endpoints. A planar drawing of a graph determines a circular ordering of
the edges incident to each vertex. Two drawings of the same graph are equivalent
if they determine the same circular ordering around each vertex. A planar em-
bedding is an equivalence class of planar drawings. A planar drawing partitions
the plane into topologically connected regions, called faces. The unbounded face
is the outer face. Two equivalent drawings of the same graph may differ for
the outer face. A graph together with a planar embedding and a choice for its
outer face is called plane graph. A k-connected graph G is such that removing
any k − 1 vertices leaves G connected. A 3-connected (or triconnected) planar
graph G admits a unique planar embedding. Hence, different plane graphs can
be obtained from G only by choosing different outer faces.

Let t1 and t2 be two disjoint 3-cycles of a graph G, and let Γ be a planar
drawing of G. We say that t2 is nested into t1 in Γ if t2 is drawn in the bounded
region of the plane delimited by t1. We denote such a relationship by t1 > t2. A
nested triangles graph G with n vertices (n is a multiple of 3) is a triconnected
graph admitting a planar drawing Γ in which n/3 disjoint triangles t1, t2, . . . , tn/3
can be found such that t1 > t2 > . . . > tn/3. A nested triangles graph is maximal
if all its faces are triangles.

Property 1. Let Γ be any planar drawing of a graph G, and let t1 and t2 be two
disjoint 3-cycles of G such that t1 > t2 in Γ . The height (width) of t1 in Γ is at
least two units bigger than the height (width) of t2.

Based on Property 1, given an n-vertex nested triangles graph G any drawing
of G such that t1 > t2 > . . . > tn/3 requires (2n

3 − 1) × (2n
3 − 1) area [5,4]. Such

a bound can be achieved with a drawing like the one represented in Fig. 1(a).
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α (−1,0)

α (1,1)

α (2,−1)

(a) (b)

Fig. 1. (a) A minimum area drawing of a maximal nested triangles graph. (b) Con-
struction of a three-semi-axes drawing.

Given two integer numbers a and b, the half-line starting at the origin and
passing through vertices (k · a, k · b), for any positive integer k, is denoted α(a,b).
Let α(a,b), α(c,d), and α(e,f) be three half-lines such that the angle determined by
any two consecutive half-lines is less than π. Given an n-vertex nested triangles
graph G admitting a planar drawing in which n/3 disjoint triangles t1, t2, . . . , tn/3
can be found such that t1 > t2 > . . . > tn/3, a three-semi-axes drawing Γ of G
with axes α(a,b), α(c,d), and α(e,f) is a planar straight-line drawing obtained by
suitably placing the vertices of ti on points (i · a, i · b), (i · c, i · d), (i · e, i · f),
with 1 ≤ i ≤ n/3. Fig. 1(b) shows an example of construction of a three-semi-
axes drawing of a nested triangles graph. Observe that, since from any vertex
of triangle ti a straight-line segment can be drawn to any vertex of triangle ti+1
without introducing intersections, a three-semi-axes drawing is always planar.

3 Area Bounds for Nested Triangles Graphs

The following lemma proves the claimed upper bound.

Lemma 1. Every n-vertex nested triangles graph admits a planar straight-line
drawing in 2

9n2 + O(n) area.

Proof: To prove the statement we restrict to maximal graphs, since any non-
maximal nested triangles graph can be augmented to maximal by adding dummy
edges. Consider any maximal nested triangles graph G admitting a planar draw-
ing Γ ∗ in which n/3 disjoint triangles t1, t2, . . . , tn/3 can be found such that
t1 > t2 > . . . > tn/3. We show how to construct a drawing Γ of G in 2

9n2 +O(n)
area. Observe that, since G is triconnected, Γ and Γ ∗ have the same plane em-
bedding (up to a reversal of their adjacency lists) with the exception, possibly,
of the choice of the outer face. Also, since n is a multiple of 3, either n is also
multiple of 6 (n is even) or n is not multiple of 6 (n is odd).

Suppose n is even. Consider the subgraph G′ of G induced by the vertices
of tn/6 and tn/6+1. We label the vertices of tn/6 with labels v1, v2, and v3, and
those of tn/6+1 with v4, v5, and v6. Such a labeling is based on the degree and
the adjacencies of the vertices in G′. Two are the cases, either all vertices of G′
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Fig. 2. Cases for the proof of Lemma 1

α (−1,−1) α (0,−1) α (1,−1) α (2,−1)
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α (−1,1) α (0,1)

1v
v4

v3 v6 t n/6+1t n/6

Fig. 3. A drawing of a nested triangles graph with optimal 2
9n2 + O(n) area

have degree four, or not. In the first case, label the vertices of G′ as depicted in
Fig. 2(a). In the second case, label the vertices of G′ as depicted in Fig. 2(b).

Choose as outer face of Γ the face incident to v1, v2, and v5. Due to the
choice of the outer face, Γ contains two sequences S1 and S2 of nested triangles,
with S1 : tn/6 > tn/6−1 > . . . > t1 and S2 : tn/6+1 > tn/6+2 > . . . > tn/3
(see Fig. 3). Separately construct the drawings of S1 and S2 as follows. For S1
construct a three-semi-axes drawing ΓS1 with axes α(0,1), α(−1,−1), and α(1,−1),
such that v1, v2, and v3 lie on axes α(0,1), α(−1,−1), and α(1,−1), respectively.
Further, shift v1 and v2 to the next available grid point along α(0,1) and α(−1,−1),
respectively. For S2 construct a three-semi-axes drawing ΓS2 with axes α(−1,1),
α(2,−1), and α(0,−1), such that v4, v5, and v6 lie on axes α(−1,1), α(2,−1), and
α(0,−1), respectively. Also, shift vertex v5 to the next available grid point along
α(2,−1). Drawings ΓS1 and ΓS2 are combined in such a way that v3 is one unit
to the left of v6 (see Fig. 3).
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We now show that Γ is a planar drawing of G with area 2
9n2 + O(n). First,

observe that shifting vertices v1, v2, and v5 does not compromise the planarity of
ΓS1 and ΓS2 . Second, observe that, independently of the degrees of v1, . . . , v6 in
G′, the edges between vertices of tn/6 and vertices of tn/6+1 do not intersect (see
Figs. 2(c) and 2(d)). Concerning the area of Γ , we have that the height of Γ is
equal to the height of ΓS1 , which is 2n

6 +2, while the width of Γ can be obtained
by summing the horizontal lengths of edges (v2, v3), (v3, v6), and (v6, v5), yielding
(2n

6 +1)+1+(2n
6 +2). Hence, the area of Γ is (n

3 +2)× (2n
3 +4) = 2

9n2 +O(n).
If n is odd, we add a triangle t0 > t1 in Γ ∗, and arbitrarily augment Γ ∗

to a maximal nested triangles graph by adding dummy edges. Applying the
construction described above we obtain a drawing with area (n+3

3 +2)×(2n+3
3 +

4) = 2
9n2 + O(n). �

Next, we prove a lower bound on the area needed by any straight-line drawing
of a nested triangles graph when the outer face is not fixed.

Lemma 2. Every n-vertex nested triangles graph requires n2

9 +Ω(n) area in any
planar straight-line drawing Γ .

Proof: Consider any nested triangles graph G admitting a planar drawing Γ ∗

in which n/3 disjoint triangles t1, t2, . . . , tn/3 can be found such that t1 > t2 >
. . . > tn/3. Suppose that n is a multiple of 6. Choose any face f to be the
outer face of Γ . Three are the cases: (i) f = t1; (ii) f = tn/3; and (iii) f is
contained into the region of the plane delimited by tk and tk+1 in Γ ∗, for some
k ∈ {1, . . . , n/3 − 1}. In Cases (i) and (ii), we have n/3 disjoint nested triangles
in any planar drawing of G and, by Property 1, (2n

3 − 1)2 = 4
9n2 + Ω(n) area is

required. In Case (iii), we have that in any planar drawing Γ of G there are two
sequences S1 and S2 of nested triangles such that S1 : tk+1 > tk+2 > . . . > tn/3
and S2 : tk > tk−1 > . . . > t1. One between S1 and S2 has at least n/6 nested
triangles and, by Property 1, (2n

6 − 1)2 = n2

9 + Ω(n) area is required. �

4 Conclusions and Open Problems

In this note we have shown that 2n2/9+ O(n) area is sufficient and that n2/9+
Ω(n) area is necessary to construct straight-line planar drawings of nested trian-
gles graphs. Closing the gap between the upper and the lower bound is a natural
open question. We conjecture the following:

Conjecture 1. Any maximal nested triangles graph requires 2n2/9 + Ω(n) area
in any straight-line planar grid drawing.

Our conjecture is motivated by the following considerations: Choosing an arbi-
trary outer face for a maximal nested triangles graph composed of n/3 nested
triangles produces two sequences S1 and S2 of h and n/3−h nested triangles, re-
spectively. Such sequences lie in disjoint regions of the plane. Hence, it is possible
to find a lower bound for the convex hull area of the whole drawing by summing
up the convex hull areas of S1 and S2. It appears to be the case that the area
of the convex hull of h nested triangles is at least 2h2 + Ω(h) (the statement is
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(a)) (b)

Fig. 4. (a) A plane graph and a minimum-area straight-line drawing of it. (b) Con-
struction of a plane graph requiring 4n2/9 − 2n/3 area.

trivial when one side of the external triangle is parallel to one of the axes). Pro-
vided that the above statement is true, we can show that the minimum convex
hull area of the whole drawing is n2/9+Ω(n), obtained for h = n/6. This would
imply that the minimum area of the bounding box is 2n2/9 + Ω(n).

Renown problems in this field are those of determining the area required by
straight-line drawings of general planar and plane graphs. Concerning the latter,
in [6,9,1] it is reported the long-standing conjecture that the nested triangles
graph is a worst case, i.e., that any plane graph can be drawn in �2n/3 − 1� ×
�2n/3 − 1� area, which, for n ≡ 0 mod 3, gives 4n2/9 − 4n/3 + 1. We remark
that such a bound neglects at least a linear area term. Consider, in fact, the
six-vertex graph G shown in Fig. 4(a). By case study we can prove that the
smaller drawings of G have 2×6 and 3×4 bounding-boxes. The graph obtained
by nesting G into n/3 − 2 nested triangles (see Fig. 4(b)) has at least (2(n/3 −
2) + 3) × (2(n/3 − 2) + 4) = (2n/3 − 1) × (2n/3) = 4n2/9 − 2n/3 area.
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Abstract. This paper shows that any planar graph with n vertices can
be point-set embedded with at most one bend per edge on a universal set
of n points in the plane. An implication of this result is that any number
of planar graphs admit a simultaneous embedding without mapping with
at most one bend per edge.

1 Introduction

Let S be a set of m distinct points in the plane and let G be a planar graph
with n vertices (n � m). A point-set embedding of G on S is a planar drawing
of G such that each vertex is drawn as a point of S and the edges are drawn as
poly-lines. The problem of computing point-set embeddings of planar graphs has
a long tradition both in the graph drawing and in the computational geometry
literature (see, e.g., [5,6,8]). Considerable attention has been devoted to the study
of universal sets of points. A set S of m points is said to be h-bend universal for
the family of planar graphs with n vertices (n � m) if any graph in the family
admits a point-set embedding onto S that has at most h bends along each edge.

Gritzman, Mohar, Pach and Pollack [5] proved that every set of n distinct
points in the plane is 0-bend universal for the all outerplanar graphs with n
vertices. De Fraysseix, Pach, and Pollack [3] and independently Schnyder [9]
proved that a grid with O(n2) points is 0-bend universal for all planar graphs
with n vertices. De Fraysseix et al. [3] also showed that a 0-bend universal set
of points for all planar graphs having n vertices cannot have n + o(

√
n) points.

This last lower bound was improved by Chrobak and Karloff [2] and later by
Kurowski [7] who showed that linearly many extra points are necessary for a 0-
bend universal set of points for all planar graphs having n vertices. On the other
� Research supported by NSERC and the MIUR Project “MAINSTREAM: Algo-
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Fig. 1. (a) A proper monotone topological book embedding. The spine crossings d and
d′ are proper. (b) A necklace of six points. The cone of p0, the cone of p2, the bend-line
of p2, and the bend-line of p3 are highlighted. (c) A point-set embedding computed by
Algorithm 1-bend Universal Drawer.

hand, if two bends along each edge are allowed, a tight bound on the size of the
point-set is known: Kaufmann and Wiese [6] proved that every set of n distinct
points in the plane is 2-bend universal for all planar graphs with n vertices.

In this paper we study the minimum size of a universal set of points for all
planar graphs with n vertices under the assumption that at most one bend per
edge is allowed in the point-set embedding. We prove the following theorem.

Theorem 1. Let Fn be the family of all planar graphs with n vertices. There
exists a set of n distinct points in the plane that is 1-bend universal for Fn.

The proof is constructive; an example is shown in Figure 1. We define a set S
of n points and show how to compute an embedding of any planar graph with
n vertices on S such that the resulting drawing has at most one bend per edge.
The drawing procedure starts by computing a special type of book embedding
defined in Section 2, and then uses this book embedding to construct the point-
set embedding with the algorithm described in Section 3.

Our universal set of n points can be defined either (i) with algebraic coordi-
nates such that they are the vertices of a convex chain with unit-length edges
or (ii) on a regular grid of size n2n by n. In the former case all planar graphs of
Fn can be drawn on that point set with all bend-points and vertices in a square
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of size n by n at distance at least 1
2d apart, where d is the maximum degree of

the graph. In the latter case, the graphs can be drawn with all bend-points on
the grid points of the n2n by n grid.

We conclude this introduction by noting a result that is immediately implied
by Theorem 1. Two planar graphs G1 and G2 with the same set of vertices are
said to admit a simultaneous embedding without mapping if there exists a set of
points in the plane that supports a point-set embedding of both G1 and G2 [1].
It is not known whether any two planar graphs admit a simultaneous embedding
without mapping such that all edges are straight-line segments. A consequence
of [5] is that a planar graph has a straight-line simultaneous embedding without
mapping with any number of outerplanar graphs. A consequence of [6] is that any
two planar graphs have a simultaneous embedding without mapping such that
each edge is drawn with at most two bends. Theorem 1 implies the following.

Corollary 1. Any number of planar graphs sharing the same vertex set admit
a simultaneous embedding without mapping with at most one bend per edge.

2 Monotone Topological Book Embeddings

Consider the Cartesian coordinate system (O, x, y) and let p, q be two points in
the plane. We say that p is left of q and we denote it as p < q if the x-coordinate
of p is less than the x-coordinate of q; we shall also use the notation p � q to
mean that either p is left of q or p coincides with q; we define similarly p > q
and p � q. A spine is a horizontal line. Let � be a spine and let p, q be two
points of �. Let p < q and let b be a point of the perpendicular bisector of pq,
at positive distance from �. An arc connecting p to q, denoted as (p, q), is a
polygonal chain consisting of two segments: segment pb and segment bq. Point p
is the left endpoint of (p, q), point q is the right endpoint of (p, q), and point b is
the bend-point of (p, q). Arc (p, q) can be either in the half-plane above the spine
or in the half-plane below the spine (such half-planes are assumed to be closed
sets); in the first case we say that the arc is in the top page of �, otherwise it is
in the bottom page of �. From now on, when we denote an arc as (p, q) we shall
implicitly assume that p is its left endpoint.

Let G = (V, E) be a planar graph. A monotone topological book embedding of
G, denoted Γ , is a planar drawing such that all vertices of G are represented as
points of a spine � and each edge is either represented as an arc in the bottom
page, or as an arc in the top page, or as a poly-line that crosses the spine
and consists of two consecutive arcs. Let e = (u, v) be an edge of a monotone
topological book embedding that crosses the spine at a point d; assuming that
u is left of v along the spine, e is such that: (i) u < d < v, (ii) arc (u, d) is in the
bottom page, and (iii) arc (d, v) is in the top page. Point d is called the spine
crossing of (u, v). Refer to Figure 1(a). Also, let u′ be the rightmost vertex along
the spine of Γ such that u′ < d and let v′ be the leftmost vertex of the spine of
Γ such that d < v′. We say that u′ and v′ are the two bounding vertices of d.
We say that d is a proper spine crossing if its bounding vertices u′ and v′ are
such that u < u′ < d < v′ < v. (The spine crossings d and d′ of Figure 1(a)
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are both proper and both bounded by v3 and v2). A monotone topological book
embedding is proper if all of its spine crossings are proper. Di Giacomo et al. [4]
proved that, for every planar graph, a monotone topological book embedding
exists and can be computed (in linear time in the size of the graph). Since an
edge that crosses the spine with a non-proper spine crossing can be replaced by
a single arc, we obtain the following lemma.

Lemma 1. Every planar graph has a proper monotone topological book embed-
ding which can be computed in linear time in the size of the graph.

Let now Γ be a proper monotone topological book embedding of a planar graph
G. If we insert a dummy vertex for each spine crossing of Γ , we obtain a new
topological book embedding Γ ′ such that Γ ′ represents a planar subdivision G′

of G obtained by splitting with a vertex some of the edges of G. We call the
graph G′ an augmented form of G and the drawing Γ ′ an augmented topological
book embedding of G. A vertex of G′ that is also a vertex of G is called a real
vertex of Γ ′; a vertex of G′ that corresponds to a spine crossing of Γ is called a
division vertex of Γ ′. Note that every division vertex of Γ ′ has degree two and
that every edge of Γ ′ is either an arc in the top page or an arc in the bottom
page. The bounding vertices of a division vertex d of Γ ′ are the two real vertices
that form the bounding vertices of the spine crossing corresponding to d in Γ .
The following property is a consequence of the planarity of Γ ′.

Property 1. Let a = (u, v) and a′ = (u′, v′) be two distinct arcs of Γ ′ that are
in the same page and such that u < u′. Then, (i) u < v � u′ < v′ or (ii)
u < u′ < v′ � v.

3 Proof of Theorem 1

We prove Theorem 1 by first defining a family of sets of n points in convex
position (Subsection 3.1) and then by describing an algorithm that computes a
point-set embedding of any planar graph with n vertices on the n-point element
of the family (Subsection 3.2).

3.1 Necklaces, Cones, and Bend-Lines

Let p0 be any point on the x-axis strictly left of O and p1 be any point strictly
in the top-left quadrant of p0. We construct pi+2, for 0 � i � n − 2, from pi and
pi+1 as follows. Let ri be the projection of pi on the vertical y-axis. Point pi+2
can be chosen anywhere on or below the line through ri and pi+1 and strictly
above the horizontal line through pi+1. Let S be any set of n points defined by
the above procedure; we call S a necklace of n points. See Figure 1(b).

The cone of p0, denoted as C(p0), is the wedge with apex p0 and bounded by
the vertical half-line above p0 and by the ray emanating from p0 and through
p1. The cone of pi (1 � i � n − 2), denoted as C(pi), has pi as its apex and is
bounded by two rays emanating from pi with directions −−−−→pi−1pi and −−−−→pipi+1. In
what follows we assume that C(pi) is an open set (0 � i � n − 1).
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The bend-line of pi (i > 1) is the relatively-open horizontal segment from
pi−1 to the vertical line through p0. The following properties follow from the
definition of a necklace and can be proved with elementary geometric arguments.
Let S = {p0, p1, . . . pn−1} be a necklace of n points and let CH(S) be its convex
hull. Note that p0, . . . , pn−1 are ordered from right to left, i.e., pn−1 < . . . < p0.

Property 2. Let ph < pt (t > 1) be two points of S and let q be a point on the
bend-line of pt. Segments phq and ptpt−1 intersect in their relative interior.

Property 3. Let ph′ � ph < pt (t > 1) be three points of S and let q′ < q be
two points on the bend-line of pt. Segments phq and ph′q′ do not intersect each
other.

3.2 Computing 1-Bend Point-Set Embeddings

We describe a drawing algorithm, called 1-bend Universal Drawer, that re-
ceives as input a planar graph G with n vertices and a necklace S of n points
and returns a point-set embedding of G on S such that every edge of G is drawn
with at most one bend. Algorithm 1-bend Universal Drawer consists of the
following steps.

Step 1: Compute a proper monotone topological book embedding Γ of G and
the corresponding augmented proper topological book embedding Γ ′. Let � be
the spine of Γ ′. Label the real vertices of Γ ′ on � by vn−1, . . . , v0 in that order
from left to right (i.e., vi < vi−1). Map each real vertex vi to point pi of the
necklace (0 � i � n − 1).

Step 2: Draw the bends of the arcs of the top page of Γ ′ as follows. For
each vertex vi of Γ ′ mapped to point pi (0 � i � n − 1) do the following. Let
ai0, ai1, · · · , ai(k−1) be the sequence of arcs in the top page of Γ ′ whose right
endpoint is vi; assume that ai0, ai1, · · · , ai(k−1) are encountered in this order
when going clockwise around vi by starting the tour from a point on � slightly
to the left of vi. For each aij (0 � j � k − 1) do:

– Draw a ray rij emanating from pi such that: (i) rij is inside the cone C(pi)
of pi, and (ii) ri(j+1) is to the right of rij (0 � j � k − 2).

– Let vh be the left endpoint of aij in Γ ′ and bij the bend-point of aij . If vh

is a real vertex of Γ ′, draw bij at the intersection point, q, between rij and
the bend-line of ph (through ph−1).1 Else, if vh is a division vertex of Γ ′

and the two real vertices bounding vh in Γ ′ are vt and vt−1, draw bij at the
intersection point, q, between rij and the bend-line of pt.

Step 3: Draw the division vertices of Γ ′ as follows. For each division vertex
d of Γ ′, do the following. Let (vi, d) and (d, vj) be the two arcs of Γ ′ sharing d

1 If ph and pi are consecutive vertices of S (h−1 = i), the ray rij and the bend-line of
ph do not intersect, though their closures intersect at pi. For consistency, we draw bij

at this intersection point q = pi. In Step 4, the arc (vh, vi) is drawn as the poly-line
consisting of segment phq followed by qpi, which is reduced to point pi.
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such that (vi, d) is in the bottom page and (d, vj) is in the top page. Let q be
the point computed in Step 2 such that q represents the bend of (d, vj). Draw d
at the intersection point between piq and CH(S).

Step 4: Draw the arcs of Γ ′ as follows. For each arc (u, v) of Γ ′ do the following.
Let pu, pv be the points representing u and v along CH(S).

– If (u, v) is an arc in the bottom page, draw it as the chord pupv.
– If (u, v) is an arc in the top page of Γ ′, let q be the point computed at

Step 2 that represents the bend-point of (u, v). Draw (u, v) as the poly-line
consisting of segment puq followed by qpv.

Step 5: Let Γ̂ be the drawing computed at the end of Step 4. Compute a
drawing of G by removing from Γ̂ those points that represent the division vertices
of Γ ′.

The proof of Theorem 1 is now completed by showing that Algorithm 1-bend
Universal Drawer correctly computes a point-set embedding of G on S such
that each edge has at most one bend. The idea is to show that the drawing
computed at the end of Step 5 maintains the topology of Γ and that the geo-
metric properties of the proper monotone topological book embedding and of the
necklace make it possible to point-set embed the graph without edge-crossings
and with at most one bend per edge. In particular, we show that Γ̂ is a planar
drawing by exploiting Properties 1-3; the proof is however omitted here due to
lack of space.

Observe that every real vertex of Γ ′ is drawn as a point of S in Γ̂ . Since Γ̂ does
not have edge crossings, removing the division vertices from Γ̂ gives a point-set
embedding of G on S. Also, by construction, the two edges incident on a division
vertex of Γ̂ form a flat angle, and thus removing the division vertices from Γ̂
does not increase the number of bends. It follows that the drawing computed by
Algorithm 1-bend Universal Drawer is a point-set embedding of G on S such
that each edge has at most one bend. Therefore, any necklace of n vertices is a
1-bend universal set for all planar graphs having n vertices, which concludes the
proof of Theorem 1. We omit here the proofs on the size of the drawings.

4 Conclusion

We leave as an open problem to find a universal point-set for one-bend drawing
of planar graphs in a polynomial-size regular grid.
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Abstract. The analysis and the exploration of complex networks nowa-
days involves the identification of a multitude of analytic properties that
have been ascertained to constitute crucial characteristics of networks.
We propose a new layout paradigm for drawing large networks, with a
focus on decompositional properties. The visualization is based on the
general shape of an annulus and supports the immediate recognition of a
large number of abstract features of the decomposition while drawing all
elements. Our layouts offer remarkable readability of the decompositional
connectivity and are capable of revealing subtle structural traits.

1 Introduction

Current research activities in computer science and physics aim at understanding
the structural characteristics of large and complex networks such as the Inter-
net [1,2], networks of protein interactions [3,4], social networks [5] and many
others. A multitude of laws of evolution and scaling phenomena have been in-
vestigated [6,7], alongside studies on community structure, e.g. [8], and tradi-
tional network analyses [9]. Heavily relying on mathematical models and abstract
characteristics, many of these techniques highly benefit from, or even depend on
feasible advance information about structural properties of a network, in order
to properly guide or find starting points for an analysis. Adequate visualiza-
tion methods for complex networks are a crucial step towards such advance
information. Furthermore, due to the diversity of such analyses, customized vi-
sualizations concentrating on user defined characteristics are required.

Along the lines of the more general issue in the field of information visual-
ization, see e.g. [10], visualizations of large networks naturally suffer a trade-off
between the level of detail and the visible amount of information. In other words,
a detailed representation of a graph often antagonizes the immediate perceptibil-
ity of abstract analytic information. In this work we propose a layout paradigm
that tackles the task of detailed analytic visualizations for large graphs. Our
approach incorporates the strengths of abstract layouts, while individually plac-
ing all nodes and edges, i.e. without hiding away potentially crucial details. The
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general underlying shape of the layout is a (partial) annulus. Subgraphs, defined
by a decomposition, are then individually molded into annular segments. The
annulus has been chosen for three primary reasons, first, it offers immediate
readability of hierarchies and decompositional characteristics. Second, it allows
for an insightful segment-internal layout, and third, it provides a large area for
the drawing of edges, permitting the perception of segment connectivity at a
glance, which is a major focus of many applications.

The technique works in three phases. In the first, abstract phase, a network
decomposition determines the general shape of the layout, defining and arrang-
ing the drawing bounds of each annular segment. The second phase initializes
the drawing of individual nodes and the third phase determines the final layout
by means of sophisticated force-directed methods. Our paradigm offers many de-
grees of freedom that can incorporate any desired analytic property, allowing for
well readable simultaneous visualizations of complementary properties. Simple
user parameters tune the focus of our visualizations to either inter- or intra-
segment characteristics, and furthermore permit a scalable trade-off between
the overall quality and the required computational effort.

This paper is organized as follows. Sect. 2 sets our work into the context of
related work. Then, after giving some definitions and notation in Sect. 3, we
present our new layout paradigm in Sect. 4. An empirical study, using real world
examples of the physical Internet, collaboration graphs and road networks, is
given in Sect. 5. Finally, we conclude the paper in Sect. 6 with a brief summary.

2 Foundations and Previous Work

In the past, several layout techniques have been developed driven by the ambi-
tious goal to properly visualize complex networks such as the Autonomous Sys-
tems (AS) network. Two important approaches are the landscape metaphor [11]
and network fingerprinting [12], examples of which are shown in Fig. 1 and Fig. 2,
respectively. Introduced by Baur et al., the former modifies a conventional layout

Fig. 1. A 2.5-dimensional layout (land-
scape metaphor) of the AS network [11]

Fig. 2. A fingerprint of the AS network
made with LaNet-vi [12]
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technique by a framework of constraints that are based on analytic properties.
The global shape of the network is induced by the position of structurally im-
portant elements, which automatically conceal inferior parts. Thus, it reflects
the ‘landscape’ of importance, either in two or three dimensions. The latter ap-
proach, LaNet-vi [12] uses analytic properties to define the global shape, which
consists of concentric rings of varying thickness, one for each level of the core-
decomposition (see Sect. 3). Then, nodes are placed within these bounds and
the overall readability is achieved by showing only a small sample of edges.

The above techniques and similar ones have succesfully been applied in nu-
merous tasks, serving as an aide in network analyses. The method we present in
the following synergizes assets of previous approaches and remedies a number of
shortcomings in order to provide a layout technique that fingerprints a network
(as LaNet-vi), but adds to this a much clearer visual realization of a number of
analytic properties, thus offering a high informative potential. Before describing
our visualization technique, we discuss the necessary preliminaries.

3 Preliminaries

Let G = (V, E) be an undirected graph. We call a partition P = {P0, . . . , Pk}
of the set V of nodes a decomposition with shells Pi. Furthermore, a nested
decomposition H is a nesting of subsets Vi of V such that (V = V0 ⊇ V1 ⊇
· · · ⊇ Vk �= ∅). The sets Vi of H are called layers, giving rise to the height of H
being k and the height of a node v, defined as the index i such that v ∈ Vi \Vi+1.
The partition PH induced by a nested decomposition H is canonically defined as
PH = {V0 \ V1, V1 \ V2, . . . , Vk}. Edges between or within shells are canonically
called inter- or inter-shell edges.

The choice of suitable network decompositions primarily depends on the field
of application. In this work we focus on four different exemplary decompositions,
k-cores, clustering, reach and betweenness centrality. The concept of k-cores was
originally introduced in [13]. Stated in a procedural definition, the i-core of
a graph is the unique subgraph obtained by iteratively removing all nodes of
degree less than i, thus k-cores constitute a hierarchical decomposition. Graph
clusterings commonly capture large scale inhomogeneities by grouping nodes into
clusters by some formalization of the paradigm of intra-cluster density versus
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Fig. 3. Core-abstracted ver-
sion of an AS graph

inter-cluster sparsity, see [9] for an overview. In
the following we use a well known modularity-
based graph clustering technique [8]. The between-
ness centrality of a node is, roughly speaking, the
number of shortest paths passing through it [14],
reach is a similar concept used in transportation
networking [15]. These decompositions are highly
relevant in the analysis of large networks, such as
protein network analyses [3] recommendation net-
works [8] and social sciences.
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Visualizations of large networks usually suffer a trade-off between the details
of visually shown elements and the amount of represented information. Widely
known concepts resolving this are abstraction, as in Fig. 3 and the reduction of
data to specific shells or parts of interest, illustrated in Fig. 4. While abstracted
visualizations offer the best readability of these properties, much detail is lost,
as in Fig. 3.

Fig. 4. Reduction of the 16-
shell of Fig. 3

In contrast, zoomed visualizations as in Fig. 4
allow for the exploration of small scale subgraphs
and structural subtleties. We overcome this com-
promise by using the layout of an abstracted graph
as a blueprint but still draw all elements. Our goal
is the visualization of all nodes and edges in a man-
ner both pleasing and informative on intra shell
characteristics, in addition to revealing the char-
acteristics of the given hierarchical decomposition.
We focus on properties like the size of shells and
the connectivity within and between shells.

4 The Layout Technique

In the following we detail our construction technique for LunarVis. Roughly
speaking, our approach divides up into three distinct phases, the first of which
sets out the abstract layout attributes of the annular layout, such as the number
of segments, their dimension and their placement. Based on these, a heuristic
computation of suitable parameters follows, which will then be employed in the
third and last step. This last, and by far the most intricate and computation-
ally demanding step can be regarded as an iterative, segment-wise application
of spring forces. These forces determine the final placement of each single node
based on neighborhood attraction and repulsion both inside and between seg-
ments. In the end, we scale the annulus to the desired angular range and radial
spreading and finally draw edges as straight lines with a high degree of trans-
parency. Optionally, the size of a node and its color may serve as additional
dimensions of information, yet ample use of these potentially overburdens a
visualization. Algorithm 1 gives an overview of these three phases, which we
describe in detail in the following sections.

4.1 Abstract Attributes

By any means, the informative potential of the our technique heavily relies on
a suitable rough, abstract layout. We propose as the general underlying shape
of the visualization an annulus, as shown in Fig. 5. The shells si are lined up
along a predefined angular range (here a full circle), placing the bottom (s1) and
the top shell (s8) at the extremes. Thus, shells correspond to annular segments.
User-defined properties then determine the individual dimensions of these seg-
ments, namely the angular width αi and the radial extent ri. In order to increase
readability, small gaps βi that separate neighboring segments can be included.
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Algorithm 1. LunarVis

Input: Graph G = (V, E)
Output: LunarVis Layout
Initialize abstract layout1

Calculate parameters. Initialize random node placement within segments2

for i = 1, . . . , �out do3

forall shells s do
Project layout of s to middle square s
for k = 1, . . . , �inter do

Apply inter-shell forces s

for j = 1, . . . , �intra do
Apply intra-shell forces to s

Project new layout of s to annular segment s

Finalize and scale annulus, draw transparent edges, color and resize nodes4

The underlying annulus has an inner radius rin and an outer radius rout, which,
together with the angular range, define the total drawing area.

s1

s2 s3

s4

s5s6
s7

s8

angular
width α2

angular
gap β4

radial
extent r1

radial
spread
rout

center

inner
radius
rins3

w

Fig. 5. The LunarVis annulus

In our experiments, setting the annular
segments to touch the inner rim and siz-
ing them such that the largest shell also
touches the outer rim, offered the best
readability. For consistency, we let the
number of nodes per shell define the an-
gular width and the number of intra-shell
edges define the radial extent throughout
this paper, since these properties are gen-
erally of immediate interest. Molded into
the underlying shape of annular segments,
the shells can now be layouted individu-
ally. To give an impression of this step,
and to point out the utility of an ad-
ditional scaling function for the abstract
layout, Fig.6 shows three layouts of the
same network, using different scaling functions for the radial extent and the
angular width of a shell. As canonic scaling functions, we used the strictly grow-
ing functions square root and logarithm. The network is a snapshot of the AS

Fig. 6. Visualizations of the AS (1st March, 2005) using different scaling options.
Radial/angular scaling is linear/linear (left), log/sqrt (middle), log/log (right).
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network, decomposed into its core hierarchy. Individual nodes are left with a
random placement, and the total angle is π. Linear scaling enables the imme-
diate comparison of sizes, however, large values overshadow more subtle vari-
ations that do not become obvious without a logarithmic scaling of the radial
extent. The inter-shell edge distribution is revealed by logarithmically scaling
angular widths. Next, we describe how individual nodes are placed. For the
sake of a better understanding we describe our parameter settings afterwards in
Sect. 4.3.

4.2 Force-Directed Node Placement

Placing the individual nodes is by far the most computationally demanding task.
Simple strategies offer an easy recognition of the shells’ shapes, however, more
sophisticated techniques can additionally reveal the internal structure of the
shells while requiring more time and storage. Based on the forces proposed by
Fruchterman and Reingold [16] we use spring- and repulsion forces to iteratively
have the nodes of each shell adjust their position as suggested by their adjacencies
and. In the following we describe this procedure in detail.

As sketched out in Alg. 1, our layout algorithm cycles through all shells a set
number (�out) of times by line 3. The nodes of a shell are then first subjected
to inter-shell spring forces (�inter repetitions), thus moving towards their inter-
shell adjacencies, and then, as a relaxational step, to intra-shell forces (�intra
repetitions). To this end, we maintain a mapping of each shell, i.e. annular
segment si, to a square si of size w = 2/3 ·rin, centered at the origin and rotated
such that it faces its original annular segment, see Figure 5. Forces are applied to
the copies of nodes in the square si, and then, the new coordinates of nodes in si

are mapped back to the annular segment si and its nodes are moved accordingly.
Note that nodes in si themselves exert inter-shell forces on their copies in si.

s1

s2

s3

s4

s3

xrot

yrot

φmid

Fig. 7. Forces for s3 (excerpt). Inter-shell
forces are caused by edges that link s3 with
segments (solid, black). Intra-shell forces are
attraction and repulsion of nodes within s3.
Dotted edges are irrelevant during this stage.

Figures 7 and 8 illustrate the in-
tention of this approach. First, note
that a node coordinate (xv, yv) in a
square shaped working copy si is ob-
tained by transforming the circle co-
ordinates (ρv, φv) in the annular seg-
ment si in a canonical way, such that
the angular position φv of v within
si is linearly mapped to the the x-
coordinate xv within si, and the ra-
dial position ρv to yv. The rotation
of si then aligns the y-axis of si with
the middle axis (φmid) of si.

The crucial idea behind this setup
is that inter-shell forces pull nodes
towards a specific side of the square,
thus indicating their linkage ten-
dency, while intra-shell forces relax
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the resulting crowding and unmask community structure and disconnected com-
ponents. In Fig. 7, inter-shell forces draw the triangle of nodes in the right of s3
towards s3 and s4, while the nodes on the left, primarily being linked to other
shells are pulled towards s1, s2 and other adjacencies. The subsequent applica-
tion of intra-shell forces will keep the triangle grouped and separated, and relax
the disconnected nodes on the left.

s3

s3

s5

s4
s6

s7
s8

s1

s2

Fig. 8. Sketch of the pre-
ferred node locations in s3

The areas of s3 in Fig. 8 roughly sketch out where
nodes, with a majority of adjacencies in shells as in-
dicated, are drawn by inter-shell forces, before intra-
shell forces relax the layout. The size and placement
of these areas are induced by the abstract layout of
the annular segments, see Fig. 5 for comparison.
This segmentation of each shell allows for a sophis-
ticated interpretation of a node’s position.

Needless to say, we augmented our force-based
algorithms with several well known techniques,
such as soft clipping [16] to guarantee containment
within shells, sentinel nodes that uncrowd segment
borders [16] and an increased sluggishness of nodes
with high degree [17]. However, (anti-)gravitational

forces as well as simulated annealing [18], a randomized node ordering or an im-
pulse history [17] yielded no substantial increase in quality, since our technique
does not aim at a highly optimized local layout. We apply a simple exponential
cooling, such that the movement of nodes is increasingly slowed. This proved
necessary to avoid stubborn oscillations, especially if intra-shell forces are used
purely relaxational.

An important observation is, that applying inter- and intra-shell forces at
the same time naturally encourages force equilibria, but does not allow for a
structurally targeted analysis. On the contrary, the separate application of inter-
and intra-shell forces allows for a user-defined emphasis on either shell-internal
properties or global connectivity.

4.3 Parameters

Heuristic or experimental assessment of parameters is inevitable when using
customized force-directed methods. We base our forces on those proposed by
Fruchterman and Reingold [16]. Alternative force models as proposed e.g. by
Eades [19] or Frick et al. [17] did not prove more suitable but increased the
running time, partly due to the fact that we do not enforce equilibria.

For intra-shell forces we set the base spring length to Ci ·
√

(area/# vertices),
with the factor Ci boosting the intra-shell spring length of dense shells. Depend-
ing on the decomposition, global factors for repulsion forces and spring lengths
between 1 and 1.5 and 1.2 and 1.5, respectively, worked best. In fact, these two
parameters were the only ones that required adjustment. Our inter-shell forces
work with a base spring length of half the inner radius. Both the spring length
and the spring force hardly needed additional tuning. Moreover, setting the edge
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length w of the squares si to significantly smaller values than 2/3 · rin blurred
inter-shell forces, while much larger values exaggerated their range of effect.

As mentioned above, the iteration counters �out, �inter and �intra are pure user
parameters, since these govern the interaction and the emphasis of intra-shell
and inter-shell aspects. In fact, surprisingly low iteration numbers already yields
very nice results, a good starting point are �out = 10, �inter = 10, �intra = 5. In
the majority of drawings we used the logarithm for most scalings, as it copes best
with power-law distributions and generally dampens overshadowing maxima.

5 Results

In the following, we present a selection of LunarVis visualizations, all offering
many immediate insights. Nevertheless, knowledge about the drawing process,
i.e. how nodes are placed, allows for a more structurally oriented interpretation.

Fig. 9. A snapshot of the AS network taken at the 01.01.2006, decomposed by k-
cores. Nodes with a high (low) degree are colored blue (red) and the area of a node is
proportional to its betweenness centrality (all on a logarithmic scale). We chose a half
circle for the total angular range and set the maximum shell at the right end.

Figure 9 reveals numerous characteristics of the core decomposition of the AS
network at a glance. The well investigated fact that all shells primarily link to
the core is immediate, alongside the observation that the internal communities
of the first five shells are well interconnected (connectivity near outer rim), but
not those of other shells. To name a few subtle facts visible in this drawing,
note that mid-degree nodes can already be found in the 3-shell, that nodes with
low betweenness are exclusively found in low shells while the opposite is not
true, and that in low- to mid-shells nodes with higher degrees primarily link
to lower shells, as they sit on the upper left. We used a time-sequence of such
visualizations for an analysis of the temporal evolution of the AS network.
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Fig. 10. The AS network, decomposed by
a clustering. Nodes with a high (low) be-
tweenness are colored red (green).

Fig. 11. A network created with BRITE
[20], designed to emulate the AS. All pa-
rameters are as in Fig. 10.

For Fig. 10 and 11 a full annulus has been chosen due to the high number of
shells (56 and 45). Figure 10 diplays the AS network, decomposed by commu-
nity structure that has been identified by a greedy modularity based clustering
algorithm [8]. The clusters are sorted by size. Figure 11 shows the same decom-
position for a topology with the same number of nodes and edges, created with
BRITE [20], an AS topology simulator. Quite clearly, BRITE fails to feature any
of the peculiarities the AS network exhibits, such as high inhomogeneity in com-
munity sizes, the large number of tiny clusters or the fact, that most shells are
almost exclusively connected to the two largest shells. An analysis yields cluster-
ing coefficients of 0.002 and 0.375 for BRITE and the AS network, respectively,
and transitivities of 0.011 and 0.001, which agrees with these observations.

Fig. 12. Email network of the computer science de-
partment at Universität Karlsruhe

Figure 12 illustrates the
core decomposition of an
email network. The nodes
represent computer scientists
at Universität Karlsruhe,
color coded by their de-
partment and sized by their
betweenness, and edges are
email contacts over the past
eight months. As an excep-
tion, we used the sum of de-
grees for the radial extent
with a square-root scaling for
this LunarVis layout. From
the multitude of observable
features we point out the
fact that community struc-
ture within departments is
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Fig. 13. Luxembourg roads,
decomposed by betweenness,
color indicates reach

Fig. 14. München roads,
decomposed by between-
ness, color indicates reach

Fig. 15. European rail-
roads, decomposed by
betweenness, color indi-
cates reach

Fig. 16. Luxembourg roads,
decomposed by reach, color
indicates betweenness

Fig. 17. München roads,
decomposed by reach, color
indicates betweenness

Fig. 18. European rail-
roads, decomposed by
reach, color indicates be-
tweenness

been corroborated by the groupings in the top cores. As an example, the dark
blue department, although being well interconnected (gathered), seems to have
many contacts to lower shells, thus it sits at the inner rim of core 17.

Modern algorithms for route planning exploit numerous characteristics of road
graphs for efficient shortest path computations, for an overview see e.g. [21]. Fig-
ures 13-17 display road maps of the Czech Republic and of the city of Munich,
provided by PTV AG for scientific use, and Figures 15-18 display the Euro-
pean network of railway connections, provided by HAFAS. On the left hand side
betweenness centrality [9], indexed into eleven logarithmically scaled intervals,
served as the decomposition, and the figures on the right hand side are decom-
posed by reach centrality [15], colors are used vice versa. The stunning similarity
of all corresponding drawings indicate that transportation networks share strong
characteristics with respect to both reach and betweenness. However, several de-
tails can be observed that reflect intrinsic differences between these networks.
Towards a taxonomy for transportation networks we can immediately observe
that the railway network has very few hubs, both with respect to betweenness
and reach. These are mainly capitals that, additionally, have exceptionally high
degrees. The general correlation between reach and betweenness (color versus
shell index) corroborates the fact that railroads constitute a scale-free network.
This does not apply to either road network, which is due to the fact that road



362 R. Görke, M. Gaertler, and D. Wagner

networks tend not to have unique shortest paths – recall Munich’s surrounding
autobahn and Luxembourg’s rural nature. The road networks strongly resemble
each other, however, obvserve that in Munich, nodes of both maximum (auto-
bahn segments) and minimum (residential dead-end streets) betweenness have a
rather small degree. This cannot be observed in Luxembourg, where only nodes
of minimum betweenness have an exceptionally small degree. From the facts
revealed by the edge connectivity, note that hardly any peripheral nodes are
adjacent to nodes of maximum centrality.

For computing our drawings, we used one core of an AMD Opteron 2218
processor clocked at 2.6 GHz, with 1 MB of L2 cache, running SUSE Linux 10.1.
Our non-optimized development implementations in Java required drawing times
between a few seconds and several hours, depending on the chosen number of
iterations and the size of the network.

6 Conclusion

LunarVis is a new paradigm for drawing large graphs with a grand informative
potential. Through sophisticated utilization of force directed drawing techniques
and the neat design of an apt global shape, our technique creates visualizations of
networks that reveal analytic properties of decompositions alongside properties
of the shell connectivity at a glance, on the one hand, and offer insights into the
interior characteristics of shells on the other hand. An emphasis on either inter-
or intra-adjacencies can easily be adjusted.

The scope of application of LunarVis reaches far beyond mere network finger-
printing,as itdoesnotonlyproduceadistinctvisual representationofanetworkbut
in fact offers the immediate recognition of analytic properties and unmasks struc-
tural characteristics and peculiarities. The transparent visualization of the set of
inter-shell edges within the spacious interior of the annulus is particularly suitable
for analyses on shell connectivity. LunarVis, however, is not a tool for investigating
small-scale substructures or for purely esthetic, energy-minimal drawing.

Our results yield that LunarVis is highly feasible and informative in fields
of application as diverse as internet studies, route planning and social sciences,
employing decompositions by centrality, clustering and k-cores. The dimensions
offered for analytic information surpass many existing visualization techniques in
terms of perceptibility and detail, while the layout is highly configurable by using
different scaling functions, emphasizing either intra- oder inter-shell relationships
or simply plugging in complementary analytic properties.

The name of our paradigm LunarVis has been inspired by the semblance of
our visualizations to the shape of the moon, sometimes waxing, sometimes full,
but always a nice sight.
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Abstract. We propose a visualization approach for large dynamic graph
structures with high degree variation and low diameter. In particular, we
reduce visual complexity by multiple modes of representation in a single-
level visualization rather than abstractions of lower levels of detail. This
is useful for non-interactive display and eases dynamic layout, which we
address in the online scenario.

Our approach is illustrated on a family of large networks featuring
all of the above structural characteristics, the physical Internet on the
autonomous systems level over time.

1 Introduction

Visualization of large evolving relational data sets is a challenging task, because
the size of the data and dynamics are difficult to deal with even in isolation.
A visualization problem that encompasses these features simultaneously is the
macroscopic view of the evolving Internet topology on the autonomous-systems
(AS) level. To the best of our knowledge, there are no dynamic visualization
approaches that can produce purely structure-based drawings of a sequence of
AS graphs in reasonable time.

In this paper we propose to attack this problem by first applying a few com-
plexity reduction operations, which lead to both considerably smaller graphs and
savings of screen space. However, instead of hiding the less important parts of
a graph, which is a common approach to reduce complexity, we still show them
in the drawing with different representation modes. The reduced graphs are laid
out with a stress majorization approach [14] enhanced with a novel scheme for
calculating distances between nodes that is specially suited for graphs with ex-
tremely skew degree distributions. Also, the flexibility of the stress majorization
technique allows to adapt it for the dynamic setting. This is demonstrated in
the online scenario, where the previous drawing is respected during the layout
for the next time point.
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The paper is structured as follows. In Sect. 2, we give a brief review of the
AS-level Internet topology and related work. The layout method for static snap-
shots of the graph and our complexity reduction operations are the subject of
Sect. 3 and the extension of this approach to dynamic graph visualization and
its application to AS graphs are presented in Sect. 4. Section 5 concludes the
paper with a short discussion.

2 AS-Level Internet Topology and Related Work

An autonomous system, or AS for short, is a group of computer networks typ-
ically under the same administrative authority, using the same routing policy.
The Internet can thus be analyzed in terms of connections and interactions be-
tween ASes. The AS graph is then a model for the Internet, having ASes as
nodes and AS-to-AS connections as edges.

In recent years, analysis of the AS-level Internet topology has attracted in-
terest of many researchers. The common goal is to keep track of structure and
dynamics of the Internet, to develop meaningful and robust models explaining
such observations, and to come to reasonable interpretations. Technically and
economically, the analysis has manifold practical aspects, e.g. for improving re-
liability, routing efficiency, and fairness.

Interest in the AS graph excelled when power-laws and scale-free distributions
were observed to be characteristic features [12]. Since then, various aspects of au-
tonomous systems have been investigated, such as inferring AS graphs from col-
lected data [15], modeling and generating artificial AS graphs [16], and comparison
of measured and generated data [23], to name just a few examples. The dynamics
of the AS graph are analyzed in [13]; models for the AS graph evolution and a com-
parison of AS graph inference methods from different data sources are given in [18].

Visualization and visual analysis of AS graphs have been attempted as well,
though to a lesser extent. Probably best known are the circular drawings from the
Skitter project of CAIDA [9]. HERMES [7] is a system for orthogonal drawings
of the Internet hierarchy or parts thereof. Force-directed generation of Internet
maps is the approach taken in the Internet Mapping Project [8]. The two-and-
a-half dimensional drawings of AS graphs in [3] are based on a hierarchy of
increasingly denser cores, which is also used in [2]. Dynamics in the routing
behavior of autonomous systems are visualized by LinkRank [17], animations
for network performance assessment are described in [6]. To the best of our
knowledge, only the layouts in [3] consider the complete AS graph and are purely
structure-based.

A number of approaches for drawing general dynamic graphs have been pro-
posed [5], but few principles and frameworks are prevalent [4,10,11].

As a test ground for the methods we developed, we have constructed AS
graphs at various time points from the BGP (Border Gateway Protocol) route
data available in the archives of the Route Views project [21]. The structure of
each AS graph is inferred from a collection of AS paths consisting of a sequence
of numbers. Two ASes are connected by an undirected edge if their numbers
appear consecutively in at least one of the AS paths.
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3 Static Layout and Complexity Reduction

Although our ultimate goal is to visualize a sequence of AS graphs, we first
restrict ourselves to visualizing a single snapshot G = (V, E).

3.1 Layout Method

We have chosen the stress majorization approach as the graph layout method
[14]. This choice was motivated by the quality of the resulting drawings, the
flexibility of the approach facilitating adaptations for the dynamic setting, ex-
isting speed-up techniques, and simplicity of implementation at least when the
localized stress minimization is used. Note, however, that other methods with
similar properties, e.g. variants of force-directed methods, could be used equally
well.

The basic idea is an iterative minimization of the stress function

stress(X) =
∑

wuv(‖Xu − Xv‖ − duv)2 , (1)

where the sum extends over all unordered pairs of nodes {u, v} in V . Here Xv ∈
R

2 is the position of the node v ∈ V , duv is the ideal distance between the nodes
u and v, which is usually the length of a shortest path in G, and wuv is a non-
negative weight allowing different pairs of nodes influence the stress measure
differently. Weights wuv = d−2

uv are a common choice.
We can confirm the claim that the above strategy “makes the neighborhood

of high degree nodes too dense” [14] unless appropriate lengths are assigned to
edges (Fig. 1(a)). This is due to the extremely skewed degree distribution of AS
graphs; the AS graph in Fig. 1 has 4271 nodes, 75% of which have a degree one
or two, while a few extreme nodes have degrees as large as 924, 673, and 470.
The problem is somewhat remedied if the geometric mean

√
dudv of the degrees

of nodes u and v is used as the length of an edge e = {u, v} ∈ E, because then
the high-degree nodes strive to push their neighbors further away (Fig. 1(b)).
In Sect. 3.3 we propose a novel method for calculating distances that further
improves the quality of drawings.

We use the following graphical conventions throughout the paper.

– The area of a node is proportional to the squared logarithm of its degree.
– The opacity of an edge is proportional to the radius of its smaller end-

node. In effect, edges between high-degree nodes attract more attention of
an observer.

– The nodes are colored according to the continents the corresponding ASes
belong to: we use blue to represent Europe, red for North America, yellow
for Asia, purple for South America, brown for Africa, and green for Oceania.

3.2 Visual Complexity Reduction

This section presents our attempts to allay the visual clutter of drawings by
using different representation modes without loosing any information.
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(a) (b)

Fig. 1. A snapshot of the AS graph in the year 1998 – (a) uniform edge length, (b)
degree-dependent edge length

First, consider the typical AS graph in Fig. 1 with its many nodes of degree
one. In a standard representation, these result in large fans that form domi-
nant visual features that consume large areas but represent the least interesting
structures. To remove this effect, we use radial clustergrams [1,20], a compact
representations of trees, as follows:

– Let T ⊂ V be the set of nodes in the attached trees of G, which can be
obtained by an iterative removal of the leaves of G until all remaining nodes
have degrees two or more.

– Draw the induced graph G[V \T ] in the standard representation with nodes
as circles and edges as straight lines.

– Draw the nodes of T as radial clustergrams around the nodes in V \ T they
are attached to.

Our radial clustergrams are slightly different from those in [1,20] to maintain
the degree-area correlation. Suppose that the children v1, v2, . . . , vk of a node v
have to be drawn inside an annulus wedge with the radius r and the angle α
(Fig. 2(a)). The desired area Si of each node vi is fixed because it is derived from
its degree. Moreover, we require that the radial width w of the children of the

same node is equal. Clearly, w cannot be less than wmin =
√

2
α

∑k
i=1 Si + r2 −r.

On the other hand, we would also like to avoid very thin nodes, so li/w ≤ c
must hold for some constant c > 0, where li is the length of the outer arc of vi.
A possible solution to this inequality is given by the largest root wi of the cubic
equation cw3 + 2crw2 − 2Siw − 2Sir = 0, and consequently the common layer
width for all children of v is calculated as w = max{wmin, w1, w2, . . . , wk}. Note,
that the annulus wedge is not filled completely if w > wmin (Fig. 2(b,c)).
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(a) (b) (c)

Fig. 2. (a) Children of the same node drawn in a specified annulus wedge. (b) A radial
clustergram without restrictions on the radial width of nodes. (c) A radial clustergram
of the same tree when the radial width of nodes is bounded from below.

Figure 3 shows a layout of the AS graph with the attached trees drawn as
radial clustergrams. Although the clutter is somewhat reduced, there are still
plenty of low-degree nodes around the periphery and many of them seem to be
connected to the same set of core nodes. The latter is a structural feature that
we emphasize by aggregating the equivalent nodes as follows.

– Construct the equivalence classes of the relation {(u, v)|u, v ∈ V \ (T ∪
N(T )) ∧ N(u) = N(v)}. Note that nodes with attached trees are considered
as special and not equivalent to anything else.

– Contract each non-trivial equivalence class U ⊆ V of this relation into a new
meta-node vU before applying the layout.

– After the position of a meta-node vU has been determined by the layout
algorithm, restore the equivalent nodes U and draw them around the position
of vU in a compact way. A good choice is the sunflower placement from
[22,19].

As can be seen in Fig. 4(a), some sets of equivalent nodes are quite large and
the compact placement shows their neighbors much better.

The final complexity reduction step consists of replacing maximal induced
paths (v0, v1, . . . , vk) by direct edges {v0, vk} between their ends, provided that
the inner nodes vi (0 < i < k) are not affected by the previous two reductions,
i.e. vi /∈ T ∪N(T )∪M , where M is the set of meta-nodes. After the layout of the
reduced graph is calculated, the induced paths are restored and drawn straight
between their ends (in the rare cases when two or more paths run between the
same pair of end nodes, these paths are drawn parallel without mutual overlaps).

A side effect of these reduction operations is a lower number of nodes, which is
a very significant advantage as the full stress majorization considers the distances
between every pair of nodes. Figure 4(b) shows the growth of the AS graph over
a decade and how many nodes remain after each reduction step.

In what follows, we assume that the graphs are reduced according to these
three operations.
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(a) (b)

Fig. 3. Full (a) and zoomed-in (b) drawings of the AS graph in the year 1998 with
attached trees drawn as radial clustergrams
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Fig. 4. (a) The same AS graph after further complexity reductions. (b) The effect of
the reduction operations on the number of nodes.

3.3 Layout Method – Revisited

The drawing in Fig. 4(a) leaves something to desire in terms of quality. First, the
high-degree nodes are still placed too close to each other obscuring the structure
of how they relate to the rest of the graph. Secondly, some low-degree nodes with
only high-degree neighbors end up as peaks on the periphery because the length
of their incident edges is unnecessarily high. A novel approach for calculating the
pairwise distances and their weights solves both of these problems (Fig. 5(a)).
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Edge Lengths. The importance of an edge e = {u, v} ∈ E is captured better if its
length le is an increasing function of the smallest degree min{du, dv} of its ends.
In our experiments the best results were obtained with le = ln(min{du, dv}). In
this way, adjacent nodes of high-degree are placed far apart and their connecting
edge is more prominent. On the other hand, the incident edges of low-degree
nodes are drawn much shorter so that these nodes are placed close to their
neighbors.

Distances. Special care must be taken when calculating pairwise distances from
these re-scaled edge lengths. We cannot simply use shortest paths in the weighted
graph G, because two high-degree nodes are still very close if they have a
common neighbor of low degree. Distances are therefore calculated as duv =
max{l(P )|P ∈ SUP(u, v)}, where SUP(u, v) denotes the set of shortest paths
between u and v in the unweighted graph G′ underlying G and l(P ) is the length
of the path P in the weighted graph G. In other words, we consider a longest
weighted path among those with a minimum number of edges. Such distances
can be easily calculated in O(|V ||E|) time by performing a breadth-first-search
from each node v ∈ V and determining the longest weighted paths in the shortest
paths dag with source v. Also, the unweighted distances dG′(u, v) should be used
when calculating the weights in (1), i.e. wuv = dG′(u, v)−2, because otherwise the
important distances would be outweighed by less important ones. An exception
to this rule are the meta-nodes representing groups of equivalent nodes. If two
meta-nodes u and v have a common neighbor, we use wuv = 1 rather than 1/4
to make it less likely that the resulting sunflowers would overlap. Moreover, the
“degree” of a meta-node vU representing a set U of equivalent nodes is assumed
to be

∑
v∈U dv such that it represents the total “importance” of all nodes in U .

Speed-Up. The final modification of the method concerns its running time. It
took 25 minutes to create a drawing of an AS graph having 23,779 nodes and
49,706 edges on a computer with 2 GHz CPU and 2 GB of memory, which is
largely due to the use of the full distance matrix. Fortunately, the method can be
sped up without affecting layout quality considerably (compare the two drawings
in Fig. 5). The idea is to calculate the layout in two phases. First, a small subset
of nodes P ⊆ V with the highest degrees is chosen as pivots (we used 200 pivots
in our experiments), and these are laid out in the above technique according to
the distances duv, u, v ∈ P . In order to position the nodes in V \ P , we again
utilize stress majorization, but fix pivots and ignore all distances duv, u, v /∈ P
unless {u, v} ∈ E. In this way, we ignore a very large number of “inessential”
distances, and the running time drops from 25 minutes to 44 seconds. It should
be noted that this approach is slightly different from the sparse stress approach
of [14], although they are similar in that the overall structure of the drawing is
determined by some important core nodes, and other nodes are laid out based on
distances to those core nodes and nodes in some close neighborhood. The main
difference lies in the two applications of the stress majorization, which leads to
the pivots being placed independently from the rest of the graph. This two-phase
technique turned out to be more successful in our setting.
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(a) (b)

Fig. 5. Drawings of the same AS graph obtained by the full stress majorization using
the modified distances (a) and the fast two-phase method (b)

4 Dynamic Layout

In this section we will modify the above method to be applicable to dynamic
graphs in the online scenario, i.e. when an existing drawing of the graph is
respected during the creation of a subsequent drawing.

Suppose that besides the graph G = (V, E) we are given the desired positions
pv ∈ R

2 for nodes v in a subset U ⊆ V , which are the result of a preceding layout.
In order to preserve the overall view of the evolving graph, we have an additional
criterion now to minimize the distance of nodes from their desired positions. Fol-
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Fig. 6. The effect of the stability parameter on the quality of the drawing (a) and the
total movement of nodes (b) when the online method is applied to the AS graph in the
year 1998. The desired positions are obtained from the layout of the graph at the year
before.
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1998 2000

2002 2004

Fig. 7. Drawings of the evolving AS graph obtained from dynamic stress majorization
in the online scenario

lowing the ideas in [4], we can do this with the stress majorization technique in
a rather straightforward way by augmenting the stress with node displacement
penalties, stress(X) = stressquality(X) + stressstability(X), where stressquality(X)
is defined as in (1) and stressstability(X) =

∑
v∈U wst‖Xv −pv‖2. The stability pa-

rameter wst can be adjusted to trade the quality of the drawing for the stability.
Figure 6 shows how the value of the quality stress function increases and the total
movement of nodes decreases when the stability parameter increases.

Figures 7 and 8 show a selection of the resulting drawings when the fast two-
phase stress majorization is applied in the dynamic online scenario for annual
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Fig. 8. Drawing of the 2006 AS graph finishing the sequence of Fig. 7

snapshots of the AS graph from 1997 to 2006.1 A stability of wst = 20 was used
for creating these drawings.

5 Conclusion

We combined loss-less complexity reduction operations with tailored stress ma-
jorization techniques to produce drawings of a large evolving graph with skewed
degree distribution, specifically the Internet on the level of autonomous systems.
Even though the density of AS graphs increases rapidly over time, we believe
that such a macroscopic view of the Internet can reveal evolution patterns, possi-
bly supported by additional information coded in graphical attributes. It would
1 The full animated sequence can be downloaded from
http://www.inf.uni-konstanz.de/algo/research/asgraph/



Visualizing Internet Evolution on the Autonomous Systems Level 375

be very interesting to see if our visualizations can actually help monitoring the
evolving Internet.
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Abstract. Gene Ontology information related to the biological role of
genes is organized in a hierarchical manner that can be represented by a
directed acyclic graph (DAG). Treemaps graphically represent hierarchi-
cal information via a two-dimensional rectangular map. They efficiently
display large trees in limited screen space. Treemaps have been used to
visualize the Gene Ontology by first transforming the DAG into a tree.
However this transformation has several undesirable effects such as pro-
ducing trees with a large number of nodes and scattering the rectangles
associated with the duplicates of a node around the screen. In this paper
we introduce the problem of visualizing a DAG as a treemap, we present
two special cases, and we discuss complexity results.

Keywords: Treemap,DirectedAcyclicGraph (DAG)Visualization,Gene
Ontology.

1 Introduction

The Gene Ontology Consortium (GO) [14] databases store thousands of terms
that describe information related to the biological role of genes. The information
in GO is organized in a hierarchical manner where the terms are placed in layers
that go from general to specific. The GO organization can be represented by a
directed acyclic graph (DAG) where the set of vertices V is the set of terms and
an edge is used to declare the is a or part of relationship between two terms.

Treemaps graphically represent hierarchical information via a two-dimensional
rectangular map, providing compact visual representations of large trees through
area, color and shading effects [3,5,11]. Treemaps, have also been used to visu-
alize compound graphs that contain both hierarchical relations and adjacency
relations [7].
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In the context of GO, treemaps have been used to visualize microarray data,
where each gene transcript is assigned all possible paths that start from it and
terminate to the root (the “all” term) of GO [1]. Symeonidis et al. in [12] pro-
posed to decompose the complete GO DAG into a tree by duplicating the nodes
with many in-coming edges, and then to use a treemap algorithm to visualize the
tree, see Figure 1. The duplication of a node however triggers the duplication of
all of its descendants. Therefore the transformation of a DAG into a tree leads to
trees with (potentially exponentially) many more nodes than the original DAG.
Symeonidis et al. in [12] reported that the initial GO DAG had ∼ 20.000 terms,
while the produced equivalent tree had ∼ 100.000 terms. Another drawback of
duplicating the nodes is that the rectangles associated with the multiple repli-
cas of a node are scattered around the screen. In this paper we introduce the
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d1 d

f

2

e1 1 e2

a
cb d2d1

e2e1

f1 f2

f2

Fig. 1. Example of transforming a DAG into a tree and then drawing it as a treemap

problem of drawing a DAG as a treemap without converting it to a tree first.
We consider several variations of the problem, we present some characterizations
of simple families of DAGs that admit such a drawing, and provide complexity
results for the general problem.

2 Problem Definition

2.1 Notations

Suppose that G = (V, E) is a layered directed acyclic graph (DAG) with a
partition of the node set V into subsets L1, L2, . . . , Lh, such that if (u, v) ∈ E,
where u ∈ Li and v ∈ Lj, then i > j. Without loss of generality we assume that
the layering is proper, since the “long” edges that span more than two layers
may be replaced by paths having dummy vertices in the internal layers [2].

Let Rv denote the display region of a node v ∈ V . Every directed edge e =
(u, v) from a node u to a node v corresponds to a drawing region Re = Rv ∩ Ru

which is the part of the child’s drawing region Rv that is drawn within the
parent’s drawing region Ru.

Given a vertex v ∈ V we denote the set of its in-coming and out-going edges
by Γ−(v) = {e ∈ E/destination(e) = v} and Γ+(v) = {e ∈ E/origin(e) = v}
respectively.
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2.2 Treemap Drawing Constraints

Treemaps have the invariant that the drawing rectangle of any node (different
from the root) is contained within the drawing rectangle of its parent. When
the graph is a tree this invariant can easily be satisfied since every node has one
parent. When the graph is a DAG, the above invariant should be replaced by the
invariant that the drawing rectangle of any node is contained within the union
of the rectangles of its parent nodes. Apart from this invariant it is plausible
to assume that the drawing rectangles of sibling nodes do not overlap and that
the drawing rectangle of a parent node is covered by the drawing rectangles of
its children nodes. The above invariant and assumptions are summarized in the
following definition.

Definition 1 (Treemap basic drawing constraints). The drawing is con-
strained by the following rules.

B1. The display area of the DAG (screen) is a rectangle.
B2. Every node is drawn as a rectangle (Rv is a rectangle for every v ∈ V ).
B3. If two distinct nodes u, v ∈ V are assigned to the same layer their rectangles

do not overlap (area(Ru ∩ Rv) = 0).
B4. The rectangle of a child node occupies a non-zero area in each one of its

parent node rectangles. (area(Re) = area(Ru ∩ Rv) �= 0 if e = (u, v) ∈ E).
B5. The rectangle of a child node is contained in the union of rectangles of its

parent nodes (Rv ⊂ ∪(u,v)∈ERu).
B6. The rectangle of a parent node is covered by the rectangles of its children

nodes (Ru ⊂ ∪(u,v)∈ERv).

The drawing rules of the above definition are quite general since they do not
constrain the area of the leaf nodes, and the proportion of a child’s node area
that is drawn on each one of its parent rectangles. To simplify the analysis
of the problem we constraint these two parameters by making the following
assumptions.

Definition 2 (Treemap additional drawing constraints)

A1. The leaf nodes are drawn in equal area ( screen area
number of leaf nodes) rectangles.

A2. The drawing rectangle of a child node occupies the same area on each one
of its parent rectangles (For every non source node v, area(Re) = area(Rv)

|Γ −(v)| ,
for every e ∈ Γ−(v)).

In the following we will use the term treemap drawing to characterize a drawing
according to the basic and additional drawing constraints.

Having defined the drawing rules, we can define the following problems:

1. Given a DAG G1, does G1 admit a treemap drawing?
2. In case that the answer to the first problem is negative, what is the minimum

number of node duplications that are needed to transform G1 into a DAG
G2 that admits a treemap drawing?
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2.3 Examples and Counter-Examples of DAGs That Admit a
Treemap Drawing

Examples of DAGs that admit a treemap drawing appear in Figure 2. From the
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(a) The K33 DAG
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d fed f

c

(b) A “circular” DAG

Fig. 2. Examples of DAGs that can be drawn as treemaps
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(a) Consecutive conditions violation
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(b) Area imbalance

Fig. 3. Examples of DAGs that do not admit a treemap drawing

counter-examples of Figure 3 we see that there are DAGs that cannot be drawn as
treemaps. The DAG in Figure 3(a) cannot be drawn due to adjacency constraint
violation. The leaf nodes e, f, g, h, i, j constrain the parent nodes a, b, c, d to be
drawn in adjacent rectangles. However we cannot have a configuration where
all the pairs {a, b},{a, c},{a, d},{b, c},{b, d},{c, d} of rectangles are adjacent. In
this case in order to draw the DAG we can either duplicate one of the nodes
e, f, g, h, i, j or draw one of these nodes using two disjoint rectangles. The two
operations are similar and when applied to child node remove the corresponding
adjacency constraint.

In general, due to the four color (map coloring) theorem there exists a counter-
example involving five parent nodes and ten children nodes (one child node for
every pair of parent nodes), even in the case that we relax constraint B2, allowing
drawings to be simply connected regions of the plane.

The example of Figure 3(b) shows a DAG that does not admit a treemap
drawing, due to area imbalance among the first layer nodes a, b, c. Assuming
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that the leaf nodes have unit area, then nodes a and c have area 1/2+1/3 while
node b has area 1 + 1/3. However, if we relax constraint A2, then this DAG
admits a treemap drawing.

2.4 Node Duplication

Usually, a DAG encountered in practice does not admit a treemap drawing. In
this case we should relax one or more of constraints B1-B6, A1-A2 or change the
form of the DAG. Symeonidis et al. in [12] chose to transform the DAG into a
forest of trees by multiple node duplications. An example of a node duplication
is shown in Figure 3(b), where after the creation of two replicas of node e, one
with two parents and one with one parent, the DAG is transformed into a new
DAG which admits a drawing, see Figure 4.

a ab c b c

d e f

d

e1

f

a cb

e2

e1d e2 f

Fig. 4. After the duplication of node e the DAG of Figure 3 is transformed into a DAG
that has a treemap drawing

3 Special Cases

We will continue by considering two special cases. The first case is based on a
restricted form of DAGs, the second on a restricted form of treemaps.

3.1 Two Terminal Series Parallel Digraphs

A Two Terminal Series Parallel (TTSP) digraph is recursively defined as follows
[2,13]. An edge joining two vertices is a TTSP digraph. Let G1 and G2 be two
TTSP digraphs. Their series and parallel compositions, defined below, are also
TTSP digraphs.

– The series composition of G1 and G2 is the digraph obtained by identifying
the sink of G1 with the source of G2.

– The parallel composition of G1 and G2 is the digraph obtained by identifying
the source of G1 with the source of G2 and the sink of G1 with the sink
of G2.

Due to its recursive structure a TTSP digraph always admits a treemap drawing.
The base TTSP digraph is drawn as a rectangle. In a series composition the
rectangle of graph G2 is drawn on the top of the rectangle of graph G1. In
a parallel composition the rectangle of the composite graph is sliced into the
rectangles of G1 and G2.
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Algorithm

1. Construct the decomposition tree of G [13] and merge the adjacent P -nodes.
In the resulting tree the P -nodes may have two or more children.

2. Using the decomposition tree calculate the size of the components.
(a) In a series composition size(G) = size(G1) = size(G2).
(b) In a parallel composition size(G) = size(G1)+size(G2)+. . .+size(Gk).

3. Using the decomposition tree recursively draw the component rectangles.
(a) The rectangles have area proportional to the size of the corresponding

component.
(b) In a series composition, the rectangles of the two components coincide.
(c) In a parallel composition, use any of the existing treemap algorithms to

lay out the component rectangles.

(a) The base TTSP
digraph

G1

G2

G2

G1

G2 is drawn 

on top of G1

(b) Series composition

G1 G2 G2G1

(c) Parallel composition

Fig. 5. Recursive definition of a TTSP digraph and the corresponding recursive
treemap drawings

(a) A TTSP (b) Slice and Dice layout (c) Squarified layout

Fig. 6. Example of a TTSP digraph treemap drawing

3.2 One Dimensional Treemaps

Definition 3. A treemap is called one dimensional if the rectangle representing
a node is divided with vertical (or horizontal) lines into smaller rectangles repre-
senting its children and the orientation of the lines is the same for all the nodes
of a hierarchy.
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Since the height (resp. width) of all the rectangles is constant and equal to
the height (resp. width) of the screen, the problem is one dimensional and the
rectangles Rq can be represented by intervals Iq. Also only the ordering and not
length of the intervals Ie = Iu∩Iv, e = (u, v) ∈ E constrain the problem. For this
reason we consider the out-going edges of every non-leaf node u ∈ V as subnodes
inside the node. The in-coming edges of a node can be considered as in-coming
edges of every one of its subnodes. A drawing ∪ne∈Lk

Ine of the subnodes ne ∈ Lk

of layer k ∈ {2, . . . , h} corresponds to an ordering of the subnodes ne ∈ Lk.

a b
b

c d e

c d e

a a b

c d e

Fig. 7. A one dimensional treemap example. A subnode is created for each out-going
edge.

Definition 4 (ONE DIMENSIONAL TREEMAP FOR DAG). The
recognition problem
INSTANCE: A DAG G.
QUESTION: Can G be drawn as a one dimensional treemap?

Suppose that u is a node in layer Lk. We will give the necessary and sufficient
conditions that the ancestor subnodes of u must satisfy in order to be able to
draw Iu as an interval. With the term ancestor subnodes we mean the subnodes
reachable from node u if the direction of the edges is reversed.

Let Pu,i denote the set of ancestor subnodes of node u ∈ Lk in layer i ∈
{k + 1, . . . , h}.

Theorem 1 (Necessary conditions). Suppose that in a one dimensional
treemap drawing of a graph G = (V, E) a node u ∈ Lk can be drawn as an
interval Iu. Then the union of the drawings of the ancestor subnodes of u in
layer i, ∪e∈Pu,iIe, is an interval for every layer i ∈ {k + 1, . . . , h}.
Proof. By induction on the layers Lk+j , j = 0, . . . , h − k.

For j = 0, Iu is an interval by the hypothesis.
Now, suppose that for j = 0, . . . , i < h − k, there is an ordering of the

subnodes in every one of the layers k + j, . . . h, such that ∪e∈Pu,k+j
Ie to be an

interval, but ∪e∈Pu,k+j+1Ie cannot be an interval. Then there is at least one node
v ∈ Lk+j+1, v /∈ Pu,k+j+1, which is between two nodes α, β ∈ Pu,k+j+1. Then
the interval ∪e∈Pu,k+j

Ie intersects the intervals Iα and Iβ but not the interval
Iv, a contradiction.

I Iv I
layer k+j+1

e
Pe

I
jku ,

layer k+j
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Theorem 2 (Sufficient condition). If there is an ordering of the subnodes
in Lk+1 such that the parent subnodes Pu,k+1 , of a node u ∈ Lk, k < h are
consecutive in this ordering then u can be drawn as an interval.

Proof. Since Pu,k+1 are consecutive ∪e∈Pu,k+1Ie is an interval. Then simply draw
Iu in this interval.

Algorithm
From the above theorems every non-source node u ∈ Lk defines constraints on
the admissible subnode permutations in each one of the layers Li, i ∈ {k, . . . , h}.
Therefore the decision problem is transformed to h−1 consecutive ones decision
problems [4,9]. One consecutive ones problem for each layer Li, i ∈ {2, . . . , h}.

There is one list listi of constraints for each layer Li, i ∈ {2, . . . , h}. Initially the
lists are empty. Then we add the constraints as follows.

for i = 2 to h do
for v ∈ Li do

add to the listi the constraint that the subnodes of v are consecutive.

for i = 1 to h − 1 do
for v ∈ Li do

for j = i + 1 to h do
add to the listj the constraint that the subnodes Pv,j are consecutive.

Complexity analysis
Without loss of generality we assume that there are no leaf nodes in layers
2, . . . , h.

Suppose that ni = |Li|, i ∈ {1, . . . , h} and that mi edges go from layer i to
layer i − 1, i ∈ {2, . . . , h}.

For i ∈ {2, . . . , h} the list listi has at most ni trivial constraints and at most
nj constraints due to nodes at layer Lj , j < i. In total it has ni + . . . + n1
constraints. Each costraint has size at most mi.

Therefore the total time is:

h∑

i=2

O(mi · (ni + . . . + n1)) =
h∑

i=2

O(mi · n) = O(m · n)

which is polynomial on the input size m =
∑L

i=1 mi and n =
∑L

i=1 ni

4 The General Case

4.1 The Recognition Problem

Taking the nodes of a layer Lk isolated from the rest of the DAG, the problem is
similar to a floorplan problem where the display area is dissected into nk = |Lk|
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soft rectangles, i.e., rectangles whose area is fixed but their dimensions may vary.
The number of possible dissections (the solutions space) is bounded below by
Ω(nk!23n/n4

k) and above by O(nk!25n/n4.5
k ) [10].

Considering two consecutive layers Lk+1 and Lk of a DAG, the layouts of the
two layers are constrained by the edges among the two layers, according to the
drawing rules. The combined solution space may be empty or contain a number
of solutions. We will show that deciding whether the solution space is empty or
not is NP-complete.

Definition 5 (TREEMAP FOR DAG). The recognition problem
INSTANCE: A DAG G.
QUESTION: Can G be drawn as a treemap?

Theorem 3. The TREEMAP FOR DAG decision problem is NP-complete even
if we restrict it to two layer weakly connected DAGs.

Proof. Given a dissection of the display area (screen) into |Lk| rectangles for
each layer Lk, k ∈ {1, . . . , h} of a DAG G, we can check in polynomial time if
these dissections correspond to a treemap drawing of G. Therefore the problem
belongs to NP.

Next we will show that the problem TREEMAP FOR DAG is NP-hard. The
proof will be done by reducing the 3-PARTITION problem to a restricted ver-
sion of the TREEMAP FOR DAG problem. Namely, as input we consider only
two layer DAGs. For simplicity of the proof we will allow an input DAG to be
composed of several weakly connected components.

Definition 6 (3-PARTITION).
INSTANCE: A multiset A of 3m positive integers A = {α1, α2, . . . , α3m} where
the αi’s are bounded above by a polynomial in m and Σ

4 < αi < Σ
2 , where

Σ = 1
m (α1 + α2 + . . . + α3m).

QUESTION: Can A be partitioned into m triples A1, A2, ..., Am such that each
triple has the same sum. Specifically each triple must sum to Σ.

The condition Σ
4 < αi < Σ

2 forces every set of αi’s summing to Σ, to have
size exactly 3. The 3-PARTITION is strongly NP-complete since it remains NP-
complete even when representing the numbers in the input instance in unary [6].
The reduction is done by local replacement and using an enforcer.

Enforcer: The DAG used as enforcer has 2m+2 nodes at the second layer. The
nodes β and 1, 2, . . . , 2m + 1. At the first layer there are (m + 1)Σ + 6m + 4
nodes. Each of the nodes 1′, 2′, . . . , (2m + 1)′ has two parents. One is node β
and the other is the corresponding numbered node in the first layer. The β-node
rectangle is drawn in one side of the enforcer and precludes any other rectangle
to be drawn along this side. Also the β-node together with the γ-node force the
nodes 1, 2, . . . , 2m + 1 to be drawn as consecutive rectangles. For every pair of
(j, j + 1) of second layer nodes there exists a first layer node which has them
as parents and constrains them to be consecutive. The second node which has
as parents the nodes j and j + 1 is used for completing the drawing (garbage
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use the other side & 
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Fig. 8. The enforcer used in the proof

Layer 2 nodes Layer 1 nodes 

1 2 3 2m 2m+1

1’ 2’ 3’ 2m 2m+1’’4’ 5’
4 5 

Fig. 9. One possible drawing of the enforcer. The rectangles 1, 2, . . . , 2m+1 are forced
by the rectangle γ to have the same width.

collection). Also for garbage collection one node is connected to node 1 and one
node to node 2m + 1.

Finally, every odd numbered node of the second layer has Σ children nodes.

Local replacement: For each αi ∈ A we consider a two layer DAG which has
one node at layer two (parent node) and αi nodes at layer one (children nodes).

ai nodes 

ilayer 2 

layer 2 layer 1 

The drawing of node i is a rectangle with area αi, but without any constraint
on the aspect ratio of its sides. In order for the final drawing to be a rectangle
the 3m rectangles should fill the holes of the enforcer.

The reduction from the 3-PARTITION to TREEMAP FOR DAG uses poly-
nomial number of resources since the numbers involved in 3-PARTITION are
bounded by a polynomial in m.

The 3-PARTITION instance has a solution if and only the TREEMAP FOR
DAG instance has a solution since in every hole can fit exactly three rectangles.
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4.2 Minimization of Node Duplication

Definition 7 (MINIMUM DUPLICATION OF NODES).
INSTANCE: A DAG G1 and an integer K.
QUESTION: Can G1 be transformed into a DAG G2 that admits a treemap
drawing by duplicating at most K nodes.

Comment: The problem MINIMUM DUPLICATION OF NODES is NP-
complete since its restriction for K = 0 is the problem TREEMAP FOR DAG,
which is NP-complete.

5 Discussion

In this paper we introduced the problem of drawing a DAG as a treemap. We
defined the recognition and minimization problems and we showed that in the
general case they are NP-complete and NP-hard respectively. We also considered
two special cases by restricting the form of the DAG and of the treemap respec-
tively. We are currently investigating drawing heuristics based on relaxations of
the drawing constraints and\or restrictions on the form of DAGs. The results of
this research will be published in a subsequent paper concerning the application
of these techniques to hierarchically organized ontologies.
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Drawing Graphs with GLEE�

Lev Nachmanson, George Robertson, and Bongshin Lee

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
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Abstract. This paper describes novel methods we developed to lay out graphs
using Sugiyama’s scheme [16] in a tool named GLEE. The main contributions
are: a heuristic for creating a graph layout with a given aspect ratio, an efficient
method of edge-crossings counting while performing adjacent vertex swaps, and
a simple and fast spline routing algorithm.

1 Introduction

GLEE is a graph drawing tool that is being developed at Microsoft Research. Ei-
glsperger et al. [8] mention that most practical implementations of directed graph lay-
out engines follow Sugiyama’s scheme (or STT); GLEE is not an exception. In spite
of the fact that there is lot of research devoted to the scheme, we were confronted with
questions during the development process, for which we did not find answers in the
literature. In the paper we address some of these questions. To our knowledge, nobody
has solved the problem of creating a layered graph layout with a given aspect ratio. We
developed a heuristic for creating such a layout. At an earlier stage of the development,
GLEE’s performance bottleneck was counting edge crossings while swapping adjacent
nodes during the ordering step. We designed data structures and procedures to speed
up the counting. Furthermore, several previous approaches for drawing splines did not
give us satisfactory results. We developed a simple and efficient algorithm, producing
aesthetic splines.

2 Layout with a Given Aspect Ratio

When laying out a graph, we would like to better utilize the available space and create
an aesthetically pleasing layout. Here we present a heuristic of laying out graphs inside
of a rectangle of a given aspect ratio. Figures 1 and 2 show two drawings of the same
graph in rectangles of the same size. Both layouts were created by GLEE. We used the
default algorithm for Fig. 2, and the heuristic for Fig. 1. The drawing in Fig. 1 better
uses the available space and its larger nodes improve the readability.

� The full version of the paper is available at ftp://ftp.research.microsoft.com/pub/tr/TR-2007-
72.pdf. GLEE can be downloaded at http://research.microsoft.com/˜levnach/GLEEWebPage.
htm.

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 389–394, 2007.
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Fig. 1. Using the heuristic
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Fig. 2. Using the default layout

2.1 Description of the Heuristic

An algorithm for scheduling computer tasks for parallel processing on multiple proces-
sors can be used to compute the layering for STT. A scheduling algorithm deals with a
DAG of computer tasks. If there exists a directed path in the DAG from task t0 to task
t1, then t0 is called a predecessor of t1 and t0 has to be completed before t1 can be
begun. Suppose each task takes a unit of time to complete on any processor. Then a task
schedule corresponds to the layering, such that tasks scheduled to time 0 form the top
layer, tasks scheduled to time 1 form a layer right below it, and so on. An upper limit on
the sum of the node widths in a layer can play the role of the number of processors in a
task scheduling algorithm. In particular, we could use Coffman-Graham algorithm [6]
for our purposes. For a real number w let’s call A(w) a variation of Coffman-Graham
algorithm where we require that the sum of node widths in a layer is not greater than w.
In addition, A(w) respects Separation. There is a tendency that for a larger w algorithm
A(w) produces a layout with the less height. We use it to find out the width w giving a
good result. Let us call B(w) the following procedure applied to DAG G:

Execute the layering step using A(w)
Execute the ordering step
Calculate node x-coordinates of the proper layered graph

We apply a binary search to find W such that B(W ) produces the aspect ratio which
is close to the given one. Algorithm B(w) can be repeated many times during the binary
search. To speed up its execution, starting from graphs of a specific size, we apply
the algorithm of [5] for calculation of node x-coordinates. We experimented with a
variation of A(w) where the width of edges crossing the layer is taken into account;
surprisingly, the results were better when we ignored edge widths.

The application of B(w) alone does not produce good layouts. To achieve a better
quality of the layout we apply additional heuristics. These heuristics are node demotion
and balancing of virtual and original nodes during the process of swapping of adjacent
nodes.

Node demotion. When a processor is available and there is a task which is ready to be
executed, Coffman-Graham algorithm immediately assigns the task to the processor. As
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a result, some nodes can be positioned too high. We can improve the layout by pulling
nodes down, or, in other words, by demoting them. The demotion step that we execute
is the promotion step [14] being run in the opposite direction.

Balancing of virtual and original nodes. The heuristic helps in spreading uniformly
edges passing a layer and nodes of the layer. We apply the heuristic during the order-
ing step. The ordering step starts when we already have a proper layered graph, but
the order of nodes within a single layer is not yet defined. During the step we tra-
verse the layers up and down several times applying the median method of [9] and
create an ordering within the layers. The following sub-step of the ordering step is
the swapping of nodes which are adjacent on the same layer. This is done to reduce
the number of edge crossings. Here we utilize the sub-step for yet another purpose of
spreading evenly virtual and original nodes. Let us describe the way we change the
process of swapping of adjacent nodes. For a fixed layer, if the layer has fewer vir-
tual nodes than original ones then we call virtual nodes separators and original nodes
nulls. Otherwise we call virtual nodes of the layer nulls and original nodes separators.
In the usual swapping process we proceed with a swap if it reduces the number of edge
crossings, and do not proceed when it increases the number of edge crossings. In the
case when the number of edge crossings does not change as a result of the swap, we
have a freedom to apply the heuristic. Consider swapping of separator s with null m.
Let K (M ) be the set of all null nodes z to the left (right) of s such that no separator
is positioned between z and s. Let K ′ and M ′ be sets defined the same way but as
if s and m are swapped. If ||K ′| − |M ′|| < ||K| − |M || then we proceed with the
swap.

Related work. Authors of Graphviz, a popular tool based on STT, mention Coffman-
Graham algorithm as one of the approaches [2] to the aspect ratio problem. In [11]
and [15] methods are developed to calculate layering for a directed graph with con-
straints on the width and the height of the layering. In the context of [11] and [15] the
width of a layering is the maximum number of nodes in its layers, and the height of a
layering is the number of its layers. Heuristics of [15] can be used instead of A(w) in
our approach, but we have not tried that.

3 Efficient Counting of Edge Crossings During Adjacent Swaps

Counting the crossings of edges connecting two neighboring layers at the ordering step
is done by using the technique from [4] and works fast. However we observed a perfor-
mance bottleneck in counting edge crossings at the phase of swapping adjacent nodes
in a layer. The approach and data structures suggested here lead to an efficient imple-
mentation.

Proposition 1. Swap of adjacent layer nodes u and v can be produced with the amor-
tized cost O(d(u) + d(v)), where d is the degree of layered graph nodes.

We give the details in the full version of the paper [1].
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4 Spline Routing

In general, in our method we modify the given polyline to avoid nodes, straighten the
polyline, and fit Bezier segments into its corners. Before describing the approach we
need to define some notions. Let PG be the proper layered graph with already defined
positions of nodes. For an edge (u, v) ∈ E there is a unique sequence of nodes U(e) =
[u0, ..., un] connecting u and v, such that; u0 = u,un = v, (ui, ui+1) is an edge of PG
for i = 0, ..., n − 1, and nodes u1, ..., un−1 are virtual. We call a polyline formed by
positions of nodes from U(e) the polyline of edge e. Let us define blocking nodes of
an edge. Nodes u and v of PG belonging to the same layer are called non-blocking to
each other if they are both virtual and some of edges adjacent to u cross some edges
adjacent to v, as shown in Fig. 3. Otherwise u and v are called blocking to each other.
The intuition is that if u is blocking for v, then a spline passing through v has to be
disjoint from u. A node is called blocking for an edge e if it is blocking for some node
of U(e). For example, if u, v belong to the same layer and u is an original node, then
u,v are blocking to each other. We build a spline for edge e of G and let p be a polyline
of e. We proceed by the following steps which are explained below:

u v

Fig. 3. Non-blocking
u, v

`

dx

dy

Fig. 4. Polyline refinement step Fig. 5. Forbidden
shortcut

1) Refine p if it crosses nodes blocking for e
2) Straighten p by using an inflection heuristic.
3) Smoothen p by fitting Bezier segments into p corners.

In the refinement step, using the node and layer separation, we replace each segment
of p intersecting the blocking nodes with a polyine disjoint from the nodes. The inserted
polyline can be split up into two connected pieces; one piece turns clockwise and the
other counterclockwise as illustrated at Fig. 4. In the inflection heuristic we remove
some polyline vertices by shortcutting them. Suppose that a, b, c and d are consecutive
nodes of p. If at b polyline p turns, for example, clockwise, and at c it turns counter-
clockwise, then we remove b from p, but only in the case when triangle a,b,c does
not intersect a blocking node for e. Fig.5 shows a situation where we do not shortcut
vertex b. Allowing such shortcuts can create additional edge spline crossings or allow
the spline to intersect a blocking node.

Before smoothing corners we simplify the polyline, without actually changing its
geometry, in a way that no three consecutive vertices of the polyline are collinear. Let
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a, b and c be consecutive vertices of the polyline, and k be a real number. Let us set m to
a+k(b−a) and n to c+k(b− c). We call Bz(k) the cubic Bezier segment with control
points m, (m + 2b)/3, (n + 2b)/3, and n. We find minimal k of the form 1 − 1/2i, for
i = 1, 2, ..., such that the figure bounded by line segment [m, b], line segment [b, n] and
Bz(k) does not intersect blocking nodes for e. Such k exists since p does not intersect
the blocking nodes. When we build Bz(k) for each polyline corner, we reach our goal.

Fig. 6. Set LS is composed by dashed
nodes

u0

u1

u2

Fig. 7. Set LT is formed by thick horizontal line
segments

We use the structure of PG to efficiently check for intersections. Namely, we do not
intersect the polyline or the Bezier segment with all blocking nodes of edge e, but rather
only with a subset of these nodes or with a specially constructed set of line segments.
Let us show how to build these sets from the left of the edge. Denote by L all nodes of
PG blocking for e and positioned to the left of e. The selected subset of nodes called
LS is defined as the set of all nodes of L that are reachable by a horizontal ray starting
at a point on p, as illustrated at Fig. 6. Set LT is formed by horizontal line segments
starting at the left side of the PG bounding box and ending at the rightmost blocking
node for ui positioned the left of ui, for i = 0, ..., n, as shown in Fig. 7. Sets RS and
RT are defined by the symmetry. Step 1) checks intersections of the polyline only with
nodes from sets LS and RS, while steps 2) and 3), in addition, intersect segment [a, c]
or Bz(k) with sets LT and RT to detect intersections of triangle a, b, c or the figure
bounded by [m, b], [b, n], Bz(k) correspondingly with the blocking nodes. To speed up
the calculation we build spatial trees on sets LS, RS, LT and RT, and utilize them in the
crossing routine.

5 Conclusion and Future Work

We presented several novel methods producing good layouts for directed graphs using
Sugiyama scheme. We developed a heuristic to lay out graphs inside of a rectangle
of a given aspect ratio, which helps us better utilize the available space and create an
aesthetically pleasing layout. We presented a fast edge-crossings counting method for
adjacent node swaps. We described an efficient edge routing algorithm, which modifies
a given edge polyline to avoid nodes, straightens the polyline, and fits Bezier segments
into its corners.
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We plan to introduce more balance and symmetry into GLEE layouts. Important
features to add to the tool include interactive and incremental layout, and graph editing.

We would like to thank Stephen North and Yehuda Koren for fruitful discussions.
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Abstract. This report describes the 14th Annual Graph Drawing Con-
test, held in conjunction with the 2007 Graph Drawing Symposium in
Sydney, Australia. The purpose of the contest is to monitor and challenge
the current state of graph-drawing technology.

1 Introduction

This year’s Graph Drawing Contest had three distinct categories: the Graph
Drawing Challenge, the Free-Style category, and a Social Network category. Re-
peating the focus of the previous year, the Graph Drawing Challenge, which
took place during the conference, required the contestants to find minimum-area
straight-line planar drawings of the challenge graphs. The Free-Style category
provided participants with the opportunity to present their best graph visual-
izations, with a focus on both aesthetic beauty as well as relevance to the graph
drawing community. The Social Network category was an open category asking
contestants to develop and present novel ways of viewing and analyzing social
networks. Various networks were suggested including using information from
FaceBook, MySpace, and data collection sites such as Technorati, which indexes
weblogs.

Although there were a total of 10 submissions, half the amount of previous
years, most of these submissions came from participation in the Graph Drawing
Challenge. Seven teams participated in the Challenge. There were three submis-
sions in the Social Network category and no submissions in the general Free-Style
category. The remaining sections go into more details about each category and
the winning submissions. Since many of the winning submissions were anima-
tions, interested viewers should visit the contest’s website1 to download and view
the winning animations along with their descriptions.

2 Graph Drawing Challenge

Continuing from the previous year, this year’s challenge dealt with minimizing
the area of straight-line drawings of planar graphs. At the start of the one-hour
1 http://www.cs.usyd.edu.au/∼visual/gd2007/gd contest.html

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 395–400, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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on-site competition, the contestants were given seven planar graphs ranging in
size from 16 nodes to 324 nodes. As opposed to last year, the graphs were
presented with an initial plane embedding, though that particular embedding
did not have to be maintained. In response to feedback from the manual team
participants of the previous year, the judges felt that too large an amount of time
was spent finding valid plane embeddings of the graphs rather than compressing
the drawings into a minimum area.

We allowed teams to participate in one of two categories, automated and
manual. Manual teams came and solved the problems using ILOG’s JViews
Utility designed specifically for the Challenge, as a simple graph editing tool and
not a specialized area minimization utility. The automated teams were allowed
and highly encouraged to use additional software tools to help solve the problems.
We also opened up the possibility for remote on-line participation but received
no interested parties. This is a strategy we may pursue more aggressively in
future challenges. Interestingly, the manual teams performed far better than the
automated software. This is in stark contrast to the previous year, which we
attribute partially to the fact that the graphs were given a starting, though not
optimal, embedding. But, it also highlights the fact that much work still needs
to be done to bridge the gap between human and computer performance on this
fundamental criterion.

The seven graphs themselves consisted of a varying range of classes. The first
graph was a simple graph of 17 nodes with an optimal area of 18, which was
found in different representations by three teams. The second graph was a simple
maximally planar graph of 16 nodes. The third graph was a bi-connected graph
of 64 nodes. The fourth graph was a disconnected graph of 100 nodes and 7
connected components. The fifth graph was a general tree of 192 nodes. The
sixth graph was a large graph of 324 nodes and several connected components.
The final graph, dubbed GD2007, was a disconnected graph of 90 nodes for which
one optimal solution spelled the words: GD2007, see Figure 1. The following table
lists the various graphs with their optimal area2 and the best solutions found by
the contestants.

Graph Graph Graph Graph Graph Graph GD2007
1 2 3 4 5 6

Optimal 18 63 64 100 192 324 90
Best Found 18 63 72 108 204 348 99

Seven teams participated with one team entering the automated category. The
winner was the team of Wolfgang Brunner and Jens Schmidt. Figure 2 shows
their winning submission for Graph 4 along with an optimal solution. The judges
awarded honorable mentions to Marcus Krug (the sole automated participant),
the team consisting of Giuseppe Di Battista, Fabrizio Frati, Michael Kaufmann,

2 All graphs were constructed in a manner such that the optimal area was known,
except for the second graph. As it was constructed in a different manner, the optimal
area for the second graph is presumed correct but has not been verified.
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(a) (b)

Fig. 1. (a) One optimal solution for the final challenge graph (GD2007). (b) The win-
ning submission by Melanie Badent, Michael Baur, Robert Görke, and Marco Gaertler.

(a) (b)

Fig. 2. (a) One optimal solution for Graph 4. (b) The winning submission from the
overall winners Wolfgang Brunner and Jens Schmidt.

Anika Kaufmann, Maurizio Patrignani, and Cagatay Gonsu, the team of Joe
Fowler and Michael Schulz, and the team of Melanie Badent, Michael Baur,
Robert Görke, and Marco Gaertler.

3 Social Network Category

The Social Network category received 3 submissions, each taking on a different
network and having a different approach to its visualization. The judges were
impressed with all three submissions.

First prize was awarded to Robert Theron, Rodrigo Santamaria, Juan Gar-
cia, Diego Gomez, and Vadim Paz-Madrid of the VisUsal Group of the Uni-
versity of Salamanca. Their system, Overlapper, was designed to help analyze
movies, but their techniques can be extended to other social networks with large
collaborations. The tool uses a zone graph representation that is driven by a
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force-directed layout algorithm. In their system, nodes represent people involved
in a movie, and edges connect two people involved in the same project. How-
ever, rather than draw edges explicitly, zones are created. Each movie being a
complete subgraph of the people involved is treated as a zone, which is drawn
with a semi-transparent hull around it. People involved in more than one movie
produce overlapping zones, but the transparency of the zones allows one to vi-
sualize the various movies involved. As this can potentially lead to some nodes
being covered by zones for which they do not belong, node information is aug-
mented by a pie chart to help discern in which areas the node truly belongs. On
a user’s demand, nodes are visualized at their position by glyphs identifying the
role of the person involved, their corresponding pie chart, and various personal
information. Figure 3 shows one snapshot of their animated submission.3

Fig. 3. A snapshot of the Salamanca group’s Social Network visualization tool

The second prize submission, awarded to Robert Görke, Thomas Schank, and
Dorothea Wagner from the University of Karlsruhe, investigates the co-author
network of professors at their university. The nodes consist of all Professors
within the Computer Science department along with their co-authors, and the
edges are induced by their common publications. The contestants took two ap-
proaches to visualize this network. The first approach was a static visualization
with measures based on electrical current flow. Between each pair of Professors,
they use a uniform potential difference to compute conductivity (connectivity)
and the current flowing through each edge. The edges of the graph are drawn

3 See also http://carpex.usal.es/∼visusal/site/

http://carpex.usal.es/~visusal/site/
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with an intensity based on their accumulated current. The connectivity (conduc-
tivity) of each Karlsruhe Professor to their colleagues is visualized by color with
more red indicating a stronger connection. For other nodes, only those names
with the highest current turnover are shown. Figure 4 shows their resulting static
visualization. The authors also consider a dynamic case, visualizing the network
for each year from 1999 to 2006 separately. In this case, the emphasis is on
preserving the mental map. The details of this approach can be found on the
contest’s website.4

Fig. 4. The static visualization of the Karlsruhe group’s co-author network analysis

4 Free-Style Category

Surprisingly, this year we received no submissions for the Free-Style category.
However, the judges felt that one of the social network submissions was a worthy
Free-Style candidate based on its artistic merit and strong relevance to graph vi-
sualization. Therefore, first prize in the Free-Style category was awarded to Felix
Heinen for his depiction of the variety and attitudes of members of the Internet
community MySpace. The submission consisted of two large poster images. The
first poster, Figure 5, shows information gathered from the demographic data of
each member’s profile, highlighting connections between gender, age, and educa-
tional background among the members. The second poster gives the viewer a feel
for the geographic distribution of the members. The work was primarily done
4 See also http://i11www.iti.uni-karlsruhe.de/people/schank/gd07cont/

http://i11www.iti.uni-karlsruhe.de/people/schank/gd07cont/
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Fig. 5. A visual analysis, created by Felix Heinen, of member profiles of an Internet
community

by hand using various Adobe products. For further details visit the contest’s
website.5
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