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Abstract. In their seminal paper on certificateless public key cryptog-
raphy, Al-Riyami and Paterson (AP) proposed a certificateless authen-
ticated key agreement protocol. Key agreement protocols are one of the
fundamental primitives of cryptography, and allow users to establish ses-
sion keys securely in the presence of an active adversary. AP’s protocol
essentially requires each party to compute four bilinear pairings. Such
operations can be computationally expensive, and should therefore be
used moderately in key agreement. In this paper, we propose a new
certificateless authenticated two-party key agreement protocol that only
requires each party to compute two pairings. We analyze the security of
the protocol and show that it achieves the desired security attributes.
Furthermore, we show that our protocol can be used to establish keys
between users of different key generation centers.

Keywords: Certificateless public key cryptography, authenticated key
agreement, bilinear map.

1 Introduction

In the public key infrastructure (PKI), certificates are used to provide an assur-
ance of the relationship between the public keys and the identities that hold the
corresponding private keys. However, there are many problems associated with
certificates such as revocation, storage, distribution, and cost of validation. In
1984, Shamir [7] proposed the notion of identity-based public key cryptography
(ID-PKC) to simplify certificate management. The idea of ID-PKC is to let an
entity’s public key be directly derived from certain aspects of its identity, such
as the IP address of the hostname or the e-mail address. Thus, ID-PKC also
eliminates the need for certificates.

Unfortunately, ID-PKC is not without problems. Identity-based systems rely
on a private key generator (PKG) that uses a system-wide master key in gener-
ating private keys. Thus, many identity-based schemes inevitably introduce key
escrow : the PKG can recover the session key established by entities for which it
has issued a private key. This property is either acceptable or unacceptable. For
instance, in the health care profession it may be a legal requirement to provide
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an audit trail to every transaction. On the other hand, such invasion of privacy
may cause ID-PKC to be unsuited in a variety of other applications, such as
personal communications.

Certificateless public key cryptography (CL-PKC) [1] was proposed by Al-
Riyami and Paterson to alleviate the problems associated with PKI and ID-
PKC. It does not require the use of certificates and yet does not have the key
escrow limitation of ID-PKC. For this reason, CL-PKC can be seen as a public
key cryptography model intermediate between the two former paradigms.

In their seminal paper, Al-Riyami and Paterson (AP) proposed a certificate-
less authenticated two-party key agreement protocol. Key agreement protocols
allow entities to establish session keys securely in the presence of an active ad-
versary. AP’s protocol essentially requires each party to compute four bilinear
pairings. Such operations can be computationally expensive (for instance, on
low-power devices) and should therefore be used moderately in key agreement.
Moreover, AP’s protocol also requires users to exchange public keys comprising
two group elements. Ideally, public keys should only comprise one group element
as in identity-based key agreement.

This paper proposes a new certificateless authenticated two-party key agree-
ment protocol [5] that is more efficient than AP’s protocol. Each entity involved
in the protocol is only required to compute two pairings, and the public keys
exchanged by the entities only comprise one group element. As public keys are
not bound to a specific key generation center (KGC), the protocol can also be
used to establish session keys between users of different KGCs. Furthermore,
we show that the protocol achieves the security attributes that are desired in
authenticated key agreement.

The rest of the paper is organized as follows. In Section 2 we give underlying
definitions and define the security attributes of authenticated key agreement. In
Section 3 we propose a new certificateless authenticated two-party key agreement
protocol, and in Section 4 we show how the protocol can be used by entities of
different KGCs. In Section 5 and 6 we analyze the security and the efficiency of
the protocol respectively, and in Section 7 we provide a conclusion of the paper.

2 Preliminaries

2.1 Bilinear Pairings

Let G1 be an additive group with a large prime order q and let G2 be a mul-
tiplicative group of the same order. An admissible pairing e is then a function
e : G1 × G1 → G2 that satisfies the following properties:

1. Bilinearity: For all P, Q ∈ G1 and a, b ∈ Z∗
q , e(aP, bQ) = e(P, Q)ab.

2. Non-degeneracy: There exists a P ∈ G1 such that e(P, P ) �= 1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

The admissible pairing e can be derived from a Weil or Tate pairing on an
elliptic curve over a finite field. For further details, see [3].
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2.2 Diffie-Hellman Problems

The security of the proposed protocols is based on a set of well-studied problems
that are assumed to be hard to compute efficiently. These problems are defined
as follows:

Definition 1 (Discrete Logarithm Problem). Given Q ∈ G1 where P is a
generator of G1, find an element a ∈ Z∗

q such that aP = Q.

Definition 2 (Computational Diffie-Hellman Problem). Let P be a gen-
erator of G1. Given 〈P, aP, bP 〉 ∈ G1 where a, b ∈ Z∗

q , compute abP .

Definition 3 (Bilinear Diffie-Hellman Problem). Let e be a bilinear pair-
ing on (G1, G2) and P be a generator of G1. Given 〈P, aP, bP, cP 〉 ∈ G1 where
a, b, c ∈ Z∗

q, compute e(P, P )abc ∈ G2.

We assume that the order q of the groups G1 and G2 is large enough to make
solving the discrete logarithm problem computationally infeasible.

2.3 Security of Authenticated Key Agreement

A key agreement protocol is said to be authenticated (AK) if it ensures authen-
ticity of the involved parties. Specifically, a party can only compute a shared
key if it holds the claimed identity. Thus, by mutually proving possession of the
shared key, each party may be assured that the peer is a legitimate entity. The
proposed protocols of this paper will use cryptographic message authentication
codes in providing such assurance.

Definition 4 (Message Authentication Code). A message authentication
code MAC = (Kmac, Tmac, Vmac) consists of three algorithms: key generation Kmac,
message authentication Tmac and verification Vmac. The key generation algorithm
Kmac generates a key k ← Kmac. The message authentication algorithm Tmac re-
turns an authentication tag τ = Tmac(k, m) for given a key k and a message m.
The verification algorithm Vmac returns 1 for ”accept” and 0 for ”reject”, for
given a key k, the message m and the authentication tag τ .

Furthermore, it is desired that AK protocols possess a number of security at-
tributes [2, 4]:

– Known session key security. Each run of the key agreement protocol
should result in a unique secret session key. An adversary who learns a
session key should not be able to recover data from past or future sessions.

– Forward secrecy. If long-term private keys of one or more entities are com-
promised, the secrecy of previous session keys established by these entities
should not be affected. In the presence of a key generation center (KGC) with
a system-wide master key, KGC forward secrecy implies that compromise of
this key should not reveal previously established session keys.
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– Key-compromise impersonation. If A’s long-term private key is com-
promised, the adversary can impersonate A, but the adversary should not
be able to impersonate other entities to A.

– Unknown key-share. Entity A should not be coerced into sharing a key
with entity C when, in fact, A thinks she is sharing a key with entity B.

– Key control. Neither party involved in a protocol run should be able to
control the outcome of the session key more than the other.

– Known session-specific temporary information security. Many pro-
tocols use some randomized private input to produce a unique session key
in each run of a protocol. Exposure of such private temporary information
should not compromise the secrecy of the generated session key.

3 Proposed Certificateless Authenticated Key Agreement

In this section, we will present a new certificateless authenticated two-party
key agreement protocol based on pairings. As noted earlier, certificateless key
agreement does not rely on certificates, nor does it employ a key generation
center (KGC) that knows every user’s private key.

Setup: Let H1 and H2 be two independent key derivation functions such that
H1 : G2 × G1 × G1 → {0, 1}k and H2 : G2 × G1 × G1 → {0, 1}l for some
integers k, l > 0. Let also H be a Map-To-Point [3] function such that H :
{0, 1}∗ → G1. The KGC randomly selects its secret master key s ∈ Z

∗
q and

computes the public key P0 = sP where P ∈ G1 is a public generator. The
KGC then publishes the system parameters 〈G1, G2, e, q, P, P0, H, H1, H2〉.

Private Key Extraction: For any given entity A with identity IDA ∈ {0, 1}∗,
the long-term private/public key pair is generated as follows:
1. A randomly selects a secret value xA ∈ Z∗

q .
2. The KGC generates A’s partial private key DA = sQA where A’s iden-

tifier QA = H(IDA) ∈ G1. A may check the validity of DA by verifying
that e(QA, P0) = e(DA, P ).

3. A’s (full) private key is given by SA = 〈DA, xA〉. A’s public key is com-
puted as PA = xAP .

For entity B, the private key extraction is similar to A.
Key Agreement: In order to jointly establish a session key, entities A and B

randomly select the short-term session-specific private keys a, b ∈ Z∗
q and

compute the corresponding short-term public keys TA = aP and TB = bP
respectively. They then exchange the following messages:

(1) A → B : TA, PA

(2) B → A : TB, PB, Tmac(k′, TB, PB)
(3) A → B : Tmac(k′, TA, PA)

Both entities validate each other’s public key by testing the group mem-
bership PA, PB ∈ G∗

1. The MAC algorithm Tmac is used to generate an au-
thentication tag τ of the shared key k′ (defined below) and the transmitted
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message. If a party fails to verify a received authentication tag, then the
protocol run is terminated. A and B compute the session key as follows:

KA = e(QB, P0 + PB)a · e(DA + xAQA, TB)

KB = e(DB + xBQB, TA) · e(QA, P0 + PA)b

The scheme is consistent because:

K = KA = KB = e(QB, P )a(s+xB) · e(QA, P )b(s+xA)

In order to ensure that an attacker cannot gain any information from the
session key, A and B use a key derivation function H on K, abP , and xAxBP .
Thus, the final session key is given by k = H1(K‖abP‖xAxBP ). The MAC
key k′ = H2(K‖abP‖xAxBP ) is different from k in order to provide key
indistinguishability [2].

Note that both parties are authenticated through the verification of an au-
thentication tag τ (provided by the peer) when they successfully establish a
shared key. Thus, both parties are assured that the peer holds the claimed iden-
tity. If no such assurance had been provided, an adversary could possibly engage
in a key agreement with B, while impersonating A. This would lead B to falsely
believe a session key is established with A.

Furthermore, note that the structure of the long-term private/public key pair
differs from Al-Riyami and Paterson’s protocol [1]. Specifically, the public key
PA only comprises one element of G1 and no longer binds an entity to a specific
KGC, thus allowing protocol participants under different trusted authorities to
establish keys. Also see that SA separates DA from xA such that these values
may be used independently (in [1], SA = xADA) in session key construction.

4 Certificateless Key Agreement Using Separate KGCs

It may in many cases be desired by users of different KGCs to establish shared
keys. For example, in order for encrypted VoIP to be able to operate globally,
key agreement and compatibility between networks become a necessary require-
ment. The following protocol enables session key establishment between users of
different KGCs in the certificateless setting.

Setup: Let H , H1, and H2 be defined as in the previous protocol. Two different
key generation centers, KGC1 and KGC2, then respectively generate a key
pair (P1 = s1P ∈ G1, s1 ∈ Z∗

q) and (P2 = s2P ∈ G1, s2 ∈ Z∗
q) where

P and G1 are globally agreed. Both KGCs publish their respective public
parameters.

Private Key Extraction: This step is similar to the previous protocol, except
that entities A and B have their partial private keys generated by different
KGCs. Thus, A, under KGC1, has the private key SA = 〈DA = s1QA, xA〉,
while B, under KGC2, has the private key SB = 〈DB = s2QB, xB〉.
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Key Agreement: A and B generate short-term keys and exchange messages as
in the previous protocol. In computing the session key, however, each entity
uses the KGC public key of the peer. Thus, A uses P2 = s2P in computing
the shared key, while B uses P1 = s1P . A and B then compute respectively:

KA = e(QB, P2 + PB)a · e(DA + xAQA, TB)

KB = e(DB + xBQB, TA) · e(QA, P1 + PA)b

The scheme is consistent because:

K = KA = KB = e(QB, P )a(s2+xB) · e(QA, P )b(s1+xA)

The final session key is given by k = H1(K‖abP‖xAxBP ).

5 Security Attributes

In this section, we will show that the proposed protocol achieves the security
attributes identified in Section 2.3. Note that we only consider the basic protocol
of Section 3, as it is very similar to the multi-KGC protocol. Furthermore, we
trust the KGC not to replace any long-term public keys as, in doing so, a man-
in-the-middle attack is made possible (see [1, 5] for discussion).

– Known session key security. As short-term keys are used in generating
session keys, a compromised session key does not compromise past or future
sessions. All protocol runs, even when its participants remain the same,
produce a different session key.

– Forward secrecy. We let this property constitute two separate parts; both
to capture the forward secrecy against an adversary who holds both A and
B’s long-term private keys (user forward secrecy) and against an adversary
who has the KGC master key (KGC forward secrecy).

• User forward secrecy. Compromising the long-term private keys of en-
tities A and B will not reveal previously established session keys. In
order to compute abP of H1(K‖abP‖xAxBP ), an adversary must know
at least one short-term private key of a given session.

• KGC forward secrecy. Compromise of the KGC master key s does not en-
able an adversary to reveal previously established session keys. Although
the adversary may generate partial private keys, both a short-term pri-
vate key and the long-term (full) private key of a party involved in a
session must be obtained in order to compute the established key.

– Key-compromise impersonation. The proposed protocol is resistant to
key-compromise impersonation. Assume that the adversary E knows A’s
private key SA = 〈DA, xA〉. If E is to impersonate B in a protocol run with
A, then E must be able to correctly compute K = KA = KB. E cannot
compute KA = e(QB, PB +P0)a ·e(DA +xAQA, TB) where P0 = sP because
she does not know the short-term key a. If E was to compute KB, she would
need to know B’s long-term private key SB. Although E could possibly
replace B’s public key PB with a value of her choice, she would still need to
know DB = sQB in order to successfully impersonate B to A.
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– Unknown key-share. Suppose an adversary E attempts to make A believe
a key is shared with B, while B instead believes the key is shared with E.
For E to launch this attack successfully, she should force A and B to share
the same secret K = KA = KB. However, A and B can never share the same
key if they don’t believe they are mutually communicating. This stems from
the fact that both parties use the identifier of the intended peer (i.e. A uses
QB, while B uses QE) in computing the session key. Thus, A cannot verify
the authentication tag τ generated by B (passed on by E) and the attack
fails.

– Key control. Neither party can control the outcome of the session key.
However, if A sends her short-term key first, B may be able to predict some
bits of the final key by trying different short-term keys before sending the
key back to A. Precisely, in computing the shared session key f(a, b) where
a is known, B may compute 2s variants of b and thus select approximately
s bits of the joint key. This deficiency exists in all interactive key agreement
protocols as pointed out by [6].

– Known session-specific temporary information security. Compromis-
ing the short-term private keys of a session does not reveal the established
key. Specifically, obtaining the keys a and b in any session between entities A
and B, allows the adversary to compute K = (QB, PB +P0)a ·(QA, PA+P0)b

and abP . However, in order to compute xAxBP , the adversary must also
know at least one long-term private key (or solve the CDH problem). Note
that an adversary who is able to obtain short-term private keys is considered
very powerful and can break many existing protocols (see [4] for examples).

6 Efficiency

The efficiency of key agreement protocols is essentially measured by the com-
putational and communication overhead. Communication overhead refers to the
number of bits transmitted by each entity in a protocol run, while computational
overhead refers to the cost of all arithmetic computations each entity must per-
form in order to carry out the key agreement. Table 1 compares the efficiency
of the proposed protocol to the previously proposed protocol by Al-Riyami and
Paterson. In evaluating the computational overhead, only heavy operations such
as pairings, point multiplications, and pairing exponentiations are considered.
Generally, point multiplications and pairing exponentiations are much faster to
compute than pairings.

In AP’s protocol, each entity is required to exchange three group elements, of
which one element represents the short-term public key and the other elements
represent the long-term public key. Each entity also must compute four pairings,
perform two point multiplications, and make one pairing exponentiation. Note
that an entity must still compute four pairings, even when values are precomputed
(aspects of the session key is computed before a protocol run).

In the proposed protocol, each entity is only required to compute two pair-
ings, perform three point multiplications, and make one pairing exponentiation.
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Table 1. Efficiency of certificateless authenticated key agreement protocols

Al-Riyami-Paterson[1] Proposed protocol
Message 3 elements of G1 2 elements of G1

No precomputation 4p + 2m + 1e 2p + 3m + 1e
Precomputation 4p + 1m 2p + 2m

Notation: (p)airing, point (m)ultiplication, pairing (e)xponentiation

Moreover, the long-term public keys only comprise one group element, and thus,
the protocol can be considered more efficient than AP’s in terms of computation
and message bandwidth. Although the proposed protocol introduces one addi-
tional pass and requires entities to compute MACs, AP’s protocol should use a
similar method in order to prevent an adversary from impersonating parties.

Once long-term public keys have been exchanged in both protocols, only a sin-
gle pairing is required by the participating parties. Thus, certificateless protocols
can be just as efficient as identity-based schemes.

7 Conclusion

This paper has proposed a certificateless authenticated two-party key agreement
protocol that is more efficient than the previously proposed protocol by Al-
Riyami and Paterson. The protocol is more efficient both in terms of computation
and message bandwidth. The protocol also achieves the security attributes that
are desired in authenticated key agreement. Furthermore, the proposed protocol
can be used to establish keys between users of different key generation centers.
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