

Lecture Notes in Computer Science 4435
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mitsu Okada Ichiro Satoh (Eds.)

Advances in
Computer Science -
ASIAN 2006

Secure Software and Related Issues

11th Asian Computing Science Conference
Tokyo, Japan, December 6-8, 2006
Revised Selected Papers

13

Volume Editors

Mitsu Okada
Keio University
Japan
E-mail: mitsu@abelard.flet.keio.ac.jp

Ichiro Satoh
National Institute of Informatics
Japan
E-mail: ichiro@nii.ac.jp

Library of Congress Control Number: 2007943082

CR Subject Classification (1998): F.3, E.3, D.2.4, D.4.6-7, K.6.5, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77504-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77504-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12210770 06/3180 5 4 3 2 1 0

Gilles Kahn: A Humble Tribute

Gilles Kahn was one of the visionary leaders whose accomplishments will be
remembered for generations. In fact, the ASIAN series of conferences owes a
great deal to him. He saw long ago the need to harness Southeast Asia for
the next generation. He kindly accepted to be on our Steering Committee and
indeed took personal interest and physically participated in the 1995 and 2002
conferences. His sharp criticisms, suggestions and support helped nurture the
ASIAN conference from its birth.

Two of his distinct fundamental contributions in computer science that have
had a big impact are: natural semantics and a framework for distributed asyn-
chronous computation (often referred to as Kahn’s networks of processes). The
first one provides a theory that allows computation of properties of programs.
This has had a big impact on the development of programming environments
from specifications. The latter has had tremendous impact on the specification of
asynchronous computation and contributed in many ways to early UNIX devel-
opment and to formal theories of concurrent processes including communicating
sequential processes. Not only did he pioneer the foundational area of computer
science or formal methods through his personal contributions, but he also en-
riched his involvement in the measures of commissioning reliable software for
space rocket missions.

He was one of the early members of IRIA (INRIA’s name then) and the
architect of the INRIA Sophia Antipolis Center. His leadership vision can be
seen in the way INRIA has grown in the areas of science and technology, industry
cooperations and international relations.

Above all he was always a simple, accessible, charismatic person who was
easy to talk to. The ASIAN series owes its growth to his support. It was a great
privilege for us to have an opportunity to learn from his visionary leadership
through this series of conferences.

Asian Computing Science Conference
Steering Committee

Preface

The series of annual Asian Computing Science Conferences (ASIAN) was initi-
ated in 1995 by AIT, INRIA and UNU/IIST to provide a forum for researchers
in computer science from the Asian region and to promote interaction with re-
searchers from other regions. The first ten conferences were held, respectively, in
Bangkok, Singapore, Katmandu, Manila, Phuket, Penang, Hanoi, Mumbai, Chi-
ang Mai, and Kunming. The 11th ASIAN conference was held in Tokyo, Japan,
December 6-8, 2006. Each year, the conference focuses on a different theme at
the cutting edge of computer science research. The theme of ASIAN 2006 was
secure software. Three distinguished speakers were invited to the conference:

– Li Gong (Windows Live China, Microsoft Corporation, China)
– John Mitchell (Stanford University, USA)
– Patrick Cousot (Ecole Normale Supérieure-Paris, France)

We had 115 submission papers. The Program Committee reviewed all the papers
carefully and then selected 17 regular papers and 10 short papers. After the con-
ference, 1 invited paper, 17 regular papers and 8 short papers were selected for
this post-conference formal proceedings volume. We wish to thank the Program
Committee members and the external referees for their work in selecting the
contributed papers. The conference was sponsored by the National Institute of
Informatics, the Embassy of France in Japan, INRIA, and Keio University. We
thank the Steering Committee for inviting us to organize the 11th ASIAN con-
ference in Japan. Finally, many thanks to S. Nakajima and his Local Organizing
Committee, for their sustained efforts in the organization of the conference.

March 2007 Mitsuhiro Okada
Ichiro Satoh

Organization

ASIAN 2006 was sponsored by the National Institute of Informatics, the Em-
bassy of France in Japan, INRIA, and Keio University.

Executive Committee

General Chairs Aki Yonezawa (University of Tokyo, Japan)
Philippe Codognet (Embassy of France in Japan)

Program Chairs Mitsuhiro Okada (Keio University, Japan)
Ichiro Satoh (National Institute of Informatics, Japan)

Organization Chair Shin Nakajima (National Institute of Informatics, Japan)

Organization Kensuke Fukuda (National Institute of Informatics,
Japan)

Soichiro Hidaka (National Institute of Informatics, Japan)
Hiroshi Hosobe (National Institute of Informatics, Japan)
Hiroyuki Kato (National Institute of Informatics, Japan)
Michihiro Koibuchi (National Institute of Informatics,

Japan)

Steering Committee Stephane Grumbach (INRIA, France)
Joxan Jaffar (NUS, Singapore)
Gilles Kahn (INRIA, France)
Kanchana Kanchanasut (AIT, Thailand)
R.K. Shyamasundar (TIFR, India)
Kazunori Ueda (Waseda University, Japan)

Program Committee

Iliano Cervesato (Carnegie Mellon University, Qatar)
Shigeru Chiba (Tokyo Institute of Technology, Japan)
Patrick Cousot (Ecole Normale Supérieure-Paris, France)
Anupam Datta (Stanford University, USA)
Yuxi Fu (Shanghai Jiaotong University, China)
Sumanta Guha (AIT, Thailand)
Masami Hagiya (University of Tokyo)
Joxan Jaffar (National University of Singapore, Singapore)

X Organization

Kanchana Kanchanasut (AIT, Thailand)
Kenji Kono (Keio University, Japan)
Ching-Laung Lei (Taiwan National University, Taiwan)
Xavier Leroy (INRIA, France)
Ninghui Li (Purdue University, USA)
John Mitchell (Stanford University, USA)
Atsushi Ohori (Tohoku University, Japan)
Mitsuhiro Okada(Keio University, Japan)
Andreas Podelski (Freiburg University, Germany)
Michael Rusinowitch (INRIA-Lorraine/University of Nancy/CNRS, France)
Ichiro Satoh (National Institute of Informatics, Japan)
Etsuya Shibayama (Tokyo Insitute of Technology, Japan)
L. Yohanes Stefanus (University of Indonesia, Indonesia)
Kazushige Terui (National Institute of Informatics, Japan)
Kazunori Ueda (Waseda University, Japan)

Sponsoring Institutions

National Institute of Informatics, Japan
The Embassy of France in Japan
INRIA, France
Keio University, Japan

Organization XI

The program committee thanks the following people for their assistance on the
refereeing process.

Siva Anantharaman
Stephan Arlt
Anindya Banerjee
Adam Barth
Julien Bertrane
Frédéric Besson
Bruno Blanchet
Mun Choon Chan
Wei Ngan Chin
Samarjit Chakraborty
Hong Chen
Kuan-Ta Chen
Yu-Shian Chen
Shigeru Chiba
Chansophea Chuon
Veronique Cortier
Véronique Cortier
Jin Song Dong
Yuxin Deng
Ling Dong
Chun-I Fan
Jérôme Feret
Benjamin Gregoire
Yonggen Gu
Sumanta Guha
Masami Hagiya
Goichiro Hanaoka
Koji Hasebe
Chaodong He
Chun-Ying Huang
Run-Junn Hwang
Samuel Hym
Katsuyoshi Iida

Mastroeni Isabella
Florent Jacquemard
Joxan Jaffar
Bertrand Jeannet
Wen-Shenq Juang
Shin-ya Katsumata
Nguyen Tan Khoa
Kazukuni Kobara
Kenji Kono
Kenichi Kourai
Steve Kremer
Ralf Kuesters
Donggang Liu
Francesco Logozzo
Ken Mano
Ziqing Mao
Yutaka Matsuno
Antoine Miné
Mitchell
Ian Molloy
David Monniaux
Francesco Zappa Nardelli
Huu-Duc Nguyen
Qun Ni
Shin-ya Nishizaki
Yutaka Oiwa
Mitsuhiro Okada
Olivier Perrin
Tamara Rezk
Xavier Rival
Arnab Roy
Abhik Roychoudhury
Takamichi Saito

Isao Sasano
Ichiro Satoh
Etsuya Shibayama
Rie Shigetomi
Junji Shikata
SeongHan Shin
Yutaro Sugimoto
Martin Sulzmann
Yunfeng Tao
Yasuyuki Tsukada
Mathieu Turuani
Kazunori Ueda
Masashi Une
Daniele Varacca
Laurent Vigneron
Razvan Voicu
Tep Vuthy
Qihua Wang
Bogdan Warinschi
Martijn Warnier
Takuo Watanabe
Hajime Watanabe
Xian Xu
Mitsuharu Yamamoto
Yoshisato Yanagisawa
Roland Yap
Eugene Zalinescu
Steve Zdancewic
Han Zhu
Hengming Zou

Table of Contents

ASIAN’2006

Security Evaluation of a Type of Table-Network Implementation of
Block Ciphers . 1

Akira Matsunaga and Tsutomu Matsumoto

A Symbolic Intruder Model for Hash-Collision Attacks 13
Yannick Chevalier and Mounira Kourjieh

A Denotational Approach to Scope-Based Compensable Flow Language
for Web Service . 28

Huibiao Zhu, Geguang Pu, and Jifeng He

Certificateless Authenticated Two-Party Key Agreement Protocols 37
Tarjei K. Mandt and Chik How Tan

FORM: A Federated Rights Expression Model for Open DRM
Frameworks . 45

Thierry Sans, Frédéric Cuppens, and Nora Cuppens-Boulahia

A Method of Safety Analysis for Runtime Code Update 60
Masatomo Hashimoto

Automata-Based Confidentiality Monitoring . 75
Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and
David A. Schmidt

Efficient and Practical Control Flow Monitoring for Program
Security . 90

Nai Xia, Bing Mao, Qingkai Zeng, and Li Xie

Modular Formalization of Reactive Modules in COQ 105
Ming-Hsien Tsai and Bow-Yaw Wang

Closing Internal Timing Channels by Transformation 120
Alejandro Russo, John Hughes, David Naumann, and
Andrei Sabelfeld

Responsiveness in Process Calculi . 136
Lucia Acciai and Michele Boreale

Normal Proofs in Intruder Theories . 151
Vincent Bernat and Hubert Comon-Lundh

XIV Table of Contents

Breaking and Fixing Public-Key Kerberos . 167
Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov,
Joe-Kai Tsay, and Christopher Walstad

Computational Soundness of Formal Indistinguishability and Static
Equivalence . 182

Gergei Bana, Payman Mohassel, and Till Stegers

Secrecy Analysis in Protocol Composition Logic . 197
Arnab Roy, Anupam Datta, Ante Derek, John C. Mitchell, and
Jean-Pierre Seifert

A Type-Theoretic Framework for Formal Reasoning with Different
Logical Foundations . 214

Zhaohui Luo

On Completeness of Logical Relations for Monadic Types 223
S�lawomir Lasota, David Nowak, and Yu Zhang

A Spatial Logical Characterisation of Context Bisimulation 231
Zining Cao

Information Hiding in the Join Calculus . 240
Qin Ma and Luc Maranget

Modeling Urgency in Component-Based Real-Time Systems 248
Nguyen Van Tang, Dang Van Hung, and Mizuhito Ogawa

Maintaining Data Consistency of XML Databases Using Verification
Techniques . 256

Khandoker Asadul Islam and Yoshimichi Watanabe

An Operational Semantics of Program Dependence Graphs for
Unstructured Programs . 264

Souhei Ito, Shigeki Hagihara, and Naoki Yonezaki

Combination of Abstractions in the ASTRÉE Static Analyzer 272
Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival

Proving Noninterference by a Fully Complete Translation to the Simply
Typed λ-Calculus . 301

Naokata Shikuma and Atsushi Igarashi

Formalization of CTL∗ in Calculus of Inductive Constructions 316
Ming-Hsien Tsai and Bow-Yaw Wang

Inferring Disjunctive Postconditions . 331
Corneliu Popeea and Wei-Ngan Chin

Table of Contents XV

An Approach to Formal Verification of Arithmetic Functions in
Assembly . 346

Reynald Affeldt and Nicolas Marti

Author Index . 361

Security Evaluation of a Type of

Table-Network Implementation of Block Ciphers

Akira Matsunaga and Tsutomu Matsumoto

Graduate School of Environment and Information Sciences,
Yokohama National University,

79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
{matunaga, tsutomu}@mlab.jks.ynu.ac.jp

Abstract. Tamper-resistant software which implements a block cipher
with a fixed embedded cryptographic key is important for securing em-
bedded systems for digital rights management, access control, and other
applications. The security of such software is measured by its ability
to hide the embedded key against numerous known attacks. A class of
methods for constructing tamper-resistant software by using a number of
look-up tables is called a white-box implementation or table-network im-
plementation. We developed a method of evaluating the security of table-
network implementations of the Data Encryption Standard (DES). Link
and Neumann proposed a table-network implementation of DES that is
claimed to be resistant against all known attacks, which are effective for
table-network implementations of DES proposed by Chow, Eisen, John-
son, and van Oorschot. In this paper, we point out the existence of a
new attack, which allows efficient extraction of the hidden key in the
Link-Newman table-network implementation of DES. Our result should
contribute in completing the list of attacking methodologies and thus
help the design of better tamper-resistant software.

1 Introduction

Software implementation of cryptography plays an important role in many ap-
plications. Cryptographic software may be reverse engineered or analyzed by
malicious users or attackers. Thus, the software implementing the cryptographic
algorithms must be tamper resistant. Software implementation of a block cipher
with a fixed embedded cryptographic key is important for securing embedded
systems for digital rights management, access control, and other applications.
Tamper resistance with respect to the secrecy of such software is measured as
the ability to hide an embedded key against numerous known attacks. A class
of methods for making such tamper-resistant software that uses a large number
of look-up tables is called a white-box implementation or table-network imple-
mentation. We prefer to use the latter expression since white-box implementa-
tion does not imply the software structure of the implementation. Examples of
table-network implementations for the Data Encryption Standard (DES) and

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 A. Matsunaga and T. Matsumoto

the Advanced Encryption Standard (AES) have been proposed by Chow, Eisen,
Johnson, and van Oorschot [1, 5].

We developed a method of evaluating the security of table-network imple-
mentations of DES. In the table-network implementation proposed by Chow et
al., the hidden key is efficiently extracted by the known attacks [1, 2, 3]. These
researchers also demonstrated a modified block cipher that is a composite of an
input-hidden bijection, DES, and an output-hidden bijection, and has a table-
network implementation resistant against known attacks. However, in our view,
such a non-standard cipher can be applied only in limited fields. There is a strong
demand for better solutions. Link and Neumann [3, 4] proposed a table-network
implementation of DES, claimed to be resistant against all known attacks which
are effective for the table-network implementation proposed by Chow et al.

In this paper, we point out the existence of a new attack, which efficiently
extracts the hidden key in the Link-Newman table-network implementation of
DES.

The rest of this paper is organized as follows. In Section 2, we define the table-
network implementation and describe the table-network implementation of DES
proposed by [1]. In Section 3, we introduce the attacks and the improvements on
table-network implementation of DES. In Section 4, we describe our proposal in
detail and evaluate the table-network implementation proposed by [3, 4]. Section
5 concludes this paper.

2 Table-Network Implementation of DES

In this section we describe details of the table-network implementation of DES
[1]. DES consists of permutations, S-boxes, and xor operations on bit vectors. In a
table-network implementation, all these operations are represented with look-up
tables. An m × n-bit table is an m-bit to n-bit mapping, which is implemented
as an array of 2m entries, each of n-bits. The values between look-up tables
are encoded by random bijections. A table-network implementation is roughly
divided into two parts: T-boxes and tree-structure table networks.

In round r of DES operations, xor with a round key, transformation by S-
boxes, and carrying Lr and Rr are represented by twelve 8×8-bit tables, named
T-box rTj for r = 1, . . . , 16, j = 1, . . . , 12. We denote T-boxes containing each
S-box S1, . . . , S8 as rT1, . . . ,

rT8, and T-boxes carrying only bits of Lr and Rr

as rT9, . . . ,
rT12. However, T-boxes do not necessarily queue up in order from 1

to 12 in program code.
The operations, other than being composed as T-boxes, are linear transforma-

tions (e.g., permutation, xor operation). These are brought together in one func-
tion, and converted into networks of small look-up tables, named tree-structure
table networks. This function is represented with an Affine Transformation (AT)
over GF(2). An AT is a transformation from vector x to vector y, which is de-
fined by y = Mx + d, where M is a constant matrix and d is a constant vector.
Here, we define the size of x and y as 4b and 4a bits, respectively. Therefore, M
is a 4a × 4b-bit matrix and d is 4a-bit vector. M is then divided into a 4 × 4-bit

Security Evaluation of a Type of Table-Network Implementation 3

sub-matrix mk,l and x, y, d are divided into 4-bit sub-vectors xl, yk, dk for k =
1, . . . , a, l = 1, . . . , b. At this time, yk denotes

yk = mk,1x1 ⊕ mk,2x2 ⊕ · · · ⊕ mk,bxb ⊕ dk.

The above formula comprises one tree. The sub-matrices are transformed to 4×4-
bit vector-multiply tables, and the xor operations are transformed to 8 × 4-bit
vector-add tables.

In the above manner, all these operations are represented by look-up tables
(See Figure 1). At this point, each look-up table still leak useful information
for an attacker. So, the values appear between look-up tables are encoded by
composing random bijections. Along with composing a bijection, the table is
converted into a different one, making it difficult to decompose. This is because,
given an encoded table, there are many possible (original table, composed bijec-
tion) combinations from which the same composed function could arise. Conse-
quently, all the steps of DES can be obscured, and it is difficult for an attacker
to extract the embedded key from the software by static or dynamic analyses.

Standard DES (2 rounds)

E

Kr

S1 S8...

E

Kr + 1

S1 S8...

P

P

Lr Rr

Lr - 1 Rr - 1

Lr + 1 Rr + 1

Table-Network Implementation of DES

rT1
rT2

rT12

r + 1T1
r + 1T2

r + 1T12
...

...

...

...

...

...

...

...

Fig. 1. Standard and Table-Networked Algorithms

4 A. Matsunaga and T. Matsumoto

3 Attacks and Improvements on the Implementation

Discussions have been done on the security of the table-network implementations
of DES. We summarize in Table 1 the relationship between implementations
and attacks considered so far. In Table 1, secure means the implementation is
resistant against the corresponding attack, and insecure means the key embedded
in the implementation can be efficiently extracted by the corresponding attack.

Let CEJvO-DES denote the table-network implementation proposed by Chow
et al. [1] and let LN-DES denote that by Link et al. [3, 4]. Implementation
CEJvO-DES cannot be resistant against the three attacks shown in Table 1.
Chow et al. have proposed a Recommended Variant, which can be resistant
against all existing attacks as seen from Table 1. However, since the recom-
mended variant is no longer DES such a cipher’s usage has limitations. For
applications where only standardized block ciphers shall be adopted, the tamper
resistance of the original DES should be investigated and improved.

In the following subsection we describe details of the Statistical Bucketing
Attack, Recommended Variants, and LN-DES.

Table 1. Relationship between implementations and attacks

securesecuresecure (?)LN-DES [3, 4]

securesecuresecureCEJvO-DES [1]
(Recommended Variant)

insecureinsecureinsecureCEJvO-DES [1]

Fault Injection
Attack [2]

Improved Statistical
Bucketing Attack [3]

Statistical
Bucketing Attack [1]

securesecuresecure (?)LN-DES [3, 4]

securesecuresecureCEJvO-DES [1]
(Recommended Variant)

insecureinsecureinsecureCEJvO-DES [1]

Fault Injection
Attack [2]

Improved Statistical
Bucketing Attack [3]

Statistical
Bucketing Attack [1]

attack
implementation

3.1 Statistical Bucketing Attack

Because random bijections were composed, an individual table is converted into
one that does not directly relate to the original one. Therefore, it is difficult for
an attacker to obtain useful information from a single table, such as a T-box.
Attacks must be global in the sense that the attacker must look at multiple
tables and correlate the knowledge of DES algorithm. The statistical bucketing
attack extracts the round key of the first round (or final round) of the DES. We
only describe attacks on the first round of encryption.

In preparation, the attacker searches for twelve tables that are the T-boxes
of round 2 from among a large number of tables in CEJvO-DES. If the at-
tacker knows the structure of CEJvO-DES, the T-boxes are easily discovered
by tracking the data-flow. Afterwards, the attacker should identify which T-box
corresponds to which S-box. Each of some eight of the twelve T-boxes should
correspond to one of the eight S-boxes S1, . . . , S8. The remaining four T-boxes
only pass the information to the next round.

Security Evaluation of a Type of Table-Network Implementation 5

After identifying the relationship between T-boxes and S-boxes, the attacker
tries to extract the key. For explanation, the i-th S-box in round r is denoted
by rSi. The attacker focuses on one bit of 1Si’s output, which is denoted b.
2Sj is defined by one of the S-boxes in round 2, which is affected by b. First,
the attacker makes a guess on the 6-bit portion of the round key affecting 1Si

and generates 64 plaintexts that correspond to the entire input pattern of 1Si.
Then, the attacker inputs this plaintext to a standard DES implementation,
which uses a portion of the key that is only a guess and focuses on the value of
b. If b = 0, that plaintext belongs to the set I0. Similarly, if b = 1, it belongs
to the set I1. Next, the attacker inputs the plaintext belonging to the set I0 to
the target CEJvO-DES, and then examines the input to 2Tj involving 2Sj . This
value belongs to the set I ′0. The set I1 similarly leads the set I ′1. Here, if I ′0 and
I ′1 are disjoint sets, the key guess is almost correct. Any overlap indicates that
the key guess is wrong.

To extract a 48-bit round key, the attacker tries the above operation for 8
S-boxes in round 1. The remaining 8 bits of the full DES key can be found by a
brute-force search using a standard DES implementation. This gives a cracking
complexity of about 213 encryptions.

3.2 Recommended Variant

Chow et al. admit that CEJvO-DES is vulnerable to the statistical bucketing
attack. However, they have proposed the recommended variant of the White-Box
DES Implementation. This variant encodes the input and output of the whole
DES implementation. That is, the recommended variant of the White-Box DES
is a composite of an input hidden bijection, CEJvO-DES, and an output hidden
bijection. They assume that there is no effective attack on the recommended
variant.

Clearly, this modified implementation is not a standard DES cipher. They
explain that this technique is useful because de-encodings can be done some-
where. Cryptography is often built in a large software like a software content
player, thereby the input and output encodings can be canceled with pre- and
post-process of an encryption or a decryption.

3.3 Modifications on LN-DES

Link et al. improved the resistance of CEJvO-DES against the known attacks
without using the recommended variant. This implementation offers two modi-
fications to prevent the statistical bucketing attack.

– Mix the certain 16 bits of Rr with Lr by including a random bijective AT.
– Encode a T-box input as a single 8 × 8-bit bijection.

In the T-box part, Rr and Lr (32 + 32 = 64 bits) must be carried to the next
round (See Figure 1). In one round, the certain 16 bits of Rr that are duplicated
by expansion parmutation E (i.e., 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28,

6 A. Matsunaga and T. Matsumoto

29, and 32nd bit of Rr) must pass to make T-box a bijection. The remaining 48
bits that we call bypass only bits, only pass through. These bits are mixed by
a random bijective AT to diffuse information. In the next round, these bits are
recovered by the inversion of the AT.

In CEJvO-DES, T-box input and output are encoded by two 4 × 4-bit bijec-
tions, which leads to biased data. Therefore, they encode a T-box input as a
single 8 × 8-bit bijection.

As a result, an attacker has difficulty identifying which T-box corresponds to
which S-box in round 2. These ideas are expected to be resistant against the
statistical bucketing attack.

4 Evaluating Tamper Resistance of the Table-Network
Implementation of DES

As mentioned above, the preparation for the statistical bucketing attack requires
two steps. First, search out twelve tables that are T-boxes in round 2. Second,
identify which T-box corresponds to which S-box in these tables. LN-DES focuses
on the latter step.

According to Link et al., LN-DES makes it more difficult to identify which
T-box corresponds to which S-box in round 2, and thus prevents the statistical
bucketing attack. However, a method that identifies which T-box corresponds
to which S-box in round 2 has not been described [1, 3, 4]. Now, we discuss
the identification method. Subsection 4.1 introduces our basic idea, which is
an effective method for CEJvO-DES, but not suitable for LN-DES due to the
modifications shown in Subsection 3.3. Therefore, in Subsections 4.2 and 4.3, we
propose two identification methods that are applicable to LN-DES.

Once the attacker identifies which T-box corresponds to which S-box, the
statistical bucketing attack is possible on LN-DES. Both CEJvO-DES and LN-
DES have the property that if the key is guessed correctly, I ′0 and I ′1 are disjoint
sets; if the guess is wrong, I ′0 and I ′1 are almost overlapped.

Here, we assume that the attacker is able to input arbitrary value to the table-
network implementation, observe outputs and any intermediate values during
computation, and refer to the implemented cryptographic algorithm and corre-
late it with those intermediate values to find out the key.

4.1 Basic Idea

In the DES algorithm, 32 bits of L0 correspond directly to 48 bits of the S-box
input in round 2. Thus, it is already known which bit in L0 affects which S-box in
round 2. Figure 2 shows, for example that the first bit of L0 affects 2S1 and 2S8. In
order to identify which T-box corresponds to which S-box in round 2, we observe
the changes of the T-box input in round 2 when one bit of L0 is changed.

To be more specific, in the DES algorithm, we define rsi(m) as a 6-bit value
that is input to the i-th S-box (for i = 1, . . . , 8) in round r (for r = 1, . . . , 16)
when a plaintext m is encrypted. Here, we select the base plaintext mbase and

Security Evaluation of a Type of Table-Network Implementation 7

E

K1

S1 S8...

E

K2

S1 S8...

P

L1 R1

L0 R0

IP

plaintext m

32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11 12 13

12 13 14 15 16 17 16 17 18 19 20 21 20 21 22 23 24 25

24 25 26 27 28 29 28 29 30 31 32 1

2s1(m)

2s5(m)

2s2(m)

2s6(m)

2s3(m)

2s7(m)

2s4(m)

2s8(m)

: duplicated bits

1 2 3 4 31 32

L0

...5 6 7 8 9 10 11 12

Fig. 2. Correspondence between L0 and 2si(m)

the plaintext mn of which the n-th bit in L0 is changed compared with mbase.
When mbase and mn are encrypted, the value of R0 remains the same. So the
outputs from permutation P in round 1 are the same, too. The changed bit is
input to one of the S-boxes in round 2 (according to the circumstances; this is
input to two of the S-boxes by the effect of Expansion Permutation E). Thus
in these one or two S-boxes, 2si(mn) differs from 2si(mbase). At the other S-
box, 2si(mn) is equal to 2si(mbase). For example, we set mbase to all 0, and
m2 to all 0, excluding the 2nd bit. Then, we encrypt mbase and m2 to observe
2si(mbase) and 2si(m2) for all i. Comparing these two values, we obtain the
result that 2s1(m2) differs from 2s1(mbase) and 2s2(m2), . . . , 2s8(m2) are equal
to 2s2(mbase), . . . , 2s8(mbase) respectively.

In CEJvO-DES, we define rtj(m) as an 8-bit value that inputs to the j-th
T-box (for j = 1, . . . , 12) in round r (for r = 1, . . . , 16) when m is encrypted.
rtj(m) are given by

rtj (m) =
{

rφj (rsj (m) ||rbj (m)) (j = 1, . . . , 8)
rφj (rbj (m)) (j = 9, . . . , 12)

where we define rφj as a bijection (or bijections), which are converted to the
input to j-th T-box in round r, and rbj(m) as bypass only bits of j-th T-box
in round r. Thereby, rbj(m) is a 2-bit value for j = 1, . . . , 8, and an 8-bit value
for j = 9, . . . , 12. Moreover, let || denote vector concatenation. For ease of ex-
planation, we ignore the xor operation with a round key. This is not affect
the outcome of our idea because a round key is a constant value. When mbase

and mn are encrypted, in the construction of CEJvO-DES, 2b1(mn), . . . , 2b8(mn)

8 A. Matsunaga and T. Matsumoto

are equal to 2b1(mbase), . . . , 2b8(mbase) respectively because these are the bits
of L1 (i.e. R0). So, only at the T-box containing the S-box affected by the
changed bit, 2tj(mbase) �= 2tj(mn). At the T-box containing the other S-box,
2tj(mbase) = 2tj(mn). Other results are brought about by 2t9(m), . . . , 2t12(m).
These might or might not contain some bits of L0. Therefore, these values change
irregularly, and we can distinguish them from 2t1(m), . . . , 2t8(m) easily.

For CEJvO-DES, we can identify which T-box corresponds to which S-box in
round 2 in this manner. However, this does not work for LN-DES because the by-
pass only bits are mixed by including a random bijective AT. As a result, 2tj(mn)
changes for many values of j because all the T-boxes contain bypass only bits.

4.2 Identification Method I

For LN-DES, the basic idea is not applicable as it is. So, we notice the existence
of bits that do not change the bypass only bits in round 2. Choosing these bits
and setting mn, we can identify which T-box corresponds to which S-box in
round 2 for LN-DES.

We focus on the 16 bits of R1, which are duplicated by E. In round 2 of
LN-DES, these duplicated bits do not affect bypass only bits, because these bits
are carried as the S-box inputs and passed to the next round to make T-box
a bijection. Figure 3 shows the internal structure of T-boxes. In this figure, an
arrow means 1 bit. The important point is 2 of 6 bits which are input to S-
box, bold arrows in this figure, are duplicated and passed to the next round. As
mentioned, R1 is determined by only L0 between mbase and mn. Therefore, even
if the certain 16 bits of L0 are changed in mn, the bypass only bits of round 2 are
not changed. In other words, 2bj(mbase) = 2bj(mn) for all j and n = 1, 4, 5, 8,
9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, and 32. The procedure for identification
method I is described as follows, and an example is shown in Figure 4.

bijection

Sj

xor with
round key

bijection

bijection bijection

rtj(m)

rsj(m) rbj(m) rbj(m)

rtj(m)

T-box containing S-box
(1 ≤ j ≤ 8)

T-box not containing S-box
(9 ≤ j ≤ 12)

Fig. 3. Structure of T-boxes

Security Evaluation of a Type of Table-Network Implementation 9

10011111
10011111
10011111
10011111
10011111
10011111
10011111
10100100
01011111
01111101
10010001
10011111
10011111
10011111
10011111
10011111

equality
equality
equality
equality
equality
equality
equality
inequality
inequality
inequality
inequarity
equality
equality
equality
equality
equality

n = 1:
n = 4:
n = 5:
n = 8:
n = 9:
n = 12:
n = 13:
n = 16:
n = 17:
n = 20:
n = 21:
n = 24:
n = 25:
n = 28:
n = 29:
n = 32:

10011111 n = 1:
n = 4:
n = 5:
n = 8:
n = 9:
n = 12:
n = 13:
n = 16:
n = 17:
n = 20:
n = 21:
n = 24:
n = 25:
n = 28:
n = 29:
n = 32:

This table is affected by 16, 17, 20, and
21st bits of L0, and therefore contains S5.

2tj(mbase)

2tj(mn)

2tj(mbase) = 2tj(mn)
?

Fig. 4. An example of identification method I

STEP 1: An arbitrary mbase is generated.
STEP 2: 16 kinds of mn are generated for n = 1, 4, 5, 8, 9, 12, 13, 16, 17, 20,

21, 24, 25, 28, 29, and 32.
STEP 3: While encrypting mbase by LN-DES, 2tj(mbase) are observed for all j.

Similarly, while encrypting 16 kinds of mn, 16 kinds of 2tj(mn) are observed
for all j.

STEP 4: The following STEP 5 is repeated for all j.
STEP 5: For all n, we check the combination such that 2tj(mbase) �= 2tj(mn).

If specific 4 patterns shown in Figure 2 are checked, the S-box that the T-box
contains is identified.

4.3 Identification Method II

There are two reasons why 2tj(mn) is changed compared with 2tj(mbase):

(1) 2sj(mn) (and 2bj(mn)) is changed.
(2) 2sj(mn) is not changed but 2bj(mn) is changed.

Focusing on the T-boxes that contain S-boxes (2T1, . . . ,
2T8), we generate mbase

and 32 patterns of mn. Encrypting these plaintexts, 2tj(mbase) and 32 2tj(mn)
are obtained. There are only six of 32 2tj(mn) in which 2sj(mn) is changed com-
pared with 2sj(mbase) (i.e. case (1)). Moreover, these necessarily have different

10 A. Matsunaga and T. Matsumoto

values each other. In the remaining 26 2tj(mn), 2sj(mn) are not changed, but
2bj(mn) are changed because of the random bijective AT (i.e. case (2)). In this
case, 2bj(m) afford only four patterns because 2bj(m) are 2 bits. It is clear
that 2tj(m) also has only four patterns in case (2), and therefore these have a
high probability of overlapping. Exploiting the above property, we exclude the
patterns that overlap each other from 33 2tj(m). As a result, Case (1) and (2)
can be distinguished (See Figure 5).

In 2T9, . . . ,
2T12, the patterns of 2tj(mn) are unpredictable. However, we easily

observe these T-boxes do not contain S-boxes, so that we cannot reduce them
to specific six patterns. The procedure for identification method II is described
as follows, and an example of this method is shown in Figure 6.

...

33 T-box inputs

We can encrypt mbase and 32 mn

and observe 2tj(mbase) and 32 2tj(mn).

2tj(mn) in which 2sj(mn) is
changed from 2sj(mbase).

Case (1)
6 out of 33

...

2tj(mbase) and 2tj(mn) in which 2sj(mn) is
not changed from 2sj(mbase).
There are only 4 patterns.
Overlapping occurs in a high probability.

Case (2)
27 out of 33

Fig. 5. Distinction of T-box inputs

STEP 1: An arbitrary mbase is generated.
STEP 2: 32 kinds of mn are generated for all n.
STEP 3: While encrypting mbase by LN-DES, 2tj(mbase) are observed for all j.

Similarly, while encrypting 32 kinds of mn, 32 kinds of 2tj(mn) are observed
for all j.

STEP 4: The following STEP 5 is repeated for all j.
STEP 5: For all n, we exclude overlapping patterns. If the six specific patterns

shown in Figure 2 remain, the S-box that the T-box contains is identified.

4.4 Computational Costs

In this subsection, we estimate the computational costs of our proposal. Identi-
fication method I encrypts a base plaintext mbase and 16 kinds of mn. Therefore,

Security Evaluation of a Type of Table-Network Implementation 11

10011111
00101110
00101110
10011111
10011111
00101110
10010111
10011111
10011111
10010111
10011110
10011111
10011111
10011111
10011111
10100100

n = 1 :
n = 2 :
n = 3 :
n = 4 :
n = 5 :
n = 6 :
n = 7 :
n = 8 :
n = 9 :
n = 10 :
n = 11 :
n = 12 :
n = 13 :
n = 14 :
n = 15 :
n = 16 :

n = 17 :
n = 18 :
n = 19 :
n = 20 :
n = 21 :
n = 22 :
n = 23 :
n = 24 :
n = 25 :
n = 26 :
n = 27 :
n = 28 :
n = 29 :
n = 30 :
n = 31 :
n = 32 :

10011111

n = 1 :
n = 2 :
n = 3 :
n = 4 :
n = 5 :
n = 6 :
n = 7 :
n = 8 :
n = 9 :
n = 10 :
n = 11 :
n = 12 :
n = 13 :
n = 14 :
n = 15 :
n = 16 :

n = 17 :
n = 18 :
n = 19 :
n = 20 :
n = 21 :
n = 22 :
n = 23 :
n = 24 :
n = 25 :
n = 26 :
n = 27 :
n = 28 :
n = 29 :
n = 30 :
n = 31 :
n = 32 :

The values that
overlap mutually
are excluded.

This table is affected by 16th ~ 21st bits of L0,
and therefore contains S5.

10100100

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A
Pattern A

Pattern A

Pattern A
Pattern A

Pattern A

Pattern A

Pattern A

Pattern A
Pattern A

Pattern A
Pattern A

Pattern A

Pattern A

Pattern B
Pattern B

Pattern B

Pattern B

Pattern B

Pattern C

Pattern C

Pattern D

Pattern D

01011111
00110011
10000100
01111101
10010001
10011111
10011110
10011111
10011111
10011111
00101110
10011111
10011111
00101110
10011111
10011111

01011111
00110011
10000100
01111101
10010001

2tj(mbase)

2tj(mn)

2tj(mbase)

2tj(mn)

Fig. 6. An example of identification method II

the computational costs of this are 17 encryptions. Identification method II also
encrypts mbase and 32 kinds of mn. Hence, this method requires 33 encryptions.
Considering that the computational costs of the Statistical Bucketing Attack are
about 213 encryptions, these costs are relatively less. It follows from this that
we can easily identify which T-box corresponds to which S-box in round 2 in
LN-DES.

5 Conclusions

We have pointed out the existence of a new attack, which can efficiently extract
the hidden key in LN-DES, and thus we have evaluated the tamper-resistance
of LN-DES. We have focused on the statistical bucketing attack. We have pro-
posed the attack’s specific pre-computation methods that can identify which
T-box corresponds to which S-box in round 2. The T-boxes in LN-DES, which
improves CEJvO-DES, can be identified by our methods. As a result, the hid-
den key of LN-DES can be extracted effectively by the statistical bucketing
attack.

This study demonstrates that LN-DES does not have sufficient resistance
against the statistical bucketing attack. In other words, when designing a table-
network implementation of DES or Triple DES, it must have sufficient tamper-
resistance, at least, against our methods. We need novel techniques to guarantee
such resistance.

12 A. Matsunaga and T. Matsumoto

References

1. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A White-Box DES Implemen-
tation for DRM applications, Security and Privacy in Digital Rights Management.
In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg
(2003)

2. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting faults.
In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer, Heidel-
berg (2003)

3. Link, H., Neumann, W.: Clarifying Obfuscation: Improving the Security of
White-Box Encoding, Cryptology ePrint Archive (2004), http://eprint.iacr.
org/2004/025.pdf

4. Link, H., Neumann, W.: Clarifying Obfuscation: Improving the Security of White-
Box DES. In: ITCC 2005. International Conference on Information Technology:
Coding and Computing, vol. 01(1), pp. 679–684. IEEE Computer Society Press,
Los Alamitos (2005)

5. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: White-Box Cryptography
and an AES Implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

6. FIPS 46-3 Data Encryption Standard (DES), http://csrc.nist.gov/
publications/fips/fips46-3/fips46-3.pdf

protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://eprint.iacr.org/2004/025.pdf
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://eprint.iacr.org/2004/025.pdf
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

A Symbolic Intruder Model for Hash-Collision

Attacks�

Yannick Chevalier and Mounira Kourjieh

IRIT Université Paul Sabatier, France
{ychevali,kourjieh}@irit.fr

Abstract. In the recent years, several practical methods have been pub-
lished to compute collisions on some commonly used hash functions.
Starting from two messages m1 and m2 these methods permit to com-
pute m′

1 and m′
2 similar to the former such that they have the same

image for a given hash function. In this paper we present a method to
take into account, at the symbolic level, that an intruder actively attack-
ing a protocol execution may use these collision algorithms in reasonable
time during the attack. This decision procedure relies on the reduction
of constraint solving for an intruder exploiting the collision properties of
hash functions to constraint solving for an intruder operating on words,
that is with an associative symbol of concatenation. The decidability of
the latter is interesting in its own right as it is the first decidability re-
sult that we are aware of for an intruder system for which unification
is infinitary, and permits to consider in other contexts an associative
concatenation of messages instead of their pairing.

1 Introduction

Hash functions. Cryptographic hash functions play a fundamental role in mod-
ern cryptography. While related to conventional hash functions commonly used
in non-cryptographic computer applications - in both cases, larger domains are
mapped to smaller ranges - they have some additional properties. Our focus is
restricted to cryptographic hash functions (hereafter, simply hash functions),
and in particular to their use as cryptographic primitive for data integrity, au-
thentication, key agreement, e-cash and many other cryptographic schemes and
protocols. Hash functions take a message as input and produce an output re-
ferred to as a hash-value, or simply hash.

Collisions. A hash function is many-to-one, implying that the existence of col-
lisions (pairs of inputs with the identical output) is unavoidable. However, only
a few years ago, it was intractable to compute collisions on hash functions, so
they were considered to be collision-free by cryptographers, and protocols were
built upon this assumption. From the nineties on, several authors have proved
the tractability of finding pseudo-collision and collision attacks over several hash

� Supported by ARA-SSIA Cops and ACI JC 9005.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 13–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 Y. Chevalier and M. Kourjieh

functions. Taking this into account, we consider that cryptographic hash func-
tions have the following properties:

– the input can be of any length, the output has a fixed length, h(x) is relatively
easy to compute for any given x;

– pre-image resistance: for essentially all pre-specified outputs, it is computa-
tionally infeasible to find any input which hashes to that outputs, i.e., to
find any x such that y = h(x) when given y;

– 2nd-pre-image resistance: it is computationally infeasible to find any second
input which has the same output as any specified input, i.e., given x , to find
x′ different from x such that h(x) = h(x′);

– hash collision: it is computationally feasible to compute two distinct inputs
x and x′ which hash to the same output, i.e, h(x) = h(x′) provided that x
and x′ are created at the same time and independently one of the other.

In other words, a collision-vulnerable hash function h is one for which an intruder
can find two different messages x and x′ with the same hash value. To mount
a collision attack, an adversary would typically begin by constructing two mes-
sages with the same hash where one message appears legitimate or innocuous
while the other serves the intruder’s purposes. For example, consider the story
of Alice and her boss [8]. Alice has been working for some time in the office of
Julius Caesar. On her last day of work, Caesar gives her a letter of recommen-
dation on paper. Alice decides to take advantage of this opportunity to gain
access to Caesar’s secret documents. Caesar uses MD5 hash function which is
collision−vulnerable for his digital signature algorithm DSA. When she receives
her letter of recommendation on paper, Alice prepares two postcripts files with
the same MD5 hash: one is the letter given by Caesar and the other is an order
from Caesar to grant Alice some kind of security clearance. She asks Caesar to
digitally sign the letter and due to the hash collision, Caesar’s signature for the
letter of recommendation is valid for the order. She then presents the order and
the digital signature to the person in charge of Caesar’s files and finally gains
access to Caesar’s secret documents.

Collisions in practise. MD5 Hash function is one of the most widely used crypto-
graphic hash functions nowadays. It was designed in 1992 as an improvement on
MD4, and its security was widely studied since then by several authors. The first
result was a pseudo-collision for MD5 [9]. Recently, a real collision involving two
1024-bits messages was found with the standard value [18]. This first weakness
was extended into a differential-like attack [21] and tools were developed [10]
for finding the collisions which work for any initialisation value and which are
quicker than methods presented in [18]. Finally, other methods have been devel-
oped for finding new MD5 collisions [22]. The development of collision-finding
algorithms is not restricted to MD5 hash function. Several methods for MD4
research attack have been developed [19]. In [19] a method to search RIPE-MD
collision attacks was also developed, and in [3], a collision on SHA-0 has been
presented. Finally, Wang et al. have developed in [20] another method to search
for collisions for the SHA-1 hash function.

A Symbolic Intruder Model for Hash-Collision Attacks 15

Goal of this paper. This development of methods at the cryptographic level to
built collisions in a reasonable time have until now not been taken into account
in a symbolic model of cryptographic protocols. We also note that the inherent
complexity of these attacks make them not representable in any computational
model that we are aware of. In this paper we propose a decision procedure to
decide insecurity of cryptographic protocols when a hash function for which
collisions may be found is employed. Relying on the result [5] we do not consider
here other cryptographic primitives such as public key encryption, signature or
symmetric key encryption, and assume that a protocol execution has already
been split into the views of the different equational theories. The decidability
proof presented here heavily relies on a recent result [6] that permits to reduce
constraint solving problems with respect to a given intruder to constraint solving
problems for a simpler one. This result relies on a new notion of mode. This
notion aims at exhibiting a modular structure in an equational theory but has
no simple intuitive meaning. In the case of an exponential operator as treated
in [6] the separation was between an exponential symbol and the abelian group
operations on its exponents, whereas here the separation is introduced between
the application of the hash function and the functions employed by the intruder
to find collisions.

Outline. We first give in Section 2 the definitions relating to terms and equa-
tional theories. We then present in Section 3 our model of an attacker against a
protocol, and how we reduce the search for flaws to reachability problems with
respect to an intruder theory. In Section 4 we describe in detail how we model
the fact that an intruder may construct colliding messages, and how this intruder
theory can be decomposed into simpler intruder theories. We give proof sketch
of these reductions in Section 5 and conclude in Section 6.

2 Formal Setting

2.1 Basic Notions

We consider an infinite set of free constants C and an infinite set of variables
X . For any signature G (i.e. sets of function symbols not in C with arities) we
denote T(G) (resp. T(G, X)) the set of terms over G ∪ C (resp. G ∪ C ∪ X). The
former is called the set of ground terms over G, while the latter is simply called
the set of terms over G. The arity of a function symbol f is denoted by ar(f).
Variables are denoted by x, y, terms are denoted by s, t, u, v, and finite sets of
terms are written E, F, ..., and decorations thereof, respectively. We abbreviate
E ∪ F by E, F , the union E ∪ {t} by E, t and E \ {t} by E \ t.

Given a signature G, a constant is either a free constant or a function symbol
of arity 0 in G. We define the set of atoms Atoms to be the union of X and the set
of constants. Given a term t we denote by Var(t) the set of variables occurring
in t and by Cons(t) the set of constants occurring in t. We denote by Atoms(t)
the set Var(t) ∪ Cons(t). A substitution σ is an involutive mapping from X to
T(G, X) such that Supp(σ) = {x|σ(x) �= x}, the support of σ, is a finite set. The

16 Y. Chevalier and M. Kourjieh

application of a substitution σ to a term t (resp. a set of terms E) is denoted tσ
(resp. Eσ) and is equal to the term t (resp. E) where all variables x have been
replaced by the term σ(x). A substitution σ is ground w.r.t. G if the image of
Supp(σ) is included in T(G).

An equational presentation H = (G, A) is defined by a set A of equations u = v
with u, v ∈ T(G, X) and u, v without free constants. For any equational presen-
tation H the relation =H denotes the equational theory generated by (G, A) on
T(G, X), that is the smallest congruence containing all instances of axioms of A.
Abusively we shall not distinguish between an equational presentation H over
a signature G and a set A of equations presenting it and we denote both by H.
We will also often refer to H as an equational theory (meaning the equational
theory presented by H). An equational theory H is said to be consistent if two
free constants are not equal modulo H or, equivalently, if it has a model with
more than one element modulo H.

For all signature G that we consider, we assume that <G is a total simplifi-
cation ordering on T(G) for which the minimal element is a free constant cmin.
Unfailing completion permits, given an equational theory H defined by a set A
of equations, to build from A a (possibly infinite) set R(A) of equations l = r
such that the ordered rewriting relation between terms defined by t →R(A) t′ if:

– There exists l = r ∈ R(A) and a ground substitution σ such that lσ = s and
rσ = s′, t = t[s] and t′ = t[s ← s′];

– We have t′ <G t.

This ordered rewriting relation is convergent, that is for all terms t, all ordered
rewriting sequences starting from t are finite, and they all have the same limit,
called the normal form of t. We denote this term (t)↓R(A), or (t)↓ when the
equational theory considered is clear from the context. In the sequel we denote
Cspe the set consisting of cmin and of all symbols in G of arity 0.

The syntactic subterms of a term t are denoted Subsyn(t) and are defined
recursively as follows. If t is an atom then Subsyn(t) = {t}. If t = f(t1, . . . , tn)
then Subsyn(t) = {t} ∪

⋃n
i=1 Subsyn(ti). The positions in a term t are sequences

of integers defined recursively as follows, ε being the empty sequence. The term
t is at position ε in t. We also say that ε is the root position. We write p ≤ q to
denote that the position p is a prefix of position q. If u is a syntactic subterm
of t at position p and if u = f(u1, . . . , un) then ui is at position p · i in t for
i ∈ {1, . . . , n}. We write t|p the subterm of t at position p. We denote t[s] a term
t that admits s as syntactic subterm. We denote by top() the function that
associates to each term t its root symbol.

2.2 Mode in an Equational Theory

We recall here the notion of mode on a signature, which is defined in [6]. Assume
H is an equational theory over a signature G, and let G0 be a subset of G. Assume

A Symbolic Intruder Model for Hash-Collision Attacks 17

also that the set of variables is partitioned into two sets X0 and X1. We first
define a signature function Sign() on G ∪ Atoms in the following way:

Sign() : G ∪ Atoms → {0, 1, 2}

Sign(f) =

⎧⎨
⎩

0 if f ∈ G0 ∪ X0
1 if f ∈ (G \ G0) ∪ X1
2 otherwise, i.e. when f is a free constant

The function Sign() is extended to terms by taking Sign(t)= Sign(top(t)).
We also assume that there exists a mode function m(·, ·) such that m(f, i) is

defined for every symbol f ∈ G and every integer i such that 1 ≤ i ≤ ar(f). For
all valid f, i we have m(f, i) ∈ {0, 1} and m(f, i) ≤ Sign(f). Thus for all f ∈ G0
and for all i we have m(f, i) = 0.

Well-Moded Equational Theories. A position different from ε in a term t
is well-moded if it can be written p · i (where p is a position and i a nonnegative
integer) such that Sign(t|p·i) = m(top(t|p), i). In other words the position in
a term is well-moded if the subterm at that position is of the expected type
w.r.t. the function symbol immediately above it. A term is well-moded if all its
non root positions are well-moded. Note in particular that a well-moded term
does not contain free constants. If a position of t is not well-moded we say it
is ill-moded in t. A term is pure if its only ill-moded subterms are atoms. An
equational presentation H = (G, A) is well-moded if for all equations u = v in A
the terms u and v are well-moded and Sign(u)=Sign(v). One can prove that if
an equational theory is well-moded then its completion is also well-moded [6].

Note that if H is the union of two equational theories H0 and H1 over two
disjoint signatures G0 and G1, the theory H is well-moded when assigning mode
i to each argument of each operator g ∈ Gi, for i ∈ {0, 1}.

Subterm Values. The notion of mode also permits to define a new subterm
relation in T(G, X).

We call a subterm value of a term t a syntactic subterm of t that is either
atomic or occurs at an ill-moded position of t1. We denote Sub(t) the set of sub-
term values of t. By extension, for a set of terms E, the set Sub(E) is defined as
the union of the subterm values of the elements of E. The subset of the maximal
and strict subterm values of a term t plays an important role in the sequel. We
call these subterm values the factors of t, and denote this set Factors(t).

Example 1. Consider two binary symbols f and g with Sign(f) = Sign(g) =
m(f, 1) = m(g, 1) = 1 and m(f, 2) = m(g, 2) = 0, and t = f(f(g(a, b), f(c, c)), d).
Its subterm values are a, b, f(c, c), c, d, and its factors are a, b, f(c, c) and d.

In the rest of this paper and unless otherwise indicated, the notion of subterm
will refer to subterm values.

1 Note that the root position of a term is always ill-moded.

18 Y. Chevalier and M. Kourjieh

Unification systems. We review here properties of well-moded theories with
respect to unification that are addressed in [6].

Assume H is a well-moded equational theory over a signature G, and let H0
be its projection over the signature G0 of symbols of signature 0. Let us first
define unification systems with ordering constraints.

Definition 1. (Unification systems) Let H be a set of equational axioms on
T(G, X). An H-unification system S is a finite set of couples of terms in T(G, X)
denoted by {ui

?= vi}i∈{1,...,n}. It is satisfied by a ground substitution σ, and we
note σ |= HS, if for all i ∈ {1, . . . , n} we have uiσ =H viσ.

We will consider only satisfiability of unification systems with ordering con-
straints. That is, we consider the following decision problem:
Ordered Unifiability

Input: A H-unification system S and an ordering ≺ on the variables X
and constants C of S.

Output: Sat iff there exists a substitution σ such that σ |=H S and for
all x ∈ X and c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

3 Analysis of Reachability Properties of Cryptographic
Protocols

We recall in this section the definitions of [5] concerning our model of an intruder
attacking actively a protocol, and of the simultaneous constraint satisfaction
problems employed to model a finite execution of a protocol.

3.1 Intruder Deduction Systems

We first give here the general definition of intruder systems, as is given in [5]. We
then give the definition of a well-moded intruder that we will use in this paper.
In the context of a security protocol (see e.g. [13] for a brief overview), we model
messages as ground terms and intruder deduction rules as rewrite rules on sets
of messages representing the knowledge of an intruder. The intruder derives new
messages from a given (finite) set of messages by applying intruder rules. Since
we assume some equational axioms H are satisfied by the function symbols in
the signature, all these derivations have to be considered modulo the equational
congruence =H generated by these axioms. In our setting an intruder deduction
rule is specified by a term t in some signature G. Given values for the variables
of t the intruder is able to generate the corresponding instance of t.

Definition 2. An intruder system I is given by a triple 〈G, S, H〉 where G is a
signature, S ⊆ T(G, X) and H is a set of equations between terms in T(G, X).
To each t ∈ S we associate a deduction rule Lt : Var(t) → t and Lt,g denotes
the set of ground instances of the rule Lt modulo H:

Lt,g = {l → r | ∃σ, ground substitution on G, l = Var(t)σ and r =H tσ}

The set of rules LI is defined as the union of the sets Lt,g for all t ∈ S.

A Symbolic Intruder Model for Hash-Collision Attacks 19

Each rule l → r in LI defines an intruder deduction relation →l→r between
finite sets of terms. Given two finite sets of terms E and F we define E →l→r F
if and only if l ⊆ E and F = E ∪ {r}. We denote →I the union of the relations
→l→r for all l → r in LI and by →∗

I the transitive closure of →I . Note that by
definition, given sets of terms E, E′ ,F and F ′ such that E =H E′ and F =H F ′

we have E →I F iff E′ →I F ′. We simply denote by → the relation →I when
there is no ambiguity about I.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E0 →I
E0, t1 →I · · · →I En with finite sets of ground terms E0, . . . En, and ground
terms t1, . . . , tn, such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}. The term
tn is called the goal of the derivation. We define E

I
to be equal to the set

{t | ∃F s.t. E →∗
I F and t ∈ F} i.e. the set of terms that can be derived from E.

If there is no ambiguity on the deduction system I we write E instead of E
I
.

We now define well-moded intruder systems and their properties.

Definition 3. Given a well-moded equational theory H, an intruder system I =
〈G, S, H〉 is well-moded if all terms in S are well-moded.

3.2 Simultaneous Constraint Satisfaction Problems

We introduce now the constraint systems to be solved for checking protocols. It
is shown in [5] how these constraint systems permit to express the reachability
of a state in a protocol execution.

Definition 4. (Constraint systems) Let I = 〈G, S, H〉 be an intruder system.
An I-Constraint system C is denoted: ((Ei � vi)i∈{1,...,n}, S) and it is defined
by a sequence of couples (Ei, vi)i∈{1,...,n} with vi ∈ X and Ei ⊆ T(G, X) for
i ∈ {1, . . . , n}, and Ei−1 ⊆ Ei for i ∈ {2, . . . , n} and by an H-unification system
S.

An I-Constraint system C is satisfied by a ground substitution σ if for all
i ∈ {1, . . . , n} we have viσ ∈ Eiσ and if σ |=H S. If a ground substitution σ
satisfies a constraint system C we denote it by σ |=I C.

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of constraint
and unification systems the substitution (σ)↓ is also a solution of C. In the context
of cryptographic protocols the inclusion Ei−1 ⊆ Ei means that the knowledge
of an intruder does not decrease as the protocol progresses: after receiving a
message a honest agent will respond to it. This response can be added to the
knowledge of an intruder who listens to all communications.

We are not interested in general constraint systems but only in those related
to protocols. In particular we need to express that a message to be sent at some
step i should be built from previously received messages recorded in the variables
vj , j < i, and from the initial knowledge. To this end we define:

Definition 5. (Deterministic Constraint Systems) We say that an I-constraint
system ((Ei � vi)i∈{1,...,n}, S) is deterministic if for all i in {1, . . . , n} we have
Var(Ei) ⊆ {v1, . . . , vi−1}

20 Y. Chevalier and M. Kourjieh

In order to be able to combine solutions of constraints for the intruder theory I
with solutions of constraint systems for intruders defined on a disjoint signature
we have, as for unification, to introduce some ordering constraints to be satisfied
by the solution (see [5] for details on this construction). Intuitively, these ordering
constraints prevent from introducing cycle when building a global solution. This
motivates us to define the Ordered Satisfiability problem:

Ordered Satisfiability
Input: an I-constraint system C, X = Var(C), C = Const(C) and a

linear ordering ≺ on X ∪ C.
Output: Sat iff there exists a substitution σ such that σ |=I C and

for all x ∈ X and c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

4 Model of a Collision-Aware Intruder

We define in this section intruder systems to model the way an active intruder
may deliberately create collisions for the application of hash functions. Note
that our model doesn’t take into account the time for finding collisions, which
is significantly greater than the time necessary for other operations. The results
that we can obtain can therefore be seen as worst-case results, and should be
assessed with respect to the possible time deadline in the actual specification
of a protocol under analysis. Further works will also be concerned with the fact
that given a bound on intruder’s deduction capabilities, a collision may be found
only with a probability p, 0 ≤ p ≤ 1.

We consider in this paper five different intruder models. We will reduce in
two steps the most complex one to a simpler one, relying on the notion of well-
moded theories and on the results in [6]. We then prove decidability of ordered
reachability for this simpler intruder system.

4.1 Intruder on Words

We first define our goal intruder, that is an intruder only able to concatenate
messages and extract prefixes and suffixes. We denote IAU = 〈FAU , SAU , EAU 〉
an intruder system that operates on words, such that, if · denotes the concate-
nation and ε denotes the empty word, the intruder has at its disposal all ground
instances of the following deduction rules:

{
x, y → x · y → ε
x · y → x x · y → y

We moreover assume that the concatenation and empty word operations satisfy
the following equations:

{
x · (y · z) = (x · y) · z

x · ε = x ε · x = x

A Symbolic Intruder Model for Hash-Collision Attacks 21

Given these definitions, we can see terms over T(FAU, X) as words over the
alphabet X ∪ C, and we denote letters(w) the set of atoms (either variable or
free constants) occurring in w. As usual, we extend letters() to set of terms in
T(FAU, X) by taking the union of letters occurring in each term.

Pitfall. Note that this intruder model does not fit into the intruder systems
definition of [5,6]. The rationale for this is that, in the notation given here,
the application of the rules is non-deterministic, and thus cannot be modelled
easily into our “deduction by normalisation” model. We however believe that a
deterministic and still associative model of message concatenation by means of an
“element” unary operator, associative operator “·”, and Head and Tail operations
may be introduced. This means that we also assume that unification problems
are only among words of this underlying theory, disregarding equations that
may involve these extra operators. We leave the exact soundness of our model
for further analysis and concentrate on the treatment of collisions discovery for
hash functions.

4.2 Intruder on Words with Free Function Symbols

We extend the IAU intruder with two free function symbols g and f. We first
define an intruder able to compose messages using a free function symbol g of
arity 4. We denote Ig = 〈{g}, {g(x1, x2, y1, y2)}, ∅〉 this intruder. It has at its
disposal all ground instances of the following rule:

x1, x2, y1, y2 → g(x1, x2, y1, y2)

We define a similar intruder with function symbol f. We denote If =
〈{f}, {f(x1, x2, y1, y2)}, ∅〉 this intruder which has at its disposal all ground in-
stances of the following rule:

x1, x2, y1, y2 → f(x1, x2, y1, y2)

Finally, we define Ifree intruder as the disjoint union of IAU, If and Ig, and we
have:

Ifree = 〈FAU ∪ {g, f}, SAU ∪ {f(x1, x2, y1, y2), g(x1, x2, y1, y2)}, EAU〉 .

4.3 Hash-Colliding Intruder

We consider a signature modelling the following different operations:

– The concatenation of two messages, the extraction of a suffix or a prefix of
a concatenated message and the production of an empty message, as in the
case of the IAU intruder system;

– The application of a hash function h for which it is possible to find collisions,
the hash-value of a message m denoted h(m);

– Two function symbols f and g denoting the (complex) algorithm being used
to find collisions starting from two different messages m and m′.

22 Y. Chevalier and M. Kourjieh

We assume that the algorithm employed by the intruder to find collisions
starting from two messages m and m′ proceeds as follows:

1. First the intruder splits both messages into two parts, thus choosing
m1, m2, m

′
1, m

′
2 such that m = m1 · m2 and m′ = m′

1 · m′
2;

2. Then, in order to find collisions, the intruder computes two messages
g(m1, m2, m

′
1, m

′
2) and f(m1, m2, m

′
1, m

′
2) such that:

(HC) h(m1 · g(m1, m2, m
′
1, m

′
2) · m2) = h(m′

1 · f(m1, m2, m
′
1, m

′
2) · m′

2)

A consequence of our model is that in order to build collisions starting from
two messages m and m′ the intruder must know (i.e. have in its knowledge set)
these two messages. A side effect is that it is not possible to build three (or
more) different messages with the same hash value by iterating the research for
collisions. Formally, the core of the proof of this assertion is the following lemma
that permits to prove that in an equivalence class of Eh containing pure terms
there exists only two different members modulo EAU. The proof is in [4]. In the
following lemma, t =1

HC t′ denotes that there exists a one step rewriting between
t and t′ using (HC) rule.

Lemma 1. Let t0, t, t
′ ∈ T(Fh, X) such that t0 =EAU t =1

HC t′ and t0 = h(t1 ·
f(t1, t2, t3, t4) · t2). We have: t′ =EAU h(t3 · g(t1, t2, t3, t4) · t4).

In a more comprehensive model we might moreover want to model that collisions
cannot always be found using attacks published in the literature, but instead that
given a deadline, the probability p of success of an attack is strictly below 1. This
would imply that the application of this rule by the intruder would, assuming
independence of collision attacks, reduce the likelihood of the symbolic attack
found. In this setting our model would account for attacks with a non-negligible
probability of success as is shown in [2].

Leaving probabilities aside, we express intruder’s deductions in our setting
by adding the rule x → h(x) to the deduction rules of the Ifree intruder. As a
consequence, the previous description of the Ifree intruder enables us to model a
collision-capable intruder

Ih=〈Fh, Sh, Eh〉

with:

⎧⎨
⎩

Fh = FAU ∪ {f, g, h}
Sh = SAU ∪ {f(x1, x2, y1, y2), g(x1, x2, y1, y2), h(x)}
Eh = EAU ∪ {(HC)}

For the following mode and signature functions the theory EAU ∪ {(HC)} is a
well-moded theory.

mode:
{

m(., 1) = m(., 2) = m(g , i) = m(f , i) = 0 ∀i ∈ {1, . . . , 4}
m(h , 1) = 0

Signature:
{

Sign(·) = Sign(ε) = Sign(f) = Sign(g) = 0
Sign(h) = 1

A Symbolic Intruder Model for Hash-Collision Attacks 23

Notice that in this case, every well-moded syntactic subterm of a term t is of
signature 0, and that every ill-moded strict syntactic subterm is of signature
1 [4]. The main result of this paper is the following decidability result.

Theorem 1. Ordered satisfiability for the Ih intruder is decidable.

Ih

Algorithm 1
��

Ifree

Generic combination algorithm [5]
��

��
�

����
�

��
�

����
�

Ig If IAU

Fig. 1. Reduction strategy

The rest of this paper is dedicated to
the proof of this theorem. The tech-
nique employed consists in successive
reductions to simpler problems and in
finally proving that all simpler prob-
lems are decidable. These reductions
are summarised in Figure 1. A proof
sketch for the decidability of the Ig,
If and IAU is given in Section 5.2. Al-
gorithm 1, that permits the first re-
duction, is based on the facts that the Ih intruder is well-moded (as seen above)
and that we can apply a reduction according to the criterion of [6] for well-moded
intruder systems.

CRITERION: If E →S1 E, r →S1 E, r, t and r /∈ Sub(E, t)∪Cspe then there
is a set of terms F such that E →∗

S0
F →S1 F, t.

If a well-moded intruder system system satisfies this criterion, then the fol-
lowing proposition holds. It is a cornerstone for the proof of completeness of
Algorithm 1.

Proposition 1. Let I be a well-moded intruder that satisfies criterion, and let
C be a deterministic I-constraint system. If C is satisfiable, there exists a sub-
stitution σ such that σ |=I C and:

{t ∈ Sub((Sub(C)σ)↓)|Sign(t) = 1} ⊆ {(tσ)↓| (t ∈ Sub(C) and Sign(t) = 1) or t ∈ X}

5 Decidability of Reachability

We present here a decision procedure for Ordered Satisfiability Problem for Ih

intruder system. Our technique consists in simplifying the intruder system Ih

to Ifree. We then reduce the decidability problems of ordered reachability for
deterministic constraint problems for Ifree to the decidability problems of ordered
reachability for deterministic constraint problems for Ig, If and IAU. We finally
prove the decidability for these intruder systems.

5.1 Reduction to Ifree-intruder

Algorithm. We present here a procedure for reducing Ih intruder system to
Ifree intruder system that takes as input a deterministic constraint system C
= ((Ei�vi)i∈{1,...,n}, S) and a linear ordering ≺i on atoms of C. Let m = |Sub(C)|
be the number of subterms in C.

24 Y. Chevalier and M. Kourjieh

Algorithm 1
Step 1. Choose a number k ≤ m and add k equations hj

?= h(cj) to S where
the hj, cj are new variables.

Step 2. For each t ∈ Sub(C) ∪ {c1, . . . , ck} choose a type 0 or 1. If t is of type 1,
choose jt ∈ {1, . . . , k} and add an equation t

?= hjt to S.
Step 3. For all t, t′ ∈ Sub(C), if there exists h ∈ {h1, . . . , hk} such that t

?= h

and t′ ?= h are in S, add to S an equation t
?= t′ to S.

Step 4. Choose a subset H of {c1, . . . , ck}∪{h1, . . . , hk} and guess a total order
<d on L = H ∪ {v1, . . . , vn} such that vi <d vj iff i < j. Write the
obtained list w1, . . . , wl. Let S’ be the unification system obtained so
far, and form: C′ = ((Fi � wi)1≤i≤l, S′) with:⎧⎨

⎩
F1 = E1

Fi+1 = Fi ∪ (Ej+1 \ Ej) if wi = vj

Fi+1 = Fi, wi Otherwise

Step 5. For all t ∈ Sub(C) chosen of type 1, replace all occurrences of t in the
Fi and all occurrence occurrences of t as a strict subterm in S′ by the
representant of its class hjt . Let F ′

i be the set Fi once this abstraction
has been applied

Step 6. Non-deterministically reduce S’ to a unification system S” free of h
symbols, and form the satisfiable Ifree constraint system:

C′′ = ((F ′
i � wi)1≤i≤l, S′′)

Sketch of the Completeness Proof. Assume that the initial deterministic
constraint system is satisfiable. By Proposition 1, there exists a bound substitu-
tion σ satisfying C.

– Let the number k chosen at Step 1 be the number of subterms whose top
symbol is h in Sub((Sub(C)σ)↓). The hj represent the different values of the
terms of signature 1. In the sequel we assume that σ is extended to the hj

such that all hjσ have a different value and are of signature 1.
– In Step 2, if Sign((tσ)↓) = 1 we choose the j such that (tσ)↓ = hjσ and add

the corresponding equation to S.
– In Step 3, we add equations between terms whose normal form by σ are

equals in order to simplify the reduction to Ifree.
– Step 4 is slightly more intricate. It relies on the fact that a rule in S1 may

only yield a term whose normal form by σ is of signature 1.
The subset H correspond to the subterms of signature 1 of Sub((Sub(Cσ))↓)

that are deduced by the intruder using a rule in S1. We then anticipate the con-
struction of hjσ with the application of a rule in S1 by requiring that the corre-
sponding cjσ has to be build just before. Given the bound on k, this means that
all remaining deductions performed by the intruder are now instances of rules
in S0. Since C is satisfied by σ there exists a choice corresponding to quasi well-
formed derivations such that all remaining reachability constraints are satisfi-
able by instances of rules in S0.

A Symbolic Intruder Model for Hash-Collision Attacks 25

– At Step 5 we “purify” almost all the constraint system by removing all
occurrences of a symbol h but the ones that are on the top of an equality.
By the choice of the equivalence classes it is clear that this purification does
not loose the satisfiability by the substitution σ.

– The non-deterministic reduction is performed by guessing whether the equal-
ity of two hashes is the consequence of a collision set up by the intruder or
of the equality of the hashed messages, and will produce a constraint system
C” without h symbol and also satisfiable by σ.

5.2 Decidability of Reachability for the Ifree-intruder

We first reduce the Ifree intruder system to simpler intruder systems using the
combination result of [5]. We will consider the decidability of these subsystems
in the remainder of this section.

Theorem 2. Ordered satisfiability for the Ifree intruder system is decidable.

Decidability of reachability for the Ig-intruder. In this subsection, we consider
an Ig intruder system with Ig = 〈g, g(x1, x2, x

′
1, x

′
2), ∅〉. This intruder has at its

disposal all ground instances of the following deduction rule:

x1, x2, y1, y2 → g(x1, x2, y1, y2)

Theorem 3. Ordered satisfiability for the Ig intruder system is decidable.

The proof of the above theorem is in [4]. Since the Ig and If intruder are iso-
morphic the result also applies to If after renaming of the symbol g into f.

Decidability of reachability for the AU-intruder. We now give a proof sketch for
the decidability of ordered satisfiability for the IAU intruder since the procedure
is new.

Theorem 4. Ordered satisfiability for the IAU intruder system is decidable.

Proof. The algorithm proceeds as follows:

– Transform the deduction constraints E � v into an ordering constraint <d;
– Check that <=<d ∪ <i is still a partial order on atoms of C;
– Solve the unification problem with linear constant restriction <.

Let C = ((Ei � vi)0≤i≤n, S) be a deterministic constraint system for the IAU
intruder, <i be a (partial) order on Cons(C) ∪ Var(C), and let σ be a solution of
the (C, <i) ordered satisfiability problem.

Given a set of terms E ⊆ T(FAU, X), let us denote KC = (Cons(C) \
letters(E)) \X . In plain words, KC(E) is the set of constants in C not occurring
in E. We are now ready to define <d as a partial order on Cons(C)∪{v0, . . . , vn}:
We set vi <d c for all constants c in KC(Ei).

26 Y. Chevalier and M. Kourjieh

Claim. For all σ, we have σ |= (C, <i) if, and only if, σ |= (S, <i ∪ <d)

Proof of the claim. Let us first prove the direct implication. Let σ be a
ground solution of the (C, <i) ordered satisfiability problem. By definition we
have that σ is a solution of (S, <i) ordered unifiability problem. Since for all
0 ≤ i ≤ n we have σ |= Ei�vi, we easily see that letters((viσ)↓) ⊆ Cons(Ei), and
therefore letters((viσ)↓)∩KC(Ei) = ∅. Thus σ is also a solution of (S, <d ∪ <i).
Conversely, assume now that σ is a ground solution of (S, <d ∪ <i). By definition
for all 0 ≤ i ≤ n we have letters((viσ)↓)∩KC(Ei) = ∅, and thus letters((viσ)↓) ⊆
letters(Ei) \ X . Thus we have (viσ)↓ ∈ (Eiσ)↓ for all 0 ≤ i ≤ n, and thus
σ |= (C, <i) ♦

Since unifiability with linear constant restriction is decidable for the AU
equational theory [17], this finishes the proof of the theorem. Note that the
exact complexity is not known, but the problem is NP-hard and solvable in
PSPACE [14,15], and it is conjectured to be in NP [16,11]. �

6 Conclusion

We have presented here a novel decision procedure for the search for attacks on
protocols employing hash functions subject to collision attacks. Since this proce-
dure is of practical interest for the analysis of the already normalised protocols
relying on these weak functions, we plan to implement it into an already existing
tool, CL-Atse [12]. Alternatively an implementation may be done in OFMC [1],
though the support of associative operators is still partial. We also plan to for-
malise according to the model of [5] the underlying AU intruder system. In order
to model hash functions we have introduced new symbols to denote the ability
to create messages with the same hash value. This introduction amounts to the
skolemisation of the equational property describing the existence of collisions.
We believe that this construction can be extended to model the more complex
and game-based properties that appear when relating a symbolic and a concrete
model of cryptographic primitives.

References

1. Basin, D.A., Mödersheim, S., Viganò, L.: Ofmc: A symbolic model checker for
security protocols. Int. J. Inf. Sec. 4(3), 181–208 (2005)

2. Baudet, M.: Random polynomial-time attacks and Dolev-Yao models. In: Anan-
tharaman, S. (ed.) SASYFT 2004. Proceedings of the Workshop on Security of
Systems: Formalism and Tools, Orléans, France (June 2004)

3. Biham, E., Chen, R.: Near-collisions of sha-0. In: Frankli, M.K. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

4. Chevalier, Y., Kourjieh, M.: A symbolic intruder model for hash-collision attacks.
Technical report, IRIT (to appear)

5. Chevalier, Y., Rusinowitch, M.: Combining intruder theories. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 639–651. Springer, Heidelberg (2005)

A Symbolic Intruder Model for Hash-Collision Attacks 27

6. Chevalier, Y., Rusinowitch, M.: Hierarchical combination of intruder theories. In:
Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, Springer, Heidelberg (2005)

7. Cramer, R.J.F. (ed.): EUROCRYPT 2005. LNCS, vol. 3494, pp. 22–26. Springer,
Heidelberg (2005)

8. Daum, M., Lucks, S.: Attacking hash functions by poisoned messages. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, Springer, Heidelberg (2005),
http://www.cits.rub.de/MD5Collisions

9. den Boer, B., Bosselaers, A.: Collisions for the compressin function of md5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

10. Kl̀ıma, V.: Finding md5 collisions on a notebook pc using multi-message mod-
ificatons, Cryptology ePrint Archive, Report 2005/102 (2005), http://eprint.
iacr.org/

11. Larsen, K.G., Skyum, S., Winskel, G.: Automata, languages and programming. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
13–17. Springer, Heidelberg (1998)

12. Turuani, M.: The cl-atse protocol analyser, 17th international conference on term
rewriting and applications - rta 2006, seattle, wa/usa (July 12 2006) 4098, 277–286
(2006)

13. Meadows, C.: The NRL protocol analyzer: an overview. Journal of Logic Program-
ming 26(2), 113–131 (1996)

14. Plandowski, W.: Satisfiability of word equations with constants is in pspace. In:
FOCS, pp. 495–500 (1999)

15. Plandowski, W.: Satisfiability of word equations with constants is in pspace. J.
ACM, 483–496 (2004)

16. Plandowski, W., Rytter, W.: Application of lempel-ziv encodings to the solution
of words equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)

17. Schulz, K.U.: Makanin’s algorithm for word equations - two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992)

18. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions md4, md5, haval-
128 and ripemd (2004), http://eprint.iacr.org/

19. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
md4 and ripemd. In: Cramer [7], pp. 1–18

20. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

21. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Cramer [7], pp.
19–35

22. Yajima, J., Shimoyama, T.: Wang’s sufficient conditions of md5 are not sufficient
(2005), http://eprint.iacr.org/

http://www.cits.rub.de/MD5Collisions
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef U/msb/m/n/5 {OT1/cmr/m/n/9 }U/msb/m/n/5 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef U/msb/m/n/5 {OT1/cmr/m/n/9 }U/msb/m/n/5 size@update enc@update http://eprint.iacr.org/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

A Denotational Approach to Scope-Based

Compensable Flow Language for Web Service�

Huibiao Zhu, Geguang Pu, and Jifeng He

Software Engineering Institute, East China Normal University
3663 Zhongshan Road (North), Shanghai, China 200062

{hbzhu,ggpu,jifeng}@sei.ecnu.edu.cn

Abstract. Web Services have become more and more important in these
years, and BPEL4WS is a de facto standard for the web service composi-
tion and orchestration. We have proposed a language BPEL0 to capture
the important features of BPEL4WS, with the scope-based compensation
and fault handling mechanism. In this paper we formalize the denota-
tional semantics for BPEL0, which can support the refinement calculus
and the verification of program equivalence. A set of algebraic laws is
investigated within the denotational framework. The distinct features of
BPEL0 make the investigation of the denotational semantics and alge-
braic laws more challenging.

1 Introduction

Web services and other web-based applications have been becoming more and
more important in practice. In this blooming field, various web-based business
process languages have been introduced, such as XLANG, WSFL, BPEL4WS
(BPEL) and StAC [2,3,7,8]. BPEL has become the de facto standard for specify-
ing and executing workflow specification for web service composition. It contains
several interesting features, including the scope-based compensation and fault
handling mechanism.

In [4], we have focused on the theoretical foundations of scope-based flow
language and proposed a language BPEL0. We have formalized its operational
semantics. For the aim of exploring program equivalence, we have also introduced
the concept of bisimulation in a hierarchy structure.

Compared with operational semantics, denotational semantics provides more
abstract meanings to programs. The distinct features of BPEL0 make the study of
the denotational semantics more challenging. Our approach for the formalization
of the denotational semantics for BPEL0 is under Unifying Theories of program-
ming (abbreviated as UTP) [5]. Denotational semantics can be used to deduce the
interesting properties of programs. These properties are most elegantly expressed
as algebraic laws [5], which can be verified in our denotational framework.

� Partially supported by National Basic Research Program of China (No.
2002CB312001 and No. 2005CB321904) and the 211 project of The Ministry of
Education of China.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 28–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Denotational Approach to Scope-Based Compensable Flow Language 29

This paper is organised as follows. Section 2 introduces the language BPEL0
and explores its semantic model. The behaviour of a statement is expressed in a
form consisting of four parts: divergent, waiting, fault and terminating part. In or-
der to deal with the compensation feature, two semantic variables are introduced,
which store the programs for compensation in nested stack structures. Section 3
formalises the denotational semantics of each statement. Algebraic laws have also
been studied, including the BPEL featured laws. Section 4 concludes the paper.

2 The Semantic Model for BPEL0

2.1 The Syntax of BPEL0

BPEL0 is a subset of BPEL, where its syntax is designed in the style of tradi-
tional programming languages instead of complicated XML style. Its syntax is
described as follows:

BA ::= skip | x := e | wait n | rec a x | inv a x y | throw
A ::= BA | A; A | if b then A else A | while do P |

A ‖ A | A � A | {A ? C :F}n

C, F ::= �n | . . . (similar to A)
BP ::= {|A : F |}

where:
“x := e” is the assignment, which is considered as an atomic action in our

language. “skip” behaves the same as “x := x”. “wait n” let time advance n time
units, where n is considered as a positive integer. “rec a x” models a process
calling a web service, named a. As a result, it receives a value storing in variable
x. Similarly, “inv a x y” models calling a web service (named a) with y as its
parameter. However, for a service call, a fault may be encountered.

P ‖ Q is the parallel composition. Our parallel mechanism is a shared-variable
interleaving model. For a parallel process, if one component enters into a fault
state after performing a sequence of actions, the whole process also enters into
the fault state.

{A ? C : F}n stands for a scope-based compensation statement, where n is
the scope name, and A, C and F stand for the primary activity, compensation
handler and fault handler respectively. The execution of a scope is the execution
of its primary activity. The compensation handler is installed with its scope
name when the primary activity completes its execution. During the execution
of the primary activity, if a fault is encountered, the corresponding fault handler
will be triggered for further execution. An installed compensation handler with
the scope name n can be invoked by activity �n.

{|A : F |} stands for the business process. It is at the outmost level of the scope-
based compensation process, where it does not have the compensation part. Here
A and F stand for the primary activity and fault handler respectively.

In order to consider the compensation mechanism, we first give the definition
of the concept of compensation sequence:

30 H. Zhu, G. Pu, and J. He

(1) 〈 〉 is a compensation sequence;
(2) ((C1, n1) : α1)̂ . . .̂((Cm, nm) : αm) is a compensation sequence if α1, . . . , αm

are also compensation sequences.

For the aim of installing the compensation handler in the execution of a
scope, we introduce two variables s1 and s2. Both of them are compensation
sequences. Variable s1 records the accumulated compensation handlers installed
in the immediately enclosing scope before the current scope starts. It is called
as the static compensation text. On the other hand, s2 is used to record the
accumulated compensation closures during the execution of the current scope,
which can be changed within the execution of the current scope. We regard s2
as the active compensation text.

2.2 The Semantic Model

This section considers the denotational model for BPEL0. Our approach is based
on the relational calculus [5]. In order to deal with the shared-variable parallel
model for BPEL0, we introduce a trace variable tr into our semantic framework,
which consists of a sequence of snapshots. A snapshot is used to record the con-
tribution of an atomic action, which can be expressed as a pair (t, σ), where: (1) t
indicates the time when the atomic action happens; (2) σ stores the contribution
of the atomic action. For the elements selection from a snapshot, we can define:

π1((t, σ)) =df t and π2((t, σ)) =df σ

For the aim of describing the timed feature of BPEL0, we introduce two
variables time and time′ to model the observation interval. In our model time
and time′ stand for the starting point and ending point of an observation interval
correspondingly. We use δ(time) to represent the length of the time interval,
which is defined as δ(time) =df (time′ − time), and is abbreviated as δ.

In order to deal with the compensation feature, we introduce two pairs of
variables s1 and s1′, as well as s2 and s2′. Here, (1) s1 and s1′ stand for the
initial and final static compensation behaviour respectively; (2) s2 and s2′ stand
for the initial and final active compensation behaviour correspondingly.

A process may perform an infinite computation and enter into a divergent
state. To distinguish its chaotic behaviour from the stable ones we introduce the
variables ok, ok′ : Bool into the semantic model, where “ok = true” indicates the
process has been started, and “ok′ = true” states the process has become stable.
A service call may wait for the remote process to transfer a message back to the
program. For dealing with the waiting behaviour, we introduce another pair of
variables wait, wait′ : Bool. “wait = true” indicates that the process starts in
an intermediate state, and “wait′ = true” means the process is waiting.

For the aim of dealing with the fault handling, we introduce two Boolean
variables fault and fault′. “fault = true” indicates that the prior process has
encountered a fault, whereas “fault = false” indicates that the prior process
has successfully terminated.

A Denotational Approach to Scope-Based Compensable Flow Language 31

The execution of a program can never undo an atomic action performed al-
ready. A formula P which identifies a program must therefore imply this fact;
i.e., it has to meet the following healthiness condition:

(H1) P = P ∧ Inv(tr), where Inv(tr) =df tr � tr′

Here Inv(tr) indicates that tr is a prefix of tr′, which indicates that trace can
only get longer. Here, s � t indicates that s is a prefix of t.

Now we consider the healthiness conditions that a program should satisfy. For
sequential composition “R ; P”, it is defined as the relational composition [5];
i.e., R ; P =df ∃S • R[S/X ′] ∧P [S/X], where X stands for all the free variables
of R and P .

The introduction of intermediate waiting state has implications for sequential
composition “R; P”: if P is asked to start in a waiting state of R, it leaves the
state unchanged; i.e., it satisfies the following healthiness condition.
(H2) P = II � wait � P , where, P � b � Q =df (b ∧ P) ∨ (¬b ∧ Q)
We leave the definition of II direct after the healthiness condition (H3).

Similarly, for process “R; P”, if process R has encountered a fault, P can-
not have the chance to be scheduled. Therefore, it should satisfy the following
healthiness condition:
(H3) P = II � fault � P

where: II =df true
 (δ = 0) ∧ (tr′ = tr) ∧ (
∧

x∈{s1,s2,wait,fault} x′ = x)

P
 Q =df ¬ok ∧ Inv(tr) ∨ ¬P ∨ (ok′ ∧ Q)

Definition 2.1 A formula is healthy if and only if it can be expressed as the
form below:

H(Q
 W � wait′ � (F � fault′ � T))
where, H(X) =df (II � wait � (II � fault � (X ∧ Inv(tr)))) �
Theorem 2.2 A healthy formula satisfies healthiness conditions (H1), (H2)
and (H3). �
Theorem 2.3 If P1 and P2 are healthy formulae, so are P1 ∨ P2, P1 ∧ P2,
P1 � b � P2 and P1 ; P2. �
Let Pi = H(Qi
 Wi�wait′�(Fi�fault′�Ti)), where ¬Qi = ¬Qi∧Inv(tr),
Wi = Wi ∧ Inv(tr), Fi = Fi ∧ Inv(tr), Ti = Ti ∧ Inv(tr) for i = 1, 2, then
we can have:

P1 ; P2 = H(¬(¬Q1 ; Inv(tr)) ∧ ¬(T1 ; ¬Q2)
 (W1 ∨ (T1 ; W2)) � wait′ �
((F1 ∨ (T1 ; F2)) � fault′ � (T1 ; T2)))

This theorem shows that healthy formulae are closed under sequential com-
position, conditional choice, disjunction and conjunction.

In what follows, the denotational semantics of a program can be expressed in
the form:

H(¬D
 W � wait′ � (F � fault′ � T))

32 H. Zhu, G. Pu, and J. He

where, (1) D stands for the divergent behaviour of the process. (2) W stands for
the waiting behaviour of the process. (3) F stands for the behaviour the process
has been performed before it encounters a fault. (4) T stands for the terminating
behaviour of the process.

For simplicity, for a healthy formula P , we use div(P), wait(P), fau(P) and
ter(P) to represent its divergent, waiting, fault and terminating behaviours re-
spectively. For a program P , we use [[P]] to represent its denotational semantics.
Now we consider the refinement of two programs.

Definition 2.4 (Refinement) P � Q =df [[P]] ⇒ [[Q]]

3 The Denotational Semantics of BPEL0

3.1 Primitive Statement

P ; Q behaves like P before P terminates, then behaves like Q afterwards.

[[P ; Q]] =df [[P]] ; [[Q]]

The execution of assignment is instantaneous, which indicates that the length of
the corresponding observation interval is 0 (i.e., δ = 0). Further, the execution
does not cause any faults and is not in the waiting state.

[[x := e]]

=df H

⎛
⎜⎝true
 ¬wait′ ∧ ¬fault′ ∧

⎛
⎜⎝

δ = 0 ∧ stable∧
(tr′ = tr � π2(last(tr))(x) = e�

tr′ = tr̂(time, π2(last(tr))[e/x]))

⎞
⎟⎠

⎞
⎟⎠

where: (1) stable =df (s1′ = s1) ∧ (s2′ = s2 = 〈〉). (2) last(s) denotes the last
element of sequence s.

skip behaves the same as x := x. It is the unit of sequential composition.
(skip-1) skip ; P = skip = P ; skip

The BPEL0 assignment obeys the same set of algebraic laws as its counterpart
in conventional programming languages.
(assign-1) x := x = skip, (assign-2) (x := e) = (x, y := e, y)
(assign-3) (x, y, z := e, f, g) = (y, x, z := f, e, g)

throw encounters a fault immediately. All the variables remain unchanged.

[[throw]] =df H(true
 ¬wait′ ∧ fault ∧ stable ∧ (tr′ = tr) ∧ (δ = 0))

where, stable has been defined as shown above.

throw is the left unit of sequential composition.
(throw-1) throw ; P = throw

A Denotational Approach to Scope-Based Compensable Flow Language 33

Proof. Here we only give the consider the fault part. The proof for other parts
is similar.

fau([[throw]] ; [[P]]) {Def of throw, Th 2.3}
= fau([[throw]]) ∨ (false ; fau([[P]])) {false ; X = false}
= fau([[throw]]) �

“wait n” let time advance n time units. Its meaning can be expressed as:
[[wait n]]

=df H(true
 ((δ < n) � wait′ � ¬fault′ ∧ (δ = n)) ∧ stable ∧ (tr′ = tr))

The delay command satisfies the law below.
(delay-1) wait n ; wait m = wait (n + m)

For nondeterministic choice, conditional, iteration and service call, their seman-
tics can be found in [6].

3.2 Scope Activity

{A? C : Y }n models the scope-based compensation and fault handling behaviour.

Let [[A]] = H(¬D1
 W1 � wait′ � (F1 � fault′ � T1))
[[Y]] = H(¬D2
 W2 � wait′ � (F2 � fault′ � T2))

Then, div([[{A ? C : Y }n]]) =df D1 ∨ (F1 ; D2)
wait([[{A ? C : Y }n]]) =df W1 ∨ (F1 ; W2)
fau([[{A ? C : Y }n]]) =df F1 ; F2

ter([[{A ? C : Y }n]]) =df (T1 ; Comp(C, n)) ∨ (F1 ; T2)
where, Comp(C, n) =df δ = 0 ∧ s1′ = ((P, n) : s2)̂s1 ∧ ([[P]] ⇒ [[C]]) ∧ s2′ = 〈〉.

For the terminating behaviour of {A ?C : Y }n, if process A terminates suc-
cessfully, the whole process also terminates successfully. In this case, program C
will be installed for the later compensation use, which has been expressed using
the behaviour Comp(C, n) shown above. Further, if process A encounters a fault
which activates the execution of process Y , and the execution of Y terminates
successfully, the whole process also terminates successfully.

The scope activity satisfies the following algebraic laws.
(scope-1) If A1 does not have rec, inv and throw statements,

then A1 ; {A ? C : F}n = {(A1; A) ? C : F}n

(scope-2) {(A1 � A2) ? C : F}n = {A1 ? C : F}n � {A2 ? C : F}n

(scope-3) {A ? C : (F1 � F2)}n = {A ? C : F1}n � {A ? C : F2}n

(scope-4) {(if b then A1 else A2) ? C : F}n

= if b then {A1 ? C : F}n else {A2 ? C : F}n

(scope-5) {while b do A ? C : F}n

= if b then {(A ; while b do A) ? C : F}n else {skip ? C : F}n

34 H. Zhu, G. Pu, and J. He

The business process {|P : F |} is at the outmost level of the scope-based com-
pensation process.

Let P = H(¬D1
 W1 � wait′ � (F1 � fault′ � T1))
F = H(¬D2
 W2 � wait′ � (F2 � fault′ � T2))

Then div([[{|P : F |}]]) =df D1∨(F1; D2), wait([[{|P : F |}]]) =df W1 ∨ (F1; W2)
fau([[{|P : F |}]]) =df F1; F2, ter([[{|P : F |}]]) =df T1 ∨ (F1; T2)

The business process {|P : F |} shares similar scope algebraic laws.

3.3 Looking Up

� n looks up process with the scope name n from the static compensation se-
quence, and executes it when successfully finding it.

[[�n]] =df ∃x, x′ •
(

x = ge(s1, n) ∧ (s2′ = s2 =<>)∧
s1′ = x′ ∧ [[gp(s1, n)]][x/s1, x′/s1′]

)

Function gp(s1, n) is used to find the corresponding process with the scope
name n. After the successful finding, the corresponding process will be executed,
where its initial value of s1 should be replaced with the rest corresponding subse-
quence expressed by ge(s1, n). The detailed definition of gp(s1, n) and ge(s1, n)
can be found in [6].

3.4 Parallel Composition

Firstly, we define a function merge, which can be used to merge two traces from
different parallel components.
(1) merge(ε, ε) =df {ε}, merge(ε, âs) =df {âs}, merge(âs, ε) =df {âs}

(2) merge(âs, b̂t) =df

⎧⎪⎪⎨
⎪⎪⎩

{âx|x ∈ merge(s, b̂t)} if π1(a) < π1(b)
{b̂x|x ∈ merge(âs, t)} if π1(a) > π1(b)
{âx|x ∈ merge(a, b̂t)}∪ if π1(a) = π1(b)
{b̂x|x ∈ merge(âs, t)}

Next we define the ⊗ operator for parallel composition, which can be used to
define the combined behaviour for two parallel components.

X ⊗ Y =df

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃ tr1, tr2, s11, s12, s21, s22, tr′1, tr
′
2, s11′, s12′, s21′, s22′•

tr1 = tr2 = tr ∧ s11 = s12 = s1 ∧ s21 = s22 = s2 ∧
X [tr1, s11, s21, tr′1, s11′, s21′/tr, s1, s2, tr′, s1′, s2′] ∧
Y [tr2, s12, s22, tr′2, s12′, s22′/tr, s1, s2, tr′, s1′, s2′] ∧

tr′ − tr ∈ merge(tr′1 − tr1, tr
′
2 − tr2) ∧

(s1′ − s1 � (s11′ − s11)̂(s12′ − s12) ∨
s1′ − s1 � s12′ − s12)̂(s11′ − s11)) ∧

(s2′ − s2 � (s21′ − s21)̂(s22′ − s22) ∨
s2′ − s2 � s22′ − s22)̂(s21′ − s21))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A Denotational Approach to Scope-Based Compensable Flow Language 35

For the contributed static compensation sequence of X ⊗ Y (denoted as
s1′ − s1), it can either be the refinement of the contributed static compensa-
tion sequence for X followed by the contributed static compensation sequence
for Y , or the refinement of the compensation sequence for Y followed by the
sequence for X . This can be expressed via “s1′−s1 � (s11′−s11)̂(s12′−s12)”
or “s1′ − s1 � s12′ − s12)̂(s11′ − s11)”. Here, � stands for the refinement
for the compensation sequences, which is defined as: ((C, n) : s)̂t � ((D, n) :
u)̂v =df ([[C]] ⇒ [[D]]) ∧ (s � u) ∧ (t � v) ∧ Cond(s, u) ∧ Cond(t, v), where
Cond(x, y) =df x = 〈〉 ⇔ y = 〈〉. We also add 〈〉 � 〈〉 for the completion of the
definition. Similar analysis also applies to the active compensation sequence.

Finally, we give the definition for parallel composition, which is based on the
divergent, waiting, fault and terminating behaviours of two parallel components.

• It behaves chaotically if either component is divergent.
div([[P ‖ Q]]) =df div([[P]]) ⊗ div([[Q]]) ∨ div([[P]]) ⊗ wait([[Q]]) ∨

div([[P]]) ⊗ fau([[Q]]) ∨ div([[P]]) ⊗ (ter([[Q]]); Θ) ∨
wait([[P]]) ⊗ div([[Q]]) ∨ fau([[P]]) ⊗ div([[Q]]) ∨
(ter([[P]]); Θ) ⊗ div([[Q]])

where, Θ =df ∃n • (s1′ = s1) ∧ (s2′ = s2) ∧ (tr′ = tr) ∧ δ(time) = n. Here Θ
is used to synchronize the behaviour of a process with its parallel partner.

• It stays in a waiting state if either component does so.
wait([[P ‖ Q]]) =df wait([[P]]) ⊗ wait([[Q]]) ∨ wait([[P]]) ⊗ (ter([[Q]]); Θ)

(ter([[P]]); Θ) ⊗ wait([[Q]])
• It is in the fault state if either component is at the fault state.

fau([[P ‖ Q]]) =df fau([[P]]) ⊗ fau([[Q]]) ∨ fau([[P]]) ⊗ (ter([[Q]]); Θ) ∨
(ter([[P]]); Θ) ⊗ fau([[Q]]) ∨ wait([[P]]) ⊗ fau([[Q]])
fau([[P]]) ⊗ wait([[Q]])

• It terminates when both components complete their execution.
ter([[P ‖ Q]]) =df ter([[P]]) ⊗ (ter([[Q]]); Θ) ∨ (ter([[P]]); Θ) ⊗ ter([[Q]])

4 Conclusion

In this paper, we have formalized the denotational semantics for BPEL0, which
is a kernel subset for BPEL. In order to formalize the fault handling mechanism,
we have introduced fault behaviour in our denotational semantic framework.
Meanwhile, aimed to deal with the scope-based compensation, two nested stack
structured variables have been applied.

The formalized denotational semantics can help us to do refinement calculus
and equivalence checking for processes. Based on the achieved semantics, a set
of algebraic laws has been explored, also including the BPEL featured algebraic
laws.

For the future, we are continuing to explore web service models with other dif-
ferent fundamental features [1]. Based on this, the exploration of their semantics
is an interesting and immediate start.

36 H. Zhu, G. Pu, and J. He

References

1. Alonso, G., Kuno, H., Casati, F., Machiraju, V.: Web Services: Concepts, Architec-
tures and Applications. Springer, Heidelberg (2003)

2. Butler, M.J., Ferreira, C.: An operational semantics for StAC, a language for mod-
elling long-running business transactions. In: De Nicola, R., Ferrari, G.L., Meredith,
G. (eds.) COORDINATION 2004. LNCS, vol. 2949, Springer, Heidelberg (2004)

3. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Satish Thatte, M.,
Weerawarana, S.: Business Process Execution Language for Web Service (2003),
http://www.siebel.com/bpel

4. Pu, G., Zhu, H., Qiu, Z., Wang, S., Zhao, X., He, J.: Theoretical foundations of
scope-based compensation flow language for web service. In: Gorrieri, R., Wehrheim,
H. (eds.) FMOODS 2006. LNCS, vol. 4037, Springer, Heidelberg (2006)

5. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Inter-
national Series in Computer Science (1998)

6. Zhu, H., Pu, G., He, J.: A denotational approach to scope-based compensable flow
language for web service. Technical report, Software Engineering Institute, East
China Normal University (2006)

7. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM (2001),
http://www-3.ibm.com/software/solutions/webservices/pdf/WSDL.pdf

8. Thatte, S.: XLANG: Web Service for Business Process Design. Microsoft (2001),
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.html

http://www.siebel.com/bpel
http://www-3.ibm.com/software/solutions/webservices/pdf/WSDL.pdf
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.html

Certificateless Authenticated Two-Party

Key Agreement Protocols

Tarjei K. Mandt and Chik How Tan

Norwegian Information Security Laboratory
Department of Computer Science and Media Technology

Gjøvik University College
P.O. Box 191, N-2802 Gjøvik, Norway

{tarjei.mandt,chik.tan}@hig.no

Abstract. In their seminal paper on certificateless public key cryptog-
raphy, Al-Riyami and Paterson (AP) proposed a certificateless authen-
ticated key agreement protocol. Key agreement protocols are one of the
fundamental primitives of cryptography, and allow users to establish ses-
sion keys securely in the presence of an active adversary. AP’s protocol
essentially requires each party to compute four bilinear pairings. Such
operations can be computationally expensive, and should therefore be
used moderately in key agreement. In this paper, we propose a new
certificateless authenticated two-party key agreement protocol that only
requires each party to compute two pairings. We analyze the security of
the protocol and show that it achieves the desired security attributes.
Furthermore, we show that our protocol can be used to establish keys
between users of different key generation centers.

Keywords: Certificateless public key cryptography, authenticated key
agreement, bilinear map.

1 Introduction

In the public key infrastructure (PKI), certificates are used to provide an assur-
ance of the relationship between the public keys and the identities that hold the
corresponding private keys. However, there are many problems associated with
certificates such as revocation, storage, distribution, and cost of validation. In
1984, Shamir [7] proposed the notion of identity-based public key cryptography
(ID-PKC) to simplify certificate management. The idea of ID-PKC is to let an
entity’s public key be directly derived from certain aspects of its identity, such
as the IP address of the hostname or the e-mail address. Thus, ID-PKC also
eliminates the need for certificates.

Unfortunately, ID-PKC is not without problems. Identity-based systems rely
on a private key generator (PKG) that uses a system-wide master key in gener-
ating private keys. Thus, many identity-based schemes inevitably introduce key
escrow : the PKG can recover the session key established by entities for which it
has issued a private key. This property is either acceptable or unacceptable. For
instance, in the health care profession it may be a legal requirement to provide

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 37–44, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

38 T.K. Mandt and C.H. Tan

an audit trail to every transaction. On the other hand, such invasion of privacy
may cause ID-PKC to be unsuited in a variety of other applications, such as
personal communications.

Certificateless public key cryptography (CL-PKC) [1] was proposed by Al-
Riyami and Paterson to alleviate the problems associated with PKI and ID-
PKC. It does not require the use of certificates and yet does not have the key
escrow limitation of ID-PKC. For this reason, CL-PKC can be seen as a public
key cryptography model intermediate between the two former paradigms.

In their seminal paper, Al-Riyami and Paterson (AP) proposed a certificate-
less authenticated two-party key agreement protocol. Key agreement protocols
allow entities to establish session keys securely in the presence of an active ad-
versary. AP’s protocol essentially requires each party to compute four bilinear
pairings. Such operations can be computationally expensive (for instance, on
low-power devices) and should therefore be used moderately in key agreement.
Moreover, AP’s protocol also requires users to exchange public keys comprising
two group elements. Ideally, public keys should only comprise one group element
as in identity-based key agreement.

This paper proposes a new certificateless authenticated two-party key agree-
ment protocol [5] that is more efficient than AP’s protocol. Each entity involved
in the protocol is only required to compute two pairings, and the public keys
exchanged by the entities only comprise one group element. As public keys are
not bound to a specific key generation center (KGC), the protocol can also be
used to establish session keys between users of different KGCs. Furthermore,
we show that the protocol achieves the security attributes that are desired in
authenticated key agreement.

The rest of the paper is organized as follows. In Section 2 we give underlying
definitions and define the security attributes of authenticated key agreement. In
Section 3 we propose a new certificateless authenticated two-party key agreement
protocol, and in Section 4 we show how the protocol can be used by entities of
different KGCs. In Section 5 and 6 we analyze the security and the efficiency of
the protocol respectively, and in Section 7 we provide a conclusion of the paper.

2 Preliminaries

2.1 Bilinear Pairings

Let G1 be an additive group with a large prime order q and let G2 be a mul-
tiplicative group of the same order. An admissible pairing e is then a function
e : G1 × G1 → G2 that satisfies the following properties:

1. Bilinearity: For all P, Q ∈ G1 and a, b ∈ Z∗
q , e(aP, bQ) = e(P, Q)ab.

2. Non-degeneracy: There exists a P ∈ G1 such that e(P, P) �= 1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

The admissible pairing e can be derived from a Weil or Tate pairing on an
elliptic curve over a finite field. For further details, see [3].

Certificateless Authenticated Two-Party Key Agreement Protocols 39

2.2 Diffie-Hellman Problems

The security of the proposed protocols is based on a set of well-studied problems
that are assumed to be hard to compute efficiently. These problems are defined
as follows:

Definition 1 (Discrete Logarithm Problem). Given Q ∈ G1 where P is a
generator of G1, find an element a ∈ Z∗

q such that aP = Q.

Definition 2 (Computational Diffie-Hellman Problem). Let P be a gen-
erator of G1. Given 〈P, aP, bP 〉 ∈ G1 where a, b ∈ Z∗

q , compute abP .

Definition 3 (Bilinear Diffie-Hellman Problem). Let e be a bilinear pair-
ing on (G1, G2) and P be a generator of G1. Given 〈P, aP, bP, cP 〉 ∈ G1 where
a, b, c ∈ Z∗

q, compute e(P, P)abc ∈ G2.

We assume that the order q of the groups G1 and G2 is large enough to make
solving the discrete logarithm problem computationally infeasible.

2.3 Security of Authenticated Key Agreement

A key agreement protocol is said to be authenticated (AK) if it ensures authen-
ticity of the involved parties. Specifically, a party can only compute a shared
key if it holds the claimed identity. Thus, by mutually proving possession of the
shared key, each party may be assured that the peer is a legitimate entity. The
proposed protocols of this paper will use cryptographic message authentication
codes in providing such assurance.

Definition 4 (Message Authentication Code). A message authentication
code MAC = (Kmac, Tmac, Vmac) consists of three algorithms: key generation Kmac,
message authentication Tmac and verification Vmac. The key generation algorithm
Kmac generates a key k ← Kmac. The message authentication algorithm Tmac re-
turns an authentication tag τ = Tmac(k, m) for given a key k and a message m.
The verification algorithm Vmac returns 1 for ”accept” and 0 for ”reject”, for
given a key k, the message m and the authentication tag τ .

Furthermore, it is desired that AK protocols possess a number of security at-
tributes [2, 4]:

– Known session key security. Each run of the key agreement protocol
should result in a unique secret session key. An adversary who learns a
session key should not be able to recover data from past or future sessions.

– Forward secrecy. If long-term private keys of one or more entities are com-
promised, the secrecy of previous session keys established by these entities
should not be affected. In the presence of a key generation center (KGC) with
a system-wide master key, KGC forward secrecy implies that compromise of
this key should not reveal previously established session keys.

40 T.K. Mandt and C.H. Tan

– Key-compromise impersonation. If A’s long-term private key is com-
promised, the adversary can impersonate A, but the adversary should not
be able to impersonate other entities to A.

– Unknown key-share. Entity A should not be coerced into sharing a key
with entity C when, in fact, A thinks she is sharing a key with entity B.

– Key control. Neither party involved in a protocol run should be able to
control the outcome of the session key more than the other.

– Known session-specific temporary information security. Many pro-
tocols use some randomized private input to produce a unique session key
in each run of a protocol. Exposure of such private temporary information
should not compromise the secrecy of the generated session key.

3 Proposed Certificateless Authenticated Key Agreement

In this section, we will present a new certificateless authenticated two-party
key agreement protocol based on pairings. As noted earlier, certificateless key
agreement does not rely on certificates, nor does it employ a key generation
center (KGC) that knows every user’s private key.

Setup: Let H1 and H2 be two independent key derivation functions such that
H1 : G2 × G1 × G1 → {0, 1}k and H2 : G2 × G1 × G1 → {0, 1}l for some
integers k, l > 0. Let also H be a Map-To-Point [3] function such that H :
{0, 1}∗ → G1. The KGC randomly selects its secret master key s ∈ Z

∗
q and

computes the public key P0 = sP where P ∈ G1 is a public generator. The
KGC then publishes the system parameters 〈G1, G2, e, q, P, P0, H, H1, H2〉.

Private Key Extraction: For any given entity A with identity IDA ∈ {0, 1}∗,
the long-term private/public key pair is generated as follows:
1. A randomly selects a secret value xA ∈ Z∗

q .
2. The KGC generates A’s partial private key DA = sQA where A’s iden-

tifier QA = H(IDA) ∈ G1. A may check the validity of DA by verifying
that e(QA, P0) = e(DA, P).

3. A’s (full) private key is given by SA = 〈DA, xA〉. A’s public key is com-
puted as PA = xAP .

For entity B, the private key extraction is similar to A.
Key Agreement: In order to jointly establish a session key, entities A and B

randomly select the short-term session-specific private keys a, b ∈ Z∗
q and

compute the corresponding short-term public keys TA = aP and TB = bP
respectively. They then exchange the following messages:

(1) A → B : TA, PA

(2) B → A : TB, PB, Tmac(k′, TB, PB)
(3) A → B : Tmac(k′, TA, PA)

Both entities validate each other’s public key by testing the group mem-
bership PA, PB ∈ G∗

1. The MAC algorithm Tmac is used to generate an au-
thentication tag τ of the shared key k′ (defined below) and the transmitted

Certificateless Authenticated Two-Party Key Agreement Protocols 41

message. If a party fails to verify a received authentication tag, then the
protocol run is terminated. A and B compute the session key as follows:

KA = e(QB, P0 + PB)a · e(DA + xAQA, TB)

KB = e(DB + xBQB, TA) · e(QA, P0 + PA)b

The scheme is consistent because:

K = KA = KB = e(QB, P)a(s+xB) · e(QA, P)b(s+xA)

In order to ensure that an attacker cannot gain any information from the
session key, A and B use a key derivation function H on K, abP , and xAxBP .
Thus, the final session key is given by k = H1(K‖abP‖xAxBP). The MAC
key k′ = H2(K‖abP‖xAxBP) is different from k in order to provide key
indistinguishability [2].

Note that both parties are authenticated through the verification of an au-
thentication tag τ (provided by the peer) when they successfully establish a
shared key. Thus, both parties are assured that the peer holds the claimed iden-
tity. If no such assurance had been provided, an adversary could possibly engage
in a key agreement with B, while impersonating A. This would lead B to falsely
believe a session key is established with A.

Furthermore, note that the structure of the long-term private/public key pair
differs from Al-Riyami and Paterson’s protocol [1]. Specifically, the public key
PA only comprises one element of G1 and no longer binds an entity to a specific
KGC, thus allowing protocol participants under different trusted authorities to
establish keys. Also see that SA separates DA from xA such that these values
may be used independently (in [1], SA = xADA) in session key construction.

4 Certificateless Key Agreement Using Separate KGCs

It may in many cases be desired by users of different KGCs to establish shared
keys. For example, in order for encrypted VoIP to be able to operate globally,
key agreement and compatibility between networks become a necessary require-
ment. The following protocol enables session key establishment between users of
different KGCs in the certificateless setting.

Setup: Let H , H1, and H2 be defined as in the previous protocol. Two different
key generation centers, KGC1 and KGC2, then respectively generate a key
pair (P1 = s1P ∈ G1, s1 ∈ Z∗

q) and (P2 = s2P ∈ G1, s2 ∈ Z∗
q) where

P and G1 are globally agreed. Both KGCs publish their respective public
parameters.

Private Key Extraction: This step is similar to the previous protocol, except
that entities A and B have their partial private keys generated by different
KGCs. Thus, A, under KGC1, has the private key SA = 〈DA = s1QA, xA〉,
while B, under KGC2, has the private key SB = 〈DB = s2QB, xB〉.

42 T.K. Mandt and C.H. Tan

Key Agreement: A and B generate short-term keys and exchange messages as
in the previous protocol. In computing the session key, however, each entity
uses the KGC public key of the peer. Thus, A uses P2 = s2P in computing
the shared key, while B uses P1 = s1P . A and B then compute respectively:

KA = e(QB, P2 + PB)a · e(DA + xAQA, TB)

KB = e(DB + xBQB, TA) · e(QA, P1 + PA)b

The scheme is consistent because:

K = KA = KB = e(QB, P)a(s2+xB) · e(QA, P)b(s1+xA)

The final session key is given by k = H1(K‖abP‖xAxBP).

5 Security Attributes

In this section, we will show that the proposed protocol achieves the security
attributes identified in Section 2.3. Note that we only consider the basic protocol
of Section 3, as it is very similar to the multi-KGC protocol. Furthermore, we
trust the KGC not to replace any long-term public keys as, in doing so, a man-
in-the-middle attack is made possible (see [1, 5] for discussion).

– Known session key security. As short-term keys are used in generating
session keys, a compromised session key does not compromise past or future
sessions. All protocol runs, even when its participants remain the same,
produce a different session key.

– Forward secrecy. We let this property constitute two separate parts; both
to capture the forward secrecy against an adversary who holds both A and
B’s long-term private keys (user forward secrecy) and against an adversary
who has the KGC master key (KGC forward secrecy).

• User forward secrecy. Compromising the long-term private keys of en-
tities A and B will not reveal previously established session keys. In
order to compute abP of H1(K‖abP‖xAxBP), an adversary must know
at least one short-term private key of a given session.

• KGC forward secrecy. Compromise of the KGC master key s does not en-
able an adversary to reveal previously established session keys. Although
the adversary may generate partial private keys, both a short-term pri-
vate key and the long-term (full) private key of a party involved in a
session must be obtained in order to compute the established key.

– Key-compromise impersonation. The proposed protocol is resistant to
key-compromise impersonation. Assume that the adversary E knows A’s
private key SA = 〈DA, xA〉. If E is to impersonate B in a protocol run with
A, then E must be able to correctly compute K = KA = KB. E cannot
compute KA = e(QB, PB +P0)a ·e(DA +xAQA, TB) where P0 = sP because
she does not know the short-term key a. If E was to compute KB, she would
need to know B’s long-term private key SB. Although E could possibly
replace B’s public key PB with a value of her choice, she would still need to
know DB = sQB in order to successfully impersonate B to A.

Certificateless Authenticated Two-Party Key Agreement Protocols 43

– Unknown key-share. Suppose an adversary E attempts to make A believe
a key is shared with B, while B instead believes the key is shared with E.
For E to launch this attack successfully, she should force A and B to share
the same secret K = KA = KB. However, A and B can never share the same
key if they don’t believe they are mutually communicating. This stems from
the fact that both parties use the identifier of the intended peer (i.e. A uses
QB, while B uses QE) in computing the session key. Thus, A cannot verify
the authentication tag τ generated by B (passed on by E) and the attack
fails.

– Key control. Neither party can control the outcome of the session key.
However, if A sends her short-term key first, B may be able to predict some
bits of the final key by trying different short-term keys before sending the
key back to A. Precisely, in computing the shared session key f(a, b) where
a is known, B may compute 2s variants of b and thus select approximately
s bits of the joint key. This deficiency exists in all interactive key agreement
protocols as pointed out by [6].

– Known session-specific temporary information security. Compromis-
ing the short-term private keys of a session does not reveal the established
key. Specifically, obtaining the keys a and b in any session between entities A
and B, allows the adversary to compute K = (QB, PB +P0)a ·(QA, PA+P0)b

and abP . However, in order to compute xAxBP , the adversary must also
know at least one long-term private key (or solve the CDH problem). Note
that an adversary who is able to obtain short-term private keys is considered
very powerful and can break many existing protocols (see [4] for examples).

6 Efficiency

The efficiency of key agreement protocols is essentially measured by the com-
putational and communication overhead. Communication overhead refers to the
number of bits transmitted by each entity in a protocol run, while computational
overhead refers to the cost of all arithmetic computations each entity must per-
form in order to carry out the key agreement. Table 1 compares the efficiency
of the proposed protocol to the previously proposed protocol by Al-Riyami and
Paterson. In evaluating the computational overhead, only heavy operations such
as pairings, point multiplications, and pairing exponentiations are considered.
Generally, point multiplications and pairing exponentiations are much faster to
compute than pairings.

In AP’s protocol, each entity is required to exchange three group elements, of
which one element represents the short-term public key and the other elements
represent the long-term public key. Each entity also must compute four pairings,
perform two point multiplications, and make one pairing exponentiation. Note
that an entity must still compute four pairings, even when values are precomputed
(aspects of the session key is computed before a protocol run).

In the proposed protocol, each entity is only required to compute two pair-
ings, perform three point multiplications, and make one pairing exponentiation.

44 T.K. Mandt and C.H. Tan

Table 1. Efficiency of certificateless authenticated key agreement protocols

Al-Riyami-Paterson[1] Proposed protocol

Message 3 elements of G1 2 elements of G1

No precomputation 4p + 2m + 1e 2p + 3m + 1e
Precomputation 4p + 1m 2p + 2m

Notation: (p)airing, point (m)ultiplication, pairing (e)xponentiation

Moreover, the long-term public keys only comprise one group element, and thus,
the protocol can be considered more efficient than AP’s in terms of computation
and message bandwidth. Although the proposed protocol introduces one addi-
tional pass and requires entities to compute MACs, AP’s protocol should use a
similar method in order to prevent an adversary from impersonating parties.

Once long-term public keys have been exchanged in both protocols, only a sin-
gle pairing is required by the participating parties. Thus, certificateless protocols
can be just as efficient as identity-based schemes.

7 Conclusion

This paper has proposed a certificateless authenticated two-party key agreement
protocol that is more efficient than the previously proposed protocol by Al-
Riyami and Paterson. The protocol is more efficient both in terms of computation
and message bandwidth. The protocol also achieves the security attributes that
are desired in authenticated key agreement. Furthermore, the proposed protocol
can be used to establish keys between users of different key generation centers.

References

[1] Al-Riyami, S.S., Paterson, K.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

[2] Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman Key Agreement Pro-
tocols. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361.
Springer, Heidelberg (1998)

[3] Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

[4] Cheng, Z., Nistazakis, M., Comley, R., Vasiu, L.: On The Indistinguishability-
Based Security Model of Key Agreement Protocols - Simple Cases. Technical Track
Proceedings, Journal of China Information Security. ICISA Press (2004)

[5] Mandt, T.K.: Certificateless Authenticated Two-Party Key Agreement Protocols.
Master’s Thesis. Gjøvik University College (2006)

[6] Mitchell, C.J., Ward, M., Wilson, P.: Key Control in Key Agreement Protocols.
Electronics Letters 34, 980–981 (1998)

[7] Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Hei-
delberg (1985)

FORM : A Federated Rights Expression Model

for Open DRM Frameworks

Thierry Sans, Frédéric Cuppens, and Nora Cuppens-Boulahia

GET/ENST Bretagne,
2 rue de la Châtaigneraie, 35576 Cesson-Sévigné Cedex, France

{thierry.sans, frederic.cuppens, nora.cuppens}@enst-bretagne.fr

Abstract. Digital Rights Management frameworks (DRM) aim at pro-
tecting and controlling information contents widely distributed on client
devices. Using a license, the content provider can decide which rights
can be rendered and who are the authorized end-users (as identity hold-
ers) allowed to exercise those rights. Most of the time, it is hard to add
new feature to the client application, it is even impossible when the new
feature is not considered trustworthy by the corporation distributing the
rendering application. In a same way, the rendering application identifies
the end-user with a dedicated identity and it is impossible to take into
account an identity provided by an external corporation. In this paper,
we aim at providing a federated approach called FORM where a content
provider can decide to trust external rendering rights and external identi-
ties. We even go further introducing identity providers, actions providers
as we consider content providers. Thus, all kind of providers can define
license specifying what can be done with the object they provide. FORM
defines a new license model and a new license interpretation mechanism
taking into account all licenses issued by a federation of object providers.

1 Introduction

In a corporate information system, the information remain on the trusted server
side and only an extract or a computation of the information is given to the
end-user. Nowadays with the development of Internet and better bandwidths,
multimedia contents are more and more widely spread over the Internet. Obvi-
ously, with multimedia application it is impossible to keep the information on
the server side and only send the result of the rendering to the client. So, the in-
formation and the corresponding rendering application must be sent to the client
side. Then, the problem is how to keep the information under control whereas
the information content itself and the rendering application do not remain on
a safe domain of the information system. Digital Rights Management (DRM)
frameworks [12,1] aim at providing security mechanisms in order to protect and
keep sensitive information under control even if it is out of the scope of a cor-
porate information system. Mainly, a DRM framework provides three essential
components: 1) A content packager in charge of protecting digital documents in
order to ensure information confidentiality [1]. 2) A license designer in charge

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 45–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

46 T. Sans, F. Cuppens, and N. Cuppens-Boulahia

of defining the license according to the Right Expression Language (REL) used
by the given DRM framework [1,10]; the license specifies what could be done
with the content (rights) and who are the authorized end-users (identity) hav-
ing those rights. 3) A rendering application [1] in charge of interpreting licenses
to decide if a right can be exercised or not, and possibly, render this right to
the end-users. The decision mechanism is given by the semantics of the under-
lying license interpretation model defined by the Rights Expression Language.
The rendering application is executed on the client side and is able to deal with
the content protection. So, the rendering application must be trustworthy and
tamper resistant [6,1].

If we focus on the rendering application we can see that there are three parts
as well: 1) The user interface layer in charge of getting the request from the
end-user and deliver the result of the content rendering. 2) The DRM controller
in charge of evaluating the request according to the different licenses. 3) A ren-
dering layer in charge of executing the rights requested by the end-user. The
set of rights supported by the DRM application is defined by the Rights Data
Dictionary (RDD). Existing DRM applications usually consider a certain type
of content, and thus, consider a certain RDD as well. So, for each right in the
RDD corresponds a rendering action in the rendering application. Usually, these
actions are enclosed in the rendering application and are designed by the corpo-
ration delivering the rendering application. We clearly see here that a content
provider, who wants to use a given DRM framework to protect his or her con-
tents, must trust the corporation delivering the protection mechanism and the
rendering actions. There is no way for him or her to redefine or extend the set
of rendering actions. In this paper, we aim at providing a federated approach
(FORM) to take into account external rendering actions. We specify a new li-
cense model where a content provider can decide which are the trusted rendering
actions able to use his or her content. We even go further in FORM, we consider
that the rendering action provider wants to restrict how end-users and content
providers use their rendering actions. Using license, action providers can specify
which end-users and which contents can be used with their rendering actions.

We can have the same approach with identities as well. In existing DRM ap-
plications, the way to define the user identity is specific to each DRM framework.
Nowadays, an end-user has many identities over the Internet. The identity of a
user is not unique but rather a collection of identities issued by different corpo-
rations. With FORM, the content provider can specify which user identity must
be considered instead of using a new one for the DRM purpose. Using a license,
the content provider can specify who are the authorized end-users according to
one of their identities and who are the trusted corporation providing those iden-
tities. As well, we go further with FORM considering that the identity provider
may want to restrict what action providers and content providers can do with
their identities. Using license, identities providers can specify which rendering
actions and which content can deal with their identities.

We claim that existing DRM frameworks are content centric. Content centric
means that only content providers are involved. The way to define identities and

FORM : A Federated Rights Expression Model for Open DRM Frameworks 47

rendering actions are specific to each DRM framework. In this paper we aim at
providing a new model to move toward a federated approach to manage contents,
identities and actions in a same way. With FORM, content providers, identity
providers and actions providers can independently specify licenses restricting the
usage of the object provided. In section 2, we deeper explain the content centric
approach and we show how to move towards a federated approach. In sections
2.2 and 2.3, we investigate the advantages of a federated approach. With FORM,
we provide a new decision mechanism to take all licenses into account when an
end-user wants to use a given content with a given rendering action and using
one of his or her identity. We formalize this decision mechanism in section 3.

2 From a Content Centric Approach to a Federated
Approach

In this section, we first investigate the content centric approach to explain what
we call the ownership principle in DRM. Then, we show how to move towards a
federated approach studying separately the rendering actions and the identities.
Finally, we introduce in details the Federated Rights Expression Model (FORM)
and show that this approach preserves the ownership principle.

2.1 The Content Centric Approach

As we say in the introduction, there is mainly three components in a DRM frame-
work : The content packager, the license designer and the rendering application.
When a content provider wants to distribute a digital document through a DRM
framework, he or she will first wrap the digital document into a secure content
using the content packager. Only the given trustworthy rendering application is
able to deal with this content protection. Secondly, he or she will design a license
defining who can use the content (identity) and what are the rendering actions
which can be applied (right). Then, the content and the license are distributed to
the end-users. Through the rendering application, the end-user can then use the
content. But, how to ensure that anyone cannot write a license about a content
provided by someone else? This is what we call the ownership principle: a mech-
anism to ensure that only a license delivered by the same content owner can be
used in the authorization mechanism1. Existing DRM standards [7,9] have the
same approach to enforce the ownership principle. The content and the license
are tight using hashing and cryptographic mechanisms. For example in Windows
Media DRM framework (Microsoft Media Player) [3,2], the content is ciphered
using a symmetric key. This key is distributed to the user through the license.
Obviously, this key cannot be distributed in clear in the license. The license, or
the part of the license with the key, is ciphered using a session key between the
license server and the rendering application. Thus, only the license issued by
the content provider can be used to deciphered the content. In OMA-DRM, this

1 Notice that we do not consider super-distribution mechanism here.

48 T. Sans, F. Cuppens, and N. Cuppens-Boulahia

Fig. 1. The ownership principle in DRM

mechanism is strengthen using digital signatures to both identify the content
provider and the license provider. If those two identities match, the correspond-
ing license is then said to be valid and can be taken into account by the DRM
controller as showed in the figure 1.

We claim that existing DRM frameworks enforce the content centric approach,
and so, they verify the ownership principle. Obviously, we cannot cut with this
principle. In the federated approach we keep the principle true but we extend it
to identities and actions as well.

2.2 Considering External Rendering Actions

As Bill Rosenblatt says in [12], there is two kinds of rendering applications re-
garding existing DRM applications: Standalone application and Plugin-based
application. In Standalone application, rendering actions are enclosed in the
rendering application program. That kind of application appears more secure
since external malicious codes cannot be added. But a standalone application is
not flexible. First, because providing a new rendering action means upgrading
and redistributing the application itself. Secondly, because the most rendering
actions there are, the bigger the application is and most of the time, end-users
only use few of them. Nevertheless, this kind of application can be adequate con-
sidering a specific content type with limited rendering actions like in Microsoft
Media Player [3] dedicated to audio and video contents. For more flexibility,
we can consider to distribute rendering actions as plugins. With a plugin based
application, no update is needed since the root application does not change and
only actions needed by the end-users can be installed. In order to counter rogue
plugin, only “official” plugins are allowed to be installed, i.e. plugin certified by
the same corporation distributing the rendering application. For instance, only
plugins from Adobe can be added in the Adobe Acrobat Reader [12] enabling

FORM : A Federated Rights Expression Model for Open DRM Frameworks 49

Fig. 2. Trust relationships between an action provider and a content provider

end-users to read specific protected content. Obviously, allowing anyone to write
such plugins would lead to a security breach since everyone can access directly
to the digital information. So, the corporation providing the DRM application is
the only one who can judge if a plugin is trusted or not. We want to go further
here, why do not let the content provider decide if a rendering action provided
by someone else can be used or not? Why do not let the content provider decide
if the corporation providing a plugin can be trusted or not? There are many
consequences of such an approach. First, not only content providers decide what
rights the end-user can get with the content but also which trusted code must be
used to exercise these rights. Then, the content provider identifies in the license
what piece of code must be used to render the content, or at least specify which
corporation can be trusted. The following assertions are examples of a content
provider policy:

– SoftInc is an action provider distributing a player plugin. The player plugin
enables three new rendering actions: LitePlayer, PowerPlayer and Extract.
Art’East is a content provider distributing audio contents over the Internet.
Art’East allows any end-users to “play” an Art’East’s content. The “play”
right can be implemented by trusted rendering actions such as LitePlayer or
PowerPlayer provided by SoftInc.

Why do not consider a plugin as a content also? Action providers could be
able to decide which end-users can use the plugin, and what kind of content can
be rendered with it. Action providers must be able to define licenses specifying
who are the authorized end-users and the authorized contents. The following
assertions are examples of a content provider policy:

50 T. Sans, F. Cuppens, and N. Cuppens-Boulahia

– For SoftInc, end-users can only use LitePlayer freely. There is a partner-
ship with Art’East, and anyone can use the PowerPlayer with an Art’East
content.

Even if Art’East allows anyone to use the PowerPlayer, we see that SoftInc
might not agree with that and could have set that no one can use the PowerPlayer
freely. In the figure 2, we show how to enable a partnership between Art’East
and SoftInc with FORM. Soft’Inc allows anyone to use the PowerPlayer right
since the content is provided by Art’East.

2.3 Considering External Identities

In order to define which end-users are allowed to use a content, the content
provider must be able to identify the end-users or specify properties that end-
user’s identities must have. Which user identities should the DRM framework
consider? In existing DRM application, the user identity is directly related to
the system under which the rendering application is executed. The identity is a
combination of hardware IDs (like mac address, chipset ID, . . .), cryptographic
keys and sometimes user information. That explains why, most of the time,
it is impossible to read a protected content on another system than the one
under which you have previously got the license. It is not really the user identity
which is used here but rather the system identity. Nevertheless, if we take a
look at Rights Expression Languages like MPEG-REL [7], we notice that the
standard gives the possibility to define user identity with X509 certificates but
the standard does not specify how to manage these certificates. Who issues these
certificates? Which identity provider to trust? Nowadays, Internet users have
many IDs over the Internet. Governmental organizations issue citizenship IDs
to grant access to on-line public services. Banks issue Credit Cards that can be
considered as another identity used over the Internet. Companies issue identities
to customers to give access to their services. The identity of a user is not unique
but rather a collection of identities issued by different corporations that we called
identity providers. So, rather than defining a new identity for the DRM purpose,
why do not we use IDs issued by external identity providers? Thus, a content
provider can decide 1) which end-users are allowed to use the content according
to one of their identities 2) which identity providers are trusted to issue these
identities. The following assertions are examples of a content provider policy:

– Pop’mag and Rock’mag are two on-line music magazines. Each of them re-
spectively issues Pop’Member IDs and Rock’Member IDs to their readers.
Art’East agrees that Pop’mag readers and Rock’Mag readers can play Art-
Songs freely. So, Art’East allows any “Mag readers” to play the ArtSong
content. A “Mag reader” is someone holding a trusted identity either from
Pop’Mag or from Rock’Mag.

Our federated model allows a content provider to specify what are the autho-
rized end-users according to one of their identities and according to who delivers
the identity (Identity Provider). Moreover, we aim at managing identities like we

FORM : A Federated Rights Expression Model for Open DRM Frameworks 51

Fig. 3. Trust relationships between an identity provider, an action provider and a
content provider

manage content. Identity provider may not allow anyone to use their identities
in order to do anything. Identity provider may want to restrict which rendering
actions and which contents are allowed to be used with identity information they
provide. The following assertions are examples of an identity provider policy:

– In Rock’Mag Ids, there are private information that must not be disclosed.
Rock’mag allows rendering actions like “read” and “print” only with the
“RockMagazine” content. The “read” and “print” rights are provided by a
trusted action provider. “RockMag” is also a content provider distributing
the “Rock’Magazine” content.

– In Pop’Mag Ids, there are private information also. But, Pop’Mag knows
that rendering actions provided by Soft’Inc do not reveal private information
during the content rendering. Then anyone can use Pop’Mag Ids with any
content since a “privacy compliant action” is used. A “privacy compliant
action” is an action distributed by trusted action providers like Soft’Inc.

In this example, we see that, according to Art’East, an end-user like Alice
needs an identity from Rock’Mag or Pop’Mag in order to read the ArtSong.
But, even if Alice is a Rock’Mag reader, she will fail to read an Art’East content
because Rock’Mag does not allow such a usage of its identities. Nevertheless, if
Alice is also a Pop’Mag reader, she will be allowed to play the Art’East content
using her Pop’Mag Id. Pop’Mag will allow her because she uses the LitePlayer
from Soft’Inc which is privacy compliant. The figure 3 shows the trusted rela-
tionship existing between the identity provider “Pop’Mag”, the action provider
“Soft’Inc” and the content provider “Art’East”.

52 T. Sans, F. Cuppens, and N. Cuppens-Boulahia

Fig. 4. Authorization process with FORM

2.4 FORM: The Federated Approach

The federated approach aims at managing external identities and external ren-
dering actions in a same way than contents in the content centric approach. There
are not only content providers but also action providers and identity providers.
More generally, there are object providers distributing objects typed as either
identity, action or content. All object providers define licenses for the object they
provide independently from each other. With FORM, a content provider must
define a license specifying who can use the content (identity + identity provider)
and which are the trusted rendering actions (action + action provider). In a same
way, an action provider must define a license specifying who can use the ren-
dering action (identity + identity provider) and what kind of content can be
rendered (content + content provider). In a same way, an identity provider must
define a license specifying which rendering actions can be used (action + action
provider) and what kind of content can be involved (content + content provider).

In 2.1, we introduced the ownership principle specifying that only a license
issued by the content provider can be used by the DRM controller in order to
decide whether someone can use a content or not. Obviously, we cannot cut
with this ownership principle in FORM since we still want that only the object
provider can decide what can be done with the object provided. So, with FORM,
we extend the ownership principle to identities and rendering actions as well.
Briefly, only a license issued by the object provider can be used by the DRM
controller to decide whether or not the object can be used. When an end-user
like Alice wants to use an object, she will perform a request to her rendering
application. The request is a triple composed by one of her identities, a content

FORM : A Federated Rights Expression Model for Open DRM Frameworks 53

and the rendering application she wants to use. In order to take the decision,
the DRM controller must take into account all licenses from all object providers
involved in the request. The figure 4 shows that all providers must agree in order
to authorize the request to be rendered. Consequently, we must provide a new
decision mechanism to support the FORM license model. In the next section, we
formalize the FORM license model and we provide a new decision mechanism.

3 The Underlying Model

This section formalizes our approach using first order logic. We first introduce
the content centric approach. We provide a license model and an interpretation
mechanism taking into account the ownership principle. Then, we extend the
model to enable the federated approach. We extend the license model introducing
identity and action providers. We extend the interpretation mechanism to take
into account the ownership principle applied to identity and actions as well.

3.1 The Content Centric Approach

We do not attempt to cover all the expressiveness of a complete Rights Expres-
sion Language but at least model main concepts needed to formalize the content
centric approach.

A license is a set of grants where a grant is a triple composed of an iden-
tity, a right and a digital document. Most of existing RELs add a contextual
condition to the grant. We do not need to take into account this condition para-
meter in order to formalize FORM. But obviously in practice, we must consider
a REL including contextual conditions [4]. As required to enable the owner-
ship principle, both content and license must contain the provider identity. So a
provider parameter is associated both with the license and the content. The con-
tent [ArtSong]Art′East means that Art’East is the owner of the digital document
ArtSong. The license [< Alice, P lay, ArtSong >]Art′East means that Art’East
allows Alice to play ArtSong. The language is then defined as follows:

Identity, Right, Document are nominal types

Content ::= [Document]Provider

License ::= [setOf(Grant)]Provider

Grant ::= < Identity, Right, Content >
Provider ::= Identity

Once defined the basic license language, we need to formalize the license
interpretation mechanism enforced by the DRM controller. The DRM controller
is in charge of deciding if someone can use a right on a given content according
to the corresponding license. The license interpretation mechanism must take
into account the ownership principle introduced previously, i.e. only a license
issued by the content owner can decide whether or not an access can be granted.
We define the isPermitted predicate to decide whether or not a right can be

54 T. Sans, F. Cuppens, and N. Cuppens-Boulahia

used. This predicate checks if there is a corresponding grant in any licenses. The
isPermitted predicate is true for a given provider if there is a license, issued by
the content provider, with a grant matching the given identity, the given right
and the given document. The isPermitted predicate can be formalized as follows:

isPermitted ::= [Provider × Identity × Right × Content → Boolean]

∀ i : Identity, r : Right, [d : Document]p:Provider : Content

∃ [s : SetOf(Grant)]p:Provider : License, g : Grant ∈ s |
g =< i, r, d > → isPermitted(p, i, r, [d]p)

Then, we define a set of authorization predicates. These predicates are used to
decide if a requested right (request predicate) can be allowed (allow predicate) or
not (deny predicate). The authorization predicates (allow and deny) are defined
as follows:

request ::= [Identity × Right× Content → Boolean]
allow ::= [Identity × Right× Content → Boolean]
deny ::= [Identity × Right× Content → Boolean]

∀ i : Identity, r : Right, [d : Document]p:Provider : Content
request(i, r, [d]p) ∧ isPermitted(p, i, r, [d]p) → allow(i, r, [d]p)

∀ i : Identity, r : Right, [d : Document]p:Provider : Content
request(i, r, [d]p) ∧ ¬ isPermitted(p, i, r, [d]p) → deny(i, r, [d]p)

With the content centric approach, Art’East can allow Alice to read the Art-
Song’s content. Art’East issues a license [< Alice, P lay, ArtSong >]Art′East.
Through her rendering application, Alice tries to play the ArtSong’s content.
A request such as request(Alice, P lay, [ArtSong]Art′East) is evaluated by the
DRM controller. According to the license issued by Art’East, the predicate
isPermitted(Art′East, Alice, P lay, [ArtSong]Art′East) is true. Therefore, the
predicate allow(Alice, P lay, [ArtSong]Art′East) is true and the corresponding
rendering action can be launched.

In order to define the “Alice identity”, Art’East has to refer to the specific
identity defined by the DRM application. Art’East cannot use a trusted exter-
nal identity. In a same way, Art’East does not have any other choice than the
rendering actions enclosed in the rendering application to implement the “play”
right. Art’East cannot choose to trust an external rendering application. Using
the Federated Rights Expression Model detailed in the next section, Art’East
can define which are the trusted identities and which are the trusted rendering
actions that can be involved with his content.

3.2 The Federated Approach

The federated approach introduces different improvements to the content centric
license model introduced previously. Contrary to the content centric approach,

FORM : A Federated Rights Expression Model for Open DRM Frameworks 55

not only contents have providers but identities and rendering actions have
providers as well. The FORM approach introduces “action” and “ID” as new
nominal types. An “action” corresponds to the piece of code used to render the
content, the “right” is the corresponding rendering action tagged with the action
provider signature. An “ID” corresponds to the piece of information related to
a given end-user, the “identity” is the corresponding ID tagged with the iden-
tity provider signature. Therefore, in order to enable the federated approach the
identity and the right are redefined as follows:

ID, Action, Document are nominal types

Identity ::= [ID]Provider

Right ::= [Action]Provider

Content ::= [Document]Provider

In the example introduced previously in section 2.2, Soft’Inc, as a con-
tent provider, distributes pieces of code implementing three rendering ac-
tions LiteP layer, PowerP layer and Extract. Using a specific action packager,
Soft’Inc creates three corresponding packages compatible with the FORM ren-
dering application. These packages called “right” are the corresponding pieces
of code all signed with the Soft’Inc’s signature. In a same way, Pop’mag uses
an identity packager to create compatible identities. These identities are signed
with the Pop’Mag’s signature. Once the identity, the right or the content packed,
object providers must define a license specifying what can be done with their
objects. Basically, the license defines a set of grants corresponding to the autho-
rized request that can be executed through the rendering application. A grant
explicitly identifies the identity, the right and the content. Doing that, object
providers identify the authorized pieces of information and the trusted providers
distributing these information as well. According to the previous definition of the
grant as triple Identity × Right × Content, we do not need to change the grant
definition given in the previous section. But we need to change the definition of
the isPermitted predicate to take into account the new definition of Right and
Identity:

∀ [i : ID]pi:Provider : Identity, [a : Action]pr :Provider : Right,
[d : Document]pc:Provider : Content

∃ p ∈ {pi, pr, pc}, [s : setOf(Grant)]p : License, g : Grant ∈ s |
g =< [i]pi , [a]pr , [d]pc > → isPermitted(p, [i]pi , [a]pr , [d]pc)

With FORM, the DRM controller must check every license from every
provider involved in the request, i.e. the identity provider, the action provider
and the content provider. In our example, when Alice, as a Pop’Mag reader, tries
to use the ArtSong with the PowerPlayer, the DRM will check the licenses from
Pop’Mag, Soft’Inc and Art’East. All of them must agree that this request can
be executed, i.e. the isPermitted predicate with the corresponding objects must

56 T. Sans, F. Cuppens, and N. Cuppens-Boulahia

be true for all providers. Finally, the request, the allow and the deny predicates
are redefined as follows:

∀ [i : ID]pi:provider : Identity, [a : Action]pr :Provider : Right,
[d : Document]pc:Provider : Content

∀ p ∈ {pi, pr, pc} |
request([i]pi , [a]pr , [d]pc) ∧ isPermitted(p, [i]pi, [a]pr , [d]pc)

→ allow([i]pi , [a]pr , [d]pc)

∀ [i : ID]pi:provider : Identity, [a : Action]pr :Provider : Right,
[d : Document]pc:Provider : Content

∃ p ∈ {pi, pr, pc} |
request([i]pi , [a]pr , [d]pc) ∧ ¬ isPermitted(p, [i]pi, [a]pr , [d]pc)

→ deny([i]pi , [a]pr , [d]pc)

When Alice wants to use the PowerPlayer to play the ArtSong, she performs
a request through her rendering application. The DRM controller will evaluate
the three licenses from the objects providers involved in the request. According
to the FORM license interpretation mechanism, all licenses must define a spe-
cific grant < [Alice]Pop′Mag, [PowerP layer]Soft′Inc, [ArtSong]Art′East >. Until
here, an object provider must specify the objects that must be present in the
request to satisfy the isPermitted predicate. In practice, this would lead to a
great number of rules to be expressed in the different licenses. Most of the time,
the provider will better specify the trusted provider rather than identify the ob-
ject. For instance, Art’East wants to allow anyone with a Pop’Mag identity but
does not want to specify that specifically Alice can do it. In the next section we
aim at providing facilities simplifying the license expression and then we aim at
reducing the number of rules and getting a user-friendly language.

3.3 Abstraction Layer

We add an abstraction layer to avoid defining a rule for each possible request.
In the literature, there are some access control models who enable abstraction
to simplify the definition of the access control policy. Role Based Access Control
(RBAC) [13] provides an abstraction of identities into roles. A given identities
can play several roles and access control rules are based on roles. The Orga-
nization Based Access Control model (OrBAC) [8] goes further by abstracting
identities in roles, actions in activities and contents in views. The notion of role,
activity and view are interesting here in order to lessen the number of rules to be
defined. Thus, rather than specifying a rule for each Pop’Mag reader, Art’East
would better define a rule for the role “PopReader” and define that anyone with
a Pop’Mag identity are assigned to that role. In a same way, we could imag-
ine that Soft’Inc allows only “All ArtSongs” to be render with his players, or
Pop’Mag allows only a “Privacy Compliant” action to be used with Pop’Mag
identities. The OrBAC model also introduces the main concept of organization
as the scope of the access control policy. According to the OrBAC model se-
mantics, identities, rights and contents belong to a given organization and only

FORM : A Federated Rights Expression Model for Open DRM Frameworks 57

access control rules under this organization can be used by the controller. This
concept of organization is actually close to the concept of provider and fits with
the ownership principle. Thus, the OrBAC model provides interesting concepts
that could be used to improve the expressiveness of our basic license model. So,
we first redefine the license expression language introducing roles, activities and
views and then we redefine the license interpretation mechanism to take into
account these abstractions. Let us first redefine the language as follows:

ID, Action, Document, Role, Activity, V iew are nominal types
any is a constant

Identity ::= [ID | any]Provider | any
Right ::= [Action | any]Provider | any
Content ::= [Document | any]Provider | any
Grant ::= < Role, Activity, V iew > | < Identity, Empower, Role >

| < Right, Consider, Activity > | < Content, Use, V iew >

The constant any specifies that any value can match. When any takes place
instead of an ID, an action or a document, it means that any object can match.
When any takes place instead of an identity, a right or a content, it means that
any objects from any providers can match. As showed in the figure 5, we can
simplify the definition of the different licenses of our example.

Previously, a grant was a triple composed by an identity, a right and a content.
Abstracting identities in roles, actions in activities and contents in views, a grant
is now composed of a role, an activity and a view. We then define three specific
grants: One with the empower right specifying that a given identity matches
a role. One with the consider right specifying that a given action matches an
activity. Another one with the use right to express that a given content matches
a view. Consequently, we must redefine the license interpretation mechanism. In
the formalism introduced previously, we need to modify the isPermitted predicate
as follows:

∀ [i : ID]pi:Provider : Identity, [a : Action]pr :Provider : Right,
[d : Document]pc:Provider : Content

∃ p ∈ {pi, pr, pc}, [s : setOf(Grant)]p : License,
g, gα, gβ , gγ ∈ s, α : Role, β : Activity, γ : V iew |

g =< α, β, γ > ∧ gα =< [i]pi , empower, α >
∧ gβ =< [a]pr , consider, β > ∧ gγ =< [d]pc , use, γ >

→ isPermitted(p, [i]pi , [a]pr , [d]pc)

We can go one step further by using role definition and view definition as
proposed in [5] improving OrBAC expressiveness. With role definitions and view
definitions, it is possible to define properties that identities or contents must have
in order to match a role or a view. Using this kind of definition here, Art’East
could define the property that a song must have to be in the view “ArtSongs”
rather than explicitly define that a given song is in a given view.

58 T. Sans, F. Cuppens, and N. Cuppens-Boulahia

Fig. 5. FORM licenses with abstract layer

4 Conclusion

This paper provides a new approach called FORM (Federated Organization
based access control Model) to manage rights. We claim that existing DRM
frameworks are content centric since only content providers are taken into ac-
count. A content provider distributes contents and defines the corresponding
license. Such a license identifies: 1) which rights can be rendered with the con-
tent and 2) who are the authorized end-users (as identity holders) allowed to
exercised these rights. Usually, each right corresponds to a rendering action.
These rendering actions are usually enclosed into the rendering application on
the client side. With FORM, we aim at taking into account external rendering
actions. Rather than using proprietary actions, a content provider decides which
external renderings actions can be used and which corporations, issuing these
actions, can be trusted. We assume that the identity of the user is not unique
but it is rather a collection of different identities issued by different corporations
over the Internet. With FORM, we aim at taking into account external identi-
ties. Rather than using a proprietary identity for the DRM purpose, a content
provider decides which external identities can be used and which corporation,
issuing these identities, can be trusted.

We go further in FORM considering identity providers and action providers
as first-class providers. Identity providers can define a license specifying which

FORM : A Federated Rights Expression Model for Open DRM Frameworks 59

rights and which contents can be used with the identity they provide. In the
same way, action providers can decide which contents can be rendered and who
are allowed to use the actions they provide.

Finally, when an end-user requests for a content rendering, the DRM controller
checks all licenses belonging to the different requested objects i.e. the identity
license, the action license and the content license. According to the ownership
principle, only a license issued by the object provider can be taken into account
by the license interpretation mechanism. If all of the providers agree with the
request, then the rendering can be performed.

We are currently working on a proof of concept of a DRM framework enabling
FORM. We aim at enhancing the robustness of our application by considering
trusted computing issues [6,1,11].

Acknowledgement. This work was supported by funding from the French
ministry for research under “ACI Sécurité Informatique: CASC Project”.

References

1. Becker, E., Buhse, W., Günnewig, D., Rump, N. (eds.): Digital Rights Manage-
ment: Technological, Economic, Legal and Political Aspects. LNCS. Springer, Hei-
delberg (2003)

2. Microsoft Corporation. Using windows media encoder to protect content. Technical
report (March 2003)

3. Microsoft Corporation. Architecture of windows media rights manager. Technical
report (May 2004)

4. Cuppens, F., Miège, A.: Modelling Contexts in the Or-BAC Model. In: Omondi,
A.R., Sedukhin, S. (eds.) ACSAC 2003. LNCS, vol. 2823, Springer, Heidelberg
(2003)

5. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to
specify and deploy a network security policy, Toulouse, France (August 2004)

6. Erickson, J.S.: Fair Use, DRM and Trusted Computing. Communication of the
ACM 46(4) (2003)

7. International Organization for Standardization (ISO). ISO/IEC 21000:2004 Infor-
mation technology – Multimedia framework (MPEG-21) (2004)

8. Alexandre Miège. Definition of a formal framework for specifying security policies
- The Or-BAC model and extensions. PhD thesis, Telecom Paris (Ecole Nationale
Supérieure des Télécommunications) (2005)

9. Open Mobile Alliance (OMA). OMA Digital Rights Management V2.0 (2006),
http://www.openmobilealliance.org/release program/drm v2 0.html

10. David P.: Requirements for a Rights Data Dictonary and Rights Expression Lan-
guage. Technical report, Reuters (June 2001)

11. Siani Pearson. Trusted Computing Platforms: TCPA Technolog. In: Context. Pren-
tice Hall PTR (July 2002)

12. Rosenblatt, B., Trippe, B., Mooney, S.: Digital Rights Management: Business and
Technology. Wiley, Chichester, UK (2001)

13. Sandhu, R.S.: Role-Based Access Control. Advances in Computers 46 (1998)

http://www.openmobilealliance.org/release_program/drm_v2_0.html

A Method of Safety Analysis

for Runtime Code Update�

Masatomo Hashimoto

National Institute of Advanced Industrial Science and Technology,
1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021 Japan

m.hashimoto@aist.go.jp

Abstract. In this paper, we present a novel method of safety analysis
for runtime code update, i.e., updating a program at runtime without
terminating its execution. Runtime code update is an emerging technique
especially for increasing availability of the servers which should always be
in service and free of any known bugs or security flaws. However, it may
cause state inconsistency or unintended behaviors unless it is properly
restricted. Although too much restriction enables us to easily ensure
safety of updating code at runtime, it prevents us from coping with the
realistic updates. To reveal appropriate restriction, we first construct a
very precise model of safe runtime code update based on a framework
of explicit data/control flow and dependency. Then, a class of analyses
which statically estimates the set of safe update points is derived by
approximating the model. We restrict only the timing: behaviorally safe
runtime code update may occur only at safe update points. Moreover,
we can relax the restriction by explicitly specifying non-critical points.

1 Introduction

Updating software is one of the usual tasks for computer users or system admin-
istrators to enjoy kinds of system improvements such as bug fixes, stabilization,
or functional extensions. Above all, security related updates are mandatory es-
pecially for Internet applications; they should be applied as soon as possible
against possible malicious attacks. However, we tend to think too much trouble
to frequently update running systems because of unwanted downtime or inter-
ruption to continuous operations. In many cases, in order to complete update
tasks, we must first terminate the execution of the relevant programs and hence
the services they provide. For a certain kind of applications, downtime is even
critical for normal operations. Typical examples include telephone exchange or
financial transaction processing system. Those systems are also continuously un-
dergoing changes to take advantage of hardware and software improvements. As
of 1987, 422 exchanges utilizing AT&T’s digital switching system, called 5ESS,
retrofitted to the newer version without a noticeable service interruption to sub-
scribers [1]. As of 2000, Visa’s financial transaction processing system is kept
� This research was supported by PRESTO research program of Japan Science and

Technology Agency.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 60–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Method of Safety Analysis for Runtime Code Update 61

99.5% available against average of 20,000 routine software updates per year [2].
In both cases, the system is updated without disrupting the users’ experience. It
is achieved by making use of specially configured redundant hardware primarily
designed for fault-tolerance. Although it works quite well actually, application
of such method is very limited.

We call updating programs at runtime without terminating their executions
runtime code update. At least since 1970s, a number of software-based approaches
to runtime code update have been developed [3,4,5]. Some systems are based on
code fragment replacement at runtime, and others execution state transfer be-
tween processes. In general, simple replacement of code or state during execution
of the code is not a safe operation in that it will easily cause state inconsistency
and unintended system behaviors. Several systems ensure type safety that means
no type error occurs after (well-formed) update. However, it may still allow unin-
tended behavior after update. For example, updated BBS system may continue
to accept connections from a site in a blacklist. Granularity of supported up-
dates is another characteristic of runtime code update. In order to ensure safety,
updates are usually restricted to pre-defined patterns: replacement of modules
or abstract data types, etc. However, we cannot predict where bugs exist and
how should they be fixed.

In this paper, we present a novel method of safety analysis for runtime code
update which ensures behavioral safety. We first model safe runtime code update
with a variant of higher-order call-by-value language. The model precisely tracks
the effect of update by making use of explicit flow and dependency information.
Roughly speaking, to avoid state inconsistency, we restrict the timing of runtime
code update: it may occur only at safe update points, where no dependence on
modified code exists and no reaching affected values have subsequent critical
uses. In addition, one may specify non-critical uses for more safe update points.
Then we derive a class of safety analyses from that model by way of abstract
interpretation of the semantics [6]. The derived class of analyses estimates the
set of safe update points statically. In our model, updates are not restricted to
pre-defined patterns. Any modifications to abstract syntax tree of source code
are allowed and recognized. It is even possible to safely update a part of the
definition of an active function while it is active.

The rest of the paper is organized as follows. First, our model of runtime
code update is introduced informally in Sect. 2. Then it is formally defined in
Sect. 3. Section 4 describes the safety analysis derived from the model. After a
brief review of related work in Sect. 5, we conclude the work in Sect. 6.

2 Runtime Code Update

In this section, we informally introduce our model of runtime code update. We
consider minor updates including bug fixes and functional extensions. Note that
safe runtime code update would be in principle impossible if a program changed
drastically. The basic idea is to reuse a part of computation for the new ver-
sion’s execution as long as possible. Our model is based on state transfer between

62 M. Hashimoto

processes similar to the one of Gupta et al. [7] Suppose that applying a modifi-
cation δ to a program P yields a new version P ′. An execution of a program can
be represented as a sequence of state transitions by some interpreter. Let initial
states for P and P ′ be S0 and S′

0 respectively. Then the execution of P proceeds
like S0 −→ S1 −→ . . . −→ Sn. Suppose that δ is applied to P at some state
Si. Generally, it is not possible to continue the execution after δ is applied, as
Si is not always consistent with the new program P ′. If the state Si is properly
transformed by some state transformer Δ, the execution will be able to continue.
If Δ(Si) is equivalent to some S′

j where initial state S′
0 of P ′ reaches, we say that

Δ is valid for P , δ, and Si. We adopt the validity for our definition of safety.

P S0 · · · Si · · ·

P ′ S′
0 · · · S′

j · · ·
�δ

� � �

�Δ
� � �

However, we cannot construct valid state transformer for arbitrary P , δ, and Si,
since validity check is not decidable [7]. Gupta and others have attempted to con-
struct valid state transformer by restricting the patterns of δ and implemented
it for the C programming language. The restrictions include:

1. only values of global variables may change,
2. stack frames for the modified functions are not on the call stack, and
3. the values of all local variables and the program counter do not change.

Those restrictions, however, are not admissible for practical use, even if simple
and efficient implementations are possible. For example, by the second restric-
tion, we cannot update the functions whose stack frames stay on the call stack
for a long time (e.g. main function) without restarting the program. Actually,
main functions were modified in all of the downloadable 13 versions between
1.3.0 and 1.3.22 of the apache HTTP server (www.apache.org). Moreover, we
have observed that 4 functions out of 54 modified or deleted functions between
versions 1.3.20 and 1.3.22 have stayed on the call stack for many hours.

Our solution is to restrict the domain of valid state transformer to the set of
safe update points. The purpose of our safety analysis is to estimate the set of
safe update points. To obtain an algorithm which computes the set of safe update
points, first we introduce a model called exact model. The exact model makes
use of the program itself to obtain valid state transformer. In the exact model,
all of the safe update points are computed exactly. Then we derive an abstract
model from the exact model. In the abstract model, the set of safe update points
are conservatively approximated.

Figure 1 illustrates the exact model. Two horizontal lines represent sequences
of state transitions for two versions respectively. We assume that we can take
snapshot of any state in the transition sequence and can restart the execution
from the state. Suppose that the update starts at the state S. By analyzing the
difference between old and new programs and exactly tracking control/data flow
and dependency, we can enumerate the states affected by the change. If S is
not affected at all and no affected states exist before S, we can simply derive

A Method of Safety Analysis for Runtime Code Update 63

P :

P’ :

S0 Si Sm

S’n

Sp

S’q

S

S’jS’0 S’

Sx

Fig. 1. Exact model

S′ from S. Then we can safely start execution of P ′ from S′. If there exists
some affected state Sx before S and there are no affected states before Sx, we
start execution from S′

j derived from Si just before Sx. The execution from S′
j

proceeds with checking if some states after Si and the current state match. If Sm

and Sp match to S′
n and S′

q, respectively, and there is no influence of the version
change between Sm and Sp, we can safely reuse the transition from Sm to Sp.
By repeating the ‘execute-and-reuse’ process, we can finally derive S′ form S if
S matches to S′. A reusable state corresponds to a safe update point.

Although we can precisely compute the set of safe update points by the exact
model, it seems almost impossible to implement state transformer or safe update
point analyzer based on the exact model, since the exact model requires recording
all of the states before S. Therefore we introduce an abstract model obtained
from the exact model by employing the following:

– approximation of control/data flow and dependency by abstract interpretation of
the semantics, and

– analysis to find the states affected by the computation which is not reusable (e.g.
between Si and Sm in Fig. 1).

Roughly speaking, approximated set of safe update points contains the states
which is not affected by the version change. The abstract model enables us to
statically analyze the programs to obtain the set of safe update points for runtime
code update. The difference between two programs can be precisely analyzed by
applying tree matching algorithms [8,9] to the abstract syntax trees. It is also
possible to apply conventional techniques for control/data flow and dependency
analyses [10] to implement the safety analysis. State transfer at a safe update
point from the execution of the old program to that of the new program is safe
if we construct a valid state transformer. Note that there exist no restriction
on the pattern of change in our model. Even updates which modify the main
function are allowed. However computed set of safe update points may be empty
if given update radically changes the control/data flow of the original program.

3 Exact Model

3.1 Language

The target language is a variant of higher-order call-by-value language. It consists
of simple expressions, call-by-value function applications, let-bindings, primitive

64 M. Hashimoto

applications, first-class references, tuples, if-branches, and markers. A simple
expression is either a constant, variable, lambda expression, or recursive function.
We assume left-to-right evaluation order. The set of expressions is defined as
follows:

e ::= k | x | λx.e | rec f.λx.e | e @e | let x = @e in e | p(e, . . . , e) | ref e | !e | e := e |
(e, · · · , e) | e.i | if e then e else e | @e

A marker @e just behaves like e except that it is used to properly propagate
changes made to e to the surrounding expressions. All markers must appear in
applications and let-bindings as seen in the definition above. We assume that
a unique label l ∈ Label is assigned to each of all the subexpressions. The set
of bound variables and free variables are defined conventionally. We sometimes
explicitly assign another label to a variable to indicate the binder of the variable.
A program is represented as a closed expression.

Example 1 (Program).

P = (let f =
(
@(λx.(xl2

l4
+ 1l5)l3)l2

)
l1

in (f l0
l7

(
@2l9

)
l8

)l6)l0

is a program.

We regard a labeled expression as a finite map from Label to expressions where
all subexpressions are represented as links (labels). For example, the program P
in Example 1 is equivalent to the following finite map.{

l0 �→ let f = l1 in l6 , l1 �→ @l2 , l2 �→ λx.l3 , l3 �→ l4 + l5 , l4 �→ x,
l5 �→ 1 , l6 �→ l7 l8 , l7 �→ f , l8 �→ @l9 , l9 �→ 2

}

A program is also regarded as an ordered labeled tree with the following scheme:
1) each label l ∈ dom(P) corresponds to a node which is labeled with a language
construct of P (l), i.e., k, x, λx, rec f , app, let x, p, ref, !, := , tpl, prj, if, and @,
2) each of the children corresponds to the label which occurs in P (l) preserving
the left-to-right order.

3.2 Exact Semantics

The operational semantics is defined based on the formulation by Jagannathan
et al. [11] The exact semantics of a program P is specified by a set of exact
states and a transition relation I−→between the states, where I denotes transition
information. Three kinds of information is recorded in I : I .u holds the set of used
variables, I .n the label of the subexpression to be evaluated next, and I .c the
label of the innermost surrounding subexpression. The exact states are defined
in Fig. 2. For sets A and B, A → B denotes the set of partial functions. We
sometimes regard a partial function as a set. A∗ denotes the set of finite sequences
of elements of A. We denote the empty sequence by 〈〉. P(A) denotes the power
set of A. The set of nodes is represented as a partial mapping from NodeLabel to
Value. There are two kinds of nodes: the expression node (l, b) and the variable
node (x, cn). An expression node (l, b) contains the value of el evaluated in the

A Method of Safety Analysis for Runtime Code Update 65

State = Label × BindEnv × Contour × Nodes × Edges × Edges
BindEnv = Var → Contour Contour = Label∗

Nodes = NodeLabel → Value Value = ((Label × BindEnv) × CVal)
Edges = P(Edge) Edge = NodeLabel × NodeLabel

NodeLabel = (Label × BindEnv) + (Var × Contour)
CVal = Int + Bool + {cls} + {cell} + {unit} + (CVal × · · · × CVal)

Fig. 2. Exact states

environment b. The value of free variable x will be found in (x, b(x)). CVal
denotes the set of concrete values. For 〈l, b, cn, N, E, D〉 ∈ State, N , E, and
D define a control/data flow and dependency graph. E and D correspond to
flow and dependence edges, respectively. Intuitively, l corresponds to a program
counter, b and cn = l1: · · ·: ln correspond to a current environment and a stack of
activation frames, respectively. Some auxiliary functions for the definition of the
operational semantics are defined. First one is the first function. first(e) returns
the label l of subexpression e′ where the control reaches firstly when evaluating
expression e. Note that the result of first(e) is always an simple expression.

Definition 1 (first).

first(el) = l if e is simple first(e1 e2) = first(e1)
first(let x = e1 in e2) = first(e1) first(p(e1, . . . , en)) = first(e1)

first(ref e) = first(e) first(!e) = first(e)
first(e1 := e2) = first(e1) first((e1, . . . , en)) = first(e1)

first(e.i) = first(e) first(if e1 then e2 else e3) = first(e1)
first(@e) = first(e)

We can get label component l of S = 〈l, b, cn, N, E, D〉 by lab(S) = l.
There are also overloaded labs() functions: labs(e) = dom(e) and labs(E) =
{l1, l2 | (l1,) � (l2,) ∈ E}. The function cval : Value → CVal extracts con-
crete values from values. Thus cval ((l, b, cv)) = cv . Equality test between values
(l1, b1, cv1) = (l2, b2, cv2) ignores l1,b1,l2, and b2 when cv1 and cv2 are constants.
The initial state for P is denoted by S

INI

P = 〈first(P), ∅, 〈〉, ∅, ∅, ∅〉. The seman-
tics of primitives is defined by the auxiliary function papp(p, cv1, . . . , cvn). By
using those auxiliary functions, state transitions are defined as the set of tran-
sition rules. We show the rules only for the functional core in Fig. 3 for lack of
space.

3.3 Code Mapping

In order to identify point-wise correspondence between programs, we define the
notion of code mapping. Let P ′ be a revision of P . A code mapping M between
P and P ′ is a one-to-one partial finite map from labels in dom(P) to labels in
dom(P ′) which preserves the order of siblings and ancestor-descendant relations.

66 M. Hashimoto

For a program P and its state S = 〈l, b, cn, N, E,D〉,
CONST If occurP

�
kl
�

and N(l, b) = ⊥, then

S
I−→〈l, b, cn, N [(l, b) �→ (l, b, k)], E, D〉

VAR If occurP

�
x l′
l

�
and N(l, b) = ⊥, then

S−→〈l, b, cn, N [(l, b) �→ N((xl′ , b(xl′)))], E ∪ {(xl′ , b(xl′)) � (l, b)}, D〉
LAM If occurP

�
(λx .e)l

�
and N(l, b) = ⊥, then

S
I−→〈l, b, cn, N [(l, b) �→ (l, b, cls)], E, D〉

REC If occurP

�
(rec f .(λx .e)l′)l

�
and N(l, b) = ⊥,

S
I−→〈l, b, cn, N [(l, b), (f l, cn) �→ (l′, b[f l �→ cn])], E, D〉

ARG If occurP

�
((e1)l (e2)l2)l0

�
and N(l, b) = v(= ⊥),

S
I−→〈first(e2), b, cn , N, E, D ∪ {(l, b) � (l0, b)}〉

where I .n = {l2} and I .c = {l0}
CALL If occurP

�
((e1)l1 (e2)l)l0

�
, occurP

�
(λx .el′′)l′

�
, N(l1, b) = (l′, b′, cls),

and N(l, b) = v(= ⊥), then

S
I−→ 〈l′′′, b′′, l0:cn, N [(xl′ , l0:cn) �→ v], E′, D′〉

where l′′′ = first(el′′), b′′ = b′[xl′ �→ l0:cn],

E′ = E ∪ {(l, b) � (xl′ , l0:cn), (l′′, b′′) � (l0, b)},
D′ = D ∪ {(l1, b) � (labs(e), b′′), (l′, b′) � (xl′ , l0:cn), (l, b), (l1, b) � (l0, b)},
I .u = {(l1, b)}, I .n = {l′′}, and I .c = {l0}

RET If occurP

�
(λx .el)l0

�
, N(l, b) = v(= ⊥), (l, b) � (l′, b′) ∈ E, and cn = l′:cn ′,

S
I−→〈l′, b′, cn ′, N [(l′, b′) �→ v], E, D〉 where I .c = {l0}

Fig. 3. Transition rules for functional core

Example 2 (Code Mapping). A code mapping between the program in Example 1
and

(let f =
�
@(λx.(xl′4

+ 1l′5
)l′3

)l′2

�
l′1

in

(let g = (@(λy.((fl′9

�
@yl′11

�
l′12

)l′10
× 3l′14

)l′9
)l′8

)l′7
in

(gl′16

�
@2l′18

�
l′17

)l′15
)l′6

)l′0

is {l0 �→ l′0, l1 �→ l′1, l2 �→ l′2, l3 �→ l′3, l4 �→ l′4, l5 �→ l′5, l6 �→ l′10, l7 �→ l′9, l8 �→
l′12, l9 �→ l′11} depicted in Fig. 4. The code mapping is denoted by dashed lines.
In addition, relabeled nodes are denoted by dashed ellipses, and inserted nodes
are denoted by bold ellipses.

Note that multiple code mappings are possible for each pairs of programs in
general. In order to choose better ones, we introduce a metric called mapping
cost for code mappings. It corresponds to the number of operations which are
used to transform P to P ′: deleting tree nodes in P which are not in dom(M)
inserting tree nodes in P ′ which are not in cod(M), and changing the tree
node label of mapped node. There exists several efficient algorithms [8,9] which
computes code (tree) mapping which minimizes the mapping cost. For example,
by applying one of the algorithms [9], we can obtain mapping cost 8 of the code
mapping in Example 2 which is optimal. We will always choose code mappings
of minimum cost since lower cost code mappings tend to provide more chances
of runtime code update.

A Method of Safety Analysis for Runtime Code Update 67

let f

+

fun x

2
f

app
1

x

let f

+

fun x

y
f

app

1x

let g

fun y

2

g

app

3

*

: marker

Fig. 4. Example of code mapping

Definition 2 (Modified Tree Nodes). Let M be a code mapping between P

and P ′. The set of modified tree nodes with respect to M denoted by ModPP ′

M
is defined as {l | P (l) is deleted, or l ∈ dom(M) and tree node label of P (l) is
changed, new children are inserted to P (l), or some of the children are deleted
from P (l)}

Example 3. The set of modified tree nodes with respect to the code mapping in
Example 2 is {l0, l8}.

3.4 Exact Update Model

We begin this section with a number of definitions. We sometimes omit some
parameters when they are obvious by context. For some program P , if S0(=

S
INI

P) I0−→ S1
I1−→ · · · Ii−1−−−→ Si

Ii−→ · · · In−1−−−→ Sn (0 ≤ i ≤ n) is a transition sequence
derived from the transition rules, we say that the sequence 〈Si, . . . , Sn〉 is an
execution trace of P . We say that S is a valid state for P if 〈S〉 is an execution
trace of P . In the rest of this subsection, we let P ′ be a revision of P , M a
code mapping between P and P ′, and T = 〈S0, . . . , Sn〉 an execution trace of
P unless otherwise specified. The sequence which is obtained by filtering out
Si(0 ≤ i ≤ n) such that

– lab(Si) 	∈ ModPP ′
M , or

– lab(Si−1) ∈ ModPP ′
M and P (lab(Si−1)) is simple

is called sequence of directly affected points of T with respect to M, denoted
by DAPPP ′

M (T). We also define the set of directly affected nodes denoted by
DAN PP ′

M (T) as {(lj , bj)|0 ≤ j ≤ m} where DAPPP ′

M (T) = 〈〈l0, b0, , , , 〉, . . . ,
〈lm, bm, , , , 〉〉. For a valid state S = 〈 , , , N, E, D〉 of P , the set of affected
nodes, denoted by AN PP ′

M (S), is defined as the set of reachable nodes from

DAN PP ′

M (〈SINI

P , . . . , S〉). Let S0
I0−→ · · · In−1−−−→ Sn be a transition sequence of P .

The set of essentially used values denoted by UseV (T), the set of next labels
denoted by NL(T), and the set of context labels denoted by CL(T) are defined
as I0.u∪ · · ·∪ In−1.u, I0.n∪ · · ·∪ In−1.n, and I0.c∪ · · ·∪ In−1.c, respectively. The
sequence of resume points, denoted by RPPP ′

M (T), is defined by filtering out all
of the states from T except the states just before directly affected points. The
leftmost state in RPPP ′

M (T) is called the leftmost resume point and denoted by

68 M. Hashimoto

LRPPP ′

M (T). The renaming map α derived from P , P ′, and M is a finite map
from tagged variables to tagged variables defined as follows: for any l �→ l′ ∈ M,
α(xl) = yl′ if and only if

– occurP

�
(λx .el0)l

�
, occur

P′

�
(λy .e ′

l′0
)l′
�
, and M(l0) = l′0, or

– occurP

�
(rec x .el0)l

�
, occur

P′

�
(rec y .e ′

l′0
)l′
�
, and M(l0) = l′0

α(xl) = xl otherwise. We extend the domain of expression label map to the set
of states. The extended expression label map of M, denoted by M̃, is defined by
trivially extending the original domain to the set of states based on the following
equations:

�M(l) =

�
M(l) l ∈ dom(M)
⊥ l 	∈ dom(M)

�M(l0: · · ·: ln) = �M(l0): · · ·: �M(ln)

�M([xl0
0 �→ cn0, . . . , x

ln
n �→ cnn]) = [α(xl0

0) �→ �M(cn0), . . . , α(xln
n) �→ �M(cnn)]

For the rest of the paper, we use X for M̃(X) when code mapping to be applied
is determined by the context. Note that all of the valid states for P before any
affected states become also valid for P ′ by applying the expression label map.

Definition 3 (State Match). Let P ′ be a revision of P , M a code map-
ping between P and P ′, S = 〈l, b, cn, N, E, D〉 a valid state of P , and S′ =
〈l′, b′, cn ′, N ′, E′, D′〉 a valid state of P ′. If l′ = l, for all x ∈ dom(b′) ∩ dom(b),
b′(x) = b(x), and N((l, b)) = N ′((l′, b′)), then we say that S′ matches S denoted
by MatchM(S, S′).

Let Si = 〈li, bi, cni, Ni, Ei, Di〉. The partial function dN (T) is defined as the
sum of extensions made to N0 in the transition from S0 to Sn. Similarly dE (T)
and dD(T) are defined. We denote the summary of contour operations applied
to cn0 by dcn(T) = 〈l+0 , . . . , l+p � l−0 , . . . , l−q 〉 where l+j denote pushed labels to
cn0, and l−k denote popped labels from cn0. The application of cn to dcn(T) is
defined as follows.

dcn(T)(cn) =
{

l+0 : · · · : l+p :cn ′ if cn = l−0 : · · · : l−q :cn ′

⊥ otherwise

Theorem 1 (Side-by-side). Let P ′ be a revision of P , M a code map-
ping between P and P ′, T = 〈S0, . . . , Sn〉 an execution trace of P where
Si = 〈li, bi, cni, Ni, Ei, Di〉(0 ≤ i ≤ n). If

– there exists a valid state S′ = 〈l′, b′, cn ′, N ′, E′, D′〉 of P ′ which matches S0,
– UseV (T) ∩ DAN (S0) = ∅,
– dcn(T)(cn ′) 	= ⊥,
– for all l ∈ NL(T), first(P (l)) = first(P ′(l)),
– DAP (T) = 〈〉, and
– CL(T) ∩ ModPP ′

M = ∅,

then 〈S∗
0 , . . . , S∗

n〉 is an execution trace of P ′ where Ti = 〈S0, . . . , Si〉 and S∗
i =

〈li, bi, dcn(Ti)(cn ′), N ′dN (Ti), E′ ∪ dE (Ti), D′ ∪ dD(Ti)〉.

A Method of Safety Analysis for Runtime Code Update 69

P :

P’ :

SP

SP’

S0 Si Sn
Ii-1 ……

S’

match

In-1IiI0

S*0 S*i S*n
Ii-1 …… In-1IiI0

=
INI

INI

Fig. 5. Side-by-side execution

P :

P’ :

SP LRP S

S’

match

Sa

S*a

Su

LRPSP’

T1 T2 TnT0

S*u
INI

INI

Fig. 6. Exact semantics of runtime code update

We now describe the exact semantics of runtime code update in terms of
Theorem 1. Let T = S

INI

P , S1, . . . , Su. Suppose that we are updating P at Su.

1. Start the execution of P ′ from LRPPP ′
M (T).

2. Whenever the control reaches S′ = 〈l′, b′, cn ′, N ′, E′, D′〉 such that
MatchM(S, S′) for some S in T , the following is repeated.
(a) Let T0 = 〈S, . . . , Sa〉 where Sa is between S and the nearest resume point after

S.
(b) If UseV (T0) ∩ DAN (S) = ∅, dcn(T0)(cn ′) 	= ⊥, for all l ∈ NL(T0),

first(P (l)) = first(P ′(l)), DAP (T0) = 〈〉, and CL(T0) ∩ ModPP ′
M = ∅, then

the execution from S to Sa can be reused: the execution proceeds from S∗
a.

(c) Otherwise, the execution proceeds from S′.

This model is illustrated in Fig. 6. In this model, the computation of P ′ is
constructed by reusing the computation of P as much as possible by way of the
execution trace. However recording whole of the execution trace is not feasible
in most cases. We would like to construct S∗

u from Su without any execution
traces or rollback. It is only possible to construct some state S′

u equivalent to S∗
u

in that the transition from S∗
u can be simulated by S′

u. The traces of updated
program contains transitions which does not present in the original program:

– transitions for creation of nodes in AN (Su) or AddedM(S∗
u)

where AddedM(S∗
u) = {n | n ∈ N∗

u , l appears in n, and l ∈ dom(P ′) \ cod(M)},
– transitions for binding environment extensions(shortenings) by the rules

LET(END) and CALL(RET), and
– transitions for contour changes by the rules CALL and RET.

If the transition from S∗
u is free from effects caused by the extra transi-

tions above: (lu, bu)
∈ AN (Su), no value of AN (Su) ∪ AddedM(S∗
u) belongs

to UseV (〈S∗
u, . . .〉), and bu and cnu are not subject to change where Su =

〈lu, bu, cnu, Nu, Eu, Du〉, then we call Su safe update point and can construct

70 M. Hashimoto

Ŝtate = N̂odes × Êdges × Êdges N̂odes = ̂NodeLabel → P(V̂alue)

V̂alue = (Label × ̂BindEnv × CVal) ̂BindEnv = Var → ̂Contour
Êdges = P(Êdge) Êdge = ̂NodeLabel × ̂NodeLabel

̂NodeLabel = (Label × ̂BindEnv) + (Var × ̂Contour)

ĈVal = Int + Bool + {cls} + {cell} + {unit} + {?} + (CVal × · · · × CVal)

Fig. 7. Abstract states

S′
u only from Su by providing some dummy values with Su, since the useless

node values cannot interfere the transition. In addition, some values may be re-
moved from UseV (〈S∗

u, . . .〉) if it is of no importance what the values are for the
user. For example, consider the following program fragment.

let loop = rec f.λc. · · · print c · · · f (c + 1) · · · in loop 0

Suppose that 0 is changed by some update. Since affected values reach the oc-
currences of c in the body of λc and are used there, it is possible to update the
code nowhere in the body. However, for instance, if the user permits c’s values
at the underlined part inaccurate and the values do not reach other important
parts, all the points in the body become safe. Note that the user must provide
appropriate values (some integer values) for affected and used values at the time
of runtime code update. We call nodes whose value is permitted to be inaccurate
user specified non-critical nodes.

4 Abstract Model

In this section, we describe a method of safe runtime code update based on a
static analysis. The analysis is derived from the abstract version of the semantics
introduced in the previous section.

4.1 Abstract Semantics

We define the abstract semantics following Jagannathan et al. [11] The abstract
semantics for a program P is given by a set of abstract states Ŝtate and an
abstract transition function T̂ : Ŝtate → Ŝtate. The definition of abstract states
appears in Fig. 7 The abstraction is parameterized by the following:

– a finite set of abstract contour ̂Contour ,

– an abstraction function Acn from Contour to ̂Contour ,

– a mapping �: from Label × ̂Contour to Contour which satisfies Acn (l : cn) =
l�: Acn (cn),

– an abstraction function Ab which maps BindEnv to ̂BindEnv . It must satisfy
Acn (cur(b)) = �cur(Ab(b)), where cur maps a binding environment to the contour
of its lexically deepest variable and �cur maps an abstract binding environment to
the abstract contour of its lexically deepest variable.

A Method of Safety Analysis for Runtime Code Update 71

Ñ(�nl) =

��	
�

{(l,�b, cv)} if �nl = (l,�b), reachP (�nl), and cv = cvalof P (l)

{(l′,�b, cls)} if �nl = (l,�b), reachP (�nl), and occurP

�
(rec f .(λx .e)l′)l

��
{ �N(�nl ′) |�nl ′ � �nl ∈ �E} otherwise

Fig. 8. Definition of Ñ for functional core

– an abstract binding environment extension function êxtend . It must satisfy

Ab(b[x �→ cn]) = êxtend(Ab(b), x,Acn (cn)).

A collection of abstract functions is obtained by extending Acn and Ab as follows.

A(〈l, b, cn, N, E,D〉) = 〈A(N), A(E), A(D)〉 A((l, b)) = (l, Ab(b))

A(N) = λ �nl .{A(N(nl)) | A(nl) = �nl} A(x, cn) = (x,Acn)(cn)
A(E) = {A(nl1) � A(nl2) | nl1 � nl2 ∈ E}
A(D) = {A(nl1) � A(nl2) |nl1 � nl2 ∈ D}

Abstract transition function builds a control/data flow and dependency graph.
The source of data flow is created by self-evaluating expressions such as con-
stants, lambdas, and recursive expressions. Abstract values are propagated
through the control/data flow edges, possibly causing the creation of new sources
of data flow or new edges. The abstract transition function T̂ is defined by
T̂ (〈N̂ , Ê, D̂〉) = 〈Ñ , Ẽ, D̃〉. The definition of Ñ for the functional core is given
in Fig. 8 where cvalof P denotes the function from Label to CVal which is defined
by

cvalof P (l) =

{
k if P (l) = k
cls if P (l) = λx.el

? otherwise.

The first two cases in Fig. 8 assign the abstract values in nodes correspond-
ing to expressions where the control may reach from the entry node nl INI

P =
(first(P), ∅). Reachability of control is represented as the sets of control flow edges
denoted by n̂l1

I−→ n̂l2 ∈ CFlowEdge = ̂NodeLabel × P(̂NodeLabel) × ̂NodeLabel .
A control flow edge is labeled with transition information I . We only use I .u.
For a program P , CFlow (P) ∈ CFlowEdges = P(CFlowEdge) and the predicate
reachP ⊆ ̂NodeLabel are computed by the rules (again only for the functional
core) in Fig. 9. The third case in the definition of Ñ propagates abstract values
along data flow edges in the graph. The definition of Ẽ appears in Fig. 10. The
definition of D̃ is easily derived from the exact transition rules. Let P ′ be a
revision of P , M a code mapping between P and P ′, and S is a valid state of P .

The set of abstract affected nodes of Ŝ is defined by ̂AN PP ′
M (Ŝ) = A(AN PP ′

M (S)).

Definition 4 (Abstract Match). Let P ′ be a revision of P and M a code
mapping between P and P ′. Let N̂ and N̂ ′ be components of abstract graphs
of P and P ′, respectively. Suppose that (l, b̂) and (l′, b̂′) are in CFlow (P) and
CFlow (P ′), respectively. We say (l, b̂) has abstract match (l′, b̂′), denoted by
M̂atchM((l, b̂), (l′, b̂′)) if l′ = l.

72 M. Hashimoto

1. reachP (nl INI
P)

2. For all l such that occurP

�
((e1)l1 (e2)l2)l

�
,

(a) If �N((l1,�b)) 	= {}, then reachP ((l′2,�b)) and (l1,�b) I−→ (l′2,�b) ∈ CFlow(P) where
l′2 = first(e2), I .n = {l2}, and I .c = {l}.

(b) If (l′, �b′) ∈ �N((l1,�b)), occurP

�
(λx .el′′)l′

�
, and �N((l2,�b)) 	= {}, then

reachP ((l′′′, �b′′)) and (l2,�b) I−→ (l′′′, �b′′) ∈ CFlow(P) where l′′′ = firste,�b′′ = êxtend(�b′, x, l�:�cur(�b)), I .u = {(l1,�b)}, I .n = {l′′}, and I .c = {l}.

Fig. 9. Definition of reachP and CFlow(P) for functional core

Ẽ =

l∈dom(P),(l,�b)∈dom(�N)

Ẽl�b

where if occurP

�
xl
�
, Ẽl�b = {(x,�b(x)) � (l,�b) | reachP ((l,�b))}

if occurP

�
(rec f .λx .e)l

�
, Ẽl�b = {(l,�b) � (f,�cur(�b)) | reachP ((l,�b))}

if occurP

�
((e1)l1 (e2)l2)l

�
,

Ẽl�b =

��	
�

(l1,�b) � (x, l�:�cur(�b)), (l′, �b′) ∈ �N((l1,�b)), occurP

�
(λx .el′′)l′

�
(l′′, �b′′) � (l,�b), �b′′ = êxtend(�b′, x, l�:�cur(�b)),
(y, �b′) � (y, �b′′) y ∈ dom(�b′)

���
��

Fig. 10. Definition of Ẽ for functional core

Now we can statically estimate safe update points. We denote the set of all
possible uses from n̂l0 in CFlow (P) by ÛseV (CFlow (P), n̂l0): for all possible

path n̂l0
I0−→ · · · In−1−−−→ n̂ln in CFlow (P), ÛseV (CFlow (P), n̂l0) =

⋃⋃
0≤i≤n Ii.u.

By NCL, we denote the set of user specified non-critical labels which corresponds
to the set of user specified non-critical nodes appeared in the last of Sect. 3. Then
we define the notion of safe update points as follows.

1. Build abstract states �S = 〈 �N, �E, �D〉 and �S′ = 〈�N ′,�E′,�D′〉 for P and P ′, respec-
tively.

2. Let NCN = {(l′, �b′) | (l′, �b′) ∈ CFlow(P ′) and l ∈ NCL}.
3. Let Added = {(l′, �b′) | (l′, �b′) ∈ CFlow(P ′) and l′ ∈ dom(P ′) \ cod(M)}.
4. For all �nl ∈ CFlow(P), �nl is a safe update point if the following conditions hold.

(a) �nl 	∈ ̂AN PP ′
M (�S)

(b) M̂atchM(�nl ,�nl ′) for some �nl ′ in �N ′. We let �nl ′ be the matched point.

(c) Let KN = (̂AN PP ′
M (�S) \ NCN) ∪ Added and KV = {(l′1, �b′

1) | (l′1, �b′
1) ∈ KN ,

(l′1, �b′
1, ?) ∈ �N ′(�nl ′0), and �nl ′0 is reachable from �nl ′}.

Then KV ∩ ÛseV (CFlow(P ′),�nl ′) = ∅.

We can instantiate the abstract update model to obtain nCFA [12] based
analyses. For example, by setting ̂Contour = {0}, Acn(cn) = 0, l :̂ ĉn = 0,
Ab(b) = λx.0, and êxtend (̂b, x, ĉn) = λx.0, we obtain a 0CFA based analysis.

A Method of Safety Analysis for Runtime Code Update 73

5 Related Work

There exist several works which formalized termination-avoiding up-
date [7,13,14,15]. Some are based on code replacement technique(e.g., dynamic
load/link), and the others are based on state transfer between old and new
versions. Gilmore and others [13] and Duggan [15] have modeled the type-safe
dynamic replacement of ML modules. In Dynamic ML, Update occurs when the
garbage collector is activated. Bierman and others [14] extended a simply typed
first-order lambda calculus with a notion of modules, then defined a model of
type-safe dynamic module update. Stoyle and others [5] developed an analysis
to determine con-free program points where type-safe dynamic update can be
performed for a type safe variant of C-like language. Though their work is very
similar in spirit to ours, they ensure only type safety. Suppose that we are updating
the following program fragment by changing underlined true is changed to false.

· · · let a = true in if a then e1 else e2 · · ·

If e1 does not contain any concrete access to a, update is allowed at any point in
e1. However, executing the changed program from its initial state never reaches
e1. Such inconsistency should be at least warned. Gupta and others [7] proposed a
formal model for on-the-fly program modification based on state transfer between
processes. They defined validity of updates and have shown that validity check for
all of the possible programs is not decidable. Therefore they put some restrictions
on available updates as mentioned in Sect. 2. Although their notion of validity
is strictly stronger than type safety, their restrictions are too restrictive.

6 Conclusion

We have developed a method of ensuring safety of updating programs at run-
time. Safe runtime code update never causes state inconsistency and unintended
behavior. Our safety is strictly stronger property than type safety. In order to en-
sure the safety, applicable updates must be properly restricted. We constructed a
very precise (but infeasible) model to reveal appropriate restriction and derived
a class of safety analysis from the model. The resulting restriction is only on
the update timing: runtime code update may occur only at safe update points
where no data and control dependence on modified code exists and no reaching
affected values have subsequent critical uses. The set of safe update points is
statically estimated by analyzing the old and new programs.

To apply our method to a large number of realistic updates, a lot of fur-
ther work is required. First, we have to develop update models and analyses for
commonly used programming languages other than higher-order functional lan-
guages. We are developing an experimental difference analyzer called ASTDiff.
Currently, it can convert source code written in Java, Python, or C to the ab-
stract syntax tree and compare the trees by means of an applied tree matching
algorithm. Most of our analysis except the difference analysis can be imple-
mented by utilizing existing frameworks for data flow and dependency analyses.

74 M. Hashimoto

Second, some mechanism for code replacement or state transfer must be imple-
mented. Although our method is in principle applicable to both mechanisms,
it complicates the implementation. At least, we have to precisely track heap
objects without sacrificing efficiency which is itself a hard problem.

Acknowledgment

The author would like to thank anonymous referees for their suggestions on
further investigation and helpful comments.

References

1. Toy, L.: Large-Scale Real-Time Program Retrofit Methodology in AT&T 5ESS
Switch. In: Reliable computer systems, 3rd edn. design and evaluation, pp. 574–
586. A K Peters (1998)

2. Pescovitz, D.: Monsters in a box. Wired 8(12), 341–347 (2000)
3. Fabry, R.: How to design A system in which modules can be changed on the fly.

In: Proceedings of the Second International Conference on Software Engineering,
IEEE, Los Alamitos (1976)

4. Frieder, O., Segal, M.E.: On Dynamically Updating a Computer Program: From
Concept to Prototype. Journal of Systems and Software 14(2), 111–128 (1991)

5. Stoyle, G., Hicks, M.W., Bierman, G.M., Sewell, P., Neamtiu, I.: Mutatis mutandis:
safe and predictable dynamic software updating. In: POPL, pp. 183–194 (2005)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 238–252. ACM Press, New York (1977)

7. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version
change. IEEE Transactions on Software Engineering 22(2), 120–131 (1996)

8. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)
9. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)
10. Tip, F.: A survey of program slicing techniques. Journal of programming lan-

guages 3, 121–189 (1995)
11. Jagannathan, S., Weeks, S.: A unified treatment of flow analysis. In: Conference

Record of 22nd Annual Symposium on Principles of Programming Languages, pp.
393–407 (1995)

12. Shivers, O.: Control-Flow Analysis of Higer-Order Languages. PhD thesis, Carnegie
Mellon University (May 1991)

13. Gilmore, S., Kirli, D., Walon, C.: Dynamic ML without dynamic types. Technical
Report ECS-LFCS-97-378, Laboratory for the Foundations of Computer Science,
The University of Edinburgh (December 1997)

14. Bierman, G., Hicks, M., Sewell, P., Stoyle, G.: Formalizing dynamic software up-
dating. In: Proceedings of the Second International Workshop on Unanticipated
Software Evolution (USE), April 2003 (2003)

15. Duggan, D.: Type-based hot swapping of running modules. In: Proc. International
Conference on Functional Programming, pp. 62–73 (2001)

Automata-Based Confidentiality Monitoring�

Gurvan Le Guernic1,2, Anindya Banerjee2,
Thomas Jensen1, and David A. Schmidt2

1 IRISA - Campus universitaire de Beaulieu, 35042 Rennes - France
{Gurvan.Le_Guernic, jensen}@irisa.fr

2 Kansas State University - Manhattan, KS 66506 - USA
{ab,schmidt}@cis.ksu.edu

Abstract. Non-interference is typically used as a baseline security pol-
icy to formalize confidentiality of secret information manipulated by a
program. In contrast to static checking of non-interference, this paper
considers dynamic, automaton-based, monitoring of information flow for
a single execution of a sequential program. The monitoring mechanism is
based on a combination of dynamic and static analyses. During program
execution, abstractions of program events are sent to the automaton,
which uses the abstractions to track information flows and to control the
execution by forbidding or editing dangerous actions. The mechanism
proposed is proved to be sound, to preserve executions of well-typed
programs (in the security type system of Volpano, Smith and Irvine),
and to preserve some safe executions of ill-typed programs.

1 Introduction

With the intensification of communication in information systems, interest in
security has increased. This paper deals with the problem of confidentiality, more
precisely with non-interference in sequential programs. This notion has first been
introduced by Goguen and Meseguer [1] as the absence of strong dependency [2].

A sequential program, P, is said to be non-interfering if the values of its public
(or low) outputs do not depend on the values of its secret (or high) inputs.
Formally, non-interference of P is expressed as follows: given any two initial
input states σ1 and σ2 that are indistinguishable with respect to low inputs, the
executions of P started in states σ1 and σ2 are low-indistinguishable; i.e. there
is no observable difference in the public outputs. In the simplest form of the
low-indistinguishable definition, public outputs include only the final values of
low variables. In a more general setting, the definition may additionally involve
intentional aspects such as power consumption, computation times, etc.

Static analyses for non-interference have been studied extensively and are well
surveyed by Sabelfeld and Myers [3]. The novelty of the approach developed in
this paper lies in:
� Banerjee and Le Guernic were partially supported by NSF grants CNS-0627748,

CNS-0209205, CCF-0296182 and ITR-0326577. Schmidt was partially supported by
NSF grants ITR-0326577 and ITR-0086154. Le Guernic was also partially supported
by the PoTestAT project (ACI Sécurité).

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 75–89, 2007.
© Springer-Verlag Berlin Heidelberg 2007

76 G. Le Guernic et al.

1. its ability to give a judgment for a single execution alone and not only for
all the executions of a program as a whole,

2. the monitoring mechanism used to ensure the confidentiality of secret data.

The bulk of previous research [4, 5, 6, 7, 8, 9, 10, 11] associates the notion of
non-interference to a program and develops static analyses that accept a pro-
gram only if all its executions ensure the confidentiality of secrets. In contrast,
this paper presents a dynamic analysis that uses the results of a static analysis:
the dynamic analysis accepts or rejects a single execution of a program without
necessarily doing the same for all other executions. The monitoring mechanism
introduced guarantees confidentiality of secret data: either the monitor deduces
that the current execution is non-interfering or it alters the behavior of the ex-
ecution to obtain a non-interfering execution. The feasibility of this approach
is shown by Hamlen et al. [12] who prove that any policy that can be stati-
cally asserted is enforceable using monitors which have access to the program’s
source.

There are three main benefits to using a monitoring mechanism rather than a
static analysis. First, the security levels of inputs and outputs may be different
from one execution to another; and a monitoring mechanism lets the security
levels vary before each execution while still enforcing non-interference. For ex-
ample, consider the effect of monitoring the Unix command more that takes as
input a file divided into blocks and displays the blocks sequentially while waiting
for the user to press a key between each block. A monitor for more would display
a block only if the security level of the block is lower than the security level of
the user; otherwise a default security message will be displayed. The monitor
behavior depends on the particular file given as input, not on all possible in-
puts. This feature makes the monitoring mechanism a “lazy” polyvariant static
analysis. A second benefit of monitors is their ability to safely use a program
which has not been proved to respect a given property — maybe because one
of its executions does not respect it; the monitor can run the safe executions
— i.e. non-interferent executions — of an unsafe program. Finally, a monitoring
mechanism follows the precise control flow of a program and thus calculation
of control dependences (as might be performed in static analyses) can be more
accurate. Section 5 contains an example showing how the work presented in this
paper benefits from this improved accuracy.

A distinguishing feature of this dynamic analysis, compared to other program
monitors, lies in the property overseen. Monitoring information flow is more
complicated than, e.g., monitoring divisions by zero, since it must take into ac-
count not only the current state of the program but also the execution paths
not taken during execution. For example, executions of the following programs
(a) if h then x :=1 else skip and (b) if h then skip else skip in an ini-
tial state where h is false are equivalent concerning executed commands. In
contrast, (b) is obviously a non-interfering program, while (a) is not. The exe-
cution of (a), with a low-equivalent initial state where h is true and x is 0, does
not give the same final value for the low output x.

Automata-Based Confidentiality Monitoring 77

This paper presents the semantics of a confidentiality monitoring mechanism
which is proved to be sound. This mechanism is useful, for example, for the exe-
cution of programs downloaded from untrusted sources. Based on the semantics
presented here, the monitoring mechanism can be implemented as a program
transformation or as a virtual machine. To the best of our knowledge, this work
is the first that presents a non-interference monitoring mechanism supported by
formal proofs of soundness. Because of its dynamic nature, the mechanism is
more expressive than the non-interference type system of Volpano et al. [11].
The next section defines terminology and introduces the scope of the work. Sec-
tion 3 defines the monitoring semantics, which is automata-based. The properties
of monitored executions and a comparison with type systems are contained in
Sect. 4. Section 5 discusses related work and concludes. Proofs of theorems in
this paper can be found in the companion technical report [13].

2 Language and Non-interference Monitoring Principles

The work presented aims at monitoring executions in order to enforce non-
interference. The novelty and difficulty of this objective, compared to standard
works on monitoring, lies in the monitoring mechanism. Monitors which see exe-
cutions as a sequence of executed actions, like standard execution monitors [14],
are not sufficient to enforce non-interference. This particular point is supported
by works of McLean and Schneider. McLean [15] proved that information flow
policies equivalent to non-interference are not properties ; and Schneider [14] con-
cluded that execution monitors are limited to the enforcement of properties. An
information theoretic viewpoint why this is the case is given by Ashby:

“the information carried by a particular message depends on the set it
comes from. The information conveyed is not an intrinsic property of the
individual message.” [16, § 7/5 page 124].

In order to enforce strong constraints on the information flow (like non-inter-
ference), the monitoring mechanism must be aware of the commands that are
not evaluated by a given execution [17, Sect. 4.2.2]. This is part of the approach
taken in the work presented in this paper. Conceptually, the monitor has a partial
access to the target program’s source code.

The notion of non-interference is intrinsically linked to the notion of infor-
mation flow. This paper distinguishes three types of information flows: direct
flows from the right part to the left part (or target) of assignments, explicit
indirect flows from the context of execution to targets of executed assignments
and implicit indirect flows from the context of execution to targets of un-executed
assignments. The context of execution of a command is the set of entities that
influence whether this command is executed or not.

The language: syntax and semantics. We study a simple imperative sequential lan-
guage with loops and outputs. The work proposed in this paper can be extended

78 G. Le Guernic et al.

to more complex languages. The main requirement is to have a precise knowledge
of the control flow. The grammar of the studied language follows:

A ::= x := e | skip | output e

B ::= if e then S else S end | while e do S done
S ::= S ; S | B | A

The only constraints put on expressions (e) are that their evaluation must be de-
terministic and without side effects. Statements (S) are either sequences (S ; S),
conditionals and while loops (B), or atomic actions (A). The output statement,
“output e”, is a generic statement used to represent any kind of public (or low)
output, e.g., the action of printing the value of expression e on the terminal, pro-
ducing a sound, or laying out a new window on the desktop. Only public outputs
(i.e. outputs that are visible by standard users) are coded with the output state-
ment; secret outputs are simply ignored. For example, sending a message m on
a public network is represented by “output m,” but sending an encrypted mes-
sage n on a public network is abstracted by “output c”, where c is a constant
which emphasizes the fact that the content of an encrypted message cannot be
revealed. Finally, sending a message on a private network, to which standard
users do not have access, does not appear in the code of the programs studied.

Non-terminating executions leaks information through timing channels; such
channels are not in the scope of this work. Consequently, the paper focuses on
terminating executions, which allows the use of big-step operational semantics
(also called natural semantics [18]). The standard semantics of the language
(Fig. 2) is described using evaluation rules, written σ � S

o=⇒ σ′. This reads as
follows: statement S executed in state σ yields state σ′ and output sequence o.
Let D be the semantic domain of values, and X the domain of variables. The
definition of program states (X → D) is extended to expressions, so that σ(e) is
the value of the expression e in state σ. An output sequence is a word in D�.

σ � x := e
ε
=⇒ σ[x �→ σ(e)] σ � output e

σ(e)
===⇒ σ σ � skip ε

=⇒ σ

σ � S1
o1==⇒ σ′ σ′ � S2

o2==⇒ σ′′

σ � S1 ; S2
o1 o2====⇒ σ′′

σ(e) = v σ � Sv
o
=⇒ σ′

σ � if e then Strue else Sfalse end o
=⇒ σ′

σ(e) = true
σ � S ; while e do S done o

=⇒ σ′

σ � while e do S done o
=⇒ σ′

σ(e) = false
σ � while e do S done ε

=⇒ σ

Fig. 1. Semantics outputting the values of low-outputs

The monitoring principles. Non-interference formalizes that there is no infor-
mation flow from secret (or high) inputs to public (or low) outputs. For any
program P, let S(P) ⊆ X be the set of variables whose initial values are the
secret inputs. The only public output is the output sequence resulting from the

Automata-Based Confidentiality Monitoring 79

execution. Contrary to the majority of works on non-interference, the values of
the variables in the program state are never directly accessible (even at the end
of the execution). Consequently, the values of the variables in the program state
are never considered public outputs. We made this choice in order to be more
flexible with regard to what is considered as publicly accessible. All, and only,
the values which are visible to low users must be displayed using an output state-
ment at the position inside the program where they are visible. If the desired
behavior is that low users have access to the values of low variables at the end
of the execution, those values must be output at the end of the program.

The main monitoring mechanism principle is based on information transmis-
sion notions of classical information theory [16]. Cohen states it as follows:

“information can be transmitted from a to b over execution of H [(a se-
quence of actions)] if, by suitably varying the initial value of a (exploring
the variety in a), the resulting value in b after H ’s execution will also
vary (showing that the variety is conveyed to b).” [2, Sect. 3].

Hence, for preventing information flows from secret inputs to public outputs,
the monitoring mechanism must ensure that variety — which can be seen as
the property of variability or mutability — of the initial values of the variables
in the set S(P) is not conveyed to the output sequence. This means that the
monitoring mechanism, which works on a single execution, must ensure that
even if the initial values of the variables belonging to S(P) were different, the
output sequence would be identical.

The monitoring automaton has two jobs. The first is to track “variety,” that
is, to track entities (program variables, program counter, . . .) having different
values when the initial values of variables in S(P) are different. Its second job
is to prevent conveying of variety to the output sequence, that is, to ensure
that the output sequence would be identical for any execution having the same
public inputs (the initial values of the variables not in S(P)). To complete the
first job, the states of the monitoring automaton are pairs. The first element of
this pair is a set of variables. At any step of the computation, it contains all the
variables that have “variety” (i.e., have a different value if the initial values of
the variables belonging to S(P) are different). The second element of the pair is a
word in {�, ⊥}�. This word tracks “variety” in the context of the execution (the
value of the program counter). The second job (avoiding transfer of variety to
the output sequence) is accomplished by authorizing, denying, or editing output
statements depending on the current state of the monitoring automaton.

3 Definition of the Monitoring Mechanism

The monitoring mechanism is divided into two main elements. The first is an au-
tomaton similar to edit automata [19]. Inputs to the automaton are abstractions
of the actions accomplished during an execution. The automaton tracks informa-
tion flow and authorizes, forbids or edits the actions of the monitored execution
to enforce non-interference. The second element of the monitoring mechanism is

80 G. Le Guernic et al.

a semantics of monitored executions that merges together the behavior of the
monitoring automaton and that of the standard output semantics in Fig. 2.

3.1 The Automaton

The automaton’s transition function is independent of the monitored pro-
gram, but the initial automaton’s state is not. The automaton enforcing non-
interference is the tuple A(P) = (Q, Φ, Ψ, δ, q0) where: Q is a set of states
(Q = 2X × {�, ⊥}�), Φ is the input alphabet, Ψ is the output alphabet, δ
is a transition function (Q × Φ) −→ (Ψ × Q), and q0 ∈ Q is the start state
(q0 = (S(P), ε)).

An automaton state is a pair (V, w). V ⊆ X contains all the variables whose
current value may have been influenced by the initial values of the variables in
S(P); w, which belongs to {�, ⊥}�, can be seen as a stack that tracks variety in
the context of the execution. In our approach, the context consists of only the
program counter’s value. If � occurs in w, then the statement executed belongs
to a conditional whose test may have been influenced by the initial values of S(P).
Hence the statement may not have been executed for a different choice of initial
values of S(P). The input alphabet of the automaton (Φ) consists of abstractions
of events that occur during an execution. It is defined below. The output alphabet
(Ψ) is composed of the following: ACK, OK, NO, and atomic actions of the
language. An atomic action is the answer of the monitoring automaton whenever
an action other than the current one has to be executed.

Figure 2 specifies the transition function of the automaton. A transition is
written (q, φ)

ψ−→ q′. It reads as follows: in the state q, on reception of the input
φ, the automaton moves to state q′ and outputs ψ. Let V(e) be the set of variables
occurring in e and modified(S) be the set of all variables whose value may be
modified by an execution of S.

Figure 2 shows that the automaton forbids (NO) or edits (output θ) only
executions of output statements. For other inputs, it merely tracks, in the set V ,
the variables that may contain secret information (have variety), and it tracks,
in w, the variety of the branching conditions.

Inputs “branch e” are generated at exit point of conditionals. On reception of
such inputs in state (V, w), the automaton checks if the value of the branching
condition (e) might be influenced by the initial values of S(P): only if some
variable occurring in e belongs to V . If this is the case then the automaton
pushes � at the end of w; otherwise it pushes ⊥. In either case, the automaton
acknowledges the reception of the input by outputting ACK.

Whenever execution exits a branch — which is a member of a conditional c —
the input “exit” is sent to the automaton. The last letter of w is then removed.
As any such input matches a previous input “branch e” — generated by the
same conditional c — which adds a letter to the end of w, the effect of “exit”
is to restore the context to its state before the conditional was processed.

Inputs “not S” are generated at exit point of conditionals. It means that,
due to the value of a previous branching condition, statement S has not been
executed. This detects implicit indirect flows. On input “not S” in state (V, w),

Automata-Based Confidentiality Monitoring 81

modified(x := e) = {x}
modified(output e) = modified(skip) = ∅
modified(S1 ; S2) = modified(S1) ∪ modified(S2)
modified(if e then S1 else S2 end) = modified(S1) ∪ modified(S2)
modified(while e do S done) = modified(S)

((V, w), branch e)
ACK−−−→ (V, w�) iff V(e) ∩ V
= ∅

((V, w), branch e)
ACK−−−→ (V, w⊥) iff V(e) ∩ V = ∅

((V, wa), exit)
ACK−−−→ (V, w)

((V, w), not S)
ACK−−−→ (V ∪ modified(S), w) iff w
∈ {⊥}�

((V, w), not S)
ACK−−−→ (V, w) iff w ∈ {⊥}�

((V, w), skip)
OK−−→ (V, w)

((V, w), x := e)
OK−−→ (V ∪ {x}, w) iff w
∈ {⊥}� or V(e) ∩ V
= ∅

((V, w), x := e)
OK−−→ (V \ {x}, w) iff w ∈ {⊥}� and V(e) ∩ V = ∅

((V, w), output e)
OK−−→ (V, w) iff w ∈ {⊥}� and V(e) ∩ V = ∅

((V, w), output e)
output θ−−−−−−→ (V, w) iff w ∈ {⊥}� and V(e) ∩ V
= ∅

((V, w), output e)
NO−−→ (V, w) iff w
∈ {⊥}�

Fig. 2. Transition function of monitoring automata

the automaton verifies whether S may have been executed with differing values
for S(P). This is the case if the context of execution carries variety (i.e. if w
does not belong to {⊥}�). Let (V ′, w′) be the new state of the automaton. If the
context carries variety then V ′ is the union of V with the set of variables whose
values may be modified by an execution of S. Otherwise, nothing is done.

Atomic actions (assignment, skip or output) are sent to the automaton for
validation before their execution. The atomic action skip is considered safe be-
cause the non-interference definition considered in this work is not time sensitive.
Hence the automaton always authorizes its execution by outputting OK.

When executing an assignment (x := e), two types of flows are created. The
first is a direct flow from e to x. The second flow is an explicit indirect flow from
the context of execution to x. For example, the execution of the assignment in
“if b then x := y else skip end” creates such a flow from b to x. Both forms of
flows are always created when an assignment is executed. What is important is
to check if secret information is carried by one of the flows (i.e., if variety in S(P)
is conveyed by one of the flows). Hence, on input x := e, the automaton checks
if the value of the origin of one of those two flows is influenced by the initial
values of S(P). For instance, if b is true in “if b then x := y else skip end”,
y is the origin of a direct flow to x and b is the origin of an explicit indirect
flow to x. The origin of the explicit indirect flow is influenced by S(P) only if w
contains �, meaning that the condition of a previous (but still active) conditional
was potentially influenced by the initial values of S(P). The origin of the direct
flow is influenced by S(P) only if V(e) and V are not disjoint. If the value of
e is influenced by the initial values of S(P) then at least one of the variables

82 G. Le Guernic et al.

appearing in e has been influenced by S(P). Such variables are members of V .
Let (V ′, w′) be the new automaton state after the transition. If the origin of
either the direct flow or the explicit indirect flow is influenced by the initial
values of S(P), then x (the variable modified) is added to V : V ′ = V ∪ {x}. On
the other hand, if none of the origins are influenced by the initial values of S(P),
then x receives a new value which is not influenced by S(P). In that case, V ′

equals V \ {x}. This makes the mechanism flow-sensitive.
The rules for the automata input, “output e,” prevent bad flows through two

different channels. The first one is the actual content of what is output. In a
public context, (w ∈ {⊥}�), if the program tries to output a secret (i.e., the
intersection of V and the variables in e is not empty), then the value of the
output is replaced by a default value. This value can be a message informing
the user that, for security reasons, the output has been denied. To do so, the
automaton outputs a new output statement to execute in place of the current
one. The second channel is the behavior of the program itself. This channel
exists because, depending on the path followed, some outputs may or may not be
executed. Hence, if the automaton detects that this output may not be executed
with different values for S(P) (the context carries variety) then any output must
be forbidden; and the automaton outputs NO.

3.2 The Semantics

The semantics merging the standard output semantics in Fig. 2 with the moni-
toring automaton is given in Fig. 3. The semantics is described using evaluation
rules written: (q, σ) � S

o=⇒ (q′, σ′) . This reads: statement S executed in au-
tomaton state q and program state σ yields automaton state q′, program state
σ′, and output sequence o. There are three rules for atomic actions: skip, x := e
and output e. There is one rule for each possible automaton answer to the ac-
tion executed. Either the automaton authorizes the execution (OK), denies the
execution (NO), or replaces the action by another one. The rules use the stan-
dard semantics (Fig. 2) when an action must be executed. In the case where the
execution is denied, the evaluation omits the current action (as if the action was
”skip”). For the case where, on reception of input A, the monitoring automaton
returns A′, the monitoring semantics executes A′ instead of A. Note from Fig. 2,
that A′ can only be the action that outputs the default value (output θ).

For conditionals, the evaluation begins by sending to the automaton the input
“branch e” where e is the test of the conditional. Then, the branch designated
by e is executed (in the case of a while statement whose test is false, the
branch executed is “skip”). The execution follows by sending the automaton
input “not S” where S is the branch not executed (in case of a while statement
whose test is true, what happens is equivalent to sending the automaton input
“not skip”). Finally, the input “exit” is sent to the automaton and the execution
proceeds as usual. In the case of a while statement with a condition equals to
true, the execution proceeds by executing the while statement once again.

Automata-Based Confidentiality Monitoring 83

(q, A)
OK−−−→ q′

σ � A
o
=⇒ σ′

(q, σ) � A
o
=⇒ (q′, σ′)

(q, A)
A′
−−→ q′

σ � A′ o
=⇒ σ′

(q, σ) � A
o
=⇒ (q′, σ′)

(q, A)
NO−−−→ q

(q, σ) � A
ε
=⇒ (q, σ)

(q, σ) � S1
o1==⇒ (q1, σ1)

(q1, σ1) � S2
o2==⇒ (q2, σ2)

(q, σ) � S1 ; S2
o1 o2====⇒ (q2, σ2)

σ(e) = v (q, branch e)
ACK−−−−→ q1

(q1, σ) � Sv
o
=⇒ (q2, σ1)

(q2, not S¬v)
ACK−−−−→ q3 (q3, exit)

ACK−−−−→ q4

(q, σ) � if e then Strue else Sfalse end o
=⇒ (q4, σ1)

σ(e) = true (q, branch e)
ACK−−−−→ q1

(q1, σ) � S
ol==⇒ (q2, σ1)

(q2, exit)
ACK−−−−→ q3

(q3, σ1) � while e do S done ow==⇒ (q4, σ2)

(q, σ) � while e do S done
ol ow
====⇒ (q4, σ2)

σ(e) = false (q, branch e)
ACK−−−−→ q1

(q1, not S)
ACK−−−−→ q2 (q2, exit)

ACK−−−−→ q3

(q, σ) � while e do S done ε
=⇒ (q3, σ)

Fig. 3. Semantics of monitored executions

3.3 Example of Monitored Execution

Table 1 is an example of monitored execution. The monitored program is given
in column “Program P”. Its inputs are h and l. The execution monitored is the
one for which h equals true and l equals 22. S(P), the set of secret inputs of P, is
{h}. So the initial state of the automaton is ({h}, ε). Column “input” contains the
inputs which are sent to the automaton, “output” contains the output sent back
to the semantics, and “new state” shows the new internal state of the automaton
after the transition. Finally, the last column shows the actions which are really
fulfilled by the monitored execution.

Table 1. Example of the automaton evolution during an execution

Program Automaton: Actions
P input output new state executed

1 x := l + 3; x := l + 3 OK ({h} , ε) x := l + 3
2 if (x > 10) then branch x > 10 ACK ({h} , ⊥)
3 y :=h; y :=h OK ({h,y} , ⊥) y :=h
4 output x; output x OK ({h,y} , ⊥) output x
5 output y; output y output θ ({h,y} , ⊥) output θ
6 if (h) then branch h ACK ({h,y} , ⊥�)
7 z :=0; z :=0 OK ({h,y,z} , ⊥�) z :=0
8 output x output x NO ({h,y,z} , ⊥�)
9 else x :=1 not x := 1 ACK ({h,y,z,x} , ⊥�)

10 end exit ACK ({h,y,z,x} , ⊥)
11 else skip not skip ACK ({h,y,z,x} , ⊥)
12 end exit ACK ({h,y,z,x} , ε)

84 G. Le Guernic et al.

In this example, there are only two alterations of the execution (on lines 5
and 8). The first occurs when the program attempts to output a value influenced
by S(P) – output y. At this point of the execution, the value contained in y has
been influenced by the initial values of the variables belonging to S(P). This
is known because y belongs to the first element of the automaton state before
execution of line 5. Consequently, the automaton disallows the output of this
value. However, the fact of outputting something in itself is safe because the
context of execution (the program counter) has not been influenced by S(P) (the
second element of the automaton state belongs to {⊥}�). Hence, the automaton
replaces the current action by an output action whose value is a default one
(therefore not influenced by S(P)). This value lets the user know that an output
action has been denied for security reasons.

On line 8, the program tries to output something while the current context of
execution has been influenced by S(P). Hence, if the output occurs, the sequence
generated by the execution is influenced by some secret values. Therefore the
automaton denies any output; it does not even give another action to execute in
place of the current one. The semantics does as if the action was “skip”.

4 Properties of the Monitoring Mechanism

A first theorem states soundness: any monitored execution is a non-interfering
execution. A second one states “pseudo-completeness”: the monitor does not alter
observable behavior of a non-trivial set of non-interfering executions. Complete
proofs of these theorems can be found in the companion technical report [13].

Soundness. The soundness property is based on the notion of non-interference
between the secret inputs and the output sequence of an execution. An execution
is considered safe — knowing that the program’s source is public — if and only
if it does not convey the variety in its secret inputs to the sequence output, that
is, if the secret inputs have no influence on the execution’s outputs.

For all programs P, with set of secret inputs S(P), and value store σ, let [[P]]σ
be the output sequence obtained via the monitored execution of P in the initial
state ((S(P), ε), σ). This definition is formally stated as follows:

[[P]]σ = o if and only if ∃ q′, σ′ : ((S(P), ε), σ) � P o=⇒ (q′, σ′)

The following theorem states that every monitored execution is safe, i.e. it is
non-interfering. Let X= be an equivalence relation between value stores. Let σ1

X= σ2
assert that σ1 and σ2 are indistinguishable for X , i.e., σ1 and σ2 associate the same
value to every variable in X . Let Xc be the complement of set X in X.

Theorem 1 (Soundness: monitored executions are non-interfering).
For all programs P, whose set of secret inputs is S(P), and value stores σ1 and
σ2,

σ1
S(P)c

= σ2 ⇒ [[P]]σ1 = [[P]]σ2

Automata-Based Confidentiality Monitoring 85

Proof (sketch). The proof — which can be found in [13] — goes by induction
on the derivation tree of [[P]]σ1. It relies on the fact that, after any “step” in the
evaluation of [[P]]σ1 and “equivalent step” in the evaluation of [[P]]σ2, the automa-
ton states of both executions are equal and the value stores are indistinguishable
for the complement of the first element of the automaton states.

Pseudo-completeness. Thus any terminating monitored execution is non-interfe-
ring. However, to achieve this goal, the monitor sometimes modifies the output
sequence of the execution. The sequence of outputs resulting from the execution
of program P with initial state σ might differ according to the semantics used,
the standard one (Fig. 2) or the monitoring semantics (Fig. 3). The sequel gives
a lower bound on the set of non-interfering executions on which the monitoring
mechanism has no impact. It shows that the mechanism proposed in this paper
preserves the output sequence of any execution of a program which is well-typed
under a security type system similar to the one of Volpano et al. [11].

Figure 4 shows the security type system. It is the same one as that of Volpano
et al. [11] except for a small modification of the typing environment and the
addition of a rule for output statements (which are not in the language of [11]).
The typing environment, γ, prescribes types for identifiers and is extended to
handle expressions. γ(e) is the type of the expression e in the typing environment
γ. The lattice of types used has only two elements and is defined using the
reflexive relation ≤ (L ≤ H). L is the type for public data and H the type for
secrets. A program P is well-typed if it can be typed under a typing environment
γ in which every secret input is typed secret (i.e. ∀x ∈ S(P), γ(x) = H).

γ(e) = τ ′ τ ′ ≤ τ

γ � e : τ

γ(x) = τ ′ γ � e : τ ′ τ ≤ τ ′

γ � x := e : τ cmd
τ ≤ H

γ � skip : τ cmd

γ � e : L

γ � output e : L cmd
γ � S1 : τ cmd γ � S2 : τ cmd

γ � S1 ; S2 : τ cmd

γ � e : τ ′ γ � S1 : τ ′ cmd
γ � S2 : τ ′ cmd τ ≤ τ ′

γ � if e then S1 else S2 end : τ cmd

γ � e : τ ′ γ � S : τ ′ cmd τ ≤ τ ′

γ � while e do S done : τ cmd

Fig. 4. The type system used for comparison

The problem of non-interference is neither dynamically nor statically decid-
able. Consequently, the monitoring mechanism proposed in this paper is not
complete or transparent. However, Theorem 2 states that the monitoring mech-
anism does not alter executions of well-typed programs. To show that the inclu-
sion is strict, consider the following program: x :=h; x :=0; output x. h is
the only secret input. Every execution is non-interfering. But as the type system
is flow insensitive, this program is ill-typed. However, the monitoring mechanism
does not interfere with the outputs of this program while still guaranteeing that
any monitored execution is non-interfering.

86 G. Le Guernic et al.

Theorem 2 (Monitoring preserves type-safe programs).
For all programs P with secret inputs S(P), typing environments γ with variables
belonging to S(P) typed secret, types τ , and value stores σ and σ′,

γ � P : τ cmd
σ � P o=⇒ σ′

}
⇒ [[P]]σ = o

Proof (sketch). The proof goes by induction on the derivation tree of the un-
monitored evaluation of P. It relies on the fact that the unmonitored evaluation
of any well-typed command is matched by an equivalent monitored evaluation.

5 Conclusion

This paper addresses the security problem of confidentiality from the point of
view of non-interference. It presents a monitoring mechanism enforcing non-
interference of any execution. This monitoring mechanism is based on a seman-
tics that communicates with a security automaton. During the execution, the
semantics generates automaton inputs abstracting the events occurring. The au-
tomaton tracks the flows of information between the secret inputs and the current
value of the program’s variables. It also validates the execution of atomic actions
(mainly outputs) to ensure confidentiality of the secret inputs.

Because the monitoring mechanism enforces non-interference, it significantly
differs from standard monitors [20,14]. Usually, monitors are only aware of state-
ments which are really executed. With the mechanism proposed, when exiting
a conditional, the branch which has not been executed is analyzed. This takes
into account implicit indirect flows between the test of a conditional and those
variables whose values would be modified by the execution of the branch which
is not executed. As noticed — but not elaborated on — by Vachharajani et
al. [17, Sect. 4.2.2], this feature is required in order to enforce non-interference.

Section 4 shows that any monitored execution is non-interfering. Thus a user
having access to the low outputs of a monitored execution is unable to deduce
anything about the values of the secret inputs. In addition, the monitoring mech-
anism is proved not to alter executions of a program which is well-typed under
a type system similar to the one of Volpano, Smith and Irvine [11].

Future work, which is under way, addresses the extension of the monitoring
mechanism to a concurrent setting that includes a synchronization command.
The goal is to achieve more precision than a type system equivalent to, e.g., the
concurrent one due to Smith and Volpano [21].

Related work. Reference monitors is a widely studied area [22, 23]. The use of
automata to monitor “good behaviors” led Schneider to formalize reference moni-
tors as truncation automata that enforce safety properties [14]; and develop, with
Erlingsson, a monitoring tool called SASI [24]. Among other works on the sub-
ject, Hamlen et al. worked on an extension to the .NET Common Intermediate
Language called Mobile [25]. Their extension supports a type system that certi-
fies in-lined reference monitors. In a successful attempt to increase the power of

Automata-Based Confidentiality Monitoring 87

monitors, Ligatti et al. [19] introduced monitors, based on edit automata, able to
modify the sequence of actions executed and to enforce infinite renewal proper-
ties [26]. Such properties include every safety property, some liveness properties
and some properties that are neither. Because such monitors are limited to the
enforcement of trace properties, it is not immediately obvious that they can
handle non-interference (which is not a trace property).

The vast majority of research on non-interference concerns static analyses and
involves type systems [27, 3]. Some “real size” languages together with security
type system have been developed (for example, JFlow/JIF [5] and FlowCaml [6]).

Information flow monitoring is not as popular as static analyses for informa-
tion flow, but there has been interesting research. For example, RIFLE [17] is
a complete runtime information flow security system; which however lacks for-
mal analysis and proofs. The majority of those works, including RIFLE, does
not take into consideration flows created by un-executed commands. It has been
shown [28] that this feature can be used to gain information about secrets in some
cases. The only exception known by the authors – in the domain of information
flow monitoring – is the work by Masri et al. [29] which presents a dynamic in-
formation flow analysis for structured or unstructured languages. However, their
work does not study deeply the dynamic correction of “bad” flows and lacks for-
mal statements and proofs of the correctness of the correction mechanism. The
solution proposed is to stop the execution as soon as a potential flow from a
secret data to a public sink is detected. In some cases, this can create a new
covert channel revealing secret information — see, e.g., [28].

Benefits of monitoring compared to static analyses. Monitoring an execution has
a cost. So, what are the main benefits of non-interference monitoring compared to
static analyses? The first concerns the possibility that a monitoring mechanism
can be used to change the security policy for each execution. In the majority of
cases, running a static analysis before every execution would be more costly than
using a monitor. The second reason is that non-interference is a rather strong
property. Many programs are rejected by static analyses of non-interference. In
such cases it is still possible to use a monitoring mechanism with the possibil-
ity that some executions will be altered by the monitoring mechanism. However
behavior alteration is an intrinsic feature of any monitoring mechanism. Mon-
itoring non-interference ensures confidentiality while still allowing testing with
regard to other specifications using unmonitored executions as perfect oracle —
at least as perfect as the original program.

There are two main reasons why it is interesting to use a non-interference
monitor on a program rejected by a static analysis. The first one lies in the
granularity of the non-interference property. Static analyses have to take into
consideration all possible executions of the program analyzed. This implies that if
a single execution is unsafe then the program (thus all its executions) is rejected.
Whereas, even if some executions of a program are unsafe, a monitor still allows
this program to be used. The unsafe executions, which are not useful, are altered
to respect the desired property while the safe executions are still usable.

88 G. Le Guernic et al.

The second one is that a monitoring mechanism may be more precise than
static analyses because during execution the monitoring mechanism gets some
accurate information about the “path behavior” of the program. As an example,
let us consider the following program where h is the only secret input and l the
only other input (a public one).

i f (t e s t 1 (l)) then tmp := h e l s e skip end;
i f (t e s t 2 (l)) then x := tmp e l s e skip end;
output x

Without information on test1 and test2 (and often, even with), a static analysis
would conclude that this program is unsafe because the secret input information
could be carried to x through tmp and then to the output. However, if test1 and
test2 are such that no value of l makes both predicates true, then any execution
of the program is perfectly safe. In that case, the monitoring mechanism would
allow any execution of this program. The reason is that, l being a public input,
only executions following the same path as the current execution are taken care
of by the monitoring mechanism. So, for such configurations where the branching
conditions are not influenced by the secret inputs, a monitoring mechanism is at
least as precise as any static analysis — and often more precise.

Acknowledgments. The authors are grateful to the reviewers for their re-
marks; and to Jay Ligatti, David Naumann and Andrei Sabelfeld for insightful
and helpful comments on an earlier version of this paper.

References

1. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: Proc. Symp.
Security and Privacy, pp. 11–20 (1982)

2. Cohen, E.S.: Information Transmission in Computational Systems. ACM SIGOPS
Operating Systems Review 11(5), 133–139 (1977)

3. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE J.
Selected Areas in Communications 21(1), 5–19 (2003)

4. Banerjee, A., Naumann, D.A.: Stack-based Access Control and Secure Information
Flow. Journal of Functional Programming 15(2), 131–177 (2005)

5. Myers, A.C.: JFlow: Practical Mostly-Static Information Flow Control. In: Proc.
ACM Symp. Principles of Programming Languages, pp. 228–241 (1999)

6. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. on Pro-
gramming Languages and Systems 25(1), 117–158 (2003)

7. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A Core calculus of Dependency.
In: Proc. ACM Symp. Principles of Programming Languages, pp. 147–160 (1999)

8. Barthe, G., Serpette, B.: Partial evaluation and non-interference for object cal-
culi. In: Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 53–67. Springer,
Heidelberg (1999)

9. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequential
Programs. Higher Order and Symbolic Computation 14(1), 59–91 (2001)

Automata-Based Confidentiality Monitoring 89

10. Mizuno, M., Schmidt, D.: A Security Flow Control Algorithm and Its Denotational
Semantics Correctness Proof. J. Formal Aspects of Comp. 4(6A), 727–754 (1992)

11. Volpano, D., Smith, G., Irvine, C.: A Sound Type System for Secure Flow Analysis.
J. Computer Security 4(3), 167–187 (1996)

12. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst. 28(1), 175–205 (2006)

13. Le Guernic, G., Banerjee, A., Schmidt, D.: Automaton-based Non-interference
Monitoring. Technical Report, -1, Kansas State University, Manhattan, KS, USA
(April 2006) (2006), http://www.cis.ksu.edu/schmidt/techreport/2006.list.
html

14. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

15. McLean, J.: A General Theory of Composition for Trace Sets Closed Under Se-
lective Interleaving Functions. In: Proc. Symp. Security and Privacy, pp. 79–93
(1994)

16. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)
17. Vachharajani, N., Bridges, M.J., Chang, J., Rangan, R., Ottoni, G., Blome, J.A.,

Reis, G.A., Vachharajani, M., August, D.I.: RIFLE: An Architectural Framework
for User-Centric Information-Flow Security. In: Proc. Symp. Microarchitecture
(2004)

18. Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 87. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

19. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Sec 4(1-2), 2–16 (2005)

20. Viswanathan, M.: Foundations for the Run-time Analysis of Software Systems.
PhD thesis, University of Pennsylvania (December 2000)

21. Smith, G., Volpano, D.: Secure Information Flow in a Multi-threaded Imperative
Language. In: Proc. ACM Symp. on Principles of Programming Languages (Janu-
ary 1998), pp. 355–364 (1998)

22. Schneider, F.B., Morrisett, G., Harper, R.: A Language-Based Approach to Se-
curity. In: Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000, pp. 86–101. Springer,
Heidelberg (2001)

23. Erlingsson, Ú.: The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University (2003)

24. Erlingsson, Ú., Schneider, F.B.: SASI Enforcement of Security Policies: A Retro-
spective. In: Proc. New Security Paradigms Workshop, pp. 87–95. ACM Press, New
York (1999)

25. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified In-lined Reference Moni-
toring on .NET. In: ACM Workshop on Programming Languages and Analysis for
Security, ACM Press, New York (2006)

26. Ligatti, J., Bauer, L., Walker, D.: Enforcing Non-safety Security Policies with Pro-
gram Monitors. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ES-
ORICS 2005. LNCS, vol. 3679, pp. 355–373. Springer, Heidelberg (2005)

27. Pottier, F.c., Conchon, S.: Information flow inference for free. In: Proc. ACM In-
ternational Conf. on Functional Programming, pp. 46–57 (2000)

28. Le Guernic, G., Jensen, T.: Monitoring Information Flow. In: Proceedings of the
Workshop on Foundations of Computer Security (June 2005), pp. 19–30. DePaul
University (2005)

29. Masri, W., Podgurski, A., Leon, D.: Detecting and Debugging Insecure Information
Flows. In: Symp. on Software Reliability Engineering, pp. 198–209 (2004)

protect protect protect edef T1{T1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmr/m/n/9 {T1/cmr/m/n/9 }T1/cmr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef T1/cmr/m/n/9 {T1/cmr/m/n/9 }T1/cmr/m/n/9 size@update enc@update http://www.cis.ksu.edu/schmidt/techreport/2006.list.html
protect protect protect edef T1{T1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef T1/cmtt/m/n/9 {T1/cmr/m/n/9 }T1/cmtt/m/n/9 size@update enc@update http://www.cis.ksu.edu/schmidt/techreport/2006.list.html

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 90 – 104, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient and Practical Control Flow Monitoring for
Program Security

Nai Xia, Bing Mao, Qingkai Zeng, and Li Xie

State Key Laboratory for Novel Software Technology
Nanjing University, 210093, Nanjing, China

{xianai, maobing, zqk, xieli}@nju.edu.cn

Abstract. Control-hijacking attacks are known as critical threats to software
security. Control flow monitoring is a kind of important method to mitigate this
problem. In this paper, we present a new method for program control flow
monitoring. Based on the static analysis of a program, we apply very simple
instrumentation of a program’s source code to encode its runtime function level
control flow traces and check the correctness of the traces in the OS kernel.
Experiments show that this method has a tiny performance impact and is still
highly effective in detecting control-hijacking attacks. We also propose to
automatically handle non-standard control flow by learning programs’ dynamic
profiling data. Our method is hopeful to be enforceable in different
environments because it does not depend closely on specific platform features
and the underlying techniques can be easily found in many platforms.

Keywords: Control Flow, Dynamic Profiling, Program Vulnerability, Source
Code Instrumentation, Static Analysis.

1 Introduction

Modern software trends to be inevitably embedded with vulnerabilities (e.g. buffer
overflows [1], format string bugs [2]). An attacker exploits a program’s vulnerabilities
and hijacks the control flow by corrupting its control-sensitive data. Control-hijacking
attacks have become one of the most critical security threats.

Over the years, many ingenious approaches have been proposed to mitigate
control-hijacking attacks from different aspects. One kind of important method is
control flow monitoring, such as Program Shepherding[3], Control Flow Integrity[4]
(CFI) and some host-based intrusion detection techniques[5-12]. The basic idea
behind the control flow monitoring methods is that the control flow of a program
should obey some pre-determined rules, which are usually extracted either statically
from the source/binary code or from the statistical results of the program’s
representative runs.

In this paper, we propose that the verification of function level control flow can be
further simplified. Our key observation is that nearly all control-hijacking attacks
eventually make use of system calls (either through shellcode or code in victim
program) to achieve their ultimate goals. So if we could properly encode the control

 Efficient and Practical Control Flow Monitoring for Program Security 91

flow description between system calls, it is enough to verify the control flow just
before any harmful system call is made. In this way, we do not need to make the time
consuming control verification at every indirect control flow transfer. Besides the
performance gain, the simplified instrumentation also brings about the benefit of
applicability because the simplification makes the instrumentation code much less
complex and platform dependent. As a proof of concept, we build our prototype using
source code analysis. Meanwhile, when dealing with the implementation issue of non-
standard control flow, we try to avoid exploiting too many platform dependent
features by using dynamic profiling to achieve the automatic discovery of non-
standard control flow. In short, we think our work has two major contributions:

1) We simplify the way of control flow verification with control flow
encoding.

2) With dynamic profiling, we quantitively analyze the behavior of non-
standard control flow for popular programs and achieve the automatic
discovery of it.

The rest of the paper is organized as follows. In Section 2, we summarize the work
related to ours. Section 3 presents our approach to monitor program control flow and
the implementation details. Section 4 presents the experimental results and evaluation.
And section 5 is our conclusion and discussion for future work.

2 Related Work

Our work is related to a broad range of approaches aiming to mitigate control-
hijacking attacks. As the amount of the related work is rather huge, we decide to focus
on the work using control flow monitoring.

Control flow monitoring for purpose of software security actually started in the
form of intrusion detection. The control flow in those techniques is usually called as
“application behavior”. Dean and Wagner [5] firstly used static analysis of program
source code to achieve “a high degree of automation, protection against a broad class
of attacks based on corrupted code and the elimination of false alarms”. In their
method, the CFG of a program is extracted from a program source code and used to
build the models for system calls, which are actually sets of pre-determined rules to
be verified at runtime through system call interception. They also discuss about the
non-standard control flow, which cannot be directly inferred from a program's CFG.
Although they claimed that "some program properties that are difficult to infer
statically may become easier to model satisfactorily when the burden is offloaded to a
runtime agent, where available", the problem of non-standard control flow remains an
ugly issue because it's less automatically solved and it may vary from implementation
to implementation and platform to platform. More work in this area following this one
incorporates additional program properties to improve the precision [6-10, 12] at the
possible cost of performance or model complexity.

Program Shepherding [3] lowers the granularity of control flow description to
function level and tries to verify the statically extracted CFG directly during the
execution of a program. Its implementation is based on a program interpreter
(translator) called Dynamo. A hash table is maintained to explicitly list the valid

92 N. Xia et al.

targets for an indirect control flow transfer. Extra checkpoints are added to handle
non-standard control flow. The main limitation of this approach is its huge
performance overhead (up to 660%). However, Program Shepherding supports other
security policies (e.g. sandboxing) besides control flow monitoring.

Control-Flow Integrity [4] also defines the control flow at function level. Different
from Program Shepherding, CFI extracts a program’s CFG from the binary code and
uses binary rewriting to inject x86 assembly instructions to the program for control
flow verification. The verification mechanism is formally proved to never let one
instruction of malicious code be executed. It is transparent because binary
instrumentation does not need source code. It is also efficient because the
instrumentation code size is relatively small (its measured overhead ranges from zero
to 45%, at average of 16%). Our work is similar with CFI in that we also use code
instrumentation to depict the control flow of a program at runtime and we also
construct equivalence sets for the relation of indirect control transfer. However, our
work differs from CFI in three important aspects:

• We do not verify the control flow of a program using instrumentation code.
Instead, the instrumentation code is only used for the encoding of control flow.
The work of verification is elevated to the place of system call entry.

• In order to make the model consistent with non-standard control flows, CFI (and
many other approaches) exploits system specific features. While in our work,
we learn the cases of non-standard control flow through program profiling.

• CFI does not rely on dynamic secrets. While in our work runtime randomization
is needed to ensure security. Although the trick of runtime randomization was
found vulnerable in some circumstances [13, 14], we make the secrets of our
system easy to be re-randomized. As suggested by Sovarel et al., the
enhancement of re-randomization can make secret based system insusceptible to
incremental key breaking attacks.

There are other approaches trying to achieve software security by restricting
program control flow, for example, IRM and SFI [15, 16] apply restrictions to control
flow to ensure the proper enforcement of fine-grained security policies. And some
approaches in area of fault-tolerance also verify the control flow of a program to
detect transient or permanent faults in computer systems that can lead to incorrect
sequence of instruction execution. As the aims of these methods deviate from the
control-hijacking attacks, we do not consider them as closely related.

3 Efficient and Practical Control Flow Monitoring

3.1 Extraction of Static Control Flow Information

We use static analysis of program source code to determine the valid targets for each
indirect control flow transfer. Due to the extensive use of pointers in real world C
programs, the technique of point-to analysis (alias analysis) [17] is needed to narrow
the range of each valid target set. We choose Steensgaard Analysis [18], which is
common and scales well to large programs. The control flow that cannot be decided in
program source code should be considered as non-standard control flow (e.g. an

 Efficient and Practical Control Flow Monitoring for Program Security 93

external function invoking a call back function). We will discuss about the handling
of non-standard control flow later.

Note that binary analysis is another good alternative for extracting static control
flow information with advantages of transparency. We choose source code analysis
and instrumentation for ease of implementation.

3.2 Control Flow Encoding and Verification

3.2.1 Basic Description of Control Flow
If the execution of a program conforms to its static CFG, then at every point of
indirect control flow transfer, the target should fall into a valid target set. Commonly,
indirect control flow transfer refers to indirect function call or function return.

Fig. 1. Example calculation for expected/actual call/return sequences

We view the control flow of a program as two sequences: function call sequence,
which is the ordering of the functions called and function return sequence, which is
the ordering of functions that have returned. So to verify the validness of a program
execution is to verify the validness of these two sequences because it’s trivial to see
that attacks change at least one of these two sequences. We further introduced
expected call/return sequences and actual call/return sequences to help the
verification. The expected call/return sequences are calculated at every function call
site and function return site respectively. Each item of an expected call sequences
represents the possible targets of an indirect call, each item of expected return
sequences represents the possible functions that may return to a return site. Each item
of actual sequences is generated at function entry points and before functions’ return

int foo1() /* ID = 1*/ int (*fptr)();
{ int main(int argc)
CAL_ACTUAL_CALL(1); {
CAL_EXPECTED_CALL(2); if(argc < 2) fptr=foo1;
foo2(); else fptr=foo2;
CAL_EXPECTED_RETURN(2); /* some code */
/* some code */ CAL_EXPECTED_CALL(1|2);
CAL_ACTUAL_RETURN(1); (*fptr)();
return 0; CAL_EXPECTED_RETURN(1|2);

} return 0;
int foo2() /* ID=2 */ }
{
CAL_ACTUAL_CALL(2); int foo3() /* ID =3 */
CAL_EXPECTED_CALL(3); {
foo3(); CAL_ACTUAL_CALL(3);
CAL_EXPECTED_RETURN(3); CAL_ACTUAL_RETURN(3);
CAL_ACTUAL_RETURN(2); return 0;
return 0; }

}

94 N. Xia et al.

to indicate respectively the actual function called and the function which is actually
returning. In this paper, we denote the expected call sequence, expected return
sequence, actual call sequence, actual return sequence as expected_callseq,
expected_returnseq, actual_callseq, actual_returnseq respectively. The code in
Figure.1 illustrates this idea. We define an execution sequence seq as follows:

{ } seqididseq n ;|...|1= . (1)

In the formula, id is a function’s integral identification and the notion of

1| +ii idid means that there are several possible directions for one control flow

transfer. If we assign each function an unique id value and assume that argc < 2, the
execution sequences of the program in Figure.1 would be:
expected_callseq={1|2;2;3}, actual_callseq={1;2;3}, expected_returnseq={3;2;1|2},
actual_returnseq={3;2;1}. We construct equivalence sets for functions and call/return
sites. Thus we need to do only equality test for equivalence set id instead of doing
“belongs to” test over all possible expected values. The rules for constructing
equivalence sets are listed below and can be efficiently implemented with Union-Find
algorithm:

• If two functions may be pointed to by the same function pointer, they are put
into a same equivalence function set.

• If two equivalence function sets have intersection they are merged to one.
• If two functions that may be called by (or may return to) two different call sites

(or return sites) belong to the same equivalence function set, these two call sites
(return sites) should belong to the same equivalence call (return) set. The id of
the corresponding equivalent function set is also assigned to the equivalent call
(return) set.

Fig. 2. Construction of equivalence sets

Figure 2 illustrates the construction of equivalence call sets and equivalence
function sets, where Cx (x=1, 2, 3) represents call sites and Fx (x=1, ..., 4) represents
functions. Each directed edge in this figure represents a “may call” relation between a
call site and a function.

It is worthy to note that constructing equivalence sets brings about precision loss
because of two cases:

C1 C2 C3

F1 F2 F3 F4

C1 C2 C3

F1 F2 F3 F4

Equivalence
call set

Equivalence
function set

 Efficient and Practical Control Flow Monitoring for Program Security 95

• The merge of direct calls into equivalence call sets containing indirect calls (e.g.
In Figure 2, the added edge from C3 to F3). Theoretically, there is no need to
verify direct calls. The merge operation is only to keep direct calls compatible
with indirect calls, because each function that may be called by indirect calls
contains the calculation for actual call sequences and so needs a corresponding
calculation for expected call sequences.

• The union of two equivalent sets having intersection but not identical (e.g. In
Figure 2, the added edge from C2 to F1). It’s trivial to see this is a precision loss
because that makes more functions share the same id.

Table 1 presents the precision loss for several popular UNIX programs. The loss is
measured by the percentage of the calls merged to other equivalence call sets. The
result shows that it is reasonable to ignore this tiny precision loss. However,
improving the precision of the alias analysis itself or using code duplication as
proposed in CFI, may be two promising ways to further reduce the loss.

Table 1. Precision loss caused by construction of equivalence sets

LOC: Lines of Code DC: Direct Calls MDC: Merged Direct Calls
M/D: MDC/DC IDC: Indirect Calls MIDC: Merged Indirect Calls
M/I: MIDC/IDC AM/AC: All Merged calls /All calls

Another precision loss in our current work comes from the fact that it is valid for a
function to return to any possible return sites. The precision loss could be reduced by
enhancing our method with shadow call stack or similar techniques. We decide not to
implement this enhancement at this moment until any practical attack exploiting this
case is found in real world.

3.2.2 Control Flow Encoding and Verification
As we have mentioned in the introduction, we decide to do the verification job at the
entry point of system calls. Since too many function calls may happen between two
consecutive system calls, we encode the control flow by hashing the expected/actual
call/return sequences into 4 integer values and then make the verification as simple as
equality test of corresponding hash values. Suppose a control flow sequence is
Xn={x1;x2…xn}, its hash value Yn is computed as follows (where f is the hash
function):

 bash ctags gzip jed mc opensshd tar vsftpd

LOC 104981 26654 7379 32735 73288 34815 16812 13145

DC 9633 2277 365 3323 8968 5465 1630 2206

MDC 572 0 0 5 112 274 0 0

M/D 5.93% 0 0 0.15% 1.24% 5.01% 0 0

IDC 77 1 4 58 53 103 11 2

MIDC 24 0 0 3 29 17 1 0

M/I 31.17% 0 0 5.17% 54.71% 16.50% 9.09% 0

AM/AC 6.13% 0 0 0.23% 1.56% 5.22% 0.06% 0

96 N. Xia et al.

⎩
⎨
⎧

>
=

=
− 1 n)(

1n

,1

1

n
xYf

x
Y

n
n . (2)

In order to achieve both good security and good performance, we must make sure
that:

• The possibility of hash collision (i.e. different sequences hashing to same value)
must be reasonably small.

• The hash algorithm must be simple enough to be easily inserted to programs
with minimum cost.

We use rather simple approach to meet these requirements. We choose the function
f(x,y) = x+y as the hash function because in many platforms it is implemented as one
machine instruction. Regarding the security requirement, we map at runtime the
equivalence set ids sparsely to a very large space with randomization (same
randomization is done for the addresses of hash variables). This trick is much less
possible to be circumvented by “derandomization attack” [13, 14] than Address Space
Layout Randomization[19] or instruction randomization[20] does. Because in their
cases, one fundamental weakness is that a parent process and its child process may
share the same secret key. This feature may enable the incremental guess of the secret
key. While in our approach it is very easy to re-randomize the ids any time a program
is running. So when an attack fails a guess, the ids could get re-randomized at once,
eliminating the possibility of incremental brute-force attack.

We consider it enough hard to deduce all the randomized ids and the current hash
values unless one can analyze the runtime image of a program, which is not a
privilege acquired by most attackers (e.g. A normal user cannot use gdb to attach a
privileged process). Even if an attacker can successfully get all the randomized
information and hash collision does exist, it is still hard for him to exploit the
collision because he has to exploit enough indirect control flows to construct a
collision. And when his malicious system call happens and he must ensure there is no
other system call in the way.

Note that since we take the system call entry as the verification point, this
verification granularity makes it possible for the execution of system-call-free
injected code. So there are two more cases we need to address:

1) It is possible for shellcode to jump back to the correct control flow after it
finishes its execution. In this way, the execution of injected code is not
detectable.

2) Just before an attacker triggers his malicious system call to change the
system’s state, it is theoretically possible that the injected code can analyze
the process memory to “learn” and “mimic” the correct calculation of the
hash values.

We do not consider them as severe problems because for case 1), neither the
shellcode can achieve its aim though direct system call nor can it change the
following control flow. Actually it is a case faced by all methods that do verification
at system call entry points such as intrusion detection. None of the other methods
even point it out as a consideration.

 Efficient and Practical Control Flow Monitoring for Program Security 97

For case 2), it adds to the burden of any attacker to embed in injected code
complex binary analyzing code. Given that usually the space for code injection is
limited, it is not an easy job. Simple code obfuscation techniques [21] could be
applied to further increase the difficulty.

Many modern platforms (e.g. SPARC, Alpha, PowerPC, IA-64, x86) support the
feature of Non-Executable Data (NXD) which prevents the execution of injected
shellcode [22] and thus remove the consideration of both case 1) and 2). So before we
adopt further techniques to defeat the code analysis, the using of NXD depends on the
choice of more security or more compatibility.

3.3 Handling of Non-standard Control Flow

Some control flow does not follow static program CFG. It’s mainly because not all
function calls are triggered at analyzable function call sites (e.g. signals handlers can
be triggered by code other than the functions within a program). Every method using
control flow monitoring needs to consider non-standard control flow. Although
addressed in previous work, no automatic ways have been found to properly deal with
this problem. In this paper, we take the first step to automatic handling of non-
standard control flow. We discover the non-control flow of a program from its
dynamic profiling data, and then use the result to re-instrument the program.

There are basically four kinds of non-standard control flow in our approach:

1) Setjmp/longjmp. Longjmp never returns to the next statement after its call
sites. It returns to the next statement after a setjmp call site. So the expected
return id after a setjmp call site should also be the id of longjmp.

2) External library routines. For pre-compiled external library functions, which
are not analyzable in our approach, we create wrapper functions to do actual
sequence calculation.

3) Signal/exception handlers. Functions acting as signal/exception handlers may
either be called directly/indirectly in the program or be triggered by some
non-function-call statement. So when they execute, there may be no
calculation of expected call/return sequences that corresponds to the
calculation of actual call/return sequences within the handler function.

4) Hook/callback functions. Hook or callback functions may be called either by
the function within the same program source or by library routines. These
functions bring about inconsistency of control flow sequences because of the
similar reason in case 3).

Case 1) and case 2) can be automatically handled. Case 3) and case 4) present the
challenge, because it is traditionally difficult to identify these cases by static analysis.
We decide to discover non-standard control flow from representative runs of a
program. So before a final instrumented program is generated, it is firstly
instrumented to spill log data for non-standard control flow discovery. We call this
instrumented version the program’s profiling version while the final instrumented
version its detecting version.

Observed that for standard control flow, one expected call sequence calculation is
always followed by one actual call sequence calculation. So if there is no standard
control flow violation, the hash value for expected call sequence should equal to that
of actual call sequence just before any calculation of expected call sequence or after

98 N. Xia et al.

any calculation of actual call sequence. Similar feature holds when expected/actual
return sequences get calculated. So the instrumentation for profiling version is
straightforward: log all the difference between corresponding expected hash values
and actual hash values. Then we apply enumeration analysis to the logged values
because each difference represents a case of non-standard control.

In order to evaluate the effectiveness of our approach for discovering non-standard
control flow and also quantify the precision loss, we experimented with a group of
real world applications. To have a good coverage of different application types, these
applications were classified by functionality as file utilities (gzip-1.3.5, tar-1.13),
remote server programs (ghttpd-1.4, openssh-3.6, vsftpd-2.0.1), interactive programs
(bash-3.1, mc-4.6.1, jed-0.99) and program syntax analyzer (ctags-5.5.4). These
applications were run on representative inputs (e.g. using their test suit).

0

20

40

60

80

100

120

140

160

10 100 1000 10000 100000 200000 300000 400000 500000 600000 700000 1.E+06 1.E+07

Number of logged items

C
as

es
 o

f
no

n-
st

an
da

rd
 c

on
tr

o
fl

ow

bash
jed
mc
sshd

Fig. 3. Cases of non-standard control flow in real world application

The result shows that there is zero case of non-standard control flows detected in
gzip, tar, vsftpd and ghttpd only because there are no direct/indirect call sites of signal
handler and hook function in their source code. Figure 3 shows how the number of
discovered cases of non-standard control flow increases in the other programs. We
draw the following conclusions from the experiment results:

1) The number of the cases of non-standard control flow is directly related to an
application’s programming style. For example, the extensive use of hook
functions in jed increases the number dramatically. Normally, the cases of
non-standard control flow are rare and therefore the precision loss caused is
very small compared with total calls.

2) The cases of non-standard control flow trend to repeat themselves but in a
rather frequent way, so they should not be overlooked.

 Efficient and Practical Control Flow Monitoring for Program Security 99

3) The number of the cases of non-standard control flow converges at reasonable
speed, so it can be considered that the time for the discovery of non-standard
control flow is relatively small.

After the cases of non-standard control are lined out, a program is re-instrumented
to final detecting version: the calculation code for expected/actual call sequences pairs
which may correspond to a case of non-standard control flow is omitted to ensure
non-standard control flow does not bring inconsistency.

Note that although the convergence of the non-standard control flow indicates that
the cases that are not discovered by profiling trend to be rare, there can be time when
some non-standard control flow function call is not triggered in the representative
runs. So it is possible that new non-standard control flow cases emerge after the
detecting version is created. We incorporate newly discovered cases of non-standard
control flow by replacing the corresponding instrumented machine code with “NOP”
instructions (thus there is no need for users to re-instrument the program and compile
it). Just like software debugging, it may be hard to theoretically prove that all the ugly
cases have been removed, but it is easy to satisfy users.

3.4 Implementation on x86 Linux

In this sub-section, we explain how we implement our first prototype on top of x86
Debian Linux sid.

Platform features required. As we use instrumentation code to encode a program’s
control flow, we must ensure that the encoding mechanism cannot be altered by an
attacker. So the feature of non-writeable code is needed to ensure the integrity of
program code. Non-writeable code is a popular and default setting on many platforms.
In our work, we only temporarily mmap the code pages as writeable during
initialization and when we need to re-randomize or to incorporate new cases of non-
standard control flow. The encoding mechanism is under total protection of non-
writeable code. Moreover, as we mentioned in previous sections, NXD is an optional
platform feature that can strengthen our approach. Our current prototype makes use of
NXD to maximize the security.

Analysis tool and code instrumentation. We build our source code analysis and
instrumentation tool using the freely available C language transforming tool CIL [23].
CIL is directed to compute the point-to information, construct the equivalence sets
and then generate instrumentation code either for profiling version or for detecting
version. For profiling version, the code for expected/actual sequence calculation is
generated as calls to a library function for profiling. While for detecting version, the
corresponding code is generated as one-instruction inline assembly. Additional
function call is also generated at the entry of main function for initialization whose
job focuses mainly on the generation of address-randomized hash variables,
randomizing equivalence set id values, rewriting of the instrumentation code and the
initialization for the program’s kernel task_struct.

Kernel patch. We patch the Linux kernel 2.4.32 for control flow verification. The
algorithm is trivial — if two corresponding hash values are not equal, an attack must
have happened. The addresses of hash variables are maintained in the program’s

100 N. Xia et al.

kernel task_struct and a new system call svmon_submit is added to let a program
submit the randomized addresses to kernel at initialization.

Dynamic re-randomization. The dynamic re-randomization is actually the same
process with the randomization in the initialization phase. It is designed as a special
routine and executed by kernel just like a fake signal handler (i.e. in the context of
current process) whenever needed (e.g if a process forks). Note that this routine may
reset all the hash values but is not vulnerable for malicious use, because any execution
of it begins with a system call and so applies control-flow verification.

Incorporation of new cases of non-standard control flow. An external helper program
is designed to remove the calculation of newly discovered unwanted expected/actual
sequences (fill the code area with one-byte “nop” instructions) using the ptrace in
Linux. It does not require the restart of a program.

Every protected program is instrumented to two versions: profiling version and
detecting version. After that, they are compiled with native compiler and linked with
the utility functions we mentioned above. The profiling version is only used for the
discovery of non-standard control flow; the detecting version is the final version that
may be released to end users.

4 Evaluation

4.1 Performance Overhead

We applied micro-benchmarks and macro-benchmarks to give a performance
overview.

4.1.1 Micro Benchmarks
The overhead of our approach comes from kernel space and user space. So we did
experiments to evaluate the overhead in both spaces.

The first experiment aimed to find out the overhead caused by the kernel
verification. We wrote a C program that invoked 100,000,000 times the Linux system
call of sys_ni_syscall. A sys_ni_syscall is just an empty system call that returns
directly. The program was run under the standard kernel and our patched kernel. We
logged the system time used by the program under these two kernels to get the results.
The results indicate that the worst kernel overhead (since sys_ni_syscall can be
considered as the smallest system call) was about 2.1%. For real world programs that
often use big system calls, the overhead is hardly observable.

The second experiment designed to get the worst user space overhead was a
program calling 50,000,000 times an empty function whose body contained only a
“return” statement. The program was compiled by a native compiler (GCC) and then
was run 50 times to get the average execution time of the empty function. After that,
the program was transformed to detecting version by our instrumentation tool and
compiled and run 50 times to get the average execution time of an instrumented
empty function. The inferred worst case overhead in user space was 3.3%. For real
world programs that seldom have any empty function call, this overhead trends to
decrease.

 Efficient and Practical Control Flow Monitoring for Program Security 101

4.1.2 Macro Benchmarks
We used the same set of application used in section 3.3 to give a good overview of
performance overhead for different types of application. In addition, we used the
benchmark of SciMark2 [24] to evaluate the overhead for CPU-bound programs. The
hardware was two Xeon x86 processors at 2.4GHZ with 1GMB of RAM. The
overhead was evaluated as average execution time measured through bash built-in
command of time. Since for interactive programs like text editors, most of the
application time is used waiting for human input, we did not evaluate their
performance. The experiments included: “ctags –R linux-2.6.16.9”; “tar cf linux.tar
linux-2.6.16.9”; “gzip linux.tar”; transmission of linux.tar using ghttpd, sshd and
vsftpd. Where the size of linux.tar was 224M. Each experiment was carried out 10
times to get average results. Figure 4 gives the normalized results. For profiling
version, the measured overhead ranged from 0.27% to 189% at average of 35%,
program size was increased at average of 25%. While for detecting version, average
increase of program size was 13%, and the performance overhead was almost
unnoticeable at average of 2.76%. Note that CFI achieved an average overhead of
16% by exploiting many platform features (e.g. making use of specific CPU
registers).

Fig. 4. Performance overhead on real world applications

4.2 Security-Related Experiments

In order to assess the effectiveness of our approach, we found from the Internet
several vulnerable programs and tried to exploit them. The vulnerabilities in our
experiments included format string vulnerability in ghttpd-1.4, buffer overflow in
lhttpd-0.1 and zawhttpd-0.8.23. All the compromising attempts were correctly
detected because they all made the control flow deviate from the normal path.

As a concrete example, the Log() function in util.c from ghttpd-1.4 at line 219 is
vulnerable because of improper use of limited local buffer. When the function returns,
it is possible that the return address has been maliciously overwritten, in our
experiment, to be the address of an injected shellcode. The computed equivalence

102 N. Xia et al.

function set containing the Log() function has the return ID of 14 (before ID
randomization). Before the Log() returns , the hash variable for the actual return
sequence is added 14. However, there is no corresponding expected return sequence
calculation in the shellcode. So when the shellcode tries to make a socket system call,
the inequality between hash variables for expected and actual return sequences is
detected by kernel. Attacks using return-to-libc instead of shellcode can also be
detected because they will cause the incorrect calculation of expected return hash
variable.

In order to make a good coverage of more attack types, we also applied our
approach on Wilander’s test bed [25]. None of the attacks escaped the detection,
because all of the attacks, regardless of which vulnerability they exploit, were control-
hijacking attacks.

Like many others, we did not prove formally that our method cannot be
circumvented. But the analysis in section 3.2 gives us confidence that our system has
enough strength.

4.3 Applicability

We argue that our approach can be easily implemented in many other platforms by
summing up the following facts:

• The underlying techniques of our work are easily obtained in many platforms.
The code instrumentation is based on alias analysis, which nearly any modern
compiler or analyzer has as a basic utility. CIL itself is “able to process not only
ANSI-C programs but also those using Microsoft C or GNU C extensions”.

• Each platform specific features we use have direct correspondences in other
platforms. The instructions used for detecting version are the add instruction
and nop instruction — basic instructions for CPU of nearly any architecture.
The memory management unit of modern operating systems provides the
functions needed at initialization phase. And the verification of control flow
could be carried out whenever a program from user land issues a call to OS
kernel API, which is also a common OS facility.

• Although non-standard control may be platform and application dependent, in
our method it is discovered uniformly though representative runs of programs.
So no special consideration for non-standard control is needed when our method
gets adopted in other platforms.

Compared with the most related work —CFI on applicability, our method is more
platform independent but currently does not take advantage of the binary rewriting
and requires program profiling.

5 Conclusion

In this paper, we present an efficient and practical method for control flow
monitoring. Our method verifies the control flow of a program by inserting into it
simple instrumentation code. We simplify the verification of program control flow by
control flow encoding and at the same time provide enough guarantees for security.
Also we propose using program profiling to automatically discover non-standard

 Efficient and Practical Control Flow Monitoring for Program Security 103

control flow. We have shown that our method has good applicability because of the
simplicity of the underlying techniques and the platform specific features used.

There are a number of ways in which our method can be improved. We aim to
improve the verification strength of our methods by employing more techniques such
as code obfuscation and provide more formal argument for security. We will explore
ways to improve the precision of control flow description and keep the
implementation as simple as possible to achieve high performance.

References

1. One, A.: Smashing The Stack For Fun And Profit. Phrack 7(49) (1996)
2. Lamagra Argamal.Ftpd: the advisory version. bugtraq mailing list (23 June, 2000)

http://www.securityfocus.com/archive/1/66544
3. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding.

In: Proc of the Usenix Security Symposium (2002)
4. Abadi, M., Budiu, M., Erlingsson, ú., Ligatti, J.: Control-flow integrity. ACM Conference

on Computer and Communications Security (2005)
5. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proc of the IEEE

Symposium on Security and Privacy, IEEE Computer Society Press, Los Alamitos (2001)
6. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for

detecting anomalous program behaviors. In: Proc. of the IEEE Symposium on Security
and Privacy, pp. 144–155. IEEE Computer Society Press, Los Alamitos (2001)

7. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call
stack information. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 62–77.
IEEE Computer Society Press, Los Alamitos (2003)

8. Basu, S., Uppuluri, P.: Proxy-annotated control flow graphs: Deterministic context-
sensitive monitoring for intrusion detection. In: Ghosh, R.K., Mohanty, H. (eds.) ICDCIT
2004. LNCS, vol. 3347, pp. 353–362. Springer, Heidelberg (2004)

9. Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., Miller, B.: Formalizing sensitivity in
static analysis for intrusion detection. In: Proc. of the IEEE Symposium on Security and
Privacy, pp. 194–210. IEEE Computer Society Press, Los Alamitos (2004)

10. Giffin, J., Jha, S., Miller, B.: Efficient context-sensitive intrusion detection. In: NDSS
2004. Proc. of the Network and Distributed System Security Symposium (2004)

11. Lam, L., Chiueh, T.: Automatic extraction of accurate application-specific sandboxing
policy. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
1–20. Springer, Heidelberg (2004)

12. Gopalakrishna, R., Spafford, E., Vitek, J.: Efficient intrusion detection using automaton
inlining. In: Proc. of the IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, Los Alamitos (2005)

13. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
Effectiveness of Address Space Randomization. In: ACM Conference on Computer
Security 2004, ACM Press, New York (2004)

14. Sovarel, A.N., Evans, D., Paul, N.: Where’s the FEEB? The Effectiveness of Instruction Set
Randomization. In: Proc. of the 14th USENIX Security Symposium (July 31–August 5)
Baltimore, MD (2005)

15. Erlingsson, Ú., Schneider, F.: IRM enforcement of java stack inspection. In: Proc. of the
IEEE Symposium on Security and Privacy, pp. 246–255 (2000)

104 N. Xia et al.

16. McCamant, S., Morrisett, G.: Efficient, verifiable binary sandboxing for a CISC
architecture. Technical Report MIT-LCS-TR-988, MIT Laboratory for Computer Science
(2005)

17. Hind, M., Pioli, A.: Which pointer analysis should I use? In: Proc. of the International
Symposium on Software Testing and Analysis (2000)

18. Steensgaard, B.: Points-to Analysis in Almost Linear Time. In: Proc. Symposium on
Principles of Programming Languages (1996)

19. PaX Team. PaX address space layout randomiza-tion(ASLR), http://pax.grsecurity.
net/docs/aslr.txt

20. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: CCS. Proc of the 10th ACM Conference on Computer
and Communications Security, ACM Press, New York (2003)

21. Linn, C., Debray, S.: Obfuscation of Executable Code to Improve Resistance to Static
Disassembly. In: Proc. of the 10th ACM Conference on Computer and Communications
Security (2003)

22. “Solar Designer”. Non-Executable User Stack, http://www.false.com/security/linux-stack/
23. Necula, G.C., McPeak, S., Rahul, S.P., et al.: CIL: Intermediate Language and Tools for

Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.) CC 2002 and
ETAPS 2002. LNCS, vol. 2304, Springer, Heidelberg (2002)

24. Pozo, R., Miller, B.: SciMark 2.0. (June 20, 2000), http://math.nist.gov/scimark
25. Wilander, J., Kamkar, M.: A Comparison of Publicly Available Tools for Dynamic Buffer

Overflow Prevention. In: NDSS 2003. Proc of the 10th Network and Distrib-uted System
Security Symposium, San Diego, California (2003)

Modular Formalization of Reactive Modules in

COQ�

Ming-Hsien Tsai1,2 and Bow-Yaw Wang1,��

1 Institute of Information Science
Academia Sinica, Taiwan

2 Department of Information Management
National Taiwan University

Abstract. We present modular formalizations of the model specification
language Reactive Modules and the temporal logic CTL∗ in the proof as-
sistant Coq. In our formalizations, both shallow and deep embeddings
of each language are given. The modularity of our formalizations allows
proofs and theorems to be reused across different embeddings. We illus-
trate the advantages of our modular formalizations by proving the mutual
exclusion property of the Bakery algorithm in different embeddings.

1 Introduction

Verifying systems in proof assistants consists of several tedious tasks. Firstly, sys-
tem behavior has to be specified. Issues such as finite versus infinite states, de-
terministic versus non-deterministic computation, interleaving versus concurrent
semantics need be resolved in behavioral specification. Secondly, system require-
ments are needed. Formalisms featuring linear- or branching-time semantics, logi-
cal or algebraic descriptions are available. Finally, the verification need be carried
out in proof assistants to show that system behavior is indeed expected.

Since describing system behavior and requirements is very tedious and error-
prone, model and requirement specification languages are hence developed to
help verifiers specify system behavior and requirements. Several specification
languages have also been formalized in proof assistants. Roughly, two kinds of
formalizations are possible. A shallow embedding defines the semantics of spec-
ification languages in logics of proof assistants. Alternatively, a deep embedding
additionally encodes syntactic representations of specification languages in proof
assistants. They have consequently different characteristics.

Shallow embeddings are easier to carry out since syntactic representations
are not defined. But structural induction on specification languages is not pos-
sible due to the lack of syntactic representations. Deep embedding, on the other
hand, are more complicated. Nevertheless, their syntactic representations allow
� The work is partly supported by NSC grands 95-3114-P-001-002-Y02, 95-2221-E-

001-024-MY3, and the project SISARL of Academia Sinica.
�� Part of the the work was done during the second author visited to the project ProVal

supported by INRIA Futurs.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 105–119, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

106 M.-H. Tsai and B.-Y. Wang

to analyze properties about encoded languages. In practice, objectives of formal-
izations determine which embedding is used. If a specific requirement is to be
verified on a particular system, shallow embeddings of both model and require-
ment specification languages are preferred, for instance.

For some applications, switching between different embeddings may be nec-
essary. If a verifier is developing a new model specification language, she may
try some examples in shallow embedding at early stages of the development.
When the language is more mature, deep embedding will be necessary to prove
properties about the language itself. Ideally, the theorems and proofs in different
embeddings should be reused. But it is not clear how the migration can be done
easily.

In this paper, we present modular formalizations of model and requirement
specification languages in the proof assistant Coq [4]. We give the shallow and
deep embeddings of both specification languages and compare their formaliza-
tions in different embeddings. More importantly, our modular formalizations
allow to share theorems and proofs between embeddings. We have developed
tactics for different embeddings to reduce the migration cost. As an example,
we prove the mutual exclusion of the Bakery algorithm with indefinite number
of processes in both embeddings.

We formalize Reactive Modules [1] for system descriptions. Reactive Modules
is a model specification language for synchronous, shared-memory, and concur-
rent processes. Multiple processes may update different variables simultaneously.
The temporal logic CTL∗ is used for requirement specifications. Unlike linear-
time temporal logic (LTL) and computation tree logic (CTL), CTL∗ admits
both path and state formulae and is therefore more expressive than LTL and
CTL. Purely path- or state-based semantics would not suffice for CTL∗. Our
formalization integrates both semantics seamlessly.

The branching-time temporal logic μ-calculus has been formalized in
Coq [10,16], LEGO [18], and ACL2 [8] with different intentions. A formaliza-
tion of LTL can be found in Coq [3]. The temporal logic of actions TLA [5] has
been formalized in Isabelle [9]. A shallow embedding of CTL can be found in [2].
Since CTL∗ is an accessible generalization of LTL and CTL, our formalization
subsumes prior formalizations of LTL and CTL. Furthermore, verifiers are more
familiar with CTL∗ than μ-calculus. Our formalization would be more useful to
them.

In [14,13,11,12], I/O automata [6] and (extensions to) linear-time temporal
logic [7] are formalized in Isabelle [15]. An I/O automaton is formalized as the
set of admissible paths. A path in turn is formalized as a lazy list or a function
on natural numbers. The authors are able to prove meta-theorems about I/O
automata in their framework. Our formalization of Reactive Modules is more
syntactic. We provide constants to help verifiers define their models and give
corresponding syntactic representation. Verifiers will find it more accessible than
pure semantic-based formalizations.

The paper is organized as follows. Section 2 gives the preliminaries. Both the
shallow and deep embeddings of Reactive Modules are presented in Section 3.

Modular Formalization of Reactive Modules in COQ 107

The embeddings of CTL∗ are shown in Section 4. The verification of the Bakery
algorithm is discussed in Section 5. Finally, Section 6 discusses possible future
work and concludes the paper.

2 Preliminaries

Let AP be the set of atomic propositions. A Kripke structure K is a 4-tuple
(S, S0, δ, L) where S is the set of states, S0 ⊆ S the set of initial states, δ ⊆ S×S
the total transition relation, and L : S → 2AP the labeling function which assigns
atomic propositions to each state.

Given a set of atomic propositions AP , a state formula f is defined inductively
as follows.

– If p ∈ AP , then p is a state formula;
– If f and f ′ are state formulae, then ¬f , f ∨f ′, and f ∧f ′ are state formulae;
– If g is a path formula, then Eg and Ag are state formulae.

A path formula g, on the other hand, is constructed by the following rules.

– If f is a state formula, then f is also a path formula;
– If g and g′ are path formulae, then ¬g, g ∨ g′, g ∧ g′, Xg, Fg, Gg, gUg′, and

gWg′ are path formulae.

A formula in the full branching-time temporal logic CTL∗ is either a state or a
path formula.

Let K = (S, S0, δ, L) be a Kripke structure. A path is an infinite sequence of
states π = s0s1 · · · sn · · · such that (si, si+1) ∈ δ for i ≥ 0. We define π(i) = si

and the i-th suffix πi = sisi+1 · · · sn · · · for any natural number i. Let s ∈ S.
Define the relations K, s |= f and K, π |= g as follows.

K, s |= p if p ∈ L(s)
K, s |= ¬f if K, s �|= f
K, s |= f ∨ f ′ if K, s |= f or K, s |= f ′

K, s |= Eg if there is a path π with π(0) = s such that K, π |= g
K, π |= f if K, π(0) |= f
K, π |= ¬g if K, π �|= g
K, π |= g ∨ g′ if K, π |= g or K, π |= g′

K, π |= Xg if K, π1 |= g
K, π |= gUg′ if there exists an i ≥ 0 such that K, πi |= g′ and

K, πj |= g for all 0 ≤ j < i

The semantics of other operators is obtained by φ ∧ φ′ ≡ ¬(¬φ ∨ ¬φ′), Af ≡
¬E¬f , Fg ≡ trueUg, Gg ≡ ¬F¬g, and gWg′ ≡ gUg′ ∨ Gg. Moreover, we say
the state s in K satisfies the state formula f if K, s |= f . Similarly, the path π
satisfies the path formula g if K, π |= g.

A reactive module consists of a set of atoms that define how variables are
updated. Both the old and new values of a variable can be referred in atoms.

108 M.-H. Tsai and B.-Y. Wang

If a variable x is updated by an atom A, we say x is controlled by A. If its old
value is referred in A, we say it is read by A. If its new value is referred, we say
x is awaited by A. An atom is a 5-tuple A = (V A

c , V A
r , V A

a , CA
i , CA

u) where V A
c

is the set of variables controlled by A, V A
r the set of variables read by A, V A

a

the set of variables awaited by A, CA
i the set of initial guarded commands, and

CA
u the set of updating guarded commands.
Variables are updated by their controlling atoms in each step. In the beginning

of each step, external and uncontrolled variables are assigned to arbitrary values
nondeterministically. An atom updates its controlled variables only after all its
awaited variables have been updated in the same step.

We write x and x′ for the old and new values of the variable x respec-
tively. For example, consider the following textual representation of an atom
A = (V A

c , V A
r , V A

a , CA
i , CA

u) where V A
c = {x, y}, V A

r = {x, y, z}, and V A
a = {z}.

atom A controls x y reads x y z awaits z
inits

[] true → x := 1; y := 2
[] true → x := 2; y := 1

updates
[] x = 1 → x’ := y; y’ := z’
[] ¬(x = 1) → x’ := z; y’ := x

There are two initial guarded commands in CA
i and two updating guarded com-

mands in CA
u . One of the updating guarded command, for example, assigns the

old value of y to x and the new value of z to y when the old value of x is 1.

3 Reactive Modules

Our formalization differs from other formalizations in its modularity. Instead of
formalizing the requirement specification language on top of the model specifica-
tion language, an abstraction of Kripke structures is introduced as the interfaces
in our formalization. Any formalization of Reactive Modules must conform to the
abstract Kripke interface. In particular, both the shallow and deep embeddings
share the same interface so that they can be used in our CTL∗ formalization
interchangeably.

We formalize the abstraction as a Coq module type. The following fragment
shows the abstract Kripke interface.

Module Type KRIPKE .
Parameters Var St : Set .
Parameter Val : St -> Var -> nat .
Parameter Init : St -> Prop .
Parameter Succ : St -> St -> Prop .

End KRIPKE .

In the module type KRIPKE, the variable set Var and the state set St are declared.
The valuation of each variable x on a given state s is obtained by Val s x. A

Modular Formalization of Reactive Modules in COQ 109

state s is an initial state if Init s holds. Similarly, the state t is a successor of
s if Succ s t holds. The labeling function L is not declared for it is formalized
as state predicates of type St -> Prop.

In the shallow embedding, only the semantics of Reactive Modules is encoded.
Constants are provided to help verifiers construct reactive modules. New con-
structs can be formalized by adding new constants. On the other hand, both the
syntax and semantics are encoded in the deep embedding. Each syntactic class of
Reactive Modules corresponds to an inductive type in Coq. A semantic function
is defined to give the meaning of constructs in each syntactic class. Adding a
new construct requires modifying the inductive type and the semantic function
of its syntactic class.

3.1 Shallow Embedding

In the shallow embedding SRM, variables in reactive modules are of type Var. A
state is a function which maps variables to values. For simplicity, all variables
in our formalization have values in natural numbers (nat).

Variable Var : Set .
Definition St : Set := Var -> nat .

Since both the old and new values of variables may be referred in reactive mod-
ules, an expression is formalized as a function of type St -> St -> nat where the
arguments are the current and the next state respectively. It returns a nat term
as its semantic value. A Boolean expression, on the other hand, is a predicate
on the current and next states.

Definition Exp : Set := St -> St -> nat .
Definition BExp : Type := St -> St -> Prop .

It is easy to encode constructs in SRM. For instance, the following definition
defines the constant add for the arithmetic addition operator.

Definition add (e1 e2 : Exp) : Exp := fun s s’ : St => e1 s s’ + e2 s s’ .

The constant add passes the current and next states to its parameters, evaluates
the subexpressions, and finally returns the sum as its result. Other constants for
expressions are defined similarly.

Likewise, constants for Boolean expressions are given. For example, the fol-
lowing constants define the truth value true and the negation.

Definition wahr : BExp := fun s s’ : St => True .
Definition nicht (be : BExp) : BExp := fun s s’ : St => ~ be s s’ .

Another constant which is handy in the specification of mutual exclusion is
forall nat. It checks whether the operand f of type nat -> BExp holds for all
nat.

Definition forall_nat (f : nat -> BExp) : BExp :=
fun s s’ : St => forall n : nat, f n s s’ .

110 M.-H. Tsai and B.-Y. Wang

A command in CA
u is a predicate over the current and next states while an

initial command in CA
i a predicate over states.

Definition Command : Type := St -> St -> Prop .
Definition ICommand : Type := St -> Prop .

Predefined constants are available for commands. For example, Assign assigns
an expression to a variable, and Comp makes a new command out of two. Similar
constants in ICommand can be defined as well.

Definition Assign (v : Var) (exp : Exp) : Command :=
fun s s’ : St => s’ v = exp s s’ .

Definition Comp (c c’ : Command) : Command :=
fun s s’ : St => c s s’ /\ c’ s s’ .

Note that the composition of commands is formalized as conjunction. It conforms
to the semantics defined in [1].

3.2 Deep Embedding

The syntax and semantics are defined explicitly in the deep embedding DRM. For
each syntactic class, we define an inductive type for its terms and a semantic
function for its semantics.

Syntax. For expressions, we define the inductive type Exp as follows.

Inductive Exp : Set :=
| add : Exp -> Exp -> Exp
...

The inductive type BExp for Boolean expressions is defined similarly.

Inductive BExp : Set :=
| wahr : BExp
| nicht : BExp -> BExp
| forall_nat : (nat -> BExp) -> BExp
...

In DRM, elements of Exp and BExp are constructed inductively. Subsequently,
properties about expressions or Boolean expressions can be proved by induc-
tion. On the other hand, Exp and BExp are of functional types in the shallow
embedding. Inductive reasoning about these expressions would not work in SRM.

A command can be an assignment or a composition of commands. A guarded
command is a record which contains a Boolean expression and a command.
Finally, an atom is a record of a list of controlled variables, a list of initial
guarded commands, and a list of updating guarded commands.

Inductive Command : Set :=
| assign (v : Var) (exp : Exp) | comp (c c’ : Command) .

Record GuardedCommand : Set := mkGuardedCommand
{ guard : BExp; command : Command } .

Record Atom : Set := mkAtom
{ controls : list Var; inits : list GuardedCommand;

updates : list GuardedCommand } .

Modular Formalization of Reactive Modules in COQ 111

Semantics. To give a term its meaning, a semantic function for its syntactic
class is defined. The semantic functions eval and beval compute the semantic
value of any Exp and BExp term respectively based on the current and next states.

Fixpoint eval (exp : Exp) (s s’ : St) { struct exp } : nat :=
match exp with

| add exp’ exp’’ => (eval exp’ s s’) + (eval exp’’ s s’)
...

end .
Fixpoint beval (bexp : BExp) (s s’ : St) { struct bexp } : Prop :=
match bexp with

| wahr => True
| nicht bexp’ => ~ (beval bexp’ s s’)
| forall_nat F => forall n : nat, beval (F n) s s’
...

end .

Compare the definition of Exp in SRM and the type of the semantic function
eval in DRM.

Exp := St -> St -> nat (* in SRM *)
eval : Exp -> St -> St -> nat (* in DRM *)

The type of the term eval add in DRM corresponds to the type of the constant
add in SRM. Indeed, the semantic function eval collects the corresponding de-
finitions of Exp constants in the shallow embedding. The correspondence will
be observed throughout the formalizations. It helps us differentiate embeddings
systematically.

The semantic function Exec for commands can be defined easily.

Fixpoint Exec (c : Command) (s s’ : St) { struct c } : Prop :=
match c with

| assign v exp => s’ v = (eval exp s s’)
| comp c’ c’’ => Exec c’ s s’ /\ Exec c’’ s s’

end .

In order to define the parameter Succ in the module type KRIPKE, several
auxiliary definitions are needed. Given a term of Atom and two states s, s’,
SuccAtom holds if s’ can be obtained from s by executing an enabled guarded
command. Hence, the state s’ is a successor of s if s’ can be obtained from s
by executing enabled guarded commands of all atoms simultaneously.

Definition SuccAtom (atom : Atom) (s s’ : St) : Prop :=
exists gcmd : GuardedCommand, In gcmd (updates atom) /\

beval (guard gcmd) s s’ /\ Exec (command gcmd) s s’ .
Definition Succ (atoms : Ensemble Atom) (s s’ : St) : Prop :=
forall atom : Atom, In Atom atoms atom -> SuccAtom atom s s’ .

4 CTL∗

As in the formalizations of Reactive Modules, the shallow and deep embed-
dings of CTL∗ must conform to the same interface. Moreover, we would like to

112 M.-H. Tsai and B.-Y. Wang

maximize the applicability of our CTL∗ formalization, and therefore would not
commit to particular model specification languages. CTL∗ is therefore formalized
as a functor on modules of type KRIPKE.

In the abstract interface of CTL∗, the formalization of paths is required.
Standard functions such as hd, tl, and cons are declared.

Module Type CTLS (K : KRIPKE) .
Parameter Path : Set .
Parameter hd : Path -> K.St .
Parameter tl : Path -> Path .
Parameter cons : forall (s : K.St) (pi : Path),

K.Succ s (hd pi) -> Path .
Parameter suffix : nat -> Path -> Path .
...

The function suffix i pi returns the i-th suffix of the path pi. It is used in the
formalizations of various temporal operators.

The declarations of state and path formulae follows those of paths. The sat-
isfaction relations K, s |= f and K, π |= g will be formalized by model s and
model p respectively.

Parameters state_formula path_formula : Type .
Parameter model_s : state_formula -> K.St -> Prop .
Parameter model_p : path_formula -> Path -> Prop .
Parameter A : path_formula -> state_formula .
Parameter G : path_formula -> path_formula .
Axiom def_A : forall (s : K.St) (f : path_formula),

model_s s (A f) <-> forall pi : Path, s = hd pi -> model_p pi f .
...

End CTLS .

The types of path quantifiers and temporal operators are defined. For instance,
the path quantifier A must be of type path formula -> state formula. Finally,
semantic constraints on temporal operators are explicated.

4.1 Paths

Paths are formalized by imposing constraints on streams. A stream is an infinite
sequence of states. A stream of states σ = s0s1 · · · sn · · · is a path if and only
if si+1 is a successor of si for all i ≥ 0. For simplicity, we formalize streams as
functions from natural numbers to states in both embeddings of CTL∗. Other
formalizations via domain theory [13] or coinductive types [17] are possible.

Definition stream : Set := nat -> K.St .
Definition is_path (str : stream) : Prop :=
forall i : nat, K.Succ (str i) (str (i + 1)) .

Definition Path : Set := { pi : stream | is_path pi } .

The predicate is path checks whether successive states in the given stream
satisfy the transition relation K.Succ. Path is hence a set of streams satisfying the
predicate is path. Auxiliary functions such as hd, tl, and cons can be defined
easily and are skipped here.

Modular Formalization of Reactive Modules in COQ 113

4.2 Shallow Embedding

State and path formulae are formalized as predicates over states and paths in
the shallow embedding SCTLS respectively.

Definition path_formula : Type := Path -> Prop .
Definition state_formula : Type := St -> Prop .

Consider, for example, the path quantifier A. It makes a state formula out of
a path formula. In our formalization, it transforms a path predicate to a state
predicate.

Definition A (P : path_formula) : state_formula :=
fun s : St => forall pi : Path, s = hd pi -> P pi .

Similarly, the temporal operator G checks whether all suffixes (suffix i pi)
of the input path (pi) satisfy the given path predicate.

Definition G (P : path_formula) : path_formula :=
fun pi : Path => forall i : nat, P (suffix i pi) .

4.3 Deep Embedding

The deep embedding DCTLS follows a similar style in Reactive Modules. We de-
fine two inductive types for the syntactic classes of path and state formulae
respectively. Semantic functions for the syntactic classes are defined accordingly.

Syntax. The syntactic classes of state and path formulae correspond to the
mutually inductive types state formula and path formula respectively.

Inductive state_formula : Type :=
| A : path_formula -> state_formula
...

with path_formula : Type :=
| X : path_formula -> path_formula
| G : path_formula -> path_formula
...

Semantics. The semantics of state and path formulae are defined mutually
recursively by the functions model s and model p respectively.

Fixpoint model_s (f : state_formula) (s : St) {struct f} : Prop :=
match f with
| A g => forall pi : Path, s = hd pi -> model_p g pi
...
end

with model_p (g : path_formula) (pi : Path) {struct g} : Prop :=
match g with
| X g’ => model_p g’ (tl pi)
| G g’ => forall k : nat, model_p g’ (suffix k pi)
...
end .

114 M.-H. Tsai and B.-Y. Wang

The correspondence of both embeddings can be re-illustrated.

(* in SCTLS *)
state_formula := St -> Prop
path_formula := Path -> Prop
(* in DCTLS *)
model_s : state_formula -> St -> Prop
model_p : path_formula -> Path -> Prop

The semantic functions model s and model p in DCTLS collect the definitions of
corresponding operators in SCTLS. As in the formalization of Reactive Modules, it
is easy to add new operators in the shallow embedding. But DCTLS allows verifiers
to analyze CTL∗ formulae inductively.

5 The Bakery Algorithm

In this section, we demonstrate the ease of proof sharing in our modular for-
malization. The mutual exclusion of the Bakery algorithm will be used as the
example. More precisely, three versions of the property are proved in different
embeddings. We first specify the Bakery algorithm with the shallow and deep
embeddings of Reactive Modules and obtain the modules SBakery and DBakery

respectively. Two versions of mutual exclusion are specified by the shallow and
deep embeddings of CTL∗ as SMUTEX and DMUTEX respectively. The similarity be-
tween the proofs of SMUTEX in SBakery and DBakery will be illustrated. Finally,
the theorem SMUTEX is reused to prove DMUTEX in DBakery (Figure 1).

SBakery SMUTEX

DBakery DMUTEX

�|=

�����|=

�
|=

Fig. 1. Different Versions of Mutual Exclusion

We deliberately use the same notation in both embeddings to demonstrate the
similarity of proofs. Hence some functions and constructors may have different
types in different embeddings. For example, the term or is a function in SBakery

but a constructor in DBakery. The following constants are used in both encodings.

Definition reqCS := 1 .
Definition inCS := 2 .
Definition outCS := 3 .
Parameter n : nat .
Axiom n_gt_0 : n > 0 .
Parameters pc y : nat -> Var .

Modular Formalization of Reactive Modules in COQ 115

Intuitively, n denotes the number of processes. pc i is the control location of the
process i, which can be reqCS, inCS, or outCS. y i is the ticket number of the
process i. Then the condition that process i can enter the critical section is as
follows.

Definition cond (i : nat) : BExp :=
let cond_i_j (i : nat) (j : nat) : BExp :=

y j = 0 \/ y i < y j \/ (y i = y j /\ i < j) in
forall_nat j, i <> j --> cond_i_j i j .

It states that if all other process j has ticket number 0, a larger ticket number (y
i < y j), or the index j greater than i when both have the same ticket number,
then the process i may go into the critical section. Note that cond has different
types in different embeddings.

5.1 Shallow Modeling

In the shallow modeling, the initial and updating commands are defined as pred-
icates. To mimic the textual representation of Reactive Modules, several nota-
tions are defined. For instance, x′ := e stands for Assign x e; Updates [] gcmd0
[] gcmd1 · · · stands for fun s s’ : St => gcmd0 s s’ \/ gcmd1 s s’ \/ · · ·, and
so on.

Definition atom_inits (i : nat) : ICommand :=
(Inits

[] wahr -> (pc i) := outCS; (y i) := 0) .
Definition atom_updates (i : nat) : Command :=
(Updates

[] pc i = outCS -> (pc i)’ := reqCS; (y i)’ := max_y + 1
[] pc i = reqCS /\ cond i -> (pc i)’ := inCS; (y i)’ := y i
[] pc i = reqCS /\ ~ cond i -> (pc i)’ := reqCS; (y i)’ := y i
[] pc i = inCS -> (pc i)’ := outCS; (y i)’ := 0) .

Definition sys_inits (s : St) : Prop :=
forall (i : nat), i < n -> atom_inits i s .

Definition sys_updates (s s’ : St) : Prop :=
forall (i : nat), i < n -> atom_updates i s s’ .

The concrete module SBakery of type KRIPKE is created as follows.

Module SBakery <: KRIPKE .
Definition Var := SRM.Var .
Definition St := SRM.St .
Definition Val (s : St) (v : Var) := s v .
Definition Init := sys_inits .
Definition Succ := sys_updates .

End SBakery .

With the module SBakery in place, we can instantiate the module SBakerySCTL
as follows.

Module SBakerySCTL := SCTLS SBakery .

116 M.-H. Tsai and B.-Y. Wang

Mutual exclusion is expressed as a state formula smutex.

Definition smutex : state_formula :=
fun s : St => forall i j : nat, i < n -> j < n -> i <> j ->

s (pc i) <> inCS \/ s (pc j) <> inCS .

It is now straightforward to prove the following lemma in SBakerySCTL.

Lemma SMUTEX : forall s : St, Init s -> model_s (A (G smutex)) s .

5.2 Deep Modeling

To model the Bakery algorithm in the deep embedding, we define the Atom term
atom i for each natural number i. The notations x′ := e and Updates [] gcmd0
[] gcmd1 · · · stand for assign x e and [gcmd0 ; gcmd1 ; · · ·] respectively.

Definition atom (i : nat) : Atom := mkAtom (pc i::y i::nil)
(Inits

[] wahr -> (pc i) := outCS; (y i) := 0)
(Updates

[] pc i = outCS -> (pc i)’ := reqCS; (y i)’ := max_y + 1
[] pc i = reqCS /\ cond i -> (pc i)’ := inCS; (y i)’ := y i
[] pc i = reqCS /\ ~ cond i -> (pc i)’ := reqCS; (y i)’ := y i
[] pc i = inCS -> (pc i)’ := outCS; (y i)’ := 0) .

The system with n atoms is defined as an ensemble of atoms (Ensemble Atom).

Definition sys : Ensemble Atom :=
fun a : Atom => exists i : nat, i < n /\ a = atom i .

The concrete model of type KRIPKE is defined as follows.

Module DBakery <: KRIPKE .
Definition Var := DRM.Var .
Definition St := DRM.St .
Definition Val (s : St) (v : Var) := s v .
Definition Init := DRM.Init sys .
Definition Succ := DRM.Succ sys .

End DBakery .

Similar to using shallow embedding, we instantiate the module DBakerySCTL.

Module DBakerySCTL := SCTLS DBakery .

The following lemma shows the mutual exclusion in DBakerySCTL.

Lemma SMUTEX : forall s : St, Init s -> model_s (A (G smutex)) s .

Recall that both SBakerySCTL.SMUTEX and DBakerySCTL.SMUTEX specify the mu-
tual exclusion property in the shallow embedding of CTL∗. Further, SBakery

and DBakery are merely two encodings of the Bakery algorithm in different em-
beddings. Intuitively, the proofs of SBakerySCTL.SMUTEX and DBakerySCTL.SMUTEX

should be similar. If so, one may establish DBakerySCTL.SMUTEX by adopting the

Modular Formalization of Reactive Modules in COQ 117

in SBakerySCTL.SMUTEX in DBakerySCTL.SMUTEX

gen cmd Hsucc i Hi unfold cond i j; gen cmd Hsucc (atom i);
gen cmd Hsucc j Hj unfold cond i j; gen cmd Hsucc (atom j);
clear Hsucc. clear Hsucc.

· · · · · ·
case (eq nat dec (s (pc j)) inCS); intro . case (eq nat dec (s (pc j)) inCS); intro .

generalize (Hin j Hj e); clear Hin; intro . generalize (Hin j Hj e); clear Hin; intro .
generalize (Hreq i Hi H0); clear Hreq; generalize (Hreq i Hi H0); clear Hreq;

intro . intro .
generalize generalize

(Hin’ j Hj e i Hi (sym not eq Hij)); (Hin’ j Hj e i Hi (sym not eq Hij));
clear Hin’; intro . clear Hin’; intro .

generalize (H1 j Hij); clear H1 . generalize (H1 j Hij); clear H1 .
intros; elim all or; elim all and; intros; elim all or; elim all and;

auto contradict . auto contradict .

auto replace H; auto . auto replace H4; auto .

Fig. 2. Proof Scripts

proof of SBakerySCTL.SMUTEX. The cost of migrating from SBakery to DBakery

would be greatly reduced.
It is indeed the case in this example. Figure 2 shows fragments of the proofs of

SBakerySCTL.SMUTEX and DBakerySCTL.SMUTEX, where differences are underlined.
In the beginning of the proof, the tactic gen cmd generates relations between the
current and next states according to the transition relation Hsucc specified by
the atoms. For example, for the guarded command [] pc i = inCS -> (pc i)’

:= outCS; (y i)’ := 0 in atom i, gen cmd would generate two assumptions H0

: s (pc i) = inCS and H1 : s’ (pc i) = outCS /\ s’ (y i) = 0 in the context
where the guarded command is fired. We provide two versions of the tactic for
different embeddings to help verifiers migrate their proofs. The remaining frag-
ments analyze the scenario where process i enters the critical section and process
j stutters. The only difference is due to the names generated during the case
analysis. The tactics elim all or, elim all and, auto contradict, and auto replace
simplify assumptions and look for contradiction. They are shared in both em-
beddings.

Figure 2 shows that the proofs of SBakerySCTL.SMUTEX and DBakerySCTL.SMUTEX

are very similar despite using different encodings. In both proofs, the tactic
gen cmd translates the transition relation into logical relations between the cur-
rent and next states. The proofs do not involve any encoding henceforth. If
verifiers follow a similar proof strategy, the proof within the shallow embedding
could be transformed to a proof within the deep embedding, and the migration
cost is therefore reduced.

It is even simpler to prove the mutual exclusion property with the deep embed-
ding of CTL∗ from DBakerySCTL.SMUTEX. We instantiate the module DBakeryDCTL
of the deep embedding.

118 M.-H. Tsai and B.-Y. Wang

Module DBakeryDCTL := DCTLS DBakery .

The atomic proposition smutex in the shallow embedding becomes the follow-
ing term in the deep embedding of CTL∗.

Definition dmutex : AP :=
forall_nat (fun i : nat => forall_nat (fun j : nat =>

i < n --> j < n --> i <> j -->
(pc i) <> inCS \/ (pc j) <> inCS)) .

The property can now be specified with the module DBakeryDCTL as follows.

Lemma DMUTEX : forall s : St, Init s -> model_s (A (G dmutex)) s .

To prove DMUTEX, note that both DBakerySCTL.SMUTEX and DBakeryDCTL.DMUTEX

are of the same type in CTLS. A simple application of DBakerySCTL.SMUTEX proves
DBakeryDCTL.DMUTEX trivially.

6 Future Work and Conclusion

Migration from one formalization to another requires effort, even for different
embeddings of the same formalism. In this paper, we exploit the Coq module
system and give both the shallow and deep embeddings of two specification
languages. We show how the Bakery algorithm is specified in both embeddings of
Reactive Modules, as well as the mutual exclusion in both embeddings of CTL∗.
Three versions of the property are formally proved as examples. The examples
suggest that the migration cost can be alleviated by the modular formalization
presented in the paper.

Our formalization of the Reactive Modules could still be improved. In the fu-
ture, we would also like to formalize other model specification languages within
our framework. Moreover, the integration with different model checkers may be
possible by formalizing model specification languages of different model checkers.
Other formalizations of the requirement specification languages can also be done.
In particular, we are working on a comparison of different formalizations of CTL∗.

Acknowledgment. We would like to thank Yih-Kuen Tsay and anonymous
reviewers for their constructive comments in improving the paper.

References

1. Alur, R., Henzinger, T.: Reactive modules. In: Proceedings of the 11th IEEE Sym-
posium on Logic in Computer Science, pp. 207–218. IEEE Computer Society Press,
Los Alamitos (1996)

2. Bauer, G.: Some properties of CTL. Technische Universität München, Isabelle/Isar
document (2001)

3. Coupet-Grimal, S.: An axiomatization of linear temporal logic in the calculus of
inductive constructions. Logic and Computation 13(6), 801–813 (2003)

Modular Formalization of Reactive Modules in COQ 119

4. Huet, G., Kahn, G.: Paulin-Mohring: The Coq proof assistant: a tutorial: version
6.1. Technical Report 204, Institut National de Recherche en Informatique et en
Automatique (1997)

5. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16(3), 872–923 (1994)

6. Lynch, N.: Distributed algorithms. Morgan Kaufmann, San Francisco (1996)
7. Manna, Z., Pnueli, A.: The temporal framework for concurrent programs. In: Boyer,

R., Moore, J. (eds.) The Correctness Problem in Computer Science, pp. 215–274.
Academic Press, London (1981)

8. Manolios, P.: Mu-calculus model-checking. In: Computer-Aided Reasoning: ACL2
Case Studies, pp. 93–111. Kluwer Academic Publishers, Dordrecht (2000)

9. Merz, S.: Isabelle/TLA. Technische Universität München, Isabelle/Isar document
(1998)

10. Miculan, M.: On the formalization of the modal μ-calculus in the calculus of in-
ductive constructions. Information and Computation 164(1), 199–231 (2001)

11. Müller, O.: I/O automata and beyond - temporal logic and abstraction in Isabelle.
In: Grundy, J., Newey, M. (eds.) Theorem Proving in Higher Order Logics. LNCS,
vol. 1479, pp. 331–348. Springer, Heidelberg (1998)

12. Müller, O.: A Verification Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, Technische Universität München (1998)

13. Müller, O., Nipkow, T.: Traces of I/O automata in Isabelle/HOLCF. In: Bidoit,
M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS,
vol. 1214, pp. 580–595. Springer, Heidelberg (1997)

14. Nipkow, T., Slind, K.: I/O automata in Isabelle/HOL. In: Smith, J., Dybjer, P.,
Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 101–119. Springer, Heidel-
berg (1995)

15. Paulson, L.C., Nipkow, T.: Isabelle tutorial and user’s manual. Technical Report
TR-189, Computer Laboratory, University of Cambridge (1990)

16. Sprenger, C.: A verified model checker for the modal μ-calculus in Coq. In: Steffen,
B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer,
Heidelberg (1998)

17. Tsai, M.H., Wang, B.Y.: Formalization of CTL* in calculus of inductive construc-
tions. submitted for publication (2006)

18. Yu, S., Luo, Z.: Implementing a model checker for LEGO. In: Jones, C.B. (ed.)
FME 1997. LNCS, vol. 1313, pp. 442–458. Springer, Heidelberg (1997)

Closing Internal Timing Channels by Transformation

Alejandro Russo1, John Hughes1, David Naumann2, and Andrei Sabelfeld1

1 Department of Computer Science and Engineering
Chalmers University of Technology, 412 96 Göteborg, Sweden Fax: +46 31 772 3663

2 Department of Computer Science
Stevens Institute of Technology, Hoboken, New Jersey 07030, USA

Abstract. A major difficulty for tracking information flow in multithreaded pro-
grams is due to the internal timing covert channel. Information is leaked via this
channel when secrets affect the timing behavior of a thread, which, via the sched-
uler, affects the interleaving of assignments to public variables. This channel is
particularly dangerous because, in contrast to external timing, the attacker does
not need to observe the actual execution time. This paper presents a composi-
tional transformation that closes the internal timing channel for multithreaded
programs (or rejects the program if there are symptoms of other flows). The
transformation is based on spawning dedicated threads, whenever computation
may affect secrets, and carefully synchronizing them. The target language fea-
tures semaphores, which have not been previously considered in the context of
termination-insensitive security.

1 Introduction

An active area of research is focused on information flow controls in multithreaded
programs [21]. Multithreading opens new covert channels by which information can
be leaked to an attacker. As a consequence, the machinery for enforcing secure infor-
mation flow in sequential programs is not sufficient for multithreaded languages [25].
One particularly dangerous channel is the internal timing covert channel. Information
is leaked via this channel when secrets affect the timing behavior of a thread, which,
via the scheduler, affects the interleaving of assignments to public variables.

Suppose that h is a secret variable, and k and l are public ones. Assuming that ‖
denotes parallel composition, consider a simple example of an internal timing leak:

if h ≥ k then skip; skip else skip;
l := 1 ‖

skip;
skip;
l := 0

(Internal timing leak)

Under a one-step round-robin scheduler (and a wide class of other reasonable sched-
ulers), if h ≥ k then by the time assignment l := 1 is reached in the first thread,
the second thread has terminated. Therefore, the last assignment to execute is l := 1.
On the other hand, if h < k then by the time assignment l := 0 is reached in the
second thread, the first thread has terminated. Therefore, the last assignment to exe-
cute is l := 0. Hence, the truth value of h ≥ k is leaked into l. Programs with dy-
namic thread creation are vulnerable to similar leaks. For example, a direct encoding
of the example above is depicted in Fig. 1 (where fork(c) spawns a new thread c).

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 120–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Closing Internal Timing Channels by Transformation 121

fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1

Fig. 1. Internal timing leak with fork

p := 0;
while n ≥ 0 do

k := 2n−1;
fork(skip; skip; l := 0);
if h ≥ k
then skip; skip else skip;

l := 1;
if l = 1
then h := h − k; p := p + k
else skip;

n := n − 1

Fig. 2. Internal timing leak magnified

This program also leaks whether h ≥ k is true,
under many schedulers. Internal timing leaks
are particularly dangerous because, in contrast
to external timing, the attacker does not need
to observe the actual execution time. Moreover,
leaks similar to those considered so far can be
magnified via loops as shown in Fig. 2 (where
k, l, n, and p are public; and h is an n-bit secret
integer). Each iteration of the loop leaks one bit
of h. As a result, the entire value of h is copied
into p. Although this example assumes a round-
robin scheduler, similar examples can be easily
constructed where secrets are copied into public
variables under any fair scheduler [25].

Existing proposals to tackling internal tim-
ing flows heavily rely on the modification of
run-time environment. (A more detailed discus-
sion of related work is deferred to Section 8.)
A series of work by Volpano and Smith [25,
27, 23, 24] suggests a special protect(c) state-
ment that, by definition, takes one atomic computation step with the effect of running
command c to the end. Internal timing leaks are made invisible because protect()-
based security typed systems ensure that computation that branches on secrets is
wrapped by protect() commands. However, implementing protect() is a major chal-
lenge [22, 19, 16] because while a thread runs protect(), the other threads must be
instantly blocked. Russo and Sabelfeld argue that standard synchronization primitives
are not sufficient and resort to primitives for direct interaction with scheduler in order to
enable instant blocking [16]. However, a drawback of this approach (and, arguably, any
approach that implements protect() by instant blocking) is that it relies on the mod-
ification of run-time environment: the scheduler must be able to immediately suspend
all threads that might potentially assign to public variables while a protected segment
of code is run, which limits concurrency in the program.

This paper eliminates the need for modifying the run-time environment for a class
of round-robin schedulers. We give a transformation that closes internal timing leaks
by spawning dedicated threads for segments of code that may affect secrets. There are
no internal timing leaks in transformed programs because the timing for reaching as-
signments to public variables does not depend on secrets. The transformation carefully
synchronizes the dedicated threads in order not to introduce undesired interleavings in
the semantics of the original program. Despite the introduced synchronization, threads
that operate on public data are not prevented from progress by threads that operate on
secret data, which gives more concurrency than in [25, 27, 23, 24, 16].

For a program with internal timing leaks under a particular deterministic scheduler,
the elimination of leaks necessarily changes the interleavings and so possibly the final
result. What thread synchronization allows us to achieve is refinement of results under
nondeterministic scheduling: the result of the transformed program (under round-robin)

122 A. Russo et al.

is a possible result of the source program under nondeterministic scheduling. Although
an attacker would seek to exploit information about the specific scheduler in use, good
software engineering practice suggests that a program’s functional behavior should not
be dependent on specific properties of a scheduler beyond such properties as fairness.

The transformation does not reject programs unless they have symptoms that would
already reject sequential programs [5, 28]. The transformation ensures that the rest of
insecurities (due to internal timing) are repaired.

It is seemingly possible to remove internal timing leaks by applying the following
naive transformation. Suppose a command (program) c only has two variables h and l
to store a secret and a public value, respectively. Assume that c does not have insecuri-
ties other than due to internal timing (this can be achieved by disallowing explicit and
implicit flows, defined later in the paper). Then the following program does not leak
any information about h, while it computes output as intended for c (or diverges):

hi := h; li := l; h := 0; c; bar ; lo := l; h := hi; l := li; c; bar ; l := lo

where bar is a barrier command that ensures that all other threads have terminated be-
fore proceeding. This transformation suffers from at least two drawbacks. Firstly, the
program c is run twice, which is inefficient. Secondly, it is hard to ensure that any kind
of nondeterminism (e.g., due to the scheduler, random number generator, or input chan-
nels) in c is resolved in the same way in both copies. For example, the transformation
does not scale up naturally when c uses input channels. It is not obvious how to com-
municate inputs between the two copies of the program.

Another attempt to remove internal timing leaks could be done by applying slicing
techniques, which can automatically split the original program into low and high parts.
Unfortunately, these techniques in presence of concurrency are not enough to preserve
the semantics of the original program. The reason for that is simple: public variables,
which are updated by threads, might affect the computation of secrets. Therefore, an
explicit communication of public values to the high part is required.

2 Language

Although our technique is applicable to fully-fledged programming languages, we use
a simple imperative language to formalize the transformation. The language includes
a command fork((λ�x.c)@�e), which dynamically creates and runs a new thread with
local variables �x with initial values given by the expressions �e. When the list of lo-
cal variables is empty, we sometimes use simpler notation: fork(c). The command c
may also use the program’s global variables. The transformation requires dynamically
allocated semaphores, so these too are included in the language defined in this section.

Without making it precise, we assume that each variable is of type integer or type
semaphore. There are no expressions of type semaphore other than semaphore variables.
A main program is a single command c, in the grammar of Fig. 3. Its free variables com-
prise the globals of the program. The source language is the subset in which there are
no stop commands, no semaphore variables and therefore no semaphore allocations or
operations. Moreover, the list of local variables in every fork must be empty. Locals

Closing Internal Timing Channels by Transformation 123

c ::= skip | x := e | c; c | if e then c else c | while e do c | fork((λ�x.c) @�e)

| stop | s := newSem(n) | P(s) | V(s)

Fig. 3. Command syntax (with x and s ranging over variables, and n over integer literals)

(�e, m) ↓ �v

〈|fork((λ�x.d) @�e), m, h|〉
λ�x.d,�v
� 〈|stop, m, h|〉

(s, m) ↓ r h(r).cnt = 0

〈|P(s), m, h|〉 ⊗r
� 〈|stop, m, h|〉

(s, m) ↓ r h(r).cnt > 0 h′ = h[r.cnt := r.cnt − 1]

〈|P(s), m, h|〉 � 〈|stop, m, h′|〉

(s, m) ↓ r

〈|V(s), m, h|〉 �r
� 〈|stop, m, h|〉

i = max(dom(h)) + 1 h′ = h ∪ {i �→ (cnt = n, que = 〈〉)}
〈|s := newSem(n), m, h|〉 � 〈|stop, m[s := i], h′|〉

Fig. 4. Commands semantics

are needed for the transformation, but locals in source code would complicate the trans-
formation (because each source thread is split into multiple threads, and locals are not
shared between threads).

3 Semantics

The formal semantics is defined in two levels: individual command and threadpool
semantics. The small-step semantics for sequential commands is standard [29], and
we thus omit these rules. The rules for concurrent commands are given in Fig. 4.

Configurations have the form 〈|c, m, h|〉, where c is a command, m is a memory (map-
ping variables to their values), and h is a heap for dynamically allocated semaphores.
The expression language does not include dereferencing of semaphore references, so
evaluation of expressions does not depend on the heap. We write (e, m) ↓ n to say that
n is the value of e in memory m. A heap is a finite mapping from semaphore references
(which we take to be naturals) to records of the form (cnt = n, que = ws) where n is a
natural number and ws is the list of blocked thread states.

Let α range over the following events, which label command transitions for use in
the threadpool semantics: �r, to indicate the semaphore at reference r is signaled; ⊗r,
to indicate it is waited; or a pair λ�x.c, �v where �v is a sequence of values that match �x.

Threadpool configurations have the form 〈|〈(c0, m0) . . . (ci, mi) . . . (cn−1, mn−1)〉
g, h, j|〉, where each (ci, mi) is the state of thread i which is not blocked, g maps global
variables to their values, h is the heap, j ∈ 0 . . . n − 1 is the index of the thread that
will take the next step. For all i, dom(mi) is disjoint from dom(g). Numbering threads
0 . . . n − 1 slightly simplifies some definitions related to round-robin scheduling.

124 A. Russo et al.

The threadpool semantics is defined for any scheduler relation SC. We interpret
(i, n, n′, i′) ∈ SC to mean that i is the current thread taking a step, n is the current
pool size, n′ is the size of the pool after that step, and i′ is the next thread chosen by the
scheduler. This model is adequate to define a round-robin scheduler for which thread
activation, suspension, and termination do not affect the interleaving of other threads,
and also to model full nondeterminism. The fully nondeterministic scheduler ND is
defined by (i, n, n′, i′) ∈ ND if and only if 0 ≤ i < n and 0 ≤ i′ < n′.

A little care is needed with round-robin to maintain the order when threads are
blocked or terminated. The definition relies on some details of the threadpool semantics,
e.g., when a step by thread i removes a thread from the pool (by termination or block-
ing), that thread is i itself. Define the round-robin scheduler RR by (i, n, n′, i′) ∈ RR
if and only if 0 ≤ i < n and equation (1) holds.

i′ = i, if n′ < n and i < n − 1
= 0, if n′ < n and i = n − 1
= (i + 1) mod n′, otherwise

(1)

The threadpool semantics is
given in Fig. 5. Note that mem-
ories in command configurations
are disjoint unions mi∪g, where
mi is the thread-local memory,
and g is the global one. We write
h[r.que := (r.que :: (c, m))] to abbreviate an update of the record at r in h to change
its que field by appending (c, m) at the tail. Although semaphores are stored in a heap,
we streamline the semantics by not including a null reference. Thus, an initial heap is
needed. It is defined to initialize semaphores to 1, which is an arbitrary choice. The
security condition defined later refers to initial values for all global variables, for sim-
plicity, but only integer inputs matter.

Definition 1. The initial heap of size k is the mapping hk with domain 1 . . . k that maps
each i to the semaphore state (cnt = 1, que = 〈〉). Suppose that k of the globals have
type semaphore. Given a global memory g, the initial global memory gk agrees with
g on integer variables, and the ith semaphore variable (under some enumeration) is
mapped to i (i ∈ dom(hk)).

Define (c, g) ⇓ g′ if and only if 〈|〈(c, m)〉, gk, hk, 0|〉 →∗ 〈|〈〉, g′, h′, j|〉, for some h′

and j, where →∗ is the reflexive and transitive closure of the transition relation →, and
m is the empty function (since the initial thread c has no local variables).

Note that the definitions of →∗ and ⇓ depend on the choice of scheduler, but this is
elided in the notation.

4 Security Specification

Assume that all global non-semaphore variables are labeled with low or high security
levels to represent public and secret data, respectively. We label all semaphore variables
as high in the target code (recall that the source program has no semaphore variables).
To define the security condition, it suffices to define low equality of global memories,
written g1 =L g2, to say that g1(x) = g2(x) for all low variables x.

Definition 2. Program c is secure if for all g1, g2 such that g1 =L g2, if (c, g1) ⇓ g′1
and (c, g2) ⇓ g′2 then g′1 =L g′2, where ⇓ refers to the round-robin scheduler RR.

Closing Internal Timing Channels by Transformation 125

〈|ci, mi∪g, h|〉 � 〈|c′
i, m

′
i∪g′, h′|〉 (i, n, n, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (c′
i, m

′
i) . . .〉, g′, h′, j|〉

ci = stop (i, n, n − 1, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (ci−1, mi−1)(ci+1, mi+1) . . .〉, g, h, j|〉

〈|ci, mi∪g, h|〉
λ�x.d,�v
� 〈|c′

i, m
′
i∪g′, h′|〉 m = {�x �→ �v} (i, n, n + 1, j) ∈ SC

〈|〈. . . (ci, mi) . . . (cn−1, mn−1)〉, g, h, i|〉 → 〈|〈. . . (c′
i, m

′
i) . . . (cn−1, mn−1)(d,m)〉, g′, h′, j|〉

〈|ci, mi∪g, h|〉 ⊗r
� 〈|c′

i, m
′
i∪g′, h′|〉

h′′ = h′[r.que := (r.que :: (c′
i, m

′
i))] (i, n, n − 1, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (ci−1, mi−1)(ci+1, mi+1) . . .〉, g′, h′′, j|〉

〈|ci, mi∪g, h|〉 �r
� 〈|c′

i, m
′
i∪g′, h′|〉

h′(r).que = (c, m) :: ws h′′ = h′[r.que := ws] (i, n, n + 1, j) ∈ SC

〈|〈. . . (ci, mi) . . . (cn−1, mn−1)〉, g, h, i|〉 → 〈|〈. . . (c′
i, m

′
i) . . . (cn−1, mn−1)(c, m)〉, g′, h′′, j|〉

〈|ci, mi∪g, h|〉 �r
� 〈|c′

i, m
′
i∪g′, h′|〉

h′(r).que = 〈〉 h′′ = h′[r.cnt := r.cnt + 1] (i, n, n, j) ∈ SC

〈|〈. . . (ci, mi) . . .〉, g, h, i|〉 → 〈|〈. . . (c′
i, m

′
i) . . .〉, g′, h′′, j|〉

Fig. 5. Threadpool semantics (for scheduler SC)

The definition says that low equality of initial global memories implies low equality of
final global memories. Note that this definition is termination-insensitive [21], in the
sense that nonterminating runs are ignored.

Observe that the examples from the introduction are rejected by the above definition
because the changes in the final values of low variables break low equality. Consider
another example (where k and l are low; and h is high):

if (h ≥ k) then skip; skip else skip ‖ l := 0 ‖ l := 1

This program is secure because the timing of the first thread does not affect how the
race between assignments in the second and third threads is resolved. This holds for
round-robin schedulers that run each thread for a fixed number of steps (which covers
the case of a one-step round-robin scheduler RR), machine instructions, or even calls
to the fork primitive. Note, however, that schedulers that are able to change the order
of scheduled threads depending on the number of live threads would not necessarily
guarantee secure execution of the above program. For example, consider a scheduler
that runs the first thread for two steps and then checks the number of live threads. If
this number is two then the second thread is scheduled; otherwise the third thread is
scheduled. This leaks the truth value of h ≥ k into l. Round-robin schedulers are not
only practical but also in this sense more secure, which motivates our choice to adopt
them in the semantics.

126 A. Russo et al.

5 Transformation

In this section, we give a transformation that rules out explicit and implicit flows [5]
and closes internal timing leaks under round-robin schedulers. The transformation rules
have the form Γ ;w , s , a, b,m � c ↪→ c′, where command c is transformed into c′ under
the security type environment Γ , which maps variables to their security levels, and
special semaphore variables w , s , a, b, and m needed for synchronization. Moreover,
a fresh high variable hx is introduced for each low variable x in the source code. The
transformation comprises the rules presented in Fig. 6 and the top-level rule:

Γ ;w , s, a, b,m 	 c ↪→ c′ w , s fresh

Γ 	 c ↪→t m := newSem(1); a := newSem(1);w := newSem(1); �hl := �l; c′
(2)

where �hl := �l stands for copying all low variables l into fresh high variables hl.
Define low assignments to be assignments to low variables. Explicit flows are pre-

vented by not allowing high variables to occur in low assignments (see rule L-ASG).
Define high conditionals (loops) to be conditionals (loops) that branch on expressions
that contain high variables. Implicit flows for high conditionals and loops are prevented
by rules of the form Γ � c � c′, where command c is transformed into c′ under Γ .
These rules guarantee that high if’s and while’s do not have assignments to low vari-
ables in their bodies. These rules for tracking explicit and implicit flows are adopted
from security-type systems for sequential programs [28].

As illustrated by previous examples, internal timing channels are introduced by low
assignments after high conditionals and loops. To close these channels, the transforma-
tion introduces a fork whenever the source code branches on high data (see rules (H-
IF) and (H-W)). Since such computations are now spawned in new threads, the number
of executed instructions before low assignments does not depend on secrets. However,
new threads open up possibilities for new races between high variables, which can un-
expectedly change the semantics of the program. To ensure that such races are avoided
(which we also prove in Section 7), the transformation spawns dedicated threads for all
computations that might affect high data (see rules (H-ASG) and (L-ASG)) and care-
fully places synchronization primitives in the transformed program. We will illustrate
this, and other interesting aspects of the transformation, through examples.

Consider the following simple program that suffers from an internal timing leak:

(if h1 then skip; skip else skip); l := 1 ‖ d (3)

where d abbreviates command skip; skip; l := 0. The assignment l := 1 may be
reached in three or two steps depending on h1. However, by spawning the high condi-
tional in a new thread, the number of instructions to execute it will no longer affect when
l := 1 is reached. More precisely, we can rewrite program (3) as fork(if h1 then skip;
skip; else skip); l := 1 ‖ d, where internal timing leaks are not possible. From now
on, we assume that the initial values of l and h2 are always 0. Suppose now that we
modify program (3) by:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ d (4)

Closing Internal Timing Channels by Transformation 127

∀v ∈ Vars(e). Γ (v) = low
Γ 	 e : low

∃v ∈ Vars(e). Γ (v) = high
Γ 	 e : high

Γ ;w , s, a, b,m 	 skip ↪→ skip

(Γ ;w , s, a, b,m 	 ci ↪→ c′
i)i=1,2

Γ ;w , s, a, b,m 	 c1; c2 ↪→ c′
1; c

′
2

(H-ASG)
Γ 	 e � e′ Γ (x) = high

Γ ;w , s, a, b,m 	 x := e ↪→ s := newSem(0);
fork((λŵ ŝ.P(ŵ); x := e′; V(ŝ))@ws);
w := s

(L-ASG)
Γ 	 e : low Γ (x) = low Γ 	 e � e′

Γ ;w , s, a, b 	 x := e ↪→ s := newSem(0);
P(m); x := e; b := newSem(0);

fork((λŵ ŝ â b̂.P(ŵ); P(â); hx := e′; V(b̂); V(ŝ)) @wsab)
a := b; V(m);
w := s

Γ 	 e : low Γ ;w , s, a, b, m 	 c ↪→ c′

Γ ;w , s, a, b,m 	 while e do c ↪→ while e do c′

Γ 	 e : low (Γ ;w , s, a, b,m 	 ci ↪→ c′
i)i=1,2

Γ ;w , s, a, b, m 	 if e then c1 else c2 ↪→ if e then c′
1 else c′

2

(H-IF)
Γ 	 e : high Γ 	 e � e′ (Γ 	 ci � c′

i)i=1,2 ct = if e′ then c′
1 else c′

2

Γ ;w , s, a, b,m 	 if e then c1 else c2 ↪→ s := newSem(0);
fork((λŵ ŝ .P(ŵ); ct; V(ŝ)) @ws);
w := s

(H-W)
Γ 	 e : high Γ 	 e � e′ Γ 	 c � c′ ct = while e′ do c′

Γ ;w , s, a, b,m 	 while e do c ↪→ s := newSem(0);
fork((λŵ ŝ.P(ŵ); ct; V(ŝ)) @ws);
w := s

Γ ;w ′, s ′, a, b,m 	 d ↪→ d′ ct = fork((λŵ ŝŵ ′.P(ŵ); V(ŵ); V(ŝ); V(ŵ ′))@ ŵ ŝw ′) w ′, s ′ fresh

Γ ;w , s, a, b,m 	 fork(d) ↪→ s := newSem(0);
fork((λŵ ŝ.w ′ := newSem(0); ct; d

′)@ ws);
w := s

Γ 	 e � e[hx/x]Γ (x)=low Γ 	 skip � skip

Γ (v) = high Γ 	 e � e′

Γ 	 v := e � v := e′

Γ 	 e � e′ (Γ 	 ci � c′
i)i=1,2

Γ 	 if e then c1 else c2 � if e′ then c′
1 else c′

2

Γ 	 d � d′

Γ 	 fork(d) � fork(d′)

(Γ 	 ci � c′
i)i=1,2

Γ 	 c1; c2 � c′
1; c

′
2

Γ 	 e � e′ Γ 	 c � c′

Γ 	 while e do c � while e′ do c′

Fig. 6. Transformation rules

128 A. Russo et al.

where the final value of h2 is always 0. This code still suffers from an internal tim-
ing leak. Unfortunately, by putting a fork around the if as before, we introduce 1
as a possible final value for h2, which was not possible in the original code. This
discrepancy originates from an undesired new interleaving of the rewritten program:
l := 1 can be computed before h2 := 2 ∗ h2 + l. To prevent such an interleav-
ing, we introduce fresh high variables for every low variable in the code. We call
this kind of new variables high images of low variables. Since low variables are only
read, and not written, by high conditional and loops, it is possible to replace low vari-
ables inside of high contexts by their corresponding high images. Then, every time that
low variables are updated, their corresponding images will do so but in due course.

w := newSem(1); //initialization from top-level rule (2)
s := newSem(0);
fork((λŵ ŝ .P(ŵ); (if h1 then h2 := 2 ∗ h2 + hl; skip

else skip); V(ŝ))
@ws)

w := s
l := 1; s := newSem(0);
fork((λŵ ŝ.P(ŵ); hl := 1; V(ŝ))@ ws)
w := s

(5)

To illustrate this, let us
rewrite the left side of pro-
gram (4) as in (5). Vari-
able hl is the corresponding
high image of low variable
l. Two dedicated threads
are spawned with different
local snapshots of w and
s, written as ŵ and ŝ, re-
spectively. The second ded-
icated thread, which updates the high image of l to 1, waits (P(ŵ)) for the first one to
finish, and the first one indicates when the second one should start (V(ŝ)). By doing so,
and by properly updating w and s in the main thread, the command hl := 1 is never
executed before the if statement. Note that the first dedicated thread does not need to
synchronize with previous ones. Hence, the top-level transformation rule, presented at
the beginning of the section, initializes the semaphore w to 1.

wd := newSem(1);
skip; skip;
l := 0; sd := newSem(0);
fork((λŵdŝd.P(ŵd); hl := 0; V(ŝd))

@wdsd);
wd := sd

(6)

The thread d also needs to be modified to
include an update to hl. Let us rewrite d as
in (6). Semaphore variables wd and sd do not
play any important role here, since just one dedi-
cated thread is spawned. Note that if we run pro-
grams (5) and (6) in parallel, it might be possible
that the updates of low variables happen in a dif-
ferent order than the updates of their corresponding high images. In order to avoid this,
we introduce three global semaphores, called a, b, and m. The final transformed code is
shown in Fig. 7, where c′1 runs in parallel with d′1. Semaphore variables a and b ensure
that the queuing processes update high images in the same order as the low assignments
occur. Since a and b are globals, we protect their access with the global semaphore m.
As in the original program, h2 can only have the final value 0. From now on, we assume
that the semaphore a is allocated and initialized with value 1 .

Let us modify program (4) by adding assignments to high and low variables:

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1; h2 := h2 + 1; l := 3 ‖ d (7)

The final value of h2 is 1. As before, this code still suffers from internal timing leaks.
By putting fork’s around high conditionals and introducing updates for high images as

Closing Internal Timing Channels by Transformation 129

c′
1 : w := newSem(1);

s := newSem(0);
fork((λŵ ŝ.P(ŵ);

if h1 then h2 := 2 ∗ h2 + hl;
skip;

else skip;
V(ŝ))@ws);

w := s
s := newSem(0);
P(m); l := 1; b := newSem(0);

fork((λŵ ŝâb̂.P(ŵ); P(â); hl := 1;

V(b̂); V(ŝ))@wsab);
a := b; V(m);
w := s

d′
1 : wd := newSem(1);

skip; skip;
sd := newSem(0);
P(m); l := 0; b := newSem(0);

fork((λŵdŝdâb̂.P(ŵd); P(â); hl := 0;

V(b̂); V(ŝd))@wdsdab);
a := b; V(m);
wd := sd

Fig. 7. Transformed code for program (4)

in program (5), we would introduce 2 as a new possible final value for h2, when h1 is
positive. The new value arises from executing h2 := h2 + 1 before the if statement.

In order to remove this race, we use synchronization to guarantee that computations
on high data are executed in the same order as they appear in the original code. However,
this synchronization should not lead to recreating timing leaks: waiting

c′
2 : c′

1; s := newSem(0);
fork((λŵ ŝ.P(ŵ); h2 := h2 + 1; V(ŝ)) @ws)
w := s;
P(m); l := 3; b := newSem(0);

fork((λŵ ŝ âb̂.P(ŵ); P(â); hl := 3; V(b̂);
V(ŝ))@wsab);

a := b; V(m);
‖ d′

1
(8)

for the if to finish before ex-
ecuting h2 := h2 + 1; l :=
3 would imply that the timing
of the low assignment l := 3
could depend on h1. We resolve
this problem by spawning dedi-
cated threads for assignments to
high variables and synchronizing,
via semaphores, these threads with
other threads that either read from or write to high data. The dedicated thread to compute
h2 := h2 + 1 will wait until the last dedicated thread in c′1 finishes. The transformed
code is shown in (8). Note that spawned dedicated threads are executed in the same
order as they appear in the main thread.

if h1 then h2 := 2 ∗ h2 + l; skip else skip;
l := 1; h2 := h2 + 1; l := 3;
fork(h2 := 5) ‖ d

(9)

Let us modify program (7) to intro-
duce a fork as in (9). The final value
of h2 is 5. However, the rewritten
program will spawn several dedicated
threads: for the conditional, for updating high images, h2 := h2+1, and h2 := 5, which
need to be synchronized. In particular, h2 := 5 cannot be executed before h2 := h2 +1
finishes. Thus, we need to synchronize dedicated threads in the main thread with the
dedicated threads from their children. This is addressed by the transformation in (10),
where d∗ spawns a new thread that waits on w ′ to perform h2 := 5. In order to be
able to receive a signal on w ′, it is necessary to firstly receive a signal on ŵ , which
can be only done after computing h2 := h2 + 1. Note that the transformation spawns a
new thread to wait on ŵ in order to avoid recreating timing leaks. When a fork occurs

130 A. Russo et al.

inside a loop in the source program, there is potentially a number of dynamic threads
that need to wait for the previous computation on high data to finish. This is resolved
by passing-the-baton technique: whichever thread receives a signal first (P(ŵ)) passes
it to another thread (V(ŵ)).

c′
2;

s := newSem(0);
fork((λŵ ŝ .w ′ := newSem(0);

fork((λŵ ŝŵ ′.P(ŵ); V(ŵ);
V(ŝ); V(ŵ ′))@ŵ ŝw ′); d∗)

@ws);
w := s; ‖ d′

1
(10)

The examples above show how to close
internal timing leaks by spawning dedicated
threads that perform computation on high
data. We have seen that some synchroniza-
tion is needed to avoid producing different
outputs than intended in the original pro-
gram. Transformed programs introduce per-
formance overhead related to synchroniza-
tion. This overhead comes as a price for not modifying the run-time environment when
preventing internal timing leaks.

6 Geo-Localization Example

hotel l := nextHotel();
hotelLocl := getHotelLocation(hotel l);
dh := distance(hotelLocl, userLoch);
closesth := hotel l;
while (moreHotels?()) do
hotel l := nextHotel ();
hotelLocl := getHotelLocation(hotel l);
d′

h := distance(hotelLocl, userLoch);
if (d′

h < dh) then dh := d′
h; closesth := hotel l

else skip
ih := 0;
while (moreTypeRooms?(closesth)) do
typeh := nextTypeRoom(closesth);
showTypeRoom(typeh, ih);
ih := ih + 1;

Fig. 8. Geo-localization example

Inspired by a scenario from mo-
bile computing [1], we give an
example of closing timing leaks
in a realistic setting. Modern mo-
bile phones are able to compute
their geographical positions. The
widely used MIDP profile [10] for
mobile devices includes API sup-
port for obtaining the current po-
sition of the handset [11]. Further-
more, geo-localization can be ap-
proximated by using the identity
of the current base station and the
power of its signal. It is desirable
that such information can only be
used by trusted parties.

Consider the code fragment in
Fig. 8. This fragment is part of a program that runs on a mobile phone. Such a pro-
gram typically uses dynamic thread creation (which is supported by MIDP) to perform
time-consuming computation (such as establishing network connections) in separate
threads [12, 14].

The program searches for the closest hotel in the area where the handset is located.
Once found, it displays the types of available rooms at that hotel. Variables have sub-
scripts indicating their security levels (l for low and h for high). Suppose that hotell
and hotelLocl contain the public name and location for a given hotel, respectively.
The location of the mobile device is stored in the high variable userLoch. Variables
dh and d′h are used to compute the distance to a given hotel. Variable closesth stores
the location of the closest hotel in the area. Variable ih is used to index the type of

Closing Internal Timing Channels by Transformation 131

rooms at the closest hotel. Variable typeh stores a room type, i.e., single, double, etc.
Function nextHotel() returns the next available hotel in the area (for simplicity, we as-
sume there is always at least one). Function getHotelLocation() provides the location
of a given hotel, and function distance() computes the distance between two loca-
tions. Function moreHotels?() returns true if there are more hotels for nextHotel() to
retrieve. Function moreTypeRooms?() returns true if there are more room types for
nextTypeRoom(). Function showTypeRoom() displays room types on the screen.

This code may leak information about the location of the mobile phone through the
internal timing covert channel. The source of the problem is a conditional that branches
on secret data, where the then branch performs two assignments while the else branch
only skip. However, internal timing leaks can be closed by the transformation given
in Section 5 (provided the transformed program runs under a round-robin scheduler).
This example highlights the permissiveness of the transformation. For instance, the type
systems by Boudol and Castellani [3, 4] reject the example because both high condi-
tionals and low assignments appear in the body of a loop. Transformations in [22, 13]
also reject the example due to the presence of a high loop in the code.

7 Soundness

This section shows that a transformed program is secure and refines the source program
in a suitable sense. The details of the proofs for lemmas and theorems shown in this
section are to appear in an accompanying technical report.

Security. We identify two kinds of threads. High threads are dedicated threads intro-
duced by the transformation and threads in the source program spawned inside a high
conditional or a high loop. Other threads are low threads. We designate high threads
by arranging that they have a distinguished local variable called �. It is not difficult to
modify the transformation in Section 5 to guarantee this.

In order to prove non-interference under round-robin schedulers, we firstly need to
exploit some properties of programs produced by the transformation.

Definition 3. A command c is syntactically secure provided that (i) there are no ex-
plicit flows, i.e., assignments x := e with high e and low x; (ii) each low thread,
fork((λ�x.c′)@�e), in c satisfies the following: there are no high conditionals or high
loops or V() or P() operations related to synchronize high threads, except inside high
threads forked in c′; and (iii) in high threads, there are neither low assignments nor
forks of low threads.

Lemma 1. If Γ �t c ↪→ c′ then c′ is syntactically secure.

We let γ and δ range over threadpool configurations. We assume, for convenience in
the notation, that γ = 〈|〈(c0, m0) . . .〉, g, h, j|〉. We also define γ.pool = 〈(c0, m0) . . .〉,
γ.globals = g, γ.heap = h, and γ.next = j. A program configuration γ is called
syntactically secure if every command in γ.pool and every command in a waiting queue
of γ.heap is syntactically secure.

132 A. Russo et al.

A thread configuration (c, m) is low, noted low?(m), if and only if � /∈ dom(m).
Define low?(i, γ) if and only if the ith thread in γ.pool is low. Define γL as the subse-
quence of thread configurations (ci, mi) in γ.pool that are low. For each thread config-
uration (ci, mi) ∈ γ that is low, define lowpos(i, γ) (and, for simplicity in the notation,
lowpos(i, γ.pool)) to be the index of the thread but in γL. The key property of a round-
robin scheduler is that the next low thread to be scheduled is independent of the values
of global or local variables, the states of high threads (running or blocked), and even
the number of high threads in the configuration. We can formally capture this property
as follows. Define nextlow(γ) = j mod (#γ.pool) where j is the least number such
that j ≥ γ.next and low?(j mod (#γ.pool), γ).

Definition 4 (Low equality). Define P =L P ′ for threadpools P = 〈(c1, m1) . . .〉 and
P ′ = 〈(c′1, m′

1) . . .〉 (not necessarily the same length) if and only if ci ≡ c′j for all i, j
such that low?(mi), low?(m′

j), and lowpos(i, P) = lowpos(j, P ′). Define γ =L δ if
and only if γ and δ are syntactically secure, γ.globals =L δ.globals, γ.pool =L δ.pool,
lowpos(nextlow(γ), γ) = lowpos(nextlow(δ), δ), and all threads blocked in γ.heap
and δ.heap are high.

Theorem 1. Let γ and δ be configurations such that γ =L δ. If γ →∗ γ′ and δ →∗ δ′

where γ′, δ′ are terminal configurations, then γ′ =L δ′. Here →∗ refers to the semantics
using the round-robin scheduler RR.

Corollary 1 (Security). If Γ � c ↪→t c′ then c′ is secure under round-robin scheduling.

Refinement. For programs produced by our transformation, the result from a round-
robin computation from any initial state is a result from the original program using the
fully nondeterministic scheduler. In fact, any interleaving of the transformed program
matches some interleaving of the original code.

Theorem 2. Suppose Γ � c ↪→t c′ and g′1 and g′2 are global memories for c′ such that
(c′, g′1) ⇓ g′2 using the nondeterministic scheduler ND . Let g1 and g2 be the restrictions
of g′1 and g′2 to the globals of c. Then (c, g1) ⇓ g2 using ND .

8 Related Work

Variants of possibilistic noninterference have been explored in process-calculus set-
tings [7, 6, 18, 8, 15], but without considering the impact of scheduling.

As discussed in the introduction, a series of work by Volpano and Smith [25, 27, 23,
24] suggests a special protect(c) statement to hide the internal timing of command c in
the semantics. In contrast to this work, we are not dependent on the randomization of the
scheduler. To the best of our knowledge, no proposals for protect() implementation
avoid significantly changing the scheduler (unless the scheduler is cooperative [17]).

Boudol and Castellani [3, 4] suggest explicit modeling of schedulers as programs.
Their type systems, however, reject source programs where assignments to public vari-
ables follow computation that branches on secrets.

Smith and Thober [26] suggest a transformation to split a program into high and
low components. Jif/split [31] partitions sequential programs into distributed code on

Closing Internal Timing Channels by Transformation 133

different hosts. However, the main focus is on security when some trusted hosts are
compromised. Neither approach provides any formal notion of security or refinement.

A possibility to resolve the internal timing problem is by considering external tim-
ing. Definitions sensitive to external timing consider stronger attackers, namely those
that are able to observe the actual execution time. External timing-sensitive security de-
finitions have been explored for multithreaded languages by Sabelfeld and Sands [22]
as well as languages with synchronization [19] by Sabelfeld and message passing [20]
by Sabelfeld and Mantel. Typically, padding techniques [2, 22, 13] are used to ensure
that the timing behavior of a program is independent of secrets. Naturally, a stronger
attacker model implies more restrictions on programs. For example, loops branching
on secrets are disallowed in the above approaches. Further, padding might introduce
slow-down and, in the worst case, nontermination.

Another possibility to prevent internal timing leaks in programs is by disallowing
any races on public data, as pursued by Zdancewic and Myers [30] and improved by
Huisman et al. [9]. However, such an approach rejects innocent programs such as l :=
0 ‖ l := 1 where l is a public variable.

9 Conclusion

We have presented a transformation that closes internal timing leaks in programs with
dynamic thread creation. In contrast to existing approaches, we have not appealed to
nonstandard semantics (cf. the discussion on protect()) or to modifying the run-time
environment (cf. the discussion on interaction with schedulers). Importantly, the trans-
formation is not overrestrictive: programs are not rejected unless they have symptoms of
flows inherent to sequential programs. The transformation ensures that the rest of inse-
curities (due to internal timing) are repaired. Our target language includes semaphores,
which have not been considered in the context of termination-insensitive security.

Future work includes introducing synchronization and declassification primitives
into the source language and improving the efficiency of the transformation: instead
of dynamically spawning dedicated threads, one could refactor the program into high
and low parts and explicitly communicate low data to the high part, when needed (and
high data to the low part, when prescribed by declassification).

Acknowledgments. This work was funded in part by the Swedish Emergency Man-
agement Agency and in part by the Information Society Technologies program of the
European Commission, Future and Emerging Technologies under the IST-2005-015905
Mobius project.

References

[1] Report on resource and information flow security requirements, Deliverable D1.1 of the
EU IST FET GC2 MOBIUS project, (March 2006), http://mobius.inria.fr/

[2] Agat, J.: Transforming out timing leaks. In: Proc. POPL 2002, pp. 40–53 (January 2000)
[3] Boudol, G., Castellani, I.: Noninterference for concurrent programs. In: Orejas, F., Spi-

rakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 382–395. Springer,
Heidelberg (2001)

http://mobius.inria.fr/

134 A. Russo et al.

[4] Boudol, G., Castellani, I.: Non-interference for concurrent programs and thread systems.
Theoretical Computer Science 281(1), 109–130 (2002)

[5] Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Comm.
of the ACM 20(7), 504–513 (1977)

[6] Focardi, R., Gorrieri, R.: Classification of security properties (part I: Information flow).
In: Focardi, R., Gorrieri, R. (eds.) Foundations of Security Analysis and Design. LNCS,
vol. 2171, pp. 331–396. Springer, Heidelberg (2001)

[7] Honda, K., Vasconcelos, V., Yoshida, N.: Secure information flow as typed process be-
haviour. In: Smolka, G. (ed.) ESOP 2000 and ETAPS 2000. LNCS, vol. 1782, Springer,
Heidelberg (2000)

[8] Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In: Proc.
ACM Symp. on Principles of Programming Languages, pp. 81–92. ACM Press, New York
(2002)

[9] Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of observational
determinism. In: Proc. IEEE Computer Security Foundations Workshop (July 2006)

[10] JSR 118 Expert Group. Mobile information device profile (MIDP), version 2.0. Java spec-
ification request, Java Community Process (November 2002)

[11] JSR 179 Expert Group. Location API for J2ME. Java specification request, Java Commu-
nity Process (September 2003)

[12] Knudsen, J.: Networking, user experience, and threads. Sun Technical Articles and
Tips, (2002), http://developers.sun.com/techtopics/ mobility/midp/
articles/threading/

[13] Köpf, B., Mantel, H.: Eliminating implicit information leaks by transformational typing
and unification. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST
2005. LNCS, vol. 3866, Springer, Heidelberg (2006)

[14] Mahmoud, Q.H.: Preventing screen lockups of blocking operations. Sun Technical Arti-
cles and Tips (2004), http://developers.sun.com/techtopics/mobility/
midp/ttips/screenlock/

[15] Pottier, F.: A simple view of type-secure information flow in the pi-calculus. In: Proc. IEEE
Computer Security Foundations Workshop, pp. 320–330. IEEE Computer Society Press,
Los Alamitos (2002)

[16] Russo, A., Sabelfeld, A.: Securing interaction between threads and the scheduler. In: Proc.
IEEE Computer Security Foundations Workshop, pp. 177–189. IEEE Computer Society
Press, Los Alamitos (2006)

[17] Russo, A., Sabelfeld, A.: Security for multithreaded programs under cooperative schedul-
ing. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, Springer, Heidel-
berg (2007)

[18] Ryan, P.: Mathematical models of computer security—tutorial lectures. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2001. LNCS, vol. 2946, Springer, Heidelberg (2004)

[19] Sabelfeld, A.: The impact of synchronisation on secure information flow in concurrent
programs. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244,
Springer, Heidelberg (2001)

[20] Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed programs. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, Springer, Heidelberg
(2002)

[21] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected
Areas in Communications 21(1), 5–19 (2003)

[22] Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In:
Proc. IEEE Computer Security Foundations Workshop, pp. 200–214. IEEE Computer So-
ciety Press, Los Alamitos (2000)

protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update http://developers.sun.com/techtopics/ mobility/midp/articles/threading/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update http://developers.sun.com/techtopics/ mobility/midp/articles/threading/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update http://developers.sun.com/techtopics/mobility/midp/ttips/screenlock/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update http://developers.sun.com/techtopics/mobility/midp/ttips/screenlock/

Closing Internal Timing Channels by Transformation 135

[23] Smith, G.: A new type system for secure information flow. In: Proc. IEEE Computer Se-
curity Foundations Workshop, pp. 115–125. IEEE Computer Society Press, Los Alamitos
(2001)

[24] Smith, G.: Probabilistic noninterference through weak probabilistic bisimulation. In: Proc.
IEEE Computer Security Foundations Workshop, pp. 3–13. IEEE Computer Society Press,
Los Alamitos (2003)

[25] Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language.
In: Proc. ACM Symp. on Principles of Programming Languages, pp. 355–364. ACM Press,
New York (1998)

[26] Smith, S.F., Thober, M.: Refactoring programs to secure information flows. In: PLAS 2006,
pp. 75–84. ACM Press, New York (2006)

[27] Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language. J. Computer
Security 7(2–3), 231–253 (1999)

[28] Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J. Com-
puter Security 4(3), 167–187 (1996)

[29] Winskel, G.: The Formal Semantics of Programming Languages: An Introduction. MIT
Press, Cambridge (1993)

[30] Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program security.
In: Proc. IEEE Computer Security Foundations Workshop, pp. 29–43. IEEE Computer So-
ciety Press, Los Alamitos (2003)

[31] Zheng, L., Chong, S., Myers, A.C., Zdancewic, S.: Using replication and partitioning to
build secure distributed systems. In: Proc. IEEE Symp. on Security and Privacy, pp. 236–
250. IEEE Computer Society Press, Los Alamitos (2003)

Responsiveness in Process Calculi�

Lucia Acciai1 and Michele Boreale2

1 Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence.
2 Dipartimento di Sistemi e Informatica, Università di Firenze
lucia.acciai@lif.univ-mrs.fr, boreale@dsi.unifi.it

Abstract. In a process calculus, an agent guarantees responsive usage of a chan-
nel name r if a communication along r is guaranteed to eventually take place.
Responsiveness is important, for instance, to ensure that any request to a service
be eventually replied. We propose two distinct type systems, each of which stat-
ically guarantees responsive usage of names in well-typed pi-calculus processes.
In the first system, we achieve responsiveness by combining techniques for dead-
lock and livelock avoidance with linearity and receptiveness. The latter is a guar-
antee that a name is ready to receive as soon as it is created. These conditions
imply relevant limitations on the nesting of actions and on multiple use of names
in processes. In the second system, we relax these requirements so as to permit
certain forms of nested inputs and multiple outputs.

1 Introduction

In a process calculus, an agent guarantees responsive usage of a channel name r if a
communication along r is guaranteed to eventually take place. That is, under a suitable
assumption of fairness, all computations contain at least one reduction with r as subject.
We christen this property responsiveness as we are particularly interested in the case
where r is a return channel passed to a service or function. As an example, a network
of processes S may contain a service !a(x,r).P invocable in RPC style: the caller sends
at a an argument x and a return channel r. S’s responsive usage of r implies that every
request at a will be eventually replied. This may be a critical property in domains of
applications such as service-oriented computing.

Our goal is to individuate substantial classes of pi-calculus processes that guarantee
responsiveness and that can be statically checkable. In the past decade, several type
systems for the pi-calculus have been proposed to analyze properties that share some
similarities with responsiveness, such as linearity [10], uniform receptiveness [13], lock
freedom [6,7] and termination [5]; they will be examined throughout the paper. How-
ever none of the above mentioned properties alone is sufficient, or even necessary, to
ensure the property we are after (Section 2), as we discuss below (further discussion is
found in the concluding section).

The first system we propose (Section 3) builds around Sangiorgi’s system for uniform
receptiveness [13]. However, we discard uniformity and introduce other constraints, as

� The first author is supported by the French government research grant ACI TRALALA. The
second author is supported by the EU within the FET-GC2 initiative, project SENSORIA.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 136–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Responsiveness in Process Calculi 137

explained below. As expected, most difficulties in achieving responsiveness originate
from responsive names being passed around. If an intended receiver of a responsive
name r, say a(x).P, is not available “on time”, r might never be delivered, hence used.
In this respect, receptiveness is useful, because it can be used to ensure that inputs on a
and on r are available as soon as they are created.

Even when delivery of r is ensured, however, one should take care that r
will be processed properly. Indeed, the recipient might “forget” about r, like in
(νa, r)(a(x).0 |a〈r〉) ; or r might be passed from one recipient to another, its use as
a subject being delayed forever, like in

(νa, b, r)
(

!a(x).b〈x〉 | !b(y).a〈y〉 | a〈r〉
)
. (1)

The first situation can be avoided by imposing that in the receiver a(x).P, name x occurs
at least once in the body P. In fact, as we shall discuss in the paper, it is necessary that
any responsive name be used linearly, that is, it appears exactly once in input and once
in output. Infinite delays like (1) can be avoided by using a stratification of names into
levels, like in the type system for termination of Deng and Sangiorgi [5]. We will rule
out divergent computations that involve responsive names infinitely often, but we’ll do
allow divergence in general.

Finally, even when a responsive name is eventually in place as subject of an output
action, one has to make sure that such action becomes eventually available. In other
words, one must avoid cyclic waiting like in

r(x).s〈x〉 | s(y).r〈y〉 . (2)

This will be achieved by building a graph of the dependencies among responsive names
and then checking for its acyclicity.

Receptiveness and linearity impose relevant limitations on the syntax of well-typed
processes: nested free inputs are forbidden, as well as multiple outputs on the same
name. On the other hand, the type system is expressive enough to enable a RPC pro-
gramming style; in particular, we show that the usual CPS encoding of primitive recur-
sive functions gives rise to well-typed processes (Section 5).

In the second system we propose (Section 6), the constraints on receptiveness and
linearity are relaxed so as to allow certain forms of nested inputs and multiple out-
puts. For instance, the new system allows nondeterministic internal choice, which was
forbidden in the first one. Relaxation of linearity and receptiveness raises new issues,
though. As an example, responsiveness might fail due to “shortage” of inputs, like in
(a, b and d responsive):

a〈b〉|a〈d〉|a(x).x|b|d τ−→ τ−→ a〈d〉|d .

These issues must be dealt with by carefully “balancing” inputs and outputs in typing
contexts and in processes. In a long version of this paper [1] we prove that this system is
flexible enough to encode into well-typed processes all orchestration patterns of Cook
and Misra’s ORC language [4]. Due to a rather crude use of levels, however, only certain
forms of (tail-)recursion are encodable. In fact, neither the first system is subsumed by
the second one, nor vice versa.

138 L. Acciai and M. Boreale

2 Syntax and Operational Semantics

In this section we describe the syntax (processes and types) and the operational seman-
tics of the calculus. On top of the operational semantics, we define the responsiveness
property we are after.

Syntax. We focus on an asynchronous variant of the pi-calculus without nondetermin-
istic choice. Indeed, asynchrony is a natural assumption in a distributed environment.
Moreover, in the presence of a choice, it would be difficult to guarantee responsiveness
of names that occur in branches that are discarded. A countable set of names N , ranged
over by a,b, . . . ,x,y, . . . , is presupposed. The set P of processes P,Q, . . . is defined as the
set of terms generated by the grammar P ::= 0

∣∣ a〈b〉
∣∣ a(x).P

∣∣ !a(x).P
∣∣ P|Q

∣∣ (νb)P,
with x /∈ in(P) in a(x).P and !a(x).P.

In a non blocking output action a〈b〉, name a is said to occur in output subject posi-
tion and b in output object position. In an input prefix a(x).P, and in a replicated input
prefix !a(x).P, name a is said to occur in input subject position and x in input object
position. We denote by in(P) the set of names occurring free in input subject position
in P. The condition x /∈ in(P), for input and replicated input, means that names can
be passed around with the output capability only. This assumption simplifies reason-
ing on types and does not significantly affect the expressiveness of the language (see
e.g. [3,11]). As usual, parallel composition, P|Q, represents the concurrent execution of
P and Q and restriction, (νb)P, creates a fresh name b with initial scope P. Notions of
free and bound names (fn(·) and bn(·)), and alpha-equivalence (=α) arise as expected.
In the paper, we shall only consider well-formed processes, where all bound names are
distinct from each other and from free names. Note that we do not identify processes
up-to α-equivalence (this means that an explicit operational rule that equates transitions
of α-equivalent processes will be needed).

Notationally, we shall often abbreviate a(x).0 as a(x), and (νa1) . . . (νan)P as (νã)P
or (νa1, . . . ,an)P, where ã = a1, . . . ,an. Sometimes, the object part of an action may be
omitted if not relevant for the discussion; e.g., a(x).P may be shortened into a.P.

Sorts and types. The set of names N is partitioned into a family of countable sorts
S ,S ′, A fixed sorting à la Milner [12] is presupposed: that is, any sort S has an
associated object sort S ′, and a name of sort S can only carry names of sort S ′. We only
consider processes that are well-sorted in this system. Alpha-equivalence is assumed to
be sort-respecting. Each sort is associated with a type T taken from the set T defined
below. We write a : T if a belongs to a sort S with associated type T. The association
between types and sorts is such that for each type there is at least one sort of that type.

Definition 1 (types). The set T of types contains the constant ⊥ and the set of terms
generated by the grammar T ::= I

∣∣ TU and U ::= [ρ,k]
∣∣ [ω,k], with k ≥ 0. We use

T,S, ... to range over T .

A channel type T[u,k] conveys three pieces of information: a type of carried objects T, a
usage u, that can be responsive (ρ) or ω-receptive (ω), and an integer level k ≥ 0. If a :
T[u,k] and u = ρ (resp. u = ω) we say that a is responsive (resp. ω-receptive). Informally,
responsive names are guaranteed to be eventually used as subject in a communication,

Responsiveness in Process Calculi 139

while ω-receptive names are guaranteed to be constantly ready to receive. Levels are
used to bound the number of times a responsive name can be passed around, so to avoid
infinite delay in their use as subject. We also consider a type I of inert names that cannot
be used as subject of a communication – they just serve as tokens to be passed around.
Finally, a type ⊥ is introduced to collect those names that cannot be used at all: as we
discuss below, ⊥ is useful to formulate the subject reduction property while keeping the
standard operational semantics.

Operational semantics. The semantics of processes is given by a labelled transition
system in the early style, whose rules are presented in Table 1. An action µ can be of
the following forms: free output, a〈b〉, bound output, a(b), input a(b), or internal move
τ. We define n(a(b)) = n(a〈b〉) = n(a(b)) = {a,b} and n(τ) = /0. A substitution σ is a
finite partial map from names to names; for any term P, we write Pσ for the result of
applying σ to P, with the usual renaming convention to avoid captures.

The rules are standard, with a difference that we discuss in the following. The no-

tation
τ〈a,b〉−−−→ is used to denote a τ-transition where the – free or bound – names a and

b are used as subject and object, respectively, of a communication (we omit the for-
mal definition of this notation, that can be given by keeping track of subject and object
names in derivation of transitions.) In Rule (RES-ρ), a bound responsive subject a is
alpha-renamed to a ⊥-name c (a sort of “casting” of a to type ⊥.) Informally, this alpha-
renaming is necessary because in a well-typed process, due to the linearity constraint
on responsive names, name a must vanish after being used as subject. The rule (RES)
deals with the remaining cases of restriction. Note that if type and sorting information
is ignored, one gets back the standard operational semantics of pi-calculus.

Table 1. Rules for the labeled transition system

(IN) a(x).P
a(b)−−→ P[b/x] (REP) !a(x).P

a(b)−−→!a(x).P|P[b/x]

(OUT) a〈b〉 a〈b〉−−→ 0 (COM1) P
a〈b〉−−→ P′ Q

a(b)−−→ Q′

P|Q τ−→ P′|Q′

(OPEN) P
a〈b〉−−→ P′ a
= b

(νb)P
a(b)−−→ P′

(CLOSE1)
P

a(b)−−→ P′ Q
a(b)−−→ Q′ b /∈ fn(Q)

P|Q τ−→ (νb)(P′|Q′)

(ALPHA) P =α Q Q
µ−→ Q′ Q′ =α P′

P
µ−→ P′ (RES)

P
µ−→ P′ a /∈ n(µ)

µ = τ〈a,b〉 implies a not responsive

(νa)P
µ−→ (νa)P′

(PAR1)
P

µ−→ P′ bn(µ)∩ fn(Q) = /0
P|Q µ−→ P′|Q

(RES-ρ) P
τ〈a,b〉−−−→ P′ a responsive c : ⊥ c fresh

(νa)P
τ〈a,b〉−−−→ (νc)P′[c/a]

Symmetric rules not shown.

140 L. Acciai and M. Boreale

Notation. We shall often refer to a silent move P
τ−→ P′ as a reduction. P

[a]−→ P′

means P
τ〈a,b〉−−−→ P′ for some free or bound name b. For a string s = a1 · · ·an ∈ N ∗,

P
[s]−→ P′ means P

[a1]−→ ·· · [an]−→ P′, while P
[c]
=⇒ P′ means P

τ−→
∗ [c]−→ τ−→

∗
P′. We use such

abbreviations as P
[c]
=⇒ to mean that there exists P′ such that P

[c]
=⇒ P′.

We can now introduce the responsiveness property we are after. Informally, we think of
a fair computation as a sequence of communications where for no name a a transition
[a]−→ is enabled infinitely often without ever taking place. Then a process uses a name

in a responsive way if that name is eventually, that is, in all fair computations, used as
subject of a communication. We then have the following definition. Below, we assume
that any bound name occurring in P and s is distinct from any free name in P.

Definition 2 (responsiveness). Let P be a process and c ∈ fn(P). We say that P guar-

antees responsiveness of c if whenever P
[s]−→ P′ (s ∈ N ∗) and c does not occur in s then

P′ [c]
=⇒.

3 The Type System �1

The type system consists of judgments of the form Γ ; Δ �1 P, where Γ and Δ are sets of
names.

Overview of the system. Informally, names in Γ are those used by P in input, while in
Δ are those used by P in output actions. There are several constraints on the usage of
these names by P. A name in Γ must occur immediately (at top level) in input subject
position, exactly once if it is responsive and replicated if it is ω-receptive. A responsive
name in Δ must occur in P exactly once either in subject or in object output position,
although not necessarily at top level, that is, occurrences in output actions underneath
prefixes are allowed. There are no constraints on the use in output actions of ω-receptive
names: they may be used an unbounded number of times, including zero. Linearity
(“exactly once” usage) on responsive names is useful to avoid dealing with “dangling”
responsive names, that might arise after a communication, like in (r responsive, object
parts ignored):

(νr)(r.0|r|r) τ−→ (νr)(0|0|r) .

If the process on the LHS above were declared well-typed, this transition would violate
the subject reduction property, as the process on the RHS above cannot be well-typed.

Linearity and receptiveness alone are not sufficient to guarantee a responsive usage
of names. As discussed in the Introduction, we have also to avoid deadlock situations
involving responsive names, like (2). This is simply achieved by building a graph of
dependencies among responsive names of P (defined in the sequel) and checking for
its acyclicity. We have also to avoid those situations described in the Introduction by
which a responsive name is indefinitely “ping-pong”-ed among a group of replicated
processes, like in (1). To this purpose, levels in types are introduced and the typing
rules stipulate that sending a responsive name to a replicated input of level k may only

Responsiveness in Process Calculi 141

trigger output of level less than k. This is similar to the use of levels in [5] to ensure
termination. In our case, we just avoid divergent computations that involve responsive
names infinitely often.

There is one more condition necessary for responsiveness, that is, the sets of input
and output names must be “balanced”, so as to ban situations like an output with no
input counterpart. This constraint, however, is most easily formulated “on top” of well-
typed-ness, and will be discussed later on.

Preliminary definitions. Formulation of the actual typing rules requires a few prelimi-
nary definitions. Structural equivalence is necessary in order to correctly formulate the
absence of cyclic waiting on responsive names. We define structural equivalence ≡ as
the least equivalence relation satisfying the axioms below and closed under restriction
and parallel composition. Let us point out a couple of differences from the standard no-
tion [12]. First, there is no rule for replication (!P ≡ P|!P), as its right-hand side would
not be well-typed. For a similar reason, in the rule (νa)0 ≡ 0 we require a : ⊥ or a : I.

(νa)(P|Q) ≡ (νa)P|Q if a /∈ fn(Q) (νa)(νb)P ≡ (νb)(νa)P P|Q ≡ Q|P

(P|Q)|R ≡ P|(Q|R) P ≡ Q if P =α Q (νa)0 ≡ 0 if a : ⊥ or a : I P|0 ≡ P

Let us call a process P prime if either P = a〈b〉, or P = a(x).P′ or P =!a(x).P′.
A process P is in normal form if P = (νd̃)(P1| · · · |Pn) (n ≥ 0), every Pi is prime and
d̃ ⊆ fn(P1, ...,Pn). Every process is easily seen to be structurally equivalent to a process
in normal form.

In the dependency graph, defined below, nodes are responsive names of typing con-
texts and there is an arc from a to b exactly when an output action that involves a
depends on an input action on b. Although the following definition does not mention
processes, one should think of the pairs (Γi,Δi) below as typing contexts – limited to
responsive names – for the Pi’s in P1| · · · |Pn.

Definition 3 (dependency graph). Let {(Γi,Δi) : i = 1, ...,n} be a set of context pairs.
The dependency graph DG(Γi,Δi)i=1,...,n is a graph (V,T) where: V =

�
i=1,...,n(Γi ∪Δi)

is the set of nodes and T =
�

i=1,...,n(Γi × Δi) is the set of arcs.

We will have more to say on both structural equivalence and dependency graphs in
Remark 1 at the end of the section. Like in [5], we will use a function os(P), defined
below, that collects all – either free or bound – names in P that occur as subject of an
active output action, that is, an output not underneath a replication (!).

os(0) = /0 os(!a(b).P) = /0 os((νa)P) = os(P)

os(a〈b〉) = {a} os(a(b).P) = os(P) os(P|Q) = os(P)∪os(Q)

Finally, some notation for contexts and types. For any name a, we set lev(a) = k if
a : T[u,k] for some T and u, otherwise lev(a) is undefined. Given a set of names V , define

V ρ �
= {x ∈ V | x is responsive } and V ω �

= {x ∈ V | x is ω-receptive }. For V and W sets

of names, we define V �W
�
= V \Wρ. If Δ∩Δ′ = /0, we abbreviate Δ∪Δ′ as Δ,Δ′ and if

a /∈ Δ, we abbreviate Δ ∪{a} as Δ,a; similarly for Γ.

142 L. Acciai and M. Boreale

The typing rules. The type system is displayed in Table 2. Recall that each sort has
an associated type. Linear usage of responsive names is ensured by rules (T-NIL) and
(T-OUT), by the disjointness conditions in (T-PAR) and by forbidding responsive names
to occur free underneath replication (T-REP). Absence of cyclic waiting involving re-
sponsive names is checked in (T-PAR). Finally, note the use of levels in rule (T-REP):
communication involving a replicated input subject a and a responsive object can only
trigger outputs of level less than lev(a). We say that a process P is well-typed if there
are Γ and Δ such that Γ;Δ �1 P holds.

Table 2. Typing rules of �1

(T-NIL) Γ = Δρ = /0
Γ;Δ �1 0 (T-OUT)

Γ = /0 a,b ∈ Δ a : TU b : T Δρ −{a,b} = /0
Γ;Δ �1 a〈b〉

(T-STR) P ≡ Q Γ;Δ �1 Q
Γ;Δ �1 P (T-INP) a : T[ρ,k] b : T a /∈ Δ /0;Δ,b �1 P

a;Δ �1 a(b).P

(T-RES-T) a : ⊥ Γ;Δ �1 P
Γ;Δ �1 (νa)P (T-RES) a : TU Γ,a;Δ,a �1 P

Γ;Δ �1 (νa)P

(T-RES-I) a : I Γ;Δ,a �1 P
Γ;Δ �1 (νa)P (T-REP)

a : T[ω,k] b : T Δρ = /0 /0 ;Δ,b �1 P

(b responsive implies ∀c ∈ os(P) : lev(c) < k)

a ;Δ �1!a(b).P

(T-PAR)

P = P1| · · · |Pn (n > 1) ∀i : Pi is prime and Γi ; Δi �1 Pi

∀i
= j : Γρ
i ∩Γρ

j = /0 and Δρ
i ∩Δρ

j = /0 DG(Γi
ρ,Δi

ρ)i=1,...,n is acyclic
�

i=1,...,n

Γi ;
�

i=1,...,n

Δi �1 P

Remark 1. (1) Avoiding deadlock on responsive names might be achieved by using levels
in rule (T-INP), in the same fashion as in rule (T-REP), rather than using graphs. In fact,
this would rule out cyclic waiting such as the one in (2) in the Introduction. We shall
pursue this approach in the system of Section 6, where there is no way of defining a
meaningful notion of dependency graph. However, in the present system this way of
dealing with cyclic waiting would be unnecessarily restrictive, in particular it would ban
as ill-typed the usual encoding of recursive functions into processes (see also Section 6).

(2) We note that, despite the presence of a rule for structural equivalence, the type
system may be viewed as essentially syntax driven, in the following sense. Given P in
normal form, P = (νd̃)(P1| · · · |Pn), and ignoring structural equalities that just rearrange
the d̃ or the Pi’s, there is at most one rule one can apply with P in the conclusion.

4 Subject Reduction and Responsiveness for System �1

Subject reduction states that well-typedness is preserved through reductions, and it is
our first step towards proving responsiveness.

Responsiveness in Process Calculi 143

Theorem 1 (subject reduction). Suppose Γ;Δ �1 P and P
[a]−→ P′. Then Γ � {a};Δ �

{a} �1 P′.

Our task is proving that any “balanced” well-typed process guarantees responsiveness
(Definition 2) for all responsive names it contains.

Definition 4 (balanced processes). A process P is (Γ;Δ)-balanced if Γ;Δ �1 P, Γρ = Δρ

and Δω ⊆ Γω. It is balanced if it is (Γ;Δ)-balanced for some Γ and Δ.

We need two main ingredients for the proof. The first one is given by the following
proposition, stating that if the dependency graph of a process P is acyclic, then P always
offers at least one output action involving a responsive name.

Proposition 1. Suppose that Γ;Δ �1 P, with Γ, Δ and P satisfying the conditions in the
premise of rule (T-PAR) and Γρ = Δρ. Then for some j ∈ {1, . . . ,n} we have Pj = a〈b〉
with either a or b responsive.

Next, we need a measure of processes that is decreased by reductions involving re-
sponsive names. We borrow from [5] the definition of weight of P, written wt(P): this
is defined as a vector 〈wk,wk−1, . . . ,w0〉, where k ≥ 0 is the highest level of names in
os(P), and wi is the number of occurrences in output subject position of names of level i
in P. A formal definition can be found in [5]. We denote by ≺ the lexicographic ordering
on vectors. This order is total and well-founded, that is, there are no infinite descending
chains of vectors.

Proposition 2. Suppose Γ;Δ �1 P and P
τ〈a,b〉−−−→ P′, with either a or b responsive. Then

wt(P′) ≺ wt(P).

We can now introduce the main result of the section. The proof relies on the well-
foundness of the ordering on vectors, on the fact that a reduction involving a responsive
name is always enabled (Proposition 1) and that such a reduction decreases the weight
of processes (Proposition 2).

Theorem 2 (responsiveness). Let P be (Γ;Δ)-balanced and r ∈ Δρ. Then P guarantees
responsiveness of r.

In [1], we also establish that |P|k+1 steps are always sufficient for a given responsive
name to be used as subject, where |P| represents the syntactic size of P and k is the
maximal level of names used in output in P.

5 Recursion on Well-Founded Data Values

The system presented in Section 3 bans as ill-typed processes implementing recursive
functions. As an example, consider the classical implementation of the factorial func-
tion, the process P below. For the purpose of illustration, we consider a polyadic version
of the calculus enriched with if . . .then . . .else, natural numbers, variables (x,y, ...)

144 L. Acciai and M. Boreale

and predicates/functions as expected. These extensions are straightforward to accom-
modate in the type system.

P
�
=! f (n,r).if n = 0 then r〈1〉 else (νr′)

(
f 〈n − 1,r′〉 |r′(m).r〈m∗ n〉

)
. (3)

It would be natural to see f as ω-receptive and r and r′ as responsive, but under these
assumptions P would not be well-typed: the recursive call f 〈n − 1,r′〉 violates the con-
straint on levels of output actions under replication (rule (T-REP).) Nevertheless, it is
natural to see an output f 〈n − 1,r′〉 triggered by a recursive call at f as “smaller” than
the output f 〈n,r〉 that has triggered it: at least, this is true if one takes into account
the ordering relation on natural numbers. This means that the “weight” of the process
decreases after each recursive call, and since natural numbers are well-founded, after
some reductions no further recursive call will be possible, and a communication on r
must take place. This idea from [5] is adapted here to our type system. For simplic-
ity, we only consider the domain of natural values Nat. However, the results may be
extended to any data type on which a well-founded ordering relation can be defined.
We define an ordering relation “<” between (possibly open) integer expressions and
variables as follows: e < x if for each evaluation ρ under which e is defined, eρ < ρ(x).
E.g., x − 1 < x. In the case of the monadic calculus, this relation is lifted to a “smaller
than” relation � between output and input actions as follows. Below, d,d′ denote either
names or (open) expressions.

Definition 5 (ordering on actions). We write c〈d〉 � a(d′) if either lev(c) < lev(a) or
lev(c) = lev(a) and d = e < x = d′.

The � relation is used in the typing rule below, that replaces rule (T-REP). We denote
by O(P) the set of all output actions of P that are active, that is, not underneath a
replication.

(T-REP’)

a : T[ω,k] b : T Δρ = /0 /0;Δ,b �1 P

(b : Nat or b responsive) implies ∀c〈d〉 ∈ O(P) : c〈d〉�a(b)

a;Δ �1!a(b).P

In the polyadic case, � compares first the subject and then the object parts of two
actions lexicographically (a different ordering is considered in [5].) As an example, it
is easy to see that the process P in (3) is well-typed if f : (Nat,Nat[ρ,0])[ω,1] and r,r′ :
Nat[ρ,0]. The proof of responsiveness remains the same, modulo a change in function
wt(·) that takes into account contribution to weight given by the object part of active
outputs. We omit the details of this definition.

Primitive Recursive Functions can be encoded into well-typed processes. The
scheme of the encoding is an easy generalization of that seen above in (3) for the facto-
rial function. More precisely, we have:

Proposition 3. For every n-ary primitive recursive function f there is a well-

typed process 〈 f 〉b such that: for each (v1, . . . ,vn) in Natn the process G
�
=

(νb)(〈 f 〉b|b〈v1, . . . ,vn,r〉 |r(x).0), with b ω-receptive and r : (Nat)[ρ,k] (k ≥ 0), is bal-

anced. Moreover, f (v1, . . . ,vn) = m if and only if G
τ−→

∗ r〈m〉−−→.

Responsiveness in Process Calculi 145

6 Nested Inputs, Multiple Outputs: The Type System �2

The type system presented in Section 3 puts rather severe limitations on nesting of
input actions and multiple use of names. These limitations stem from the “immediate
receptiveness” and linearity conditions imposed on responsive names. For instance, the
following encoding of internal choice r〈a〉⊕ r〈b〉, where r is responsive and a,b inert,
is not well-typed

(νc)(c〈a〉|c〈b〉 |c(x).r〈x〉) . (4)

Limitations are also built-in in process syntax, as for example replicated outputs, that
clearly violate linearity, are absent. These might be useful to encode situations like a
process receiving from r a value y and storing it into a variable a, where reading from a
means doing an input on a:

(νa)
(
r(x).!a〈x〉|a(y).P

)
. (5)

For another example, a process that receives two values in a fixed order from two return
channels, r1 and r2, and then outputs the max along s, may not be well-typed

r1(x1).r2(x2).if x1 ≥ x2 then s〈x1〉 else s〈x2〉 . (6)

We present below a new type system �2 that overcomes the limitations discussed
above. In fact, we will trade off flexibility for expressiveness in terms of encodable
functions, as only certain patterns of (tail-)recursion will be well-typed in system �2.

Overview of the system. We extend the syntax of processes by introducing replicated
output and the syntax of types by introducing a new responsive usage of names, ρ+,
as follows: P ::= · · · | !a〈b〉 and U ::= · · · | [ρ+,k]. A name a : T[ρ+,k] is called +-
responsive, as it is meant to be used at least once as subject of a communication. There-
fore now we consider three different usages: ρ (for names used once), ρ+ (for names
used at least once) and ω (for names used an undefined number of times.) We point
out that responsive names are not subsumed by +-responsive: in particular, as we shall
see, the conditions on the type of carried objects are more liberal for responsive names.
Operational semantics is enriched by adding the obvious rule for replicated output.

We give here an informal overview of the system. Judgements are of the form Γ;Δ �2

P where in Γ and Δ each +-responsive name a is annotated with a capability t, written at .
A capability t can be one of four kinds: n (null), s (simple), m (multiple), p (persistent).
Informally, capabilities have the following meaning (in the examples below, we ignore
object parts of some actions and assume b is a (+-)responsive name):

– an indicates that a cannot be used at all. This capability has been introduced to uni-
formly account for +-responsive names that disappear after being used as subjects.

– as indicates that a appears at least once, but never under a replication. Examples:
a.P, b.a.P, a and b.a.

– am indicates that a appears at least once, even under replication, but never as a
subject of a replicated action. Examples: a.P|a.Q, !b.a.P and !b.a.

– ap indicates that a only appears as a subject of a replicated action. Examples: !a.P,
!a, b.!a and !b.!a.

146 L. Acciai and M. Boreale

Note that a name a may be given distinct capabilities in input (Γ) and output (Δ). E.g.
one may have, again ignoring the object parts, Γ;Δ �2!a.P|a, where ap ∈ Γ and as ∈ Δ.
Next we illustrate and motivate the constraints on names usage realized by the typing
rules and by the balancing conditions discussed later on. There are essentially three of
them:

1. If am ∈ Γ then ap ∈ Δ. This is to avoid deadlocks arising from not having enough
output actions of subject a, like in (a and b +-responsive): a |a.b |a |b τ−→ a.b |b
 τ−→.
This situation is in fact avoided if a appears in replicated output subject, like in
a |a.b | !a |b.

2. If at ∈ Γ and a carries (+-)responsive names, then t = p. This is to avoid deadlocks
arising from having too many outputs of subject a that carry (+-)responsive names,
like in (a +-responsive, b and d (+-)responsive): a〈b〉|a〈d〉|a(x).x|b|d τ−→ τ−→ a〈d〉|d.

3. Names occurring under an (either simple or replicated) input must be of smaller
level than the input subject. The role of this condition is twofold, now. Under repli-
cated inputs, it avoids infinite delays, like in the first system. Under simple in-
puts, it serves to avoid cyclic waiting, like in (a,b (+-)responsive): a.b|b.a . This
was achieved by the use of dependency graphs in the first system. As announced
in Remark 1, however, there appear to be no meaningful extension of this no-
tion of graph in the present system. In particular, acyclicity of the graph might
not be preserved by reductions. E.g. consider the reduction on c of the process
b(x).a〈x〉|c(x).a(y).x〈y〉|c〈b〉.

There are other constraints, often met in applications, that have been introduced also
for technical convenience (essentially, to avoid divergences and deadlocks difficult to
control in the proof of responsiveness) and that shall not be discussed further:

(a) names with input capability s (simple) occur exactly once in input subject position;
(b) names with capability p (persistent) occur exactly once in subject position, either

in input or in output, but not in both; this also implies that persistent names cannot
be passed around. Moreover, free replicated inputs cannot be guarded.

Typing rules, subject reduction and responsiveness We first introduce some additional
notations. Contexts Γ and Δ are sets of annotated names of the form at , where t is a ca-
pability. Each name occurs at most once in a context. +-responsive names are annotated
with one of the four capabilities n, s, m or p, while non-+-responsive names are always
annotated with a default “−” capability; when convenient a− is abbreviated simply as
a. Union and intersection of two contexts, written Γ1 ∪Γ2 and Γ1 ∩Γ2, are defined only
if the contexts agree on capabilities of common names, that is whenever ati ∈ Γi for
i = 1,2 then t1 = t2. We write Γ1,Γ2 in place of Γ1 ∪ Γ2 if Γ1 ∩ Γ2 = /0; while Γ1,at

abbreviates Γ1,{at}. For any context Γ and capability t, we define Γt �
= {a|at ∈ Γ}.

The set of names Γρ+ �
= {a | a is +-responsive and at ∈ Γ for some t
= n } and Γρ, Γω

(defined similarly) will also be useful. The typing rules are presented in Table 3.
Subject reduction carries over to the new system, modulo a small notational change.

For Γ a typing context and V a set of names let us denote by Γ�+ V the typing context
obtained by removing from Γ each at such that a ∈ V . Let us denote by on(P) the set of
names occurring free in output position in P.

Responsiveness in Process Calculi 147

Table 3. Typing rules of �2

(T+-OUT) a : TU b : T Δρ = Δρ+
= /0 t ′
= n,p t
= n,p

/0;Δ,at ,bt ′ �2 a〈b〉

(T+-NIL) Δρ = Δρ+
= /0

/0;Δ �2 0 (T+-OUTP)

a : T[ρ+,k] b : T Δρ = Δρ+
= /0

b not (+-)responsive

/0;Δ,ap,b− �2!a〈b〉

(T+-INP)

a : T[u,k] with u
= ω b : T ∀c ∈ os(P)∪ in(P) : lev(c) < k

Γp = Γω = /0 a +-responsive implies b not (+-)responsive
Γ;Δ,bt ′ �2 P t
= n,p t ′
= n,p

Γ,at ;Δ �2 a(b).P

(T+-REP)

a : T[ω,k] b : T Δρ = Δρ+
= /0 /0;Δ,bt ′ �2 P t ′
= n,p

b (+-)responsive implies ∀c ∈ os(P) : lev(c) < k

a−;Δ �2!a(b).P

(T+-REPP)

a : T[ρ+,k] b : T Γ� = /0 for � ∈ {ρ,ω,s,p} Δ�′
= /0 for �′ ∈ {s,p,ρ}

Γ;Δ,bt �2 P t
= n,p ∀c ∈ os(P)∪ in(P) : lev(c) < k

Γ,ap;Δ �2!a(b).P

(T+-RES-⊥) a : ⊥ Γ;Δ �2 P
Γ;Δ �2 (νa)P (T+-RES) a : TU Γ,at ;Δ,at ′ �2 P

Γ;Δ �2 (νa)P

(T+-RES-I) a : I Γ;Δ,a− �2 P
Γ;Δ �2 (νa)P (T+-W-Γ) Γ;Δ �2 P

Γ,an;Δ �2 P
(T+-W-Δ) Γ;Δ �2 P

Γ;Δ,an �2 P

(T+-PAR)

Γ = Γ1 ∪Γ2 Δ = Δ1 ∪Δ2 Γi;Δi �2 Pi (i = 1,2)
Γ�

1 ∩Γ�
2 = /0 for � ∈ {ρ,s,p} Δ�′

1 ∩Δ�′
2 = /0 for �′ ∈ {ρ,p}

Γp ∩Δp = /0 Γm ∩ (Δs ∪Δm) = /0
Γ ;Δ �2 P1|P2

Theorem 3 (subject reduction for system �2). Γ;Δ �2 P and P
[a]−→ P′ imply Γ′;Δ′ �2

P′, with Γ′ = Γ�+ ({a} \ in(P′)) and Δ′ = Δ �+ ({a} \ on(P′)).

The balancing requirements are now more stringent. They include those for responsive
and ω-receptive names necessary in the first system (condition 1 below). Concerning
+-responsive names, “perfect balancing” between input and output is required only for
those names that carry (+-)responsive names (condition 2). Moreover, the same require-
ments apply also to restricted +-responsive names (condition 3).

Given a set of names V let us defineV † = {a ∈V |a : T and T is of the form (S[u,k])[u
′,h]

with u ∈ {ρ,ρ+} }. Define r+i (P) (resp. r+o (P)) as the set of restricted +-responsive
names in P occurring in an input (resp. output) action in P, even underneath a replica-
tion. We have the following definition and result.

148 L. Acciai and M. Boreale

Definition 6 (strongly balanced processes). A process P is (Γ;Δ)-strongly balanced
if Γ;Δ �2 P and the following conditions hold: (1) Γρ = Δρ and Δω ⊆ Γω; (2) Γρ+ ⊆ Δρ+

and (Δρ+
)

† ⊆ (Γρ+
)

†
; (3) r+i (P) ⊆ r+o (P) and (r+o (P))† ⊆ (r+i (P))†

.

The proof of the following theorem is non-trivial, as strong balancing is preserved
through reductions only up to certain transformations on processes.

Theorem 4 (responsiveness for system �2). Suppose P is (Γ;Δ)-strongly balanced
and r ∈ Δρ ∪Γρ+

. Then P guarantees responsiveness of r.

Examples. Let us now examine a few examples. In what follows, unless otherwise stated
we assume that x,y are of type inert, that a,b,c are +-responsive and that r,s are respon-
sive. Conditions on levels are ignored when obvious. Process (4) at the beginning of
the section is well-typed with c of capability multiple in output and simple in input; it is
strongly balanced if put in parallel with an appropriate context of the form r(x).P. Process
(5) is well-typed with a of capability persistent in output and simple in input (also, P must
be assumed strongly balanced, and not containing free persistent inputs or names of level
greater than a’s); it is strongly balanced if put in parallel with r〈x〉. Process (6) is well-
typed assuming r1 and r2 of capability simple in input and x1,x2 natural number variables
(the obvious extension of the system with conditionals and naturals is assumed); again,
it is strongly balanced if put in parallel with an appropriate context.

The next two examples involve non-linear usages of +-responsive names arising from
replication and reference passing. We mention these examples also because they will
help us to compare our system to existing type systems that enforce lock freedom,
a property related to responsiveness (see the concluding section). The first example
involves only replication, object parts play no role:

!a.b |a |b . (7)

The above process is strongly balanced under the assumption that a has capability per-
sistent in input and simple/multiple in output, and b has capability simple in input and
multiple in output; also, the level of b must be less than a’s. In the next example, an
agent sort of “looks up” a directory a to get the address of a service b, and then calls
this service:

!a(z).z〈b〉 |(νr)(a〈r〉 |r(w).w) |b . (8)

This process is strongly balanced under the assumption that: a is persistent in input and
simple or multiple in output; b is simple in input and multiple in output; also, the level
of b must be smaller than r′s and the level of r must be smaller than a’s (the variant
where b is replaced by !b is also strongly balanced; in this case b is persistent in input.)

The type system �2 can be extended to the polyadic version of the calculus with nat-
urals and variables exactly as seen in Section 5, i.e. by using the “�” relation over ac-
tions in rules (T+-INP), (T+-REP) and (T+-REPP). Now, consider the factorial function
in (3) and assume r,r′ are (+-)responsive. It is easily seen that (3) is not well-typed in the
present system: in fact, because of the recursive call at f , it cannot be lev(r) < lev(r′).
In general, the type system bans as ill-typed recursive calls of the form g(h(g(i), i)),
thus ruling out the usual encoding of primitive recursion. Certain forms of recursion,
like the tail-recursive version of factorial below, are however still well-typed

! f (x,a,r).if x = 0 then r〈a〉 else f 〈x − 1,a ∗ x,r〉 .

Responsiveness in Process Calculi 149

7 Conclusions and Related Works

Both systems are syntax driven, so that type checking should be straightforward and
efficient to implement. Extensions with type inference and subtyping deserve further
investigation, mainly due to the presence of levels.

Beside the works, already discussed, on receptiveness [13] and termination [5], there
are a few more works related to ours and that are discussed below.

Closely related to our system one are a series of papers by Berger, Honda and
Yoshida on linearity-based type systems. In [17], they introduce a type system that
guarantees termination and determinacy of pi-calculus processes, i.e. Strong Normal-
ization (SN). Our techniques of system one are actually close to theirs, as far as the
linearity conditions and cycle-detection graphs are concerned (see also the type system
in [15]). However SN is stronger than responsiveness, in particular SN implies respon-
siveness on all linear names under a balancing condition. In fact, the system in [17] is
stricter than our system one, e.g. it does not allow linear subjects to carry linear objects,
and bans ω-names, hence any form of nondeterminism and divergence, as these features
would obviously violate SN. Yoshida’s type system in [16], in turn a refinement of the
systems in [17] and [2], is meant to ensure a Linear Liveness property, meaning that
the considered process eventually prompts for a free output at a given channel. This
property is related to responsiveness, the difference being that Linear Liveness does
not imply synchronization, hence the corresponding input might not become available.
Two kinds of names are considered in [16]: linear (used exactly once) and affine (used at
most once). Linear subjects carrying linear objects are forbidden and internal mobility
is assumed – only restricted names can be passed around.

Closely related to our system two are a series of papers by Kobayashi and collabo-
rators. A type system for linearity in the pi-calculus was first introduced in [10]. This
system can be used to ensure that any linear name in a process occurs exactly once in
input and once in output; however, it cannot ensure that a linear name will be even-
tually used as a subject of a synchronization. Kobayashi’s type systems in [6,7] can
be used to guarantee that, under suitable fairness assumptions, certain actions are lock
free, i.e. are deemed to succeed in synchronization, if they become available ([8] is a
further refinement, but the resulting system cannot be used to enforce responsiveness.)
Channel types are defined in terms of usages: roughly, CCS-like expressions on the al-
phabet {I,O}, that define the order in which each channel must be used in input (I)
and in output (O). Each I/O action is annotated with an obligation level, related to
when the action must become available, and a capability level, related to when the ac-
tion must succeed in synchronization if it becomes available. A level can be a natural
number or infinity, the latter used to annotate actions that are not guaranteed to become
available/succeed in synchronization. This scheme is fairly general, allowing e.g. for
typing of shared-memory structures such as locks and semaphores, which are outside
the scope of our systems. Concerning responsiveness, on the other hand, it appears that
our +-responsive types cannot in general be encoded into lock-freedom types. More
precisely, one can exhibit processes well-typed in our system two and containing +-
responsive names that cannot be assigned a finite capability in Kobayashi’s systems.
For example, both the process (7) and the “service-lookup” (8) are well-typed (in fact,
strongly balanced) in our system two, under a typing context where b is +-responsive.

150 L. Acciai and M. Boreale

They are not in the systems of [6,7], under any type context that assigns to b a finite ca-
pability: the reason is that a finite-capability input on b is required to be balanced by an
instance of a finite-obligation output b, that cannot be statically determined in the given
processes (although, after the submission of the present paper, the TyPiCal tool [9] has
been modified to handle also processes of this form.) Another difference from [6,7] is
that these systems partly rely on a form of dynamic analysis which is performed on
types: the reliability condition on usages, which roughly plays the same role played in
our systems by balancing, is checked via a reduction to the reachability problem for
Petri Nets. As previously remarked, our systems are entirely static.

Acknowledgments. We wish to thank Davide Sangiorgi and Naoki Kobayashi for stim-
ulating discussions on the topics of the paper.

References

1. Acciai, L., Boreale, M.: Responsiveness in Process Calculi. Long version, available at
http://www.cmi.univ-mrs.fr/~lucia/PAPIERS/respFull.pdf

2. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.)
TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)

3. Boreale, M.: On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theoreti-
cal Computer Science 195(2), 205–226 (1998)

4. Cook, W.R., Misra, J.: Computation Orchestration: A Basis for Wide-Area Comput-
ing. Journal of Software and Systems Modeling (2006), http://www.cs.utexas.edu/
wcook/projects/orc/

5. Deng, Y., Sangiorgi, D.: Ensuring Termination by Typability. In: Proc. of IFIP TCS, pp.619–
632, 2004. Full version in Information and Computation, 204(7), 1045–1082 (2006)

6. Kobayashi, N.: A type system for lock-free processes. Information and Computation 177(2),
122–159 (2002)

7. Kobayashi, N.: Type-Based Information Flow Analysis for the Pi-Calculus. Acta Informar-
tica 42(4-5), 291–347 (2005)

8. Kobayashi, N.: A New Type System for deadlock-Free Processes. In: Baier, C., Hermanns,
H. (eds.) CONCUR 2006. LNCS, vol. 4137, Springer, Heidelberg (2006)

9. Kobayashi, N.: The verb TyPiCal tool, http://www.kb.ecei.tohoku.ac.jp/ koba/
typical/

10. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. ACM Transactions
on Programming Languages and Systems 21(5), 914–947 (1999)

11. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi (Full version in). Mathe-
matical Structures in Computer Science 14(5), 715–767 (2004)

12. Milner, R.: The polyadic π-calculus: a tutorial. Tec.Rep. LFCS report ECS-LFCS-91-180,
1991. Also in Logic and Algebra of Specification, Springer-Verlag, pp.203-246 (1993)

13. Sangiorgi, D.: The name discipline of uniform receptiveness. In: Proc. of ICALP, 1997. TCS,
221(1-2), 457-493 (1999)

14. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge Uni-
versity Press, Cambridge (2001)

15. Yoshida, N.: Graph Types for Monadic Mobile Processes. In: Chandru, V., Vinay, V. (eds.)
Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 1180,
pp. 371–386. Springer, Heidelberg (1996)

16. Yoshida, N.: Type-Based Liveness in the Presence of Nontermination and Nondeterminism.
MCS Technical Report, 2002-20, University of Leicester (2002)

17. Yoshida, N., Berger, M., Honda, K.: Strong Normalisation in the π-calculus. In: Proc. of
LICS, pp. 311–322. IEEE Computer Society Press, Los Alamitos (2001)

http://www.cmi.univ-mrs.fr/~lucia/PAPIERS/respFull.pdf
http://www.cs.utexas.edu/~wcook/projects/orc/
http://www.cs.utexas.edu/~wcook/projects/orc/
protect protect protect edef T1{T1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef T1/pcr/m/n/9 {T1/ptm/m/n/9 }T1/pcr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef T1/pcr/m/n/9 {T1/ptm/m/n/9 }T1/pcr/m/n/9 size@update enc@update http://www.kb.ecei.tohoku.ac.jp/~koba/typical/
protect protect protect edef T1{T1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef T1/pcr/m/n/9 {T1/ptm/m/n/9 }T1/pcr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef T1/pcr/m/n/9 {T1/ptm/m/n/9 }T1/pcr/m/n/9 size@update enc@update http://www.kb.ecei.tohoku.ac.jp/~koba/typical/

Normal Proofs in Intruder Theories

Vincent Bernat and Hubert Comon-Lundh

LSV, Ecole Normale Supérieure de Cachan
94235 Cachan cedex, France

{bernat,comon}@lsv.ens-cachan.fr

Abstract. Given an arbitrary intruder deduction capability, modeled
as an inference system S and a protocol, we show how to compute an
inference system �S such that the security problem for an unbounded
number of sessions is equivalent to the deducibility of some message in
�S. Then, assuming that S has some subformula property, we lift such a
property to �S, thanks to a proof normalisation theorem. In general, for an
unbounded number of sessions, this provides with a complete deduction
strategy. In case of a bounded number of sessions, our theorem implies
that the security problem is co-NP-complete. As an instance of our result
we get a decision algorithm for the theory of blind-signatures, which, to
our knowledge, was not known before.

1 Introduction

Cryptographic protocols aim at achieving some security goal, while relying on a
public network. Several such protocols have been designed and used in various
applications. Many of them appeared to be flawed, not because of the weakness
of cryptographic primitives, but simply because of the logical structure of the
protocol (see the protocols repository [20] for examples). That is why several
teams started to work on the formal verification of security protocols.

Though there are not so many different protocol designs, if one wants, say, to
set a shared secret between two agents using a public key infrastructure, there
are many small variants, which depend on the application domain. For instance,
if a server has to manage thousands of users, it is mandatory to reduce both
the time and space resources on its side and let the client do the job. Also,
the companies (e.g. telecommunication companies) not only want to reduce the
cost, but also to get robust protocols: if a key is compromised, this should not
compromise the whole infrastructure. If possible, be resistant to guessing attacks
on weak passwords... That is the reason why we need to automate the protocol
verification: we can check many small variants of a same protocol.

Formally, what we need to achieve depends on several inputs: the protocol
itself, but also what are the intruder capabilities, what are the known properties
of cryptographic primitives and which property we want to prove. In the present
paper, we only consider reachability properties: is some message deducible by
the intruder after message exchanges that follow the protocol rules ?

Fixing an a priori bound on the number of messages which are sent through
the network, several decision procedures have been designed, depending on the

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 151–166, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 V. Bernat and H. Comon-Lundh

intruder capabilities and the algebraic properties. Let us cite our main source:
in [18] the authors prove that the security problem is co-NP complete for the
so-called “Dolev-Yao” intruder, assuming no equational property (the message
algebra is free). The proof in this paper relies on two properties: first the in-
truder deduction rules are local (according to [17]), meaning some sub-formula
property: to prove s from hypotheses T , we only need intermediate formulas in
the subterms of s, T 1. The other ingredient is similar: if there is an attack, there
is one which binds variables to subterms of messages already sent at this point.

We aim at viewing these two ingredients as a single subformula property. In
other words, we want to design a proof system and a normalisation theorem such
that all formulas occurring in the proof are subterms of the protocol rules, the
hypotheses and the conclusion, and variable substitutions are also bound in a
similar way. In addition, we would like to abstract from the particular intruder
capabilities, relying only on the good properties of the inference systems which
allow to derive the normalisation theorem.

To achieve these goals, we show first in section 3 that, given any inference
system S describing intruder capabilities, an equational theory E and a protocol
P , we can compute a proof system Ŝ, such that the protocol P is insecure if and
only if some term is deducible in Ŝ. For further strategies design, formulas Ŝ will
be constrained by equations representing possible bindings of the free variables.

Then, our main result in section 4 is a proof normalisation result, which
assumes additional hypotheses on the intruder capabilities and no equational
properties. Normal proofs only involve terms that can be computed from the
hypotheses, the conclusion and (instances of) the protocol rules. This result
does not assume that the number of sessions is bounded. Hence we can use it
as a proof search strategy. Moreover, if we fix the number of sessions, our main
theorem shows that protocol security is then decidable, and co-NP-complete for
intruder deduction systems that are in PTIME. As an example of application,
we show in section 4.4 that, for the deduction system corresponding to blind
signatures, the security problem is co-NP-complete. Security of protocols with
blind signatures were also studied in [10], for an unbounded number of sessions,
as an application of more general completeness results. In [10] the protocols are
however approximated using a clausal formalism.

We also show in section 4.1 that our additional hypotheses on S are necessary:
dropping them yields undecidability, even for a fixed number of sessions. We also
briefly compare in section 5 our result, when restricted to a bounded number of
sessions to [21] and the so-called “oracle rules” (see also [3] for oracle rules in
presence of exclusive or).

Our ultimate hope is to generalize the proof normalisation result to associative
and commutative symbols. This would be a major step, since it is shown in
[7] that many relevant equational theories can be reduced to associativy and
commutativity. The price to pay is a modification of the inference system S
(and the protocol P). However, this transformation preserves the locality of S.
And that is what we need in our theorem.

1 A similar property was observed in [5] in the particular case of atomic keys.

Normal Proofs in Intruder Theories 153

2 Models of Security Protocols

We recall here a possible model of security protocols, which we use for proving
the adequacy of our proof system in the next section. This model is close to
many existing ones (e.g. [11,2,13]).

2.1 Messages

Messages are terms of an algebra, generated by a finite set of function symbols
F . Typically, F contains (a)symetric encryption (a binary symbol used in infix
notation: { }), pairing (a binary symbol used in infix notation < , >) and
constants. It may also contain symbols for public keys, decryption functions,
exclusive or, etc... If X is a set of (first-order) variable symbols, T (F , X) is
the set of terms built over F and X . T (F) is an abbreviation for T (F , ∅). A
substitution σ is a mapping from a finite subset of X , called its domain, into
T (F , X). As usual, such mappings are confused with their (unique) extension
as an endomorphism of T (F , X). Substitutions are used in postfix notation. If
σ, τ are substitutions, which coincide on Dom(σ) ∩ Dom(τ), then σ � θ is the
substitution whose domain is Dom(σ)∪Dom(θ) and coincides respectively with
σ and θ on their domains. Terms can also be seen as trees, i.e. mappings t from
a finite prefix-closed domain Dom(t) to F (or F ∪ X). If p ∈ Dom(t), t|p is the
subterm of t at position p, t[u]p is the term obtained by replacing t|p with u in
t. The depth of t is the maximal length of a position in Dom(t). Finally, for any
expression e, V ar(e) is the set of variables occurring in e.

In addition, we consider an equational theory E defined by a finite set of
equations over the alphabet F and variables. Some typical examples are studied
in [8,3,19,4]. We assume that E is given by a convergent rewrite system, possi-
bly modulo the axioms of associativity and commutativity, in which case it is
supposed to be coherent as well (see e.g. [12] for definitions concerning rewrite
systems). This is the case in all relevant examples. For any message m ∈ T (F , X),
m ↓ will denote the (unique up to associativity communativity) normal form of
m. Substitutions are assumed to be normalized: the image of every variable is a
term in normal form. We let Σ be the set of normalized substitutions.

2.2 Protocols

Protocols consist in a finite set of roles R1, . . . Rm, each of which consists in

– agent generations of the form λa: these agent names are the parameters of
the role. For each role there is a distinguished agent name: the main actor.

– nonce generations of the form νN
– a finite sequence of rules ui ⇒ vi, where ui, vi are either empty or a term in

normal form in the algebra T (F , X).

Example 1. Consider the following protocol (inspired by Denning and Sacco):

A → B : < A, {{Kab}priv(A)}pub(B) >
B → A : {sb}Kab

154 V. Bernat and H. Comon-Lundh

The agent playing the role A sends a new key, signed by her private key and
encrypted with the public key of an agent playing the role B. Then he replies,
sending a confidential text sb encrypted with the newly generated key. (We
overload symmetric and asymmetric encryption). This may be compiled into
two roles:

A role:
{

λa, λb, νKab. ⇒ < a, {{Kab}priv(a)}pub(b) >
{x}Kab

⇒
A generates a key Kab, sends a message (no premisse) and receives a message
(without reply): u1, v2 are empty.

B role:
{

λb, νsb. < y, {{z}priv(y)}pub(b) > ⇒ {sb}z

For this protocol, the equational theory E is defined by the two rewrite rules:

{{x}pub(y)}priv(y) → x {{x}priv(y)}pub(y) → x

which express that decryption of a message encrypted with a key is the same as
encryption of the message with the inverse key.

The λ, ν statements for parameters and nonces can be removed in the case
of a finite number of sessions, duplicating and instantiating the roles as many
times as necessary.

We assume that, in any protocol rule ui ⇒ vi, the variables of vi are contained
in the parameters, the nonces, and the variables of uj , j ≤ i. In other words, the
action of sending vi is determined by the actual values of the parameters and
the messages which have been received so far.

2.3 Offline Intruder Theories

We consider sequents T � u where u ∈ T (F , X) and T ⊆ T (F , X) is finite. The
intended meaning is “from a knowledge T , it is possible to deduce u”.

The offline intruder theory S is defined by a (recursive) set of inference rules

T � u1 · · · T � un
If C

T � u

where C is a recursive predicate on instances of u1, . . . , un, u, which is invariant
by E . S contains for instance the composition rules:

T � u1 · · · T � un

T � f(u1, . . . , un) ↓

for a subset C of F . This states the ability of an intruder to apply f to known
terms. There is no side condition here. We also consider the axiom T, u � u as a
composition rule. Examples of composition rules are (E), (S), (B) in figure 1.

We write T �S u when T � u is derivable in S. We will assume in the following
that the deduction system S has some kind of subformula property. For any set
of terms T let St(T) be the set of strict subterms of terms in T (for instance
St({f(g(a), b), g(a), f(b, g(c))}) = {a, b, c, g(a), g(c)}), then:

Normal Proofs in Intruder Theories 155

Definition 1. Let F be a computable mapping from sets of terms to sets of terms
such that for every set of terms T , T ∪St(T) ⊆ F (T) and F (F (T)) ⊆ F (T). We
say that the inference system S is F -local, if, for every proof T �S s,
– Either the last inference rule is a composition and there is a proof in which

all nodes belong to F (T ∪ {s})
– Or all nodes of the proof belong to F (T)

Example 2. The Dolev-Yao intruder theory is F -local, F (T) being the set of
subterms of terms in T . We will later consider another example: the blind sig-
natures. They are used in electronic vote protocols such as [14]and have been
formalised in [16]. Following [16] and using a result of [7], the intruder deduction
capabilities can be described by the inference rules of figure 1. Let F be the

T � m T � r
(E)

T � {m}r

T � sign(m, sk) T � pub(sk)
(V)

T � m

T � m T � r
(B)

T � blind(m, r)

T � {m}r T � r
(D)

T � m

T � blind(m,k) T � k
(UB1)

T � m

T � m T � sk
(S)

T � sign(m,sk)

T � sign(blind(m, r), sk) T � r
(UB2)

T � sign(m, sk)

Fig. 1. Intruder deduction rules for blind signatures

function, mapping a set of terms T to the least set S containing T , such that
∀t ∈ S, St(t) ⊆ S and

1. If sign(m, sk) ∈ S then pub(sk) ∈ S
2. If sign(blind(m, r), sk) ∈ S then sign(m, sk) ∈ S

F (T) is finite and polynomially computable, F (F (T)) ⊆ F (T) and the inference
system of figure 1 is F -local.

2.4 Transition Systems

We shortly describe a standard semantics of security protocols, which is com-
patible with, e.g., [2,9,6]. We assume that A is a (infinite) set of agent names,
some of which are honest and others are dishonest (or compromised). Nonces
are modeled as terms N1(s), . . . , Nk(s) where s ∈ N is a session number.

A state q consists in a set Iq of terms (the intruder knowledge) and, for each
agent name a, a local state. A local state is a partial mapping Mq,a from non-
negative integers (session numbers) to tuples containing at least a role, a step
number and a list of bindings (for roles or protocol variables). The initial state
q0 consists in a set I0 of terms representing the initial intruder knowledge. The
mapping Mq0,a is empty for all a.

156 V. Bernat and H. Comon-Lundh

There is a transition from state q to a state q′ if q and q′ only differ in their
intruder knowledge component and in the local state of an agent a and there is
a role R such that one of the following holds:

session opening: let u ⇒ v be the first rule of R, σ be a binding of the session
parameters such that the main actor is bound to a. Either u must be empty
or Iq �S uθ ↓ for some θ such that xσ = xθ for variables on which they
are both defined. Then the local state of a is changed by adding an integer
s, which does not occur in any (sub)term of q, to the domain of Mq,a and
letting Mq′,a(s) be (R, 1, σ � θ).
The intruder knowledge is increased by adding vθ ↓ and, if a is dishon-
est, also adding N1(s), . . ., Nk(s): Iq′ = Iq ∪ {vθ ↓} or Iq′ = Iq ∪ {vθ ↓
, N1(s), . . . , Nk(s)}.

session progression: Let u ⇒ v be the rule k of R , Mq,a(s) = (R, k − 1, σ).
There must be a substitution θ such that Iq �S uθ ↓ and xσ = xθ for
variables on which they are both defined. Then Mq′,a(s) = (R, k, σ �θ). The
intruder knowledge is increased by adding vθ ↓: Iq′ = Iq ∪ {vθ ↓}.

We assume that the variables are renamed in such a way that two distinct role
instances do not share variables. Then, for every state q, there is a unique sub-
stitution σq such that, for every a, s and every variable x, if Mq,a(s) = (R, k, θ)
and x is in the domain of θ, then xθ = xσq .

For any session number s, the role Rs and the parameters a1
s, . . . , a

m
s are

entirely determined by s, by uniqueness of session numbers.

Definition 2. There is an attack on the secrecy of some term t ∈ T (F , X) if
there is a substitution σ and a reachable state q such that Iq �S tσ ↓ and all ses-
sion variables occurring in t are substituted with integers s such that a1

s, . . . , a
m
s

are honest identities.

Example 3. We continue example 1: Assume there are two honest agents a1, a2
The initial knowledge of the intruder consists of the names a1, a2 and their public
keys pub(a1), pub(a2). The initial state q0 is defined by this knowledge I0.

Consider an instance of the B-role, in which b is bound to a1. There is a
transition step from q0 to the state q1 such that Mq1,a1(1) = (B, 1, θ), with
θ = {b �→ a1; y �→ a1; z �→ a2} since

I0 �S< a1, a2 >=< yθ, {{zθ}priv(yθ)}pub(yθ) >↓

Iq1 = Iq0 ∪ {{sb}a2} and sb is deducible in this state: the protocol is insecure.

3 Online Deductions

Now, our goal is to enrich the intruder theory, so as to capture online deduction,
i.e. deductions which use the protocol as an oracle. Moreover, as explained in the
introduction, we want to keep the attack (substitution) apart from the deduction
itself and that is why we use constrained sequents. The syntax of such formulas

Normal Proofs in Intruder Theories 157

is T � u[[E]]E where u is a term containing possibly variables, T is a finite set of
ground terms, E is a conjunction of equations and E is a finite set of equations.
The idea is to lift the offline intruder deduction rules to terms with variables,
recording in E the variable bindings, introduced by some inference rule.

Equations in the constraint part are interpreted modulo E : σ is a E-solution
of E if, for every equation u = v ∈ E, E |= uσ = vσ, which we also write
σ |=E u = v. More generally, given two formulas φ1, φ2, we write φ1 |=E φ2
instead of E , φ1 |= φ2 (the usual logical consequence of first-order logic) and
φ1|=|Eφ2 if φ1 |=E φ2 and φ2 |=E φ1. We omit the subscript E when it is irrelevant.

Finally, we also record in the constraints the control points of the various
instances of the roles; we use variables xR,k,s ranging over {0, 1} and which,
when raised, mean that the session s of role R reached stage k.

Given an inference system S, we compute an inference system Ŝ, which acts
on constrained sequents and extends S with the use of protocol rules as oracles.
First, every rule of S:

T � u1 . . . T � uk
If C

T � u

is replaced with the rule

T � u′
1[[E1]] . . . T � u′

k[[Ek]]
If C ∧ R

T � u ↓[[E1 ∧ . . . ∧ Ek]]

u′
1, . . . , u

′
k are the result of linearizing u1, . . . , uk. R is the set co-references:

∀i.u′
iσR = ui. As an example:

T � {x}y T � y

T � x
becomes

T � {x}y[[E1]] T � y′[[E2]]
If y = y′

T � x ↓[[E1 ∧ E2]]

In addition to the extensions of rules of S, we add the following inference rules:

Instantiation Rule:

T � u[[E]]
If σ |=E E and Xc ∩ V ar(σ) ⊆ V ar(E)

T � uσ ↓[[σ]]

σ is meant to be any solution of E: this reflects the semantics of the constraints.
Moreover, σ should not bind any control variable, which was unbounded before.

Weakening Rule:
T � u1[[E1]] T � u2[[E2]]

W
T � u1 ↓[[E1 ∧ E2]]

Such a rule is useful when deducing u2 is irrelevant: only deducing some term
with constraint E2 is used later in the proof. This happens when the intruder
needs to use the second rule of a role, but not the first one. Then he must be

158 V. Bernat and H. Comon-Lundh

able to force the agents to play the first rule, regardless to the result, moving on
the control point to the second rule.

The protocol rule for session progression

T � u[[E]]
P

T � w ↓[[u = v ∧ E ∧ xR,k,s = 1]]
If

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1. v ⇒ w is the rule k > 1 of
role R, session s

2. E �|=E xR,k,s = 1 and E |=E
xR,k−1,s = 1

The rule expresses that, whenever some (instance of) v has been deduced and
the protocol as reached stage k − 1 of session s of role R, then the intruder may
use the kth rule of R as an oracle: he gets the corresponding instance w and the
control point moves to k for that session. In addition, we impose u = v in the
constraint, meaning that the corresponding instance of u matches (modulo E)
the left side of the protocol rule.

Note that the rules of R are assumed to be renamed in such a way that the
variables have different names in different sessions.

There is a similar rule for session opening: the only difference is that we do
not require having reached the stage k − 1 of session s, but we require s to be a
new session number instead. Moreover, parameters of the new sessions are bound
and their values are recorded in the constraint for further compatibility check.

Compromised agents

T � u[[E]]

T � Ni(s)[[E]]
If

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1. E |=E xR,1,s = 1
2. The main actor of session s is compromised
3. Ni(s) is one of the nonces generated in session

s.

This expresses that all data generated by compromised (or dishonest) agents are
available to the intruder. We only require that the session s has been opened.
With such a rule, we do not need to give the intruder the ability to generate new
data, as soon as there is at least one compromised agent.

Example 4. We continue example 3, restating the attack as a deduction in Ŝ.

a1, a2 � a2[[]] a1, a2 � a2[[]]

a1, a2 �< a2, a2 >[[]]
P

a1, a2 � {sb(1)}z[[y = a2 ∧ z = a2 ∧ b = a1 ∧ xB,1,1 = 1]]
I

a1, a2 � {sb(1)}a2 [[y = a2 ∧ z = a2 ∧ b = a1 ∧ xB,1,1 = 1]] a1, a2 � a2[[]]

a1, a2 � sb(1)[[y = a2 ∧ z = a2 ∧ b = a1 ∧ xB,1,1 = 1]]

Normal Proofs in Intruder Theories 159

The next lemmas show that our inference rules are adequate with the transition
system: the model in which we view the protocol rules as oracles can safely be
used in place of the transition system.

Lemma 1 (Completeness of Ŝ). For any reachable state q and any term t,
if Iq �S t, then we can build a proof Π in Ŝ of I0 � t ↓[[E]] such that σq |=E E.

Conversely, the proof system Ŝ is correct w.r.t. the trace semantics:

Lemma 2 (Correctness of Ŝ). Let Π be a proof of I0 � t[[E]] . Then, for every
substitution σ such that σ |=E E, there is a reachable state q such that Iq �S tσ ↓.

Therefore, we claim that the existence of an attack can be restated in this setting:

Theorem 1. There is an attack on the secrecy of s iff there is a proof of some
T � s′[[E]] such that s =E s′σ ↓ and σ |=E E.

4 A Normal Proof Result

From now on, we assume that E is empty. We also assume that T (in the left of
sequents) always contains a constant 0 as well as terms f(0, . . . , 0) for (public)
constructor symbols f ∈ C. Moreover, we need some hypotheses on the inference
system S, beyond F -locality, as shown by lemma 3.

4.1 Additional Hypotheses on the Offline Deduction System

We assume that decomposition rules (i.e. those which are not composition rules):

(D)

t1 . . . tn

t
if C

are such that each ti is at most of depth 2 and for each ti whose depth is 2, one
of the following holds:

1. t is a subterm of ti and t is a variable or a term of depth 1.
2. ti = C[f(u1, . . . , um)] and t = C[ui], where C is any context and f ∈ C.

Moreover f cannot occur at depth 1 in another decomposition rule.

And the side condition C is a conjunction of equations between variables such
that, if x = y ∈ C and x occurs at depth 2 and y occurs at depth at least one,
then x occurs below a unary symbol and y occurs below a unary symbol.

Example 5. The decomposition rules of the blind signature theory satisfy these
conditions, as well as classical Dolev-Yao rules or deduction rules for Cipher
Block Chaining, for instance.

The conditions on C might be not necessary for our main result, but the other
conditions are necessary as shown by the following lemma, obtained by reduction
of the Post Correspondance Problem:

160 V. Bernat and H. Comon-Lundh

Lemma 3. There is a local intruder inference system (decidable in PTIME)
such that every decomposition rule has a single hypothesis of depth 2 and a
conclusion of depth 1 and such that the insecurity problem for one session of a
protocol containing one rule is undecidable.

4.2 Modifying the Instanciation Rule

Since constraints are now interpreted in the free algebra, following standard
concepts in unification theory, we can keep a satisfiable constraint in solved
form, i.e. a conjunction of equations x1 = t1 ∧ . . . ∧ xn = tn where x1, . . . , xn

are distinct variables and xi /∈ V ar(ti, . . . , tn). Such a solved form defines an
occurrence ordering ≥occ by xi ≥occ y for every y ∈ V ar(ti). E also defines a
congruence =E on the set of terms: the least congruence containing E.

Our instanciation rule is currently too coarse. We want to use it more carefully,
and keep the terms as small as possible. That is why we replace it with:

T � u[x]p[[E ∧ x = t]]
(I)

T � u[t]p[[E ∧ x = t]]

in other words, we only replace one occurrence of one variable with its current
binding in the equality constraint, which is assumed to be in solved form. The
original instanciation rule can be simulated iterating the new one.

4.3 The Normal Proof Theorem

We want to show that, if there is a proof of T � s[[E]] , then there is a proof,
which only uses particular sequents, which depend on the protocol rules P , T
and s, E. In order to state the result, we need the notion of admissible sequent.
Intuitively, the substitution defined by the final constraint E should be a stack
of elementary assignments, each of which to a subterm of a term in T, s, P .

Definition 3. For any set of terms S and constraints E, G in solved form, a
sequent T � s[[G]] is S, E-admissible iff

1. for all x = t ∈ G, if x is maximal (w.r.t. ≥occ), then T � t[[G \ {x = t}]] is
S, E-admissible

2. s ∈ S or else there is a t such that s =E t and t ∈ S.

Example 6. Assume S = {{x1}k1 , k2, x3}, E = [[x1 = {x2}k2]] The following
sequents are S, E-admissible:

T � {{x2}k2}k1[[]] , T � x3[[x3 = {{x2}k2}k1 ∧ x2 = k2]]

while the following are not S, G-admissible:

T � {x3}k2[[]] , T � x3[[x3 = {x2}k2 ∧ x2 = {x1}k2]]

If Π is a proof in Ŝ we write V (Π) the union, for all roles R and all sessions s
of R opened in Π of

Normal Proofs in Intruder Theories 161

1. The control variables xR,i,s (i smaller than the number of rules in R)
2. The nonces Ni(s) generated in this instance of role R
3. The parameter bindings for session s
4. The terms {ui, vi} for every (renamed) protocol rule ui ⇒ vi in R

Using for instance results in [6], the parameter bindings can actually be re-
stricted to a finite fixed set, hence the size of each V (Π) is O(|R|).

Theorem 2. Assume the hypotheses of the previous section on S, in particular
its F -locality. Assume that there is a proof Π of T � s[[E]] in Ŝ, with a satisfiable
E then there is a proof Π ′ of a sequent T � s′[[E′]] in Ŝ such that:
1. sσE = s′σE′

2. T � s′[[E′]] is F (V (Π) ∪ T ∪ {sσE}), ∅-admissible
3. every sequent T � t[[E′′]] in Π ′ is F (V (Π) ∪ T ∪ {s}), E′-admissible

The full proof of this theorem can be found in [1] (in French). We will try now
to sketch it and convince the reader that it works.

The first step consists in performing several proof rewritings, such as:

Lemma 4. If there is a proof Π of T � s[[E]] , then there is a proof of the same
sequent in which no weakening precedes an S-rule.

Slighty more complex is the control of instanciations, whose delay is necessary
if we want to keep the sequents small:

Lemma 5. If there is a proof Π of T � s[[E]] and E is satisfiable, then there
is a proof Π ′ of T � s′[[E]] such that sσE = s′σE and any application of an
instanciation rule in Π ′ replaces occurrences of variables at depth at most one.
Moreover, this instanciation must be followed by a decomposition rule which
would not be applicable before.

To prove this, we simply swicth instanciations with other rules when it is possible
and rely on the hypotheses on the depth of the premisses of decomposition rules.

We may also rely on F -locality for the normalization of pure S-parts of the
proof. Then, it is not easy to perform further proof transformations: we would
need contextual rewriting rules; it may be the case that a proof Π satisfies the
conditions of the theorem, while some of its subproofs do not. Also, conversely,
every subproof of Π may satisfy the theorem while Π does not. Let us show an
example of the first case, which illustrates the need of contextual rewriting (or
more complicated inductive hypotheses).

Example 7. Consider a toy deduction system S, with the deduction rules
x

a(x)
,

x

f(x)
,

b0(x)

c1
,

bn(0)

c2
and

x y

< x, y >
. And protocol rules r0 : f(x0) → b0(x0) and,

for every i ≤ n − 1, ri+1 : bi(a(xi+1)) → bi+1(xi+1). The proof of < c1, c2 > is
displayed in figure 2 (we omit control variables for simplicity) The proof satisfies
the hypotheses of the theorem: a(xi) is a subterm of some protocol rule, hence

162 V. Bernat and H. Comon-Lundh

0 � 0[[]]

0 � a(0)[[]]

...

0 � an(0)[[]]

0 � f(an(0))[[]]
r0

0 � b0(x0)[[x0 = an(0)]]

0 � c1[[x0 = an(0)]]

0 � 0[[]]

0 � a(0)[[]]

...

0 � an(0)[[]]

0 � f(an(0))[[]]
r0

0 � b0(x0)[[x0 = an(0)]]
r1

0 � b1(x1)[[x0 = a(x1) ∧ x1 = an−1(0)]]

...
rn−1

0 � bn−1(xn−1)[[x0 = a(x1) ∧ · · · ∧ xn−1 = a(0)]]
rn

0 � bn(xn)[[x0 = a(x1) ∧ · · · ∧ xn−1 = a(xn) ∧ xn = 0]]
I

0 � bn(0)[[x0 = a(x1) ∧ · · · ∧ xn−1 = a(xn) ∧ xn = 0]]

0 � c2[[x0 = a(x1) ∧ · · · ∧ xn−1 = a(xn) ∧ xn = 0]]

0 �< c1, c2 >[[x0 = a(x1) ∧ · · · ∧ xn−1 = a(xn) ∧ xn = 0]]

Fig. 2. An example of a proof

the final constraint is admissible. Other constraints, such as x0 = an(0) are also
E-admissible since an(0) =E a(x1) for instance.

However, the left part of the proof does not satisfy the theorem as, in this
subproof, an(0) is not admissible if n ≥ 1. And, indeed, there is a much simpler
proof, with x0 = 0, while there is no simpler proof of the right branch. We must
bind x0 to an(0) for compatibility between the two branches. This shows that
the simplification of the left part proof depends on contextual informations.

The idea is to keep in a box the terms which are superflously large (such as
an(0) in the example) and open the box only when necessary (at the last step
in the above example). If a box is not opened, then it can be replaced by an
arbitrary term, which can be deduced by the intruder. Now, the invariant in our
proof transformations is that an expression �t can be replaced by an arbitrary
deducible term in the current proof, but we remember that t is also deducible at
this stage. Let us now skecth how these boxes are introduced and opened. The
core of the result is that we only need to replace �C[t] with C[�t] when C is a
piece of a protocol rule.

Assume the last rule of the proof is a protocol rule (we omit the control points
here) and that (by an induction hypothesis) there is a proof of T � u[[E]] which
has the desired properties:

Normal Proofs in Intruder Theories 163

Π

T � u[[E]]

T � w[[E ∧ u = v ∧ . . .]]

if v ⇒ w is a protocol rule. Let also E1 be a solved form of E ∧ u = v. Now,
by definition w ∈ F (V (Π) ∪ T), but there might be a variable x of v such that
x = t ∈ E1 and t is not in F (V (Π) ∪ T). We have then to transform the proof.

Let t = f(t1, . . . , tn). By properties of the classical matching algorithm,t is
a subterm of u. Moreover, t /∈ F (V (Π) ∪ T) implies that any inference rule
in Π yielding a superterm of t is a construction rule. By a simple induction,

there must be in Π a rule
T � t1[[C1]] · · · T � tn[[Cn]]

T � f(t1, . . . , tn)[[C1 ∧ . . . ∧ Cn]]
. Now, we can re-

place t1, . . . , tn with arbitrary terms, which are deducible by the intruder: the
proof will still be valid. Le �ti be such a replacement. We now have a proof of
T � w[[x = f(�t1 , . . . , �tn) ∧ ...]] , which satisfies the requirements.
Now, if, later in the proof, we use an instantiation of x, our tranformation yields

Π1

T � C[x]p[[x = f(�t1 , . . . , �tn) ∧ . . .]]
I

T � C[f(�t1 , . . . , �tn)]p[[x = f(�t1 , . . . , �tn) ∧ . . .]] T � u1[[D1]] · · · T � un[[Dn]]

T � u[[D]]

which might no longer be a proof in Ŝ.
By lemma 5, the last rule must be a decomposition rule and, thanks to our

hypotheses on S, p has a length 0 or 1. u cannot be �ti or f(�t1 , . . . , �tn),
otherwise we would have a much simpler proof of the same sequent using a
subproof of Π1 yielding u, and weakenings. Similarly, p must be of length 1,
otherwise we have a shorter proof. According to our conditions on S, we are in
one of the following cases:

1. u = �ti

2. u is a subterm of ui at depth 1
3. u is a subterm of C[f(�t1 , . . . , �tn)]p at depth 1
4. u = C[�ti]p and f cannot occur at depth 1 in another decomposition rule

The first case has already been ruled out. In the second case we still get a proof
in Ŝ. In the third case, either the position of u is p and we have seen already
that there is a simpler proof, or else we get a proof in Ŝ. In the last case, the idea
is to apply a proof transformation in the original proof, replacing f(t1, . . . , tn)
with ti. We then get again a shorter proof.

The last problem, which we do not want to address here, are the side con-
ditions in the decomposition rules: it might be the case that the box-replacement
sketched above yields a failure of an equality test in the side conditions.

164 V. Bernat and H. Comon-Lundh

Then we have to perform transformations on other branches of the proofs, and
we will use the additional hypotheses on side conditions.

4.4 Consequences of the Normalisation Theorem

Corollary 1. If the number of sessions is fixed and if F can be computed in
PTIME, then the insecurity problem is in NP.

Indeed, in this case, P = V (Π) is fixed and E is empty. We can first guess s′, E′;
E′ must bind each variable to a term in F (P ∪T ∪{s}). Then note that there are
only a polynomial number of admissible sequents, up to E′: at the possible price
of initial weakenings, all constraints are identical to E′, except for their control
part. Then any sequent T � t[[E′′]] in the normal proof is such that t = uθ with
u ∈ F (P, T, s) and E′ |= θ. It is sufficient then to guess a subset S of T (P, T, s)
(the deducible terms) and an ordering on S (the ordering in which the terms
are deduced), assign non-deterministically a control point to each of these terms
and check that every term in S (or one of its instances by σE′) can be deduced
in one step from smaller ones and their instances by σE′ .

This is actually similar to NP membership proofs in the papers by Y. Cheva-
lier, M. Rusinowitch and M. Turuani, such as [18].

Corollary 2. For the theory of blind signatures, the insecurity problem in a
fixed number of sessions is in NP.

5 Discussion and Comparison with Related Work

Our starting point was the PhD thesis of M. Turuani [21]: we tried to formulate
the results in terms of proof normalisations. We hoped first to better understand
the reasons why we can get decidability results and, of course, derive more general
results. We also planned to extend theorem 2 to equational theories, but it turns
out to be quite technical and not very illuminating so far.

We partly succeeded to achieve our goals. The statement of our main theorem
is satisfactory because the conditions on the inference system are straightforward
to check and the normal proof results provides with a general (complete) proof
strategy. Moreover, we cover some intruder theories, which are not in the scope
of the “oracle rules” of [21]. We have seen blind signatures and there are other

examples such as Dolev-Yao plus the rule
T � g(x) T � f(g(x))

T � f(x)
...

This is only a partial success since first there are restrictions, which are proba-
bly not necessary. Second there are also intruder theories, which can be handled
by oracle rules and do not satisfy our hypotheses. For instance, we cannot handle
“shortcuts”, which are rules obtained by composing other rules of the system.

The main remaining work, besides tuning our prototype implementation, is
to extend the results to the associative-commutative case, which looks quite
challenging.

Normal Proofs in Intruder Theories 165

References

1. Bernat, V.: Théories de l’intrus pour la vérification de protocoles cryptographiques.
PhD thesis, École Normale Supérieure de Cachan (2006)

2. Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: A meta-notation
for protocol analysis. In: Syverson, P. (ed.) 12-th IEEE Computer Security Foun-
dations Workshop, IEEE Computer Society Press, Los Alamitos (1999)

3. Chevalier, Y., Kuester, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with xor. In: Kolaitis [15]

4. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In:
Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Foundations of Software
Technology and Theoretical Computer Science. LNCS, vol. 2914, pp. 124–135.
Springer, Heidelberg (2003)

5. Clarke, E., Jha, S., Marrero, W.: Using state space exploration and a natural
deduction style message derivation engine to verify security protocols. In (PRO-
COMET). Proceedings of the IFIP Working Conference on Programming Concepts
and Methods (1998)

6. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Sci-
ence of Computer Programming 50(1–3), 51–71 (2004)

7. Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of
some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, Springer,
Heidelberg (2005)

8. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in preence of exclusive or. In: Kolaitis [15]

9. Cortier, V., Millen, J., Rueß, H.: Proving secrecy is easy enough. In: 14th IEEE
Computer Security Foundations Workshop, pp. 97–108. IEEE Computer Society
Press, Los Alamitos (2001)

10. Cortier, V., Rusinowitch, M., Zalinescu, E.: A resolution strategy for verifying
cryptographic protocols with cbc encryption and blind signatures. In (PPDP 2005).
Proc. 7th ACM-SIGPLAN Int. Conf. on Principles and Practice of Declarative
Programming, pp. 12–22. ACM Press, New York (2005)

11. Denker, G., Millen, J., Rueß, H.: The CAPSL integrated protocol environment.
Technical report, SRI International (October 2000)

12. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–309. North Holland, Ams-
terdam (1990)

13. Fabrega, F.T., Herzog, J., Guttman, J.: Strand spaces: Proving security protocol
correct. Journal of Computer Security 7, 191–230 (1999)

14. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Proc. ASIACRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer,
Heidelberg (1993)

15. Kolaitis, P. (ed.): Eighteenth Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, Los Alamitos (2003)

16. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi-
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, Springer, Heidelberg
(2005)

17. McAllester, D.: Automatic recognition of tractability in inference relations. J.
ACM 40(2), 284–303 (1993)

166 V. Bernat and H. Comon-Lundh

18. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: Proc.14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia (June 2001)

19. Shmatikov, V.: Decidable analysis of cryptographic protocols with products and
modular exponentiation. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986,
Springer, Heidelberg (2004)

20. Security protocols open repository, http://www.lsv.ens-cachan.fr/spore/
21. Turuani, M.: Sécurité des protocoles cryptographiques: décidabilité et complexité.

PhD thesis, Université Henri Poincaré- Nancy 1 (2003)

http://www.lsv.ens-cachan.fr/spore/

Breaking and Fixing Public-Key Kerberos�

I. Cervesato1, A. D. Jaggard2, A. Scedrov3, J.-K. Tsay3, and C. Walstad3

1 Carnegie Mellon University — Qatar
iliano@cmu.edu

2 Tulane University
adj@math.tulane.edu

3 University of Pennsylvania
{scedrov@math,jetsay@math,cwalstad@seas}.upenn.edu

Abstract. We report on a man-in-the-middle attack on PKINIT, the
public key extension of the widely deployed Kerberos 5 authentication
protocol. This flaw allows an attacker to impersonate Kerberos adminis-
trative principals (KDC) and end-servers to a client, hence breaching the
authentication guarantees of Kerberos. It also gives the attacker the keys
that the KDC would normally generate to encrypt the service requests of
this client, hence defeating confidentiality as well. The discovery of this
attack caused the IETF to change the specification of PKINIT and Mi-
crosoft to release a security update for some Windows operating systems.
We discovered this attack as part of an ongoing formal analysis of the
Kerberos protocol suite, and we have formally verified several possible
fixes to PKINIT—including the one adopted by the IETF—that prevent
our attack.

1 Introduction

Kerberos [1] is a successful, widely deployed single sign-on protocol that is de-
signed to authenticate clients to multiple networked services, e.g., remote hosts,
file servers, or print spoolers. Kerberos 5, the most recent version, is available
for all major operating systems: Microsoft has included it in its Windows oper-
ating system, it is available for Linux under the name Heimdal, and commercial
Unix variants as well as Apple’s OS X use code from the MIT implementation of
Kerberos 5. Furthermore, it is being used as a building block for higher-level pro-
tocols [2]. Introduced in the early 1990s, Kerberos 5 continues to evolve as new
� Cervesato was partially supported by the Qatar Foundation under grant number

930107, with early aspects of this work supported by ONR under Grant N00014-01-
1-0795. Jaggard was partially supported by NSF Grants DMS-0239996 and CNS-
0429689, and by ONR Grant N00014-05-1-0818. Scedrov was partially supported by
OSD/ONR CIP/SW URI “Software Quality and Infrastructure Protection for Dif-
fuse Computing” through ONR Grant N00014-01-1-0795 and OSD/ONR CIP/SW
URI “Trustworthy Infrastructure, Mechanisms, and Experimentation for Diffuse
Computing” through ONR Grant N00014-04-1-0725. Additional support from NSF
Grants CNS-0429689 and CNS-0524059. Tsay was partially supported by ONR
Grant N00014-01-1-0795 and NSF grant CNS-0429689.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 167–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

168 I. Cervesato et al.

functionalities are added to the basic protocol. One of these extensions, known as
PKINIT, modifies the basic protocol to allow public-key authentication. Here we
report a protocol-level attack on PKINIT and discuss the constructive process
of fixing it. We have verified a few defenses against our attack, including one
we suggested, a different one proposed in the IETF Kerberos working group
and included in recent drafts of PKINIT, and a generalization of these two
approaches.

A Kerberos session generally starts with a user logging onto a system. This
triggers the creation of a client process that will transparently handle all her
authentication requests. The initial authentication between the client and the
Kerberos administrative principals (altogether known as the KDC, for Key Dis-
tribution Center) is traditionally based on a shared key derived from a password
chosen by the user. PKINIT is intended to add flexibility, security and admin-
istrative convenience by replacing this static shared secret with two pairs of
public/private keys, one assigned to the KDC and one belonging to the user.
PKINIT is supported by Kerberized versions of Microsoft Windows, typically
for use with smartcard authentication, including Windows 2000 Professional and
Server, Windows XP, and Windows Server 2003 [3]; it has also been included
in Heimdal since 2002 [4]. The MIT reference implementation is being extended
with PKINIT.

The flaw [5] we have uncovered in PKINIT allows an attacker to impersonate
the KDC, and therefore all the Kerberized services, to a user, hence defeating
authentication of the server to the client. The attackers also obtains all the keys
that the KDC would normally generate for the client to encrypt her service
requests, hence compromising confidentiality as well. This is a protocol-level
attack and was a flaw in the then-current specification, not just a particular
implementation. In contrast to recently reported attacks on Kerberos 4 [6], our
attack does not use an oracle, but is efficiently mounted in constant time by
simply decrypting a message with one key, changing one important value, and
re-encrypting it with the victim’s public key. The consequences of this attack are
quite serious. For example, the attacker could monitor communication between
an honest client and a Kerberized network file server. This would allow the
attacker to read the files that the client believes are being securely transferred
to the file server.

Our attack is possible because the two messages constituting PKINIT were
insufficiently bound to each other.1 More precisely, the second message of this
exchange (the reply) can easily be modified as to appear to correspond to a
request (the first message) issued by a client different from the one for which it
was generated. Assumptions required for this attack are that the attacker is a
legal user, that he can intercept other clients’ requests, and that PKINIT is used
in “public-key encryption mode”. The alternative “Diffie-Hellman (DH) mode”
does not appear vulnerable to this attack; we are in the process of proving its
full security.

1 The possibility of an ‘identity misbinding’ attack was independently hypothesized
by Ran Canetti, whom we consulted on some details of the specification.

Breaking and Fixing Public-Key Kerberos 169

We discovered this attack as part of an ongoing formal analysis of the Ker-
beros 5 protocol suite. Our earlier work on Kerberos successfully employed formal
methods for the verification of the authentication properties of basic intra-realm
Kerberos 5 [7] and of cross-realm authentication [8]. Although our work is carried
out by hand, automated approaches exist and have also been applied to deployed
protocols [9,10,11]. In a recent collaboration with M. Backes, we have started
extending our results from the abstract Dolev-Yao model examined here to the
more concrete computational model [12]. Interestingly, the results described in
more detail here served as a blueprint for the much more fine-grained proofs
of [12].

After discovering the attack on PKINIT, we worked in close collaboration
with the IETF Kerberos Working Group, in particular with the authors of the
PKINIT specification documents, to correct the problem. Our contribution in
this regard has been a formal analysis of a general countermeasure to this attack,
as well as the particular instance proposed by the Working Group that has been
adopted in the PKINIT specification [13]. Our attack led to an August 2005
Microsoft security patch and bulletin [3].

2 Kerberos 5 and Its Public-Key Extension

The Kerberos protocol [1] allows a legitimate user to log on to her terminal once
a day (typically) and then transparently access all the networked resources she
needs in her organization for the rest of that day. Each time she wants to retrieve
a file from a remote server, for example, Kerberos securely handles the required
authentication behind the scene, without any user intervention.

We will now briefly review how Kerberos achieves secure authentication based
on a single logon. We will be particularly interested in the initial exchange, which
happens when the user first logs on, and review the messages in this exchange
both with and without PKINIT.

KerberosBasics. Theclientprocess—usuallyacting for ahumanuser—interacts
with three other types of principals when using Kerberos 5 (with or without
PKINIT). The client’s goal is to be able to authenticate herself to various applica-
tion servers (e.g., email, file, and print servers). This is done by obtaining a “ticket-
granting ticket” (TGT) from a “Kerberos Authentication Server” (KAS) and then
presenting this to a “Ticket-Granting Server” (TGS) in order to obtain a “service
ticket” (ST), the credential that the client uses to authenticate herself to the appli-
cation server. A TGT might be valid for a day, and may be used to obtain several
STs for many different application servers from the TGS, while a single ST might
be valid for a few minutes (although it may be used repeatedly) and is used for a
single application server. The KAS and the TGS are altogether known as the “Key
Distribution Center” (KDC).

The client’s interactions with the KAS, TGS, and application servers are called
the Authentication Service (AS), Ticket-Granting (TG), and Client-Server (CS)
exchanges, respectively. The focus of this work will be the AS exchange, as
PKINIT does not alter the remaining parts of Kerberos.

170 I. Cervesato et al.

The Traditional Authentication Service Exchange. The abstract struc-
ture of the traditional (non-PKINIT) AS exchange is given in Fig. 1 once we
ignore the boxed items. A client C generates a fresh nonce n1 and sends it,
together with her own name and the name T of the TGS for whom she desires
a TGT, to some KAS. The KAS responds by generating a fresh key AK for
use between the client and the TGS. This key is sent back to the client, along
with the nonce from the request and other data, encrypted under a long-term
key kC shared between C and the KAS; this long-term key is usually derived
from the user’s password. This is the only time that this long-term key is used
in a standard Kerberos run because later exchanges use freshly generated keys.
AK is also included in the ticket-granting ticket, sent alongside the message
encrypted for the client. The TGT is encrypted under a long-term key shared
between the KAS and the TGS named in the request. These encrypted messages
are accompanied by the client’s name—and other data that we abstract away—
sent in the clear. Once the client has received this reply, she may undertake the
Ticket-Granting exchange.

It should be noted that the actual AS exchange, as well as the other exchanges
in Kerberos, is more complex than the abstract view given here; the details
we omit here do not affect our results and including them would obscure the
exposition of our results. We refer the reader to [1] for the complete specification
of Kerberos 5, and to [7] for a formalization at an intermediate level of detail.

Public-Key Kerberos. PKINIT [13] is an extension to Kerberos 5 that uses
public key cryptography to avoid shared secrets between a client and KAS; it
modifies the AS exchange but not other parts of the basic Kerberos 5 proto-
col. The long-term shared key (kC) in the traditional AS exchange is typically
derived from a password, which limits the strength of the authentication to
the user’s ability to choose and remember good passwords; PKINIT does not
use kC and thus avoids this problem. Furthermore, if a public key infrastruc-
ture (PKI) is already in place, PKINIT allows network administrators to use it
rather than expending additional effort to manage users’ long-term keys needed
for traditional Kerberos. This protocol extension adds complexity to Kerberos
as it retains symmetric encryption in the later rounds but relies on asymmetric
encryption, digital signatures, and corresponding certificates in the first round.

In PKINIT, the client C and the KAS possess independent public/secret
key pairs, (pkC , skC) and (pkK , skK), respectively. Certificate sets CertC and
CertK issued by a PKI independent from Kerberos are used to testify of the
binding between each principal and her purported public key. This simplifies
administration as authentication decisions can now be made based on the trust
the KDC holds in just a few known certification authorities within the PKI,
rather than keys individually shared with each client (local policies can, however,
still be installed for user-by-user authentication). Dictionary attacks are defeated
as user-chosen passwords are replaced with automatically generated asymmetric
keys. The login process changes as very few users would be able to remember
a random public/secret key pair. In Microsoft Windows, keys and certificate
chains are stored in a smartcard that the user swipes in a reader at login time.

Breaking and Fixing Public-Key Kerberos 171

A passphrase is generally required as an additional security measure [14]. Other
possibilities include keeping these credentials on the user’s hard drive, again
protected by a passphrase.

The manner in which PKINIT works depends on both the protocol version
and the mode invoked. As the PKINIT extension to Kerberos has recently been
defined in RFC 4556 after a sequence of Internet Drafts [13], we use “PKINIT-n”
to refer to the protocol as specified in the nth draft revision and “PKINIT” for
the protocol more generally. These various drafts and the RFC can be found
at [13]. We discovered the attack described in Sect. 3 when studying PKINIT-
25; our description of the vulnerable protocol is based on PKINIT-26, which
does not differ from PKINIT-25 in ways that affect the attack. In response to
our work described here, PKINIT-27 included a defense against our attack; we
discuss this fix in Sect. 4. The current version of the protocol is defined in RFC
4556 and does not differ from the parts of PKINIT-27 we discuss here.

PKINIT can operate in two modes. In Diffie-Hellman (DH) mode, the key
pairs (pkC , skC) and (pkK , skK) are used to provide digital signature support
for an authenticated Diffie-Hellman key agreement which is used to protect the
fresh key AK shared between the client and KAS. A variant of this mode allows
the reuse of previously generated shared secrets. In public-key encryption mode,
the key pairs are used for both signature and encryption. The latter is designed
to (indirectly) protect the confidentiality of AK, while the former ensures its
integrity.

We will not discuss the DH mode any further as our preliminary investigation
did not reveal any flaw in it; we are currently working on a complete analysis
of this mode. Furthermore, it appears not to have yet been included in any of
the major operating systems. The only support we are aware of is within the
PacketCable system [15], developed by CableLabs, a cable television research
consortium.

Figure 1, including boxed terms, illustrates the AS exchange in PKINIT-
26. In discussing this and other descriptions of the protocol, we write [m]sk for
the digital signature of message m with secret key sk. (PKINIT realizes digital
signatures by concatenating the message and a keyed hash for it, occasionally
with other data in between.) In our analysis of PKINIT in Sect. 6, we assume
that digital signatures are unforgeable [16]. The encryption of m with public key
pk is denoted {{m}}pk. As usual, we write {m}k for the encryption of m with
symmetric key k.

The first line of Fig. 1 describes the relevant parts of the request that a client
C sends to a KAS K using PKINIT-26. The last part of the message—C, T, n1—
is exactly as in basic Kerberos 5, containing the client’s name, the name of the
TGS for which she wants a TGT, and a nonce. The boxed parts are added
by PKINIT and contain the client’s certificates CertC and her signature (with
her secret key skC) over a timestamp tC and another nonce n2. (The nonces
and timestamp to the left of this line indicate that these are generated by C
specifically for this request, with the box indicating data not included in our
abstract formalization of basic Kerberos 5 [7].)

172 I. Cervesato et al.

C KAS

• •�
CertC , [tC , n2]skC

, C, T, n1n1,

n2, tC

•
�
k ,
AK, tK

• �
{{CertK , [k, n2]skK

}}pkC , C,TGT , {AK, n1, tK , T}
k

Fig. 1. Message Flow in the Traditional AS Exchange and in PKINIT-26 , where
TGT = {AK, C, tK}kT

The second line in Fig. 1 shows our formalization of K’s response, which is
more complex than in basic Kerberos. The last part of the message—C, TGT,
{AK, n1, tK , T }

k
—is very similar to K’s reply in basic Kerberos; the difference

(boxed) is that the symmetric key k protecting AK is now freshly generated
by K and not a long-term shared key. The ticket-granting ticket TGT and the
message encrypted under k is as in traditional Kerberos. Because k is freshly
generated for the reply, it must be communicated to C before she can learn AK.
PKINIT does this by adding the (boxed) message {{CertK , [k, n2]skK

}}pkC . This
contains K’s certificates and his signature, using his secret key skK , over k and
the nonce n2 from C’s request; all of this is encrypted under C’s public key pkC .

This abstract description leaves out a number of fields which are of no sig-
nificance with respect to the reported attack or its fix. We invite the interested
reader to consult the specifications [13]. Also, recall that PKINIT leaves the
subsequent exchanges of Kerberos unchanged.

3 The Attack

In this section, we report on a dangerous attack against PKINIT in public-
key encryption mode. We discovered this attack as we were interpreting the
specification documents of this protocol [13] in preparation for its formalization
in MSR. We start with a detailed description of the attacker’s actions in the AS
exchange, the key to the attack. We then review the conditions required for the
attack and close this section with a discussion of how the attacker may propagate
the effects of her AS exchange actions throughout the rest of a protocol run.

Message Flow. Figure 2 shows the AS exchange message flow in the attack.
The client C sends a request to the KAS K which is intercepted by the at-
tacker I , who constructs his own request message using the parameters from
C’s message. All data signed by C are sent unencrypted—indeed [msg]sk can
be understood as an abbreviation for the plaintext msg together with a keyed
hash—so that I may generate his own signatures over data from C’s request. The
result is a well-formed request message from I , although constructed using some
data originating with C. I ’s changes to the request message are boxed above
the top-right arrow of Fig. 2. (We have omitted an unkeyed checksum taken
over unencrypted data from these messages; I can regenerate this as needed to
produce a valid request.)

Breaking and Fixing Public-Key Kerberos 173

C I KAS

• •�
CertC , [tC , n2]skC

, C, T, n1
•�

Cert I , [tC , n2]
skI

, I , T, n1

�

k, AK
tK

•• �

{{CertK , [k, n2]skK
}}pkI ,

I ,TGT , {AK, n1, tK , T}k
• �

{{CertK , [k, n2]skK
}}

pkC
,

C ,TGT , {AK, n1, tK , T}k

Fig. 2. Message Flow in the Man-In-The-Middle Attack on PKINIT-26, where TGT =
{AK, I, tK}kT

I forwards the fabricated request to the KAS K, who views it as a valid request
for credentials if I is himself a legitimate client; there is nothing to indicate
that some of the data originated with C. K responds with a reply containing
credentials for I (the bottom-right arrow in Fig. 2). The ticket-granting ticket,
denoted TGT, has the form {AK, I , tK}kT

; note that, since it is encrypted with
the key kT shared between K and the TGS T , it is opaque to C. Another part of
the reply is encrypted using the public key of the client for whom the credentials
are generated, in this case I . This allows the attacker to decrypt this part of the
message using his public key, learn the key k, and use this to learn the key AK.
An honest client would only use this information to send a request message to
the TGS T . Instead, I uses C’s public key to re-encrypt the data he decrypted
using his private key (having learned pkC , if necessary, from CertC in the original
request), replaces his name with C’s, and forwards the result to C. To C this
message appears to be a valid reply from K generated in response to C’s initial
request (recall that C cannot read I ’s name inside the TGT).

At this point, C believes she has authenticated herself to the KAS and that
the credentials she has obtained—the key AK and the accompanying TGT—
were generated for her. However, the KAS has completed the PKINIT exchange
with I and has generated AK and the TGT for I . The attacker knows the key
AK (as well as k, which is not used other than to encrypt AK) and can therefore
decrypt any message that C would protect with it.

Protocol-level attacks in the same vein of the vulnerability we uncovered
have been reported in the literature for other protocols. In 1992, Diffie, van
Oorschot, and Wiener noted that a signature-based variant of the Station-to-
Station protocol [17] could be defeated by a man-in-the-middle (MITM) attack
which bears similarities to what we observed in the first half of our vulnerability;
in 2003 Canetti and Krawczyk [18] observed that the “basic authenticated Diffie-
Hellman” mode of the Internet Key Exchange protocol (IKE) had this very same
vulnerability. In 1996, Lowe [19] found an attack on the Needham-Schroeder pub-
lic key protocol which manipulates public key encryption essentially in the same
way as what happens in the second half of our attack. Because it alters both
signatures and asymmetric encryptions, our attack against PKINIT stems from
both [19] and [17]. In 1995, Clark and Jacob [20] discovered a similar flaw on
Hwang and Chen’s corrected SPLICE/AS protocol.

174 I. Cervesato et al.

Assumptions. In order for this attack to work, the attacker must be a legal
Kerberos client so that the KAS will grant him credentials. In particular, he must
possess a public/secret key pair (pkI , skI) and valid certificates CertI trusted
by the KAS. The attacker must also be able to intercept messages, which is a
standard assumption. Finally, PKINIT must be used in public-key encryption
mode, which is commonly done as the alternative DH mode does not appear to
be readily available, except for domain specific systems [14,15].

Effects of the Attack. Once the attacker learns AK in the AS exchange, he
may either mediate C’s interactions with the various servers (essentially logging
in as I while leaking data to C so she believes she has logged in) or simply
impersonate the later servers. In the first case, once C has AK and a TGT,
she would normally contact the TGS to get a service ticket for some application
server S. This request contains an authenticator of the form {C, t′C}AK (i.e.,
C’s name and a timestamp, encrypted with AK). Because I knows AK, he
may intercept the request and replace the authenticator with one that refers
to himself: {I , t′C}AK . The reply from the TGS contains a freshly generated key
SK; this is encrypted under AK, for C to read and thus accessible to I , and also
included in a service ticket that is opaque to all but the TGS and application
server. I may intercept this message and learn SK, replace an instance of his
name with C’s name, and forward the result to C. As I knows SK, he can carry
out a similar MITM attack on the CS exchange, which ostensibly authenticates
C to the application server; however, because the service ticket names I , this
server would believe that he is interacting with I , not C.

Alternatively, the attacker may intercept C’s requests in the TG and CS
exchanges and impersonate the involved servers rather than forwarding altered
messages to them. For the exchange with the TGS, I will ignore the TGT and
only decrypt the portion of the request encrypted under AK (which he learned
during the initial exchange). The attacker will then generate a bogus service
ticket, which the client expects to be opaque, and a fresh key SK encrypted
under AK, and send these to C in what appears to be a properly formatted
reply from the TGS. This very same behavior can be perpetrated at the next
phase, by which C requests service to the end-server S, for communicating with
whom the key SK was purportedly generated. Note that the attacker may take
the first approach in the TG exchange and then the second in the CS exchange.
The reverse is not possible because I cannot forge a valid service ticket.

Regardless ofwhich approach the attacker uses to propagate the attack through-
out the protocol run,C finishes the CS exchange believing that she has done so with
a server S and that T has generated a fresh key SK known only to C and S. In-
stead, I knows SK in addition to, or instead of, S (depending on how I propagated
the attack). Thus I may learn any data that C attempts to send to S; depending
on the type of server involved, such data could be quite sensitive. Note that this
attack does not allow I to impersonate C to a TGS or an application server be-
cause all involved tickets name I . This also means that if C is in communication
with an actual server (T or S), that server will view the client as I , not C.

Breaking and Fixing Public-Key Kerberos 175

4 Preventing the Attack

The attack outlined in the previous section was possible because the two mes-
sages constituting the then-current version of PKINIT were insufficiently bound
to each other. More precisely, the attack shows that, although a client can link
a received response to a previous request (thanks to the nonces n1 and n2, and
to the timestamp tC), she cannot be sure that the KAS generated the key AK
and the ticket granting ticket TGT appearing in this response for her. Indeed,
the only evidence of the principal for whom the KAS generated these credentials
appears inside the ticket granting ticket TGT , which is opaque to her. This sug-
gests one approach to making PKINIT immune to this attack, namely to require
the KAS to include the identity of this principal in a component of the response
that is integrity-protected and that the client can verify. An obvious target is
the submessage signed by the KAS in the reply.

Following a methodology we successfully applied in previous work on Ker-
beros [7,8], we have constructed a formal model of both PKINIT-26 and various
possible fixes to this protocol (including the one adopted in PKINIT-27). Details
can be found in Sect. 6. Property 1 below shows the informal statement of the
property that we saw violated in PKINIT-26 but that holds of subsequent revi-
sions, hence demonstrating that this fix does indeed defend against our attack.

Property 1. In PKINIT-27 (and subsequent versions), whenever a client C
processes a message containing server-generated public-key credentials, the KAS
previously produced such credentials for C.

This property follows from a corollary to Thm. 2, which we prove in Sect. 6.
As we worked on our formal analysis, we solicited feedback from the IETF

Kerberos Working Group, and in particular the authors of the PKINIT spec-
ifications, about possible fixes we were considering. We also analyzed the fix,
proposed by the Working Group, that was included in PKINIT-27 and subse-
quent revisions of this specification [13].

Abstract Fix. Having traced the origin of the discovered attack to the fact
that the client cannot verify that the received credentials (the TGT and the
key AK) were generated for her, the problem can be fixed by having the KAS
include the client’s name, C, in the reply, in such a way that it cannot be
modified en route and that the client can check it. Following well-established
recommendations [21], we initially proposed a simple and minimally intrusive
approach to doing so, which consists in mentioning C in the portion of the reply
signed by the KAS (in PKINIT-26, this is [k, n2]skK

). We then generalized it
by observing that the KAS can sign k and any message fragment F (C, ni) built
from C and at least one of the nonces n1, n2 from C’s request for credentials.
With this abstract fix in place, the PKINIT exchange in public-key encryption
mode appears as follows, where we have used a box to highlight the modification
with respect to PKINIT-26.

176 I. Cervesato et al.

C KAS

• •�
CertC , [tC , n2]skC

, C, T, n1n1,
n2, tC

•
�
k, AK
tK

• �
{{CertK , [k, F (C, ni)]

skK

}}pkC , C,TGT , {AK, n1, tK , T }k

Here, F represents any construction that involves C and n1 or n2, and is verifiable
by the client. Integrity protection is guaranteed by the fact that it appears inside
a component signed by the KAS, and therefore is non-malleable by the attacker
(assuming that the KAS’s signature keys are secure). This defends against the
attack since the client C can now verify that the KAS generated the received
credentials for her and not for another principal (such as I in our attack). Indeed,
an honest KAS will produce the signature ([k, F (C, ni)]skK

) only in response to
a request by C. The presence of the nonces n1 or n2 uniquely identifies which of
the (possibly several) requests of C this reply corresponds to. Note that the fact
that we do not need F to mention both n1 and n2 entails that the nonce n2 is
superfluous as far as authentication is concerned.

A simple instance of this general schema consists in taking F (C, ni) to be
(C, n2), yielding the signed data [k, C, n2]skK

, which corresponds to simply in-
cluding C’s name within the signed portion of the PKINIT-26 reply. This version
is very similar to the initial target of our formal verification. We showed that
indeed it defeats the reported attack and satisfied the formal authentication
property violated in PKINIT-26. Only later did we generalize the proof to refer
to the abstract construction F .

Solution Adopted in PKINIT-27. When we discussed our initial fix with
the authors of the PKINIT document, we received the request to apply our
methodology to verify a different solution: rather than simply including C’s name
in the signed portion of the reply, replace the nonce n2 there with a keyed hash
(“checksum” in Kerberos terminology) taken over the client’s entire request. We
did so and showed that this approach also defeats our attack. It is on the basis
of this finding that we distilled the general fix discussed above, of which both
solutions are instances.

The checksum-based approach was later included in PKINIT-27 and its revi-
sions [13]. This version of PKINIT has the following intended message flow:

C KAS

• •�
CertC , [tC , n2]skC

, C, T, n1n1,
n2, tC

•
�
k, AK
tK

• �
{{CertK , [k, ck]skK

}}pkC , C,TGT , {AK, n1, tK , T }k

Here, ck is a checksum of the client’s request keyed with the key k, that ck has
the form Hk(CertC, [tC, n2]skC , C, T, n1) where H is a preimage-resistant MAC
function H . This means that it is computationally infeasible for the attacker to
find a message whose checksum matches that of a given message. Following the
specifications in [22], which discusses cryptographic algorithms for use in the

Breaking and Fixing Public-Key Kerberos 177

Kerberos protocol suite, current candidates for H include hmac-sha1-96-aes128.
New strong keyed checksums can be used for ck as they are developed.

5 Formalizing PKINIT in MSR

MSR [8,23,24] is a flexible framework for specifying complex cryptographic pro-
tocols, possibly structured as a collection of coordinated subprotocols. It uses
strongly-typed multiset rewriting rules over first-order atomic formulas to ex-
press protocol actions and relies on a form of existential quantification to sym-
bolically model the generation of fresh data (e.g., nonces or short-term keys).

Terms and Types. MSR represents network messages and their components
as first-order terms. Thus the TGT {AK, C, tK}kT sent from K to C is modeled
as the term obtained by applying the binary encryption symbol { } to the
constant kT and the subterm (AK, C, tK). This subterm is built using atomic
terms and two applications of the binary concatenation symbol (“ , ”). Terms
are classified by types, which describe their intended meaning and restrict the
set of terms that can be legally constructed. For example, { } accepts a key
(type key) and a message (type msg), producing a msg; using a nonce as the
key yields an ill-formed message. Nonces, principal names, etc., often appear
within messages; MSR uses the subsort relation to facilitate this. For example,
defining nonce to be a subsort of msg (written nonce <: msg) allows nonces to
be treated as messages. Both term constructors and types are definable. This
allows us to formalize the specialized principals of Kerberos 5 as subsorts of the
generic principal type: we introduce types client, KAS, TGS and server, with the
obvious meanings.

MSR supports more structured type definitions [23]. Dependent types allow
capturing the binding between a key and the principals for whom it was created.
For example, the fact that a short-term key k is shared between a particular
client C and server S is expressed by declaring it of type shK C S. Because k is
a key, shK C S is a subsort of key (for all C and S), and since k is short term
this type is also a subsort of msg as k needs to be transmitted in a message.
We similarly model the long-term keys that a principal A shares with the KAS
as objects of type dbK A, again a subsort of key, but not of msg. Dependent
types give us elegant means to describe the public-key machinery. If (pk, sk) is
the public/secret key pair of principal A, we simply declare pk of type pubK A
and sk of type secK pk. The constructors for encryption and digital signature
are written {{m}}pk and [m]sk, respectively.

Other types used in the formalization of PKINIT include time for timestamps,
CertList for lists of digital certificates, and someSecK as an auxiliary type for
working with digital signatures. We also use the constructor Hk(m) to model
the checksum (keyed hash) of message m keyed with symmetric key k.

States, Rules, and the Formalization of PKINIT-27. The state of a proto-
col execution is determined by the network messages in transit, the local knowl-
edge of each principal, and other similar data. MSR formalizes individual bits

178 I. Cervesato et al.

∀K : KAS�
�����������

∀C : client ∀T : TGS ∀n1, n2 : nonce ∀sk : someSecK ∀CertC, CertK : CertList
∀kT : dbK T ∀tC , tK : time ∀pkC : pubK C ∀pkK : pubK K ∀skK : secK pkK

N(CertC , [tC , n2]sk,
C, T, n1)

ι2.1=⇒
∃AK : shK C T, ∃k : shK C K

N({{CertK , [k, Hk(CertC , [tC , n2]sk, C, T, n1)]
skK

}}pkC ,

C, {AK, C, tK}kT
, {AK, n1, tK , T}k)

IF VerifySig([tC , n2]sk; (tC , n2); C, CertC), V alidK(C,T, n1), ClockK(tK)

�
�����������

Fig. 3. KAS’s Role in the PKINIT-27 Version of the AS Exchange

of information in a state by means of facts consisting of predicate name and
one or more terms. For example, the network fact N({AK, C, tK}kT) indicates
that the ticket granting ticket {AK, C, tK}kT is present on the network, and
I({AK, C, tK}kT) that it has been captured by the attacker.

A protocol consists of actions that transform the state. In MSR, this is mod-
eled by the notion of rule: a description of the facts that an action removes from
the current state and the facts it replaces them with to produce the next state.
For example, Fig. 3 describes the actions of the KAS in PKINIT-27 (see Sect. 4).
Ignoring for the moment the leading ∀K : KAS and the outermost brackets leaves
us with a single MSR rule—labeled ι2.1 above the arrow—that we will use to
illustrate characteristics of MSR rules in general.

Rules are parametric, as evidenced by the leading string of typed universal
quantifiers: actual values need to be supplied before applying the rule. The mid-
dle portion (· · · =⇒ · · ·) describes the transformation performed by the rule: it
replaces states containing a fact of the form N(CertC , [tC , n2]sk, C, T, n1) with
states that contain the fact on its right-hand side but which are otherwise iden-
tical. The existential marker “∃AK : shK C T ” requires AK to be replaced with
a newly generated symbol of type shK C T , and similarly for “∃k : shK C K”;
this is how freshness requirements are modeled in MSR. The last line, start-
ing with the keyword IF, further constrains the applicability of the rule by re-
quiring that certain predicates be present (differently from the left-hand side,
they are not removed as a result of applying the rule). Here, we use the predi-
cates VerifySig to verify that a digital signature is valid given a list of creden-
tials (VerifySig(s; m; P, Certs) holds if s is the signature, relative to certificates
Certs, by principal P over the message m; we assume that this implies P has
a key k such that the rank function ρk(s; m) > 0—see below). Additionally, we
use ValidK to capture the local policy of K in issuing tickets, and ClockK to
model the local clock of K. While the entities following ‘IF’ are logically facts,
in practice they are often handled procedurally, outside of MSR.

Rule ι2.1 completely describes the behavior of the KAS; in general, multiple
rules may be needed, as when modeling the actions of the client in the AS
exchange. Coordinated rules describing the behavior of a principal are collected
in a role. A role is just a sequence of rules, parameterized by the principal

Breaking and Fixing Public-Key Kerberos 179

executing them (their owner)—the “∀K : KAS” above the brackets in Fig. 3.
The two-rule role describing the client’s actions in the AS exchange has been
omitted here for space reasons. Formalizations of the TG and CS exchanges can
be found in [7,8].

6 Formal Analysis of PKINIT

Our formal proofs rely on a double induction aimed at separating the confi-
dentiality and authentication aspects of the analysis of Kerberos 5. They are
supported by two classes of functions, rank and corank, defined recursively on
MSR specifications [7]. In general, rank captures the amount of work done to
generate a message and is connected to authentication, while corank captures
the minimum effort needed to extract a secret and relates to confidentiality.
Confidentiality and authentication can interact in complex ways, requiring both
types of functions in a single proof. (This is not so much the case in the AS
exchange, because it is the first exchange in Kerberos, but it is seen clearly in
the later rounds as illustrated in [7].)

As a taste of our methodology, we present the theorem which establishes that
PKINIT-27 and subsequent versions meet the expected authentication goals. It
formalizes Prop. 1 in Sect. 4. We assume that digital signatures are unforgeable
and we abstract collision resistance as the injectivity of H .

Theorem 2. If (1) the fact N({{CertK , [k, ck]skK
}}pkC , C, X, {AK, n1, tK , T }k)

appears in a trace2; (2) ck = Hk(CertC , [tC , n2]skC
, C, T, n1)3; (3) the fact

VerifySig([k, ck]skK
; (k, ck); K, CertK) holds; and (4) for every pkK : pubK K

and sk : secK pkK , the fact I(sk) does not appear in the trace and no fact in the
initial state of the trace contained a fact of positive sk-rank relative to (k, ck),
then K fired rule ι2.1, consuming the fact N(CertC , [tC , n2]skC

, C, T, n1) and cre-
ating the fact N({{CertK , [k, ck]skK

}}pkC , C, {AK, C, tK}kT
, {AK, n1, tK , T }k).

4

Proof. (Sketch) Because VerifySig([k, ck]skK
; (k, ck); K, CertK) holds, by as-

sumption about the properties of VerifySig there is some sk : secK pkK such
that ρsk([k, ck]skK

; (k, ck)) > 0 (where pkK : pubKK). Thus the fact N({{CertC ,
[k, ck]skK

}}pkC , C, X, {AK, n1, tK , T }k) has positive sk-rank relative to (k, ck);
by hypothesis, no such fact existed in the initial state of the trace, so some rule
firing during the trace must have increased this rank.

In order for the intruder to perform cryptographic work using sk, she must
have possession of this key; this is precluded by hypothesis, so some principal
must have done cryptographic work using sk. The only principal rule which
can use sk to do cryptographic work with respect to (k, ck) for some ck : msg is
rule ι2.1. In order for this rule to do so, it must be: fired by the KAS K who owns
sk, consume a network fact corresponding to a request message, and produce a
2 For some C : client, K : KAS, k : shK C K, skK : someSecK, ck, X : msg, CertK :

CertList, pkC : pubK C, T : TGS, AK : shK C T , n1 : nonce, and tK : time.
3 For some tC : time, n2 : nonce, skC : SecK pkC , and CertC : CertList.
4 For some kT : dbK T , tK : time.

180 I. Cervesato et al.

reply message containing ck as the checksum over this request. By assumption
about collision-freeness of checksums, the request that K processed must match
the request described in the hypotheses. �

As a corollary, if C processes a reply message containing the signed checksum of
a request that C previously sent, then some KAS K fired rule ι2.1 as described
by the theorem. This corresponds to Prop. 1.

7 Conclusions and Future Work

In this paper, we describe our discovery of a man-in-the-middle attack against
PKINIT [13], the public key extension to the popular Kerberos 5 authentication
protocol [1]. We found this attack as part of an ongoing formal analysis of Ker-
beros, which has previously yielded proofs of security for the core Kerberos 5
protocol [7] and its use for cross-realm authentication [8]. We have used formal
methods approaches to prove that, at an abstract level, several possible defenses
against our attack restore security properties of Kerberos 5 that are violated
in PKINIT (as shown by the attack). The fixes we analyzed include the one
proposed by the IETF Kerberos Working group, which included it in the speci-
fication of PKINIT starting with revision 27 [13]. Our attack was also addressed
in a Microsoft security bulletin affecting several versions of Windows [3].

As a continuation of this research, we have carried over some of the results ex-
amined here to the computational model by expressing PKINIT and other aspects
of Kerberos in the BPW model [25]. The main outcome of this effort was that the
fixes examined here were proved to be correct at the cryptographic level [12]. There
appears to be a strong relation between the symbolic proof technique used here
and the verification steps in [12] and gaining a better understanding of how these
two methods relate will be subject to future work. We are also in the process of
extending our analysis to the Diffie-Hellman mode of PKINIT: our preliminary
observations suggest that it is immune from the attack described in this paper,
but we do not yet have definite results on other types of threats. Finally, we have
started looking into automating the proof technique used here. This will have the
effect of speeding up the analysis work, allowing us to tackle larger protocols, and,
if a suitable connection to the BPW framework is discovered, contributing to the
automation of proof in the cryptographic model [26].

References

1. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authenti-
cation Service (V5) (2005), http://www.ietf.org/rfc/rfc4120

2. Thomas, M., Vilhuber, J.: Kerberized Internet Negotiation of Keys (KINK) (2003),
http://ietfreport.isoc.org/all-ids/draft-ietf-kink-kink-06.txt

3. Microsoft: Security Bulletin MS05-042 (2005), http://www.microsoft.com/
technet/security/bulletin/MS05-042.mspx

4. Strasser, M., Steffen, A.: Kerberos PKINIT Implementation for Unix Clients. Tech-
nical report, Zurich University of Applied Sciences Winterthur (2002)

http://www.ietf.org/rfc/rfc4120
http://ietfreport.isoc.org/all-ids/draft-ietf-kink-kink-06.txt
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx

Breaking and Fixing Public-Key Kerberos 181

5. CERT: Vulnerability Note 477341 (2005), http://www.kb.cert.org/vuls/id/
477341

6. Yu, T., Hartman, S., Raeburn, K.: The perils of unauthenticated encryption: Ker-
beros version 4. In: Proc. NDSS 2004 (2004)

7. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A., Walstad, C.: Formal Analysis
of Kerberos 5. Theoretical Computer Science 367, 57–87 (2006)

8. Cervesato, I., Jaggard, A.D., Scedrov, A., Walstad, C.: Specifying Kerberos 5 Cross-
Realm Authentication. In: Proc. WITS 2005, ACM Digital Lib. pp. 12–26 (2005)

9. Kemmerer, R., Meadows, C., Millen, J.: Three systems for cryptographic protocol
analysis. J. Cryptology 7, 79–130 (1994)

10. Meadows, C.: Analysis of the internet key exchange protocol using the nrl protocol
analyzer. In: Proc. IEEE Symp. Security and Privacy, pp. 216–231 (1999)

11. Mitchell, J.C., Shmatikov, V., Stern, U.: Finite-State Analysis of SSL 3.0. In: Proc.
7th USENIX Security Symp., pp. 201–216 (1998)

12. Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.K.: Cryptographi-
cally Sound Security Proofs for Basic and Public-key Kerberos. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, Springer, Heidel-
berg (2006)

13. IETF: Public Key Cryptography for Initial Authentication in Kerberos (1996–
2006) RFC 4556. Preliminary versions available as a sequence of Internet Drafts
at, http://tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/

14. De Clercq, J., Balladelli, M.: Windows 2000 authentication, Digital Press (2001),
http://www.windowsitlibrary.com/Content/617/06/6.html

15. Cable Television Laboratories, Inc.: PacketCable Security Specification Technical
document PKT-SP-SEC-I11-040730 (2004)

16. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen Message Attacks. SIAM J. Computing 17, 281–308 (1988)

17. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2, 107–125 (1992)

18. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–
161. Springer, Heidelberg (2002)

19. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

20. Clark, J., Jacob, J.: On the security of recent protocols. Information Processing
Letters 56, 151–155 (1995)

21. Abadi, M., Needham, R.: Prudent Engineering Practice for Cryptographic Proto-
cols. IEEE Trans. Software Eng. 22, 6–15 (1996)

22. Raeburn, K.: Encryption and Checksum Specifications for Kerberos 5 (2005),
http://www.ietf.org/rfc/rfc3961.txt

23. Cervesato, I.: Typed MSR: Syntax and Examples. In: Gorodetski, V.I., Skormin,
V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS, vol. 2052, Springer, Heidel-
berg (2001)

24. Durgin, N.A., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset Rewriting and the
Complexity of Bounded Security Protocols. J. Comp. Security 12, 247–311 (2004)

25. Backes, M., Pfitzmann, B., Waidner, M.: A Composable Cryptographic Library
with Nested Operations. In: Proc. CCS 2003, pp. 220–230. ACM, New York (2003)

26. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographically
sound theorem proving. In: Proc. CSFW 2006, pp. 153–166 (2006)

protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.kb.cert.org/vuls/id/477341
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.kb.cert.org/vuls/id/477341
http://tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/
http://www.windowsitlibrary.com/Content/617/06/6.html
http://www.ietf.org/rfc/rfc3961.txt

Computational Soundness of Formal

Indistinguishability and Static Equivalence

Gergei Bana�, Payman Mohassel, and Till Stegers

Department of Computer Science
University of California at Davis, USA

gebana@cs.upenn.edu, mohassel@cs.ucdavis.edu, stegers@cs.ucdavis.edu

Abstract. In the investigation of the relationship between the formal
and the computational view of cryptography, a recent approach, first
proposed in [10], uses static equivalence from cryptographic pi calculi as
a notion of formal indistinguishability. Previous work [10,1] has shown
that this yields the soundness of natural interpretations of some inter-
esting equational theories, such as certain cryptographic operations and
a theory of XOR. In this paper however, we argue that static equiva-
lence is too coarse to allow sound interpretations of many natural and
useful equational theories. We illustrate this with several explicit exam-
ples in which static equivalence fails to work. To fix the problem, we
propose a notion of formal indistinguishability that is more flexible than
static equivalence. We provide a general framework along with general
theorems, and then discuss how this new notion works for the explicit
examples where static equivalence fails to ensure soundness.

1 Introduction

In the past few years, significant effort has been made to link formal and compu-
tational methods of cryptography. These directions had largely been developing
independently; the first based on the seminal work of Dolev and Yao [15], and the
second growing out of the work of Goldwasser and Micali [16]. While the com-
putational method gives a more realistic and detailed description of an actual
protocol, using probability theory and taking limited computational power into
account, security proofs in this model are done by hand and are often notoriously
hard to verify.

The formal method is a high-level treatment, amenable to automatization,
but its reliability is sometimes questionable; namely, a protocol that is formally
secure may not be so computationally, and, therefore, may be insecure in reality.
It is therefore important how to translate one model into the other, and to
characterize which security proofs in the simpler formal framework carry over to
the computational setting.

The first paper to address this question was that of Abadi and Rogaway
[4], which considered only passive adversaries. In their approach, the notion of

� Supported by a Packard Fellowship.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 182–196, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computational Soundness of Formal Indistinguishability 183

security is formalized via equivalence relations on the formal and on the compu-
tational side that specify which messages look indistinguishable to an adversary
of the corresponding view. Fixing an encryption scheme for the computational
implementation of the formal operations, a natural interpretation assigns a com-
putational object – an ensemble of probability distributions over bit strings – to
each formal expression. The question then arises: Under which circumstances is
the equivalence relation preserved by the interpretation? If the formal equiva-
lence of any two expressions implies the computational equivalence of their inter-
pretations, then we say the model is sound. This is the mathematical equivalent
of saying that security in the formal model implies security in the computational
model. Conversely, the model is complete if the computational equivalence of the
interpretations of any two formal expressions implies that these expressions are
equivalent. Completeness of a model indicates that the formal equivalence notion
in question is not too fine, and helps in finding attacks: if completeness holds,
the existence of a formal attack implies the existence of a computational one.

Abadi and Rogaway proved soundness for their language if the encryption
scheme used in the interpretation is what they call type-0 secure (basically, it
hides everything about the plaintext). A number of other papers followed, prov-
ing completeness as well [20,6], generalizing for weaker, more realistic encryp-
tions schemes [6], considering purely probabilistic encryptions [17,6], including
limited models for active adversaries [19], and addressing the issue of forbidding
key-cycles [5]. Other approaches including active adversaries are considered by
Backes et al. and Canetti in their reactive simulatability [8,7] and universal com-
posability [11,12] frameworks, respectively. Using probabilistic polynomial-time
semantics without explicit probabilistic reasoning in [14] is also notable.

1.1 Previous Work

Our paper addresses issues when the equivalence relation on the formal side
is static equivalence (from cryptographic pi calculi [3,2]), induced by an equa-
tional theory. Equational theories model algebraic axioms in the formal world,
such as axioms for groups, rings, XOR, etc. Once an equational theory is fixed,
which means setting certain formal terms equal, static equivalence is uniquely
determined. Roughly speaking, two n-tuples of formal terms are statically in-
equivalent, i.e. formally distinguishable, if an adversary is able to come up with
two formal computations that, on one of the tuples yield two results that are
identical according to the equational theory but yield different results on the
other tuple. Baudet et al. [10] use this equivalence notion on the formal side,
proving soundness of a theory of exclusive or as well as of certain symmetric en-
cryptions that are deterministic and length-preserving. Abadi et al. [1] employ
this framework to analyze a principled formal account of guessing attacks.

1.2 Our Contributions

In this paper, we show that even though static equivalence works well to obtain
soundness results for the cases analyzed in [10,1], it does not work well in other

184 G. Bana, P. Mohassel, and T. Stegers

important cases, and a more flexible notion is needed. For a brief exposition of
why this is so, consider the Decisional Diffie-Hellman assumption. As Baudet
et al. describe in [10], in an equational theory modeling group exponentiation
without including logarithm, the 4-tuples (g, ga, gb, gab) and (g, ga, gb, gc) are
statically equivalent. Therefore, if the interpretation of the theory in a certain
computational group scheme is sound, then this scheme satisfies the DDH as-
sumption. However, formally much more is equivalent. For example, (g, ga, gb, ab)
and (g, ga, gb, c) are also equivalent, and so on; an infinitude of statements not
necessarily implied by the DDH assumption would be satisfied. There is no rea-
son to think that such a computational group scheme exists at all. Moreover, the
analysis often goes in the other direction: not a given formal model has to be
interpreted in a sound manner, but for a given computational model we are look-
ing for a formal theory that is simplifying, yet sound. A computational scheme
that satisfies the DDH assumption may not satisfy the condition above (not to
mention the infinitely many more that follow from static equivalence), so static
equivalence cannot be used with such a group scheme to achieve soundness. Of
course, if we know that the interpretations of two formal n-tuples are compu-
tationally distinguishable, then we may be able to incorporate the distinguisher
into the formal theory, forcing those two n-tuples to be formally inequivalent.
However, in many cases, we do not know whether the interpretations are in-
equivalent, so we have no explicit distinguishers. In such a case, to play it safe,
it is better to assume that they are distinguishable, and that is how the formal
theory should be constructed.

We argue that an equivalence relation finer than static equivalence is nec-
essary to fit a number of interesting cases for which static equivalence is not
suitable. We will call this type of equivalence relation a formal indistinguishabil-
ity relation (FIR). We require four properties from any FIR, and through these
properties an initial set of relations will generate a FIR. Each pair that is stati-
cally inequivalent is also inequivalent with respect to a formal indistinguishability
relation. Moreover, static equivalence is one instance of a FIR. In order to test
soundness with respect to a computational interpretation, it is enough to check
soundness on a set of relations that generate the FIR in question. If soundness
holds on the generating set of relations, then soundness holds in total.

Besides introducing the above equivalence notion, we also make some other
improvements in the theory. Baudet et al. require the interpretations to be such
that if a distribution is sampled twice, the probability of collision is negligible.
We will not assume this because it would exclude the formal representation of
interesting functions such as the least significant bit. We also use ordered sorts,
allowing names to have multiple sorts.

After introducing the basic framework and proving some general proposi-
tions about FIRs, we discuss three examples. The first is the above-mentioned
DDH assumption: We discuss how to introduce a FIR such that soundness is
equivalent to the DDH assumption. Our second example considers the case of
key-cycles and Laud’s solution to them [18]. Laud proposed that if we do not
want to exclude key-cycles from our theory and we do not want to assume that

Computational Soundness of Formal Indistinguishability 185

the encryption scheme is stronger than the usual assumptions (CPA, CCA-2,
etc.), then we can simply assume that the formal adversary can decrypt all ci-
phertexts that were encrypted with keys that are in a key-cycle. We show how
this assumption corresponds to a formal indistinguishability relation. Finally,
the third example describes an embedding of Boolean propositional logic which
fails to be sound with respect to static equivalence because two formal terms
that are computationally distinguishable turn out to be statically equivalent.

We would like to thank Jonathan Herzog, Phillip Rogaway, and Andre Scedrov
for valuable discussions on the topic. We would also like to express our special
thanks to Matthew Franklin and Phillip Rogaway for their support.

2 Formal Model

2.1 Signatures, Terms, and Frames

A signature is a pair (S, F), with S = (S, S′, ≤S), S being a countably infi-
nite set of sorts with partial order ≤S , S′ ⊆ S, and F a finite set of function
symbols. We use the notation s, s1, s2, . . . for sorts, and f, f1, f2, . . . for symbols.
We assume that every f ∈ F has a unique arity s1 × · · · × sk → s for some
s1, . . . , sk, s ∈ S. If k = 0, then f is a constant, and we denote this as f : s.

Furthermore, let X , N be countably infinite sets such that S, F , X , N are
pairwise disjoint. The elements of X are called variables, the elements of N
names. We assume that both names and variables are sorted, that is, to each
name or variable u, a subset Su is assigned; we write u : s and say u is of sort s
whenever s ∈ Su. We require that u : s1 and s1 ≤S s2 implies u : s2, and that
the set Su has a minimum, which we denote by s(u). For any subset U of the
set of names or of the set of variables, let [U]s = {u ∈ U | s(u) = s}. Finally,
we require that for each sort s, [X]s is infinite, and [N]s is infinite whenever
s ∈ S′ and empty whenever s �∈ S′. A renaming is a bijection τ : N → N such
that s(a) = s(τ(a)) for each name a. The terms of our language are sorted by
elements of S. As usual, if a term T has sort s, we write T : s. Terms of sort s
are defined as follows:

T : s ::= x : s | a : s | f(T1, . . . , Tk)

where x is a variable, a is a name, and f is a function symbol of arity s1 × · · · ×
sk → s′ for some s1, . . . , sk ∈ S, s′ ≤S s, and each term Ti is of sort si for
i = 1, . . . , k. The set of all terms will be denoted by T . For a term T, we use
var(T) for the set of variables occurring in T, and names(T) for the set of names
occurring in T. A term T is said to be closed if var(T) = ∅.

Let x1, . . . , xn be distinct variables, and let T1, . . . , Tn be terms so that s(Ti) ≤S
s(xi). A well-sorted substitution σ is written as σ = {x1 = T1, . . . , xn = Tn}. Since
in this paper we will only have well-sorted substitutions, we will omit the term
“well-sorted”. The image of T under the substitution σ = {xi = Ti}n

i=1 is written
as Tσ, and is obtained by replacing every occurrence of xi in T by Ti for each xi. If
all Ti are closed, σ is said to be closed ; the domain of σ is dom(σ) = {x1, . . . , xn}

186 G. Bana, P. Mohassel, and T. Stegers

and the set of variables of σ is var(σ) =
⋃n

i=1 var(Ti). Similarly, we write names(σ)
for the union of all sets names(Ti). As examples, we refer to the first paragraph of
Subsection 5.1 or the second paragraph of 5.2.

Now we can define how to postulate axioms. In short, an equational theory is
an equivalence relation on terms that is stable under (well-sorted) substitution
of terms for variables, application of contexts, and renaming.

Definition 1. An equational theory for a given signature is an equivalence re-
lation E ⊆ T × T (written =E in infix notation) on the set of terms such that
(i) T =E T ′ implies Tσ =E T ′σ for every substitution σ; (ii) T1 =E T2 im-
plies T {x = T1} =E T {x = T2} for every term T and every variable x with
s(x) ≥S s(Ti); (iii) T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ .

If R is a relation on T , then the intersection 〈R〉 of all equational theories
containing R is the smallest equational theory containing R. We say 〈R〉 is
the equational theory generated by R. For examples, we refer to the second
paragraph of Subsection 5.1 and the third paragraph of Subsection 5.2.

A frame ϕ is an expression νã.σ, where σ is a substitution and ã = names(σ).
Since ã is uniquely determined by its underlying substitution σ, we may some-
times only write the substitution for a frame to save space. We say that ϕ is
closed if σ is closed. The set of all frames (with respect to an understood signa-
ture) is denoted by F, the set of closed frames are denoted by Fc.

If E is an equational theory and ϕ = νã.σ is a frame, we say that a term T
is deducible from ϕ with respect to E, written ϕ �E T, if there is a term M
with var(M) ⊆ dom(ϕ) and names(M) ∩ (names(ϕ) ∪ names(T)) = ∅ such that
Mϕ =E T, where Mϕ = Mσ.

Suppose that for closed frames ϕ1, ϕ2 with dom(ϕ1) = dom(ϕ2), there are two
terms M, N sharing no names with ϕ1 and ϕ2, var(M)∪var(N) ⊆ var(ϕi), such
that Mϕ1 =E Nϕ1, but Mϕ2 �=E Nϕ2. Intuitively, this means that carrying
out two computations – permitted by the model and determined by M and N –
on the inputs provided by ϕ1, we get identical results, whereas carrying out the
same computations on the input provided by ϕ2 produces distinct results. If the
distinction of two closed frames is not possible this way, then we say that these
two frames are statically equivalent.

Definition 2. Two closed frames ϕ1, ϕ2 of the same domain are statically
equivalent with respect to an equational theory E, written ϕ1 ≈E ϕ2, if for
all terms M, N with var(M) ∪ var(N) ⊆ var(ϕi) and using no names occurring
in ϕ1 or ϕ2, we have Mϕ1 =E Nϕ1 ⇐⇒ Mϕ2 =E Nϕ2. Let Ẽ denote static
equivalence as a subset of Fc × Fc.

2.2 Formal Indistinguishability

For a frame ϕ = ν ∪n
i=1 names(Ti).{xi = Ti}n

i=1, if ϕ′ is another frame, let
ϕϕ′ denote the frame ν ∪n

i=1 names(Ti) ∪ names(ϕ′).{xi = Tiϕ
′}n

i=1. For frames
ϕ1, . . . , ϕn with disjoint domains, let {ϕ1|ϕ2| . . . |ϕn} be the frame corresponding
to the combination of all substitutions of ϕ1, . . . , ϕn.

Computational Soundness of Formal Indistinguishability 187

Definition 3. A formal indistinguishability relation with respect to an equa-
tional theory E is an equivalence relation ∼= on the set of closed frames such
that

(i) ϕ1 ∼= ϕ2 only if dom(ϕ1) = dom(ϕ2);
(ii) for any frame ϕ, if ϕ1 and ϕ2 are closed frames such that var(ϕ) ⊆ dom(ϕi),

names(ϕ) ∩ names(ϕi) = ∅ and ϕ1 ∼= ϕ2 then ϕϕ1 ∼= ϕϕ2;
(iii) for any two frames ϕ′ = {xi = T ′

i}n
i=1 and ϕ′′ = {xi = T ′′

i }n
i=1, if T ′

i =E T ′′
i

for all i, then ϕ′ ∼= ϕ′′; moreover, ϕ′ �≈E ϕ′′ implies ϕ′ �∼= ϕ′′;
(iv) for any renaming τ , τ(ϕ) ∼= ϕ.

Remark 1. Corresponding sections of equivalent frames are equivalent. That is,
for example, if ϕ1 = {xi = Ti}4

i=1
∼= ϕ2 = {xi = T ′

i}4
i=1, then {x2 = T2, x4 =

T4} ∼= {x2 = T ′
2, x4 = T ′

4}. This follows from (ii) by setting ϕ = ν∅.{x2 =
x2, x4 = x4}.

If ϕ1, ϕ2, ϕ′
1, ϕ′

2 are frames such that dom(ϕ1) ∩ dom(ϕ2) = ∅, dom(ϕ′
1) ∩

dom(ϕ′
2) = ∅, names(ϕ1)∩names(ϕ2) = ∅, names(ϕ′

1)∩names(ϕ′
2) = ∅, and ϕi

∼=
ϕ′

i, then {ϕ1|ϕ2} ∼= {ϕ′
1|ϕ′

2}. The reason is the following. Choose a renaming τ
such that τ(ϕ1) = ϕ1, τ(ϕ′

1) = ϕ′
1, τ(ϕ′

2) = ϕ′
2, and names(τ(ϕ2))∩names(ϕ1) =

names(τ(ϕ2)) ∩ names(ϕ′
1) = ∅. This can be done because we assumed that

there are infinitely many names of each sort. Using (iv), we see that {ϕ1|ϕ2} ∼=
τ({ϕ1|ϕ2}) = {ϕ1|τ(ϕ2)}. If dom(ϕ1) = dom(ϕ′

1) = {x1, . . . , xk}, then let ψ =
{x1 = x1, . . . , xk = xk|τ(ϕ2)}. Using (ii), it follows that {ϕ1|τ(ϕ2)} = ψϕ1 ∼=
ψϕ′

1 = {ϕ′
1|τ(ϕ2)}. Since by (iv) again, τ(ϕ2) ∼= ϕ2, and ϕ2 ∼= ϕ′

2 by assumption,
τ(ϕ2) ∼= ϕ′

2 holds, and applying (ii) in a similar fashion as before, we obtain
{ϕ′

1|τ(ϕ2)} ∼= {ϕ′
1|ϕ′

2}. Putting all these together, {ϕ1|ϕ2} ∼= {ϕ′
1|ϕ′

2}.

The following useful propositions are proved in the full version [9] of this paper.

Proposition 1. Static equivalence ≈E is a formal indistinguishability relation
with respect to the equational theory E.

Proposition 2. The intersection of an arbitrary number of formal indistin-
guishability relations (with respect to the same equational theory E) is a formal
indistinguishability relation.

Proposition 3. Consider static equivalence as a subset Ẽ ⊆ Fc ×Fc. If S ⊆ Ẽ,
then there is a unique smallest subset 〈S〉 ⊆ Ẽ containing S, such that 〈S〉 (∼=S

in infix notation) is a formal indistinguishability relation with respect to E. 〈S〉
can be generated in the following way: Let

S′ :=

⎧⎨
⎩

(ϕ′, ϕ′′)
∈

Fc × Fc

∣∣∣∣∣∣
ϕ′ = ϕ{ϕ′

1| . . . |ϕ′
n} and ϕ′′ = ϕ{ϕ′′

1 | . . . |ϕ′′
n} such that

names(ϕ) = ∅ and for all i = 1, . . . , n, (ϕ′
i, ϕ

′′
i) ∈ S, or

(ϕ′′
i , ϕ′

i) ∈ S, or ϕ′′
i =E τi(ϕ′

i) for some renaming τi.

⎫⎬
⎭ .

Then 〈S〉 is the transitive closure of S′.

188 G. Bana, P. Mohassel, and T. Stegers

3 Relating Formal and Computational Models

We now present the computational interpretation of the formal model. Our def-
inition is equivalent to the one given by Baudet et al. [10]; the only difference is
that we allow probabilistic as opposed to only deterministic interpretations for
the symbols in F , and that we have ordered sorts. To each closed term, the in-
terpretation assigns an ensemble of probability distributions on bit strings. This
is a generalization of Abadi and Rogaway’s definition in [4].

Given a signature (S, F), where S = (S, S′, ≤S), an (S, F)-computational
algebra A is a triple A = ({�s�A}s∈S , {�s�A}s∈S′ , {fA}f∈F) as follows: For each
sort s in S, �s�A = {�s�Aη

}η where �s�Aη
⊆ {0, 1}∗ such that checking whether

a bit string is in �s�A is computable in polynomial-time; for each s in S′,
�s�A = {�s�Aη}η, each �s�Aη being a probability distribution on {0, 1}∗ with
supp(�s�Aη) = �s�A such that there is a polynomial time algorithm to draw
random elements from �s�Aη ; for each f ∈ F , with arity s1 × · · · × sk → s,
fA = {fAη}η, where fAη : �s1�Aη

×· · ·×�sk�Aη
→ �s�Aη

is a probabilistic function
computable in polynomial time. Here, supp denotes the support of a probability
distribution, which is the set where the distribution gives non-zero probability.

Once a computational algebra is fixed, we can associate a probability dis-
tribution to each closed term M through the following two algorithms. The
interpretation of M is INTERPRETη(M), which makes use of the algorithm
CONVERTλ

η(M) converting M to a tuple of values in Aη whenever a function
λ : names(M) → supp(�s(a)�Aη) is given:

algorithm CONVERTλ
η(M)

if M = a with name a then
return λ(a)

if M = f(M1, . . . , Mk) then
for i = 1, . . . , k do

ei
R←− CONVERTλ

η (Mi)

v
R←− fAη (e1, . . . , ek)

return v

algorithm INTERPRETη(M)
for a ∈ names(M) do

λ(a) R←− �s(a)�Aη

v
R←− CONVERTλ

η(M)
return v

algorithm INTERPRET′
η(ϕ)

for a ∈ names(ϕ) do λ(a) R←− �s(a)�Aη

if ϕ = {x1 = T1, . . . , xn = Tn} then

ei
R←− CONVERTλ

η(Ti) i = 1, . . . , n
v ←− {x1 = e1, . . . , xn = en}
return v

For each η, the probability distribution of v
R←− CONVERTη(M) is denoted

by �M�Aη . The ensemble {�M�Aη}η is denoted by �M�A. We call �M�A the
computational interpretation of the term M . For any name a : s with s ∈ S′,
�s�A = �s(a)�A = �a�A. We define the interpretation of a closed frame ϕ =
{x1 = T1, . . . , xn = Tn} via the algorithm INTERPRET′

η(ϕ). We use �ϕ�Aη

for the probability distribution given by INTERPRET′
η(ϕ) and �ϕ�A for the

ensemble of these distributions, which we call the computational interpretation
of the frame ϕ in the model A.

Computational Soundness of Formal Indistinguishability 189

Two ensembles of probability distributions are said to be computationally
indistinguishable, if no probabilistic polynomial time algorithm can distinguish
them. Once the formal expressions are interpreted, then we can consider the
computational indistinguishability of interpretations of two closed terms or two
closed frames. We will use the notation �M1�A ≈ �M2�A and �ϕ1�A ≈ �ϕ2�A,
respectively. Explicitly, this latter means that for any PPT algorithm A,

∣∣∣Pr[ϕ̂1
R←− �ϕ1�Aη : A(η, ϕ̂1) = 1] − Pr[ϕ̂2

R←− �ϕ2�Aη : A(η, ϕ̂2) = 1]
∣∣∣ ,

denoted by AdvA
η (�ϕ1�A, �ϕ2�A), is a negligible function; that is, for each n ∈ N

and all sufficiently large η, AdvA
η (�ϕ1�A, �ϕ2�A) < η−n.

4 Soundness, Completeness and Faithfulness

The computational model of a cryptographic scheme is in a sense closer to reality
than its formal representation by being a more detailed description. Therefore,
the accuracy of a formal model can be characterized based on how close it is to
the computational model; more specifically, how formal and computational indis-
tinguishability relate to each other via the interpretation. The most important
concepts to describe this are given in the following definition.

Definition 4. Let A be an (S, F)-computational algebra, and let ∼= be a formal
indistinguishability relation on the set of frames, and let F ⊆ Fc. We say that
the computational algebra A is ∼=-sound on F if for every closed pair of frames
ϕ1, ϕ2 ∈ F , ϕ1 ∼= ϕ2 implies that �ϕ1�A ≈ �ϕ2�A. A is ∼=-complete on F if for
every closed pair of frames ϕ1, ϕ2 ∈ F , ϕ1 �∼= ϕ2 implies that �ϕ1�A �≈ �ϕ2�A.
A is ∼=-faithful on F if for every closed pair of frames ϕ1, ϕ2 ∈ F , ϕ1 �∼= ϕ2
implies that the statistical distance Δ(�ϕ1�Aη , �ϕ2�Aη) is not negligible and there
is a PPT algorithm A such that | AdvA

η (�ϕ1�Aη , �ϕ2�Aη)−Δ(�ϕ1�Aη , �ϕ2�Aη)| is
negligible. For all three notions, we adopt the convention that if no such set F
is mentioned, it is assumed that F = Fc.

It is well known that the advantage of an adversary trying to distinguish two
distributions is less than or equal to the statistical distance between the two
distributions. Faithfulness therefore means that if two frames are formally dis-
tinguishable, then there is an algorithm that distinguishes their interpretations
almost optimally.

Remark 2. If a model is sound, then formal proofs of indistinguishability are
valid proofs of computational indistinguishability.

Our faithfulness definition is different from the one by Baudet et al. given
in [10]. They require the existence of an adversary whose advantage is negligi-
bly close to 1. However, there are interesting cases where their requirement is
too strong, as the following example shows. Nevertheless, we will not discuss
faithfulness in this paper beyond this example.

190 G. Bana, P. Mohassel, and T. Stegers

Example 1. Suppose that we add a function symbol LSB: Data → Data to
our theory, where Data is a sort. We think of this as the least significant bit,
and accordingly, we define the interpretation for the LSB function such that
LSBAη (x) is the least significant bit of x. Suppose that names of sort Data get
interpreted as bit strings with a certain maximum length with uniform distri-
bution. Now, consider the two frames νab.{x1 = LSB(a), x2 = LSB(b)} and
νa.{x1 = LSB(a), x2 = LSB(a)}. After interpretation, for each security para-
meter, the first frame will result in two independent bits of uniform distribu-
tion, whereas the interpretation of the second frame will contain two completely
correlated bits of uniform distribution. No adversary can distinguish these two
distributions with advantage greater than 1/2, which is the statistical distance.
However, the adversary that outputs 1 if the two bits are identical and 0 if they
are different is clearly the best possible.

Remark 3. Completeness can be rewritten in the form that for every closed pair
of frames ϕ1, ϕ2, �ϕ1�A ≈ �ϕ2�A implies ϕ1 ∼= ϕ2. This notion is weaker then
faithfulness, i.e., a faithful interpretation is also complete.

Let us introduce some notation. Let A be an (S, F)-computational algebra,
and let {x1 = T1, x2 = T2} be a closed frame in this setting. Then by
e1, e2

R←− �T1, T2�Aη , we will denote the random sampling {x1 = e1, x2 =

e1} R←− INTERPRET′
η({x1 = T1, x2 = T2}).

Definition 5. Let A be a (S, F)-computational algebra, and let E be an equa-
tional theory. We say that A is =E-sound if for each pair of closed terms T1 and
T2, T1 =E T2 implies that Pr[e1, e2

R←− �T1, T2�Aη : e1 �= e2] is negligible. It is
=E-complete if for each pair of closed terms T1 and T2, T1 �=E T2 implies that
Pr[e1, e2

R←− �T1, T2�Aη : e1 �= e2] is not negligible.

Remark 4. The reader may ask why no adversaries are used in this definition. For
example, would it not make more sense to define =E-soundness so that for each
pair of closed terms T1 and T2 if T1 =E T2 holds, then �T1, T2�A ≈ �T1, T1�A?
However, using the fact that the advantage of an adversary trying to distinguish
the two distributions cannot exceed the statistical distance, it is easy to show
that this definition would be equivalent to what is given above.

The following proposition shows that if a FIR ∼= is generated by a set S ⊆ Fc×Fc,
then it suffices to check soundness for pairs of frames in S to see that 〈S〉 is sound.
The proof is included in the full version [9] of this paper.

Proposition 4. Let A be an (S, F)-computational algebra that is =E-sound.
Suppose S ⊆ Ẽ is a binary relation on closed frames such that (ϕ, ψ) ∈ S
implies �ϕ�Aη ≈ �ψ�Aη . Then �ϕ�Aη ≈ �ψ�Aη whenever ϕ ∼=S ψ. That is, A is
∼=S-sound.

Corollary 1. Let A be a (S, F)-computational algebra with S ⊆ Fc × Fc such
that A is ∼=S-sound on F . Let S′ := S ∩ (F × F). Then A is ∼=S′-sound.

Computational Soundness of Formal Indistinguishability 191

5 Applications

In this section, we exemplify the utility of formal indistinguishability relations
that refine static equivalence. In the theory of groups with exponentiation, we
obtain an FIR such that soundness is equivalent to the Decisional Diffie-Hellman
Assumption. Next, we show how to handle key-cycles by encoding Laud’s ap-
proach in a formal indistinguishability relation. Finally, we give an example from
propositional Boolean logic whose natural model would not be sound with re-
spect to static equivalence, but is sound with respect to a particular FIR.

5.1 Decisional Diffie-Hellman Assumption

Consider the following equational theory to model a commutative group with
exponentiation (as in [10]). Let A and G be sorts, S = S′ with the trivial
ordering, and let F contain the following function symbols: ∗ : G × G → G;
1G : G; · : A×A → A; +: A×A → A; − : A → A; 1A : A; 0 : A; exp: G×A → G.
To simplify our notation, we write UV for exp(U, V).

Let the equational theory E be generated by the following equations:

x ∗ 1G = x x + (−x) = 0 (x + y) · z = x · z + y · z

1G ∗ x = x x + (y + z) = (x + y) + z (xa)b = x(a·b)

x ∗ (y ∗ z) = (x ∗ y) ∗ z x · 1A = x xa ∗ xb = xa+b

x + 0 = x x · y = y · x x1A = x
x + y = y + x x · (y · z) = (x · y) · z x0 = 1G

Observe that we did not include a symbol for the discrete logarithm in the
language. The reason is that we want to assume that computing a from ga is
not feasible for an adversary.

Once a computational group scheme is set (for computational group schemes
see for example the full version of [13]), the computational interpretation of this
signature is straightforward. Names of sort G will be mapped to the ensem-
ble of distributions corresponding to the generation of random group elements
whereas names of sort A will correspond to the generation of ring elements.
Addition, multiplication etc. will be translated to addition, multiplication etc.
of ring or group elements, respectively. As Baudet et al. point out in their pa-
per, in this theory, the frames νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = gab}
and νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc} are statically equivalent.
Distinguishing the interpretations of these two frames is the Decisional Diffie-
Hellman problem. So, a computational implementation that is sound with re-
spect to static equivalence will imply that the DDH assumption holds for the
given group scheme. Unfortunately, soundness would imply much more than the
DDH assumption. For example, νgab.{x1 = g, x2 = ga, x3 = gb, x4 = ganbm} ≈E

νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = gc} for some naturals n, m ≥ 1, and
therefore ≈E-soundness would imply that the computational interpretations of
these are indistinguishable as well. Moreover, even νgab.{x1 = g, x2 = ga, x3 =
gb, x4 = ab} ≈E νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = c}. It is unreasonable to
require that all these hold for a computational implementation.

192 G. Bana, P. Mohassel, and T. Stegers

We therefore suggest to use a formal indistinguishability relation instead.
Since we only want to assume that the DDH assumption holds and nothing
more, simply let S be the set consisting of the pair
(
νgab.{x1 =g, x2 =ga, x3 =gb, x4 =gab}, νgabc.{x1=g, x2 =ga, x3 =gb, x4 =gc}

)
.

Then, by Proposition 4, a computational interpretation is ∼=S-sound if and only
if the DDH assumption holds. In this model, ∼=S will make exactly those frames
equivalent for which equivalence necessarily follows from the DDH assumption
and the algebraic identities that we included in the model. Hence, for example,
νgab.{x1 = g, x2 = ga, x3 = gb, x4 = ab} �≈E νgabc.{x1 = g, x2 = ga, x3 =
gb, x4 = c}, but νgg′ab.{x1 = gg′, x2 = (gg′)a, x3 = (gg′)b, x4 = (gg′)ab} ∼=S

νgg′c.{x1 = gg′, x2 = (gg′)a, x3 = (gg′)b, x4 = (gg′)c}. This follows from the
commutativity of the group operation, from property (ii) and (iv) of the formal
indistinguishability relation, and the definition of S.

Often (for example in the case of uniform distributions), �{x1 = g, x2 = g′}�A

and �{x1 = g, x2 = gg′}�A are computationally indistinguishable. In this case, we
can include the pair of frames (νgg′.{x1 = g, x2 = g′}, νgg′.{x1 = g, x2 = gg′})
in S, and then the above equivalence will follow without the use of commuta-
tivity. Alternatively, if we include (νab.{x1 = a, x2 = b}, νab.{x1 = a, x2 = ab})
in S, then it follows that νgg′adf.{x1 = g, x2 = gad, x3 = gf , x4 = g′gadf} ∼=S

νgg′df.{x1 = g, x2 = gad, x3 = gf , x4 = g′gc}.

5.2 Key-Cycles

In their paper, Baudet et al. [10] also consider an equational theory for encryp-
tion schemes, and prove the soundness of static equivalence when key-cycles are
excluded. Another such example in the framework of static equivalence can be
found in the paper of Abadi et al. [1], where key-cycles are excluded as well. The
problem of key-cycles is not specific to static equivalence. It necessarily comes
up in the investigation of the relationship of formal and computational models;
already Abadi and Rogaway in [4] had to exclude key-cycles. There are two ways
to include them: Either the encryption scheme used for the interpretation has
to be secure even in the presence of key-cycles, or the formal indistinguishabil-
ity notion has to be relaxed. The problem with the former is that no realistic
encryption scheme is known to be secure for key-cycles. Laud proposed a simple
solution pursuing the second approach in [18]: Simply assume that the formal
adversary can decrypt all the ciphertexts that were encrypted by keys that are
part of a key-cycle. In the present formalism this means switching from static
equivalence to another indistinguishability relation. We illustrate this by first
recasting the original Abadi-Rogaway treatment into the present formalism and
then showing how Laud’s solution provides a special FIR.

The Abadi-Rogaway formal language of [4] gives a signature (Ssenc, Fsenc),
where Ssenc = (Ssenc, S′

senc, ≤S), with Ssenc = {Key,Data,Cipher,Pair}, S′
senc =

{Key}, Key ≤S Data, Cipher ≤S Data, Pair ≤S Data. The following function
symbols are in Fsenc:

Computational Soundness of Formal Indistinguishability 193

enc : Data × Key → Cipher symmetric encryption
dec : Data × Data → Data symmetric decryption
pair : Data × Data → Pair pairing
fst : Data → Data first projection
snd : Data → Data second projection

0, 1, error : Data constants

Let the equational theory Esenc be generated by the following equations:
dec(enc(x, y), y) = x, fst(pair(x, y)) = x, snd(pair(x, y)) = y,
pair(fst(x), snd(x)) = x, and furthermore, dec(x, y) = error whenever the sort
s(x) is ≤S-incomparable with Cipher or s(y) is incomparable with Key, and
fst(x) = snd(x) = error whenever s(x) is incomparable with Pair.

Given a computational encryption scheme (E , D, K), along with a computa-
tional way of pairing, it is straightforward how to assign a computational al-
gebra Asenc to this signature: Simply interpret the formal function symbols as
their computational counterpart, and let �Key�Asenc be the distribution of key
generation.

Definition 6. A frame ϕ is well-formed if ϕ does not contain the symbols
dec, fst, snd, error. For a well-formed frame ϕ, the set of recoverable keys
of ϕ are those keys that are deducible from ϕ, i. e., R-Keys(ϕ) = {k | k ∈
names(ϕ), k : Key, ϕ �Esenc k}. The set B-Keys(ϕ) consists of those keys that
encrypt the outermost undecryptable terms in ϕ, namely, those undecryptable
terms that are deducible from ϕ:

B-Keys(ϕ)={k∈names(ϕ) | ϕ�Esenc enc(T, k) for some T, and k �∈ R-Keys(ϕ)}

We say that B-Keys(ϕ) is cyclic in ϕ, if for some keys k1, k2, . . . , km ∈
B-Keys(ϕ) with k1 = km, there are terms M1, . . . , Mm with M1 = Mm such
that ki occurs in Mi in positions other than in the second argument of enc and
ϕ �Esenc enc(Mi, ki+1).

The reason for excluding some symbols from well-formed frames is that Abadi
and Rogaway only considered expressions built via encryption and pairing. But
these symbols of course can be used in the distinguishers M and N in the
definition of static equivalence! The result of Abadi and Rogaway then says
that if the encryption scheme is type-0 secure (as defined in [4]), then for two
well-formed frames, ϕ ≈Esenc ψ implies �ϕ�Asenc ≈ �ψ�Asenc whenever neither
B-Keys(ϕ) nor B-Keys(ψ) are cyclic in the corresponding frames..

The exclusion of key-cycles is necessary if the encryption scheme is just type-0
secure. In fact, all standard computational notions of security make it necessary
to exclude key-cycles. If the encryption scheme satisfies stronger security defi-
nitions, for instance if it is KDM-secure (see [5]), then key-cycles do not cause
problems, but no realistic KDM-secure encryptions are known at this time.

As we mentioned, following Laud’s method, we can keep the computational
algebra Asenc but switch from static equivalence to another formal indistinguisha-
bility relation on the formal side which is sound even in the presence of key-cycles.
Define S as static equivalence Ẽsenc minus pairs that contain key-cycles on at

194 G. Bana, P. Mohassel, and T. Stegers

least one side. Then ∼=S-soundness including key-cycles will hold. More precisely,
the following proposition is true:

Proposition 5. Let Asenc be the above (Ssenc, Fsenc)-computational algebra. Let
S ⊆ Fc × Fc be the following set:

S :=
{
(ϕ1, ϕ2)

∣∣∣(ϕ1, ϕ2)∈Ẽsenc and, ifϕi is well-formed,B-Keys(ϕi) is not cyclic
}
.

Let ∼=S be the formal indistinguishability relation generated by S. Then, for all
well-formed frames ϕ1 and ϕ2, ϕ1 ∼=S ϕ2 implies �ϕ1�Asenc ≈ �ϕ2�Asenc .

The proposition clearly holds on S, because from there we removed the the
key-cycles. Then the proof is similar to that of Proposition 4.

5.3 Boolean Algebra

We give an example where static equivalence identifies frames that are compu-
tationally clearly distinguishable, whereas a more fine-grained formal indistin-
guishability relation can do better.

Consider a signature (S, F), where S = ({B, S}, {B, S}, =), and F contains
the symbols ∧, ∨ : B → B, constants 0, 1: B, as well as LSB: S → B. Let
E be the equational theory generated by the set {(M, N) | M, N : B, M ↔
N is a tautology of propositional Boolean algebra}.

Let A denote the following (S, F)-computational algebra: supp(�S�Aη) =
{0, 1}η ⊂ {0, 1}∗, supp(�B�Aη) = {0, 1} ⊂ {0, 1}∗, where both spaces are
equipped with the uniform distribution over their support. The operations 0,
1, ∧, ∨ are interpreted as the obvious operations on the Boolean algebra {0, 1},
and LSBAη is defined by LSBAη (b1 . . . bη) = bη. It is clear that A is =E-sound.
However, it is not ≈E-sound because

νab.{x = LSB(a) ∧ LSB(b)} ≈E νcd.{x = LSB(c) ∨ LSB(d)}

if a, b : S, or, even more simply, νab.{x = a ∧ b} ≈E νcd.{x = c ∨ d} for
a, b : B, whereas the interpretation of the left-hand side is distributed so that
Pr[{x = 1}] = 1/4, and for the right-hand side Pr[{x = 1}] = 3/4, which are
clearly distinguishable. (We remark that while A does not satisfy a requirement
of Baudet et al. that, for two names a, b : B, Pr[e1, e2 ← �a, b�Aη ; e1 = e2] be
negligible, this can also be satisfied by making minor changes to the model.)

To remedy the problem, we can use instead of static equivalence a custom
formal indistinguishability relation. For a frame which has only sort B in its
domain, it is easy to compute explicitly the probability distribution of its inter-
pretation using only the formal expressions. Without writing down the explicit
recursive formula, just consider for example that for νab.{x1 = a ∧ b, x2 = a},
Pr[{x1 = 1, x2 = 1}] = 1/4, Pr[{x1 = 1, x2 = 0}] = 0, Pr[{x1 = 0, x2 = 1}] =
1/4, Pr[{x1 = 0, x2 = 0}] = 1/2. We can therefore define the binary relation S
generating the FIR so that S contains those pairs for which the domains only
have variables of sort B, and have identical probability distributions. This defin-
ition gives a formal indistinguishability relation that is both sound and faithful.

Computational Soundness of Formal Indistinguishability 195

6 Conclusion

We suggested a generalized notion of formal indistinguishability which provides
greater flexibility than static equivalence. This is needed because computational
distinguishability is much more than just trying to distinguish with the algebraic
manipulations allowed by the formal model. It is unrealistic to expect that an
indistinguishability relation defined in a purely algebraic manner in a relatively
simple formal model will cover all subtleties of computational indistinguisha-
bility. However, even though computational indistinguishability is a complex
notion, in many cases it is possible to distill a simple formal indistinguishability
relation, impose it on the formal model, and get a sound, meaningful theory.
The utility of this new definition was demonstrated in Section 5: We pointed out
natural models of certain equational theories in which static equivalence seems
to be an insufficiently coarse notion of formal indistinguishability, and showed
how to come up with different indistinguishability relations that do not identify
more expressions than needed.

References

1. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS
2006 and ETAPS 2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: POPL 2001. Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 104–115. ACM Press, New York (2001)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi Calculus.
Information and Computation, 148(1), 1–70 (1999)

4. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)

5. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in
the presence of key-cycles. In: di Vimercati, S.D.C., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 12–14. Springer, Heidelberg (2005)

6. Adão, P., Bana, G., Scedrov, A.: Computational and information-theoretic sound-
ness and completeness of formal encryption. In: CSFW. Proceedings of the 18th
IEEE Computer Security Foundations Workshop, pp. 170–184. IEEE Computer
Society Press, Los Alamitos (2005)

7. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In: Proceedings of the 17th IEEE Computer Security Foun-
dations Workshop, vol. 59, pp. 204–218. IEEE Computer Society Press, Los Alami-
tos (2004)

8. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) CCS. Proceedings of
the 10th ACM Conference on Computer and Communications Security, pp. 27–30.
ACM Press, New York (2003)

9. Bana, G., Mohassel, P., Stegers, T.: Computational soundness of formal indistin-
guishability and static equivalence. Cryptology ePrint Archive, Report 2006/323,
2006, http://eprint.iacr.org/

 http://eprint.iacr.org/

196 G. Bana, P. Mohassel, and T. Stegers

10. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of
equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
652–663. Springer, Heidelberg (2005)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS. 42nd IEEE Symposium on Foundations of Computer Science,
October 14–17 2001, pp. 136–145. IEEE Computer Society Press, Los Alamitos
(2001)

12. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-
thentication and key exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, Springer, Heidelberg (2006)

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 23–27. Springer, Heidelberg (1998)

14. Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilistic
polynomial-time semantics for a protocol security logic. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 11–15. Springer, Heidelberg (2005)

15. Dolev, D., Yao, A.C.: On the security of public-key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

16. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tems Sciences 28(2), 270–299 (1982)

17. Guttman, J.D., Thayer, F.J., Zuck, L.D.: The faithfulness of abstract protocol
analysis: Message authentication. In: Samarati, P. (ed.) CCS. Proceedings of the
8th ACM Conference on Computer and Communications Security, pp. 186–195.
ACM Press, New York (2001)

18. Laud, P.: Encryption cycles and two views of cryptography. In (NORDSEC). Pro-
ceedings of the 7th Nordic Workshop on Secure IT Systems, Karlstad, Sweden,
vol. 31, Karlstad University Studies (November 7–8 2002)

19. Laud, P.: Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In: Proceedings of the 2004 IEEE Symposium on Security and
Privacy, May 9–12 2004, pp. 9–12. IEEE Computer Society Press, Los Alamitos
(2004)

20. Micciancio, D., Warinschi, B.: Completeness theorems for the Abadi-Rogaway logic
of encrypted expressions. Journal of Computer Security 12(1), 99–130 (2004)

Secrecy Analysis in Protocol Composition Logic�

Arnab Roy1, Anupam Datta1, Ante Derek1, John C. Mitchell1,
and Jean-Pierre Seifert2

1 Department of Computer Science, Stanford University, Stanford, CA 94305, USA

2 Institute for Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

Abstract. Extending a compositional protocol logic with an induction
rule for secrecy, we prove soundness for a conventional symbolic protocol
execution model, adapt and extend previous composition theorems, and
illustrate the logic by proving properties of two key agreement proto-
cols. The first example is a variant of the Needham-Schroeder protocol
that illustrates the ability to reason about temporary secrets. The second
example is Kerberos V5. The modular nature of the secrecy and authen-
tication proofs for Kerberos makes it possible to reuse proofs about the
basic version of the protocol for the PKINIT version that uses public-key
infrastructure instead of shared secret keys in the initial steps.

1 Introduction

Two important security properties for key exchange and related protocols are
authentication and secrecy. Intuitively, authentication holds between two parties
if each is assured that the other has participated in the same session of the same
protocol. A secrecy property asserts that some data that is used in the protocol
is not revealed to others. If a protocol generates a fresh value, called a nonce, and
sends it in an encrypted message, then under ordinary circumstances the nonce
remains secret in the sense that only agents that have the decryption key can
obtain the nonce. However, many protocols have steps that receive a message
encrypted with one key, and send some of its parts out encrypted with a different
key. Since network protocols are executed asynchronously by independent agents,
some potentially malicious, it is non-trivial to prove that even after arbitrarily
many steps of independent protocol sessions, secrets remain inaccessible to an
attacker.

Our general approach involves showing that every protocol agent that receives
data protected by one of a chosen set of encryption keys only sends sensitive data
out under encryption by another key in the set. This reduces a potentially compli-
cated proof about arbitrary runs involving a malicious attacker to a case-by-case
analysis of how each protocol step might save and send data. We formalize this
form of inductive reasoning about secrecy in a set of new axioms and inference

� This work was partially supported by the NSF TRUST Science and Technology
Center. The first author was partially supported by a Siebel Fellowship. Part of the
work was done when the first and fifth authors were at Intel Corporation.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 197–213, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

198 A. Roy et al.

rules that are added to Protocol Composition Logic (PCL) [14,9,8,10,11], prove
soundness of the system over a conventional symbolic protocol execution model,
and illustrate its use with two protocol examples. The extended logic may be
used to prove authentication or secrecy, independently and in situations where
one property may depend upon the other. Among other challenges, the inductive
secrecy rule presented here is carefully designed to be sound for reasoning about
arbitrarily many simultaneous protocol sessions, and powerful enough to prove
meaningful properties about complex protocols used in practice. While the un-
derlying principles are similar to the “rank function method” [18] and work using
the strand space execution model [19], our system provides precise formal proof
rules that are amenable to automation. In addition, casting secrecy induction in
the framework of Protocol Composition Logic avoids limitations of some forms
of rank function arguments and eliminates the need to reason explicitly about
possible actions of a malicious attacker. Compositional secrecy proofs are made
possible by theorems developed in this paper, extending previous composition
theorems for a simpler proof system [11,15].

Our first protocol example is a variant of the Needham-Schroeder protocol, used
in [16] to illustrate a limitation of the original rank function method and motivate
an extension for reasoning about temporary secrets. The straightforward formal
proof in section 4 therefore shows that our method does not suffer from the limita-
tions identified in [16]. Intuitively, the advantage of our setting lies in the way that
modal formulas ofPCL state properties about specific points in protocol execution,
rather than only properties that must be true at all points in all runs.

Our second protocol example is Kerberos [17], which is widely used for au-
thenticated client-server interaction in local area networks. The basic protocol
has three sections, each involving an exchange between the client and a differ-
ent service. We develop a formal proof that is modular, with the proof for each
section assuming a precondition and establishing a postcondition that implies
the precondition of the following section. One advantage of this modular struc-
ture is illustrated by our proof for the PKINIT [7] version that uses public-key
infrastructure instead of shared secret keys in the initial steps. Since only the
first section of PKINIT is different, the proofs for the second and third sections
of the protocol remain unchanged. In previous work, Bella and Paulson use
theorem proving techniques to reason about properties of Kerberos that hold
in all traces containing actions of honest parties and a malicious attacker [3].
Our high-level axiomatic proofs are significantly more concise since we do not
require explicit reasoning about attacker actions. Another line of work uses a
multiset rewriting model to develop proofs in the symbolic and computational
model [4,2]. However, proofs in these papers use unformalized (though rigorous)
mathematical arguments and are not modular.

The rest of the paper is organized as follows. Some background on PCL is
given in section 2, followed by the secrecy-related axioms and proof rules in
section 3. The first protocol example is presented in section 4. Composition
theorems are developed in section 5, and applied in the proofs for Kerberos in
section 6. Finally, we conclude in section 7.

Secrecy Analysis in Protocol Composition Logic 199

2 Background

Protocol Composition Logic (PCL) is developed in [14,9,8,10], with [11] providing
a relatively succinct presentation of the most current form. A simple protocol
programming language is used to represent a protocol by a set of roles, such as
“Initiator”, “Responder” or “Server”, each specifying a sequence of actions to be
executed by an honest participant. Protocol actions include nonce generation,
encryption, decryption and communication steps (sending and receiving). Every
principal can be executing one or more copies of each role at the same time. We
use the word thread to refer to a principal executing one particular instance of
a role. Each thread X is a pair (X̂, η) where X̂ is a principal and η is a unique
session id. A run is a record of all actions executed by honest principals and the
attacker during protocol execution. The set of runs of a protocol is determined
by the operational semantics of the protocol programming language.

Table 1 summarizes the syntax of the logic used in this paper. Protocol proofs
usually use modal formulas of the form ψ[P]Xϕ. The informal reading of the
modal formula is that if X starts from a state in which ψ holds, and executes
the program P , then in the resulting state the security property ϕ is guaranteed
to hold irrespective of the actions of an attacker and other honest principals. The
formulas of the logic are interpreted over protocol runs. We say that protocol Q
satisfies formula ϕ, denoted Q � ϕ, if in all runs R of Q the formula ϕ holds, i.e.,
Q, R � ϕ. For example, Send(X, t) holds in a run where the thread X has sent the
term t. For every protocol action, there is a corresponding action predicate which
asserts that the action has occurred in the run. Action predicates are useful for
capturing authentication properties of protocols since they can be used to assert
which principals sent and received certain messages. Encrypt(X, t) means that X
computes the encrypted term t, while New(X, n) means X generates fresh nonce
n. Honest(X̂) means that X̂ is acting honestly, i.e., the actions of every thread
of X̂ precisely follows some role of the protocol. Start(X) means that the thread
X did not execute any actions in the past. Has(X, t) means X can compute the
term t using symbolic Dolev-Yao rules, e.g. receiving it in the clear or receiving
it under encryption where the decryption key is known.

To illustrate the terminology used in this section we describe the formalization
of Kerberos V5, which is a protocol used to establish mutual authentication and
a shared session key between a client and an application server [17]. It involves

Table 1. Syntax of the logic

Action formulas
a ::= Send(X, t) | Receive(X, t) | New(X, t) | Encrypt(X, t) | Start(X)
Formulas

ϕ ::= a | Has(X, t) | Honest(X̂) | ϕ ∧ ϕ | ¬ϕ | ∃V. ϕ
Modal form
Ψ ::= ϕ [Actions]X ϕ

200 A. Roy et al.

trusted principals known as the Kerberos Authentication Server (KAS) and the
Ticket Granting Server (TGS). There are pre-shared long term keys between the
client and the KAS, the KAS and the TGS, and the TGS and the application
server. Typically, the KAS shares long-term keys with a number of clients and the
TGS with a number of application servers. However, there is no pre-shared long
term secret between a given client and an application server. Kerberos achieves
establishment of mutual authentication and a shared session key between the
client and the application server using the chain of trust leading from the client
to the KAS and the TGS to the application server.

Kerberos has four roles, one for each kind of participant - Client, KAS, TGS
and Server. The long-term shared keys are written here in the form ktype

X,Y where
X and Y are the principals sharing the key. The type appearing in the superscript
indicates the relationship between X and Y in the transactions involving the use
of the key. There are three types required in Kerberos: c → k indicates that X
is acting as a client and Y is acting as a KAS, t → k is for TGS and KAS and
s → t is for application server and TGS. Kerberos runs in three stages with the
client role participating in all three. The description of the roles is based on the
A level formalization of Kerberos V5 in [5]. We describe the formalization of the
first stage in some detail so that the rest is easy to follow.

In the first stage, shown below, the client thread (C) generates a nonce (n1)
and sends it to the KAS (K̂) along with the identities of the TGS (T̂) and itself.
The KAS generates a new nonce (AKey - Authentication Key) to be used as a
session key between the client and the TGS. It then sends this key along with some
other fields to the client encrypted (represented by the match actions) under two
different keys - one it shares with the client (kc→k

C,K) and one it shares with the TGS
(kt→k

T,K). The encryption with kt→k
T,K is called the ticket granting ticket (tgt). The

client extracts AKey by decrypting the component encrypted with kc→k
C,K .

Client = (C, K̂, T̂ , Ŝ, t) [
new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;
match enckc

as Esym[kc→k
C,K](AKey.n1.T̂);

· · · · · ·

KAS = (K) [

receive Ĉ.T̂ .n1;
new AKey;

match Esym[kt→k
T,K](AKey.Ĉ) as tgt;

match Esym[kc→k
C,K](AKey.n1.T̂)

as enckc;

send Ĉ.tgt.enckc;
]K

In the second stage (not shown), the client uses the session key AKey and
the ticket granting ticket to interact with the TGS and gets a new session key
SKey and a service ticket (st). In the third stage, the client encrypts its identity
and a timestamp with SKey and sends it to the application server along with
the service ticket. The server decrypts st and extracts the SKey. It then uses

Secrecy Analysis in Protocol Composition Logic 201

the session key to decrypt the client’s encryption, matches the first component
of the decryption with the identity of the client and extracts the timestamp.
It then encrypts the timestamp with the session key and sends it back to the
client. The client decrypts the message and matches it against the timestamp it
used. The control flow of Kerberos exhibits a staged architecture where once one
stage has been completed successfully, the subsequent stages can be performed
multiple times or aborted and started over for handling errors.

3 Proof System for Secrecy Analysis

In this section, we extend PCL with new axioms and rules for establishing se-
crecy. Secrecy properties are formalized using the Has(X, s) predicate and requir-
ing that X̂ refer only to honest principals who share the secret s. In a typical
two party protocol, X̂ is one of two honest agents and s is a nonce generated
by one of them. As an intermediate step, we establish that all occurrences of
the secret on the network are protected by keys. This property can be proved
by induction over possible actions by honest principals and reasoning that no
action leaks the secret if it was not compromised already.

We introduce the predicate SafeMsg(M, s, K) to assert that every occurrence of
s in message M is protected by a key in the set K. Technically speaking, for each
n > 0, there is an (n + 2)-ary predicate SafeMsgn(M, s, K), with n corresponding
to the size of set K. However, we suppress this syntactic detail in this paper. The
semantic interpretation of this predicate is defined by induction on the structure
of messages. It is actually independent of the protocol and the run.

Definition 1 (SafeMsg). Given a run R of a protocol Q, we say Q, R �
SafeMsg(M, s, K) if there exists an i such that SafeMsgi(M, s, K) where SafeMsgi

is defined as follows:

SafeMsg0(M, s, K) if M is an atomic term different from s

SafeMsg0(HASH(M), s, K) for any M

SafeMsgi+1(M0.M1, s, K) if SafeMsgi(M0, s, K) and SafeMsgi(M1, s, K)
SafeMsgi+1(Esym[k](M), s, K) if SafeMsgi(M, s, K) or k ∈ K
SafeMsgi+1(Epk[k](M), s, K) if SafeMsgi(M, s, K) or k̄ ∈ K

The axioms SAF0 to SAF5 below parallel the semantic clauses and follow
immediately from them. Equivalences follow as the term algebra is free.

SAF0 ¬SafeMsg(s, s, K) ∧ SafeMsg(x, s, K),
where x is an atomic term different from s

SAF1 SafeMsg(M0.M1, s, K) ≡ SafeMsg(M0, s, K) ∧ SafeMsg(M1, s, K)
SAF2 SafeMsg(Esym[k](M), s, K) ≡ SafeMsg(M, s, K) ∨ k ∈ K
SAF3 SafeMsg(Epk[k](M), s, K) ≡ SafeMsg(M, s, K) ∨ k̄ ∈ K
SAF4 SafeMsg(HASH(M), s, K)

202 A. Roy et al.

The formula SendsSafeMsg(X, s, K) states that all messages sent by thread
X are “safe” while SafeNet(s, K) asserts the same property for all threads.
These formulas may be written as SendsSafeMsg(X, s, K) ≡ ∀M. (Send(X, M) ⊃
SafeMsg(M, s, K)) and SafeNet(s, K) ≡ ∀X. SendsSafeMsg(X, s, K).

In secrecy proofs, we will explicitly assume that the thread generating the
secret and all threads with access to a relevant key belong to honest principals.
This is semantically necessary since a dishonest principal may reveal its key,
destroying secrecy of any data encrypted with it. These honesty assumptions
are expressed by the formulas KeyHonest and OrigHonest respectively. KOHonest
is the conjunction of the two.

– KeyHonest(K) ≡ ∀X. ∀k ∈ K. (Has(X, k) ⊃ Honest(X̂))
– OrigHonest(s) ≡ ∀X. (New(X, s) ⊃ Honest(X̂)).
– KOHonest(s, K) ≡ KeyHonest(K) ∧ OrigHonest(s)

We now have the necessary technical machinery to state the induction rule. At
a high-level, the NET rule states that if each “possible protocol step” P locally
sends out safe messages, assuming all messages in the network were safe prior to
that step, then all messages on the network are safe. A possible protocol step P
is drawn from the set of basic sequences BS for all roles of the protocol. A set
of basic sequences of a role is any partition of the sequence of actions in the role
such that if any element sequence has a receive action then it is only at the
beginning.

NET ∀ρ ∈ Q.∀P ∈ BS(ρ).

SafeNet(s, K) [P]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s, K)
Q 	 KOHonest(s, K) ∧ Φ ⊃ SafeNet(s, K) (∗)

(∗): [P]A does not capture free variables in Φ and K and the variable s. Φ should
be prefix closed .

The axioms NET0 to NET3 below are used to establish the antecedent of the
NET rule. Many practical security protocols consist of steps that each receive
a message, perform some operations, and then send a resulting message. The
proof strategy in such cases is to use NET1 to reason that messages received
from a safe network are safe and then use this information and the SAF axioms
to prove that the output message is also safe.

NET0 SafeNet(s, K) []X SendsSafeMsg(X, s, K)

NET1 SafeNet(s, K) [receive M]X SafeMsg(M, s, K)

NET2 SendsSafeMsg(X, s, K) [a]X SendsSafeMsg(X, s, K), where a is not a send.

NET3 SendsSafeMsg(X, s, K) [send M]X SafeMsg(M, s, K) ⊃ SendsSafeMsg(X, s, K)

Finally, POS and POSL are used to infer secrecy properties expressed using
the Has predicate. The axiom POS states that if we have a safe network with
respect to s and key-set K then the only principals who can possess an unsafe
message are the generator of s or possessor of a key in K. The POSL rule lets
a thread use a similar reasoning locally.

Secrecy Analysis in Protocol Composition Logic 203

POS SafeNet(s, K) ∧ Has(X, M) ∧ ¬SafeMsg(M, s, K)

⊃ ∃k ∈ K. Has(X, k) ∨ New(X, s)

POSL
ψ ∧ SafeNet(s, K) [S]X SendsSafeMsg(X, s, K) ∧ Has(Y, M) ∧ ¬SafeMsg(M, s, K)

ψ ∧ SafeNet(s, K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)
,

where S is any basic sequence of actions.
Following are useful theorems which follow easily from the axioms.

SREC SafeNet(s, K) ∧ Receive(X, M) ⊃ SafeMsg(M, s, K)
SSND SafeNet(s, K) ∧ Send(X, M) ⊃ SafeMsg(M, s, K)

We write Γ 	 γ if γ is provable from the formulas in Γ and any axiom or
inference rule of the proof system except the honesty rule HON from previous
formulations of PCL and the secrecy rule NET. We write Q 	 γ if γ is provable
from the axioms and inference rules of the proof system including the rules HON
and NET for protocol Q.

Given a set of messages M, let us denote by M̃ to be the minimal set con-
taining M and closed under pairing, unpairing, encryption with any public key
or symmetric key, decryption with a private key or a symmetric key not in K
and hashing.

Theorem 1. If M is a set of messages, all safe with respect to secret s and
key-set K, then M̃ also contains only safe messages.

Proof. Any element m ∈ M̃ can be constructed from elements in M using a
finite sequence of the operations enumerated. From the semantics of SafeMsg it
is easily seen that all the operations preserve safeness. Hence by induction, all
the elements of M̃ will be safe. ��

Lemma 1. If a thread X, at any point in any protocol, possesses an unsafe
message with respect to secret s and key-set K then either X received an unsafe
message earlier, or X generated s, or X possesses a key in K.

Proof. Suppose thread X does not satisfy any of the conditions enumerated.
Then the set of messages M it initially knows and has received are safe mes-
sages. Since it does not have a key in K, M̃ is a superset of all the messages
it can construct from M (in the Dolev-Yao model). Hence, by theorem 1, X
cannot compute any unsafe message. So it cannot possess an unsafe message –
a contradiction. ��

Theorem 2 (Soundness). If Q 	 γ, then Q � γ. Furthermore, if Γ 	 γ, then
Γ � γ.

Proof. Soundness for this proof system is proved, by induction on the length of
proofs of the axioms and rules, the most interesting of which are sketched below.

NET: Consider a run R of protocol Q such that the consequent of NET
is false. We will show that the antecedent is false too. We have Q, R �

204 A. Roy et al.

KOHonest(s, K) ∧ Φ, but Q, R � SafeNet(s, K). This implies that Q, R �
∃m, X. Send(X, m) ∧ ¬SafeMsg(m, s, K). Note that there must be a first in-
stance when an unsafe message is sent out - let m̃ be the first such message.
Hence, we can split R into R0.R1.R2 such that Q, R0 � SafeNet(s, K) and
R1 = 〈X sends m̃; Y receives m̃〉, for some Y .

Since this is the first send of an unsafe message, therefore X could not have
received an unsafe message earlier. Therefore, by the lemma, either X generated
s or, X has a key in K. In both cases, KOHonest(s, K) implies Honest(X̂).
Therefore the fragment [send m̃]X must be part of a sequence of actions [P]X
such that P is a basic sequence of one of the roles in Q - but, this violates the
premise of NET. Hence the theorem. The need for Φ to be prefix-closed comes
from a more detailed version of this proof .

POS: SafeNet(s, K) implies no thread sent out an unsafe message in the run.
Hence no thread received an unsafe message. Therefore, by lemma 1, any thread
X possessing an unsafe message must have either generated s or possesses a key
in K.

POSL: The premise of the rule informally states that starting from a “safe”
network and additional constraints ψ thread X concludes that some thread Y
possesses an unsafe message M in all possible runs of any protocol. Specifically
this should be true for a run where thread X executes the basic sequence [S]X
uninterspersed with the actions of any other thread except the receipt of mes-
sages sent by X . Now the premise implies that X only sends safe messages -
also since S is a basic sequence, the only message that X can receive in [S]X
will be only at its beginning, which, due to the starting “safe” network precon-
dition will be a safe message. Hence we can conclude that thread Y possessed
an unsafe message before X started executing [S]X i.e., when SafeNet(s, K) was
true. Therefore using axiom POS we derive that thread Y either generated s or
possesses a key in K, which establises the conclusion of POSL. ��

4 Analysis of a Variant of NSL

In this section we use the proof system developed in section 3 to prove a se-
crecy property of a simple variant NSLV AR of the Needham-Schroeder-Lowe
protocol, proposed in [16], in which parties A and B use an authenticated tem-
porary secret na to establish a secret key k that is in turn used to protect the
actual message m. The main difference from the original NSL protocol is that
the initiator’s nonce is leaked in the final message. Reasoning from A’s point of
view, nonce na should be secret between A and B at the point of the run in
the protocol where A is just about to send the last message. This protocol was
originally used to demonstrate a limitation of the original rank function method
in reasoning about temporary secrets. Modal formulas in PCL allow us to natu-
rally express and prove properties that hold at intermediate points of a protocol
execution.

Secrecy Analysis in Protocol Composition Logic 205

Formally, NSLV AR is a protocol defined by roles {Init,Resp}, with the
roles, written using the protocol program notation, given below.

Init = (A, B̂, m) [
new na;

match Epk[kB](Â.na) as encr1;
send encr1;

receive enci;

match enci as Epk[kA](na.B̂.k);
match Esym[k](m) as encr2;
send encr2.na;
]A

Resp = (B) [
receive encr1;

match encr1 as Epk[kB](Â.na);
new k;

match Epk[kA](na.B̂.k) as enci;
send enci;

receive encr2.na;
match encr2 as Esym[k](m);
]B

Theorem 3. Let ˜Init denote the initial segment of the initiator’s role ending
just before the last send action. The nonce na is a shared secret between A and B
in every state of the protocol where A has executed ˜Init and no further actions,
as long as both Â and B̂ are honest. Formally,

NSLV AR 	 [˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ (Has(X, na) ⊃ X̂ = Â ∨ X̂ = B̂)

Proof Sketch. To prove the secrecy property, we start off by proving an authen-
tication property [˜Init]A Honest(Â)∧Honest(B̂) ⊃ Φ, where Φ is the conjunction
of the following formulas:

Φ1 : ∀X, Ŷ . New(X, na) ∧ Send(X, Epk[kY](X̂.na)) ⊃ Ŷ = B̂

Φ2 : ∀X, Ŷ , n. New(X, na) ⊃ ¬Send(X, Epk[kY](n.X̂.na))
Φ3 : ∀X, e. New(X, na) ⊃ ¬Send(X, e.na)

Φ4 : Honest(X̂) ∧ Send(X, Esym[k0](m0).n) ⊃ New(X, n)

Φ5 : Honest(X̂) ∧ EncSend(X, Epk[kY](X̂ ′.n)) ⊃ X̂ ′ = X̂

Informally, Φ1 and Φ2 hold because from the thread A’s point of view it is known
that it itself generated the nonce na and did not send it out encrypted with any
other principal’s public key except B̂’s and that too in a specific format described
by the protocol. Φ3 holds because we are considering a state in the protocol
execution where A has not yet sent the last message - sending of the last message
will make Send(A, e.na) true with e = Esym[k](m). These intuitive explanations
can be formalized using a previously developed fragment of PCL but we will
omit those steps in this paper. Φ4 and Φ5 follow from a straightforward use of
the honesty rule.

206 A. Roy et al.

In the next step we prove the antecedents of the NET rule. We take
K = {k̄A, k̄B} where the bar indicates private key which makes KeyHon(K) ≡
Honest(Â) ∧ Honest(B̂). In addition, since thread A generates na, therefore
KOHonest(na, K) ≡ Honest(Â) ∧ Honest(B̂). We show that all basic sequence
of the protocol send “safe” messages, assuming that formula Φ holds and that
the predicate SafeNet holds at the beginning of that basic sequence. Formally,
for every basic sequence P ∈ {Init1, Init2,Resp1,Resp2} we prove that:
SafeNet(na, K)[P]A′ Honest(Â′) ∧ Φ ⊃ SendsSafeMsg(A′, na, K) ��
Some secrecy proofs using the CSP [18] or strand space [19] protocol execution
model use inductive arguments that are similar to the form of inductive reasoning
codified in our formal system.For example,withinCSP, properties ofmessages that
may appear on the network have been identified by defining a rank function [18,16],
with an inductive proof used to show that rank is preserved by the attacker actions
and all honest parties. In comparison, arguments in our formal logic use a conjunc-
tion involving the SafeNet predicate and protocol specific properties Φ in our in-
ductive hypotheses. These two formulas together characterize the set of possible
messages appearing on the network and can be viewed as a symbolic definition of
a rank function. We believe that our method is as powerful as the rank function
method for any property expressible in our logic. However, it is difficult to prove a
precise connection without first casting the rank function method in a formal set-
ting that relies on a specific class of message predicates.

One drawback of the rank function approach is that the induction is per-
formed by “global” reasoning. While analyzing a protocol, all relevant proper-
ties of the system (such as authentication and secrecy, for example) are modelled
using a single rank function and proved to hold simultaneously. This makes the
method somewhat less applicable since it cannot handle protocols which deal
with temporary secrets or use authentication to ensure secrecy properties. In
contrast, PCL allows separation and incremental proofs of different properties.
Although some of these issues can be resolved by extensions of the rank function
method [13,12], the PCL approach seems more general and may be better suited
for some applications.

5 Compositional Reasoning for Secrecy

In this section, we present composition theorems that allow secrecy proofs of
compound protocols to be built up from proofs of their parts. An application
of this method to the Kerberos protocol is given in the next section. We con-
sider three kinds of composition operations on protocols—parallel, sequential,
and staged—as in our earlier work [11,15]. However, adapting that approach for
reasoning about secrecy requires some work. One central concept in our compo-
sitional proof methods is the notion of an invariant. An invariant for a protocol
is a logical formula that characterizes the environment in which it retains its
security properties. While in previous work we had one rule for establishing
invariants (the HON rule [11]), reasoning about secrecy requires, in addition,
the NET rule introduced in this paper. A second point of difference arises from

Secrecy Analysis in Protocol Composition Logic 207

the fact that reasoning about secrecy requires a certain degree of global knowl-
edge. Specifically, while proving that a protocol step does not violate secrecy,
it is sometimes necessary to use information from earlier steps. In the technical
presentation, this history information shows up as preconditions in the secrecy
induction of the sequential and staged composition theorems.

Definition 2 (Parallel Composition). The parallel composition Q1 ⊗ Q2 of
protocols Q1 and Q2 is the union of the sets of roles of Q1 and Q2.

The parallel composition operation allows modelling agents who simultaneously
engage in sessions of multiple protocols. The parallel composition theorem pro-
vides a method for ensuring that security properties established independently
for the constituent protocols are still preserved in such a situation.

Theorem 4 (Parallel Composition). If Q1 	 Γ and Γ 	 Ψ and Q2 	 Γ then
Q1 ⊗ Q2 	 Ψ , where Γ denotes the set of invariants used in the proof of Ψ .

One way to understand the parallel composition theorem is to visualize the
proof tree for Ψ for protocol Q1 in red and green colors. The steps which use
the invariant rules are colored red and correspond to the part Q1 	 Γ , while all
other proof steps are colored green and correspond to the part Γ 	 Ψ . While
composing protocols, all green steps are obviously preserved since they involve
proof rules which hold for all protocols. The red steps could possibly be violated
because of Q2. For example, one invariant may state that honest principals only
sign messages of a certain form, while Q2 may allow agents to sign other forms
of messages. The condition Q2 	 Γ ensures that this is not the case, i.e., the red
steps still apply for the composed protocol.

Definition 3 (Sequential Composition). A protocol Q is a sequential com-
position of two protocols Q1 and Q2, if each role of Q is obtained by the sequential
composition of a role of Q1 with a role of Q2.

In practice, key exchange is usually followed by a secure message transmission
protocol which uses the resulting shared key to protect data. Sequential compo-
sition is used to model such compound protocols. Formally, the composed role
P1; P2 is obtained by concatenating the actions of P1 and P2 with the output
parameters of P1 substituted for the input parameters of P2 (cf. [11]).

Theorem 5 (Sequential Composition). If Q is a sequential composition
of protocols Q1 and Q2 then we can conclude Q 	 KOHonest(s, K) ∧ Φ ⊃
SafeNet(s, K) if the following conditions hold for all P1; P2 in Q, where P1 ∈ Q1
and P2 ∈ Q2:

1. (Secrecy induction)
– ∀i.∀S ∈ BS(Pi). θPi ∧ SafeNet(s, K) [S]X Honest(X̂) ∧ Φ ⊃

SendsSafeMsg(X, s, K)
2. (Precondition induction)

– Q1 ⊗ Q2 	 Start(X) ⊃ θP1 and Q1 ⊗ Q2 	 θP1 [P1]X θP2

– ∀i.∀S ∈ BS(Pi). θPi [S]X θPi .

208 A. Roy et al.

The final conclusion of the theorem is a statement that secrecy of s is preserved
in the composed protocol. The secrecy induction is very similar to the NET rule.
It states that all basic sequences of the two roles only send out safe messages.
This step is compositional since the condition is proved independently for steps
of the two protocols. One point of difference from the NET rule is the additional
precondition θPi . This formula usually carries some information about the his-
tory of the execution, which helps in deciding what messages are safe for A to
send out. For example, if θPi says that A received some message m, then it is
easy to establish that m is a safe message for A to send out again. The precondi-
tion induction proves that the θPi ’s hold at each point where they are assumed
in the secrecy induction. The first bullet states the base case of the induction:
θP1 holds at the beginning of the execution and θP2 holds when P1 completes.
The second bullet states that the basic sequences of P1 and P2 preserve their
respective preconditions. This theorem is existential in the preconditions, i.e.,
the theorem holds if there exist any set of formulas θPi satisfying the conditions.

Definition 4 (Staged Composition). A protocol Q is a staged com-
position of protocols Q1, Q2, . . . , Qn if each role of Q is of the form
RComp(〈R1, R2, . . . , Rn〉), where Ri is a role of protocol Qi.

Consider the representation of sequential composition of n protocols as a di-
rected graph with edges from Qi to Qi+1. The staged composition operation
extends sequential composition by allowing self loops and arbitrary backward
arcs in this chain. This control flow structure is common in practice, e.g., Ker-
beros [17], IEEE 802.11i [1], and IKEv2 [6]. A role in this composition, denoted
RComp(〈...〉) corresponds to a possible execution path in the control flow graph
by a single thread (cf. [15]). Note that the roles are built up from a finite number
of basic sequences of the component protocol roles.

Theorem 6 (Staged Composition). If Q is a staged composition of protocols
Q1, Q2, · · · , Qn then we can conclude Q 	 KOHonest(s, K) ∧ Φ ⊃ SafeNet(s, K)
if for all RComp(〈P1, P2, · · · , Pn〉) ∈ Q:

1. (Secrecy induction)
– ∀i.∀S ∈ BS(Pi). θPi ∧ SafeNet(s, K) [S]X Honest(X̂) ∧ Φ ⊃

SendsSafeMsg(X, s, K)
2. (Precondition induction)

– Q1 ⊗ Q2 · · · ⊗ Qn 	 Start(X) ⊃ θP1 and Q1 ⊗ Q2 · · · ⊗ Qn 	
∀i. θPi [Pi]X θPi+1

– ∀i.∀S ∈
⋃

j≥i BS(Pj). θPi [S]X θPi .

The secrecy induction for staged composition is the same as for sequential com-
position. However, the precondition induction requires additional conditions to
account for the control flows corresponding to backward arcs in the graph. The
technical distinction surfaces in the second bullet of the precondition induction.
It states that precondition θPi should also be preserved by basic sequences of
all higher numbered components, i.e., components from which there could be
backward arcs to the beginning of Pi. Again, the theorem holds if there exist
any set of formulas θPi satisfying the conditions.

Secrecy Analysis in Protocol Composition Logic 209

6 Analysis of Kerberos

In this section we analyze Kerberos V5, which was described in section 2. The
security properties of Kerberos that we prove are listed in table 2. We abbre-
viate the honesty assumptions by defining Hon(X̂1, · · · , X̂n) ≡ Honest(X̂1) ∧
· · · Honest(X̂n). The security objectives are of two types: authentication and se-
crecy. The authentication objectives take the form that a message of a certain
format was indeed sent by some thread of the expected principal. The secrecy
objectives take the form that a putative secret is known only to certain princi-
pals. For example, AUTHclient

kas states that when the thread C finishes executing
the Client role, some thread of K̂ (the KAS) indeed sent the expected mes-
sage; SECclient

akey states that the authorization key is secret after execution of the
Client role by C; the other security properties are analogous.

Theorem 7 (KAS Authentication). On execution of the Client role by
a principal it is guaranteed that the intended KAS indeed sent expected re-
sponse assuming that the both the client and the KAS are honest. Similar re-
sult holds for a principal executing the TGS role. Formally, KERBEROS 	
AUTHclient

kas , AUTHtgs
kas

Proof Sketch. At a high level, the authentication proofs start by reasoning
that a ciphertext could have been produced only by one of the possessors of the
corresponding key. As an example, observe that in the first stage of Kerberos
(described in section 2), the client decrypts a ciphertext encrypted with a key
shared only between itself and the KAS (kc→k

C,K). Hence we can infer that one
of them did the encryption. However, it is still not obvious that the client

Table 2. Kerberos Security Properties

SECakey : Hon(Ĉ, K̂, T̂) ⊃ (Has(X, AKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂})
SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (Has(X, SKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K](AKey.Ĉ).Esym[kc→k

C,K](AKey.n1.T̂))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂) ⊃ ∃n1. AUTHkas

SECtgs
akey : [TGS]T SECakey

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂)

SECtgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

210 A. Roy et al.

itself did not produce the ciphertext! Some other thread of the client could have
potentially created the ciphertext which could have been fed back to the thread
under consideration as a reflection attack. We discount this case by observing
that the client role of Kerberos never encrypts with a key of type c → k. This
property is an invariant of Kerberos proved by induction over all the protocol
role programs. The HON rule enables us to perform this induction in the proof
system. Thus, so far, we have reasoned that the encryption was done by the
KAS. We again observe that any role of Kerberos which does an encryption of
the specific form as in stage one also sends out a message of the intended form
(AUTHkas in table 2). This is also an invariant of Kerberos. This concludes
the proof of AUTHclient

kas . The proof of AUTHtgs
kas follows the same high level

reasoning. ��
Theorem 8 (Authentication Key Secrecy). On execution of the Client
role by a principal, secrecy of the Authentication Key is preserved assuming
that the client, the KAS and the TGS are all honest. Similar results hold
for principals executing the KAS and TGS roles. Formally, KERBEROS 	
SECclient

akey , SECkas
akey , SECtgs

akey

Proof Sketch. This theorem states a secrecy property for the Authentication
Key AKey. Observe that in the first stage, the KAS sends out AKey encrypted
under two different keys - kc→k

C,K and kt→k
T,K , and the client uses AKey as an en-

cryption key. As a first approximation we conjecture that in the entire protocol
execution, AKey is either protected by encryption with either of the keys in
K = {kc→k

C,K , kt→k
T,K } or else used as an encryption key in messages sent to the

network by honest principals. This seems like a claim to be established by in-
duction. As a base case, we establish that the generator of AKey (some thread
of the KAS) satisfies the conjecture. The induction case is: whenever an honest
principal decrypts a ciphertext with one of the keys in K, it ensures that new
terms generated from the decryption are re-encrypted with some key in K in any
message sent out.

When we are reasoning from the point of view of the KAS (as in SECkas
akey),

we already know the initial condition - that the KAS sent out AKey encrypted
under only these keys. However, when arguing from the point of view of the
client and the TGS (as in SECclient

akey and SECtgs
akey), we need to have some

authentication conditions established first. These conditions are generally of the
form that the KAS indeed behaved in the expected manner. Reasoning from this
premise, it turns out that our initial conjecture is correct.

In the formal proof, we show that Kerberos is safe with respect to the nonce
AKey and the set of keys K. The induction idea is captured, in its simplest
form, by the proof rule NET. However, as Kerberos has a staged structure we
use the staged composition theorem (theorem 6) which builds upon the rule
NET. The core of the proof is the secrecy induction which is an induction over
all the basic sequences of all the protocol roles. The authentication condition Φ
is easily derived from the KAS Authentication theorem (theorem 7). The staged
composition theorem allows us to facilitate the secrecy induction by obtaining
inferences from the information flow induced by the staged structure of Kerberos

Secrecy Analysis in Protocol Composition Logic 211

in a simple and effective way. The secrecy induction is modular as the individual
basic sequences are small in themselves. Secrecy of AKey now follows from by
the axiom POS. ��

Theorem 9 (TGS Authentication). On execution of the Client role by a
principal it is guaranteed that the intended TGS indeed sent the expected re-
sponse assuming that the client, the KAS and the TGS are all honest. Similar
result holds for a principal executing the Server role. Formally, KERBEROS 	
AUTHclient

tgs , AUTHserver
tgs

Proof Sketch. The proof of AUTHserver
tgs is very similar to the proof for theorem

7. The proof of AUTHclient
tgs uses the secrecy property SECclient

akey established in
theorem 8 . At a high level, the client reasons that since AKey is known only
to Ĉ, K̂ and T̂ , the term Esym[AKey](SKey.n2.Ŝ) - which it receives during
the protocol execution - could only have been computed by one of them. Some
non-trivial technical effort is required to prove that this encryption was indeed
done by a thread of T̂ and not by any thread of Ĉ or K̂, which could have been
the case if e.g., there existed a reflection attack. After showing that it was indeed
a thread of T̂ who encrypted the term, we use the honesty rule to show that it
indeed sent the expected response to C’s message. ��

Theorem 10 (Service Key Secrecy). On execution of the Client role by a
principal, secrecy of the Service Key is preserved assuming that the client, the
KAS, the TGS and the application server are all honest. Similar result holds for a
principal executing the TGS role. Formally, KERBEROS 	 SECclient

skey , SECtgs
skey

Proof Sketch. The idea here is that the Service Key SKey is protected by the
key-set {ks→t

S,T , AKey}. The proof of this theorem follows the same high level
steps as the proof of theorem 8. ��

Kerberos with PKINIT. We prove theorems for Kerberos with PKINIT [20]
that are analogous to theorems 7-10. In the first stage of Kerberos with PKINIT,
the KAS establishes the authorization key encrypted with a symmetric key which
in turn is sent to the client encrypted with its public key. For client Ĉ and KAS
K̂ let us denote this symmetric key by kpkinit

C,K . Since the structure of the rest of
the protocol remains the same with respect to the level of formalization in this
paper [7], we can take advantage of the PCL proofs for the symmetric key version.
In particular, the proofs for the properties of Kerberos with PKINIT analogous
to AUTHtgs

kas, AUTHclient
tgs and AUTHserver

tgs are identical in structure to the
symmetric key version. The proof of the property corresponding to AUTHclient

kas

is different because of the differing message formats in the first stage. There is an
additional step of proving the secrecy of kpkinit

C,K , after which the secrecy proofs
of AKey and SKey are reused with only the induction over the first stage of the
client and the KAS being redone.

212 A. Roy et al.

7 Conclusion

We present formal axioms and proof rules for inductive reasoning about secrecy
and prove soundness of this system over a conventional symbolic model of pro-
tocol execution. The proof system uses a safe message predicate to express that
any secret conveyed by the message is protected by a key from a chosen list. This
predicate allows us to define two additional concepts: a principal sends safe mes-
sages if every message it sends is safe, and the network is safe if every message
sent by every principal is safe. Our main inductive rule for secrecy, NET, states
that if every honest principal preserves safety of the network, then the network is
safe, assuming that only honest principals have access to keys in the chosen list.
The remainder of the system makes it possible to discharge assumptions used
in the proof, and prove (when appropriate) that only honest principals have the
chosen keys. While it might initially seem that network safety depends on the
actions of malicious agents, a fundamental advantage of Protocol Composition
Logic is that proofs only involve induction over protocol steps executed by honest
parties.

We illustrate the expressiveness of the logic by proving properties of two pro-
tocols: A variant of the Needham-Schroeder protocol that illustrates the ability
to reason about temporary secrets, and Kerberos V5. The modular nature of the
secrecy and authentication proofs for Kerberos makes it possible to reuse proofs
about the basic version of the protocol for the PKINIT version that uses public-
key infrastructure instead of shared secret keys in the initial steps. Compositional
secrecy proofs are made possible by the composition theorems developed in this
paper.

In an as-yet unpublished result, we have also developed a proof system for
secrecy analysis that is sound over a computational cryptographic protocol ex-
ecution model. While the Kerberos proofs are similar in that proof system, we
have been unable to formulate computationally sound proofs of NSL and vari-
ants.

References

1. IEEE P802.11i/D10.0. Medium Access Control (MAC) security enhancements,
amendment 6 to IEEE Standard for local and metropolitan area networks part
11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifica-
tions (April 2004)

2. Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Cryptograph-
ically sound security proofs for basic and public-key kerberos. In: Proceedings of
11th European Symposium on Research in Computer Security (2006)

3. Bella, G., Paulson, L.C.: Kerberos version IV: Inductive analysis of the secrecy
goals. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ES-
ORICS 1998. LNCS, vol. 1485, pp. 361–375. Springer, Heidelberg (1998)

4. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: A Formal Analysis of Some
Properties of Kerberos 5 Using MSR. In: Fifteenth Computer Security Foundations
Workshop — CSFW-15, Cape Breton, NS, Canada, 24–26 June 2002, pp. 175–190.
IEEE Computer Society Press, Los Alamitos (2002)

Secrecy Analysis in Protocol Composition Logic 213

5. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: Verifying confidentiality and
authentication in kerberos 5. In: ISSS, pp. 1–24 (2003)

6. Kaufman, E.C.: Internet Key Exchange (IKEv2) Protocol, RFC 4306 (2005)
7. Cervesato, I., Jaggard, A., Scedrov, A., Tsay, J.-K., Walstad, C.: Breaking and

fixing public-key kerberos. Technical report
8. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composition.

In: Proceedings of ACM Workshop on Formal Methods in Security Engineering,
October

9. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system for security
protocols and its logical formalization. In: Proceedings of 16th IEEE Computer
Security Foundations Workshop, pp. 109–125. IEEE Computer Society Press, Los
Alamitos (2003)

10. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composition.
In: Proceedings of 19th Annual Conference on Mathematical Foundations of Pro-
gramming Semantics, vol. 83. Electronic Notes in Theoretical Computer Science
(2004)

11. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. Journal of Computer Security 13, 423–482
(2005)

12. Delicata, R., Schneider, S.: Temporal rank functions for forward secrecy. In: 18th
IEEE Computer Security Foundations Workshop (CSFW-18 2005), pp. 126–139.
IEEE Computer Society Press, Los Alamitos (2005)

13. Delicata, R., Schneider, S.A.: Towards the rank function verification of protocols
that use temporary secrets. In: WITS 2004. Proceedings of the Workshop on Issues
in the Theory of Security (2004)

14. Durgin, N., Mitchell, J.C., Pavlovic, D.: A compositional logic for protocol correct-
ness. In: Proceedings of 14th IEEE Computer Security Foundations Workshop, pp.
241–255. IEEE Computer Society Press, Los Alamitos (2001)

15. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correct-
ness proof of ieee 802.11i and tls. In: ACM Conference on Computer and Commu-
nications Security, pp. 2–15 (2005)

16. Heather, J.: Strand spaces and rank functions: More than distant cousins. In:
CSFW 2002. Proceedings of the 15th IEEE Computer Security Foundations Work-
shop, p. 104 (2002)

17. Kohl, J., Neuman, B.: The kerberos network authentication service. RFC 1510
(1991)

18. Schneider, S.: Verifying authentication protocols with csp. IEEE Transactions on
Software Engineering, pp. 741–758 (1998)

19. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. Journal of Computer Security 7(1) (1999)

20. Zhu, L., Tung, B.: Public key cryptography for initial authentication in kerberos,
Internet Draft (2006)

A Type-Theoretic Framework for Formal

Reasoning with Different Logical Foundations

Zhaohui Luo�

Dept of Computer Science, Royal Holloway, Univ of London
Egham, Surrey TW20 0EX, U.K.

zhaohui@cs.rhul.ac.uk

Abstract. A type-theoretic framework for formal reasoning with differ-
ent logical foundations is introduced and studied. With logic-enriched
type theories formulated in a logical framework, it allows various log-
ical systems such as classical logic as well as intuitionistic logic to be
used effectively alongside inductive data types and type universes. This
provides an adequate basis for wider applications of type theory based
theorem proving technology. Two notions of set are introduced in the
framework and used in two case studies of classical reasoning: a predica-
tive one in the formalisation of Weyl’s predicative mathematics and an
impredicative one in the verification of security protocols.

1 Introduction

Dependent type theories, or type theories for short, are powerful calculi for logical
reasoning that provide solid foundations for the associated theorem proving tech-
nology as implemented in various ‘proof assistants’. These type theories include
Martin-Löf’s predicative type theory [NPS90, ML84], as implemented in ALF/
Agda [MN94, Agd00] and NuPRL [C+86], and the impredicative type theories
[CH88, Luo94], as implemented in Coq [Coq04] and Lego/Plastic [LP92, CL01].
The proof assistants have been successfully used in formalisation of mathematics
(e.g., the formalisations in Coq of the four-colour theorem [Gon05]) and in reason-
ing about programs (e.g., the analysis of security protocols).

The current type theories as found in the proof assistants are all based on
intuitionistic logic. As a consequence, the type theory based proof assistants
are so far mainly used for constructive reasoning. Examples that require or use
other methods of reasoning, say classical reasoning, would have to be done by
‘extending’ the underlying type theory with classical laws by brute force and
praying for such an extension to be OK.

We believe that the type theory based theorem proving technology is not
(and should not be) limited to constructive reasoning. In particular, it should
adequately support classical reasoning as well as constructive reasoning. To this
end, what one needs is a type-theoretic framework that supports the use of a

� This work is partially supported by the following research grants: UK EPSRC grant
GR/R84092, Leverhulme Trust grant F/07 537/AA and EU TYPES grant 510996.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 214–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Type-Theoretic Framework for Formal Reasoning 215

wider class of logical systems and, at the same time, keeps the power of type
theory in formal reasoning such as inductive reasoning based on inductive types.

In this paper, we introduce such a type-theoretic framework where logic-
enriched type theories are formulated in a logical framework such as LF [Luo94]
and PAL+ [Luo03]. Logic-enriched type theories with intuitionistic logic have
been proposed by Aczel and Gambino in studying type-theoretic interpretations
of constructive set theory [AG02, GA06]. They are studied here from the an-
gle of supporting formal reasoning with different logical foundations. We show
that it is possible to provide a uniform framework so that type theories can be
formulated properly to support different methods of reasoning. The structure
of our framework promotes a complete separation between logical propositions
and data types. It provides an adequate support to classical inference as well as
intuitionistic inference, in the presence of inductive types and type universes.

Two notions of set are introduced in the type-theoretic framework: a pred-
icative one and an impredicative one. They are used in two case studies: one
in the formalisation of Weyl’s predicative mathematics [Wey18, AL06] and the
other in the formalisation and analysis of security protocols. Both case studies
use classical reasoning – we have chosen to do so partly because how to use type
theory in constructive reasoning has been extensively studied and partly because
we want to show how classical logic can be employed in a type-theoretic setting.

The proof assistant Plastic [CL01] has been extended (in an easy and straight-
forward way) by Paul Callaghan to implement the type-theoretic framework as
described in this paper. The case studies have been done in the extended Plastic
and help to demonstrate that type theory and the associated proof assistants
can be used to support formal reasoning with different logical foundations.

2 Logic-Enriched Type Theories in a Logical Framework

The type-theoretic framework formulates logic-enriched type theories (LTTs for
short) in a logical framework. It consists of two parts, the part of logical proposi-
tions and the part of data types. Both parts are formulated in a logical framework
and linked by the induction rules (see below).

We start with the logical framework LF [Luo94] or PAL+ [Luo03], where the
kind Type represents the world of types. Now, we extend the logical framework
with a new kind Prop that stands for the world of logical propositions and, for
every P : Prop, a kind Prf(P) of proofs of P .

The logic of an LTT is specified in Prop by declaring constants for the log-
ical operators and the associated rules (as logics are introduced in Edinburgh
LF [HHP93]). The data types are introduced in Type as in type theories such
as Martin-Löf’s type theory [NPS90] and UTT [Luo94]. Different LTTs can be
formulated in the framework for formal reasoning with different logical foun-
dations. Instead of considering LTTs in general, we shall present and study a
typical example – the LTT with the classical first-order logic, abbreviated as
LTT1, to illustrate how an LTT is formulated in our type-theoretic framework.

216 Z. Luo

2.1 LTT1: An Example

The system LTT1 consists of the classical first-order logic, the inductive data
types, and type universes. Each of the components is described below.

Logic of LTT1. The logical operators such as ⊃, ¬ and ∀ are introduced
by declaring as constants the operators and the direct proofs of the associated
inference rules. For instance, for universal quantification ∀, we declare (where
we write ‘f [a1, ..., an]’ for applications and ‘f [x1, ..., xn] : A where xi : Ai’ for
f : (x1:A1, ..., xn:An)A):

∀[A, P] : Prop, ∀I [A, P, f] : Prf(∀[A, P]) and ∀E [A, P, a, p] : Prf(P [a])

where A : Type, P [x:A] : Prop, f [x:A] : Prf(P [x]) and p : Prf(∀[A, P]).
Note that ∀ can only quantify over types; that is, for a formula ∀[A, P], or

∀x:A, P [x] in the usual notation, A must be a type (of kind Type). Since Prop
is not a type (it is a kind), one cannot form a proposition by quantifying over
Prop. Higher-order logical quantifications such as ∀X :Prop.X , as found in im-
predicative type theories, are not allowed. Similarly, since propositions are not
types (Prf(P) is a kind, not a type), one cannot quantify over propositions,
either.

As another example, we declare the classical negation operator ¬P : Prop
for P : Prop and the corresponding double negation rule DN [P, p] : Prf(P)
where P : Prop and p : Prf(¬¬P)]. Other logical operators can be introduced
in a similar way or defined as usual. For instance, an equality operator can be
introduced to form propositions a =A b, for A : Type and a, b : A.

Inductive data types in LTT1. The system LTT1 (and every LTT) contains
(some or all of) the inductive types as found in Martin-Löf’s type theory [NPS90]
or UTT [Luo94], which include those of natural numbers, dependent pairs, lists,
trees, ordinals, etc. For example, the type N : Type of natural numbers can be
introduced by first declaring its constructors 0 : N and s[n] : N where n : N ,
and then its elimination operator ET [C, c, f, n] : C[n], for C[n] : Type with n : N ,
and the associated computation rules

ET [C, c, f, 0] = c : C[0]
ET [C, c, f, s[n]] = f [n, ET [C, c, f, n]] : C[s[n]]

For each inductive type, there is an associated induction rule for proving
properties of the objects of that type. For example, the induction rule for N is

EP [P, c, f, n] : P [n] for P [n] : Prop [n : N]

Note that the elimination operator over types, ET , has associated computational
rules, while the elimination operator over propositions, EP , does not.

The induction rules are crucial in connecting the world of logical propositions
(formally represented by Prop) and that of the data types (formally represented
by Type). Quantifications over types allow one to form propositions to express
logical properties of data and the induction rules to prove those properties.

A Type-Theoretic Framework for Formal Reasoning 217

Type universes in LTT1. The system LTT1 (and every LTT) may contain
type universes, types consisting of (names of) types as objects. For example, a
universe of ‘small types’ can be introduced as

type : Type and T [x] : Type [x : type].

Some of the inductive types have names in a type universe. For example, we can
have nat as a name of N in type by declaring nat : type and T [nat] = N : Type.
The general way of introducing type universes can be found in [ML84] and see,
e.g., [Luo94] for universes containing inductive types generated by schemata.

We remark that, if we have introduced a type universe that contains the names
of N and ∅ (the empty type), we can prove Peano’s fourth axiom for natural
numbers (∀x:N.(s[x] �=N 0)) internally in the type-theoretic framework. This is
similar to Martin-Löf’s type theory, where Peano’s fourth axiom is not provable
internally without a type universe [Smi88].

Logical consistency of LTT1. The system LTT1 is logically consistent in
the sense that there are unprovable propositions. If one is not satisfied with the
‘simple minded consistency’ [ML84], a meta-mathematical consistency can be
proved – it can be shown that LTT1 is relatively consistent w.r.t. ZF.

Theorem 1 (consistency). The type system LTT1 is logically consistent.

Proof sketch. Let T be Martin-Löf’s intensional type theory extended with
Excluded Middle (i.e., extending it with assumed proofs of A + (A → ∅) for all
types A). Then T is logically consistent w.r.t. ZF. Now, consider the mapping
� : LTT1 → T that maps the types and propositions of LTT1 to types of T so
that A� = A for A : Type and, e.g., ∀[A, P]� = Π [A�, P �] and (¬P)� = P � → ∅.
Then, by proving a more general lemma by induction, we can show that if
Γ � a : A in LTT1, then Γ � � a� : A� in T . The logical consistency follows. �	

Although there are other ways to prove the meta-mathematical consistency, the
above proof sketch raises an interesting question one may ask: if Martin-Löf’s
type theory extended with a classical law (say Excluded Middle) is consistent,
why does one prefer to use LTT1 rather than such an extension directly?

One of the reasons for such a preference is that the LTT approach preserves the
meaning-theoretic understanding of types as consisting of their canonical objects
(e.g., N consists of zero and the successors). Such an adequacy property would
be destroyed by a direct extension of Martin-Löf’s type theory with a classical
law, where every inductive type contains (infinitely many) non-canonical objects.
Therefore, in this sense, it is inadequate to introduce classical laws directly to
Martin-Löf’s type theory or other type theories.

In our type-theoretic framework, there is a clear distinction between logical
propositions and data types. For example, the classical law in LTT1 does not
affect the data types such as N . It hence provides an adequate treatment of
classical reasoning on the one hand and a clean meaning-theoretic understanding
of the inductive types on the other.

218 Z. Luo

This clear separation between logical propositions and data types is an impor-
tant salient feature of the type-theoretic framework in general. In Martin-Löf’s
type theory, for example, types and propositions are identified. The author has
argued, for instance in the development of ECC/UTT [Luo94] as implemented in
Lego/Plastic and the current version of Coq1, that it is unnatural to identify logi-
cal propositions with data types and there should be a clear distinction between
the two. This philosophical idea was behind the development of ECC/UTT,
where data types are not propositions, although logical propositions are types.

Logic-enriched type theories, and hence our framework as presented in this
paper, have gone one step further – there is a complete separation between
propositions and types. Logical propositions and their totality Prop are not
regarded as types. This has led to a more flexible treatment of logics in our
framework.

2.2 Implementation

The type-theoretic framework has been implemented by Callaghan by extending
the proof assistant Plastic [CL01]. Plastic implements the logical framework LF.
The extension is to add the kind Prop and the operator Prf , as described at the
beginning of this section. Logical operators such as those of LTT1 are introduced
by the user. Plastic already supports the inductive types in the kind Type.
However, it does not automatically generate the induction rules (represented
above by EP for N) which, at the moment, are entered by the user (this is
possible because EP does not have associated computation rules.) We should also
mention that Plastic supports adding computation rules of certain form and this
allows one to add universes and the associated computation rules. The system
LTT1 has been completely implemented in Plastic and so have the notions of
set and the case studies to be described in the following two sections.

3 Typed Sets

When we consider sets in our type-theoretic framework, the objects of a set are
all ‘similar’ in the sense that every set is a typed set. In other words, every set has
a base type from which every element of the set comes. For instance, a set with
N as base type contains only natural numbers as its elements. We believe that
such a notion of typed set is natural and much closer to the practice of everyday
mathematical reasoning than that in the traditional set theory where there is no
distinction between types. Sometimes, mathematicians use the word ‘category’
for what we call types and consider sets with elements of the same category (see,
e.g., [Wey18]). Here, types are formal representations of categories.

In the following, we consider two notions of (typed) set: an impredicative
notion and a predicative notion.

1 The current type structure of Coq (version 8.0) [Coq04], after the universe Set be-
comes predicative, is very similar to (if not exactly the same as) that of ECC/UTT.

A Type-Theoretic Framework for Formal Reasoning 219

Impredicative notion of set. Impredicative sets can be introduced as follows.

– Set[A:Type] : Type (Set[A] is the type of sets with base type A.)
– set[A:Type, P [x:A]:Prop] : Set[A] (Informally, set[A, P] is { x : A | P [x] }.)
– in[A:Type, a:A, S:Set[A]] : Prop (Informally, in[A, a, S] is a ∈ S.)
– in[A, a, set[A, P]] = P [a] : Prop (Computational equality)

Note that this notion of set is impredicative. For example, the powerset of S :
Set[A] can be defined as { S′:Set[A] | ∀x:A. x ∈ S′ ⊃ x ∈ S } of type Set[Set[A]].

Predicative notion of set. The notion of predicativity has been studied by
many people, most notably by Feferman in a series of papers, including [Fef05].
Intuitively, the definition of a set { x | p(x) } is predicative if the predicate p(x)
does not involve any quantification over the totality that contains the entity
being defined. If the set-forming predicate p does not involve any quantification
over sets at all, then the definition of the set is predicative.

In our type-theoretic framework, predicative sets can be introduced by first
introducing a propositional universe of small propositions:

prop : Prop, V [p : prop] : Prop

Intuitively, a small proposition contains only quantifications over small types
(with names in type). This can be seen from the quantifier rules for prop:

∀̄[a, p] : prop [a:type, p[x:T [a]] : prop]
V [∀̄[a, p]] = ∀[T [a], [x:T [a]]V [p[x]]] : Prop

where p[x] must be a small proposition for any object x in the small type a.
Formally, predicative sets can be introduced as follows:

– Set[a:type] : Type (Set[a] is a type if a is a small type in universe type.)
– set[a:type, p[x:T [a]]:prop] : Set[a] (Informally, p in { x : A | p[x] } must be a

small propositional function.)
– in[a:type, x:T [a], S:Set[a]] : prop (Informally, x ∈ S is a small proposition.)
– in[a, x, set[a, p]] = p[x] : prop (Computational equality)

Note that a type of sets is not a small type. Therefore, quantification over sets
is not allowed when stating a set-forming condition.

Remark 1. Aczel and Gambino [AG02, GA06] have considered a type universe P
of small propositions in the world of types (formally, P : Type). Such a universe
has played an important role in their study of the type-theoretic interpretation
of constructive set theory. However, it seems that this has the effect of putting
logical propositions directly ‘back’ to the world of types. In our case, the propo-
sitional universe prop is of kind Prop, not of kind Type. �	
We argue that the notions of set introduced above are adequate in support-
ing ‘mathematical pluralism’.2 With these notions, the type-theoretic framework
can be used to formalise, in the classical setting, the ordinary (classical and
impredicative) mathematics and Weyl’s predicative mathematics and, in the in-
tuitionistic setting, the predicative and impredicative constructive mathematics.
2 The philosophical view of mathematical pluralism is to be elaborated elsewhere.

220 Z. Luo

4 Case Studies

Formalisation of Weyl’s predicative mathematics. As is known, the or-
dinary mathematics is impredicative in the sense that it allows impredicative
definitions that some people might regard as ‘circular’ and hence problematic.
Such people would believe that the so-called predicative mathematics is safer,
where impredicative or circular definitions are regarded as illegal. For instance,
in the early quarter of the last century, the mathematician Hermann Weyl has
developed a predicative treatment of the calculus (in classical logic) [Wey18],
which has been studied and further developed by Feferman and others [Fef05].

The formalisation of Weyl’s work [Wey18] has been done in the type-theoretic
framework (more specifically, in LTT1 with predicative sets) in Plastic [AL06].

Formalisation and analysis of security protocols. Security protocols have
been extensively studied in the last two to three decades. Besides other interest-
ing research, theorem provers have been used to formalise security protocols and
prove their properties. For instance, Paulson has studied the ‘inductive approach’
[Pau98] in Isabelle [Pau94] to verify properties of security protocols.

As a case study of classical impredicative reasoning in the type-theoretic
framework, we have formalised in Plastic several security protocols in LTT1
with impredicative sets. The examples include simple protocols such as the
Needham-Schroeder public-key protocol [NS78, Low96] and the Yahalom pro-
tocol [BAN89, Pau99]. Our formalisation has followed Paulson’s inductive ap-
proach closely, in order to examine how well the power of inductive reasoning
in the type-theoretic framework matches that in Isabelle. Our experience shows
that the answer is positive, although more automation in some cases would be
desirable. In our formalisation, agents, messages and events are all modelled as
inductive types (rather than as inductive sets as in Isabelle). The operations
such as parts, analz and synth are defined as maps between sets of messages. A
protocol is then modelled as a set of traces (a set of lists of events). One can then
show that various properties are satisfied by the protocol concerned, including
the secrecy properties such as the session key secrecy theorem.

5 Concluding Remarks on Future Work

Future work includes comparative studies with other existing logical systems and
the associated theorem proving technology. For example, it would be interesting
to compare the predicative notion of set with that studied by Feferman and
others [Fef00, Sim99] and to consider a comparison with that of Martin-Löf’s
type theory [NPS90, ML84] to study the relationship between the notion of
predicative set and that of predicative type.

Acknowledgements. Thanks go to Peter Aczel for his comments during his
visit to Royal Holloway, Robin Adams for discussions during our joint work
on formalisation of Weyl’s predicative mathematics and Paul Callaghan for his
efforts in extending Plastic to implement the type-theoretic framework.

A Type-Theoretic Framework for Formal Reasoning 221

References

[AG02] Aczel, P., Gambino, N.: Collection principles in dependent type theory. In:
Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS,
vol. 2277, Springer, Heidelberg (2002)

[Agd00] Agda proof assistant (2000), http://www.cs.chalmers.se/∼catarina/agda

[AL06] Adams, R., Luo, Z.: Weyl’s predicative classical mathematics as a logic-
enriched type theory. In: TYPES 2006 (2006) (submitted)

[BAN89] Burrows, M., Abadi, M., Needham, R.: A logic of authentication. Proc. of
the Royal Society of London 426, 233–271 (1989)

[C+86] Constable, R., et al.: Implementing Mathematics with the NuPRL Proof
Development System. Prentice-Hall, Englewood Cliffs (1986)

[CH88] Coquand, T., Huet, G.: The calculus of constructions. Information and Com-
putation 76(2/3) (1988)

[CL01] Callaghan, P.C., Luo, Z.: An implementation of typed LF with coercive
subtyping and universes. J. of Automated Reasoning 27(1), 3–27 (2001)

[Coq04] The Coq Development Team. The Coq Proof Assistant Reference Manual
(Version 8.0), INRIA (2004)

[Fef00] Feferman, S.: The significance of Hermann Weyl’s Das Kontinuum. In: Hen-
dricks, V., et al. (eds.) Proof Theory (2000)

[Fef05] Feferman, S.: Predicativity. In: Shapiro, S. (ed.) The Oxford Handbook of
Philosophy of Mathematics and Logic, Oxford Univ Press, Oxford (2005)

[GA06] Gambino, N., Aczel, P.: The generalised type-theoretic interpretation of con-
structive set theory. J. of Symbolic Logic 71(1), 67–103 (2006)

[Gon05] Gonthier, G.: A computer checked proof of the four colour theorem (2005)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal
of the Association for Computing Machinery 40(1), 143–184 (1993)

[Low96] Lowe, G.: Breaking and fixing the Needham-Schroeder public-key proto-
col using CSP and FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996.
LNCS, vol. 1055, Springer, Heidelberg (1996)

[LP92] Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual.
LFCS Report ECS-LFCS-92-211, Dept of Computer Science, Univ of Edin-
burgh (1992)

[Luo94] Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, Oxford (1994)

[Luo03] Luo, Z.: PAL+: a lambda-free logical framework. Journal of Functional Pro-
gramming 13(2), 317–338 (2003)

[ML84] Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)

[MN94] Magnusson, L., Nordström, B.: The ALF proof editor and its proof en-
gine. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806,
Springer, Heidelberg (1994)

[NPS90] Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type
Theory: An Introduction. Oxford University Press, Oxford (1990)

[NS78] Needham, R., Schroeder, M.: Using encryption for authentication in large
networks of computers. Comm. of the ACM 21(12), 993–999 (1978)

[Pau94] Paulson, L.: Isabelle: a generic theorem prover. LNCS, vol. 828. Springer,
Heidelberg (1994)

http://www.cs.chalmers.se/~catarina/agda

222 Z. Luo

[Pau98] Paulson, L.: The inductive approach to verifying cryptographic protocols.
Journal of Computer Security 6, 85–128 (1998)

[Pau99] Paulson, L.: Proving security protocols correct. In: LICS (1999)
[Sim99] Simpson, S.: Subsystems of Second-Order Arithmetic. Springer, Heidelberg

(1999)
[Smi88] Smith, J.: The independence of Peano’s fourth axiom from Martin-Löf’s type

theory without universes. Journal of Symbolic Logic 53(3) (1988)
[Wey18] Weyl, H.: The Continuum: a critical examination of the foundation of analy-

sis. Dover Publ., (English translation of Das Kontinuum, 1918) (1994)

On Completeness of Logical Relations for Monadic
Types�

Sławomir Lasota1,��, David Nowak2, and Yu Zhang3,���

1 Institute of Informatics, Warsaw University, Warszawa, Poland
2 RCIS, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

3 Project Everest, INRIA Sophia-Antipolis, France

Abstract. Software security can be ensured by specifying and verifying secu-
rity properties of software using formal methods with strong theoretical bases.
In particular, programs can be modeled in the framework of lambda-calculi, and
interesting properties can be expressed formally by contextual equivalence (a.k.a.
observational equivalence). Furthermore, imperative features, which exist in most
real-life software, can be nicely expressed in the so-called computational lambda-
calculus. Contextual equivalence is difficult to prove directly, but we can often use
logical relations as a tool to establish it in lambda-calculi. We have already de-
fined logical relations for the computational lambda-calculus in previous work.
We devote this paper to the study of their completeness w.r.t. contextual equiva-
lence in the computational lambda-calculus.

1 Introduction

Contextual Equivalence. Two programs are contextually equivalent (a.k.a. observa-
tionally equivalent) if they have the same observable behavior, i.e. an outsider cannot
distinguish them. Interesting properties of programs can be expressed using the notion
of contextual equivalence. For example, to prove that a program does not leak a secret,
such as the secret key used by an ATM to communicate with the bank, it is sufficient to
prove that if we change the secret, the observable behavior will not change [13,3,14]:
whatever experiment a customer makes with the ATM, he or she cannot guess infor-
mation about the secret key by observing the reaction of the ATM. Another example is
to specify functional properties by contextual equivalence. For example, if sorted is a
function which checks that a list is sorted and sort is a function which sorts a list, then,
for all list l, you want the expression sorted(sort(l)) to be contextually equivalent to the
expression true. Finally, in the context of parameterized verification, contextual equiv-
alence allows the verification for all instantiations of the parameter to be reduced to the
verification for a finite number of instantiations (See e.g. [5] where logical relations are
one of the essential ingredients).

� Partially supported by the RNTL project Prouvé, the ACI Sécurité Informatique Rossignol,
the ACI jeunes chercheurs “Sécurité informatique, protocoles cryptographiques et détection
d’intrusions”, and the ACI Cryptologie “PSI-Robuste”.

�� Partially supported by the Polish KBN grant No. 4 T11C 042 25 and by the European Commu-
nity Research Training Network Games. This work was performed in part during the author’s
stay at LSV.

��� This work was mainly done when the author was a PhD student under an MENRT grant on
ACI Cryptologie funding, École Doctorale Sciences Pratiques (Cachan).

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 223–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 S. Lasota, D. Nowak, and Y. Zhang

Logical Relations. While contextual equivalence is difficult to prove directly because
of the universal quantification over contexts, logical relations [11,6] are powerful tools
that allow us to deduce contextual equivalence in typed λ-calculi. With the aid of the
so-called Basic Lemma, one can easily prove that logical relations are sound w.r.t. con-
textual equivalence. However, completeness of logical relations is much more difficult
to achieve: usually we can only show the completeness of logical relations for types up
to first order.

The computational λ-calculus [8] has proved useful to define various notions of com-
putations on top of the λ-calculus, using monadic types. Logical relations for
monadic types can be derived by the construction defined in [2] where soundness of
logical relations is guaranteed. However, monadic types introduce new difficulties. In
particular, contextual equivalence becomes subtler due to the different semantics of
different monads: equivalent programs in one monad are not necessarily equivalent in
another! This accordingly makes completeness of logical relations more difficult to
achieve in the computational λ-calculus. In particular the usual proofs of completeness
up to first order do not go through.

Contributions. We propose in this paper a notion of contextual equivalence for the
computational λ-calculus. Logical relations for this language are defined according to
the general derivation in [2]. We then explore the completeness and we prove that for the
partial computation monad, the exception monad and the state transformer monad, logi-
cal relations are still complete up to first-order types. In the case of the non-determinism
monad, we need to restrict ourselves to a subset of first-order types.

Not like previous work on using logical relations to study contextual equivalence in
models with computational effects [12,10,9], most of which focus on computations with
local states, our work in this paper is based on a more general framework for describing
computations, namely the computational λ-calculus. In particular, very different forms
of computations like non-determinism are studied, not just those for local states.

Note that all proofs that are omitted in this short paper, can be found in the full
version [4].

2 Logical Relations for the Simply Typed λ-Calculus

Let λ→ be a simple version of typed λ-calculus with only base types b (booleans, inte-
gers, etc.) and function types τ → τ ′. Terms consist of variables, constants, abstractions
and applications. Notations and typing rules are as usual. We consider the set theoretical
semantics of λ→. A Γ -environment ρ is a map such that, for every x : τ in Γ , ρ(x) is
an element of �τ�. Let t be a term such that Γ � t : τ is derivable. The denotation of
t, w.r.t. a Γ -environment ρ, is given as usual by an element �t�ρ of �τ�. We write �t�
instead of �t�ρ when ρ is irrelevant, e.g., when t is a closed term. When given a value
a ∈ �τ�, we say that it is definable if and only if there exists a closed term t such that
� t : τ is derivable and a = �t�.

Let Obs be a subset of base types, called observation types, such as booleans, in-
tegers, etc. A context � is a term such that x : τ � � : o is derivable, where o is an
observation type. We spell the standard notion of contextual equivalence in a denota-
tional setting: two elements a1 and a2 of �τ�, are contextually equivalent (written as

On Completeness of Logical Relations for Monadic Types 225

a1 ≈τ a2), if and only if for any context � such that x : τ � � : o (o ∈ Obs) is
derivable, ���[x := a1] = ���[x := a2]. We say that two closed terms t1 and t2 of
the same type τ are contextually equivalent whenever �t1� ≈τ �t2�. We also define a
relation ∼τ : for every pair of values a1, a2 ∈ �τ�, a1 ∼τ a2 if and only if a1, a2 are
definable and a1 ≈τ a2.

Essentially, a (binary) logical relation [6] is a family (Rτ)τ type of relations, one
for each type τ , on �τ� such that related functions map related arguments to related
results. More formally, it is a family (Rτ)τ type of relations such that for every f1, f2 ∈
�τ → τ ′�,

f1 Rτ→τ ′ f2 ⇐⇒ ∀a1, a2 ∈ �τ� . a1 Rτ a2 =⇒ f1(a1) Rτ ′ f2(a2)

There is no constraint on relations at base types. In λ→, once the relations at base types
are fixed, the above condition forces (Rτ)τ type to be uniquely determined by induction
on types.

A so-called Basic Lemma comes along with logical relations since Plotkin’s work
[11]. It states that if Γ � t : τ is derivable, ρ1, ρ2 are two related Γ -environments, and
every constant is related to itself, then �t�ρ1 Rτ �t�ρ2. Here two Γ -environments ρ1,
ρ2 are related by the logical relation, if and only if ρ1(x) Rτ ρ2(x) for every x : τ in
Γ . Basic Lemma is crucial for proving various properties using logical relations [6]. In
the case of establishing contextual equivalence, it implies that, for every logical relation
(Rτ)τ type such that Ro is the equality for every observation type o, logically related
values are necessarily contextually equivalent, i.e., Rτ ⊆ ≈τ for any type τ .

Completeness states the inverse: a logical relation (Rτ)τ type is complete if every
contextually equivalent values are related by this logical relation, i.e., ≈τ ⊆ Rτ for
every type τ . Completeness for logical relations is hard to achieve, even in a simple
version of λ-calculus like λ→. Usually we are only able to prove completeness for
types up to first order (the order of types is defined inductively: ord(b) = 0 for any base
type b; ord(τ → τ ′) = max(ord(τ) + 1,ord(τ ′)) for function types). The following
proposition states the completeness of logical relations in λ→, for types up to first order:

Proposition 1. There exists a logical relation (Rτ)τ type for λ→, with partial equality
on observation types, such that if � t1 : τ and � t2 : τ are derivable, for any type τ up
to first order, t1 ≈τ t2 =⇒ �t1� Rτ �t2�.

3 Logical Relations for the Computational λ-Calculus

3.1 The Computational λ-Calculus λComp

Moggi’s computational λ-calculus has proved a nice framework for expressing vari-
ous forms of side effects (exceptions, non-determinism, etc.) [8]. The computational
λ-calculus, denoted by λComp , extends λ→ with a unary type constructor T: Tτ de-
notes the type of computations which return values of type τ . It also introduces two
extra term constructs val(t) and let x ⇐ t in t′, representing respectively the trivial
computation and the sequential computation, with the typing rules:

Γ � t : τ

Γ � val(t) : Tτ

Γ � t : Tτ Γ, x : τ � t′ : Tτ ′

Γ � let x ⇐ t in t′ : Tτ ′

226 S. Lasota, D. Nowak, and Y. Zhang

Moggi also builds a categorical model for the computational λ-calculus, using the
notion of monads [8]. We shall focus on Moggi’s monads defined over the category Set
of sets and functions. For instance, the non-determinism monad is defined by �Tτ� =
�fin(�τ�), with

�val(t)�ρ = {�t�ρ},

�let x ⇐ t1 in t2�ρ =
⋃

a∈�t1�ρ

�t2�ρ[x := a].

In the rest of this paper, we shall restrict ourselves to four concrete monads: partial
computations, exceptions, state transformers and non-determinism. Definitions of these
monads can be found in [8,4]. We write λPESN

Comp for the particular version of λComp
where the monad is restricted to be one of these four monads.

The computational λ-calculus is strongly normalizing [1]. In fact, every term of a
monadic type can be written in the following βc-normal-η-long form, w.r.t. the βc-
reduction rules and η-equalities in [1] (see the proof in the full version [4]):

let x1 ⇐ d1u11 · · ·u1k1 in · · · let xn ⇐ dnun1 · · · unkn in val(u),

where n = 0, 1, 2, . . ., every di (1 ≤ i ≤ n) is either a constant or a variable, u and
uij (1 ≤ i ≤ n, 1 ≤ j ≤ kj) are all βc-normal terms or βc-normal-η-long terms (of
monadic types).

As argued in [3], the standard notion of contextual equivalence does not fit in the
setting of the computational λ-calculus. In order to define contextual equivalence for
λComp , we have to consider contexts � of type To (o is an observation type), not of
type o. Indeed, contexts should be allowed to do some computations: if they were of
type o, they could only return values. In particular, a context � such that x : Tτ � � : o
is derivable, meant to observe computations of type τ , cannot observe anything, because
the typing rule for the let construct only allows us to use computations to build other
computations, never values. Taking this into account, we get the following definition:

Definition 1 (Contextual equivalence for λComp). In λComp , two values a1, a2 ∈ �τ�
are contextually equivalent, written as a1 ≈τ a2, if and only if, for all observable types
o ∈ Obs and contexts � such that x : τ � � : To is derivable, ���[x := a1] =
���[x := a2]. Two closed terms t1 and t2 of type τ are contextually equivalent if and
only if �t1� ≈τ �t2�. We use the same notation

3.2 Logical Relations for λComp

A uniform framework for defining logical relations relies on the categorical notion of
subscones [7], and a natural extension of logical relations able to deal with monadic
types was introduced in [2]. The construction consists in lifting the CCC structure and
the strong monad from the categorical model to the subscone. We reformulate this con-
struction in the category Set. The subscone is the category whose objects are binary
relations (A, B, R ⊆ A × B) where A and B are sets; and a morphism between
two objects (A, B, R ⊆ A × B) and (A′, B′, R′ ⊆ A′ × B′) is a pair of functions
(f : A → A′, g : B → B′) preserving relations, i.e. a R b ⇒ f(a) R′ g(b).

On Completeness of Logical Relations for Monadic Types 227

The lifting of the CCC structure gives rise to the standard logical relations given in
Section 2 and the lifting of the strong monad will give rise to relations for monadic
types. We write T̃ for the lifting of the strong monad T . Given a relation R ⊆ A ×
B and two computations a ∈ TA and b ∈ TB, (a, b) ∈ T̃ (R) if and only if there
exists a computation c ∈ T (R) (i.e. c computes pairs in R) such that a = Tπ1(c)
and b = Tπ2(c). The standard definition of logical relation for the simply typed λ-
calculus (c1, c2) ∈ RTτ ⇐⇒ (c1, c2) ∈ T̃ (Rτ). This construction guarantees that
Basic Lemma always holds provided that every constant is related to itself [2]. A list
of instantiations of the above definition in concrete monads is also given in [2]. For
instance, the logical relation for the non-determinism monad is defined by:

c1 RTτ c2 ⇔ (∀a1 ∈ c1. ∃a2 ∈ c2. a1 Rτ a2) & (∀a2 ∈ c2. ∃a1 ∈ c1. a1 Rτ a2).

Definitions of logical relations for other monads in λPESN
Comp can be found in [4].

We restrict our attention to logical relations (Rτ)τ type such that, for any observation
type o ∈ Obs, RTo is a partial equality. Such relations are called observational in the
rest of the paper.

Theorem 1 (Soundness of logical relations in λComp). If (Rτ)τ type is an observa-
tional logical relation, then Rτ ⊆ ≈τ for every type τ .

3.3 Toward a Proof on Completeness of Logical Relations for λComp

Completeness of logical relations for λComp is much subtler than in λ→ due to the
introduction of monadic types. We were expecting to find a general proof following the
general construction defined in [2]. However, this turns out extremely difficult although
it might not be impossible with certain restrictions, on types for example. The difficulty
arises mainly from the different semantics for different forms of computations, which
actually do not ensure that equivalent programs in one monad are necessarily equivalent
in another. Consider two programs in λComp : let x ⇐ t1 in let y ⇐ t2 in val(x)
and let y ⇐ t2 in let x ⇐ t1 in val(x), where both t1 and t2 are closed term. We
can conclude that they are equivalent in the non-determinism monad — they return the
same set of possible results of t1, no matter what results t2 produces, but this is not the
case in, e.g., the exception monad when t1 and t2 throw different exceptions.

Being with such an obstacle, we shall switch our effort to case studies in Sec-
tion 4 and we explore the completeness of logical relations for a list of common mon-
ads, precisely, all the monads in λPESN

Comp . But, let us sketch out here a general struc-
ture for proving completeness of logical relations in λComp . In particular, our study
is still restricted to first-order types, which, in λComp , are defined by the grammar:
τ1 ::= b | Tτ1 | b → τ1, where b ranges over the set of base types.

We aim at finding an observational logical relation (Rτ)τ type such that if � t1 : τ
and � t2 : τ are derivable and t1 ≈τ t2, for any type τ up to first order, then
�t1� Rτ �t2�. Or briefly, ∼τ ⊆ Rτ , where ∼τ is the relation defined in Section 2.
As in the proof of Proposition 1, the logical relation (Rτ)τ type will be induced by
Rb = ∼b, for any base type b. Then how to prove the completeness for an arbitrary
monad T ?

228 S. Lasota, D. Nowak, and Y. Zhang

Note that we should also check that the logical relation (Rτ)τ type, induced by Rb =
∼b, is observational, i.e., a partial equality on To, for any observable type o. Consider
any pair (a, b) ∈ RTo = T̃ (Ro). By definition of the lifted monad T̃ , there exists a
computation c ∈ TRo such that a = Tπ1(c) and b = Tπ2(c). But Ro = ∼o ⊆ id�o�,
hence the two projections π1, π2 : Ro → �o� are the same function, π1 = π2, and
consequently a = Tπ1(c) = Tπ2(c) = b. This proves that RTo is a partial equality.

As usual, the proof of completeness would go by induction over τ , to show ∼τ ⊆ Rτ

for each first-order type τ . Cases τ = b and τ = b → τ ′ go identically as in λ→. The
only difficult case is τ = Tτ ′, i.e., () ∼τ ⊆ Rτ =⇒ ∼Tτ ⊆ RTτ . We did not find
any general way to show () for an arbitrary monad. Instead, in the next section we
prove it by cases, for all the monads in λPESN

Comp except the non-determinism monad. The
non-determinism monad is an exceptional case where we do not have completeness for
all first-order types but a subset of them. This will be studied separately in Section 4.3.

At the heart of the difficulty of showing () we find an issue of definability at monadic
types in the set-theoretical model. We write defτ for the subset of definable elements
in �τ�, and we eventually show that the relation between defTτ and defτ can be shortly
spelled-out (): defTτ ⊆ Tdefτ , for all the monads we consider in this paper. This
is a crucial argument for proving completeness of logical relations for monadic types,
but to show (), we need different proofs for different monads. This is detailed in
Section 4.1.

4 Completeness of Logical Relations for Monadic Types

4.1 Definability in the Set-Theoretical Model of λPESN
Comp

As we have seen in λ→, definability is involved largely in the proof of completeness of
logical relations (for first-order types). This is also the case in λComp and it apparently
needs more concern due to the introduction of monadic types.

Despite we did not find a general proof for () it does hold for all the concrete
monads in λPESN

Comp . To state it formally, let us first define a predicate Pτ on elements of
�τ�, by induction on types: Pb = defb, for every base type b; PTτ = T (defτ ∩ Pτ);
Pτ→τ ′ = {f ∈ Pτ→τ ′ | ∀a ∈ defτ , f(a) ∈ Pτ ′}. We say that a constant c (of type
τ) is logical if and only if τ is a base type or �c� ∈ Pτ . We then require that λPESCN

Comp

contains only logical constants. Note that this restriction is valid because the predicates
PTτ and Pτ→τ ′ depend only on definability at type τ . Some typical logical constants
for monads in λPESN

Comp are as follows:

– Partial computation: a constant Ωτ of type Tτ , for every τ . Ωτ denotes the non-
termination, so �Ωτ � = ⊥.

– Exception: a constant raisee
τ of type Tτ for every type τ and every exception

e ∈ E. raisee
τ does nothing but raises the exception e, so �raisee

τ � = e.
– State transformer: a constant updates of type Tunit for every state s ∈ St , where

unit is the base type which contains only a dummy value ∗. updates simply
changes the current state to s, so for any s′ ∈ St , �updates�(s

′) = (∗, s).
– Non-determinism: a constant +τ of type τ → τ → Tτ for every non-monadic type

τ . +τ takes two arguments and returns randomly one of them — it introduces the
non-determinism, so for any a1, a2 ∈ �τ�, �+τ �(a1, a2) = {a1, a2}.

On Completeness of Logical Relations for Monadic Types 229

We assume in the rest of this paper that the above constants are present in λPESN
Comp . It is

clear that each of these constants is related to itself.
Note that Pτ being a predicate on elements of �τ� is equivalent to say that Pτ can

be seen as subset of �τ�, but in the case of monadic types, PTτ (i.e., T (defτ ∩ Pτ)) is
not necessary a subset of �Tτ� (i.e., T �τ�). Fortunately, we prove that all the monads in
λPESN
Comp preserves inclusions, which ensures that the predicate P is well-defined:

Proposition 2. All the monads in λPESN
Comp preserve inclusions: A ⊆ B ⇒ TA ⊆ TB.

Introducing such a constraint on constants is mainly for proving (). In fact, we can
prove that the denotation of every closed βc-normal-η-long computation term t (of type
Tτ), in λPESN

Comp with logical constants, is an element of Tdefτ , i.e., �t� ⊆ Tdefτ (see
[4] for details).

Proposition 3. defTτ ⊆ Tdefτ holds in the set-theoretical model of λPESN
Comp with logi-

cal constants.

4.2 Completeness of Logical Relations in λPES
Comp for First-Order Types

We prove () in this section for the partial computation monad, the exception monad,
the state monad and the continuation monad. We write λPES

Comp for λComp where the
monad is restricted to one of these four monads.

Proofs depend typically on the particular semantics of every form of computation,
but a common technique is used frequently: given two definable but non-related ele-
ments of �Tτ�, one can find a context to distinguish the programs (of type Tτ) that
define the two given elements, and such a context is usually built based on another
context that can distinguish programs of type τ .

Theorem 2. In λPES
Comp , if all constants are logical and in particular, if the constant

updates is present for the state transformer monad, then logical relations are complete
up to first-order types, in the strong sense that there exists an observational logical
relation (Rτ)τ type such that for any closed terms t1, t2 of any type τ1 up to first order,
if t1 ≈τ1 t2, then �t1� Rτ1 �t2�.

4.3 Completeness of Logical Relations for the Non-determinism Monad

The non-determinism monad is an interesting case: the completeness of logical relations
for this monad does not hold for all first-order types! To state it, consider the following
two programs of a first-order type that break the completeness of logical relations:

� val(λx.(true +bool false)) : T(bool → Tbool),
� λx.val(true) +bool→Tbool λx.(true +bool false) : T(bool → Tbool).

Recall the logical constant +τ of type τ → τ → Tτ : �+τ �(a1, a2) = {a1, a2} for
every a1, a2 ∈ �τ�. The two programs are contextually equivalent: what contexts can
do is to apply the functions to some arguments and observe the results. But no matter
how many time we apply these two functions, we always get the same set of possi-
ble values ({true, false}), so there is no way to distinguish them with a context.

230 S. Lasota, D. Nowak, and Y. Zhang

Recall the logical relation for non-determinism monad in Section 3.2. Clearly the deno-
tations of the above two programs are not related by that relation because the function
�λx.val(true)� from the second program is not related to the function in the first.

However, if we assume that for every non-observable base type b, there is an equality
test constant testb : b → b → bool (clearly, P(testb) holds), logical relations for the
non-determinism monad are then complete for a set of weak first-order types: τ1

w ::=
b | Tb | b → τ1

w. Compared to all types up to first order, weak first-order types do not
contain monadic types of functions, so it immediately excludes the two programs in the
above counterexample.

Theorem 3. Logical relations for the non-determinism monad are complete up to weak
first-order types. in the strong sense that there exists an observational logical relation
(Rτ)τ type such that for any closed terms t1, t2 of a weak first-order type τ1

w, if t1 ≈τ1
w

t2, then �t1� Rτ1
w

�t2�.

References

1. Benton, P.N., Bierman, G.M., de Paiva, V.C.V.: Computational types from a logical perspec-
tive. J. Functional Programming 8(2), 177–193 (1998)

2. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types. In: Brad-
field, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 553–568. Springer, Hei-
delberg (2002)

3. Goubault-Larrecq, J., Lasota, S., Nowak, D., Zhang, Y.: Complete lax logical relations for
cryptographic lambda-calculi. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 400–414. Springer, Heidelberg (2004)

4. Lasota, S., Nowak, D., Zhang, Y.: On completeness of logical relations for monadic types.
Research Report cs.LO/0612106, arXiv (2006)

5. Lazić, R., Nowak, D.: A unifying approach to data-independence. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 581–595. Springer, Heidelberg (2000)

6. Mitchell, J.C.: Foundations of Programming Languages. MIT Press, Cambridge (1996)
7. Mitchell, J.C., Scedrov, A.: Notes on sconing and relators. In: Martini, S., Börger, E., Kleine

Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 352–378.
Springer, Heidelberg (1993)

8. Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92
(1991)

9. O’Hearn, P.W., Tennent, R.D.: Parametricity and local variables. J. ACM 42(3), 658–709
(1995)

10. Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Higher Order
Operational Techniques in Semantics, pp. 227–273. Cambridge University Press, Cambridge
(1998)

11. Plotkin, G.D.: Lambda-definability in the full type hierarchy. In: To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pp. 363–373. Academic Press,
London (1980)

12. Sieber, K.: Full abstraction for the second order subset of an algol-like language. Theoretical
Computer Science 168(1), 155–212 (1996)

13. Sumii, E., Pierce, B.C.: Logical relations for encryption. J. Computer Security 11(4), 521–
554 (2003)

14. Zhang, Y.: Cryptographic logical relations. Ph. d. dissertation, ENS Cachan, France (2005)

A Spatial Logical Characterisation of Context

Bisimulation�

Zining Cao

Department of Computer Science and Engineering
Nanjing University of Aero. & Astro., Nanjing 210016, P.R. China

caozn@nuaa.edu.cn

Abstract. In this paper, we present a spatial logic for higher order π-
calculus. In order to prove that the induced logical equivalence coincides
with context bisimulation, we present some new bisimulations, and prove
the equivalence between these new bisimulations and context bisimula-
tion. Furthermore, we present a variant of this spatial logic and prove
that it also provides a logical characterisation of context bisimulation.

1 Introduction

Higher order π-calculus was proposed and studied intensively in Sangiorgi’s dis-
sertation [9]. In higher order π-calculus, processes and abstractions over processes
of arbitrarily high order, can be communicated. Some interesting equivalences
for higher order π-calculus, such as barbed equivalence, context bisimulation and
normal bisimulation, were presented in [9]. Barbed equivalence can be regarded
as a uniform definition of bisimulation for a variety of concurrent calculi. Con-
text bisimulation is a very intuitive definition of bisimulation for higher order
π-calculus, but it is heavy to handle, due to the appearance of universal quan-
tifications in its definition. In the definition of normal bisimulation, all universal
quantifications disappeared, therefore normal bisimulation is a very economic
characterisation of bisimulation for higher order π-calculus. The coincidence be-
tween the three equivalences was proven [1,5,8,9].

Spatial logic was presented in [3]. Spatial logic extends classical logic with
connectives to reason about the structure of the processes. The additional con-
nectives belong to two families. Intensional operators allow one to inspect the
structure of the process. A formula A1|A2 is satisfied whenever we can split the
process into two parts satisfying the corresponding subformula Ai, i = 1, 2. In
presence of restriction in the underlying model, a process P satisfies formula
n�A if we can write P as (νn)P ′ with P ′ satisfying A. Finally, formula 0 is
only satisfied by the inaction process. Connectives | and � come with adjunct
operators, called guarantee (�) and hiding (�) respectively, that allow one to
extend the process being observed. In this sense, these can be called contextual
operators. P satisfies A1 � A2 whenever the spatial composition (using |) of P

� This work was supported by the National Natural Science Foundation of China under
Grant 60473036.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 231–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 Z. Cao

with any process satisfying A1 satisfies A2, and P satisfies A�n if (νn)P satisfies
A. Some spatial logics have an operator for fresh name quantification [2].

Existing spatial logics for concurrency are intensional [7], in the sense that
they induce an equivalence that coincides with structural congruence, which
is much finer than bisimilarity. In [4], Hirschkoff studied an extensional spatial
logic. This logic only has spatial composition adjunct (�), revelation adjunct (�),
a simple temporal modality (〈〉), and an operator for fresh name quantification.
For π-calculus, this extensional spatial logic was proven to induce the same
separative power as strong early bisimilarity.

There are lots of works of spatial logics for π-calculus and Mobile Ambients.
But as far as we know, there is no spatial logic for higher order π-calculus up to
now. In this paper, we present a spatial logic for higher order π-calculus, called
L, which comprises a barb detecting predicate ↓μ, a temporal modality 〈〉 and a
spatial composition adjunct �. We show that the equivalence induced by spatial
logic coincides with context bisimulation. To establish this result, our strategy
is to first give a simpler bisimulation which is equivalent to context bisimula-
tion, and then present a logical charaterisation for this simpler bisimulation.
Consequently, this logic is also a charaterisation for context bisimulation. Sim-
ilar to [4], we exploit the characterisation of context bisimulation in the terms
of barbed equivalence. However in the definition of barbed equivalence, testing
context is an arbitrary process. It is difficult to give the logical characterisation
of barbed equivalence directly. Therefore we first give a variant of normal bisim-
ulation, ∼nor, where in the case of higher order output action, we only need
to test the remainder process by some kind of finite processes. Then we give a
similar variant of contextual barbed bisimulation, ∼Nb, where process need to
be tested only with some special finite processes. The bisimulations ∼nor and
∼Nb are proven to coincide with strong context bisimulation. Furthermore, we
prove that L is a characterisation of ∼Nb. Thus L is a logic charaterisation of
context bisimulation. Finally, since ↓μ is not a basic operator in the traditional
spatial logic, we present a variant of L, named SL, which does not have ↓μ, but
contains 〈〉, � and �. We prove that SL induces an equivalence that coincides
with context bisimulation. Thus SL is also a logic charaterisation of context
bisimulation. This paper is organized as follows: In Section 2 we briefly review
higher order π-calculus. In Section 3, we present some new bisimulations and
give the equivalence between these bisimulations and context bisimulation. In
Section 4, we give a spatial logic for context bisimulation, and prove that the
logical induced equivalence coincides with context bisimulation. The paper is
concluded in Section 5.

2 Higher Order π-Calculus

2.1 Syntax and Labelled Transition System

In this section we briefly recall the syntax and labelled transition system of the
higher order π-calculus. Similar to [8], we only focus on a second-order fragment
of the higher order π-calculus, i.e., there is no abstraction in this fragment.

A Spatial Logical Characterisation of Context Bisimulation 233

We assume a set Na of names, ranged over by a, b, c, l, m, n, ... and a set V ar
of process variables, ranged over by X, Y, Z, U, We use E, F, P, Q, ... to stand
for processes. Pr denotes the set of all processes. We give the grammar for the
higher order π-calculus processes as follows:

P ::= 0 | U | τ.P | l.P | l.P | a(U).P | a〈P1〉.P2 | P1|P2 | (νa)P | !P, here l,
a ∈ Na, U ∈ V ar.

In each process of the form (νy)P the occurrence of y is bound within the
scope of P . An occurrence of y in a process is said to be free iff it does not lie
within the scope of a bound occurrence of y. The set of names occurring free in
P is denoted fn(P). An occurrence of a name in a process is said to be bound
if it is not free, we write the set of bound names as bn(P). n(P) denotes the
set of names of P , i.e., n(P) = fn(P) ∪ bn(P). The definition of substitution in
process terms may involve renaming of bound names when necessary to avoid
name capture. Higher order input prefix x(U).P binds all free occurrences of U
in P . The set of variables occurring free in P is denoted fv(P). We write the set
of bound variables as bv(P). A process is closed if it has no free variable; it is
open if it may have free variables. Prc is the set of all closed processes. Processes
P and Q are α-convertible, P ≡α Q, if Q can be obtained from P by a finite
number of changes of bound names and variables. The set of names {b1, ..., bn}
can be abbreviated as b̃.

The operational semantics of higher order processes is given in Table 1. We
have omitted the symmetric cases of the parallelism and communication rules.

ALP :
P

α−→ P ′

Q
α−→ Q′P ≡α Q, P ′ ≡α Q′ TAU : τ.P

τ−→ P

OUT 1 : l.P
l−→ P IN1 : l.P

l−→ P

OUT 2 : a〈E〉.P a〈E〉−→ P IN2 : a(U).P
a〈E〉−→ P{E/U}

PAR :
P

α−→ P ′

P |Q α−→ P ′|Q
bn(α) ∩ fn(Q) = ∅

COM1 :
P

l−→ P ′ Q
l−→ Q′

P |Q τ−→ P ′|Q′

COM2 :
P

(ν�b)a〈E〉−→ P ′ Q
a〈E〉−→ Q′

P |Q τ−→ (νb̃)(P ′|Q′)
b̃ ∩ fn(Q) = ∅

RES :
P

α−→ P ′

(νa)P α−→ (νa)P ′ a /∈ n(α) REP :
P |!P α−→ P ′

!P α−→ P ′

OPEN :
P

(ν�c)a〈E〉−→ P ′

(νb)P
(νb,�c)a〈E〉−→ P ′

a
= b, b ∈ fn(E) − c̃

Table1

2.2 Bisimulations in Higher Order π-Calculus

Context bisimulation and normal bisimulation were presented in [9,8] to de-
scribe the behavioral equivalences for higher order π-calculus. Let us review the

234 Z. Cao

definition of these bisimulations. In the following, we abbreviate P{E/U} as
P 〈E〉.

Definition 1. A symmetric relation R ⊆ Prc × Prc is a strong context bisimu-
lation if P R Q implies:

(1) whenever P
α−→ P ′, there exists Q′ such that Q

α−→ Q′, here α is not a
higher order action, and P ′ R Q′;

(2) whenever P
a〈E〉−→ P ′, there exists Q′ such that Q

a〈E〉−→ Q′ and P ′ R Q′;

(3) whenever P
(ν�b)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(ν�c)a〈F 〉−→ Q′ and
for all C(U) with fn(C(U)) ∩ {b̃, c̃} = ∅, (νb̃)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉). Here
C(U) represents a process containing a unique free variable U.

We write P ∼Ct Q if P and Q are strongly context bisimilar.
Distinguished from context bisimulation, normal bisimulation does not have

universal quantifications in the clauses of its definition. In the following, a name
is called fresh in a statement if it is different from any other name occurring in
the processes of the statement.

Definition 2. A symmetric relation R ⊆ Prc × Prc is a strong normal bisimu-
lation if P R Q implies:

(1) whenever P
α−→ P ′, there exists Q′ such that Q

α−→ Q′, here α is not a
higher order action, and P ′ R Q′;

(2) whenever P
a〈m.0〉−→ P ′, there exists Q′ such that Q

a〈m.0〉−→ Q′ and P ′ R Q′,
here m is a fresh name;

(3) whenever P
(ν�b)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(ν�c)a〈F 〉−→ Q′ and
(νb̃)(P ′|!m.E) R (νc̃)(Q′|!m.F), here m is a fresh name.

We write P ∼Nr Q if P and Q are strongly normal bisimilar.
In [9], barbed equivalence was presented as a uniform definition of bisimulation

for first order π-calculus and higher order π-calculus. In [5], a variant of barbed
equivalence, called contextual equivalence, was presented.

Definition 3. For each name or co-name μ, the observability predicate ↓μ is
defined by

(1) P ↓l if there exists P ′ such that P
l−→ P ′;

(2) P ↓l if there exists P ′ such that P
l−→ P ′;

(3) P ↓a if there exist E, P ′ such that P
a〈E〉−→ P ′;

(4) P ↓a if there exist b̃, E, P ′ such that P
(ν�b)a〈E〉−→ P ′.

Definition 4. A symmetric relation R ⊆ Prc × Prc is a strong contextual
equivalence if P R Q implies:

(1) P |C R Q|C for any C;
(2) whenever P

τ−→ P ′ there exists Q′ such that Q
τ−→ Q′ and P ′ R Q′;

(3) P ↓μ implies Q ↓μ.
We write P ∼Ba Q if P and Q are strongly contextual equivalent.

A Spatial Logical Characterisation of Context Bisimulation 235

3 Variants of Bisimulations

In this section, we present some new bisimulations, and prove that they are
equivalent to context bismulation. These results are used to give a logical char-
acterisation of ∼Ct .

3.1 Variant of Normal Bisimulation

Now we first give a variant of normal bisimulation, where parallel composition of
finitary copies is used as a limit form of replication. We prove it coincides with
normal bisimulation. In the following, we write ΠkP to denote the parallel com-
position of k copies of P , i.e., ΠkP

def
= P |Πk−1P and Π0P

def
= 0. For example,

Π3P represents P |P |P .
Definition 5. A symmetric relation R ⊆ Prc × Prc is a strong limit normal
bisimulation if P R Q implies:

(1) whenever P
α−→ P ′, there exists Q′ such that Q

α−→ Q′, here α is not a
higher order action, and P ′ R Q′;

(2) whenever P
a〈m.0〉−→ P ′, there exists Q′ such that Q

a〈m.0〉−→ Q′ and P ′ R Q′,
here m is a fresh name;

(3) whenever P
(ν�b)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(ν�c)a〈F 〉−→ Q′ and
(νb̃)(P ′|Πkm.E) R (νc̃)(Q′|Πkm.F) for all k ∈ N = {0, 1, 2, ...}, here m is a
fresh name.

We write P ∼nor Q if P and Q are strongly limit normal bisimilar.
Now we study the equivalence between ∼Ct, ∼Nr and ∼nor .

Lemma 1. For any P, Q ∈ Prc, P ∼Ct Q ⇒ P ∼nor Q.

Lemma 2. For any P, Q ∈ Prc, P ∼nor Q ⇒ P ∼Nr Q.

By the equivalence between ∼Ct and ∼Nr [1], P ∼Nr Q ⇔ P ∼Ct Q. Further-
more, by Lemmas 1 and 2, we have that the proposition holds.
Proposition 1. For any P, Q ∈ Prc, P ∼Ct Q ⇔ P ∼nor Q ⇔ P ∼Nr Q.

3.2 Variant of Barbed Equivalence

In [4], the logical characterisation of strong early bisimulation was exploited in
terms of strong barbed equivalence. The extensional spatial logic [4] was proven
to capture strong barbed equivalence firstly, then since strong early bisimulation
coincides with strong barbed equivalence, this spatial logic is also a logical char-
acterisation of strong early bisimulation. But this proof strategy seems difficult to
apply directly in the case of higher order π-calculus. To give a spatial logical charac-
terisationof∼Ct,wewill give a simpler versionofbarbedequivalence.The following
bisimulation is a variant of ∼Ba, where testing contexts are some special processes.
Definition 6. A symmetric relation R ⊆ Prc × Prc is a strong normal barbed
equivalence if P R Q implies:

236 Z. Cao

(1) P |C R Q|C for any C in the form of n.0, l.n.0, l.n.0, a〈m.0〉.n.0 and
a(U).Πkm.U, where m, n are fresh names, and k is an arbitrary natural number;

(2) whenever P
τ−→ P ′ there exists Q′ such that Q

τ−→ Q′ and P ′ R Q′;
(3) if P ↓μ, then also Q ↓μ .
We write P ∼Nb Q if P and Q are strongly normal barbed equivalent.

It is worth to note that all testing contexts in the above definition are finite
processes. Hence it is possible to give the characteristic formulas for these testing
contexts. The following proposition states that ∼nor coincides with ∼Nb .

Proposition 2. For any P, Q ∈ Prc, P ∼nor Q ⇔ P ∼Nb Q.

Now by Propositions 1 and 2, we can give the following main proposition.
Proposition 3. For any P, Q ∈ Prc, P ∼Ct Q ⇔ P ∼nor Q ⇔ P ∼Nr Q ⇔
P ∼Nb Q ⇔ P ∼Ba Q.

In fact, the definition of ∼nor and ∼Nb can be generalized to the weak versions:
≈nor and ≈Nb . The following proposition on weak bisimulations can also be
proved: P ≈Ct Q ⇔ P ≈nor Q ⇔ P ≈Nr Q ⇔ P ≈Nb Q ⇔ P ≈Ba Q.

4 A Logic for Context Bisimulation

In this section, we present a logic to reason about higher order π-calculus. The
induced logical equivalence will be proven to coincide with context bisimulation.

4.1 Syntax and Semantics of Logic L

Now we introduce a spatial logic called L.
Definition 7. Syntax of logic

A ::=↓l | ↓l | ↓a | ↓a | ¬A | A1 ∧ A2 | 〈〉A | A1 � A2, here l is a first order
name, and a is a higher order name.
Definition 8. Semantics of logic

(1) P |=↓μ iff P ↓μ, here μ is in the form of l, l, a and a;
(2) P |= ¬A iff P
|= A;
(3) P |= A1 ∧ A2 iff P |= A1 and P |= A2;
(4) P |= 〈〉A iff ∃P ′. P

τ−→ P ′ and P ′ |= A;
(5) P |= A1 � A2 iff ∀Q. Q |= A1 implies P |Q |= A2.
The priority of the logic operators are given from the highest to the lowest:

¬, 〈〉, �, ∧.

Definition 9. P and Q are logically equivalent with respect to L, written P =L

Q, iff for any formula A, P |= A iff Q |= A.

4.2 L is a Logical Characterisation of ∼Ct

In this section we prove the equivalence between ∼Nb and =L . Since ∼Nb

coincides with ∼Ct, we have the equivalence between ∼Ct and =L .

A Spatial Logical Characterisation of Context Bisimulation 237

The following proposition can be proved by structural induction on A that
whenever P ∼Nb Q and P |= A, we have Q |= A.

Proposition 4. For any P, Q ∈ Prc, P ∼Nb Q implies P =L Q.
To prove the converse proposition, we need the following definition, which

gives the characteristic formulas for the testing contexts in the definition of
∼Nb .

Definition 10
(1) F0

def
= []⊥ ∧ ([]⊥ � []⊥), here []B

def
= ¬〈〉¬B, ⊥ def

= A ∧ ¬A;

(2) Fch(μ)
def
= ↓μ ∧[]⊥ ∧ ([]⊥ � 〈〉F0), here B � C

def
= ¬(B � ¬C);

(3) Fl.0
def
= Fch(l);

(4) Fl.0
def
= Fch(l);

(5) Fa(U).0
def
= Fch(a) ∧ (Fch(a) � 〈〉F0);

(6) Fa〈0〉.0
def= Fch(a) ∧ (Fch(a) � 〈〉F0);

(7) Fa〈n.0〉.0
def
= Fch(a) ∧ (Fch(a) � 〈〉Fn.0);

(8) Fa(U).U
def
= Fch(a) ∧ (Fa〈n.0〉.0 � 〈〉Fn.0);

(9) Fm.n.0
def
= ¬ ↓n ∧(Fm.0 � 〈〉Fn.0);

(10) Fm.n.0
def
= ¬ ↓n ∧(Fm.0 � 〈〉Fn.0);

(11) Fm.0|n.0
def
= (Fm.0 � 〈〉Fn.0) ∧ (Fn.0 � 〈〉Fm.0);

(12) Fa〈m.0〉.n.0
def
= ¬ ↓n ∧(Fa(U).U � 〈〉Fm.0|n.0) ∧ (Fa(U).0 � 〈〉Fn.0);

(13) FΠkn.0
def
= Fn.0 � 〈〉FΠk−1n.0, here k > 1; FΠ0n.0

def
= F0, FΠ1n.0

def
= Fn.0;

(14) FΠkm.0
def
= Fm.0�〈〉FΠk−1m.0, here k > 1; FΠ0m.0

def
= F0, FΠ1m.0

def
= Fm.0;

(15) FΠkm.n.0
def
= ¬ ↓n ∧((Fm.0 � 〈〉)kFΠkn.0)∧(Fm.0 � 〈〉(Fn.0 � 〈〉FΠk−1m.n.0)),

here (B � 〈〉)iC
def
= B � (〈〉(B � 〈〉)i−1C), (B � 〈〉)1C def

= B � 〈〉C, FΠ0m.n.0
def
= F0;

(16) Fa(U).Πkm.U
def
= ¬ ↓m ∧(Fa〈0〉.0 � 〈〉FΠkm.0) ∧ (Fa〈n.0〉.0 � 〈〉FΠkm.n.0).

Lemma 3. D |= FC ⇔ C ∼Ct D, here C is in the form of n.0, l.n.0, l.n.0,
a〈m.0〉.n.0 and a(U).Πkm.U, where k is an arbitrary natural number.

By Lemma 3, we get the following proposition.

Proposition 5. For any P, Q ∈ Prc, P =L Q implies P ∼Nb Q.
By Propositions 3, 4 and 5, we get the following proposition, which states

that L captures ∼Ct .

Proposition 6. For any P, Q ∈ Prc, P ∼Ct Q ⇔ P =L Q.

4.3 A Variant of L

We have proven that ∼Ct coincides with =L, but formula ↓μ in L is not a basic
formula in the traditional spatial logic. Thus we turn to seek a variant of spatial
logical characterisation of ∼Ct . In the following we consider a variant of L,
called SL, in which we remove ↓μ and add ↓in, ↓out and a spatial connective

238 Z. Cao

�. Intuitively, P satisfies ↓in if P can communicate with other processes by an
input channel, and P satisfies ↓out if P can communicate with other processes
by an output channel. We show that ↓μ can be defined by using ↓in, ↓out and
�, then it is clear that SL is a spatial logical characterisation of ∼Ct .

Definition 11. Syntax and semantics of SL
Formulas of SL are defined by the following grammar:
A ::=↓in | ↓out | ¬A | A1 ∧ A2 | 〈〉A | A1 � A2 | A � n
Semantics of SL is similar to L except that the definition of ↓μ is eliminated

and the definitions of ↓in, ↓out and � are added as follows:
P |=↓in iff P ↓μ where μ is in the form of l or a;
P |=↓out iff P ↓μ where μ is in the form of l or a;
P |= A � n iff (νn)P |= A.
We abbreviate A � n1 � n2 � ... � nk as A � ñ, here ñ = {n1, n2, ..., nk}.

Definition 12. P and Q are logically equivalent with respect to SL, written
P =SL Q, iff for any formula A, P |= A iff Q |= A.

Lemma 4. (1) P |=↓μ⇔ P |=↓in �m̃ ∧ (¬ ↓in) � m̃ � μ, here μ is in the form
of l or a, m̃ = fn(P) − {μ};

(2) P |=↓μ⇔ P |=↓out �m̃ ∧ (¬ ↓out) � m̃ � μ, here μ is in the form of l or a,
μ = l if μ = l, μ = a if μ = a, and m̃ = fn(P) − {μ}.

By Lemma 3, Lemma 4 and Proposition 6, we can give the equivalence between
∼Ct and =SL .

Proposition 7. For any P, Q ∈ Prc, P ∼Ct Q ⇔ P =SL Q.

5 Conclusions

In this paper, we have defined a logic L, which comprises some spatial operators.
We shown that the induced logical equivalence coincides with context bisimu-
lation for higher order π-calculus. As far as we know, this is the first spatial
logical characterisation of context bisimulation. To prove that =L coincides with
∼Ct, we present two simplified notions of observable equivalence on higher order
processes named ∼nor and ∼Nb . The notions of ∼nor and ∼Nb, apart from its
proof technical importance, also seem to be of conceptual value for other higher
order process calculi.

References

1. Cao, Z.: More on bisimulations for higher-order π -calculus. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp.
63–78. Springer, Heidelberg (2006)

2. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part II). Theoretical Com-
puter Science 322(3), 517–565 (2004)

3. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and
Computation 186(2), 194–235 (2003)

A Spatial Logical Characterisation of Context Bisimulation 239

4. Hirschkoff, D.: An Extensional Spatial Logic for Mobile Processes. In: Gardner,
P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 325–339. Springer,
Heidelberg (2004)

5. Jeffrey, A., Rathke, J.: for higher-order π-calculus revisited. Logical Methods in
Computer Science 1(1:4), 1–22 (2005)

6. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theoretical
Computer Science 114(1), 149–171 (1993)

7. Sangiorgi, D.: Extensionality and Intensionality of the Ambient Logic. In: Proc. of
the 28th POPL, pp. 4–17. ACM Press, New York (2001)

8. Sangiorgi, D.: Bisimulation in higher-order calculi. Information and Computation
131(2) (1996)

9. Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order
paradigms. Ph.D thesis, University of Einburgh (1992)

Information Hiding in the Join Calculus

Qin Ma1 and Luc Maranget2

1 OFFIS, Escherweg 2, 26121 Oldenburg, Germany
Qin.Ma@offis.de

2 INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
Luc.Maranget@inria.fr

Abstract. We aim to provide information hiding support in concurrent
object-oriented programming languages. We study this issue both at the
object level and the class level, in the context of an object-oriented ex-
tension of Join— a process calculus in the tradition of the π-calculus.

In this extended abstract, we focus on the class level and design a new
hiding operation on classes. The purpose of this operation is to prevent
part of parent classes from being visible in client (inheriting) classes. We
define its formal semantics in terms of α-converting hidden names to
fresh names, and its typing in terms of eliminating hidden names from
class types.

1 Introduction

Object-oriented concepts are often claimed to handle concurrent systems better.
On one hand, objects, exchanging messages while managing their internal states
in a private fashion, model a practical view of concurrent systems. On the other
hand, classes, supporting modular and incremental development, provide an ef-
fective way of controlling concurrent system complexity. Numerous fundamental
studies such as [6,11] proposed calculi that combine objects and concurrency.
By contrast, combining classes and concurrency faces the well-known obstacle
of inheritance anomalies [9,10], i.e., traditional overriding mechanism from se-
quential settings falls short in handling synchronization behavior reuse during
inheritance. Recently, Fournet et al. have proposed a promising solution to this
problem [5]. The main idea is to extend the Join calculus [3] with objects and
classes, and more importantly to design a novel class operation for both behav-
ioral and synchronization inheritance, called selective refinement.

However, Fournet et al.’s model still suffers from several limitations, mainly in
typing. Briefly, their type system is counter-intuitive and significantly restricts
the power of selective refinement. In prior work [7], we tackled this problem by
designing a new type system. We mainly enriched class types with complete syn-
chronization behavior to exploit the full expressiveness of selective refinement.
However, doing so inevitably impaired the other dual role of class types, i.e.
abstraction. More specifically, it was unlikely for two different classes to possess
the same type. How we can regain abstraction becomes a subsequent interest-
ing question. We manage to achieve this goal by enabling programmers with
information hiding capability in this paper.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 240–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Information Hiding in the Join Calculus 241

Information hiding by itself is already a key issue in large-scale programming.
Generally, information hiding allows programmers to decide what to export in
the interface (which we assimilate to types) of an implementation. This princi-
ple brings advantages, such as removing irrelevant details from interfaces and
protecting critical details of the implementation. As regards objects, one can
easily hide some components by declaring them to be private, as Fournet et al.
and many others do. These private components do not appear in object inter-
faces. By contrast, information hiding in classes is more involved, especially in
the presence of synchronization inheritance. The difficulty resides in that syn-
chronization introduces certain type dependency among names, while carelessly
hiding some of them would result in unsafe typing. We are aware of no work on
this issue. Specifically, if we classify users of a class into two categories: object
users who create objects from the class; and inheritance users who derive new
class definitions by inheriting the class, the simple privacy policy applies solely
to object users while always leaving full access to inheritance users.

We address the issue of information hiding towards inheritance users in this
paper. We do so by introducing a new explicit hiding operation in the class lan-
guage. This amounts to significant changes in both the semantics and the typing
of class operations. Theoretically, hiding a name in a class can be expressed
as quantifying it existentially. In practice, we α-convert hidden names to fresh
names in the operational semantics and remove hidden names from class types in
typing. We believe that our proposal achieves a reasonable balance of semantical
simplicity and expressiveness, and that it yields a practical level of abstraction
in class types, while preserving safety. Moreover, our surprisingly simple idea of
hiding by α-conversion should apply equally well to other class-based systems,
provided they rely on structural typing as we do.

In this short paper, we focus on intuition, while making available a comple-
mentary technical report [8] for complete formalism.

2 Classes, Objects, and Hiding

Basic class definition consists of a join definition and an (optional) init process,
called initializer (analog to constructors or makers in other languages). As an
example, we define the following class for one-place buffers:

class c_buffer =
put(n,r) & Empty() � r.reply() & this.Some(n)

or get(r) & Some(n) � r.reply(n) & this.Empty()
init this.Empty()

and instantiate an object from it:
obj buffer = c_buffer

Similar to Join, four channels are collectively defined in this example and
arranged in two reaction rules disjunctively connected by or. We use the two
channels put and get for the two possible operations, and the two channels
Empty or Some for the two possible states of a one-place buffer, namely, being

242 Q. Ma and L. Maranget

empty or full. We here follow Fournet et al.’s convention to express privacy:
channels with capitalized names are private; they can be accessed only through
recursive self references; and the privacy policy is enforced statically.

Each reaction rule consists of a join pattern and a guarded process, separated
by �. Join patterns specify the synchronization among channels. Namely, only
if there are messages pending on all the channels in a given pattern, the object
can react by consuming the messages and triggering the guarded process. As
a result, this one-place buffer behaves as expected: the (optional) init process
initializes the buffer as empty; we then can put a value when it is empty, or
alternatively retrieve the stored value when it is full.

By contrast with Join— whose values are channels, objects now become the
values of the calculus. As an important consequence, channel names are no longer
governed by the usual rules of lexical scoping (objects names are). Channel names
can be seen as global, as method names are in any simple object calculi. From
now on, channel names are called labels.

The basic operation of our calculus is asynchronous message sending, but ex-
pressed in object-oriented dot notation, such as in process r.reply(n), which
stands for “send message n to the channel reply of object r”. Also note that we
use the keyword this for recursive self references, while other references are han-
dled through object names. Compared with the design in [5], this modification
significantly simplifies the privacy control in object semantics.

2.1 Inheritance and Hiding

Inheritance is basically performed by using, i.e. computing with, parent classes
in derived classes. At the moment, all labels defined in a class are visible during
inheritance. However, this complete knowledge of class behavior may not be
necessary for building a new class by inheritance. Moreover, exposing full details
during inheritance sometimes puts program safety at risk, and designers of parent
classes may legitimately wish to restrict the view of inheritance users.

As an example, an inheritance user may attempt to extend the class c_buffer
with a new channel put2 for putting two elements:

class c_put2_buffer = c_buffer
or put2(n,m,r) & Empty() � r.reply() & this.(Some(n) & Some(m))

Unfortunately, this näıve implementation breaks the invariant of a one-place
buffer. More specifically, the put2 attempt, once it succeeds, sends two messages
on channel Some in parallel. Semantically, this means turning a one-place buffer
into an invalid state where two values are stored simultaneously.

In order to protect classes from (deliberate or accidental) integrity-violating
inheritance, we introduce a new operation on classes to hide critical channels.
We reach a more robust definition using hiding:

class c_hidden_buffer = c_buffer hide {Empty, Some}
The hiding clause hide {Empty, Some} hides the critical channels Empty and
Some. They are now absent from the class type and become inaccessible during

Information Hiding in the Join Calculus 243

inheritance. As a result, the previous invariant-violating definition of channel
put2 will be rejected by a “name unbound” static error. Nevertheless, program-
mers can still supplement one-place buffers with a put2 operation as follows:

class c_put2_buffer_bis = c_hidden_buffer
or put2(n,m,r) � class c_join =

reply() & Next() � r.reply()
or reply() & Start() � this.Next()
init this.Start() in

obj k = c_join in this.(put(n,k) & put(m,k))

In the code above, the (inner) class c_join serves the purpose of consuming two
acknowledgments from the previous one-place buffer and of acknowledging the
success of the put2 operation to the appropriate object r. One may remark that
the order in which values n and m are stored remains unspecified.

2.2 Hiding Only Private Channels

We here restrict our hiding mechanism only to private channels. Such a decision
originates in the problems between hiding public channels and supporting ad-
vanced features, such as selftype (also known as mytype) and binary methods [1].
As observed in [13,2], these two aspects do not trivially get along without en-
dangering type soundness. More specifically, a problem manifests itself when
selftype is assumed outside the class and we hide a public channel afterwards.
As an example, consider the following class definitions.

class c0 = f(x) � x.b(1)
class c1 = a() � obj x = c0 in x.f(this)

or b(n) � out.print_int(n)

Channel f of class c0 expects an object with a channel b of type integer. This
condition is satisfied when typing the guarded process of channel a in class c1,
because the self object this does have a channel b of type integer. However, later
inheritance may hide the channel b (in class c2), and then define a new channel
also named b but with a different type string (in class c3).

class c2 = c1 hide {b}
class c3 = c2 or b(s) � out.print_string(s)

Apparently, although the above code is typed correctly, the following process
will cause a runtime type error: providing an integer when a string is expected.

obj o = c3 in o.a()

A simple solution adopted in the community is not to support both. Fol-
lowing OCaml, we choose to support the notion of selftype and limit hiding to
private channels. By contrast, Fisher and Reppy in their work for MOBY [2]
choose the reverse: not to provide selftype and instead provide complete control
over class-member visibility. Nevertheless, a more comprehensive solution is still
possible [13], however, more complicated as well.

244 Q. Ma and L. Maranget

3 The Semantics of Hiding

Class semantics is expressed as the rewriting of class-terms, while object se-
mantics by the means of reflexive chemical machines [3]. Class reductions always
terminate and produce class normal forms, which are basically object definitions,
plus an (optional) initializer, plus a a list of abstract labels. In cases where the
latter is empty (which can be statically controlled by our type systems), objects
can be created from such class definitions in normal form. Hence, our evaluation
mode is a stratified one: first rewrite classes to object definitions; then feed the
resulting term and an initial input into a chemical abstract machine.

How to hide labels? The semantics of hiding in classes is governed by two con-
cerns. On one hand, hidden labels disappear. For instance, redefining a new label
homonymous to a previously hidden label yields a totally new label. On the other
hand, hidden labels still exist. For instance, objects created by instantiating the
class c_hidden_buffer from Sect. 2.1 must somehow possess labels to encode
the state of a one-place buffer.

The formal evaluation rule for hiding appears as follows:

Γ � C ⇓C Cv (fi Cv, hi) i∈I

Γ + (c �→ Cv{hi/fi
i∈I}H) � P ⇓P Pv

Γ � class c = C hide {fi
i∈I} in P ⇓P Pv

The above inference rule is part of the class reduction semantics (see [8]). Judg-
ments express the reduction of classes to class normal forms, under an environ-
ment Γ that binds class names to class normal forms (call-by-value semantics).

Hiding applies only to class normal forms (Cv), and only at class binding
time. The hiding procedure {hi/fi

i∈I}H is implemented by α-converting the
hidden channels {fi

i∈I} to fresh labels {hi
i∈I}, whose definition is without

surprise. Such a semantics makes sense because labels are not scoped. The α-
conversion should apply to both definition occurrences (in join patterns) and
reference occurrences (in guarded processes and in the init process) of the hidden
labels in the normal form. Thanks to the restriction to only hide private labels,
the recursive self references in the normal form already include all the reference
occurrences of hidden labels. Moreover, we do not rename under nested object
definitions because they re-bind this. To give some intuition, the normal form
of class c_hidden_buffer from Sect. 2.1 looks as follows:

class c_hidden_buffer =
get(r) & Some′(n) � r.reply(n) & this.Empty′()

or put(n,r) & Empty′() � r.reply() & this.Some′(n)
init this.Empty′()

Here, we assume Empty′ and Some′ to be the two fresh labels that replace Empty
and Some respectively.

Information Hiding in the Join Calculus 245

This design meets the two concerns described at the beginning of this section:
on one hand, freshness guarantees hidden names not to be visible during inher-
itance; on the other hand, hidden names are still present in class normal forms
but under fresh identities.

4 The Typing of Hiding

4.1 Class Types and Object Types, Catching Up

Types are automatically inferred. Following our prior work [7], a class type con-
sists of three parts, written ζ(ρ)BW , where B lists the set of channels, defined
or declared in the class, paired with the types of the messages they accept, and
W reflects how defined channels are synchronized, i.e. the structure of the join
patterns in the corresponding class normal form. The row type ρ collects the
public label-type pairs from B for the type of objects created from this class.
To avoid repetition, in concrete syntax, ρ is usually incorporated in B that is
enclosed between object and end, as in the type of class c_buffer from Sect. 2:

class c_buffer: object
label get: ([reply: (θ); �]); label put: (θ,[reply: (); �′]);
label Some: (θ); label Empty: ();

end W = {{get, Some}, {put, Empty}}
We see that messages conveyed by channels are polyadic. The type of a channel
carrying k objects of types τ1, . . . , τk is written (τ1, . . . , τk). Object types are
always enclosed in square brackets. The type of objects of this class is:

[get:([reply:(θ); �]); put:(θ, [reply:(); �′])]

Channels Some and Empty do not show up because they are private. Finally, W
is organized as a set of sets of labels. Two labels appear in the same member set
of W if and only if they are synchronized in one join pattern.

Following ML type systems, polymorphism is parametric polymorphism, ob-
tained essentially by generalizing free type variables. However, such generaliza-
tion is controlled for object types. More specifically, any type variables that are
shared by synchronized channels should not be generalized. Detailed rationale
for doing so is discussed in all kinds of Join typing papers, such as [7,4]. The
basic reason is for type safety. As an example, type variable θ should not be
polymorphic in the object type above, because following the class type it is
shared by two synchronized channels get and Some (i.e. appearing in the same
member set of W). Otherwise, its two occurrence in get and put could then be
instantiated independently as, for instance, integer and string. This then would
result in a runtime type error: attempting to retrieve a string when an integer is
present. By contrast, θ is safely generalized in the class type, which allows us to
create two objects from it, one dealing with integers, and the other with strings.
The two trailing row variables �, �′ are both generalizable. They can be instan-
tiated as more label-type pairs, thus introducing a useful degree of subtyping
polymorphism by structure.

246 Q. Ma and L. Maranget

4.2 How to Type Hiding: Ideas

The most straightforward idea is to remove hidden names from class types. As
a consequence, class c_hidden_buffer from Sect. 2.1 has type:

class c_hidden_buffer: object
label get: ([reply: (θ); �]); label put: (θ,[reply: (); �′]);

end W = {{get}, {put}}
The two hidden channels Some and Empty are eliminated from both the B list
and W . Unfortunately, such a näıve elimination has a side-effect, which may
endanger safe polymorphism in the corresponding object type. Plainly, the non-
generalizable type variable θ has now falsely become generalizable, because ac-
cording to this class type, the only two channels that share θ are not synchronized
(i.e. get and put coming from two different member sets of W).

To tackle the problem, we then decide to keep track of such dangerous type
variables caused by hiding in class types, called V . More precisely, before elimi-
nating, we first record all the non-generalizable type variables of hidden names
in V . For this example, the type of class c_hidden_buffer then evolves to:

class c_hidden_buffer: object
label get: ([reply: (θ); �]); label put: (θ,[reply: (); �′]);

end W = {{get}, {put}} V = {θ}
Right before hiding, the type variables in a hidden channel are of two kinds:

non-generalizable or generalizable. The modification above solves perfectly the
problem of losing information about non-generalizable ones. If type variables
that are generalizable before hiding would always be kept so, we here already
reach a working way of typing hiding. Unfortunately, it is not the case. Some gen-
eralizable type variables of hidden channels may later become non-generalizable
during inheritance, even though the channels are already hidden. Consider the
following class definition in which channel Ch′ is hidden:

class c1 = a(x) � 0 or b(y) & Ch′(n1, n2) � this.(a(n1) & b(n2))

The corresponding class type is:
class c1: object label a: (θ); label b: (θ′) end W = {{a},{b}} V = {θ′}

The hidden channel Ch′ is of type (θ, θ′). According to the definition, θ′ is non-
generalizable (because shared by the synchronized channel b) thus is put in V .
By contrast, θ is generalizable. However, the following inheritance of class c1
easily convert θ into non-generalizable:

class c2 = match c1 with b(y) ⇒ b(y) & d(z) � this.a(z) end

This selective refinement operation mainly replaces “b(y)” by “b(y) & d(z)” in
join patterns and composes the corresponding guarded processes with “this.a(z)”
in parallel. As a consequence, class c2 has the following normal form:

class cv2 = a(x) � 0
or b(y) & d(z) & Ch′(n1, n2) � this.(a(n1) & b(n2) & a(z))

The new channel d is of type (θ). It synchronizes and shares θ with Ch′. However
it is already too late to update the non-generalizable information to reflect this,

Information Hiding in the Join Calculus 247

because hidden names are already eliminated from class types thus out of con-
trol of the type system. A simple solution we adopt is to treat already all the free
type variable of hidden names as dangerous, non-generalizable and generalizable,
in case the non-generalizable ones increase. To sum up, the final type of class c1 is:

class c1: object label a: (θ); label b: (θ′) end W = {{a},{b}} V = {θ, θ′}
Formal discussion of the type system appears in the complementary technical

report [8], including statement and proof of a “soundness” theorem.

5 Conclusion

We have achieved significant improvements over the original design of Fournet
et al. [5]: in [7] as regards the class system expressiveness, and in this paper as
regards visibility control, type abstraction, and simplification of runtime seman-
tics. We claim that these improvements yield a calculus mature enough to act
as the model of a full-scale implementation.

References

1. Bruce, K., Cardelli, L., Castagna, G., Leavens, G.T., Pierce, B.: On binary meth-
ods. Theory and Practice of Object Systems 1(3), 221–242 (1995)

2. Fisher, K., Reppy, J.: The design of a class mechanism for MOBY. In: Proceedings
of PLDI 1999, pp.37–49 (1999)

3. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join-
calculus. In: Proceedings of POPL 1996, pp. 372–385 (1996)

4. Fournet, C., Maranget, L., Laneve, C., Rémy, D.: Implicit typing à la ML for the
join-calculus. In: Proceedings of CONCUR 1997, pp. 196–212 (1997)

5. Fournet, C., Maranget, L., Laneve, C., Rémy, D.: Inheritance in the join calculus.
Journal of Logic and Algebraic Programming 57(1-2), 23–69 (2003)

6. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: reduction and typing.
In: Proceedings of HLCL 1998, pp. 248–264 (1998)

7. Ma, Q., Maranget, L.: Expressive synchronization types for inheritance in the join
calculus. In: Proceedings of APLAS 2003, pp. 20–36 (2003)

8. Ma, Q., Maranget, L.: Information hiding, inheritance and concurrency. Inria Roc-
quencourt Research Report RR-5631 (2005)

9. Matsuoka, S., Yonezawa, A.: Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In: Research Directions in Concurrent Object-
Oriented Programming, pp. 107–150. MIT Press, Cambridge (1993)

10. Milicia, G., Sassone, V.: The inheritance anomaly: ten years after. In: Proceedings
of SAC 1996, pp. 1267–1274 (2004)

11. Odersky, M.: Functional nets. In: Proceedings of ESOP 2000, pp. 1–25 (2000)
12. Riecke, J.G., Stone, C.A.: Privacy via subsumption. Information and Computa-

tion 172(1), 2–28 (2002)
13. Vouillon, J.: Combining subsumption and binary methods: an object calculus with

views. In: Proceedings of POPL 2001, pp. 290–303 (2001)

Modeling Urgency in Component-Based

Real-Time Systems

Nguyen Van Tang1, Dang Van Hung2, and Mizuhito Ogawa1

1 Japan Advanced Institute of Science and Technology
{tang nguyen, mizuhito}@jaist.ac.jp

2 United Nation University, International Institute for Software Technology
dvh@iist.unu.edu

Abstract. A component-based realtime system is a simple model for
the server-client relation with time constraints. This paper presents an
efficient algorithm, called a blackbox testing algorithm, for detecting the
emptiness of a component-based realtime system. This algorithm was
originally proposed in [5], but with a certain flaw. We improve it and
correct the flaw by using urgency [2] of transitions.

Keywords: Component Software, Duration Automata, Automatic Ver-
ification, Real-time Systems, Model Checking.

1 Introduction

The architectural design for embedded systems often relies on specification of the
interface of components only, without accessing their internal behaviors. Based
on this observation, a simple model for component-based real-time systems based
on duration automata was proposed in [5]. A duration automaton does not have
clock variables like a time automaton [1], but simply has an upper bound and a
lower bound for each transition. A component-based real-time system is defined
as a system consisting of a host, which is a general duration automaton, and
several components which are duration automata with certain restrictions. A
component-based real-time system can be regarded as a timed automaton, thus
its emptiness is PSPACE-complete.

This paper presents an efficient algorithm for detecting the emptiness, called
a blackbox testing algorithm. This algorithm was originally proposed in [5], but
with certain flaws. We improve it and correct these flaws by using urgency of
transitions, which was firstly introduced by Bornot et. al. [2] as a technique for
choosing time deadline condition in complex system specifications.

2 Duration Automata

Duration automata was firstly introduced in [3] for modeling simple real-time
systems. A duration automaton is a finite automaton in which each transition
must occur in an associated time interval. Let R+ be the set of non-negative real
numbers, and let Intv = {[l, u] | l ∈ R

+, u ∈ R
+ ∪ {∞}}.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 248–255, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modeling Urgency in Component-Based Real-Time Systems 249

Definition 1. A duration automaton is a tuple M = 〈S, Σ̃, q, R, F 〉, where

1. S is a finite set of states,
2. Σ̃ is alphabet of actions,
3. q ∈ S is the initial state,
4. R ⊆ S × Σ̃ × Intv × S is timed transition relation, and
5. F ⊆ S is the set of final states.

Each element of M is referred by S(M), Σ̃(M), R(M), q(M), and F (M), re-
spectively. An untimed automaton untimed(M) is obtained by forgetting time
constraints, i.e., replacing R with untimed(R) = {(s, a, s′)|(s, a, [l, u], s′) ∈ R}.
As in standard terminology,

– A configuration of M is a pair (s, d) ∈ S × R+.
– The initial configuration of M is (q, 0).
– An acceptance configuration of M is a configuration (s, d) where s ∈ F .

A duration automaton is equivalent to a timed automata with a single clock
such that each transition resets it. A configuration (s, d) is regarded as a state s
with a clock d.

– A transition of M on configurations is either a time transition (s, d) δ−→
(s, d + δ) or a discrete transition (s, d) δ−→ a−→ (s′, 0) where a ∈ Σ̃, δ ≥ 0,
l ≤ d + δ ≤ u, and (s, a, [l, u], s′) ∈ R.

– A (possibly empty) sequence w = (a1, t1)...(ak, tk) ∈ (Σ̃ × R
+)∗ is a timed

word of M if and only if there is a run (s0, 0) δ1−→ a1−→ (s1, 0) δ2−→ a2−→ ...
δk−→ ak−→

(sk, 0) such that s0 = q, sk ∈ F , t1 = δ1 and ti+1−ti = δi+1 for 1 ≤ i ≤ k−1.

Theorem 1. Duration automata is closed under union, intersection and com-
plementation. Decision problems for duration automata are decidable.

Proof. (Sketch) For a given duration automaton M , one can reduce M to a
finite automaton M ′. We first list the endpoints of intervals (lower and up-
per bounds of intervals) of transitions in M as an increasing sequence, say,
0 = p0 < p1 < p2... < pn < ∞. This is possible because the number of
transitions of M is finite. Secondly, we define the set of basic intervals BI =
{[p0, p1], ..., [pn−1, pn], [pn, ∞)}. Since each interval appeared in a transition of
M is the union of certain basic intervals. So, each transition of M can be
divided into several ones. For instance, (s, a, [p0, p2], s′) can be divided into
(s, a, [p0, p1], s′) and (s, a, [p1, p2], s′). We now construct a finite automaton M ′

such that S(M ′) = S(M), F (M ′) = F (M), the input alphabet of M ′ is Σ̃(M ′) =
Σ̃(M) × BI. Let (s, (a, [pi, pi+1]), s′) ∈ R(M ′) if (s, a, [pi, pi+1], s′) ∈ R(M).
Clearly, M ′ accepts a word (a1, [l1, u1])...(an, [ln, un]) if and only if M accepts
the timed word (a1, t1)...(an, tn), where t0 = 0 and (li ≤ ti − ti−1 ≤ ui) for
1 ≤ i ≤ n. Thus, the emptiness and the closure properties of duration automata
are reduced to that of finite automata, respectively. �

250 V.T. Nguyen, D. Van Hung, and M. Ogawa

3 Synchronized Composition Systems

Duration interface automata is duration automata in which the input alphabet
Σ̃ is decomposed into pairwise disjoint alphabets Σ, Δ and ∇, which correspond
to internal, input and output actions, respectively.

Definition 2. A host is a duration interface automaton. A component is a
duration interface automaton X = 〈S, Σ ∪ Δ ∪ ∇, q, R, F 〉 that satisfies:

– Σ = ∅ (i.e., no “explicit” internal actions).
– (s, a, [l, u], s′) ∈ R ∧ a ∈ Δ implies l = 0 ∧ u = ∞ (i.e., an input can occur

anytime).
– (s, a, [l, u], s′) ∈ R ∧ a ∈ ∇ implies u = ∞ (i.e., when an output is ready, it

can be sent at any time afterward).

Definition 3. A synchronized composition system Sys = 〈M, X1, · · · , Xk〉 con-
sists of a single host M and components X1, · · · , Xk such that Σ̃(Xi)∩Σ̃(Xj) = ∅
for each i �= j, Σ(M) ∩ Σ̃(Xi) = ∅ for each i, Δ(M) =

⋃k
i=1 ∇(Xk),

∇(M) =
⋃k

i=1 Δ(Xk), and

– The set of configurations is {((s0, d0), (s1, d1), · · · , (sk, dk) | s0 ∈ S(M), s1 ∈
S(X1), · · · , sk ∈ S(Xk), di ∈ R+}.

– A transition is ((s0, d0), (s1, d1), .., (sk, dk)) δ−→ a−→ ((s′0, d
′
0), (s

′
1, d

′
1), .., (s

′
k, d′k))

for δ ≥ 0 and a ∈
⋃k

i=1 Σ̃(Xi), if there exists i with 1 ≤ i ≤ k such that
• a ∈ Σ̃(Xi),
• l0 ≤ d0 + δ ≤ u0 and li ≤ di + δ ≤ ui (called synchronization condition)

for (si, a, [li, ui], s′i) ∈ R(Xi) and (s0, a, [l0, u0], s′0) ∈ R(M),
• d′0 = d′i = 0, and
• (s′j , d

′
j) = (sj , dj + δ) for j �= 0, i.

– A run is a sequence of transitions that starts from the initial configuration
((q(M), 0), (q(X1), 0), · · · , (q(xk), 0)).

– A timed word (a1, t1) · · · (ak, tk) with t1 = δ1 and ti+1 = ti + δi+1 is accepted
if there is a run ((q(M), 0), (q(X1), 0), · · · , (q(xk), 0)) δ1−→ a1−→ · · · δk−→ ak−→
((s0, d0), (s1, d1), .., (sk, dk)) with s0 ∈ F (M), s1 ∈ F (X1), · · · , sk ∈ F (Xk).

Theorem 2. A synchronized composition system Sys = 〈M, X1, · · · , Xk〉 is a
timed automaton with k+1 clocks such that each transition with a time constraint
li ≤ di ≤ ui on a clock di will reset di to 0.

Proof. (Sketch) Let C be the set of time constraints [lj , uj] appearing in a host
M and components Xi. Note that lj , uj ∈ R+. Assume that we can choose C′ (a
digitization of C) consisting of rational time constraints [l′j , u

′
j] such that there is

a run of Sys if and only if there is a run of Sys′, where Sys′ is obtained replacing
each [lj, uj] with its digitization [l′j, u

′
j]. Then, the proof has done.

Let rat(C) be the set of rational numbers appearing in C and let m be a
common multiplier of dominators of positive elements in rat(C). Let irr(C) be the
set of irrational numbers appearing in C and let lin(C) be the set of all possible

Modeling Urgency in Component-Based Real-Time Systems 251

linear combinations of irr(C) with natural numbers (i.e., lin(C) = {n1α1 + · · · +
nlαl | nj ∈ N, αj ∈ irr(C)}). Assume that (α, β) is the pair such that α ∈ irr(C),
β ∈ lin(C), and εα,β = α

β − [α
β] > 0. Since a pair (α, β) with α ∈ irr(C),

β ∈ lin(C), and β < α is finitely many, (α, β) with εα,β to be the least exists.
We choose a sufficient large multiplier m̄ of m such that 1

m̄ < min(εα,β

2 ,
1−εα,β

2),
and set l′j = [m̄lj]

m̄ and u′
j = [m̄uj]

m̄ for each lj , uj ∈ C. �

Example 1. Fig. 3 shows a simple synchronized composition system Sys =
〈X1, X2〉 and its corresponding timed automaton A.

q2q1q0

s1,q1s0,q0 s2,q1
c

c, [1,5]a, [0,3]

b

x: =0
y: =0

a

Sys = <M,X1>

s3,q2

s1s0 s2
c,[2,3]b,[0,1]a, [1,2]

s3

Timed
Automaton A

1 <= x <= 2, x:=0
0 <= y <= 3,

 y:=0
0 <= x <= 1,

x:=0
2 <= x <= 3
1 <= y <= 5

Fig. 1. Synchronized Composition System as a Timed Automaton

From Theorem 2, the emptiness problem of a component-based realtime
system is decidable. However, its complexity is expensive, i.e., PSPACE-
complete [1] after digitization of time constraints.

4 Component-Based Realtime Systems

Definition 4. A component X is input/output deterministic if

– for a ∈ Δ(X), (s, a, [0, ∞), s′), (s, a, [0, ∞), s”) ∈ R(X) implies s” = s′ (in-
put determinism), and

– for b ∈ ∇(X) and b′ ∈ ∇(X)∪Δ(X), (s, b, [l, ∞), s′), (s, b′, [l′, u′], s”) ∈ R(X)
implies s” = s′, l′ = l, u′ = ∞, and b′ = b (output determinism).

A synchronized composition system Sys = 〈M, X1, · · · , Xk〉 is a component-
based realtime system [5] if each component Xi is input/output deterministic.

Definition 5. We borrow notations from Definition 3. In a component-based
system Sys = 〈M, X1, · · · , Xk〉, a transition ((s0, d0), (s1, d1), .., (sk, dk)) δ−→ a−→
((s′0, d′0), (s′1, d′1), .., (s′k, d′k)) is urgent if δ is the minimum among synchroniza-
tion conditions of all possible transitions from ((s0, d0), (s1, d1), .., (sk, dk)), and
delayable otherwise. We also say a corresponding transition (s0, a, [l0, u0], s′0) ∈
R(M) of a host is urgent, and delayable otherwise.

252 V.T. Nguyen, D. Van Hung, and M. Ogawa

Definition 6. Let w = (a1, t1) · · · (ak, tk) and let ai ∈ A. For B ⊆ A, the
projection w|B is the subsequence of w obtained by filtering each element (aj , tj)
with aj ∈ B. For aj ∈ B, (ah, th) is a local predecessor of (aj , tj) wrt B, if
ah ∈ B, h < j, and ai �∈ B for each i with h < i < j.

Definition 7. Let Sys = 〈M, X1, · · · , Xk〉 be a component-based real-time sys-
tem. For a timed word w = (a1, t1)...(an, tn), let aj ∈ ∇(Xi) and let (ah, th) be
the local predecessor of (aj , tj) wrt Σ̃(Xi). For (s′, aj , [dj , ∞), s”) ∈ R(Xi) with

q(Xi)
untime(w|Σ̃(Xi)

)
−−−−−−−−−−−→ s′ in untimed(Xi), dj is the minimum delay at (aj , tj).

Definition 8. A consecutive sequence of transitions (si−1, ai, [li, ui], si) ∈
R(M) (i = 1, · · · , n) is called an accepted sequence of transitions of the host
M if s0 = q(M) and sn ∈ F (M).

Note that such a minimum delay is well-defined, since each component in Sys
is input/output deterministic. Let r be the number of states of M , and let m is
the maximal number of states of components Xj , j ≤ k. Let P be the length of
the longest path (number of transitions) from the initial state to a final state of
M in which any cycle is not repeated more than r ∗mk times. The next theorem
reduces the emptiness of a whole component-base realtime system to that of its
host under certain conditions.

Theorem 3. Let Sys = 〈M, X1, · · · , Xk〉 be a component-based realtime system.
There is an accepted timed word of Sys if and only if there are an accepted
sequence of transitions of the host M σ = (s0, a1, [l1, u1], s1)(s1, a2, [l2, u2], s3)...
(sn−1, an, [ln, un], sn) with the length n ≤ P , and a real number sequence 0 =
t0 ≤ t1 ≤ · · · ≤ tn satisfying following conditions:

– wi = a1a2...an|Σ̃(Xi) is accepted by untimed(Xi) for each i with 1 ≤ i ≤ k,
– li ≤ ti − ti−1 ≤ ui for all i with 1 ≤ i ≤ n,
– When aj ∈ ∇(Xi), let (ah, th) be the local predecessor of (aj , tj) wrt Σ̃(Xi)

and let dj be the minimum delay at (aj , tj). Then,
• tj − th ≥ dj, and
• if the transition (sj−1, aj , [lj, uj], sj) is urgent, tj = min {t | t − th ≥

dj ∧ lj ≤ t − tj−1 ≤ uj}.

Proof. (Sketch) If the assumption in Theorem holds, we can inductively con-
struct an accepted behavior of Sys σ′ = c0

δ1−→ a1−→ · · · δn−→ an−→ cn, where t1 = δ1,
and ti = Σi

j=1. It is clear that (a1, t1)(a2, t2)...(an, tn) is a accepted timed word
of Sys. Now, we only have to prove the bound P in “only if” part. Assume
that a timed word w = (a1, t1) · · · (an, tn) is accepted by Sys. Timed word w
is inductively computed by constructing an accepted sequence of transitions
φ = (s0, a1, [l1, u1], s1)(s1, a2, [l2, u2], s3) · · · (sn−1, an, [ln, un], sn) of the host M .
If n ≤ P , the proof is done. If n > P , then φ must include at least a cycle c with
more than r ∗mk repetitions. By the pumping lemma like argument, we can find
a shorter accepted sequence of transitions of M that satisfies all the conditions
in the Theorem. �

Modeling Urgency in Component-Based Real-Time Systems 253

In the next section, the blackbox testing algorithm will be presented by search-
ing an accepted sequence of the host M satisfying the conditions in Theorem 3
up to the length P .

5 Checking Emptiness of Component-Based Realtime
Systems

The emptiness problem for a system plays a key role in checking the safety. An
algorithm for checking the emptiness of a component-based system using black
box testing was originally proposed in [5]. However, there is a flaw such that a
component-based realtime system is empty, whereas the algorithm in [5] reports
that the system is not empty. For instance, consider the following simple example.

Example 2. Let Sys = 〈M, X〉 where M is a host and X is a component.

– M = 〈{s0, s1, s
′
1}, {a}, s0, {(s0, a, [2, 4], s1), (s0, a, [5, 10], s′1)}, {s′1}〉.

– X = 〈{q0, q1}, {a}, q0, {(q0, a, [3, ∞), q1)}, {q1}〉.

In [5], the state (s′1, q1) is regarded as a successor of (s0, q0). But, (s′1, q1) is not
reachable from (s0, q0). This is due to the fact that Sys has already changed
from (s0, q0) to (s1, q1) at some point in the time interval [3,4].

To deal with this problem, we introduce urgency for transitions to specify
time deadline condition of configurations. For the emptiness problem, we first
use the BlackboxTest algorithm proposed in [5] for solving membership for a
component. Secondly, we construct Algorithm 1 to compute time deadline condi-
tion of a given configuration. Lastly, with the aid of Algorithm 1 and Theorem 3,
we construct Algorithm 2 to check the emptiness of a component-based system
using black box testing.

Definition 9. 1. For a sequence of transitions φ, let label(φ) denote the se-
quence of the labels corresponding to φ.

2. For a given prefix of a generated sequence of transitions σ = e1e2...en, where
ei = (si−1, ai, [li, ui], si) ∈ R(M) (i =1..n). Time deadline of sn by action
a along σ, denoted by deadlineσ(sn, a), is the maximal value δ such that
(sn, 0) δ−→ (sn, δ) and M must change to another state at time δ.

Algorithm 1. Deadlineσ(sn, a): (Check the conditions (2) and (3) of
Theorem 3)

Input: A prefix-generated sequence σ = e1e2...en

Output: deadlineσ(sn, a).
Method:

1. Compute the set R(sn, a) := {e | e = (sn, a, [l, u], s) ∈ R(M)}.
2. deadline := ∞. For j ≤ k let mj be the largest index of σ such that amj ∈

Σ̃(Xj) if it exists, otherwise, set mj = 0. For each e = (sn, a, [l, u], s) ∈
R(sn, a).

254 V.T. Nguyen, D. Van Hung, and M. Ogawa

(a) If a ∈ �(Xj)∪Σ(M), if BlackboxTest(Xj , label(σ)|Σ̃(Xj))= “yes” and
u < deadline then deadline := u.

(b) If a ∈ ∇(Xj). If BlackboxTest(Xj , label(σ)|Σ̃(Xj)) = “yes”, let d be
the value of dXj .
– Case 1: e is delayable. If tn − tmj + u ≥ d and u < deadline then

deadline := u.
– Case 2: e is urgent.

• If tn − tmj + l ≤ d ≤ tn − tmj + u and d − (tn − tmj) < deadline
then deadline := d − (tn − tmj).

• If tn − tmj + l ≥ d and l < deadline then deadline := l.
3. return Delainey;

With the aid of the Algorithm 1, the emptiness of a component-based
real-time system can be solved by the following testing procedure.

Algorithm 2. Non-Emptiness(Sys): (Check all conditions of Theo-
rem 3)

Input: Component-based real-time system Sys = 〈M, X1, · · · , Xk〉
Output: “Yes” if the set of timed words of Sys is not empty, “No” otherwise.
Method:

1. Compute P . Generate all accepted sequences of transitions of M with length
less than P .

2. Check on-the-fly whether any prefix of a generated sequence satisfies the
conditions of Theorem 3. This can be done by:
For each prefix of a generated sequence of transitions σ = e1...en−1, where
ei = (si−1, ai, [li, ui], si) for each i with 1 ≤ i ≤ n−1. Suppose that t0, t1, ...tn
are inductively computed in advance. For j ≤ k let mj be the largest index
of σ such that amj ∈ Σ̃(Xj) if it exists, otherwise, let mj = 0. For each
transition en = (sn−1, an, [l, u], s) of the host M starting from sn−1. Compute
deadlineσ(sn−1, an) using Algorithm 1. If l ≤ deadlineσ(sn−1, an) then:
(a) If an ∈ �(Xj), then if: BlackboxTest(Xj , label(σ)|Σ̃(Xj)) = “no”,

σen does not satisfy the conditions of Theorem 3. Otherwise, σ := σen,
mj := n. If en is delayable then tn := tn−1 + u. If en is urgent then
tn := tn−1 + l.

(b) If an ∈ ∇(Xj).
If BlackboxTest (Xj , label(σ)|Σ̃(Xj)) = “yes”, let d be the value of dXj .
Case 1: If en is delayable
i. If tn−1 − tmj + u < d : then σen does not satisfy the conditions of

Theorem 3.
ii. If tn−1 − tmj + u ≥ d : then σ := σen, mj := n, tn := tn−1 + u.

Case 2: If en is urgent
i. If tn−1 − tmj + u < d then σen does not satisfy the conditions of

Theorem 3.
ii. If (tn−1 − tmj + l) < d ≤ (tn−1 − tmj + u) then the conditions of

Theorem 3 are satisfied; update σ := σen, tn := tmj + d, mj := n.

Modeling Urgency in Component-Based Real-Time Systems 255

iii. If tn−1 − tmj + l ≥ d then update σ := σen, tn := tn−1 + l, mj := n.
If BlackboxTest(Xj , label(σ)|Σ̃(Xj)) =“no”, the conditions of Theo-
rem 3 are not satisfied.

(c) If an ∈ Σ(M) then σ := σen, tn := tn−1 + u.
3. If a generated sequence satisfying the conditions of Theorem 3 is found,

return “Yes”. Otherwise, return “No”.

The complexity for the worst cases of this algorithm is O(P 2 ∗ KP+1), where
K = |Σ̃(M)| is the size of the alphabet of the system Sys. Unlike the complexity
of checking the emptiness for timed automata, this complexity does not depend
on the size of the constants occurring in the time intervals for the transitions.

6 Conclusion

This paper presented an efficient algorithm for detecting the emptiness, called
a blackbox testing algorithm. This algorithm was originally proposed in [5], but
with a certain flaw. We improved and corrected it by using urgency of transitions,
which was firstly introduced by Bornot et. al. [2] as a technique for choosing time
deadline condition in complex system specifications. The urgency enables us to
compute the deadline of an accepted behavior of a system using Algorithm 2.

Currently, the algorithm covers checking emptiness only. With the urgency,
we can describe a property in Timed Computation Tree Logic (TCTL), such as
φ =⇒ F≤tψ. The next step is to give an efficient checking algorithm for such
TCTL properties of a component-based realtime system.

Acknowledgments

This research is supported by the 21st Century COE “Verifiable and Evolvable
e-Society” funded by Japanese Ministry of Education, Culture, Sports, Science
and Technology.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 103–129. Springer, Heidelberg (1998)

3. Chaochen, Z.: Linear Duration Invariants. In: Formal Techniques in Real-Time and
Fault-Tolerant Systems. LNCS, vol. 963, pp. 86–109. Springer, Heidelberg (1994)

4. Dang, Z., Xie, G.: CTL model-checking for systems with unspecified finite state
components. In: SAVCBS 2004, ACM SIGSOFT 2004/FSE-12, pp. 32–38 (2004)

5. Van Hung, D., Vu Anh, B.: Model Checking Real-time Component Based Systems
with Blackbox Testing. In: IEEE proceeding of RTCSA 2005, pp. 76–79, Hong Kong,
(August 2005)

Maintaining Data Consistency of XML

Databases Using Verification Techniques

Khandoker Asadul Islam and Yoshimichi Watanabe

University of Yamanashi, Kofu, Yamanashi 400-8511, Japan
{asad, nabe}@s.cs.yamanashi.ac.jp

Abstract. XML document is a very popular way to transfer data be-
tween databases because of its simplicity of structure and text based data
storage. In some typical implementation scenarios where XML document
is used to transfer data as XML database, it is necessary to check the con-
sistency of the data at destination. If users are responsible for storing and
transferring the document, there is a possibility of data manipulation.
In this paper, we propose to apply data verification techniques including
checksum and hash algorithms for data verification of XML document.
As an advantage, we show that we not only can check the document’s
authenticity, but also we can identify the specific modified portions of the
document. We discuss many popular checksum techniques and secured
hash algorithms applied to XML document and compare their efficiency
on data verification in the scenarios of the XML data transfer.

Keywords: XML Database, Verification.

1 Introduction

Nowadays XML[1] document are gaining popularity for a standard method of
transmitting data through telecommunication or storage. From the several uses
of XML document in data transfer, data transmission between two different or
same relational databases is generally done. Also, XML document is used to
store extracted information from any databases for later use. It is necessary to
check the consistency of data stored as an XML document. Applying digital
signature[2] is a standard to maintain and checks the authenticity of XML doc-
ument. Digital signature ensures that the document is the same as the original
document send by the sender, so that any changes done between sender and
receiver can be detected. For protecting data from malicious users, encryption[3]
of data can also be used. In the scenario of digital signature, digest of the whole
document is used for the signature. The hash algorithms used are Message Digest
(MD4), MD5, Secure Hash Algorithm 1 (SHA-1), SHA-256, SHA-384, SHA-512,
and so on. Any change to the document invariably produces a different hash
result when the same hash function is used. Thus comparing the digests at send-
ing and receiving time at destination, we can detect whether the document has
changed or not. The efficiency of digital signature depends on the hash algorithm
used to generate digest. The digest is independent to the position of data, that

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 256–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Maintaining Data Consistency of XML Databases 257

is, the changed digest does not give us any information about the position of the
change in the document.

In this paper, we experiment various data verification techniques on typical
XML documents that are used for data transfer. The data verification techniques
include checksum algorithms and one-way hash algorithms. Also, we propose a
procedure of using these techniques on XML document so that not only we
maintain the data consistency, but also we can detect the area of change. By
successfully implementing the technique, we can detect and use only the correct
information from a transferred XML document, even if the document is changed.

2 Verification Techniques on XML Database

In general, the XML documents used for transferring data from databases are
very simple and record oriented. Thus, this kind of documents can be easily
recognized and converted to a data table. In this paper, we consider XML data-
bases that can be easily transferred to a records oriented database and vice
versa. We specify some typical data transformation scenarios and discuss how
our approach of verification techniques can help on data verifications.

2.1 Typical Scenarios

XML is a very popular language used to transfer data because it is stored in
basic text format that is readable to all. The simplex feature of storing XML
data leads a problem of modification. Consider a scenario where there is a need
of easy transfer to a set of data (records) from one database to another database.
The two databases are maybe same or different. An XML document is used for
the data transfer. At the sender side, the sender prepares an XML document with
the selected desired data and sends it directly by transmission media (Internet,
mail attachment etc.) or saves it in any storage media (CD, Flash Drives etc.)
to send it manually. At the destination side, the receiver gets the file and there
need to insert the data into the database.

In the scenario in Fig. 1, after preparing the XML document with the se-
lected data, there could be a possibility of being modified before sending or any
modification done in the sending process.

Fig. 1. Typical scenario of data transfer Fig. 2. Typical scenario of data store

258 K.A. Islam and Y. Watanabe

The same kind of data modification could arise in the situation where we store
some selected data for later use in XML format shown in Fig. 2. The resultant
data may be a result of complex time consuming query. To run the query, again
for all, would be a very inconvenient rather than to run the query for only small
number of data.

2.2 Process of Applying Verification Techniques

In the process of data verification, we will generate a digest of whole document.
The algorithm for generating the digest could be the popular checksum algo-
rithms and the hash algorithms. We will discuss on the algorithms later in this
paper. This digest will append with the main document. For security purposes,
the digest will be encrypted using a private key (public key cryptography tech-
niques). Before using the document, the process will generate the digest using
the same algorithm and compare the digest with the string of the document after
decrypting it. Figure 3 describes the whole process.

Generating the Document Digest. As our objective is to detect errors in
document and in specific records, we use each and every record’s digest as a
reference of that record. The idea behind this is that if any record has changed
then its corresponding digest also has changed and we can detect that record.

In proposed technique, the digest of the document is composed by the digest
of each record. Since we are using XML documents build from general databases,
the records could be easily identifiable. Let’s consider an XML document X . We
assume that total number of records in X is n and the records are R1, R2, R3,
· · · , and Rn. Let be D is the function of generating record’s digest. The digest
of R1, D1 = D(R1), digest of R2, D2 = D(R2) and so on. Concatenating all the
record’s digest we will get the document’s digest. So, the document’s digest DX

= D1 + D2 + · · · + Dn = D(R1) + D(R2) + · · · + D(Rn), where ”+” means
the concatenation of strings. In order to get the digest of whole XML document,
we detect each and every record from the whole document, prepare the string
by serially concatenating the digest of each record, and append the string to the
XML document.

Consider an XML document of size x (in bytes), the number of records = n,
the average size of record = r, and the size of header information = c. Then,
x = c + r ∗ n. Now, on that document we will generate the digest. The length of
each record’s digest depends on the algorithm used. In case of using MD5, the
length will be 14 bytes. Similarly for CRC the length is 4 bytes and for SHA256
the length is 32 bytes. Let be the digest size = d. Thus, the digest for the XML
document = d ∗ n. After appending the digest to the main document, the size
of the document would be x′ = c + (r + d) ∗ n. The percentage increment of
size with respect to original document, P = (d ∗ n) ∗ 100/(c + r ∗ n). The size
of c is very small rather than r ∗ n. Thus, we can conclude, P = d ∗ 100/r.
If d = r (individual record’s digest is equal to the average size of the record),

Maintaining Data Consistency of XML Databases 259

Fig. 3. Apply verification techniques

the size of the document will increase 100%. In actual case, it is effective when
d � s. Single character checksum is best considering the size of the document.
For single character algorithm, d = 1, thus the file increases by n bytes only.

Appending the Checksum to the Document. The digest of the document
can append to the document as comments or processing instruction of XML.
Processing instruction(PI) is an escape hatch to provide information to an ap-
plication. Like comments, they are not contents part of the XML document, but
the XML processor is required to pass them to an application. PI has the form
〈?name pidata〉. The ”name”, called as the PI target, identifies the PI to the ap-
plication. Application should process only the targets it recognizes and ignores
all other PIs. Any data that follows the PI target is optional, and it is for the
application that recognizes the target. The name used in PIs may be declared
as notations in order to formally identify them[5].

We append the digest string to the document as a PI. Note that, this digest
can be used as digest in digital signature.

Process of Finding Modified Records. After receiving the document or
at the time of use from any storage, the testing application will generate the
digest string from the document with the same algorithm used previously. It is
necessary to match the generated string with the string coming along with the
document.

While checking the two strings we first check the length. If the generated
string has the same length with the string appended in document then we will

260 K.A. Islam and Y. Watanabe

check each record’s digest (for multiple character digest of each record we have
to consider a block of characters of digest length) serially. If any digest of the
generated string is different, then we conclude the record for which the digest was
generated is modified, since the position of the digest in the whole document’s
digest string is in serial of the records in the document. By removing the modified
records we will finally get correct records only.

When the length is not same, there were inserted or removed any records.
This will be a critical problem to find out the correct one. We can check the
document from beginning and from last, and get the corrected ones. Pair-wise
alignment techniques can be applied for this problem. The pair-wise alignment
is the problem of comparing two sequences while allowing certain mismatches
between them. Alignment of two sequences S and T is obtained by inserting
some gaps ’ ’ into S and T so that the similarity score between the two result-
ing sequences becomes maximal as a whole[4]. For example, given two sequences
ACGCTTTG and CATGTAT, one possible alignment would be:

A C G C T T T G
C A T G T A T

The alignment can efficiently be computed with dynamic programming tech-
nique. Given a sequence S1, · · ·, Sm of text blocks of an H-document and a
sequence T1, · · ·, Tn of a T-document, after computing the similarity score of
all pairs (Si, Tj), we can compute the alignment of two sequences S1, · · ·, Sm

and T1, · · ·, Tn based on the computing similarity score.

2.3 Algorithms Used for Digest

In this paper we consider three categories of algorithm for generating digest. First
is parity scheme, we experiment with the very simple single character checksum
algorithm. Second is the CRC algorithm as sophisticated redundancy check and
third are MD5 and SHA256 as one-way hash functions.

The length of Digest for CRC is 4 bytes. For the size perspective, this is
very effective. If we consider the average length of record is 100, then the size
increment in case of CRC will be 4%. Also, the algorithm takes minimum time
than other algorithms. But it is possible of getting two same digest value for two
different documents, thus although this is effective in terms of size, we will not
get 100% accuracy in all times.

In case of 100% accuracy, we have to use the hash functions. Here we consider
two most popular one-way hash algorithms: MD5 and SHA256. However, colli-
sions (generating same digest for two different messages) already found for MD5,
but for SHA256 we still not get any collisions[5]. The time required for these two
algorithms is almost same. The length of digest for SHA256 is 32 bytes, whereas
the length of digest for MD5 is 14 bytes. Thus, for document of average record
size 100 bytes, size increment would be 14% for MD5 and 32% for SHA256. For
100% accuracy, SHA256 is most effective. If we use this algorithm, the size of
the document will increase considerably.

Maintaining Data Consistency of XML Databases 261

3 Experiments

Among the various checksum and hash algorithms we took CRC, MD5 and
SHA256 algorithms. From the test document, we first detect each record. We
use SAX[6] to parse the document for fast processing. The final digest of the
document is generated by concatenating each record’s digest. We run the exper-
iment on a computer with 3 GHz Pentium 4 CPU and 1 GB memory.

Table 1 shows the test results on applying CRC, MD5 and SHA256 algorithms
applied to three different sized XML document for generating the digest. The time
is the digest generating time in millisecond. Size is the total digest size in bytes.

Table 1. Digest generating time and size
of the digest

XML documents Algorithms
CRC MD5 SHA256

1 MB File Time 125 222 218
Size 18,520 74,080 148,160

2 MB File Time 281 468 453
Size 37,052 148,208 296,416

5 MB File Time 687 1,140 1,109
Size 92,652 370,608 741,216

Fig. 4. Time require for generating digest

Using CRC is not only faster than MD5 and SHA256, it generates the digest
very smaller than the others. From the graph in Fig. 4 we notice that the time
required for MD5 and SHA256 is almost same, although the size of the digest
for SHA256 is more than double than the size for MD5.

Considering each record’s digest, we can take the digest from the whole docu-
ment. However, in that case we cannot detect specific erroneous records. In the
process of applying digital signature, the digest used is generated from the whole
document and the algorithm used most commonly MD5, SHA etc. Although we
cannot detect erroneous records by taking the digest of whole document, in our
test we compare the time for both the process; a) time to generate digest direct
from the whole document (direct method) and b) time to generate the digest
from each record’s digest. The test result is shown in Fig. 5.

Another part of our test is to try to detect errors in document and in spe-
cific records. In this case we also consider simple single character checksum algo-
rithm for generating digest. We prepared for the documents by adding randomly
generated characters, removing characters from random positions and replacing
characters with randomly generated characters. After each time modification we
try to detect the whether the procedures can detect the errors or not. We did
the random test of 1,200,000 times. As a result of the test, the single character
algorithm is 99.98% accurate, whereas the SHA256 and MD5 are 100% accurate.

After manipulating a record by replacing characters with randomly generated
characters, removing characters from randomly and adding random characters,

262 K.A. Islam and Y. Watanabe

i)Using MD5 ii)Using SHA256

Fig. 5. Generating times of hash values from whole document and from individual
record

we will try to detect the specific records by the proposed checksum technique.
We did the random test of 1,200,000 times. As a result of the test, the accuracy
of single character algorithm is 99.2%, whereas the SHA256 and MD5 are 100%.

4 Evaluation

In addition of data verification, one of our main objectives is to detect errors of a
specific portion of an XML document. For easily identification and division of por-
tions of an XML document, we use database style XML document and take each
record as a small portion of the document. We propose to use digest of the docu-
ment from each record’s digest for the data verification process, since it will help us
finding specific erroneous records when any error occurs. This digest is appended
to the document directly throughPI and public-key cryptography.We test our pro-
posed technique for detecting errors indocumentwithalgorithmranged fromsingle
character checksum to one-way cryptographic hash. We compare the algorithm is
in various ways. In our proposed technique, time and size are big factors.

We have shown that, the size mainly depends on the algorithm used and the
average size of record. For providing 100% accuracy, we have to use one-way
hash functions, and SHA256 is most reliable. But using these functions, the size
increment of the document is high. However, for a very secured and confidential
data (financial records etc.), hash functions should be used.

Similar to the case of size, cryptographic hash algorithms also took more
times. At the time of preparing the document, the process have to parse the
whole document, get each record, generate each records digest and then result
the final digest for the document. At the time of checking the document, the
process again generates the digest from the whole document, extracts the digest
coming along with the document and compares to find errors.

Now, we define some symbols as follows.

GCS - Time to generate the digest (including document parsing)
AC - Time to add the digest to the document

Maintaining Data Consistency of XML Databases 263

EC - Time to extract the digest coming along with the document
COMP - Time to compare two digests.
At source side, the digest is generated, appended to the document and make

the document ready to transfer or store. At destination side, the document is
checked before use or before inserting into the database. The time needed for
these tasks is as follows.

Time required for at the source side: GCS + AC.
Time required at the destination side: EC + GCS + COMP.
Our experiment shows the time required to generate the digest. Similar to

the scenarios shown in Fig. 1 and 2, the time and size factors will not degrade
the performance and efficiency of the system. Thus, this process gives us an
opportunity to protect our sophisticated data from malicious users even if the
user manually handles the data transferring processes.

5 Conclusion

As the use of XML document in transferring data, the need for data consistency
checking also increasing. Applying digital signature ensures authorization for
the document. In this paper we propose a process of detecting errors in not
only document but also specific records in an XML document. By applying
sophisticated checksums or cryptographic hash functions, we can implement our
proposed technique on secured information. So, if very few records are affected
upon sending the database, at the destination we can just detect the corrected
records and ignore modified records rather receive the whole document again.
And we can request the modified records only. The proposed procedure is tested
with a single-character checksum formula, the random test results 99.2% success.
With the cryptographic one-way hash functions (MD5, SHA256 etc.) our test
results 100% accuracy and correctness. Further research can be on try to produce
a 100% accurate result giving formula with small length digest.

References

1. Bray, T., Paoli, J., Sperberg, C.M.: Extensible markup language (XML) 1.0 W3C
Recommendation (1998), http://www.w3c.org/TR/REC-xml

2. Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML-Signature Syntax
and Processing W3C recommendation (2002)

3. Imamura, T., Dillaway, B., Simon, E.: XML Encryption Syntax and Processing W3C
Recommendation (2002)

4. Umehara, M., Iwanuma, K., Nabeshima, H.: A Case-Based Recognition of Semantic
Structures in HTML Documents - An Automated Transformation from HTML to
XML. In: Proceedings of Third International Conference of Intelligent Data Engi-
neering and Automated Learning, Manchester, pp. 141–147 (2002)

5. Ducharme, B.: XSLT, Comments and Processing Instructions (2000),
http://www.xml.com

6. David Megginson: SAX (Simple API for XML) (2000), http://www.saxproject.org

http://www.w3c.org/TR/REC-xml
http://www.xml.com
http://www.saxproject.org

An Operational Semantics of Program

Dependence Graphs for Unstructured Programs

Souhei Ito, Shigeki Hagihara, and Naoki Yonezaki

Tokyo Institute of Technology

Abstract. The program dependence graph (PDG) represents data and
control dependences between statements in a program. The PDG is a use-
ful intermediate representation for compiler code optimizations, because
compiler code optimizations mostly rely on data and control dependence
information. However, the validity of optimization methods based on
PDGs has not been well studied. In order to justify optimization based
on PDGs, it is necessary to introduce a formal semantics of PDGs. This
paper presents an operational semantics of PDGs corresponding to pro-
grams which have an unstructured control flow. Our PDG semantics is
equivalent to sequential program semantics in the sense that a CFG and
the corresponding PDG perform the same computation.

1 Introduction

The program dependence graph (PDG) [5] is an intermediate program represen-
tation which has statements represented as nodes, and data and control depen-
dences represented as edges. The PDG is a useful intermediate representation
for compiler code optimizations, because these optimizations mostly rely on data
and control dependence information [4,5]. Many optimizations can be performed
simply using PDGs, and incremental data flow update is also directly avail-
able by this approach. Therefore, compiler code optimizations can be performed
more efficiently on PDGs than on control flow graphs (CFGs). There are several
algorithms of code optimizations based on PDGs [11,5,1].

Although the PDG is an appropriate representation for many compiler code
optimizations, the validity of optimization methods based on PDGs has not
been well studied. In order to justify optimization methods based on PDGs,
it is necessary to introduce a formal semantics of the PDG. Several previous
studies have considered a formal semantics of PDGs [6,2,8,3]. However, they
treated only structured programs, which have restricted branches and loops of
the form (if e then . . . else . . .) and (while e . . .) respectively. These studies
are not sufficient to justify the rectitude of compiler code optimization methods
based on them, since intermediate programs appearing in code optimization
processes might have unstructured control flow.

This paper presents an operational semantics of PDGs corresponding to pro-
grams which have unstructured control flow. Our PDG semantics is equivalent
to CFG semantics in the sense that a CFG and the corresponding PDG perform
the same computations.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 264–271, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Operational Semantics of PDGs for Unstructured Programs 265

This paper is organized as follows: Section 2 introduces CFGs as a program
representation. In Section 3, the PDG is introduced. In Section 4, we define the
operational semantics of PDGs, and the notion of deterministic PDG. Deter-
ministic PDG is the class of PDGs whose any computation starting from the
same initial state yields the same result. Our PDG semantics is equivalent to
sequential program semantics in the sense that a CFG and the corresponding
PDG perform the same computation. The final section offers some conclusions,
and discusses future directions.

2 Control Flow Graphs

We consider the CFG as a representation of programs. A CFG is a pair (N, E) of
a set N of nodes and a set E ⊆ N ×N of edges. The nodes of a CFG are labeled
by statements, and the edges of a CFG represent control flow of a program.
We only consider two types of statements, an assignment statement (x := e)
and a conditional statement (if e). Assignment statements have exactly one
successor and Conditional statements have exactly two successors. Edges from a
conditional statement are labeled differently, either with true or false. A CFG has
a unique start node and a unique end node. The start node has no predecessor,
while the end node has no successor. Any node in a CFG is reachable from the
start node.

An operational semantics of CFGs can be introduced naturally.

3 Program Dependence Graphs

A program dependence graph is a quintuple (N, C, F, L, D), where N is a set of
nodes, and C, F, L and D are sets of edges. These edge sets represent four types
of dependences, i.e. control dependence, loop independent data dependence, loop
carried data dependence, and def-order dependence respectively.

For the definition of control dependence, we adopt the one called “weak control
dependence” in [7] since the standard definition of control dependence is not
sufficient to define the operational semantics of PDGs. The definition of def-
order dependence is the same as the one used in [6].

To define loop independent and carried data dependence, the formal definition
of loops must be introduced. We first give it.

Definition 1 (Loops, back edges). Let G be a directed graph. A loop is
a maximal strongly connected region in G. A back edge of a loop is an edge
contained in the loop whose target node has an incoming edge from outside of
the loop. We define the sequence G0, G1, G2, . . . as G0 = G and Gi+1 is ob-
tained by removing all back edges in Gi. Loops in G are the union of loops in
G0, G1, G2,

We now define loop independent data dependences and loop carried data
dependences.

266 S. Ito, S. Hagihara, and N. Yonezaki

Definition 2 (Data dependences). Let G be a CFG. Let s and t be nodes
in G. The definition at node s reaches t if there exists a variable w such that s
defines w, t uses w, and there exists a path in G from s to t such that no node
except s on that path defines w. We call such a path a reaching path from node
s to t. The node t is data dependent on s if the definition at s reaches t. There
is a loop independent data dependence from s to t if i) t is data dependent on
s, and s and t are not both contained in the same loop, or ii) if both s and t are
contained in the same loop, there exists a reaching path from s to t which does
not contain any back edge of the loop. There is a loop carried data dependence
from s to t if both s and t are contained in the same loop, there exists a reaching
path from s to t which contains a back edge of the loop, and there is no loop-
independent data dependence from s to t.

Let G = (N, E) be a CFG. The PDG corresponding to G has the node set
N ∪ {entry}, where entry is the extra node which is the root node of control
dependences. According to dependence types, each edge set C, F, L and D con-
tains ordered pairs of nodes such that one is dependent on the other. Note that
(entry, n) ∈ C iff there is no node on which n is control dependent. We call the
subgraph (N, C) of PDG (N, C, F, L, D) the control dependence graph (CDG)
for the PDG.

We may write c(s, t), f(s, t), l(s, t) and d(s, t) to denote that (s, t) is an ele-
ment of C, F, L and D respectively. Moreover, we sometimes write ct(s, t) and
cf (s, t) to distinguish true control dependences and false control dependences
in C respectively, and fx(s, t) and lx(s, t) to specify the depending variable. A
node t is true (false) dependent on a node s iff t is control dependent on s and
t is reachable from s’s true (false) successor.

4 An Operational Semantics of the PDG

In this section, we present an operational semantics of the PDG. The basic idea
is to define states in runs of PDGs as state = avail × econf where avail is a
set of functions that take a node and a variable and return a value. We do not
require global stores since an execution of a statement affects only nodes which
are dependent on it.

The set econf is a set of functions that take an edge and return the state
of the edge. Functions in econf indicate whether nodes are executable or not.
For example, if n is an if statement and the expression is evaluated to T then
its outgoing ct -edges are “activated” and outgoing cf -edges are “inactivated.”
Whether a node is executable or not is determined by the states of its incoming
edges. econf is used to represent a configuration of edges in executions of PDGs.

To define the operational semantics of the PDG, we introduce the following
definitions on PDGs:

Definition 3 (Looping edges). Let G = (N, C, F, L, D) be a PDG and GC =
(N, C) be the CDG of G. Let R be a loop in GC . Suppose ct(p, q) (resp. cf (p, q))
is a back edge of R. We define looping edges of R to be all the ct-edges (resp.
cf -edges) from p.

An Operational Semantics of PDGs for Unstructured Programs 267

Definition 4. Let G = (N, C, F, L, D) be a PDG. We define Ĉ to be the set
obtained by removing looping edges from C.

Definition 5 (Subgraphs). Let G = (N, C, F, L, D) be a PDG and p ∈ N .
We define G(p) = (N ′, C′, F ′, L′, D′) to be the subgraph of a node p where

N ′ = {n | ∃q.c(p, q) ∈ C ∧ n is Ĉ-reachable from q}

and C′ = C ∩ (N ′ × N ′). F ′, L′ and D′ are obtained in similar way.
G(p) is a subgraph of G consisting of nodes which are reachable from C-

successors of p without passing through looping edges. Note that c(p, q) may be a
looping edge. Similarly, we define GT (p) (resp. GF (p)) consists of node which are
reachable from ct-successors (resp. cf -successors) of p without passing through
looping edges.

Intuitively, G(p) is a graph with the nodes which are reachable from p’s successors
without passing through back edges in the corresponding CFG, and GT (p) is a
graph with the nodes which are reachable from p’s true successor without passing
through back edges in the corresponding CFG.

Now we give the definition of the operational semantics of the PDG:

Definition 6. The elements avail and econf are elements of the sets of functions
avail and econf respectively, which are defined as follows:

avail = N × var −→ val
econf = C ⊕ F ⊕ L ⊕ D −→ {chk , unchk , act , inact},

where ⊕ is the direct sum.
The expression evaluation is given by the function E : N × exp −→ avail −→

val .
A state is an element of state = avail × econf .

A C-edge has three possible states, {unchk , act , inact}. F, L and D-edges take
one of two possible states, {chk , unchk}. Intuitively, unchk means that the de-
pendence imposed by an edge has not yet been satisfied. The state act means
that the source node of a ct -edge (resp. cf -edge) has been evaluated to T (resp.
F), and the target node is ready to execute. The state inact means that the
source node of the ct -edge (resp. cf -edge) is evaluated to F (resp. T). If all in-
coming C-edges are inact , the node becomes unexecutable. The state chk means
that the source node of an edge has been executed, or became unexecutable.

Definition 7 (Executable nodes). We define the following predicates. Let
s = (av , ec) where av ∈ avail and ec ∈ econf , and n is a node.

condC(s, n) def= ∃c(p, n) ∈ C.ec(c(p, n)) = act
∧∀q ∈ G(n).q �= n ⇒ ∀c(r, q) ∈ C.ec(c(r, q)) �= act

condF (s, n) def= ∀f(p, n) ∈ F.ec(f(p, n)) = chk
condL(s, n) def= ∀l(n, p) ∈ L.n �= p ⇒ ec(l(n, p)) = chk
condD(s, n) def= ∀d(p, n) ∈ D.ec(d(p, n)) = chk .

268 S. Ito, S. Hagihara, and N. Yonezaki

We write condCFLD(s, n) to represent condC(s, n)∧condF (s, n)∧condL(s, n)∧
condD(s, n).

We define the function Next : state −→ 2N by

Next(s) = {n | condCFLD(s, n)}.

Next(s) thus represents a set of executable nodes at a state s.

Definition 8 (Update function of avails). We define the function udav :
N × avail −→ avail as follows:

udav (n, av) =

{
av[(p, x)
→ E(n, e)av : (n, p) ∈ F ⊕ L] if n = (x := e)
av otherwise

,

where av [(p, x)
→ v : (n, p) ∈ S] is the same as av except that it maps (p, x) to
v for all p such that (n, p) ∈ S.

Definition 9 (Update function of econfs). We define the function udec :
N ×state −→ econf is defined as udec(n, (av , ec)) = ec′, where ec′ is determined
according to n, av and ec as follows:

– n is any type.
• ec′(c(p, n)) := inact, if c(p, n) ∈ C.
• ec′(l(p, n)) := chk , if l(p, n) ∈ L.

– n = (x := e).
• ec′((n, p)) := chk, if (n, p) ∈ F ⊕ D.

– n = (if e) and E(n, e)av = T.
• ec′(ct(n, p)) := act, if ct(n, p) ∈ C.
• ec′((q, r)) := unchk, if for q ∈ GT (n) − {n}, r ∈ GT (n) and (q, r) ∈

C ⊕ F ⊕ D.
• ec′(l(r, q)) := unchk, if q ∈ GT (n), r ∈ GT (n) and l(r, q) ∈ L.
• ec′(cf (n, p)) := inact, if cf (n, p) ∈ C.
• ec′((q, r)) := inact, if q ∈ GF (n) − GT (n) and (q, r) ∈ C.
• ec′((q, r)) := chk , if q ∈ GF (n) − GT (n) and (q, r) ∈ F ⊕ D.
• ec′(l(r, q)) := chk, if q ∈ GF (n) − GT (n) and (r, q) ∈ L.

– n = (if e) and E(n, e)av = F. Similar to the case of E(n, e)av = T. Ex-
change ct for cf and GT (n) for GF (n).

ec and ec′ are the same except for edges changed above.

Definition10 (Operational semantics of the PDG).Let G = (N, C, F, L, D)
be a PDG. A run of G is a sequence of states s0

n0→ s1
n1→ . . . , where si ∈ state

and ni ∈ N . Let si = (av i, eci), where av0 is a given initial avail and ec0 is an
initial econf which satisfies the following conditions,

∀(p, q) ∈ C.ec0((p, q)) =

{
act if p = entry
unchk otherwise

,

∀(p, q) ∈ F ⊕ L ⊕ D.ec0((p, q)) = unchk .

ni and si+1 is determined as follows.

An Operational Semantics of PDGs for Unstructured Programs 269

si
ni→ si+1

def⇐⇒ ni ∈ Next(si) ∧ av i+1 = udav(ni, av i) ∧ eci+1 = udec(ni, si).

Runs of PDGs are finite or infinite. If a run is finite and the last state is s,
then Next(s) = ∅.

The intuitive meaning of the above definitions is as follows. The first conjunct
of condC says that there exists an activated incoming C-edge. This means that
some condition which controls the execution of the node must hold. The second
conjunct prohibits the iteration of a loop when executable nodes still remain in
the loop, because the function udec changes the states of all the edges from the
subgraph of the executed node to unchk .

condF says that all F -predecessors should either have been executed or have
become unexecutable. condD is similar to condF .

Unlike condF and condD, condL says that all L-successors should either have
been executed or have become unexecutable. This reflects the fact that there is
a loop carried data dependence from s to t means the definition of s is used at t
in the next iteration of the loop, thus t should be executed before s in the same
iteration.

Runs of a PDG starting from the same initial state are not unique. However,
if G is a deterministic PDG (dPDG) defined below, all runs of G starting from
the same initial state have the same last state.

Before defining deterministic PDGs, we define the notion of minimal common
ancestors (mca).

Definition 11 (Minimal common ancestors). Let G = (N, C, F, L, D) be a
PDG. The minimal common ancestors of p and q are common ancestors of p
and q in (N, C) from which no common ancestor of p and q is reachable. We
write mca(p, q) to represent a set of minimal common ancestors of p and q.

Definition 12 (Deterministic PDGs). PDG G = (N, C, F, L, D) is deter-
ministic if it satisfies the following three conditions:

1. (p, n) ∈ Ĉ ∧ (q, n) ∈ Ĉ implies ∀r ∈ mca(p, q).∀Q ∈ {T,F}.{p, q} �⊆ GQ(r).
2. fx(p, u) ∈ F ∧ fx(q, u) ∈ F ∧ ∃r ∈ mca(p, q).∃Q ∈ {T,F}.{p, q} ⊆ GQ(r)

implies d(p, q) ∈ D ∨ d(q, p) ∈ D.
3. Let f(p, q) ∈ F and R be a loop in (N, C). If ∃r ∈ R.p ∈ G(r) then ∃r′ ∈

R.q ∈ G(r′).

Condition 1 says that if n is control dependent on both p and q then p and q
cannot be executable on the same condition. Condition 2 says that if p and q
define the same variable, have the same F -successor, and can be executable on
the same condition, then there should exists def-order dependence between p
and q. Condition 3 says that if there exists a data dependence from p to q, and
p is control dependent on a node in a loop, then q should be control dependent
on a node in that loop.

The followings are important properties of dPDGs.

Theorem 1. A PDG constructed from a CFG is deterministic.

270 S. Ito, S. Hagihara, and N. Yonezaki

Theorem 2. Let G be a dPDG and s be a state on a run of G. If there exists a
finite run of length m from s, all runs from s have length m and have the same
last state.

For an infinite run of CFG, there is the same executing sequence of the corre-
sponding PDG.

The converse of Theorem 1 does not hold. Theorem 2 means the determinicity
of dPDGs. This is proved by induction on m.

Our PDG semantics is equivalent to CFG semantics, i.e. a CFG and the
corresponding PDG performs the same computations. This follows from two
facts: i) a run of CFG is also a run of PDG, ii) PDGs constructed from CFGs
are deterministic (therefore, all runs starting from the same initial state have
the same result). We do not present the detail argument for lack of space.

5 Conclusion and Future Directions

We presented an operational semantics of PDGs corresponding to unstructured
programs, which are inevitable in the intermediate steps on code optimization. We
defined deterministic PDGs which have the important property that finite runs of
dPDGs starting from the same initial state have the same last state. We have the
equivalence of CFG operational semantics and PDG operational semantics. That
is, a CFG and the corresponding PDG perform the same computation.

Our PDG representation is simple and does not contain aliasing, arrays, and
procedure calls. Developing a semantics for PDGs containing such features will
be important issues. For this purpose, we need to choose (or devise, if necessary)
a PDG representation containing such features.

After optimizations have been performed on PDGs, sequential programs must
be generated from optimized PDGs. Some algorithms translating PDGs to se-
quential programs have been proposed [9,10,12]. If an optimized PDG has no
corresponding CFG, node duplication and predicate addition is necessary. The
correctness of such modifications have not been proved formally. We can ensure
that such modifications do not change the meaning of PDGs according to the
present PDG semantics.

Another challenge is to show the equivalence of the parallel program seman-
tics and the PDG semantics. This would enables us to reason and construct
translation algorithms from PDGs to parallel programs.

We believe that our PDG semantics establishes a theoretical basis for opti-
mizing compilers operating on PDGs.

Acknowledgements

We thank the Software Research Group in Tokyo Institute of Technology for
discussions about this work, and the 21th Century COE-LKR Program for its
financial support.

An Operational Semantics of PDGs for Unstructured Programs 271

References

1. Baxter, W., III Bauer, H.R.: The program dependence graph and vectorization.
In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 1–11. ACM Press, New York (1989)

2. Cartwright, E., Felleisen, M.: The semantics of program dependence. In: Proceed-
ings of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation, pp. 13–27. ACM Press, New York (1989)

3. Das, M.: Partial evaluation using dependence graphs. PhD thesis, Supervisor-
Thomas W. Reps (1998)

4. Ferrante, J., Ottenstein, K.J.: A program form based on data dependency in pred-
icate regions. In: Principles of Programming Languages, pp. 217–236 (1983)

5. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Sys-
tems 9(3), 319–349 (1987)

6. Parsons-Selke, R.: A rewriting semantics for program dependence graphs. In: Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 12–24. ACM Press, New York (1989)

7. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its im-
plications for software testing, debugging, and maintenance. IEEE Transactions on
Software Engineering 16(9), 965–979 (1990)

8. Ramalingam, G., Reps, T.: Semantics of program representation graphs. Technical
Report CS-TR-1989-900 (1989)

9. Simons, B., Alpern, D., Ferrante, J.: A foundation for sequentializing parallel code.
In: SPAA 1990. Proceedings of the second annual ACM symposium on Parallel
algorithms and architectures, pp. 350–359. ACM Press, New York (1990)

10. Steensgaard, B.: Sequentializing program dependence graphs for irreducible pro-
grams. Technical Report MSR-TR-93-14, Redmond, WA (1993)

11. Warren, J.: A hierarchical basis for reordering transformations. In: Proceedings
of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pp. 272–282. ACM Press, New York (1984)

12. Zeng, J., Soviani, C., Edwards, S.A.: Generating fast code from concurrent pro-
gram dependence graphs. In: LCTES 2004. Proceedings of the 2004 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for embedded sys-
tems, pp. 175–181. ACM Press, New York (2004)

Combination of Abstractions in the ASTRÉE

Static Analyzer�

Patrick Cousot 2, Radhia Cousot 1, Jérôme Feret 2, Laurent Mauborgne 2,
Antoine Miné 2, David Monniaux 1,2, and Xavier Rival 2

1 Centre National de la Recherche Scientifique (CNRS)
2 École Normale Supérieure, Paris, France

Firstname.Lastname@ens.fr
http://www.astree.ens.fr/

Abstract. We describe the structure of the abstract domains in the
Astrée static analyzer, their modular organization into a hierarchical
network, their cooperation to over-approximate the conjunction/reduced
product of different abstractions and to ensure termination using collab-
orative widenings and narrowings. This separation of the abstraction into
a combination of cooperative abstract domains makes Astrée extensi-
ble, an essential feature to cope with false alarms and ultimately provide
sound formal verification of the absence of runtime errors in very large
software.

1 Introduction

Astrée is a static program analyzer based on abstract interpretation [1,2] which
is aimed at proving automatically the absence of run time errors in programs writ-
ten in a subset of the C programming language. It has been applied successfully
to large embedded control/command safety-critical real-time software generated
automatically from synchronous specifications, producing correctness proofs for
complex software without any false alarm, within only a few hours of computation
on personal computers [3,4,5,6]. More recently [7], it has been extended to handle
other kinds of embedded software, some of which are hand-written.

Astrée was designed using:
– a syntax-directed representation of the program control flow (functions, block

structures);
– functional representation of abstract environments with sharing [3], for mem-

ory and time efficiency, and limited support for analysis parallelization [8];
– basic abstract domains, tracking variables independently (integer and floating-

point intervals [9] using staged widenings);
– relational abstract domains tracking dependencies between variables

– symbolic computation and linearization of expressions [10],
– packed octagons [11],

� This work was supported in part by the French exploratory project Astrée of the
Réseau National de recherche et d’innovation en Technologies Logicielles (RNTL).

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 272–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.astree.ens.fr/

Combination of Abstractions in the Astrée 273

– application-aware domains (such as the ellipsoid abstract domain for dig-
ital filters [12] or the arithmetic-geometric progression abstract domain
[13], e.g. to bound potentially diverging computations);

– abstract domains tracking dependencies between boolean variables and other
variables (boolean partitioning domain [4]), or the history of control flow
branches and values along the execution trace (trace partitioning [14]);

– a memory abstract domain [4] recently extended to cope with unions and
pointer arithmetics [7].

Contrary to many program analysis systems, Astrée does not have separate
phases for pointer/aliasing analysis and arithmetic analysis.

To adjust the cost/precision ratio of the analysis, some of the abstract domains
are parametrized (e.g. maximal height of decision trees) and applied locally (e.g.
to variables packs [4]) according to local directives automatically inserted by the
analyzer1.

The abstract domains communicate as an approximate reduced product [15]
to organize the cooperation between abstract domains and allow for a modular
design and refinement of the abstraction used by Astrée. In this paper we
describe how abstract domains are organized and do cooperate.

This modular design allows abstract domains to be turned on and off by
runtime options, easy addition of new domains, and the suppression of older
domains that have been superseded by newer ones (such as the clock domain
[3], now superseded by the arithmetic-geometric progression abstract domain
[5]). Finally, it allows the addition of new reductions / communications be-
tween existing domains. Astrée is therefore an extensible abstract interpreter,
an essential feature to cope with false alarms and ultimately reach zero false
alarm.

Astrée is programmed mostly in OCaml [16] (apart from the octagon domain
library [17] and some platform-specific dependencies, e.g. to control the rounding
behavior of the FPU). It is currently approximately 80 000 lines long.

2 Handling False Alarms

As all abstract interpretation-based static program analyzers, Astrée may be
subject to false alarms; that is, it may report potential bugs that happen in
no possible concrete execution, because of the over-approximation of program
behaviors entailed by abstractions. Thus, when Astrée raises an alarm, it may
be a true alarm, due to a runtime error appearing at least in one program
execution, but it may also be a false alarm due to excessive over-approximation.

This is the case of all automatic sound formal methods which, because of
undecidability and in absence of human interaction, must be incomplete, and
hence, in many cases, either exhaust time or space resources or terminate with
false alarms.

1 These directives can also be inserted manually, but such intervention of end-users
must be avoided, in particular for programs subject to long-term modifications.

274 P. Cousot et al.

2.1 Different Classes of Alarms

We distinguish between three classes of alarms:

1. Conditions that necessarily terminate the execution in the concrete world.
Such is the case, for instance, of floating-point exceptions (invalid operations,
overflows, etc.) if traps are activated, and also integer divisions by zero. We
issue a warning and consider that the incorrect execution has stopped at the
point of the error. The analyzer will continue by taking into account only
the executions that did not trigger the run-time error.

2. Conditions that are defined to be incorrect with respect to the C specifi-
cation or user requirements, but that do not terminate the execution and
for which it is possible to supply a sound semantics for the outcome. For
instance, overflows over signed integers will simply result in some signed in-
teger. We issue a warning, but do not consider that the executions meeting
the warning condition have stopped. The user may examine each such warn-
ing and determine if the condition signaled is really harmful (for instance,
the user may decide to ignore some integer arithmetic overflows). If it is not,
the user may safely ignore the warning.

3. Conditions that are defined to be incorrect with respect to the C specifica-
tion, that may or may not terminate the execution when they are encoun-
tered, but for which it is next to impossible to provide a sound semantics
for the remainder of the execution. They are handled by the analyzer as the
first kind of alarms. The rest of the section is devoted to this third category
as it deserves some explanation.

Some operations, such as pointer arithmetics across memory blocks or memory
accesses out of bounds, are considered “undefined behaviors” or “implementation
defined behaviors” by the specification of the C programming language [18].
They often result in no immediate runtime crash; but may result in e.g. memory
corruptions, with consequences such as erratic behaviors or crashes much later.

For such conditions, Astrée considers that execution stops with an error
when the first undefined behavior occurs (and signals an alarm at this point).
Its operational semantics thus coincides exactly with actual program executions
only if there is no (false or true) alarm of the third kind.

If such alarms are raised, particularly those related to memory safety, then
the analysis will not flag all possible runtime errors, i.e. not those arising from
traces that have done some “undefined” memory or pointer manipulation. In this
event, it is insufficient to analyze these warnings and show that the “undefined”
behavior is actually defined in a harmless way for platform-specific reasons (as
one would do for the second class of alarms). Rather, one has to either reach
zero alarm of the third class, or prove by other means that their preconditions
are not met in the concrete.

Our experience shows that industrial programmers often use constructs that
are nonstandard with respect to the C specification [18, 6.3.2.3], but have well-
defined behaviors on the target platform, such as converting a 32-bit pointer
into an integer, and then back into a pointer. Thus, we have tried to reduce the

Combination of Abstractions in the Astrée 275

third category of warnings as much as possible and, in agreement with our end-
users, defined a more precise yet platform- and even application domain-specific
semantics that turns most of them into either correct statements, or warnings of
the second class. In several instances, it required us to adapt our concrete seman-
tics and develop specific abstractions (e.g. the memory abstraction of [7] to cope
with some situations where pointers are manipulated using integer arithmetics).

2.2 Causes of False Alarms

There are several possible causes of false alarms:
– The abstract transformers are not the best possible, in which case the algo-

rithm can be improved in the corresponding abstract domain, if this improve-
ment is not algorithmically too expensive.

Example 1. Consider the following program:

y=x; z=sqrt(x*y+3);

Starting from x ∈ [−3, 7], a simple interval analysis will derive y ∈ [−3, 7],
then x.y ∈ [−21, 49], x.y + 3 ∈ [−18, 52] and we flag a false alarm on sqrt:
square root of a negative number. However, we can solve this issue with a
minor alteration: when computing the interval for a product x.y, we issue a
request to the reduced product (see Sect. 6.3) and ask whether x and y are
provably equal; if they are, compute the interval for x2, that is, [0, 49]. We
thus improve the precision at a very minor cost.

A more general approach would be to compute polynomials or other ex-
pressions symbolically and extract minimal and maximal values depending on
the range of their variables, but this would be more complex and more costly,
and we have not found a need for this so far. �

– The automated parametrization (e.g. variable packing) fails to guess that some
relation is important and, in order to save time, artificially limits a relational
abstract domain to an inappropriate level of precision. In this case one must
improve or adapt the pattern-matched program schemata.

Example 2. Our first heuristics for reducing the cost of relational domains was
to relate together only variables that appear simultaneously in an assignment
or test. It prevents proving that x ≤ 21 at the end of the following program:

x=10; for (i=0;i<=10;i++) x++;

despite the ability of the octagon domain to infer the necessary inductive
invariant x − i = 10, simply because no octagon will hold both x and i. The
problem was solved by considering octagon packs relating variables that act
likely as counters (i.e. are incremented or decremented within the same loop).

�

– The widening in the fixpoint approximation iteration strategy overshoots the
most imprecise invariant allowing the proof of absence of runtime errors, in

276 P. Cousot et al.

which case we must revise the widening. This can be very hard since at the
limit only a precise infinite iteration might be able to compute the proper
abstract invariant. In that case, it might be better to design a more refined
abstract domain.

– The choice of a precise abstract transformer is not always the best. Indeed,
our goal is to find a precise post-fixpoint: it can happen that a more relaxed
abstract transformer helps the extrapolation process. In short, it is better to
jump straight up to the limit, rather than try to be precise at each iteration,
then fail to converge quickly and have to resort to interval widening techniques,
which will in the end yield a poorer result.

When considering arithmetic-geometric progressions [13], choosing the most
precise abstract transformer is not appropriate at all: it would give no more
information than the interval domain.

– The current combination of abstract domains is inexpressive i.e. indispensable
local inductive invariants are not expressible in the abstract. In that case
a new abstract domain must be added to the reduced product (e.g. filters,
arithmetic-geometric progressions).
When a new abstract domain is introduced, a communication and reduction

process is used so that the other abstract domains can benefit from the in-
formation computed by the new one, as described in Sect. 5.2. This may, but
should not, have effects on the enforcement of convergence by widening as dis-
cussed in Sect. 7. The modular integration of new abstract domains allows coping
with variations between the various families of software successfully analyzed by
Astrée.

3 General Structure of Astrée

When Astrée was designed, we knew that the first simple attempt with interval
analysis could not be sufficient to achieve a precise analysis on the industrial
software we were given. From the beginning, we had in mind the process of
refinement which consists in finding the origin of false alarms and improving the
information generated by the analysis by a modular extension. It is the reason
why we developed Astrée in a modular way, as permitted by the abstract
interpretation theory.

Astrée can be roughly decomposed into 4 parts:

1. a front-end, very similar to that of a compiler,
2. simple independent analyses,
3. an invariant computation mixing many interdependent analyses,
4. invariant checking and alarm reporting.

The first phase is pretty standard and did not change much during the evo-
lution of Astrée. An intermediate code is produced, typed and annotated, and
then simple program transformations are applied, such as constant propagation.
The transformations we implemented aim at reducing the complexity of the sub-
sequent analyses. One important aspect is the elimination of useless variables

Combination of Abstractions in the Astrée 277

(e.g. after constant propagation) as the size of the invariants depends directly
on the number of variables.

The second phase consists in simple independent analyses, producing infor-
mation useful for the subsequent invariant computation, such as variable depen-
dencies. It implements automatic parametrization strategies, such as the octagon
packing strategy [11] or the trace partitioning strategy [14].

The third phase is the most important and also the most demanding. It con-
sists in an iterator which follows the control flow of the program and gives orders
(abstract transfer directives) to modules representing information about the pro-
gram. Each of these modules is what we call an abstract domain, and each of
them collects some specialized information about the iteration sequence leading
to the invariants of the program Astrée analyzes. Such abstract domains can
deal with the trace approximation [14], the shape of the data structures and
memory [7], or the numerical values occurring during the program execution.
The way these abstract domains are designed independently and then interact
to produce precise information about the program invariant is crucial to achieve
a fast and precise abstract interpreter.

4 Abstract Domains

4.1 Interfaces, Properties, and Abstractions

An abstract domain collects properties about the potential computations of a
program. In Astrée, the abstract interpreter follows the control flow of the
program; thus, our abstract domain collects some properties about the compu-
tations of the program reaching the current program point.

The design of our abstract domains fits with [2], that is:
– We abstract sets of execution traces, not mere sets of reachable states.
– An abstract domain is not necessarily a lattice, and may not even need a

preorder.
– We do not define a Galois connection, but only a concretization function; that

is, concrete properties may lack a most precise abstraction.
– Abstract transformers are not necessarily monotonic with respect to the infor-

mation preorder induced by the concretization; that is, it may happen that a
more precise abstract precondition is transformed into a less precise abstract
postcondition.
The elements of the concrete domain D are sets of trace fragments.2 A trace

fragment is a sequence of one or more pairs (p, s) where p is a program point
and s is a memory state. All our abstractions will take the following view of a
set of execution traces (p1, s1), . . . , (pn, sn):
– only final states so that pn is the current program point of the analysis are

considered;
– the final memory state sn is abstracted quite precisely;
2 In fact, it consists in sets of trace fragments collected for the direct flow (normal

program executions) and the pending branching flows (break, continue, forward
goto). In this paper, we shall ignore the latter for the sake of simplicity.

278 P. Cousot et al.

– the strict prefix (p1, s1), . . . , (pn−1, sn−1) is abstracted more coarsely; the trace
partitioning domain keeps a sequence of program points pk of interest (e.g.
those related to if-then-else or loop branches) as well as the value of a few
selected variables from sk at given program points.
An abstract domain is a set D� of abstract properties of trace fragments.

Each abstract property a ∈ D� is related to the set of concrete trace fragments
that satisfy this property through a concretization function γD� : D� → D. We
consider different kinds of information:
– Some abstract properties define the mapping between structured C variables

and the abstract scalar variables manipulated by most abstract domains. In
particular, it handles the case where overlapping sequences of bytes are manip-
ulated as scalar variables of possibly different types (e.g. through union types
or pointer casts) and frees the other domains from the burden of coping with
byte-level aliases and considering the binary memory representation of vari-
ables. This structural abstraction [7] is fully dynamic because, in our model of
concrete executions, the pattern of data accesses is a run-time property that
is not restricted by static typing.

– Some abstract properties constrain abstract variables: they may be non rela-
tional properties (such as a range for each variable) or relational properties
(such as restricted linear relations, as in octagons; restricted polynomial re-
lations, as in ellipsoids; restricted non-polynomial relations, as in arithmetic-
geometric progressions).

– Some abstract properties may be guarded by constraints about some variables
(as in boolean partitioning or by properties on the computation traces that
have led to the current state (as in trace partitioning).
We do not assume that an abstract domain has a lattice structure. However,

we suppose that it is provided with primitives to simulate the computation of the
concrete semantics at the abstract level. This way, for any concrete n-ary primi-
tive F : Dn → D, we have a sound abstraction FD� : (D�)n → D� that satisfies:
for any abstract properties ai ∈ D�, F((γD�(ai))1≤i≤n) ⊆ γD�(FD�((ai)1≤i≤n)).
However, we do not assume FD� to be the most precise transformer that satisfy
this property. These primitives not only update memory states, but also the
information about the computation paths that lead to these memory states.

To ensure the termination of our analysis, the abstract domain is provided
with extrapolation operators: the bottom element ⊥ ∈ D� is the basis of abstract
iterations, the widening operator �D� ∈ D� × D� → D� is used to speed up the
iterates (it may discard some information), and the narrowing operator �D� ∈
D� × D� → D� is used to refine the iterates (after an imprecise extrapolation).
We require no property whatsoever about the bottom element ⊥. The widening
operator (resp. the narrowing operator) is a sound abstraction of the union set
operator (resp. the meet set operator): this way, for any pair (a, b) ∈ D� × D� of
abstract properties, we require that γD�(a)∪γD�(b) ⊆ γD�(a�D�b) and γD�(a)∩
γD�(b) ⊆ γD�(a�D�b). Moreover, both widening and narrowing operators ensure
the convergence of iterates, which means that for any sequence (xn) ∈ (D�)N,
the sequence (x�

n) (resp. (x�
n)) defined as x�

0 = x0 (resp. x�
0 = x0) and x�

n+1 =

Combination of Abstractions in the Astrée 279

x�
n�D�xn+1 (resp. x�

n+1 = x�
n �D�xn+1) is ultimately stationary. More details

are given about the usage of the widening in Sect. 7 and about the usage of the
narrowing in Sect. 8.

Although we do not require abstract domains to be provided with an abstract
order, there always exist a so-called information preorder
� induced by the
concretization function: a
� b ⇐⇒ γD�(a) ⊆ γD�(b). This preorder has little
use in a practical analyzer as it is often computationally expensive and some-
times not even computable. Moreover, although all abstract transfer functions
are abstractions of monotonic concrete transfer functions, they are often not
monotonic with respect to the information preorder.
– The first cause of non monotonicity is nested loops. Internal loops may be

analyzed using widening operators, and the abstraction of the least fixpoint
obtained is in general not monotonic with respect to loop precondition.

Example 3. Consider an interval analysis of the following program, using the
standard widening [9]:

x=0;
while(random()) {
x=x+1;
if (random()) x=y
if (x==10) x=0; }

If we know at the beginning that y ∈ [0, 9], then we immediately obtain the
invariant x ∈ [0, 9]. Suppose however that we know the more precise property
y = 0, then our analysis gives x ∈ [0, +∞[. Thus, a more precise precondition
yields a far worse outcome. �

– Another cause is transfer functions making use of additional information that,
in fact, produce a less precise result.

Example 4. Such is for instance the case of the interval domain [9] helped
by the symbolic computation domain [10]. Consider the following example,
depending on whether we use the rewrite rule j �→ i + 1 arising from the
assignment j=i+1:

Code Symbolic computation Less precise symbolic

int i, j=i+1; j �→ i+1 NOTHING
int k=j+1; j �→ i+1, k �→ j+1 �→ i+2 k �→ j+1
if (j > 0) {
l=k; j �→ i+1, k �→ i+2, l �→ i+2 k �→ j+1, l �→ j+1

}

By default, our symbolic computation domain performs all possible rewrites,
thus we try to reduce the intervals using k �→ i+2, which yields no additional
precision. However, with the less precise third column, we have k �→ j + 1,
and since we have the interval information j ∈ [1, +∞[we conclude that
k ∈ [2, +∞[. �

280 P. Cousot et al.

– Finally, some abstract domains are implemented using floating-point as over-
approximations of an “ideal” abstract domain and this may introduce non-
monotonicity.

Example 5. The octagon abstract domain uses a propagation scheme based
on an incremental Floyd–Warshall shortest-path-closure algorithm to infer
and refine constraints. On reals or rationals, this propagation is both sound
and complete; in particular, the outcome does not depend on the order of
the variables. On floating-point numbers, soundness can be achieved easily by
rounding all computations towards +∞ (as only upper bounds are manipu-
lated). However, the propagation is no longer complete and different variable
orderings give incomparable sound approximations of the most precise result.
Starting from the same precondition, but two different internal encodings, and
applying the same transfer function, we can obtain slightly different postcon-
ditions, hence the non-monotonicity. �

4.2 Comparison with Predicate Abstraction

Constraint messages (Sect. 5) and abstract properties are, essentially, predicates
over the set of traces that we abstract. However, our analysis is not what is
usually referred to as predicate abstraction [19].

Predicate abstraction generally refers to the following approach:
– one considers a (small) finite, given, set S of predicates; each predicate p ∈ S

has a semantics �p� in terms of possible program or variable states (thus, the
predicate x < 5 will include all program states where variable x is less than
5); in the simplest case, predicates simply reflect the value of the boolean
variables in the program;

– one computes abstract states as subsets S′ of S, such that �S′� =
⋂

p∈S′�p�;
– transformers over these abstract states may be defined using an automatic

theorem prover;
– once transformers are defined, the program is reduced to a boolean program

and a model checker is used;
– if one cannot prove the desired property, and a fake “counterexample” is

obtained the analysis is insufficiently precise; additional predicates have to be
added, often generated through a process of automatic refinement based on
the examination of the fake counterexample.

Differences with predicate abstraction are as follows:
– Our analyses do not consider a priori a small set of predicates, but rather

operate on parametric predicates [20]. That is, where predicate abstraction
considers different predicates x < 4, x < 5, etc., our analysis considers a
generic predicate x < C and tries to adjust C.

– We do not use an automatic theorem prover to generate the program trans-
formers. We could perhaps do so, provided that the theorem prover is capable
of handling efficiently our parametric predicates; obviously, it is more diffi-
cult to generate transformers over parametric predicates, perhaps with some
measure of optimality of the result of the transformer, than to decide or even

Combination of Abstractions in the Astrée 281

semi-decide whether a particular ground predicate ensues from a program
construct in the context of some particular ground predicates. However, such
automated generation of parametric transfer functions is itself a research issue.

– We do not use automatic refinement techniques in the sense of adding new
predicates and starting the analysis again. However, if our analysis fails to find
an invariant, then we extrapolate the invariant “candidates” through widening
techniques.

4.3 Domain Constructors

Some of the abstract domains used in Astrée are based on similar algebraic
constructs or are parametrized by the choice of an underlying abstract domain.
In order to factor code and allow easy parametrization, we defined domain con-
structors [21] that are naturally implemented as OCaml functors [16], while
abstract domains are OCaml modules.

Non-relational Lifting Functor. Some abstract domains used in Astrée are
non-relational ; that is, they abstract the values of each scalar abstract variable
separately. For instance, we have the following abstractions for scalar values:

– integer intervals with thresholds;
– floating-point intervals with thresholds;
– integer congruences.

We lift these abstractions to non-relational domains on multiple variables by
considering abstract environments mapping each variable to an abstract value.
As described in [3], environments are implemented using balanced binary trees,
which allows a fast abstract union operator in O(m log n), where n is the total
number of variables and m the number of variables that differ in the two envi-
ronment arguments, instead of O(n) for a plain array. This pays off in the kind
of code we analyze, where the number of if-then-else as well as the number of
variables are linear in the size |P | of the program, but then and else branches
have a small size. We obtain a combined cost for the meet operation at the end
of all if-then-else in O(|P | log |P |) instead of O(|P |2). The same optimization is
used for other binary operators, e.g. widening.

Packed Relational Lifting Functor. A similar system is used for relational
domains (such as the octagon abstract domain: the set of abstract variables is
partitioned3 into packs of bounded size. All the variables in a pack are related
together by an instance of the relational domain, but not with variables in other
packs. Each transfer function only modifies a small set of packs, while abstract
unions operate point-wisely on packs. The lifting of a standard relational domain

3 Actually we consider a covering where one variable may appear in several packs. This
is useful when a single variable is used in different contexts. However, to maintain
an almost linear cost, no information flows between packs sharing variables.

282 P. Cousot et al.

to a packed domain is similar to the non-relational lifting. The resulting domain
enjoys the same almost-linear asymptotic cost, assuming a bound on the size of
the packs.

Trace Partitioning. Most abstract domains deal with scalar values and data
structures, thus, memory states of the program. However, it is sometimes neces-
sary to distinguish between values according to the history of the computation.

Example 6. Consider the following implementation of a piecewise linear function:

if (x < tx[0] || x > tx[N]) fail();
for (i=0; i<N-1; i++)
if (x <= tx[i+1]) break;

return ty[i]+(ty[i+1]-ty[i])*(x-tx[i])/(tx[i+1]-tx[i]);

where tx and ty are constant arrays of size N+1, and tx is increasing. The plain
interval domain would show a warning for division by zero, since it will compute
the least upper bound of all tx[i+1] for all values of i, the same for tx[i], and
the two would overlap. Precise analysis thus seems to require inferring complex
relationships between i, tx[i], and ty[i] and handling affine functions.

However, the interval domain can find the most precise result provided that
we partition the last assignment with respect to the number of iterations before
exiting the loop. This is semantically equivalent to analyzing the following code:

if (x < tx[0] || x > tx[N])
fail();

if (x < tx[1])
return ty[0]+(ty[1]-ty[0])*(x-tx[0])/(tx[1]-tx[0]);

else if (x < tx[2])
return ty[1]+(ty[2]-ty[1])*(x-tx[1])/(tx[2]-tx[1]);

else ...
else

return ty[N-1]+(ty[N]-ty[N-1])*(x-tx[N-1])/(tx[N]-tx[N-1]);

�

Trace partitioning [14] is a functor parametrized by two abstractions: an abstrac-
tion of the history of former memory and control states (e.g. a sub-sequence of
branches taken), and an abstraction of the current memory state. Abstract el-
ements are maps and are implemented as trees: each path corresponds to a
different control history and each leaf contains the corresponding memory state.
This makes it easy to dynamically adjust the precision of history abstractions
by simply splitting leaves and folding sub-trees, which is exactly what Astrée

does, driven by heuristics that achieve a trade-off between cost and precision.

Boolean Partitioning. An alternate way of partitioning is to distinguish be-
tween the possible values of a subset of the variables with respect to the value
of one or more boolean variables.

Combination of Abstractions in the Astrée 283

Example 7. Consider the following code that stores an arithmetic condition in
a boolean for future use4:

b = x < 5;
/* unrelated computations */
if (b) x = 5;

In order to prove that x ≥ 5 at the end, one should distinguish between the case
where b is true and where it is false, at least for the information concerning x.

�

Partitioned abstract elements are implemented as decision diagrams [4, 2.6.4],
i.e. trees with boolean variables at internal nodes and abstract memory states at
the leaves, with opportunistic sharing of equivalent sub-trees. Thus, the boolean
partitioning domain it is a functor parametrized by the choice of an abstraction
of memory states. As for relational domains, almost-linear cost is achieved by
only partitioning small, bounded sets of arithmetic variables with respect to
small, bounded sets of booleans. Thus, it also reuses the packing functor.

Abstract Product. In general, the abstract domain used by the analyzer is
formed of the partially reduced product of several abstract domains. Reduction is
implemented through a network of communication channels, as explained in the
following section. We use a binary product functor that takes two domains and
implements communications between them. It returns a new domain that can
be used as argument of any functor, including the product functor itself. Thus,
a full network of domains can be constructed using several product applications.
As the binary product multiplexes communication channels, every domain in the
resulting network can communicate with every other one.

5 Network of Domains

5.1 Hierarchies

Astrée handles very heterogeneous kinds of abstract properties. Each class of
abstract properties is gathered inside a small, independent abstract domain.
Domains are fitted with all the primitives needed to handle their particular class
of abstract properties. Nevertheless, Astrée is not a neutral product of separate
abstract domains (which would be equivalent to running separate analyses); it
organizes an active collaboration between them.

We use the binary product functor to gather several abstract domains together
into a hierarchy and form a reduced product. The product is not commutative
because it sets which abstract domain will be processed before the others. As
a consequence, the domains that are computed first may communicate partial
results to others that have not yet started their own computations. When a
4 This kind of code, where the definition and the use of b are far apart, appears fre-

quently in automatically generated programs (e.g. compiled from graphical languages
à la Simulink).

284 P. Cousot et al.

domain D�
1 is computed before domain D�

2, we say that D�
1 is an underlying

domain of the domain D�
2. By construction, being an underlying domain is an

acyclic relation (see Fig. 1).
The argument of a unary functor, such as the trace or boolean partitioning

domain, may also be an abstract domain constructed by applying the binary
product functor. As a consequence, there are generally several hierarchies at
work in an analysis. Each unary functor spawning a hierarchy will be called a
root. Roots have a special role in the communication between domains, as we
will see in Sects. 5.3–5.4.

Example 8. Fig. 1 is a small but realistic hierarchy used in Astrée. Its main
root is the trace partitioning domain. The boolean partitioning domain is used to
spawn a simpler sub-hierarchy. In the example, variable ranges can be partitioned
with respect to the value of some boolean variables, while octagon invariants
cannot. Also note that the interval domain is the most underlying domain in
both hierarchy, hence the first evaluated. On the one hand, it is the least precise,
and so, the one most likely to benefit from refinement by other domains. On the
other hand, it is the only one to handle all C constructs, and so, provides a base
information we can always resort to. �

intervals

trace partitioning

symbolic domain

octagons boolean
partitioning

symbolicintervals
domain

Fig. 1. Example hierarchy

5.2 Communication Channels

Domains communicate abstract properties to each other. For that purpose, we
introduce a particular abstract domain of messages. This domain is defined as

Combination of Abstractions in the Astrée 285

a set IO� of abstract properties and by a concretization γIO� : IO� → D that
maps any such abstract property to the set of concrete trace fragments that
satisfy this property.

Each regular abstract domain (D�, γD�) is fitted with a primitive extractD� :
D� × IO� → IO� that it can use to emit some constraints on communicating
channels. In the expression io′ = extractD�(c, io), the message io denotes
the contents of the channel before the constraint is emitted, the abstract el-
ement c denotes an abstract element in the domain D�, and the message io′

denotes the contents of the channel enriched with constraints extracted from
c (hence the name extract). This way, we require that γD�(c) ∩ γIO�(io) ⊆
γIO�(extractD�(c, io)).

Conversely, each abstract domain (D�, γD�) has a primitive refineD� : D� ×
IO� → D� allowing the reception of constraints from a communication channel.
In the expression c′ = refineD�(c, io), the abstract element c′ is a refinement
(hence the name refine) of the abstract element c having taken into account the
constraints denoted by the contents io of the channel. We require that γD�(c) ∩
γIO�(io) ⊆ γD�(refineD�(c, io)).

In the following subsections, we introduce some communicating channels be-
tween domains. We distinguish between two kinds of communications:

1. a domain may ask whether a more precise constraint is available; the channel
used is then called an input channel (Sect. 5.3);

2. a domain may decide to communicate some of its constraints to other do-
mains in order to refine them, in which case the channel used is called an
output channel (Sect. 5.4).

Note that the abstract domain IO� of messages does not need to be the
same for input and output channels. In Astrée, they are indeed different and
implemented using different data-structures (a product type for the input, and a
sum type for output). This means that we actually have two versions of refineD�

and extractD� .

5.3 Input Channels

Input channels provide information on both the postcondition being computed
and the precondition computed in the last computation step. A domain D� may
update the contents of the postcondition channel at the end of its own compu-
tation (using extractD�). It may read the pre-condition information from all
domains, but may only access post-condition constraints that have already been
computed by another domain (triggered before itself in the hierarchy). At the
end of a computation step, the network root collects the contents of the channel
and makes it available to all domains as the precondition of the next step.

The contents of the channel is implemented as a functional record type. Each
field denotes a particular class of properties in IO�. For each field, there is
a default value � which corresponds to the absence of information (when no
domain has filled the field yet). To avoid useless computations, we rely on lazy

286 P. Cousot et al.

evaluation: each field is a function that is evaluated only if/when required. To
update a closure f , a domain replaces it with a new closure f ′. When applied,
the new closure f ′ may or may not evaluate f . Moreover, we use memoization
to avoid computing the same information several times.

The advantage of this design is that adding a new kind of input communication
between two domains is straightforward. First, we add a field in the signature of
the channel and we update the default value of the channel contents. Then, we
modify the primitive extractD� of the domain D� that provides this informa-
tion. Last, we update the primitives that use this information. The code for the
other domains that do not generate nor use this information does not require
any modification.

5.4 Output Channels

Output channels are used when a domain wants to send a message to others.
There are two output channels:

– The first one is used to refine the computation just performed by the under-
lying domains; we call it the oriented output channel.

– The second one broadcasts a message to be used by all domains (including
those that have not performed their computation yet); we call it the broadcast
output channel.

A domain D� may send messages (using extractD�) and fetch messages to
use them (using refineD�). In the case of oriented outputs, the contents of the
channel is simply handed from one domain to the next by the product functor
so that it can be directly used, refined, or both; then, the (possibly updated)
contents is forwarded to all the underlying domains. In the case of broadcast
outputs, the channel is only updated during the network evaluation; no domain
may use its contents. Then, once the root of the network is reached, the contents
of the channel is sent to all domains using refineD� primitives, so that domains
have the opportunity to use (and even refine further) the information.

The contents of an output channel is implemented as a list of constraints.
Constraints are implemented with a sum type, where each summand is a differ-
ent kind of constraints. After each computation, each domain collects a list of
constraints from each output channel. The primitive refineD� scans the list and
refines the abstract properties accordingly. It may also generate new constraints
to be communicated to other domains but, to avoid infinite loops, we only allow
refineD� to use the oriented output channel, not the broadcast one.

From the point of view of analyzer maintenance, this design is very convenient
since it makes the addition of a new kind of output communication between
two domains easy. First, we add a summand in the signature of the output
constraints. Then, we modify the domain that outputs the constraints. Last, we
update the primitive extractD� in the domain D� that wishes to receive the
constraint. The other domains do not require any modification: they will simply
ignore the new information, which is safe.

Combination of Abstractions in the Astrée 287

6 Domain Cooperation

Abstract computations are made under assumptions about pre/postconditions.
Indeed, any n-ary concrete transfer function F ∈ Dn → D is simulated by
an abstraction FD� ∈ (D� × IO�)n × IO� → D�. The abstract element a0 =
FD�((ai, ioi)1≤i≤n, io0) should be understood as: compute in the abstract the
image of F, knowing that each argument ai satisfies the constraints in ioi, and
that the result a0 satisfies the constraints in io0. This gives the following sound-
ness criterion: if there exists some (ci)0≤i≤n ∈ Dn such that

– ci ∈ γD�(ai), for any i such that 1 ≤ i ≤ n,
– ci ∈ γIO�(ioi), for any i such that 0 ≤ i ≤ n,
– c0 ∈ F((ci)1≤i≤n).

then we must have c0 ∈ γD�(FD�((ai, ioi)1≤i≤n, io0)).
We now distinguish between several cases of collaboration. Some domains

may be used to refine the abstract properties of other domains. This kind of
reduction boils down to replacing an abstract operation FD�((ai)1≤i≤n)) with a
refined counterpart ρ0(FD�((ρi(ai, ioi))1≤i≤n), io0) such that, for any integer i
such that 0 ≤ i ≤ n, ρi is a sound abstraction of the meet: (γD� ◦ ρi)(ai, ioi) ⊇
γD�(ai) ∩ γIO�(ioi). Whenever i > 0, the reduction ρi : D� × IO� → D� is used
to refine the precondition: this kind of refinement is discussed in Sect. 6.1. The
reduction ρ0 : D� × IO� → D� is used to refine the postcondition: this kind of
refinement is discussed in Sect. 6.2.

In Astrée, this is not the only way the domains may collaborate. We also
perform some refinement of abstract transformers that cannot be expressed as
merely refining abstract states. This is discussed in Sect. 6.3.

6.1 Precondition Refinement

Some domains refine abstract states before they are fed to their abstract trans-
formers. This is made possible thanks to the input channel as it makes the infor-
mation that has been computed by all domains accessible to any domain. Since
the abstract interpretation of the program follows the control flow graph, the
abstract computation of the properties that are valid at a given iteration and
just before interpreting an instruction are fully computed before the abstract
interpretation of the instruction begins.

This kind of reductions is used whenever the domain is a partial mapping from
some tuples of variables to parametric constraints (as in the filters domain or the
arithmetic-geometric progressions domain). In such domains, the support (i.e.
the set of tuples that are mapped to a constraint) changes during the iteration.
Whenever both arguments of a binary operator do not have the same support
or whenever a unary abstract transformer needs a given constraint to be precise,
the domain uses the input channel to synthesize missing constraints.

Example 9. The ellipsoid domain can simulate an assignment of the form X =
a.Y + b.Z + t by mapping a constraint of the form Y 2 − a.Y.Z − b.Z2 ≤ k2 to

288 P. Cousot et al.

a constraint of the form X2 − a.X.Y − b.Y 2 ≤ (f(k))2. When this constraint
is missing, the ellipsoid domain synthesizes an ellipse using interval constraints
about the variables Y and Z, and a possible equality relation between Y and Z.

�

6.2 Postcondition Refinement

Domains may collaborate to refine the result of an abstract transformer. There
are two cases: the refinement is initiated either by the domain that has computed
the information, or by the domain that misses the information.

A first use is when a domain synthesizes a very useful information and prop-
agates it to its underlying domains using the oriented output channel5. For in-
stance, many domains can infer interval information and use the oriented output
channel to inform the interval domain of their discoveries.

Example 10. Consider the following code fragment computing an absolute value:

X=Y;
if (X<0) X=-Y;
if (X<100) { ...Y... }

The interval domain does not track the relationship between X and Y and so
cannot prove that, in the last then block, Y ∈ [−100, 100]. However, the octagon
domain can (see [11, §5.2]). Suppose now that the interval domain is underlying
with respect to the octagon one, thus allowing the later to refine the result of the
former through an oriented output channel (this is always the case in practice).
After each assignment or test, the octagon domain gathers the variables that
had their value updated (for tests, this includes all the variables appearing in
the expression; for assignments, only the left-value is considered) and extracts
their range in all octagons by projection. Each range is then compared to the
one computed by the underlying domains (using the input channel on the post-
condition). When the one computed from the octagon domain is more precise, it
is output to the oriented output channel. When it is not, no interval constraint is
output. This may happen because some modified variables do not appear in any
octagon, or the expression has been so aggressively abstracted (due to floating-
point arithmetics [22] or non-linearity [10]) that the interval domain performs
better. �

A second use is when a domain cannot synthesize a precise constraint, and so,
asks for other domains to generate it. A first way to receive constraints from
underlying domains is to use the input channel.

Example 11. In some cases, the octagon domain is not able to compute the effect
of a transfer function at all. Consider, for instance, the assignment X=Y on an
octagon containing X but not Y. In that case, the octagon domain relies on the
5 Although a domain may use the broadcast output channel to propagate information

to underlying domains, this has not been used in Astrée until now. The broadcast
channel has a more specific use, illustrated in Ex. 12.

Combination of Abstractions in the Astrée 289

underlying interval domain to give it the actual range of X in the postcondition.
To compute the effect of the assignment, the domain first forgets all constraints
about X (are they may no longer hold in the postcondition), and then adds range
constraints gathered from the input channel for the postcondition. �

Alternatively, a domain may use the broadcast output channel to request some
information about some variables. The root of the network will propagate this
message to all domains. Each domain will then try and compute some constraints
over the given variables and communicate them using the oriented output chan-
nel. This is more powerful because all domains participate in the refinement, but
also more costly.

It is important to note that we cannot rely solely on precise domains to initiate
communications towards less precise ones. Suppose, for instance, that we wish
an unstable constraint to be refined by a precise and stable constraint after some
widening application. Because of our systematic optimization of binary opera-
tions (which is key to the scalability of Astrée, see Sect. 4.3), stable constraints
are not even looked at during widening application. As a consequence, the pre-
cise and stable constraint has no opportunity to initiate the communication and
it is up to the unstable one to ask for help.

Example 12. The widening of the interval domain checks for the stability of
variable ranges. When it detects that some variable range is not stable, it enlarges
it. It also sends a broadcast message to the root of the network and informs it of
the precision loss. As a consequence, each domain will collects all the information
it has on the variable and try to infer a range information. When successful, this
process issues a “refine range” message that is acknowledged by the interval
domain. �

6.3 Abstract Transformer Refinement

Some refinements cannot be expressed as state refinements: domains actually
collaborate to set up their abstract transformers.

First, some domains require expressions to be presented with a given level of
abstraction. In such cases, a domain may ask its underlying domains to abstract
an expression. This kind of communication is ensured by the input channel.

Example 13. Most abstract domains are purely numerical abstract domains that
abstract sets of points in a vector space R

n. They require expressions to be arith-
metic expressions over some finite set of scalar variables. However, C expressions
also allow structured variables (such as arrays or structures) as well as pointers.
A specific domain [7] is devoted to abstracting the memory into a set of indepen-
dent scalar cells. It is its responsibility to evaluate array and structure accesses,
pointer dereferences, and translate C expressions into arithmetic ones.

In order to do this, it abstracts information on the layout of the memory, as
well as information on the memory blocks pointed to by pointers. However, it
relies on the underlying numerical domains to abstract the contents of integer
and floating-point variables, as well as pointer offsets (viewed as integers). For

290 P. Cousot et al.

instance, it may ask the underlying domain for the value of some array index in
the current precondition. The case of complex expressions with several levels of
indirections is solved by structural induction and spawns many communications.

Another example is pointer arithmetics, which is simply translated into integer
arithmetics on offsets, to be evaluated by underlying numerical domains. It is
important to note that pointer and value analyses are performed at the same
time and that expressions are transformed on-the-fly given the abstraction of
the precondition currently available in the network of domains. �

Example 14. Most relational domains are based on real arithmetic, because it
enjoys convenient properties (e.g. associativity, distributivity). However, con-
crete programs use floating-point operations that violate those. Thus, we use a
linearization domain [22] to soundly translate floating-point arithmetics into real
arithmetics. This may decrease the precision because perfectly deterministic but
highly non-linear rounding errors are abstracted into non deterministic intervals.
But, it outputs simple linear forms with interval coefficients and real semantics
that can be fed directly to numerical domains, even relational ones.6 �

Note that some domains require precise information that is lost by linearization
or array access resolution. Thus, each domain should be allowed to interpret
expressions at the level of abstraction it chooses (possibly in a dynamic way).

Example 15. The floating-point interval domain bounds tightly each floating-
point operation, enabling us to analyze x < y differently from x ≤ y. The
small non deterministic rounding errors introduced by the linearization would,
however, make this impossible. �

Example 16. When interpreting an expression of the form A[i]+B[i], where
both A and B are arrays and i is an integer, there may be an invariant about the
expression A[i]+B[i] for any i within the bounds of the arrays A and B. This
invariant is lost when resolving array accesses. If we want abstract domains to
use this invariant, we have to give them the opportunity to access expressions
before array access resolution. Another solution is partitioning, but that may be
too impractical or too costly. �

Abstract domains may use more precise abstract transformers whenever some
properties are satisfied. There are two cases. In the first case, a special-purpose
domain is used to check whether the properties hold and inform other domains
using the broadcast output channel.

6 Interestingly, in relational numerical abstract domains, algorithms are usually proved
on real numbers, but the implementation is done using floating-point numbers, and
soundness is achieved using rounding towards ±∞ as appropriate. Thus, there exists
a real abstract semantics �e��

R
and an over-approximation thereof using floating-point

numbers �e��
F . Let us call �e�F the concrete semantics over floating-point values and

�e�R the over-approximation using real numbers and intervals for rounding errors,
we have a tower of semantics: �e�F � �e�R � �e��

R
� �e��

F .

Combination of Abstractions in the Astrée 291

Example 17. Consider the following code:

volatile float vI;
void main () {

float I, O = 0, R, OLD;
while (1) {

I = vI;
OLD = O; R = I - OLD; O = I;
if (R <= -0.2) { O = OLD - 0.2; }
else if (0.2 <= R) { O = OLD + 0.2; }

}
}

An input stream (denoted by the variable I) is modified by a rate limiter
that bounds the difference between two successive outputs by the value 0.2. The
variable OLD denotes the last output; the variable R is the difference between the
new input and the last output; the variable O denotes the output stream.

When a rate limiter is involved in a complex dependence cycle, it is cru-
cial that the arithmetic-progression domain be able to compute precise abstract
properties all along the cycle. A specific domain collects the guards in “if-then-
else” statements. When both guards not(R <= -0.2) and not(0.2 <= R) are
satisfied, it checks (using the input channel) in the symbolic domain that both R
matches I-OLD and O matches I (in floating-point arithmetics). Then, it warns
the arithmetic-geometric progression domains that the absolute value of the vari-
able O is less than the expression |(1+ε1)OLD+0.2+ε2|, where the floating-point
numbers ε1 and ε2 model rounding errors and are computed automatically. �

In the second case, a domain may check that a special property holds using
the input channel and performing abstract pattern matching over the concrete
instruction it is currently abstracting. We have already seen in Ex. 1 that some
transformers can be made more precise if they apply a special case when two
variables are provably equal. In Ex. 18, we describe a more complex example.

Example 18. Digital filtering domains perform computations only when they
discover that a variable X is equal to a linear combination of several other
variables (the number of variables depends on the class of the filter). There are
several trade-offs for detecting this property. The less generic way is to perform
pattern matching of expressions in assignments (using a variety of abstraction
levels for expressions: floating-point expressions, linearized expressions, etc.).
This solution is very fragile: if a filter iteration is not computed using a single
assignment (but, e.g. a loop scanning a parameter array), it is not discovered.
It would be possible, but maybe costly, to collect the desired properties in a
specially-designed abstract domain. Our solution is in-between those: we use the
symbolic domain. Abstract pattern matching takes a pattern and an expression,
and tries to unify them by replacing expression variables with the floating-point
expression they are equal to in the symbolic domain. This collaboration uses the
input channel. �

292 P. Cousot et al.

Finally, some abstract domains provide several implementations for an abstract
transformer and rely on strategies to select which one should be used, depending
on constraints computed by other domains.

Example 19. In arithmetic-geometric progression domains, a pair of elements
may lack a least upper bound. We have implemented three ways to compute a
bound: the first one favors the right argument, the second one favors the left
argument, whereas the third one is a trade-off. The selection between the three
strategies depends not only on the arithmetic-geometric constraints, but also on
the dependency graph among variables and on the range of involved variables,
which can be fetched from the input channel of the precondition. �

6.4 Reduction After Widenings

Special care should be taken when refining an extrapolation operator. Although
it is always safe to refine its right argument; refining its left argument or its
output may break the extrapolation process. Indeed, the standard assumption
required to ensure the termination of the widening iterates (Sect. 4.1 and [1])
may not be applicable anymore. As a consequence, the analyzer may loop forever.

In Astrée, we reduce the output of the extrapolation operator using the
broadcast output channel, as in Ex. 12. We also refine the left argument of
widenings when a constraint is missing, as in Ex. 9. Nevertheless, these kinds of
refinements follow the hierarchic structure of domain networks, which prevents
cyclic reductions. We ensure the termination of Astrée by strengthening the
definition of the widening.

7 Widenings

7.1 Framework

We use widenings to abstract the computation of post-fixpoints in a finite amount
of time [1]. Formally, let D be a concrete domain and D� be an abstract domain
related via a concretization map γD� ∈ D� → D. A widening operator �D� over
an abstract domain D� is a mapping in D� × D� → D� such that [23, Lect. 18]:

– ∀a, b ∈ D�, γD�(b) ⊆ γD�(a�D�b) ; (W1)
– for all (ai), the sequence (a�

i) defined as a�
0 = a0 and a�

n+1 =
a�

n�D�an+1 is ultimately stationary.
(W2)

The second property implies that the widening relation → that is defined as a →
b if and only if there exists c such that a�D�c = b is well founded. Nevertheless,
there may be no relation between the information preorder
� (defined as a
� b
if and only if γD�(a) ⊆ γD�(b)) and the relation →.

Least fixpoint approximation is performed in the following way. Let F be a
monotonic map in D → D and FD� : D� → D� be an abstraction of F satisfying
∀a ∈ D�, (F ◦ γD�)(a) ⊆ (γD� ◦ FD�)(a). The abstract operation FD� needs
not be monotonic with respect to the information preorder
�. The abstract
upward iteration (x�

n) of FD� is defined as x�
0 = ⊥ and x�

n+1 = x�
n�D�FD�(x�

n).

Combination of Abstractions in the Astrée 293

The sequence (x�
n) is ultimately stationary and we denote its limit by l. The

following lemma ensures that the limit of the abstract upward iteration is a
post-fixpoint abstraction of the map F:

Lemma 1. We have F(γD�(l)) ⊆ γD�(l).

Proof. l is the limit of the upward-iteration, so l = l�D�FD�(l). By (W1), we
obtain: γD�(FD�(l)) ⊆ γD�(l). By soundness of FD� , we also have F(γD�(l)) ⊆
γD�(FD�(l)). So F(γD�(l)) ⊆ γD�(l). �

The fact that the information preorder
� and the widening relation → are not
assumed to be related limits the usage of the widening far too much for our need.
Indeed, as explained in Sect. 7.2, we would like to refine the abstract properties
after a widening step. Moreover, as explained in Sect. 7.3, we would like to refrain
from widening abstract properties at every iterate. Doing these carelessly could
break the termination of the widening process. Thus, in Sect. 7.4, we strengthen
the definition of the widening to safely allow these manipulations.

7.2 Reduction of Widenings

The interval abstract domain is in many ways the “base” abstract domain. Most
of the properties that we check are properties of bounds, directly expressed in
the interval domain; also, while for each variable we keep an interval, we do not
necessarily keep the other kinds of abstract properties. However, the interval
domain, by default, applies simple preset widening thresholds (enriched with
constants encountered in comparisons). In order to prevent the intervals from
being widened too much, which would result in false alarms, it is necessary
to reduce them using more refined abstract properties. Thus, most numerical
domains reduce the intervals after widening.

However, care must be taken not to reduce too much after a widening in order
not to break the termination property of the widening. A classical example is
the closure operation in the octagon abstract domain, which can be considered a
reduction between separate domains, each considering only a couple of variables:
if one applies the classical widening operation on octagons followed by closure
(reduction), then termination is no longer ensured (e.g. see [11, Fig. 25–26]).

An alternate approach would be to modify the abstract transformers, refining
both its inputs and output, instead of modifying the widening. We denote by ρ :
D� → D� our reduction function (i.e. it satisfies ∀a ∈ D�, γD�(a) ⊆ γD�(ρ(a))).
We can define the two following sequences:

{
u0 = ⊥,

un+1 = ρ(un�D�(ρ(FD�(un))));

{
v0 = ⊥,

vn+1 = vn�D�(ρ(FD�(ρ(vn)))).

In Astrée, we compute the sequence (un), whereas the alternate strategy im-
plements the sequence (vn). The sequence (vn) is ultimately stationary even
without strengthening the definition of the widening. But the sequence (un) can
be computed more easily, while taking benefit of functional data-structures (i.e.

294 P. Cousot et al.

balanced trees). Moreover, the sequence (un) provides a modular definition for
the widening operator of reduced product domains.

Lemma 2. The limit ū of (ui) (resp. v̄ of (vi)) satisfies F(γD�(ū)) ⊆ γD�(ū)
(resp. F(γD�(v̄)) ⊆ γD�(v̄)).

Proof. For the limit ū of (ui), we have ū = ρ(ū�D�(ρ(FD�(ū)))) so γD�(ū) =
γD�(ρ(ū�D�(ρ(FD�(ū))))) whence γD�(ū�D�(ρ(FD�(ū)))) ⊆ γD�(ū) by sound-
ness of the reduction ρ. By (W1), γD�(ρ(FD�(ū))) ⊆ γD�(ū), whence γD�(FD�(ū))
⊆ γD�(ū) by soundness of ρ and so F(γD�(ū)) ⊆ γD�(ū) by soundness of FD� .
Similarly v̄ = v̄�D�(ρ(FD�(ρ(v̄)))) implies γD�(v̄) = γD�(v̄�D�(ρ(FD�(ρ(v̄)))))
so γD�(v̄) ⊇ γD�(ρ(FD�(ρ(v̄)))) ⊇ γD�(FD�(ρ(v̄))) ⊇ F(γD�(v̄)) by (W1) and
soundness of ρ and FD� . �

Due to the non-monotonic behavior of the widening (especially with respect to
the second argument), it seems difficult to compare the theoretical accuracy of
the two approaches.

7.3 Delaying Strategies

Premature widenings may result in excessive over-approximation. This is par-
ticularly true when the first few iterations of the system perform some kind of
initialization and do not give a good insight on the regular behavior of the loop.
We therefore delay the application of the widening, replacing it with a mere
abstract union, until a specified iteration, and start extrapolating afterwards.

Unfortunately, this is not sufficient and we may want to interleave unions and
widenings even after the first iteration with widening. Consider the following
example:

Example 20. while (1) {
X := Y + b;
Y := a*X + c;

}
The sequence of assignments is equivalent to Y := a*X + d (with d = c + a.b),
and so a widening with thresholds should find a stable interval. But if we perform
a widening with thresholds at each step, each time we widen Y, X is increased to a
value surpassing the threshold for Y, and so X is widened to the next stage, which
in turn increases Y further and the next widening stage increases the value of Y.
This eventually results in � abstract values for X and Y. We can see, however,
that if we replace the widening with a union at every other step, X and Y will
stabilize to the smallest threshold larger than their respective concrete bound.

�

Our previous approach was the following: we first do N0 iterations with unions
on all abstract domains, then we do widenings unless a variable which was not
stable becomes stable (this is the case of Y here when the threshold is big enough).
We add a fairness condition to avoid livelocks in case for each iteration there

Combination of Abstractions in the Astrée 295

exists a variable that becomes stable. Unfortunately, with large programs this
strategy gives the following behavior: we never do widenings until the fairness
condition is taken into account, then we do widenings at each iteration. So we
fail in certifying our example.

The following approach supersedes the previous one: Each abstract property
(or set of abstract properties) is fitted with a freshness indicator. At each it-
eration, the freshness indicator of unstable abstract properties is incremented.
For each abstract property, the choice between taking the union or the widening
among two consecutive iterates is determined according to the freshness indica-
tor: each domain is fitted with a piece-wise affine function, which determines how
often it is widened according to the freshness indicator of the abstract property.

7.4 Enforcing Termination

Both reductions (Sect. 7.2) and delayed widenings (Sect. 7.3) may break the
termination of the extrapolation process. Even intersecting the abstract iterates
with a constant abstract property (i.e. a weak form of reduction) may break the
termination of the extrapolation process.

Example 21. We consider the set D� of all parts of the interval [0; 1] containing
both 0 and 1. We want to extrapolate the iterates of the function f that inserts
in a set S each rational 1

2n+1 whenever 1
2n is in S (e.g. f(S) = {S ∪ { 1

2n+1 | 1
2n ∈

S}). We define both ∩ and ∪ as the classical set operators. We define �D� as:
a�D�b = ρ(a, a ∪ b) where ρ(a, b) is obtained by making the convex union of
several connected components of b until there are fewer connected components
than in a, and fewer than five connected components. It is obvious that �D� is a
widening, since along the abstract iterates the number of connected components
decreases until it reaches 1, and the interval [0; 1] is the only element with one
connected component. Then:

1. The sequence: ⎧⎪⎨
⎪⎩

u0 = {0; 1},

u2n+1 = u2n ∪ f(u2n),
u2n = u2n−1�D�f(u2n−1),

is not ultimately stationary.
Indeed, we have u2n = {0} ∪ [1

22n ; 1] and u2n+1 = {0; 1
22n+1 } ∪ [1

22n ; 1].
2. The sequence: {

u0 = {0; 1},

un+1 = (un�D�f(un)) ∩ {0; 1; 1
2k | k > 0},

is not ultimately stationary.
Indeed, we have un = fn(u0). �

We solve this problem in two steps. First we strengthen the definition of the
widenings, so that we can both delay the widening steps, and intersect the iter-
ates with a constant value, without loosing the convergence of abstract iterates.
Then, we restrict the kind of reductions that can be made after a widening step.

296 P. Cousot et al.

Strengthened Definition. To solve our problem, we require that the widening
relation → and the information preorder
� are strongly related. We suppose
that the abstract domain can be written as a finite product of totally ordered
sets (D�

i ,

�
i)i∈I . Moreover, we suppose that each sub-domain D�

i is fitted with
a widening operator �i such that:

– for any a, b ∈ D�
i , we have both a
�

i a�ib and b
�
i a�ib, (W′

1)
– and the relation →′

i defined as: “for any a, d ∈ D�
i , a →i d if and

only if there exist b, c ∈ D�
i such that a
�

i b and d = b�ic” is
well-founded.

(W′
2)

In the following theorem, we want to extrapolate the iterates of a mapping
FD� . Each iterate is intersected with the abstract property (ρi)i∈I ∈ D� (we
recall that D� =

∏
i∈I D�

i). The sequence ((bi)n) of boolean families denotes the
delaying strategy of the widening.

Theorem 1. Let FD� ∈ D� → D� be a map. Let (ρi)i∈I ∈ D� be a finite family
of abstract elements. Let ((bi)n) ∈ ({false; true}I)N be a family of booleans such
that for any i ∈ I, the sequence ((bi)n)n∈N takes the value true an unbounded
number of times. We write ⊥ = (⊥i)i∈I .

Then, the sequence:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(wi)0 = ⊥i,

un+1 = FD�(wn),

(vi)n+1 =

{
max��

i
((wi)n, (ui)n+1) whenever (bi)n = false,

(wi)n�i(ui)n+1 otherwise ,

(wi)n+1 = min��
i
((vi)n+1, ρi),

is ultimately stationary and sound.

Proof. Let i be an element of I. It is easy to see that sequence (wi) is increasing.
Moreover,

1. In the case where for any n ∈ N, (wi)n = (vi)n, we introduce a sequence
(jn) ∈ NN such that (bi)jn is true for any n ∈ N (a such sequence exists by
assumption). Then, we have (wi)jn →i (wi)jn+1 . Since →i is well founded,
(wi)jn is ultimately stationary.

2. Otherwise, the sequence (wi) is ultimately equal to the value ρi.

For the limits ū, v̄, and w̄ of ((ui)n)n∈N, ((vi)n)n∈N, and ((wi)n)n∈N, we have ū =
FD�(w̄), γD�(v̄) ⊇ γD�(ū), γD�(v̄) ⊇ γD�(w̄) (by γD�

i
(max��

i
(a, b)) ⊇ γD�

i
(a) ∪

γD�
i
(b) or (W′

1)) and w̄
� v̄ so γD�(v̄) = γD�(w̄) ⊇ γD�(ū) = γD�(FD�(w̄)) ⊇
F(γD�(w̄)) proving soundness. �

This definition is satisfied by the widening with thresholds, which is applied to
each single abstract constraint in all our domains.

Combination of Abstractions in the Astrée 297

Example 22. The widening W = A�D�B of two octagons [11] is performed
point-wisely: given a constraint ±X ± Y ≤ c in A and ±X ± Y ≤ d in B
with the same left member, we set the bound of the corresponding constraint
in W to c if c ≥ d, and to the next threshold greater than d if d ≥ c. In order
to gain precision, we may replace some widening application with a so-called
pre-widening which sets this bound to max(c, d) instead. Note that contrary to
the abstract union, our pre-widening does not apply constraint propagation to
its argument, and thus, is less precise. Indeed, [11, Fig. 25–26] shows that mixing
the widening (that tends to loosen bounds) with constraint propagation (that
tends to refine bounds) breaks the convergence of the iterates. Mixing widenings
with unions would have the same ill-effect. However, we can prove that mixing
widenings with pre-widenings enforces termination by viewing the octagon do-
main as a finite product of totally ordered sets: there is one set for each left
member ±X ±Y of octagonal constraint; all sets are simply the set of reals with
the standard order ≤; each set corresponds to the possible upper bounds of a
single left member. �

Restricting Reduction. Then, we must avoid cyclic reductions between com-
ponents of the product domain. For that purpose, we use the hierarchical struc-
ture of the domain network: after a widening step, a domain can only refine its
underlying domains. This ensures the termination of the analysis: the abstract
iterates in the abstract domains that are at the top of the hierarchy are ulti-
mately stationary. Once the abstract properties in the domains that are above
one domain are stable, the reduction of abstract properties in this domain can
be seen as an intersection with a constant abstract property. Thus, its abstract
iterates are ultimately stationary.

8 Narrowings

The widening jumps above the abstraction of the concrete least fixpoint. Then,
the result may be refined using downward iterations thanks to a narrowing opera-
tor. The Astrée analyzer takes as parameter the number of downward iterations
to compute.

Decreasing iterations raise several issues. The main problem is that the use
of downward iterations may make the checking of the fact that we have com-
puted an abstraction of the concrete least fixpoint much harder for an external
procedure. Although, by construction, the limit of these decreasing iterations is
indeed an abstraction of a concrete post-fixpoint, it may be hard to check in the
abstract (i.e. without resorting to a more concrete, and thus costly, decision pro-
cedure). Performing this check instead of relying on the correctness of a complex
iteration scheme is desirable to add confidence in the result of the analysis.

8.1 Frameworks

A narrowing operator �D� over an abstract domain D� [1] is a mapping in
D� ×D� → D� such that: ∀a, b ∈ D�, γD�(a)∩γD�(b) ⊆ γD�(a�D�b). We require

298 P. Cousot et al.

no termination criterion since, in Astrée, the number of downward iterations
is bounded by some user-chosen constant.

Given any x ∈ D� (in practice x = l is the limit of the upward iterations),
the downward iteration (x�

n) of FD� from x is defined as x�
0 = x and x�

n+1 =
x�

n �D�FD�(x�
n). In the following, we consider F ∈ D → D a monotonic function

and FD� an abstraction of F (i.e. we have ∀a ∈ D�, F(γD�(a)) ⊆ γD�(FD�(a)).
We want to prove that downward iterates preserve abstractions of concrete post-
fixpoints.

Theorem 2. If there exists a concrete element a ∈ D such that F(a) ⊆ a and
a ⊆ γD�(x) then, for any integer n ∈ N, there exists a concrete element a′ ∈ D
such that F(a′) ⊆ a′ and a′ ⊆ γD�(x�

n).

First, we prove the following lemmas:

Lemma 3. For any a ∈ D and x ∈ D�, a ⊆ γD�(x) =⇒ a ∩ F(a) ⊆
γD�(x�D�FD�(x)).

Proof. Let a ∈ D and x ∈ D� such that a ⊆ γD�(x). Since F is monotonic,
we have F(a) ⊆ F(γD�(x)). Then by soundness of FD� , we have F(γD�(x)) ⊆
γD�(FD�(x)). Thus F(a) ⊆ γD�(FD�(x)). So a∩F(a) ⊆ γD�(x)∩γD� (FD�(x)). By
definition of the narrowing operator, we have γD�(x)∩γD�(FD�(x)) ⊆ γD�(x�D�

FD�(x)). We conclude that a ∩ F(a) ⊆ γD�(x�D�FD�(x)). �

Lemma 4. For any a ∈ D, F(a) ⊆ a =⇒ F(F(a) ∩ a) ⊆ F(a) ∩ a.

Proof. Let a ∈ D such that F(a) ⊆ a. Since F is monotonic, we have F(F(a)) ⊆
F(a). Moreover, we have F(a) ∩ a = F(a). We conclude that F(F(a) ∩ a) =
F(F(a)) ⊆ F(a) = F(a) ∩ a. �

Then, Thm. 2 can easily be proved by induction on n ∈ N with a′ = F (a) ∩ a.

8.2 Practical Aspects

One may be satisfied by the fact that downward iteration provides, by con-
struction, an abstraction of the concrete post-fixpoint (Th. 2). Nevertheless, we
could expect more such as improvement γD�(a�D�b) ⊆ γD�(a) [1]. Moreover,
termination tests (for upward iterations) are performed using a decidable rela-
tion
� such that a
� b implies γD�(a) ⊆ γD�(b) (but which is not necessarily
a preorder). Then, by definition, the limit l of upward iterates of the abstract
operation FD� satisfies FD�(l)
� l. But there is no reason for the downward
iterates to satisfy this property (even if a
� b ⇐⇒ γD�(a) ⊆ γD�(b)), because
the abstract operation FD� is in practice not monotonic with respect to
�.

To solve this problem, whenever downward iterations provide an abstract
property that is not a post-fixpoint of FD� (with respect to our
�), we start
upward iterations again. And then, downward iterations again. To get a finite
analysis, we only “rebound” a fixed number of times. For our last try, we do not
perform downward iterations, so that we get a checkable post-fixpoint of FD� .

Combination of Abstractions in the Astrée 299

9 Conclusion and Further Challenges

Astrée has shown to be easily extensible. Our early successes have incited
our industrial partners to try and apply the analyzer to classes of programs for
which it was not designed. It was thus necessary to improve domains or create
new ones without a complete overhaul of the system. As with any major software
endeavor, our experience is that dependencies should be limited and orthogo-
nality encouraged; one abstract domain should be able to perform correctly (if
sometimes suboptimally) if another one is not present, or has been modified.

We have targeted applications where the objective is a sound result of zero
false alarms. This is very different from some other (commercial or academic)
static analyzers whose objective is to find bugs. While the two approaches share
common tools, they differ in that bug finding does not need to be sound (some
real errors may be ignored) while a high degree of completeness (few false alarms)
is expected on a variety of programs. A bug finder should thus probably ignore
constructs that it fails to “understand” properly (for instance, writes through
a pointer possibly aliased to many variables because of over-approximation).
A program verification tool such as Astrée does not have that luxury, and
this is why we claim that such programs should often contain domain-specific
abstractions, capable of addressing constructs, structures and algorithms that
generic abstraction do not “understand”. The consequence for the designer of
the analysis is that it should be easy to plug new abstractions at any level.

So far, Astrée has been targeted towards single-threaded programs. How-
ever, we have already implemented analyses for a restricted class of parallel
programs, and we expect to consider wider classes (e.g. multi-threaded code in
shared-memory systems). Our memory abstraction is currently a simple non-
relational one, but we expect that more precise analyses (e.g. shape analysis
and separation properties) will be necessary to tackle programs featuring dy-
namic manipulations of memory. One difficulty will be our stringent efficiency
constraints, since we consider large programs. The other will be to achieve zero
false alarms.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
POPL, pp. 238–252 (1977)

2. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2, 511–547 (1992)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software, invited chapter. In: Mo-
gensen, T., Schmidt, D., Sudborough, I. (eds.) The Essence of Computation. LNCS,
vol. 2566, pp. 85–108. Springer, Heidelberg (2002)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. ACM
SIGPLAN ’2003 Conf, PLDI, San Diego, pp. 196–207. ACM Press, New York (2003)

300 P. Cousot et al.

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTRÉE analyzer. In: Sagiv, M. (ed.) Proc. 14th ESOP ’2005, Edinburgh,
4–8 Apr. 2005. LNCS 3444, pp. 21–30. Springer, Heidelberg (2005)

6. Mauborgne, L.: ASTRÉE: Verification of absence of run-time error. In: Jacquart, P.
(ed.) Building the Information Society, pp. 385–392. Kluwer Academic Publishers,
Dordrecht (2004)

7. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Proc. LCTES 2006. Ottawa, Ontario, Canada, 14–16
June 2006, pp. 54–63. ACM Press, New York (2006)

8. Monniaux, D.: The parallel implementation of the ASTRÉE static analyzer. In:
Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, Springer, Heidelberg (2005)

9. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Paris,
France, Dunod, Paris, France, pp. 106–130 (1976)

10. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2005)

11. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19, 31–100 (2006)

12. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

13. Feret, J.: The arithmetic-geometric progression abstract domain. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 2–58. Springer, Heidelberg (2005)

14. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer,
Heidelberg (2005)

15. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

ACM POPL, pp. 269–282 (1979)
16. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml

system, documentation and user’s manual (release 3.06). Technical report, INRIA,
Rocquencourt, France (2002)

17. Miné, A.: The octagon abstract domain library (2006),
www.di.ens.fr/∼mine/oct/

18. ANSI/ISO: Programming languages – C. (1999) Standard ISO/IEC 9899:1999(E)
19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with

BLAST. In: Ball, T., Rajamani, S.K. (eds.) Model Checking Software. LNCS,
vol. 2648, pp. 235–239. Springer, Heidelberg (2003)

20. Cousot, P.: Verification by abstract interpretation, invited chapter. In: Dershowitz,
N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 243–268. Springer,
Heidelberg (2004)

21. Cousot, P.: The calculational design of a generic abstract interpreter, invited chap-
ter. In: Broy, M., Steinbrüggen, R. (eds.) Calculational System Design. NATO
Science Series, Series F: Computer and Systems Sciences, vol. 173, pp. 421–505.
IOS Press, Amsterdam (1999)

22. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004)

23. Cousot, P.: MIT course 16.399: Abstract Interpretation (2005), http://web.mit.
edu/afs/athena.mit.edu/course/16/16.399/www/

www.di.ens.fr/~mine/oct/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Proving Noninterference by a Fully Complete

Translation to the Simply Typed λ-Calculus

Naokata Shikuma and Atsushi Igarashi

Graduate School of Informatics, Kyoto University
{naokata,igarashi}@kuis.kyoto-u.ac.jp

Abstract. Tse and Zdancewic have formalized the notion of noninter-
ference for Abadi et al.’s DCC in terms of logical relations and given a
proof by reduction to parametricity of System F. Unfortunately, their
proof contains errors in a key lemma that their translation from DCC
to System F preserves the logical relations defined for both calculi. We
prove noninterference for a variant of DCC by reduction to the basic
lemma of a logical relation for the simply typed λ-calculus, using a fully
complete translation to the simply typed λ-calculus. Full completeness
plays an important role in showing preservation of the two logical rela-
tions through the translation.

1 Introduction

Background. Dependency analysis is a family of static program analyses to trace
dependencies between inputs and outputs of a given program. For example,
information flow analysis [3], binding-time analysis [8], and call tracking [16] are
its instances. One of the most important correctness criteria of the dependency
analysis is called noninterference [5], which roughly means that, for any pair
of program inputs that are equivalent from the viewpoint of an observer at
some security level, the outputs are also equivalent for the observer. Various
techniques for type-based dependency analyses have been proposed, especially,
in the context of language-based security [15].

Abadi et al. proposed a unifying framework called dependency core calcu-
lus (DCC) [1] for type-based dependency analyses for higher-order functional
languages, and showed noninterference for several type systems of concrete de-
pendency analyses by embedding them into DCC.

Recently, Tse and Zdancewic formalized this property for DCC by using a
syntactic logical relation [9]—a family of type-indexed relations, defined by in-
duction on types, over programs—as the equivalence relation for inputs and
outputs, thereby generalizing the notion of noninterference to higher-order pro-
grams. They also gave a proof of noninterference by reducing it to the para-
metricity theorem [14, 18], which was also formalized in terms of syntactic logi-
cal relations, of System F [13, 4]. Their technical development is summarized as
follows:

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 301–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

302 N. Shikuma and A. Igarashi

1. Define a translation from DCC to System F;
2. Prove, by induction on the structure of types, that the translation is both

sound and complete—that is, it preserves the logical relations in the sense
that

e1 ≈D e2 : t ⇐⇒ f(e1) ≈F f(e2) : f(t)

where t is a DCC type, f is the translation from DCC to System F and ≈D

and ≈F represent the logical relations for DCC and System F, respectively;
and

3. Prove noninterference by reduction to the parametricity theorem of System
F, using the sound and complete translation above.

Unfortunately, in the second step, their proof contains an error, which we
will briefly explain here. First note that, for function types t1 → t2, the logical
relations are defined by: e1 ≈x e2 : t1 → t2 if and only if, for any e′1 ≈x e′2 : t1,
e1 e′1 ≈x e2 e′2 : t2 (x stands for either D or F) and that the type translation
is homomorphic for function types, namely f(t1 → t2) = f(t1) → f(t2). Then,
consider the case where t is a function type t1 → t2. To show the left-to-right
direction, we must show that f(e1)M1 ≈F f(e2)M2 : f(t2) for any M1 ≈F M2 :
f(t1), from the assumption e1 ≈D e2 : t1 → t2, but we get stuck because there is
no applicable induction hypothesis. If the translation were full [6] (or surjective),
M1 and M2 would be of the forms f(e′1) and f(e′2), making it possible to apply an
induction hypothesis, and the whole proof would go through. Their translation,
however, turns out not to be full; we have actually found a counterexample for
the preservation of the equivalence from the failure of the fullness (see Section 5
for more details). So, although interesting, this indirect proof method fails at
least for the combination of DCC and System F.

Our Contributions. In this paper, we prove noninterference by Tse and
Zdancewic’s method in a slightly different setting: In order to obtain a fully
complete translation, we change the source language to what we call Sealing
Calculus (λ[]), which is a subset of extended DCC of Tse and Zdancewic [17],
and use a simpler target language, namely the simply typed λ-calculus λ→. Then,
the basic lemma for a logical relation of λ→ is used in place of the parametricity
theorem. Our technical contributions can be summarized as follows:

– Development of a sound and fully complete translation from λ[] to λ→; and
– A proof of the noninterference theorem of λ[] by reducing to the basic lemma

of λ→ with the translation.

The existence of a fully complete translation means that λ[] provides syntax that
is rich enough to express every denotation in the model (that is, λ→). Thus, this
result suggests that the extension of DCC proposed by Tse and Zdancewic is
really an improvement over DCC, for which the previously proposed translation
is not full.

Structure of the Paper. The rest of the paper is organized as follows. Section 2
introduces λ[] with its syntax, type system, reduction, and logical relations and

Proving Noninterference by a Fully Complete Translation 303

then the statement of the noninterference theorem. Section 3 introduces λ→ and
defines a translation from λ[] to λ→ and its inverse. In Section 4, we complete
our proof of noninterference by reducing it to the basic lemma of logical relations
for λ→. Finally, Section 5 discusses related work and Section 6 gives concluding
remarks.

2 Sealing Calculus

In this section, we define λ[], which is a simply typed λ-calculus extended with
the notion of sealing. We write [e]a for sealing e by authority a; the sealed value
can be extracted by unsealing ea, whose result must not be leaked to anyone
without the authority a. Authorities represent rights to access confidential data;
so the power set of authorities naturally forms security levels, which are ordered
by inclusion. To keep track of dependency by a type system, information on the
authority used for sealing is attached to types of sealing [t]a; furthermore, type
judgments, written Γ ; � − e : t, are augmented by a level � = {a1, . . . , an},
which is also called a protection context elsewhere [17]. This judgment means
that the value of e has type t as usual and, moreover, cannot be leaked to levels
that lack some of the authorities in �.

2.1 Syntax

Let A be the countable set of authorities, and ranged over by a (possibly with
subscripts). The metavariable � ranges over levels, which are finite subsets of
authorities. The metavariables x, y, and z (possibly with subscripts) range over
the denumerable set of variables. Then, the types and terms of λ[] are defined
as follows.

Definition 1 (Types). The set of types, ranged over by t, t′, t1, t2, . . . , is
defined as follows:

t ::= unit | t → t | t × t | t + t | [t]a

We call [t]a a sealed value type.

Definition 2 (Terms). The set of terms, ranged over by e, e′, e1, e2, . . . , is
defined as follows:

e ::= x | () | λx :t. e | e e | 〈e, e〉 | π1(e) | π2(e) | ι1(e) | ι2(e)
| (case eof ι1(x1).e | ι2(x2).e) | [e]a | ea

Terms of λ[] include the unit value, pairing, projection, injection, and case analy-
sis as well as λ-abstraction and applications. As usual, x is bound in λx :t. e and
x1 and x2 are bound in e1 and e2 of (case e0 of ι1(x1).e1 | ι2(x2).e2), respec-
tively. We say, for [e]a, e is sealed at a, and call [e]a and ea (a-)sealing term
and (a-)unsealing term, respectively. In this paper, α-conversions are defined in
a customary manner and implicit α-conversions are assumed to make all the
bound variables distinct from other (bound and free) variables.

304 N. Shikuma and A. Igarashi

2.2 Type System

As mentioned above, the form of type judgement of λ[] is Γ ; � − e : t, where
Γ is a (finite) mapping from variables to types. This judgement is read as “e is
given type t at level � under context Γ .” Since the computation of e depends on
authorities in �, any information on its value should not be leaked to any other
level �′, which is not a superset of �.

The typing rules of λ[] are given as follows:

x : t ∈ Γ

Γ ; � − x : t
Γ ; � − () : unit

Γ, x : t1 ; � − e : t2
Γ ; � − λx : t. e : t1 → t2

Γ ; � − e : t1 → t2 Γ ; � − e′ : t1
Γ ; � − e e′ : t2

Γ ; � − e1 : t1 Γ ; � − e2 : t2
Γ ; � − 〈e1, e2〉 : t1 × t2

Γ ; � − e : t1 × t2 i ∈ {1, 2}
Γ ; � − πi(e) : ti

Γ ; � − e : t i ∈ {1, 2}
Γ ; � − ιi(e) : t1 + t2

Γ ; � − e : t1 + t2 Γ, x1 : t1 ; � − e1 : t Γ, x2 : t2 ; � − e2 : t

Γ ; � − (case e of ι1(x1).e1 | ι2(x2).e2) : t

Γ ; � ∪ {a} − e : t

Γ ; � − [e]a : [t]a

Γ ; � − e : [t]a a ∈ �

Γ ; � − ea : t

All the rules but the last two are standard. The (second last) rule for sealing
means that, by sealing with a, it is legal to leak [e]a to a level without a: at such
a level, e cannot be unsealed, as is shown in the (last) rule for unsealing.

2.3 Reduction

The reduction relation for λ[] is written e −→ e′ and given as the least compatible
relation closed by the following rules:

(λx :t. e1) e2 −→ [e2/x]e1 πi(〈e1, e2〉) −→ ei

(case ιi(e)of ι1(x1).e1 | ι2(x2).e2) −→ [e/xi]ei ([e]a)a −→ e

We write [e/x] for a capture-avoiding substitution of e for the free occurrences of
variable x. All rules are straightforward. The last rule says that the term sealed
by a is opened by the same authority. In what follows, we use v for normal forms.

2.4 Basic Properties

We list the basic properties of λ[]. The first lemma below means that, if e is
permitted at some level, then it is permitted also at a higher level.

Lemma 1 (Level Weakening). If Γ ; � − e : t, then Γ ; � ∪ {a} − e : t,
and the derivations of these judgements have the same size.

The following three theorems are standard.

Theorem 1 (Subject Reduction). If Γ ; � − e : t and e −→ e′, then
Γ ; � − e′ : t.

Proving Noninterference by a Fully Complete Translation 305

Theorem 2 (Strong Normalization). If Γ ; � − e : t, then e is strongly
normalizing.

Theorem 3 (Church-Rosser Property). If Γ ; � − e : t and e −→∗ e1 and
e −→∗ e2, then there exists a term e′ such that ei −→∗ e′ (i = 1, 2).

2.5 Logical Relation and Noninterference

Now we define logical relations to express equivalence of terms from the view-
point of an observer at some level, and then state the noninterference theorem.
To take level information into account, the logical relations (for close terms
and normal forms) are indexed by levels as well as types. e1 ≈� e2 : t means
that closed terms e1 and e2 of type t are logically related at level �. Similarly,
v1 ∼� v2 : t means that closed normal forms v1 and v2 of t, are logically related
at �. We assume · ; � − ei : t and · ; � − vi : t for i = 1, 2 (we write · for the
empty context).

Definition 3 (Logical Relations for λ[]). The relations v1 ∼� v2 : t and
e1 ≈� e2 : t are defined by the following rules:

() ∼� () : unit
∀(e1 ≈� e2 : t1). v1 e1 ≈� v2 e2 : t2

v1 ∼� v2 : t1 → t2

v11 ∼� v21 : t1 v12 ∼� v22 : t2
〈v11, v12〉 ∼� 〈v21, v22〉 : t1 × t2

v1 ∼� v2 : ti i ∈ {1, 2}
ιi(v1) ∼� ιi(v2) : t1 + t2

v1 ∼� v2 : t a ∈ �

[v1]a ∼� [v2]a : [t]a

a
∈ �

[v1]a ∼� [v2]a : [t]a

e1 −→∗ v1 e2 −→∗ v2 v1 ∼� v2 : t

e1 ≈� e2 : t

Most rules are standard. There are two rules for [v1]a ∼� [v2]a : [t]a. When
a ∈ �, an observer at � can examine vi by unsealing [vi]a (i = 1, 2), so only
when its contents are equivalent, these sealing terms are equivalent. Otherwise,
the observer cannot distinguish them at all and those terms are always regarded
equivalent.

We use γ to represent a simultaneous substitution of terms for variables and
write γ1 ≈� γ2 : Γ if dom(γ1) = dom(γ2) = dom(Γ) and γ1(x) ≈� γ2(x) : Γ (x)
for any x ∈ dom(γ1). Then, the noninterference theorem is stated as follows:

Theorem 4 (Noninterference). If Γ ; � − e : t and γ1 ≈� γ2 : Γ , then
γ1(e) ≈� γ2(e) : t.

As mentioned in the introduction, noninterference means that, for any pair of
program inputs that are equivalent from the viewpoint of an observer at some
security level, the outputs are also equivalent for the observer. Here, substitu-
tions γ1 and γ2 play roles of equivalent inputs to program e. So, this property
guarantees the correctness of the type system as a dependency analysis.

Although we could give a direct proof of this theorem by induction on the
derivation of Γ ; � − e : t rather easily, we show an indirect proof that reduces
the property to a corresponding property in λ→, namely the basic lemma of
logical relations.

306 N. Shikuma and A. Igarashi

3 Translation

In this section, we define a formal translation from λ[] to the simply typed λ-
calculus λ→ and its inverse. Both translations are shown to preserve typing. We
start with reviewing λ→ briefly with logical relations for it.

3.1 λ→

λ→ introduced here is a standard one with unit, base, function, product, and
sum types. We assume that base types, written αa (a ∈ A), have one-to-one
correspondence with authorities. We use metavariables M for terms and A for
types. The syntax of λ→ is given as follows:

A ::= α | unit | A → A | A × A | A + A
M ::= x | () | λx :A. M | M M | 〈M, M〉 | πi(M) | ιi(M)

| (caseM of ι1(x1).M | ι2(x2).M)

The form of type judgement of λ→ is Δ − M : A, where Δ is a (finite)
mapping from variables to λ→ types. For brevity, we omit typing rules, which
are completely standard. The reduction of λ→ terms consists of standard β-
reduction and the following commutative conversion.

(x1, x2
∈ FV(M ′))

(caseM of ι1(x1).M1 | ι2(x2).M2) M ′ −→ caseM of ι1(x1).M1 M ′ | ι2(x2).M2 M ′

(i ∈ {1, 2})
πi(caseM of ι1(x1).M1 | ι2(x2).M2) −→ caseM of ι1(x1).πi(M1) | ι2(x2).πi(M2)

(x1, x2
∈ FV(M ′
1) ∪ FV(M ′

2))

case (caseM of ι1(x1).M1 | ι2(x2).M2)of ι1(y1).M
′
1 | ι2(y2).M

′
2

−→ caseM of ι1(x1).(caseM1 of ι1(y1).M
′
1 | ι2(y2).M

′
2)

| ι2(x2).(caseM2 of ι1(y1).M
′
1 | ι2(y2).M

′
2)

Here, we write FV(M) for the set of free variables in M . In what follows, we
use V for normal forms.

The resulting calculus (with commutative conversion) satisfies the standard
properties of subject reduction, Church-Rosser, and strong normalization [2].
We say (the type derivation Δ − M : A of) a term satisfies the subformula
property when any type in the derivation is a subexpression of either A or a type
occurring in Δ. Then, any well typed term can reduce to the one that satisfies
the subformula property as in the theorem below, which makes it easy to ensure
the fullness of the translation.

Theorem 5 (Subformula Property). If Δ − M : A, then there exists a
normal form V such that M −→∗ V and Δ − V : A, which satisfies the
subformula property.

Proving Noninterference by a Fully Complete Translation 307

Remark 1. Commutative conversion is necessary for the above theorem to hold.
Without commutative conversion,

λx :unit + unit . ((case xof ι1(x1).λy :unit . () | ι2(x2).λy :unit . ())) ()

of type unit + unit → unit would be a norml form, which does not satisfy the
subformula property, because a subterm λy :unit . () has type unit → unit , which
does not occur in unit + unit → unit . This theorem also requires full reduction,
which allows any redex (even under λ) to reduce.

3.2 Logical Relation for λ→

We define syntactic logical relations for λ→ in the standard manner. As for λ[],
there are relations for terms and normal forms, written Δ − M1 ≈ M2 : A
(read “terms M1 and M2 of type A are logically related under context Δ”) and
Δ − V1 ∼ V2 : A (read similarly), respectively. We assume that Δ − Mi : A
and Δ − Vi : A for i = 1, 2.

Definition 4 (Logical Relations for λ→). The relations Δ − M1 ≈ M2 : A
and Δ − V1 ∼ V2 : A are the least relation closed under the following rules:

Δ − () ∼ () : unit Δ − V1 ∼ V2 : αa
Δ − V11 ∼ V21 : A1 Δ − V12 ∼ V22 : A2

Δ − 〈V11, V12〉 ∼ 〈V21, V22〉 : A1 × A2

Δ − V1 ∼ V2 : Ai i ∈ {1, 2}
Δ − ιi(V1) ∼ ιi(V2) : A1 + A2

∀(Δ − M1 ≈ M2 : A1). Δ − V1 M1 ≈ V2 M2 : A2

Δ − V1 ∼ V2 : A1 → A2

M1 −→∗ V1 M2 −→∗ V2 Δ − V1 ∼ V2 : A

Δ − M1 ≈ M2 : A

We write δ for a simultaneous substitution of (λ→) terms for variables and
Δ′ − δ1 ≈ δ2 : Δ if dom(δ1) = dom(δ2) = dom(Δ) and for any x ∈ dom(δ1),
Δ′ − δ1(x) ≈ δ2(x) : Δ(x). Then, the basic lemma is as follows:

Lemma 2 (Basic Lemma). If Δ − M : A and Δ′ − δ1 ≈ δ2 : Δ, then
Δ′ − δ1(M) ≈ δ2(M) : A.

Proof. By induction on the derivation of Δ − M : A.

Remark 2. Although the above logical relation for λ→ are not reflexive in general
(for example x : A + A �− x ≈ x : A + A), we have Δ − M ≈ M : A if all the
types in Δ are base types αa. This is derived from Lemma 2 and the fact that
Δ − x ≈ x : Δ(x) if Δ(x) = αa, by definition.

3.3 From λ[] To λ→

We define the translation of λ[] to λ→. One of the main ideas of the translation
is to translate sealing of type [t]a to a function from the base type αa, which
corresponds to a. The sealed value can be extracted by passing a term of αa as
an argument. Intuitively, the term of αa serves as a “key” to unseal.

308 N. Shikuma and A. Igarashi

Definition 5 (Translation of Types and Contexts). (·)† is a function from
λ[] types to λ→ type, defined by:

unit† = unit (t1 op t2)
† = t†

1 op t†
2 ([t]a)† = αa → t†

where op stands for →, ×, or +. (·)† is extended pointwise to contexts by: Γ † =
{x : t† | x : t ∈ Γ}.

The translation to λ→ is represented by Γ ; σ − e : t ↘ M , read “λ[] term e of
type t is translated to M under Γ and σ,” where σ is an injective finite map
from authorities to variables. We assume that the range of σ and the domain of
Γ are disjoint.

Definition 6 (Translation of Terms). The relation Γ ; σ − e : t ↘ M is
defined as the least relation closed under the following rules:

Γ ; σ − x : t ↘ x Γ ;σ − () : unit ↘ ()
Γ, x : t1; σ − e : t2 ↘ M

Γ ; σ − λx : t1. e : t1 → t2 ↘ λx : t†
1. M

Γ ; σ − e : t1 → t2 ↘ M
Γ ; σ − e′ : t1 ↘ M ′

Γ ; σ − e e′ : t2 ↘ M M ′

Γ ;σ − e1 : t1 ↘ M1

Γ ;σ − e2 : t2 ↘ M2

Γ ; σ − 〈e1, e2〉 : t1 × t2 ↘ 〈M1, M2〉
Γ ;σ − e : t1 × t2 ↘ M i ∈ {1, 2}

Γ ; σ − πi(e) : ti ↘ πi(M)

Γ ;σ − e : ti ↘ M i ∈ {1, 2}
Γ ; σ − ιi(e) : t1 + t2 ↘ ιi(M)

Γ ; σ − e : t1 + t2 ↘ M Γ, x1 : t1; σ − e1 : t ↘ M1 Γ, x2 : t2; σ − e2 : t ↘ M2

Γ ; σ − (case eof ι1(x1).e1 | ι2(x2).e2) : t ↘ (caseM of ι1(x1).M1 | ι2(x2).M2)

Γ ; σ{a �→ k} − e : t ↘ M k fresh or k = σ(a)

Γ ; σ − [e]a : [t]a ↘ λk :αa. M

Γ ; σ − e : [t]a ↘ M

Γ ; σ − ea : t ↘ M σ(a)

Here, we write σ{a
→ k} for a mapping from dom(σ) ∪ {a} to variables defined
by: σ{a
→ k}(a) = k; and σ{a
→ k}(a′) = σ(a′) if a �= a′.

The translation of terms is easily derived from the translation rules for types.
Here, the mapping σ, whose domain represents the level at which the SDC
term is typed, records correspondence between authorities and variables that
are used as keys. In the last rule, a key to open the sealing is retrieved from
σ—if e is well typed at the level represented by dom(σ), then a should be in
the domain of σ. Then, well typed λ[] terms can be translated to well typed
λ→ terms as in the theorem below. Here, we write σ† for a context defined by:
{σ(a) : αa | a ∈ dom(σ)}.

Theorem 6 (Translation Preserves Typing). If Γ ; � − e : t and
dom(σ) = �, then there exists a λ→ term M such that Γ ; σ − e : t ↘ M ,
and that Γ †, σ† − M : t†.

Proof. By induction on the derivation of Γ ; � − e : t.

3.4 From λ→ To λ[]

We define the inverse translation, represented by Γ ; σ − M ↗ e : t. It is read
“λ→ term M of type t† under Γ † and σ† is translated back to a λ[] term e.”

Proving Noninterference by a Fully Complete Translation 309

Definition 7 (Inverse Translation). The relation Γ ; σ − M ↗ e : t is
defined as the least relation closed by the following rules:

Γ ; σ − x ↗ x : t Γ ;σ − () ↗ () : unit
Γ, x : t1; σ − M ↗ e : t2

Γ ; σ − λx : t†
1. M ↗ λx : t1. e : t1 → t2

Γ ; σ − M ↗ e : t1 → t2
Γ ; σ − M ′ ↗ e′ : t1

Γ ; σ − M M ′ ↗ e e′ : t2

Γ ;σ − M1 ↗ e1 : t1
Γ ;σ − M2 ↗ e2 : t2

Γ ; σ − 〈M1, M2〉 ↗ 〈e1, e2〉 : t1 × t2

Γ ;σ − M ↗ e : t1 × t2 i ∈ {1, 2}
Γ ; σ − πi(M) ↗ πi(e) : ti

Γ ;σ − M ↗ e : ti i ∈ {1, 2}
Γ ; σ − ιi(M) ↗ ιi(e) : t1 + t2

Γ ; σ − M ↗ e : t1 + t2 Γ, x1 : t1; σ − M1 ↗ e1 : t Γ, x2 : t2; σ − M2 ↗ e2 : t

Γ ; σ − (caseM of ι1(x1).M1 | ι2(x2).M2) ↗ (case eof ι1(x1).e1 | ι2(x2).e2) : t

a
∈ dom(σ)
Γ ; σ{a �→ k} − M ↗ e : t

Γ ; σ − λk :αa. M ↗ [e]a : [t]a

a ∈ dom(σ)
Γ ; σ{a �→ k} − [k/σ(a)]M ↗ e : t

Γ ; σ − λk :αa. M ↗ [e]a : [t]a

Γ ;σ − M ↗ e : [t]a Γ †, σ† − M ′ : αa

Γ ; σ − M M ′ ↗ ea : t

The second to last rule says that some occurrences of keys for a can be ab-
stracted as long as the λ[] term after sealing is still at the same level (dom(σ) =
dom(σ{a
→ k})). Note that even if Γ †, σ† − M : t† , the inverse translation
of M is not always possible. However, we can give a sufficient condition for
the inverse translation to exist and show the inverse translation also preserves
typing:

Theorem 7 (Inverse Translation Preserves Typing). If the derivation of
Γ †, σ† − M : t† satisfies the subformula property, then there exists a λ[] term
e such that Γ ; σ − M ↗ e : t and Γ ; dom(σ) − e : t.

Proof. By induction on the derivation of Γ †, σ† − M : t† .

Remark 3. In the above theorem, the subformula property gives a sufficient
condition to exclude “junk” terms such as (λx :αa → αa. ())(λk :αa. k). Since
λk :αa. k has type αa → αa, no rules of inverse translation can be applied and
the inverse translation will fail. Its derivation, however, does not satisfy the sub-
formula property, so this is not a counterexample for the theorem above. (Its
normal form can be translated back to a λ[] term.)

4 Proof of Noninterference Via Preservation of Logical
Relations

In this section, we give an indirect proof of the noninterference theorem, which
is obtained as an easy corollary of the theorem that the translation is sound and
complete, that is, the logical relation for λ[] is preserved by translation to λ→.
The properties we would expect are

310 N. Shikuma and A. Igarashi

If e1 ≈dom(σ) e2 : t and ·; σ − ei : t ↘ Mi for (i = 1, 2), then σ† −
M1 ≈ M2 : t†,

and its converse

If ·; σ − ei : t ↘ Mi for (i = 1, 2) and σ† − M1 ≈ M2 : t†, then
e1 ≈dom(σ) e2 : t.

It is not very easy, however, to prove them directly because logical relations are
defined by induction on types whereas the translations are not. Thus, following
Tse and Zdancewic [17], we introduce another logical relation (called logical
correspondence) e ��σ M : t over terms of λ[] and λ→, then prove that it
includes (the graphs of) the translations of both directions (Theorems 9 and
10). Then, after showing that the logical correspondence is full (Corollary 1),
we finally prove preservation of logical relations by logical correspondence and
reduce the noninterference theorem to the basic lemma (Lemma 2).

4.1 Logical Correspondence and Its Fullness

Definition 8 (Logical Correspondence). The relations e ��σ M : t and
v �σ V : t, where we assume that Γ ; � − e : t and Γ ; � − v : t and
Δ − M : A and Δ − V : A, are defined as the least relation closed under the
following rules:

() �σ () : unit
∀(e ��σ M : t1). v e ��σ V M : t2

v �σ V : t1 → t2

v1 �σ V1 : t1 v2 �σ V2 : t2
〈v1, v2〉 �σ 〈V1, V2〉 : t1 × t2

v �σ V : ti i ∈ {1, 2}
ιi(v) �σ ιi(V) : t1 + t2

∀(σ† − M : αa). v ��σ V M : t

[v]a �σ V : [t]a

e −→∗ v M −→∗ V v �σ V : t

e ��σ M : t

Intuitively, e ��σ M : t means that e and M exhibit the same behavior from
the viewpoint of an observer at dom(σ). The rule for [t]a expresses the fact that
the existence of well-typed M of αa under σ† is equivalent to the existence of
the authority a in dom(σ). In other words, if a is not in dom(σ), the premise is
vacuously true, representing that the observer cannot distinguish anything.

Theorem 8 below shows that the logical correspondences are closed under the
composition with the logical relation in λ→.

Theorem 8. If e ��σ M1 : t and σ† − M1 ≈ M2 : t†, then e ��σ M2 : t.

Proof. By induction on the structure of t, using Remark 2 in the case where
t = [t′]a.

The next theorem shows that these logical correspondences include the graphs
of the translation to λ→. We write γ ��σ δ : Γ if dom(γ) = dom(δ) = dom(Γ)
and γ(x) ��σ δ(x) : Γ (x) for any x ∈ dom(Γ).

Proving Noninterference by a Fully Complete Translation 311

Theorem 9 (Inclusion of Translation). If Γ ; σ − e : t ↘ M and γ ��σ δ : Γ ,
then γ(e) ��σ δ(M) : t.

Proof. By induction on the size of the derivation of Γ ; σ − e : t ↘ M .

It is slightly harder to show that the logical correspondence includes the graphs
of the inverse translation, since the inverse translation is not quite a (right)
inverse of the translation to λ→: The inverse translation followed by the forward
translation may yield a term different from the original. For example, we can
derive

x : [t]a; {a
→ k1} − λk2 : αa.x k1 ↗ [xa]a : [t]a

and
x : [t]a; {a
→ k1} − [xa]a : [t]a ↘ λk′

2 : αa.x k′
2 .

Fortunately, the difference is only slight: They differ only in subterms of base
types αa and are in fact logically related. To identify terms only with this kind
of differences, we introduce a (typed) equivalence relation Δ − M1 ≡ M2 : A,
which is shown to be included in the logical relation.

Definition 9. The relation Δ − M1 ≡ M2 : A is defined as the least relation
closed under the rules below:

Δ − M : A

Δ − M ≡ M : A

Δ − M1 ≡ M2 : A

Δ − M2 ≡ M1 : A

Δ − M1 : αa Δ − M2 : αa

Δ − M1 ≡ M2 : αa

Δ − M1 ≡ M2 : A Δ − M2 ≡ M3 : A

Δ − M1 ≡ M3 : A

Δ − M1 ≡ M2 : A Δ′ − C[M1] : A′

Δ′ − C[M1] ≡ C[M2] : A′

where C ranges over term contexts, which are defined by:

C ::= [] | λx :A. C | C M | M C | 〈C, M〉 | 〈M, C〉 | πi(C) | ιi(C)
| (case C of ι1(x1).M | ι2(x2).M) | (case M of ι1(x1).C | ι2(x2).M)
| (case M of ι1(x1).M | ι2(x2).C)

As mentioned above, the inverse translation followed by the translation yields a
different term but it is still related by ≡, which is included by the logical relation:

Lemma 3. If Γ ; σ − M ↗ e : t and Γ ; σ − e : t ↘ M ′, then Γ †, σ† − M ≡
M ′ : t†.

Proof. By induction on Γ ; σ − M ↗ e : t.

Lemma 4. If Δ − M1 ≡ M2 : A and Δ′ − δ1 ≈ δ2 : Δ, then Δ′ − δ1(M1) ≈
δ2(M2) : A.

Proof. By induction on the derivation of Δ − M1 ≡ M2 : A.

Then, we can show the following theorem:

312 N. Shikuma and A. Igarashi

Theorem 10 (Inclusion of Inverse Translation). If Γ ; σ − M ↗ e : t and
γ ��σ δ : Γ , then γ(e) ��σ δ(M) : t.

Proof. By Theorem 6, there exists M ′ such that Γ ; σ − e : t ↘ M ′. Then, by
Lemma 3, Γ †, σ† − M ≡ M ′ : t†. Since σ† − δ ≈ δ : Γ † (using Remark 2), σ† −
δ(M) ≈ δ(M ′) : t† by Lemma 4. Then, by Theorem 9, γ(e) ��σ δ(M ′) : t and,
by Theorem 8 and the symmetricity of the logical relation, γ(e) ��σ δ(M) : t.

As a corollary, the logical correspondences is shown to be full.

Corollary 1 (Fullness of Logical Correspondences). If σ† − M : t†, then
there exists a λ[] term e such that e ��σ M : t.

Proof. By Theorems 5, 7, and 10.

4.2 Preservation of Logical Relations

By using the logical correspondence introduced above, we prove that the logical
relations are preserved by the logical correspondence.

Theorem 11 (Preservation of Equivalences).

1. If e1 ≈dom(σ) e2 : t and ei ��σ Mi : t (i = 1, 2), then σ† − M1 ≈ M2 : t†.
2. Conversely, if ei ��σ Mi : t for (i = 1, 2) and σ† − M1 ≈ M2 : t†, then

e1 ≈dom(σ) e2 : t.

Proof. We prove both simultaneously by induction on the structure of t. We
show only the main cases:

Case 1 (t = t1 → t2). To show (1), take arbitrary M ′
1 and M ′

2 such that σ† −
M ′

1 ≈ M ′
2 : t†1. By the fullness (Corollary 1), there exist e′i such that e′i ��σ M ′

i :
t1 (i = 1, 2), and by the induction hypothesis (2) for t1, we have e′1 ≈dom(σ)
e′2 : t1. Then, by definition, there exist vi, Vi (i = 1, 2) such that ei −→∗ vi and
Mi −→∗ Vi and vi e′i ��σ Vi M ′

i : t2 for (i = 1, 2), and v1 e′1 ≈dom(σ) v2 e′2 : t2.
Applying the induction hypothesis (1) for t2 to them, σ† − V1 M ′

1 ≈ V2 M ′
2 : t†2.

So we have σ† − V1 ∼ V2 : t†1 → t†2, and hence σ† − M1 ≈ M2 : t†1 → t†2. The
statement (2) can be shown similarly, without the fullness.

Case 2 (t = [t1]a). To show (2), we have two subcases: a ∈ dom(σ) or not. If
a ∈ dom(σ), then, by definition, σ† − σ(a) ≈ σ(a) : αa. Also, by definition,
there exist vi, Vi (i = 1, 2) such that ei −→∗ [vi]a and Mi −→∗ Vi and vi ��σ

Vi σ(a) : t1 for (i = 1, 2), and σ† − V1 σ(a) ≈ V2 σ(a) : t†1. Applying the
induction hypothesis (2) for t1, we have v1 ≈dom(σ) v2 : t1, which is equivalent
to v1 ∼dom(σ) v2 : t1, so e1 ≈dom(σ) e2 : [t1]a. The case a �∈ � is trivial. Showing
(1) is easy.

Proving Noninterference by a Fully Complete Translation 313

4.3 Noninterference

Then, we prove the noninterference theorem by reducing it to Lemma 2.

Corollary 2 (Noninterference). If Γ ; � − e : t and γ1 ≈� γ2 : Γ , then
γ1(e) ≈� γ2(e) : t.

Proof. Choose an arbitrary σ such that dom(σ) = � and ran(σ) ∩ dom(Γ) = ∅.
By Theorem 6, Γ ; σ − e : t ↘ M and Γ †, σ† − M : t† for some M . Similarly, for
any x ∈ dom(γi) (i = 1, 2), there exists Mxi such that ·; σ − γi(x) : Γ (x) ↘ Mxi

and Γ †, σ† − Mxi : (Γ (x))†. Define δi (i = 1, 2) as a simultaneous substitution
such that dom(δi) = dom(γi) and δi(x) = Mxi for x ∈ dom(δi). Then, by
Theorem 9, γi ��σ δi : Γ for (i = 1, 2) and so γi(e) ��σ δi(M) : t for (i = 1, 2).
By applying Theorem 11(1) to the assumption γ1 ≈� γ2 : Γ , we have σ† − δ1 ≈
δ2 : Γ †. Thus, by Lemma 2 (with Remark 2), σ† − δ1(M) ≈ δ2(M) : t†. Finally,
by Theorem 11(2), γ1(e) ≈� γ2(e) : t.

5 Related Work

Proofs of Noninterference. There are many ways to prove noninterference theo-
rems for type-based dependency analyses for higher-order languages. For exam-
ple, Heintze and Riecke [7] and Abadi et al. [1] showed the noninterference theo-
rem for SLam by using denotational semantics. Pottier and Simonet [12] proved
it for Core ML with non-standard operational semantics. Moreover, Miyamoto
and Igarashi [10], in the study of a modal typed calculus λ�

s , showed that the
noninterference theorem for certain types can be easily proved only by using
simple nondeterministic reduction system. In comparison with these proofs, the
proof technique presented in this paper might seem overwhelming to show only
noninterference; nevertheless, we believe it is still interesting since the trans-
lation shows that the notion of dependency can be captured only in terms of
simple types.

Fullness in DCC. As we mentioned in the introduction, the translation from
DCC to System F given by Tse and Zdancewic is not full. Here, we explain the
reason, after quickly reviewing DCC. DCC [1] is an extension of a computational
λ-calculus [11] and uses monads (indexed by a security level) for sealing. Roughly
speaking, a monadic type T� t, the monadic unit η� e, and the bind operation
bind x = e1 in e2 correspond to types for sealing, sealing terms, and unsealing
terms. A type judgment of DCC lacks a level; instead, the notion of protected
types is introduced to prevent information leakage and plays a key role in the
typing rule for bind:

Γ − e1 : T� t1 Γ, x : t1 − e2 : t2 t2 is protected at �

Γ − bind x = e1 in e2 : t2

Intuitively, “t is protected at �” means that observers only at level � (or higher)
can obtain some bits of information by using the value of t. For example, T� t

314 N. Shikuma and A. Igarashi

and T� t1 × T� t2 and t → T� t′ are all protected at � but T� t1 + T� t2 is not
(see Abadi et al. [1] for the precise definition). So, this rule ensures that the
value of the whole term cannot be examined at unrelated levels. However, bind
is restrictive in the sense that η� must be placed within the scope of x to make
t2 protected. For example, the term λy : T� bool.bind x = y in η� x is given
type (T� bool) → (T� bool) while λy : T� bool.η� (bind x = y in x) cannot.

In fact, this restriction is a source of the failure of fullness of the translation
by Tse and Zdancewic. Consider the DCC type T�((T� bool) → bool), which is
translated to α� → ((α� → bool) → bool). Then, any DCC terms of the first
type is equivalent to (sealed) constant functions η�(λx : T� bool.c) where c is
either true or false. In System F, however, there is a term λk : α�.λf : α� →
bool.fk of the translated type and it would correspond to an ill typed DCC term
η�(λy : T� bool.bind x = y in x). From this, we can show their translation does
not preserve the logical relations. In fact,

λf.bind f ′ = f in η� (f ′ (η� true))

and
λf.bind f ′ = f in η� (f ′ (η� false))

are logically related at the type (T�((T� bool) → bool)) → (T� bool) and �
since, in DCC, all we can pass to these functions are the constant functions
above. Their translations, however, are not because, in System F, applying them
to the term λk : α�.λf : α� → bool.fk above will distinguish them.

Tse and Zdancewic’s Extended DCC. Interestingly, Tse and Zdancewic also
noticed this restriction of DCC and proposed an extension of (a pure frag-
ment of) DCC by introducing the notion of protection contexts in type judg-
ments. This extension allows terms like λy : T� bool.η�(bind x = y in x) and
η�(λy : T� bool.bind x = y in x) to be well typed. Our λ[] can be consid-
ered a simplification of this extension by dropping the notion of protected types
completely while leaving protection contexts (namely, levels in type judgments).
We also dropped the lattice structure of security levels in DCC and now call
them authorities. We believe that a similar result can be shown when the set of
authorities is equipped with such a structure.

6 Conclusion

We have formalized noninterference for a typed λ-calculus λ[] by logical relations
and proved by reducing it to the basic lemma of logical relation for λ→ through
a translation of λ[] to λ→. Our translation is sound and fully complete and, as a
result, the image of the translation is a complete representation, which captures
dependency of λ[] with typeability in λ→.

Acknowledgements. Comments from anonymous referees helped up improve the
final presentation. We thank Masahito Hasegawa, Eijiro Sumii, Stephen Tse, and
Steve Zdancewic for discussions on this subject. This work is supported in part
by Grant-in-Aid for Scientific Research (B) No. 17300003.

Proving Noninterference by a Fully Complete Translation 315

References

[1] Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: POPL 1999. Proceedings of 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 147–160. ACM Press, New York (1999)

[2] de Groote, P.: On the strong normalisation of intuitionistic natural deduction with
permutative-conversions. Information and Computation 178, 441–464 (2002)

[3] Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Communications of the ACM 20(7), 504–513 (1977)

[4] Girard, J.-Y Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, A sum-
mary appeared in the Proceedings of the Second Scandinavian Logic Symposium
Fenstad, J.E. (eds.). (pp. 63–92), North-Holland (1971)

[5] Goguen, J., Meseguer, J.: Security policies and security models. In: Proceedings
of IEEE Symposium on Security and Privacy, pp. 11–20 (1982)

[6] Hasegawa, M.: Girard translation and logical predicates. Journal of Functional
Programming 10(1), 77–89 (2000)

[7] Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and
integrity. In: POPL 1998. Proceedings of ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 365–377 (1998)

[8] Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs (1993)

[9] Mitchell, J.C.: Foundations for Programming Languages. The MIT Press, Cam-
bridge (1996)

[10] Miyamoto, K., Igarashi, A.: A modal foundation for secure information flow. In:
FCS 2004. Proceedings of Workshop on Foundations of Computer Security, pp.
187–203 (June 2004)

[11] Moggi, E.: Notions of computation and monads. Information and Computation 1,
55–92 (1991)

[12] Pottier, F., Simonet, V.: Information flow inference for ML. ACM Transactions
on Programming Languages and Systems 25(1), 117–158 (2003)

[13] Reynolds, J.: Towards a theory of type structure. In: Robinet, B. (ed.) Program-
ming Symposium. LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974)

[14] Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress, pp. 513–523 (1983)

[15] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal On Selected Areas In Communications 21(1), 5–19 (2003)

[16] Tang, Y.M., Jouvelot, P.: Effect systems with subtyping. In: PEPM 1995. Proceed-
ings of ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pp. 45–53 (1995)

[17] Tse, S., Zdancewic, S.: Translating dependency into parametricity. In: ICFP 2004.
Proceedings of 9th ACM International Conference on Functional Programming,
pp. 115–125. ACM Press, New York (2004)

[18] Wadler, P.: Theorems for free. In: FPCA 1989. Proceedings 4th Int.Conf. on Funct.
Prog. Languages and Computer Arch. pp. 347–359. ACM Press, New York (1989)

Formalization of CTL∗ in Calculus of Inductive

Constructions�

Ming-Hsien Tsai1,2 and Bow-Yaw Wang1,��

1 Institute of Information Science
Academia Sinica, Taiwan

2 Department of Information Management
National Taiwan University, Taiwan

Abstract. A modular formalization of the branching time temporal
logic CTL∗ is presented. Our formalization subsumes prior formalizations
of propositional linear temporal logic (PTL) and computation tree logic
(CTL). Moreover, the modularity allows to instantiate our formalization
for different formal security models. Validity of axioms and soundness
of inference rules in axiomatizations of PTL, UB, CTL, and CTL∗ are
discussed as well.

1 Introduction

The management of digital objects in modern information systems has become
very sophisticated during past years. In digital rights management, for instance,
a digital content may be accessible exclusively for a fixed period of time; if the
contract is expired or the content is currently in use, no access will be allowed.
Since traditional static usage control models could not express the dynamic
authorizations found in these applications, temporal logics are introduced in
recent models [19].

The introduction of temporal logics nevertheless induces new problems. Be-
cause of the complexity in the semantics of temporal operators, users often have
difficulties in writing correct requirements or verifying them. Moreover, speci-
fications of real-world usage control systems are rather complicated. Whether
one can analyze such temporal specifications correctly by hand is not without
questions.

One way to help users manage complicated specifications is to mechanize the
process. Indeed, fully automated approaches such as model checking are able to
analyze models against temporal logic specifications without user intervention.
But the expressiveness of formal security models deviates from the simplicity
of computation models in algorithmic approaches; various capability and com-
putability issues are subsequently arisen in fully automated techniques.
� The work is partly supported by NSC grands 95-3114-P-001-002-Y02, 95-2221-E-

001-024-MY3, and the project SISARL of Academia Sinica.
�� Part of the the work was done during the second author visited to the project ProVal

supported by INRIA Futurs.

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 316–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Formalization of CTL∗ in Calculus of Inductive Constructions 317

In order to have expressive models and circumvent undecidability, semi-
automated approaches such as proof checking are used. In semi-automated tech-
niques, usage control models and their temporal logic specifications are formu-
lated in proof assistants. Security amounts to the entailment of respective tem-
poral logic specification. Since each step of the proof is checked by the proof
assistant, the correctness of analysis is therefore ensured.

But formulations of models and their specifications require domain knowl-
edge about formal models, temporal logics, and proof assistants. Inappropriate
formulations may result in ineffective or even faulty analysis. In this paper, we
address the formulation problem of temporal logics in the proof assistant Coq.
Specifically, the branching time temporal logic CTL∗ is formalized in Calcu-
lus of Inductive Constructions. We identify assumptions in formal models and
modularize our formalization based on these assumptions. Users will be able
to instantiate our formalization as long as their formal models conform to the
identified assumptions.

The branching time temporal logic CTL∗ is a proper super class of the propo-
sitional linear temporal logic (PTL) and the computation tree logic (CTL). Prior
formalizations of PTL and CTL are therefore subsumed by the present work.
The expressiveness of CTL∗ gives users more freedom to specify the require-
ments of their security models. To the best of our knowledge, ours is the first
formalization of CTL∗ in any proof assistant. Moreover, we have used the for-
malization to establish the validity of 31 (out of 33) axiom schemata, and the
soundness of 8 (out of 10) inference rules in four complete axiomatizations of
various temporal logics.

The modularity distinguishes our formalization from others as well. We iden-
tify assumptions needed in the formalization of CTL∗ and formally specify them
in a Coq module type. The formalization of CTL∗ is carried out in a functor
from modules of the aforementioned module type. Subsequently, any formal-
ization of security models can instantiate our CTL∗ formalization, provided it
is of the proper module type. In domains with versatile characteristics such as
security analysis, our modular formalization greatly reduces the adoption effort.

The branching-time temporal logic μ-calculus has been formalized in
Coq [10,16], LEGO [18], and ACL2 [8] with different intentions. A formalization
of PTL can be found in Coq [3,2]. The temporal logic of actions TLA [7] has
been formalized in Isabelle [9]. A shallow embedding of CTL is also available [1].
None of these formalizations admits both state and path formulae. Although
μ-calculus is more expressive than CTL∗, it is not accessible to practitioners due
to its arcane syntax and semantics. CTL∗, on the other hand, is an accessible
generalization of both PTL and CTL. We feel our CTL∗ formalization would be
more useful in practice.

The paper is structured as follows. A brief review of the syntax and semantics
of CTL∗ is given in Section 2. Section 3 identifies assumptions in our formal-
ization of Kripke structures. Based on these assumptions, we formalize paths
and CTL∗ in Section 4 and 5 respectively. The validity of axiom schemata and

318 M.-H. Tsai and B.-Y. Wang

the soundness of inference rules are discussed in Section 6. Finally, Section 7
concludes the paper and highlights future works.

2 Preliminaries

Let AP be the set of atomic propositions. The syntax of CTL∗ is defined as
follows [4].

(S0) If p is an atomic proposition, p is a state formula;
(S1) If p and q are state formulae, p ∧ q and ¬p are state formulae;
(S2) If f is a path formula, Af and Ef are state formulae;
(P0) If p is a state formula, p is a path formula;
(P1) If f and g are path formulae, f ∧ g and ¬f are path formulae;
(P2) If f and g are path formulae, Xf and fUg are path formulae.

A Kripke structure K = (S, →, L) consists of a set of states S, a total transi-
tion relation → ⊆ S × S, and a labeling function L : S → 2AP . A path π in K
is an infinite sequence of states s0s1 · · · sn · · · such that si → si+1 for all i ≥ 0.
We use the notations π(i) = si and πi = sisi+1 · · · to denote the i-th state and
the i-th suffix of the path π respectively. Note that π = π0. The semantics of a
CTL∗ formula is defined as follows.

K, s |= P if P ∈ L(s), where P ∈ AP
K, s |= ¬p if not K, s |= p
K, s |= p ∧ q if K, s |= p and K, s |= q
K, s |= Af if K, π |= f for all π with π(0) = s
K, s |= Ef if K, π |= f for some π with π(0) = s
K, π |= p if K, π(0) |= p
K, π |= ¬f if not K, π |= f
K, π |= f ∧ g if K, π |= f and K, π |= g
K, π |= Xf if K, π1 |= f
K, π |= fUg if there is a k such that K, πk |= g and K, πj |= f for all 0 ≤ j < k

We will use p, q, r, . . . for state formulae, f, g, h, . . . for path formulae, and
φ, ψ, . . . for CTL∗ formulae. Derived operators such as φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ),
φ ⇒ ψ ≡ ¬φ ∨ ψ, φ ⇔ ψ ≡ (φ ⇒ ψ) ∧ (ψ ⇒ φ), Ff ≡ trueUf , and Gf ≡ ¬F¬f
are also used. The operators A and E are called path quantifiers ; X, U, F, and
G are linear temporal operators.

Both propositional linear temporal logic (PTL) and computational tree logic
(CTL) are proper subclasses of CTL∗. PTL formulae are constructed by the
rules (P0) to (P2) where atomic propositions are the only state formulae. CTL
consists of state formulae with the restriction that all linear temporal operators
are prefixed by path quantifiers. That is, only the temporal operators AX, AG,
AF, AU, EX, EG, EF, and EU are allowed. The system UB is a subclass of
CTL, where only the temporal operators AX, AG, AF, EX, EG, and EF, are
allowed.

Formalization of CTL∗ in Calculus of Inductive Constructions 319

Observe that all subformulae of a PTL formula are themselves PTL for-
mulae, and PTL formulae in turn are path formulae. A formalization of pure
path formulae suffices for PTL. Similarly, a formalization of pure state formulae
would be sufficient for CTL. In comparison, the formalization of CTL∗ is greatly
complicated by admitting both state and path formulae. The techniques found
in [14,12,13,16,8,10] are therefore not directly applicable.

3 Kripke Structures

One distinguished feature of our formalization is the use of Coq module system.
When this research was initiated, our goal was to build a unified verification
framework in Coq [17]. In addition to the temporal logic CTL∗, we also formalize
a model specification language in our framework. It is but natural to use Kripke
structures as the interface between both formalizations. Our formalization of
CTL∗ therefore assumes an abstract interface of Kripke structures. This can be
done by the following module type definition.

Module Type KRIPKE .
Parameter st : Set .
Prarmeter succ : st -> st -> Prop .
...

End KRIPKE .

Two parameters are assumed in the module type KRIPKE. The set st and the
predicate succ formalize the set of states and the transition relation in a Kripke
structure respectively. To formalize the totality of the transition relation, one
might add the following requirement in the module type KRIPKE.1

Axiom totality_alt : forall s : st, exists s’ : st, succ s s’ .

However, Calculus of Inductive Constructions does not allow the state s’

to be extracted from the axiom totality alt lest inconsistency would incur.
We therefore formalize the totality by the inductive type post and the axiom
totality.

Inductive post (s : st) : Set :=
| post_intro (s’ : st) : succ s s’ -> post s .

Axiom totality : forall s : st, post s .

For any state s, the set post s contains elements of the form post intro s’

where s and s’ satisfy the transition relation succ. The axiom totality simply
states that the set post s is not empty for all state s.

When a concrete Kripke structure is available, our formalization of CTL∗

can be instantiated to analyze properties on the Kripke structure. Note that
the semantics of a CTL∗ formula varies from different Kripke structures. Each
instantiation of our CTL∗ theory gives a specialized interpretation of formulae
in the given Kripke structure.
1 The keyword Axiom is perhaps a little misleading. These “axioms” need be estab-

lished in module definitions; they do not hold automatically.

320 M.-H. Tsai and B.-Y. Wang

4 Paths

A path in a Kripke structure is an infinite state sequence where successive states
satisfy the transition relation. Several formalizations of paths can be found in
literature. In [11], a path is a function of type nat -> st, while [14,3,2] use
coinductive data types. Although the coinductive formalization admits partiality
and is therefore more general than the functional one [14], we feel that the benefit
of generality would be better left for users to decide. Hence, we would rather not
commit to a particular formalization of paths in our CTL∗ formalization. Since
it is inessential to know exactly how paths are formalized, we can exploit the
Coq module system to isolate the formalization of paths from their interface.
Consider the following interface of paths.

Module Type PATH .
Parameters st path : Set .
Parameter succ : st -> st -> Prop .
Parameter hd : path -> st .
Parameter tl : path -> path .
Parameter cons : forall (s : st) (pi : path), succ s (hd pi) -> path .
...

End PATH .

The parameters st and succ inherit from a concrete KRIPKE module. Paths are
formalized as the set path. The parameters hd and tl retrieve the head and tail
of a path respectively. Additionally, the parameter cons constructs a new path
from a state and a path, provided that the state and the head of the path satisfy
the transition relation.

Of course, the typing information alone does not entail the intended semantics.
It is rather easy to impose semantic requirements on the parameters in the Coq

module system. For instance, we enforce the following semantic constraints in
the module type PATH.

Axiom hd_cons : forall (s : st) (pi : path) (H : succ s (hd pi)),
hd (cons s pi H) = s .

Axiom tl_cons : forall (s : st) (pi : path) (H : succ s (hd pi)),
tl (cons s pi H) = pi .

Axiom pi_succ : forall pi : path, succ (hd pi) (hd (tl pi)) .

The axioms hd cons and tl cons specify the relations among the parameters
hd, tl, and cons. The axiom pi succ states that the first and the second states
of any path satisfy the transition relation.

Another useful fact in our formalization is that each state has a path from it.
More formally, we have the following axiom in the module type PATH.

Axiom ex_path : forall s : st, exists pi : path, hd pi = s .

Due to the totality of the transition relation in the underlying Kripke struc-
ture, one would expect the axiom ex path in any reasonable formalization of

Formalization of CTL∗ in Calculus of Inductive Constructions 321

paths. Indeed, the axiom will be handy when we prove the validity of axiom
schemata in axiomatizations of various temporal logics in Section 6.

Our modular formalization of paths is a functor which takes modules of type
KRIPKE and generates a module of type PATH. Furthermore, the generated module
shares the formalizations of states (st) and the transition relation (succ) with
the input module.

Module Path (KS : KRIPKE) : PATH with Definition st := KS.st
with Definition succ := KS.succ .

...
End Path .

Similar to [14,3,2], our formalization of paths is based on coinductive data
types. We start with the conventional coinductive definition of lazy lists.

CoInductive stream : Set := scons : st -> stream -> stream .
Definition shd (str : stream) : st := match str with scons s _ => s end .

A stream is simply an infinite sequence of states. The constructor scons takes
a state and a stream to create a stream. The function shd retrieves the head of
a stream. Unlike paths, there is no restriction on successive states in a stream.
To assert the transition relation succ on successive states, the following coinduc-
tively defined predicate on streams is used.

CoInductive is_path : stream -> Prop :=
| path_intro (s : st) (str : stream) :

succ s (shd str) -> is_path str -> is_path (scons s str) .

To check if the stream (scons s str) is a path, it suffices to verify that

1. the state s and the head of str (shd str) satisfies the transition relation
succ; and

2. the stream str is indeed a path.

Note that our definitions of stream and is path are coinductive. In comparison,
streams are defined by domain equations in [14]. The coinductively defined type
is path becomes a function on the stream domain.2

Fixpoint is_path_p (str : stream) : Prop :=
match str with scons s tl => succ s (shd tl) /\ is_path_p tl end .

But the function is path p should be evaluated lazily. Special care must be
taken to define it over the stream domain. Coinductive defined types in Calcu-
lus of Constructions greatly simplify our formalization. We therefore prefer our
purely coinductive formalization.

It is now easy to define the set path as follows.

Definition path : Set := { str : stream | is_path str } .

2 It is noted that the definition is ill-formed because stream is not an inductive type.

322 M.-H. Tsai and B.-Y. Wang

The set path consists of streams satisfying the predicate is path. The function
hd can now be defined.

Definition hd (pi : path) : st := let (str, _) := pi in shd str .

Since a path pi is merely a tuple of a stream str and its proof of “pathness,”
the head of pi can be computed by invoking the auxiliary function shd. Other
parameters are defined similarly.

To finish the definition of the functor Path, we have to establish the axioms
hd cons, tl cons, pi succ, and ex path with our definitions of hd, tl, and cons.
Except for ex path, all proofs are rather straightforward. The proof of ex path

requires the decomposition lemma in [2] and essentially defines a stream from
any given state coinductively.

5 CTL∗

Recall that CTL∗ formulae consist of two types of formulae: state and path
formulae describe properties about states and paths respectively. In our formal-
ization of CTL∗, state and path formulae are of type st -> Prop and path ->

Prop respectively, where st and path in turn inherit from modules of type PATH.
An atomic proposition specifies properties about states and is thus of type st

-> Prop.

Module CTLS (Path : PATH) .
Definition st := Path.st .
Definition path := Path.path .

Definition atomic_proposition : Type := st -> Prop .
Definition st_formula : Type := st -> Prop .
Definition path_formula : Type := path -> Prop .
...

End CTLS .

Since a state formula is also a path formula, we define the function st2path

to coerce state formulae.

Definition st2path (p : st_formula) : path_formula :=
fun (pi : path) => p (Path.hd pi) .

Coercion st2path : st_formula >-> path_formula .

To help users construct CTL∗ formulae, we formalize each linear temporal
operator and path quantifier in CTL∗ as an inductively defined type in Calculus
of Inductive Constructions. Each CTL∗ formula is therefore a type expression in
our formalization. To prove a CTL∗ formula amounts to building a term of the
corresponding type expression by constructors of respective inductively defined
types.

Formalization of CTL∗ in Calculus of Inductive Constructions 323

5.1 State Formulae

Given a state formula p, its negation corresponds to the type expression neg s p.
To construct a proof of its negation, it suffices to find a proof of ~ p s for any
state s.

Inductive neg_s (p : st_formula) : st_formula :=
| neg_s_intro : forall s : st, ~ p s -> neg_s p s .

Observe that the inductively defined type neg s p is of sort st formula as
well. It can thus be used to construct more complicated type expressions. For
instance, the corresponding type expression for the CTL∗ formula ¬¬p is neg s

neg s p. The following notation for the type expression neg s p is defined for
convenience.

Notation "! p" := (neg_s p) (at level 75, right associativity) .

Henceforth, we will write ! p for the type corresponding to the formula ¬p.
Other logical operators can be formalized similarly. We use the notations p &&

q, p || q, p ==> q, and p <==> q for the corresponding type expressions for the
formulae p ∧ q, p ∨ q, p ⇒ q, and p ⇔ q respectively.

It is as easy to formalize path quantifiers in CTL∗ as well. For instance,
proving the state formula Af on the state s is to demonstrate that all paths π
from s satisfy f . Hence the following type is used for the state formula Af .

Inductive A (f : path_formula) : st_formula :=
| A_intro : forall s : st,

(forall pi : path, s = Path.hd pi -> f pi) -> A f s .

We will use the notations A f and E f for the type expressions of the formulae
Af and Ef respectively.

5.2 Path Formulae

Logical operators for path formulae are similar to those of state formulae. The
inductively defined type and p f g, for instance, formalizes the conjunction of
path formulae f and g.

Inductive and_p (f g : path_formula) : path_formula :=
| and_p_intro : forall pi : path, f pi /\ g pi -> and_p f g pi .

The notations ‘! f, f ‘&& g, f ‘|| g, f ‘==> g, and f ‘<==> g are used for
the negation, conjunction, disjunction, implication, and logical equivalence re-
spectively. Note that the back quote (‘) distinguishes from the corresponding
types for state formulae.

Our formalization of linear temporal operators essentially follows those of PTL
in [3,2]. Instead of using streams as in prior formalizations, our formalization is
based on paths in Kripke structures.

In order to show that a path π satisfies the path formula Xf , it is necessary
to show that the tail of π satisfies the formula f . Thus, the inductively defined
type X f is as follows.

324 M.-H. Tsai and B.-Y. Wang

Inductive X (f : path_formula) : path_formula :=
| X_intro : forall pi : path, f (Path.tl pi) -> X f pi .

Now consider the path formula Gf . The path π satisfies Gf if it satisfies f
and its tail satisfies Gf . Note that a proof term of π satisfying Gf is infinite for
π is infinite. We therefore use a coinductively defined type G f for the formula
Gf .

CoInductive G (f : path_formula) : path_formula :=
| G_intro : forall pi : path, f pi -> G f (Path.tl pi) -> G f pi .

For the path formula Ff , there are two ways to demonstrate the path π
satisfying the formula. If π satisfies f , we are done. Otherwise, the tail of π
must satisfy Ff . Therefore, a proof term of type F f is built by the constructors
F0 intro and F intro inductively.

Inductive F (f : path_formula) : path_formula :=
| F0_intro : forall pi : path, f pi -> F f pi
| F_intro : forall pi : path, F f (Path.tl pi) -> F f pi .

The definition of the type U f g is similar to F f. To show the path π satisfying
fUg is to show that π satisfies g, or it satisfies f and its tail satisfies fUg.

Inductive U (f g : path_formula) : path_formula :=
| U0_intro : forall pi : path, g pi -> U f g pi
| U_intro : forall pi : path, f pi -> U f g (Path.tl pi) -> U f g pi .

We will write X f, G f, F f, and f U g for the corresponding type expressions
of formulae Xf , Gf , Ff , and fUg respectively. Observe that derived temporal
operators are also formalized. They allow us to carry out formal proofs more
intuitively.

To compare with the formalizations in [3,2], recall that a stream is an infi-
nite sequence of states. There is no restriction imposed on successive states in
a stream. A path, on the other hand, is a stream satisfying the co-inductively
defined predicate is path; successive states in a path satisfy the transition rela-
tion succ. Hence the computation of the underlying Kripke structure is implicit
in our formalization.

In contrast, a stream filter path filter : stream -> Prop is needed in state-
ments about paths to witness the transition relation of the underlying compu-
tation model in [3,2]. For instance, the following axiom states that the state
formula fair holds infinitely often along all paths from s.

Axiom fairness : forall (s : st) (str : stream),
s = shd str -> path_filter str -> (G F fair) str .

Since there is only one implicit universal path quantifier in any PTL formula,
adding path filter does not incur too much overhead in [3,2]. However, it be-
comes rather cumbersome for CTL∗ where nested path quantifiers are allowed.
Moreover, the proofs in prior formalizations would move between streams and
paths for each path quantifier, even though paths are in fact of the main interest.
Our formalization, on the other hand, is solely based on paths. Users do not see
any reference to streams and can focus on key concepts in the our formalization.

Formalization of CTL∗ in Calculus of Inductive Constructions 325

6 Examples

With the formalization of CTL∗ in Section 5, we are able to prove validity of
axiom schemata and soundness of inference rules in axiomatizations of temporal
logics. Since PTL and CTL are subclasses of CTL∗, restrictions of our CTL∗ for-
malization suffice for the proofs of respective theorems in their axiomatizations.
It is unnecessary to have formal proofs in different formalizations. Moreover,
all axiom schemata and inference rules in our modular formalization can be in-
stantiated for different security models. In the following sections, we discuss the
validity and soundness of axiom schemata and inference rules in axiomatizations
of PTL, UB, CTL, and CTL∗ respectively.

6.1 PTL

Figure 1 shows the axiomatization of PTL in [6]. For each axiom schema, we
would like to show it is indeed valid in our formalization. We say a PTL formula
f is valid (denoted by |= f) if K, π |= f for any Kripke structure K and path π.
An instance of an axiom schema Ψ is a PTL formula obtained by substituting
all variables in Ψ with PTL formulae. For instance, suppose P ∈ AP . Then
X¬GP ⇔ ¬XGP is an instance of the axiom schema (ax1). We say an axiom
schema Ψ is valid if all instances of Ψ are valid.

To show the validity of the axiom schema (ax2) in Figure 1, we first formalize
the validity of path formulae as follows.

Definition model_p (f : path_formula) := forall pi : path, f pi .
Notation "‘|= f" := (model_p f) (at level 100, no associativity) .

(ax1) � X¬f ⇔ ¬Xf
(ax2) � X(f ⇒ g) ⇒ (Xf ⇒ Xg)
(ax3) � Gf ⇒ (f ∧ XGf)

(mp)
� f � f ⇒ g

� g

(nex)
� f

� Xf
(ind)

� f ⇒ g � f ⇒ Xf

� f ⇒ Gg

Fig. 1. An Axiomatization of PTL

It is now straightforward to state the validity of each axiom schema. For
example, the validity of the axiom schema (ax2) is as follows.

Theorem ax2 : forall f g : path_formula,
‘|= (X (f ‘==> g)) ‘==> (X f) ‘==> (X g) .

The soundness of inference rules can be similarly formalized. The theorem
ind, for instance, formalizes the soundness of the rule (ind).

326 M.-H. Tsai and B.-Y. Wang

Theorem ind : forall f g : path_formula,
(‘|= f ‘==> g) /\ (‘|= f ‘==> X f) -> (‘|= f ‘==> G g) .

Note that the theorem ax2 is in fact more general than the validity of axiom
schema (ax2) in the pure PTL setting. The theorem states that the axiom schema
(ax2) is valid not only for all PTL formulae, but also all path formulae in CTL∗.3

Similarly, the theorem ind is more general than the soundness of inference rule
(ind). The proofs of validity and soundness are carried out in the default Coq

environment. We are able to prove the validity of all axiom schemata and the
soundness of all inference rules in Figure 1 with our formalization.

6.2 UB

As for the PTL axiomatization, we would like to prove the validity and soundness
theorems of the axiomatization of UB in Figure 2 formally. Specifically, we say
a state formula p is valid if K, s � p for any Kripke structure K and state s. An
axiom schema is valid if all its instances are valid. The validity of state formulae
is formalized as follows.

Definition model_s (p : st_formula) := forall s : st, p s .
Notation "|= p" := (model_s p) (at level 100, no associativity) .

(A1) � AG(p ⇒ q) ⇒ (AGp ⇒ AGq)
(A2) � AX(p ⇒ q) ⇒ (AXp ⇒ AXq)
(A3) � AGp ⇒ AXp ∧ AXAGp
(A4) � AG(p ⇒ AXp) ⇒ (p ⇒ AGp)
(E1) � AG(p ⇒ q) ⇒ (EGp ⇒ EGq)
(E2) � EGp ⇒ p ∧ EXEGp
(E3) � AGp ⇒ EGp
(E4) � AG(p ⇒ EXp) ⇒ (p ⇒ EGp)

(R1)
� p � p ⇒ q

� q
(R2)

� p

� AGp

Fig. 2. An Axiomatization of UB

The validity of the axiom schemata and the soundness of inference rules are
formalized similarly. For instance, the validity of axiom schema (A3) is stated in
the following theorem.

Theorem A3 : forall p : st_formula, |= (A G p) ==> (A X p && A X A G p) .

As in PTL, the theorem A3 is more general than the validity of the axiom
schema (A3) in the pure UB setting. Unlike PTL, however, the proofs of validity
and soundness require switching between state and path formulae. Since our
3 As an anonymous reviewer points to us, it is even valid for path predicates which

are not expressible in CTL∗ because of the shallow embedding.

Formalization of CTL∗ in Calculus of Inductive Constructions 327

formalization is in fact for CTL∗, each temporal operator in a UB formula has
to be decomposed as a path quantifier followed by a linear temporal operator.
Consider the validity of the axiom schema (E3).

Theorem E3 : forall p : st_formula, |= (A G p) ==> (E G p) .

A simple proof is to demonstrate a path from any given state satisfying AGp
and show it indeed satisfies Gp. We therefore use the axiom Path.ex path to
construct an arbitrary path from the given state, and show that the path is
indeed a witness of Gp by the assumption AGp.

We are able to prove the soundness of all inference rules in Figure 2 formally.
We also establish the validity of all axiom schemata but (E4) in Calculus of
Inductive Construction. To explain the difficulty in proving the validity of (E4),
recall its formulation.

Theorem E4 : forall p : st_formula, |= (A G (p ==> E X p)) ==> p ==> E G p .

One possible proof of E4 is to construct a path satisfying Gp. But eliminating
the assumption A G (p ==> E X p) of sort Prop is not allowed in the construction
of paths of sort Set. Alternatively, we fail to demonstrate the existence of a path
satisfying Gp in classical logic. The assumption suggests that any path can be
modified to admit p in one more state. But the existence of a path satisfying
Gp in the limit eludes us. Currently, we do not know how to prove it with the
present formalization.

6.3 CTL

The axiomatization of CTL in [5,4] is shown in Figure 3. The validity and sound-
ness of axiom schemata and inference rules follow the same style in Section 6.2.
The proof techniques used in the previous section are carried over without diffi-
culties. Indeed, the axiomatization of UB in Figure 2 can be obtained from the
axiomatization of CTL in Figure 3 [5]. It is not surprising to prove the validity

(Ax1) � EFp ⇔ E[trueUp]
(Ax2) � AFp ⇔ A[trueUp]
(Ax3) � EX(p ∨ q) ⇔ EXp ∨ EXq
(Ax4) � AXp ⇔ ¬EX¬p
(Ax5) � E(pUq) ⇔ q ∨ (p ∧ EXE(pUq))
(Ax6) � A(pUq) ⇔ q ∨ (p ∧ AXA(pUq))
(Ax7) � EXtrue ∧ AXtrue

(R1)
� p ⇒ q

� EXp ⇒ EXq
(R2)

� r ⇒ (¬q ∧ EXr)

� r ⇒ ¬A(pUq)

(R3)
� r ⇒ [¬q ∧ AX(r ∨ ¬E(pUq))]

� r ⇒ ¬E(pUq)
(R4)

� p � p ⇒ q

� q

Fig. 3. An Axiomatization of CTL

328 M.-H. Tsai and B.-Y. Wang

and soundness of axiom schemata and inference rules for CTL by generalizing
the proof techniques used for UB.

We have succeeded in proving the validity of all axiom schemata in Figure 3.
Unlike the proofs for the system UB, classical reasoning is used in a couple of
axiom schemata. Specifically, contraposition and De Morgan’s law are used in
the proofs of (Ax4) and (Ax6) respectively. As for the soundness of inference
rules, an obstacle similar to the axiom schema (E4) in UB is encountered in
the inference rule (R2). For other inference rules, we are able to prove their
soundness formally.

6.4 CTL∗

Figure 4 shows the sound and complete axiomatization of CTL∗ in [15]. The side
condition C in the axiom schema (AA) is syntactic and somewhat complicated.
It requires pairwise inconsistency of atomic propositions in finite sets, and a
function choosing atomic propositions to hold at the next state along a path
(Definition 4 in [15]).

Unlike the axiomatizations in previous sections, both path and state formulae
are present. The validity of path formulae is used in the axiom schemata (C1)
to (C8), (C11), and (C15). The axiom schemata (C9), (C10), and (C12) to
(C14) are valid as state formulae. Their formal proofs can be carried out in our
formalization of CTL∗. Prior formalizations, in comparison, would not even be
able to formulate axiom schemata (C12) nor (C15). A CTL∗ formalization is
therefore needed in establishing validity of axiom schemata formally.

Except the axiom schemata (LC), we have proved the validity of all axiom
schemata in Figure 4. The axiom schema (LC) is another generalization of the
axiom schema (E4) in UB and the inference rule (R3) in CTL. The side condition

(C1) � F¬¬f ⇔ Ff
(C2) � G(f ⇒ g) ⇒ (Gf ⇒ Gg)
(C3) � Gf ⇒ (f ∧ Xf ∧ XGf)
(C4) � X¬f ⇔ ¬Xf
(C5) � X(f ⇒ g) ⇒ (Xf ⇒ Xg)
(C6) � G(f ⇒ Xf) ⇒ (f ⇒ Gf)
(C7) � (fUg) ⇔ (g ∨ (f ∧ X(fUg)))
(C8) � (fUg) ⇒ Fg
(C9) � A(f ⇒ g) ⇒ (Af ⇒ Ag)

(C10) � Af ⇒ AAf (C11) � Af ⇒ f
(C12) � f ⇒ AEf (C13) � A¬f ⇔ ¬Ef
(C14) � p ⇒ Ap (C15) � AXf ⇒ XAf

(LC) � AG(Ef ⇒ EX((Eg)U(Ef))) ⇒ (Ef ⇒ EG((Eg)U(Ef)))

(AA)
� θ ⇒ ψ

� ψ
C

Fig. 4. An Axiomatization of CTL∗

Formalization of CTL∗ in Calculus of Inductive Constructions 329

C in the inference rule (AA) is too complicated to formulate in our current
formalization. The other axiom schemata but (C1) are proved in the default Coq

environment. The axiom schema (C1), apparently, requires classical reasoning
and is proved by importing the Classical theory.

7 Conclusion and Future Work

A modular formalization of CTL∗ is presented in the paper. The formalization
subsumes prior works of PTL and CTL. We have succeeded in proving validity
and soundness of an axiomatization of PTL formally. For the branching-time
temporal logics UB, CTL, and CTL∗, almost all validity of axiom schemata and
soundness of inference rules have also been established in the new formalization.
Furthermore, the modularity of our formalization allows to be instantiated for
different security models, provided they satisfy certain assumptions. Theorems
proved in this paper are reusable in any instantiation.

One possible way to resolve the difficulties in the validity of the axiom
schemata (E4) in UB, (LC) in CTL∗, and the soundness of the inference rule
(R3) in CTL is by strong specification [2]. We are working on a new formal-
ization based on strong specification to address the problem. For the syntactic
side condition of the inference rule (AA) in CTL∗, a formalization with syntac-
tic representations of CTL∗ formulae would be necessary. A generalized version
of the deep embedding of CTL∗ in [17] could be useful in formulating the side
condition in (AA).

Acknowledgment. We would like to thank Yih-Kuen Tsay and anonymous
reviewers for their constructive comments in improving the paper.

References

1. Bauer, G.: Some properties of CTL. Technische Universität München, Isabelle/Isar
document (2001)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. In: Texts in Theoretical Com-
puter Science, Springer, Heidelberg (2004)

3. Coupet-Grimal, S.: An axiomatization of linear temporal logic in the calculus of
inductive constructions. Logic and Computation 13(6), 801–813 (2003)

4. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers
(1990)

5. Emerson, E., Halpern, J.: Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences 30, 1–24 (1985)

6. Kröger, F.: Temporal Logic of Programs. Springer, Heidelberg (1987)
7. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming

Languages and Systems 16(3), 872–923 (1994)
8. Manolios, P.: Mu-calculus model-checking. In: Computer-Aided Reasoning: ACL2

Case Studies, pp. 93–111. Kluwer Academic Publishers, Dordrecht (2000)

330 M.-H. Tsai and B.-Y. Wang

9. Merz, S.: Isabelle/TLA. Technische Universität München, Isabelle/Isar document
(1998)

10. Miculan, M.: On the formalization of the modal μ-calculus in the calculus of in-
ductive constructions. Information and Computation 164(1), 199–231 (2001)

11. Müller, O., Nipkow, T.: Combining model checking and deduction for I/O-
automata. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria,
T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 1–16. Springer, Heidelberg (1995)

12. Müller, O.: I/O automata and beyond - temporal logic and abstraction in Isabelle.
In: Grundy, J., Newey, M. (eds.) Theorem Proving in Higher Order Logics. LNCS,
vol. 1479, pp. 331–348. Springer, Heidelberg (1998)

13. Müller, O.: A Verification Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, Technische Universität München (1998)

14. Müller, O., Nipkow, T.: Traces of I/O automata in Isabelle/HOLCF. In: Bidoit,
M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS,
vol. 1214, pp. 580–595. Springer, Heidelberg (1997)

15. Reynolds, M.: An axiomatization of full computation tree logic. Journal of Symbolic
Logic 66(3), 1011–1057 (2001)

16. Sprenger, C.: A verified model checker for the modal μ-calculus in Coq. In: Steffen,
B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer,
Heidelberg (1998)

17. Tsai, M.H., Wang, B.Y.: Modular formalization of reactive modules and CTL∗ in
Coq. submitted for publication (2006)

18. Yu, S., Luo, Z.: Implementing a model checker for LEGO. In: Fitzgerald, J., Jones,
C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 442–458. Springer, Heidel-
berg (1997)

19. Zhang, X., Parisi-Presicce, F., Sandhu, R.: Formal model and policy specification
of usage control. ACM Transactions on Information and System Security 8(4),
351–387 (2005)

Inferring Disjunctive Postconditions

Corneliu Popeea and Wei-Ngan Chin

Department of Computer Science, National University of Singapore
{corneliu,chinwn}@comp.nus.edu.sg

Abstract. Polyhedral analysis [9] is an abstract interpretation used for
automatic discovery of invariant linear inequalities among numerical vari-
ables of a program. Convexity of this abstract domain allows efficient
analysis but also loses precision via convex-hull and widening operators.
To selectively recover the loss of precision, sets of polyhedra (disjunctive
elements) may be used to capture more precise invariants. However a
balance must be struck between precision and cost.

We introduce the notion of affinity to characterize how closely related
is a pair of polyhedra. Finding related elements in the polyhedron (base)
domain allows the formulation of precise hull and widening operators
lifted to the disjunctive (powerset extension of the) polyhedron domain.
We have implemented a modular static analyzer based on the disjunc-
tive polyhedral analysis where the relational domain and the proposed
operators can progressively enhance precision at a reasonable cost.

1 Introduction

Abstract interpretation [7, 8] is a technique for approximating a basic analysis,
with a refined analysis that sacrifices precision for speed. Abstract interpretation
relates the two analyses using a Galois connection between the two corresponding
property lattices. The framework of abstract interpretation has been used to
automatically discover program invariants. For example, numerical invariants
can be discovered by using numerical abstract domains like the interval domain
[6] or the polyhedron domain [9]. Such convex domains are efficient and their
elements represent conjunctions of linear inequality constraints.

Abstract domains can be designed incrementally based on other abstract do-
mains. The powerset extension of an abstract domain [8, 12] refines the abstract
domain by adding elements that allow disjunctions to be represented precisely.
Unfortunately, analyses using powerset domains can be exponentially more ex-
pensive compared to analyses on the base domain. One well-known approach
to control the number of disjuncts during analysis is to use a powerset domain
where the number of disjuncts is syntactically bounded. In this setting, the chal-
lenge is to find appropriate disjuncts that can be merged without (evident) losses
in precision. Recently, a technique for disjunctive static analysis has been pro-
posed and implemented [24]. The analysis is formulated for a generic numerical
domain and an heuristic function based on the Hausdorff distance is used to
merge related disjuncts. Besides combining related disjuncts, another difficulty

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 331–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

332 C. Popeea and W.-N. Chin

in designing a disjunctive abstract domain is to define a precise and convergent
widening operator.

In this paper, we develop a novel technique for selective hulling to obtain
precise fixed points via disjunctive inference. Our framework uses a fixed point
algorithm guided by an affinity measure to find and combine disjuncts that are
related. We also develop a precise widening operator on the powerset domain
by using a similar affinity measure. We have built a prototype system to show
the utility of the inferred postconditions and the potential for tradeoff between
precision and analysis cost.

This paper is organized as follows: an overview of our method with a running
example is presented in Sect. 2. Section 3 introduces our source language and a
set of reasoning rules that collect a (possibly recursive) constraint abstraction
from each method/loop to be analyzed. Those recursive constraint abstractions
are subjected to the disjunctive fixed point analysis based on selective hulling
and widening as described in Sect. 4. Our implementation and experimental
results are presented in Sect. 5. Section 6 presents related work, while Sect. 7
concludes.

2 Overview

To provide an overview of our method, we will consider the following example.

x:=0;upd:=False;
while (x < N) do {
if (randBool()) then {
l:=x;upd:=True

} else { () };
x:=x+1 }

This program computes the index l of a spe-
cific element in an array of size N . The array
contents has been abstracted out and only the
updates to the index variables l and x have
been retained. The call to the method randBool
abstracts whether the current element indexed
by x is found to satisfy the search criterion.
Whenever the criterion is satisfied, the index
variable l is updated, as well as the boolean
flag upd. An assertion at the end of the loop could check that, whenever an
element has been found (upd=true), its index l is a valid index of the array
(0≤l<N). The aim of our static analysis is to infer disjunctive invariants that
can help prove such properties.

A static analysis can be formulated as a state-based analysis: guided by the
program state at the beginning of the loop, it computes the loop postcondition
as a program state approximation [9, 13, 24]. As an alternative, our method is
related to trace-based analysis [4] and computes the loop summary as a transition
from the prestate (before the loop) to the poststate (after the loop body).

Our analysis is formulated in two stages. Firstly, it collects a constraint ab-
straction from the method/loop body to be analyzed. This abstraction can be
viewed as an intermediate form and is related to the constraint abstraction in-
troduced in [14]. As a second step, an iterating process will find the fixed point
for the constraint abstraction function.

For the running example, the constraint abstraction named wh represents the
input-output relation between the loop prestate (in terms of X, the unprimed

Inferring Disjunctive Postconditions 333

variables x, N, l, upd) and the loop poststate (in terms of X ′, the primed variables
x′, N ′, l′, upd′).

wh(X, X ′) :− ((nochange(X) ∧ x′<N ′)◦{l,upd}
(l′=x ∧ upd′=1 ∨ nochange(l, upd))◦{x}
(x′=x+1)◦Xwh(X, X ′))

∨ (nochange(X) ∧ x′≥N ′)

The nochange operator is a special transition where original and primed variables
are made equal: nochange({}) =df true; nochange({x}∪X) =df (x′=x)∧nochange(X).
The composition operator (φ1◦W φ2) is left-associative and composes the input-
output relations φ1 and φ2 updating W variables as specified by φ2 formula. For-
mally, given φ1, φ2, and the set of variables to be updated X={x1, . . . , xn}, the com-
position operator ◦X is defined as:

φ1 ◦X φ2 =df ∃ r1..rn · ρ1 φ1 ∧ ρ2 φ2

where r1, . . . , rn are fresh variables; ρ1 = [x′
i 	→ ri]

n
i=1

; ρ2 = [xi 	→ ri]
n
i=1

Note that ρ1 and ρ2 are substitutions that link each latest value of x′
i in φ1 with

the corresponding initial value xi in φ2 via a fresh variable ri.
With these two operators, the effects of the loop sub-expressions are com-

posed to obtain the effect of the entire loop body. The 1st line of the constraint
abstraction corresponds to the loop test that is satisfied. The 2nd line stands for
the body of the conditional expression from the loop. Note that the boolean con-
stants False and True are modeled as integers 0 and 1. The 3rd line represents
the assignment that increments x by 1 composed with the effect of subsequent
loop iterations (the occurrence of the wh constraint abstraction). The 4th and
last line stands for the possibility that the loop test is not satisfied.

After some simplifications, the constraint abstraction reduces to:

wh(X, X ′) :− ∃X1·((x1=x+1 ∧ N1=N ∧ l1=x ∧ upd1=1 ∧ wh(X1, X
′))

∨ (x1=x+1 ∧ N1=N ∧ l1=l ∧ upd1=upd ∧ wh(X1, X
′))

∨ (x′=x ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′))

where X1 denotes the local variables (x1, N1, l1, upd1).
The analysis goal is then to compute a fixed point approximation for the

constraint abstraction function. This function takes as argument a transition
depending on X, X ′ and its result is also expressed as a transition dependent on
the same variables. Both transitions can either be approximated by polyhedra
or, more precisely, by sets of polyhedra. The first case is akin to the polyhedral
analysis from [9] and is reviewed next. For the second case, we will use our
running example to show how to compute a disjunctive loop postcondition.

2.1 Computing Fixed Points in the Polyhedron Abstract Domain

We briefly review the method based on Kleene’s fixed point iteration applied to
the polyhedron abstract domain. Let (L, ≤) be a complete lattice, and denote
by (P , ⇒) the lattice of polyhedra. We write ⊥ for its least element (in P ,

334 C. Popeea and W.-N. Chin

the empty polyhedron or its representation, the formula false), and � for its
greatest element (in P , the entire n-dimensional space or its representation, the
formula true). The meet and join operations in the lattice of polyhedra are,
respectively, the set intersection and the convex polyhedral hull, the latter being
denoted by ⊕. A function f that is a self-map of a complete lattice is monotone
if x ≤ y implies f(x) ≤ f(y). In particular, the constraint abstraction functions
derived by our analysis are monotone self-maps of the (powerset) polyhedra
lattice.

The least fixed point of a monotone function f can be obtained by computing
the ascending chain f0 = ⊥, fn+1 = f(fn), with n≥0. If the chain becomes
stationary, i.e., if fm = fm+1 for some m, then fm is the least fixed point
of f . In the case of a lattice infinite in height (as the lattice of polyhedra),
an ascending chain may be infinite, and a widening operator must be used to
ensure convergence. A widening operator ∇ is a binary operator to ensure that
the iteration sequence f0 = ⊥, fk+1 = f(fk) followed by fn+1 = fn∇f(fn), with
n > k, converges. In this case, the limit of the sequence is known as a post fixed
point of f . A post fixed point is a sound approximation of the least fixed point,
and the criterion to verify that x is a post fixed point for f is that x ≥ f(x).
For the polyhedron domain, the standard widening operator was introduced in
[9]. Intuitively, the result of the widening φ1∇φ2 is obtained by removing from
φ1 those conjuncts that are not satisfied by the next iteration φ2.

For our running example, the fixed point iteration starts with the least element
of the abstract domain represented by the false formula. The first approximation
wh1 is a transition formula that considers that the loop test fails and the loop
body is never executed:

wh1 :− (x′=x ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)

The next iteration is a three-disjunct formula that cannot be represented in the
polyhedron domain. An approximation for the disjunctive formula is computed
using the convex hull operator. A disjunctive formula can be viewed as a set of
disjuncts: φ = ∨n

i=1di = {di}n
i=1. Operators on these disjuncts could be used either

infixed or prefixed. For example, given φ=d1∨d2 then ⊕φ = ⊕{d1, d2} = d1⊕d2.

wh2 :− (x′=x+1 ∧ N ′=N ∧ l′=x ∧ upd′=1 ∧ x′≥N ′)
∨ (x′=x+1 ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)
∨ (x′=x ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)

wh′
2 :− ⊕wh2 = (x≤x′≤x+1 ∧ N ′=N ∧ x′≥N)

wh′
3 :− ⊕wh3 = (x≤x′≤x+2 ∧ N ′=N ∧ x′≥N)

The iterating sequence will not converge since the inequality x′≤x will be trans-
lated at the following iterations into x′≤x+1, x′≤x+2 and so on. Convergence is
ensured by the widening operator which simplifies as follows:

wh′′
3 :−wh′

2∇wh′
3 = (x≤x′ ∧ N ′=N ∧ x′≥N)

This result proves to be a post fixed point for the wh function. However, the
result is rather imprecise as it does not capture any information about the value
of l or the flag upd at the end of the loop. Intuitively, such information was

Inferring Disjunctive Postconditions 335

present in wh2 and wh3, but approximated by the convex hull operator to obtain
wh′

2 and wh′
3. Next, we outline a method to compute disjunctive fixed points

able to capture this kind of information.

2.2 Computing Fixed Points in a Disjunctive Abstract Domain

The two ingredients that we use to compute disjunctive fixed points are counter-
parts to the convex hull and widening operators from the conjunctive case. Both
operators ensure a bound on the number of disjuncts allowed in the formulae.

We first propose a selective hull operator ⊕m parameterized by a constant
m that takes as argument a disjunctive formula and collapses these disjuncts
into a result with at most m disjuncts. The crux of this operator is an affinity
measure to choose the two most related (affine) disjuncts from a disjunctive
formula. Formally, given φ = ∨n

i=1di, and let di,dj be the most related disjuncts
as determined by their affinity, we define the selective hull operator as follows:

⊕mφ =df if n≤m then φ
else ⊕m (φ \{di, dj} ∪ {di ⊕ dj})

Note that the convex hull operator from the polyhedron domain ⊕ is equivalent
to ⊕1 since it reduces its disjunctive argument to a conjunctive formula with one
disjunct. The affinity function aims to quantify how close is the approximation
d1⊕d2 from the disjunctive formula d1∨d2. Intuitively, it works by counting the
number of inequalities (planes in the n-dimensional space) from the disjunctive
formula that are preserved in the approximation d1⊕d2. Since it counts the
number of inequalities (relations between variables), the affinity function is able
to handle the relational information captured by the formulae in the polyhedron
domain.

As an example, consider wh2 and wh3 obtained previously. The results of
selective hull with m=3 the bound on the number of disjuncts are as follows:

wh′′′
2 :− ⊕3 wh2 = wh2

wh′′′
3 :− ⊕3 wh3 = (x≤x′≤x+2 ∧ N ′=N ∧ x≤l′≤x+2 ∧ upd′=1 ∧ x+2≥N)

∨ (x≤x′≤x+2 ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x+2≥N)
∨ (x′=x ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x≥N)

The second operator needed in the disjunctive abstract domain is a widen-
ing operator. We propose a similar affinity measure to find related disjuncts
for pairwise widening. For the two disjunctive formulae wh′′′

2 = (d1∨d2∨d3) and
wh′′′

3 = (e1∨e2∨e3), the most affine pairs will distribute the widening operator:

wh′′′
2 ∇3wh′′′

3 :− (d1∨d2∨d3)∇3(e1∨e2∨e3) = (d1∇e1) ∨ (d2∇e3) ∨ (d3∇e3)
= (x′=N ∧ N ′=N ∧ x≤l′≤N ∧ upd′=1)
∨ (x′=N ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x≤N)
∨ (x′=x ∧ N ′=N ∧ l′=l ∧ upd′=upd ∧ x>N)

This result proves to be a post fixed point for the wh function in the powerset
domain. The first disjunct captures the updates to the variable l, thus l′ can
safely be used as an index for the array of size N . The last two disjuncts cap-
ture the cases where, either the loop was executed but the then branch of the

336 C. Popeea and W.-N. Chin

conditional has never been taken (x≤N ∧ upd′=upd), or the loop has not been
executed (x>N).

Note that our disjunctive fixed point computation works not only for loops,
but also for general recursion. Our analysis also supports mutual recursion where
fixed points are computed simultaneously for multiple constraint abstraction
functions.

Since the computed fixed point represents a transition, the analysis does not
rely on a fixed initial state and can be implemented in a modular fashion. While
modular analysis may expose more disjuncts (because no information is assumed
about the initial state) and benefits more from our approach, disjunctive analysis
has been shown to be also useful for global static analyses [13, 24].

3 Forward Reasoning Rules

We propose a set of forward reasoning rules for collecting a constraint abstraction
for each method/loop. Some primitive methods may lack a method body and be
given instead a formula φ: the given formula may include a safety precondition
(for example, bound checks for array operations), or simply represent the input-
output relation (for primitive numerical operations like add or multiply). The
reasoning process is modular, starting with the methods at the bottom of the
call graph.

P ::= meth∗

meth ::= t mn (([ref] t v)∗) where φ {e}
t ::= bool | int | void
k ::= true | false | kint | ()
e ::= v | k | v:=e | e1; e2 | mn(v∗) | t v ; e

| if v then e1 else e2 | while v do e
φ ::= s1=s2 | s1≤s2 | φ1∧φ2 | φ1∨φ2 | ∃v·φ
s ::= kint | v | v′ | kint ∗ s | s1 + s2

Fig. 1. Simple imperative language

For simplicity, we shall use
an imperative language with
minimal features, as given
in Fig. 1. We use meth
for method declaration, t for
type, and e for expression.
This language is expression-
oriented and uses a nor-
malised form for which only
variables are allowed as argu-
ments to a method call or a
conditional test. A preproces-
sor can transform arbitrarily
nested arguments to this core language form. Pass-by-reference parameters are
declared for each method via the ref keyword, while the other parameters from
{v∗} are passed-by-value. For simplicity, we disallow aliasing amongst pass-by-
reference parameters. This restriction is easily enforced in our simple language
by ensuring that such arguments at each call site are distinct variables.

The constraint language defined by φ is based on Presburger arithmetic. Our
framework can accommodate either a richer sublanguage for better expressivity
or a more restricted sublanguage (e.g. weakly relational difference constraints
[20]) for better performance. We shall assume that a type-checker exists to ensure
that expressions and constraints used in a program are well-typed.

The rule [METH] associates each method mn with a constraint abstraction of
the same name. Namely, mn(v∗, w∗) :− φ, where v∗ covers the input parameters,

Inferring Disjunctive Postconditions 337

[CONST]
φ1 = (φ∧res=k)
� {φ} k {φ1}

[VAR]
φ1 = (φ∧res=v′)

� {φ} v {φ1}

[ASSIGN]
� {φ} e {φ1} φ2 = ∃res·(φ1◦{v}v

′=res)
� {φ} v:=e {φ2}

[BLK]
� {φ} e {φ1}

� {φ} t v; e {∃v′·φ1}

[IF]
� {φ∧v′=1} e1 {φ1}
� {φ∧v′=0} e2 {φ2}

� {φ} if v then e1 else e2 {φ1∨φ2}

[SEQ]
� {φ} e1 {φ1}

� {∃res·φ1} e2 {φ2}

� {φ} e1; e2 {φ2}

[CALL]
W={vi}

m−1
i=1 distinct(W)

t0 mn((ref ti vi)m−1
i=1 , (ti vi)n

i=m)
where φpo {...}

� {φ}mn(v1..vn) {φ ◦W φpo}

[WHILE]
X=freevars(v, e) � {nochange(X)∧v′=1} e {φ1}

φ2=(φ1◦Xwh(X, X ′)) ∨ (nochange(X)∧v′=0)
Q={wh(X, X ′) :−φ2} φpo = fix(Q)
� {φ} while v do e {φ◦Xφpo} ⇒ φpo

Fig. 2. Forward reasoning rules

while w∗ covers the method’s output res and the primed variables from pass-by-
reference parameters. The fixed point analysis outlined in the previous section
is invoked by fix(Q) and returns φpo, the input-output relation of the method.
To derive suitable postconditions, we shall subject each method declaration to
the following rule:

[METH]

W={vi}n
i=1 V ={v′

i}n
i=m � {nochange(W)} e {φ}

X={v1, .., vn, res, v′
1, .., v

′
m−1} Q={mn(X) :− ∃V ·φ} φpo = fix(Q)

� t0 mn((ref ti vi)
m−1
i=1 , (ti vi)n

i=m) where mn(X){e} ⇒ φpo

The inference uses a set of Hoare-style forward reasoning rules of the form
� {φ1} e {φ2}. Given a transition φ1 from the beginning of the current method/loop
to the prestate before e’s evaluation, the judgement will deriveφ2, a transition from
the beginning of the current method/loop to the poststate after e’s evaluation. A
special variable res is used to denote the result of method declaration as well as
that of the current expression under program analysis.

In Fig. 2, the [ASSIGN] rule captures imperative updates with the help of
the prime notation. The [SEQ] rule captures flow-sensitivity, while the [IF] rule
captures path-sensitivity. The [CALL] rule accumulates the effect of the callee
postcondition using φ ◦W φpo. This rule postpones the checking of the callee
precondition to a later stage. The two rules [METH] and [WHILE] compute a
postcondition (indicated to the right of the ⇒ operator) which will be inserted
in the code and used subsequently in the verification rules. The result of these
rules is a definition for each constraint abstraction. As an example, consider:

void mnA(ref int x, int n) where (mnA(x, n, x′))
{ if x>n then x:=x−1; mnA(x, n) else () }

338 C. Popeea and W.-N. Chin

After applying the forward reasoning rules, we obtain the following constraint
abstraction:

mnA(x, n, x′) :− (x>n∧(∃x1·x1=x−1∧mnA(x1, n, x′)))∨(x≤n∧x′=x)
Note that the forward rules can be used to capture the postcondition of any

recursive method, not just for tail-recursive loops. For example, consider the
following recursive method:

int mnB(int x) where (mnB(x, res)) { if x≤0 then 1 else x:=x−1; 2+mnB(x) }
Applying forward reasoning rules will yield the following constraint abstraction:
mnB(x, res) :− (x≤0∧res=1)∨(x>0∧(∃x1, r1·x1=x−1∧mnB(x1, r1)∧res=2+r1))

The next step is to apply fixed point analysis on each recursive constraint
abstraction. By applying disjunctive fixed point analysis, we can obtain:

mnB(x, res) :− (x≤0∧res=1)∨(x≥0∧res=2∗x+1)

Once a closed-form formula has been derived, we shall return to checking the
validity of preconditions that were previously skipped. The rules for verifying
preconditions are similar to the forward rules for postcondition inference, with
the exception of three rules, namely:

[VERIFY−CALL]

t0 mn((ref ti vi)
m−1
i=1 , (ti vi)

n
i=m) where φpo

W={vi}m−1
i=1 Z={res, v′

1, .., v
′
m−1}

φpr=∃Z·φpo φ =⇒ [vi 	→v′
i]

n
i=1φpr

� {φ}mn(v1..vn) {φ ◦W φpo}

[VERIFY−WHILE]

X = freevars(v, e) ρ = X 	→X ′

φpr = ∃X ′·φ2 φ =⇒ ρφpr

� {φ∧ρφpr} e {φ′}
� {φ} while v do e where φ2 {φ ◦X φ2}

[VERIFY−METH]

W={vi}n
i=1 Z={res, v′

1, .., v
′
m−1}

φpr=∃Z·φpo � {φpr∧nochange(W)} e {φ}
� t0 mn((ref ti vi)

m−1
i=1 , (ti vi)n

i=m) where φpo {e}

The [VERIFY−CALL] rule checks that the precondition of each method call
can be verified as statically safe by the current program state. If it cannot be
proven statically safe, a run-time test will be inserted prior to the call site to
guarantee the safety of the precondition during program execution. The precon-
dition derived for recursive methods is meant to be also satisfied recursively. The
[VERIFY−METH] rule ensures that each of its callees is either statically safe or
has a runtime test inserted. The [VERIFY−WHILE] rule uses X to denote the free
variables appearing in the loop body; the substitution ρ maps the unprimed to
primed variables. This rule uses the loop formula φ2 to compute a precondition
φpr necessary for the correct execution of the loop body. The precondition is
checked for satisfiability using φ, the state at the beginning of the loop. We refer
to this new set of rules as forward verification rules. We define a special class of
totally-safe programs, as follows:

Definition 1 (Totally-Safe Program). A method is said to be totally-safe
if the precondition derived from all calls in its method’s body can be verified as
statically safe. A program is totally-safe if all its methods are totally-safe.

For each totally-safe program, we can guarantee that it never encounters any
runtime error due to unsatisfied preconditions.

Inferring Disjunctive Postconditions 339

4 Computing Disjunctive Fixed Points

Classical fixed point analysis technique in the polyhedron domain [9] attempts
to obtain a conjunctive formula result with the help of convex-hull and widening
operators. A challenge for disjunctive fixed point inference is to apply selective
hulling on closely related disjuncts whenever needed.

In this paper, we propose a qualitative measure called affinity to determine the
suitability of two formulae for hulling. In order to obtain the affinity between two
terms φ1 and φ2, we have to compute two main expressions (i) φhull = φ1⊕φ2 and
(ii) φdiff = φhull∧¬(φ1∨φ2). Furthermore, we also require a heuristic function heur

that indicates how closely related is the approximation φ1⊕φ2 from the original
formula φ1∨φ2. With this, we can formally define the affinity measure using:

Definition 2 (Affinity Measure). Given a function heur that returns a value
in the range 1..99, the affinity measure can be defined as:

affin(φ1, φ2) =df if φdiff=false then 100
else if φhull=true then 0
else heur(φ1, φ2)

The precise extreme (100) indicates that the convex-hull operation is exact with-
out any loss of precision. The imprecise extreme (0) indicates that the convex-hull
operation is inexact and yields the weakest possible formula true. In between
these two extremes, we will use an affinity measure to indicate the closeness of
the two terms by returning a value in the range 1..99.

Selective Hull Based on Planar Affinity. The planar affinity measure com-
putes the fraction of planes from the geometrical representation of the original
formula that are preserved in the hulled approximation:

Definition 3 (Planar Affinity Measure). Given two disjuncts φ1, φ2 and
the convex-hull approximation φhull = φ1⊕φ2, we first define the set of conjuncts
mset={c∈(φ1∪φ2) | φhull =⇒ c}. The planar affinity measure is shown below:

p-heur(φ1, φ2)=df (|mset|/|φ1∪φ2| ∗ 98) + 1

The denominator |φ1∪φ2| represents the number of planes corresponding to the
original formulae (from both polyhedra φ1 and φ2). Some of these planes are
approximated by the hulling process, while others are preserved in the approx-
imation φhull. The number of preserved planes is represented by the cardinality
of mset and indicates the suitability of the two disjuncts for hulling.

As an example, consider the following disjunctive formula:
φ = (x≤0 ∧ x′=x) ∨ (x=1 ∧ x′=0) ∨ (x=2 ∧ x′=0)

Firstly, the three disjuncts (denoted respectively by d1, d2 and d3) are converted
to a minimal form. As with other operators on polyhedra (e.g. the standard
widening operator from [15]), the minimal form requires that no redundant con-
juncts are present and, furthermore, each equality constraint is broken into two
corresponding inequalities as follows:

d1 = (x≤0 ∧ x′≥x ∧ x′≤x)
d2 = (x≥1 ∧ x≤1 ∧ x′≥0 ∧ x′≤0)
d3 = (x≥2 ∧ x≤2 ∧ x′≥0 ∧ x′≤0)

340 C. Popeea and W.-N. Chin

We compute three affinity values, one for each pair of disjuncts from φ. Note
that the cardinality of the set of conjuncts (φ1∪φ2) is considered after removing
duplicate conjuncts that appear both in φ1 and φ2.

d1 ⊕ d2 = (x′≤x ∧ x′≤0 ∧ x′≤x−1) mset(d1, d2) = {x′≤x, x≤1, x′≤0}
p-heur(d1, d2) = 3/7 ∗ 98 + 1 = 43

d1 ⊕ d3 = (x′≤x ∧ x′≤0 ∧ x′≤x−2) mset(d1, d3) = {x′≤x, x≤2, x′≤0}
p-heur(d1, d3) = 3/7 ∗ 98 + 1 = 43

d2 ⊕ d3 = (x≥1 ∧ x≤2 ∧ x′≤0 ∧ x′≤0) mset(d2, d3) = {x≥1, x≤2, x′≤0, x′≤0}
p-heur(d2, d3) = 4/6 ∗ 98 + 1 = 66

Based on these affinities, the most related pair of disjuncts is {d2, d3}. The result
for selective hull of φ will therefore capture a precise relation between x and x′:

⊕2φ = ⊕2{d1, d2⊕d3} = (x≤0 ∧ x′=x) ∨ (x≥1 ∧ x≤2 ∧ x′=0)

Selective Hull Based on Hausdorff Distance. Related to our affinity mea-
sure, Sankaranarayanan et al [24] have recently introduced a heuristic function
that uses the Hausdorff distance to measure the distance between the geometrical
representations of two disjuncts.

The Hausdorff distance is a commonly used measure of distance between two
sets. Given two polyhedra, P and Q, their Hausdorff distance can be defined as:
h-heur(P, Q)=dfmaxx∈P{miny∈Q{d(x, y)}} where d(x, y) is the Euclidian distance
between two points x and y. This heuristic was deemed as hard to compute in
[24] and, as an alternative, a range-based Hausdorff heuristic was used.

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

F2 F3 F4F1

Fig. 3. Pairs of disjuncts with similar Hausdorff distance

Because it reduces the information about variables to non-relational ranges,
we can argue that a range-based heuristic is less suitable for a relational ab-
stract domain like the polyhedron domain. Furthermore, we present an intuitive
argument why such a distance based heuristic is less appropriate. The pairs of
disjuncts {F1,F2} and {F3,F4} from Fig. 3 may have similar h-heur values; on the
other hand, the affinity based on p-heur precisely indicates that the second pair
{F3,F4} is more suited for hulling. In the Sect. 5, we compare these two heuristic
functions when inferring postconditions for a suite of benchmark programs.

4.1 Powerset Widening Operator

The standard widening operator for the convex polyhedron domain was intro-
duced in [9]. For disjunctive fixed point inference, a (powerset) widening operator

Inferring Disjunctive Postconditions 341

for sets of polyhedra is required. Given two disjunctive formulae φ1 and φ2, the
challenge is to find pairs of related disjuncts {di, ei} (di∈φ1, ei∈φ2) such that the
result of widening di wrt ei is as precise as possible.

For this purpose, Bagnara et al [1] introduced a framework to lift a widening
operator over a base domain to a widening operator over its powerset domain. The
strategy used by the powersetwidening based on a connector starts by joining (con-
necting) elements in φ2 to ensure that each such connected element approximates
some element from φ1. Secondly, it chooses related pairs {di, ei} based on the logical
implication relation,where di ⇒ ei.Mostly concernedwith convergence guarantees
for widening operators, the framework from [1] does not give a recipe for defining
connector operators able to find related disjuncts. Later, the generic widening op-
erator definition was instantiated for disjunctive polyhedral analysis by Gulavani
et al in [13]. However, their proposal uses a connector operator that relies on the
ability to find one minimal element from a set of polyhedra. In general, the most
precise result cannot be guaranteed by a deterministic algorithm, since the polyhe-
dron domain is partially ordered. To overcome this problem, we propose an affinity
measure to find related disjuncts for pairwise widening.

The strategy that we adopt for widening is to choose related pairs {di, ei} based
on their affinity. After pairwise widening, we subject the result to a selective hull
operation provided it contains more disjuncts than φ1. In general, there may be
more disjuncts in φ2 than in φ1. A reason for non-convergence of the powerset
widening operator is that some element from φ2 is not involved in any widening
computation and included unchanged in the result. Our operator (similar to the
connector-based widening) distributes each disjunct from the arguments φ1 and
φ2 in a widening computation and thus ensures convergence.

Formally, given two disjunctive formulae φ1=
�m

i=1 di and φ2=
�n

i=1 ei, we define
a powerset widening operator ∇m as follows: φ1∇mφ2 = ⊕m{di∇ei|di∈φ1, ei∈φ2},
where di is the best match for widening ei as found by the widen affin mea-
sure. Similar to the affinity from Def. 2, the widen-affinity aims to find related
disjuncts, but proceeds by indicating how closely related is the approximation
φ1∇φ2 from the original formula φ1.

widen affin(φ1, φ2) = if (φ1∇φ2)∧¬φ1=false then 100
else if (φ1∇φ2)=true then 0
else heur(φ1, φ2)

The planar affinity measure from Def. 3 can be used for widening, provided we
redefine mset to relate φ1, φ2 with the approximation φwiden = φ1∇φ2 as follows:

mset = {c ∈ (φ1∪φ2)|φwiden ⇒ c}

5 Experiments

We have implemented the proposed inference mechanisms with the goal of ana-
lyzing imperative programs. Our implementation includes a pre-processing phase
to convert each C-like input program to our core language. The entire prototype
system was built using Glasgow Haskell compiler [16] extended with the Omega
constraint solving library [23]. Our test platform was a Pentium 3.0 GHz system
with 2GBytes main memory, running Fedora 4.

342 C. Popeea and W.-N. Chin

Benchmark Source Recursive m=1 m=2 m=3 m=4 m=5
Programs (lines) constraints (secs) (secs) post (secs) post (secs) post (secs) post

binary search 31 1 0.44 1.02 1 - - - - - -
bubble sort 39 2 0.78 0.89 1 - - - - - -
init array 5 1 0.17 0.24 1 - - - - - -
merge sort 58 3 1.42 3.39 3 3.76 1 3.91 1 4.48 1

queens 39 2 1.89 2.41 2 2.48 1 - - - -
quick sort 43 2 0.63 1.51 2 1.70 1 - - - -

FFT 336 9 8.24 10.17 5 11.62 3 11.90 1 12.15 1
LU Decomp. 191 10 10.27 13.41 8 14.44 3 - - - -

SOR 84 5 1.46 2.41 3 3.49 1 3.64 1 - -
Linpack 903 25 28.14 33.23 20 35.04 2 - - - -

Fig. 4. Statistics for postcondition inference. Timings include precondition verification.
(”-” signifies a time or post similar to those from the immediate lower value of m).

We tested our system on a set of small programs with challenging recursion,
and also the Scimark and Linpack benchmark suites [21, 10]. Figure 4 summarizes
the statistics obtained for each program. To quantify the analysis complexity of
the benchmark programs, we counted the program size (column 2) and also the
number of recursive methods and loops present in each program (column 3).

The main objective for building this prototype was to certify that the dis-
junctive analysis can be fully automated and that it gives more precise results
compared to a conjunctive analysis. To this end, we experimented with different
bounds on the number m of disjuncts allowed during fixed point analysis. For
each value of m, we measured the analysis time and the number of methods for
which the postcondition was more precise than using (m−1) disjuncts. For each
analyzed program, we detected a bound on the value of m: increasing m over this
bound does not yield more precision for the formulae. The analysis time remains
constant for cases where m is bigger than this bound, therefore the values be-
yond these bounds are marked with ”-”. Capturing a precise postcondition for
algorithms like binary search, bubble sort, or init array was done with a value
of m equal to 2. We found that queens and quick sort require 3 disjuncts, while
merge sort can be inferred by making use of 5 disjuncts.

We also evaluated the usefulness of the disjunctive fixed point inference for sta-
tic array bound check elimination. The results are summarized in the Fig. 5. Col-
umn 2 presents the total number of checks (counted statically) that are present
in the original programs. Columns 3 and 5 present the number of checks that
cannot be proved safe by using conjunctive analysis (m=1) and, respectively, dis-
junctive analysis with m=5 and planar affinity. For comparison, column 4 shows
results of analysis using the Hausdorff distance heuristic, where the number of
checks not proven is greater than using planar affinity.

Using the planar affinity, the two programs bubble sort and init array were
proven totally safe with 2-disjunctive analysis. Merge sort and SOR exploited

Inferring Disjunctive Postconditions 343

Benchmark Static Conj. Haus. Plan.
Programs Chks. m=1 m=5 m=5

binary search 2 2 2 2
bubble sort 12 3 0 0
init array 2 2 0 0
merge sort 24 9 4 0

queens 8 4 2 2
quick sort 20 5 5 1

FFT 62 17 12 5
LU Decomp. 82 42 9 4

SOR 32 15 2 0
Linpack 166 92 65 52

Fig. 5. Statistics for check elimination

the precision of 4-disjunctive analy-
sis for total check elimination. Even
if not all the checks could be proven
safe for queens, quick sort, FFT, LU
and Linpack benchmarks, the num-
ber of potentially unsafe checks de-
creased gradually, for analyses with
higher values of m. As a matter of fact,
our focus in this paper was to infer
precise postconditions and we relied
on a simple mechanism to derive pre-
conditions. To eliminate more checks,
we could employ the technique of [3]
which is powerful enough to derive
sufficient preconditions and eliminate
all checks in this set of benchmarks [26]. However, we stress that, either kind of
prederivation we use, disjunctive analysis is needed for better check elimination.

In general, analysis with higher values for m has the potential of inferring more
precise formulae. The downside is that computing the affinities of m disjuncts
is an operation with quadratic complexity in terms of m and may become too
expensive for higher values of m. In practice, we found that the case (m=3)
computes formulae sufficiently precise, with a reasonable inference time.

6 Related Work

Our analysis is potentially useful for software verification and for static analyses
based on numerical abstract domains.

Program verification may be performed by generating verification conditions,
where their validity implies that the program satisfies its safety assertions. Veri-
fication condition generators assume that loop invariants are present in the code,
either annotated by the user or inferred automatically. Methods for loop invari-
ant inference include the induction-iteration approach [25] and approaches based
on predicate abstraction [11, 17]. Leino and Logozzo [18] designed a loop invari-
ant computation that can be invoked on demand when an assertion from the
analyzed program fails. The invariant that is inferred satisfies only a subset of
the program’s executions on which the assertion is encountered. Comparatively,
our method infers a disjunctive formula that is valid for all the program’s exe-
cutions, with each disjunct covering some related execution paths. We achieve
this modularly, regardless of any subsequent assertions. Thus, our results can be
directly used in the inter-procedural setting.

Partitioning of the abstract domain was first introduced in [5]. Recently,
Mauborgne and Rival [19] have given strategies for partition creation and demon-
strated their feasibility through their use in ASTRÉE static analyzer [2]. Like
them, we make the choice of which disjunctions to keep at analysis time. How-
ever, the partitioning criterion is different. In their case, the control flow is used

344 C. Popeea and W.-N. Chin

to choose which disjunctions to keep. Specifically, a token representing some
conditions on the execution flow is attached to a disjunct, and formulae with
similar tokens are hulled together. In our case, the partitioning criterion is based
on a property of the disjuncts themselves, with the affinity measure aiming to
hull together the most closely related disjuncts.

Various abstract numerical domains have been developed for static analysis
based on abstract interpretation. The form of invariants to be discovered is deter-
mined by the chosen numerical domain: from the interval domain that is able to
discover relations of the form (±x≤c), to the lattice of polyhedra that represents
invariants of the form (a1x1+..+anxn≤c), all these abstract domains represent
conjunctions of linear inequalities. Our pre/post analysis is formalised in a man-
ner that is independent of the abstract domain used. It can therefore readily benefit
from advances in constraint solving techniques for these numerical domains.

7 Conclusion

We have proposed a new method for inferring disjunctive postconditions. Our
approach is based on the notion of selective hulling as a means to implement
adjustable precision in our analysis. We introduced a simple but novel concept
called affinity and showed that planar affinity is superior to a recently introduced
method based on Hausdorff distance. We have built a prototype system for
disjunctive inference and have proven its correctness in the technical report [22].
Our experiments demonstrate the utility of the disjunctive postconditions for
proving a class of runtime checks safe at compile-time, and the potential for
tradeoff between precision and analysis cost.

Acknowledgements. This work benefited much from research discussions with
Siau-Cheng Khoo and Dana Xu from an earlier project on array bounds infer-
ence. The authors would like to acknowledge two donation grants from Microsoft
Singapore and Microsoft Research Asia, and the support of A*STAR research
grant R-252-000-233-305.

References

[1] Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 135–148.
Springer, Heidelberg (2004)

[2] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI,
pp. 196–207 (2003)

[3] Chin, W.-N., Khoo, S.-C., Xu, D.N.: Deriving pre-conditions for array bound check
elimination. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp.
2–24. Springer, Heidelberg (2001)

[4] Colby, C., Lee, P.: Trace-based program analysis. In: POPL, pp. 195–207 (1996)

[5] Cousot, P.: Semantic foundations of program analysis. In: Program Flow Analysis:
Theory and Applications (1981)

Inferring Disjunctive Postconditions 345

[6] Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, pp.
106–130 (1976)

[7] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252 (1977)

[8] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282 (1979)

[9] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: POPL, pp. 84–96 (1978)

[10] Dongarra,J.,Luszczek,P.,Petitet,A.:TheLinpackbenchmark:past, presentand fu-
ture.ConcurrencyandComputation:Practice andExperience15(9), 803–820 (2003)

[11] Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In:
POPL, pp. 191–202 (2002)

[12] Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract intepreta-
tion. Sci. Comput. Program 32(1-3), 177–210 (1998)

[13] Bhargav, S., Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement
for abstract interpretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006
and ETAPS 2006. LNCS, vol. 3920, Springer, Heidelberg (2006)

[14] Gustavsson, J., Svenningsson, J.: Constraint abstractions. In: PADO, pp. 63–83
(2001)

[15] Halbwachs, N.: Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France (March 1979)

[16] Simon, L., Jones, P., et al.: Glasgow Haskell Compiler, http://www.haskell.
org/ghc

[17] Shuvendu, K., Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for un-
bounded system verification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 135–147. Springer, Heidelberg (2004)

[18] Rustan, K., Leino, M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)

[19] Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based sta-
tic analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005)

[20] Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172.
Springer, Heidelberg (2001)

[21] National Institue of Standards and Technology. Java SciMark benchmark for sci-
entific computing, http://math.nist.gov/scimark2/

[22] Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. Technical report.
http://www.comp.nus.edu.sg/$^\sim$corneliu/research/disjunctive.tr.pdf

[23] Pugh, W.: The Omega test: A fast practical integer programming algorithm for
dependence analysis. Communications of the ACM 8, 102–114 (1992)

[24] Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static analysis in dis-
junctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, Springer,
Heidelberg (2006)

[25] Suzuki, N., Ishihata, K.: Implementation of an array bound checker. In: POPL,
pp. 132–143 (1977)

[26] Xu, D.N., Popeea, C., Khoo, S.-C., Chin, W.-N.: A modular type inference and
specializer for array bound checks elimination (under preparation). Technical re-
port, http://www.comp.nus.edu.sg/$^\sim$corneliu/research/array.pdf

protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.haskell.org/ghc
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.haskell.org/ghc
http://math.nist.gov/scimark2/
http://www.comp.nus.edu.sg/$^sim $corneliu/research/disjunctive.tr.pdf
http://www.comp.nus.edu.sg/$^sim $corneliu/research/array.pdf

An Approach to Formal Verification of

Arithmetic Functions in Assembly

Reynald Affeldt1 and Nicolas Marti2

1 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology

2 Department of Computer Science, University of Tokyo

Abstract. It is customary to write performance-critical parts of arith-
metic functions in assembly: this enables finely-tuned algorithms that use
specialized processor instructions. However, such optimizations make for-
mal verification of arithmetic functions technically challenging, mainly
because of many bit-level manipulations of data. In this paper, we pro-
pose an approach for formal verification of arithmetic functions in as-
sembly. It consists in the implementation in the Coq proof assistant of
(1) a Hoare logic for assembly programs augmented with loops and (2) a
certified translator to ready-to-run assembly with jumps. To properly
handle formal verification of bit-level manipulations of data, we propose
an original encoding of machine integers. For concreteness, we use the
SmartMIPS assembly language, an extension of the MIPS instruction set
for smartcards, and we explain the formal verification of an optimized
implementation of the Montgomery multiplication, a de facto-standard
for the implementation of many cryptosystems.

1 Introduction

It is customary to write performance-critical parts of arithmetic functions in
assembly: this enables finely-tuned algorithms that use specialized processor in-
structions. However, such optimizations make formal verification of arithmetic
functions technically challenging. Indeed, the best algorithms for arithmetic func-
tions usually rely on bit-level manipulations of data, whose properties can be
tricky to figure out, especially when it comes to signed integers. But also, the
usage of non-standard specialized processor instructions often calls for adequate
adjustments of standard handbook algorithms, that may endanger the correct-
ness of the algorithm itself. For these reasons, it is important to provide a con-
crete way to formally verify such assembly code.

In this paper, we propose an approach for formal verification of arithmetic
functions in assembly. Our approach is in two steps. It consists in providing in
the Coq proof assistant [3] a certified implementation of (1) a Hoare logic for
assembly programs augmented with loops and (2) a certified translator to ready-
to-run assembly with jumps. We favor this two-steps approach because a Hoare
logic for while-programs is more familiar-looking than non-standard Hoare logics
for programs with jumps (such as [12,13]).

M. Okada and I. Satoh (Eds.): ASIAN 2006, LNCS 4435, pp. 346–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Approach to Formal Verification of Arithmetic Functions in Assembly 347

The Hoare logic we encode enables verification of assembly programs that ma-
nipulate machine integers and bounded memory. To cope with machine integers,
we implement a library where integers are represented as lists of bits interpreted
as unsigned or signed in two’s complement notation. This library enables faithful
modeling of the hardware circuitry. To cope with bounded memory, we encode
the separation logic [6] variant of Hoare logic, that extends traditional Hoare
logic with a native notion of mutable memory; because we use machine integers
to access memory, the accessible range of addresses is natively bounded.

The certified translator ensures that assembled programs behave like the ver-
ified programs. Concretely, it injects structured programs (programs with loops)
into the more general set of programs with jumps; the correctness of this trans-
lation is formally proved in Coq.

For concreteness, we use the SmartMIPS assembly language, an application-
specific extension of the MIPS32 4Km processor core that extends the core
instruction set with instructions to enhance cryptographic computations and
improve the performance of virtual machines [5].

To validate our approach, we show how to formally verify several arithmetic
functions, including in particular an optimized implementation of the Mont-
gomery multiplication [2], a de facto-standard for the implementation of many
cryptosystems. This verification requires bit-level predicates to specify the usage
of carries and overflow flags, for which our Hoare logic turns out to be well-suited.

This paper is organized as follows. In Sect. 2, we explain how we encode
machine-integers arithmetic in Coq. In Sect. 3, we explain how we encode sepa-
ration logic for a subset of SmartMIPS. In Sect. 4, we explain the formal verifi-
cation of the Montgomery multiplication. In Sect. 5, we explain how to extract
ready-to-run SmartMIPS programs from our verifications. In Sect. 6, we review
related work. In Sect. 7, we conclude and comment on future work.

2 Machine-Integers Arithmetic

Formal verification of arithmetic functions is usually done w.r.t. high-level math-
ematical specifications. However, at the level of assembly code, many arithmetic
properties of instructions depend on the finiteness of registers and on the phys-
ical representation of data. For example, the (signed) integer “−1” appears to
be larger than any unsigned (and therefore positive) integer; some instructions
trap on integer overflow while others do not, etc. Overlooking such problems
often leads to security breaches, most famously integer-overflow bugs (see [11]
for illustrations). It is therefore important to provide formal means to define the
semantics of instructions together with lemmas that capture their properties in
terms of mathematical (i.e., unbounded) integers.

Our approach to encode machine-integers arithmetic is to closely model the
hardware circuitry using lists of bits (booleans) to represent the contents of
registers and recursive functions to represent the operations on registers. We

348 R. Affeldt and N. Marti

choose this approach because it is easy to extend with new, specialized instruc-
tions, compared to encoding machine integers with, say, sign-magnitude integers
modulo.
Example: Hardware Arithmetic Operations We model the hardware addition as
a recursive function that does bitwise comparisons and carry propagation:

Inductive bit : Set := o : bit | i : bit.
(* addition with LSB first *)
Fixpoint add_lst’ (a b:list bit) (carry:bit) : list bit :=
match (a, b) with

(o :: a’, o :: b’) => carry :: add_lst’ a’ b’ o
| (i :: a’, i :: b’) => carry :: add_lst’ a’ b’ i
| (_ :: a’, _ :: b’) => match carry with
o => i :: add_lst’ a’ b’ o | i => o :: add_lst’ a’ b’ i end

| _ => nil
end.

(* addition with MSB first *)
Definition add_lst a b carry := rev (add_lst’ (rev a) (rev b) carry).

Most computers distinguish between unsigned integers and signed integers in
two’s complement notation. The negation of a signed integer is defined using
ones’ complement and addition:

(* bit complement *)
Definition cplt b := match b with i => o | o => i end.
(* ones’ complement *)
Fixpoint cplt1 (lst:list bit) : list bit :=
match lst with nil => nil | hd :: tl => cplt hd :: cplt1 tl end.

(* two’s complement *)
Definition cplt2 lst :=
add_lst (cplt1 lst) (zero_extend_lst (length lst - 1) (i::nil)) o.

Using the addition, we further modeled the unsigned multiplication; using two’s
complement, we further modeled the signed multiplication, and so on.

Physical constraints and implementation choices make hardware arithmetic
operations peculiar. Because of the finiteness of registers, they actually imple-
ment arithmetic modulo. A list of bits (an::...::a0) is interpreted as (an . . . a0)2,
the encoding in base 2 of a mathematical integer; but depending on the context,
this integer is unsigned, in which case its decimal value is an2n + . . . + a0,
or signed in two’s complement notation, in which case its decimal value is
−an2n + an−12n−1 + . . . + a0. It is customary for assembly code to rely on
properties of arithmetic modulo (e.g., to detect overflows) and to freely mix un-
signed and signed integers (e.g., to access memory). Precise characterization of
the properties of the hardware arithmetic operations w.r.t. their mathematical
counterpart is therefore a must-have for formal verification of assembly code.
Example: Overflow Properties of Addition Let us note [[lst]]u (resp. [[lst]]s)
the decimal value of the list of bits lst seen as an unsigned (resp. signed) integer.
In Coq, these notations are implemented as recursive functions from lists of bits
to mathematical integers. The hardware addition behaves like the mathematical
addition only when non-overflow conditions are met:

An Approach to Formal Verification of Arithmetic Functions in Assembly 349

Lemma add_lst_nat : ∀ n a b, length a = n → length b = n →
O ≤ [[a]]u + [[b]]u < 2^^n → [[add_lst a b o]]u = [[a]]u + [[b]]u.

Lemma add_lst_Z : forall n a b, length a = S n → length b = S n →
-2^^n ≤ [[a]]s + [[b]]s < 2^^n → [[add_lst a b o]]s = [[a]]s + [[b]]s.

We proved further lemmas that capture the overflow properties of the hardware
addition when overflow conditions are not met, the correctness of subtraction
and multiplications, the relations between unsigned and signed integers, etc.

Because a processor usually manipulates machine integers of different sizes
(e.g., to represent constants or contents of special registers such as accumula-
tors), it is cumbersome to use directly lists of bits: the conditions about their
lengths clutter formal verification. To simplify our development, we encapsulate
all the functions modeling the hardware circuitry and the lemmas capturing their
properties in a Coq module that provides an abstract type for machine integers.
This abstract type is parameterized by the length of the underlying list of bits:
Parameter int : nat → Set. This makes the relation between the lengths of the
input and the output of operations explicit in the type of hardware operations.

Technically, this abstract type is implemented using dependent pairs: a ma-
chine integer of length n is a dependent pair whose first projection is a list of
bits lst and whose second projection is the proof that its length is equal to n:
Inductive int (n:nat) : Set := mk_int : ∀ (lst:list bit), length lst = n → int n.

An excerpt of the interface of the resulting module is given below:

Parameter add : ∀ n, int n → int n → int n.
Notation "a ⊕ b" := (add a b).
Parameter u2Z : ∀ n, int n → Z. (* lists of bits as unsigned *)
Parameter s2Z : ∀ n, int n → Z. (* lists of bits as signed *)
Parameter add_u2Z : ∀ n (a b:int n), u2Z a + u2Z b < 2^^n →
u2Z (a ⊕ b) = u2Z a + u2Z b.

Parameter add_s2Z : ∀ n (a b:int (S n)), -2^^n ≤ s2Z a + s2Z b < 2^^n →
s2Z (a ⊕ b) = s2Z a + s2Z b.

Parameter Z2u : ∀ n, Z → int n.
Parameter Z2s : ∀ n, Z → int n.

Z2u n z (resp. Z2s n z) builds an unsigned (resp. a signed) machine integer of
decimal value z and length n (if possible). These two constructors are used to
defined constants, such as: Definition four32 := Z2u 32 4.

3 A Hoare Logic for SmartMIPS

In this section, we encode a Hoare logic for a subset of SmartMIPS [5]. For this
purpose, the module for machine-integer arithmetic introduced in the previous
section is important: it enables faithful encoding of the semantics of arithmetic
instructions that trap on overflow and the semantics of memory accesses, that
are restricted to finite memory. The subset of SmartMIPS we consider consists
of structured programs, i.e., programs whose syntax only allows for sequences
and while-loops. Hereafter, we call WhileSMIPS this subset. In Sect. 5, we will

350 R. Affeldt and N. Marti

certify a translator that injects WhileSMIPS programs into the set of SmartMIPS
programs with jumps, that can be directly assembled and run. We favor this two-
steps approach is that a Hoare logic for while-programs is more familiar-looking
than non-standard Hoare logics for programs with jumps (such as [12,13]).

3.1 States

The state of a SmartMIPS processor is modeled as a tuple of a store of general-
purpose registers, a store of control registers, an integer multiplier, and a heap
(the mutable memory):
Definition state := gpr.store * cp0.store * multiplier.m * heap.h.

The module gpr is a map from the type gp_reg of general-purpose registers
to (32-bit) words, the module cp0 is a map from the type cp0_reg of control
registers, and heap is a map from natural numbers to words. We restrict ourselves
to a word-addressable heap because it is all we need for arithmetic functions
(see Sect. 4). The module for heap is implemented using a module for finite
maps developed in previous work [16]. Let us comment more in detail on the
implementation of the multiplier module, that makes an extensive use of our
module for machine integers.

The SmartMIPS multiplier is a set of registers called ACX, HI, and LO that
has been designed to enhance cryptographic computations. HI and LO are 32 bits
long; ACX is only known to be at least 8 bits long. We implement the multiplier
as an abstract data type m with three lookup functions acx, hi, and lo that return
respectively a machine integer of length at least 8 bits and machine integers of
length 32. Here follows the corresponding excerpt of the module interface:

Parameter acx_size : nat.
Parameter acx_size_min : 8 ≤ acx_size.
Parameter m : Set.
Parameter acx : m → int acx_size.
Parameter lo : m → int 32.
Parameter hi : m → int 32.
Parameter utoZ : m → Z. (* multiplier as an unsigned *)

The SmartMIPS instruction set features special instructions to take advantage
of the SmartMIPS multiplier. For illustration, let us explain the encoding of
the mflhxu instruction, that is often used in arithmetic functions: it performs
a division of the multiplier by β = 232, whose remainder is put in a general-
purpose register and whose quotient is left in the multiplier. The corresponding
hardware circuitry is essentially a shift: it puts the contents of LO into some
general-purpose register, puts the contents of HI into LO, and zeroes ACX. Here
is how we model this operation:

Definition mflhxu_op m := let (acx’, hi’) := (acx m, hi m) in
(Z2u acx_size 0, (zero_extend 24 acx’, hi’)).

What is important for verification is the properties of mflhxu w.r.t. the decimal
value of the multiplier. Such properties can be derived as lemmas from the

An Approach to Formal Verification of Arithmetic Functions in Assembly 351

definition of mflhxu_op. For example, the decimal values of the multiplier before
and after mflhxu are related as follows (Zbeta n stands for βn =232n):
Lemma mflhxu_utoZ : ∀ m, utoZ m = utoZ (mflhxu_op m) * Zbeta 1 + u2Z (lo m).

3.2 Axiomatic Semantics

The syntax of WhileSMIPS programs is encoded as the inductive type cmd :

Definition immediate := int 16.
Inductive cmd : Set :=
| add : gp_reg → gp_reg → gp_reg → cmd
| addi : gp_reg → gp_reg → immediate → cmd
| addiu : gp_reg → gp_reg → immediate → cmd
| addu : gp_reg → gp_reg → gp_reg → cmd
| lw : gp_reg → immediate → gp_reg → cmd
| lwxs : gp_reg → gp_reg → gp_reg → cmd
| maddu : gp_reg → gp_reg → cmd
| mflhxu : gp_reg → cmd
| sw : gp_reg → immediate → gp_reg → cmd
| seq : cmd → cmd → cmd
| ifte_beq : gp_reg → gp_reg → cmd → cmd → cmd
| while_bne : gp_reg → gp_reg → cmd → cmd
...

Except for control-flow commands (seq , ifte_beq , while_bne , etc.), the type
constructors have the same names as their SmartMIPS counterparts. As usual
with MIPS, instructions with suffix “u” do not trap on overflow and instructions
with prefix “m” use the multiplier. In the excerpt above, SmartMIPS-specific
instructions include lwxs, that loads words using scaled indexed addressing, and
maddu and mflhxu, that use the ACX register.

The assertion language is an instance of separation logic [6], an extension of
Hoare logic with a native notion of heap. We choose separation logic because it
is a general solution to represent mutable data structures such as arrays, that
are used to represent multi-precision integers in arithmetic functions.

Assertions are encoded as truth-functions from states to Prop, the type of
predicates in Coq (this technique of encoding is called shallow embedding):
Definition assert := gpr.store → cp0.store → multiplier.m → heap.h → Prop.

Using this type, one can easily encode any first-order predicate. For example, the
predicate that is true when variables x and y have the same contents is encoded
as follows (lookup is a function provided by the interface of stores):

Definition x_EQ_y (x y : gp_reg) : assert :=
fun s _ _ _ => gpr.lookup x s = gpr.lookup y s.

To encode separating connectives, we use a module for heaps. In the following,
we omit the definitions of heap-related functions: their names and notations are
self-explanatory and details can be found in [16]. First, we introduce a language
for expressions used in separating connectives:

Inductive expr : Set :=
var_e : gp_reg→ expr | int_e : int 32→ expr | add_e : expr→ expr→ expr | ...

352 R. Affeldt and N. Marti

In this language, variables are registers and constants are (32-bit) words. Given
an expression e and a store s, the function eval returns the value of the expres-
sion e in store s.

The mapsto connective e1 �→ e2 holds in a state with a store s and a singleton
heap with address eval e1 s and contents eval e2 s :

Definition mapsto (e e’:expr) : assert := fun s _ _ h =>
∃ p, u2Z (eval e s) = 4 * p ∧ h = heap.singleton p (eval e’ s).

Notation "e1 �→ e2" := (mapsto e1 e2).

The separating conjunction P � Q holds in a state whose heap can be divided
into two disjoint heaps such that P and Q hold:

Definition sep_con (P Q:assert) : assert := fun s s’ m h =>
∃ h1, ∃ h2, h1 ⊥ h2 ∧ h = h1 ∪ h2 ∧ P s s’ m h1 ∧ Q s s’ m h2.

Notation "P � Q" := (sep_con P Q).

In practice, the separating conjunction provides a concise way to express that
two data structures reside in disjoint parts of the heap.

Using the separating conjunction, the mapsto connective can be generalized
to arrays of words: (e �⇒ a::b::...) holds in a state whose heap contains a list
of contiguous words a, b, . . . starting at address eval e s :

Fixpoint mapstos (e:expr) (lst:list (int 32)) : assert :=
match lst with

| nil => empty_heap
| hd::tl => (e �→ int_e hd) � (mapstos (add_e e (int_e four32)) tl)

end.
Notation "e �⇒ lst" := (mapstos e lst).

Hoare triples are encoded as an inductive relation {{ P }} c {{ Q }} (notation for
semax P c Q) between commands and pre/post-conditions encoded as assertions.
For illustration, here follows the implementation of the Hoare triples for the
commands add and lw :

Inductive semax : assert → cmd → assert → Prop :=
| semax_add: ∀ Q rd rs rt,
{{ update_store_add rd rs rt Q }} add rd rs rt {{ Q }}

| semax_lw : ∀ P rt offset base,
{{ lookup_heap_lw rt offset base P }} lw rt offset base {{ P }}

| ...

In the preconditions, update_store_add and lookup_heap_lw are predicate trans-
formers. The effect of executing add rd rs rt is to update the contents of the
register rd with the result of the operation (vrs ⊕ vrt) (where vrs and vrt are
the contents of the registers rs and rt), provided the addition in two’s comple-
ment does not overflow:

Definition update_store_add rd rs rt P : assert := fun s s’ m h =>
- 2^^31 ≤ s2Z (gpr.lookup rs s) + s2Z (gpr.lookup rt s) < 2^^31 →
P (gpr.update rd (gpr.lookup rs s ⊕ gpr.lookup rt s) s) s’ m h.

An Approach to Formal Verification of Arithmetic Functions in Assembly 353

The function lookup_heap_lw checks that the access is word-aligned and the cell-
contents specified:

Definition lookup_heap_lw rt offset base P : assert := fun s s’ m h =>
∃ p, u2Z (gpr.lookup base s ⊕ sign_extend offset) = 4 * p ∧

∃ z, heap.lookup p h = Some z ∧ P (gpr.update rt z s) s’ m h.

4 Application to Multi-precision Arithmetic

Using our encoding of Hoare logic for SmartMIPS, we have written, specified,
and verified several SmartMIPS implementations of multi-precision arithmetic
functions in Coq. In this section, we give an overview of our experiments with a
detailed account of the formal verification of the Montgomery multiplication.

4.1 Specification of Multi-precision Arithmetic Functions

Multi-precision Integers We encode multi-precision integers as lists of machine
integers stored in memory (using the �⇒ connective defined in Sect. 3.2). In the
following, Nth i A represents the ith element of the list A of machine integers. The
interpretation of a multi-precision integer as a mathematical integer is provided
by a recursive function: Sum k A represents the decimal value of the k first words of
the list A of machine integers (least significant word first) interpreted as unsigned.
The fact that the length of multi-precision integers is explicit is important to
write loop invariants, that often talk about “partial” multi-precision integers, to
represent the decimal values of partial products for example.
Arithmetic Relations Thanks to shallow encoding and our lemmas that relate
machine integers to their decimal values, we can reuse predicates and functions
from the standard Coq library. In the following, a == b [[n]] is the Coq version
of a ≡ b[n].

4.2 Formal Verification of the Montgomery Multiplication

The Montgomery multiplication [2] is a modular multiplication. Given three
k-word integers X, Y, and M such that

Sum k X < Sum k M ∧ Sum k Y < Sum k M (1)
the Montgomery multiplication computes a k+1-word integer Z such that

Zbeta k * Sum (k+1) Z == Sum k X * Sum k Y [[Sum k M]] (2)
The advantage of the Montgomery multiplication is that it does not require a
multi-precision division, but uses less-expensive shifts instead. The price to pay
is the parasite factor Zbeta k whose elimination requires a second pass.

The implementation of the Montgomery multiplication we deal with (Fig. 1)
is the so-called “Finely Integrated Operand Scanning” (FIOS) variant [4]. In-
tuitively, it resembles the classical algorithm for multi-precision multiplication:
it has two nested loops, the inner-loop incrementally computes partial products
(modulo) that are successively added by the outer-loop. These partial products

354 R. Affeldt and N. Marti

modulo are computed in such a way that the least significant word is always
zero, thus guaranteeing that the final result will fit in k+1 words of storage. For
this to be possible, the Montgomery multiplication requires the pre-computation
of the modular inverse alpha of the least significant word of the modulus:

u2Z (Nth 0 M) * u2Z alpha == -1 [[Zbeta 1]] (3)

Definition montgomery
k alpha x y z m j i
X Y M Z one zero quot C t s :=

addiu one zero one16;
addiu C zero zero16;
addiu i zero zero16;
while_bne i k (
lwxs X i x;
lw Y zero16 y;
lw Z zero16 z;
multu X Y;
lw M zero16 m;
maddu Z one;
mflo t;
mfhi s;
multu t alpha;
addiu j zero one16;
mflo quot;
mthi s;
mtlo t;

maddu quot M;
mflhxu Z;
addiu t z zero16;
while_bne j k (
lwxs Y j y;
lwxs Z j z;
maddu X Y;
lwxs M j m;
maddu Z one;
maddu quot M;
addiu j j one16;
mflhxu Z;
addiu t t four16;
sw Z mfour16 t

);
maddu C one;
mflhxu Z;
addiu i i one16;
sw Z zero16 t;
mflhxu C

).

Fig. 1. The Montgomery Multiplication in WhileSMIPS

The SmartMIPS architecture is well-suited to the implementation of the FIOS
variant of the Montgomery multiplication because the addition performed in
the inner-loop (that adds two products of 32-bits integers) fits in the integer
multiplier (of size greater than 72 bits).

The formal Hoare triple that specifies the Montgomery multiplication is dis-
played in Fig. 2. The hypotheses HX, HY, and Halpha correspond to the input-
conditions (1) and (3), as explained above. Other hypotheses are technical: they
prevent overflows and enforce alignments (similar-looking conditions are abbrevi-
ated by “...”). The output-condition (2) appears in the post-condition; observe
that the k+1th word of storage is provided by the register C. The existence in
memory of input-words and output-words is specified by the separation logic
formula.

Formal verification of the Montgomery multiplication is done by forward rea-
soning. Let us comment on two key aspects of this verification.

Let A be the value of the multiplier before entering the inner-loop and A % n

the remainder of the division of A by 2^^n. The Montgomery multiplication
computes quot = ((A % 32)� alpha) % 32 and adds quot� M0 to the multiplier (� is
the unsigned multiplication, definition not displayed in this paper). The lemma

An Approach to Formal Verification of Arithmetic Functions in Assembly 355

Lemma montgomery_specif : ∀ nk (Hk: O < nk) nx ny nm nz
(Hnx: 4 * nx + 4 * nk < Zbeta 1) (Hny: ...) (Hnm: ...) (Hnz: ...)
X Y M (Hx: length X = nk) (Hy: ...) (Hm: ...)
(HX: Sum nk X < Sum nk M) (HY: Sum nk Y < Sum nk M)
vx vy vm vz (Hvx: u2Z vx = 4 * nx) (Hvy: ...) (Hvm: ...) (Hvz: ...)
valpha (Halpha: u2Z (Nth 0 M) * u2Z valpha == -1 [[Zbeta 1]]),

{{ fun s s’ m_ h => ∃ Z,
length Z = nk ∧ list_of_zeros Z ∧
gpr.lookup x s = vx ∧ gpr.lookup y s = vy ∧
gpr.lookup z s = vz ∧ gpr.lookup m s = vm ∧
u2Z (gpr.lookup k s) = nk ∧ gpr.lookup alpha s = valpha ∧
(var_e x �⇒ X) � (var_e y �⇒ Y) � (var_e z �⇒ Z) � (var_e m �⇒ M) s s’ m_ h ∧
multiplier.is_null m_ }}

montgomery k alpha x y z m j i X_ Y_ M_ Z_ one gpr_zero quot C t s

{{ fun s s’ m_ h => ∃ Z, length Z = nk ∧
(var_e x �⇒ X) � (var_e y �⇒ Y) � (var_e z �⇒ Z) � (var_e m �⇒ M) s s’ m_ h ∧
Zbeta nk * Sum (nk+1) (Z ++ gpr.lookup C s :: nil) ==
Sum nk X * Sum nk Y [[Sum nk M]] ∧

Sum (nk+1) (Z ++ gpr.lookup C s :: nil) < 2 * Sum nk M }}.

Fig. 2. Formal Specification of the Montgomery Multiplication

below captures the fact that the resulting multiplier is a multiple of β, and thus
the least significant word of the partial product is always zero:

Import multiplier.
Lemma montgomery_lemma : ∀ alpha M0 (A:int 64) m,
u2Z M0 * u2Z alpha == -1 [[Zbeta 1]] → utoZ m < Zbeta 2 → utoZ m = u2Z A →
lo (maddu_op (((A % 32 � alpha) % 32) � M0) m) = zero32.

As usual, the heart of the verification is to produce the right invariant for the
inner-loop. In the case of the FIOS variant of the Montgomery multiplication,
the difficulty comes from the fact that the zeroed word of storage is used to
“shift-in” the second least-significant word (LSW) of the partial product. More
precisely, at the jth iteration of the inner-loop, the algorithm uses the jth LSW
of the current partial product to compute the j−1th LSW of the new partial
product. To write this invariant, we use a function for “multi-precision integers
with a hole”. Multi-precision integers with a hole are like multi-precision integers
except that there is one word that we ignore in computing the represented value:

Definition Sum_hole l len hole (lst:list (int l)) :=
Sum (len - 1) (del_nth hole lst).

Using this function, the relation between the multiplier and the multi-precision
integers in memory is written:

Zbeta (ni + 1) * Sum_hole (nk + 1) (nj - 1) (Z ++ gpr.lookup C s :: nil) +
multiplier.utoZ m * Zbeta (ni + nj) ==

Sum ni X * Sum nk Y + Sum nj Y * u2Z (nth ni X zero32) * Zbeta ni +
Sum nj M * u2Z (gpr.lookup quot s) * Zbeta ni [[Sum nk M]]

356 R. Affeldt and N. Marti

where ni, nj, and nk are the contents of the i, j, and k registers, and s is the
current store of general-purpose registers.

4.3 Experimental Results

Besides the Montgomery multiplication, we have verified SmartMIPS imple-
mentations of several classical algorithms for multi-precision arithmetic. The
code is available online [17]; the table below summarizes the sizes of programs
and proof scripts. For proof scripts, we distinguish between the number of lines
used to write assertions (all pre/post-conditions, including intermediate forward-
reasoning steps) and the number of lines used for proof construction (calls to
Coq tactics, including custom tactics, and application of lemmas).

Multi-precision Number of asm Size of proof scripts (lines)
function instructions total assertions (ratio) individual steps (average)

addition 11 835 203 (24%) 632 (57)
subtraction 22 1473 340 (23%) 1133 (52)

multiplication 20 1634 413 (25%) 1221 (61)
Montgomery 37 3881 955 (25%) 2926 (79)

Although assertions occupy around 24% of the proof scripts, this is not a nui-
sance because they only change a little from one reasoning step to the other, and
it anyway helps to understand the verification. Appropriate tactics for forward
reasoning could get rid of this overhead.

In average, each atomic Hoare triple is proved with 62 Coq commands. Some
parts are inherently difficult because of low-level manipulations of multi-precision
integers, that require many syntactic manipulations of goals and hypotheses and
are difficult to automate satisfactorily. Yet, many parts of proof scripts are repet-
itive (trivial goals, obvious rewriting, etc.) and we already have a good deal of
small-scale custom tactics. As a mid-term goal, we think it should be possible and
desirable to use no more than 20 Coq commands per reasoning step.

5 Program Extraction

In this section, we explain how to safely extract ready-to-run SmartMIPS pro-
grams from our Coq verifications. In Sect. 3.2, we have defined an axiomatic se-
mantics for WhileSMIPS, a subset of structured SmartMIPS programs. Though
it is sufficient to specify and verify arithmetic functions and many other pro-
grams, we cannot directly assemble and run verified programs: we first need to
translate them into the set of SmartMIPS programs with jumps, and ensure
that this translation is correct. For this purpose, we equip both WhileSMIPS
and SmartMIPS programs with an operational semantics.

5.1 SmartMIPS Operational Semantics

The MIPS documentation [5] gives the semantics of SmartMIPS in terms of a
virtual machine that represents the processor. It has an explicit program counter

An Approach to Formal Verification of Arithmetic Functions in Assembly 357

and its execution is described by a small-step semantics. We encode this small-
step semantics in Coq. For the sake of simplicity, we restrict ourselves to word-
aligned memory accesses, we ignore exceptions and pipelining optimizations1.
Syntax We split SmartMIPS instructions into the set of instructions that modify
the state and just increment the program counter (type cmd0), and the set of
instructions that only modify the control-flow (type branch). We do not display in
this paper the syntax of state-modifying instructions because it is similar to cmd

(Sect. 3.2), without the control-flow commands (we just suffix type constructors
with “0” to distinguish them). The syntax of branching instructions is encoded
as the inductive type branch :

Definition label := nat.
Inductive branch : Set :=
jmp : label → branch | beq : gp_reg → gp_reg → label → branch | ...

jmp inconditionnally jumps to a given label, and beq , etc. conditionally jump to
some label. A SmartMIPS instruction is either a cmd0 or a branch instruction
(the dummy instruction no insn below is just a technical convenience) and a
SmartMIPS program is a list of instructions (without explicit structure, the
positions of instructions in this list serving as labels):

Inductive insn : Set :=
cmd_insn : cmd0 → insn | branch_insn : branch → insn | no_insn : insn.
Definition prog := list insn.

Operational Semantics. The operational semantics of cmd0 instructions is encoded
as an inductive type st -- c --> st’ that represents the execution of the instruc-
tion c from state st to state st’. For illustration, here follows the semantics
of add :

Inductive exec0 : option state → cmd0 → option state → Prop :=
| exec0_add : ∀ s s’ vrt vrs m h rd rs rt,
gpr.lookup rs s = vrs → gpr.lookup rt s = vrt →
-2^^31 ≤ s2Z vrt + s2Z vrs < 2^^31 →
Some (s,s’,m,h) -- add0 rd rs rt --> Some (gpr.update rd (vrs⊕ vrt) s,s’,m,h)

| ...

The operational semantics of branch instructions is encoded as an inductive type
n |> (pc,st) >> c >> (pc’,st’) that represents the execution of the branch c from
program counter pc and state st to program counter pc’ and state st’ (under
the constraint that the destination label is smaller than n). Note that st and
st’ can be different when the jump destination is not valid (leading to an error
state). For illustration, here follows the semantics of jmp :

Inductive exec_branch (max:label)
: branch → label * option state → label * option state → Prop :=

| exec_jmp : ∀ pc st j, max ≥ j ->
max |> (pc, Some st) >> jmp j >> (j, Some st)

| ...

1 In MIPS, the first instruction following a conditional branching is unconditionally
executed. In other words, the first instruction that is syntactically after a conditional
branching is executed before. In this paper, we ignore this issue.

358 R. Affeldt and N. Marti

The operational semantics of SmartMIPS programs is encoded as an inductive
type prg ||- (pc,st) --> (pc’,st’) that represents the execution of program prg

from program counter pc and state st to program counter pc’ and state st’:

Inductive exec_asm (prg:prog)
: label * option state → label * option state → Prop :=

| exec_asm_cmd0 : ∀ pc c st st’, Nth pc prg = cmd_insn c →
Some st -- c --> Some st’ →
prg ||-- (pc, Some st) --> (pc+1, Some st’)

| exec_asm_branch : ∀ pc j st pc’ st’, Nth pc prg = branch_insn j →
length prg |> (pc, Some st) >> j >> (pc’, st’) →
prg ||-- (pc, Some st) --> (pc’, st’)

| ...

For the composition of instructions to be possible, this inductive type also has
type constructors (not displayed here for lack of space) that express the reflex-
ivity and transitivity of the operational semantics.

5.2 Translation from WhileSMIPS to SmartMIPS

The role of the translator is simply to translate the control-flow commands of
WhileSMIPS into SmartMIPS:

Fixpoint translate (lbl:label) (c:cmd) : prog :=
match c with

| while_bne r1 r2 c => let prg := translate (lbl + 1) c in
branch_insn (beq r1 r2 (lbl + length prg + 2)) :: prg ++

branch_insn (jmp lbl) :: nil
...

end.

The correctness proof of this translator consists in showing that, for any state,
the final state of the execution of a WhileSMIPS progam and the final state
of the execution of its translated SmartMIPS version are the same. To do this
proof, we still need to equip WhileSMIPS programs with an operational seman-
tics. The latter is encoded as a inductive type exec st c st’ that represents the
execution of the command c from state st to state st’ (big-step operational se-
mantics, similar to [16]). To ensure that this operational semantics agrees with
the axiomatic semantics of Sect 3.2, we show that the latter is sound and com-
plete w.r.t. the former (formal proofs are similar to [10]). Finally, using the
big-step semantics of WhileSMIPS and the small-step semantics of SmartMIPS
programs, the correctness of the translator is proved by induction:

Lemma translate_correct: ∀ c st p c’ st’,
translate (length p) c = c’ →
exec (Some st) c (Some st’) →
p ++ c’ ||-- (length p, Some st) --> (length (p ++ c’), Some st’).

6 Related Work

Much work about formal encoding of assembly languages in proof assistants
has been done with application to proof-carrying code (PCC) in mind [7,8,9].

An Approach to Formal Verification of Arithmetic Functions in Assembly 359

Although the encoded semantics often allows for programs with arbitrary jumps,
details such as machine integers are usually not treated. This makes it difficult to
reuse existing implementations of PCC frameworks to formally verify arithmetic
functions, whose algorithms require bit-level specifications.

There exist other encodings of machine integers in Coq. Leroy has encoded
such a library for integers modulo 232 as part of the development of a certified
compiler [14]. His encoding uses the relative integers of Coq (the Z type) instead
of lists ot bits. We found it difficult to reuse directly his implementation because
the length of integers (32) is hard-wired and we needed a similar library for
several lengths. Chlipala has encoded a library similar to ours but based on
dependent vectors [15]. We think that our implementation based on an abstract
type is more flexible than dependent vectors because it separates the issues of
formal proofs and dependent types.

In this paper, we use a combination of a Hoare logic for structured Smart-
MIPS with a certified translator to SmartMIPS programs with jumps. Another
approach would have been to encode a (more intricate) Hoare logic for low-level
programs with jumps (such as [12,13]) and to specialize it to structured programs
to carry out verifications. We chose the former approach because our primary
concern was the formal verification of concrete examples of arithmetic functions,
whose implementations turn out to fit well in structured SmartMIPS.

7 Conclusion

In this paper, we proposed an approach to formal verification of arithmetic
functions in assembly based on the combined use of a certified implementation
of a Hoare logic for assembly programs with loops and a certified translator
to assembly programs with jumps. This approach enables formal verification of
ready-to-run assembly programs with a familiar-looking Hoare logic. At the heart
of our implementation is a module for machine integers that makes it possible to
prove formally the lemmas, such as overflow conditions, needed for verification
of assembly programs. Using this approach, we have formally verified several
arithmetic functions written in SmartMIPS assembly, including an optimized
implementation of the Montgomery multiplication, a de facto-standard for the
implementation of many cryptosystems.
Future Work. In order to verify more arithmetic functions, we are extending our
library with a semantics for function calls and returns, and with predicates to
deal with signed multi-precision integers. We also plan to encode a semantics for
exceptions to enable verification of embedded systems.

Acknowledgments. This work is partially supported by the Grant in Aid of Spe-
cial Coordination Funds for Promoting Science and Technology, Ministry of Edu-
cation, Culture, Sports, Science and Technology, Japan. The authors are grateful
to Pascal Paillier at Gemalto who provided the code of the Montgomery multi-
plication with detailed explanations.

360 R. Affeldt and N. Marti

References

1. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications
of the ACM 12(10), 576–585 (1969)

2. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

3. Various contributors. The Coq Proof assistant. http://coq.inria.fr
4. Koc, C.K., Acar, T., Kaliski Jr, B.S.: Analyzing and Comparing Montgomery Mul-

tiplication Algorithms. IEEE Micro 16(3), 23–26 (1996)
5. MIPS Technologies. MIPS32 4KS Processor Core Family Software User’s Manual

MIPS Technologies, Inc., 1225 Charleston Road, Mountain View, CA 94043-1353
6. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures.

In: LICS 2002. 17th IEEE Symposium on Logic in Computer Science, pp. 55–74
(2002)

7. Hamid, N.A., Shao, Z., Trifonov, V., Monnier, S., Ni, Z.: A Syntactic Approach to
Foundational Proof-Carrying Code. In: LICS 2002. 7th IEEE Symposium on Logic
In Computer Science, pp. 89–100 (2002)

8. Yu, D., Hamid, N.A., Shao, Z.: Building Certified Libraries for PCC: Dynamic
Storage Allocation. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS,
vol. 2618, pp. 363–379. Springer, Heidelberg (2003)

9. Hamid, N.A., Shao, Z.: Interfacing Hoare Logic and Type Systems for Founda-
tional Proof-Carrying Code. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.)
TPHOLs 2004. LNCS, vol. 3223, pp. 118–135. Springer, Heidelberg (2004)

10. Weber, T.: Towards Mechanized Program Verification with Separation Logic. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, Springer, Heidel-
berg (2004)

11. Babić, D., Musuvathi, M.: Modular Arithmetic Decision Procedure. Microsoft Re-
search Technical Report. MSR-TR-2005-114

12. Saabas, A., Uustalu, T.: A Compositional Natural Semantics and Hoare Logic
for Low-Level Languages. Electronic Notes in Theoretical Computer Science 156,
151–168 (2006)

13. Tan, G., Appel, A.W.: A Compositional Logic for Control Flow. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer,
Heidelberg (2005)

14. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: POPL 2006. 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 42–65

15. Chlipala, A.J.: Modular development of certified program verifiers with a proof
assistant. In: ICFP 2006. 11th ACM SIGPLAN International Conference on Func-
tional Programming, pp. 160–171 (2006)

16. Marti, N., Affeldt, R., Yonezawa, A.: Formal Verification of the Heap Manager
of an Operating System using Separation Logic. In: Liu, Z., He, J. (eds.) ICFEM
2006. LNCS, vol. 4260, pp. 400–419. Springer, Heidelberg (2006)

17. Affeldt, R., Marti, N.: An Approach to Formal Verification of Arithmetic Func-
tions in Assembly—Proof Scripts, http://staff.aist.go.jp/reynald.affeldt/
seplog/asian2006

http://coq.inria.fr
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef U/stmry/m/n/5 {OT1/cmr/m/n/9 }U/stmry/m/n/5 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef U/stmry/m/n/5 {OT1/cmr/m/n/9 }U/stmry/m/n/5 size@update enc@update http://staff.aist.go.jp/reynald.affeldt/seplog/asian2006
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://staff.aist.go.jp/reynald.affeldt/seplog/asian2006

Author Index

Acciai, Lucia 136
Affeldt, Reynald 346

Bana, Gergei 182
Banerjee, Anindya 75
Bernat, Vincent 151
Boreale, Michele 136

Cao, Zining 231
Cervesato, Iliano 167
Chevalier, Yannick 13
Chin, Wei-Ngan 331
Comon-Lundh, Hubert 151
Cousot, Patrick 272
Cousot, Radhia 272
Cuppens, Frédéric 45
Cuppens-Boulahia, Nora 45

Datta, Anupam 197
Derek, Ante 197

Feret, Jérôme 272

Hagihara, Shigeki 264
Hashimoto, Masatomo 60
He, Jifeng 28
Hughes, John 120

Igarashi, Atsushi 301
Islam, Khandoker Asadul 256
Ito, Souhei 264

Jaggard, Aaron D. 167
Jensen, Thomas 75

Kourjieh, Mounira 13

Lasota, S�lawomir 223
Le Guernic, Gurvan 75
Luo, Zhaohui 214

Ma, Qin 240
Mandt, Tarjei K. 37
Mao, Bing 90
Maranget, Luc 240
Marti, Nicolas 346
Matsumoto, Tsutomu 1

Matsunaga, Akira 1
Mauborgne, Laurent 272
Miné, Antoine 272
Mitchell, John C. 197
Mohassel, Payman 182
Monniaux, David 272

Naumann, David 120
Nguyen, Van Tang 248
Nowak, David 223

Ogawa, Mizuhito 248

Popeea, Corneliu 331
Pu, Geguang 28

Rival, Xavier 272
Roy, Arnab 197
Russo, Alejandro 120

Sabelfeld, Andrei 120
Sans, Thierry 45
Scedrov, Andre 167
Schmidt, David A. 75
Seifert, Jean-Pierre 197
Shikuma, Naokata 301
Stegers, Till 182

Tan, Chik How 37
Tsai, Ming-Hsien 105, 316
Tsay, Joe-Kai 167

Van Hung, Dang 248

Walstad, Christopher 167
Wang, Bow-Yaw 105, 316
Watanabe, Yoshimichi 256

Xia, Nai 90
Xie, Li 90

Yonezaki, Naoki 264

Zeng, Qingkai 90
Zhang, Yu 223
Zhu, Huibiao 28

	Title Page
	Preface
	Organization
	Table of Contents
	Security Evaluation of a Type of Table-Network Implementation of Block Ciphers
	Introduction
	Table-Network Implementation of DES
	Attacks and Improvements on the Implementation
	Statistical Bucketing Attack
	Recommended Variant
	Modifications on LN-DES

	Evaluating Tamper Resistance of the Table-Network Implementation of DES
	Basic Idea
	Identification Method I
	Identification Method II
	Computational Costs

	Conclusions

	A Symbolic Intruder Model for Hash-Collision Attacks
	Introduction
	Formal Setting
	Basic Notions
	Mode in an Equational Theory

	Analysis of Reachability Properties of Cryptographic Protocols
	Intruder Deduction Systems
	Simultaneous Constraint Satisfaction Problems

	Model of a Collision-Aware Intruder
	Intruder on Words
	Intruder on Words with Free Function Symbols
	Hash-Colliding Intruder

	Decidability of Reachability
	Reduction to \I_free-intruder
	Decidability of Reachability for the \I_free-intruder

	Conclusion

	A Denotational Approach to Scope-Based Compensable Flow Language for Web Service
	Introduction
	The Semantic Model for BPEL0
	The Syntax of BPEL0
	The Semantic Model

	The Denotational Semantics of BPEL0
	Primitive Statement
	Scope Activity
	Looking Up
	Parallel Composition

	Conclusion

	Certificateless Authenticated Two-PartyKey Agreement Protocols
	Introduction
	Preliminaries
	Bilinear Pairings
	Diffie-Hellman Problems
	Security of Authenticated Key Agreement

	Proposed Certificateless Authenticated Key Agreement
	Certificateless Key Agreement Using Separate KGCs
	Security Attributes
	Efficiency
	Conclusion

	FORM : A Federated Rights Expression Modelfor Open DRM Frameworks
	Introduction
	From a Content Centric Approach to a Federated Approach
	The Content Centric Approach
	Considering External Rendering Actions
	Considering External Identities
	FORM: The Federated Approach

	The Underlying Model
	The Content Centric Approach
	The Federated Approach
	Abstraction Layer

	Conclusion

	A Method of Safety Analysisfor Runtime Code Update
	Introduction
	Runtime Code Update
	Exact Model
	Language
	Exact Semantics
	Code Mapping
	Exact Update Model

	Abstract Model
	Abstract Semantics

	Related Work
	Conclusion

	Automata-Based Confidentiality Monitoring
	Introduction
	Language and Non-interference Monitoring Principles
	Definition of the Monitoring Mechanism
	The Automaton
	The Semantics
	Example of Monitored Execution

	Properties of the Monitoring Mechanism
	Conclusion

	Efficient and Practical Control Flow Monitoring for Program Security
	Introduction
	Related Work
	Efficient and Practical Control Flow Monitoring
	Extraction of Static Control Flow Information
	Control Flow Encoding and Verification
	Handling of Non-standard Control Flow
	Implementation on x86 Linux

	Evaluation
	Performance Overhead
	Security-Related Experiments
	Applicability

	Conclusion
	References

	Modular Formalization of Reactive Modules inCOQ
	Introduction
	Preliminaries
	Reactive Modules
	Shallow Embedding
	Deep Embedding

	CTL*
	Paths
	Shallow Embedding
	Deep Embedding

	The Bakery Algorithm
	Shallow Modeling
	Deep Modeling

	Future Work and Conclusion

	Closing Internal Timing Channels by Transformation
	Introduction
	Language
	Semantics
	Security Specification
	Transformation
	Geo-Localization Example
	Soundness
	Related Work
	Conclusion

	Responsiveness in Process Calculi
	Introduction
	Syntax and Operational Semantics
	The Type System \vdash_1
	Subject Reduction and Responsiveness for System \vdash_1
	Recursion on Well-Founded Data Values
	Nested Inputs, Multiple Outputs: The Type System \vdash_2
	Conclusions and Related Works

	Normal Proofs in Intruder Theories
	Introduction
	Models of Security Protocols
	Messages
	Protocols
	Offline Intruder Theories
	Transition Systems

	Online Deductions
	A Normal Proof Result
	Additional Hypotheses on the Offline Deduction System
	Modifying the Instanciation Rule
	The Normal Proof Theorem
	Consequences of the Normalisation Theorem

	Discussion and Comparison with Related Work

	Breaking and Fixing Public-Key Kerberos
	Introduction
	Kerberos 5 and Its Public-Key Extension
	The Attack
	Preventing the Attack
	Formalizing PKINIT in MSR
	Formal Analysis of PKINIT
	Conclusions and Future Work

	Computational Soundness of Formal Indistinguishability and Static Equivalence
	Introduction
	Previous Work
	Our Contributions

	Formal Model
	Signatures, Terms, and Frames
	Formal Indistinguishability

	Relating Formal and Computational Models
	Soundness, Completeness and Faithfulness
	Applications
	Decisional Diffie-Hellman Assumption
	Key-Cycles
	Boolean Algebra

	Conclusion

	Secrecy Analysis in Protocol Composition Logic
	Introduction
	Background
	Proof System for Secrecy Analysis
	Analysis of a Variant of NSL
	Compositional Reasoning for Secrecy
	Analysis of Kerberos
	Conclusion

	A Type-Theoretic Framework for Formal Reasoning with Different Logical Foundations
	Introduction
	Logic-Enriched Type Theories in a Logical Framework
	LTT_1: An Example
	Implementation

	Typed Sets
	Case Studies
	Concluding Remarks on Future Work

	On Completeness of Logical Relations for Monadic Types
	Introduction
	Logical Relations for the Simply Typed λ-Calculus
	Logical Relations for the Computational λ-Calculus
	The Computational λ-Calculus λ_Comp
	Logical Relations for λ_Comp
	Toward a Proof on Completeness of Logical Relations for λ_Comp

	Completeness of Logical Relations for Monadic Types
	Definability in the Set-Theoretical Model of λ^PESN_Comp
	Completeness of Logical Relations in λ^PES_Comp for First-Order Types
	Completeness of Logical Relations for the Non-determinism Monad

	A Spatial Logical Characterisation of Context Bisimulation
	Introduction
	Higher Order π-Calculus
	Syntax and Labelled Transition System
	Bisimulations in Higher Order π-Calculus

	Variants of Bisimulations
	Variant of Normal Bisimulation
	Variant of Barbed Equivalence

	A Logic for Context Bisimulation
	Syntax and Semantics of Logic L
	L is a Logical Characterisation of $\sim _{Ct}$
	A Variant of L

	Conclusions

	Information Hiding in the Join Calculus
	Introduction
	Classes, Objects, and Hiding
	Inheritance and Hiding
	Hiding Only Private Channels

	The Semantics of Hiding
	The Typing of Hiding
	Class Types and Object Types, Catching Up
	How to Type Hiding: Ideas

	Conclusion

	Modeling Urgency in Component-Based Real-Time Systems
	Introduction
	Duration Automata
	Synchronized Composition Systems
	Component-Based Realtime Systems
	Checking Emptiness of Component-Based Realtime Systems
	Conclusion

	Maintaining Data Consistency of XML Databases Using Verification Techniques
	Introduction
	Verification Techniques on XML Database
	Typical Scenarios
	Process of Applying Verification Techniques
	Algorithms Used for Digest

	Experiments
	Evaluation
	Conclusion

	An Operational Semantics of Program Dependence Graphs for Unstructured Programs
	Introduction
	Control Flow Graphs
	Program Dependence Graphs
	An Operational Semantics of the PDG
	Conclusion and Future Directions

	Combination of Abstractions in the ASTR´EEStatic Analyzer
	Introduction
	Handling False Alarms
	Different Classes of Alarms
	Causes of False Alarms

	General Structure of Astrée
	Abstract Domains
	Interfaces, Properties, and Abstractions
	Comparison with Predicate Abstraction
	Domain Constructors

	Network of Domains
	Hierarchies
	Communication Channels
	Input Channels
	Output Channels

	Domain Cooperation
	Precondition Refinement
	Postcondition Refinement
	Abstract Transformer Refinement
	Reduction After Widenings

	Widenings
	Framework
	Reduction of Widenings
	Delaying Strategies
	Enforcing Termination

	Narrowings
	Frameworks
	Practical Aspects

	Conclusion and Further Challenges

	Proving Noninterference by a Fully CompleteTranslation to the Simply Typed λ-Calculus�
	Introduction
	Sealing Calculus
	Syntax
	Type System
	Reduction
	Basic Properties
	Logical Relation and Noninterference

	Translation
	$lambda rightarrow$
	Logical Relation for $lambda rightarrow$
	From $lambda[] To $lambda rightarrow$
	From $lambda rightarrow$ To $lambda[]

	Proof of Noninterference Via Preservation of Logical Relations
	Logical Correspondence and Its Fullness
	Preservation of Logical Relations
	Noninterference

	Related Work
	Conclusion

	Formalization of CTL∗ in Calculus of Inductive Constructions�
	Introduction
	Preliminaries
	Kripke Structures
	Paths
	CTL*
	State Formulae
	Path Formulae

	Examples
	PTL
	UB
	CTL
	CTL*

	Conclusion and Future Work

	Inferring Disjunctive Postconditions
	Introduction
	Overview
	Computing Fixed Points in the Polyhedron Abstract Domain
	Computing Fixed Points in a Disjunctive Abstract Domain

	Forward Reasoning Rules
	Computing Disjunctive Fixed Points
	Powerset Widening Operator

	Experiments
	Related Work
	Conclusion

	An Approach to Formal Verification ofArithmetic Functions in Assembly
	Introduction
	Machine-Integers Arithmetic
	A Hoare Logic for SmartMIPS
	States
	Axiomatic Semantics

	Application to Multi-precision Arithmetic
	Specification of Multi-precision Arithmetic Functions
	Formal Verification of the Montgomery Multiplication
	Experimental Results

	Program Extraction
	SmartMIPS Operational Semantics
	Translation from WhileSMIPS to SmartMIPS

	Related Work
	Conclusion

	Author Index

