
9

Genetic Algorithms

“Genetic algorithms are good at taking large, potentially huge search
spaces and navigating them, looking for optimal combinations of
things, solutions you might not otherwise find in a lifetime.”

Salvatore Mangano
Computer Design, May 1995

9.1 Introduction

Origin with a protozoa (prime unicell animal) to existence of human (most
developed living being) in nature as a result of evolution, is the main theme,
adopted by genetic algorithms (GA), one of the most modern paradigm for
general problem solving. Since the paradigm simulates the strategy of evolu-
tion, it is surprisingly simple but powerful, domain free approach to problem
solving. GAs are gaining popularity in many engineering and scientific ap-
plications due to their enormous advantages such as adaptability, ability to
handle non-linear, ill defined and probabilistic problems. As the approach is
domain free, it has wide scope of applications and most of the optimization
problems can be handled successfully with this approach.

The emergence of massively parallel computers made these algorithms of
practical interest. There are various well known programs in this class like
evolutionary programs, genetic algorithms, simulated annealing, classifier sys-
tems, expert systems, artificial neural networks and fuzzy systems. This chap-
ter discusses a genetic algorithm – which is based on the principle of evolution
(survival of fittest). In such algorithms a population of individuals (potential
solution) undergoes a sequence of transformations like mutation type and
crossover type. These individuals strive for survival; a selection scheme, bi-
ased towards fitter individuals, selects the next generation. After some number
of generations the program converges to the optimal value.

Genetic algorithm has been applied to various problems in electrical power
systems such as generation scheduling (Orero and Irving 1996, 1996a, 1998;

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 363–381 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

364 9 Genetic Algorithms

Huang 1998), Economic load dispatch (Song and Xuan 1998), reactive power
optimization (Iba 1994), distribution network planning (Miranda et al. 1994),
alarm Processing (Wen et al. 1998), Electrical long term load-forecasting
(Chaturvedi et al. 1995) and optimal control problems. Genetic algorithms
are more robust than existing directed search methods. Another important
property of GA based search methods is that they maintain population of
potential solutions – all other methods process a single point of the search
space like hill climbing method. Hill climbing methods provide local optimum
values and these values depend on the selection of starting point. Also there is
no information available on the relative error with respect to global optimum.
To increase the success rate in hill climbing method, it is executed for large
number of randomly selected different starting points. On the other hand, GA
is a multi-directional search maintaining a population of potential solutions
and encourages information formation and exchange between these directions.
The population undergoes a simulated evolution and at each generation the
relatively good solution reproduce, while the relatively bad solutions die out.
To distinguish between different solutions we use an objective function which
plays the role of an environment.

9.2 History of Genetics

Genetics is a science which deals with the transfer of biological information
from generation to generation. Genetics deals with the physical and chemi-
cal nature of these informations itself. Geneticists are concerned with whys
and hows of these transfer of biological information, which is the basis for
certain differences and similarities that are recognized in a group of living
organisms. What is the source of genetic variations? How are difference dis-
tributed in populations? Why not all variations among living things however
are inherited? All these are concern with genetics.

Long before human began to wonder about genetic mechanism, they al-
ready operating effectively in nature. Population of plants and animals are now
known to have built in potentials for consistency and change that are depen-
dent on genetics. Change that are established through these mechanism over
long period of time in a population of living things is called EVOLUTION.

9.2 History of Genetics 365

Many potential changes have been accomplished by human interventions
in genetic mechanism that now accrue to benefit human beings. By selective
breading, domesticated organisms have been made to serve human society
increasingly better. Improve quantity and quality of milk, eggs, meat, wool,
maize, wheat, rice, cotton and many other sources of food, fiber and shelter
at least to the success of human intervention in genetic mechanism.

The mechanism of genetics is entirely based on gene. The gene concept
however, had been implicit in model’s visualization of a physical element or
factor that acts as the foundation of development of a trait. He first postulated
the existence of genes from their end effects, as expressed in altered charac-
teristics. The word “allelmorph”, shortened to “allele” is used to identify the
member of paired genes that control different alternative traits. The gene
is characterized as an individual unit of genetic mechanism. Genes replicate
themselves and reproduce chromosomes, cells and organisms of their own kind.
Gene is the part of chromosome. Some chromosomal genes work together, each
making a small contribution to height, weight or intelligence, etc. Genes not
only have a basic role in the origin and life of individual organisms, but they
also, through variation in gene frequencies, cause change in populations.

Let us have a quick look at the brief history of genetics:
“The fundamental principle of natural selection as the main evolutionary

principle long before the discovery of genetic mechanism has been presented
by C. Darwin. He hypothesized fusion or blending inheritance, supposing that
parental qualities mix together.

This theory was first time objected by Jenkins. He mentioned that there
is no selection in homogenous populations. It is simply a nightmare called
Jenkins nightmare.

In 1865, Gregor Johann Mandel discovered the basic principles of trans-
ference of hereditary factors from parents to offspring and explained the
Jenkins nightmare. The Danish biologist Wilhelm Johannsen called these fac-
tors genes. It is now known as the genes not only transmitted hereditary traits
but also mastermind the entire process of life. The genes are located in the
chromosome (thread-like bodies) which are themselves situated in the nucleus
of the cell. They are always found in pairs. Chromosomes vary in number ac-
cording to species. The fruitfly, for example, has 4 pairs or 8 chromosomes in
all, and the garden pea has 7 pairs (14 in all), mice have 20 pairs (Lawrence
1991) and humans 23 pairs (Brest et al. 2006).

Genetics was fully developed by Morgan and his collaborators. They
proved experimentally that chromosomes are the main carriers of hereditary
information, which later proved that Mendelian laws to be valid for all sexually
reproducing organisms.

1920s Cetverikov proved that Mendel’s genetics and Darwin’s theory of
natural selection are in no way conflicting and that their marriage yields
modern evolutionary theory.

Prof. John Holland of the University of Michigan, Ann Arbor envisaged
the concepts of GA algorithms and published a seminal work (Holland 1975).

366 9 Genetic Algorithms

There after, number of other researchers (Davis 1991; Goldberg and
Holland 1989; Michalewiccz 1992) contributed to developing and improve
the original GA.

9.3 Genetic Algorithms

The beginnings of genetic algorithms can be traced back to the early 1950s
when several biologists used computers for simulations of biological systems
(Goldberg and Holland 1989). However, the work done in late 1960s and early
1970s at the University of Michigan under the guidance of John Holland led to
genetic algorithms as they are known today. GA vocabulary is being borrowed
from natural genetics. The idea behind genetic algorithms is to do what na-
ture does. Genetic algorithms (GAs) are stochastic algorithms whose search
methods inspired from phenomena found in living nature. The phenomena
incorporated so far in GA models include phenomena of natural selection as
there are selection and the production of variation by means of recombination
and mutation, and rarely inversion, diploid and others. Most Genetic algo-
rithms work with one large panmictic population, i.e. in the recombination
step each individual may potentially choose any other individual from the
population as a mate. Then GA operators are performed to obtain the new
child offspring; the operators are:

i. Selection
ii. Crossover,
iii. Mutation,
iv. Survival of fittest (Heistermann 1990; Michalewiccz 1992; Muzhlenbein

1989; Holland 1973; Nowack and Schuster 1989).

9.3.1 Selection

As in natural surroundings it holds on average: “the better the parents, the
better the offsprings” and “the offspring is similar to the parents”. Therefore,
it is on the one hand desirable to choose the fittest individuals more often, but
on the other hand not too often, because otherwise the diversity of the search
space decreases (Braun 1990). GA researchers have developed a variety of se-
lection algorithms to make it more efficient and robust. In the implementation
of genetic algorithm the best individuals have been select using roulette wheel
with slot sized according to fitness, so that the probability of selection of best
strings are more as shown in Fig. 9.1a. Besides the roulette wheel selection,
researchers have developed a variety of selection algorithms like proportionate
selection, linear rank selection, tournament selection and stochastic remainder
selection.

9.3 Genetic Algorithms 367

35%

6%

15%

25%

20%

Fig. 9.1a. Roulette Wheel Selection

9.3.1.1 Roulette Wheel Selection

In roulette selection chromosomes are selected based on their fitness relative to
all other chromosomes in the population as shown in Fig. 9.1a. One disadvan-
tage of using roulette wheel is that its selective pressure reduces as population
converges upon a solution, which reduces the convergence rate and may not
allow finding the better solutions.

% Matlab sub-routine for roulette wheel selection

function x=roul(num_to_be_sel,popsize,pop,f);
f=f/sum(f);
roul_wheel(1)=f(1);
for i=2:popsize

roul_wheel(i)=roul_wheel(i-1)+f(i);
end;

% create n=num_to_be_sel random numbers for roulette
selection : r(i)

r=rand(num_to_be_sel,1);
% determine selected strings according to roul_wheel :
sel_str(popsize,lchrom)

for i=1:num_to_be_sel
flag=1;
for j=1:popsize

if (r(i)<=roul_wheel(j) & flag==1)
x(i,:)=pop(j,:);
flag=0;

end;
end;

end;

368 9 Genetic Algorithms

9.3.1.2 Tournament Selection

In this process of selection, one parent is selected by randomly comparing
other individual in the same population and select with the best fitness. To
select the second parent the same process is repeated. It is most popular
selection method due to its simplicity (Baker 1987).

9.3.1.3 Linear Rank Selection

In this method the individuals are ordered according to their fitness values
(Grefenstette 1986). The individuals of highest fitness are kept on the top
and worst on the bottom. Then each individual in the population is assigned
a subjective fitness based on linear ranking function as

f(r)=(popsize-rank)(max-min)/(Popsize-1)+min
where popsize – population size

rank – rank in the current population
max, min – maximum and minimum subjective fitness determined
by the user.

Now this subjective fitness value is assigned to the individual and the selection
is done on the basis of roulette wheel spinning. In this selection process the
selective pressure is constant and does not change with generation to genera-
tion. However, in this process, it is necessary to sort the population according
to their fitness values and the individuals of same fitness will not have the
same probability of being selected.

9.3.2 Crossover

Obviously, selection alone can not generate better offsprings. To produce bet-
ter new off springs a crossover operator is required. A crossover operator can
be termed loosely as recombination or slice-exchange-merge operator. The
most common type of crossover operator mentioned above is called single
point crossover. In this operation select two parents and randomly selects
a point between two genes to cut both chromosomes into two parts. This
point is called crossover point. In crossover operation combine the first part
of first parent and second part of second parent to get first offspring. Simi-
larly, combine the first part of second parent and second part of first parent
to get second offspring. These offsprings belong to the next population. The
crossover operator has three distinct substeps:

a. Slice each of the parent strings in two substrings.
b. Exchange a pair of corresponding substrings of parents.
c. Merge the two respective substrings to form offsprings.

For example, suppose following two binary strings are mated together and
undergoes the crossover operation. The strings are 1100000, 0101111. By a
random choice the crossover site is fixed at 3 which is shown by a vertical bar.
Then the effect of cross over will be as shown in Fig. 9.1b.

9.3 Genetic Algorithms 369

To increase the speed of convergence of GA, the population is divided from
the middle and two halves (subgroups) are used in group cross over as shown
in Fig. 9.1 c. Another type of crossover is multi-point cross over, in which two
or more than two sites have been selected and exchange have been done as
illustrated in Fig. 9.1d.

Parents P1

Crossover site

Parents P2

(i) Before crossover

Child C1

Child C2

(ii) After crossover

1 1 0 0 0 0 0

1 1 0 0 0 1 1

0 1 0 1 1 1 1
0 1 0 1 1 0 0

Fig. 9.1b. Single point cross over operation with two strings

Group of Parents P1

1 1 1 0 1

0 1 0

0 0 1

0 0

1 0

1 1 1 0 0

Group of Parents P2

1 0 1 1 1

1 1 0 0 1

0 1 1 0 0

1 0 1 0 1

(i) Before Crossover

Group of Children C1

1 1 1 1 1

0 1 0 0 1

 0 0 1 0 0

1 1 1 0 1

Group of Children C2

1 0 1 0 1

1 1 0 0 0

0 1 1 1 0

1 0 1 0 0

(ii) After Crossover

Fig. 9.1c. Single point Group Cross over operation

Parents P1 Crossover sites

Parents P2

(i) Before crossover

Child C2

Child C1

(ii) After crossover

1 1 0 0 0 0 0

0 1 0 1 1 1 1

1 1 0 1 1 0 0

0 1 0 0 0 1 1

Fig. 9.1d. Multipoint crossover

370 9 Genetic Algorithms

% Matlab code for single point crossover operation

j2=2*i;
j1=j2-1;
a=rand(1); % Random number generation.
site=round(a*(lchrom-2)+1); % Random selection of crossover site
temp=sel_str(j1,site:lchrom); % lchrom - length of cromosome
sel_str(j1,site:lchrom)=sel_str(j2,site:lchrom);
sel_str(j2,site:lchrom)=temp;

9.3.3 Mutation

The newly created individuals have no new inheritance information and the
number of alleles is constantly decreasing. This process results in the con-
traction of the population to one point, which is only wished at the end of
the convergence process, after the population works in a very promising part
of the search space. Diversity is necessary to search a big part of the search
space. It is one goal of the learning algorithm to search always in regions not
viewed before. Therefore, it is necessary to enlarge the information contained
in the population. One way to achieve this goal is mutation. The mutation
operator M (chromosome) selects a gene of that chromosome and changes the
allele by an amount called the mutation variance (mv), this happens with
a mutation frequency (mf). The parameter mutation variance and mutation
frequency have a major influence on the quality of learning algorithms. For
binary coded GAs mutation is equivalent of flipping a bit at any particular
position. Since, mutation is to be used sparingly its probability is very low.
The mutation operation may be shown as in Fig. 9.1e. The group mutation
and multipoint mutation may also be performed to improve the results.

% Matlab code for mutation operation

% sel_str is now the intermediate pop for mutation
for i=1:popsize

for j=1:lchrom
if (flip(pmute)==1)

if(sel_str(i,j)==0)
sel_str(i,j)=1;

else
sel_str(i,j)=0;

end;
end;

end;
end;
function y=flip(prob)

a=rand(1);

9.3 Genetic Algorithms 371

Mutation site

1 1 0 0 0 1 1

(i) before mutation

1 1 0 1 0 1 1

(ii) After mutation

Fig. 9.1e. Single point mutation operation

if (a <=prob)
y=1;

else
y=0;

end;

9.3.4 Survival of Fittest

Further more we only accept an offspring as a new member of population, if
it differ enough from the other individuals, that means here its fitness differ
from all other individuals at least by some significant amount. After accepting
a new individual we remove one of the worst individual (i.e. its fitness value is
quite low) from the population in order to hold the population size constant.

To maximize the efficiency of GAs, three inherent parameters of GAs are
to be optimized, the mutation probability Pm, the crossover probability Pc,
and the population size POPSIZE. For GA parameter optimization sev-
eral results have been obtained over the last few years. DeJong and Schuster
proposed heuristics for an optimal setting of the mutation probability Pm
(Nowack and Schuster 1989; Schuster 1985), Fogarty and Booker investigated
time dependencies of the mutation and the crossover probability respectively
(Fogarty 1989), Greffenstette Schaffer and Jong found optimal settings for all
three parameters of the GA by experiment (Greffensette 1986; Schaffer et al.
1989; De Jong and Spears 1990). The brief description of these parameters
are given below:

Duplicates
Individuals that represent the same candidate solution are known as

duplicate individuals. It has been mentioned (Davis 1991) that eliminating
duplicates increases the efficiency of a genetic search and reduces the danger
of premature convergence.

9.3.5 Population Size

A group of individuals (chromosome) collectively comprise is known as popu-
lation. Population size is the number of individuals (chromosome) in the pop-
ulation maintained by a GA. As discussed by De Jong and Spears (1990) [30]

372 9 Genetic Algorithms

Fig. 9.2. Effect of population size on maximum fitness

that the choice of population size has a strong interacting effect on the results.
Smaller population size tends to become homogeneous more quickly and there
is a danger of premature convergence upon a suboptimal solution. With large
population size the crossover productivity effect is much less dramatic, hence
takes longer time to converge upon a solutions.

Usually the population size for GA varying from tens to thousands and
it is noted that this parameter is mostly problem dependent. If the problem
in hand is simpler then smaller population size can also serve the purpose,
but if the problem is complex, large population size is required and it is also
necessary to run for large number of generations.

The effect of population size on maximum fitness value of GA is shown
in Fig. 9.2. Form the figure it is clear that the GA performance is good for
population size 50, 80 and 100. The optimal performance of GA is obtained
at popsize equals to 50. The average fitness is also compared for different
population sizes as shown in Fig. 9.3.

9.3.6 Evaluation of Fitness Function

The evaluation function of a GA is used to determine the fitness of chro-
mosomes in the population. The binary coded chromosomes also known as
a genotype. To find the fitness of binary coded chromosomes, they must be
decoded first and then evaluated the fitness. But in case of real coded chro-
mosome which is also called as phenotype and for them, there is no need of
decoding is required.

9.5 Effect of Mutation Probability on GA Performance 373

0 50
Generation Number

A
ve

ra
g

e
F

it
n

es
s

100

Popsize = 5
Popsize = 10
Popsize = 25

0

2

4

6

8

10

12

14

16

150

Fig. 9.3. Effect of population size on average fitness

9.4 Effect of Crossover Probability on GA Performance

For better results, it is advisable to select the crossover rate quite large than
mutation rate. This is the usual practice to take crossover rate 20 times greater
than the mutation rate. Crossover rate generally ranging from 0.25 to 0.95.
The effect of crossover probability (pcross) on GA performance in terms of
average fitness is shown in Fig. 9.4.

9.5 Effect of Mutation Probability on GA Performance

Schaffer (Mbamalu and Hawary 1993) found experimentally that mutation
probability (Pm) is approximately inversely proportional to the population
size. Mutation rate generally varying from 0.001 to 0.05. The effect of mutation
rate is shown in Fig. 9.5. If the mutation rate is high then there are more
fluctuations in the fitness value. On the other hand if the mutation rate is low
then it the search area is reduced. Hence, the optimal value of mutation rate is
selected for good performance of GA or one can dynamically change its value.

Maximum number of generations
The selection of maximum number of generations is a problem depen-

dent parameter. For complex problems, the maximum number of genera-
tions is large enough, so that the results should converge to optimal value
(Greffensette 1986).

374 9 Genetic Algorithms

0
0

2

4

6

8

10

12

14

16

18

20

50
Generation Number

A
ve

ra
g

e
F

it
n

es
s

100 150

Pc = 0.25
Pc = 0.5
Pc = 0.75

Fig. 9.4. Effect of crossover probability on average fitness

0
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

50

Pm = 0.01
Pm = 0.1
Pm = 0.3

100 150
Generation Number

M
ax

im
u

m
 F

it
n

es
s

Fig. 9.5. Effect of mutation probability on maximum fitness

9.6 Main Components of GA 375

Length of chromosome (lchrome)
The value of lchrome is dependent to the precision required and can be

calculated with the help of the following expression –

2lchrome = (max parm − min parm) ∗ 10r

Where, r is number of places after decimal, up to which the precision is
required.

Max parm – Upper bound of parameter
Min parm – Lower bound of parameter

9.6 Main Components of GA

A GA (or any evolutionary program) for a particular problem must have the
following five components:

1. A genetic representation for potential solutions to the problem (Coding).
2. A way to create an initial population of potential solution.
3. To evaluate rank of a solution define an objective function.
4. To alter the composition of offspring’s define genetic operators.
5. Define GA parameters like population size, probabilities of genetic oper-

ators, etc.

Coding
In order to solve any problem with genetic algorithms, variables are first

coded in some string structures. There are some of the studies in which directly
variables values are taken, but most of the GAs work with binary coded
variable strings (Fig. 9.6).

START

INITIALIZATION

Population

Parameter

Max Generation

Check
Performance

Reproduction

Selection

Cross Over

Mutation

STOP Satisfied

Not-Satisfied

Decode strings
Calculate
Fitness

Fig. 9.6. Flow chart of simple genetic algorithm

376 9 Genetic Algorithms

Example 1. Minimize the surface area of a cylindrical closed end container,
with the following constraints:

i. Volume is 5m3

ii. Radius of cylinder is not less than 0.5 m and not more than 1.0 m.

Solution

A. Problem formulation
It is a double variable optimization problem, which could be modified into
a single variable optimization problem.

Volume of container V = π r2l = 5m3

L = 5/π r2

Surface area A = 2π r2 + 2πr l
= 2π r2 + 2π r (5/π r2)
= 6.28 r2 + 10/r

B. Implement GA code in MATLAB
C. Given

Upper bond ub = 1.0
Lower bond lb = 0.5

D. Data preparation
i. Size of population popsize = 30
ii. Length of chromosome lchrom is determined as:

2lchrom ≥ (ub − lb) ∗ 10dp

If the precision required upto four places after decimal dp = 4.
Hence, lchrom = 13

iii. Since it is a minimization problem and genetic algorithms evaluate
the strings on the basis of fitness function, which is maximization
function.
Objective function = C − A.
Where C is a constant, whose value is more than the area A.

= 50 − A

iv. Number of maximum generation = 10
v. Cross over probability Pc = 0.5
vi. Mutation probability Pm = 0.01

E. Generate initial population

Generate a random binary matrix of size (popsize × lchrom (= 30×13)).

F. Determine the fitness value for each chromosome in the population.
G. If the fitness is equal to some specified value then stop, otherwise perform

GA operations (Table 9.1).

9.7 Variants 377

Table 9.1. Fitness values in different generations

Generation
number

Maximum
Fitness value

Minimum Fitness
value

0 33.8156 33.2806
1 33.8158 33.3760
2 33.8158 33.3855
3 33.8158 33.4126
4 33.8158 33.4576
5 33.8158 33.4853
6 33.8158 33.5147
7 33.8158 33.6076
8 33.8159 33.5559
9 33.8159 33.6155
10 33.8159 33.6349

Overall maximum fitness value = 33.8159
Hence, the minimum surface area A = 50 − Maximum fitness = 50 −

33.819 = 16.1841m2

Alternate method
The calculus method may also be used to solve the above mentioned prob-

lem, because there is one variable in the objective function. The function
which is to be minimized is

Surface area A = 6.28r2 + 10/r

Differentiate the ara A with respect to r and equate it to zero.

∂A/∂r = 0
6.28 ∗ 2 r − 10/r2 = 0
r3 = 10/(6.28 ∗ 2) = 5/6.28
r = 0.9268

Substitute the value of r in the expression of surface area.

Amin = 6.28 ∗ (0.9268)2 + (10/0.9268)

= 16.1840m2

Hence it is very clear that the GA results are quite close to the results cal-
culated from the calculus method. The calculus method is good for small size
problems, but if the problem size is large and complex or large number of
variables. Then calculus method may give good results.

9.7 Variants

The simplest algorithm represents each chromosome as a bit string. Typically,
numeric parameters can be represented by integers, though it is possible to use
floating point representations. The floating point representation is natural to

378 9 Genetic Algorithms

evolution strategies and evolutionary programming. The notion of real-valued
genetic algorithms has been offered but is really a misnomer because it does
not really represent the building block theory that was proposed by Holland
in the 1970s. This theory is not without support though, based on theoretical
and experimental results. The basic algorithm performs crossover and muta-
tion at the bit level. Other variants treat the chromosome as a list of numbers
which are indexes into an instruction table, nodes in a linked list, hashes,
objects, or any other imaginable data structure. Crossover and mutation are
performed so as to respect data element boundaries. For most data types,
specific variation operators can be designed. Different chromosomal data
types seem to work better or worse for different specific problem domains.

When bit strings representations of integers are used, gray coding is often
employed. In this way, small changes in the integer can be readily effected
through mutations or crossovers. This has been found to help prevent prema-
ture convergence at so called Hamming walls, in which too many simultaneous
mutations (or crossover events) must occur in order to change the chromosome
to a better solution.

Other approaches involve using arrays of real-valued numbers instead of bit
strings to represent chromosomes. Theoretically, the smaller the alphabet, the
better the performance, but paradoxically, good results have been obtained
from using real-valued chromosomes. A very successful (slight) variant of the
general process of constructing a new population is to allow some of the better
organisms from the current generation to carry over to the next, unaltered.
This strategy is known as elitist selection.

Parallel implementations of genetic algorithms come in two flavours.
Coarse grained parallel genetic algorithms assume a population on each of the
computer nodes and migration of individuals among the nodes. Fine grained
parallel genetic algorithms assume an individual on each processor node which
acts with neighboring individuals for selection and reproduction. Other vari-
ants, like genetic algorithms for online optimization problems, introduce time-
dependence or noise in the fitness function.

It can be quite effective to combine GA with other optimization methods.
GA tends to be quite good at finding generally good global solutions, but quite
inefficient at finding the last few mutations to find the absolute optimum. Other
techniques (such as simple hill climbing) are quite efficient at finding absolute
optimum in a limited region. Alternating GA and hill climbing can improve the
efficiency of GA while overcoming the lack of robustness of hill climbing.

A problem that seems to be overlooked by GA-algorithms thus far is that
the natural evolution maximizes mean fitness rather than the fitness of the
individual (the criterion function used in most applications).

An algorithm that maximizes mean fitness (without any need for the defin-
ition of mean fitness as a criterion function) is Gaussian adaptation, provided
that the ontogeny of an individual may be seen as a modified recapitulation of
evolutionary random steps in the past and that the sum of many random steps
tend to become Gaussian distributed (according to the central limit theorem).

9.9 Summary 379

This means that the rules of genetic variation may have a different meaning
in the natural case. For instance – provided that steps are stored in consec-
utive order – crossing over may sum a number of steps from maternal DNA
adding a number of steps from paternal DNA and so on. This is like adding
vectors that more probably may follow a ridge in the phenotypic landscape.
Thus, the efficiency of the process may be increased by many orders of mag-
nitude. Moreover, the inversion operator has the opportunity to place steps in
consecutive order or any other suitable order in favour of survival or efficiency.
(See for instance (Mahalanbis et al. 1991)).

Gaussian adaptation is able to approximate the natural process by an
adaptation of the moment matrix of the Gaussian. Gaussian adaptation may
serve as a genetic algorithm replacing the rules of genetic variation by
a Gaussian random number generator working on the phenotypic level.
Population-based incremental learning is a variation where the population
as a whole is evolved rather than its individual members.

9.8 Applications of Genetic Algorithms

GA is not only used for solving optimization problems, but there are number
of GA applications as mentioned below:

1. Industrial design by parameterization
2. Scheduling problems such as manufacturing, facility scheduling, allocation

of resources, etc.
3. System design
4. Time series prediction
5. Data base mining
6. Control system
7. Artificial life system
8. Various medical applications, such as image segmentation and modeling
9. Combinatorial optimization problems like travelling sales man problem,

routing, bin packing, graph partitioning and colouring.
10. Trajectory planning of robots
11. Game playing like chase playing, prisoner’s dilemma, etc.
12. Resource allocation problem
13. Graph colouring and partitioning, etc.

9.9 Summary

During the last few decades there has been growing interest in natural process
based algorithm. In this chapter, we provided a brief introduction to the field
of evolutionary computing and an overview of genetic algorithms (GAs).GA

380 9 Genetic Algorithms

Number of chromosome

Fitness value

Fig. 9.7. Multiple solutions of GA for single population

describes the behaviour of genetic search. GA has a capability to provide
multiple solutions for a given problem as shown in Fig. 9.7. These solutions
(fitness value) improve from generation to generation.

9.10 Bibliography and Historical Notes

Some of good books on genetic algorithms are written by Goldberg and
Holland (1988, 1989) and Lozano et al. 2006. The practical aspects and ap-
plications of genetic algorithms are given in Handbook of Genetic Algorithms
edited by Davis (1991). The classical papers on genetic algorithms are given
in Genetic Algorithms, edited by Buckles and Petry (1992) and Auger and
Hansen (2005a,b) and Srinivas and Patnaik (1994a). Yaochu J. and Branke
(2005) wrote a very lucid survey paper on evolutionary optimization. Albert
et al. (2005) Hybrid Optimization Approach for a Fuzzy Modelled Unit Com-
mitment Problem. Bath et al. (2007) had optimized the security constrained
multi-objective optimal power dispatch.

Genetic programming (GP) is very computationally intensive and so in
the 1990s it was mainly used to solve relatively simple problems. But more
recently, thanks to improvements in GP technology and to the exponential
growth in CPU power, GP produced many novel and outstanding results in
areas such as quantum computing, electronic design (Garrison et al. 2006),
game playing, sorting, searching (Smith 2002) and many more. GP has also
been applied to evolvable hardware as well as computer programs (Eiben and
Smith 2003; Fogel 2000; Auger and Hansen 2005a,b).

9.11 Exercises

1. What do you understand by genetic algorithms?
2. How does genetic algorithm work?
3. What do you mean by crossover and muation operations in GA. Write

Matlab codes for these operations.

9.11 Exercises 381

4. Mention different types of crossover operations and compare them.
5. Write Peuso codes for simple GA and implement simple GA using Matlab

and study the effect of chromosome length, crossover and muation rates
for the minimization of ocnnection length on a printed circuit board.

6. Simulated the above problem with different population size and compare
the results.

