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Development of Generalized Neuron
and Its Validation

More recently, ANNs and fuzzy set theoretic approach have been proposed
for many different industrial applications. A number of papers have been pub-
lished in the last two decades. An illustrative list is given in bibliography. Both
techniques have their own advantages and disadvantages. The integration of
these approaches can give improved results.

In the previous chapter, the performance aspect of ANN has been discussed
in detail. To overcome some of the problems of ANN and improve its training
and testing performance, the simple neuron is modified and a generalized
neuron is developed in this chapter.

In the common neuron model generally the aggregation function is sum-
mation, which has been modified to obtain a generalized neuron (GN) model
using fuzzy compensatory operators as aggregation operators to overcome the
problems such as large number of neurons and layers required for complex
function approximation, which not only affect the training time but also the
fault tolerant capabilities of the artificial neural network (ANN) (Chaturvedi
1997).

5.1 Existing Neuron Model

The general structure of the common neuron is an aggregation function and
its transformation through a filter. It is shown in the literature (Widrow and
Lehr 1990) that the ANNs can be universal function approximators for given
input–output data. The common neuron structure has summation or product
as the aggregation function with linear or nonlinear (sigmoid, radial basis,
tangent hyperbolic, etc.) as the threshold function as shown in Fig. 5.1.

If variation at aggregation is only considered at the neuron level, two types
of neurons are possible:

1. Summation type neuron (
∑

- Neuron)
In summation type neuron summation function at aggregation level and
sigmoid function at activation level is considered as shown in Fig. 5.1a.
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Fig. 5.1. (a) Simple summation neuron model. (b) Simple product neuron model
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Fig. 5.2. Summation type neural network (
∑

- ANN)

2. Product type neuron (Π – Neuron)
It consists of product function at aggregation level and sigmoid function
at activation level as shown in Fig. 5.1b.

Now using these neuron models four type of neural network could be
developed:

a. Summation type neural network (
∑

- ANN)
It contains all summation neuron at hidden layer as well as output layer
as shown in Fig. 5.2.

b. Product type neural network (Π – ANN)
It is made up of all product type neurons at both hidden layer and output
layer as shown in Fig. 5.3.

c. Mixed type neural network
In mixed type neural networks both summation and product type neurons
could be kept in two ways in the network as mentioned below:
1. Summation – product type neural network (

∑−Π – ANN)
Here summation type (

∑
) neuron is considered at the hidden layer

and product type (Π) neuron is considered at the output layer as
shown in Fig. 5.4.
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Fig. 5.3. Product type neural network (Π - ANN)
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Fig. 5.4. Summation - Product type neural network (
∑−Π - ANN)

2. Product – summation type neural network (Π-
∑

– ANN)
This is a network in which Π – neurons are taken at the hidden layer
and

∑
– neurons are at output layer as shown in Fig. 5.5.

Then all these four types of networks shown in Figs. 5.2–5.5 are used to
model the non-linear starting speed – torque characteristic of induction motor
and their performance have been compared for same initial weights and same
ANN learning parameters as shown in Table 5.1.
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Fig. 5.5. Product-summation type neural network (Π −∑ -ANN)

Table 5.1. ANN learning parameters

Learning rate η 0.4
Momentum factor α 0.6
Gain scale factor λ 1.0
Error tolerance E 0.005

Table 5.2. Performance of different ANN models for mapping induction motor
characteristics

Models Training performance Testing performance
RMS error Min error Max error∑

- ANN 1150 0.02568 0.000376 0.888082
Π – ANN 4090 0.14097 0.000632 0.287738∑−Π – ANN 50 0.01661 0.000430 0.250279
Π −∑ - ANN 50 0.01358 0.000614 0.297254

The training and testing performance of all four type neural network is
given in Table 5.2. It is quite clear that the combination of these different
types of neuron layers in the network gave very interesting results. The mixed
type neural network only needed 50 iterations (epochs) during training and
testing results are also quite good for these type of networks.

5.2 Development of a Generalized Neuron (GN) Model

It is very clear from the above discussion that the combinations of summation
(
∑

) neurons and product (Π) neurons at different layers are giving quite
good results as compared to only summation neuron or product neuron in
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the whole network; which motivated to explore the possibilities of different
combinations. Thus, a generalized neuron model has been developed that
uses the fuzzy compensatory operators (listed in Table 5.3) that are partly
union and partly intersection given by Mizumoto in his paper on pictorial
representation of fuzzy connectives II in 1989.

Use of the sigmoid threshold function and ordinary summation or prod-
uct as aggregation functions in the existing models fails to cope with the

Table 5.3. Compensatory operators suggested by Mizumoto (1989)

S. No. Summation type operator Product type operator

1. [X1 ∩ X2]∗W + [X1 ∪ X2]∗(1 − W) [X1 ∩ X2]W∗[X1 ∪ X2](1−W)

2. (X1∗X2)∗W + (X1 + X2 − X1∗X2)
∗(1 − W)

(X1∗X2)W∗(X1 + X2 − X1∗X2)(1−W)

3. [0 ∪ (X1∗X2)]∗W] + [1 ∩ (X1 + X2)]

∗(1 − W)

[0∪ (X1∗X2)]W + [1∩ (X1 +X2)](1−W)

4. [X1 ∩ X2]∗W + (X1 + X2 − X1∗X2)
∗(1 − W)

[X1 ∩ X2]W∗(X1 + X2 − X1X2)(1−W)

5. [X1 ∪ X2]∗W + (X1∗X2)∗(1 − W) [X1 ∪ X2]W∗(X1∗X2)(1−W)

6. [X1 ∩X2]∗W+[1∩ (X1 +X2)]∗(1−W) [X1 ∩ X2]W∗[1 ∩ (X1 + X2)](1−W)

7. [X1∪X2]∗W+[0∪(X1+X2−1)]∗(1−W) [X1 ∪ X2]W∗[0 ∪ (X1 + X2 − 1)](1−W)

8. [X1∗X2]∗W + [1 ∩ (X1 + X2)]∗(1 − W) [X1∗X2]W∗[1 ∩ (X1 + X2)](1−W)

9. [X1 +X2−X1∗X2]∗W+[0∪(X1 +X2−
1)]∗(1 − W)

[X1 + X2 − X1∗X2]W∗[0 ∪ (X1 + X2 −
1)](1−W)

10. [X1∩X2]∗W+[0∪(X1+X2−1)]∗(1−W) [X1 ∩ X2]W∗[0 ∪ (X1 + X2 − 1)](1−W)

11. [X1 ∪X2]∗W+[1∩ (X1 +X2)]∗(1−W) [X1 ∪ X2]W∗[1 ∩ (X1 + X2)](1−W)

12. [X1∗X2]∗W+[0∪(X1+X2−1)]∗(1−W) [X1∗X2]W∗[0 ∪ (X1 + X2 − 1)](1−W)

13. (X1 + X2 − X1∗X2)∗W + [1 ∩ (X1 +
X2)]∗(1 − W)

(X1 + X2 − X1∗X2)W∗[1 ∩ (X1 +
X2)](1−W)

14. [X1 ∩ X2]∗W + [X1∗X2]∗(1 − W) [X1 ∩ X2]W∗[X1∗X2](1−W)

15. [X1 ∪ X2]∗W + (X1 + X2 − X1∗X2)
∗(1 − W)

[X1 ∪ X2]W∗(X1 + X2 − X1X2)(1−W)

16. [X1 ∩ X2]∗W + [(X1 + X2)/2]∗(1 − W) [X1 ∩ X2]W∗[(X1 + X2)/2](1−W)

17. [X1 ∪ X2]∗W + [(X1 + X2)/2]∗(1 − W) [X1 ∪ X2]W∗[(X1 + X2)/2](1−W)

18. [X1∗X2]∗W + [(X1 + X2)/2]∗(1 − W) [X1∗X2]W∗[(X1 + X2)/2](1−W)

19. [X1 + X2 − X1∗X2]∗W + [(X1 + X2)/
2]∗(1 − W)

[X1 + X2 − X1∗X2]W∗[(X1 + X2)/
2](1−W)

20. [0 ∪ (X1 + X2 − 1)]∗W + [(X1 +
X2)/2]∗(1 − W)

[0∪(X1+X2−1)]W∗[(X1+X2)/2](1−W)

21. [1 ∩ (X1 + X2)]∗W + [(X1 + X2)/2]
∗(1 − W)

[1 ∩ (X1 + X2)]W∗[(X1 + X2)/2](1−W)

22. [(X1∩X2)]∗W+[(X1 +X2)/2]∗(1−W) [(X1 ∩ X2)]W∗[(X1 + X2)/2](1−W)

23. [X1 ∪ X2]∗W + [1 − √
(1 − X1)

(1 − X2)]∗(1 − W)
[X1 ∪ X2]W∗[1 − √

(1 − X1)
(1 − X2)](1−W)

24. [X1 ∩ X2]∗W + [1 − √
(1 − X1)

(1 − X2)]∗(1 − W)
[X1 ∩ X2]W∗[1 − √

(1 − X1)
(1 − X2)](1−W)

25. [X1 ∪ X2]∗W + [
√

(X1∗X2)]∗(1 − W) [X1 ∪ X2]W∗[√(X1∗X2)](1−W)

26.
√

(X1∗X2)∗W + [1 − √
(1 − X1)(1 −

X2)]∗(1 − W)

√
(X1∗X2)W∗[1 − √

(1 − X1)
(1 − X2)](1−W)

27. [2X1X2/(X1 + X2)]∗W + [(X1 + X2 −
2X1X2)/(2 − X1 − X2)]∗(1 − W)

[2X1X2/(X1 + X2)]W∗[(X1 + X2 −
2X1X2)/(2 − X1 − X2)](1−W)
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Table 5.3. (Continued)

S. No. Summation type operator Product type operator

28. [(X1 + X2)/2]∗W +
√

(X1X2)]∗(1−W) [(X1 + X2)/2]W∗√(X1X2)(1−W)

29. [(X1 + X2)/2]∗W + [1−√
(1−X1)(1−

X2)]∗(1 − W)
[(X1 + X2)/2]W∗[1 −√

(1 − X1)(1 −
X2)](1−W)

30. [(X1 + X2)/2]∗W + [2X1X2/(X1 +
X2)]∗(1 − W)

[(X1 + X2)/2]W∗[2X1X2/(X1 +
X2)](1−W)

31. [(X1 + X2)/2]∗W + [(X1 + X2 −
2X1X2)/(2 − X1 − X2)]∗(1 − W)

[(X1 + X2)/2]W∗[(X1 + X2 −
2X1X2)/(2 − X1 − X2)](1−W)

32. [(X1X2)(X1 +X2−2X1X2)]∗W+[X1 +
X2−X1X2(X1 +X2−2X1X2)]∗(1−W)

[(X1X2)(X1 + X2 − 2X1X2)]W∗[X1 +
X2 − X1X2(X1 + X2 − 2X1X2)](1−W)

33. [(X1X2)(X1 ∩ X2)]∗W + [X1 + X2 −
X1X2 + X1 ∪ X2 − (X1 + X2 −
X1X2)(X1 ∩ X2)]∗(1 − W)

[(X1X2)(X1 ∩ X2)W∗[X1 + X2 −
X1X2 + X1 ∪ X2 − (X1 + X2 −
X1X2)(X1 ∩ X2)](1−W)

34. [(X1X2) + (X1 ∩ X2) − (X1X2)(X1 ∩
X2)]∗W + [(X1 + X2 − X1X2)(X1 ∪
X2)]∗(1 − W)

[(X1X2) + (X1 ∩ X2) − (X1X2)(X1 ∩
X2)]W∗[(X1 + X2 − X1X2)(X1 ∪
X2)](1−W)

X1 - Input # 1 for Σ – aggregation and
X2 – Input # 2 for Π - aggregation
W - Weight or parameter of the operator varies between 0 and 1

Note: Output of Σ – part of neuron may be considered as union operator of fuzzy
and Output of Π – part of neuron may be considered as intersection operator of
fuzzy system

non-linearities involved in real life problems. To deal with these, the proposed
model has both sigmoid and Gaussian functions with weight sharing. The gen-
eralized neuron model has flexibility at both the aggregation and threshold
function level to cope with the non-linearity involved in the type of applica-
tions dealt with. The neuron has both Σ and π aggregation functions. The Σ
aggregation function has been used with the sigmoid characteristic function
while the π aggregation function has been used with the Gaussian function
as a characteristic function. The final output of the neuron is a function of
the two outputs OΣ and Oπ with the weights W and (1–W) respectively as
shown in Figs. 5.6 and 5.7. Mathematically the output of summation type
generalized neuron (GN) may be written as

GN output = O∑ ∗ W + OΠ ∗ (1 − W),

where

O∑ – output of the summation part of the neuron Σ1

W – weight associated with O∑
OΠ – output of the product part of the neuron (π).

The neuron model described above is known as the summation type com-
pensatory neuron model, since the outputs of the sigmoidal and Gaussian
functions are summed up. Similarly, the product type compensatory neuron
models may also be developed. It is found that in most of the applications
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Fig. 5.6. (a) Internal structure of summation type. (b) Internal structure of product
type generalized neuron
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Fig. 5.7. (a) Symbolic representation of summation type generalized neuron model.
(b) Symbolic representation of product type generalized neuron model

summation type compensatory neuron model works well (Chaturvedi 2002).
Mathematically the output of product type generalized neuron may be writ-
ten as –

GN Output = O∑W ∗ O(1−W)
Π

5.3 Advantages of GN

1. Less number of unknown weights
The number of weights in the case of a GN is equal to twice the number
of inputs plus one, which is very low in comparison to a multi-layer feed-
forward ANN.

2. Less training time
The weights are determined through training. Hence, by reducing the
number of unknown weights, training time can be reduced.

3. Less number of training patterns
The number of training patterns required for GN training is dependent on
the number of unknown weights. The number of training patterns must be
greater or equal to number of GN weights. As mentioned above the number
of GN weights are lesser than multi layered ANN, hence the number of
training patterns required is also lesser.
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4. Size of hidden layers
There is no hidden layer required in case of GN and single neuron is
capable to solve most of the problems.

5. Complexity of GN
GN model is less complex as compared to multilayered ANN models.

6. Structural level flexibility
GN models are more flexible at structural level. The aggregation and
activations functions could be chosen depending on the problem in hand.

5.4 Learning Algorithm of a Summation Type
Generalized Neuron

The following steps are involved in the training of a summation type general-
ized neuron:

1. Foreward calculations
Step-1: The output of the Σ1 part of the summation type generalized
neuron is

OΣ =
1

1 + e−λs∗s net
(5.1)

where s net =
∑

WΣiXi + XoΣ.
Step-2: The output of the π part of the summation type generalized neu-
ron is

OΠ = e−λp∗pi net2 (5.2)

where pi net =
∏

WΠiXi∗XoΠ.
Step-3: The output of the summation type generalized neuron can be
written as

Opk = OΠ ∗ (1 − W ) + OΣ ∗ W (5.3)

2. Reverse calculation
Step-4: After calculating the output of the summation type general-
ized neuron in the forward pass, as in the feed-forward neural network,
it is compared with the desired output to find the error. Using back-
propagation algorithm the summation type GN is trained to minimize
the error. In this step, the output of the single flexible summation type
generalized neuron is compared with the desired output to get error for
the ith set of inputs:

Error Ei = (Y i − Oi) (5.4)

Then, the sum-squared error for convergence of all the patterns is

Ep = 0.5
∑

Ei2 (5.5)

A multiplication factor of 0.5 has been taken to simplify the calculations.
Step-5: Reverse pass for modifying the connection strength.
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(a) Weight associated with the Σ1 and Σ2 part of the summation type
generalized neuron is:

W (k) = W (k − 1) + ∆W (5.6)

where ∆W = ηδk(OΣ − OΠ)Xi + αW (k − 1)
and δk =

∑
(Y i − Oi)

(b) Weights associated with the inputs of the Σ1 part of the summation
type generalized neuron are:

WΣi(k) = WΣi(k − 1) + ∆WΣi (5.7)

where ∆WΣi = ηδΣjXi + αWΣi(k − 1)
and δΣj =

∑
δkW (1 − OΣ) ∗OΣ

(c) Weights associated with the input of the π- part of the summation
type generalized neuron are:

WΠi(k) = WΠi(k − 1) + ∆WΠi (5.8)

where ∆WΠi = ηδΠjXi + αWΠi(k − 1)
and δΠj =

∑
δk(1 − W )∗(−2∗pi net) ∗OΠ

α – momentum factor for better convergence
η – learning rate

Range of these factors is from 0 to 1 and is determined by experience.

Matlab Program for Summation type GN model

% Main Programm for Summation type Generalized neuron (GN)

clear all;

clc;

tr_exor; % training file name (tr_pat.m)

[i_row i_col]=size(x_tr);

patterns=i_row;

% Initialization of GN model

% weight Initialization

w=randn(in,on)*0.1; % Weight of sum part (size [in x on])

wpi=ones(in,on)+randn(in,on)*0.1; % Weight of product part

(size [in x on])

w1=0.6; % weight of sum-sum part

pi_bais=0.05; % bais of product part

s_bais=0.05; % bais of sum part

delta_w1=0.0; % Change in weights for sum-sum part

delta_w=zeros(in,on) % Change in weights for sum part

delta_wpi=zeros(in,o % Change in weights for product part

delta_s_bais=0.0; % Change in bais for sum part

delta_pi_bais=0.0; % Change in bais for sum part

ss_err=0; % sum quared error
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% Network parameters

eta=input(‘Value of Learning rate=’); %learning rate

alpha=input(‘Value of momentum factor=’); % momentum factor

lemda_s=1; % gain scale factor of sigma part

lemda_pi=1; % gain scale factor of pi part

err_tol=0.001; % error tolrence

max_epoch=20000; % maximum number of iterations

disp_itr=max_epoch/100; % Display training results after

so many epochs

x_in_tr=x_tr(:,1:in); % input pattern for training

y_desired=x_tr(:,(in+1):i_col); % Desired output

count1=0;

for epoch=1:max_epoch % Loop or cycle (both forward and

reverse calculation)

for i=1:patterns % Loop for calculating output

for GN model

s_net(i,:)=x_in_tr(i,:)*w+s_bais; % sigma of (xi*wi)

x_wpi=x_in_tr(i,:).*wpi’; % product of (xi*wi)

pi_net(i,:)=pi_bais+prod(x_wpi);

end

s_out=1./(1+exp(-lemda_s*s_net)); % output of sigma part

pi_out=exp(-lemda_pi*(pi_net.^2)); % output of pi part

y_cnn=(w1*s_out+(1-w1)*pi_out); % Final output

% Reverse calculation for adjusting weights and train GN model

% Network error

error=y_desired-y_cnn; % Error of GN model

s_err=(error.^2)./2; % square error

ss_err1=ss_err;

ss_err=sum(s_err); % sum square error

err_dot=ss_err1-ss_err; % change in sum square error

tr_res(epoch,:)=[epoch ss_err err_dot]; % training results

if ss_err<=err_tol; break; end

if count1==disp_itr

ss_err

count1=0;

end

count1=count1+1;

% weight adjustment of sigma-sigma part

delta_w1=eta*error’*(s_out-pi_out)+alpha*delta_w1;

w1=w1+delta_w1;

% weight adjustment of input-sigma part

f_desh=s_out.*(1-s_out);

delta_w=(lemda_s*eta*w1*(error.*f_desh)‘*x_in_tr)’+alpha*delta_w;

w=w+delta_w; % New weights for sum part
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% weight adjustment of input-pi part

fdesh_pi=-2*pi_out.*pi_net;

delta_wpi=lemda_pi*eta*(1-w1)*sum(error.*fdesh_pi.*(pi_net-pi_bais))./

wpi+alpha*delta_wpi;

wpi=wpi+delta_wpi; % New weights for product part

% modify bais of first sigma part

delta_s_bais=lemda_s*eta*w1*error’*f_desh+alpha*delta_s_bais;

s_bais=s_bais+delta_s_bais;

% modify bais of pi part

delta_pi_bais=lemda_pi*eta*(1-w1)*error’*fdesh_pi+alpha*delta_pi_bais;

pi_bais=pi_bais+delta_pi_bais;

end

% Testing of GN model

tst_exor; % Test File name (tst_pat.m)

[x_R x_c]=size(x_tst);

patterns1=x_R;

x_in1=x_tst(:,1:in);

y_desired1=x_tst(:,(in+1):i_col);

for i=1:patterns1

s_net1(i,:)=x_in1(i,:)*w+s_bais; % sigma of (xi*wi)

x_wpi1=x_in1(i,:).*wpi’; % product of (xi*wi)

pi_net1(i,:)=pi_bais+prod(x_wpi1);

end

s_out1=1./(1+exp(-lemda_s*s_net1)); % output of sigma part

pi_out1=exp(-lemda_pi*(pi_net1.^2)); % output of pi part

y_cnn1=(w1*s_out1+(1-w1)*pi_out1); % GN output

err_tst=(y_desired1-y_cnn1); % Error during testing

% plotting of training results

subplot(1,2,1); % Divide the display screen

in 1 row and 2 columns

plot(tr_res(:,1),tr_res(:,2),‘k-’); % plot (x,y)

xlabel(‘Number of Epochs’) ; % Label x-axis

ylabel(‘training ss_err’); % Label y-axis

title(‘Error’); % Title for the graph

subplot(2,2,2)

plot(tr_res(:,1),tr_res(:,3),‘k-’);

axis([0 20000 -0.001 0.001]);

xlabel(‘Number of Epochs’)

ylabel(‘Err_dot’)

title(‘Derivative of Error’)

% plotting of test results

subplot(1,2,2)
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plot(y_desired1,‘k--’);hold on

plot(y_cnn1,‘k-’)

xlabel(‘Number of Output’)

ylabel(‘Generalized Neuron output’)

title(‘GN output during testing’)

subplot(2,2,4)

plot(1:x_R, err_tst,‘k-*’)

xlabel(‘Number of Output’)

ylabel(‘Error during testing’)

title(‘testing Error’)

5.5 Benchmark Testing of Generalized Neuron Model

The generalized neuron model developed must be verified on Benchmark prob-
lems and compared with feed-forward multi-layered ANN under same training
conditions such as same gain scale factor, learning rate, momentum, initial
weights and error function used in back-propagation learning algorithm.

5.5.1 Ex-OR Problem

The multi-layered feed-forward ANNs are trained to produce an output of
one (zero) when binary input has an odd (even) number of bits. The Ex-OR
problem is a classification problem, which is linearly non-separable. It requires
minimum one hidden layer having two neurons for its solution. The input–
output pattern of Ex-OR problem is given in Table 5.4.

It arises in the case of XOR problem, which may be viewed as a special
case of points in the unit hypercube. Each point in the hypercube is class 0
or class 1. However, in the special case of the XOR problem, we need only the
four corners of the unit square that corresponds to the input patterns (0,0),
(0,1), (1,0) and (1,1). The first and third patterns are in class 0 and the input
patterns (0,1) and (1,0) are also at the opposite corners of the square, but are
classified together as output 1.

The use of a single neuron with two inputs results in a straight line for de-
cision boundary in the input space. For all points on one side of the line, the
neuron outputs 1; for all points on the other side of the line, it outputs 0.
The position and orientation of the line in the input space are determined
by the synaptic weights of the neuron connected to the input nodes, and the

Table 5.4. Input–output patterns for Ex-OR problem

Inputs Output

0 0 0
0 1 1
1 0 1
1 1 0
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threshold applied to the neuron. With the input patterns (0,0) and (1,1) lo-
cated on opposite corners of the unit square and likewise for the other two
input patterns (0,1) and (1,0), it is clear that we cannot construct a straight
line for a decision boundary so that (0,0) and (1,1) lie in one decision re-
gion and (0,1) and (1,0) lie in the other decision region. In other words, an
elementary perceptron cannot solve the XOR problem (Minsky and Papert
1969).

We may solve the XOR problem by using a single hidden layer with two
neurons. The signal flow graph is shown in Fig. 5.8 and the decision boundaries
formed in Fig. 5.9. The following assumptions are made here:

• Each neuron is represented by a McCulloch–Pitts model.
• Bits 0 and 1 are represented by 0 and +1.
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Fig. 5.8. XOR problem network
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The top neuron, labelled 1 in the hidden layer is characterised as follows:

w11 = w12 = +1
θ1 = +1.5

The bottom neuron, labelled 2 in the hidden layer is characterised as follows:

w21 = w22 = +1
θ2 = +0.5

The output neuron, labelled 3 is characterised by:

w13 = −2
w23 = +1
θ3 = +0.5

ANN and GN model both have been trained using gradient descent back-
propagation learning algorithm for 0.001 error tolerance with same training
parameters. The reduction in error during training of ANN and GN Model is
shown in Fig. 5.10 for Ex-or problem. Reduction in error during training is
faster for GNM in comparison to ANN as given in Table 5.5.

The training and testing performance of GNM are shown in Figs. 5.11
and 5.12 for all four input patterns for Ex-or problem. The testing results
in terms of RMS, max and min error of ANN and GNM during testing are
presented in Table 5.6. It is found that during testing GN model is giving
very good performance than ANN as the errors in output shown by them are
considerably less than ANN.
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Fig. 5.10. Training performance of GN model for Ex-OR problem
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Table 5.5. Training performance of ANN and GN Model (GNM) for EX-OR
problem

Models Structure Training epochs

ANN 2-2-1 60,680
GN Model Single neuron 20,435
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Fig. 5.11. Testing performance of GN model for Ex-OR problem
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Table 5.6. Testing performance of ANN and GN model For Ex-OR problem with
5% noise

Models RMS error MAX error MIN error

ANN 0.33673 0.21758 −0.11341
GN Model 0.11671 0.11201 −0.01832

% Training patterns for Ex-OR problem (train pat.m)
% Normalized input output patterns
in=2; % number of inputs (X1 and X2)
on=1; % number of outputs (Y)

% X1 X2 Y
x=[ 0.9 0.9 0.1

0.1 0.9 0.9
0.9 0.1 0.9
0.1 0.1 0.1];

% Normalized testing file (tst pat.m)

% X1 X2 Y
x=[ 0.89 0.9 0.1

0.1 0.9 0.9
0.9 0.1 0.9
0.12 0.1 0.1];

5.5.2 The Mackey-Glass Time Series

The Mackey-Glass (MG) time series is the most common problem to evaluate
a network for its prediction capabilities. The MG series is a model of chaotic
series. The Mackey-Glass equation represents a model for white blood cells
production in leukaemia patients. It mimics the non-linear oscillations in the
physiological processes involved. The Mackey–Glass delay difference equation
is given below

x(t + 1) = 0.9x(t) + [0.2 × (t − τ)/(1 + x10(t − τ))].
The function plot is shown in Fig. 5.13.

The model is complicated due to the addition of a time delay τ in the non-
linear equations. The objective of this analysis is to evaluate the efficiency of
networks to predict future values using a set of past values. The above M-G
equation is implemented with τ = 1.7, x(0) = 1.2, x(t) = 0 for t < 0. A
total of 301 points have been generated from t = 0 to t = 300, all points have
been used for training. The 0th, 6th, 12th, and 18th points have been used to
predict 19th point and so on.

The training results of ANN and GNM are shown in Table 5.7 and Fig. 5.14
for Mackey–Glass problem for error level 0.002. Reduction in error during
training is faster for GN Model in comparison to ANN. GN model is consis-
tently giving good results in training of this time series problem.



5.5 Benchmark Testing of Generalized Neuron Model 103

Fig. 5.13. The Mackey-Glass time series

Table 5.7. Training performance of ANN and GN model for Mackey–Glass
problem

Models Structure Training epochs

ANN 4-4-1 13,340
GN model Single neuron 20,083

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

T
ra

in
in

g 
su

m
 s

qu
ar

ed
 E

rr
or

Number of Epochs

Fig. 5.14. Error during training
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Once ANN and GNM are carefully trained for Mackey–Glass Problem,
it has been used for testing. The training and testing performance of ANN
and GNM are shown in Figs. 5.15 and 5.16. The test output of GN model
is nearly coinciding with the actual data for all test patterns. The results in
terms of RMS, max and min errors of ANN and GN Model during testing are
presented in Table 5.8.
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Fig. 5.15. Error during testing
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Fig. 5.16. Test results of Mackey–Glass problem during testing
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Table 5.8. Testing performance of ANN and GN model with MACKEY-GLASS
problem

Models Errors (after 200 training epochs)

RMS error MAX error MIN error

ANN 0.17301 0.32675 −0.20943
GN model 0.02101 0.03502 −0.03730

5.5.3 Character Recognition Problem

The GN model is used to distinguish five different characters, A, X, H, B, I.
Each character is represented by 5 × 7 dots. Hence, there are 35 inputs for
each character as shown below:

input=[ 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1

1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0];

The output of GN model is these characters. We can assign some values
to these characters, because Neural system can give only numerical outputs.

A - 0.1
X - 0.3
H - 0.5
B - 0.7
I - 0.9

Let’s train the GN model to recognize these characters. The training file
consists of the set of inputs–ouput data. Here the input has value 0 or 1. For
0 input product part of GN model does not work, therefore it is necessary
to normalize the data in 0.1–0.9 range and present them to GN model for
training. GN model uses the following parameters for training:

Learning rate = 0.1, momentum factor = 0.5, error tolerance = 0.0001 and
maximum epochs = 1,000. The following results are obtained – given error
tolerance level is achieved in 210 epochs (cycles) and weights of size w1(1×1),
w(1 × 35), wpi(1 × 35) are as follows:

w1 = [1.1256];
w = [0.0024 − 0.1337 0.1996 − 0.0314 0.0425 0.1887 − 0.2568 0.3413

−0.5350 0.1317 − 0.1299 − 0.0076 . . .

0.1993 − 0.0968 0.0157 − 0.0183 0.0938 0.4312 0.2867 − 0.1531
−0.0449 − 0.2633 0.1360 − 0.1022 . . .

−0.0940 − 0.0982 − 0.1757 0.4440 − 0.1252 − 0.0573 − 0.2875
0.1390 0.7092 0.1367 − 0.3039];
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wpi = [1.0247 0.8564 1.0149 0.8307 1.0719 1.1142 1.1552 1.1384 0.9242
1.0443 1.0911 0.8926 . . .

1.0202 1.0763 0.8712 0.9047 1.0778 0.9994 1.0524 1.1364 1.0482 0.9213
1.0752 0.9833 . . .

0.9184 1.2094 1.0080 0.9063 1.0636 1.1682 1.0594 1.0790 1.0105 0.9841
1.0871];

The training and testing performance is graphically shown in Figs. 5.17
and 5.18.

For the same given inputs GN output is [0.1005 0.3021 0.4968 0.7040
0.8870].

Now, one bit is changed in every character and then input data is prepared
for testing of GN performance. The GN output for

these set of testing data is [0.0869 0.3221 0.4999 0.7040 0.8737];
and expected output vector is [0.1 0.3 0.5 0.7 0.9].
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Fig. 5.17. Training performance of GN model for character recognition problem
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Table 5.9. The performance comparison of GN model and ANN model

ANN GNN

Network size 35-5-1 (three layer network) 35-1 (Single neuron)
Training cycles 1000 210
Error achieved in training 0.008223 0.0001
Change one bit in each character 0.0120 0.0028

It shows that the GN performance does not detoriate too much if some
noise is present in the testing data set. It means the training patterns are
learned well. What happens if, we present foreign characters to the GN model?
Let us consider the letter M and J, as follows:

Testing = [1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
pattern 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0];

The results should show each foreign character in the category closest to
it. The results obtained from the model is [0.1977 0.8741]. In the first pattern,
M is categorized as A and J is categorized as I as expected.

The performance of GN model is also compared with ANN model and
results are given in Table 5.9.

5.5.4 Sin(X1) ∗ Sin(X2) Problem

This is a functional mapping problem to test the capabilities of GN model
for various types of functions. The mapping of two functions sin(x1) and
sin(x2) on to their product is used here. This is a popular functional mapping
problem Y = sin(x1)∗ sin(x2) as shown in Fig. 5.19. The training data for
sin(x1)∗ sin(x2) problem of the GNM and ANN is given in Table 5.10.

The ANN and GN model have been trained for Sin(x1) ∗ Sin(x2) problem
and training performance of both types of architectures is compared and given
in Table 5.9 and Fig. 5.20.

The testing performance of ANN and GN Model are shown in Fig. 5.21
with 5% noise in the testing data. The test output given by GN Model nearly
coincides with the actual data for all test patterns; however the test output
given by ANN is far away to coincide with actual data. The results in terms of
RMS, max and min errors of ANN and GN Model during testing are presented
in Table 5.11. It is found that during testing GN Model gives very good
performance than ANN as the errors in output shown by it is considerably
less than ANN.

5.5.5 Coding Problem

In this problem the network is presented with n distinct binary input pat-
terns, each with different bit positions and the network is trained to produce a
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Fig. 5.19. The Sin(x1) Sin(x2) problem
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Table 5.10. Training performance of ANN AND GN model for SIN (x1) ∗ SIN (x2)
problem

Models Structure Training epochs

ANN 4-4-4-1 50,870
GN model Single neuron 764
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Fig. 5.20. Training results of GN model
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Fig. 5.21. Testing results of GN model

Table 5.11. Testing performance of ANN and GNM SIN (X1) ∗ SIN (X2) problem

Models Errors (After 10,000 training epochs)
RMS error MAX error MIN error

ANN 0.36632 0.71788 −0.85541
GN model 0.04011 0.04442 −0.06601

particular output value corresponding to each set of bit. The training set
for coding problem is given below in Table 5.12. The training patterns are
normalized in the range 0.1–0.9 and then presented to ANN and GN model for
training. Once the model is trained then it can be used for testing. The training
and testing results are shown in Figs. 5.22–5.23 and Tables 5.13 and 5.14.
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Table 5.12. Training patterns for coding problem

Input pattern Output

1 1 1 1 1.5
1 1 1 0 1.4
1 1 0 1 1.3
1 1 0 0 1.2
1 0 1 1 1.1
1 0 1 0 1.0
1 0 0 1 0.9
1 0 0 0 0.8
0 1 1 1 0.7
0 1 1 0 0.6
0 1 0 1 0.5
0 1 0 0 0.4
0 0 1 1 0.3
0 0 1 0 0.2
0 0 0 1 0.1
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Fig. 5.22. Performance of GN model during training

For the GN model following points are important to discuss:

1. The GN input must be normalized in the appropriate range. Most of the
time 0.1–0.9 normalization range works very well. If the input is slightly
outside to the normalization range then there is a margin of 0.1 on both
sides, so the GN model could give appropriate results. If normalization
range is between 0 and 1, then for 0 inputs the output of product part
of GN model is zero. Hence this normalization range in not suitable for
GN model.

2. Learning rate and momentum factor should be decided in such a way
that GN model learns faster and give stable response. One can start with
very low value of learning rate and higher value of momentum factor. The



5.5 Benchmark Testing of Generalized Neuron Model 111

0 2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
N

 o
ut

pu
t d

ur
in

g 
T

es
tin

g

Pattern number

Fig. 5.23. Performance of GN model during testing

Table 5.13. Training performance of ANN and GN model for coding problem

Models Structure Epochs

ANN 4-4-1 38,430
GN model Single neuron 689

Table 5.14. Testing performance of ANN and GN model for coding problem

Model RMS error MAX error MIN error

ANN 0.36543 0.79301 −0.55296
GN model 0.00079 0.0018 −0.00111

typical values are – Learning rate = 0.001 and momentum factor = 0.1 to
start with GN model. Then it could be increased.

3. For better generalization capability of GN model little amount of noise
may be included in the training data (e.g. 0–5%).

D. 3-D Surfaces for different types of neurons

A simple matlab program is written to draw the 3-D error surfaces for
single input single output system for all four type of neurons (i.e. Σ – neuron,
Π – neuron, summation type generalized neuron and product type generalized
neuron) as shown in Fig. 5.24–5.27. It is seen that for the simple Σ – neuron
the error surface is just a inclined plane. Hence, it can never map the non-
linear function. On the other hand, in Π – neuron the 3-D surface is a curved
one and it can handle non-linear problems, but the error surface suddenly
changes. In case for summation or product type generalized neuron the error
surfaces are curved and learn quickly.
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Fig. 5.24. 3-D surface for conventional Σ – neuron
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Fig. 5.25. 3-D surface for conventional Π – neuron
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Fig. 5.26. 3-D surface for summation type GN model

% Matlab program for surface generation for different types
of Neuron Models

clear all;
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Fig. 5.27. 3-D surface for product type GN model

w1=[-1:.1:1]; % Weight varaition in the range -1 to+1.

x=[0:.05:1]; % Input variation from 0 to 1

for i=1:21 % Loop

net_s=x(i)*w1; % Calculating weighted sum for the neuron output

net_pi=x(i)*w1; % Calculating the product of input

and weight

sumout=1./(1+exp(-net_s)); % Output of summation part

piout=exp(-net_pi.^2); % Output of product part

ysum(i,:)=sumout; % Output of summation neuron

ypi(i,:)=piout; % output of product neuron

ySGNM(i,:)=((sumout+piout)./2); % output of summation type

generalized neuron

yPGNM(i,:)=(sqrt(sumout.*piout)); % output of product type

generalized neuron

end

figure(1)

surf(x,w1,1-ysum); % Ploting the 3-D surface

xlabel(‘Input’); ylabel(‘Weight’); zlabel(‘Error’);

title(‘Standard Summation Neuron’);

figure(2)

surf(x,w1,1-ypi); xlabel(‘Input’);ylabel(‘Weight’); zlabel(‘Error’);

title(‘Standard Product Neuron’);

figure(3)

surf(x,w1,1-ySGNM); xlabel(‘Input’);ylabel(‘Weight’); zlabel(‘Error’);

title(‘Summation type Generalized Neuron’);

figure(4)

surf(x,w1,1-yPGNM);

surf(x,w1,1-ySGNM); xlabel(‘Input’);ylabel(‘Weight’); zlabel(‘Error’);

title(‘Product type Generalized Neuron’);



114 5 Development of Generalized Neuron and Its Validation

5.6 Generalization of GN model

There are many GN models proposed based on the flexibility at both the
aggregation and activation function level to cope with the non-linearity in-
volved in the type of applications dealt with. The neuron can use “n” number
of aggregation and “m” number of activation functions. The final output of
the neuron is a function of output of all activation functions as shown in
Fig. 5.28–5.29.
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Fig. 5.28. Generalization of GN model
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5.6.1 GN Model-1

In this model of generalized neuron two aggregation functions (Σ and Π) and
two aggregation functions (Sigmoidal and Gaussian) have been considered.
Finally, the outputs are summed up to get the neuron output. The output of
new neuron can be mathematically written as:

Opk = f1out1 ∗ W1s1 + f1out2 ∗ W1p1 + f2out1 ∗ W1s2 + f2out2 ∗ W1p2
(2.22)

where,

W1p1 = (1 − W1s1),
W1p2 = (1 − W1s2)

Outputs of sigmoid activation functions are

f1out1 =
1

1 + e(−sumsigma∗Wfs1)

f1out2 =
1

1 + e(−product∗Wfp1)

Outputs of Gaussian activation functions are

f2out1 = e−(sumsigma∗Wfs2)2

f2out2 = e−(product∗Wfp2)2

where
Wfs2 = (1 − Wfs1), Wfp2 = (1 − Wfp1)

5.6.2 GN Model-2

In GN model-2 three activation functions sigmoid, Gaussian and straight line
have been tried with two aggregation functions “Σ” and “Π”. The outputs of
functions used in this case of the model are given below.

Outputs of activation function for Σ part are f1out1, f2out1 are same as
in Case-1.

f3out1 = K∗sumsigma, “straight line function”

Output of activation functions for Π part are f1out2, f2out2 are same as in
Case-1.

f3out2 = K∗product ‘straight line function’
K = slope of straight line

Output of the neuron is

Opk = f1out1 ∗ W1s1 + f1out2 ∗ W1p1 + f2out1 ∗ W1s2 + f2out2 ∗ W1p2
+ f3out1 ∗ W1s3 + f3out2 ∗ W1p3 (2.23)
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5.6.3 GN Model-3

In this case of new GN model-3 also three activation functions (sigmoid,
Gaussian and straight line) have been tried with two aggregation functions Σ
and Π. Three output weights (wl1, wl2, wl3) are independent for activation
functions, the other three dependent output weights are taken as given below:

wlp1 = 1 − wls1, wlp2 = 1 − wls2, wlp3 = 1 − wls3.

Output of the neuron is

Opk = f1out1 ∗ W1s1 + f1out2 ∗ (1 − W1s1) + f2out1 ∗ W1s2
+ f2out2 ∗ (1 − W1s2) + f3out1 ∗ W1s3 + f3out2 ∗ (1 − W1s3)

(2.24)

5.6.4 GN Model-4

In this case of new GN model-4 four activation functions namely sigmoid,
Gaussian, straight line and sinusoidal have been tried with two aggregation
functions Σ and Π. Output of the neuron is

Opk = f1out1 ∗ W1s1 + f1out2 ∗ Wlp1 + f2out1 ∗ W1s2 + f2out2 ∗ Wlp2
+ f3out1 ∗ W1s3 + f3out2 ∗ Wlp3 + f4out1 ∗ W1s4 + f4out2 ∗ Wlp4

(2.25)

where W1p1 = (1 − W1s1), W1p2 = (1 − W1s2), W1p3 = (1 −
W1s3), W1p4 = (1 − W1s4)

The above mentioned GN models have been tested for different bench-
marks problems and compared with ANN with the parameters shown in
Table 5.15. The ANN (4-4-4-1) and GNM both have been trained using gradi-
ent descent back-propagation learning algorithm for 0.002 error tolerance with
same training parameters. The results are as given in Tables 5.16 and 5.17.

3-D surfaces for GN models 1–4 are given in Figs. 5.30–5.33.

Table 5.15. Neural network parameters for ANN and GNM

Learning rate – 0.0001
Momentum – 0.9
Gain scale factor – 1.0
Tolerance – 0.002
All initial weights – 0.95
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Table 5.16. Training epochs of ANN AND GN models when 5% noise is included
in data

Problems ANN GNM-1 GNM-2 GNM-3 GNM-4

Ex-OR 150,680 50,435 3,452 7,967 3,470
4-bit parity 255,430 120,423 9,998 26,335 10,122
Mackey-Glass time series 30,340 183 131 150 162
Character recognition 70,945 3,037 2,358 268 241
Sin(x1) Sin(x2) 50,870 764 242 315 229
Coding problem 38,−30 689 7,478 421 223

Table 5.17. Testing performance (rms error) of ANN and GNM For benchmark
problem with 5% noise in testing data

Problems ANN GNM-1 GNM-2 GNM-3 GNM-4

Ex-OR 0.63673 0.48671 0.00261 0.00627 0.00292
4-bit parity 0.46543 0.12257 3.02 × 10−10 1.18 × 10−8 1.09 × 10−9

Mackey-Glass time series 0.27301 0.24426 0.02058 0.02654 0.02426
Character recognition 0.39375 0.13432 0.15084 0.03376 0.03201
Sin(x1) Sin(x2) 0.36632 0.04011 0.01841 0.03941 0.00613
Coding problem 0.36543 0.00079 3.74 × 10−6 9.91 × 10−2 2.21 × 10−12

5.7 Discussion on Benchmark Testing

Training performances of ANN and GN Models during training on vari-
ous benchmark problems are discussed in this chapter. Convergence in GN
model is much faster as compared to ANN. For Ex-OR, 4-bit Parity and
Mackey–Glass problems GN Model-2 requires only 3,452, 9,998 and 131
epochs, however, ANN requires 150,680, 255,430 and 30,340 epochs, respec-
tively, to achieve same tolerance (0.002) in output. In character recognition,
sin (x1)∗ sin (x2) and coding problems GN Model - 4 requires 241, 229 and
223 epochs only, which are much less as compared to epochs 70,945, 50,870
and 38,430 required by ANN to achieve same tolerance level in output.

This shows that GN models have better training performance than feed-
forward commonly used ANN. It is also observed that the performance of GN
model not only depends on type of problem but also depends on type and
number of activation and aggregation functions used. Apart from this, the
above model gives good performance over 5% noise in testing input data as
shown earlier.

In the GN model structural complexity is very less as compared to ANN.
Comparison of structural complexity associated with ANN and GN Model is
represented in Table 5.18. Four layered ANN with 13 neurons and 52 intercon-
nections with 13 number of biases uses for modeling of benchmark problems,
however GN Model - 4 uses only 1 neuron with 24 number of interconnections
and 2 biases. Further, ANN uses 13 activation functions for all its neurons;
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(a) GNM Case – 2 
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Fig. 5.30. (a) GNM Case-2. (b) Final output surface obtained from GNM-1

however, GN model -4 uses maximum eight activation functions. This shows
that ANN requires more complex structure as compared to GN model to
model a problem.

The computational complexity of ANN and GN models are also repre-
sented in Table 5.19. In one stroke, ANN requires 91 total number of opera-
tions, however GN Model requires only 31 operations as in the GNM case-4.
It means structural complexity as well as computational complexity involved
both are reduced in GN model as compared to ANN. Further, the computation
time required on PC – Pentium III in one stroke is also less, i.e. 125.5 ms in
case of GN model; however it is 808 ms for ANN.
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Fig. 5.31. Final output surface obtained from GNM-2

(a) GNM Case – 3
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Fig. 5.32. (a) GNM Case-3 (b) Final output surface obtained from GNM-3
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(a) GNM – 4

Σ ∫

⁄ Σ
Π Ω

X

Y

Z~

(b)

Fig. 5.33. (a) GNM-4 (b) Final output surface obtained from GNM-4

Table 5.18. Comparison of network complexity involved in ANN and GNM

Components ANN GN model-1 GN model-2 GN model-3 GN model-4

Number of neurons
used

13 1 1 1 1

Number of layers in
network

4 1 1 1 1

Number of intercon-
nections in network

52 16 20 20 24

Number of biases 13 02 02 02 02
Number of aggrega-
tion functions

13 03 03 03 03

Number of activa-
tion functions used

13 4 6 6 8
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Table 5.19. Comparison of ANN and GN model in one stroke for Mackey–Glass
problem

Operations ANN GN Model-1 GN Model-2 GN Model-3 GN Model-4

No. of summations 13 02 02 02 02
No. of product 52 17 21 21 25
No. of divisions 13 02 02 02 02
No. of exponential
functions computed

13 04 04 04 04

No. of sin functions
computed

− − − − 02

Total number of op-
erations

91 25 29 29 31

Time consumed in
one stroke (ms)

808 116.3 120.3 121.5 125.5

5.8 Summary

1. The training time of neural network models is a function of type and
number of aggregation activation functions used and configuration among
different functions. More number of configurations is possible in GN model
as compared to ANN because of large number of aggregation and activa-
tion functions used, which is helpful to reduce the training time.

2. Among all models GN Model-4 suits best for character recognition,
Sin(x1) ∗ Sin(x2) and coding problems taking minimum training epochs,
however for Ex-OR, Parity–4 and Mackey-Glass time series problem GN
Model-2 requires minimum training epochs to reach same tolerance level.
It shows that GN Model has flexibility to select proper configuration of
itself according to problem in hand.

3. The results reveal that convergence capability of GN Model is very good
for all benchmark problems.

4. The requirement of the total number of neurons and hidden layers is
reduced drastically in case of the GN models.

5. The GN model exhibits much superior property both in terms of conver-
gence time during training as well as prediction error during testing.

6. The performance of generalized neuron model is better compared to ANN
with noisy data also.

7. The structural complexity as well as computational complexity in GN
Model is reduced as compared to ANN.

8. The computation time in seconds has also been reduced in GN Model as
compared to ANN.
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5.9 Exercises

1. Explain various factors on which ANN performance depends
2. Write a matlab program for one hidden layer ANN and study the effect

of variation of hidden neurons.
3. What do you mean by over fitting of neural network? How this problem

may be overcome?
4. Use generalized mean as aggregation function of GN and sigmoidal as

activation function. Write a Matlab programfor this GN and train it with
back-propagation algorithm.

5. Test the above developed GN for benchmark problems.
6. Write a Matlab program for GN training with adaptive backpropagation

learning by varying learning rate and momentum factor.
7. Study the effect of noise on training and testing performance of GN.
8. Write step by step solution for training of GN with Gaussian as aggrega-

tion function.
9. Let us consider a function f(x) = x2∗e−5X

Deteremine 100 training and 25 testing patterns for ANN and GN. Compare
the performance of ANN and GN while training and testing. Also compare
the performance of both if 5% random noise is added in training.


