
4

Factors Affecting the Performance of Artificial
Neural Network Models

Artificial neural network is widely used in various fields like system’s
modelling, forecasting, control, image processing and recognition, and many
more. The development of multi-layered ANN model for a particular appli-
cation involves many issues which affect its performance. ANN performance
depends mainly upon the following factors:

1. Network
2. Problem complexity
3. Learning Complexity.

4.1 Network Complexity

Network complexity broadly depends on

a. Neuron complexity
b. Number of neurons in each layer
c. Number of layers
d. Number and type of interconnecting weights.

4.1.1 Neuron Complexity

Mainly the neuron complexity could be viewed
at two levels; firstly at aggregation function level
and secondly at activation function level. There
are two types of aggregations functions used for
neuron modelling such as summation or product
functions, but some researchers used combination
of both summation and product aggregation function such as compensatory
operators (Chaturvedi et al. 1997, 1999). The threshold functions used in
neuron may be discrete like hard limiter used by McCulloch and Pitts (1943)

D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 51–85 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

52 4 Factors Affecting the Performance of Artificial Neural Network Models

in their neuron model or continuous functions like linear or non-linear function
like sigmoid, Gaussian functions, etc.

The activation for a neuron can be thought of as the amount by which the
neuron is affected by the input it receives. One could picture a neuron vibrat-
ing degrees depending on how excited it has become, and different neurons
will be excited, or depressed the matter, by different stimuli and by differing
degrees. Actually defining this state of activation for each unit within a model,
and assigning a value to it, is a tricky process because the precision of the
model depends on the reaction of the individual units.

Some models use a set of discrete values, that is, one of a finite set of
possible values. These are often taken to be 0, 1 or −1. On the other hand, a
model may take any value between two limits. This termed a continuous set
of values, because for any two numbers there is always one that you can find
that lies between them. In some cases, the model may have no upper or lower
limit for the continuous values, but this presents problems, values can grow
to an unmanageable size very quickly.

In this section, the effect of various activation functions on ANN model
are considered for dc motor current prediction problem and found that the
tan sigmoid function at hidden layer and pure linear function at output layer
in a three layer network, where input layer is simply distributing the inputs
in various hidden layer and no processing takes place there, requires least
number of training epochs (i.e. 104). The comparisons of the results obtained
for different activation functions are shown in bar chart, Fig. 4.1. From bar
chart it is quite clear that the other functions takes more training epochs
then also the model cannot be trained to the desired error level for some
functions. The functions pure linear and pure linear in the model at hidden
and output layers respectively also requires same number of training epochs
but the results predicted for the non-linear problems are not so good. The
function pair log sigmoid and log sigmoid is also able to train the model upto
the desired error level but training epochs required is very large (in this case
it requires 2,175). Remaining all other function pairs can not train the model
up to the desired level when trained up to 2,200 epochs.

4.1.2 Number of Layers

While developing ANN model, two layers are
fixed, namely input layer and output layer. Gen-
erally, at the input layer, the inputs are distrib-
uted to other neurons in the next layer and no
processing takes place at this layer. Unlike the
input layer, at output layer processing is done.
Therefore, in a two layer network there is only
one processing layer and this type of ANN can be used for linearly separable
problems. Most of the real life problems are not linearly separable in nature
and hence this type of two layer network could not be used. In the literature

4.1 Network Complexity 53

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

Different Activation Functions

E
po

ch
s

re
qu

ire
d

1. Tan sigmoid –
Pure Linear (104)
2. Pure linear –
pure linear (104)

3. Log Sigmoid –
pure linear (779)

4. Log sigmoid –
tan sigmoid (2175)

Fig. 4.1. Effect of different activation functions at different layer

it is mentioned that the three layer network is a universal approximator and
could handle most of the problems. Then also for complex problems, it is dif-
ficult to train ANN with three layers network structure. Hence, most of the
time the ANN developer uses trial and error method to select the number of
layers in the ANN structure.

There are two ways to deal with this problem. Firstly, one can start with
three layers network and then during training the number of layers and neu-
rons may be increased till the satisfactory performance is obtained. Second
method to handle this situation is, one could begin with large number of layers
and then start deleting the layers and neuron, till the ANN size is optimal.

4.1.3 Number of Neurons in Each Layer

The number of neurons at input layer and output layer are equal to the
number of input and output variables, but the problem lies with the number
of neurons at hidden layers. It is mentioned that the number of neuron in the
hidden layer is the average of number of neurons at input and output layers.
But it is not hard and fast rule.

4.1.4 Type and Number of Interconnecting Weights

Generally every neuron in ANN is interconnected with its as previous layer
neurons and each interconnection has some weight (signal gain), which modi-
fies the input signal in one way or the other. The weights in the neural network

54 4 Factors Affecting the Performance of Artificial Neural Network Models

could be deterministic or fuzzy in nature. Normally, ANN weights are deter-
ministic and can be determined by some learning rule. It is well proven and
logical also that it is not necessary to connect every neuron with the other
neuron in the next layer. We can remove some of the connections to reduce
the complexity of the ANN and ultimately the training time of it.

To select the optimal size of the network, there are two techniques generally
adapted; either one could start with large number of neurons in each layer of
the network and during training remove the connections till its performance is
not optimal or we can start with minimal size of network and then insert the
neurons and layers to achieve the optimal size of the network as mentioned
earlier.

4.2 Problem Complexity

The performance of ANN models does not depend only on the size of the
neural network that is chosen for the problem in hand, but it also depends
on the problem complexity. The problem complexity depends on the type of
functional mapping, accurate and sufficient training data acquired and their
effective way of presentation to ANN during training. During the training
phase of ANN, unknown neural network weights are to be determined. If the
unknown network weights are more than the training data, then they could not
be determined. Therefore, the training data must always be more in number
than unknown weights, otherwise network will not train perfectly (means the
error will never reach to global minima).

The training performance also depends on the effective way of presentation
of data, in which following points have to be considered.

4.2.1 Range of Normalization of Training Data

Normalisation has a major role in the training and testing of neural networks.
It is necessary to normalize the input and output in the same order of magni-
tude. Normalization is very critical issue in ANN. If the input and the output
variables are not of the same order of magnitude, some variables may ap-
pear to have more significance than they actually do. The training algorithm
has to compensate for order-of-magnitude differences by adjusting the net-
work weights, which is not very effective in many of the training algorithms
such as back propagation algorithm. For example, if one input variable has a
value of thousands and other input variable has a value in tens, the assigned
weight for the second variable entering a node of hidden layer 1 must be much
greater than that for the first. In addition, typical transfer functions, such as
a sigmoid function, or a hyperbolic tangent function, cannot distinguish be-
tween two values of xi when both are very large, because both yield identical
threshold output values of 1.0.

4.2 Problem Complexity 55

Whenever we do normalisation of training and testing data, we need to
determine minimum and maximum value of the given data. The problem
is that these maximum and minimum values restrict the operating range of
the network (Welstead 1994). A network that has been trained to predict
a maximum change in output say 1% cannot possibly predict a change of
2%, even if the input data warrants it. This creates problems in trying to
model volatile change in data. The remedy for this situation is somewhat by
expanding the maximum and minimum values. First of all determine actual
max-min values and then new maximum values is computed by adding 10%
to the previous maximum value and a new minimum value is computed by
subtracting 10% to the previous minimum value. The network can now handle
values that fall within this expanded range and finally train the neural network
model for these normalised data. Note that normalised data is something that
is of interest only to the network. The user wants to get ANN output in the
range of the actual data. For this reason, it is necessary to convert back the
output of neural network into the actual range by denormalizing the ANN
output.

Too large a range in relation to the actual data value has the effect of
compressing the data so that it all looks the same to the network during
training. If the range is too short then the neural network model could not
predict the value outside that range and it will give absurd results. Hence,
the selections of suitable range (i.e. max–min values) is of great importance,
because it will affect the results of neural network model during testing.

The neural network is trained for different normalisation ranges and found
very encouraging results. The authors have seen that if the input data of neural
network model is normalised in the range of −0.9 to +0.9 and output data
in the range of 0.1 to 0.9 then model took least number of epochs to train
when threshold functions at hidden layer is tan sigmoid and at output layer
is pure linear. The comparison of various normalisation ranges during and
testing have been studied and the results given in Table 4.1, and Table 4.2 for
modelling and simulation of dc motor using neural network. The ANN model
was also developed for short term electrical load forecasting problem and the
effect of different normalization range had been studied. The simulation results
representing training and testing performance are complied in Tables 4.3–4.5
and shown in Fig. 4.2.

Generally it is found that the two layer neural network with tan sigmoid
threshold functions at hidden layer and pure linear threshold function at out-
put layer can train for any set of non-linear data and the performance will
improve if the normalisation range taken between −0.9 to +0.9 for input and
0.1 to 0.9 for output.

4.2.2 Type of Functional Mapping

There are four possibilities in preparing training patterns (input and output
vectors) for ANN models as shown in Fig. 4.3.

56 4 Factors Affecting the Performance of Artificial Neural Network Models

Table 4.1. DC motor current simulations with different normalisation range
(Tolerable error = 10−3, mapping actual input and actual output (X–Y) Activa-
tion functions – tan sigmoid at hidden layer and pure linear at output layer.)

Normalization X (0.1−2.5) X (0.1−0.9) X (0.1−2.5) X (0.1−0.9) X (−0.9 to +0.9)
Y (0.1−2.5) Y (0.1−2.5) Y (0.1−0.9) Y (0.1−0.9) Y (0.1−0.9)

Epochs 1500 (NT) 93 81 104 86
Test 2.1725 2.1816 2.1779 2.1951 2.2030
Results 1.9809 1.9340 1.9403 1.9518 1.9569

1.7008 1.6976 1.7091 1.7136 1.7153
1.4955 1.4883 1.5018 1.5014 1.5006
1.3186 1.3096 1.3232 1.3201 1.3181
1.6101 1.1596 1.1724 1.1682 1.1662
1.0431 1.0349 1.0465 1.0420 1.0409
0.9399 0.9319 0.9421 0.9379 0.9383
0.8539 0.8478 0.8559 0.8522 0.8542
0.5655 0.5641 0.5678 0.5666 0.5782
0.5455 0.5446 0.5470 0.5469 0.5594

Table 4.2. DC motor speed simulations with different normalisation range
(Tolerable error = 10−3, mapping – actual input and actual output (X–Y) Acti-
vation functions – tan sigmoid at hidden layer and pure linear at output layer)

Normalization X (−0.1 to +0.9) X (0.1−2.5) X (0.1−0.9) X (0.1−2.5) X (0.1−0.9)
Y (0.1−0.9) Y (0.1−0.9) Y (0.1−2.5) Y (0.1−0.9) Y (0.1−0.9)

Epochs 53 64 71 3,000 (NT) 3,000 (NT)
Test 43.7420 40.2860 41.5429 41.0291 41.9124
Results 58.2756 57.4027 57.2390 57.3006 57.5467

71.6113 72.3925 71.2981 71.9746 71.7368
83.1838 84.7799 83.2701 84.3292 83.8102
92.9339 94.7392 93.2272 94.3757 93.7644

101.0195 102.6546 101.4171 102.4133 101.8504
107.6690 108.9259 108.1201 108.8045 108.3780
113.1148 113.9000 113.5955 113.8828 113.6386
117.5664 117.8571 118.0663 117.9255 117.8803
121.2035 121.0171 121.7179 121.1547 121.3059
124.1752 123.5504 124.7023 123.7417 124.0782
126.6045 125.5886 127.1431 125.8227 126.3263
127.2335 127.2335 129.1404 127.5014 128.1526

(1) Actual input vector and actual output vector (X-Y mapping)
(2) Actual input vector and change in previous value of output vector (X-∆Y

mapping)
(3) Change in input vector and actual output vector (∆X-Y mapping)
(4) Change in input vector and change in output vector (∆X-∆Y mapping).

4.2 Problem Complexity 57

Table 4.3. Electrical load forecasting with different normalisation range
(Tolerable error = 1, mapping – actual input and actual output (X–Y) Activation
functions – tansig at hidden layer and pure linear at output layer)

Normalization X (±0.9) X (0.1–2.5) X (0.1–0.9)
Y (0.1–0.9) Y (0.1–0.9) Y (0.1–0.9)

Epochs 112 404 436
Test 2,257.4 2,254.4 2,285.6
Results 2,279.6 2,251.0 2,285.4

2,704.8 2,693.3 2,697.4
3,043.0 3,037.8 3,028.3
3,302.5 3,286.0 3,296.0
3,292.2 3,285.8 3,292.4
3,191.1 3,198.2 3,197.0
3,161.1 3,156.7 3,164.4
2,911.6 2,929.1 2,920.3
2,667.3 2,680.5 2,682.7
2,751.9 2,741.2 2,755.2
2,921.3 2,911.1 2,915.9
3,012.9 3,015.4 3,009.9
2,898.1 2,918.4 2,902.6
3,040.4 3,039.2 3,040.0
2,904.6 2,918.0 2,906.8
3,106.4 3,098.9 3,105.6
2,960.8 2,971.5 2,961.4
2,911.1 2,927.8 2,918.8

Table 4.4. Comparison of ANN training with different normalization ranges (acti-
vation function “tansig – purelin”, mapping x–y)

Range ω−
characteristics
of DC motor

ω − t
characteristics
of ind. motor

P-δ
characteristics
of alternator

Ia-t
characteristics

DC motor

STLF

X (−0.1 to 0.9)
Y (0.1 to 0.9)

53 1,311 85 – –

X (−0.1 to 2.5)
Y (0.1 to 0.9)

64 726 61 – –

X (0.1 to 0.9)
Y (0.1 to 2.5)

71 1,100 151 93 –

X (0.1 to 2.5)
Y (0.1 to 0.9)

3000 736 62 81 404

X (0.1 to 0.9)
Y (0.1 to 0.9)

3000 1,950 162 104 436

X (−0.9 to 0.9)
Y (0.1 to 0.9)

a 558 69 86 112

X (−0.9 to 0.9)
Y (−0.9 to 0.9)

a 1,666 54 – –

aANN not trained

58 4 Factors Affecting the Performance of Artificial Neural Network Models

Table 4.5. ANN testing with different normalization ranges for STLF (Tansig-
Purelin, X–Y mapping)

Range of Normalization Max error Min error SS error

X (±0.9) − Y (0.1–0.9) 5.6491 −6.0533 11.0324
X (0.1–2.5) − Y (0.1–0.9) 5.4202 −5.8098 10.6585
X (0.1–0.9) − Y (0.1–0.9) 5.1044 −5.8446 9.2511

Fig. 4.2. Effect of normalization on short term load forecasting problem

There is no way of knowing a priori which of these myriad approaches is
the best one. In this section the effects of all these mappings on the training
and testing of following cases have been studied while

(a) Mapping of dc motor current and speed, and
(b) Predicting the electrical load demand.

The training file for dc motor consists of two inputs at adjacent time in-
stances (say I(t-to) and I(t-2∗to), where to is the sampling time) and one
output O(t). Testing file contains 80% of the training file data and 20% ad-
ditional data, which can test the model’s performance on data from outside
the training set. Similarly, for load forecasting problem we have taken data of
four Mondays and predict the data of fifth Monday.

CASE – I
The dc motor data are used to train back propagation feedforward neural
network for X-Y, X-∆Y, ∆X-Y, ∆X-∆Y mappings. The training algorithms

4.2 Problem Complexity 59

Functional Mapping

Y= f(X)

Input
Space X

Output
Space Y

(a) Input and output mapping (X-Y)

Functional Mapping

∆Y=f(X)

∆Y=f(∆X)

Y= f(∆X)

Input
Space X

Change in
Output
Space ∆Y

(b) Input and output mapping (X-∆Y)

Functional Mapping Change in
Input
Space ∆X

Change in
Input
Space ∆X

Change in
Output
Space ∆Y

Output
Space Y

(c) Input and output mapping (∆X-Y)

Functional Mapping

(d) Input and output mapping (∆X-∆Y)

Fig. 4.3. Different functional mappings between input and output space

used are steepest descent based and its modifications. The modified algorithm
is commonly known as Levenberg–Marquardt. These algorithms are available
in MATLAB Tool Box on neural networks. It is found that X-Y mapping
requires least number of epochs (i.e. 98) for training and X-Y mapping re-
quires maximum number of epochs (i.e. 105). Tables 4.6 and 4.7 represent
comparative analysis of the results of all these mappings and their training
epochs and predicted results for dc motor current and speed prediction under
starting conditions respectively. In these simulations: Tolerable error = 10−3,
Normalisation – input and output both in the range 0.1–0.9, and activation
functions – Tan sigmoid at hidden layer and pure linear at output layer.

CASE – II
For electrical load forecasting problem, the comparison between all these map-
pings is given in Tables 4.8–4.11. Figure 4.4 shows the percentage error during
forecasting of the electrical demand of the totally unforeseen data of the fifth
Monday.

60 4 Factors Affecting the Performance of Artificial Neural Network Models

Table 4.6. DC motor current simulations with different mappings

Mappings X–∆Y ∆X–Y X–Y ∆X–∆Y Actual values

Epochs 98 103 104 105
Test 2.1921 2.1942 2.1951 2.1921 2.1905
Results 1.9394 1.9198 1.9518 1.9388 1.9463

1.7004 1.6781 1.7136 1.6994 1.6960
1.4909 1.4728 1.5014 1.4894 1.4860
1.3129 1.3002 1.3201 1.3113 1.3082
1.1641 1.1575 1.1682 1.1625 1.2305
1.0406 1.0405 1.0420 1.0388 1.0955
0.9384 0.9424 0.9379 0.9366 0.9839
0.8540 0.8627 0.8522 0.8521 0.8920

Table 4.7. DC motor speed simulations with different mappings

Mappings X–∆Y ∆X–∆Y ∆X–Y Actual values

Epochs 56 140 248
Test 48.3522 48.0219 44.6986 49.3902
Results 62.8526 62.7167 58.7081 64.2083

75.3795 75.3599 71.9871 76.7749
85.9263 85.9497 83.6112 87.2634
94.7077 94.7455 93.4166 95.9506

101.9823 102.0209 101.5404 103.1190
107.9939 108.0276 108.2138 109.0232
112.9552 112.9814 113.6756 113.8815
117.0463 117.0645 118.1362 117.8775
120.4181 120.4284 121.7800 121.1635
123.1959 123.1988 124.7576 123.8653
125.4836 125.4791 127.1963 126.086

4.2.3 Sequence of Presentation of Training Data

In the natural learning process of the human being, generally the simple and
easy things we learn quickly. So we start our learning with simple things,
which motivate and encourage us to learn more. Once we have learned simple
things then more time can be spent on difficult things to learn. Hence, it
is very important that how we started our learning or what is the sequence
of presentation of data for learning. ANN training performance is also very
much dependent on in what manner the data is to be presented to ANN. If we
cluster the data and then present it to ANN, then it will learn more efficiently
and quickly.

4.2.4 Repetition of Data in the Training Set

Some difficult patterns which are not remembered by ANN we have to repeat
them. Now how many times that pattern is to be repeated? This is a very

4.2 Problem Complexity 61

Table 4.8. Short term electrical load forecasting with different mappings

Mappings X–∆Y ∆X–∆Y ∆X–Y X–Y Actual demand

Epochs 35 87 800 (NT)∗ 52
Test 2,573.4 2,187.6 2,538.0 2,456.8 2,369
results 2,568.6 2,449.7 2,744.9 2,429.7 2,380

2,803.4 2,767.7 3,011.2 2,545.6 2,631
2,995.7 3,034.4 3,157.9 2,738.0 2,871
3,167.0 3,134.4 3,163.8 2,958.3 3,114
3,161.7 3,067.1 2,950.3 3,097.5 3,182
3,102.4 3,021.3 2,785.1 3,148.5 3,168
3,072.9 2,816.4 2,514.0 3,162.3 3,162
2,923.6 2,588.5 2,321.1 3,087.9 3,000
2,784.9 2,588.5 2,367.8 2,960.0 2,827
2,817.8 2,695.6 2,488.6 2,893.8 2,830
2,912.4 2,796.2 2,644.3 2,901.3 2,904
2,978.1 2,763.4 2,683.9 2,944.7 2,969
2,919.0 2,846.2 2,735.7 2,945.9 2,917
2,997.5 2,778.8 2,648.2 2,990.8 3,013
2,914.2 2,878.8 2,685.6 2,974.1 2,931
3,037.7 2,835.0 2,676.8 3,025.7 3,065

Table 4.9. ANN training performance with different functional mappings

Mapping DC motor current DC motor speed Short term load
forecasting

X–Y 104 107 52
∆X–Y 103 248 800
X–∆Y 98 56 35
∆X–∆Y 105 140 87

Table 4.10. ANN testing performance with different mappings for dc motor current

Mapping Max error Min error SS error

X–Y 0.0623 −0.0176 0.0112
∆X–Y 0.0730 −0.0037 0.0122
X–∆Y 0.0664 −0.0049 0.0111
∆X–∆Y 0.0680 −0.0034 0.0118

important question. For example while teaching English alphabets to the stu-
dents in the elementary classes; most often the students commit the mistake
while writing “b” and “d”. Then the teacher gives them as home assignment
to repeat these alphabets 10 times, 20 times or even more depending on the
students’ capability. Same thing is true for ANN learning.

62 4 Factors Affecting the Performance of Artificial Neural Network Models

Table 4.11. ANN testing performance with different mappings for STLF

Mapping Max error Min error MSS error

X−Y 22.6300 −5.3319 160.3354
∆X−Y 13.7167 −5.6914 39.9838
X−∆Y 2.8178 −8.6281 13.2372
∆X−∆Y 5.0000 −4.7046 7.3138

Fig. 4.4. Effect of mapping on short term load forecasting problem

4.2.5 Permissible Noise in Data

The generalization characteristics of ANN models depends on the noise in-
cluded in the training data, but at the same time the accuracy reduces. Hence,
we have to trade off between the generalization capability of neural networks
and accuracy required in the results.

Usually when the measurements are taken by different measuring devices,
are not accurate due to various reasons. Hence, the noise will be there in the
measured quantities. According to the noise either in input or/and output of
the training file different pattern mappings are possible. In this chapter the
neural network is trained for the following mappings.

(1) Noisy input and accurate output patterns (Xnoise – Y mapping).
(2) Noisy input and noisy output patterns (Xnoise – Ynoise mapping).

4.3 Learning Complexity 63

Table 4.12. DC motor current simulations with noisy data (Normalisation – input
0.1 to 2.5 and output in the range 0.1–0.9)

Mappings Xnoise–Y X–Ynoise Xnoise–Ynoise

Epochs 400 400 400
Error after training 0.00442398 0.00265015 0.00395185
Error during testing 1.6033 to −2.2048 −0.9237 to −3.800 2.8098 to 4.8763

Table 4.13. Training performance with noisy data for dc motor current (Ia) char-
acteristic

Mappings Xnoise–Y X–Ynoise Xnoise–Ynoise

Training error 0.00442398 0.00265015 0.00395185
(After 400Epochs)
Testing error 1.6033 to −2.2048 0.9237 to −3.8 −2.8908 to 4.8763

(3) Accurate input and noisy output (X – Ynoise mapping).
(4) Accurate input and accurate output (X–Y mapping).

The training and testing statistics of the neural network model for the
above combination is summarised in Tables 4.12 and 4.13 for dc motor sim-
ulation. It has been found that the X–noise mapping required least number
of training epochs and also giving good results during predictions. Here the
random noise of 5% is added in the training data either/both in input and
output data.

4.3 Learning Complexity

Performance of supervised learning depends upon:

a. Training algorithms
b. Initialization of weights
c. Selection of error Function
d. Mode of error calculation
e. Initialization of training parameters

4.3.1 Training Algorithms of ANN

Multi-layered networks have been applied successfully to solve some difficult
and diverse problems by training them in a supervised manner with a highly
popular algorithm known as the error back-propagation algorithm. This algo-
rithm is based on the error-correction learning rule.

Basically, the error back-propagation process consists of two passes
through the different layers of the network; a forward pass and a back-
ward pass. In the forward pass, an activity pattern (input vector) is applied

64 4 Factors Affecting the Performance of Artificial Neural Network Models

to the sensory nodes of the network and its effect propagates through the
network, layer-by-layer. Finally a set of outputs is produced as the actual
response of the network. During the forward pass, the synaptic weights of the
network are fixed. During the backward pass, on the other hand, the synaptic
weights are adjusted in accordance with the error-correction rule. Specifically,
the actual response of the network is subtracted from a desired (target)
response to produce an error signal. This error signal is then propagated
backward through the network against the direction of synaptic connections –
hence the name “error back-propagation”. The synaptic weights are adjusted
so as to make the actual response of the network move closer to the desired
response.

A multi-layered perceptron network has three distinctive characteristics:

1. The model of each neuron in the network includes a differentiable non-
linearity, as opposed to the hard limiting used in McCullock and Pitt’s
perceptron model. A commonly used form of non-linearity that satisfies
this requirement is the sigmoid non-linearity.

f(net) =
1

1 + exp(−λ net)
(4.1)

The presence of non-linearity is important to prevent reduction of the
model to that of single-layered perceptron. The use of logistic function is
encouraging as it is a biologically motivated function.

2. The network contains one or more hidden layers that enable the network
to learn complex tasks by extracting multi-dimensional features from the
input pattern vectors.

3. The network exhibits a high degree of connectivity determined by the
synapses of the network. A change in the connectivity requires a change
in the population of synaptic connections/weights.

All these characteristics together with the ability to learn through training
that is the multi-layered perceptron derives its computing power. These same
characteristics, however, are also responsible for the deficiencies in knowing the
network behaviour. First, the presence of a distributed form of non-linearity
and the high connectivity of the network make the theoretical analysis of a
multi-layered perceptron difficult to undertake. Second, the use of hidden lay-
ers makes the learning process opaque to external environment. In an implicit
sense, the learning process is rigorous enough to decide which features of the
input pattern should be represented by the hidden layers and the search has
to be conducted on a larger space of possible functions.

The development of the back-propagation algorithm represents a “land-
mark” in the field of neural networks in that it provides a computationally
efficient method for the training of multi-layered perceptrons.

4.3 Learning Complexity 65

Output layer

Input layer First hidden
layer

Second hidden
layer

Fig. 4.5. NN architecture with two hidden layers

4.3.1.1 Preliminary Fundamentals

The network shown in Fig. 4.5 is fully connected and the signal flows through
the network in a forward direction, from left to right and on a layer-by-layer
basis. The error signal flow propagates in a backward direction from right to
left, again on a layer-by-layer basis.

The signals should be appropriately called function signals as they are
calculated as a function of inputs and associated weights.

The error signal is so called because its computation by every neuron of
the network involves an error-dependent function in one or another form.

The hidden layer(s) are not part of the input or output layers and hence
designated as “hidden”. Their behaviour within the architecture is totally
“hidden” from analysis.

Each hidden or output neuron of a multi-layered perceptron is designated
to perform two computations.

1. The computation of the function signal appearing at the output of a neu-
ron, which is expressed as a continuous non-linear function of the input
signals and synaptic weights.

2. The computation of an instantaneous estimate of the gradient, i.e. the
gradient of the error surface with respect to the weights connected to
the inputs of a neuron, which is needed for the backward pass through
the network (Fig. 4.6).

4.3.1.2 The Back-Propagation Algorithm

Before getting into the derivation of the algorithm, we will see the notations
used in the derivation.

E(n) = Instantaneous sum of error squares at iteration n. The average of
E(n) over all values of n (i.e. the entire training set) yields the average
squared error Eav.

66 4 Factors Affecting the Performance of Artificial Neural Network Models

Function signal
Error signal

Fig. 4.6. Signal flow illustration

ej(n) = Error signal at the output of neuron j for iteration n.
dj(n) = Desired response for neuron j used to compute ej(n).
yj(n) = Function signal appearing at the output of neuron j for iteration n.
wij(n) = Synaptic weight connecting neuron i to neuron j at iteration n.
∆wij(n) = The correction applied to the synaptic weight at iteration n.
vj(n) = The net internal activity level of neuron j at iteration n.
ϕj(.) = The activation function associated with neuron j.
θj = The threshold applied to neuron j which is equivalent to an extra

synapse.
xi(n) = The ith element of the input vector (pattern).
ok(n) = The kth element of the overall output vector (pattern).
η = The learning-rate parameter.

The error signal at the output of neuron j at iteration n (i.e. presentation
of the nth training pattern) is defined by

ej(n) = dj(n) − yj(n), (4.2)

neuron j is an output node.
The instantaneous sum of squared errors of the network at the output of

neuron j can be written as

E(n) =
1
2

∑
j∈c

e2
j (n), (4.3)

where c is the set of all neurons in the output layer of the network.
If N is the total number of patterns in the training set, the average squared

error over all the patterns is given by

Eav =
1
N

N∑
n=1

E(n). (4.4)

4.3 Learning Complexity 67

y0 (n) = −1

w0 j = qj (n)

vj (n)

d j (n)

j(.)

yi (n)

ej (n)

 yp (n)

wi j (n)

Neuron j

yj (n)
-1

Fig. 4.7. Signal flow of output neuron j

The instantaneous sum of error squares E(n), and therefore, the average
squared error Eav is a function of the synaptic weights and thresholds. Thus
Eav represents the cost function of the learning process, which adjusts the
free parameters of synaptic weights and thresholds so as to minimise the cost
function. The training is done on a pattern-by-pattern basis and the errors
computed for each pattern presented to the network.

The neuron j as shown in Fig. 4.7, is fed from the layer to its left.

vj(n) =
p∑

i=0

wij(n)yi(n) (4.5)

where p is the total number of inputs excluding the threshold applied to
neuron j.

yj(n) = ϕj(vj(n)) (4.6)

The back-propagation algorithm applies a correction ∆wij(n) to the synap-
tic weight wij(n), which is proportional to the instantaneous gradient
∂E(n)/∂wij(n). According to the chain rule of partial derivatives, we may
express the gradient as follows:

∂E(n)
∂wij(n)

=
∂E(n)
∂ej(n)

× ∂ej(n)
∂yj(n)

× ∂yj(n)
∂vj(n)

× ∂vj(n)
∂wij(n)

. (4.7)

Now, differentiating (4.3) with respect to ej(n), we get

∂E(n)
∂ej(n)

= ej(n) (4.8)

68 4 Factors Affecting the Performance of Artificial Neural Network Models

Differentiating (4.2) with respect to vj(n), we get

∂ej(n)
∂yj(n)

= −1. (4.9)

Differentiating (4.6) with respect to vj(n) yields

∂yj(n)
∂vj(n)

= ϕ′
j(vj(n)). (4.10)

Finally, differentiating (4.4) with respect to wij(n) yields

∂vj(n)
∂wij(n)

= yi(n). (4.11)

Thus (4.7) becomes
∂E(n)
∂wij(n)

= −ej(n)ϕ′
j(vj(n))yj(n) (4.12)

We know by delta learning rule, the correction to weight is

∆wij(n) = −η
∂E(n)
∂wij(n)

, (4.13)

where η is a positive constant called the learning rate.
From equations (4.12) & (4.13), we have

∆wij(n) = ηδj(n)yi(n), (4.14)

where δj(n) = ej(n)ϕ′(vj(n)) is called the local gradient at neuron j. The local
gradient δj(n) for output neuron j is equal to the product of the corresponding
error signal ej(n) and the derivative ϕ′(vj(n)) of the associated activation
function.

We note that a key factor involved in the calculation of the weight ad-
justment ∆wij(n) is the error signal ej(n). There are two distinct cases of
adjustment, depending on where in the network neuron j is located.

Case 1: Neuron j is an output node
When neuron j is located in the output layer of the network, the case
is pretty straight forward as the neuron will be supplied with a desired
response. We can use (4.2) to compute the error signal ej(n) associated
with this neuron and then use (4.14) to compute the local gradient.

Case 2: Neuron j is a hidden node
When neuron j is located in a hidden layer of the network, there is no
specific desired response for that neuron. Accordingly, the error signal for
a hidden neuron would have to be determined recursively in terms of the
error signals of all the neurons to which the neuron is directly connected.

4.3 Learning Complexity 69

y0 = −1

w0j (n) = θj (n) dk(n)

vj (n) j (.) j (.)yj (n) yk(n) −1 ek (n)

wi j (n)
wjk (n)

yi (n)

 Neuron j Neuron k

vk(n)

Fig. 4.8. Signal flow of hidden neuron j

Consider the case of the hidden neuron j as shown in Fig. 4.8 below.
We can redefine the local gradient

δj(n) = ej(n)ϕ′
j(v(n)) (4.15)

as

δj(n) = − ∂E(n)
∂yj(n)

× ∂yj(n)
∂vj(n)

(4.16)

= − ∂E(n)
∂yj(n)

ϕ′
j(vn(n)) (4.17)

neuron j is a hidden node.
To calculate the partial derivative ∂E(n)/∂yj(n), we may proceed as fol-

lows (see Fig. 4.4)

E(n) =
1
2

∑
k∈c

e2
k(n) (4.18)

neuron k is an output node

∂E(n)
∂yj(n)

=
∑

k

ek
∂ek(n)
∂yj(n)

(4.19)

Using the chain rule of partial derivatives, we can write (4.19) as

∂E(n)
∂yj(n)

=
∑

k

ek(n)
∂ek(n)
∂vk(n)

× ∂vk(n)
∂yj(n)

(4.20)

However,

ek(n) = dk(n) − yk(n)
= dk(n) − ϕk(vk(n)) (4.21)

70 4 Factors Affecting the Performance of Artificial Neural Network Models

Hence
∂ek(n)
∂vk(n)

= −ϕ′
k(vk(n)). (4.22)

Also, the net internal activity for neuron k is

vk(n) =
q∑

j=0

wjk(n)yj(n), (4.23)

where q is the total number of inputs (excluding the threshold) applied to
neuron k.

Differentiating (4.23) with respect to yj(n) yields

∂vk(n)
∂yj(n)

= wjk(n) (4.24)

Thus using (4.22) and (4.24), we get

∂E(n)
∂yj(n)

= −
∑

k

ek(n)ϕ′
k(vk(n))wjk(n)

= −
∑

k

δk(n)wjk(n), (4.25)

where we have used the definition of the local gradient δk(n) given by (4.14)
with the index k substituted for j. Finally using (4.25) in (4.17), we get the
local gradient δj(n) for the hidden neuron j as

δj(n) = ϕ′
j(vj(n))

∑
k

δk(n)wjk(n) (4.26)

The factor ϕ′
j(vj(n)) involved in the computation of the local gradient

δj(n) depends solely on the activation function associated with the hidden
neuron j. The remaining factor, namely the summation over k, depends on
two sets of terms. The first set of terms, the δk(n), requires the knowledge
of the error signals ek(n), for all those neurons that lie in the layer to the
immediate right of the hidden neuron j, and that are directly connected to
neuron j; the second set of terms, the wjk(n), consists of the synaptic weights
associated with these connections.

We may summarise the relations as follows:(
Weight correction

∆wij(n)

)
=
(

learning rate parameter
η

)(
local gradient

δj(n)

)

×
(

input signal of neuron j
yi(n)

)
.

4.3 Learning Complexity 71

The local gradient δj(n) depends on whether neuron j is an output node
or a hidden node:

1. If neuron j is an output node, δj(n) equals the product of the derivative
ϕ′

j(vj(n)) and the error signal ej(n), both of which are associated with
neuron j as given by (4.14).

2. If neuron j is a hidden node, δj(n) equals the product of the associated
derivative ϕ′

j(vj(n)) and the weighted sum of the δ’s computed for the
neurons in the next hidden or output layers that are connected to neuron
j as given by (4.26).

4.3.1.3 The Two Passes of Computation

The application of back-propagation algorithm is in two steps or two distinct
passes of computation. The first pass is referred as the forward pass and the
second pass is the backward pass.

In the forward pass, the synaptic weights remain unaltered throughout the
network, and function signals of the network are computed on a neuron-by-
neuron basis.

The function signal appearing at the output of neuron j is computed as

yj = ϕ(vj(n)), (4.27)

where
vj(n) =

p∑
i=0

wij(n)yi(n) (4.28)

p is the total number of inputs (excluding the threshold) applied to neuron j
and wij(n) is the synaptic weight connecting neuron i to j, and yi(n) is the
input signal of neuron j or the function signal appearing at the output of
neuron i.

If neuron j is in the first hidden layer of the network, then the index i
refers to the ith input terminal of the network, for which we write

yi(n) = xi(n) (4.29)

On the other hand, if neuron j is in the output layer of the network, the
index j refers to the jth output terminal of the network, for which we can write

yj(n) = oj(n) (4.30)

This output is compared with the desired response dj(n), obtaining the
error signal ej(n) for the jth output neuron. Thus the forward phase of com-
putation begins at the first hidden layer by presenting it with the input vector,
and terminates at the output layer by computing the error signal.

In the backward pass, the error signals computed are passed leftward
through the network, layer-by-layer and recursively computing the local
gradient δ for each neuron. The synaptic weights are varied according to the
back-propagation rule. The local gradient is computed by (4.15) or (4.26),

72 4 Factors Affecting the Performance of Artificial Neural Network Models

depending on whether the neuron is in the output layer or hidden layer(s).
The recursive computation is continued layer-by-layer, by propagating the
changes to all synaptic weights from output layer to input layer. The com-
putation of δ for each neuron of the multi-layered architecture requires the
derivative of the activation function ϕ(.) associated with that neuron. For
this derivative to exist, we require the function ϕ(.) to be continuous. In basic
terms, differentiability is the only criterion that an activation function would
have to satisfy. It has been observed that a non-linear activation function with
maximum variation in the mid-values gives stability to the learning process.
Such an activation commonly used is the sigmoid activation, whose derivative
attains maximum at mid-value.

4.3.1.4 Rate of Learning and Momentum

The back-propagation algorithm provides an “approximation” to the trajec-
tory in the error-weight space computed by the method of steepest descent.

According to the method of steepest descent, the weights are adjusted in
an iterative fashion along the error surface with an aim of moving them pro-
gressively toward the optimum solution. The successive adjustments to the
weights are in the direction of the steepest descent of the error surface.

The rate of learning η decides the scaling of the gradient of the error sur-
face to be used for weight adjustment. The smaller we make the learning rate
parameter, the smaller will be the changes to the synaptic weights in the net-
work from one iteration to another and the smoother will be the trajectory in
the error-weight space, this improvement being achieved at the cost of a slower
learning. If we make the rate of learning η too large, so as to speed up the
rate of learning, the resulting large changes in the synaptic weights may make
the trajectory in the error-weight space oscillatory and unstable. It is better
to make the learning rate adaptive, i.e. start with a larger η and progres-
sively reduce as we move closer to the minimum. This is the implementation
of back-propagation with adaptive learning rate.

Another simple method of increasing the rate of learning, and yet avoiding
the danger of instability, is to include a momentum term as shown below.

∆wij(n) = α∆wij(n − 1) + ηδj(n)yi(n), (4.31)

where α is usually a positive number called the momentum constant. The
delta rule as given by (4.14) is a special case with α = 0.

In order to see the effect of using the momentum constant α, write (4.31)
as a time series with index t. The index goes from t = 0 to current iteration
t = n.

∆wij(n) = η

n∑
t=0

αn−tδj(t)yi(t), (4.32)

∆wij(n) = −η

n∑
t=o

αn−t ∂E(t)
∂wij(t)

. (4.33)

The above equations represent a time series of length n + 1.

4.3 Learning Complexity 73

Following observations can be made:

1. The current adjustment ∆wij(n) represents the sum of an exponentially
weighted time series. For the time series to be convergent, the momentum
constant must be 0 ≤ |α| < 1. The momentum constant can be positive
or negative but it unlikely to use a negative α, in practice.

2. When the partial derivative ∂E(t)/∂wij(t) has the same algebraic sign
on consecutive iterations, the exponentially weighted sum ∆wij(n) grows
in magnitude and so the wij(n) is adjusted by a large amount. Hence
the inclusion of momentum in the back-propagation algorithm tends to
accelerate the descent in steady downhill direction.

3. When the partial derivative ∂E(t)/∂wij(t) has opposite signs on consecu-
tive iterations, the exponentially weighted sum ∆wij(n) shrinks in magni-
tude and so the wij(n) is adjusted by a small amount. Hence the inclusion
of momentum has a stabilising effect in the directions that oscillate in sign.

Thus the incorporation of momentum in the back-propagation algorithm
represents a minor modification to the weight update and yet it can have
highly beneficial effects on learning behaviour of the algorithm. The momen-
tum term also helps in preventing the learning process from trapping in local
minima. The momentum term can also be made adaptive just like the learning
rate and the back-propagation implementation with adaptive η and/or α has
been found to be much more efficient that the standard implementation.

4.3.1.5 The Stopping Criteria

There are several stopping criteria, each with its own practical merit, which
may be used to terminate the weight adjustments. The logical thing to do is
to think in terms of the unique properties of a local or global minimum of
the error surface. Let the weight vector w∗ denote a minimum, be it local or
global. Various convergent criteria can be stated as follows:

• The back-propagation algorithm is considered to have converged when the
Euclidean norm of the gradient vector reaches a sufficiently small gradient
threshold. This means g(w) → 0 at w = w∗. The drawback of this con-
vergence criterion is that, for successful trials, learning time may be long.
Also it requires the computation of the gradient vector g(w) of the error
surface to the weight vector w.

• Another unique property of a minimum that can be used is the fact that the
cost function or error measure Eav(w) is stationary at the point w = w∗.
The back-propagation algorithm is considered to have converged when the
absolute rate of change in the average error per epoch is sufficiently small.
Typically considered ranges are from 0.01 to 1% per epoch.

• Kramer and Sangiovanni-Vincentelli (1989) suggested a hybrid criterion
of convergence consisting of the former and the latter, as stated below:
The back-propagation algorithm is terminated at the weight vector wfinal

when ||g(wfinal)|| ≤ ε, where ε is sufficiently small, or Eav(wfinal) ≤ τ,
where τ is also sufficiently small.

74 4 Factors Affecting the Performance of Artificial Neural Network Models

• Another useful criterion for convergence is as follows:
After each learning iteration the network is tested for its generalisation
performance. The learning is stopped when the generalisation performance
is adequate, or when it is apparent that the generalisation performance has
peaked.

4.3.1.6 Initialization of the Network

The first step in back-propagation is, of course, to initialise the network. A
good choice for the initial values of the free parameters (i.e. adjustable synap-
tic weights and threshold levels) of the network can be of tremendous help
in a successful network development. In cases where the prior information is
available, it may be better to use the information to guess the initial values
of the free parameters. But how do we initialise the network if no prior infor-
mation is available? It is also important to note that if all the weights start
out with equal values and the solution requires that unequal weights be devel-
oped, the system can never learn. This is because the error is propagated back
through the weights in proportion to the values of the weights. This means
that all hidden units connected directly to the output units will get identical
error signals, and since the weight changes depend on the error signals, the
weights from those units to the output units must always be the same. This
problem is known as the symmetry-breaking problem. Internal symmetries of
this kind also give the cost function landscape periodicities, multiple minima,
(almost) flat valleys and (almost) flat plateaus or temporary minima. The last
are most troublesome, because the system can get struck on such a plateau
during training and take immense time to find its way down the cost function
surface. Without modifications to the training set or learning algorithm, the
network may escape this type of “minimum” but performance improvement
in these temporary minima drops to a very low, but non-zero level because
of the very low gradient of the cost function. In the MSE vs. training time
curve, a temporary minimum can be recognised as a phase in which the MSE
is virtually constant for a long time after initial learning. After a generally
long training time, the approximately flat part in the energy landscape is
abandoned, resulting in a significant and sudden drop in the MSE curve. The
problem of unequal weights can be counteracted by starting the system with
random weights. However, as learning continues, internal symmetries may de-
velop and the network may encounter again temporary minima.

The customary practice is to set all the free parameters of the network to
random numbers that are uniformly distributed inside a small range of values.
This is because if the weights are too large, the sigmoids will saturate from
the very beginning of training and the system will become struck in a kind of
saddle point near the starting point (Haykin, 1994). This phenomenon is called
premature saturation (Lee et al. 1991). Premature saturation is avoided by
choosing the initial weights and threshold levels of the network to be uniformly
distributed inside a small range of values. This is so because when the weights

4.3 Learning Complexity 75

are small, the units operate in their linear regions and consequently it is
impossible for the activation function to saturate. It is also maintained that
premature saturation is less likely to occur when the number of hidden neurons
is maintained low, and in consistent with the network requirement but the
viability of this belief is under question many a times.

Gradient descent can also become struck in local minima of the cost func-
tion. These are isolated valleys of the cost function surface in which the system
may get “stuck” before it reaches the global minimum. This is so because in
these valleys, every change in the weight values causes the cost function to
increase and hence the network is unable to escape. Local minima are funda-
mentally different from temporary minima as they cause the performance im-
provement of the classification to drop to zero and hence the learning process
terminates even though the minimum may be located far above the global
minimum. Local minima may be abandoned by including a momentum term
in the weight updates or by adding “noise” using the on-line mode training,
which is a stochastic learning algorithm in nature. The momentum term can
also significantly accelerate the training time that is spent in a temporary min-
imum as it causes the weights to change at a faster rate. Other approaches
include the modification of the cost function or the employment of techniques
such as simulated annealing.

There are two ways of initializing the weights, from which ANN starts
learning. If the initial weights are good, ANN needs less time to learn otherwise
it requires more time and/or stuck in local minima

1. Random selection
2. Using evolutionary algorithm

4.3.1.7 Faster Training in Back-Propagation Learning

Plain back-propagation is terribly slow and it is desired to have faster training.
There are a series of things that can be done to speed up training.

• Fudge the derivative term.
• Scale the data.
• Direct input–output connections.
• Vary the sharpness (gain) of the activation.
• Use a different activation.
• Use better algorithms.

1. Fudge the derivative term
The first major improvement to back-propagation is extremely simple:
fudge the derivative term in the output layer. If we are using the sigmoid
function given by

f(net) =
1

1 + exp(−λ net)
(4.34)

76 4 Factors Affecting the Performance of Artificial Neural Network Models

and the derivative is

f ′(net) = f(net) (1 − f(net)) . (4.35)

The derivative is largest at net = 0.5 and it is here that we will get the
largest weight changes. Unfortunately, at values near 0 or 1, the derivative
term gets close to 0 and the weight change becomes very small. In fact, if
the network’s response is 1 and the target is 0, the network is off by quite
a lot with very small weight changes. It can take a very long time for the
training process to correct this. Falhlman’s solution was to add 0.1 to the
derivative term making it:

f ′
new(net) = 0.1 + f ′(net). (4.36)

The solution of Chen and Mass was to drop the derivative term al-
together, in effect, the derivative was 1. This method passes back much
larger error quotas to the lower layer, so large that a smaller η must be
used there. In their experiments on 10-5-10 codec problem, they found
that the best results came when η was 0.1 times the upper level η; hence
they called this method the “differential step size” method. One must ex-
periment with both upper and lower level η values to get the best results
depending on the problem. Besides that, the η used for the upper layer
must be much smaller that the η used without this method.

2. Direct input–output connections:
Adding direct connections from the input layer to the output layer can
often speed up training. It is supposed to work best when the function
to be approximated is almost linear and it only needs a small amount of
adjustment from non-linear hidden layer units. This method can also cut
down the number of hidden layer units needed. It is not recommended
when there are a large number of output units because, then there are
more free parameters to the net and possibly hurt the generalisation.

3. Adjusting the sharpness (gain) of the activation:
Izni and Pentland showed that training time can be decreased by increas-
ing the sharpness or gain λ in the standard sigmoid as given in (4.34). In
fact, they showed that the training time goes as 1/λ for training without
momentum and 1/

√
λ for networks with momentum. This is not a perfect

speed-up scheme since when λ is too large, we run the risk of becoming
trapped in a local minimum. Sometimes the best value for λ is less that 1.

4.3.1.8 Better Algorithms

Everyone wants faster training and there are many variations on back-
propagation that will speed up the training time enormously, but the credi-
bility of these variations are at question, at times. Very slow online update
methods will sometimes give the best results when compared to these acceler-
ation algorithms. People have observed this with sonar data: the best results
come from one pattern at a time updates. Having said this, in most cases, the

4.3 Learning Complexity 77

acceleration algorithms work much faster than either online or batch training
that they should be used first and then if better results are wanted, one can
try slower online methods.

In Sect. 5.4, we have already discussed the effect of having adaptive learn-
ing rate and momentum. As the training proceeds, increase η and α adaptively
if we keep going downhill, in terms of error. When the weight change gets too
large, we end up on the other side of the valley and for this, we must decrease
the learning rate and momentum in some way. These are basically first-order
algorithms, where we use only the first order information of the error gradi-
ent in weight updating. Then there is a set of algorithms known as conjugate
gradient methods, which use second order information also for faster training.
We will discuss a few such algorithms.

• The Resilient propagation Algorithm.
• The Delta-Bar-Delta Algorithm.
• The Quick-propagation Algorithm.
• The Conjugate Gradient methods.

(a) The Resilient propagation algorithm:
The Resilient propagation is a first-order algorithm performing supervised
batch learning in multi-layered perceptrons. The basic principle of Rprop
is to eliminate the harmful influence of the size of the partial error deriv-
ative on the weight step. As a consequence, only the sign of the derivative
is considered to indicate the direction of weight update. The size of the
weight change is exclusively determined by a weight-specific, so called
“update-value” ∆ij

(t):

∆w
(t)
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∆(t)
ij ; if

∂E

∂wij

(t)

> 0

+∆(t)
ij ; if

∂E

∂wij

(t)

< 0

0; otherwise

(4.36)

where ∂E
∂wij

(t)
denotes the summed gradient information over the patterns

of the pattern set (“batch learning”).
It should be note that, by replacing the ∆ij

(t) by a constant update-
value ∆, (4.36) yields the so-called “Manhattan” Algorithm.

The second step of Rprop learning is to determine the new update values
∆ij

(t). This is based on a sign-dependent adaptation process.

∆(t)
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η+ × ∆(t)
ij ; if

∂E

∂wij

(t−1)

× ∂E

∂wij

(t)

> 0

η− × ∆(t)
ij ; if

∂E

∂wij

(t−1)

× ∂E

∂wij

(t)

< 0

∆(t)
ij ; otherwise

(4.37)

where 0 < η− < 1 < η+.

78 4 Factors Affecting the Performance of Artificial Neural Network Models

In other words, the adaptation rule works as follows: Every time, the
partial derivative of the corresponding weight wij changes its sign, which
indicates that the last update was too big and the algorithm has jumped
over local minimum, the update value ∆ij

(t) is decreased by the factor η−.
If the derivative retains the sign, the update value is slightly increased in
order to accelerate the convergence in shallow regions. Additionally, in
case of a change in sign, there should be no adaptation in the succeeding
learning step. In practice, this can be achieved by setting ∂E

∂wij

(t)
= 0.

In order to reduce the number of freely adjustable parameters, often
leading to a tedious search in parameter space, the increase and decrease
factor are set to fixed values. The choice of decrease factor η− was lead
by the following considerations. If a jump over a minimum occurred, the
previous update value was too large, for, it cannot be derived from gradient
information how much the minimum was missed. We have to estimate the
correct value. It will be a good guess to halve the update value (maximum
likelihood estimator), so we choose η− = 0.5. The increase factor η+, on
the other hand, has to be large enough to allow fast growth of the update
values in shallow regions of error function, but, on the other hand, the
learning process can be considerably disturbed if a too large increase factor
leads to persistent changes of the direction of the weight-step. In several
experiments, the choice of η+ = 1.2 gave very good results, independent
of examined problems. Slight variations of this value neither improve nor
deteriorate convergence time.

(b) Delta-Bar-Delta Algorithm:
The Delta-Bar-Delta is a method that implements four heuristics regard-
ing gradient descent. It was developed by Jacobs (1988). The method
consists of a weight update rule and learning update rule. The weight
update rule is applied to each weight wij(n) at iteration n through the
relationship given by

wij(n + 1) = wij(n) − ηij(n + 1)
∂E(n)
∂wij(n)

, (4.38)

where η(n) is the learning rate for the weight wij(n) at update iteration n.
The learning rate update rule for a given weight wij(n) is defined as

∆ηij(n) =

⎧⎨
⎩

k ; if δ̄ij(n − 1) × δij(n) > 0
−φηij(n) ; if δ̄ij(n − 1) × δij(n) < 0
0 ; otherwise

(4.38)

where

δij(n) =
∂E(n)
∂wij(n)

(4.39)

the partial derivative of the error with respect to wij(n) at iteration n,
and

δ̄ij(n) = (1 − θ)δij(n) + θδ̄ij(n − 1) (4.40)

4.3 Learning Complexity 79

where k and φ are constants used increment or decrement the learning rate
respectively, and 0 < θ < 1 is an exponential “smoothing” base constant
for the nth iteration.

The heuristics implemented are as follows:

1. Every parameter (weight) has its own individual learning rate.
2. Every learning rate is allowed to vary over time to adjust to changes

in the error surface.
3. When the error derivative for a weight has the same sign for several

consecutive update steps, the learning rate for that weight should
be increased. This is because the error surface has a small curvature
at such points and will continue to slope at the same rate for some
distance. Therefore, the step-size should be increased to speed up the
downhill movement.

4. When the sign of the derivative of a weight alternates for several
consecutive steps, the learning rate for that parameter should be de-
creased. This is because the error surface has a high curvature at
that point and the slope may quickly change sign. Thus, to prevent
oscillation, the value of the step-size should be adjusted downward.

There are a few drawbacks of this algorithm. Using momentum along with
the algorithm can enhance the performance; however, it can also make the
search diverge wildly – especially if k is even moderately large. The reason
is that momentum “magnifies” learning rate increments and quickly leads
to inordinately large learning steps. One possible solution is to keep the k
factor very small, but this can lead to slow increase in η and little speedup.

Another related problem is that, even with a small k, the learning rate
can sometimes increase so much that the small exponential decrease is
not sufficient to prevent wild jumps. Increasing φ exacerbates the problem
instead of solving it because it causes drastic reduction of learning rate at
inopportune moments, leaving the search stranded at points of high error.
Thus the algorithm is very sensitive to small variations in the value of its
parameters – especially k.

(c) Quick-propagation algorithm:
Standard back-propagation calculates the weight change based upon the
first derivative of the error with respect to the weight. If the second deriva-
tive information is also available, then better step-size and optimum search
direction can be found out. Back-propagation networks are also slow to
train. Quick-propagation is a variation of standard back-propagation to
speed up training.

The quickprop modification is an attempt to estimate and utilise the
second derivative information (Fahlman 1988). This algorithm requires
saving the previous gradient vector as well as previous weight change.
The calculation of weight change uses only the information associated
with the weight being updated.

80 4 Factors Affecting the Performance of Artificial Neural Network Models

∆wij(n) =
∇wij(n)

∇wij(n − 1) −∇wij(n)
× ∆wij(n − 1), (4.41)

where ∇wij(n) is the gradient vector component associated with weight
vector wij in step n, ∇wij(n − 1) is the gradient vector component asso-
ciated with weight wij in the previous step and ∆wij(n− 1) is the weight
change in step n − 1.

A maximum growth factor µ is used to limit the rate of increase of
step-size like
If ∆wij(n) > µ∆wij(n − 1), then ∆wij(n) = µ∆wij(n − 1)
Fahlman suggested an empirical value 1.75 for µ.

There are some complications in this method. First is the step-size
calculation that requires the previous value, which is not available at the
time of starting. This is overcome by using the standard back-propagation
method for weight adjustment. The gradient descent weight change is
given by

wij(n + 1) = wij(n) − η∇wij (4.42)

Value of η is taken suitably small.
Second problem is that the weight values are unbounded. They become

so large that they may cause an overflow. Suitable scaling of slope by a
factor less than 1 reduces the rate of increase of the weights.

(d) The conjugate gradient (CG) methods:
The conjugate gradient algorithms have become very popular for training
back-propagation networks. Just like all the second order methods, the CG
algorithm is implemented in batch-mode. The CG algorithm can search
the minimum of a multivariate function faster than the conventional gra-
dient descent procedure for BP networks. Each conjugate gradient step
is, at least, as good as the steepest descent method from the same point.
The formula is simple and the memory usage is in the same order as
the number of weights. Most important, the CG technique obviates the
tedious tasks of determining optimal learning parameters. Moreover, the
CG technique has very reliable convergence behaviour as compared with
the first-order gradient methods.

The basic back-propagation algorithm adjusts the weights in the steepest
descent direction, i.e. negative of the gradient. This is the direction in which
the performance function is decreasing most rapidly. It turns out that although
the function decreases most rapidly along the negative of the gradient, this
does not necessarily produce faster convergence. In the conjugate gradient
algorithms, a search is performed along the conjugate directions, which pro-
duces generally faster convergence (conjugate directions means at orthogonal
directions), than steepest descent directions.

In most training algorithms that we have discussed up to this point, a
learning rate is used to determine the length of the weight update (step-
size). In CG methods, the step-size is adjusted at every iteration. A search

4.3 Learning Complexity 81

is made along conjugate gradient directions to determine the step-size, which
will minimise the performance function along that line.

The basic attempt in all second order enhancement methods is that the
current search direction d(n) to be a compromise between the exact gradient
∇E(n) and the previous search direction d(n − 1), i.e. d(n) = −∇E(n) +
βd(n − 1) with d(0) = −∇E(0).

The search direction is chosen (by appropriately setting β) so that it dis-
torts as little as possible the minimisation achieved by the previous step. In
conjugate gradient methods, the current search is chosen to be conjugate to
the previous search direction. Analytically, we require

d̄(n − 1)tH(n − 1)d̄(n) = 0 (4.43)

where the Hessian H(n−1) is assumed to be positive definite (H is the Hessian
matrix with components Hij = ∂2E

∂wi∂wj
).

β plays the role of an adaptive momentum and chosen according to the
Polack–Ribiere rule

β = β(n) =
[∇E(n) −∇E(n − 1)]t ∇E(n)

‖∇E(n − 1)‖2 (4.44)

Thus the search direction in the conjugate gradient methods at iteration
n is given by

d̄(n) = −∇E(n) + βd̄(n − 1)

= −∇E(n) +
[∇E(n) −∇E(n − 1)]t ∇E(n)

‖∇E(n − 1)‖2 d̄(n − 1) (4.45)

Now using d(n − 1) = (1/ρ)∆w(n − 1) and substituting the preceding
expression for d(n) in ∆w(n) leads to the weight update rule:

∆w̄(n) = −ρ∇E(n) + β(n)∆w̄(n − 1) (4.46)

When E is quadratic, the conjugate methods theoretically converge in N
or fewer iterations. In general, E is not quadratic, and therefore, this method
would be slower than what theory predicts. However, it is reasonable to assume
that E is approximately quadratic near a local minimum. Therefore, conjugate
gradient descent is expected to accelerate the convergence of back-propagation
once the search enters a small neighbourhood of a local minimum.

4.3.2 Selection of Error Functions

Normally in the supervised learning of multi-layer neural networks, sum
squared error is used. There are many other error functions which may used
for ANN training as given in Table 4.14.

These error functions, their derivates and delta functions have been plotted
against error as shown in Fig. 4.9. The three-dimensional surfaces for some
error function are shown in Fig. 4.10.

82 4 Factors Affecting the Performance of Artificial Neural Network Models

Table 4.14. Different error functions for ANN learning

1. Sum square error 1/2
∑

ei
2

2. Logarithmic error
∑

[(1 + ypk)In{(1 + ypk)/(1 + Opk)}]+∑
[(1 − ypk)In{(1 − ypk)/(1 − Opk)}]

3. Mean fourth power error
∑

ei
4/p

4. Hyperbolic square error
∑

In{(1 − ei
2)/(1 + ei

2)}
5. Hubber’s error

∑
ei

2/2 if |ei| < c∑
c(ei − c/2) if |ei| >=c

6. Cauchy’s error
∑

c2[In{1 + (ei/c)2}]/2
7. Geman–McClure error

∑
ei

2/{2(1 + ei
2)}

8. Welsch error
∑

c2[1 − ei − (ei/c)2]/2
9. fair’s error

∑
c2[ei/c − In(1 − ei/c)]

10. Mean median error
∑

2[(1 + ei/2)1/2 − 1]

11. Log-cos-hyperbolic error
(Tasos Falas 1999)

∑
In[cos h(ei

2)]

12. Andrew error
∑

cos(π∗ei)/π2 If ei <=1∑
ei If ei > 1

13. Entropy error −In(1 − ei)
14. Hamlet error ei − In(1 − ei)
15. Fahlman error

∑
[(1+ei)In(1+ei)+ (1− ei)In(1− ei)]

4.3.3 Mode of Error Calculation

The error can be calculated in the pattern mode or in batch mode. In pattern
mode of error calculation the error is calculated after present each pattern,
i.e. one set of training inputs, which is used to modify the weights. In batch
mode all the patterns are presented and the errors are calculated for each
pattern and then sum square error is used to modify the weights.

4.4 Summary

Finally it could be concluded that the back propagation feedforward neural
networks training and testing performance is dependent on network complex-
ity, problem complexity and complexity of learning algorithm. In this chapter
it has been found that:

1. Tan sigmoid activation function at hidden layer and pure linear at output
layer is taking less training epochs and also giving very good results during
testing. Pure linear–pure linear combination is also taking same training
time but the results predicted with this pair is not very encouraging.

2. Prediction accuracy is comparable for different mappings. However train-
ing time is minimum for X-Y type of mapping (it requires only 98, 56,
and 35 epochs for dc machine current, speed predictions and electrical
load forecasting problem, respectively. The other mappings require signif-
icantly large training epochs.

4.4 Summary 83

Fig. 4.9. Error functions, their derivates and delta functions for different error value

3. Xnoise–Y mapping is able to train up to error level 0.00265015 in 400
training epochs and the error during testing is also low as compared to
the other noisy mappings as shown in Table 2.4.

84 4 Factors Affecting the Performance of Artificial Neural Network Models

Fig. 4.10. Error surfaces for different error functions

4. Normalization ranges −0.9 to 0.9 for input and 0.1 to 0.9 for output are
found very satisfactory for almost all problems.

5. They change the weights each time by some fraction of the change needed
to completely correct the error. This fraction, ß, is called learning rate.

6. High learning rates cause the learning algorithm to take large steps on the
error surface, with the risk of missing a minimum, or unstably oscillating
across the error minimum.

7. Small steps, from a low learning rate, eventually find a minimum, but
they take a long time to get there.

8. Some NN simulators can be set to reduce the learning rate as the error
decreases.

9. Local minima problem can be avoided by introducing the momen-
tum term.

10. To increase the speed of back propagation learning algorithms, adaptive
learning rate and momentum factor is considered.

11. The error tolerance also affects the training time and generalization ca-
pabilities of ANN.

4.5 Bibliography and Historical Notes

In multilayer ANN, it is reported that the training is very time-consuming
phase. Among the different approaches suggested to ease the back-propagation
training process, input data pre-treatment has been pointed out, although

4.6 Exercises 85

no specific procedure has been proposed. We have found that input data
normalization with certain criteria, prior to a training process, is crucial to
obtain good results as well as to fasten significantly the calculations. There
are some researchers (Sevilla Sola 1997; Kartam 1997) reported that how data
normalization affects the training performance of ANN.

4.6 Exercises

1. Consider a neuron whose activation function is sigmoid f(x) = 1
1+e−λx

a. Prove that the derivative of f(x) with respect to x is given as f ′(x) = λ.
f(x)(1 − f(x)).

b. Write a MATLAB program for plotting the activation function and
its derivative for different values of x for λ = 0.1, 0.5, 1.0.

2. Repeat (a) and (b) parts of questions 1 with hyperbolic activation func-
tion.

3. Implement the following logic gates using feedforward bckpropagation
ANN with one, two and three hidden layers:
a. NAND gate
b. NOR gate
c. EX-OR gate.

4. Repeat question 3 for product aggregation neuron and compare the train-
ing and testing performance of above ANN and Product ANN.

5. Write a step by step procedure for backpropagation algorithms.
6. Study the effect of different intial weights on the training performance on

backpropagation learning algorithms.
7. Write a MATLAB program to generate at least 100 training and 25 testing

data for the following function

f(x) = x∗ex.

a. Develop ANN model to map this function and compare the results
for fixed parameter backpropagation and adaptive backpropagation
learning.

b. Also train the ANN model using 5% noise in the training data and
test with actual data.

