
3

Artificial Neural Network and Supervised
Learning

3.1 Introduction

Artificial neural networks are biologically inspired but not necessarily biolog-
ically plausible. Researchers are usually thinking about the organization of
the brain when considering network configurations and algorithms. But the
knowledge about the brain’s overall operation is so limited that there is little
to guide those who would emulate it. Hence, at present time biologists, psy-
chologists, computer scientists, physicists and mathematicians are working all
over the world to learn more and more about the brain. Interests in neural
network differ according to profession like neurobiologists and psychologists
try to understanding brain. Engineers and physicists use it as tool to recog-
nize patterns in noisy data, business analysts and engineers use to model data,
computer scientists and mathematicians viewed as a computing machines that
may be taught rather than programmed and artificial intelligentsia, cognitive
scientists and philosophers use as sub-symbolic processing (reasoning with
patterns, not symbols), etc.

A conventional computer will never operate as brain does, but it can be
used to simulate or model human thought. In 1955, Herbert Simon and Allen
Newell announced that they had invented a thinking machine. Their program,
the logic theorist, dealt with problems of proving theories based on assump-
tions it was given. Simon and Newell later developed the general problem
solver, which served as the basis of artificial intelligence (AI) systems. Simon
and Newell believed that the main task of AI was figuring out the nature of
the symbols and rules that the mind uses. For many years AI engineers have
used the “top-down” approach to create intelligent machinery. The top-down
approach starts with the highest level of complexity, in this case thought,
and breaks it down into smaller pieces to work with. A procedure is followed
step by step. AI engineers write very complex computer programs to solve
problems. Another approach to the modelling of brain functioning starts with
the lowest level, the single neuron. This could be referred to as a bottom-up
approach to modelling intelligence.
D.K. Chaturvedi: Soft Computing Techniques and its Applications in Electrical Engineering,

Studies in Computational Intelligence (SCI) 103, 23–50 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

24 3 Artificial Neural Network and Supervised Learning

3.2 Comparison of Neural Techniques and Artificial
Intelligence

Artificial intelligence (AI) is a branch of computer science that has evolved to
study the techniques of construction of computer programs capable of display-
ing intelligent behavior. It is the study of computations that make it possible
to perceive, reason, and act. Growth of artificial intelligence based on the hy-
pothesis that thought processes could be modeled using a set of symbols and
applying a set of logical transformation rules. It is important to note that any
artificially intelligent system must possess three essential components:

1. A representation mechanism to handle knowledge which could be general
or domain specific, implicit or explicit and of different level of abstraction.

2. An inference mechanism to get the appropriate conclusion for the given
information or fact.

3. A mechanism for learning from new information or data without disturb-
ing much to the existing set of rule.

The languages commonly used for AI model development are list process-
ing language (LISP) and programming in logic (PROLOG).

The symbolic approach has a number of limitations:

• It is essentially sequential and difficult to parallelize.
• When the quantity of data increases, the methods may suffer a combina-

torial explosion.
• An item of knowledge is represented by a rule. This localized representation

of knowledge does not lend itself to a robust system.
• The learning process seems difficult to simulate in a symbolic system.

The ANN approach offers the following advantages over the symbolic
approach:

• Parallel and real-time operation of many different components
• The distributed representation of knowledge
• Learning by modifying connection weights.

Both approaches are combined to utilize the advantages of both the tech-
niques. A brief comparison of these techniques is given in Table 3.1.

3.3 Artificial Neuron Structure

The human nervous system, built of cells called neurons is of staggering com-
plexity. An estimated 1011 interconnections over transmission paths are there
that may range for a meter or more. Each neuron shares many characteristics
with the other cells in the body, but has unique capabilities to receive, process,
and transmit electrochemical signals over neural pathways that comprise the

3.3 Artificial Neuron Structure 25

Table 3.1. Comparison between ANN and AI

ANN AI

Type of information Quantitative Qualitative
Input Measurements Facts
Output Predictions Decision
Type of model Mathematical Logical
Requirement for model
development

Historical data Human experts

Adaptability Learning capability No learning capability
Flexibility Re-trained for other

problems
Completely change the knowl-
edge base if problem changes

Model accuracy Depends on learning Depends on the knowledge ac-
quired

Explanation No explanation Explanation depends on the
depth of knowledge

Processing Parallel and distrib-
uted

Sequential and logical

Representational structure
of knowledge

Store global patterns
or function informa-
tion

Declarative (a collection of
facts) or procedural (speci-
fying an algorithm code to
process information)

Soma

Dendrite

Axon Axon
Hillock

Synaptic
gap

Fig. 3.1. Structure of biological neuron

brain’s communication system. Figure 3.1 shows the structure of typical bio-
logical neurons. Biological neuron basically consists of three main components
cell body, dendrite and axon. Dendrites extend from the cell body to other
neurons where they receive signals at a connection point called a synapse. On
the receiving side of the synapse, these inputs are conducted to the cell body,
where they are summed up. Some inputs tend to excite the cell causing a
reduction in the potential across the cell membrane; others tend to inhibit its

26 3 Artificial Neural Network and Supervised Learning

Σ

X1

X2

Xn

Y

θ
Y

W1

W2

Wn

Summation
(soma)

a

Activation
function
(Axion Hillock)

Weights
(Synaptic gap)

Inputs

Fig. 3.2. Artificial neuron structure (perceptron model)

firing causing an increase in the polarization of the receiving nerve cell. When
the cumulative excitation in the cell body exceeds a threshold, the cell fires
and action potential is generated and propagates down the axon towards the
synaptic junctions with other nerve cells.

The artificial neuron was designed to mimic the first order characteristics
of the biological neuron. McCulloch and Pitts suggested the first synthetic
neuron in the early 1940s. In essence, a set of inputs are applied, each rep-
resenting the output of another neuron. Each input is multiplied by a cor-
responding weight, analogous to a synaptic strength, and all of the weighted
inputs are then summed to determine the activation level of the neuron. If this
activation exceeds a certain threshold the unit produces an output response.
This functionality is captured in the artificial neuron known as the thresh-
old logic unit (TLU) originally proposed by McCulloch and Pitts. Figure 3.2
shows a model that implement this idea. Despite of the diversity of network
paradigms, nearly all are based upon this neuron configuration. Here a set of
input labeled X1, X2,,Xn is applied from the input space to artificial neu-
ron. These inputs, collectively referred as the input vector “X” corresponds
to the signal into the synapses of biological neuron. Each signal is multiplied
by an associated weight W1, W2, . . . Wn, before it is applied to the summa-
tion block.

The activation a, is given by

a = w1x1 + w2x2 + . . . wnxn + θ. (3.1)

This may be represented more compactly as

a =
n∑

i=1

XiWi
+ θ, (3.2)

the output y is then given by y = f(a), where f is a activation function.
In McCulloh–Pitts Perceptron model hard limiter as activation function

was used and defined as:

y =

{
1 if a >= ß
0 if a < ß

3.3 Artificial Neuron Structure 27

The threshold ß will often be zero. The activation function is sometimes called
a step-function. Some more non-linear activation functions also tried by the
researchers like sigmoid, Gaussian, etc. and the neuron responses for different
activation functions shown in Fig. 3.3 with the Matlab program.

(a) hard-limiter Threshold function.

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

X1

Y

X2

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

10

0.2

0.4

0.6

0.8

1

X2
X1

Y

(c) Gaussian Threshold function.
 Y=exp(− (x1+x2).^2);

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

1

0

0.2

0.4

0.6

0.8

1

X2X1

Y

(b) log-sigmoid Threshold function.
 Y=1./(1+exp(-3.0*(x1+x2)));

−1

− 0.5

0

0.5

1 −1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

X2X1

Y

(d) tanh Threshold function.
 Y= tanh(- 3*(x1+x2))

−1

− 0.5

0
0.5

1 −1
− 0.5

0
0.5

1

−2

−1

0

1

X2X1

Y

(e) Linear Threshold function.
 Y=0.5*(x1+x2)

Fig. 3.3. Effect of different activation function on summation type simple neu-
ron model

28 3 Artificial Neural Network and Supervised Learning

% 3-D surface generation program for simple neuron with
different threshold functions

% Inputs
x1=-1:.1:1;
x2=-1:.1:1;
[m n]=size(x1);
Th=0;
for i=1:n

for j=1:n
sum=x1(i)+x2(j)-0.05;
if sum>=Th Y(i,j)=1 else Y(i,j)=0 end

end
end
Y1=exp(-Y.^2);
surf(x1(1:n),x2(1:n),Y1)

3.4 Adaline

The next major development after the M & P neural model was proposed,
occurred in 1949 when Hebb (1949) proposed a learning mechanism for the
brain that became the starting point for artificial neural network learning
(training) algorithms. He postulated that as brain learns, it changes its connec-
tivity patterns. More specifically, his learning hypothesis is as follows: “When
the axon of cell A is near enough to excite cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that the A’s efficiency, as one of the cells firing cell B, is
increased.” Hebb further proposed that if one cell repeatedly assists in firing
another, the knobs of the synapse, are the junction, between the cells would
grow so as to increase the area of contact. The Hebb’s learning hypothesis is
schematically shown in Fig. 3.4 (Levine 1983). This idea of learning mecha-
nism was first incorporated in artificial neural network by (Rosenblatt 1958).
He combined the simple M & P model with the adjustable synaptic weights
based on Hebbian learning hypothesis to form the first artificial neural net-
work with the capability to learn. The delta rule or the least mean squares
(LMS) learning algorithm, was developed by Widrow and Hoff (1960). This
model was called ADALINE for ADAptive LInear NEuron which is shown in
Fig. 3.5. This learning algorithm first introduced the concept of supervised
learning using a teacher which guides the learning process. It is the recent
generalization of this learning rule into the backpropagation algorithm that
has led to the resurgence in biologically based neural network research today.
This states that if there is a difference between the actual output pattern and
the desired output pattern during training, then the weights are changed to
reduce the difference. The amount of change of weights is equal to the error on

3.4 Adaline 29

Inputs

Pre-synaptic neuron

output

Metabolic Change

Post-synaptic neuron

Before Learning After learning

A

B

A

B

Fig. 3.4. Hebbian learning

ΣΣ

X1

X2

Xn

Inputs

W1

W2

Wn Y

Σ

Output

− Desired
Output

Error
+

Fig. 3.5. ADLINE model

the outputs times the values of the inputs, times the learning rate. Many net-
works use some variation of this formula for training. In 1969 research in the
field of artificial neural networks suffered a serious setback. Minsky and Papert
published a book called Perceptrons (Minsky and Papert 1969) in which they
proceed that single layer neural networks have limitations in their abilities
to process data, and are capable of any mapping that is linearly separable.
They pointed out, carefully applying mathematical techniques that the logical
exclusive OR (XOR) function could not be realized by perceptrons. Further,

30 3 Artificial Neural Network and Supervised Learning

Minsky and Papert argued that research into multi-layer neural network could
be unproductive. Due to this pessimistic view of Minsky and Papert, the field
of artificial neural networks entered into an almost total eclipse for nearly two
decades. Fortunately, Minsky and Papert’s judgement has been disproved; all
non-linear separable problems can be solved by multi-layer perceptron net-
works. Nevertheless, a few dedicated researchers such as Kohonen, Grossberg,
Anderson, Hopfield continued their efforts. A renaissance in the field of neural
networks started in 1982 with the publication of the dynamic neural archi-
tecture by Hopfield (1982). This was followed by the landmark publication
“Parallel Distributed Processing” by McClelland and Rumelhart (1986) who
introduced into the back-propagation learning technique for multi-layer neural
networks. Back-propagation, developed independently by Werbos (1974), pro-
vides a systematic means for training multi-layer neural networks. This devel-
opment resulted in renewed interest in the field of neural networks and since
mid-nineties a tremendous explosion of research has been occurring. Most of
the neural network structures used presently for engineering applications is
feed-forward neural networks (static). These neural networks comprising of
a number of neurons respond instantaneously to the inputs. In other words,
the response of static neural networks depends on the current inputs and
the weights. The absence of feedback in static neural networks ensures that
networks are conditionally stable. However, these networks suffer from the
following limitations:

(1) In feed forward neural networks, where the information flows from A to B,
to C, to D and never comes back to A. On the other hand, biological neural
systems almost always have feedback signals about their functioning.

(2) The structure of the computational (artificial) neuron is not dynamic in
nature and performs a simple summation operation. On the other hand, a
biological neuron is highly complex in structure and provides much more
computational functions than just summation.

(3) The static neuron model does not take into account the time delays that
affect the dynamics of the system; inputs produce an instantaneous out-
put with no memory involved. Time delays are inherent characteristics of
biological neurons during information transmission.

(4) Static networks do not include the effects of synchronism or the fre-
quency modulation function of biological neurons. In recent years, many
researchers are involved in developing artificial neural networks to over-
come the limitations of static neural networks mentioned above. Instead
of summation as an aggregation function, the product (Π) is used as an
aggregation function as shown in Fig. 3.6. The effect of different aggre-
gation functions are also studied and shown in Fig. 3.7. The aggregation
function could also be the combination of summation and product.

In product neuron the activation a, is given by

a = w1x1
∗w2x2

∗ . . . wnxn + θ.

3.4 Adaline 31

Π

Fig. 3.6. Product type neuron

−1

− 0.5

0

0.5

1 −1
− 0.5

0
0.5

1

0

0.5

1

X2X1

Y

(a) Hard-limiter Threshold function.

−1
− 0.5

0

0.5
1 −1

− 0.5
0

0.5
1

0

0.2

0.4

0.6

0.8

1

X2
X1

Y

(b) Log-sigmoid Threshold function.

−1
− 0.5

0
0.5

1 −1
− 0.5

0
0.5

1
0.2

0.4

0.6

0.8

1

X2X1

Y

(c) Gaussian Threshold function.

−1
− 0.5

0
0.5

1 −1
− 0.5

0
0.5

1

−1

− 0.5

0

0.5

1

X2X1

Y

(d) Tanh Threshold function.

−1
− 0.5

0

0.5
1 −1

− 0.5
0

0.5
1

−1

− 0.5

0

0.5

X2X1

Y

(e) Linear Threshold function.

Fig. 3.7. Effect of different activation functions on the product type neuron

32 3 Artificial Neural Network and Supervised Learning

This may be represented more compactly as

a =
n∏

i=1

XiWi
+ θ,

the output y is then given by y = f(a).
A major characteristic of perceptron (summation type neuron) is the linear

separation due to its threshold function. It can identify linearly separable
regions easily as shown in Fig. 3.8.

To be able to divide the area into two regions for the problem in Fig. 3.8a,
only one perceptron is required, since the whole area is divided into two sepa-
rate regions by a single line. However, the threshold area in Fig. 3.8b is formed
by many lines, thus we need more than one perceptron in different layers to
generate a solution to this problem as shown below in Fig. 3.9.

Here, θ1, θ2 and θ3 are the threshold values and w1j , w2j , and w3j are
the interconnection weights for the processing elements in the hidden layer,
1, 2 and 3, respectively. Each of the processing elements is connected to the
third layer, which is the output perceptron through equal weight of 1, and a
threshold value of 2.5 to be able to perform the operation. X and Y represent
the x-y co-ordinates of the point selected from the region specified in Fig. 3.8b.
Each perceptron separates the area into two regions by a line, but the solution
is the intersection of these areas. Therefore, one more perceptron is needed
to combine the outputs of these perceptrons to identify the marked area.
This special perceptron combines the outputs from other perceptrons with
unity weighing and the threshold value of “n–0.5”, where n is the number of
separation lines created.

The perceptron architecture is also able to perform an Exclusive OR op-
eration, for example, in identifying the truth table of the region given in
Fig. 3.10.

(a)

+1

-1

−1

−1

−1

−1

−1

−1

 +1

(b)

Fig. 3.8. (a) Two separate regions defined. (b) A selected region defined by a single
perceptron intersection of areas created by perceptrons

3.4 Adaline 33

111

w11= −1 w12=1

w13= 1

w23= 1

w22= −1w21=0

q=2.5

q1= −4 q2= −2 q3=0

X Y

Fig. 3.9. A solution perceptron network

Y Truth Table

y = 2

x = 4B
y = −x / 2 − 2

y = x / 2 − 2

x = −4 A
y = −2

X

In A

In A

Out A

Out A Out B

Out B

In B

In B

0

0

1

1

Point 1 Point 1 Outcome

=

Fig. 3.10. The exclusive-OR problem

Lets identify the region A using a three-layer perceptron network. Hence
we need to compute the weights, wijs associated with the interconnections
between the input units, which represent the x-y co-ordinates of the points
given in Fig. 3.8b and a corresponding threshold value, θi to be able to make
the distinction between the two regions identified as +1 and −1 in the figure.
These values also correspond to the output values of perceptron model as
shown in Figs. 3.11–3.15.

34 3 Artificial Neural Network and Supervised Learning

111

w11=-1 w12=1 w23=1
w13=0w22=0

q=2.5

q1=4 q2=-4 q3=-2

X Y

Fig. 3.11. Perceptron network for region A

y < −x/2 − 2; x > −4; y > −2
x/2 + y + 2 < 0; x + 4 > 0; y + 2 > 0
−x − 2y − 4 > 0

Similarly for region B;

y > −x/2 + 2; x < 4; y < 2
x + 2y − 4 > 0; −x + 4 > 0; −y + 2 > 0

To be able to produce result as in the truth table shown in Fig. 3.6, which is
an Exclusive OR operation, we need another three-layer perceptron as shown
in Fig. 3.9.

Thus the entire solution architecture is as shown above.

% Matlab Program for solving OR problem
clc; clear all;
X=[0 0 1 1;

0 1 0 1]; % Row wise inputs
D=[0 1 1 1]; % Row wise output

3.4 Adaline 35

111

X Y

w11= 1

w21= 2
w22=0

w13=0

w12=−1 w23=−1

q=2.5

q1=4 q2=−4 q3=−2

Fig. 3.12. Perceptron network for region B

Truth Table

q = 0.5

q1= 0.5 q2= 1.5

1

1 1 1 1

−1

X

x y Output

Y

0

0

1

1 1 0

10

1 1

0 0

Fig. 3.13. Perceptron network for XOR

36 3 Artificial Neural Network and Supervised Learning

XOR
Perceptron model

Perceptron model
for region A

Preceptron model
for region B

X X Y Y

Fig. 3.14. Combined architecture for the subject problem

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pattern Number

O
ut

pu
t

Desired

Neuron output

Fig. 3.15. Comparison of neuron output with actual results

3.4 Adaline 37

% Initialization
W=randn(2,1); % Weight
B=randn(1,1); % Bias
LR=0.9; % learning rate
MF=0.1; % momentum factor
dW=zeros(2,1);dB=0; % change in weight
for i=1:500
wSum=W’*X+B; % Calculating activation
O=1./(1+exp(-wSum)); % Output of neuron
e=(D-O); % Error calculation
sse=sum(e.^2)/2; % Sum squared error
de=(e.*O.*(1-O)); % Derivative of error
dW=LR*X*de’+MF* dW;
dB=LR*sum(de’)+MF*dB;
B=B+dB; % New value of bias
W=W+dW % New value of weight

end
wSum=W’*X+B; % Testing
O=1./(1+exp(-wSum))
plot(D);
hold
plot(O, ‘--’)
xlabel(‘Pattern Number’)
ylabel (‘Output’)

The neurons or processing elements of an ANN are connected together and
the overall system behaviour is determined by the structure and strength of
these connections. This network structure consists of the processing elements
arranged in groups or layers. A single structure of interconnected neurons pro-
duces an auto-associative system and is often used as a content-addressable
memory. Connections between same neurons are referred as lateral connec-
tions and those that loop back and connected to the same neuron are called
recurrent connections. Multi-layered systems contain input and output neu-
ron layers that receive or emit signals to the environment and neurons, which
are neither, called hidden neuron layers. This hidden layer provides networks
with the ability to perform non-linear mappings as well as contributing to
the complexity of reliable training of the system. Inter-field connections or
connections between neurons in different layers can propagate signals in one
of two ways:

• Feed-forward signals only allow information to flow along connections in
one directions, while

• Feedback signals allow information to flow in either direction and/or
recursively.

Artificial neural networks can provide content-addressable memory
(CAM), which stores data at stable states in the weight matrix, and associative

38 3 Artificial Neural Network and Supervised Learning

memory (AM), which provides output responses from, input stimuli. In this
hetero-associative memory system, the ANN recall mechanism is a function
g(.) that takes the weight matrix W and an input stimulus Inputk, and pro-
duces the output response Outputk. The two primary recall mechanisms are

1. Nearest-neighbour recall and
2. Interpolative recall.

Nearest-neighbour recall finds the stored input that closely matches the stim-
ulus and responds with the corresponding output using a distance measure
such as Hamming or Euclidean distance.

Interpolative recall takes the stimulus and interpolates the entire set of
stored inputs to produce the corresponding output.

3.5 ANN Learning

Learning in an ANN is defined as any progressive systematic change in the
memory (weight matrix) and can be supervised or unsupervised.

Unsupervised learning or self-organisation is a process that does not in-
corporate any external teacher and relies only upon local information and
internal control strategies. Examples include:

• Adaptive Resonance Theory (ART1 and ART2) (Carpenter and Grossberg
1988)

• Hopfield Networks (Hopfield 1982)
• Bi-directional Associative Memory (BAM) (Kosko 1987, 1988)
• Learning Vector Quantisation (LVQ) (Kohonen 1988, 1997)
• Counter-Propagation networks (Hecht-Nielsen 1987, 1988, 1990).

Supervise learning, which includes:

• Back-propagation
• The Boltzmann Machine (Ackley et al. 1985)

It incorporates an external teacher and/or global information and includes
such techniques as error-correction learning, reinforcement learning and sto-
chastic learning. Error-correction learning adjusts the correction weight ma-
trix in proportion to the difference between the desired and the computed
values of each neuron in the outer layer. Reinforcement learning is a tech-
nique by which the weights are reinforced for properly performed actions and
punished for inappropriate ones where the performance of the outer layer is
captured in a single scalar error value. Stochastic learning works by making
a random change in the weight matrix and then determining a property of
the network called the resultant energy. If the change has made this energy
value lower than it was previously, then the change is accepted, otherwise the
change is accepted according to a pre-chosen probability distribution. This
random acceptance of change that temporarily degrades the performance of

3.6 Back-Propagation Learning 39

the system allows it to escape from local energy minima in its search for the
optimal system state.

In a multi-layered net using supervised learning, the input stimuli can be
recorded into an internal representation and the outputs generated are then
representative of this internal representation instead of just the original pat-
tern pair. The network is provided with a set of example input–output pairs (a
training set) and the weight matrix modified so as to approximate the function
from which the training set has been derived. In the ideal case, the net would
be able, after training, to generalise or produce reasonable results for input
simulation that it has never been exposed to. Currently, the most popular
technique for accomplishing this type of learning in an ANN is the multi-
layered perceptron employing back-propagation. It evolved from Rosenblatt’s
perceptron; a two-layered supervised ANN, which provides nearest neighbour
pattern matching via the perceptron error-correction procedure. This proce-
dure effectively works to place a hyper plane between two classes of data in
an n-dimensional pattern space. It has been shown that this algorithm will
find a solution for any linearly separable problem in a finite amount of time.

3.6 Back-Propagation Learning

Error back-propagation through non-linear systems has existed in variational
calculus for many years but the first application of gradient descent to the
training of multi-layered nets was proposed by Amari (1967) who used a single
hidden layer to perform a non-linear classification. Werbos (1974) discovered
dynamic feedback and Parker and Chau (1987) talked about learning logic,
but the greatest impact on ANN field came when Rumelhart, Hinton and
Williams published their version of the Back-propagation algorithm.

One of the major reasons for the development of the back-propagation
algorithm was the need to escape one of the constraints on two layer ANNs,
which is that similar inputs lead to similar output(s). But, while ANNs like the
perceptron may have trouble with non-linear mappings, there is a guaranteed
learning rule for all problems that can be solved without hidden units. Unfor-
tunately, it is known that there is no equally powerful rule for multi-layered
perceptrons.

The simplest multi-layered perceptron implementing back-propagation is a
three-layered perceptron with feed-forward connections from the input layer to
the hidden layer and from the hidden layer to the output layer. This function-
estimating ANN stores pattern pairs using a multi-layered gradient error cor-
rection algorithm. It achieves its internal representation of the training set
by minimising a cost function. The most commonly used cost function is the
sum squared error or the summation of the difference between the computed
and desired output values for each output neuron across all patterns in the
training set. Other cost functions include the Entropic cost function, Linear
error and the Minkuouski-r or the rth power of the absolute value of the error.

40 3 Artificial Neural Network and Supervised Learning

In all cases, the changes made to the weight matrix are derived by computing
the change in the cost function with respect to the change in each weight. The
most basic version of the algorithm minimises the sum-squared error and is
also known as the generalised delta rule (Simpson 1990).

Step 1: Assign small random weights to all weights on connections between
all layers of the network as well as to all neuron thresholds. The activation
used is logistic sigmoid function as given by (3.2) with λ = 1.

Step 2: For each pattern pair in the training set:
(a) Read the environmental stimuli into the neurons of the input layer

and proceed to calculate the new activations for the neurons in the
hidden layer using

hiddeni = f

(
n∑

h=1

inputh whi + θi

)
(3.3)

where f(.) is the activation function, there are n input neurons and
θi is the threshold for the ith hidden neuron.

(b) Use these new hidden layer activations and the weights on the connec-
tions between the hidden layer and the output to calculate the new
output activations using

outputj = f

(
n∑

i=1

hiddeni wij + Γj

)
(3.4)

where f(.) is the activation function, there are n hidden neurons and
Γj is the threshold for the jth output neuron.

(c) Determine the difference between the computed and the desired values
of the output layer activations using

diffj = outputj (1 − outputj) (desiredj − outputj) (3.5)

and calculate the error between each neuron in the hidden layer rela-
tive to the diffj using

erri = hiddeni (1 − hiddeni)
n∑

i=1

wijdiffj (3.6)

(d) Modify each connection between the hidden and output layers, and
∆wij = α hiddeni diffj , which is the amount of change to be made to
the weight on the connection from the ith neuron in the hidden layer
to the jth neuron in the output layer. α is a positive constant that
controls the rate of modification or learning.

(e) Perform a similar modification to the weights on the input to hidden
layer connections with ∆whi = β erri for the hidden units and ∆Γj =
α diffj for the output units.

3.6 Back-Propagation Learning 41

Step 3: Repeat Step 2 until all the diffjs are either zero or sufficiently low.
Step 4: After the BP-ANN has been trained; recall consists of two feed-

forward operations, which create hidden neuron values.

hiddeni = f

(
n∑

h=1

inputi whi + θj

)
(3.7)

and then we use them to create new output neuron values

outputj = f

(
n∑

i=1

hiddeni wij + Γj

)
(3.8)

Back-propagation is guaranteed only to find the local, not the global er-
ror minimum. And while this technique has proven extremely successful for
many practical applications, it is based on gradient descent, which can pro-
ceed very slowly because it is working only with local information. Practical
implementation factors that must be considered include:

• The number of units in the hidden layer.
• The value of the learning rate constants.
• The amount of data that is necessary to create the proper mapping.

Once these issues have been addressed, the power of back-propagation is re-
alised in a system that has the ability to store many more patterns that the
number of dimensions inherent in the size of its input layer. It also has the
ability to acquire arbitrarily complex non-linear mappings. This is possible if
the application allows for a reasonably long training time in an off-line mode.

Current research in the area of back-propagation improvements is look-
ing at:

• Optimising the number of units in the hidden layer and the effect of the
inclusion of more than one layer of hidden units.

• Improving the rate of learning by dynamic manipulation of the learning
rates and by the use of techniques such as momentum.

• The effects of dynamically changing and modular connection topologies.
• Analysing the scaling and generalisation properties of this ANN model.
• Employing higher-order correlations and arbitrary threshold functions.

During training the nodes in the hidden layers organize themselves such that
different nodes learn to recognize different features of the total input space.

During the recall phase of operation the network will respond to inputs
that exhibit features similar to those learned during training. Incomplete or
noisy inputs may be completely recovered by the network.

In its learning phase, you give it a training set of examples with known
inputs and outputs.

42 3 Artificial Neural Network and Supervised Learning

An overview of training

The objective of training the network is to adjust the weights so that appli-
cation of a set of inputs produces the desired set of outputs. For reasons of
brevity, these input–output sets can be referred to as vectors. Training as-
sumes that each input vector is paired with a target vector representing the
desired output; together these are called a training pair. Usually, a network
is trained over a number of training pairs. For example, the input part of a
training pair might consist of a pattern of ones and zeros representing a binary
image of a letter of the alphabet. A set of inputs for the letter A drawn on a
grid. If a line passes through square, the corresponding neuron’s input is one;
otherwise, that neuron’s input is zero. The output might be a number that
represents the letter A, or perhaps another set of ones and zeros that could
be used to produce an output pattern. If one wished to train the network to
recognize all the letters of the alphabet, 26 training pairs would be required.
This group of training pairs is called a training set.

Before starting the training process, the weights must be initialized to
small random numbers. This ensures that the network is not saturated by
large values of the weights, and prevents certain other training pathologies. For
example, if the weights all start at equal values and the desired performance
requires unequal values, the network will not learn.

Training the back-propogation network requires the steps that follow:

Step 1. Select the training pair from the training set; apply the input vector
to the network input.

Step 2. Calculate the output of the network.
Step 3. Calculate the error between the network output and the desired

output (the target vector from the training pair).
Step 4. Adjust the weights of the network in a way that minimizes error.
Step 5. Repeat steps 1 through 4 for each vector in the training set until

the error for the entire set is acceptably low.

The operations required in steps 1 and 2 above are similar to the way in
which the trained network will ultimately be used; that is, an input vector is
applied and the resulting output is calculated. Calculations are performed on
layer-by-layer basis.

In step 3, each of the network outputs is subtracted from its corresponding
component of the target of the network, where the polarity and magnitude of
the weight changes are determined by the training algorithm.

After enough repetitions of these four steps, the error between actual out-
puts and target outputs should be reduced to an acceptable value, and the
network is said to be trained. At this point, the network is used for recognition
and weights are not changed.

It may be seen that steps 1 and 2 constitute “forward pass” in that the
signal propagates from the network input to its output. Steps 3 and 4 are a
“reverse pass”; here the calculated error signal propagates backward through

3.6 Back-Propagation Learning 43

the network where it is used to adjust weights. These two passes are now
expanded and expressed in a somewhat more mathematical form in Chap. 4.

% Matlab Program for Backpropagation for single hidden layer

% Input–output Pattern for EX-OR problem
clear all;
clc;
X=[0.1 0.1 0.1; 0.1 0.9 0.9; 0.9 0.1 0.9; 0.9 0.9 0.1];
% Training parameters
eta=1.0; % learning rate
alpha=0.6; % Momentum rate
err_tol=0.001; % Error tolerance
[row_x col_x]=size(X);
sum_err=0;
% ANN architecture
In=2; % number of input neurons
Hn=2; % number of hidden neurons
On=1; % number of output neurons
% Weight/delta weight Intialization
Wih=2*rand(In+1,Hn)-1;
Who=2*rand(Hn+1,On)-1;
DeltaWih=zeros(In+1,Hn);
DeltaWho=zeros(Hn+1,On);
deltaWihold=zeros(In+1,Hn);
deltaWhoold=zeros(Hn+1,On);
deltah=zeros(1,Hn+1);
deltao=zeros(1,On);
X_in=[ones(row_x,1) X(:,1:In)];
D_out=X(:,1:On);
sum_err=2*err_tol;
while (sum_err>err_tol)
sum_err=0;
for i=1:row_x
sum_h=X_in(i,:)*Wih;
out_h=[1 1./(1+exp(-sum_h))];
sum_o=out_h* Who;
out_o=1./(1+exp(-sum_o));
error=D_out(i) - out_o;
deltao=error.*out_o.*(1-out_o);
for j=1:Hn+1
DeltaWho(j,:)=deltao*out_h(j);
end
for k=2:Hn+1
deltah(k)=(deltao*Who(k,:)’)*out_h(k)*(1-out_h(k));
end

44 3 Artificial Neural Network and Supervised Learning

for l=2:In+1
deltaWih(l,:)=deltah(2:Hn+1)*X_in(i,l);
end
Wih=Wih+DeltaWih+alpha*deltaWihold;
Who=Who+DeltaWho+alpha*deltaWhoold;
deltaWihold=DeltaWih;
deltaWhoold=DeltaWho;
sum_err=sum_err+sum(error.^2);
end
sum_err
end

Summary of back-propagation training:

• Objective is to find the global minimum on the error surface.
• Solution is obtained through gradient descent algorithm and ANN weights

are adjusted to follow the steepest downhill slope.
• The error surface is not known in advance, so explore it in many small

steps and the possibility to stuck in local minima is always there as shown
in Fig. 3.16.

The algorithm finds the nearest local minimum, not always the global
minimum. There can be two causes for this:

a. Over-fitted ANN
The overfitting of data is a common problem found in ANN during ap-
proximating a function, specially when ANN has too many weights. Too
many weights (free parameters) in ANN approximate the function very
accurately, but the generalization capability for unforeseen data is not so
good. On the other hand, a network with too few weights will also give
poor generalization capability as the ANN has very low flexibility and is

W

Error

Global
Minima

Local
Minima

Fig. 3.16. Error curve with respect to weight

3.8 Limitations in the Use of Neural Networks 45

unable to approximate the function. Hence, there is a trade off between
the number of training data and the size of the network.

b. Too many hidden nodes
• One node can model a linear function
• More nodes can model higher-order functions, or more input patterns
• Too many nodes model the training set too closely, preventing gener-

alization.
This problem could be resolved by optimizing the ANN size.

3.7 Properties of Neural Networks

1. Neural networks are inherently parallel and implementation can be done
on parallel hardware.

2. It has a capacity for adaptation.
3. In neural networks “memory” corresponds to an activation map of the

neurons. Memory is thus distributed over many units giving resistance to
noise. In distributed memories, such as neural networks, it is possible to
start with noisy data and to recall the correct data.

4. Fault tolerant capability
Distributed memory is also responsible for fault tolerance. In most neural
networks, if some neurons are destroyed or their connections altered
slightly, then the behavior of the network as a whole is only slightly de-
graded. The characteristic of graceful degradation makes neural comput-
ing systems extremely well suited for applications where failure of control
equipment means disaster.

5. Capacity for generalization
Designers of expert systems have difficulty in formulation rules which en-
capsulate an expert’s knowledge in relation to some problem. A neural
system may learn the rules simply from a set of examples. The general-
ization capacity of a neural network is its capacity to give a satisfactory
response for an input which is not part of the set of examples on which
it was trained. The capacity for generalization is an essential feature of a
classification system. Certain aspects of generalization behavior are inter-
esting because they are intuitively quite close to human generalization.

6. Ease of construction.

3.8 Limitations in the Use of Neural Networks

1. Neural systems are inherently parallel but are normally simulated on
sequential machines.
◦ Processing time can rise quickly as the size of the problem grows.
◦ A direct hardware approach would lose the flexibility offered by a

software implementation.

46 3 Artificial Neural Network and Supervised Learning

2. The performance of a network can be sensitive to the quality and type of
preprocessing of the input data.

3. Neural networks cannot explain the results they obtain; their rules of
operation are completely unknown.

4. Performance is measured by statistical methods giving rise to distrust on
the part of potential users.

5. Many of the design decisions required in developing an application are not
well understood.

Fruit identification problem

This is a very simple example of identification of fruits. The inputs for this
problem are shape, size and colour of fruits.

Step-1 What the neural network is to learn?
Input 1 Shape = {Round, Large}
Input 2 Size = {Small, Large}
Input 3 Colour = {Red, Orange, Yellow, Green}.
Output Type of fruit = {Grape, Apple, Cherry, Orange, Banana}.
Step-2 Pre-processing of data

a. Representation of data
Neural Network could not work with qualitative information. Hence
the input must be converted into quantitative information like 0 and 1.

Shape= {0,1} zero stands of round and 1 for large.

Size = {0,1} small is zero and large is 1.

Colour = {0.0, 0.25, 0.5, 0.75, 1.0}.
Where 0.0 - Red; 0.25 - Orange, 0.5 - Yellow, 0.75 - Green.

Output = {0, 0.25, 0.5, 0.75, 1.0}.
Where 0.0 Grape, 0.25 - Apple, 0.5 - Cherry, 0.75 - Orange, 1.0 Banana.

b. Sequence of presentation of data

Input 1 shape Input 2 size Input 3 color Ouptut - fruit
0 - Round 0 - Small 0.0 - Red 0 - Grape
0 - Round 0 - Small 0.25 - Orange 0.5 - Cherry
0 - Round 1 - large 0.25 - Orange 0.75 - Orange
1 - Large 1 - Large 0.5 - Yellow 1.0 - Banana
0 - Round 1 - Large 0.75 - Green 0.25 - Apple

The inputs need not be the exact value as given in the table; we could
assign some other value depending on the situation. It also helps us
to incorporate the uncertainty in the model.

Step-3 Define Network Structure –
Number of input layer neurons = 3 (Number of inputs)
Number of output layer neuron = 1 (Number of outputs)
Number of Hidden layer neurons = 2 (generally average of input and

output neurons)

3.8 Limitations in the Use of Neural Networks 47

Hidden Layer
Input Layer

Neural Network to recognize Fruits

Shape

Size

Color

Type
of

Fruit

Output Layer

Step-4 Selection of Neuron Structure

Σ

Normally the neuron structure is consisting of summation as aggregation
function and sigmoid as threshold function.

Step-5 Usually the network starts with random weight in the range (−0.1 to
+0.1). Sometimes to reduce the training time, the initialization of weights
is done with evolutionary algorithms.

Step-6 Training Algorithms and Error Function selection
Generally, gradient descent back-propagation training algorithm is used
with or without adaptive learning and momentum factors. In this the sum
squared error is fed back to modify the weight during training.

Step-7 Decision regarding selection of training parameters
Training parameters are

a. Number of epochs = 100 (number of iterations required to reach to
the desired goal)

b. Error tolerance = 0.001 (depends on the accuracy required)
c. Learning rate = 0.9 (near 1)
d. Momentum facto = 0.1 (smaller)

Step-8 Training and Testing of Network
The network is trained for the above given data and then test it to check its
performance. Generally, the testing data is slightly different from training
data (10% new data).

Step-9 Use the trained network for prediction

% Matlab Program for identification of fruit type

clc; clear all;

% Column wise input--output patterns

48 3 Artificial Neural Network and Supervised Learning

x=[0 0 0.0 0; 0..0 .0.25 0.5; 0..1 ..0.25 ..0.75;

1...1..1.5 ..1.0; 0 ..1 ..0.75....0.25];

P=x(:,1:3)’;

T=x(:,4)’;

net=newff(minmax(P), [2 1],

{‘tansig’ ‘purelin’}); % defining~ANN

net.trainParam.epochs=100; % Define number of epochs

net.trainParam.goal=0.0001; % Define error~goal

net=init(net) % Initialize weights

net=train(net,P,T); % Training

Y=sim(net,P); % Testing

plot(1:5,T,‘-’,1:5,Y,‘o’) % Ploting the results

Results

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pattern number

O
ut

pu
t

Desired output
ANN output

3.9 Summary

1. It is clear that the quantum of processing that takes place in biologi-
cal neurons is far more complex. It integrates hundreds or thousands of
temporal signals through their dendrites.

2. Artificial neuron is similar to biological neurons and receives weighted
input, which passes through aggregation function and activation function.
A hard limiter constitutes the nonlinear element of McCulloch – Pitts
neuron.

3.11 Exercises 49

3. Artificial neural network (ANN) consists of artificial neurons in two dif-
ferent architectures: feed forward and feedback. Feedforward networks are
static and the output depends only on input, but in feedback ANN output
is also feedback and therefore, it is dynamic in nature.

3.10 Bibliography and Historical Notes

The pioneer work in the area of neural network was done by McCulloch and
Pitts way back in 1943. McCulloch was a psychiatrist and neuroanatomist
by training. He spent nearly two decades in understanding the event in the
nervous system. Pitts was a mathematical prodigy. McCulloch and Pitts de-
veloped neuron model at the University of Chicago.

The next major development in the field of neural network came in 1949,
when Hebb wrote a book on The Organization of Behavior. He proposed that
the connections strength between neurons change while learning. Rochester
et al. (1956) is probably the first attempt to formulate neural learning theory
based on Hebb’s work.

Minsky submitted his doctorate thesis at Princeton University on the topic
of Theory of Neural – Analog Reinforcement Systems and Its Application to
the Brain-Model Problem in 1954. Then he published a paper on Steps To-
ward Artificial Intelligence. The significant contributions to the early devel-
opment of associative memory papers by Taylor (1956), Anderson (1972), and
Kohonen (1972).

In 1958 Rossenblatt introduced a novel method of supervised learning. In
1960 Widrow and Hoff gave least mean square (LMS) algorithm to formulate
ADALINE. Later on Widrow and his students developed MADALINE. The
books by Wasserman Philip (1989) and Nielsen (1990) also contain treatment
of back propagation algorithms. Minsky and Papert (1969) demonstrated the
fundamental limitations of perceptron.

In 1970s self-organizing maps using competitive learning was introduced
(Grossberg 1967, 1972). Carpenter and Grossberg also developed adaptive res-
onance theory (ART) in 1980 and used it for pattern recognition (Carpenter
and Grossberg 1987, 1988, 1990, 1996). Hopfield used an energy function to
develop recurrent networks with symmetric synaptic connections. Rumelhart
et al. (1986) developed back propagation algorithm. In early 1990s, Vapnik
et al. invented a computationally powerful class of supervised learning net-
works called support vector machines for different applications. An excellent
review article is that by Lippmann (1987). Kosko (1988) discusses on bidirec-
tional associative memory (BAM).

3.11 Exercises

1. Explore the method of steepest descent involving a single weigh w by
considering the following cost function:

f(w) = 0.7 A + W∗B + C∗W2 where A, B, and C are constants.

50 3 Artificial Neural Network and Supervised Learning

2. The function expressed by f(x) = 1/x2

a. Write a matlab program to generate the two sets of data:
1. Training data
2. Testing data.

b. Use a three layer network and train it with back propagation learn-
ing algorithm for the data generated in part a. Consider the error
tolerance 0.01.

c. Test the network for generated testing data.
d. Compare the network performance for

1. Two or more hidden layers in the network.
2. Two or more neurons in each hidden layer.

3. In question 2, study the effect of starting (initial) weights.
4. A sigmoid function is f(x) = 1/(1 + e−λx). Find its inverse function and

plot both the function and its inverse for different values of λ.
5. Find the derivative of the above mentioned function with respect to x.
6. Find appropriate weights and threshold of neuron for logical AND

problem.
7. Solve the 3-bit even parity problem with three layer ANN using 3-hidden

neurons. Write the matlab program to solve the parity problem.

