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Synergism of Genetic Algorithms and Fuzzy
Systems for Power System Applications

11.1 Introduction

The power system of today is a complex interconnected network having four
major components – generation, transmission, distribution and loads. Elec-
tricity is being generated in large hydro, thermal and nuclear power stations,
which are normally located far away from the load centers. Large and long
transmission networks are wheeling the generated power from these gener-
ating stations to different distribution systems, which ultimately supply the
load. The distribution system is that part of the power system which connects
the distribution substations to the consumers’ service-entrance.

Earlier the utilities were mainly concerned about the optimal dispatch of
active power only, but evolvement of competition has also resulted in the op-
timal dispatch of reactive power. When only total cost is minimized by real
power scheduling of available generator in a system, the optimal power flow
(OPF) corresponds to Active Power Dispatch. Some of the solution techniques
successfully used for active power dispatch include classical co-ordination
methods based on Lagrangian multiplier approach (Chowdhury and Rahman
1990), Linear programming (LP) based methods (Stott and Hibson 1978;
Stott and Marinho 1979), quadratic programming (QP) approach (Nanda
et al. 1989), Gradient method using steepest descent technique (Dommel and
Tinney 1968) and Newton’s methods (Sun et al. 1984; Maria and Findlay
1987). A comprehensive review of various optimization techniques available
in the literature is reported in references (Happ 1977; Sasson and Merril 1974;
Carpantier 1985). The classical method of optimization is relatively simple,
fast and requires less memory space but sometimes it is unable to handle the
system constraints effectively and sometimes convergence is not obtained. The
LP based method involves approximation in linearizing the objective function
and constraints and may result in zigzagging of the solution. Gradient based
methods compute the derivative of the function at each step. They require a
close initial guess and in general suffer from convergence difficulties and may
stuck to local minima.
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The GAs (genetic algorithms) have been applied to solve unit commitment
problem (Kazarlis et al. 1996), Optimal reactive power dispatch (ORPD) prob-
lem (Singh et al. 1993; Swarup et al. 1996; Lee et al. 1997) and for economic
load dispatch problem (Walters and Sheble 1993; Sheble and Britigg 1995;
Chen and Chang 1995; Orero and Irving 1996; Achyuthakan 1997). Miranda
et al. (1996) have provided a survey of three branches of evolutionary pro-
gramming (EP), genetic algorithms (GAs) and discusses their relative merits
and demerits.

The superiority of GA methods in handling continuously non-differentiable
objective has been given in (Walters and Sheble 1993; Achyuthakan 1997).
For better results and faster convergence, conventional GA models have been
modified by including new operators such as elitism, shuffle in reproduction,
multi-point or uniform crossover and creep mutation. Considering three added
features, a refined GA is used to solve economic load dispatch (ELD).

A pyramid genetic algorithm (PGA) has been used in Lee et al. (1997) for
voltage profile optimization. The PGA can analytically determine the bound
values of mutation and crossover probabilities, which are otherwise, chosen by
experience. The GA-Fuzzy approach presented in this paper is developed to
get above mentioned advantages by varying crossover and mutation probabil-
ities throughout the generations by fuzzy-rule base.

11.2 Transmission Planning, Pricing
and Structure/Models of Indian Power Sector

A bibliographical survey of power system wheeling under deregulated environ-
ment is presented by Sood et al. (2002). A lot of literature is available for the
issue of transmission open access. Christie and Anjan Bose (1996) discussed
the complete deregulation scenarios and technical issues related to operation
and control of the system. Various aspects of pricing of transactions in open
access are discussed by Silva et al. (1998), David (1998), Arriaga et al. (1995b)
and Vojdani et al. (1996).

1. Transmission planning

A genetic algorithm based dynamic transmission planning methodologies
are formulated by Rudnick et al. (1996) and Lima et al. (1998) to deter-
mine the economically adapted transmission system in open access. But since
the transmission planning is a complex, nonlinear and dynamic problem, a
simple GA method is not suitable. Object oriented software for transmission
planning in open access is proposed by Handschim et al. (1998). Raga et al.
(2005) have presented a multi-criteria formulation (i.e. investment costs, op-
erational cost and the expected energy not supplied) for multiyear dynamic
transmission expansion planning problems. The solution algorithm adapts an
interactive decision-making approach that starts at a non dominated solution
of the problem.
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2. Transmission pricing methods

Transmission pricing has been discussed in a detail in the literature. Happ
(1994) has presented computational procedure and data requirements for em-
bedded cost methods, incremental cost methods and marginal costs methods.

Caramanis et al. (1986) has presented new wheeling rates for buying and
selling. A computer program WRATES is developed by Caramanis et al.
(1989) is used to provide the practical means of computing the marginal cost
of wheeling. This analysis requires a load flow program integrated with con-
straints and economic load dispatch simulation.

First extensive computations of marginal cost of wheeling and rates based
on marginal costs are carried out by Merrill and Erickson (1989). Different
methodologies for costing of transmission services have been developed and are
reported by Shirmohammadi and Thomas (1991) and Shirmohammadi et al.
(1991). The theory to evaluate optimal wheeling rates for the case of bus to
bus wheeling is developed in (Lo and Zhu 1993). It is based on the marginal
cost theory which has been used for electricity pricing. On the basis of the
equitable sharing of the benefits arising from wheeling transactions among
the wheeler, the power seller and the buyer, this approach has the advantage
over others. It avoids the direct evaluation of the network maintenance cost
and the quality of supply cost components.

Several methodologies have been reported for cost of wheeling. A non-
linear optimization program with linear constraints is developed by Li et al.
(Li and David 1993) to calculate the amount of wheeled energy and wheeling
price solved by gradient projection method.

The principles and practices of a new methodology for wheeling rate eval-
uation without assuming the existence of the spot price based market place
is describe by Lo and Zhu (1994). Li et al. (1994) have used a wheeling rate
based on marginal cost pricing and implemented using the modification of the
optimal power flow.

A load flow based model for calculating the various cost components is
presented by Kovacs and Leverett (1994). A separate pricing of transmission
and distribution services is proposed by Farmer et al. (1995). SRMC and
LRMC based models are proposed by Lima and Pereira et al. (1995) for
allocating transmission cost among users of centralized transmission service.
A novel approach that alleviates the inherent shortcomings of SRMC based
pricing and maintains the economic efficiency of the price signals are proposed
by Farmer et al. (1995). But the effect of security analysis has not been taken
care while considering the optimal conditions.

Lima (1996) has proposed load-flow based Megawatt-mile, Modulus, Zero
counter complex calculations and greater data and provides no incentive
to users.

Pereira et al. (1996) have presented a method for evaluating an optimal set
of transmission prices to be charged for use of a transmission system on a time-
of-use basis. Prices are calculated by maximizing the global benefit of using
the transmission system that allocates both capacity and operational cost.
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A methodology to allocate the cost of transmission network facilities to
wheeling transactions in decentralized power systems using Game theory is
proposed by Tsukamoto et al. (1996) and Ferrero et al. (1998). The concept
of game theory is employed to deal with the conflicts in a deregulated power
system.

Wakefield et al. (1997) have presented transmission costing framework and
its application for analyzing the transmission costing issues. Zobian and Illic
(1997) have proposed a methodology for allocating transmission cost among
users of a centralized transmission service. The share of each participant is
proportional to its impact on system transmission investment requirements.
This allocation rule provides incentives for all participants to remain in the
pool and ensures revenue reconciliation. Yu and David (1997) have proposed
an approach which distinguishes between operating and embedded costs and
have developed separate methods in respect of each of these components.

In (1999) a method for long run marginal cost (LRMC) based pricing in
multi-area interconnected system, based on the incremental use of each area’s
transmission network at times of peak flow, is proposed.

In (Muchayi Maxwell and El-Hawary 1999) unlike other methods which use
only the variation of fuel cost for generation to estimate the rate structures, the
proposed pricing algorithm incorporates the optimal allocation of transmission
system operating costs based on time-of-use pricing. The transmission costs
are obtained by assigning a price k to each unit of power flow in the network.

In (Moya 2002), a model of marginal adequacy costs is developed in order
to reflect the influence that any nodal load has on system static security.
An adequacy cost function is defined, making use of the load that must be
theoretically withdrawn at each node in order to re-establish power flows on
transmission elements, after any static contingency of a predefined set occurs.

Chen et al. (2002) have presented a method to provide a detailed descrip-
tion of each nodal price, by breaking down each nodal price into a variety of
parts corresponding to the concerned factors, such as generations, transmis-
sion congestion, voltage limitations and other constraints or elements.

Gang et al. (2005) have proposed a transmission and wheeling pricing
method based on the monetary flow tracing along power flow paths: the mon-
etary flow–monetary path method. Active and reactive power flows are con-
verted into monetary flows by using nodal prices. The method introduces an
uniform measurement for transmission service usages by active and reactive
powers.

Gil et al. (2006) presents an approach for the allocation of transmission net-
work costs by controlling the nodal electricity prices. The proposed approach
introduces generation and nodal injection penalties into the traditional eco-
nomic dispatch so as to create nodal price differences that recover the required
transmission revenue from the resulting congestion rent.

Galetovic and Montecinos (2006) describes the new method used in Chile
to allocate transmission charges among generating companies and customers.
They show that the new Chilean transmission charge scheme is a hybrid based
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on marginal cost pricing, identification of use through economic benefits and
flow identification methods, and last, a postage stamp to redistribute almost
all the charges that customers have to pay.

Sedaghati (2006) has proposed a novel method for allocation of the fixed
cost of the transmission systems to agents using facilities. In (Verma and
Gupta 2006), a nonlinear optimization problem has been formulated to max-
imize the social welfare in the open power market using a unified power flow
controller (UPFC).

3. Market structures/models

A Poolco model suitable for power system planning and decomposing spot
prices to reveal components caused by congestion is presented by Finny et al.
(1997).

Illic and Prasad et al. (2003) provided simulation-based demonstrations
of hybrid electricity market that combines the distributed competitive advan-
tages of centralized markets.

Ren et al. (2004, 2004a) compared the quantitative behavior of the two
markets, i.e. pay as bid and marginal pricing, assuming that generators sub-
mit the best strategic offers that correspond to the specified pricing method.
In Part I of their two-part study, assuming that the system marginal costs for
pay-as-bid (PAB) and marginal pricing (MP) are random with known proba-
bility density functions, they develop generator strategic offers by maximizing
the corresponding expected values of the generator profits over the offer para-
meters. In Part II relations are established between the system marginal costs
(SMCs) for each market type and a common random demand, thus allowing
the two markets to be compared through the expected values and variances
of the individual generation profits and of the consumer payments.

Competitive markets for electricity determine either a uniform marginal
price (UMP), a set of nodal marginal prices (NMPs), or a smaller set of
zonal marginal prices (ZMPs). Ding and David (2005) prove that, the UMP
or ZMP models (a) do not affect the total economic surplus, (b) redistribute
the surplus among generators and loads at the different nodes, and (c) give
perverse incentives for generation expansion.

Fleten and Erling (2005) have proposed a stochastic linear programming
model for constructing piecewise-linear bidding curves to be submitted to
Nord Pool, which is the Nordic power exchanger. They have considered the
case of a price-taking power marketer who supplier electricity to price-sensitive
end users.

Plazas et al. (2005) considers a profit-maximizing thermal producer that
participates in a sequence of spot markets, namely, day-ahead, automatic
generation control (AGC), and balancing markets. The producer behaves as
a price-taker in both the day-ahead market and the AGC market but as a
potential price-maker in the volatile balancing market.

Li and Mohammad (2005) describes a method for analyzing the competi-
tion among transmission-constrained generating companies (GENCOs) with
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incomplete information. Each of GENCO models and its opponents’ unknown
information with specific types for transforming the incomplete game into a
complete game with imperfect information.

Ongasakul and Chayakulkheeree (2006) have proposed a coordinated fuzzy
constrained optimal power dispatch (CFCOPD) algorithm for bilateral con-
tract, balancing electricity and ancillary services markets.

Bompard et al. (2006) has presented comprehensive approach to evaluate
the performance of the electricity markets with network representation in
presence of bidding behavior of the producers in a pool system. A supply
function strategic bidding model for the producers is introduced, and then
different scenarios in terms of bidding behavior and network constraints are
studied and compared on the basis of a set of microeconomic metrics.

Philpot and Erling (2006), present a model of a purchaser of electricity in
Norway, bidding into a wholesale electricity pool market that operates a day
ahead of dispatch.

Olmos and Neuhoff (2006) have proposed an algorithm and apply it to
the European electricity network to identify a balancing point that reduces
market power of generation companies and is well connected. Market-level
data or detailed information about demand is not required.

4. Congestion management

Congestion management is one of the major tasks performed by system
operators (SOs) to ensure the operation of transmission system within op-
erating limits. In the emerging electric power market, the congestion man-
agement becomes extremely important and it can impose a barrier to the
electricity trading. Kumar et al. (2005) presented bibliographical survey of
papers/literature on congestion management issues in the deregulated elec-
tricity markets.

A study of congestion management based on congestion pricing is proposed
by Glavitsch and Fernando (1998).

Singh et al. (1998) studied the management of costs associated with trans-
mission constraints (i.e. transmission congestion costs) in a competitive elec-
tricity market. The paper examines two approaches for dealing with these
costs. The first approach is based on a nodal pricing framework and forms
the basis of the so-called pool model. The second approach is based on cost
allocation procedures proposed for the so-called bilateral model. An advanced
analytical method for secure and efficient operation of power system is pro-
posed by Shirmohammadi et al. (1998).

A congestion problem formulation should take into consideration inter-
actions between intra-zonal and inter-zonal flows and their effects on power
systems. It is perceived that phase-shifters and tap transformers play vital pre-
ventive and corrective roles in congestion management. These control devices
help the ISO mitigate congestion without re-dispatching generation away from
preferred schedules. In Ref. (2000) a procedure is introduced for minimizing
the number of adjustments of preferred schedules to alleviate congestion and
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apply control schemes to minimize interactions between zones while taking
contingency-constrained limits into consideration.

Service identification and congestion management are important functions
of the ISO in maintaining system security and reliability. In Fu and John
et al. (2001), a combined framework for service identification and congestion
management is proposed. Verma et al. (2001) presents the development of
simple and efficient models for suitable location of unified power flow controller
(UPFC), with static point of view, for congestion management.

Gan and Donald et al. (2002) briefly review the New England power sys-
tem (NEPOOL) locational pricing proposal being implemented. Two new ap-
proaches for locational market power screening are presented. The first one is
based on a zonal network model and the second is based on a nodal transmis-
sion model.

The paper by Bompard et al. (2003) briefly reviews the congestion man-
agement (CM) schemes and the associated pricing mechanism used by the
independent grid operators (IGOs) in five representative schemes. These are
selected to illustrate the various CM approaches in use: England and Wales,
Norway, Sweden, PJM, and California. They develop a unified framework for
the mathematical representation of the market dispatch and redispatch prob-
lems that the IGO must solve in CM.

Kristiansen (2004) gives an overview of the current practice for conges-
tion management, transmission pricing, and area price hedging in the Nordic
region. Transmission congestion in the Nordic region is managed by using
the area price model and counter trade. In Kumar et al. (2004), a new
zonal/cluster-based congestion management approach has been proposed. The
zones have been determined based on lines real and reactive power flow sensi-
tivity indexes also called as real and reactive transmission congestion distrib-
ution factors. The generators in the most sensitive zones, with strongest and
nonuniform distribution of sensitivity indexes, are identified for rescheduling
their real power output for congestion management.

A new congestion management system is proposed in Mendez and Hugh
(2004), applied under nodal and zonal dispatches with implementation of fixed
transmission rights (FTR) and flow gate rights (FGR). The FTR model proves
to be especially suitable for congestion management in deregulated central-
ized market structures with nodal dispatch, while the FGR is suitable for
decentralized markets.

In the paper (Aguado et al. 2004), authors deal with the operation of
power systems consisting of several interconnected electricity markets. They
proposed an alternative approach to inter-regional trade that avoids the flaws
of forward markets with explicit auctioning of interconnections capacities.
They proposed the integration of a forward market with a balancing (spot)
market for inter-regional exchanges based on nodal pricing.

Alomoush (2005) presents some performance indices to compare different
dispatch options, where it proposes to use some congestion and system utiliza-
tion measures. These measures are used in the paper to indicate level of system
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usage and congestion severity under different dispatch scenarios, and may en-
able the system operator or the qualified dispatch decision-making entity to
decide which dispatch, among different dispatch scenarios, is the optimal.

The paper by Conejo et al. (2006) addresses the congestion management
problem avoiding offline transmission capacity limits related to stability. These
limits on line power flows are replaced by optimal power flow-related con-
straints that ensure an appropriate level of security, mainly targeting voltage
instabilities, which are the most common source of stability problems.

11.3 GA-Fuzzy System Approach for Optimal Power
Flow Solution

The present day power system is a very large and integrated power system
comprising of several generators and buses. Recent trends of deregulation of
power system have resulted in increased competition in the area of generation,
transmission and distribution of power. The problem of economic operation of
power system had emerged when it was required to operate two or more units
to meet economically the demand when net generation exceeds the demand.

In the recent past, methods using genetic algorithms (GAs) (Goldberg
1989) have become popular to solve the optimization problems mainly because
of its robustness in finding optimal solution and ability to provide near optimal
solutions close to global minima. GAs are search algorithms based on the
mechanics of natural selection and natural genetics. The performance of GA
can also be improved by introducing new problem specific genetic operators.
In Maha et al. (2006) a new genetic operator named pluck is introduced that
incorporates a problem specific knowledge in population generation and leads
to a better channel utilization in mobile computing problem. GAs are different
from other optimization methods in the following ways:

• GAs search from population of several points, not a single individual point
in the population.

• GAs have inherent parallel computation ability.
• GAs use pay off information (objective function) and not derivatives or

auxiliary knowledge.
• GAs use probabilistic transition rules, so they can search a complicated

and uncertain area to find the global optimum.

The basic idea in GA is to maintain a population of chromosomes that
evolves through a process of competition and controlled variation. Simple
forms of GAs performance largely depend on the appropriate setting of ge-
netic parameters namely crossover probability and mutation probability. It
has been observed that after few generations, the fitness value of each chromo-
some becomes almost equal to other chromosomes from the same population.
The effect of crossover beyond this stage becomes insignificant due to very
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small variation in the chromosomes in a particular population. Therefore, it
is difficult to find optimal settings for these parameters.

The techniques developed to set these parameters are classified by Eiben
and Smith (2003) as parameter tuning and parameter control. For parameter
tuning, the parameter values are set in advance (before the run) and are kept
constant during the whole execution of the algorithm. In parameter control
techniques, parameters are initialized at the start of execution and are allowed
to change during the run. Parameter control techniques are classified mainly
into three groups based on the type of change they introduce:

• Deterministic: the parameter value is updated according to some deter-
ministic rule without using any feedback from the population. The deter-
ministic mutation rate schedule implementation proposed in Smith and
Fogarty, (1997) has successful results for hard combinatorial problems.

• Self adaptive: the parameter is evaluated and updated by the evolutionary
algorithm itself by encoding the parameters into the chromosomes and un-
dergo mutation and recombination. The basic idea is that better parameter
values will survive in the population since they belong to the surviving in-
dividuals. Bäck (1993) refers to this approach as on-line learning. In their
work, they propose a self adaptation mechanism of a single mutation rate
per individual.

• Individually adaptive: the parameter value is updated based on some feed-
back (usually fitness values of individuals) from the population. Srinivas
and Patnaik. (1994) has proposed this approach by giving mutation rate
adaptation rule in the form of following equations:

pm = k2(fmax − f)/(fmax − favg), f ≥ favg

pm = k4, f < favg

where

f = fitness value of the individual,
fmax = best fitness value of the current generation,
favg = average fitness value of the current generation,
constants k2 and k4 = 0.5.

In an adaptive GA-Fuzzy algorithm developed in present research work has
two important parameters namely, crossover probability (Pc) and mutation
probability (Pm). They are varied dynamically during the execution of the
program according to a fuzzy knowledge base which has been developed from
experience to maximize the efficiency of GA.

11.3.1 OPF Problem

The optimal power flow problem is concerned with optimization of steady state
power system performance with respect to an objective function f , subject
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to numerous constraints. For optimal active power dispatch, the objective
function f is the total generation cost as expressed below:

min f =
Ng∑
i=1

(ai + biPgi + ciP
2
gi) (11.1)

where

Ng = total number of generation units,
ai, bi and ci = cost coefficients of generating unit,
Pgi = real power generation of ith unit i = 1, 2, . . . .Ng

subject to following constraints:
Equality constraints as

Pgi − Pdi −
N∑

j=1

|Vi‖Vj‖Yij | cos(δi − δj − θij) = 0 (11.2)

and

Qgi − Qdi −
N∑

j=1

|Vi‖Vj‖Yij | sin(δi − δj − θij) = 0 (11.3)

Inequality constraints as

Pgi
min ≤ Pgi ≤ pgi

max (11.4)

Qgi
min ≤ Qgi ≤ Qgi

max (11.5)

V min
i ≤ Vi ≤ V max

i (11.6)

tk
min ≤ tk ≤ tk

max (11.7)

δgi
min ≤ δgi ≤ δgi

max (11.8)
line flow1 ≤ line flowmax

1 (11.9)

Qcm
min ≤ Qcm ≤ Qcm

max (11.10)

where, N = Total number of buses,
NT = Total number of tap changing transformers,
Qcm = mth shunt capacitor/reactor compensations,
Nl = Total number of lines,
Nc = Total number of shunt capacitors
i and j = 1, 2, . . . . N ,
k = 1, 2, . . . .. NT ,
l = 1, 2, . . . . Nl,
m = 1, 2, . . . . Nc,
Pgi and Qgi = real and reactive power generation at bus i,
Pdi and Qdi = real and reactive power demands at bus i,
|Vi| and |Vj | = voltage magnitudes at bus i and j respectively,
δi and δj = voltage angles at bus i and j,
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Yij = |Yij |∠θij = admittance matrix,
tk = tap setting of kth transformer,
line flowl = line flow at lth line

11.3.2 Synergism of GA-Fuzzy System Approach

At the starting stage, high crossover probability and low mutation probability
yield good results, because a large number of crossover operations produce
better chromosomes for a finite number of generations, after that the fitness
value of each chromosome vector becomes almost equal. Beyond this the effect
of crossover is insignificant due to little variation in the chromosome vectors
in that particular population. At later stages, increasing the mutation rate
of the chromosomes inculcates new characteristics in the existing population
and therefore diversifies the population.

Therefore, philosophy behind varying Pc and Pm is that the response of
the optimization procedure depends largely on the stage of optimization, i.e.
a high fitness value may require relatively low crossover and high mutation
probabilities for further improvement, alternatively, at low fitness values the
response would be better with relatively high crossover and low mutation
probabilities.

Schuster (1985) proposed heuristics for optimal setting of the mutation
probability (Pm). Fogarty, (1981) and Booker (1987) investigated time depen-
dencies on the mutation and crossover probabilities respectively. Grefenstette,
(1981) and Schaffer (1981) found optimal settings for all these parameters of
the GA by experiment.

In this work, a GA-Fuzzy approach is used in which ranges of parameters –
crossover probability (Pc) and mutation probability (Pm) have been divided
into LOW, MEDIUM and HIGH membership functions.

The GA parameters (Pc and Pm) are varied based on the fitness function
values as per the following logic:

The value of the best fitness for each generation (BF) is expected to change
over a number of generations, but if it does not change significantly over
a number of generations (UN) then this information is considered to cause
changes in both Pc and Pm.

The diversity of a population is one of the factors, which influences the
search for a true optimum. The variance of the fitness values of objective
function (VF) of a population is a measure of its diversity. Hence, it is also
considered as another factor on which both Pc and Pm may be changed.

The membership functions and membership values for these three variables
(BF, UN and VF) are selected after several trials to get optimum results.

11.3.3 GA-Fuzzy System Approach for OPF Solution (GAF-OPF)

Figure 11.1 is a diagrammatic representation of an approach to incorporate
fuzzy logic to find GA based OPF solution.
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Fig. 11.1. Implementation of fuzzy system to GA for OPF solution

Therefore, this approach may be divided broadly in two parts namely
GA-OPF and fuzzy rule base system (for controlling the GA parameters Pc
and Pm dynamically during execution).

(A) GA technique for OPF

In GA-OPF, GA is used as a search technique for optimization of power
flow in different lines of the power system. The GA requires the evaluation of
the so-called fitness function (FF) to assign a quality value to every solution
produced. Movement in a GA is accomplished using three primary opera-
tions: Parent reproduction, crossover and mutation. The details of important
operations during solution of GA-OPF are as follows:

1. Encoding

Binary coded strings having 1s and 0s are used for building chromosomes
through random process. The randomly generated chromosomes represent bi-
nary coded values of controllable variables e.g. power generation at all gen-
erator (PV) buses other than slack bus, the voltage magnitude at all PV
buses, tap settings of variable tap transformers and shunt capacitor/reactor
compensations.

The bits of each chromosome are separated out for different control vari-
ables and are converted into equivalent decimal values by the following for-
mula:

Xi = Xmin
i + deci(b1b2. . .. . .)2 × ((Xmax

i − Xmin
i )/(2bits reqdi − 1)) (11.11)

where,

deci(b1 b2 . . . . . .)2 =decimal values of bits corresponding to ith control
variable,

Xmin
i = minimum generation value of ith control variable,

Xmax
i = maximum generation value of ith control variable,

bits reqd = Total number of bits required to represent ith control variable.

Load flow using Newton–Raphson method is run for set of control vari-
ables values belonging to each chromosome. If load flow converges and slack
bus generation obtained from load flow solution is within specified limits then
chromosome is included to complete initial population. Otherwise, a new chro-
mosome is generated according to same procedure and checked again.
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2. Fitness function evaluation

GAs are usually designed so as to maximize the fitness function (FF),
which is a measure of quality of each candidate solution. The objective of
the OPF problem is to minimize the total generation cost including power
flow constraint for each line and other equality and inequality constraints
stated above. In proposed GA-Fuzzy approach, penalty index (pen indexi)
for each generated chromosome is calculated for lines having power overflows
(over flowl), based on respective penalty factors (pl) as follows:

pen indexi =
ni∑
l=i

pl ∗ overflow1 (11.12)

and fitness function is modified to keep line flows under limits as:

FFi={A/(1 + costi)}e−(k∗pen index)i (11.13)

Where as

i = 1 to population size,
nl = total number of lines in system,
l = 1 to nl,
over flowl = overflow in lth line, if any otherwise zero,
pen indexi = penalty index for ith chromosome,
FFi = fitness value of function for ith chromosome,
A and k = large numerical constant,
costi = cost corresponding to ith chromosome.

3. GA operators

As a next step in solution finding process, GA operators – Reproduction,
Crossover and Mutation are applied in above sequence for each generation.
The reproduction operator selects a chromosome string from the previous gen-
eration based on the string’s fitness and its probability of propagation to the
next generation. In the reproduction operator a stochastic remainder selection
is used instead of simple Roulette wheel. In simple Roulette wheel selection,
there is no guarantee that the best strings would be selected. To overcome this
problem the stochastic selection is used in this work. Selection continues until
the population of the next generation is filled. The crossover and mutation
operators work in conjunction with selection similarly as in simple GA. The
values for Pc and Pm are assigned respectively for first generation, then after
these values are determined by fuzzy rule base for the successive generations.

After crossover and mutation, load flow using Newton-Raphson method is
run. If load flow converges and slack bus generation obtained from load flow
solution is within specified limits then chromosome is included to valid pop-
ulation. For any generation, the minimum generation cost amongst all valid
chromosome and corresponding generation pattern is stored in variable Cmin.
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For first generation, value of Cmin is stored in another variable Cmin gen rep-
resenting generation minimum cost, and for successive generations if Cmin <
Cmin gen then Cmin gen is replaced by Cmin otherwise Cmin gen of previous
generation is reconsidered. The process continues till last generation.

11.3.3.1 Fuzzy System for Controlling Crossover and Mutation
Probability

The best fitness (BF) for each generation, number of generations for un-
changed BF (UN) and variance of fitness values of objective functions (VF)
for population of each generation are computed. These variables values are
fed as input to fuzzy rule base system, as shown in Fig. 11.1.

Fuzzy rule base for GA-fuzzy approach

The GA parameters (PC, Pm) in GA-Fuzzy algorithm are varied based
on fuzzy rules base as mentioned in earlier chapter for the solution of optimal
power flow (OPF).

11.3.4 Test Results

GA-OPF and GA-Fuzzy OPF proposed here are tested by solving various
test systems. These systems are 26-bus system (Saadat 2002), 6-bus system
(Osman et al. 2004), IEEE 30-bus system and modified IEEE 30-bus system
(Lee et al. 1985; Lai et al. 1997). The data for all the above systems are given
in Appendix C, D, E, F respectively. The test examples have been run on
1.7 GHz Celeron with 128 MB RAM PC.

11.3.4.1 6-Bus System

Osman et al., (2004) have developed a modified co-evolutionary genetic algo-
rithm (M-COGA) and compared the results with classical economic dispatch
and standard flow (ED+LF), Weber (1997) and simulated annealing (OPFSA)
(2003) on a 6-bus system. The proposed GA-Fuzzy OPF and GA-OPF are
tested using the GA parameters given below:

Population size: 50,
Maximum no. of Generations: 200,
Selection operator: Stochastic remainder,
Initial crossover probability: 0.9,
Initial mutation probability: 0.01

The voltage magnitude limits, active and reactive power limits and line
flows limits are taken same as in references (Osman et al. 2004; Web 1997).
All the lines have power flow limit of 100 MVA, except line 4–5 whose limit is
50 MVA. The values of Pc and Pm changes from 35th generation and remain
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constant after 71st generation (Pc ≈ 0.5676 and Pm ≈ 0.0665), as shown in
Fig. 11.2b. It is observed that convergence of GA-Fuzzy OPF is better than
GA-OPF as shown in Fig. 11.2a. The results are tabulated in Table 11.1.
The results highlight the goodness of this solution technique having minimum
generation cost while satisfying all constraints. Load flow solution and lines
flows are given in Table 11.2.

In ED+LF method though the cost is low but losses are more as compare
to GA-Fuzzy OPF and also there are certain limit violations.

11.3.4.2 26 Bus System

The 26 bus system has 46 branches, 6 generators and 7 variable tap trans-
formers (Saadat 2002). The OPF problem has been solved GA-OPF and GA-
Fuzzy OPF. The performance of the method proposed by Sadaat (2002) and
GA-OPF are compared with GA-Fuzzy OPF. GA-OPF and GA-Fuzzy OPF
are compared for same initial population and following GA parameters in
Table 11.3.

In GA-Fuzzy OPF approach, Pc and Pm are dynamically changed during
execution and governed by fuzzy rules as shown in Fig. 11.3b.

For GA-OPF and GA-Fuzzy OPF, transformers tap settings are assumed
to vary within a range of ±10% of rated values. The lower voltage magnitude
limits for all buses are 0.9 p.u. whereas the upper limits for PV buses are
1.1 p.u. and for remaining buses including the slack bus the limit is 1.025 p.u..

Fig. 11.2a. Convergence of generation cost & max. fitness for GA-OPF & GA-Fuzzy
OPF for 6-bus. Generation cost is in $/h
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Fig. 11.2b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for 6-bus system

Table 11.1. Comparison of different OPF methods for 6-bus system

Classical
optimization

methods

Non-classical optimization methods

ED + LF Weber
[23]

OPFSA
[24]

M-COGA
[22]

GA-OPF GA-
Fuzzy
OPF

Unit 1 (MW) 99.74 160.39 131.80 152.3252 108.466 140.865
Unit 2 (MW) 216.17 133.39 190.98 151.6563 235.337 188.025
Unit 3 (MW) 50.00 143.00 109.15 118.0913 130.938 100.244
Unit 4 (MW) 250.00 169.00 178.24 187.0893 134.262 180.205

Cost ($/h) 7, 860 8, 062 7, 938 7, 987.1764 7, 990.2795 7, 905.9163

Losses (MW) 15.91 5.38 6.33 9.2088 9.003 9.33

Violating 2 0 0 0 0 0
quantities

As shown in Fig. 11.3b, the values of Pc and Pm in GA-Fuzzy OPF change from
8th generation and remain constant after 14th generation (Pc. ≈ 0.56759 and
Pm ≈ 0.06654882). It is evident from Fig. 11.3a and comparison of methods
tabulated in Table 11.4, that GA-Fuzzy OPF has better convergence rate and
results least generation cost amongst the three methods. Transformer tapings
and voltage magnitudes (Table 11.5) are also found to be within limits.
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Table 11.2. Load flow solution and lines flows of 6-bus system using GA-Fuzzy OPF

Bus Voltage
(pu)

Angle(degrees) Load Generation

MW MVAr MW MVAr

1 1.001 0.000 100 20 140.856 8.357
2 1.017 1.338 100 20 188.025 15.495
3 1.01 −5.495 100 20 100.244 95.456
4 1.00 −1.300 100 20 180.205 11.556
5 0.977 −3.489 100 50 0.0 0.0
6 0.981 −5.664 100 10 0.0 0.0

From
bus

To bus Line flow
(MVA)

1 2 32.176
2 4 56.43
1 5 72.725
3 5 52.314
4 5 49.347
3 6 31.607
4 6 87.413

Table 11.3. GA parameters

Population size 30
Maximum generation 100
Initial crossover probability 0.9
Initial mutation probability 0.01
Selection operator Stochastic remainder

11.3.4.3 IEEE 30-Bus System

The proposed GA-Fuzzy OPF is also applied to IEEE 30 bus system. Two
sets of generator cost curves are used to illustrate the robustness of the tech-
nique. In case (i) a quadratic cost curve (Alsac and Stott 1974; Yuryevich
and Wong 1999) is taken. In case (ii), some of the cost curves are replaced
with quadratics plus sine components [YUR99]. Therefore in case (ii), there
are many local optimum solutions for the dispatch problem and as a result
steepest descent (SD) method cannot determine the global optimum solution.
The problem is therefore well suitable for validating the proposed algorithm.
The GA-OPF and GA-Fuzzy OPF are compared for IEEE 30-bus system for
same parameters as 26 bus system discussed earlier except a mutation proba-
bility (= 0.005), population size (= 50) and maximum number of generations
(= 50).
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Fig. 11.3a. Convergence of generation cost and max. fitness for GA-OPF & GA-
Fuzzy OPF for 26 Bus system. Generation cost is in $/h

Fig. 11.3b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for 26 bus system
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Table 11.4. Comparison of different OPF methods for 26 bus system

Generation

Sadaat-OPF GA-OPF GA-Fuzzy OPF
(in MW) (in MW) (in MW)

Bus no. 1 447.611 444.703 449.642
Bus no. 2 173.087 170.968 162.317
Bus no. 3 263.363 258.495 264.086
Bus no. 4 138.716 135.239 139.932
Bus no. 5 166.099 181.525 173.9
Bus no. 26 86.939 83.939 85.924

Gen.Cost ($/h) 15447.72 15434.67 15431.69

Losses (MW) 12.8 11.869 12.8

Table 11.5. Load flow solution and transformer tap settings of 26 bus system using
GA-Fuzzy OPF

Bus no. Voltage
magnitude
(in p.u.)

Angle (in
degrees)

Load

MW MVAr

1 1.025 0 51 41
2 1.025 −0.239 22 15
3 1.074 −0.47 64 50
4 0.91 −2.138 25 10
5 1.026 −1 50 30
6 0.994 −2.771 76 29
7 0.992 −2.388 0 0
8 0.992 −2.258 0 0
9 0.979 −4.476 89 50
10 0.976 −4.334 0 0
11 0.992 −2.798 25 15
12 0.987 −3.325 89 48
13 0.991 −1.12 31 15
14 0.984 −2.338 24 12
15 0.978 −3.156 70 31
16 0.97 −3.907 55 27
17 0.974 −4.563 78 38
18 1.004 −1.872 153 67
19 0.976 −6.075 75 15
20 0.967 −4.777 48 27
21 0.965 −5.452 46 23
22 0.963 −5.363 45 22
23 0.956 −6.428 25 12
24 0.949 −6.726 54 27
25 0.955 −6.329 28 13
26 1.015 −0.324 40 20

Total 1263.00 637.00
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Table 11.5. (Continued)

Transformer tap settings
Line 2–3 Line 2–13 Line 3–13 Line 4–8 Line 4–12 Line 6–19 Line 7–9

0.98 1.000 1.080 0.932 0.90 0.983 0.9903

Table 11.6. Best and worst solutions for GA-Fuzzy OPF for IEEE 30 bus system
(quadratic cost curve)

Worst solution ($/h) Best solution ($/h) % Difference

EP [36] 805.61 802.62 0.371147
GA-Fuzzy OPF 802.32054 802.00031 0.03991

Case (i) Quadratic Cost Curve

In this case the unit cost curves are represented by quadratic func-
tions. The program is tested for 100 different runs. The generation costs
of 802.32054 $/h and 802.00031 $/h are obtained for worst and best solu-
tions, respectively (0.03991% difference), through GA-Fuzzy OPF. It shows
the consistency in the results and better performance of the proposed method
than evolutionary programming (EP) OPF for the same number of runs
(Table 11.6).

As shown in Fig. 11.4b, the values of Pc and Pm change from 2nd genera-
tion and remain constant after 15th generation (Pc. ≈ 0.5676 and Pm≈0.0666)
for the best solution. The solutions obtained from other GA and non-GA tech-
niques available in literature (Roa and Pavez-lazo 2003; Alsac and Stott 1974;
Abido 2002; Paranjothi and Anburaja 2002; Yuryevich and Wong 1999) are
compared in Table 11.7. The load flow and transformer tap settings for best
solution are provided in Table 11.10. It is observed that in GA-Fuzzy OPF a
better convergence rate is obtained (as in Fig. 11.4a) and a minimum gener-
ation cost is also achieved in GA-Fuzzy OPF (as in Table 11.7).

Case (ii) Quadratic Cost Curve with Sine Components

In this case, a sine component is added to the quadratic equation cost of
the generators at buses 1 and 2 to reflect the valve-point loading effects. The
values of cost coefficients are given in Table 11.8.

The cost curves of other generators are taken same as in case (i). The
algorithm is tested for 100 different runs. The generation costs of the worst
and the best solutions are 924.3387 and 921.3506 $/h, respectively (0.323%
difference). As per Table 11.9, percentage difference between worst and best
solution for GA-Fuzzy OPF is less than evolutionary programming (EP) based
OPF. Therefore, GA-Fuzzy approach is found to be superior in solving OPF
for cost curve with sine components for same number of runs.

As per Fig. 11.6b values of Pc and Pm vary from 4th generation onwards
till 50th generation (Pc. ≈ 0.57292 and Pm ≈ 0.06392) for best solution. The



11.3 GA-Fuzzy System Approach for Optimal Power Flow Solution 423

Fig. 11.4a. Convergence of generation cost and max. fitness for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case i). Generation cost is in $/h

Fig. 11.4b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case ii)
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Table 11.8. Generator cost coefficients for case (ii)

Bus PG
min

(in MW)
PG

max

(in MW)
Cost coefficients

a b c d e

1 50 200 150 2.00 0.0016 50.00 0.0630
2 20

80
25 2.50 0.0100 40.00 0.09890

Generation cost function: cos ti = ai + biPgi +i ciP
2
gi

+ |di sin(ei(P
min
gi

− Pgi))|

Table 11.9. Best and worst solutions for GA-Fuzzy OPF for IEEE 30 bus (quadratic
cost curves with sine components)

Worst solution ($/h) Best solution ($/h) % Difference

EP [36] 926.68 919.89 0.7327
GA-Fuzzy 924.336729 921.350629 0.323

solution details including load flow, transformer tap settings and line flows
are provided for best solution in Table 11.10.

The line flows obtained in this case are within the limits and other con-
straints are also satisfied. Again GA-Fuzzy OPF proves to be consistently
superior to GA-OPF due to faster convergence and lesser generation cost, as
shown in Fig. 11.5a.

11.3.4.4 Modified IEEE 30-Bus System

The original IEEE 30-bus network consists of 6 generator buses, 21 load buses
and 41 lines, of which 4 lines (6, 9),(6, 10),(4, 12) and (28, 27) are under-load-
tap-setting transformer lines. In modified IEEE 30-bus system buses 10, 12,
15, 17, 20, 21, 23, 24 and 29 have been selected as shunt capacitor/reactor
compensation buses. The apparent power flow limit in line (8, 28) is taken as
12 MVA.

The GA-OPF and GA-Fuzzy OPF are compared as shown in Fig. 11.6. for
this system for same parameters as for 6-bus system discussed earlier except
crossover probability (= 0.95), mutation probability (= 0.005), population size
(= 50) and maximum number of generations (= 50).

Hence for best case solution, the changes in values of Pc and Pm start from
4th generation and till 50th generation (Pc. ≈ 0.67479 and Pm ≈ 0.04901),
as shown in Fig. 11.7a, and b. The OPF solutions obtained from other GA
technique based on dynamical hierarchy of the coding system and non-GA
technique based on gradient projection method (GPM) are available in liter-
ature (Lee et al. 1985), respectively. These results are compared along with
other methods in Table 11.11.

It indicates minimum generation cost obtained due to optimal values of
controllable variables, i.e. active power generations, generator bus voltages,
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Table 11.10. Load flow solution and transformer tap settings of IEEE 30 bus system
using GA-Fuzzy OPF

Bus Voltage in p.u. Angle in degrees Generation Load

Case

(i)

Case

(ii)

Case

(i)

Case

(ii)

MW

Case

(i)

MW

Case

(ii)

MVAr

Case

(i)

MVAr

Case

(ii)

MW MVAr

1 1.05 1.05 0 0 174.9664 199.672 −6.562 −9.126 0 0

2 1.034 1.034 −3.608 −4.335 50.35294 20 22.356 39.212 21.7 12.7

3 1.022 1.016 −5.675 −5.875 0 0 0 0 2.4 1.2

4 1.016 1.008 −6.817 −7.062 0 0 0 0 7.6 1.6

5 1.006 1.006 −10.509 −11.007 21.45098 22.275 30.372 31.548 94.2 19

6 1.008 1.005 −7.944 −8.232 0 0 0 0 0 0

7 0.999 0.998 −9.529 −9.904 0 0 0 0 22.8 10.9

8 1.003 1.003 −8.154 −8.431 21.17647 23.725 18.89 25.987 30 30

9 1.029 1.018 −10.152 −10.121 0 0 0 0 0 0

10 1.021 1.027 −12.059 −11.951 0 0 0 0 5.8 2

11 1.071 1.051 −8.783 −8.483 12.66667 14.706 21.737 16.89 0 0

12 1.018 1.038 −11.139 −11.135 0 0 0 0 11.2 7.5

13 1.048 1.048 −10.228 −10.144 12.1098 13.427 22.635 8.075 0 0

14 1.005 1.023 −12.096 −12.07 0 0 0 0 6.2 1.6

15 1.002 1.019 −12.242 −12.188 0 0 0 0 8.2 2.5

16 1.012 1.026 −11.832 −11.764 0 0 0 0 3.5 1.8

17 1.013 1.021 −12.214 −12.111 0 0 0 0 9 5.8

18 0.997 1.009 −12.917 −12.825 0 0 0 0 3.2 0.9

19 0.996 1.007 −13.113 −13.005 0 0 0 0 9.5 3.4

20 1.002 1.011 −12.911 −12.801 0 0 0 0 2.2 0.7

21 1.009 1.015 −12.535 −12.43 0 0 0 0 17.5 11.2

22 1.009 1.016 −12.524 −12.422 0 0 0 0 0 0

23 0.996 1.01 −12.707 −12.652 0 0 0 0 3.2 1.6

24 0.997 1.008 −12.956 −12.913 0 0 0 0 8.7 6.7

25 1.001 1.015 −12.759 −12.826 0 0 0 0 0 0

26 0.983 0.997 −13.193 −13.248 0 0 0 0 3.5 2.3

27 1.012 1.028 −12.361 −12.5 0 0 0 0 0 0

28 1.002 0.999 −8.433 −8.71 0 0 0 0 0 0

29 0.992 1.008 −13.619 −13.72 0 0 0 0 2.4 0.9

30 0.98 0.996 −14.522 −14.595 0 0 0 0 10.6 1.9

Total 292.7233 293.806 109.43 112.585 283.4 126.20

Gen. Cost

($/h)

Losses

(MW)

Transformer tap setting

Line 6–9 Line 6–10 Line 4–12 Line 28–27

Case (i) 802.0003 9.494 1.0032 0.9645 1.0161 0.9645

Case (ii) 921.3506 10.406 1.0355 0.9129 0.9452 0.9452

1–2 117.211 139.6258

1–3 58.3995 61.0022

2–4 34.0758 30.7947

2–5 63.7783 61.7539

2–6 45.3399 41.6185

3–4 54.5622 56.8812

4–6 50.2703 48.6008

4–12 30.5889 33.3706

5–7 14.1355 16.1981

6–7 33.9924 35.221
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Table 11.10. (Continued)

Lines Line flow (in MVA)

Case (i) Case (ii)

6–8 13.6882 9.2172

6–9 22.4033 27.0031

6–10 14.6187 20.0154

6–28 16.5409 16.0689

8–28 3.3685 3.0049

9–11 24.1764 21.6919

9–10 32.7929 31.3223

10–20 11.0315 9.8192

10–17 9.861616 7.33966

10–21 18.96153 18.074

10–22 9.0741 8.5101

12–13 24.9376 15.5102

12–14 7.6911 8.1147

12–15 17.4525 18.8445

12–16 6.34027 7.723838

14–15 1.2313 1.5983

15–18 5.4066 6.18

15–23 4.5343 5.358

16–17 3.2983 3.756

18–19 2.3627 2.8022

19–20 8.5117 7.3363

21–22 2.0887 3.1629

22–24 6.9397 5.7964

23–24 1.4447 1.8148

24–25 1.3934 1.8788

25–26 4.2647 4.2626

25–27 5.633 6.1149

27–29 6.4154 6.4095

27–30 7.2897 7.2825

28–27 19.7428 20.07

29–30 3.7542 3.7525

transformer taps and shunt capacitors/reactive compensations. The conver-
gence of GA-Fuzzy OPF is better than GA-OPF as evident from Fig. 11.7a.
The apparent power flows at line (8, 28) is 3.034 MVA and 3.317 MVA for
GA-OPF and GAF-OPF respectively. The load flow solution for best solution
is provided in Table 11.12.

GA-Fuzzy OPF is run for 100 different runs with different initial popu-
lations on above system. The convergence graphs for generation costs and
maximum fitness in best and worst cases are shown in Fig. 11.8, which are
converging very close to each other. The total generation cost obtained in
worst case is 801.1601 $/h. Therefore, GA-Fuzzy OPF gives consistently good
results as percentage deviation between best case and worst case generation
costs is ≈ 0.089%, which is a very small variation.
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Fig. 11.5a. Convergence of generation cost and Max. fitness for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case ii). Generation cost is in $/h

Fig. 11.5b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for IEEE 30 bus system (case ii)
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Fig. 11.6a. Convergence of generation cost & max. fitness for GA-OPF & GA-Fuzzy
OPF for modified IEEE 30-bus system

Fig. 11.6b. Crossover and mutation probabilities variations for GA-OPF & GA-
Fuzzy OPF for modified IEEE 30-bus system
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Fig. 11.7. Convergence of generation cost & max. fitness for best and worst cases
for modified IEEE 30-bus system using GA-Fuzzy OPF

Table 11.11. Comparison of different OPF methods for modified IEEE 30-bus
system

Bus Active power generations (in MW) Generat-
ion cost
($/h)

Real
power
losses
(MW)

1 2 5 8 11 13

Lee et al. [25] 187.219 53.781 16.955 11.288 11.287 13.355 804.853 10.485
Lai et al. [26] 177.7594 48.722 21.454 20.954 11.768 12.052 800.805 9.309
GA-OPF 175.462 50.118 22.000 20.686 11.882 12.439 801.447 9.187
GA-Fuzzy OPF 174.886 48.941 21.176 22.647 12.588 12.000 800.442 8.838

Bus Generator bus voltages (in p.u.)
1 2 5 8 11 13

Lee et al. [25] 1.1 1.08 1.03 1.04 1.08 1.08
Lai et al. [26] 1.081 1.063 1.034 1.038 1.1 1.055
GA-OPF 1.073 1.052 1.03 1.04 1.076 1.061
GA-Fuzzy OPF 1.081 1.063 1.031 1.039 1.095 1.07



11.4 Transmission Pricing Model Under Deregulated Environment 431

Table 11.11. (Continued)

Line Transformer tap settings
(6,9) (6,10) (4,12) (28,27)

Lee et al. [25] 1.072 1.07 1.032 1.068
Lai et al. [26] 1.0 0.975 0.975 1.0
GA-OPF 1.016 1.0419 1.087 1.0097
GA-Fuzzy OPF 0.99032 0.98387 0.99032 0.96451

Bus Shunt capacitor/reactor compensations (in MVAr)
10 12 15 17 20 21 23 24 29

Lee et al [25] 0.692 0.046 0.285 0.287 0.208 0.000 0.330 0.938 0.269
Lai et al. [26] 0.1 0.7 1.9 2.4 1.5 2.2 4.7 4.7 2.4
GA-OPF 3.033 2.544 4.618 4.266 4.736 0.528 2.476 4.442 4.194
GA-Fuzzy OPF 3.982 0.02 4.149 4.99 4.432 4.354 4.54 4.687 2.097

11.3.5 Conclusions

The proposed GA-Fuzzy OPF has also been tested in different test systems as
indicated earlier. It has shown better results in terms of convergence, consis-
tency in different runs and minimum generation cost as compared to simple
GA-OPF and the other techniques. These advantages are mainly due to the
changes in crossover and mutation probabilities values which are governed by
a set of fuzzy rule base, although they are stochastic in nature. The varia-
tions in above GA parameters governed by fuzzy rule base have resulted in
lesser generation costs with high convergence rates than other GA and non
GA-OPF variants tested for 26-bus, 6-bus, IEEE 30-bus and modified IEEE
30-bus systems (Figs. 11.9–11.12).

In order to demonstrate the real potential of such technique, the proposed
GAF-OPF is successfully tested on IEEE 30 bus system for quadratic cost
curve with sine components also. The results obtained are compared with EP
based OPF with greater satisfaction. This proves the superiority of the pro-
posed GA-Fuzzy OPF method to the gradient-based conventional and other
GA variants for finding OPF solution.

11.4 Transmission Pricing Model Under Deregulated
Environment

11.4.1 Introduction

Several methods are developed for allocation of the costs embedded in
the system to various transactions (embedded cost based pricing) and
those incurred by system from one additional transaction (incremental
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Table 11.12. Load flow solution for modified IEEE 30-bus system using GA-Fuzzy
OPF

Bus Voltage
in p.u.

Angle in
degrees

Generation Load

MW MVAr MW MVAr

1 1.081 0 174.886 5.021 0 0
2 1.063 −3.279 48.941 30.435 21.7 12.7
3 1.05 −5.273 0 0 2.4 1.2
4 1.05 −6.347 0 0 7.6 1.6
5 1.034 −9.588 21.176 29.221 94.2 19
6 1.041 −7.361 0 0 0 0
7 1.03 −8.761 0 0 22.8 10.9
8 1.039 −7.568 22.647 36.845 30 30
9 1.049 −9.574 0 0 0 0
10 1.025 −11.429 0 0 5.8 2
11 1.095 −8.414 12.588 17.344 0 0
12 1.032 −10.671 0 0 11.2 7.5
13 1.07 −9.736 12 10.337 0 0
14 1.021 −11.649 0 0 6.2 1.6
15 1.02 −11.883 0 0 8.2 2.5
16 1.023 −11.319 0 0 3.5 1.8
17 1.022 −11.673 0 0 9 5.8
18 1.012 −12.495 0 0 3.2 0.9
19 1.01 −12.661 0 0 9.5 3.4
20 1.014 −12.451 0 0 2.2 0.7
21 1.016 −11.968 0 0 17.5 11.2
22 1.016 −11.95 0 0 0 0
23 1.015 −12.378 0 0 3.2 1.6
24 1.007 −12.42 0 0 8.7 6.7
25 1.014 −12.173 0 0 0 0
26 0.996 −12.596 0 0 3.5 2.3
27 1.026 −11.749 0 0 0 0
28 1.035 −7.814 0 0 0 0
29 1.008 −13.027 0 0 2.4 0.9
30 0.996 −13.878 0 0 10.6 1.9

cost based pricing). In (Sood 2003), an evolutionary programming based
SRMC method is proposed and several embedded cost based methods
in (Uttar Pradesh 2004) are proposed for Indian system. But their re-
sults are obtained for different transmission subsystems. The method-
ologies for determination of transmission pricing should be so designed
that basic goals of transmission pricing can be achieved. Therefore, the
methodology can be designed on the basis of marginal cost or embedded
cost or a composite cost, i.e. the combination of marginal and embed-
ded cost.

In this chapter, marginal cost method is used and tested on modified IEEE-
30 bus system. Embedded cost allocation methods, e.g. Postage Stamp and
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Fig. 11.12. Optimal real power generation for modified IEEE 30 – bus system

MW-Mile methods are also tested and analyzed on Indian UPSEB 75 bus
system. A new variant of MW-Mile is proposed and analyzed. Finally, a hybrid
type marginal cost based transmission pricing model is proposed for Indian
transmission system with pool, bilateral and multilateral transactions. In this
model, supplementary/complementary charges left as unrealized revenue after
applying marginal cost method are allocated using the MW-Mile methods.
This model is tested on Indian UPSEB 75 bus system.

11.4.2 Marginal Cost Based Transmission Pricing Method

In this section the marginal cost based transmission pricing method is an-
alyzed and tested, which dispatches the pool in combination with privately
negotiated bilateral and multilateral wheeling contracts, with maximization
of social benefit with all system constraints. In the method, all scheduled firm
transactions are considered to be added to the system. The method is based
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on GA-Fuzzy optimization technique, which has been described earlier. The
losses taking place in transmission network due to transactions as well as
pool are considered to be supplied from the pool itself. They are not supplied
by transactions generators or cope up with transaction loss supply contracts
which are complex to setup and coordinate.

As the process of developing suitable transmission pricing methodologies
in India is in initial stages, hence following facts are considered for application
of pricing method to modified IEEE 30 bus system and Indian UPSEB 75 bus
system.

1. All the pool generators are required to bid their generation cost charac-
teristics to the pool along with maximum generation.

2. There are no non-firm bilateral transactions.
3. The active and reactive power of pool loads are known from load forecast-

ing and kept constant during optimization. Therefore, there is no bidding
from pool demands.

4. The other costs of system like maintenance and different overheads, etc.
are not being included in proposed model, which should be considered
independently.

1. Mathematical formulation

Let n = number of buses in a system
nfbt = number of schedule firm bilateral transactions
nfmt = Groups of schedule firm multilateral transactions

Firm bilateral transaction load component at jth bus (Pdfb
j ) =

n∑
i=1

FBTij

(11.14)
where FBTij = Firm bilateral transactions delivered at the jth load bus from
the ith generator bus.

Generation at ith bus for firm bilateral transactions (Pgfb
j ) =

n∑
j=1

FBTij

(11.15)
For a firm bilateral transaction fbt from ith to a jth bus

Pgfbt
i = Pdfbt

j (11.16)

where, Pgfbt
i and Pdfbt

j are real power generation and demand for a firm
bilateral transaction fbt, at ith and jth bus, respectively.

Vector of real power demand from firm bilateral transactions may be writ-
ten as

Pdfb = FBTT × U =
{

Pdfb
j ; j = 1, 2, . . . . . . , n

}
(11.17)

where FBT = matrix of firm bilateral transactions delivered at the jth load
bus from the ith generator bus.
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U = Unity vector of dimension n.

Vector of real power generation from firm bilateral transactions also be
written as

Pgfb = FBTT × U =
{

Pdfb
i ; i = 1, 2, . . . . . . , n

}
(11.18)

In case of a multilateral transaction, there are many generation points
(at least more than one), similarly there are many load points (at least more
than one).

Let PMT k = size of kth group of multilateral transaction, i.e. total power
that has to be transferred from generation points to the load points of a kth
group of multilateral transaction.

ngk = number of generation points for a kth group
ndk = number of demand points for a kth group

Real power demand of kth multilateral transaction = Pdmk
j where k =

1 , 2 , . . . .n.
Real power generation from kth multilateral transaction = Pgmk

i where
i = 1 , 2 , . . . .n.

For kth group of multilateral transaction with total power transfer
PMT k is

n∑
i=1

Pgmk
i

n∑
j=1

Pdmk
j = PMT k (11.19)

Total generation at ith bus due to nfmt groups of multilateral transac-
tions is

Pgm
i =

nfmt∑
k=1

Pgmk
i (11.20)

Total demand at jth bus due to nfmt groups of multilateral transactions is

Pdm
j =

nfmt∑
k=1

Pdmk
j (11.21)

Generation vector of all firm multilateral transaction groups may be writ-
ten as

Pgm = {Pgm
i ; i = 1, 2, . . . .., n} (11.22)

Demand vector of all firm multilateral transaction groups may be writ-
ten as

Pdm = {Pdm
j ; j = 1, 2, . . . .., n} (11.23)

The gencos participating in the pool bid their cost function and maximum
generation, which they want to deliver to the pool. After optimization of social
benefit generations at power pool generation buses are known.
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Let the vector of pool real power generation

Pgp = {Pgp
i ; i = 1, 2, . . . . . . .., n} (11.24)

Vector of pool real power demand

Pdp = {Pdp
j ; j = 1, 2, . . . . . . .., n} (11.25)

Let the vectors of the total real power demand and generation be

PdT = {PdT
j ; j = 1, 2, . . . . . . . . . ., n} (11.26)

PgT = {PgT
i ; i = 1, 2, . . . . . . . . . ., n} (11.27)

From equations (11.21), (11.23) and (11.25)

PdT = Pdp + Pdfb + Pdm (11.28)

Similarly, from equations (11.18), (11.22) and (11.24)

PgT = Pgp + Pgfb + Pgm (11.29)

All firm transactions are ready to pay the system marginal price and they
do not bid.

The load point of the transaction and pool may have reactive power com-
ponent in addition to real power.

Let Qdp and Qdfb be the vector of the reactive power demand due to pool
and firm bilateral transaction, respectively.

Qdp = {Qdp
j ; j = 1, 2, . . . ..n} (11.30)

Qdfb = {Qdfb
j ; j = 1, 2, . . . ..n} (11.31)

In the combined power pool transaction dispatched, gencos supplying the
loads by transactions may also participate in the pool. Therefore, all such
gencos in combinations may meet the reactive power requirements at all the
buses of the system. It means that the power balance equation (11.16) for
bilateral transactions and (11.19) for multilateral transaction is not necessary
for reactive power. However for specific situation when a genco is not par-
ticipating in pool and it is supplying loads by a transaction and the reactive
power requirement of the load is to be supplied by the genco of the transaction
only, then these equations for reactive power are also valid.
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It is better to supply the reactive power as per requirement of the system,
rather than supplying the reactive power at the generation point of a trans-
action equal to reactive power of load at the load point of the transaction. All
generators are paid and loads are charged for the reactive power accordingly.

2. Objective function and constraints

The objective function for the optimization problem is to minimize the
overall costs of active and reactive power generation with the capital invest-
ment of capacitor. Based on the assumption of constant loads, to minimize the
total cost is equivalent to maximize the social benefits. Therefore, suggested
objective function to maximize social benefit is given as follows:

min
ng∑

j=1

[Ci(Pgi) + Ci(Qgi)]
ncap∑
j=1

Ccj(Qcj) (11.32)

Let the active power generation cost curve bid of the generator at ith bus =
Ci(Pgi)

Reactive power generation cost of generator at ith bus = Ci(Qgi)
Equivalent production cost of jth capacitor = Ccj(Qcj)
where, j = 1, 2, . . . .. ncap, as ncap = Total number of capacitors operating

in the system
ng = Total number of pool generators.

It is seen that GA-Fuzzy OPF technique works successfully for non-linear
active generation cost curves. Therefore, proposed model is also capable of
handling all types functions such as linear, quadratic, non-linear, convex or
non-convex, continuous or discontinuous, etc. used for representing active
power generation cost curve bids function in (11.32). For sake of simplicity
cost curves for active power generation are modeled by following quadratic
function:

Ci(Pgi) = a + Pgi + cPg2
i (11.33)

Guo et al. (2004) have used equation for reactive power generation cost of
the same form of quadratic equation as (11.33) but with different a, b and c
coefficients. Another form introduced in (Lamont and Fu 1999) and used in
(Dai et al. 2001) is based on opportunity cost.

The equivalent production cost for capital investment return of capacitors
in (11.32) can be expressed as their depreciated rate (the life span of capacitors
is 15 years) as follows:

Ccj(Qcj) = Qcj × $11600/MVAr ÷ (15 × 365 × 24 × h)h
= Qcj × $13.24/(100 MVArh) (11.34)

where h represents the average usage rate of capacitors taken as 2/3. Qcj is in
per unit on 100 MVA base. Equation (11.34) is a linear cost function with the
slope of dCcj(Qcj)/dQcj = $13.24/(100MVArh) representing approximately
the capacitor investment impacts on reactive pricing.
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The equality constraints are load flow equations:

g(V, δ) = 0 (11.35)

where

g(V, δ) =

{
Pgi − Pdi − Pi(V, δ) ⇒ For each PV and PQ bus except slack bus
Qgi − Qdi − Q(V, δ) ⇒ For each PQ bus only

}

where

Pi = active power injection into ith bus
Qi = reactive power injection into ith bus
Pdi = active load on ith bus
Qdi = reactive load on ith bus
Pgi = active generation on ith bus
Qgi = reactive generation on ith bus

The inequality constraints are:

• Active power generation Pgi at PV buses

Pgmin
i ≤ Pgi ≤ Pgmax

i (11.36)

where Pgmin
i and Pgmax

i are respectively minimum and maximum value of
active power generation at ith PV bus.

• Reactive power generation Qgi at PV buses

Qgmin
i ≤ Qgi ≤ Qgmax

i (11.37)

where Qgmin
i and Qgmax

i are respectively minimum and maximum value
of reactive power generation at ith PV bus.

• Reactive power output limit of capacitor

0 ≤ Qcj ≤ Qcmax
j (11.38)

where Qcmax
j is maximum value of output of capacitor at jth bus.

• Voltage magnitude V of each PV and PQ bus

V min
i ≤ Vi ≤ V max

i (11.39)

where, V min
i and V max

i are respectively minimum and maximum voltage
at ith bus

• Phase angle δ of voltage at all the buses.

δmin
i ≤ δi ≤ δmax

i (11.40)

where, δmin
i and δmax

i are respectively minimum and maximum allowed
value of voltage phase angle at ith bus
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• Transmission power limit
Sij ≤ Smax

ij (11.41)

where, Smax
ij is the maximum rating of transmission line connecting bus

i and j.

Based on the above mathematical model the corresponding Lagrangian
function of this optimization problem takes the form:

L =

ng∑
i=1

[Ci(Pgi) + Ci(Qgi)] +

ncap∑
j=1

Ccj(Qcj) −
n∑

i=1

λpi[Pgi − Pdi − Pi(V, δ)]

−
n∑

i=1

λqi[Qgi − Qdi − Qi(V, δ)] +

ng∑
i=1

µpi,min(Pgmin
i − Pgi)

+

ng∑
i=1

µpi,max(Pgi − Pgmax
i ) +

ng∑
i=1

µqi,min(Qgmin
i − Qgi)

+

ng∑
i=1

µqi,max(Qgi − Qgmax
i ) +

ncap∑
j=1

µcj,max(Qcj − Qcmax
j )

+
n∑

i=1

n∑
i=1
j �=1

ηij(Sij − Smax
ij ) +

n∑
i=1

υi,min(V min
i − Vi) +

n∑
i=1

υi,max(Vi − V max
i )

According to the theory of microeconomics, the marginal prices for ac-
tive and reactive power on ith bus are λpi and λqi, respectively, in the above
Lagrangian function and are taken as the corresponding spot prices in elec-
tricity markets. Similar to vector λ, the vectors µ, η and υ contain marginal
change in cost with respect to the corresponding constraints. The elements of
vectors µ, η and υ respectively are different than zero only in case that the
corresponding constraints are active.

Optimization of (11.32), with power flow relations included as equality con-
straints (11.35), inequality constraints (11.36) to (11.41) along with generation
bidding constraints GA-Fuzzy approach. All the control variables, e.g. V at
PV bus and tap ratio of tap setting transformers are also taken care in this
optimization process. GA-Fuzzy approach does not provide Lagrange multi-
pliers required for determination of SRMC (short run marginal cost) during
optimization process directly. Therefore, in the proposed model method used
to determine LMP (locational marginal prices) and hence SRMC is explained
in the next section. A solution to this optimization problem provides the pool
demands Pdp

i and pool generations Pgp
i .

1. Method for determination of LMP and SRMC

The optimization problem is solved, if the following equations of optimality
are satisfied.

∂L

∂Pgi
=

∂Ci(Pgi)
∂Pgi

− λpi = 0 i = 1, . . . . . . ng (11.42)

∂L

∂Qgi
=

∂Ci(Qgi)
∂Qgi

− λqi = 0 i = 1, . . . . . . ., ng (11.43)
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∂L

∂δi
=

n∑
j=1

[
λpj

∂Pj

∂δi

]
+

n∑
j=1

[
λqj

∂Qj

∂δi

]
= 0

=

⎛
⎝λps

∂Ps

∂δi
+

ng+nload∑
j=1j �=s

λpj
∂Pj

∂δi

⎞
⎠

+

⎛
⎜⎜⎝λqs

∂Qs

∂δi
+

ng∑
j=1
j �=s

λqj
∂Qj

∂δi
+

nload∑
j=1

j �=s

λqj
∂Qj

∂δi

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝λps

∂Ps

∂δi
+ λqs

∂Qs

∂δi
+

ng∑
j=1

j �=s

λqj
∂Qj

∂δi

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

ng+nload∑
j=1

j �=s

λpj
∂Pj

∂δi
+

nload∑
j=1

j �=s

λqj
∂Qj

∂δi

⎞
⎟⎟⎠ (11.44)

where i = 1, 2, . . . .(ng + nload) and i �= s

∂L

∂Vi
=

n∑
j=1

[
λpj

∂Pj

∂Vi

]
+

n∑
j=1

[
λqj

∂Qj

∂Vi

]
= 0

=

⎛
⎜⎝λps

∂Ps

∂Vi
+

ng+nload∑
j=1
j �=s

λpj
∂Pj

∂Vi

⎞
⎟⎠+

⎛
⎜⎝λqs

∂Qs

∂Vi
+

ng∑
j=1
j �=s

λqj
∂Qj

∂Vi
+

nload∑
j=1

λqj
∂Qj

∂Vi

⎞
⎟⎠

=

⎛
⎜⎜⎝λps

∂Ps

∂Vi
+ λqs

∂Qs

∂Vi
+

ng∑
j=1

j �=s

λqj
∂Qj

∂Vi

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

ng+nload∑
j=1

j �=s

λpj
∂Pj

∂Vi
+

nload∑
j=1

j �=s

λqj
∂Qj

∂Vi

⎞
⎟⎟⎠

(11.45)

where i = 1, 2, . . . ..nload and i �= s

∂L

∂λpi
= Pi(V, δ) − Pgi + Pdi = 0 (i = 1, . . . . . . .n) (11.46)

∂L

∂λqi
= Qi(V, δ) − Qgi + Qdi = 0 (i = 1, . . . . . . .n) (11.47)

where n = total no. of buses
s = slack bus
ng = total no. of generator buses
nload = total no. of load buses



442 11 Synergism of Genetic Algorithms and Fuzzy Systems

Equations. (11.45) and (11.46) can be expressed in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎣

λps ∂Ps
∂δi

+ λqs
∂Qs
∂δi

+
ng∑

j=1
j �=s

λqj
∂Qj

∂δi
i = 1, . . . (ng + nload)

λps ∂Ps
∂Vi

+ λqs
∂Qs
∂Vi

+
ng∑

j=1
j �=s

λqj
∂Qj

∂Vi
i = 1, . . . (nload)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Pj

∂δi
j = 1, . . . (ng + nload)

∂Qj

∂δi
j = 1, . . . nload

i = 1, . . . (ng + nload) i = 1, . . . (ng + nload)
i and j �= s i and j �= s

−− −−−−−−−−−− −− −−−−−−−−−−
∂Pj

∂Vi
j = 1, . . . (ng + nload)

∂Qj

∂Vi
j = 1, . . . nload

i = 1, . . . (ng + nload) i = 1, . . . (ng + nload)

i and j �= s i and j �= s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λpj

j = 1, . . . (ng + nload)
j �= s
−−−−−−−−−−
λqj

j = 1, . . . (nload)
j �= s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can also be expressed as:⎡
⎢⎢⎢⎢⎢⎣

λps
∂Ps

∂δi
+ λqs

∂Qs

∂δi
+

ng∑
j=1
j �=s

λqj
∂Qj

∂δi
i = 1, . . . (ng + nload)

λps
∂Ps

∂Vi
+ λqs

∂Qs

∂Vi
+

ng∑
j=1
j �=s

λqj
∂Qi

∂Vi
i = 1, . . . nload

⎤
⎥⎥⎥⎥⎥⎦

+[J ]T

⎡
⎢⎢⎣

λpj
j = 1, . . . (ng + nload)

j �= s

λqj
j = 1, . . . nload

j �= s

⎤
⎥⎥⎦ =

[
0
0

]

where J = Jacobian obtained from N-R load flow method for final optimized
results.[

λpj j = 1, . . . (ng + nload)
λqi j = 1, . . . nload

]
= −

(
[J ]T

)−1

×

⎡
⎢⎢⎢⎢⎢⎣

λps
∂Ps

∂δi
+ λqs

∂Qs

∂δi
+

ng∑
j=1
j �=s

λqj
∂Qj

∂δi
i = 1, . . . (ng + nload)

λps
∂Ps

∂Vi
+ λqs

∂Qs

∂Vi
+

ng∑
j=1
j �=s

λqj
∂Qi

∂Vi
i = 1, . . . nload

⎤
⎥⎥⎥⎥⎥⎦ (11.48)
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Equation. (5.30) can be written for slack bus as:

λps =
∂Cs(Pgs)

∂Pgs
(11.49)

and (11.43) can be written for slack and PV buses respectively as:

λqs =
∂Cs(Qgs)

∂Qgs
(11.50)

λqi =
∂Ci(Qgi)

∂Qgi
i = 1, . . . . . . ng (11.51)

Therefore, real (λp) and reactive (λq) marginal prices for slack bus, PV
buses and PQ buses are obtained solving (11.48)–(11.51).

Short run marginal cost (SRMC) of real power wheeling PWCij and re-
active power wheeling QWCij for transaction from bus i to j are calculated
by following equations:

PWCij = PWijx (λpj − λpi) (11.52)
QWCij = QWijx (λqj − λqi) (11.53)

where, PWCij and QWCij are real power and reactive power to be
wheeled from bus i to j, respectively.

3. Algorithm for marginal cost transmission pricing method

Step 1 All system voltages and pool loads are set to initial conditions. All
feasible (scheduled) firm transactions are added to the system.

Step 2 For active power generation cost, reactive power generation cost of all
pool generators and capacitor reactive power support cost, the optimiza-
tion of objective function (11.32) is carried out satisfying all constraints
(11.35)–(11.41) using GA-Fuzzy approach. The inequality constraints of
tap setting transformers are also considered in this optimization process.

Step 3 After the optimization, voltages, tap settings, capacitors reactive sup-
ports and pool generations are obtained.

Step 4 Marginal costs for both real and reactive power at all buses are cal-
culated using (11.48–11.50).

Step 5 SRMC of wheeling for bilateral transactions are calculated using
(11.52) and (11.53), respectively.

Step 6 The amount to be paid by each demand and amount to be received by
each genco is determined based on marginal cost. Similarly, multilateral
transaction is treated.

Step 7 The Marginal network revenue is determined based on total payments
and receipts.
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4. Application of marginal cost transmission pricing method

The results of method tested for modified IEEE 30 bus system are
presented here. The data and single line diagram of this system is given in
Appendix F.

The calculations shown in Tables 11.13–11.17 indicates that due to imple-
mentation of marginal prices (i.e. nodal prices), marginal network revenue of
40.301905 $/h is obtained.

Table 11.13. Revenue received from Pool demand

Bus
no.

Real
demand
(MW)

λpi ($/MW h) Revenue
($/h)

Reactive
demand
(MVAr)

λqi

($/MVAr
h)

Revenue
($/h)

1 0 3.31921 0 0 0.049762 0
2 21.7 3.435997 74.56113 12.7 0.042547 0.540345
3 2.4 3.513915 8.433397 1.2 0.101652 0.121983
4 7.6 3.570239 27.13382 1.6 0.110167 0.176267
5 94.2 3.690331 347.6292 19 0.127005 2.413096
6 0 3.612632 0 0 0.129748 0
7 22.8 3.66913 83.65617 10.9 0.144936 1.579805
8 30 3.626385 108.7916 30 0.150447 4.513415
9 0 3.616505 0 0 0.123827 0
10 5.8 3.621814 21.00652 2 0.13621 0.27242
11 0 3.61415 0 0 0.094843 0
12 11.2 3.599261 40.31173 7.5 0.126418 0.948136
13 0 3.598323 0 0 0.123478 0
14 6.2 3.676129 22.792 1.6 0.141555 0.226487
15 8.2 3.685928 30.22461 2.5 0.134784 0.336961
16 3.5 3.634265 12.71993 1.8 0.141915 0.255447
17 9 3.64232 32.78088 5.8 0.143435 0.831922
18 3.2 3.723113 11.91396 0.9 0.142798 0.128519
19 9.5 3.728377 35.41958 3.4 0.142602 0.484848
20 2.2 3.704354 8.149579 0.7 0.13277 0.092939
21 17.5 3.662132 64.08731 11.2 0.159024 1.78107
22 0 3.659034 0 0 0.156488 0
23 3.2 3.722763 11.91284 1.6 0.12908 0.206529
24 8.7 3.736867 32.51075 6.7 0.158234 1.060166
25 0 3.746257 0 0 0.152652 0
26 3.5 3.822748 13.37962 2.3 0.203776 0.468684
27 0 3.674906 0 0 0.128106 0
28 0 3.640752 0 0 0.140059 0
29 2.4 3.783965 9.081516 0.9 0.116025 0.104422
30 10.6 3.858995 40.90535 1.9 0.147013 0.279325

Total 1037.401 Total 16.82278
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Table 11.14. Expenditure for generation

Bus
no.

Real
generation

(MW)

λpi

($/MW h)
Expenditure

($/h)
Reactive

generation
(MVAr)

λqi

($/MVArh)
Expenditure

($/h)

1 174.961 3.31921 580.7323 11.902 0.049762 0.592267
2 47.529 3.435997 163.3095 15.599 0.042547 0.663691
5 21.176 3.690331 78.14645 36.06 0.127005 4.5798
8 24.51 3.626385 88.8827 34.885 0.150447 5.248344
11 12.039 3.61415 43.51075 15.297 0.094843 1.450813
13 12.329 3.598323 44.36372 21.845 0.123478 2.697377

Total 998.9454 Total 15.23229

Table 11.15. Revenue received from Bilateral transactions

Transaction
no.

From bus To bus Size (MW) SRMC
($/MW h)

Revenue
Received

($/h)

1 9 13 5 −0.018182 −0.09091
2 22 25 5 0.087223 0.436115

Total 0.345205

Table 11.16. Revenue received from multilateral transactions

Bus
no.

MW λpi

($/MW h)
Expenditure

($/h)
Bus no. MW λpi

($/MW h)
Revenue
received
($/h)

6 4 3.612632 14.450528 11 2 3.61415 7.2283
7 2 3.66913 7.33826 13 3 3.598323 10.794969

14 1 3.676129 3.676129

Total 21.788788 Total 21.699398

Table 11.17. Summary of results

S. no. In ($/h)

1 Revenue received from pool real demand 1,037.401
2 Revenue received from pool reactive demand 16.82278
3 Revenue received from bilateral transactions 0.345205
4 Revenue received from multilateral transactions −0.08939
5 Expenditure for real generation 998.9454
6 Expenditure for reactive generation 15.23229
7 Total revenue 1,054.479595
8 Total expenditure 1,014.17769
9 Marginal network revenue 40.301905
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11.4.3 Postage Stamp Method

It is a simplest method of transmission pricing and makes no distinction be-
tween transaction with regard to the power flow path, supply or delivery
points, or the time when it takes place.

The results of this method tested for Indian UPSEB-75 bus system are pre-
sented in Table 11.18 in this section (Fig. 11.13–11.17). Single line diagram and
transmission ARR (annual revenue requirement) data is given Appendix G.

Table 11.18. Embedded cost allocation for Indian UPSEB 75-bus system using
postage stamp method

Transactions Rs. lakh/h

Bilateral T1 0.211683854
Bilateral T2 0.190515469
Bilateral T3 0.15876289
Bilateral T4 0.105841927
Bilateral T5 0.088589693
Bilateral T6 0.034504468
Bilateral T7 0.042336771
Bilateral T8 0.02857732
Bilateral T9 0.031752578
Bilateral T10 0.148178698
Bilateral T11 0.052920963
Bilateral T12 0.465704479
Multilateral 2.937854367
Pool 1.264408828

Total ARR 5.761632306
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11.4.4 MW Mile Methods

It requires the accurate load flow results to compute the power flow in the
lines. Once the power flow in each line is known, system usage index for each
transaction is calculated. The transmission charge is then proportional to the
transmission usage by individual transaction. The system usage index for each
transaction is calculated by following relation:

UITi
=
∑

j

⎡
⎣ Pj;Ti

∗ (Lj ∗ F ′
j)

(
∑
i

Pj;Ti
+ Pj;pool)

⎤
⎦ (11.54)

UITi
= Price charged for transaction Ti in $ (System Usage Index)

Pj,Ti
= Incremental loading of line j due to transaction (bilateral/multilateral)

Ti, MW.
Pj;pool = Loading of line j due to pool transactions, MW.
Lj = Length of the line j, mile.
F ′

j = Cost of the line per unit length, $/Mile.

(i) Procedure to calculate system usage index
Step 1: Find the cost of the line by multiplying the unit cost of the line

by the line lengths (L∗
j F ′

j).
Step 2: Find the base case power flow on all lines, which can be obtained

using an OPF.
Step 3: Find the new load flow solution with each transaction Ti and

hence the power flows on each line.
Step 4: Calculate the incremental power flows in each line caused by

the transaction Ti.
Step 5: Calculate each line usage due to transaction Ti by multiplying

incremental line flows obtained in Step 4 and cost of per unit length
of line in Step 1, i.e. P ∗

j,Ti
(L∗

j F ′
j), where j is any line.
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Step 6: Find the total system usage by transaction Ti, i.e.
∑
j

P ∗
j,Ti

(L∗
j F ′

j).

Step 7: The system usage UITi
(System Usage Index) of each trans-

action Ti is calculated for proportional allocation of ARR given by
equation (11.54).

Step 8: Calculate the proportional allocation of ARR to transaction Ti.
(ii) Proposed methods for proportional allocation of ARR

Let

UITi
= system usage index of any transaction Ti(bilateral/multilateral) as

given by (11.54)
UIpool = system usage index due to pool transactions, as given by (11.55)

UIpool =
∑

j

⎡
⎣ Pj;pool ∗ (Lj ∗ F ′

j)
(
∑
i

Pj;Ti
+ Pj;pool)

⎤
⎦ (11.55)

UIcombinedi
= system usage index due to all transactions taken simultane-

ously, i.e. bilateral+multilateral (if any), as given by (5.44)

UIcombined =
∑

j

[
Pj;

∑
Ti

∗ (Lj ∗ F ′
j)

(Pj;
∑

Ti
+ Pj;pool)

]
(11.56)

where Pj;
∑

Ti
= Incremental loading of line j due to all transactions taken

simultaneously, i.e. bilateral+multilateral (if any), MW.

The ARR allocation can be done by two possible methods discussed below:

Method-1 (When all transactions are considered independently)

Transmission charges paid for transaction Ti(RTi
)

= ARR × UITi

(
∑
i

UITi
+ UIpool)

(11.57)

Transmission charges paid for pool transactions (Rpool) = ARR – Trans-
mission charges paid for transactions Ti, i.e. (Bilateral and Multilateral, if
any)

= ARR × UIpool

(
∑
i

UITi
+ UIpool)

(11.58)

In this method ARR is shared by all transactions (bilateral, multilateral
and pool) on the basis of their respective system usage. The system usage is
measured here in terms of system usage index. Whenever another bilateral
or multilateral transaction takes place, the ARR is redistributed among all
transactions according to new and lesser system usage index values. Therefore,
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charges paid by each transaction become less compared to earlier case (i.e.
when new transaction did not take place). This method gives incentive to all
old transactions whenever new transaction takes place in the system.

This method suffers from a major drawback whenever two or more than
two transactions take place simultaneously. In that case it charges higher than
actual values (transactions are taken simultaneously) for bilateral and mul-
tilateral transactions. Therefore, pool transactions have advantage of paying
lesser amount of charges. The reason of this drawback is that combined usage
index (UIcombined) of transactions, i.e. (bilateral + multilateral, if any) is less
than sum of usage indexes (

∑
i

UITi
) of transactions, i.e. (bilateral + multi-

lateral, if any) treating each of them independently. This is due to difference
in actual value of power flow in each line (considering all transactions taking
place simultaneously) and algebraic sum of power flow in each line due to
bilateral and multilateral transactions (if any) independently.

Method-2 (When all transaction are considered simultaneously)

Allocation of transmission charges paid for bilateral and multilateral trans-
actions simultaneously

(Rcombined) = ARR × UIcombined

(UIcombined + UIpool)
(11.59)

Transmission charges paid for transaction Ti(RTi
) = Rcombined × UITi∑

i

UITi

(11.60)

Transmission charges paid for pool transactions (Rpool) = ARR −
∑

i

RTi

(11.61)

In this method, collective charges for all bilateral and multilateral transac-
tions (if any) are calculated. Then individual contribution to collective charges
for each transaction is calculated on the basis of system indexes of transac-
tions (while considering all transactions independently). Therefore, drawback
of method-1 is rectified in this method. This method is more transparent in
nature than method-1.

(iii) Application of proposed MW-Mile methods

The results obtained for both the methods on Indian UPSEB 75-Bus sys-
tem are given in Table 11.19, whereas system data and line data are given
in Appendix G. System usage indices for both the methods are given in
Table 11.20. The results reveal that due to effect of all the transactions tak-
ing place simultaneously in method-2 the charges allocated to bilateral and
multilateral transactions are lesser as compared to method-1.
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Table 11.19. Embedded cost allocation for Indian UPSEB 75-bus system using
MW-mile methods

Transactions Method-1
(Rs. lakh/h)

Method-2
(Rs. lakh/h)

Bilateral T1 0.132874487 0.073341923
Bilateral T2 0.226654476 0.125105094
Bilateral T3 0.042219114 0.023303428
Bilateral T4 0.056802223 0.031352778
Bilateral T5 0.058398303 0.032233757
Bilateral T6 0.015925418 0.008790256
Bilateral T7 0.023775288 0.013123101
Bilateral T8 0.012272944 0.006774222
Bilateral T9 0.195182687 0.107733801
Bilateral T10 0.12254473 0.06764027
Bilateral T11 0.052171774 0.028796937
Bilateral T12 0.498692644 0.275260348
Multilateral 2.227124232 1.229292226
Pool 2.096993986 3.738884167

Total ARR 5.761632306 5.761632306

Table 11.20. System usage indexes for transactions when all transactions are taking
place independently

S. no. Transaction System index

1 Bilateral T1 0.001286717
2 Bilateral T2 0.002194855
3 Bilateral T3 0.000408837
4 Bilateral T4 0.000550056
5 Bilateral T5 0.000565512
6 Bilateral T6 0.000154217
7 Bilateral T7 0.000230233
8 Bilateral T8 0.000118848
9 Bilateral T9 0.001890091
10 Bilateral T10 0.001186687
11 Bilateral T11 0.000505216
12 Bilateral T12 0.004829192
13 Multilateral 0.021566811
14 Pool 0.020306668

Total 0.05579394
(Bilateral+Multilateral+Pool)

When all bilateral and multilateral transactions are taking
place simultaneously

S. No. Transaction System index

1 Bilateral+multilateral 0.032869084
2 Pool 0.02668025

Total (Bilateral+Multilateral+Pool) 0.059549334
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11.4.5 Hybrid Deregulated Transmission Pricing Model

To facilitate efficient competition in generation, the transmission utility, i.e.
Transco (which shall continue to operate as monopoly) is obliged to provide
full access to the transmission facilities in a non-discriminatory manner. In
order for Transco to operate viably, the charges should be sufficient to cover
Transco’s revenue requirement. It is noted in (Tabors 1994) and findings of
study team report (Echauz and Vachtsevanos 1994) discussed that in a reg-
ulated environment such as in electric transmission business, marginal cost
based pricing provides an efficient economic and engineering solution to de-
veloping a tariff structure.

However, it has been observed that relying solely on this marginal pric-
ing does not generate sufficient revenue for the transmission utility, and the
common solution is to establish supplementary charges which when added
to the marginal network income would equal to the total network cost. This
would mean that a composite cost paradigm may be implemented, based on
embedded costs and marginal costs to reflect transmission pricing based on
actual costs of existing network facilities, as well as the operation cost. After
identifying need of supplementary charges, a brief discussion on the method
of supplementary charges allocation and application of the hybrid model to
the Indian UPSEB 75-Bus system are in following section.

1. Method of supplementary charge allocation
The allocation of supplementary charges creates additional challenge as
how to allocate the charge among transmission users in an equitable man-
ner and to ensure that it does not distort the economic signals provided
by marginal pricing. Probably the most popular method is linking the
charge with the actual use of the system by the user. In the MW-Mile
methodology the actual use of transmission facilities is expressed, con-
ceptually, by a product of power due to a particular transaction times
the distance this power travels in the network. Therefore in this hybrid
model supplementary charges are allocated on the basis of two MW-Mile
methods already explained in earlier section.

2. Application of proposed Hybrid transmission pricing model to Indian UP-
SEB 75-Bus system
The results of proposed model tested for Indian UPSEB 75-Bus system
are presented here.

The results are obtained for marginal prices, generator bus voltages, real
power generations and reactive power generations after applying algorithm for
marginal cost based transmission pricing method. The calculations shown in
Tables 11.21–11.25 that due to implementation of marginal prices (i.e. nodal
prices), marginal network revenues of 112,954.4 Rs/h is obtained.
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Table 11.21. Revenue received from pool demand

Bus
no.

Real
demand
(MW)

λpi Case-II
(Rs/MW h)

Revenue
Case-II
(Rs/h)

Reactive
demand
(MVAr)

λqi Case-II
(Rs/MVAr

h)

Revenue
Case-II
(Rs/h)

1 0 1028.018 0 0 0.558 0
2 0 1023.905 0 0 0.086 0
3 0 1082.344 0 0 0.473 0
4 0 1108.433 0 0 0.162 0
5 0 1034.929 0 0 0.013 0
6 0 1034.556 0 0 0.039 0
7 0 960.118 0 0 −14.59 0
8 0 1146.357 0 0 −0.424 0
9 0 1036.89 0 0 0.636 0
10 0 1080.348 0 0 6.428 0
11 0 1027.98 0 0 0.368 0
12 27 1033.528 27905.26 0 0 0
13 12 1034.753 12417.04 0 0 0
14 0 1109.193 0 0 0 0
15 0 1085.629 0 0 10.432 0
16 0 1030.641 0 0 3.998 0
17 0 1036.924 0 0 3.731 0
18 0 1082.531 0 0 3.335 0
19 0 1067.155 0 0 9.05 0
20 56.37 1069.194 60270.47 1.06 8.928 9.46368
21 0 1098.966 0 0 0.791 0
22 0 1102.138 0 0 1.23 0
23 0 1075.28 0 0 9.573 0
24 27.95 1086.46 30366.56 7.66 8.927 68.38082
25 0 1110.085 0 0 2.591 0
26 0 1084.315 0 0 10.519 0
27 106 1094.203 115985.5 7.83 11.769 92.15127
28 0 1118.675 0 0 0.669 0
29 0 1094.279 0 0 1.201 0
30 0 1098.456 0 0 0.944 0
31 0 1045.211 0 0 −0.742 0
32 18.11 1045.804 18939.51 11.59 −0.419 −4.85621
33 0 959.137 0 0 −9.132 0
34 0 1146.321 0 0 −0.422 0
35 0 1037.723 0 0 2.895 0
36 0 1063.1 0 0 8.97 0
37 0 1067.299 0 0 9.852 0
38 0 1096.058 0 0 −5.066 0
39 0 1089.664 0 0 −7.35 0
40 0 1055.626 0 0 5.665 0
41 0 1037.16 0 0 2.311 0
42 112.5 1039.465 116939.8 −294.7 1.173 −345.683
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Table 11.21. (Continued)

Bus
no.

Real
demand
(MW)

λpi Case-II
(Rs/MW h)

Revenue
Case-II
(Rs/h)

Reactive
demand
(MVAr)

λqi Case-II
(Rs/MVAr

h)

Revenue
Case-II
(Rs/h)

43 0 1109.193 0 0 0 0
44 0 1087.5 0 0 10.409 0
45 0 1093.023 0 0 9.998 0
46 0 1058.116 0 0 5.942 0
47 34.55 1087.35 37567.94 4.38 4.748 20.79624
48 0 1063.089 0 0 6.057 0
49 25.72 1062.683 27332.21 15.8 7.055 111.469
50 2.1 1077.431 2262.605 9.2 5.617 51.6764
51 57.75 1149.66 66392.87 0.62 12.028 7.45736
52 14.27 1183.529 16888.96 −23.36 5.45 −127.312
53 12.63 1096.113 13843.91 0.33 1.16 0.3828
54 21.95 1131.157 24828.9 17.02 3.673 62.51446
55 14.23 1129.993 16079.8 2.81 7.392 20.77152
56 0 1114.006 0 0 0.362 0
57 52.78 1107.552 58456.59 18.53 −1.514 −28.0544
58 54.19 1112.947 60310.6 11.29 −0.335 −3.78215
59 21.89 1103.845 24163.17 11.01 −6.318 −69.5612
60 24.2 1128.782 27316.52 2.44 2.963 7.22972
61 56.5 1092.145 61706.19 6.58 1.651 10.86358
62 17.18 1067.086 18332.54 7.41 1.461 10.82601
63 58.01 1135.825 65889.21 5.31 5.95 31.5945
64 56.79 1090.578 61933.92 13.33 13.518 180.1949
65 47.84 1100.608 52653.09 12.81 1.361 17.43441
66 31.74 1077.662 34204.99 15.18 12.384 187.9891
67 0 1090.699 0 0 8.145 0
68 42.87 1087.015 46600.33 33.6 6.571 220.7856
69 55.94 1081.533 60500.96 32.53 18.014 585.9954
70 23.34 1140.459 26618.31 2.3 6.715 15.4445
71 0 1102.819 0 0 10.169 0
72 52.52 1135.953 59660.25 11.76 6.586 77.45136
73 37 1099.594 40684.98 4.46 10.297 45.92462
74 18 1074.16 19334.88 8.87 9.803 86.95261
75 0 1089.873 0 0 1.252 0

Total 1306388 Total 1344.501

As Transco’s total revenue requirement is 576,163.2306 Rs/h, therefore
supplementary charges of (576, 163.2306–112, 954.4 = 463, 208.8306 Rs/h) can
be realized by MW-Mile based supplementary charge allocation method.
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Table 11.22. Expenditure for Generation

Bus
No.

Real
Generation

(MW)

λpi

(Rs/MW
h)

Expenditure
(Rs/h)

Reactive
Generation

(MVAr)

λqi

(Rs/MVArh)
Expenditure

(Rs/h)

1 669.08 1028.018 687826.3 74.39 0.558 41.50962
2 100 1023.905 102390.5 21.46 0.086 1.84556
3 20 1082.344 21646.88 70.59 0.473 33.38907
8 20 1108.433 22168.66 24.05 0.162 3.8961
5 140 1034.929 144890.1 6.36 0.013 0.08268
6 36.3 1034.556 37554.38 8.14 0.039 0.31746
7 33.72 960.118 32375.18 0 −130.59 0
8 60 1146.357 68781.42 0 −0.424 0
9 60 1036.89 62213.4 45.44 0.636 28.89984
10 90 1080.348 97231.32 56 6.428 359.968
11 60 1027.98 61678.8 30.44 0.368 11.20192
12 – – – 115.71 0 0
13 – – – 28.99 0 0
14 – – – 14.42 0 0
15 – – – 35 10.432 365.12

Total 1338757 Total 846.2303

Table 11.23. Revenue received from bilateral transactions

Transaction
no.

From bus To bus Size (MW) SRMC
(Rs/MW h)

Revenue
Received
(Rs/h)

1 2 50 200 53.426 10, 685.2
2 3 55 180 47.649 8, 576.82
3 4 37 150 −41.134 −6, 170.1
4 5 20 100 34.265 3, 426.5
5 6 52 83.7 148.973 12, 469.04
6 7 62 32.6 106.968 3, 487.157
7 8 57 40.0 −38.805 −1, 552.2
8 9 74 27.0 37.27 1, 006.29
9 10 60 30.0 48.434 1, 453.02
10 11 54 140.0 103.177 14, 444.78
11 16 48 50.0 32.448 1, 622.4
12 75 73 440.0 9.721 4, 277.24

Total 53,726.15

Allocation of supplementary charges
Finally, in order to complete realization of Transco’s revenue require-

ment, allocation of supplementary charges by both the MW-Mile methods
is tabulated in Table 11.26. Again, method-2 will be preferred over method-1
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Table 11.24. Revenue received from multilateral transactions

Bus no. MW λpi

(Rs/MW h)
Expenditure

(Rs/h)
Bus
No.

MW λpi

(Rs/MW h)
Revenue
Received
(Rs/h)

12 1, 273 1, 033.528 1, 315, 681 24 100 1, 086.46 108, 646
13 898.7 1, 034.753 929, 932.5 25 211 1, 110.085 234, 227.9
14 150.0 1, 109.193 166, 379 27 100 1, 094.203 109, 420.3
15 454.0 1, 085.629 492, 875.6 28 227 1, 118.675 253, 939.2

30 126 1, 098.456 138, 405.5
34 141 1, 146.321 162, 433.7
39 170 1, 089.664 185, 242.9
42 1, 000 1, 039.465 1, 039, 465
46 156 1, 058.116 165, 066.1
56 144 1, 114.006 160, 416.9
67 200 1, 090.699 218, 139.8
71 200 1, 102.819 220, 563.8

Total 2,904,868 Total 2,995,967
Net Revenue received = 91 , 099

Table 11.25. Summary of results

S. no. (Rs/h)

1 Revenue received from pool real demand 1, 306, 388
2 Revenue received from pool reactive demand 1, 344.501
3 Revenue received from bilateral transactions 53, 726.15
4 Revenue received from multilateral transactions 91, 099
5 Expenditure for real generation 1, 338, 757
6 Expenditure for reactive generation 846.2303

7 Total Revenue 1,452,557.6
8 Total Expenditure 1,339,603.2

9 Marginal Network Revenue 112,954.4

because it is more transparent. Moreover, in deregulated competitive business
environment method-2 encourages more bilateral and multilateral transac-
tions by charging lesser supplementary charges.

11.4.6 Conclusion

A SRMC based marginal pricing method using GA-Fuzzy technique is devel-
oped and tested on IEEE 30-bus system while optimizing real and reactive
generation costs and capacitor reactive support cost. This method enables to
calculate reactive power wheeling charges also. In category of embedded cost
allocation methods – Postage Stamp allocation method and two MW-Mile
methods are employed to determine embedded costs revealed that MW-Mile
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Table 11.26. Supplementary charges allocation for Indian UPSEB 75-bus system
using MW-mile methods

Transaction Method-1 (in lakh Rs h) Method-2 (in lakh Rs h)

Bilateral T1 0.106824984 0.058963537
Bilateral T2 0.182219829 0.100578771
Bilateral T3 0.0339422 0.01873487
Bilateral T4 0.045666393 0.025206201
Bilateral T5 0.046949571 0.025914469
Bilateral T6 0.012803304 0.007066962
Bilateral T7 0.019114255 0.010550379
Bilateral T8 0.009866922 0.005446185
Bilateral T9 0.156917909 0.086613025
Bilateral T10 0.098520359 0.054379684
Bilateral T11 0.041943715 0.023151418
Bilateral T12 0.400926047 0.221296713
Multilateral 1.790505797 0.988294604
Pool 1.685887022 3.005891488
Supplementary charges 4.632088306 4.632088306

(method-2) is best among all the three methods tested for Indian UPSEB-75
bus system.

Finally, a hybrid type marginal cost based deregulated transmission pric-
ing model is proposed and tested for Indian UPSEB 75-bus system with
pool, bilateral and multilateral transactions. In this supplementary charges
are allocated by MW-mile methods. Therefore, a complete framework for
transmission pricing is designed and implemented on Indian system.

11.5 Congestion Management Using GA-Fuzzy
Approach

11.5.1 Introduction

Congestion is a consequence of various network constraints characterizing a
finite network capacity that may limit the simultaneous delivery of power
from an associated set of power transactions (Singh et al. 1998). The network
constraints include thermal limits, voltage/VAR requirements and the sta-
bility considerations. Among all the constraints, thermal limits are the most
frequently considered factor in determining network capacity.

In a deregulated electricity market, the task of ISO (Independent System
Operator) is to ensure that contracted power transactions are carried out
reliably. However, due to the large number of transactions that take place
simultaneously, transmission networks may easily get congested. Congestion
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may result in preventing new contracts, unfeasibility in existing and new con-
tracts, additional outages and damages to system components.

Managing congestion to minimize the restrictions of the competitive mar-
ket has become the central activity of systems operators. It has been observed
that the unsatisfactory management of transactions could increase the con-
gestion cost which is an unwanted burden on customers. For different power
market structures, the approach to manage congestion may vary. A number of
methods dealing with congestion management in deregulated electricity mar-
kets have been discussed earlier. Hogan (1992) proposed the contract network
and nodal pricing approach using the spot pricing theory for pool type market.
Chao and Peck (1996) proposed an alternative approach which is based on
parallel markets for link based transmission capacity rights and energy trading
under a set of rules defined and administered by the System Operator (SO).

A congestion management approach after the deregulation of the Slovenian
power system is presented in Grgic et al. (2001, 2002). The method is based
on countertrade method where the system operator, based on technical and
economic data, decides the optimal redispatch that eliminates congestion.

Singh and David (2003) has proposed dynamic security constrained con-
gestion management in an unbundled electric power system. The different
zones have been determined based on lines real and reactive transmission
congestion.

Several optimal power flow (OPF) based congestion management schemes
for multiple transactions also have been proposed. An approach using the min-
imum total modification to the desired transactions for relieving congestion
is presented. A variant of this least modification approach used a weighting
scheme with the weights being the surcharges paid by the transactions for
transmission usage in the congestion-relieved network. Marginal cost signals
were used for generators to manage congestion. A similar approach is proposed
in (Singh et al. 1998), where the congestion cost is bundled with marginal cost
at each bus in pool model and a congestion cost minimization is adopted in
bilateral model.

Fu and Lamout (2001) has proposed the objective function consisting of
congestion cost and service costs. A new mechanism of congestion manage-
ment in multilateral transaction networks has been developed based on phys-
ical flows.

There are two broad paradigms that may be employed for congestion man-
agement. The first method includes actions like outage of congested lines or
operation of transformer taps, phase shifters or FACTS devices. These means
are termed as cost-free only because the marginal costs (and not the capital
costs) involved in their usage are nominal.

The not-cost-free means include:

(1) Rescheduling generation
Here, system operator re-dispatches power generation in such a way,
that resulting power flows does not overload any line. Every generation
unit can bid an increase or decrease of its production in a similar manner
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as this is done on a balancing market, while the responsibility of sys-
tem operator is to select bids in efficient way. Somehow, counter trade
approach based congestion management can be viewed as simplified op-
timal power flow problem, where optimization variables are re-dispatch
of the active power production and criteria function is minimum of the
costs related to this active power re-dispatch.

(2) Prioritization and curtailment of loads/transactions
A parameter termed as willingness-to-pay-to-avoid-curtailment was in-
troduced in the objective function. This can be an effective instrument
in setting the transaction curtailment strategies which may then be in-
corporated in the optimal power flow framework.

In this chapter, countertrade congestion management on GA-Fuzzy based
OPF formulations incorporating (1) and hybrid type, i.e. both ((1) and (2))
above are presented and tested. The function of above OPF based models is to
modify system dispatch to ensure secure and efficient system operation based
on the existing operating condition. It would use the dispatchable resources
(i.e. real and reactive power generations and capacitor reactive supports) and
controls (i.e. transformer tappings) subject to their limits and determine the
required curtailment of transactions to ensure uncongested operation of the
power system. A new load curtailment scheme for pool loads is proposed where
all connected loads are divided into three different groups depending on their
willingness to pay up to certain load curtailment value.

11.5.2 Transmission Congestion Penalty Factors

A concept of transmission congestion penalty factors is developed and im-
plemented to control line overflows in proposed GA-Fuzzy approach for con-
gestion management. Transmission congestion penalty factor for each trans-
mission line is computed which can adopt a suitable value depending upon
amount of power flow (in MVA) above/below the maximum limit. There-
fore, the congested line/lines and lines near to congested line/lines have
higher values of transmission congestion penalty factors than other lines in
the system. These transmission congestion penalty factors are helpful in de-
ciding appropriate re-dispatchment of dispatchable resources. The procedure
for determining transmission congestion penalty factors is explained in next
section.

1. Procedure to determine transmission congestion penalty factors
A base case situation is considered for congestion management. This base
case refers to optimal settings of real power generation schedule, trans-
former tap settings and capacitor reactive support settings under normal
state and with these settings now system is subjected to congestion (with
one/more than one line limits is/are violated).

The following steps are followed to compute these penalty factors.
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Step 1. Load flow solution and line flows (Sij-base) are obtained for base case.
Step 2. Set the line limits in congestion case (Sij-M ).
Step 3. GA-Fuzzy approach as described earlier, is used to generate popula-

tion of different generation schedules satisfying equality and non-equality
constraints (except line flows limits).

Step 4. Line flows (Sij-tr) are calculated for each such generation schedule
and line penalty factors (Pij , where i and j denote bus numbers bet-
ween which transmission line is connected) are calculated according to
Fig. 11.18.

Step 5. Another parameter, line flow sum representing cumulative effect of
penalty factors and transmission line flows in congestion is computed as
follows:

line flow sum =
n1∑
l=1

Pij ∗ Sij−tr

where nl = no. of transmission lines.
These new types of transmission congestion penalty factors have two ad-

vantages. First, separate slope for penalty factor of each transmission line
is determined depending upon power overflow above rated line flow value of
that transmission line. It means that line with lesser power overflow will have
lower value of slope, and thus will result small value of penalty factor. Simi-
larly, it is understood that line with comparatively higher power overflow will
have higher value of penalty factor. This adaptive feature is helpful in finding
right solution (optimal values of control parameters, e.g. real power genera-
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Fig. 11.18. Graphical representation of penalty factors as straight lines
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tion, transformer tapping and capacitors values) by search techniques such
as GA. Secondly, only single logic mentioned in step-4 works for determining
these congestion penalty factors based on magnitude of power overflow in the
line/lines. Therefore, no difficulty arises in choosing suitable values of penalty
factors.

11.5.3 Proposed Methods for Congestion Management

Three methods are proposed with different objectives using GA-Fuzzy optimal
approach and are explained below:

Method-1. Objective of minimization of line overflows only.
Method-2. Objective of minimization of line overflows along with (real power

generation + reactive generation) redispatch cost and change in capacitor
support cost.

Method-3. Objective of minimization of line overflows along with (real power
generation + reactive generation) redispatch cost, change in capacitor
support cost and load curtailment.

Mathematical functions representing redispatch cost of real power gen-
eration, reactive power generation and change in capacitor support cost are
given below. The real power redispatch cost Cadj(∆Pg,k-m) is computed by ad-
justing generation of each generating unit less or more than base case value,
with the help of adjustment bids characteristics curves shown in Fig. 11.19.
These curves are decided by special adjustment bids Cadj,Pg,k-m invited from
all the generator units for generating power less or more than base case values.
Therefore, real power redispatch cost ca be expressed as:

Cadj(∆Pg,k-m) − Cadj,Pg,k-m ∗ ∆Pk-m $/hr (11.62)

The reactive power cost of generator is also called opportunity cost Dai
(2001). The reactive power output of a generator will reduce its active power
generation capability which can serve at least as spinning reserve, and the
corresponding implicit financial loss to generator is modeled as an opportunity
cost. Therefore reactive power redispatch cost Cadj(∆Qg,k-m) of generator as
defined by Kumar (2004) is:

Cadj(∆Qg,k−m) = �Cpg(SG,max,k−m)

− Cpg(
√

S2
G,max,k−m − ∆Q2

g,k−m)�kprofit $/h (11.63)

where Cpg(PG,k−m) = ak + bkPG,k−m + ckmP 2
G,k−m

i.e. the cost of active power generation is modeled by above quadratic
function. Where ak, bk and ck are costs coefficients of kth generator and
SG,max,k−m is the nominal maximum apparent power of generation and kprofit
is the profit rate of active power generation taken between 5 and 10% [DAI01].
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∆Pk-m

∆Pk1-m ∆Pk2-m ∆Pk3-m ∆Pk4-m ∆Pk5-m ∆Pk6-m ∆Pk7-m

Fig. 11.19. Adjustment bid characteristic representing cost function of the change
of active power production at the kth generator

The equivalent cost for return on the capital investment of the capacitors,
which is expressed as their depreciation rates (the life span of capacitors is
assumed as 15 years) is computed as

C(QC,kc−m) = QC,kc−m
($11600/Mvar)

(15∗365∗24∗h) hour

= QC,kc−m
∗$13.24/(100M var hour) (11.64)

where h is the average usage rate of capacitors taken as 2/3. Equation (11.64)
is a linear cost function with the slope of dCadj,kc−m(QC,kc−m)

dQC,kc−m
= $13.24

100 M var hour ,
which can be approximately represented as:

Cadj(∆QC,kc−m) = ∆QC,kc−m
∗(13.24/100)$/hr (11.65)

Method 1 - Objective of minimization of line overflows only

Step 1. Real power generation redispatch ∆Pg,k-m, reactive power generation
redispatch ∆Qg,k-m and change in capacitor reactive support ∆QC,kl-m
are computed for each valid generation schedule in population, where k =
generating unit no., kc = capacitor unit no. and m = no. of generation
schedule in population.

Step 2. Correspondingly, redispatch costs of real power generation
Cadj(∆Pg,k-m), reactive power generation Cadj(∆Qg,k-m) and change in
capacitor reactive support Cadj(∆QC,kcm) are computed as per expressions
(11.62), (11.63), and (11.65), respectively.

Step 3. Fitness of each generation schedule in a population is calculated as:

Fitness =
1

A∗line flow sum
(11.66)

where, A = numerical constant.
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Step 4. Finally values of real and reactive power generation schedule, trans-
formers tapping values, bus voltages, capacitor reactive support values and
line flows calculated in last generation of GA-Fuzzy based optimization ap-
proach.

Method 2 - Objective of minimization of line overflows along with (real power
generation + reactive generation) re-dispatch cost and change in capacitor
support cost

1. Step1 and Step 2 of method-1 are followed.
2. Fitness of each generation schedule in a population is calculated as:

Fitness =
e
−B×

(
NG∑

g
Cadj(∆Pg,k−m)+

NG∑
g

Cadj(∆Qg,k−m)+
NC∑

c
Cadj(∆QC,kl−m)

)

A × line flow sum
(11.67)

where A and B are numerical constants.
3. Step 4 of method-1 is followed.

Method 3 – Objective of minimization of line overflows along with (real power
generation + reactive generation) redispatch cost, change in capacitor support
cost and load curtailment

1. Step1 of method-1 is followed.
2. If real loads connected on load buses under congestion are termed as

base load values, then load cutailment is done by reducing base load
values in three different groups (G-1, G-2 and G-3). G-1, G-2 and G-3
refer to groups of loads (consumers) which are paying fee (willingness
to pay) for load curtailment upto 80, 60 and 40 of their base case load
values respectively, in a congestion state. Load values after curtailment
(Pd,kl-m,gr−i) in three different groups (G-1, G-2 and G-3) are computed.

3. Step2 of method-1 is followed.
4. Fitness of each generation schedule in a population is calculated as:

Fitness =

e−B ×
(

NG∑
g

Cadj(∆Pg,k−m) +
NG∑

g

Cadj(∆Qg,k−m) +
NC∑

c

Cadj(∆QC,kc−m)

+
3∑

i=1
Ki(

NL∑
kl

(Pd,kl−m,gr−i) −
NL∑
kl

(Pd,kl−m,base−i))
2
)

A × line flow sum
(11.68)

where A, B and Ki are numerical constants.
5. Step4 of method-1 is followed.

11.5.4 Test Results

The proposed methods are implemented on modified IEEE 30 bus system.
The busdata and linedata are given in Appendix F. Line (8,28) get congested
(exceeding flow limit of 12 MVA) if outage of line (6,28) is considered.
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Fig. 11.20. Convergence of different parameters, crossover probability and mutation
probability variations using GA-Fuzzy approach for Method-1
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Fig. 11.21. Convergence of different parameters, crossover probability and mutation
probability variations using GA-Fuzzy approach for Method-2

Figures 11.20, 11.21 and 11.22 show the convergence of different parame-
ters along with crossover probability and mutation probability variations.

Figures 11.23–11.26 and Table 11.27 represent bus voltage profile for dif-
ferent methods.
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Fig. 11.21. (Continued)

11.5.5 Conclusions

The results tabulated in Table 11.28a shows optimal values of active power
generation, reactive power generation and capacitor reactive support to avoid
congestion for method-1 and method-2. Method-1 is found to be superior
than method-2 so far controlling of power overflow is concerned. In table 28b
method-2 seems to be more economical than method-1. The differences in
performance of both the methods are due to modeling of their respective
fitness function. In method-1, emphasis is only on control of power over-
flow on the Lines, whereas control of power overflow along with redispatch
costs of (real power + reactive power) generation and change in capacitor
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Fig. 11.22. Convergence of different parameters, crossover probability and mutation
probability variations using GA-Fuzzy approach for Method-3

reactive support cost are intermingled in method-2. It is also clear from
Fig. 11.21 for method-2 that a controlling action to check power overflow
is dominant over economic redispatchment cost feature throughout the GA-
Fuzzy based optimization procedure. From the results it is seen that slightly
lesser load bus voltage variation (i.e. between maximum and minimum load
bus voltages) with very small increment in average system voltage value
(i.e. average of all bus voltages of the system). It means that from voltage
point of view, method-2 is not inferior than method-1, although this par-
ticular aspect requires verification for other power systems also. Therefore,
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Fig. 11.22. (Continued)
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Fig. 11.22. (Continued)
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Fig. 11.23. Bus voltage profile using congestion management method-1

method-1 and method-2 both have applicability from congestion management
view point.

Method-3 is developed for a scenario different from one in which method-1
and method-2 work. In this method, a load curtailment feature is also added
in fitness function by mathematical modeling. This feature enables pool cus-
tomers to pay extra charges in order to avoid congestion as shown in Ta-
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Fig. 11.24. Bus voltage profile using congestion management method-2, when
kprofit = 5%
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Fig. 11.25. Bus voltage profile using congestion management method-2, when
kprofit = 10%
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Fig. 11.26. Bus voltage profile using congestion management method-3

Table 11.27. Comparison of maximum and minimum voltage levels at Load buses
and average system voltages for proposed methods of congestion management

Method-1 Method-2 Method-3

Kprofit =
5%

Kprofit =
10%

Maximum Bus 12:
1.048 p.u.

Bus 9:
1.049 p.u.

Bus 12:
1.048 p.u.

Bus 9:
1.047 p.u.

load bus Minimum Bus 30:
0.95 p.u.

Bus 30:
0.956 p.u.

Bus 30:
0.954 p.u.

Bus 30:
0.959 p.u.

Difference 0.098 p.u. 0.093 p.u. 0.094 p.u. 0.088 p.u.
Average value
of system volt-
age

1.005533
p.u.

1.0139
p.u.

1.012433
p.u.

1.0135
p.u.

ble 11.28c. This method can be applicable in deregulated environment as it
seems to be fair, transparent and consumer satisfaction to great extent.

A hybrid strategy having two stages is also formed on the basis of three
methods developed and tested on modified IEEE 30 bus system. In first stage,
method-1 or method-2 can be used. If congestion is still not avoidable then
under second stage method-3 with load-curtailment and willingness to pay
feature can be used.

11.5.6 Bibliography and Historical Notes

The application of genetic algorithms for altering membership functions of
fuzzy controllers to make it adaptive Karr and Gentry 1993; Park et al. 1994).
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The idea of fuzzifying genetic algorithms emerged in 1990s. Various ways
of integrating fuzzy systems and genetic algorithms were proposed by Sanchez
(1993), Xu and Vukovich (1993) and Buckley and Hayashi (1994a).

El-Hawary (1998) has shown various fuzzy system applications to Elec-
tric Power Applications in deregulated Environment. Iyer (2003) mentioned
an integrated fuzzy-neural approach to electricity spot-price forecasting in a
deregulated electricity market. Ming et al. (2004) used an ARIMA approach
to forecasting electricity price. Saini et al. (2006) explained the GA-Fuzzy
integrated System Approach to solve OPF problem and help in congestion
management. Ravikumar et al. (2007) paper deals with the intelligent ap-
proach for fault diagnosis using support vector machines.
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