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Summary. Co-evolutionary techniques for evolutionary algorithms can enhance the adap-
tive capabilities of evolutionary algorithms and help maintain population diversity. In this
chapter the concept and a formal model of an agent-based realization of a predator-prey co-
evolutionary algorithm is presented. The resulting system is applied to the problem of effective
portfolio building and is compared to classical multi-objective evolutionary algorithms.

15.1 Introduction

Evolutionary Algorithms (EAs) are global search and optimization techniques based
on analogies to the Darwinian model of natural evolution (3). EAs have demonstrated
efficiency and robustness as global optimization techniques. However, in the case of
some problems (for example, multi-modal optimization, multi-objective optimiza-
tion, and dynamic problems) EAs can show a negative tendency to lose population
diversity. Typically, both experiments and formal analysis show that for multi-modal
problem landscapes a simple EA will locate a single solution (27). If we are in-
terested in localizing multiple solutions (like in the case of so-called “multi-modal
optimization problems”), special techniques should be used. Niching and speciation
methods for EAs (27) are aimed at forming and maintaining subpopulations (species)
throughout the search process, thereby allowing the uncovering of all or most of the
basins of attraction of local minima. The problem of loss of population diversity also
limits the adaptive capabilities of EAs in dynamic environments.

In evolutionary biology the process of co-evolution is defined as the prolonged
mutual interaction between two (or more) species. Examples of co-evolutionary in-
teractions include competition for limited resources, predator-prey interaction, host-
parasite interaction, mutualism and commensalism etc. Also, sexual selection results
from the co-evolution of female mate choice and male displayed traits, where fe-
males evolve to reduce the direct costs associated with mating, and males evolve to
attract females to mating (sexual conflict) (15). It is acknowledged that co-evolution
is responsible for bio-diversity, and may lead to speciation (the formation of new
species).
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In co-evolutionary algorithms which are, generally speaking, evolutionary algo-
rithms with co-evolutionary mechanisms embedded, the fitness of each individual
depends not only on the quality of its solution to a given problem (like in the case of
EAs) but also (or solely) on other individuals’ fitness. Such techniques are applica-
ble in the case of problems for which the fitness function formulation is difficult or
impossible (like game strategies), or where there is a need to improve the adaptive
capabilities of EA, or where there is a need to maintain useful population diversity.

Because many financial and economic decision and optimization problems are
multi-modal (there exist many comparable solutions) and / or multi-objective (multi-
ple, possibly conflicting, objectives) different techniques for maintaining population
diversity in EAs may be found useful and applicable. In the case of such problems, an
intelligent computer system can provide alternative solutions to the decision maker,
allowing him to make a final decision based on his experience. In order to do so, evo-
lutionary algorithms must maintain a high level of population diversity—otherwise
it simply will not be able to provide many different solutions to the given problem.

Besides the positive effect of maintaining population diversity, co-evolutionary
algorithms also provide us with useful analogies between co-evolution, financial
markets, and generally speaking market-oriented economic systems. These include
for example “arms races” between capitalist enterprises and financial institutions
(comparable to predator-prey or host-parasite interactions). Such “arms races” help
avoid economic stagnation. These “Red Queen effects” (“It takes all the running
you can do, to keep in the same place.”) can be observed in market and economic
processes. Capitalist enterprises need to continually innovate, merely to “keep in the
same place”.

Co-evolutionary mechanisms can also be found useful when we are interested in
socio-economic modeling and simulations, for example simulation of antagonistic
and non-antagonistic interactions between different classes and groups in society
(generally speaking problems of social stratification).

In the case of multi-objective optimization problems, which are the main subject
of this chapter, the loss of population diversity may mean that the population locates
in areas far away from the Pareto frontier or that individuals are located only in
selected areas of Pareto frontier. In the case of multi-objective problems with many
local Pareto frontiers (defined by Deb in (7)) the loss of population diversity may
result in locating only local Pareto frontier instead of the global one.

The notion of an “agent” is now very well established in the area of social science
(psychology, sociology, and economy), artificial intelligence, and computer model-
ing and simulation. According to J. Ferber (13) an agent can be defined as a physical
or virtual entity which can act within an environment, can communicate with other
agents, tries to realize some goals or optimize its fitness function, possesses some
resources, may observe the environment (but only in a restricted way), possesses re-
stricted knowledge about the environment, has some abilities and may offer some
services to other agents, may reproduce, acts in the way that leads to the realization
of its own goals taking into account the possessed resources, abilities, and knowl-
edge acquired during the observation of the environment and communication with
other agents.
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A multi-agent system is composed of the following elements (13): an environ-
ment, a set of objects situated within the system which can be observed, created,
destroyed and modified by agents (which are active entities), a set of agents, a set of
relations between objects (including agents), a set of operations which allow agents
to observe, create, destroy, “consume”, and modify objects, and finally the operators
which represent the operations performed by agents and the reaction of the envi-
ronment. The above features of multi-agent systems makes them an ideal tool for
social and economic simulation as they include all the tools necessary for model-
ing and simulation of different kinds of societies, social structures, modes of pro-
duction, competing or co-operating enterprises, social mechanisms of conflict and
co-operation, and so on.

Evolutionary multi-agent systems (EMAS) are multi-agent systems, in which the
population of agents evolves (agents can die, reproduce and compete for limited re-
sources). The model of co-evolutionary multi-agent system (CoEMAS) (8) introduces
additionally the notions of species, sexes, and interactions between them. CoEMAS
allows modeling and simulation of different co-evolutionary interactions, which can
serve as the basis for constructing the techniques of maintaining population diversity
and improving adaptive capabilities of such systems. CoEMAS systems with sexual
selection and host-parasite mechanisms have already been applied with promising
results to multi-objective optimization problems (9, 10).

Co-evolutionary multi-agent systems have of course all the advantages and mech-
anisms of multi-agent systems, which can be used in artificial life modeling and
simulations (especially in the area of psychology, sociology and economy). Addi-
tionally, we can utilize the evolutionary optimization of agents and co-evolutionary
interactions between them. This is a very promising area for future interdiscipli-
nary research including for example, psychological, social and economic simulations
which can embed emergent phenomena in society and economy, the problems of so-
cial stratification, the role of conflict in the society, antagonistic and non-antagonistic
conflicts between classes and groups, the effects of particular economic policy, the
role of the state and institutions in economy and society, the role of ideology, its role
in the reproduction of relations of production, social power, and stratification, etc.

In the following sections an introduction to multi-objective optimization prob-
lems is presented. Then, we concentrate on previous research on techniques for main-
taining population diversity in multi-objective evolutionary algorithms. Next, the
co-evolutionary multi-agent system with population diversity maintaining technique
based on predator-prey interactions is formally described. The presented system is
applied to problem of effective portfolio building. Results from the experiments with
the CoEMAS system are then compared to other classical evolutionary techniques’
results.

15.2 Multi-Objective Optimization

The most natural process of decision making for human beings consists in analyzing
many—often contradictory—factors and searching for a compromise among them.
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Such decision processes are known as multi-criteria decision making (MCDM). Ob-
viously, human beings are equipped with natural abilities for making multi-criteria
decisions. While these natural gifts may be sufficient in everyday life they are not
sufficient in more complex technical, business or scientific decision environments.

In such cases a decision maker, has to be equipped with appropriate mathe-
matical and computing techniques to make a proper decision. The most common,
MCDM process is based on an appropriately defined multi-objective optimization
problem (MOOP). Following (7)—the multi-objective optimization problem in its
general form is defined as follows:

MOOP≡

⎧⎪⎪⎨⎪⎪⎩
Minimize/Maximize fm(x̄), m = 1,2 . . . ,M
Subject to g j(x̄)≥ 0, j = 1,2 . . . ,J

hk(x̄) = 0, k = 1,2 . . . ,K
x(L)

i ≤ xi ≤ x(U)
i , i = 1,2 . . . ,N

The set of constraints—both constraint functions (equalities hk(x̄), inequalities g j(x̄))
and decision variable bounds (lower bounds x(L)

i and upper bounds x(U)
i ) — define

all possible (feasible) decision alternatives (D).
Because therearemanycriteria—toindicatewhichsolution isbetter thananother—

a specialized ordering relation has to be introduced. To avoid problems with convert-
ing minimization to maximization problems (and vice versa of course) an operator
� can be defined. Then, notation x̄1 � x̄2 indicates that solution x̄1 is better than
solution x̄2 for particular objective. Now, the crucial concept of Pareto optimality i.e.
the so-called dominance relation, can be defined. It is said that solution x̄A dominates
solution x̄B (x̄A ≺ x̄B) if and only if:

x̄A ≺ x̄B⇔
{

f j(x̄A) � f j(x̄B) f or j = 1,2 . . . ,M
∃i ∈ {1,2, . . . ,M} : fi(x̄A) � fi(x̄B)

A solution in the Pareto sense of the multi-objective optimization problem means de-
termining all the non-dominated alternatives from the set D . The Pareto-optimal set
consists of globally optimal solutions. However there may also exist locally optimal
solutions, which constitute locally non-dominated set (local Pareto-optimal set) (7).
The set Plocal ⊆ D is local Pareto-optimal set if (41):

∀xa ∈Plocal : �xb ∈ D such that
xb # xa∧∥∥xb−xa

∥∥< ε ∧∥∥F(xb)−F(xa)
∥∥< δ

where ‖·‖ is a distance metric and ε > 0, δ > 0. The set P ⊆ D is global Pareto-
optimal set if (41):

∀xa ∈P : �xb ∈ D such that xb # xa (15.1)

These locally or globally non-dominated solutions create (in the criteria space) local
(PF local) or global (PF ) Pareto frontiers that can be defined as follows:

PF local =
{

y = F (x) ∈ IRM | x ∈Plocal
}

(15.2a)
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PF =
{

y = F (x) ∈ IRM | x ∈P
}

(15.2b)

Multi-objective problems with one global and many local Pareto frontiers are called
multi-modal multi-objective problems (7).

During the last twenty years of research on evolutionary multi-objective algo-
rithms (EMOAs) many techniques have been proposed. Generally, all of these tech-
niques and algorithms can be classified as elitist, which give the best individuals in
the current population the opportunity to be directly carried over to the next genera-
tion, or non-elitist ones (7).

15.3 Selected Issues of Maintaining Population Diversity
in Evolutionary Multi-Objective Algorithms

In order to maintain useful population diversity and introduce speciation (processes
of forming species—subpopulations—located in different areas of solution space)
special techniques, like niching mechanisms and co-evolutionary models, are used.

Niching techniques are primarily applied in problems of multi-modal optimiza-
tion, but they are also used in evolutionary multi-objective algorithms. Such tech-
niques promote useful population diversity and make possible the creation of species
located within the basins of attraction of local minima or in different parts of the
Pareto frontier. Various niching techniques have been proposed. All these techniques
promote niche formation via the modification of the mechanism for selecting individ-
uals for new generation (crowding model (26)), the modification of the parent selec-
tion mechanism (fitness sharing technique (16) or sexual selection mechanism (33)),
or restricted application of selection and/or recombination mechanisms (by grouping
individuals into subpopulations (20) or by introducing the environment with some
topography, in which the individuals are located (1, 5)).

The fitness-sharing technique was used in Hajela and Lin, which illustrated the
use of a weighting method in a genetic algorithm for multi-objective optimization
(17). The weights were encoded in genotype and fitness sharing was used in objec-
tive space in order to introduce the diversity of the weights. Fitness sharing in the
objective space was also used by Fonseca and Fleming in their multi-objective ge-
netic algorithm using a Pareto-based ranking procedure (14). In the niched Pareto
genetic algorithm (NPGA) (18) fitness sharing mechanism is used in objective space
during the tournament selection in order to decide which individual wins (when the
mechanism based on domination relation fails to choose the winner). In the non-
dominated sorting genetic algorithm (NSGA) (37) the fitness sharing is performed
in decision space, within each set of non-dominated individuals separately, in order
to maintain high population diversity. In the strength Pareto evolutionary algorithm
(SPEA) (41) a special type of fitness sharing is used in order to maintain diversity.
The fitness sharing in SPEA forms niches, not on the basis of distance but, on the
basis of Pareto dominance.

As noted above, co-evolutionary techniques for EAs are applicable in cases where
the fitness function formulation is difficult (or even impossible). Co-evolutionary
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algorithms are also applicable in cases when we want to maintain population diver-
sity, introduce speciation, open-ended evolution, “arms races”, and improve adaptive
capabilities of EAs—especially in dynamic environments. As the result of ongoing
research many co-evolutionary models and techniques have been proposed. Gen-
erally, each belongs to one of two classes: competitive (30) or co-operative (32).
In competitive co-evolution based systems two (or more) individuals compete in a
game and their “competitive fitness functions” are calculated based on their relative
performance in that game (6). In co-operative co-evolutionary algorithms a problem
is decomposed into sub-problems and each sub-problem is then solved by different
subpopulation (32). Each individual from the given subpopulation is evaluated within
a group of randomly chosen individuals coming from different sub-populations. Its
fitness value depends on how well the group solved the problem and on how well the
individual assisted in the solution.

Laumanns, Rudolph and Schwefel (22) proposed co-evolutionary algorithm with
a predator-prey model and a spatial graph-like structure for multi-objective optimiza-
tion. Deb introduced a modified algorithm in which predators eliminated prey not
only on the basis of one criterion but on the basis of the weighted sum of all criteria
(7). Li proposed other modifications to this algorithm (23). The main difference was
that both predators and prey were allowed to migrate within the graph. The model of
cooperative co-evolution was also applied to multi-objective optimization (19).

Sexual selection resulting from female-male co-evolution is considered to be one
of the ecological mechanisms responsible for biodiversity and sympatric speciation
(15, 39). All the work on sexual selection mechanism for multi-objective evolution-
ary algorithms focuses on using this mechanism for maintaining population diversity,
so that individuals are evenly distributed over the Pareto frontier. Allenson proposed
a genetic algorithm with sexual selection for multi-objective optimization (2). In his
technique the number of sexes was the same as the number of criteria of the given
problem and individuals of the given sex were evaluated only according to one cri-
terion (associated with their sex). Sex of the child was determined randomly and
it replaced the worst individual from its sex. Allenson also introduced sexual se-
lection mechanism. For each individual the partner for reproduction was selected
on the basis of individual’s preferences coded within its genotype. Lis and Eiben
proposed a multi-sexual genetic algorithm (MSGA) for multi-objective optimization
(25). They also used one sex for each criterion. If a recombination operator was
used during the reproduction (this was decided randomly) then partners for repro-
duction were chosen from each sex separately with the use of ranking mechanism
and the offspring was created with the use of special multi-parent crossover opera-
tor. The sex of generated offspring was the same as the sex of the parent that pro-
vided most of genes. After the population of next generation was created the group of
Pareto-optimal individuals was selected and this group was merged with the group of
Pareto-optimal individuals from previous generations. During this phase, dominated
individuals were removed from the set of Pareto-optimal individuals. Bonissone and
Subbu (4) continued work on Lis and Eiben’s algorithm. They proposed additional
mechanisms for determining the sex of offspring: random and based on phenotype
(child had the sex associated with the criterion for which it had the best fitness).
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Co-evolution of species and sexes are biological mechanisms which contribute
to biodiversity and sympatric speciation. However these mechanisms are not widely
used as a way of maintaining useful genetic diversity in evolutionary algorithms. It
seems that co-evolution and sexual selection can be used as a basis for constructing
niching and speciation mechanisms (which promote the formation of species located
within basins of attraction of different local optima or in different areas of Pareto
frontier) but this is still an open issue and the subject of ongoing research.

15.4 Co-Evolutionary Multi-Agent System with Population
Diversity Maintaining Mechanism

Fig. 15.1. CoEMAS with predator-prey mechanism

The system presented in this section is based on the CoEMAS model—a general
model of co-evolution in a multi-agent system (8). The most important component of
the population diversity—maintaining mechanism are predator-prey co-evolutionary
interactions (see fig. 15.1). The spatial structure of EMAS systems also plays the role
of diversity maintaining mechanism but it is rather the mechanism of secondary im-
portance. The first prototypes of the CoEMAS with predator-prey interactions were
presented in (11, 12). In the following sections, the system used in experiments is de-
scribed with the use of ideas, notions, and relations introduced in the general model
for co-evolution in a multi-agent system.
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15.4.1 CoEMAS

The co-evolutionary multi-agent system with predator-prey interactions (CoEMAS)
is defined as follows (8):

CoEMAS = 〈E,S,Γ ,Ω〉 (15.3)

where E is the environment of the CoEMAS system, S is the set of species (s∈ S) that
exist and co-evolve in CoEMAS, Γ is the set of resource types (the amount of type γ
resource which is possessed by the given element of the system will be denoted by
rγ ), Ω is the set of information types (the information of type ω , which can be used
or possessed by the given element of the system is denoted by iω ). Two information
types (Ω = {ω1,ω2}) and one resource type (Γ = {γ}) are used. Information of type
ω1 denotes nodes to which agent can migrate. Information of type ω2 denotes the
prey that are located within the particular node in time t.

The selection mechanism is based on the closed circulation of resource within
the system. The overall amount of resources is constant. Resources can be possessed
by the agents, and transferred from dominated prey to dominating prey, and from
prey to predators during killing prey. The environment E is defined in the following
way:

E =
〈
T E ,Γ E = /0,ΩE =Ω

〉
(15.4)

where T E is the topography of the environment E, Γ E is the set of resource types
that exist within the environment, and ΩE is the set of information types that exist
within the environment. The topography of the environment T E = 〈H, l〉, where H
is a directed graph with the cost function c defined (H = 〈V,B,c〉, V is the set of
vertices, B is the set of arches). In the case of the presented system, every node is
connected with its four neighbors, which results in the torus-like environment. The
l : A→V (A is the set of agents) function makes it possible to locate particular agent
in the environment space. Vertex v is given by:

v =
〈
Av,Γ v = Γ E ,Ω v =ΩE〉 (15.5)

Av is the set of agents that are located within the vertice v. There are two types of
information in the vertice. The first one includes all vertices that are connected with
the vertice v:

iω1,v = {u : u ∈V ∧〈v,u〉 ∈ B} (15.6)

The second one includes all agents of species prey that are located within the ver-
tice v:

iω2,v = {aprey : aprey ∈ Av} (15.7)

15.4.2 Species

The set of species S = {prey, pred}. The prey species (prey) is defined as follows:

prey = 〈Aprey,SX prey = {sx} ,Zprey,Cprey〉 (15.8)
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where SX prey is the set of sexes which exist within the prey species, Zprey is the set
of actions that agents of species prey can perform, and Cprey is the set of relations of
prey species with other species that exist in the CoEMAS. The set of actions Zprey is
defined as follows:

Zprey = {die,get,give,accept,seek,clone,rec,mut,migr} (15.9)

where:

• die is the action of death (prey dies when it is out of resources);
• get action gets some resource from another aprey agent located within the same

node, which is dominated by the agent that performs get action or is too close to
it in the criteria space;

• give action gives some resource to another agent (which performs get action);
• accept action accepts partner for reproduction when the amount of resource pos-

sessed by the prey agent is above the given level;
• seek action seeks for another prey agent that is dominated by the prey performing

this action or is too close to it in criteria space. This action is also used in order to
find the partner for reproduction when the amount of resource is above the given
level and agent can reproduce;

• clone is the action of producing offspring (parents give some of their resources
to the offspring during this action);

• rec is the recombination operator (intermediate recombination is used (3));
• mut is the mutation operator (mutation with self-adaptation is used (3));
• The migr is the action of migrating from one node to another. During this action

an agent loses some of its resource.

The set of relations of prey species with other species that exist within the system is
defined as follows:

Cprey =
{

prey,get−−−−−−→,
pred,give+−−−−−−→

}
(15.10a)

The first relation models intra species competition for limited resources (“-” denotes
that as a result of performing get action the fitness of another prey is decreased):

prey,get−−−−−−→= {〈prey, prey〉} (15.10b)

The second one models predator-prey interactions (“+” denotes that when prey gives
all its resources to the predator, the predator fitness is increased):

pred,give+−−−−−−→= {〈prey, pred〉} (15.10c)

The predator species (pred) is defined as follows:

pred =
〈

Apred ,SX pred = {sx} ,Zpred ,Cpred
〉

(15.11)

All the symbols used have analogical meaning as in the case of prey species—see
eq. (15.8). The set of actions Zpred is defined as follows:
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Zpred = {seek,get,migr} (15.12)

where:

• The seek action allows finding the “worst” (according to the criteria associated
with the given predator) prey located within the same node as the predator;

• get action gets all resources from the chosen prey,
• migr action allows predator to migrate between nodes of the graph H—this re-

sults in losing some of the resources.

The set of relations of pred species with other species that exist within the system
are defined as follows:

Cpred =
{

prey,get−−−−−−→
}

(15.13a)

This relation models predator-prey interactions:

prey,get−−−−−−→= {〈pred, prey〉} (15.13b)

As a result of performing get action and taking all resources from selected prey, it
dies.

15.4.3 Prey Agents

Agent a of species prey (a≡ aprey) is defined as follows:

a = 〈gna,Za = Zprey,Γ a = Γ ,Ω a =Ω ,PRa〉 (15.14)

The genotype of agent a consists of two vectors (chromosomes): x of real-coded
decision parameters values and σ of standard deviation values, which are used during
mutation with self-adaptation. Za = Zprey (see eq. (15.9)) is the set of actions which
agent a can perform. Γ a is the set of resource types used by the agent, and Ω a is the
set of information types.

The partially ordered set of profiles includes resource profile (pr1), reproduction
profile (pr2), interaction profile (pr3), and migration profile (pr4):

PRa = {pr1, pr2, pr3, pr4} (15.15a)
pr1 � pr2 � pr3 � pr4 (15.15b)

Each profile pr is defined as follows:

pr = 〈Γ pr,Ω pr,Mpr,ST pr,GLpr〉 (15.16)

whereΓ pr is the set of resource types used in the pr profile (Γ pr ⊆Γ a).Ω pr is the set
of information types (Ω pr ⊆ Ω a). Mpr is the set of informations (the model) which
represent the agent’s knowledge about the environment and other agents. ST pr is the
partially ordered set (ST pr ≡ 〈ST pr,�〉) of strategies which agent can use in order to
realize the active goal of the given profile. The relation � is defined as follows:
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�=
{〈sti,st j〉 ∈ ST pr×ST pr : strategy sti has equal or higher

priority than strategy st j
} (15.17)

The single strategy st ∈ ST pr is composed of actions, which performing (in the given
order) leads to the realization of a pr profile’s active goal:

st = 〈z1,z2, . . . ,zk〉, st ∈ ST pr, zi ∈ Za (15.18)

GLpr is the partially ordered (GLpr ≡ 〈GLpr,�〉) set of goals. The relation � is
defined in the following way:

�=
{〈gli,gl j〉 ∈ GLpr×GLpr : the goal gli has equal or higher

priority, than the goal gl j
} (15.19)

Now we can define the � relation (see eq. (15.15)):

�=
{〈

pri, pr j
〉 ∈ PRa×PRa : the realization of active goals of the profile pri has

the equal or higher priority than the realization of the active goals of

profile pr j
}

(15.20)

By “active goal” (denoted by gl∗) we mean the goal gl which should be realized in
the given time step.

The Process of Realizing Goals and Choosing the Strategies

The defined above partially ordered sets of profiles (PRa), goals (GLpr) and strategies
(ST pr) are used by agent for selecting the goal and strategy for its realization. The
whole process of decision making is realized in the following way:

1) Agent a activates the profile with highest priority (pri ∈ PRa), which has the
active goal gl∗j ∈ GLpri .

2) If there is more than one active goal in the set GLpri then the goal which has the
highest priority is chosen for realization (let us assume that this goal is gl∗j ).

3) Next, such strategy for the realization of the goal gl∗j is chosen from the set ST pri

that it has the highest priority, it is possible to realize it in the given time, and it
does not contradict with the goals of profiles with the lower priority than profile
pri (let us assume that this strategy is stk ∈ ST pri).

4) If the realization of the chosen strategy is accomplished with success then the gl j
becomes a non-active goal.

5) Next, again activities from 1) are realized.

The Profiles

The processes of realizing goals and choosing the strategies by prey agent are illus-
trated in fig. 15.2. The goal of the pr1 (resource) profile is to keep the amount of re-
sources above the minimal level or to die. In order to realize this goal an agent can use
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Fig. 15.2. The process of realizing goals and choosing the strategies by a prey agent

the following strategies: 〈die〉, 〈seek,get〉. This profile uses the model Mpr1 = {iω2}
(see eq. (15.7)).

The only goal of the pr2 (reproduction) profile is to reproduce. In order to realize
this goal an agent can use the strategy of reproduction: 〈seek,clone,rec,mut〉. The
model is defined in the following way: Mpr2 = {iω2}.

The goal of the pr3 (interaction) profile is to interact with predators with the use
of strategy 〈give〉.

The goal of the pr4 (migration) profile is to migrate within the environment. In
order to realize this goal the migration strategy is used:

〈
migr

〉
. The model used is

defined as follows: Mpr4 = {iω1} (see eq. (15.6).) As a result of migrating, the prey
loses some resource.

15.4.4 Predator Agents

An agent a of species pred is defined analogically to prey agent (see eq. (15.14)).
There exist two main differences. The genotype of a predator agent consists of in-
formation about the criterion associated with the given agent. The set of profiles
consists only of two profiles, a resource profile (pr1), and a migration profile (pr2):
PRa = {pr1, pr2}, where pr1 � pr2.

The processes of realizing goals and choosing the strategies by predator agent are
illustrated in fig. 15.3. The goal of the pr1 (resource) profile is to keep the amount
of resource above the minimal level with the use of strategy 〈seek,get〉. The model
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Fig. 15.3. The process of realizing goals and choosing the strategies by a predator agent

used within this profile is defined as follows: Mpr1 = {iω2}. The goal of pr2 (mi-
gration) profile is to migrate within the environment. In order to realize this goal,
the migration strategy

〈
migr

〉
) is used. The model of the environment is defined in

the following way: Mpr2 = {iω1}. The realization of the migration strategy results in
losing some of the resource possessed by the agent.

15.5 Building an Effective Investment Portfolio

The developed co-evolutionary agent-based system has been tested in (11, 12) us-
ing well known benchmark problems such as: the Kursawe problem (21), Laumanns
problem (22), and—recently also—the set of Zitzler test problems ZDT1—ZDT6
(41) where solving each next problem algorithm which is being tested has to deal
with the more and more difficult and challenging characteristics starting from con-
tinuous and convex Pareto frontier, through concave or disconnected problems until
multi-objective multi-modal problem (discussion about consequences of concavity,
discontinuity or multimodality of the Pareto frontier can be found in (7)).

When analyzing the behavior and characteristics of co-evolutionary computation
techniques in general, and agent-based co-evolutionary techniques in particular (es-
pecially such approaches as predator-prey, or host-parasite approaches)—it is natural
that one of the first associations to such techniques (and obviously one of possible
applications of such computational techniques) are financial and investments mar-
kets in particular. Entrepreneurs, SMEs, corporations—all of them all the time have
to be better, more innovative, cheaper, more effective etc. than the others. That is
why, the free market is so dynamic, all the time some enterprises introduce some
organizational, financial or technological innovations and the rest of market-game
participants has to respond to such changes introducing another innovations, prod-
ucts etc—so, we are witnesses to a continuing arms race. The range of dependen-
cies that can be seen on the market can be pretty wide—from cooperation, through
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competition until antagonism. As can be read in (31)—such a situation is not the
best one for all the market players (the situation when all participants of market
game are the “winners” is not possible—always some of them have to lose). There
is no doubt however, that (only) thanks to such strong relationships, influences and
interactions—the common organizational, technological and economical develop-
ment and progress are possible—and in that way, extremely desirable phenomenon
called “invisible hand of market” by Adam Smith is realized. Of course, the most
desirable situation is the perfect competition—but even the most developed mar-
kets only bring nearer and nearer to such a situation—mainly because of conditions
(third condition in particular) required by “perfect competition”. Mentioned three
conditions of perfect competition are:

1. There are many buyers and many sellers in particular branch.
2. There are mainly small enterprises in the market.
3. The buyers and the sellers possess the full and perfect knowledge about the mar-

ket (uncertainty and information asymmetry do not take place).

Fulfilling especially the third condition is very difficult and if so, it is no wonder
that both, competitive situation as well as possible interactions and relationships
among market-players can vary in a (mentioned above) wide range. It is obvious
however, that in a Darwinian world—all activities of each participant of the mar-
ket game are conformed to one overriding goal—to survive and to gain more and
more wealth. From the interactions with another enterprise’s point of view it can be
realized by: eliminating from the market as many weak rivals as possible and tak-
ing over their customers, products, delivery channels etc. (so by being “predator”),
by sucking out of another (stronger) enterprise’s customers, technologies, products
etc. (so by being “parasite”), by supplementing partners’ portfolio with additional
products, technologies, customers etc.—and vice versa (so by living in symbiosis)
etc. etc. It is seen clearly, that one of the most important activity of all market-
game participants is co-existence with co-development—and from the computational
intelligence point of view we would say—co-evolution. Because (generally speak-
ing of course and under additional conditions) participants of the market game are
autonomous entities (from the computational intelligence point of view we would
say—agents), they are distributed, they act asynchronously, and they interact with
another entities to achieve common goal—prosperity and wealth—in natural way
applying co-evolutionary multi agent systems seems to be the perfect approach for
modeling such phenomenons and environments. This is the first motivation of our
experiments. But why “building effective portfolio”. Well, we are working and per-
ceiving co-evolutionary multi agent systems not only as modeling techniques but
also as computational techniques. When we finished preliminary tests with bench-
mark problems—we wanted to run such systems against real—because of above
stated motivation market-oriented—problems. Additionally, our goal was running
one of proposed approaches against challenging, combinatorial, well defined and
well-known multi-objective optimization problem where arm race interactions can
be observed to test our predator-prey co-evolutionary multi-agent system. Building
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effective portfolio seems to be the perfect candidate test problem fulfilling all above
mentioned requirements.

We know now why building an effective portfolio has been selected as a test prob-
lem. Unfortunately, the next problem arises. How should this problem be formally
defined. Practically, there are some well known models describing the construction
of an effective portfolio i.e. Modern Portfolio Theory (MPT), the one-factor Sharpe
model, CAPM—Capital Asset Pricing Model, APT—Arbitrage Pricing Theory, Post
Modern Portfolio Theory (PMPT) and so on. The starting point for modern consider-
ations about building efficient portfolio is the Nobel prize winner Harry Markowitz’
Modern Portfolio Theory (MPT) (1952) (28, 29), or its extension proposed in 1958
by James Tobin (38)—consisting in introducing risk-free assets to the model. Those
research resulted in defining for the first time formal foundations of risk—rate of
return investing decision making and defining so-called Capital Market Line (CML)
with the following equation:

R = R f +(
RM−R f

SM
)∗S (15.21)

where:

R - rate of return;
S - standard deviation;
RM - rate of return of market portfolio;
SM - standard deviation of market portfolio.

It turned out, after introducing to the model the risk-free assets that effective portfo-
lio(s) belong(s) to the segment of the above defined line. Markowitz’ portfolio analy-
sis (and its expansion by J. Tobin) makes some strong and important assumptions.
The most significant are:

• The goal of investor is to maximize his wealth;
• Investors are characterized by risk aversion;
• Investing horizon is the same for all investors;
• A suitable measure of risk level is the standard deviation of rates of return from

the “average” rate of return of the market portfolio;
• Investors make a decision on the basis of only rates of return and standard devi-

ation;
• No taxes and transaction costs are assumed.

The above theory lays the foundations of modern capital investments. The Capital
Asset Pricing Model (CAPM) was proposed by J. Traynor (40), J. Lintner (24),
J. Mossin and formalized by W. Sharpe (36)—and it was based of course on pre-
vious work of Markowitz and his MPT theory. This time, in this model, not only the
Capital Market Line but also the so-called Security Market Line (SML) is crucial.
The SML is defined as follows:

Ri = R f +βi ∗ (RM−R f ) (15.22)

where RM − R f - is the so-called premium for risk. CAPM is the most popular
effective-portfolio building model. One may ask why this very model was not used
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during our tests. Well, mainly because of its complexity and shortcomings. On the
basis of the critique of CAPM (Roll’s Critique)—Arbitrage Pricing Theory (APT)
was proposed by Stephen A. Ross in mid-1970s (35). APT can be described using
the following equation:

Ri = ai +bi1F1 +bi2F2 + · · ·+bimFm+ ei (15.23)

APT assumes that rates of return depends on m factors. Coefficient bi j indicates how
sensitive the rate of return on the Rith asset is to changes in Fi j factor. The APT
model makes several assumptions:

• The number of F factors used in the model can not be higher than the number of
assets and—more importantly

• In the market we have the perfect competition.

In the 1990s, Post Modern Portfolio Theory was proposed. The notion of PMPT was
used for the first time probably by B.M. Rom and K.W. Ferguson in 1993 (34). The
PMPT model is based on three main assumptions and observations:

1. The risk measure in MPT is symmetrical—i.e. returns above average or target
rates of returns are as risky as returns below this value—whereas from investor’s
point of view—really risky are returns below the target (minimum or average)
value, and the return above those values are perceived as a risk premium. It was
observed and stated already by Markowitz, confirmed by Sharpe and another
researchers—but mainly because of computational difficulties PMT was based
on symmetrical measure.

2. A much better measure of risk (downside risk in this case) is continuous formula
rather than its discrete version.

3. A much better index of rate of return is the Sortino ratio rather than the Sharpe
ratio.

Taking all the pros and cons into consideration—because it was the first attempt at
applying the proposed algorithm to building an effective portfolio—we decided to
use the one-factor Sharpe model during our experiments. This model is discussed
below. The meaning of symbols used in the definitions below, are as follows:

p - the number of assets in the portfolio;
n - the number of periods taken into consideration (the number of rates of return

taken to the model);
αi,βi - coefficients of the equations;
ωi - percentage participation of i-th asset in the portfolio;
ei - random component of the equation;
Rit - the rate of return in the period t;
Rmt - the rate of return of market index in period t;
Rm - the rate of return of market index;
Ri - the rate of return of the i-th asset;
Rp - the rate of return of the portfolio;
si

2 - the variance of the i-th asset;
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sei
2 - the variance of the random index of the i-th asset;

sep
2 - the variance of the portfolio;

Ri - arithmetic mean of rate of return of the i-th asset;
Rm - arithmetic mean of rate of return of market index;

The algorithm (based on the one-factor Sharpe model) of computing the expected
risk level and, generally speaking, income expectation related to the portfolio of p
assets is as follows:

1. Compute the arithmetic means on the basis of rate of returns;
2. Compute the value of α coefficient:

αi = Ri−βiRm (15.24)

3. Compute the value of β coefficient:

βi = ∑n
t=1(Rit −Ri)(Rmt −Rm)
∑n

t=1(Rmt −Rm)2
(15.25)

4. Compute the expected rate of return of asset i:

Ri = αi +βiRm + ei (15.26)

5. Compute the variance of random index:

sei
2 = ∑n

t=1(Rit −αi−βiRm)2

n−1
(15.27)

6. Compute the variance of market index:

sm
2 = ∑n

t=1(Rmt −Rm)2

n−1
(15.28)

7. Compute the risk level of the investing portfolio:

βp =
p

∑
i=1

(ωiβi) (15.29)

sep
2 =

p

∑
i=1

(ω2
i sei

2) (15.30)

risk = β 2
p sm

2 + sep
2 (15.31)

8. Compute the portfolio rate of return:

Rp =
p

∑
i=1

(ωiRi) (15.32)
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The goal of the optimization is to maximize the portfolio rate of return and minimize
the portfolio risk level. The task consists in determining values of decision variables
ω1 . . .ωp forming the vector

Ω = [ω1, . . . ,ωp]T (15.33)

where 0%≤ ωi ≤ 100% and ∑p
i=1ωi = 100% and i = 1 . . . p and which is the subject

of minimization with respect of two criteria:

F = [Rp(Ω)∗ (−1),risk(Ω)]T (15.34)

Model Pareto frontiers for two cases (portfolios consisting of three and seventeen
stocks set), which are the subject of analysis in the following section, are presented
in fig. 15.4.

Fig. 15.4. Building of effective portfolio: visualization of the model Pareto frontier obtained
using utter review method for a) three and b) seventeen stocks set

15.6 Results of Experiments

In this section the results of the experiments are presented. The results obtained by
the proposed system are compared with the results obtained by a “classical” (i.e. non
agent-based) predator-prey evolutionary strategy (PPES) (22) and another “classi-
cal” evolutionary algorithm for multi-objective optimization: the niched pareto ge-
netic algorithm (NPGA) (41). In order to more deeply analyze the results obtained
by compared algorithms—values of HV and HVR metrics (their definitions can be
found in (7)) are also presented. In the case of optimizing an investing portfolio, each
individual in the prey population is represented as a p-dimensional vector. Each di-
mension represents the percentage participation of the i-th (i ∈ 1 . . . p) share in the
whole portfolio. In this section a summary of two single experiments will be pre-
sented.

In the experiments, Warsaw Stock Exchange quotations from 1/1/2003 until
31/12/2005 were used. Simultaneously, the portfolio consists of the following three
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(experiment I) or seventeen (experiment II) stocks quoted on the Warsaw Stock
Exchange: in experiment I: RAFAKO, PONARFEH, PKOBP, in experiment II:
KREDYTB, COMPLAND, BETACOM, GRAJEWO, KRUK, COMARCH, ATM,
HANDLOWY, BZWBK, HYDROBUD, BORYSZEW, ARKSTEEL, BRE, KGHM,
GANT, PROKOM, BPHPBK. The WIG20 is used as the market index proxy.

In fig. 15.5 and fig. 15.6 there are presented Pareto frontiers obtained using
CoEMAS, NPGA and PPES algorithms after 1, 300, 500, 700, 900 and 1000 steps
in experiment I. As one may notice in this case, the CoEMAS-based frontier is more
numerous (especially initially) than NPGA-based and as numerous as the PPES-
based one. Unfortunately, the diversity of population in CoEMAS approach is visibly
worse than that of the NPGA or PPES-based frontiers. What is more, with time the
tendency of CoEMAS-based solver for focusing solutions around small part of the
whole Pareto frontier is more and more distinct.

A similar situation can be observed in fig. 15.7 and fig. 15.8 presenting Pareto
frontiers obtained by CoEMAS, NPGA and PPES—but this time the portfolio that
is being optimized consists of 17 shares. Also this time CoEMAS-based frontier is
quite numerous and quite close to the model Pareto frontier but the tendency for
focusing solutions around only selected part(s) of the whole frontier is very distinct.

In section 13.1 of this chapter, it was mentioned that the CoEMAS system has
been tested using such non-combinatorial test problems as the Kursawe problem,
Laumanns problem and the set of Zitzler problems. In these benchmark tests, Co-
EMAS was definitely the better alternative than NPGA or PPES and the question
appears why in the case of building an effective portfolio the situation is the different
one. Well, the explanation is as follows. With time, the population of agents consists
mainly of mutually non-dominated agents and the situation that during the meetings
agent dominates the opponent is more and more unlikely. If so, also gathering addi-
tional units of resources is more and more unlikely. Because agents pays in each step
with resource for its life—with time the level of its energy falls below the death level
and in the consequence it has to be removed from the system. The solution of such
a situation is introducing to the system mechanisms similar to the elitism—where
elitist agents for instance can migrate to the special island and can not be removed
from the system as long as they are non-dominated. As it can be observed in this
study, mentioned phenomenon is much more dangerous during solving combinato-
rial problems, since meeting dominated agents is more unlikely (as simulation time
passes) than in the case of continuous problems like Kursawe, Laumanns or Zitzler
problems.

In this chapter we decided to present not only Pareto frontiers but also portfolio
composition. It is of course impossible in the course of this chapter to present the con-
secutive portfolios proposed by all non-dominated solutions—that is why we decided
to choose average non-dominated solution in first step and then to follow during con-
secutive steps solutions proposed by this very solution (or its descendant(s)). Such
hypothetical non-dominated average portfolios for experiments I and II are presented
in fig. 15.9 and in fig. 15.10 respectively (in fig. 15.10 shares are presented from left
to right in the order in which they were mentioned above). Generally, it can be said
that during experiment I—the average solution proposed by CoEMAS system is a
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kind of balanced portfolio (percentage share of all three stocks are quite similar, but
the percentage participation in the whole portfolio of PONAR is the lowest one and
finally PKOBP became the most important “ingredient” of the analyzed portfolio),
whereas during experiment II there are more important stocks (with given assump-
tions and parameters of course)—i.e. HANDLOWY, HYDROBUD, ARKSTEEL.

15.7 Conclusions and Future Work

Co-evolutionary techniques for evolutionary algorithms are applicable in the case of
problems for which it is difficult or impossible to formulate an explicit fitness func-
tion, where there is need for maintaining useful population diversity, for forming
species located in the basins of attraction of different local optima, or when introduc-
ing open-ended evolution and “arms races”. Such techniques are also widely used in
artificial life simulations. Although co-evolutionary algorithms have been the subject
of intensive research, their application to multi-modal and multi-objective optimiza-
tion is still an open problem and many research questions remain unanswered.

In this chapter, the agent-based realization of a predator-prey model within the
more general framework of a co-evolutionary multi-agent system has been presented.
The system was tested against a hard, real-life, multi-objective problem (effective
portfolio building) and then compared to two classical multi-objective evolution-
ary algorithms: PPES and NPGA. CoEMAS was able to form more numerous fron-
tier, however a negative tendency to lose population diversity during the experiment
was observed. PPES and NPGA were able to form better-dispersed Pareto frontiers.
When the portfolio composition is considered, the average solution proposed by the
CoEMAS system was a balanced portfolio when it was composed of three stocks
and portfolio with dominating elements when it was composed of seventeen stocks.
The results of experiments with effective portfolio building problem show that more
research is needed on co-evolutionary mechanisms for maintaining population di-
versity used in CoEMAS, especially when we want to stably maintain diversity
of solutions. It seems that the proposed predator-prey mechanism for evolutionary
multi-agent systems may be very useful in the case of hard dynamic and multi-modal
multi-objective problems (as defined by Deb (7)).

Future work will include more detailed analysis of the proposed co-evolutionary
mechanisms, especially focused on problems of stable maintaining population di-
versity. The most important part of this research will be the introduction of the
elitism mechanism for decentralized agent-based evolutionary computation. Also
the comparison of CoEMAS to other classical multi-objective evolutionary algo-
rithms with the use of hard multi-modal multi-objective test problems, and the
application of other co-evolutionary mechanisms like symbiosis (co-operative co-
evolution) are included in future plans. Another, and very important, area of research
on co-evolutionary multi-agent systems will be modeling and simulation of socio-
economic mechanisms and emergent phenomena.
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Fig. 15.5. Pareto frontier approximations after 1 (a,b,c), 300 (d,e,f) and 500 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 3 stocks
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Fig. 15.6. Pareto frontier approximations after 700 (a,b,c), 900 (d,e,f), 1000 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 3 stocks



296 R. Dreżewski and L. Siwik

a)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

CoEMAS-based Pareto frontier after 1 step

b)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

NPGA-based Pareto frontier after 1 step

c)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

PPES-based Pareto frontier after 1 step

d)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

CoEMAS-based Pareto frontier after 300 steps

e)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

NPGA-based Pareto frontier after 300 steps

f)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

PPES-based Pareto frontier after 300 steps

g)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

CoEMAS-based Pareto frontier after 500 steps

h)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

NPGA-based Pareto frontier after 500 steps

i)
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.05  0.1  0.15  0.2

P
ro

fit

Risk

PPES-based Pareto frontier after 500 steps

Fig. 15.7. Pareto frontier approximations after 1 (a,b,c), 300 (d,e,f) and 500 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 17 stocks
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Fig. 15.8. Pareto frontier approximations after 700 (a,b,c), 900 (d,e,f), 1000 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 17 stocks
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Fig. 15.9. Effective portfolio consisting of three stocks proposed by CoEMAS in consecutive
steps
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Fig. 15.10. Effective portfolio consisting of seventeen stocks proposed by CoEMAS in con-
secutive steps


