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Preface

The inspiration for this book stemmed from the success of EvoFin 2007, the first
European Workshop on Evolutionary Computation in Finance and Economics, which
was held as part of the EvoWorkshops at Evo* in Valencia, Spain in April 2007. The
range and quality of papers submitted for the workshop underscored the significant
level of research activity which is taking place at the interface of natural computing
and finance. After the workshop, a call for papers was issued for this volume and
following a rigorous, peer-reviewed, selection process a total of fourteen chapters
were finally selected. The chapters were selected on the basis of technical excellence
and as examples of the application of a range of natural computing and agent-based
methodologies to a broad array of financial domains. The book is intended to be
accessible to a wide audience and should be of interest to academics, students and
practitioners in the fields of both natural computing and finance.

We would like to thank all the authors for their high-quality contributions and
we would also like to thank the reviewers who generously gave of their time to
peer-review all submissions. We also extend our thanks to Dr. Thomas Ditzinger
of Springer-Verlag and to Professor Janusz Kacprzyk, editor of this book series, for
their encouragement of and their support during the preparation of this book.

Dublin Anthony Brabazon
December 2007 Michael O’Neill
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Rafał Dreżewski, Leszek Siwik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301



1

Natural Computing in Computational Finance:
An Introduction

Anthony Brabazon and Michael O’Neill

Natural Computing Research and Applications Group, UCD CASL, University College
Dublin, Dublin, Ireland. anthony.brabazon@ucd.ie, m.oneill@ucd.ie

1.1 Introduction

Natural computing can be broadly defined as the development of computer pro-
grams and computational algorithms using metaphorical inspiration from systems
and phenomena that occur in the natural world. The inspiration for natural comput-
ing methodologies typically stem from real-world phenomena which exist in high-
dimensional, noisy and uncertain, dynamic environments. These are characteristics
which fit well with the nature of financial markets. Prima facie, this makes natural
computing methods interesting for financial modelling applications. Another feature
of natural environments is the phenomenon of emergence, or the activities of multi-
ple individual agents combining to create their own environment.

This book contains fourteen chapters which illustrate the cutting-edge of natural
computing and agent-based modelling in modern computational finance. A range of
methods are employed including, Differential Evolution, Genetic Algorithms, Evo-
lution Strategies, Quantum-Inspired Evolutionary Algorithms, Bacterial Foraging
Algorithms, Genetic Programming, Agent-based Modelling and hybrid approaches
including Fuzzy-Evolutionary Algorithms, Radial-Basis Function Networks with
Kalman Filters, and a Multi-Layer Perceptron-Wavelet hybrid. A complementary
range of applications are addressed including Fund Allocation, Asset Pricing, Market
Prediction, Market Trading, Bankruptcy Prediction, and the agent based modelling
of payment card and financial markets.

The book is divided into three sections each corresponding to a distinct grouping
of chapters. The first section deals with optimisation applications of natural com-
puting in finance, the second section explores the use of natural computing method-
ologies for model induction and the final section illustrates a range of agent-based
applications in finance.

A. Brabazon and M. O’Neill: Natural Computing in Computational Finance: An Introduction, Studies in Computational
Intelligence (SCI) 100, 1–4 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 A. Brabazon and M. O’Neill

1.2 Optimisation

A wide variety of natural computing methodologies including genetic algorithms,
evolutionary strategies, differential evolution and particle swarm optimisation have
been applied for optimisation purposes in finance. A particular advantage of these
methodologies is that, applied properly, they can cope with difficult, multi-modal,
error surfaces. In the first six chapters, a series of these algorithms are introduced
and applied to a variety of financial optimisation problems.

Passive portfolio management strategies have become very common in recent
decades. In spite of the apparent simplicity of constructing an asset portfolio in
order to track an index of interest, it is difficult to do this in practice due to the
dynamic nature of the market and due to transactions constraints. As discussed in
chpt. 2 (Constrained Index Tracking under Loss Aversion Using Differential Evolu-
tion by Dietmar Maringer), the solution space is non-convex suggesting a useful role
for population-based, global optimisation, heuristics like differential evolution. This
chapter applies differential evolution for asset selection in a passive portfolio.

The issue of optimal asset allocation for defined contribution pension funds is
addressed in chpt. 3 (An Evolutionary Approach to Asset Allocation in Defined Con-
tribution Pension Schemes by Kerem Senel, Bulent Pamukcu and Serhat Yanik). To
date, there have been few examples of applications of natural computing in the pen-
sions domain. Chpt. 3 shows the application of the genetic algorithm for asset allo-
cation in a pension fund.

The classical portfolio optimisation problem is tackled using evolutionary strate-
gies in chpt. 4 (Evolutionary Strategies for Building Risk-Optimal Portfolios by Piotr
Lipinski). A particular advantage when using evolutionary algorithms for this task
is that a modeller can easily employ differing risk measures and real-world invest-
ment constraints when determining optimal portfolios. This chapter provides a clear
illustration of how this can be done.

A variant on classical portfolio optimisation is provided in chpt. 5 (Evolutionary
Stochastic Portfolio Optimization by Ronald Hochreiter). This chapter focusses on
stochastic portfolio optimisation and combines theory from the fields of stochastic
programming, evolutionary computation, portfolio optimisation, as well as financial
risk management in order to produce a generalised framework for computing optimal
portfolios under uncertainty for various probabilistic risk measures.

A considerable amount of research has been undertaken in recent years in order to
improve the scalability of evolutionary algorithms. This has led to the development
of several new algorithms and methodological approaches including the compact
genetic algorithm and estimation of distribution algorithms (see chpt. 13 for an in-
troduction to EDAs). One interesting avenue of this work has seen the metaphorical
combination of concepts from evolution and quantum mechanics to form the sub-
field of quantum-inspired evolutionary algorithms (QIEA). Chpt. 6 (Non-linear Prin-
cipal Component Analysis of the Implied Volatility Smile using a Quantum-inspired
Evolutionary Algorithm by Kai Fan et al) provides an introduction to this area and
illustrates the application of a QIEA for the purposes of undertaking a non-linear
principal component analysis of the implied volatility smile of stock options.
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The last chapter in the first section, chpt. 7 (Estimation of an EGARCH Volatil-
ity Option Pricing Model using a Bacterial Foraging Optimisation Algorithm by
Jing Dang et al) explores the bacteria-foraging optimisation algorithm (BFOA). The
BFOA is a natural computing algorithm loosely inspired by the foraging behaviour
of E. coli bacteria. The chapter illustrates the algorithm by applying it to estimate the
parameters of an EGARCH model which can be used to price volatility options.

1.3 Model Induction

While optimisation applications of natural computing are important and plentiful, in
many real-world applications the underlying model or data generating process is not
known. Hence, the task is often to ‘recover’ or discover an underlying model from
a dataset. This is usually a difficult task as both the model structure and associated
parameters must be found. The five chapters in this section demonstrate a variety of
approaches for this task.

The first chapter in this section, chpt. 8 (Fuzzy-Evolutionary Modeling for Single-
Position Day Trading by Célia da Costa Pereira and Andrea G. B. Tettamanzi), com-
bines an evolutionary algorithm with a fuzzy predictive model in order to construct
an automated day-trading system. The developed trading model is expressed as a set
of fuzzy IF-THEN rules. A particular aspect of fuzzy systems, is that they allow for
the incorporation of expert domain knowledge even when that knowledge can only
be expressed in general terms by the expert.

A major applications area of model induction techniques in finance is that of
credit scoring / risk-assessment. Bankruptcy prediction is an example of this appli-
cation. In chpt. 9 (Strong Typing, Variable Reduction and Bloat Control for Solving
the Bankruptcy Prediction Problem Using Genetic Programming by Eva Alfaro-Cid,
Alberto Cuesta-Cañada, Ken Sharman and Anna I. Esparcia-Alcázar), genetic pro-
gramming (GP) is applied to uncover bankruptcy prediction models. The chapter
also embeds a useful discussion on bloat control, an often overlooked issue which is
important when seeking to promote the development of parsimonious models in GP.

Kalman filters are a recursive estimation methodology and provide a powerful
tool for estimation of the internal state of a process given a series of noisy observa-
tions. Traditionally, the Kalman filter was based on the assumption that the system
of interest was a linear dynamical system. Chpt. 10 (Using Kalman-filtered Radial
Basis Function Networks for Index Arbitrage in the Financial Markets by David
Edelman) combines the non-linear modelling capabilities of a radial basis function
network with a Kalman filter to produce a index arbitrage trading model.

The study in chpt. 11 (On Predictability and Profitability: Would GP Induced
Trading Rules be Sensitive to the Observed Entropy of Time Series? by Nicolas Navet
and Shu-Heng Chen) examines whether there is a clear relationship between the
entropy rates of stock price time series and the ability of a GP system to evolve good
rules for trading that stock. The results reported in the chapter suggest that contrary
to common wisdom, predictability is neither a necessary nor a sufficient condition
for profitability. While tests of predictability may suggest the existence of temporal
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patterns in a financial time series, they do not necessarily provide information on how
easy or difficult it is, for GP or any other machine learning technique, to discover this
pattern.

The model induction part of the book concludes with chapter 12 (Hybrid neural
systems in exchange rate prediction by Andrzej Bielecki, Pawel Hajto and Robert
Schaefer), which adopts a hybrid approach to foreign exchange rate prediction
through the combination of Wavelet Analysis with a Multi-Layer Perceptron Arti-
ficial Neural Network.

1.4 Agent-based Modelling

Agent-based modelling (ABM) has become a fruitful area of financial and economic
research in recent years. ABM allows the simulation of markets which consist of het-
erogeneous agents, with differing risk attitudes and differing expectations to future
outcomes, in contrast to traditional assumptions of investor homogeneity and ratio-
nal expectations. ABMs attempt to explain market behaviour, replicate documented
features of real-world markets, and allow us to gain insight into the likely outcomes
of different policy choices.

Three chapters in this book adopt an ABM approach. Chpt. 13 (Evolutionary
Learning of the Optimal Pricing Strategy in an Artificial Payment Card Market by
Biliana Alexandrova-Kabadjova, Edward Tsang and Andreas Krause) illustrates a
novel agent-based model of a payment card market. Payment card markets are very
large internationally and are hard to examine analytically due to their rich set of
agent interactions. This renders them very suitable for examination using ABM. In
the simulations in the chapter, the authors derive the demand function for payment
cards as well as the profit function of card issuers, observing that the fixed fees
charged by the card issuers are a vital driver of demand and profits. The chapter
provides insights into the optimal pricing strategy for payment card issuers and also
has implications for regulators of these markets.

Chpt. 14 (Can Trend Followers Survive in the Long-Run? Insights from Agent-
Based Modeling by Xue-Zhong He, Philip Hamill and Youwei Li) employs an ABM
based on a market fraction asset pricing model in order to investigate the market
dominance, the profitability, and the survival rates of both fundamental and trend-
following investors across varying time scales. The results indicate that in contrast
to the prediction of traditional financial theory, trend-followers can survive in the
market in the long run and in the short run they can outperform fundamentalists.
The chapter also investigates the effect of the composition of the initial population
of investors on market dynamics.

A critical aspect of real-world financial markets is that they are co-evolutionary
environments, with individual agents adapting to the actions of others. A well-known
co-evolutionary model from the ecological domain which has not yet been widely
applied in ABM in finance, the predator-prey model, is introduced in chpt. 15 (Co-
Evolutionary Multi-Agent System for Portfolio Optimization by Rafał Dreżewski and
Leszek Siwik) and is applied to the important portfolio optimisation problem.
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Constrained Index Tracking under Loss Aversion
Using Differential Evolution

Dietmar Maringer

Centre for Computational Finance and Economic Agents (CCFEA), University of Essex, UK.
dmaring@essex.ac.uk

Summary. Index tracking is concerned with forming a portfolio that mimics a benchmark
index as closely as possible. Traditionally, this implies that the returns between the index
and the portfolio should differ as little as possible. However, investors might happily accept
positive deviations (ie, returns higher than the index’s) while being particularly concerned with
negative deviations. In this chapter, we model these preferences by introducing loss aversion
to the index tracking problem and analyze the financial implications based on a computational
study for the US stock market. In order to cope with this demanding optimization problem,
we use Differential Evolution and investigate some calibration issues.

2.1 Introduction

Over recent years, passive portfolio management strategies have seen a remarkable
renaissance. Assuming that the market cannot be beaten on the long run (in particular
after transaction costs), these strategies aim to mimic a given market (or sector) index
by investing either into a replication of the benchmark, or by selecting a portfolio
which exhibits a behavior as similar to the benchmark’s as possible. The market share
of products such as exchange traded funds (ETFs) has increased significantly, and it
is argued that passive portfolio management is becoming predominant. According to
(5), almost half the capital in the Tokyo Stock exchange is subject to passive trading
strategies, and (2) report that assets benchmarked against the S&P 500 exceed US$1
trillion.

In contrast, active portfolio management tries to generate excess returns by pick-
ing stocks which are expected to outperform the market and avoiding assets that
are expected to underperform. Both approaches have their advantages and disadvan-
tages: active strategies rely heavily on superior predictions while passive strategies
require few assumptions about future price movements. Passive strategies will also
copy the benchmark’s poor behavior (in particular when segments of the market drag
down the overall performance) while active strategies can react more flexibly in bear
markets; etc. If investments are benchmarked against the index, a fund that aims
to replicate this benchmark will, by definition, have a lower likelihood to severely

D. Maringer: Constrained Index Tracking under Loss Aversion Using Differential Evolution, Studies in Computational
Intelligence (SCI) 100, 7–24 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



8 D. Maringer

fall below this benchmark. It is often argued that it is the actively managed funds’
poor performance that makes passive funds all the more attractive (see, e.g., (2)). An
alternative, more fundamental argument against active funds is the basis for works
including (15) or (3), stating that all investments ought to be efficient ex ante, while
deviations ex post should be transitory. The rational behind this argument is, sim-
ply speaking, that if all market participants have the same access to the market and
to information, then the market index should be some sort of average of the indi-
vidual investments. By definition and in the absence of transaction costs, over- and
underperformers should then balance. In particular, no participant should be able to
produce results that are persistently on just one side of the average. Outperforming
the index could therefore be just a matter of good luck rather than skill. Constantly
remaining in this position (in particular when transaction costs are incurred) becomes
an increasingly rare experience the longer a period of time is considered, as empirical
studies confirm.1

Arguably the most common approach in passive portfolio management is index
tracking. In this strategy, investors select portfolios that mimic the behavior of an
index representing the market or a market segment as closely as possible. To find the
optimal combination, a distance measure between tracking portfolio and benchmark
index is defined which is to be minimized. This so-called Tracking Error (TE) is typ-
ically defined as the mean squared deviation between the returns. Akin to volatility,
this measure is more sensitive to bigger deviations, but it is oblivious to the sign of the
deviation; hence, it does not distinguish between under- or over-performance of the
tracking portfolio. Other things equal, investors appear to be mainly concerned with
losses rather than any deviation, positive and negative, from their expected outcome.
While some authors find that this might even lead to preference functions contradict-
ing the traditional utility analysis for rational risk aversion (see (4) and (18)) the only
assumption about investors’ preferences made in this contribution is that they want
to copy the market and that negative deviations are more “hurtful” than positive ones.
Translated to index tracking, investors will try to avoid falling below the benchmark,
hence they might want to particularly avoid negative deviations.

This chapter investigates how different levels of loss aversion affect the choice
in asset selection for index tracking under realistic constraints. These constraints
include an integer constraint on the number of assets, and that initial weights of in-
cluded assets must fall within certain limits to avoid dominating assets as well as
excessive fragmentation and data-fitting. As a consequence, the solution space be-
comes discrete, exhibits frictions and has multiple optima. Standard optimization
techniques cannot deal with these problems satisfactorily and therefore tend to sim-
plify the optimization problem. Heuristic methods, on the other hand, can deal with

1 As (1, p. 133) put it in their opening statement: “There is overwhelming evidence that,
post expenses, mutual fund managers on average underperform a combination of passive
portfolios of similar risk. [. . . ] Of the few studies that find that managers or a subset of
managers with a common objective (such as growth) outperform passive portfolios, most, if
not all, would reach opposite conclusions when survivorship bias and/or correct adjustment
for risk are taken into account.”
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these situations (see, e.g., (8)). In particular, it has been found in (10) and (9) that
Differential Evolution is well suited to solve this type of optimization problem.

The rest of this chapter is organized as follows. After formalizing the decision
problem in section 2.2, section 2.3 will present how it can be solved numerically us-
ing Differential Evolution. Section 2.4 presents the results of a computational study,
and section 2.5 concludes.

2.2 The Asset Selection Problem under Loss Aversion

2.2.1 Passive Asset Management and Preferences

The simplest way of tracking a given index would be to replicate it by investing into
the assets included in it with their exact corresponding weights. This approach, how-
ever, is hampered by several practical limitations. For one, when the index is large
and has a high number of different assets, monitoring a correspondingly large track-
ing portfolio becomes not only cumbersome but also rather costly. Furthermore, if the
index is computed in a way that the required number of stocks is not constant over
time (e.g., when the relative weights are constant), a perfect replication would re-
quire frequent portfolio revision which to some extent defeats the purpose of passive
portfolio management. Finally, practical or institutional reasons can impede a perfect
replication: If the investor’s budget is limited and only whole-numbered quantities or
lots of assets can be bought, or if there are upper and/or lower limits on the weight an
individual asset can have within the portfolio, deviations of the benchmark’s struc-
ture can become inevitable. Finally, this one-to-one replication strategy requires that
the assets are available in the first place (which might be a problem not only for
illiquid assets, but also if these assets are not easily accessible, e.g., in commodity
indices). Hence, a trade-off between the revision frequency and the magnitude of the
tracking error has to be accepted, and in many cases using a subset of the index’s
component will be preferred to a full replication.

Deviating from the index’s structure might be reasonable if the investor does
not want to copy all the market movements: in line with the usual non-satiation as-
sumption of investor preferences, he might be willing to accept a (slightly) less well
diversified portfolio with a higher risk if the average return is higher. On a similar
note, a symmetric measure for the tracking error will not necessarily capture the in-
vestor’s actual preferences: while the returns of the tracking portfolio should not fall
below the index’s, the investor will probably not object if the portfolio outperforms
the benchmark. Putting more emphasis on losses lessens the impact of positive de-
viations when evaluating the TE. Explicitly aiming at outperforming the benchmark
blends the index tracking approach with active strategies where, typically, predictions
about individual assets’ future returns are required. In this contribution, however, the
original paradigm of passive strategies is maintained where no specific predictions
are required and the only assumption about returns is that they follow some but (more
or less) stable distribution without further specification.
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2.2.2 Risk Aversion and Loss Aversion

Traditionally, the measure for the tracking error is the (root of the) mean squared
difference between portfolio and index returns. This measure does not capture the
investor’s preferences for positive deviation, nor does it distinguish bullish (i.e., in-
creasing) and bearish (i.e., decreasing) markets, and minimizing the tracking error
will not maximize the investor’s utility.

Findings in behavioral finance suggest that an individual’s utility is not only af-
fected by the future level of wealth, but also whether this level is above or below
a certain threshold which is usually the current level of wealth. The same level of
future wealth provides a higher utility if it represents an increase in wealth rather
than a decrease in wealth. The marginal utility will be lower (higher) if this given
level of wealth depending on it represents a profit (loss). In other words, decision
makers exhibit loss aversion by reacting more sensitively to losses than suggested by
the traditional assumptions on risk aversion.2 A simple way to model this behavior
is to introduce a measure of loss aversion, λ , and transform the actual terminal levels
of wealth, wT , into “perceived” wealth, w̃T , where losses are amplified while profits
are kept unchanged:

w̃T =

{
w0 · exp(r) r ≥ 0
w0 · exp(r ·λ ) r < 0

(2.1)

= w0 · exp(r · (1+(λ −1)ℑr<0)) (2.2)

where r is the log return, r = ln(wT /w0) and ℑr<0 is a binary indicator for losses. If
λ = 1, the decision maker has no extra attitude to losses beyond the (still intact) risk
aversion, while λ > 1 models additional loss aversion. Cases where λ < 1 indicate
loss seeking behavior which contradicts the other assumptions and can therefore be
neglected.

One could find several ways to translate this into an index tracking framework.
However, an investor following a passive strategy can be assumed to accept losses
if this also reflects the development in the benchmark index. It therefore appears
more plausible to regard losses in terms of opportunity costs, i.e., if the tracking
portfolio’s returns fall below the index’s. This has the advantage that it also covers
situations where the tracking portfolio loses not as much as the benchmark which,
ceteris paribus, can be assumed favorable, while being outperformed in a bullish
market is not favorable. Hence, in this contribution the decision maker is concerned
with perceived deviations of the tracking portfolio’s returns, rP, from the index’s, rI ,

2 Kahneman and Tversky (4) found in their experiments that, as a consequence of loss aver-
sion, individuals are reluctant to realize losses and therefore tend to stick to assets that have
generated losses, making their behavior that of an irrational risk seeker (prospect theory).
Since this chapter is not concerned with repeated investment decisions and, more impor-
tantly, assumes that decision makers comply to the usual assumptions of rationality and
risk aversion, their model will not be applied in this contribution. For a critical assessment
of prospect theory, see, e.g., (6) and (7).
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∆̃r =

{
rP− rI rP ≥ rI

(rP− rI) ·λ rP < rI
(2.3)

= (rP− rI) · (1+(λ −1)ℑrP<rI ) (2.4)

where ℑrP<rI indicates outperformance (and hence opportunity costs). The para-
meter λ can be interpreted akin to loss aversion for levels of wealth: If λ > 1, then
losses are amplified, and their effects are bigger than under risk aversion alone. The
more λ exceeds one, the more harmful losses are perceived and the more keen the
decision maker will be to avoid, in particular, these deviations. As a consequence,
asymmetric preferences are introduced and reinforced. Furthermore, high loss aver-
sion reduces the (relative) contribution of positive deviations to the TE.

2.2.3 The Constrained Index Tracking Problem under Loss Aversion

Under real life conditions, index tracking is hampered by several practical limita-
tions. Following (10), it can be assumed that an investor has a certain initial budget
B0 and that only a non-negative and integer quantity of ni of stock i can be bought.
If this stock has an initial price of S0,i, then the initial fraction invested in this stock
is x0,i = (ni ·S0,i)/B0. As prices will change over time while quantities are kept con-
stant, the fractions of asset i will also change over time. In the presence of lower and
upper limits on the initial weights for included assets, x� and xu, respectively, and the
absence of short selling, the quantities ni must either fall within certain bandwidths
or be equal to zero. By assumption, these limits must be kept only at time t = 0.
If price changes over the holding period lead to violations of these limits, portfolio
revisions are not required. Note that introducing lower and upper limits also intro-
duces implicit cardinality constraints: if no asset must exceed an initial weight of xu,
then at least kmin = �1/xu� must be included, also the lower weight limit allows for
at most kmax = �1/x�� positive weights.

The value of the portfolio at this time is Pt = ∑N
i=1 ni · St,i where St,i denotes the

price of stock i at time t. In this contribution, tracking an index I with a portfolio P
requires that over a given holding period their daily returns rt,P and rt,I , respectively,
are as similar as possible. In addition, negative deviations are perceived less favorable
than positive ones. Hence, the investor wants to minimize the perceived differences
where, depending on the level of loss aversion, there is different additional concern
with losses. A popular measure for the tracking error, T E, is the root of the mean
squared deviations of returns.3 This measure is adopted and applied to perceived
deviations, ∆̃r. The optimization problem for the constrained index tracking portfolio
under loss aversion can therefore be summarised as follows:

minT E =

√
1
T

T

∑
t=1

∆̃rt
2

(2.5a)

3 See, e.g., (11) or (14); this definition is also widely used in the industry. Alternatively,
authors including (13) define the tracking error as the difference between returns.
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subject to

∆̃rt = (rt,P− rt,I)(1+(λ −1)ℑrt,P<rt,I ) (2.5b)

rt,P = ln(Pt/Pt−1), rt,I = ln(It/It−1) (2.5c)

ℑrt,P<rt,I =

{
1 if rt,P < rt,I

0 if rt,P ≥ rt,I
(2.5d)

Pt =
N

∑
j=1

ni ·St,i (2.5e)

ni ∈ N+
0 (2.5f)

ni :

{
x� ≤ ni·S0,i

B0
≤ xu if asset i is included

0 otherwise
(2.5g)

ni ·S0,i = B0 (2.5h)

The solution space for this problem is non-convex, and the integer constraint on the
number of assets makes it a discrete problem, traditional numerical methods can
therefore not be employed. Heuristic methods, on the other hand, are more flexible
with respect to the shape of the solution space and the constraints that have to be
met, as will be shown in the following section.

2.3 Differential Evolution for Portfolio Selection

2.3.1 The Principle and Application to Asset Selection Problems

Differential Evolution (DE) is a population based optimization heuristic for contin-
uous search spaces, suggested by Storn and Price (16, 17); a comprehensive pre-
sentation can be found in (12). The basic idea is to generate new solutions by lin-
early combining three distinct current solutions plus crossing over with a fourth; a
tournament principle is then employed to decide over replacement. In the course of
iterations, the population should evolve and converge towards the (global) optimum.

More specifically, the typical DE implementation is structured as follows. The
algorithm starts by generating P random initial solutions where P is the population
size. DE is designed for continuous problems, and solutions are represented as vec-
tors vp, p = 1, . . . ,P, containing the values of the decision variables, which, for the
Index Tracking problem at hand, will be the asset weights. vp[i] therefore represents
the weight of asset i in p’s solution. Each of the subsequent iterations comprises
of the following steps. First, for each of current solution p, one new solution ṽp
is generated. This is done by randomly picking three further distinct current mem-
bers of the population, c1 �= c2 �= c3, and linearly combining their corresponding
solution vectors. To do so, the first solutions is chosen as the base vector, vc1 to
which the weighted difference of the other two solutions, F · (vc2 − vc3), is added:
vc := vc1 + F · (vc2 − vc3). Next, this combined solution is crossed over with the



2 Constrained Index Tracking Using Differential Evolution 13

original candidate solution, p, ṽp = crossover(vp,vc,π), where π is the cross over
probability that element i comes from parent p. The i-th element of the new solution
is therefore computed as follows:

ṽp[i] :=

{
vp[i] with probability π
vc1 +F · (vc2 [i]− vc3 [i]) otherwise

(2.6)

Graphically speaking, the difference vector “moves” the base solution within the
solution space. The larger the difference in the i-th element, the larger the move in
this dimension, while no (or small) differences in other elements preserve the current
position in those dimensions. The latter is the case in particular when the population
has converged and “flocks” around a certain point in the solution space. In order
to avoid premature convergence to local optima, it is common practise to add noise
(“jitter”). In this case, new solutions are generated according to

ṽp[i] :=

{
vp[i] with probability π
vc1 +(F + z1[i]) · (vc2 [i]− vc3 [i]+ z2[i]) otherwise

(2.6*)

where the vectors z j, j = 1,2 are vectors with either zero (with probability π j) or
normally distributed values with expected value zero and some predefined standard
deviation σ j. Further extensions can contain a second difference vector where an-
other two current solutions are picked randomly or where the distance from the best
solution so far is introduced.

Once a new solution ṽp has been generated for each current solution vp, a tourna-
ment is run where ṽp replaces vp if it has a better fitness value. The updated popula-
tion of candidate solutions then enters the next iteration, and the process is repeated
until some halting criterion is met, e.g., when the population has converged or a given
number of iterations has been passed.

An important aspect in the implementation of any heuristic is constraint satis-
faction. For the given asset selection problem, the asset weights have to be chosen
such that (ideally) they add up to one and must fall within certain ranges; further-
more the integer constraint on number of assets makes it a discrete problem. In the
suggested implementation, these constraints are met by introducing an interpretation
or mapping function that converts a candidate solution v into a valid solution of asset
weights x. This function comprises of the following steps. Due to undesirable prop-
erties as well as minimum weight constraints, it might be favorable not to include
all of the available assets in the tracking portfolio. Hence, it must first be decided
which assets shall be assigned positive weights. This is done by finding the elements
i where the corresponding element in the solution vector is positive, v[i] > 0. If this
applies to fewer than kmin = �1/xu� assets, the budget could not be spent without vi-
olating the upper weight limit; if it applies to more than kmax = �1/x�� then the lower
weight limit would be exceeded. In these cases, the elements of v with the kmin and
kmax largest values, respectively, are picked. Next, the included assets are assigned
the minimum weight while all the other weights are set equal to zero. Finally, the
weights of the included assets are increased proportional to their values in v and the
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Fig. 2.1. Differential evolution algorithm

weights add up to one. If for some asset(s) the upper weight limit is violated then the
excess weight is redistributed proportionally to the remaining included assets until
this constraint is also met. The actual number of stocks is determined according to
ni← 〈xiV0/S0,i〉 where 〈·〉 is the rounding operator.4 This approach allows the algo-
rithm to operate in the continuous space, but encourages convergence to solutions
with suitable discrete counterparts.

2.3.2 Calibrating the Heuristic

Considerations and Experimental Setting

Unlike traditional deterministic methods, heuristics use stochastic ingredients in
their search process. As a consequence, they are non-deterministic and independent
restarts can lead to different reported solutions. It is therefore common practise to
solve a problem repeatedly in independent runs and use the best of these results for

4 A more strict version would round up (down) if this simple rounding operator violated the
lower (upper) weight limit. Given the granularities S0,i/V0 for the chosen assets and initial
budget, however, these violations are rather small. Preliminary experiments showed that
this more sophisticated method is computationally more expensive, but has only negligible
effects on the quality of results.
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the subsequent analysis. To investigate the properties of the heuristic, however, the
reported results have to be looked at in more detail. Due to their stochastic ingre-
dients, the results reported by a heuristic must be considered random with a certain
distribution, and the quality of a heuristic method can be described by the statistical
properties of these reported results. These statistical properties can then be used to
derive convergence proofs to show that a heuristics is capable of identifying the op-
timum with a given probability. These properties can also be used to find technical
parameters that favor the heuristic’s convergence to the global optimum by searching
for parameters where the optimum itself or a sufficiently close solution is found with
a given probability.

Ideally, the heuristic ought to find the global optimum in each run, resulting in a
degenerated distribution with just one realization. In practical applications, however,
the reported results can and will differ. Though the resulting distribution is (theoreti-
cally) truncated at the global optimum, it might well be that the empirical distribution
of reported results from a series of restarts is not: when the global optimum is never
found then this bound is never reached.

If a heuristic is to be evaluated for several test problems, it might be beneficial
to “standardize” the reported results in a way that they become comparable. As will
be presented in Section 2.4, the main computational study distinguishes six different
time windows and three different levels of loss aversion. For each of these 18 cases,
the optimal tracking error will differ. To evaluate the heuristic, a total of 28 075 inde-
pendent restarts were performed with different combinations of parameters, resulting
in approximately 1550 reported solutions per case c. From these reported solutions
T Er,c, the best was chosen, T E∗c = minr T Er,c , and the relative deviations of reported
from optimal solutions, Dr,c = T Er,c/T E∗c − 1, computed. While the distributions
of the Dr,c’s might still differ between cases, they are more similar than that of the
T Er,c’s; moreover, by definition they are all truncated at the same value, namely 0.

An indicator for the reliability of the implementation is how often this limit is
actually reached. More recently, sometimes statistics such as the mean and standard
deviation of the analyzed indicator are reported; this makes sense only when the as-
sumption of a Gaussian distribution is reasonable (and the truncation at the global
optimum is considered in the estimation process); otherwise they are not very illu-
minating. Usually statistically more stable and more meaningful is information on
how likely a certain deviation is to be reached or exceeded. In the lack of a suitable
parametric distribution, the latter can be measured by the quantiles of the empirical
distribution of the Dr,c. These quantiles represent which values are exceeded with
the respective frequency; they therefore indicate which values are also likely to be
exceeded with a certain probability in future restarts. These quantiles can also be
used to compare the results of different experimental settings: in superior settings,
exceedances beyond a given deviation should happen less frequently, and for a given
confidence level, the maximum exceedance should be smaller. Finally, these quan-
tiles allow some indication on how many restarts are advisable.
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The Trade-off Between Computational Time, Population Size and Number
of Generations

One of DE’s advantages is the low number of technical parameters it requires. Fur-
thermore, it is often found that DE requires less tuning than comparable methods and
that standard values often yield reasonable stable results already. Since the solution
space for the given problem is multi-modal with frictions and interpretation function
adds further complexity, experiments for different parameter settings appear reason-
able.

The crucial ingredient to any heuristic search method is the number of function
evaluations (FEs) during the optimization process. If the algorithm stops not when a
convergence criterion is met but when an exogenously given number of FEs has been
reached, then for population based methods, a decision has to be made whether these
FEs should rather be spent on small populations with many generations or a larger,
more diverse population with less iterations to converge. The number of conceded
FEs for this implementation are randomly set to 10 000, 25 000, 50 000, 100 000
or 250 000. Next, alternatives for the population size P are 50, 75, 100 and 150.
Depending on the combination of these parameter values, the number of generations
ranges from 67 (FEs = 10 000, P = 150) to 5 000 (FEs = 250 000, P = 50).

Table 2.1 lists the respective 1%, 10% and 50% quantiles for the different combi-
nations. Other things equal, the figures suggest that increasing the number of function
evaluations is highly beneficial: if the FEs are doubled, the deviation often reduces
by half or more, in some cases even by more, in magnitude. When there are at least
100 000 FEs, then one in ten restarts is likely to find a solution with a Tracking Error
at most 1% above the optimal one’s. With 250 000 FEs, every other run can be ex-
pected to find a solution which deviates by at most 5% from the global one, and one
in 100 restarts is likely to end in the global optimum.

Table 2.1. 1% (10%, 50%) Quantiles for Dr,c for different numbers of function evaluations
(FEs) and population size (P)

population size, P
FEs 50 75 100 150

10 000
0.0334

(0.1189, 0.3083)
0.0613

(0.1483, 0.3446)
0.0941

(0.1738, 0.4153)
0.1751

(0.2728, 0.5264)

25 000
0.0126

(0.0335, 0.1912)
0.0075

(0.0484, 0.1764)
0.0118

(0.0638, 0.1855)
0.031

(0.0604, 0.2335)

50 000
0.0023

(0.0133, 0.1474)
0.0036

(0.0182, 0.128)
0.0015

(0.0223, 0.1254)
0.0033

(0.0278, 0.1357)

100 000
0.0003

(0.0087, 0.1139)
0.0005

(0.0072, 0.1011)
0.0005

(0.0098, 0.1067)
0.0009

(0.0123, 0.1011)

250 000
0

(0.0027, 0.0537)
0.0001

(0.0019, 0.0287)
0

(0.0011, 0.017)
0

(0.0024, 0.0205)

These figures also shed light on another relevant question: other things equal, should
a large number of function evaluations be used on one (or a few) run(s) with many
iterations or on more frequent restarts with fewer iterations per run? If a total of 1
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million FEs can be used for 10 restarts with 100 000 FEs each or 100 restarts with
10 000 FEs each, then 10 restarts of the short runs are equally expensive as one long
run. Hence, the 1% quantile of the short runs can be compared to the 10% quantile
of the long ones. For all of the tested combinations, having longer runs yields better
results than having more restarts with more reported results to choose from.

When looking at the different population sizes, the effect is less consistent. In
general smaller populations can converge faster as they have less diversity within
them. This might be an advantage when the number of generations is small and con-
verging to a local optimum might be better than not converging at all. With more
generations available, however, slower convergence reduces the chances of getting
stuck in local optima, and it is the larger populations that benefit. Not surprisingly,
it is the latter that also see the strongest improvements in reported results, and one
can expect that all the quantiles will be superior to those of smaller population sizes
if FEs were increased further. It is particularly noteworthy that increasing the popu-
lation while keeping the number of generations constant is beneficial. Since in these
experiments, the number of generations equals FEs divided by population size, dou-
bling both FEs and population size, e.g., leaves the number of generations untouched.
Comparing the quantiles for the different settings favors larger population sizes – at
least for the tested ranges. This suggests that larger (and hence more diverse) popula-
tions have an advantage over smaller ones when conceded the same time to evolve in
terms of generations. A general rule of thumb suggests the population size should be
about three times the number of variables; with 64 (65) asset weights to optimize, this
would correspond to P≈ 200. The empirical results from this study suggest that this
would require a substantially higher number of FEs than the ones investigated. From
a practical point of view, population sizes of 75 and 100 appear to work sufficiently
reliably (provided a sufficiently high number of FEs).

Using Additional Noise in the Optimization Process

When generating new solutions, the scaling factor F and the cross over probability
π play an important role (see equations (2.6) and (2.6*)). In most implementations,
they are both often chosen in the range between 0.5 and 0.9. In this study, either
parameter can take the values 0.25, 0.5 or 0.75. In addition, the cross over proba-
bility can be zero, implying that the new solution is equal to the linear combination
of three current solutions, but inherits no element of the solution against which it is
compared in the subsequent tournament. Table 2.2 summarizes the quantiles of devi-
ations from the global optimum under different parameter constellations. Introducing
crossover is beneficial as it increases the probability of finding good solutions. This
is particularly true for when small populations and low numbers of FEs are allowed
(top half of the table). It is noteworthy, however, that low values for F have a posi-
tive effect. In combination with high values for π , this implies that the base vector is
not dramatically changed by adding the weighted difference vector, and that the new
candidate solution is mainly inheriting properties of its future opponent in the tour-
nament, crossed over with the base vector. The figures also confirm that the results
are more sensitive to F than to π .
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Table 2.2. 1% (10%, 50%) Quantiles for Dr,c for different values of the scaling factor F and
cross over probability π for all reported results (top half) and results where FEs≥ 50000 and
P≥ 75 (bottom half)

cross over probability π
F 0 0.25 0.5 0.75

0.25
0.1153

(0.3831, 0.8095)
0.0088

(0.0331, 0.1439)
0.0006

(0.0098, 0.0588)
0.0001

(0.0041, 0.0286)

0.5
0.0093

(0.0918, 0.5506)
0.0002

(0.0053, 0.04)
0.0002

(0.0043, 0.0464)
0.0003

(0.0054, 0.0543)

0.75
0.0224

(0.1149, 0.6762)
0.0172

(0.0655, 0.2003)
0.018

(0.0477, 0.1475)
0.0131

(0.0325, 0.1053)

0.25
0.0828

(0.2648, 0.6864)
0.0044

(0.0193, 0.08)
0.0002

(0.0049, 0.0203)
0

(0.0009, 0.0103)

0.5
0.0053

(0.0427, 0.3913)
0.0001

(0.0027, 0.0178)
0.0003

(0.0028, 0.0178)
0.0004

(0.0043, 0.0215)

0.75
0.0207

(0.0777, 0.3913)
0.0132

(0.0448, 0.1331)
0.0155

(0.0361, 0.0895)
0.0099

(0.0258, 0.0565)

Tables 2.3 and 2.4 summarize the quantiles for the different setting for the noise
terms when equation (2.6*) is used to generate new solutions. Note that π1 = π2 = 0
reduces this model to the basic version without noise. Differences in the quantiles
for different values of σi when πi = 0 are due to sampling errors and give some
indication about the Monte Carlo error for the estimated quantiles. Noting this, the
results suggest that adding some noise to the scaling factor F (π1 > 0) improves the
distribution of reported results; the actual magnitude of the noise, however, seems
less important. Adding noise to the difference vector (π2), on the other hand, has
hardly any noticeable effect unless small populations and low numbers of FEs might
also be used.

Table 2.3. 1% (10%, 50%) Quantiles for Dr,c for different probabilities that the noise term
z1[i] is non-zero (π1) and its standard deviation in that case (σ1) for all reported results (top
half) and results where FEs≥ 50000 and P≥ 75 (bottom half)

standard deviation for the noise term, σ1
π1 0.05 0.25 0.5

0
0.0012

(0.0205, 0.2316)
0.0011

(0.0198, 0.2561)
0.001

(0.019, 0.2442)

0.025
0.0009

(0.0179, 0.2512)
0.0007

(0.0158, 0.2)
0.001

(0.014, 0.159)

0.1
0.0011

(0.0177, 0.2245)
0.0007

(0.0167, 0.1673)
0.0005

(0.0131, 0.1307)

0
0.0002

(0.0086, 0.0985)
0.0004

(0.0083, 0.1058)
0.0004

(0.0083, 0.0937)

0.025
0.0002

(0.0077, 0.1049)
0.0004

(0.0073, 0.0782)
0.0004

(0.0071, 0.0497)

0.1
0.0004

(0.0089, 0.094)
0.0003

(0.0088, 0.0711)
0.0003

(0.0067, 0.0427)

Comparing all of the results so far, one can confirm the often purported claim that
Differential Evolution is usually stable with respect to the chosen parameters. Once
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Table 2.4. 1% (10%, 50%) Quantiles for Dr,c for different probabilities that the noise term
z2[i] is non-zero (π1) and its standard deviation in that case (σ2) for all reported results (top
half) and results where FEs≥ 50000 and P≥ 75 (bottom half)

standard deviation for the noise term, σ2
π2 0.005 0.025 0.05

0
0.0007

(0.0179, 0.2163)
0.0012

(0.0182, 0.1992)
0.0009

(0.0165, 0.1938)

0.025
0.0006

(0.018, 0.2067)
0.0009

(0.0143, 0.1912)
0.0012

(0.0146, 0.1824)

0.1
0.0008

(0.0192, 0.1983)
0.001

(0.0176, 0.1991)
0.0007

(0.0156, 0.2003)

0
0.0004

(0.0089, 0.0846)
0.0004

(0.0089, 0.0769)
0.0004

(0.0078, 0.0722)

0.025
0.0002

(0.0085, 0.0831)
0.0003

(0.0081, 0.0661)
0.0005

(0.0072, 0.0685)

0.1
0.0003

(0.0089, 0.0766)
0.0003

(0.0075, 0.0776)
0.0003

(0.0061, 0.0706)

a sufficiently large number of function evaluations is chosen, together with a rea-
sonable number of restarts and a populations not too small in size, the algorithm is
hardly affected by the values of the remaining parameters as long as they fall within
certain (but generally broad) bandwidths.

2.4 Computational Study

2.4.1 The Data

For the computational study, the Dow Jones Industrial Average (DJIA64) is to be
tracked by using a subset of the stocks included in it. Adjusted daily prices for 65
stocks5 were downloaded from finance.yahoo.com for the period March 2000
to November 2006, leading to a total of 1648 days with observations. Nine missing
data are replaced by the averages of the prices of the adjacent days, and one stock
has to be excluded for all windows preceding 2004 due to missing data.

For the financial analysis, the in sample periods consist of 500 observations each,
representing about two years; the out of sample tests are performed on the subsequent
250 trading days (i.e., the subsequent year). The initial budget is set to 100 000, and
the weight limits are x� = 0.01 and xh = 0.5.

2.4.2 Financial Results

The returns of an ideal tracking portfolio should show no deviations from the index’s
returns. Given the real world constraints, however, which have been considered in
this contribution, this is not achievable, yet the decision maker will aim to come as
close to this ideal as possible. Traditionally, this means to minimize the root of the

5 Note that the composition of the DJIA64 has changed during the observed period.
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mean squared deviations between portfolio and index returns. Under loss aversion,
investors are more sensitive towards losses. This means that the reaction to losses
appears exaggerated when compared to a traditional risk aversion setting and can
manifest itself in two ways: the investor will try reduce losses either in magnitude or
in frequency, and the investor will request even bigger profits on the positive side to
restore an acceptable balance between (expected) return and risk. In either case, the
investor will develop a stronger preference for positive skewness, for which he even
might accept a (slight) increase in volatility.6

For the index tracking problem for the given DJIA data set, loss aversion (λ > 1)
shows predominately in the changed magnitude in returns when compared optimal
solutions for investors who are loss neutral (λ = 1). While the frequency of losses
remains more or less unchanged, the mean of the deviations between the tracking
portfolio’s and the index’s returns increases because the mean return increases on
days where the tracking portfolio outperforms the index (rD > 0) while it decreases
otherwise. As a consequence, the skewness of these deviations increases (as pre-
dicted for loss averse investors) (see table 2.5). The standard deviation of rD remains
virtually unchanged, while their kurtosis increases in two years, decreases in another
two years and remains constant in the remaining two years.

The financial results presented so far are, strictly speaking, in sample results: the
optimized assets weights would have been achievable only under perfect foresight.
A more realistic approach is to use a history of returns to optimize the weights and
then form a portfolio with exactly these weights. Table 2.6 reports the statistics for
the differences between the returns of tracking portfolio and index when decision
makers invest for one year, do not readjust their portfolios and chose their asset
weights such that it would have been the optimal choice for the preceding two year
period. To some extent, these out of sample results reflect the in sample findings:
the frequency of days with portfolio returns lower than the index’s is hardly effected
by the level of loss aversion, nor is the kurtosis. At the same time, with increasing
loss aversion, the skewness tends to be higher, and the same is true for the Sharpe
ratio. It is noteworthy, however, that the out of sample deviations do not show the
high levels of kurtosis that could be observed for the in sample results in later years.
The reasons for this are twofold: For one, out of sample results are – by definition –
less prone to data fitting. Secondly and more important, the similarity of in and out
of sample results for an optimization problem like the one considered here is also an
indicator of the stability of the underlying assets’ returns. Hence, it is not surprising
that the actual tracking errors are bigger (in particular when the composition of the
index changes and the decision maker does not adjust the tracking portfolio).

2.5 Conclusion

This chapter investigates the index tracking problem under realistic constraints
where, in addition, decision makers can have different levels of loss aversion. Due to

6 See also (9) for the effects in actively managed portfolios.
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Table 2.5. Frequency of losses and statistics of differences in (conditioned) returns between
tracking portfolio and index, rD = rP − rI , under loss neutrality (λ = 1) and loss aversion
(λ > 1)

λ 2000–02 2001–03 2002–2004 2003–05 2004–06 2005–2007
frequency of losses, mean(ℑrD<0)

1.00 0.41483 0.45691 0.41884 0.44289 0.40281 0.45622
1.25 0.45892 0.45691 0.42084 0.44689 0.39479 0.46313
1.50 0.44890 0.45491 0.42285 0.43287 0.40481 0.46774

mean(rD)
1.00 0.00020 0.00014 0.00013 0.00009 0.00009 0.00005
1.25 0.00021 0.00016 0.00013 0.00010 0.00010 0.00006
1.50 0.00022 0.00016 0.00014 0.00011 0.00012 0.00006

mean(rD|rD < 0)
1.00 -0.00112 -0.00062 -0.00053 -0.00042 -0.00034 -0.00031
1.25 -0.00099 -0.00060 -0.00052 -0.00042 -0.00034 -0.00029
1.50 -0.00101 -0.00060 -0.00051 -0.00042 -0.00031 -0.00029

mean(rD|rD > 0)
1.00 0.00114 0.00079 0.00060 0.00049 0.00038 0.00036
1.25 0.00124 0.00080 0.00060 0.00051 0.00038 0.00036
1.50 0.00123 0.00080 0.00061 0.00051 0.00040 0.00037

standard deviation(rD)
1.00 0.001447 0.000896 0.000773 0.000661 0.000546 0.000527
1.25 0.001448 0.000896 0.000773 0.000662 0.000546 0.000527
1.50 0.001453 0.000899 0.000775 0.000666 0.000548 0.000529

skewness(rD)
1.00 -0.05705 0.18258 -1.28895 -1.28101 -0.65755 -0.74783
1.25 0.04730 0.26553 -1.18525 -0.99069 -0.46092 -0.56830
1.50 0.10531 0.33182 -1.09341 -0.69125 -0.17956 -0.39504

kurtosis(rD)
1.00 3.94 3.06 17.73 17.20 19.74 25.28
1.25 3.92 3.10 16.79 15.29 19.90 25.89
1.50 3.92 3.12 15.97 13.33 21.24 25.94

Sharpe Ratio(rD)
1.00 0.139830 0.160291 0.162276 0.133908 0.162969 0.101599
1.25 0.147869 0.173980 0.169229 0.143540 0.178148 0.112160
1.50 0.154523 0.182161 0.174573 0.160756 0.211543 0.121664

actual Tracking Error, mean(r2
D)

1.00 0.001460 0.000907 0.000782 0.000666 0.000552 0.000529
1.25 0.001463 0.000909 0.000783 0.000668 0.000554 0.000530
1.50 0.001469 0.000913 0.000786 0.000674 0.000560 0.000533
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Table 2.6. Out of sample differences in returns between tracking portfolio and index, rD =
rP− rI , under loss neutrality (λ = 1) and loss aversion (λ > 1)

λ 2003 2004 2005 2006 2007
frequency of losses, mean(ℑrD<0)

1.00 0.542169 0.461847 0.409639 0.502008 0.451087
1.25 0.534137 0.461847 0.413655 0.481928 0.451087
1.50 0.526104 0.461847 0.417671 0.477912 0.467391

mean(rD)
1.00 -0.000023 0.000778 0.000112 0.000040 0.000129
1.25 -0.000027 0.000769 0.000110 0.000048 0.000127
1.50 -0.000019 0.000766 0.000107 0.000057 0.000128

std(rD)
1.00 0.002271 0.005331 0.000851 0.001048 0.001103
1.25 0.002272 0.005269 0.000839 0.001040 0.001069
1.50 0.002233 0.005258 0.000830 0.001035 0.001057

skewness(rD)
1.00 0.076169 0.482286 -0.410592 0.179581 0.273688
1.25 0.134023 0.481608 -0.404146 0.142729 0.265465
1.50 0.161411 0.490486 -0.364425 0.109294 0.110819

kurtosis(rD)
1.00 4.18 3.74 6.89 7.35 3.03
1.25 4.28 3.74 6.84 7.66 3.02
1.50 4.25 3.77 6.69 8.07 3.02

Sharpe Ratio(rD)
1.00 -0.010261 0.145876 0.131729 0.038443 0.116941
1.25 -0.012062 0.145945 0.130525 0.046456 0.118676
1.50 -0.008420 0.145654 0.128627 0.055289 0.120888

actual Tracking Error, mean(r2
D)

1.00 0.002266 0.005377 0.000857 0.001047 0.001107
1.25 0.002267 0.005315 0.000845 0.001039 0.001074
1.50 0.002228 0.005303 0.000835 0.001034 0.001061

the nature of the constraints, the solution space exhibits frictions and is non-convex
and discrete; traditional optimization methods based on first order conditions are
therefore not appropriate. Heuristic optimization methods such as Differential Evo-
lution (DE), on the other hand, can deal with such demanding solution spaces. It was
discussed how constraint satisfaction can be dealt, and experiments were performed
to test different variants of DE and find values for the required technical parameters.
The main findings of these experiments shows that (in line with the literature) DE
is considerably stable with respect to its parameters. It was also found that for this
problem the population size needs not to be substantially higher than the number of
decision variables and that large populations are favorable merely with large number
of generations.

Meanwhile, there exist numerous variants of DE. A common extension is to add
noise which has an effect similar to mutation in other evolutionary methods and
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which should help to reduce the likelihood of getting stuck in local optima. For the
given problem, the experiments suggested that this is not necessary when the other
parameters are chosen appropriately. Further variants such as using several difference
vectors or enforcing the elitist were not considered here but shall be investigated in
future studies.

From a financial point of view, the main result is that the presence of loss aver-
sion has an effect on the investment choice, albeit a small one. As predicted, decision
makers will accept slightly bigger deviations from the benchmark if this allows for
a higher positive (or a less negative) skewness. Typically, these are matched with
slightly higher mean returns because both negative deviations are lowered while
positive ones are increased. At the same time, the frequency of falling below the
benchmark, however, is hardly affected. Out of sample, these effects mostly persist;
however, with neither asset returns nor the index’s composition being as stable as as-
sumed by the optimization model, imprecisions are inevitable, and a closer analysis
had to be omitted. Extensions to the index tracking model could account for these
aspects and include stability measures; furthermore opportunities to readjust the port-
folio and the inclusion of transaction costs are of great practical interest, yet have to
be left to future research.
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Summary. With the increasing popularity of defined contribution pension schemes, the re-
lated asset allocation problem has become more prominent. The usual portfolio asset alloca-
tion approach is far from being appropriate since the asset allocation problem faced by defined
contribution pension schemes is fundamentally different. There have been many attempts to
solve the problem analytically. However, most of these analytical solutions fail to incorporate
real world constraints such as short selling restrictions for the sake of mathematical tractabil-
ity. In this chapter, we present an evolutionary approach to the asset allocation problem in
defined contribution pension schemes. In particular, we compare the simulation results from a
genetic algorithm with the results from an analytical model, a simulated annealing algorithm,
and two asset allocation strategies that are widely used in practice, namely the life cycle and
threshold (funded status) strategies.

3.1 Introduction

The pension fund allocation problem deserves special treatment in its own right since
it is quite different than the usual asset allocation paradigm. The goal of pension
fund management is to provide a reasonable retirement income with minimum risk.
Minimum risk does not and should not mean investing in low risk assets only. The
pension portfolio should include high risk assets to utilize their high expected return,
at least for some period during the investment horizon. Since the investment horizon
is very long, occasional low performance of high risk assets during some of the years
are expected to be more than compensated by high performance in other years.

The Markowitz Portfolio Theory, or the so-called Modern Portfolio theory, at-
tempts to minimize risk (the variance of portfolio return) given a target return or,
equivalently, maximize return given a target risk level in a single period (17). The
multi-period nature of the pension fund management problem is where the complica-
tion arises. It is obvious that a pension portfolio will need rebalancing as time passes
and actual asset returns are revealed (24). If actual returns turn out to be higher than
expected and the current size of the fund portends an ultimate surplus, then, there
is no point in taking extra risk by investing heavily in high risk assets for the next
period. On the other hand, if actual returns turn out to be low and the current size of
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the fund suggests an ultimate deficit, then, it may be a good idea to increase exposure
to high risk assets in order to be able to catch up with the long term target. Therefore,
in stark contrast to a single period setting where the Markowitz portfolio theory is
utilized for return maximization given a target risk level, pension fund allocation is
about maximizing the probability of attaining a long term target return in a multi
period setting where the size of the fund should be taken into account at the end of
each period and the portfolio should be rebalanced accordingly.

In other words, the within-period standard deviation is not really relevant to long-
term institutional investors such as pension funds, who are more concerned with
the variability of the terminal size of their portfolios, from which pensioners will
derive their benefits (16). Hence, pension funds cannot simply strive to maximize
risk-adjusted returns by utilizing a standard portfolio optimization approach, since
this may decrease the chances of attaining the long term target, i.e. a reasonable
retirement income.

In this chapter, we demonstrate that an evolutionary approach may provide an al-
ternative solution for optimal investment allocation decision in defined contribution
pension schemes. Most of the previous research papers attempt to solve the problem
analytically (3, 11, 20, 27). The problem with analytical solutions is that they make
a lot of restricting assumptions such as lognormal distributions, time-invariant co-
variance matrices, or avoidance of short selling restrictions that are not (or, rather,
that cannot be) incorporated into the model for the sake of mathematical tractabil-
ity. Although some of these restricting assumptions can be relaxed, as previously
demonstrated by relaxing the assumption of time-invariant covariance matrix (26),
such improvements come at the expense of increased mathematical complexity.

Genetic algorithms provide numerical solutions that are not bound by such re-
stricting assumptions. For instance, asset returns can be simulated via a bootstrap
method so that the genetic algorithm can work with any distribution and not just
with a lognormal distribution. Similarly, short selling restrictions can easily be in-
corporated into the genetic algorithm. In a general review of genetic algorithms and
soft computing techniques in the field of insurance (22), a number of studies with ge-
netic algorithms are mentioned (9, 14, 28). In one of these studies, which investigates
the asset allocation problem, a comparison of genetic algorithm with the Newton’s
method demonstrates that the genetic algorithm is more robust to discontinuities in
the search space and is not as sensitive to starting values as is Newton’s method (14).

Thus, genetic algorithms emerge as a potentially appropriate solution for the
highly nonlinear search space of a portfolio optimization problem with disconti-
nuities. Nonlinearity usually arises due to quadratic terms in portfolio variance for
classical portfolio optimization or nonlinear cost (disutility) functions, which are
commonly used for pension portfolio optimization. Discontinuities are generally due
to short selling restrictions or other potential constraints such as upper limits for in-
dividual assets. Therefore, this chapter examines the relative performance of genetic
algorithms in solving the asset allocation problem for defined contribution pension
schemes. In particular, we compare the simulation results from a genetic algorithm
with results from an analytical model, a simulated annealing algorithm, and two
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asset allocation strategies that are widely used in practice, namely the life cycle and
threshold (funded status) strategies.

The layout of the rest of this chapter is as follows. First, we give a brief descrip-
tion of defined contribution pension schemes and, then, focus on the asset allocation
practice in defined contribution plans. This section provides the rationale behind the
so-called life cycle funds, which automatically take care of rebalancing pension port-
folios. This is followed by the model for the defined contribution pension scheme we
use in our simulations. The next section focuses on the genetic algorithm we uti-
lize and the alternative solutions we employ as a benchmark. Then, we present the
experiment setup, which also includes a subsection on what the optimal number of
assets in a well diversified portfolio should be and how we decide on the assets to
be included in the pension portfolio. The subsequent section discusses the simula-
tion results. Finally, we present our conclusions together with suggestions for future
studies.

3.2 Defined Contribution Pension Plans

A defined contribution pension plan provides each participant with an individual ac-
count into which plan contributions are paid. Most defined contribution plans render
tax advantages in exchange for certain restrictions such as penalties for withdrawal
before a certain age. Contributions may be in the form of employee contributions
(salary deferral), employer contributions, and employer matching. The funds in the
individual’s account are then invested in a number of assets, which are mostly mutual
funds designed to match different risk attitudes and investment horizons. Generally,
the employee has a certain degree of discretion and responsibility in the asset alloca-
tion process, whereas the employer has fiduciary responsibility over the selection of
investment choices and product providers. Retirement benefits are provided through
the individual’s account, mostly through purchase of an annuity at retirement.

Defined contribution schemes are radically different to defined benefit schemes.
As the name suggests, the participant’s contribution is fixed in a defined contribution
pension plan, whereas the exact level of future retirement income is uncertain due
to a number of risk factors such as the future return on investment and the annuity
rate at retirement. The amount of contribution and charges deducted by the product
provider also affect the terminal value of funds and hence, the retirement income (3).

In other words, in contrast to defined benefit schemes, the investment risk is as-
sumed by the plan participant, not the plan sponsor, in a defined contribution scheme.
Hence, a poor return on investment may directly result in a lower retirement income
unless contribution rates are increased accordingly. In this chapter, we focus on the
investment risk during the accumulation phase, which is the most important factor
determining the level of retirement income.
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3.3 Asset Allocation Practice and Life Cycle Funds

In the last decade, the responsibility of asset allocation has greatly shifted to indi-
viduals with the increasing popularity of defined contribution plans. According to a
study by Employee Benefit Research Institute, the percentage of family heads with
a defined contribution plan (typically a 401(k)-type plan) has increased strikingly
in the US. In 1992, the percentage of family heads having a defined benefit plan
only was 42%, whereas the percentage of those having a defined contribution plan
only was 41%. In 2004, these figures have drastically changed into 26% and 56%
for defined benefit and defined contribution, respectively (6). However, it is hard to
say that there is a great deal of sophistication in the investment process. It has been
demonstrated that most individuals follow quite a naive investment strategy by di-
viding their contributions evenly across the funds offered in the plan (1). Hence, it
follows that the proportion invested in stocks turns out to be high if there are a large
number of stock funds available to the investor, or vice versa.

Pension companies offer advisory services that try to match investment portfolios
with different risk attitudes and investment horizons. Risk attitudes and investment
horizons are investigated via risk tolerance questionnaires which often use simple
scoring systems that try to fit the individual in one of the predetermined asset alloca-
tion structures such as conservative, moderate, or aggressive. Investors are advised
and expected to review the allocation regularly and make the necessary adjustments
based on their risk tolerance and financial goals.

Individuals are naturally expected to shift their funds toward less risky assets as
they approach retirement. For instance, GFOA (Government Finance Officers As-
sociation) recommends that public employers assure that adequate investment ed-
ucation and asset allocation information be provided to participating employees in
defined contribution plans that permit participants to self-direct their investments
(10). In order to accomplish this objective, they suggest some recommendations and
guidelines. In one of these guidelines, they say “Participants should be systemati-
cally reminded of their potential need to change their asset allocations as they age
or experience various life events. For example, a reminder might be issued to par-
ticipants as they cross certain age levels, as well as in conjunction with a change in
employment status.”

Nevertheless, experience shows that many participants n ever reallocate their in-
vestments or even review their allocation. A smart solution for this problem has been
the introduction of life cycle funds. These funds set a target maturity date and al-
locate the investments over time, from aggressive to conservative. Typically, a fund
will start with a heavy allocation to equities, and, over time, the allocation will move
from primarily equities to a balanced portfolio of equity and bonds to primarily fixed
income. In this type of fund offering, the participant would select the fund that has
a maturity date similar to the participant’s own investment horizon, often the partici-
pant’s retirement age.

In a prospectus describing the funds that are available to the employees of the
University of California for defined contribution plans, 5 out of the available 19 funds
are life cycle funds that are designed for accommodating the needs of individuals
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that are expected to retire in different years (13). For instance, it is quoted in the
description for the “UC Pathway 2030 Fund” that “As the Fund moves toward its
target date, its asset allocation becomes more conservative. . . The UC Pathway 2030
Fund is appropriate for those investors planning to retire between 2025 and 2035.”

Life cycle allocation and threshold (funded status) allocation are two common
strategies that are employed for the asset allocation of life cycle funds. In a typical
life cycle allocation, funds are 100% invested in equities for, say, the first 10 years.
Then, this is followed by, for instance, a 10% per annum switch into bonds during
the last 10 years. Although this is a dynamic strategy, it includes no feedback. The
threshold allocation strategy, on the other hand, incorporates a form of feedback
control. In this strategy, 100% of the funds are invested in equities if the size of the
fund is below a lower threshold so that the fund can benefit from higher expected
return of equity investing. If the size of the fund is above a higher threshold, then
100% of the funds are invested in bonds with the aim of preserving the status quo
with lower risk of fixed income investing. In between, i.e. when the size of the fund
is between the lower and higher thresholds, the proportion of funds invested in bonds
increases linearly as the size of the fund increases (3). Simulations of analytical
models also verify the appropriateness of life cycle strategies; i.e., the analytical
models suggest a gradual switch into low risk assets as the individual approaches
retirement (11, 27).

In this chapter, we focus on the asset allocation problem of a life cycle fund.
We compare the simulation results from a genetic algorithm with results from an
analytical model, the life cycle, and threshold strategies. On the other hand, we also
test the efficacy of the genetic algorithm by making comparisons with results from
another stochastic search technique, namely the simulated annealing algorithm.

3.4 The Model

In our defined contribution pension scheme, funds can be invested in n assets with
different levels of risk. Contributions, which are assumed to be a fixed percentage
of salary, are paid at the beginning of each period. The only decrement from accu-
mulated funds is assumed to be retirement. Taxation is not taken into account; i.e.,
contributions and investment income are assumed to be exempt from tax. We assume
that the final fund (the actual level of accumulated funds at retirement), f f inal , is
converted into a whole life annuity due. Using the retiree’s expected mortality and
the return of the low-risk asset as the discount rate, the annual retirement income is
given by

Annual Retirement Income =
f f inal

äx
(3.1)

where äx is the actuarial present value of a whole life annuity of 1 payable at the
beginning of each year (starting immediately after retirement) as long as the retiree
who is at the age of x at retirement survives. The actuarial present value of a whole
life annuity of 1 payable at the beginning of each year, äx, is given by
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äx =
ω

∑
k=0

k pxνk (3.2)

where ω is the maximum age, k px is the probability that a retiree who is at the age of
x (at retirement) survives for k years, and ν is the discount factor that uses the return
of the low-risk asset. ν is given by

ν = E(e−X ), X ∼ N(µlow−risk asset ,σ2
low−risk asset) (3.3)

or

ν = exp(−µlow−risk asset +0.5σ2
low−risk asset) (3.4)

where µlow−risk asset and σ2
low−risk asset are the mean and variance of the low-risk asset.

Since the final fund is assumed to be converted into an annuity, the retiree will be
more concerned with the net replacement ratio than the final fund. The net replace-
ment ratio is defined as the ratio of retirement income to final salary. Assuming that
the real salary growth rate is assumed to be zero and the real salary level is set equal
to 1, the net replacement ratio is given by

Net Replacement Ratio =
Annual Retirement Income

Final Salary
=

f f inal
äx

1
=

f f inal

äx
(3.5)

3.5 The Genetic Algorithm and Alternative Solutions

3.5.1 The Genetic Algorithm

A genetic algorithm can briefly be described as a search technique inspired by bio-
logical evolution. A typical genetic algorithm imitates evolutionary mechanisms such
as “selection”, “crossover”, “mutation”, and “survival of the fittest”. Potential solu-
tions to the problem at hand, which comprise the “population”, evolve into the next
generation of solutions by an evaluation of how fit they are via a “fitness function”.

The genetic algorithm and the alternatives have been implemented in R 2.5.1
(2007-06-27) (19). R includes an “R Based Genetic Algorithm” for binary and float-
ing point chromosomes (29). We have used the floating point chromosome version
to minimize the expected cost (disutility) function for the next period. Following
(11, 26, 27), the cost function is defined as

Ct = (Ft − ft)2 +α(Ft − ft) (3.6)

Ct : Cost incurred at the end of period t
Ft : Target level for accumulated funds at the end of period t
ft : Actual level of accumulated funds at the end of period t
α : Risk aversion parameter
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where α ≥ 0.

When the actual level of funds is below the target level, the cost function is positive.
Hence, negative deviations from the target level are always penalized. On the other
hand, when the actual level of funds exceeds the target level, the cost function first
takes negative values. Then, after a certain point, which depends on the risk aversion
parameter α , the cost function becomes positive as the positive deviation increases.
In other words, positive deviations from the target level may be rewarded or penal-
ized depending on the size of the deviation. Large positive deviations are penalized in
order to increase the probability of attaining the target level by preventing excessive
risk exposure.

For the above cost function, risk aversion is decreasing with increasing risk aver-
sion parameter α . In the limit when α approaches infinity, positive deviations are
never penalized. Hence, greater values of α are associated with less risk-averse in-
dividuals. The target level for each period is given a priori. Hence, the optimization
problem can be stated as

minE[Ct+1|It(in f ormation available at time t)] (3.7)

We have provided the following arguments to the genetic algorithm:

stringMin: (vector with minimum values for each gene) Since each gene corresponds
to the weight of an asset in the portfolio, we have set stringMin to a vector of 0s. In
other words, short selling is not allowed. The length of the vector is equal to the
number of assets in the portfolio.
stringMax: (vector with maximum values for each gene) Similar to stringMin, we
have set stringMax to a vector of 1s.
popSize: (population size) The population size is set equal to 50.
iters: (number of iterations) The number of iterations is set equal to 200.

The parameters stringMin and stringMax take care of the short selling restriction.
However, there is one more restriction to account for; i.e., the sum of portfolio
weights should add up to 1. In order to handle this constraint, the cost function in-
cludes a transformation from the original weight vector that is used by the genetic
algorithm to a new weight vector that satisfies the constraint for the sum of portfolio
weights. The transformation simply divides the original weight vector by the sum of
its constituents. The weight vectors used in simulations are the transformed vectors.
We have used the default values of the following arguments for the “R Based Genetic
Algorithm”:

mutationChance: (chance that a gene in the chromosome mutates) The default value
is 1/(length of the chromosome+1).
elitism: (number of chromosomes that are kept into the next generation) The default
value is 20% of the population size.

The floating point chromosome version of the “R Based Genetic Algorithm” ran-
domly generates an initial population using uniform distribution for obtaining values
as dictated by stringMin and stringMax. An iteration starts by producing a fitness
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score for each member of the population. As elitism is employed, the best members
of the population are saved for the next generation. The other members of the next
generation are generated via single-point crossover and a nonuniform mutation op-
erator. The nonuniform mutation operator with a decreasing dampening factor over
time provides an opportunity for fine tuning as the potential solutions approach a
global optimum.

3.5.2 Alternative Solutions

The Analytical Model

In our simulations, we use the analytical model in (26) (see Appendix 3.8). It mini-
mizes the same expected cost (disutility) function as the genetic algorithm. The prob-
lem with analytical solutions is that they make a lot of restricting assumptions such
as lognormal distributions, time-invariant covariance matrices, or avoidance of short
selling restrictions that are not (or, rather, that cannot be) incorporated into the model
for the sake of mathematical tractability (11, 27). Although some of these restricting
assumptions can be relaxed, as previously demonstrated by relaxing the assumption
of time-invariant covariance matrix (26), such improvements come at the expense of
increased mathematical complexity.

Since the analytical model does not take into account the short selling restriction,
the portfolio weights should be truncated to [0, 1]. This is a straightforward proce-
dure for two assets. If one of the portfolio weights is less than 0, the other portfolio
weight must be greater than 1, since the sum of portfolio weights is equal to 1. Hence,
if one of the portfolio weights is less than 0, it is set equal to 0 and the other portfolio
weight, which is greater than 1, is set equal to 1 if we have only two assets.

The problem becomes complicated for more than two assets. If the above al-
gorithm is used, the sum of portfolio weights may not be equal to 1. For instance,
assume that we have three assets for which the respective portfolio weights are -0.5,
0.3, and 1.2. If we set the portfolio weights for the first and third assets equal to
0 and 1, respectively, the sum of the portfolio weights is going to be equal to 1.3.
Therefore, we use the following algorithm for the case of n assets:

• Find the maximum distance between the portfolio weights and the violated
boundaries for those portfolio weights outside [0, 1].

• – If the portfolio weight corresponding to the maximum distance is greater
than 1:
· Set that portfolio weight equal to 1.
· Set the other portfolio weights equal to 0.

– If the portfolio weight corresponding to the maximum distance is less than 0:
· Set that portfolio weight and the other negative portfolio weights equal

to 0.
· Reduce the positive portfolio weights so that they are proportional to their

original sizes and the total reduction is equal to the total increase for the
previously negative portfolio weights.
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If this algorithm is used for the above mentioned example, the curtailed portfolio
weights become 0, 0.2, and 0.8.

The Simulated Annealing Algorithm

The simulated annealing algorithm has originally been developed as a modified
Monte Carlo scheme for high dimensional integrals in statistical physics problems
(18). Later, it was generalized to solve nonlinear problems (15) and evolved into a
popular stochastic search technique that is especially useful for dealing with cost
functions possessing quite arbitrary degrees of nonlinearities, discontinuities, and
stochasticity (12). The algorithm is also able to handle arbitrary boundary conditions
and constraints imposed on these cost functions.

There is a direct analogy between annealing, i.e. the cooling of a metal into a
minimum energy structure, and simulated annealing. The version we use in our simu-
lations is also known as Boltzmann annealing (12) as it utilizes a probability function
similar to the probability of increase in energy due to the law of thermodynamics.
Our general algorithmic flow is given below:

• specify initial temperature and cooling schedule
• randomly initialize solution vector
• evaluate cost
• initialize best cost = cost
• repeat for prespecified number of times

– obtain new solution vector (by randomly changing solution vector)
– evaluate new cost
– · if new cost < best cost

(accept new solution vector unconditionally)
solution vector = new solution vector; best cost = new cost

· else
(accept new solution vector conditionally)
· compute probability of increase in energy (cost)
· generate random number between 0 and 1
· if random number < probability of increase in energy

solution vector = new solution vector; best cost = new cost
– compute new temperature

In our simulations, we minimize the same expected cost (disutility) function used by
the genetic algorithm and the analytical model. We set the initial temperature equal
to 1 and use an exponential cooling scheme to compute the new temperature; i.e.,

T [i+1] = cT [i], 0 < c < 1 (3.8)

where T[i] is the temperature of the i-th loop and c is a constant. We choose c to
be equal to 0.99. When initializing the solution vector or generating a new solution
vector, only the first n-1 elements are considered to be orthogonal. The n-th element,
or the weight of the n-th asset, is simply found by subtracting the sum of the weights
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of the first n-1 elements from 1. This ensures that the sum of portfolio weights add
up to 1. Nevertheless, generating a new solution vector randomly or calculating the
n-th element by subtraction will result in the violation of short selling restriction.
This is taken care of by using the same algorithm used by the analytical model for
restricting the portfolio weights within [0, 1].

To obtain a new solution vector, we change only one randomly selected element
of the current solution vector. If the temperature is high, it may be favorable to obtain
more distant new solutions to search untapped regions of the solution space. How-
ever, as the temperature cools down and the solution approaches the global minimum,
the new solution should better be in the proximate vicinity of the current solution so
as to speed up convergence. To ensure this gradual narrowing of the search diameter,
we use current temperature as the standard deviation of the Gaussian distribution for
the random change in the solution vector (12):

g(x) =
1√
2πT

exp[
(x− x0)2

2T
] (3.9)

where x and x0 are the new and current values for the randomly selected element
of the solution vector. If the new solution is not accepted unconditionally, then we
check whether it is accepted conditionally (probabilistically). First, we compute the
probability of an increase in energy (cost) (12):

h(new cost− cost) = exp[
−(new cost− cost)

T
] (3.10)

By generating a random number between 0 and 1 and comparing it with the prob-
ability of an increase in energy, we decide if we should accept the new solution.
The conditional acceptance of a worse solution helps to prevent getting stuck at lo-
cal minima. It is important to note that, as the deviation from the current cost gets
larger and/or the temperature cools down, the probability of an increase in energy or,
equivalently, the probability of acceptance of a worse solution diminishes.

In order to compare the performances of the genetic and simulated annealing
algorithms on a fair ground, we repeat the previous loop as much as the number of
iterations for the genetic algorithm, i.e. 200 times. Running the simulated annealing
algorithm for 50 times, i.e. as much as the population size of the genetic algorithm,
and choosing the best solution vector among the 50, we provide equal chances to
both algorithms.

The Life Cycle Strategy

Life cycle allocation is a common strategy that is employed for the asset allocation of
life cycle funds. In a typical life cycle allocation, funds are 100% invested in equities
for, say, the first 10 years. Then, this is followed by, for instance, a 10% per annum
switch into bonds during the last 10 years (3). We follow exactly the same strategy in
our simulations. We divide the period before retirement into two equal subperiods.
In the first subperiod, 100% of funds are invested in an equity portfolio whereas, in



3 An Evolutionary Approach to Asset Allocation 35

the second period, the exposure to equities is reduced linearly so that 100% of funds
are switched to bonds at retirement.

In constructing the equity portfolio, we use the regular (Markowitz) portfolio
optimization by using the available stocks. We set the target return at a rate that is
equal to the mean of the arithmetic stock returns. Although this is a dynamic strategy,
it includes no feedback. The weight of each asset in the portfolio is predetermined
and does not depend on the current size of the fund.

The Threshold (Funded Status) Strategy

The threshold allocation strategy, on the other hand, incorporates a form of feedback
control (3). In this strategy, 100% of the funds are invested in equities if the size of
the fund is below a lower threshold so that the fund can benefit from higher expected
return of equity investing. If the size of the fund is above a higher threshold, then
100% of the funds are invested in bonds with the aim of preserving the status quo
with lower risk of fixed income investing. In between, i.e. when the size of the fund
is between the lower and higher thresholds, the proportion of funds invested in bonds
increases linearly as the size of the fund increases. The equity portfolio used in this
strategy is e xactly the same as the Markowitz portfolio mentioned in the previous
section. We set the lower and upper threshold levels at 0.40 and 0.80, respectively.

3.6 Experiment Setup

3.6.1 Optimal Number of Assets for a Well-Diversified Portfolio

Before we present our selection of assets a nd the relevant data, we need to explain
how we decide on the number of assets to be included in the portfolio. The optimal
number of assets for a well diversified portfolio remains to be a controversial subject.
The general belief that 8 to 10 assets are sufficient to construct a well diversified
portfolio is based on an earlier study (8). This belief has been critically challenged
by subsequent studies (2, 5, 7, 25). In these studies, the suggested number of assets
for a well diversified portfolio ranges from 30 (25) to as high as 500 (5).

Nevertheless, it is very important not to overlook the potential costs due to over-
diversification (23). These potential costs include increased monitoring costs, dilu-
tion of a portfolio manager’s best investment ideas when a portfolio’s value is spread
across a large number of stocks, and increased transaction costs due to a higher fixed
component of commission fees when multiple trades are made. Besides, there is an-
other theoretical justification behind imperfect diversification (4). An investor pref-
erence for positive skewness may be the rationale behind holding a limited number
of assets. The simple fact that a stockholder can never lose more than 100% whereas
gains are potentially unlimited, i.e. positive skewness, is naturally appealing for an
investor. Furthermore, for investors with positive marginal utility of wealth, consis-
tent risk aversion, and strict consistency of moment preference, it can be shown that
investors will have preference for positive skewness (21). Diversification is desired
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since it reduces the variance of portfolio return. However, it also reduces the positive
skewness, which is something undesirable (4).

3.6.2 Asset Selection and Data

Regarding the number of assets in our portfolio, we took the middle road by setting
the number of assets to 10, but also choosing one of the assets to be an index tracking
portfolio so that a sufficient degree of diversification can be achieved. Setting aside
another asset as the low risk asset, there remains 8 more assets for return enhance-
ment. The data of our first asset belongs to the Dow Jones Industrial Average, which
we use as a substitute for an index tracking portfolio. The Dow Jones Industrial Av-
erage is comprised of 30 of the largest and most widely held public companies in
the US. Hence, holding such an index should provide at least a reasonable degree
of diversification. The next eight assets are randomly selected stocks from the con-
stituents of the S&P 500 index, which are not included in the Dow Jones Industrial
Average. They represent the assets chosen for return enhancement. These stocks in-
clude Apple Inc., Bank of America Corp., Chevron Corp., Ford Motor Co., Goodyear
Tire & Rubber Co., Kellogg Co., Eli Lilly & Co., and 3M Co. The last asset is the
10-Year US Treasury Note, which represents the low risk asset. We use daily price
data from the period Jan. 2, 2001 to Jun. 29, 2007. This corresponds to a total of
1630 daily returns.

3.6.3 Simulations

For our simulations, we set the initial fund level to zero and the contribution rate to
8% of the salary. Contributions are paid at the beginning of each year. We make our
simulations for a total of 20 years and assume that the individual retires at the age of
65. The 1983 US GATT (unisex) mortality table is used for calculating the individ-
ual’s expected mortality. The annual target rate of return for calculating interim fund
level targets is set equal to the Chisini average of asset returns.1 We do not allow
short selling; i.e., portfolio weights are limited within [0, 1].

For our base case scenario, the risk aversion parameter α is set equal to 2.2 By
using the genetic algorithm and alternative methods, 1,000 simulations are carried
out to simulate the portfolio weights, the interim and final fund levels, and the net
replacement ratio, which may be considered as the single most important indicator
for the success of a retirement fund. Then, we compute a number of risk measures,
i.e. probability of failing the target, mean shortfall, and 5th percentile (Value at Risk):

• Probability of failing the target is computed by dividing the number of failures
(those simulations for which the actual net replacement ratio is below the target
level) by the total number of simulations.

1 Chisini Average of Gross Asset Returns exp(Xit) = exp[( 1
n )Xit ]; Xit ∼ N(µi,σ2

i ); i = 1, 2,
..., n; n is the number of available assets.

2 A range of α values between 0 and 30 are used in (11) (for the same cost function we use
and for 20 years to retirement).
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• Mean shortfall is the average absolute difference between the actual and target
net replacement ratios for failures. For example, if the target net replacement
ratio is 0.80 (the target retirement income is 80% of the final salary) and the
actual net replacement ratio is 0.75 (the actual retirement income is 75% of the
final salary), the shortfall is 0.05. The mean shortfall is the conditional expected
value of shortfall given that the actual net replacement fails to meet the target.

• 5th percentile is the lowest 5th percentile of the simulated distribution of net re-
placement ratio. In other words, the probability of attaining a lower net replace-
ment ratio than the 5th percentile is only 5%. If 1,000 simulations are carried out,
the 5th percentile is the 50th lowest net replacement ratio.

Fig. 3.1 depicts a basic flowchart of the simulation process. We repeat the first 100
simulations for different values of α (10, 20 and 50) to analyze the impact of risk
aversion on relative performances of different methods. We use the same simulated
path of asset returns for sensitivity analysis so as to ensure that the differences in
simulation results do not stem from different asset returns.

3.7 Simulation Results

3.7.1 Base Case Scenario (α = 2)

Optimal Asset Allocation - Portfolio Weights

Figs. 3.2–3.6 give the mean of simulated portfolio weights for equities generated by
different asset allocation methods. Since there is an index tracking portfolio and a
total of 8 stocks, which all qualify as equity investments, the mean portfolio weight
for equities is found by deducting the mean portfolio weight for the low risk asset,
i.e. the 10 year US Treasury Note, from 1. It has been previously demonstrated that
simulations of analytical models verify the appropriateness of life cycle strategies
(11, 27). Our simulations of the analytical model also confirm this result. The mean
portfolio weight for equities gradually declines from a level close to 1 to around 0.4
and is stabilized at that level. The stabilization occurs in year 14.

For both the genetic and simulated annealing algorithms, the mean portfolio
weight for equities is similarly stabilized at around 0.4. On the other hand, much
earlier than the analytical model, it reaches that level in year 7 for the simulated and
genetic algorithms. This clearly indicates that the rebalancing process is much faster
for both algorithms, compared to the analytical model.

For the threshold strategy, the shape of the mean portfolio weight for equities
resembles that of the life cycle strategy with one distinction. The mean portfolio
weights for equities are significantly higher for the threshold strategy; or, equiva-
lently, they decline more slowly compared to the life cycle strategy. Compared to the
analytical model, genetic, and simulated annealing algorithms, both the threshold
and life cycle strategies seem to be taking more risk with higher portfolio weights
for equities.
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Calculate Optimal Portfolio Weights by Using 
Analytical Model,  Genetic Algorithm, Simulated 

Annealing, Life Cycle, and Threshold

Generate Asset Returns

Calculate Actual Fund Levels at the End of Current 
Year

Start New Simulation

Reached Retirement?
No

Yes

Calculate Actual Net Replacement Ratios

End of Simulations?

Yes

Calculate Risk Measures

No

Fig. 3.1. Basic Flowchart of the Simulation Process
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Fig. 3.2. Mean Portfolio Weight for Equities - Analytical Model
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Fig. 3.3. Mean Portfolio Weight for Equities - Genetic Algorithm
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Fig. 3.4. Mean Portfolio Weight for Equities - Simulated Annealing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Year

M
ea

n 
P

or
tfo

lio
 W

ei
gh

t f
or

 E
qu

iti
es

Fig. 3.5. Mean Portfolio Weight for Equities - Life Cycle
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Fig. 3.6. Mean Portfolio Weight for Equities - Threshold

Net Replacement Ratios

Since we assume that the final fund will be converted into an annuity, the retiree will
be more concerned with the net replacement ratio than the final fund. The net replace-
ment ratio is defined as the ratio of retirement income to final salary. Figs. 3.7–3.11
give the histograms of simulated net replacement ratios using different asset alloca-
tion methods whereas table 3.1 summarizes the distributional properties.

Table 3.1. Distributional Properties of Net Replacement Ratios

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Mean 0.6967 0.7101 0.7069 0.7621 0.8669
Standard Deviation 0.0914 0.0815 0.1061 0.3807 0.2455
Skewness 0.3010 0.4453 0.8456 1.6641 1.2166
Kurtosis 2.3447 1.9430 3.3381 4.2436 4.9628

The histograms depict that the analytical model, the genetic, and the simulated an-
nealing algorithms do a better job in terms of reducing the uncertainty regarding net
replacement ratio. Their common denominator is the existence of a cost function.
Although the threshold strategy includes some form of feedback control, it does not
seem to be as effective as the cost function.



42 K. Senel et al.

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

Net Replacement Ratio

F
re

qu
en

cy

Fig. 3.7. Net Replacement Ratio - Analytical Model

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

Net Replacement Ratio

F
re

qu
en

cy

Fig. 3.8. Net Replacement Ratio - Genetic Algorithm
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Fig. 3.9. Net Replacement Ratio - Simulated Annealing
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Fig. 3.10. Net Replacement Ratio - Life Cycle
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Fig. 3.11. Net Replacement Ratio - Threshold

The threshold strategy has the highest mean net replacement ratio among the five
methods, but its standard deviation is also high. If the domination criterion is selected
as “higher mean with lower standard deviation”, it only dominates the life cycle
strategy. In terms of the same criterion, the genetic algorithm slightly dominates the
analytical model and the simulated annealing algorithm.

However, it is impossible to tell if the threshold strategy should be preferred over
the genetic algorithm, or vice versa. Despite having a significantly higher mean, the
standard deviation of simulated net replacement ratios for the threshold strategy is
three times that of the genetic algorithm. Furthermore, the kurtosis levels imply a
much higher probability of extreme values for the threshold strategy compared to the
other methods.

It should be emphasized once again that the goal in this portfolio optimization
problem is not return or net replacement ratio maximization. Naturally, it is good
to have a higher net replacement ratio on average. Nevertheless, a higher net re-
placement ratio should not be compromised with higher risk. The goal of portfo-
lio optimization for pension funds is to increase the probability of attaining, or at
least approaching, a reasonable retirement income, i.e. a target net replacement ratio.
Therefore, although the distributional properties help us in evaluating different meth-
ods, the acid test for relative performances will be risk measures, i.e. the probability
of failing the target, mean shortfall, and 5th percentile.
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Risk Measures

Risk measures computed for the simulated net replacement ratios for different asset
allocation methods are presented in table 3.2. The threshold strategy has the lowest
probability of failure whereas the genetic algorithm has the best scores in terms of
mean shortfall and fifth percentile.

The simulation results reveal that there is an evident tradeoff between the size
and probability of failure. The threshold strategy failed only 118 times in 1,000
simulations and the shortfall averaged at 13.68% (of the final salary). Meanwhile,
the genetic algorithm failed 197 times whereas the mean shortfall realized at only
4.30%. In other words, the threshold strategy fails rarely; but, when it does, it misses
the target substantially.

In terms of the third risk measure, i.e. the 5th percentile, the genetic algorithm
outperforms the threshold strategy with a 7.6% difference. In other words, compared
to the threshold strategy, the ratio of retirement income to final salary will be 7.6%
higher for the genetic algorithm in the case of a really undesirable outcome.

Table 3.2. Risk Measures

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Probability of Failure 0.2680 0.1970 0.2700 0.4700 0.1180
Mean Shortfall 0.0565 0.0430 0.0553 0.1673 0.1368
5th Percentile 0.5559 0.5890 0.5537 0.3224 0.5131

Thus, in terms of downside risk, especially in terms of the size of shortfall from
the target level in the case of a failure, the risk measures for our base case scenario
indicate that the genetic algorithm outperforms the threshold strategy. On the other
hand, in terms of the mean-variance measure, there was a relatively small difference
in favor of the genetic algorithm compared to the analytical model and simulated
annealing algorithm. When risk measures are considered, the genetic algorithm out-
performs these two methods significantly.

3.7.2 Sensitivity Analysis (α = 10, 25, and 50)

Net Replacement Ratios

Tables 3.3–3.5 summarize the distributional properties of simulated net replacement
ratios for different levels of the risk aversion parameter α .
The first three methods, i.e. the analytical model, the genetic, and the simulated an-
nealing algorithms, attempt to minimize the same expected cost function that in-
corporates the risk aversion parameter α . Therefore, as risk aversion decreases, the
mean and standard deviation of net replacement ratios increase, as expected.3 On the

3 Risk aversion decreases as α increases (see sect. 3.5.1).
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Table 3.3. Distributional Properties of Net Replacement Ratios (α=10)

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Mean 1.0694 1.1028 1.0857 0.7944 0.8752
Standard Deviation 0.1803 0.1476 0.1596 0.3994 0.2635
Skewness -0.1371 1.1603 1.8022 1.1749 1.1325
Kurtosis 3.0827 4.0671 7.7428 1.2573 5.5661

Table 3.4. Distributional Properties of Net Replacement Ratios (α=25)

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Mean 1.6675 1.8874 1.8760 0.7944 0.8752
Standard Deviation 0.3732 0.3795 0.3837 0.3994 0.2635
Skewness -0.6392 2.8702 3.0741 1.1749 1.1325
Kurtosis 2.4946 13.8618 15.7853 1.2573 5.5661

Table 3.5. Distributional Properties of Net Replacement Ratios (α=50)

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Mean 2.4177 3.2044 3.1502 0.7944 0.8752
Standard Deviation 0.8009 0.6510 0.6487 0.3994 0.2635
Skewness -0.0831 1.8322 3.3758 1.1749 1.1325
Kurtosis 1.0573 4.4008 18.8976 1.2573 5.5661

other hand, the life cycle and threshold strategies are independent of the risk aversion
parameter α .

For α equals 10, all of the first three methods outperform the life cycle and
threshold strategies with higher mean and lower standard deviation. Among these
three methods, the genetic algorithm yields the best mean variance combination.
Although this outcome fortifies the results of our base case scenario, risk measures
for different values of α will shed further light on the relative performances of alter-
native methods, particularly from the viewpoint of downside protection.

Risk Measures

Risk measures computed for the simulated net replacement ratios for different values
of the risk aversion parameter α are presented in Tables 3.6–3.8.
The results manifest three important points. First, the analytical model, the genetic,
and the simulated annealing algorithms dominate the life cycle and threshold strate-
gies at all α levels in terms of all risk measures. This demonstrates the value of using
a cost (disutility) function in portfolio optimization. Second, despite using the same
expected cost function, the genetic and simulated annealing algorithms outperform
the analytical model drastically. This provides further evidence of the weakness of
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Table 3.6. Risk Measures (α=10)

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Probability of Failure 0.0300 - - 0.4200 0.1000
Mean Shortfall 0.1137 NA NA 0.1808 0.1900
5th Percentile 0.6994 0.9028 0.8735 0.2983 0.4689

Table 3.7. Risk Measures (α=25)

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Probability of Failure 0.0300 - - 0.4200 0.1000
Mean Shortfall 0.1039 NA NA 0.1808 0.1900
5th Percentile 0.8521 1.4880 1.4558 0.2983 0.4689

Table 3.8. Risk Measures (α=50)

Analytical Gen.Alg. Sim.Ann. Life Cycle Threshold

Probability of Failure 0.0300 - - 0.4200 0.1000
Mean Shortfall 0.0994 NA NA 0.1808 0.1900
5th Percentile 0.8896 2.4962 2.4454 0.2983 0.4689

analytical models in the realm of nonlinear search spaces with discontinuities. Third,
the genetic algorithm yields (slightly) better risk measures than the simulated anneal-
ing algorithm. Although both algorithms utilize some form of mutation, the genetic
algorithm also uses a crossover phase that may potentially enhance the probability of
generating better solutions. Considering that both algorithms have been given equal
chances, the results can be considered as an indication for the utility of crossover
phase.4

3.8 Conclusions and Future Studies

In this chapter, we present an evolutionary approach to the asset allocation problem
in defined contribution pension schemes. In proposing an evolutionary approach, we
consider the highly nonlinear search space with discontinuities. Nonlinearities arise
due to quadratic terms in portfolio variance for classical portfolio optimization and
nonlinear cost (disutility) functions, which are commonly used for pension portfolio
optimization. Discontinuities are due to short selling restrictions and other potential
constraints such as upper limits for individual assets. In particular, we compare the
simulation results from a genetic algorithm with results from an analytical model,
a simulated annealing algorithm, and two asset allocation strategies that are widely
used in practice, namely the life cycle and threshold (funded status) strategies.

4 See Sect. 3.5.2.
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The results of our simulations, which are shown to be robust to changing risk
aversion, presage a significant potential for the use of evolutionary algorithms in the
asset allocation problem of pension funds. The genetic algorithm generally outper-
forms the other methods both in terms of the classical mean-variance measure and
three other risk measures that are thought to be more relevant in the case of portfolio
optimization for pension funds.

For future studies, we shall consider the distribution phase, i.e. the post-retirement
phase. In particular, we will focus on the timing of conversion of funds into income
via purchase of annuities and the investment of funds during the drawdown period.
These problems appear to be even more challenging and provide an important test
ground for using evolutionary approaches in the field of insurance.

Appendix

The actual level of funds at time t+1 can be expressed as

ft+1 = ( ft + c)(y′W) (3.11)

or

ft+1 = ( ft + c)(W′y) (3.12)

where c is the contribution rate, y is the vector of portfolio weights and W is the
vector of real (gross) asset returns. Here, the real salary growth rate is assumed to be
zero and the real salary level is set equal to 1. Therefore, the annual contribution by
the individual is assumed to be equal to a constant contribution rate, c, throughout the
whole period. Although y and W are dependent on time, the subscript t is dropped
for convenience. y and W can explicitly be written as

y′ =
[

y1t y2t . . . ynt
]

(3.13)

and

W′ =
[

W1t W2t . . . Wnt
]
, Wit = exp(Xit), Xit ∼ N(µi,σ2

i ) (3.14)

where Xit is the real rate of interest for the i-th asset in period t, which is assumed to
be constant throughout the period, and n is the number of available assets. The asset
returns are assumed to be lognormally distributed. If (3.11) is rewritten explicitly,

ft+1 = ( ft + c)
[

y1t y2t . . . ynt
]⎡⎢⎢⎣

exp(µ1 +V1t)
exp(µ2 +V2t)

. . .
exp(µn +Vnt)

⎤⎥⎥⎦ , Vit ∼ N(0,σ2
i ) (3.15)

or
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ft+1 = ( ft + c)[y1t exp(µ1)exp(V1t)+ . . .+ ynt exp(µn)exp(Vnt)] (3.16)

Define

y′T =
[

y1t exp(µ1) y2t exp(µ2) . . . ynt exp(µn)
]

(3.17)

and

W′
T =

[
exp(V1t) exp(V2t) . . . exp(Vnt)

]
(3.18)

where yT is the transformed vector of portfolio weights and WT is the transformed
vector of (gross) asset returns. Similar to y and W, yT and WT are also dependent on
time, but the subscript t is dropped for convenience. Then, (3.16) can be rewritten as

ft+1 = ( ft + c)(y′T WT ) (3.19)

or

ft+1 = ( ft + c)(W′
T yT ) (3.20)

If the constraint that the portfolio weights should add up to 1 is imposed upon, the
optimization problem can be stated as

minE[Ct+1|It(in f ormation available at time t)], s.t. µ ′yT = 1 (3.21)

where µ is a vector comprised of all exp(−µi)’s. µ can explicitly be written as

µ ′ =
[

exp(−µ1) exp(−µ2) . . . exp(−µn)
]

(3.22)

In order to solve the optimization problem in (3.21), a Lagrange multiplier κ is as-
sociated with the above constraint and the Lagrangian

E(Ct+1|It)−κ(µ ′yT −1) (3.23)

is formed. Now, the optimization problem in (3.21) becomes

min[E(Ct+1|It)−κ(µ ′yT −1)] (3.24)

In (26), yT , the transformed optimal portfolio weights that minimize the expected
cost function at t+1, are derived as

yT =
(2Ft+1 +α)( ft + c)H−1E(WT |It)+κH−1µ

2( ft + c)2 (3.25)

where,

H = E(WT W′
T |It) (3.26)
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and

κ =
2( ft + c)2− (2Ft+1 +α)( ft + c)µ ′H−1E(WT |It)

µ ′H−1µ
(3.27)
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Summary. This chapter describes an evolutionary approach to portfolio optimization. It re-
jects some assumptions from classic models, introduces alternative risk measures and proposes
three evolutionary algorithms to solve the optimization problem. In order to validate the ap-
proach proposed, results of a number of experiments using data from the Paris Stock Exchange
are presented.

4.1 Introduction

Evolutionary Algorithms have been successfully incorporated into many fields of
science and technology, notably including the domains of economics and finance
(5), (7), (10), (14). This chapter presents another application of evolutionary algo-
rithms in this domain, namely an evolutionary approach to the problem of portfolio
optimization. Although some analytical methods are well-known for classic versions
of the problem (1), (4), an extension of the problem by introducing more complex
risk measures and loosening several artificial assumptions requires a new efficient
approach, which cannot be developed on the basis of classic methods due to the ir-
regularity of the objective function and the search space. However, the opportunities
provided by evolutionary algorithms (2), (12) may lead to an efficient optimization
of portfolio structures.

Moreover, apart from theoretical constraints, the approach presented in this chap-
ter focuses also on a few practical constraints such as budget constraints, which
means that the user of the system has only finite amount of money, as well as in-
vestor capabilities and preferences, which means that the user has to obey various
market regulations and pay transaction fees. Moreover, an important constraint is
constituted by time restrictions and hardware limits.

4.2 Classic Approach to Portfolio Optimization

In this chapter, we focus on the main goal of investors, which is to optimally allocate
their capital among various financial assets. Searching for an optimal portfolio of
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stocks, characterized by random future returns, seems to be a difficult task and is
usually formalized as a risk-minimization problem under a constraint of expected
portfolio return (4). The risk of portfolio is often measured as the variance of returns,
but many other risk criteria have been proposed in the financial literature (1) (3).
Portfolio theory may be traced back to the seminal Markowitz paper (11) and is
presented in an elegant way in (4). Consider a financial market on which n risky
assets are traded. Let

R = (R1,R2, . . . ,Rn)′ (4.1)

be the square-integrable random vector of random variables representing their return
rates. Denote as r = (r1,r2, . . . ,rn)′ ∈ Rn the vector of their expected return rates

r = (E[R1],E[R2], . . . ,E[Rn])′ = E[R] (4.2)

and as V the corresponding covariance matrix which is assumed positive definite. A
portfolio is a vector x = (x1,x2, . . . ,xn)′ ∈ Rn verifying

x1 + x2 + . . .+ xn = 1. (4.3)

Hence xi is the proportion of capital invested in the i-th asset. Denote as X the set of
all portfolios. For each portfolio x ∈ X , we define

Rx = x1R1 + x2R2 + . . .+ xnRn = x′R (4.4)

as the random variable representing the portfolio return rate and then

E[Rx] = x1r1 + x2r2 + . . .+ xnrn = x′r (4.5)

is the portfolio expected return rate. For a fixed level e ∈ R of expected return rate,
let

Xe = {x ∈ X : E[Rx] = e} (4.6)

be the set of all portfolios leading to the desired expected return rate e. Therefore, the
classic Markowitz’s problem of portfolio optimization may be formulated as finding
x̃ ∈ Xe such that:

Var[Rx̃] = min{Var[Rx] : x ∈ Xe}, (4.7)

where the variance is considered as the risk measure. Such a problem, defined in the
classic portfolio theory, may be solved using analytical methods (4). Although the ap-
proach has very strong mathematical foundations and completed theoretical models,
it requires some artificial and unreal assumptions, so there appear some competitive
practical approaches, which extend these theoretical models to the real investment
market (6) (9) (10).

4.3 Competitive Approaches to Portfolio Optimization

In spite of its wide diffusion in the academic and professional worlds, the classic
approach is often criticized for its artificial assumptions (3). Therefore, there are an
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increasing number of competitive approaches to portfolio optimization, which are
based rather on heuristic descended from empirical observations than on theoretical
models. Unfortunately, loosing some theoretical assumptions, the problem becomes
more and more complex, hence it cannot be solved in the classic way (3).

Many competitive approaches are based on artificial intelligence (6), (9), (10).
They extend the classic model by introducing several alternative risk measures in-
stead of variance. Such extended problems cannot be solved by analytical methods,
because of their complexity, irregularity and lack of proper optimization tools. How-
ever, evolutionary algorithms used as an optimization method can do with such prob-
lems returning satisfying results. In order to extend the classic problem of portfolio
optimization, let us replace the criteria (4.7) with the criteria

ρ(x̃) = min{ρ(x) : x ∈ Xe}, (4.8)

where ρ : X → R is a risk measure, i.e. a function which assign to each portfolio
x ∈ X its risk ρ(x) ∈ R. In this chapter, we consider a few risk measures, which are
the most popular alternatives to variance, such as semivariance of the return rate (3)

ρ(x) = SVar[Rx] = E[(Rx−E[Rx])2
−] (4.9)

where

(Rx−E[Rx])− =
{

0, if E[Rx]≤ Rx
Rx−E[Rx], if Rx < E[Rx]

(4.10)

or the downside risk of the return rate (3)

ρ(x) = DSRq[Rx] = E[(Rx−E[Rx])q] (4.11)

for a given q≥ 0 (clearly, semivariance is the downside risk with q = 2). These two
measures take into consideration the fact that investors usually consider the risk of an
investment rather as the probability that the value of the investment will decrease be-
low the expected level than as the probability that it will increase above the expected
level (so-called asymmetric risk).

In order to construct a more objective risk measure, we combine a few different
measures introducing a new risk measure, a composition of variance, semivariance
and downside risk, in the following form

ρ(x) = αV Var[Rx]+αSSVar[Rx]+
n

∑
i=1

αiDSRqi [Rx] (4.12)

for a given n, given q1,q2, . . . ,qn and αV ,αS,α1,α2, . . . ,αn, chosen in a separate
optimization process described further.

4.4 Classic and Practitioner Performance Measures

In portfolio optimization, there are two factors taken into consideration: the expected
return rate and the risk, defined either by the variance of the return rate or by another
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measure. According to the model, investors always deal with the trade off between a
high expected return rate and a low risk. However, in practice, investors often look for
a universal measure to compare investments with different expected return rates and
different risks, as they are willing to accept a higher risk if the expected return rate
would be extremely high, or to accept a lower expected return rate if the risk would
be low. Such a universal measure is also necessary to finally assess an investment,
compare it with other investments built on different criteria, and to calculate how
well the return of an investment compensates the risk taken.

There are a number of such measures, called performance measures (1), used by
financial analysts and stock market investors. One of the most classic performance
measures is the Sharpe ratio (1), denoted here as ηSh, defined as the ratio of the
return rate minus the return rate of the risk free investment to the standard deviation
of the return rate. Another popular performance measure is the Treynor ratio (1),
denoted here as ηTr, which is the ratio of the return rate minus the return rate of the
risk free investment to the beta coefficient (from the CAPM model described in (4)).
There are also some performance measures with asymmetric preferences, such as the
Sortino ratio (1), denoted here as ηSo, defined as the ratio of the return rate minus
the return rate of the risk free investment to the standard semideviation of the return
rate, as well as some practitioner performance measures, such as the Sterling ratio
(1), denoted here as ηSt , which is the ratio of the return rate minus the return rate of
the risk free investment to the maximum drawdown.

ηSh(x) =
E[Rx]− r0√

Var[Rx]
, ηTr(x) =

E[Rx]− r0
βx

,

ηSo(x) =
E[Rx]− r0√

SVar[Rx]
, ηSt(x) =

E[Rx]− r0
MDD[Rx]

,

where MDD[Rx] denotes the maximum drawdown in the value of the portfolio x,
usually calculated in the context of a specific period. In this chapter, performance
measures are used in the final evaluation of the discovered portfolios and in the com-
parison of portfolios built using different risk measures.

4.5 Data Description and Problem Definition

All the experiments are performed using data from the Paris Stock Exchange con-
sisting of financial time series of price quotations of 40 different stocks, from the
CAC40 index, over a specific time period. On the basis of these data, the return rates
are estimated. Let

(ξ (1)
k ),(ξ (2)

k ), . . . ,(ξ (n)
k )

denote time series representing prices of stocks A1,A2, . . . ,An respectively, i.e. for
each i = 1,2, . . . ,n the sequence

ξ (i)
0 ,ξ (i)

1 , . . . ,ξ (i)
m
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contains prices of the stock Ai in consecutive time instants of the specific period and
m + 1 denotes the length of the time period (the same for all the stocks Ai). Further,
let

r(i)
1 ,r(i)

2 , . . . ,r(i)
m

denote a time series of return rates of the stock Ai in consecutive time instants of the
specific period, i.e.

r(i)
j =

ξ (i)
j −ξ (i)

j−1

ξ (i)
j−1

, for j = 1,2, . . . ,m.

Therefore, for each i = 1,2, . . . ,n, the expected return rate ri = E[Ri] and the variance
Var[Ri] may be computed respectively as

ri =
1
m

m

∑
j=1

r(i)
j , Var[Ri] =

1
m−1

m

∑
j=1

(r(i)
j − ri)2. (4.13)

Similarly, one may compute the correlation matrix Σ . For any portfolio x ∈ Rn, the
expected return rate rx = E[Rx] and the semivariance SVar[Rx] may be computed
respectively as

rx =
n

∑
i=1

xiri, SVar[Rx] =
1

m−1

m

∑
j=1

(
n

∑
i=1

xir
(i)
j − rx)2 (4.14)

In our approach, the problem of portfolio optimization is expressed as finding a vec-
tor x ∈ Rn minimizing a given risk measure ρ : X→ R under the constraint that the
expected return rate rx is no lower than a given value e ∈ R (the value e is often
defined by the expected return rate of a specific initial portfolio x0, given by the user
instead of the value e explicite). It is considered in the context of a given set of stocks
A1,A2, . . . ,An with time series of its prices over a given time period. Such a problem
with irregular risk measures constitutes a hard optimization problem.

4.6 Evolutionary Algorithms for Portfolio Optimization

In this chapter, we focus on solving the optimization problem defined in the previous
section using evolution strategies. Three different algorithms are applied: a simple
evolution strategy with the famous Rechenberg’s 1/5 success rule (called here ES1)
(2), (12), a classic ES(µ ,λ ) evolution strategy with mutation parameters encoded in
individuals (called here ES2) (2), (12) and a more advanced ES(µ ,λ ,ρ,κ) evolution
strategy with mutation by multidimensional rotations (called here ES3) (13).

4.6.1 Search Space and Objective Function

In all the algorithms, the portfolio is encoded as an n-dimensional real number vec-
tor x ∈ Rn, where n is the number of stocks in the portfolio under consideration.
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The search space is the entire n-dimensional real number space Rn – although some
elements of the space may not represent portfolios, they may be normalized to ful-
fill the condition (4.3). The objective function is basically given by the risk measure
ρ : X → R, but is slightly modified by some heuristic additional factors, which are
also considered by certain financial experts and stock market analysts, such as the β
coefficients of the portfolio evaluated and the specific initial portfolio. Therefore, the
following objective function is studied

F(x) =
1

1+ ε1 ·ρ(x)+ ε2 · |βx−βx0 |+ ε3 ·Cov[Rx,Ri]
(4.15)

where x0 denotes the specific initial portfolio, usually given by the user, Ri denotes
the return rate of the stock market index and βx,βx0 denote the β coefficients of
the portfolio evaluated x and the specific initial portfolio x0 respectively. Factors
ε1,ε2,ε3 are used to tune the algorithm and to adjust the importance of each compo-
nent of the objective function.

These objective functions refer to some heuristics using parameters such as the β
coefficient. By introducing the difference between the βx of the generated portfolio
and the βx0 of the portfolio of reference, we penalize the portfolio having βx far away
from βx0 of the reference. Nevertheless, the performance of a solution is defined in
terms of expected return and risk of the portfolio over a test period as was mentioned
in previous sections.

4.6.2 The ES1 Algorithm

Fig. 4.1 describes the ES1 algorithm, based on a simple evolution strategy with mu-
tation controlled by the Rechenberg’s 1/5 success rule and without recombination.
First, the algorithm initializes the mutation parameter σ , being a real number, which
defines the strength of the mutation, and creates an initial population P , composed
of N individuals, at random, either with uniform probability (each individual is drawn
independently from the entire search space, and each point of the search space has
equal probability of being drawn) or using a specific initial portfolio x0 (each indi-
vidual is drawn independently from the neighborhood of the initial portfolio, usually
by random noising its coefficients). Naturally, each individual in the initial popula-
tion has to fulfill the financial constraints, thus, after being drawn, it undergoes a
validation and if it does not satisfy all the constraints, it is drawn again or repaired.
After creation, the population is evaluated according to the objective function F .

Each iteration of the algorithm consists of reproducing the old population, evalu-
ating the new population and updating the mutation parameter. Reproduction begins
with creating a parent population P(P) of size N by random drawing N individuals
from the original population P , one by one, with the probability of being drawn for
each individual in the original population P proportional to its value of the objective
function (so-called roulette wheel method). After parent selection, each individual x
from the parent population P(P) undergoes the process of mutation, which consists
of adding a random noise εi to each coefficient xi. In the ES1 algorithm, the random
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ES1(F,N,σ0,θ1,θ2)
1 σ ← σ0;
2 P ← RANDOM-POPULATION(N);
3 POPULATION-EVALUATION(P,F);
4 while not TERMINATION-CONDITION

5 do
6 P(P)← PARENT-SELECTION(P);
7 P(C)←MUTATION(P(P),σ);
8 P ← REPLACEMENT(P ∪P(C));
9 POPULATION-EVALUATION(P,F);

10 SIGMA-UPDATING(σ ,θ1,θ2);

Fig. 4.1. The ES1 algorithm proposed to optimize an objective function F with a population
P composed of N individuals, where σ0,θ1,θ2 are algorithm parameters.

noise εi is drawn, separately for each individual and each coefficient, with gaussian
distribution N (0,σ). Consequently, a new population P(C) appears. Naturally, each
individual in the children population P(C) has to fulfill the financial constraints, thus,
it undergoes a validation, as in creating the initial population. Finally, in replacement,
the original population P is replaced with the best N individuals from the union of
the original population P and the children population P(C), in a deterministic man-
ner. Afterwards, the population is evaluated according to the objective function F .

The parameter σ is updated according to the Rechenberg’s 1/5 success rule: it
is increased by θ1 when, in the last 5 iterations, the number of mutations leading to
improvement of individuals exceeded 20% of total mutations, and is decreased by θ2
when the number of mutations leading to deterioration of individuals exceeded 20%
of total mutations. Normally, the algorithm terminates when it completes a specific
number of iterations or when there is no increases in objective function values over
a specific number of recent iterations.

4.6.3 The ES2 Algorithm

Fig. 4.2 describes the ES2 algorithm, based on a classic evolution strategy with dy-
namic mutation using parameters encoded in individuals and with recombination.
First, the algorithm creates an initial population P , composed of N individuals,
at random, as in the ES1 algorithm. However, in this algorithm, each individual is
equipped with one additional chromosome σ , being a real number vector of the same
length as the main chromosome x, used in the mutation, drawn with uniform proba-
bility over the Rn space. After creation, the population is evaluated according to the
objective function F .
Afterwards, the population evolves under the influence of evolutionary operators,
namely parent selection, recombination, mutation, and replacement, until a termi-
nation condition is satisfied. In parent selection, a new population P(P) of size 4N
appears by random drawing 4N individuals from the original population P (four
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ES2(F,N,τ)
1 P ← RANDOM-POPULATION(N);
2 POPULATION-EVALUATION(P,F);
3 while not TERMINATION-CONDITION

4 do
5 P(P)← PARENT-SELECTION(P);
6 P(C)← RECOMBINATION(P(P));
7 P(C)←MUTATION(P(C),τ);
8 P ← REPLACEMENT(P ∪P(C));
9 POPULATION-EVALUATION(P,F);

Fig. 4.2. The ES2 algorithm proposed to optimize an objective function F with a population
P composed of N individuals, where τ is an algorithm parameter.

parents for each new descendant). Individuals are selected one by one with the prob-
ability of being drawn for each individual in the original population P proportional
to its value of the objective function (so-called roulette wheel method). Next, in re-
combination, individuals from the parent population P(P) are randomly matched in
groups of four, and each four parents produce one descendant using one of two oper-
ators chosen randomly with equal probability: either the global intermediary recom-
bination or the local intermediary recombination. In the first operator, coefficients of
the descendant are arithmetic averages of coefficients of all the four parents. In the
second operator, two parents are randomly chosen from these four parents chosen
earlier, for each coefficient separately, and next, the coefficient of the descendant is
the arithmetic average of coefficients of the two parents. Consequently, a new popu-
lation P(C) of size N appears. After recombination, each individual x from the chil-
dren population P(C) undergoes the process of mutation, which consists of adding
a random noise εi to each coefficient xi. In the ES2 algorithm, the random noise εi
is drawn, separately for each individual and each coefficient, with gaussian distrib-
ution N (0,σi), where σi denotes the i-th coefficient of the parameter σ encoded in
the additional chromosome of the individual. The parameter σ undergoes the evo-
lution as well: it is recombined together with the main chromosome x and mutated
by adding to each coefficient σi a random noise εi drawn with gaussian distribu-
tion N (0,τ). Finally, in replacement, the original population P is replaced with
the best N individuals from the union of the original population P and the children
population P(C), in a deterministic manner. Afterwards, the population is evaluated
according to the objective function F and the process of evolution is repeated until
the algorithm completes a specific number of iterations or when there is no increases
in objective function values over a specific number of recent iterations.

4.6.4 The ES3 Algorithm

Fig. 4.3 describes the ES3 algorithm, based on an advanced evolution strategy with
dynamic mutation by multidimensional rotations and with recombination. First, the
algorithm creates an initial population, as in the ES1 and ES2 algorithm. However, in
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this algorithm, each individual is equipped with two additional chromosomes σ and
α , used in the mutation, drawn with uniform probability over the Rn and Rn(n+1)/2

space, respectively. Moreover, each individual has an associated parameter κ denot-
ing the age of the individual (the number of iterations that the individual survive).
After creation, the population is evaluated according to the objective function F .

ES3(F,N,τ1,τ2,κ0)
1 P ← RANDOM-POPULATION(N);
2 POPULATION-EVALUATION(P,F);
3 while not TERMINATION-CONDITION

4 do
5 P(P)← PARENT-SELECTION(P);
6 P(C)← RECOMBINATION(P(P));
7 P(C)←MUTATION(P(C),τ1,τ2);
8 P ← REPLACEMENT(P ∪P(C),κ0);
9 POPULATION-EVALUATION(P,F);

Fig. 4.3. The ES3 algorithm proposed to optimize an objective function F with a population
P composed of N individuals, where τ1,τ2,κ0 are algorithm parameters.

In general, the algorithm is similar to the ES2 algorithm, but the difference lies in
the mutation operator, described further, and in the replacement operator, where only
the individuals with the age κ not exceeding the parameter κ0 can survive.

In the ES3 algorithm, mutation is controlled by two parameters σ and α , en-
coded in two additional chromosomes of each individual. The parameter α is used
for drawing a random direction in the n-dimensional real number space and the pa-
rameter σ is used for drawing a random movement in this direction. As in the ES2
algorithm, the additional chromosomes undergo the evolution as well. Details of the
process of mutation may be found in (13).

4.7 Validation of the Approach

In order to validate our approach to portfolio optimization, we present the results of
a large number of experiments performed on data from the Paris Stock Exchange,
which include financial time series of daily price quotations of stocks constituting
the CAC40 index, recorded over the period January 4, 1999 to June 29, 2007.

Before the actual experiments started, we performed some introductory experi-
ments to calibrate the coefficients of the composite risk measure described in pre-
vious sections, i.e. n, q1,q2, . . . ,qn and αV ,αS,α1,α2, . . . ,αn. A number of different
settings was tried out and the settings chosen were those that produced the strongest
correlation between the risk estimated a priori and the deviation of the future return
rate evaluated a posteriori from the expected return rate estimated a priori. In spite
of the composite risk measure, two other measures, namely the semivariance and the
downside risk with q = 0.5 was applied in further experiments.
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Each experiment began with choosing stocks A1,A2, . . . ,An constituting financial
instruments available for an investor. In each experiment, n = 10 or n = 20 stocks
were randomly chosen from all the stocks in our financial database (including about
40 stocks). Next, an initial portfolio x0 was drawn corresponding to partitioning the
investor’s capital among the available stocks. Afterwards, a time instant t was chosen
and the evolutionary algorithms presented in previous sections was applied to opti-
mize the initial portfolio at the time t with respect to the risk measure ρ , i.e. to find
an optimal portfolio x of equal or higher expected return rate E[x]≥ E[x0] and min-
imum risk measure ρ(x). Each algorithm was run with each performance measure
under consideration. All the computations concerning estimation of return rates were
done over the period preceding the time instant t, i.e. over the time period (t−∆ t, t),
where ∆ t = 25. Finally, all the optimal portfolios discovered were compared with
respect to risk and performance measures.

In the validation, a few issues were studied. First, in order to assess the optimiza-
tion quality, the risk ρ(x0) of the initial portfolio x0 were compared with the risk
ρ(x) of the built optimal portfolio x and the risk ρ(x∗) of the reference portfolio x∗
optimal according to the Markowitz model (it is worth noticing that the reference
portfolio x∗ need not be optimal according to the performance measure ρ different
than variance). Next, in order to compare the portfolios optimal according to different
risk measures, four performance measures were calculated for each of them.

Table 4.1 shows a summary of results concerning the risk and performance com-
parison. Each row corresponds to an experiment, repeated 10 times to avoid random
influence, with different initial portfolio and different risk measure (in fact, the ta-
ble shows the best of the 30 results obtained by running 10 times each of the three
optimization algorithms). One may see that the built portfolio x had always lower
risk than the initial portfolio x0. It is worth noticing that the built portfolio x also
had always lower risk than the reference portfolio x∗, which proved that a portfolio
optimal according to variance is not optimal according other risk measures.

Next, the results of the experiments were studied with the aim to assess and
compare the three evolutionary algorithms with respect to the quality of solutions
and the computing time. In the validation, the quality of solutions was measured by a
number ω of cases when the optimum found by the algorithm under study was better
than the optima found by the other two algorithms.

Table 4.2 shows performances of the three evolutionary algorithms. The second
column contains the number ω . The third column contains the average computing
time. Not surprisingly, the last algorithm had the best performance, but it also re-
quired the longest computing time.
Finally, the optimal portfolios discovered were examined in order to assess and com-
pare their profitability. For each experiment, a future time period (t, t +∆ t), where
∆ t = 25, unknown during the optimization process, were considered. Over that pe-
riod, actual return rates of all the three portfolios, namely x0,x,x∗, were computed
and compared. Table 4.3 shows the comparison of the actual return rates of the three
portfolios. Each row corresponds to an experiment, repeated 30 times. In the first,
second and third column, there is the number of cases where the portfolio x0,x,x∗,
respectively, turned out to outperform the others. In the next two columns, there is
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Table 4.1. Risk and performance measures for the initial portfolio x0, the built optimal port-
folio x, and the reference portfolio x∗ optimal according to the Markowitz model for n = 10
and n = 20 stocks

n ρ ρ(x0) ρ(x) ρ(x∗) ηSh(x) ηTr(x) ηSo(x) ηSt(x)
10 SVar 0.8374 0.4036 0.4463 0.9724 0.6148 0.7724 0.4714
10 DSR 0.8374 0.3482 0.4463 0.9874 0.5242 0.8141 0.4716
10 Comp. 0.8374 0.2567 0.4463 0.8643 0.5163 0.6814 0.3741
10 SVar 0.7464 0.4156 0.5183 0.9163 0.5916 0.8314 0.4147
10 DSR 0.7464 0.5012 0.5183 0.8914 0.6149 0.7913 0.3742
10 Comp. 0.7464 0.3043 0.5183 0.9012 0.5914 0.7831 0.4825
20 SVar 0.7913 0.4284 0.4384 0.9824 0.5817 0.6971 0.4279
20 DSR 0.7913 0.3817 0.4384 0.9305 0.6184 0.6814 0.4014
20 Comp. 0.7913 0.3784 0.4384 0.9745 0.6384 0.7194 0.4765
20 SVar 0.8012 0.4892 0.6103 0.9242 0.5942 0.8104 0.3975
20 DSR 0.8012 0.4356 0.6103 0.9847 0.6278 0.8042 0.4146
20 Comp. 0.8012 0.3874 0.6103 0.8942 0.6247 0.6792 0.4714

Table 4.2. Quality of solutions (a number of cases when the optimum found by the algorithm
under study was better than the optima found by the other two algorithms) and computing
time for the three evolutionary algorithms

Algorithm ω Computing Time
ES1 - SVar 28 17 s
ES1 - DSR 25 24 s
ES1 - Comp. 19 39 s
ES2 - SVar 34 18 s
ES2 - DSR 32 27 s
ES2 - Comp. 23 42 s
ES3 - SVar 38 33 s
ES3 - DSR 43 41 s
ES3 - Comp. 58 97 s

the number of cases where the portfolio x outperformed the buy & hold strategy
and the stock market index, respectively. It can be seen that the built portfolio x and
the reference portfolio x∗ usually led to higher profits than the initial portfolio x0.
Moreover, in some cases, the built portfolio x outperformed the stock market index.

4.8 Conclusions and Perspectives

This chapter concerns an evolutionary approach to portfolio optimization. It rejects
some assumptions from classic models, introduces alternative risk measures such as
semivariance, downside risk and a new composite risk measure, and proposes three
evolutionary algorithms to solve the optimization problem. In order to validate the
approach proposed, results of a number of experiments on real-life data from the
Paris Stock Exchange are presented. Built investment strategies are compared with
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Table 4.3. Comparison of actual future return rates of the initial portfolio x0, the built optimal
portfolio x, and the reference portfolio x∗ optimal according to the Markowitz model (the
number of cases where the portfolio outperformed the others) as well as the number of cases
where the built optimal portfolio x outperformed the buy & hold strategy and the stock market
index

x0 x x∗ B&H Index
0 27 3 30 4
1 27 2 30 6
0 28 2 30 7
4 23 3 29 5
5 24 1 30 4
0 28 2 29 3
2 25 3 30 8
0 27 3 30 9
3 25 2 28 4
0 29 1 30 6
2 26 2 30 6
4 25 1 30 5

competitive ones built with other risk measures as well as with the buy & hold strat-
egy and the stock market index. Finally, the results show that the approach proposed
is capable of investing more efficiently than the simple buy & hold strategy and the
stock market index in some cases.

However, the approach proposed can be still improved by additional studies on
the objective and fitness function as well as on risk measures. Moreover, modifying
evolutionary operators, especially recombination, can increase the efficiency of the
algorithms. Additional effort should be put on methods of portfolio validation in or-
der to eliminate unacceptable solutions at the moment of its creation. It is also worth
noting that the evolutionary approach in stock trading is still in an experimentation
phase. Further research is needed, not only to build a solid theoretical foundation in
knowledge discovery applied to financial time series, but also to implement an effi-
cient validation model for real-life data. The presented approach seems to constitute
a practical alternative to classical theoretical models.
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Summary. In this chapter, the concept of evolutionary stochastic portfolio optimization is
discussed. Selected theory from the fields of Stochastic Programming, evolutionary computa-
tion, portfolio optimization, as well as financial risk management is used to derive a general-
ized framework for computing optimal financial portfolios given an uncertain future using a
probabilistic risk measure approach. A set of structurally different risk measures - Standard
Deviation, Mean-absolute Downside Semi Deviation, Value-at-Risk, and Expected Shortfall -
which are commonly used for practical portfolio management purposes have been selected to
substantiate the approach with numerical results.

5.1 Introduction

During recent years, the increasing need for financial decision optimization algo-
rithms for complex, and often non-convex optimization problems in the area of fi-
nancial engineering led to a significant increase in the use of biologically inspired
algorithms for practical financial management purposes, see e.g. (4). In this chapter,
the well-known technique of Stochastic Programming is applied to solve financial
portfolio optimization problems under uncertainty based on probabilistic risk mea-
sures. Evolutionary computation methods are exploited to allow for a generalization
of the underlying problem structure and to solve the resulting optimization problems
numerically in a systematic way. This chapter is organized as follows. The remainder
of section 5.1 contains a short summary of Stochastic Programming, as well as an
overview of previous evolutionary approaches to portfolio optimization. Section 5.2
surveys the field of (stochastic) portfolio optimization, and discusses the generaliza-
tion of the well-known Markowitz portfolio approach to scenario-based Stochastic
Programming. Furthermore, the loss-distribution based approach and its relation to
probabilistic risk measures within the evolutionary optimization process is explained.
Section 5.3 presents ideas and strategies for implementing a successful evolutionary
portfolio optimization framework based on the discussion in section 5.2, and contains
a section on different constraint handling techniques. Section 5.4 outlines details of
the implementation, and presents a set of numerical results, while section 5.5 con-
cludes this chapter.
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5.1.1 Stochastic Programming

To summarize the concept of Stochastic Programming, consider the classical deter-
ministic optimization problem, where a decision maker aims at finding an optimal
(numerical) decision x ∈ Rn by minimizing a deterministic cost function f (·) (or by
maximizing a profit function respectively) given a set X of constraints, which gen-
erally consists of various physical, organizational, and regulatory restrictions. The
mathematical formulation of this problem can be simplified to the formulation shown
in Equ. (5.1).

optimize x : f (x)
subject to x ∈X .

(5.1)

During the 1950s Stochastic Programming was initiated by the seminal papers of
Dantzig (6) and Beale (2). It is one of the main techniques for modeling and solving
decision optimization problems under uncertainty, which is a class of optimization
problems inherent to the application area of financial engineering. Due to the recent
developments both from the computational and the algorithmic viewpoint, solutions
of large stochastic programs are generally computable using standard computer hard-
ware. The idea is to replace deterministic parameters by probability distributions on
some probability space (Ω ,F ,P), which will be denoted by Ξ in the following, and
to optimize a stochastic cost (or profit) function f (·, ·) over some probability func-
tional F. A common choice regarding this functional is the expectation E. As Rock-
afellar (23) points out, expectations are only suitable for situations where the interest
lies in long-range operation, and stochastic ups and downs can safely average out,
which is not the case for controlling financial market risk. The recent progress of uni-
fying probabilistic risk measures, as presented in the seminal paper by Artzner et al.
(1) on coherent risk measures, motivated for using probability functionals based on
such financial risk measures. See the recent book (22) for more details on modeling,
measuring, and managing risk for this class of optimization applications. A different
view on the integration of risk measures using the concept of deviation measures is
shown in (25). In summary, the resulting mathematical meta-formulation of a sto-
chastic program for arbitrary probability functionals is shown in eq. (5.2).

optimize x : F( f (x,Ξ))
subject to (x,Ξ) ∈X .

(5.2)

However, a concrete reformulation of this meta-model into some model, which can
be solved with a numerical optimizer depends to a high degree on the chosen prob-
ability functional, as well as on the structure of the underlying probability space.
The interested reader is referred to (26) for a recent theoretical overview of the area
of Stochastic Programming, and to (37) for Stochastic Programming languages, en-
vironments, and applications. Interestingly, evolutionary approaches have not been
applied to a wide range of real stochastic programming problems so far, with only a
few examples available, e.g. recent works in the field of chemical batch processing,
see (34) and (32).
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5.1.2 Stochastic Portfolio Optimization

The analysis in this chapter is based on the stochastic single-stage (single-period)
scenario-based risk-return portfolio optimization problem. This approach belongs to
the class of static stochastic programming, as there are no dynamic asset rebalancing
events taking place at intermediate time-stages between the day of the decision (t =
0) and the end of the investment horizon (t = T ).

The scenario-based approach can be categorized as a generalization of the class
of bi-criteria mean-variance portfolio optimization problems, which were initiated by
the seminal work of Markowitz (see (17)) on portfolio theory. The main difference
is that the whole underlying probability space is used for optimization purposes,
such that a general class of risk measures can be applied. It is still straightforward to
calculate parameters for the pure Markowitz approach by computing the mean vector
and the correlation matrix of the given probabilistic model. This issue is discussed in
section 5.2 in more detail.

However, the generality necessitates a reformulation of the stochastic meta-
model, as shown in eq. (5.2), for each risk functional, e.g. if a deterministic-
equivalent formulation is desired. To avoid this problem, an evolutionary approach
may be used, such that intermediate reformulations are not necessary. This is a clear
advantage considering that reformulations have to be built on a sound theoretical
framework, and might need to be reconsidered, whenever the underlying structure
changes slightly.

5.1.3 Evolutionary Portfolio Optimization

In the evolutionary computation approach, the underlying stochastic portfolio opti-
mization problems will be solved by adapting a standard genetic algorithm, e.g. as
surveyed by (3) and summarized in fig. 5.1, to handle the stochastic meta-model di-
rectly without any reformulation. Using such an evolutionary approach allows for
application of the same optimization technique and decision support framework for
every loss distribution-based risk measure, regardless of its underlying structure. This
general idea was already outlined in (12).
The portfolio optimization problem naturally fits into the general problem structure
usually handled with evolutionary algorithms. Evolutionary approaches have been
successfully applied to different classes of portfolio optimization problems, see e.g.
(28), (27), (31), (11), (15), as well as the references therein, or refer to (16). Some of
the approaches mention the field of Stochastic Programming explicitly, e.g. (33), and
(38). Most of the proposed methods put the main focus on multi-criteria optimiza-
tion, see especially (7) for portfolio optimization from the viewpoint of Multiple
Criteria Decision Making (MCDM) applying different heuristic solution techniques
including genetic algorithms. This is clearly due to the multi-criteria nature of the
portfolio optimization problem. However, most approaches are restricted to the pure
Markowitz approach, i.e. using solely the expectation vector and correlation matrix
of the financial assets under consideration, or use hybrid techniques, which are still
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GA(F,N)
1 P ← GENERATE RANDOM-POPULATION(N);
2 POPULATION-EVALUATION(P,F);
3 while not TERMINATION-CONDITION

4 do
5 P(P)← PARENT-SELECTION(P);
6 P(C)← RECOMBINATION(P(P));
7 P(C∗)←MUTATION(P(C));
8 POPULATION-EVALUATION(P(C∗),F);
9 P ← REPLACEMENT(P ∪P(C∗));

Fig. 5.1. Meta-heuristic: Genetic Algorithm with a population N and a fitness function F .

conceptually based on the Markowitz case. One of the main problems from the view-
point of financial engineers is the estimation of the correct correlation matrix, which
is crucial for obtaining relevant results.

5.2 Portfolio Optimization

5.2.1 Mean-Variance Portfolio Optimization

The classical bi-criteria portfolio optimization problem based on Markowitz can be
summarized as follows: An investor has to choose a portfolio from a set of (financial)
assets A with finite cardinality a = |A | to invest her available budget. The bi-criteria
problem stems from the fact that the investor aims at maximizing her return while
aiming at minimizing the risk of the chosen portfolio at the same time. Markowitz
initially proposed to minimize the variance of the portfolio subject to reaching at
least an expected return of µ , i.e. given a correlation matrix C and an expectation
vector ē, the resulting optimization problem can be written as a quadratic program,
and is shown in eq. (5.3). The parameter µ is the minimal required amount of return
specified by the investor.

minimize x : xTCx
subject to ēT x≥ µ ,

1T x = 1,
x≥ 0.

(5.3)

This optimization problem can be seen as a stochastic program. It should also be
noted, that Markowitz initially also suggested to maximize the expectation, and limit
the variance by some upper limit. However, this optimization problem was not di-
rectly (re-)formulated for some time, because of the challenge of solving quadrati-
cally constrained optimization programs numerically.

5.2.2 Scenario-based Portfolio Optimization

The main advantage of scenario-based portfolio optimization is that the investor is
able to choose from a large set of different methods to design and generate the repre-
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sentation of the future uncertainty. Thus, subjectivity can be integrated by applying
different generation techniques. Historical data sets, time series estimation and sim-
ulation procedures, as well as various random sampling techniques are commonly
used, and combined. The latter technique allows for integrating complex depen-
dency structures between assets, e.g. copulas, which are an important tool for mod-
ern quantitative financial risk management, see (8). This is a clear advantage over the
Markowitz case, where the investor is restricted to the first and second moment of the
underlying probability space, and faces, in financial terms, the unrealistic restriction
of linear dependence.

In the static stochastic programming case, the underlying uncertainty is repre-
sented as a multi-variate probability distribution on the respective probability space.
The distribution may either be continuous or discrete. In most practical optimization
models, the distribution has to be discrete in order to numerically compute a solu-
tion, i.e. continuous distributions have to be discretized. Analytical solutions based
on continuous distributions can only be derived in unrealistically simple settings.
In the application-centric scenario-based stochastic programming approach, the dis-
cretized probability distribution, which is used to compute the optimal decision is
called scenario set. This discrete set of scenarios S has finite cardinality s = |S |,
where each si is equipped with a non-negative probability pi ≥ 0, and ∑s

j=1 p j = 1.
From the financial market viewpoint, each scenario contains one possible set of joint
future returns of all a assets under consideration for the portfolio. Using the terminol-
ogy of Markowitz, each scenario contains the discounted anticipated return of each
asset.

Table 5.1. Example of return scenario matrix

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 . . .
Scenario 1 1.0349 1.0332 1.0105 1.0097 1.0084 1.0302 1.0041
Scenario 2 1.0117 1.0309 1.0141 1.0070 1.0260 1.0195 1.0181
Scenario 3 0.9966 0.9853 0.9892 0.9947 0.9928 0.9827 0.9914
Scenario 4 0.9617 0.9595 0.9782 0.9709 0.9790 0.9720 0.9857
Scenario 5 1.0110 1.0059 1.0051 0.9996 1.0011 1.0038 1.0061
Scenario 6 1.0071 1.0101 1.0045 1.0125 1.0080 1.0133 1.0038
Scenario 7 1.0203 1.0207 1.0186 1.0212 1.0156 1.0409 1.0241
. . .

As mentioned above, there exists a plethora of techniques and tools to construct
scenarios. The choice of the method is based the subjective taste of the respective
investor, such that it is possible to adapt the stochastic decision framework to the
beliefs of the investor by choosing an appropriate method to create scenarios. If a
continuous (multi-variate) probability distribution is chosen, an discretization of the
underlying continuous probability space, as shown e.g. by (21), has to be applied.
The application of historical data is straight forward, while the use of other tech-
nique to generate the final set of scenarios, e.g. time-series estimation and simula-
tion techniques, might need some further considerations. Finally, random sampling
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procedures can be used to integrate complex dependency structures. Additionally,
there exists a set of methods, which aim at optimizing scenario sets, see e.g. (13) for
techniques on how to generate and subsequently reduce the complexity of scenarios
by minimizing probability metrics between the original set and the final set.

Table 5.1 shows a small part of one possible instance of a scenario matrix. In this
particular example, historical data from selected Dow Jones STOXX Supersector
indices are presented. When investors use plain historical data, it is common not
to use recent historical data, but data from a time horizon, which is anticipated to
represent the future.

Depending on the selected scenario generation method, the probabilities of each
scenario may exhibit a different structure. Huge scenario sets, which are the result
of large-scale simulations or sets based on historical data commonly consist of equi-
probable scenarios. Non-equiprobable scenarios are often due to scenario reduction
techniques, where similar scenarios are combined into one scenario to reduce the
size of the scenario set, which may affect the computation time.

Using a representative scenario set eliminates the need for estimating the correct
correlation matrix, and makes the optimization problem less sensitive to estimation
errors. As already mentioned above, to obtain the input for the classical Markowitz
approach, the expectation vector of size a, as well as the correlation matrix of size a×
a can be calculated from the scenario set, which clearly leads to a loss of information.

5.2.3 Loss Distributions and Risk Mappings

Let x ∈ Ra be some portfolio. Without loss of generality, we use budget normaliza-
tion, i.e. ∑a∈A xa = 1. Each component xi of the portfolio vector denotes the fraction
of the available budget B invested into the respective asset i. We may now rewrite
the scenario set S as a matrix S to calculate the discrete Profit & Loss (P&L) dis-
tribution � for some portfolio x, which is simply the cross product �x =

〈
x,S
〉
. We

will denote the loss distribution as � in the following. Finally, let x∗ρ ∈ Ra denote the
optimal portfolio given some risk measure ρ and �∗ρ denote the respective ρ-optimal
discrete loss distribution.

When we reconsider the bi-criteria aspect of this portfolio optimization prob-
lem, we can map the loss distribution � to both dimensions, which are important
for a successful financial portfolio management. The first dimension - the return
(reward, value) dimension - is obtained by calculating the expectation E(�x). The
second dimension - the risk dimension - is calculated by applying a risk mapping
ρ(�x) : Rs→R of the chosen risk measure ρ to the loss distribution. The risk dimen-
sion received special importance due to enormous financial losses especially during
the 1990s and regulatory frameworks like Basel II, as well as the academic discus-
sion about coherence of risk measures. See also (18) for a in-depth discussion on
quantitative risk management and how risk measures can be used for practical risk
management purposes.
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5.2.4 Risk Measures

In this loss distribution-based notation, risk measures are used to define specific risk
mappings of loss distributions �x for some portfolio x as shown above. Each prob-
abilistic risk measure can be classified by the structure of its underlying statistical
measure. Thus, there are different classes of risk measures, e.g. deviation-based, and
quantile-based. An example for a deviation-based risk measure is the Standard De-
viation, which conforms to the Markowitz case. Examples for quantile-based risk
measures include the quantile itself, which equals the Value-at-Risk (VaR) case, and
the expectation conditional to the quantile, which results in the Expected Shortfall
(ES). These measures are described below.

It should be noted, that the ES is also called Conditional Value-at-Risk (CVaR),
because of the conditional expectation given the quantile, but should ideally be called
Average Value-at-Risk (AVaR), as elaborated by (9), especially when multi-period,
dynamic risk measures are considered.

For the purpose of this analysis, four of the most commonly applied risk mea-
sures ρ for portfolio management have been chosen to show comparative analysis for
practical portfolio risk management - Standard Deviation, Mean Absolute Downside
Semi Deviation (MADSD), Value at Risk (VaR), as well as Expected Shortfall (ES).

• Standard Deviation. Using the Standard Deviation for scenario-based portfolio
optimization resembles the classical Markowitz approach by calculating the risk
as shown in eq. (5.4).

ρ ≡ σ =
√
∑

i∈S
pi(�i−E(�))2. (5.4)

• Mean Absolute Downside Semi Deviation. The mean absolute deviation (MAD)
has been used as a replacement for variance, because of its linearity. In our case,
we consider the mean absolute downside semi-deviation, which only considers
the lower part of the loss function, and thus eliminates one of the most significant
criticism over two-sided deviation-based risk measures, and is shown in eq. (5.5).

ρ ≡MADSD = ∑
i∈S

pi|max(�i−E(�),0)|. (5.5)

• Value-at-Risk. The Value-at-Risk at level (1-α) is the α-Quantile of the loss
distribution. This risk measure gained significant importance, especially for reg-
ulatory purposes. For discrete distributions it is the α · s smallest value of �x.
While the Mean-VaR optimization problem is non-convex, an evaluation of the
VaR (as shown in eq. (5.6)) of a distribution is straightforward.

ρ ≡ VaRα = inf{l ∈ R : P(l > �)≤ 1−α}= inf{l ∈ R : Fl(�)≤ α} (5.6)

• Expected Shortfall The Expected Shortfall (ES) is used as a substitute for VaR
mainly because a linear programming reformulation is available, and it addition-
ally exhibits the property of being a coherent risk measure. It can be notated as
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the expectation over the quantile (VaR) of the loss distribution as shown in Equ.
(5.7).

ρ ≡ ESα = E(�|�≤ VaRα) (5.7)

Even without considering additional portfolio constraints, the risk measures listed
above result in completely different optimization program formulations, e.g. a
quadratic optimization reformulation in the case of Markowitz, as shown in eq. (5.3).
For ES, a linear programming reformulation for a finite set of scenarios exists, which
has been presented in (24) and (35). Finally, there exists a variety of optimization
heuristics to solve the non-convex Mean-VaR portfolio optimization problem, see
(10) and the references therein. It should be noted that these reformulations are
only valid if standard, convex, non-integer constraints are included. However, the
scenario-based evolutionary optimization framework enables a common treatment
of risk measures in one systematic way.

5.2.5 Portfolio Constraints

For practical purposes, it is crucial to include real-world constraints. Let X denote
the set of organizational, regulatory and physical constraints. The list of constraints,
which are commonly included into X are summarized below.

• Upper and lower limits on asset weights. Especially due to regulatory issues,
the fractional amount of budget into each asset is limited, i.e. there may be indi-
vidual lower and upper bounds on the portfolio weights.

la ≤ xa ≤ ua ∀a ∈A

The constraint of disallowing short selling is commonly implicitly added. This
can be explicitly modeled by setting l = 0 in this formulation.

• Minimum profit. An important constraint is the requirement of a desired and
constant minimal return M, i.e.

E(�x)≥M

If it is not possible to reach this level of expected return with any portfolio given
one specific scenario set, then the optimization problem has no feasible solution.

• Maximum risk. Likewise, the risk given a respective risk measure ρ can be
limited by a constant level R, i.e.

ρ(�x)≤ R

Different risk measures, i.e. even more than one, can be integrated and combined,
to allow for a fulfillment of both regulatory needs and subjective perceptions of
the decision maker.

• Cardinality constraints. Cardinality constraints limit the number of assets in
the portfolio. They can either be strict
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#(xa > 0) = K, 0 < K ≤ a, K ∈ N,

or lower and upper bounds on the cardinality can be defined, i.e.

Kl ≤ #(xa > 0)≤ Ku, 0 < Kl < Ku ≤ a, Kl ∈ N,Ku ∈ N.

Prior to the optimization, a feasibility check has to be conducted to analyze, whether
the set of constraints does lead to a feasible solution at all. Constraints are another
problematic dimension for reformulating the stochastic meta-model. While some of
the constraints and their extensions can be reformulated as convex optimization prob-
lems, more involved constraints like cardinality constraints, as well as non-linear,
non-differentiable (i.e. combination of fixed and non-linear flexible cost) transaction
cost structures, as well as buy-in thresholds, or round lots lead to non-convex, non-
differential models, and have motivated the application of various heuristics such
as evolutionary computation techniques. The handling of constraints is discussed in
section 5.3.3 below.

An important visualization tool for financial managers is the so called efficient
frontier depicting the trade-off between risk and return, to allow for picking a port-
folio given the respective risk attitude. The minimum expected profit constraint is
necessary to calculate these frontiers, i.e. by iterating over a set of minimal expected
profits, which are necessarily calculated from the scenario set S . These are shown
and described in detail in the numerical results section 5.4.4 below.

5.2.6 Multi-criteria objective reformulations

As mentioned in the introduction, the portfolio optimization problem is clearly an
MCDM problem, and can be notated as shown in eq. (5.8).

maximize x : E(�x),
minimize x : ρ(�x),
subject to x ∈X .

(5.8)

In a non-multi-criteria setting, three different main portfolio optimization formula-
tions are used. Either minimize the risk subject to reaching a minimum (expected)
return M, i.e.

minimize x : ρ(�x)
subject to E(�x)≥M
x ∈X ,

(5.9)

or maximize the value (expectation), subject to a maximum risk level R, i.e.

maximize x : E(�x)
subject to ρ(�x)≤ R

x ∈X ,
(5.10)

or apply the classical criteria-weighted model, where an additional risk-aversion pa-
rameter κ is defined, i.e.
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maximize x : E(�x)−κρ(�x),
subject to x ∈X .

(5.11)

Equivalence of these three formulation has been proven for convex risk measures
in (14). In the following, we will use the third formulation (5.11), which is a direct
reformulation our bi-criteria problem into a single-criteria problem, and will be used
in the evolutionary approach presented in the next Section. This mapping also allows
for calculating the critical line conveniently, when the optimization is iterated over
the parameter κ .

5.3 Evolutionary Portfolio Optimization

5.3.1 Genotype structure

In contrast to a portfolio picking problem, where an investor tries to select a sub-set
of assets out of a large set of assets, and has to solve a combinatorial problem with a
binary decision for each asset, we face a real-valued problem, because each asset de-
cision denotes a fraction of the total budget to invest. There are basically two ways to
define the genotype structure of the underlying portfolio problem. One may either use
real-valued genes, or bit-encoding techniques. Most propositions apply the straight-
forward real-value formulation. An advantage of a bit-encoding approach is that the
problem can be solved using readily available software based on bit-encoded chro-
mosomes. A comparison between discrete and continuous genotypes for the portfolio
selection problem has been studied in (29). The scenario-based stochastic framework
presented below makes use of a real-valued representation, for a number of reasons.
First, the software has been developed from the scratch, so the restriction of avail-
able software does not need to be addressed. Secondly, this approach offers a natural
scalability for large scenario sets with many assets, and finally it is possible to handle
special operations like the δ -normalization directly using real-valued vector opera-
tions.

Table 5.2 displays the structure of the portfolio weight chromosome and the fit-
ness calculation. For each chromosome (portfolio) xc its respective loss distribution
�xc is calculated, and the expectation E(�xc) as well as the associated risk ρ(�xc) is
computed. These two dimensions (return and risk) are mapped to a single value via
a risk-aversion parameter κ , which can be used to control the risk-aversion of the in-
vestor. The aim is to maximize the fitness value, i.e. to maximize the expected return
and simultaneously minimize the expected risk. The example shows Value-at-Risk
at 90% with κ =−1. In this example, it is noteworthy to observe the inversion of the
sign of κ . This is due to the fact that we are considering loss functions, and a higher
value of a quantile-based risk measure (such as VaR is this case) means lower risk
in this case. The bottom row of table 5.2 shows one concrete portfolio from Section
5.4.4 (VaR0.1, Data T1), see also fig. 5.7 (left). It should be noted, that if the risk mea-
sure has a different unit system, a normalization factor has to be applied to ensure an
equal numerical treatment of both dimensions, either by modifying κ , or integrating
the normalization into the evaluation functions.
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Table 5.2. Example chromosome - fitness: κ-weighted return and risk

Asset 1 Asset 2 . . . Asset a Return E(�x) Risk ρ(�x) Fitness E(�x)−κρ(�x)
xc =

(
x1 x2 . . . xa

)
E(�xc) VaR0.1(�xc) E(�xc)+VaR0.1(�xc)(

0 0.1688 . . . 0
)

1.0024 0.9852 1.9876

5.3.2 Evolutionary operators

The effect of using different crossovers for the Markowitz-based portfolio selection
problem has been investigated in (30), where three types of crossovers have been
compared: discrete N-point crossovers with N = 3, intermediate crossovers, as well
as BLX-α crossovers. In this analysis, we use the following evolutionary operators:

• Mutate by factor. Randomly select n genes and multiply by factor f , which is
either randomly selected, or set to some fixed level. Choosing a fixed factor of
f = 0 represents a special case, which is useful for portfolio optimization - see
below for more details.

• N-point crossover. Take two parent chromosomes and create two child chromo-
somes by crossing over at N positions, where N is selected depending on the
number of assets under consideration.

• Intermediate/blend crossover. Take two parent chromosomes x1, x2 and create
two child chromosomes y1, y2 by defining a weight-vector w with a weight 0 ≤
wi ≤ 1 for each gene, which may be either drawn randomly or pre-determined.
The children are calculated using vector operations as shown in eq. (5.12).

y1 = w · x1 +(1−w) · x2
y2 = (1−w) · x1 +w · x2

(5.12)

Most operators necessitate the need for a normalization after each operation to ensure
that the basic budget constraint, i.e. ∑xa∈A = 1, is fulfilled. This can be done on the
fly after each budget-constraint violating operation. Furthermore, to avoid numeri-
cal problems, a special δ -normalization is applied, which (re)sets every gene (asset
weight) xi to 0, if 0 < xi ≤ δ . This can be seen as a special operator for portfolio
optimization, as the number of selected assets is usually small with respect to the
amount of assets available. This is also the reason for using the factor f = 0 muta-
tion, as well as the realistic portfolio modifier for adding random chromosomes to a
population, which is described below. In terms of chromosomes it means that only a
small number of (non-negative) genes should be positive.

5.3.3 Constraint handling

A survey of constraint handling techniques for evolutionary approaches can be found
in (19), and (5), or see e.g. (36) for a generic framework for constrained optimization
using genetic algorithms. Many approaches make use of a penalty-based approach,
i.e. modifying the fitness, if a constraint is violated. The main advantage of such an
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approach is that the underlying algorithm does not need to be changed, see e.g. (20).
Constraint handling methods, which are not based on penalty functions are often
problem-dependent or are restricted to certain types of functions.

For general constraints, e.g. minimum return and maximum risk, we will use a
penalty function approach. However, the portfolio optimization problem does also
provide opportunities to implement special constraint handling techniques, espe-
cially for cardinality constraints, as well as upper asset investment limits.

Cardinality constraints

In the case of cardinality constraints, we have to consider two cases. First, when there
are too few assets selected and secondly, when there are too many assets selected.

• If there are too few assets in the portfolio, we deduct a portion γ from the selected
assets and assign them either randomly or uniformly distributed to the number
of missing, i.e. previously not chosen assets, which will be selected randomly. If
δ -normalization is used, one has to ensure that the additions are always above δ
by choosing a correct level γ , and using a valid redistribution strategy.

• Even simpler, if too many assets are selected, then complete weights starting
from the lowest positive weight will be reassigned, until the number of assets
fulfills the constraint, without requiring additional validation.

Constraints of upper asset investment limits

Upper asset limits can be handled by redistributing the sum γ of excessive asset
weight to other assets - either randomly, or by some special selection strategy, e.g.
sorting the currently positive asset weights and redistribute γ according to the current
non-excessive weights. Again, a valid redistribution scheme in accordance to other
modification operators has to be set up in advance.

5.4 Implementation & Numerical Results

5.4.1 Implementation

The evolutionary algorithm was implemented in Matlab R2007a. The code is based
on the evolutionary computation approach to scenario-based risk-return portfolio op-
timization for general risk measures as shown in (12), but has been extended to an
object-oriented design, and can handle general constraints using a penalty-based ap-
proach, as well as specialized modification operators for constraints such as upper
asset limits and cardinality constraints as shown in Section 5.3.3 above.1

The object oriented structure of the underlying evolutionary stochastic portfolio
optimization problem is not the main focus of this chapter, and will be sketched in an
informal way in the following. There are two main classes: loss and population.

1 The code is available under an academic license on email request to the author.
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The class loss handles the loss-distribution-based view on data and risk man-
agement. There are two groups of methods. The first group is used to fill an instance
with data, i.e. setScenario(matrix), and setPortfolio(vector) are
used to define the scenario set, as well as one specific portfolio.

If non-equally weighted scenarios are used, the probabilities can be set with
setProbability(vector). The second group of methods is used to evaluate
arbitrary functionals given the current data of the instance, e.g.
evalFunctional(string), or by using short-hand notation for specific func-
tionals, e.g. evalMean().

The class population handles the evolutionary structure, and contains evolu-
tionary operators (mutation and crossover), auxiliary modification functions, as well
as normalization methods.

5.4.2 Data

The scenario set used for the calculations below consists of weekly historical data
of 14 selected Dow Jones Euro STOXX Supersector indices (Automobiles & Parts,
Banks, Basic Resources, Chemicals, Construction & Materials, Financial Services,
Food & Beverage, Health Care, Industrial Goods & Services, Insurance, Oil & Gas,
Technology, Telecommunications, Utilities). In the results below, the numbers 1−14
refer to the position in this list.

Two different time-horizons (both with a duration of 7 years) were selected,
based on different financial market situations. The first time-frame T1 is January
1991 to December 1997 (365 scenarios of weekly index changes), and the second
one T2 is January 1998 to December 2004 (366 scenarios of weekly index changes).

5.4.3 Naive portfolio selection

We will start our analysis by choosing three naive portfolio selection strategies:

• xeqw is an equally weighted portfolio vector, i.e. xeqw,a = 1
a ,∀a ∈A ,

• xhex consists of n assets with the highest expected value given the respective
scenario set. Let x[m]

ex be the asset with the m-highest expectation in this set, then
each xhex,a is defined by

xhex,a =

{
1
n ∀x[i]

ex, i = 1, . . . ,n
0 otherwise

• xlrv consists of n assets with the lowest risk measured with the variance given the
scenario set, and setting up the portfolio as shown by xhex above.

Using n = 3 we obtain the following results for these three naive strategies using
both data sets T1 and T2: The portfolios as well as histograms of the respective loss
distributions are shown in fig. 5.2, fig. 5.3, and fig. 5.4 respectively.
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Fig. 5.2. Naive portfolio xeqw. Data set T1 (left) and T2 (right)
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Fig. 5.3. Naive portfolio xhex. Data set T1 (left) and T2 (right)
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Fig. 5.4. Naive portfolio xlrs. Data set T1 (left) and T2 (right)
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5.4.4 Evolutionary stochastic portfolio optimization

In the following, we will apply the evolutionary stochastic portfolio optimization
approach, which was discussed above to calculate optimal portfolios using different
risk measures. The evolutionary parameters to compute the results are shown in table
5.3. The population size parameter c has been set to 30 in this concrete case. When-
ever a random chromosome is a generated, the realistic portfolio modifier is applied,
which sets a random number of assets (up to a−2) to 0.

Table 5.3. Evolutionary parameters

• Initial population size: 200 randomly created chromosomes (with realistic portfolio mod-
ifier).

• Maximum iterations: 50.
• Each new population consists of

– c of the best chromosomes of the last population (elitist selection),
– c random chromosomes (with realistic portfolio modifier),
– c/2 with a randomly amount of genes mutated by factor 0.5 as well as c/2 mutated

by factor 2,
– c/2 1-point crossover children,
– c ·3 intermediate/blend crossover children with random weights.

Unconstrained portfolio optimization

We may now calculate unconstrained portfolios given the four risk measures dis-
cussed in section 5.2.4 above. The following additional risk parameters have been
used: For normalization purposes, a δ = 0.03 has been selected, quantile-based risk
measures are computed using an α = 0.1-quantile, and the risk weighting has been
set to κ = 1 (including the correct sign given the respective risk measure). The results
are shown in Figs. 5.5, 5.6, 5.7, and 5.8.

The effects of market risk management using stochastic portfolio optimization
with probabilistic risk measures can be seen very well in these figures. Compare the
spread of the distributions to the naive strategies, especially in time-frame T2. It can
be observed, that bad expected return (less than 0.9) can be avoided without loosing
expected return on the profit side.

Furthermore, differences in the structure and shape of the resulting loss distrib-
ution can also be clearly seen given the respective risk-measure class, i.e. deviation-
based (Markowitz, MADSD), and quantile-based (VaR, ES). The rather sharp cut at
the quantile is observable, when quantile-based measures are used.

Constrained portfolio optimization

The calculation of efficient frontiers for risk visualization purposes will conclude
the section on numerical examples. We will add the minimum return constraint and
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Fig. 5.5. Markowitz. Data set T1 (left) and T2 (right)
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Fig. 5.6. Mean absolute downside semi-deviation. Data set T1 (left) and T2 (right)
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Fig. 5.7. Value-at-Risk (α = 0.9). Data set T1 (left) and T2 (right)
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Fig. 5.8. Expected Shortfall (α = 0.9). Data set T1 (left) and T2 (right)

compute a number of optimal portfolios by iteratively solving portfolio optimizations
over a range of minimum mean requirements between a minimum required mean
mmin and a maximum required mean mmax. Valid choices for mmin are e.g. either the
mean of the portfolio given some unconstrained portfolio optimization or the mean
of the scenario means. mmax is usually set to some β quantile of the scenario means.

If a chromosome is violating the constraint, its fitness is reduced to 90% of the
original fitness value. The resulting efficient frontiers for all four risk measures for
each time-frame are shown in fig. 5.9, fig. 5.10, fig. 5.11, and fig. 5.12 respectively.
Each portfolio on the efficient frontier represents an optimal selection in the sense
that at the same level of risk, no portfolio with higher expected return can be chosen,
and likewise at the same level of expected return, no portfolio with less risk can be
created. The investor may now choose an optimal portfolio either by selecting an
appropriate level of risk or expected return.
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Fig. 5.9. Markowitz. Data set T1 (left) and T2 (right)
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Fig. 5.10. Mean absolute downside semi-deviation. Data set T1 (left) and T2 (right)
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Fig. 5.11. Value-at-Risk (α = 0.9). Data set T1 (left) and T2 (right)
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Fig. 5.12. Expected Shortfall (α = 0.9). Data set T1 (left) and T2 (right)
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5.5 Conclusion

In this chapter, the topic of evolutionary stochastic portfolio optimization has been
discussed. Combining selected theory from the fields of Stochastic Programming,
evolutionary computation, portfolio optimization, as well as financial risk manage-
ment led to a generalized framework for computing optimal portfolios under uncer-
tainty for various probabilistic risk measures. Both the unconstrained, as well as the
constrained case have been implemented. Every real-world portfolio constraint can
be integrated using the general penalty function approach. However, some for some
selected constraints, special operations can be applied. This was exemplified with
cardinality constraints and upper asset investment limits. In summary, this chapter
provides further evidence, that evolutionary stochastic portfolio optimization is an-
other successful application of bio-inspired natural computing algorithms for practi-
cal financial engineering.

Further research includes a systematic treatment of portfolio constraints for spe-
cial sub-application areas, e.g. hedge fund management. An important constraint in
this field is to minimize the absolute correlation of the portfolio to some reference
market index. A further important addition is an extension to the multi-stage case.
While the number of dimensions grows with respect to time-stages, the number of
assets under consideration is usually smaller, as multi-stage optimization is used for
strategic asset allocation in contrast to the single-stage case, which is used for tacti-
cal and even operational asset allocation. Thus, the underlying evolutionary concepts
presented in this chapter can be applied for optimizing the multi-stage case too.
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Summary. Principal Component Analysis (PCA) is a standard statistical technique that is
frequently employed in the analysis of large correlated data sets. We examine a technique
for non-linear PCA by transferring the data from the non-linear space to linear space, where
the weights on the non-linear functions are optimised using a Quantum-inspired Evolutionary
Algorithm. This non-linear principal component analysis is used to examine the dynamics of
the implied volatility smile derived from FTSE 100 stock index options over a sample period
of 500 days.

6.1 Introduction

This chapter introduces a non-linear principal component analysis (NLPCA) method-
ology which uses a quantum-inspired evolutionary algorithm rather than neural net-
work as in the traditional NLPCA approach. The NLPCA is used to determine the
non-linear principal components that drive the variations in the implied volatility
smile over time. The implied volatility smile (IVS) is how markets represent option
prices. Option prices change from day to day to reflect changes in the asset price that
the options are written on, and changes in market conditions, such as volatility and
risk aversion and general economic trends. The pricing and hedging of assets depend
on the evolution of the IVS.

6.1.1 Quantum-inspired Evolutionary Algorithm

Quantum mechanics is an extension of classical mechanics which models behav-
iours of natural systems that are observed particularly at very short time or distance
scales. An example of such a system is a sub-atomic particle, such as a free electron.
A complex-valued (deterministic) function of time and space co-ordinates, called

K. Fan et al.: Non-linear Principal Component Analysis of the Implied Volatility Smile using a Quantum-inspired
Evolutionary Algorithm, Studies in Computational Intelligence (SCI) 100, 89–107 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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the wave-function, is associated with the system: it describes the quantum state the
system is in. The standard interpretation of quantum mechanics is that this abstract
wave-function allows us to calculate probabilities of outcomes of concrete experi-
ments. The squared modulus of the wave-function is a probability density function
(PDF): it describes the probability that an observation of, for example, a particle will
find the particle at a given time in a given region of space. The wave-function satis-
fies the Schrödinger equation. This equation can be thought of as describing the time
evolution of the wave-function, and so the PDF, at each point in space. As time goes
on, the PDF becomes more “spread out” over space, and our knowledge of the po-
sition of the particle becomes less precise, until an observation is carried out; then,
according to the usual interpretation, the wave-function “collapses” to a particular
classical state (or eigenstate), in this case a particular position, and the spreading out
of the PDF starts all over again.

Before the observation we may regard the system as being in a linear combination
of all possible classical states (this is called superposition of states); then the act of
observation causes one such classical state to be chosen, with probability given by
the PDF. Note that the wave function may interfere with itself (for example, if a
barrier with slits is placed in the “path” of a particle) and this interference may be
constructive or destructive, that is, the probability of detecting a particle in a given
position may go up or go down.

More generally, we may seek to observe properties of quantum systems other
than position, e.g., energy, momentum, or the quantum spin of an electron, photon
or other particle. Such properties are called observables. Observables may be either
continuous (e.g., position of a particle) or discrete (e.g., the energy of an electron
in a bound state in an atom). Some observables may only take finitely many values,
e.g., there are only two possible values for a given particle’s spin: “up” or “down”.
This last is an example of a two-state system: in such a system the quantum state ψ
is a linear superposition of just two eigenstates, say |0〉 and |1〉 in the standard Dirac
bra-ket notation, that is,

ψ = α|0〉+β |1〉, (6.1)

where α and β are complex numbers with |α|2 + |β |2 = 1. Here |0〉 and |1〉 are basis
vectors for a 2-dimensional complex Hilbert space. A two-state system where the
states are normalised and orthogonal, as here, may be regarded as a quantum bit or
qubit (Geometrically, a qubit is a compact 2-dimensional complex manifold, called
the Bloch sphere). It is thought of as being in eigenstates |0〉 and |1〉 simultaneously,
until an observation is made and the quantum state collapses to |0〉 (with probability
|α|2) or |1〉 (with probability |β |2). The relation |α|2 + |β |2 = 1 captures the fact that
precisely one of |0〉, |1〉 must be observed, so their probabilities of observation must
sum to 1.

A quantum computer is one which works with qubits instead of the (classical)
bits used by usual computers. Benioff (1) first considered a Turing machine which
used a tape containing what we would call qubits. Feynman (7) developed examples
of physical computing systems not equivalent to the standard model of deterministic
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computation, the Turing machine. In recent years there has been a substantial interest
in the theory and design of quantum computers, and the design of programs which
could run on such computers, stimulated by Shor’s discovery of a quantum factoring
algorithm which would run faster than possible clasically. One interesting strand of
research has been the use of natural computing (for example, genetic programming
(GP)) to generate quantum circuits or programs (algorithms) for quantum comput-
ers (19). There has also been associated work in a reverse direction which draws
inspiration from concepts in quantum mechanics in order to design novel natural
computing algorithms. This is currently an area of active research interest. For ex-
ample, quantum-inspired concepts have been applied to the domains of evolutionary
algorithms (9, 10, 16, 21, 22), social computing (23), neuro-computing (8, 14, 20),
and immuno-computing (12, 15). A claimed benefit of these algorithms is that be-
cause they use a quantum representation, they can maintain a good balance between
exploration and exploitation. It is also suggested that they offer computational effi-
ciencies as use of a quantum representation can allow the use of smaller population
sizes than typical evolutionary algorithms.

 

Natural Computing 

Evolutionary 
computing 

Quantum 
computing 

Quantum evolutionary
computing

Fig. 6.1. Quantum-inspired evolutionary computing

Quantum-inspired evolutionary algorithms (QIEA) offer interesting potential. As
yet, due to their novelty, only a small number of recent papers have implemented
a QIEA, typically reporting good results (21, 22). Consequently, we have a limited
understanding of the performance of these algorithms and further testing is required
in order to determine both their effectiveness and their efficiency. It is also noted that
although a wide-variety of biologically-inspired algorithms have been applied for fi-
nancial modelling (2), only a few studies have yet applied the QIEA methodology in
the finance domain (5). This chapter partly addresses both of these research gaps.

6.1.2 Structure of Chapter

The rest of this chapter is organised as follows. The next section provides a con-
cise overview of QIEA, concentrating on the quantum-inspired genetic algorithm
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(QIGA), and introduces NLPCA based on QIGA. We then outline the experimental
methodology adopted. The remaining sections provide the results of these experi-
ments followed by a number of conclusions.

6.2 The Quantum-inspired Genetic Algorithm

The best-known application of quantum-inspired concepts in evolutionary comput-
ing is the quantum-inspired genetic algorithm (QIGA) (9, 10, 16, 21, 22). The QIGA
is based on the concepts of a qubit and the superposition of states. In essence, in QI-
GAs the traditional representations used in evolutionary algorithms (binary, numeric
and symbolic) are extended to include a quantum representation.

A crucial difference between a qubit and a (classical) bit is that multiple qubits
can exhibit quantum entanglement. Entanglement is when the wave function of a
system composed of many particles cannot be separated into independent wave
functions, one for each particle. A measurement made on one particle can produce,
through the collapse of the total wave function, an instantaneous effect on other par-
ticles with which it is entangled, even if they are far apart. Entanglement is a nonlocal
property that allows a set of qubits to be highly correlated. Entanglement also allows
many states to be acted on simultaneously, unlike bits that can only have one value at
a time. The use of entanglement in quantum computers is sometimes called quantum
parallelism, and gives a possible explanation for the power of quantum computing:
because the state of the quantum computer (i.e., the state of the system considered as
a whole) can be in a quantum superposition of many different classical computational
states, these classical computations can all be carried out at the same time.

The quantum equivalent of a classical operator on bits is an evolution (not to
be confused with the concept of evolution in evolutionary algorithms). It transforms
an input to an output, e.g., by rotation or a Hadamard gate, and operates without
measuring the value of the qubit(s). Thus it effectively does a parallel computation
on all the qubits at once and gives rise to a new superposition.

In the language of evolutionary computation a system of m qubits may be referred
to as a quantum chromosome and can be written as a matrix with two rows[

α1 α2 . . . αm
β1 β2 . . . βm

]
. (6.2)

A key point when considering quantum systems is that they can compactly convey
information on a large number of possible system states. In classical bit strings, a
string of length m can represent 2m possible states. However, a quantum space of m
qubits has 2m dimensions (as a complex manifold).1 Thus, a single qubit register of
length m can simultaneously represent all possible bit strings of length 2m, e.g., an
8 qubit system can simultaneously encode 256 distinct strings. This implies that it is
possible to modify standard evolutionary algorithms to work with very few, or even

1 It can be shown that, because of entanglement, an m-qubit physical system has 2m+1− 2
degrees of freedom, much larger than the 2m degrees a classical version would have.
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a single quantum individual, rather than having to use a large population of solu-
tion encodings. The qubit representation can also help to maintain diversity during
the search process of an evolutionary algorithm, due to its capability to represent
multiple system states simultaneously.

6.2.1 Representing a Quantum System

There are many ways that a quantum system could be defined in order to encode a set
of binary (solution) strings. For example, in the following 3 qubit quantum system,
the quantum chromosome is defined using the three pairs of amplitudes below[
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2
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2

√
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2

]
(6.3)

These numbers are the probabilities that a qubit (unit of information) will be ob-
served in a particular eigenstate rather than another. Taking the first qubit, the oc-
currence of either state 0 or 1 is equally likely as both α1 and β1 have the same
amplitude. Following on from the definition of the 3 qubit system, the (quantum)
state of the system is given by
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To provide intuition on this point, consider the system state |000〉. The associated
probability amplitude for this state is

√
3

4
√

2
and this is derived from the probability am-

plitudes of the 0 state for each of the three individual qubits ( 1√
2
∗
√

3
2 ∗ 1

2 = 0.25). The
associated probabilities of each of the individual states (|000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, |111〉) are 3

32 , 9
32 , 1

32 , 3
32 , 3

32 , 9
32 , 1

32 , 3
32 respectively. Taking the first

of these states as an example, (
√

3
4
√

2
)2 = 3

32 .

6.2.2 Real-Valued Quantum-inspired Evolutionary Algorithms

In the initial literature which introduced the QIGA, a binary representation was
adopted, wherein each quantum chromosome was restricted to consist of a series
of 0s and 1s. The methodology was modified to include real-valued vectors by da
Cruz et al., (4). As with binary-representation QIGA, real-valued QIGA maintains
a distinction between a quantum population and an observed population of, in this
case, real-valued solution vectors. However the quantum individuals have a differ-
ent form to those in binary-representation QIGA. The quantum population Q(t) is
comprised of N quantum individuals (qi : i = 1,2,3, . . . ,N), where each individual
i is comprised of G genes (gi j : j = 1,2,3, . . . ,G). Each of these genes consist of a
pair of values qi j = (pi j,σi j) where pi j,σi j ∈ℜ represent the mean and the width of
a square pulse. Representing a gene in this manner has a parallel with the quantum
concept of superposition of states as a gene is specified by a range of possible values,
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rather than by a single unique value. The original QIGA algorithms, e.g., (9, 10) are
based very closely on physical qubits, but the “quantum-inspired” algorithm of da
Cruz et al. (4) used in this chapter draws less inspiration from quantum mechanics
since it:

• does not use the idea of a quantum system (in particular, no qubits);
• only allows for constructive (not destructive) interference, and that interference

is among “wave-functions” of different individuals;
• uses real numbers as weights, rather than the complex numbers which arise in

superposition of states in physical systems;
• the PDFs used (uniform distributions) are not those arising in physical systems.

However, the da Cruz et al algorithm does periodically sample from a distribution
to get a “classical” population, which can be regarded as a wave-function (quantum
state) collapsing to a classical state upon observation.

Algorithm

The real-valued QIGA algorithm is as follows

Set t=0

Initialise Q(t) of N individuals with G genes

While (t < max t)
Create the PDFs (and corresponding CDFs, which describe the probability

distributions of real-valued random variables, see equation(6)) for
each gene locus using the quantum individuals

Create a temporary population, denoted E(T), of K real-valued solution
vectors by observing Q(t) (via the CDFs)

If (t=0) Then C(t)=E(t)
(Note: the population C(T) is maintained between

iterations of the algorithm)
Else E(t)=Outcome of crossover between E(t) and C(t)

Evaluate E(t)
C(t)= K best individuals from E(t) U C(t)

End if

With the N best individuals from C(t)
Q(t+1)=Output of translate operation on Q(t)
Q(t+1)=Output of resize operation on Q(t+1)
t=t+1

Endwhile

Initialising the Quantum Population

A quantum chromosome, which is observed to give a specific solution vector of real-
numbers, is made up of several quantum genes. The number of genes is determined
by the required dimensionality of the solution vector. At the start of the algorithm,
each quantum gene is initialised by randomly selecting a value from within the range
of allowable values for that dimension. A gene’s width value is set to the range
of allowable values for the dimension. For example, if the known allowable values
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for dimension j are [−75,75] then qi j (dimension j in quantum chromosome i) is
initially determined by randomly selecting a value from this range (say) -50. The
corresponding width value will be 150. Hence, qi j = (−50,150). The square pulse
need not be entirely within the allowable range for a dimension when it is initially
created as the algorithm will automatically adjust for this as it executes. The height
of the pulse arising from a gene j in chromosome i is calculated using

hi j =
1/σi j

N
(6.5)

where N is the number of individuals in the quantum population. This equation en-
sures that the probability density functions (PDFs) (see next subsection) used to gen-
erate the observed individual solution vectors will have a total area equal to one. Fig.
6.2 provides an illustration of a quantum gene where N=4.

 

-150 -100 -50 0 50 100 150 

 
0.00498
 
 
0.00332

0.00166

0.0000

Fig. 6.2. A square pulse, representing a quantum gene, with a width of 150, centred on -50.
The height of the gate is 0.005

Observing the Quantum Chromosomes

In order to generate a population of real-valued solution vectors, a series of obser-
vations must be undertaken using the population of quantum chromosomes (individ-
uals). A pseudo-interference process between the quantum individuals is simulated
by summing up the square pulses for each individual gene across all members of
the quantum population. This generates a separate PDF (just the sum of the square
pulses) for each gene and eq. 6.5 ensures that the area under this PDF is one. Hence,
the PDF for gene j on iteration t is

PDFj(t) =
j

∑
i

gi j (6.6)

where gi j is the square pulse of the jth gene of the ith quantum individual (of N).
To use this information to obtain an observation, the PDF is first converted into its
corresponding Cumulative Distribution Function (CDF)
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CDFj(x) =
∫ Uj

L j

PDFj(x)dx (6.7)

where Uj and L j are the upper and lower limits of the probability distribution. By
generating a random number r from (0,1), the CDF can be used to obtain an observa-
tion of a real number x, where x = CDF−1(r). If the generated value x is outside the
allowable real valued range for that dimension, the generated value is limited to its
allowable boundary value. A separate PDF and CDF is calculated for each of the G
gene positions. Once these have been calculated, the observation process is iterated
to create a temporary population with K members, denoted E(t).

Crossover Mechanism

The crossover operation takes place between C(t) and the temporary population E(t).
This step could be operationalised in a variety of ways with (4) choosing to adopt
a variant of uniform crossover, without an explicit selection operator. After the K
crossover operations have been performed, with the resulting children being copied
into E(t), the best K individuals ∈C(t)∪E(t) are copied into C(t).

Updating the Quantum Chromosomes

The N quantum chromosomes are updated using the N best individuals from C(t)
after performing the crossover step. Each quantum gene’s mean value is altered using

pi j = ci j (6.8)

so that the mean value of the jth gene of the ith quantum chromosome is given by the
corresponding jth value of the ith ranked individual in C(t).

The next step is to update the corresponding width value of the jth gene. The
objective of this process is to vary the exploration / exploitation characteristics of the
search algorithm, depending on the feedback from previous iterations. If the search
process is continuing to uncover many new better solutions, then the exploration
phase should be continued by keeping the widths relatively broad. However, if the
search process is not uncovering many new better solutions, the widths are reduced
in order to encourage finer-grained search around already discovered good regions
of the solution space. There are multiple ways this general approach could be opera-
tionalised. For example, (4) suggests use of the 1/5th mutation rule from Evolution-
ary Strategies (17) whereby

i f φ < 1/5 then σi j = σi jg (6.9)

i f φ > 1/5 then σi j = σi j/g

i f φ = 1/5 then σi j = σi j
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where σi j is the width of the ith quantum chromosome’s j th gene, g is a constant in
the range [0,1] and φ is the proportion of individuals in the new population that have
improved their fitness. In this study we update the width of the ith quantum chromo-
some’s jth gene by comparing each successive generation’s best fitness function. If
the best fitness function has improved (disimproved) we shrink (enlarge) the width
in order to improve the local (global) search.

QIGA vs Canonical Genetic Algorithm

A number of distinctions between the QIGA above and the canonical GA (CGA) can
be noted. In the CGA, the population of solutions persists from generation to gener-
ation, albeit in a changing form. In contrast, in QIGA, the population of solutions in
P(t) are discarded at the end of each loop. The described QIGA, unlike CGA, does
not have explicit concepts of crossover or mutation. However, the adaptation of the
quantum chromosomes in each iteration does embed implicit selection as the best
solution is selected and is used to adapt the quantum chromosome(s). The crossover
and mutation steps are also implicitly present, as the adaptation of the quantum chro-
mosome in effect creates diversity, as it makes different states of the system more or
less likely over time. Another distinction between the QIGA and the CGA is that the
CGA operates directly on representations of the solution (the members of the cur-
rent population of solutions), whereas in QIGA the update step is performed on the
probability amplitudes of the ground states for each qubit making up the quantum
chromosome(s).

In the next section we use non-linear principal component analysis (NLPCA) to
decompose the variation of the implied volatility smile into a number of non-linear
principal components. To run NLPCA a set of weights on a number of non-linear
mapping functions must be determined by optimising the proportion of variation
explained by the principal components. Given the non-linearities inherent in options
prices, and in the NLPCA method, QIEA is used to determine these weights in case
the optimisation problem is not convex.

6.3 Non-Linear Principal Component Analysis

Suppose X ∈Mm,n is a panel data set that contains correlated data points along the
columns, evaluated at different points in time along the rows. Given that X consists of
correlated data points, the variation in X can be decomposed into a small number r of
orthogonal principal components with r < n, resulting in a reduction of the dimension
of the problem with only a small loss in information. The principal components
from standard PCA are linear combinations (along the rows) of the original data set.
If it is suspected that the data set contains non-linearities, a common procedure is to
“linearise” the data set using suitable transformations prior to analysis. This approach
has the advantage that it retains the simplicity of the underlying principal component
analysis (PCA) whilst gaining the ability to cope with non-linear data. To do this we
construct a modified data set XNL from the original data set X :
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XNL = G(X), (6.10)

where G is a function consisting of n individual mapping functions from linear to
non-linear space:

G = w1g1(X)+w2g2(X)+ · · ·+wngn(X), (6.11)

and where gi(X) is an individual non-linear mapping function of X and wi is the
weight on the function gi. There are an infinite number of mapping functions gi(X) to
choose from and in this paper we consider a small number of mapping functions we
think are important given the domain knowledge of the problem under consideration
(see next section). There are a total of four functions chosen in this study and they
are given as follows:

• Logistic mapping:
g1(X) = 4X ◦ (1−X), (6.12)

where ◦ denotes element by element matrix multiplication.
• Exponential mapping:

g2 (X) = exp(X) , (6.13)

where the exponential function is applied on an element by element basis.
• Hénon mapping:

g3 (X (t)) = 1−1.4(X(t))2 +0.3X(t−1), (6.14)

where X(t) is a single row of the data set X .
• Auto regressive process:

g4 (X (t)) = 0.25X(t−1)+ ε(t), (6.15)

where X(t) is as above and ε(t) is a standard normal random variable.

The objective of this data mapping is to compensate for any non-linearities within X .
That is to linearise the data before implementing PCA. Provided this is performed as
an integral part of the analysis, a non-linear variant of PCA will result. The method is
described as follows: we perform standard PCA on the non-linear transformation of
the original data set and optimise the weights on the different mapping functions with
the objective of maximising the proportion of variation explained by the first prin-
cipal component from standard PCA. A quantum-inspired evolutionary algorithm is
used to find the weights on the non-linear mapping functions gi ∈G given the poten-
tial for local minima. Future work will increase the number of functions considered
and optimise not only the weights but the various parameters of the functions gi ∈G.

6.4 Implied Volatility Smile (IVS)

In this section we explain the meaning of the implied volatility smile. A European
call (put) option on an asset St with maturity date T and strike price K is defined as
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a contingent claim with payoff at time T given by max [ST −K,0] (max [K−ST ,0]).
The well known Black-Scholes (BS) formula for the price of a call option on an
underlying asset St is given by

CBS (St ,K,r,q,τ;σ) =Ste−qτN (d1)−Ke−rτN (d1) (6.16)

d1 =
− lnm+

(
r−q+ 1

2σ
2
)
τ

σ
√
τ

d2 = d1−σ
√
τ (6.17)

where τ = T − t is the time-to-maturity, t is the current time, m = K/S is the mon-
eyness of the option, r and q are the continuously compounded risk-free rate and
dividend yield and N(·) is the cumulative normal distribution function. Suppose a
market option price, denoted by CM (St ,K), is observed. The Black-Scholes implied
volatility for this option price is that value of volatility which equates the BS model
price to the market option price as follows

σBS (St ,K) >0 (6.18)
CBS (St ,K,r,q,τ;σBS (St ,K)) =CM (St ,K) (6.19)

If the assumptions underlying the BS option pricing model were correct, the BS
implied volatilities for options on the same underlying asset would be constant for
different strike prices and maturities. However in reality the BS implied volatilities
are varying over strike price and maturity. The variation of implied volatilities over
strike price for a fixed maturity is known as the implied volatility smile. Given that
the options are written on a single underlying asset this result seems at first paradox-
ical, i.e. we have a number of different implied volatilities for a single asset which
should only have one measure for its volatility. The assumptions in the BS model
can be relaxed, such as allowing the underlying asset price to follow a more complex
data generating process than the log normal stochastic process (as assumed by BS),
or allowing the underlying asset price to experience sudden discontinuous jumps etc.
When the resulting complications of these more general assumptions are taken into
account, the implied volatility smile begins to make sense and is simply highlighting
the erroneous assumptions that underpin the BS model.

Implied volatilities are frequently used in the financial markets to quote the prices
of options. The participants in the options markets do not believe that the BS model is
correct, but use the model as a convenient way of quoting option prices. The reason
is that implied volatilities usually have to be updated less frequently than option
prices themselves and implied volatilities vary less dramatically than option prices
with strike price and maturity. Option traders and brokers monitor movements in
volatility smiles closely. As option prices change over time the implied volatility
smile (for various maturities) also changes.

If we stack the implied volatility smile (for one particular maturity) according to
the time the IVS data was recorded, what results is a time series of panel data with
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highly correlated entries. Implied volatilities at different strikes are highly correlated
because as the volatility of the asset rises all implied volatilities rise yet some may
rise more than others. However the economic forces of no-arbitrage (no free-lunch)
ensures that the implied volatilities cannot get too detached from one another because
if they did this represents a riskless trading opportunity for savvy investors, who sell
the more expensive option (with the higher implied volatility) and hedge it with
cheaper options (with lower implied volatilities).

PCA is an ideal tool to reduce the complexity of such a data set by explaining
the variation of the IVS over time in terms of a small number of orthogonal prin-
cipal factors. The approach has been applied and the dynamical properties of the
implied volatility smile has been studied in recent years using increasingly advanced
principal component approaches. See Heynen, Kemma and Vorst (11) and Fengler,
Härdle and Schmidt (6) for PCA applied to the term structure of at-the-money im-
plied volatilities (implied volatilities for different maturities and a fixed strike price)
and see Skiadopoulos, Hodges and Clewlow (18) for PCA applied to implied volatil-
ity smiles. The evidence suggests that changes in the implied volatility smile are
driven predominantly by three factors. The first factor is a level factor which con-
trols the overall height of the implied volatility smile. The second and third factors
are slope and curvature factors across the strike price axis. However options and the
implied volatilities associated with options are multi-dimensional non-linear instru-
ments and standard PCA may neglect some of non-linear subtleties inherent in option
implied volatilities. This is the reason that NLPCA is applied to the IVS in this paper.

6.5 Results

6.5.1 Data

The data used in this study is option implied volatilities across 11 different strikes
and a number of different maturities on the FTSE 100 index. The data consists of
end-of-day settlement option implied volatilities from the 26th of March 2004 to
the 17th of March 2006 consisting of 500 trading days. FTSE 100 index options are
European style options and the underlying asset is the FTSE 100 performance index.
To price options on this index one must adjust the index by extracting the present
value of future cash dividend payments before each option’s expiration date. The
annualised dividend yield of the FTSE 100 index was downloaded from Datastream.
The one-month LIBOR (London inter-bank offered rate) rate was used as the risk-
free rate where the LIBOR rate was converted into a continuously compounded rate.
The forward price used in the option calculations is then Ft = S0e(r−q)t where S0
is the current index price level, Ft is the price for the forward contract maturing at
time t, r is the continuously compounded risk-free rate and q is the continuously
compounded dividend yield. Settlement prices of call and put option are calculated
from the implied volatilities using the Black-Scholes formula.

As calendar time passes, the option contracts wind down towards maturity and
the observed implied volatility surface (implied volatilities plotted across strike price
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and maturity) is constantly changing in terms of its moneyness and maturity values,
see fig. 6.3. To obtain implied volatilities on a fixed grid of moneyness and maturity
the market implied volatilities were interpolated using a non-parametric Nadaraya-
Watson estimator, see Cont and da Fonseca (3), so that we have interpolated implied
volatilities on a fixed grid of moneyness and maturity for all the days in the data
sample. On day t an interpolated estimate for implied volatility at a moneyness m
and a time to maturity τ is given by

It(m,τ) =
∑nm

i ∑nτ
j It(mi,τ j) f (m−mi,τ− τ j)

∑nm
i ∑nτ

j f (m−mi,τ− τ j)
, (6.20)

f (x,y) = (2π)−1 exp
(−x2/h1

)
exp
(−y2/h2

)
, (6.21)

where nm and nτ are the number of different option moneyness levels and maturities
available on a particular day in the sample, mi is the moneyness and τ j is the maturity
of the (i, j)th observed option and h1 and h2 are the bandwidths of the estimator
across moneyness and maturity. The bandwidths for the estimator were chosen using
cross validation, where one implied volatility is removed and is then interpolated
from all the other available implied volatilities on that date. The difference between
the interpolated and the observed implied volatility is the cross validation error. This
is calculated for all implied volatilities available on a particular day and this error is
miminised by optimising over h1 and h2. For each day t in the sample we define the
implied volatility smile at a fixed maturity τ j by

IV S(t) =
{

It(1,τ j), . . . , It(nm,τ j)
}

. (6.22)

We then stack these implied volatility smiles over time to form the data matrix
X = {IV S(1), . . . , IV S(500)}′. Non-linear principal component analysis (NLPCA)
is conducted on the implied volatility smile and logarithm of the implied volatility
smile for maturities ranging from 2 to 6 months.
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Fig. 6.3. Implied Volatility Smiles on two different dates.



102 K. Fan et al.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.05

0.1

0.15

0.2

0.25

0.3

Moneyness (K/S)

Im
pl

ie
d 

V
ol

at
ili

es

Plot of interpolated implied volatility smiles for various maturities on the 25−Oct−2005

2 months
3
4
5
6
7

(a) 05-Oct-2005

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Moneyness (K/S)

Im
pl

ie
d 

V
ol

at
ili

es

Plot of interpolated implied volatility smiles for various maturities on the 17−Mar−2006

2 months
3
4
5
6
7

(b) 17-Mar-2006

Fig. 6.4. Interpolated Implied Volatility Smiles on the same dates as above.
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Fig. 6.5. Three linear principal components for an IVS with a maturity of 2 and 5 months.

6.5.2 Analysis

The first three principal components from linear PCA explain up to approximately
96% of the variation in the level of the implied volatility smile, depending on the ma-
turity of the IVS considered. As 96% in PCA analysis may be overfitting, we would
rather target the first principal component than the first three components and this
why the objective function in the NLPCA was chosen to be proportion of variation
explained by the first principal component.

The analysis of the eigenfactors from standard PCA for the implied volatility
smiles of each maturity shows that the first factor has a positive effect on all implied
volatilities. This eigenfactor can be interpreted as a level or a volatility factor. An
increase in this factor causes the whole IVS to increase and causes all options to be-
come more expensive since options are increasing functions of volatility. The second
factor has a negative effect for implied volatilities with K < S, e.g. out-of-the-money
puts, and a positive effect for implied volatilities with K > S, e.g. out-of-the-money
calls. This factor can be interpreted as a skew factor and increase in this factor causes
out-of-the money calls to become more expensive relative to out-of-the-money puts.
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The third factor has a positive effect for implied volatilities with K < S and K > S
e.g. out-of-the-money calls and puts, and a negative effect for implied volatilities
that are close to the money with K ≈ S. This factor can be interpreted as a curvature
factor an an increase in this factor causes out-of-the money calls and puts to become
more expensive relative to near-the-money calls and puts.
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Fig. 6.6. Local and Global search

Table 6.1. Parameters setting in Quantum-inspired Genetic Algorithm

Population size Generation Number Crossover rate Shrinkage Enlargement
200 50 0.7 0.8 1.2

Table 6.2. Results of QIGA. The proportion explained by the first principal component (PC)
from the last generation are averaged over 30 runs and compared with the parameter values
from 30 runs of a Matlab optimiser.

Maturity Linear PCA Non-linear PCA Standard deviation Matlab optimiser
(%) (%) (%) (%)

2 months 64.15 80.47 0.04 80.97
3 months 69.57 80.27 0.04 81.17
4 months 72.90 80.87 0.03 81.30
5 months 77.01 81.67 0.01 82.04
6 months 80.27 84.35 0.01 84.38

In our NLPCA-QIEA analysis, the weights on the mapping functions are optimised
by using a quantum-inspired genetic algorithm to maximise the objective function
which is the proportion of variation in the data explained by the first principal
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Table 6.3. Results of QIGA. The optimal and average weights on mapping functions from the
last generation are averaged over 30 runs.

Maturity(months) Logistic Exp Hénon AR
2 0.000 0.3652 0.9814 0.3669
3 0.000 0.3634 0.9791 0.3769
4 0.000 0.3614 0.9800 0.3885
5 0.000 0.3704 0.9800 0.3542
6 0.000 0.3653 0.9815 0.3798

component. The weights are also optimised using the Matlab function fminsearch.
Fminsearch uses the simplex search method of Lagarias et al (13). This is a di-
rect search method that does not use numerical or analytic gradients. Fig. 5 depicts
the evolution of the objective function versus the generation number. The parame-
ter settings in the QIEA are given in Table 1. NLPCA is more efficient than linear
PCA especially for the options with shorter times-to-maturity. For example, for the 2
month IVS the 1st principal component from NLPCA explains approximately 80%
of the variation of the data versus only 64% for standard PCA. However the outper-
formance of NLPCA is to be expected given the extra degrees of freedom involved
since it uses four non-linear functions that first operate on the data before PCA is
applied. It is interesting to note that for the two month IVS the first component from
NLPCA with four non-linear functions explains 80% of the variation whilst the first
three components from linear PCA explain up to 96% of the variation in the data. Al-
though 96% is a higher level of explanatory power this is more than likely overfitting
historical data at the expense of poor out-of-sample performance. If we forecast the
evolution of the IVS out-of-sample using the techniques in this paper, a parsimonious
procedure would be to include a more general set of time series models in the set of
non-linear functions and use these to forecast the first factor from NLPCA and re-
construct future IVSs from the weights derived from historical analysis. This would
be more parsimonious than fitting a separate time series model to three linear princi-
pal components and then reconstructing the future IVS as would have to be done in
linear PCA. Thus, at least for shorter term options, the NLPCA method can explain
80% of the variation in the data with one linear combination of non-linear functions
of the data versus approximately 64% for linear PCA. Thus rather than increasing the
number of principal components in the analysis we have shown that another route is
to use non-linear principal components to achieve a statistical significant increase in
explanatory power.

It is interesting to note the weights on the various functions that were derived
in the NLPCA. The weight on the logistic function are always very close to zero
thus this mapping had nothing to contribute to the NLPCA. The weights on the ex-
ponential function and the autoregressive function were approximately the same at
a little over 1

3 and the weights on the Hénon function were close to one. The expo-
nential function is capturing the skew effect mentioned earlier. The auto regressive
function is capturing serial correlation in the daily movements of the IVS (some-
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thing that cannot be done under linear PCA). The fixed value on the AR function
was taken to be 0.25 thus when we multiply this by the weight of approximately
0.35 this results in serial correlation coefficient of approximately 0.088. Thus there
is positive serial correlation in the data and this represents a possible trading strategy.
The Hénon function is capturing a combination of a curvature effect (mentioned ear-
lier), due to the squaring of the data, and a time series effect due to the dependence
on past values. The weight on this function is close to one meaning this function is
relatively important in the analysis because the average values of the entries in the
vector 1−1.4X(t)2 +0.3X(t−1) are close to one and the weight multiplied by this
average value are relatively large compared to the values from the other functions.
This implies that the function depending on the curvature of the current IVS and the
past level of the IVS is very important for explaining the variation in the IVS over
time.

6.6 Conclusions

A non-linear principal component analysis was conducted on the implied volatil-
ity smile derived from FTSE 100 stock index options. It was shown, at least for
shorter term options, that the NLPCA method can explain 80% of the variation in
the data with one non-linear principal component versus approximately 64% for one
linear principal component in linear PCA. Thus the non-linear functions used in the
NLPCA captured some of the higher order non-linear factors that affect the data and
effectively increased the explanatory power of the method.

The weights on these non-linear functions were optimised using a quantum-
inspired evolutionary algorithm (QIEA). Although the problem considered in this
paper was not high-dimensional, it has potential to be a highly non-linear non-convex
optimisation problem due to the fact that the options data analysed are highly non-
linear and method used to describe the variation in the options data is a non-linear
method. Thus it was thought that this was a reasonable problem to test out the QIEA
with a view to using it for more extensive analysis in future work. This future work
consists of expanding the number of non-linear functions being considered with a
focus on including a larger number of time series models. This would be very use-
ful in predicting the IVS out-of-sample and in constructing options trading strate-
gies. Future work could also look at multi-objective NLPCA where the proportion
of variation explained by the first factor is maximised followed by the proportion of
variation explained by the second factor, etc. Also it would be useful to relax the
restriction on the parameters of the non-linear functions used in NLPCA and allow
the QIEA to find optimal values for these parameters. All of these extensions will
result in very high-dimensional optimisation problems where the use of evolutionary
algorithms such as the QIEA may be essential.



106 K. Fan et al.

References

[1] Benioff P (1980) The Computer as a Physical System: A Microscopic Quan-
tum Mechanical Hamiltonian Model of Computers as Represented by Tur-
ing Machines. Journal of Statistical Physics 22: 563–591

[2] Brabazon A and O’Neill M (2006) Biologically-inspired Algorithms for
Financial Modelling. Berlin Springer.

[3] Cont R and da Fonseca J (2002) Dynamics of implied volatility surfaces.
Journal of Quantitative finance 2: 45–60

[4] da Cruz A, Vellasco M and Pacheco M (2006) Quantum-inspired evolution-
ary algorithm for numerical optimization. Proceedings of the 2006 IEEE
Congress on Evolutionary Computation (CEC 2006), 16-21 July, Vancou-
ver, 9180–9187, IEEE Press

[5] Fan K, Brabazon A, O’Sullivan C and O’Neill M (2007) Quantum In-
spired Evolutionary Algorithms for Calibration of the VG Option Pricing
Model. Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2007), London, July 7-11, 2007, 1983–1990, New York:
ACM Press
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Summary. The bacterial foraging optimisation algorithm is a novel natural computing al-
gorithm which is based on mimicking the foraging behavior of E.coli bacteria. This chapter
illustrates how a bacteria foraging optimisation algorithm (BFOA) can be constructed. The
utility of this algorithm is tested by comparing its performance on a series of benchmark func-
tions against that of the canonical genetic algorithm (GA). Following this, the algorithm’s
performance is further assessed by applying it to estimate parameters for an EGARCH model
which can then be applied for pricing volatility options. The results suggest that the BFOA
can be used as a complementary technique to conventional statistical computing techniques in
parameter estimation for financial models.

7.1 Introduction

This chapter introduces a novel natural computing algorithm, the bacteria foraging
optimisation (BFOA) algorithm, which draws metaphorical inspiration from the for-
aging behavior of Escherichia coli bacteria in order to design an optimisation algo-
rithm. This algorithm was introduced by Passino (25) in 2002 and has been applied
to solve a range of real-world problems. Mishra (20) illustrates an application of the
BFOA to deal with harmonic estimation for a signal distorted with additive noise.
This system performed very well when compared with conventional discrete Fourier
transform and genetic algorithm methods. Kim used a hybrid system based on the
genetic algorithm and the BFOA (17, 18) to tune a PID Controller for an automatic
voltage regulator (AVR) system. Ulagammai et al trained a wavelet neural network
(WNN) using a BFOA for load forecasting (LF) in an electric power system (31).
In this chapter, we further examine the ability of BFOA to solve optimization prob-
lems, applying it to optimise nonlinear financial problems. We consider a version of
the BFOA proposed by Passino (25). A number of alternative formulations of the
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BOFA have been developed and the interested reader is referred to recent work by
(19, 28–30). Initially, we assess the performance of the BFOA on six benchmark
problems, comparing the BOFA with the canonical GA. We then apply the algo-
rithm to estimate the parameters of an EGARCH model which in turn can be used to
approximate a volatility option pricing model.

7.1.1 Structure of Chapter

The rest of this chapter is organized as follows. The next section provides a concise
overview of the BFOA. The following section illustrates the comparative study of
the BFOA and GA. We then outline the experimental methodology adopted to esti-
mate the option pricing model. The remaining sections provide the results of these
experiments followed by a number of conclusions.

7.2 The Bacteria Foraging Optimisation Algorithm (BFOA)

Natural selection tends to eliminate animals with poor foraging strategies (methods
for locating, handling and ingesting food) and favor the propagation of genes of those
animals that have successful foraging strategies, since they are more likely to enjoy
reproductive success. After many generations, poor foraging strategies tend to dis-
appear being morphed into better ones. This observation led to the idea of using for-
aging strategies as a source of inspiration for the design of optimisation algorithms.
In forgaging, animals seek ‘value for money’, in other words they implicitly seek to
maximise the energy obtained per unit of time (cost) spent foraging, in the face of
constraints presented by its own physiology (e.g., sensing and cognitive capabilities)
and environment (e.g., density of prey, risks from predators, physical characteristics
of the search area). Although we usually do not think of bacteria of being complex
creatures, they are in fact capable of surprisingly sophisticated behaviours. One of
these behaviours is their foraging strategy for nutrients. In this chapter we focus on
the forgaging behaviour of E. coli bacteria. During the lifetime of E. coli, they under-
take multiple activities including chemotaxis and reproduction. They are also subject
to events such as environmental dispersal.

Chemotaxis is the ability of a bacterium to move toward distant sources of nu-
trients. In this stage, an E.coli bacterium alternates between swimming (moving in a
relatively straight line) and tumbling (changing direction). In bacterial reproduction,
healthy bacteria split into two ‘child’ bacteria. In dispersal, a bacterium can be dis-
persed to a random location, for example, by being carried elsewhere by the wind. A
broad outline of the BFOA is presented in Algorithm 1.
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Algorithm 1. Canonical BFOA

As depicted in Algorithm 1, the BFOA considered in this chapter contains three main
steps, namely, chemotaxis, reproduction, and elimination-dispersal. A description of
each of these steps is as follows.

A. Chemotaxis
Microbiological studies show that E.coli bacteria move by rotating flagella which are
attached to their cell body. When all the flagella rotate counterclockwise, the E.coli
bacteria move forward, when all the flagella rotate clockwise, the E. coli bacteria
slow down and tumble in its place. The foraging of E. coli bacteria is accompanied
by the alternation of the two modes of operation during its entire lifetime. As a
result bacteria are physically able to move towards nutrients and away from noxious
substances. The chemotactic step is achieved through tumbling and swimming via
flagella (see fig. 7.1).

In the BFOA, a tumble is represented by a unit walk with random direction, and a
swim is indicated as a unit walk with the same direction in the last step. The position
update of a bacterium can be described as

θ i( j +1) = θ i( j)+C(i)∗φ( j) (7.1)
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Fig. 7.1. Chemotactic step

where θ i( j) indicates the position of the ith bacterium at the jth chemotactic step.
C(i) is the step size taken in the random direction, which is specified by φ( j), a unit
length random direction. Let J(i, j) denote the cost at the position of the ith bacterium
θ i( j). If at θ i( j +1), the cost J(i, j +1) is better (in other words lower, here we are
assuming that the objective is cost minimisation) than the cost at θ i( j), another swim
step is taken, and is continued as long as it continues to reduce the cost, but only up
to a maximum number of steps, Ns. This means that the bacterium will tend to keep
moving if it is heading towards a better region of the fitness landscape.

B. Reproduction After Nc chemotactic steps, a reproduction operation is performed.
Let Nre be the number of reproduction operations taken during the algorithm. The
accumulated cost of each bacterium is calculated as the sum of the cost during its
life, i.e., ∑Nc+1

j=1 J(i, j). All bacteria are sorted in order of ascending accumulated cost
(higher accumulated cost indicates that a bacterium has lower fitness value, which
implies an unsuccessful life of foraging). In the reproduction step, only the first half
of population survive and a surviving bacterium is cloned into two identical ones,
which are placed at the same location. Thus, the population size of bacteria is kept
constant.

C. Elimination - dispersal The elimination-dispersal step happens after a certain
number of reproduction steps. Bacteria are selected stochastically from the popula-
tion (an individual bacterium is chosen with probability ped), to be dispersed and
moved randomly to a new position within the optimisation domain.

Looking at the elements of the algorithm, we can consider that the chemotactic step
is primarily (although not necessarily exclusively) a local search operator, the repro-
duction step assists in convergence of the population, and the elimination-dispersal
step helps prevent premature convergence. A variety of BOFAs exist. In this chapter
we do not consider the social swarming effect observed in some bacterial colonies,
where bacteria can signal, and influence the behaviour of, their peers by releasing
chemical molecules (see Passino (25)). Future work will investigate this mecha-
nism. In this chapter we focus on a simpler model where the chemotactic step size
parameter C(i) is adapted to control the convergence speed, i.e., C(i) starts from
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Range o f search domain
100 , and shrinks after each reproduction step. The basic BFOA bears

some similarities to the canonical genetic algorithm (GA) and both can be used to
solve real-valued optimisation problems. In the next section, we compare the BFOA
and the canonical GA on some benchmark problems.

7.3 Comparative Study with Genetic Algorithm

The comparison with the genetic algorithm is undertaken to understand the relative
performance characteristics of the BFOA. The BFOA and GA are population-based
search algorithms. As shown from table 7.1, the nutrient concentration function and
the fitness function used in the BFOA and GA respectively both define an environ-
ment. In the BFOA, bacteria in the most favorable environments gain a selective
advantage for reproduction, which is similar to the selection process in GA. In the
BFOA, the bacteria with higher fitness (lower cost) split in a cloning operation into
two children at the same location. In GA, crossover generally acts to create chil-
dren in the neighbourhood of their parents on the fitness landscape. In the BFOA,
elimination-dispersal results in physical dispersion of bacteria. Mutation in GA re-
sults in a similar process. Both mechanisms allow the population to escape from local
optima.

Table 7.1. Comparison of BFOA and canonical GA

BFO GA
Nutrient concentration function Fitness function
Bacterial reproduction Selection and crossover
Elimination and dispersal Mutation

Benchmark Function Tests

Six benchmark functions (8, 24) are chosen in order to test the performance of the
BFOA. In order to get a better understanding of the algorithm, the results are com-
pared to those from a canonical GA. Details of the mathematical form of (and illus-
trative graphs of) the benchmark functions the are shown in table 7.2 and fig’s. 7.2
and 7.3. The benchmark functions are as follows.
f1: Sphere function (also known as De Jong’s function 1) is the simplest test function,
which is continuous, convex and unimodal.
f2: Schwefel’s function produces rotated hyper-ellipsoids with respect to the coordi-
nate axes. It is continuous, convex and uni-modal.
f3: Rosenbrock’s function (also known as De Jong’s function 2, or Banana func-
tion) is a classic optimization problem. The global optimum is inside a long, narrow,
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Table 7.2. Benchmark functions
f Function Mathematical representation Range f (x∗i ) x∗i
f1 Sphere f (x) = ∑p

i=1 xi
2 −5.12≤ xi ≤ 5.12 0 0

f2 Schwefel f (x) = ∑p
i=1(∑

i
j=1 x j)2 −65.536≤ xi ≤ 65.536 0 0

f3 Rosenbrock f (x) = ∑p−1
i=1 100(xi+1− xi

2)2 +(1− xi)2 −2.048≤ xi ≤ 2.048 0 1
f4 Rastrigin f (x) = 10p+∑p

i=1(xi
2−10cos(2πxi)) −5.12≤ xi ≤ 5.12 0 0

f5 Ackley f (x) = 20 + e − 20exp
(
−0.2

√
1
p ∑

p
i=1 xi

2
)
−

exp
(

1
p ∑

p
i=1 cos(2πxi)

) −30≤ xi ≤ 30 0 0

f6 Griewangk f (x) = ∑p
i=1

xi
2

4000 −∏p
i=1 cos

(
xi√

i

)
+1 −600≤ xi ≤ 600 0 0

parabolic shaped flat valley. To find the valley is trivial, however convergence to the
global optimum is more difficult.
f4: Rastrigin’s function is based on function 1 with the addition of cosine modula-
tion to produce many local minima. Thus, the test function is highly multi-modal.
However, the location of the minima are regularly distributed.
f5: Ackley’s function is a widely-used multi-modal test function.
f6: Griewangk’s function is similar to Rastrigin’s function. It has many widespread
local minima. However, the location of the minima are regularly distributed.

The parameters used for BFOA are shown in table 7.3. The values were cho-
sen after some initial trial and error experimentation, and were selected in order
to balance search speed vs accuracy. The chemotactic step size C(i) starts from
Range o f search domain

100 , and shrinks after each reproduction step. The larger C(i) val-
ues promote more exploration in the earlier phases of the algorithm with the smaller
values encouraging more fine-grained search later.

Table 7.3. Initializing the BFOA’s Parameters

Parameters Definition
D = 5 Dimension of the search space
S = 50 Number of bacteria (population size)

Nc = 20 Maximum number of chemotactic steps
Ns = 4 Maximum number of swimming steps
Nre = 2 Maximum number of reproduction steps

Sr = S/2 Number of bacteria for reproduction / cloning
Ned = 2 Maximum number of elimination-dispersal steps

ped = 0.25 The probability that each bacterium will be eliminated / dispersed
C(i) Chemotactic step size for bacterium i

In order to have a reasonably fair comparison between the BFOA and the GA re-
sults, we use same population size of 50 and the same number of fitness function
evaluations in each. Whereas in GA, the number of fitness function evaluations is
equivalent to the number of generations times the population size, in BFOA number
of fitness function evaluations is the count of total chemotactic steps taken for each
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Fig. 7.2. Two dimensional visualization of benchmark functions f1, f2, f3 and f4.

bacterium during the algorithm. In the GA, we set the crossover rate at 0.7 and the
mutation rate at 0.05. The results are shown in table 7.4, averaged over 30 runs of
each algorithm. The first column lists the minimal (optimal) objective value found
during the 30 runs within the whole population. The second and third columns list
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Fig. 7.3. Two dimensional visualization of benchmark functions f5 and f6

the mean and standard deviation for the minimal value over the 30 runs. The Time
column shows the average processing time taken for each run.
As seen in table 7.4, the BFOA finds better results than GA except for f4 - Rastri-
gin’s function. The average run time for the BFOA is shorter than that of the GA.
It is also noted that although the BFOA generally found good ‘best-of-run’ values,
it performed less well it terms of some of the mean and standard deviation values,
particularly in the case of functions f2, f4 and f5. The optimisation process for f3
using the BFOA and GA is illustrated in fig. 7.4. From the graph it can be seen that
GA converges earlier than the BFOA, however, the BFOA finds a better result over
time. In summary, the results suggest that even a canonical form of the BOFA is
capable of acting as a reasonably efficient and generally, quite effective, optimiser.
However, it is also noted that the mean and standard deviation values for the BOFA
can be variable. Of course, it would be possible to reformulate the BOFA to incorpo-
rate additional mechanisms such as swarming in order to improve its results further.
This is left for future work.

Following the above benchmarking, it appears reasonable to apply the BFOA to
solve real financial problems, such as parameter estimation. Traditionally, statisti-
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Table 7.4. Results of BFO and GA with 30 runs for benchmark functions testing

Algorithm Best Mean S.D. Time(s)
f1 : Sphere f unction

BFO 0.000376 0.00194 0.00103 0.047
GA 0.002016 0.00202 1.32e-018 1.07
f2 : Schwe f el′s f unction

BFO 0.1717 6.55 9.508 0.049
GA 0.1982 0.55 0.614 1.21
f3 : Rosenbrock′s f unction

BFO 0.03989 0.578 0.73 0.050
GA 0.06818 2.46 1.43 1.17
f4 : Rastrigin′s f unction

BFO 2.032 10.4 3.84 0.058
GA 0.399 0.7841 0.69 1.06
f5 : Ackley′s f unction

BFO 0.0361 3.11 4.14 0.085
GA 1.0895 1.0895 9.03e-016 1.14
f6 : Griewangk′s f unction

BFO 0.3271 0.687 0.17 0.113
GA 0.7067 0.722 0.015 1.20
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Fig. 7.4. Objective Value vs. Number of Generations. The GA converges earlier than the
BFOA, however, the BFOA finds a better solution.

cal computing methods are usually employed in finance for parameter estimation.
These usually require gradient information about the objective function and often
also require initial estimates of the parameters which are being optimised (i.e. to pro-
vide good starting conditions). However, a strength of the BFOA, and other natural
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computing algorithms, is that they are not confined by these limitations. In the fol-
lowing section, we illustrate the application of the BFOA by using it to estimate
parameters of a EGARCH model for the purpose of volatility option pricing.

7.4 Volatility Option Pricing Model

7.4.1 Volatility Option

Volatility is a measure of how much a stock can move over a specified period of time.
The more variability there is in the price changes of a stock or index, the higher its
volatility. Volatility is defined as the standard deviation of daily percentage changes
of the stock price. Options are financial instruments that convey the right, but not
the obligation, to engage in a future transaction on some underlying security. For
example, the buyer of a European call option has the right, but not the obligation to
buy an agreed quantity of a particular security (the underlying instrument) from the
seller of the option at a certain time (the expiration date) for a certain price (the strike
price).

In February 2006, options on the S&P 500 volatility index (VIX Options) be-
gan trading on the Chicago Board of Exchange (CBOE). This was the first product
on market volatility to be traded on a regulated securities exchange. The S&P 500
Volatility Index (VIX) was created in 1993 as the first measure of volatility in the
overall market. The VIX is designed to reflect investors’ consensus view of expected
stock market volatility over the next 30 days. The index is commonly referred to as
the market’s “fear gauge” and serves as a proxy for investor sentiment, rising when
investors are anxious or uncertain about the market and falling during times of con-
fidence or complacency. VIX options offer investors the ability to make trades based
on their view of the future direction or movement of the VIX. VIX options also offer
the opportunity to hedge the volatility (as distinct from the price) risk of an invest-
ment portfolio.

A growing literature on volatility options emerged after the 1987 stock market
crash. Brenner and Galai (3, 4) first suggested the idea of options written on a volatil-
ity index that would serve as the underlying asset. Towards this end, Whaley (32)
constructed the VIX (currently termed VXO), a volatility index based on the S&P
100 option’s implied volatilities.1 Since then, a variety of other implied volatility in-
dices have been developed (e.g., VDAX in Germany, VXN in CBOE, VX1 and VX6
in France).

Various models to price volatility options written on the instantaneous volatility
have also been developed (e.g., Whaley (32), Grunbichler and Longstaff (11), and
Detemple and Osakwe (7)). These models differ in the specification of the assumed
stochastic process and in respect of the assumptions made about the volatility risk
premium. For example, Grunbichler and Longstaff (11) specify a mean-reverting

1 Implied volatility is the volatility that makes the theoretical value of an option equal to the
market price of an option.
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square root diffusion process for volatility. Their framework is similar to that of Hull
and White (15), Stein and Stein (27) and others. These models assumed that the
premium for volatility risk was proportional to the level of volatility. This approach
is in the spirit of the equilibrium approach of Cox, Ingersoll and Ross (6). A more
recent paper by Detemple and Osakwe (7) also uses a general equilibrium framework
to price European and American style volatility options, emphasising mean-reversion
in a log volatility model.

The literature on option pricing under stochastic volatility can be grouped into
two categories, the bivariate diffusion, and the GARCH (generalized autoregressive
conditional heteroskedasticity) approaches.2 The former strand approaches option
pricing with stochastic volatility in a diffusion framework, assuming that asset prices
and their volatility follow a stochastic process. The latter develops the option pricing
model in a GARCH framework. GARCH models are popular econometric modelling
methods, having been firstly specified by Engle (10) and Bollerslev (1), they are
specifically designed to model and forecast changes in variance, or volatility per se.
These two strands of option pricing models are unified by a convergence result that
the GARCH option pricing model weakly converged to a bivariate diffusion option
pricing model (9, 22).

Fig. 7.5 provides some empirical data about the volatility of S&P 500 index,
based on sample period from 02/01/1990 to 30/12/2006, the data source is CBOE.
Fig. 5(a) shows the daily closing values of the S&P 500 equity index in the sam-
ple period. There appears no long-run average level about which the series evolves.
This is evidence of a nonstationary time series. Fig. 5(b) illustrates the continuously
compounded returns (the log returns)3 associated with the price series in fig. Fig.
7.5a. In contrast to the price series in 5(a), the log returns appear to be quite stable
over time, and the transformation from prices to returns has produced a stationary
time series. Fig. 5(c) shows the closing level of the S&P 500 Volatility Index (VIX)
during the sample period. We could intuitively find the volatility clustering effect,
where large volatility movements are more likely to be succeeded by further large
volatility movements of either sign than by small movements. 5(d) gives an exam-
ple of the probability density function of VIX, the dots represents the frequency of
VIX occurred within range of values in the x-axis, and the bell curve line represents
the probability of ln(VIX) for a normal distribution (with mean µ = 2.89, and stan-
dard deviation σ=0.32). The illustration shows that VIX tends to follow a lognormal
distribution.
We can see from fig. 7.5, that the volatility rates of S&P 500 are higher over certain
periods and lower in others, and that periods of high volatility tend to cluster together.
Therefore, we would expect the volatilities to be correlated to some extent. Also it

2 The term “heteroskedasticity” refers to a condition which exists when the differences be-
tween actual and forecast values do not have a constant variance across an entire range of
time-series observations.

3 Denoting the successive price observations made at times t − 1 and t as Pt−1 and Pt re-
spectively, then we could obtain the continuously compounded returns as Rt = log Pt

Pt−1
=

logPt − logPt−1, this is the preferred method for most financial calculations since the log
returns are more stationary and are continuously distributed.
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Fig. 7.5. Volatility of S&P500

is noticeable that volatility tends to mean-revert. In this chapter, we consider the
mean-reverting log process (MRLP) option pricing model, proposed by Detemple
and Osakwe (7). The relevance of this model is motivated by (i) substantial empirical
evidence supporting the EGARCH (Exponential GARCH) model of Nelson (23) and
(ii) the fact that EGARCH converges to a Gaussian process that is mean reverting in
the log, thus matching our MRLP specification.

7.4.2 EGARCH Pricing Model

With the existence of too much noise in the newly traded volatility option data, we
calibrate the MRLP option pricing model by estimating the corresponding EGARCH
model and then taking the limit. The exponential GARCH (EGARCH) model4 is an
asymmetric model designed to capture the leverage effect, or negative correlation,
between asset returns and volatility.

The EGARCH5 (1,1) model considered in this chapter is set up as follows:

The conditional mean model:

yt = C− 1
2
σ2

t + εt (7.2)

4 The EGARCH model was proposed by Nelson (23) , the nonnegativity constraints as in the
linear GARCH model are taken out and so there are no restriction on the parameters in this
model.

5 The EGARCH model specified here is often referred to as the EGARCH in Mean
(EGARCH-M) model, since the conditional variance term σ2 in the variance equation also
appears in the mean equation
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where εt = σt zt , and zt ∼ N(0,1)
yt = log( St

St−1
) , (the log returns of S&P)

The conditional variance model:

logσ2
t = K +G1logσ2

t−1 +A1[|zt−1|−E(|zt−1|)]+L1zt−1 (7.3)

where zt−1 = |εt−1|
σt−1

E(|zt−1|) =
√

2/π, if zt ∼ Gaussian

Duan (9) shows that under the locally risk-neutralized probability measure Q, the
asset return dynamic takes the form in eq. 7.2. There are five parameters to be es-
timated using the BFOA, namely, C,K,G1,A1, and L1. C is the conditional mean
constant, K is the conditional variance constant, G1 (GARCH term) is the coefficient
related to lagged conditional variances, A1 (ARCH term) is the coefficient related to
lagged innovations, L1 is the leverage coefficient for asymmetric EGARCH-M(1,1)
model. The coefficient of σ2 (GARCH in Mean term) is fixed at − 1

2 , and hence it is
not being estimated here.

The left-hand side of eq. 7.3 is the log value of the conditional variance. This
implies that the leverage effect is exponential, rather than quadratic, and the fore-
casts of the conditional variance are guaranteed to be nonnegative. The presence of
leverage effects can be tested by the hypothesis that α3 < 0. The impact is asymmet-
ric if α3 �= 0. The weak limit of this model converges to the unique strong solution
of the MRLP (mean-reverting log process) stochastic volatility diffusion model. The
limiting process is:

d ln(St) = (r−δ − 1
2

V 2)dt +Vt(ρdZ1t +
√

1−ρ2dZ2t) (7.4)

d ln(Vt) = (α−λ ln(Vt))dt +σdZ1t (7.5)

Detemple and Osakwe (7) derived analytic pricing formulae for European volatility
options as a functions of parameters α , λ , σ and ρ , based on the MRLP volatility dif-
fusion model. Where α/λ denotes a long run mean for log (V), exp

(
(α+ 1

4σ
2)/λ

)
√

285 denoting a long run mean annualized volatility (based on 285 days), and ρ rep-
resents the correlation between Z1 and Z2. These parameters for the option pricing
model can be calculated as below (9):

α =
K
2

+
A1√
2π

λ = 1−G1

σ =
1
2

√
L1

2 +(
π−2
π

)A1
2

ρ =
L1
2σ

(7.6)

We employ the BFOA to optimize the EGARCH model parameters: C,K,G1,A1 and
L1.
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7.4.3 EGARCH Parameter Estimation using the BFOA

The EGARCH model can be estimated by maximum likelihood estimation (MLE).
The idea behind maximum likelihood parameter estimation is to determine the pa-
rameters that maximize the probability (likelihood) of the available sample data.
From a statistical point of view, the method of maximum likelihood is considered
to be robust and it yields estimators with good statistical properties. Although the
methodology for maximum likelihood estimation is simple, the implementation is
computationally intensive. For the EGARCH models specified in eqs. 7.2 and 7.3,
the objective is to maximise the log likelihood function (LLF) as follows:

LLF =−1
2

T

∑
t=1

[log(2πσ2
t )+

ε2
t

σ2
t

] (7.7)

Given the observed log return series, the current parameter values, and the starting
value of z1 ∼ N(0,1), σ2

1 = exp(K), the σ2
t and εt are inferred by recursive substitu-

tion based on the conditional mean/variance equation (equation 7.2 and 7.3):

σ2
t = exp(K +G1logσ2

t−1 +A1[|zt−1|−E(|zt−1|)]+L1zt−1)

z(t) = (−C + yt +
1
2
σ2

t )/σt

εt = σt zt

(7.8)

The log-likelihood function then uses the inferred residuals εt and conditional vari-
ances σ2

t to evaluate the appropriate log-likelihood objective function in eq. 7.7.
We employ the BFOA as an optimisation tool searching for the optimal parameters
and maximising the log-likelihood objective function. Since minimising the negative
log-likelihood (−LLF) is the same as maximising the log-likelihood (LLF), we use
−LLF as our nutrient function (the objective function). The goal is to minimize the
−LLF value, by finding optimal values of the parameters C,K,G1,A1,L1 within the
search domain.

7.5 Results

The EGARCH model is fitted to the return series of S&P 500 daily index using the
BFOA. The S&P 500 (Ticker SPX) equity index is obtained from the CBOE, with the
sample period from 02/01/1990 to 30/12/2006, for a total of 4084 daily observations.
The parameters used in the BFOA are listed in table 7.5. They are chosen based on
trial and error for this particular problem. C(i) is varied from 0.01 to 0.1 in step size
of 0.01, and running the BFOA for 10 trials in each case respectively.
Fig. 7.6 depicts the evolution of the objective function, measured using negative
maximum likelihood (−LLF), as a function of the iteration number for a single run
of the algorithm. Figs. 7(a), 7(b), 7(c), 7(d) and 7(e) depict the evolution of the pa-
rameters C,K,G1,A1, and L1 as a function of the iteration number for a single run
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Table 7.5. BFOA’s Parameters

Dimension of the search space: D = 5
Population size: S = 50
Chemotactic steps: Nc = 20
Swimming steps: Ns = 4
Reproduction steps: Nre = 4
Number of bacteria for reproduction/splitting: Sr = S/2
Elimination-dispersal steps: Ned = 2
Probability that each bacterium will be eliminated/dispersed ped = 0.25
Chemotactic step size for bacterium i: C(i) = 0.08

of the algorithm. In the early generations, the BFOA mainly performs global search
for the optimum value, with quicker convergence than in latter generations, where
the focus is on more local search. From the 40th iteration, the optimal objective
value becomes worse and the effect lasting for a few generations, this is due to the
elimination-dispersal step conducted in iteration 40, by allowing the optimal value to
be worse, we can jump out of a local minimum, and move towards global minimum.
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Fig. 7.6. Objective Value vs. Iteration

The best results over 30 runs are reported in the second column of table 7.6. The best
results averaged over 30 runs are reported in the third column. The standard deviation
of the best results over 30 runs are reported in the fourth column. In order to provide a
benchmark for the results obtained by the BFOA, a Matlab optimising function fmin-
con was used. The function fmincon uses sequential quadratic programming (SQP)
methods, which closely mimic Newton’s method for constrained optimization. It re-
quires information about the gradient of the objective function and initial estimates
of the optimising parameters, while the BFOA does not require these. Running the
BFOA over 30 trials, we obtain the results shown in table 7.6.
From table 7.6, we obtain the the optimal objective (the minimal −LLF) value of
-14180.98, which is slightly lower than -14244.13 obtained in Matlab using the



124 J. Dang et al.

0 10 20 30 40 50 60 70 80
−0.2

−0.15

−0.1

−0.05

0

0.05

Iteration

C
Evolution of C

(a) Evolution of C

0 10 20 30 40 50 60 70 80
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Iteration

K

Evolution of K

(b) Evolution of K

0 10 20 30 40 50 60 70 80
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Iteration

G
1

Evolution of G1

(c) Evolution of G1

0 10 20 30 40 50 60 70 80
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration

A
1

Evolution of A1

(d) Evolution of A1

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Iteration

L1

Evolution of L1

(e) Evolution of L1

Fig. 7.7. Evolution of parameters over generations

Table 7.6. Results of BFOA over 30 runs

Parameter Optima Mean Standard Deviation Matlab optimisation
−LLF (Objective) -14180.98 -14099.87 32.3997 -14244.13

C 0.0005 0.0003 0.00067 0.0002
K -0.3588 -0.301 0.0478 -0.3643
G1 0.9107 0.904 0.0056 0.9610
A1 0.1634 0.235 0.0489 0.1782
L1 -0.1197 -0.0495 0.0473 -0.1184

default fmincon function. The result is reasonably acceptable and the standard de-
viation is relatively small, indicating the stability of BFOA. The estimated opti-
mal parameters value are: C = 0.0005, K = −0.3588, G1 = 0.9107, A1 = 0.1634,
L1 =−0.1197. The leverage effect term L1 is negative and statistically different from
zero, indicating the existence of the leverage effect in future stock returns during the
sample period. With the flexibility of the BFOA, it is believed that by further evolving
the BFOA’s parameters such as chemotactic step size C(i), number of chemotactic
steps Nc etc, we can improve the accuracy of the results, however, there is always
trade off between accuracy (achieved by adding complexity to the algorithm) and
convergence speed.

Based on the above results and eq. 7.6, the resulting stochastic volatility op-
tion pricing model parameters are: α = −0.1142,λ = 0.0893,σ = 0.0775 and
ρ =−0.7722. The negative correlation ρ corresponds to the asymmetric relationship
between returns and changes in volatility, i.e., the leverage effect. The negative α im-
plied mean reversion with a long run mean for log (V) of α/λ =−1.2790, and a long
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run mean annualised volatility (based on 285 days) of exp
(
(α+ 1

4σ
2)/λ

)√
285 =

4.7783 percent. The speed of reversion λ , is small, indicating strong autocorrelation
in volatility which in turn implies volatility clustering. These are consistent with the
empirical results noted in fig. 7.5. Furthermore, based on the estimated parameters of
the volatility option pricing model, hedgers can manage the risk/volatility in their ex-
isting investment/portfolio. Traders can also use the generated theoretical volatility
options prices as a trading guide to make arbitrage or speculative profits.

7.6 Conclusion

In this chapter, we introduced and assessed the recently developed bacteria foraging
optimisation algorithm (BFOA). The BOFA is a novel natural computing algorithm
which is loosely based on the foraging behavior of E.coli bacteria. This chapter il-
lustrated how a bacteria foraging optimisation algorithm (BFOA) can be constructed
and tested the utility of the algorithm by comparing its performance on a series of
benchmark functions against that of the canonical genetic algorithm (GA). Follow-
ing this, the algorithm was applied in a proof of concept study to estimate parameters
for an EGARCH model which could be applied for pricing volatility options. The re-
sults suggest that BFOA can be used as a complementary technique to conventional
statistical computing techniques in parameter estimation for financial models. Fu-
ture work will concentrate on applying more realistic models of bacteria foraging in
the design of the BFOA. In particular, the algorithm has been extended to include
a swarming effect. This bears parallel with financial markets where individual can
share information and where entire markets can sometimes display herding effects.
It is also noted that recent work in bacteria foraging (19, 28–30) has extended the
BOFA into dynamic environments, and this also offers opportunities for financial
application.
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Summary. This chapter illustrates a data-mining approach to single-position day trading
which uses an evolutionary algorithm to construct a fuzzy predictive model of a financial
instrument. The model is expressed as a set of fuzzy IF-THEN rules. The model takes as
inputs the open, high, low, and close prices, as well as the values of a number of popular
technical indicators on day t and produces a go short, do nothing, go long trading signal for
day t +1 based on a dataset of past observations of which actions would have been most prof-
itable. The approach has been applied to trading several financial instruments (large-cap stocks
and indices): the experimental results are presented and discussed. A method to enhance the
performance of trading rules based on the approach by using ensembles of fuzzy models is
finally illustrated. The results clearly indicate that, despite its simplicity, the approach may
yield significant returns, outperforming a buy-and-hold strategy.

8.1 Introduction

Single-position automated day-trading problems (ADTPs) involve finding an auto-
mated trading rule for opening and closing a single position1 within a trading day.
They are a neglected subclass of the more general automated intraday trading prob-
lems, which involve finding profitable automated technical trading rules that open
and close positions within a trading day. An important distinction that may be drawn
is the one between static and dynamic trading problems. A static problem is when
the entry and exit strategies are decided before or on market open and do not change
thereafter. A dynamic problem allows making entry and exit decisions as market
action unfolds.

Dynamic problems have been the object of much research, and different flavors
of evolutionary algorithms have been applied to the discovery and/or the optimiza-
tion of dynamic trading rules (1, 8, 12, 13, 16, 19, 22, 23, 28, 34). Static problems

1 A position is a non-zero balance for a financial instrument in a trader’s account. Therefore,
a long (short) position is opened by buying (short-selling) some quantity of a given financial
instrument, and is closed by selling (buying back) an equal quantity of the same financial
instrument.

C. da Costa Pereira and A.G.B. Tettamanzi: Fuzzy-Evolutionary Modeling for Single-Position Day Trading, Studies in
Computational Intelligence (SCI) 100, 131–159 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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are technically easier to approach, as the only information that has to be taken into
account is information available before market open. This does not mean, however,
that they are easier to solve than their dynamic counterparts.

This chapter will focus on solving a class of static single-position automated day-
trading problems by means of a data-mining approach which uses an evolutionary
algorithm to construct a fuzzy predictive model of a financial instrument. The model
takes as inputs the open, high, low, and close prices, as well as the values of a number
of popular technical indicators on day t and produces a go short, do nothing, go long
trading signal for day t + 1 based on a dataset of past observation of which actions
would have been most profitable.

The chapter is organized as follows: Section 8.2 discusses how trading rules are
evaluated and compared by investors; Section 8.3 states the problem addressed by
this chapter, namely the static single-position day trading problem, and situates it
within the context of trading problems. Next, the two basic tools used for approach-
ing such problem are introduced: Section 8.4 provides a gentle introduction to fuzzy
logic, with a particular reference to fuzzy rule-based systems, and Section 8.5 intro-
duces evolutionary computation in general and distributed evolutionary algorithms in
particular. Section 8.6 describes a fuzzy-evolutionary modeling approach to single-
position day trading and the data used for modeling; in particular, several techni-
cal analysis indicators used by the approach are defined and briefly discussed. Sec-
tion 8.7 reports the protocol and the results of experiments carried out to assess the
approach and Section 8.8 discusses an ensemble technique to improve the perfor-
mance of trading rules discovered by the approach. Section 8.9 concludes.

8.2 Evaluating Trading Rules

Informally, we may think of a trading rule R as some sort of decision rule which,
given a time series X = {xt}t=1,2,...,N of prices of a given financial instrument, for
each time period t returns some sort of trading signal or instruction. The reason one
might want to write such a trading rule is to consistently operate a strategy on a
market, with the intent of gaining a profit. Instead of considering absolute profit,
which depends on the quantities traded, it is a good idea to focus on returns.

8.2.1 Measures of Profit

For mathematical reasons, it is convenient to use log-returns instead of the usual
returns, because they are additive under compounding. The average log-return of
rule R when applied to time series X of length N is

r(R;X) =
Y
N

N

∑
t=1

r(R;X , t), (8.1)

where r(R;X , t) is the return generated by rule R in the tth day of time series X , and Y
is the number of market days in a year. T his is the most obvious performance index
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for a trading rule. However, as a performance measure, average log-return completely
overlooks the risk of a trading rule.

8.2.2 Measures of Risk-Adjusted Return

Following the financial literature on investment evaluation (7), the criteria for eval-
uating the performance of trading rules, no matter for what type of trading problem,
should be measures of risk-adjusted investment returns. The reason these are good
metrics is that, in addition to the profits, consistency is rewarded, while volatile pat-
terns are not. Common measures within this class are the Sharpe ratio and its varia-
tions, the Treynor ratio, Jensen’s performance index, and the upside-potential ratio.
The main ingredients of all these measures are:

• the risk-free log-return r f (in practice, one can use the log-return of short-dated
government bonds of the currency in question);

• the average log-return of a rule, defined in Equation 8.1;
• the average log-return of time series X ,

r(X) =
Y

N−1

N

∑
t=2

r(X , t) =
Y

N−1

N

∑
t=2

ln
xC

t

xC
t−1

, (8.2)

where xC
t is the closing price of the tth day;

• the standard deviation of the log-returns (i.e., the risk) of rule R on X ,

σ(R;X) =

√
Y
N

N

∑
t=1

[r(R;X , t)− r(R;X)]2; (8.3)

• the downside risk (14, 27) of rule R on X ,

DSRθ (R;X) =

√
Y
N

N

∑
t=1

[r(R;X , t) < θ ] [θ − r(R;X , t)]2; (8.4)

Sharpe Ratio and Variations

The Sharpe ratio (26) is probably the most popular measure of risk-adjusted returns
for mutual funds and other types of investments; in the case of trading rules, the
Sharpe ratio of rule R on time series X is

SR(R;X) =
r(R;X)− r f

σ(R;X)
, (8.5)

where we are making the assumption that the risk-free rate r f is constant during the
timespan covered by X . A critique of this measure is that it treats positive excess
returns, i.e., windfall profits, exactly the same way as it treats negative excess return;
in fact, traders, just like investors, do not regard windfall profits as something to
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avoid as unexpected losses. A variation of the Sharpe ratio which acknowledges this
fact is Sortino ratio (27), which in our case is

SRd(R;X) =
r(R;X)− r f

DSRr f (R;X)
. (8.6)

Unlike the Sharpe ratio, the Sortino ratio adjusts the expected return for the risk of
falling short of the risk-free return; positive deviations from the mean are not taken
into account to calculate risk.

8.3 The Trading Problem

Static ADTPs can be classified according to the type of positions allowed, entry
strategy, profit-taking strategy, and stop-loss or exit strategy. By combining these
options (and perhaps more), one can name all different types of trading problems. In
the rest of this chapter, we will focus on a particular class of static ADTP, namely
the class of problems whereby the trading strategy allows taking both long and short
positions at market opening, a position is closed as soon as a pre-defined profit has
been reached, or otherwise at market close as a means of preventing losses beyond
the daily volatility of an instrument.

Such problems make up the simplest class of problems when it comes to rule
evaluation: all that is required is open, high, low, and close quotes for each day, since
a position is opened at market open, if the rule so commands, and closed either with
a fixed profit or at market close.

8.3.1 The BOFC Problem

Static ADTPs can be classified according to

• the type of positions allowed;
• the entry strategy;
• the profit-taking strategy;
• the stop-loss or exit strategy.

This chapter focuses on a particular ADTP which can be described as follows: take
a long or short position on open, take profit if a fixed return is achieved, otherwise
close the position at the end of the day. We will refer to this problem as the BOFC
problem, because:

• both (B) long and short positions are allowed;
• the entry is on open (O) at market price;
• the profit-taking strategy is on a fixed (F) return;
• the exit strategy is on close (C) at market price.
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8.3.2 Trading Rules for Static ADTPs

In its most general form, a trading rule for a static ADTP should specify:

1. a sign (long or short) for the position;
2. a limit price for entry, including market price;
3. a take-profit level;
4. a stop-loss level.

All prices should be expressed relative to some other price: the limit price for entry
might be expressed relative to the previous close, the take-profit and stop-loss levels
might be expressed relative to the price at which the position is opened. Formally,
we can think of a trading rule R as a function of a day in a time series whose value is
a 4-tuple

R(X , t) = 〈s,rL,rT P,rSL〉, (8.7)

where

1. s ∈ {−1,1} is the sign of the position to be opened: −1 for a short position, 1
for a long position;

2. rL ∈ R is used to calculate the limit price for entry according to the formula
pL = xC

t−1erL ;
3. rT P > 0 is the log-return target from which a take-profit limit of xerT P is calcu-

lated, where x is the price at which the position is opened;
4. rSL > 0 is the stop-loss log-return; the stop-loss level is xe−rSL .

Although this general framework is capable of accommodating all static ADTPs, for
the BOFC problem, s ∈ {−1,1}, rL ∈ {−∞,+∞} (i.e., a binary entry condition: +∞
= enter, −∞ = do not enter), rT P = constant, given by the user, rSL = +∞, meaning a
stop-loss price level of 0, which is never triggered. Given these constraints, the result
of a trading rule is just a ternary decision: go short (s = −1, rL = −∞), do nothing
(s · rL =−∞), or go long (s = +1, rL = +∞).

8.3.3 Rule Evaluation Requirements of the BOFC Problem

While for the purpose of designing a profitable trading rule R, i.e., solving any static
ADTP, the more information is available the better, whatever the trading problem
addressed, for the purpose of evaluating a given trading rule the quantity and granu-
larity of quote information required varies depending on the problem.

In order to evaluate the performance of rules for the BOFC problem, the open,
high, low, and close quotes for each day are needed. The required time series is
X = {xO

t ,xH
t ,xL

t ,xC
t }t=1,...,N . The log-return generated by rule R in the tth day of time

series X is

r(R;X , t) =

⎧⎪⎨⎪⎩
rT P if s · rL = +∞ and r̄ > rT P,

s ln xC
t

xO
t

if s · rL = +∞ and r̄ ≤ rT P,

0 otherwise,

(8.8)

where
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r̄ =

⎧⎨⎩ ln xH
t

xO
t

if s > 0,

ln xO
t

xL
t

if s < 0.
(8.9)

The BOFC problem is therefore among the most complex single-position day-trading
problems whose solutions one can evaluate when disposing only of open, high, low,
and close quotes for each day. The reason we chose to focus on such problem is
indeed that while such kind of quotes are freely available on the Internet for a wide
variety of securities and indices, more detailed data can in general only be obtained
for a fee.

We approach this problem by evolving trading rules that incorporate fuzzy logic.
The adoption of fuzzy logic is useful in two respects: first of all, by recognizing that
concept definitions may not always be crisp, it allows the rules to have what is called
an interpolative behavior, i.e., gradual transitions between decisions and their condi-
tions; secondly, fuzzy logic provides for linguistic variables and values, which make
rules more natural to understand for an expert. The next section introduces fuzzy
logic, with a particular emphasis on the concepts that are relevant to our approach.

8.4 Fuzzy Logic

Fuzzy logic was initiated by Lotfi Zadeh with his seminal work on fuzzy sets (35).
Fuzzy set theory provides a mathematical framework for representing and treating
vagueness, imprecision, lack of information, and partial truth.

Very often, we lack complete information in solving real world problems. This
can be due to several causes. First of all, human expertise is of a qualitative type,
hard to translate into exact numbers and formulas. Our understanding of any process
is largely based on imprecise, “approximate” reasoning. However, imprecision does
not prevent us from performing successfully very hard tasks, such as driving cars,
improvising on a chord progression, or trading financial instruments. Furthermore,
the main vehicle of human expertise is natural language, which is in its own right am-
biguous and vague, while at the same time being the most powerful communication
tool ever invented.

8.4.1 Fuzzy Sets

Fuzzy sets are a generalization of classical sets obtained by replacing the character-
istic function of a set A, χA which takes up values in {0,1} (χA(x) = 1 iff x ∈ A,
χA(x) = 0 otherwise) with a membership function µA, which can take up any value
in [0,1]. The value µA(x) is the membership degree of element x in A, i.e., the degree
to which x belongs in A.

A fuzzy set is completely defined by its membership function. Therefore, it is
useful to define a few terms describing various features of this function, summarized
in fig. 8.1. Given a fuzzy set A, its core is the (conventional) set of all elements x
such that µA(x) = 1; its support is the set of all x such that µA(x) > 0. A fuzzy set is
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normal if its core is nonempty. The set of all elements x of A such that µA(x) ≥ α ,
for a given α ∈ (0,1], is called the α-cut of A, denoted Aα .

-cutα

µA

0

1

α

support

core

Fig. 8.1. Core, support, and α-cuts of a set A of the real line, having membership function µA.

If a fuzzy set is completely defined by its membership function, the question arises
of how the shape of this function is determined. From an engineering point of view,
the definition of the ranges, quantities, and entities relevant to a system is a crucial
design step. In fuzzy systems all entities that come into play are defined in terms
of fuzzy sets, that is, of their membership functions. The determination of member-
ship functions is then correctly viewed as a problem of design. As such, it can be
left to the sensibility of a human expert or more objective techniques can be em-
ployed. Alternatively, optimal membership function assignment, of course relative
to a number of design goals that have to be clearly stated, such as robustness, system
performance, etc., can be estimated by means of a machine learning or optimization
method. In particular, evolutionary algorithms have been employed with success to
this aim. This is the approach we follow in this chapter.

8.4.2 Operations on Fuzzy Sets

The usual set-theoretic operations of union, intersection, and complement can be
defined as a generalization of their counterparts on classical sets by introducing two
families of operators, called triangular norms and triangular co-norms. In practice,
it is usual to employ the min norm for intersection and the max co-norm for union.
Given two fuzzy sets A and B, and an element x,

µA∪B(x) = max{µA(x),µB(x)}; (8.10)
µA∩B(x) = min{µA(x),µB(x)}; (8.11)
µĀ(x) = 1−µA(x). (8.12)

8.4.3 Fuzzy Propositions and Predicates

In classical logic, a given proposition can fall in either of two sets: the set of all true
propositions and the set of all false propositions, which is the complement of the
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former. In fuzzy logic, the set of true proposition and its complement, the set of false
propositions, are fuzzy. The degree to which a given proposition P belongs to the set
of true propositions is its degree of truth, T (P).

The logical connectives of negation, disjunction, and conjunction can be defined
for fuzzy logic based on its set-theoretic foundation, as follows:

Negation T (¬P) = 1−T (P); (8.13)
Disjunction T (P∨Q) = max{T (P),T (Q)}; (8.14)

Conjunction T (P∧Q) = min{T (P),T (Q)}. (8.15)

Much in the same way, a one-to-one mapping can be established as well between
fuzzy sets and fuzzy predicates. In classical logic, a predicate of an element of the
universe of discourse defines the set of elements for which that predicate is true
and its complement, the set of elements for which that predicate is not true. Once
again, in fuzzy logic, these sets are fuzzy and the degree of truth of a predicate of an
element is given by the degree to which that element is in the set associated with that
predicate.

8.4.4 Fuzzy Rule-Based Systems

A prominent role in the application of fuzzy logic to real-world problems is played by
fuzzy rule-based systems. Fuzzy rule-based systems are systems of fuzzy rules that
embody expert knowledge about a problem, and can be used to solve it by perform-
ing fuzzy inferences. The ingredients of a fuzzy rule-based systems are linguistic
variables, fuzzy rules, and defuzzification methods.

Linguistic Variables

A linguistic variable (36) is defined on a numerical interval and has linguistic values,
whose semantics is defined by their membership function. For example, a linguistic
variable temperature might be defined over the interval [−20◦C,50◦C]; it could have
linguistic values like cold, warm, and hot, whose meanings would be defined by
appropriate membership functions.

Fuzzy Rules

A fuzzy rule is a syntactic structure of the form

IF antecedent THEN consequent, (8.16)

where each antecedent and consequent are formulas in fuzzy logic. Fuzzy rules
provide an alternative, compact, and powerful way of expressing functional depen-
dencies between various elements of a system in a modular and, most importantly,
intuitive fashion. As such, they have found broad application in practice, for example
in the field of control and diagnostic systems (25).
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Inference in Fuzzy Rule-Based Systems

The semantics of a fuzzy rule-based system is governed by the calculus of fuzzy
rules (37). In summary, all rules in a fuzzy rule base take part simultaneously in the
inference process, each to an extent proportionate to the truth value associated with
its antecedent. The result of an inference is represented by a fuzzy set for each of the
dependent variables. The degree of membership for a value of a dependent variable
in the associated fuzzy set gives a measure of its compatibility with the observed
values of the independent variables. Given a system with n independent variables
x1, . . . ,xn and m dependent variables y1, . . . ,ym, let R be a base of r fuzzy rules

IF P1(x1, . . . ,xn) THEN Q1(y1, . . . ,ym),
...

...
IF Pr(x1, . . . ,xn) THEN Qr(y1, . . . ,ym),

(8.17)

where P1, . . . ,Pr and Q1, . . .Qr represent fuzzy predicates respectively on indepen-
dent and dependent variables, and let τP denote the truth value of predicate P. Then
the membership function describing the fuzzy set of values taken up by dependent
variables y1, . . . ,ym of system R is given by

τR(y1, . . . ,ym;x1, . . . ,xn)
= sup1≤i≤r min{τQi(y1, . . . ,ym),τPi(x1, . . . ,xn)}. (8.18)

The Mamdani Model

The type of fuzzy rule-based system just described, making use of the min and max as
the triangular norm and co-norm, is called the Mamdani model. A Mamdani system
(17) has rules of the form

IF x1 is A1 AND . . . AND xn is An THEN y is B, (8.19)

where the Ais and B are linguistic values (i.e., fuzzy sets) and each clause of the form
“x is A” has the meaning that the value of variable x is in fuzzy set A.

Defuzzification Methods

There may be situations in which the output of a fuzzy inference needs to be a crisp
number y∗ instead of a fuzzy set R. Defuzzification is the conversion of a fuzzy
quantity into a precise quantity.

At least seven methods in the literature are popular for defuzzifying fuzzy outputs
(15), which are appropriate for different application contexts. The centroid method
is the most prominent and physically appealing of all the defuzzification methods. It
results in a crisp value

y∗ =
∫

yµR(y)dy∫
µR(y)dy

, (8.20)

where the integration can be replaced by summation in discrete cases. The next sec-
tion introduces evolutionary algorithms, a biologically inspired technique which we
use to learn and optimize fuzzy rule bases.
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8.5 Distributed Evolutionary Algorithms

Evolutionary algorithms (EAs) are a broad class of stochastic optimization algo-
rithms, inspired by biology and in particular by those biological processes that allow
populations of organisms to adapt to their surrounding environment: genetic inheri-
tance and survival of the fittest.

An evolutionary algorithm (EA) maintains a population of candidate solutions
for the problem at hand, and makes it evolve by iteratively applying a (usually quite
small) set of stochastic operators, known as mutation, recombination, and selection.

Mutation randomly perturbs a candidate solution; recombination decomposes
two distinct solutions and then randomly mixes their parts to form novel solutions;
and selection replicates the most successful solutions found in a population at a rate
proportional to their relative quality.

The initial population may be either a random sample of the solution space or
may be seeded with solutions found by simple local search procedures, if these are
available.

The resulting process tends to find, given enough time, globally optimal solutions
to the problem much in the same way as in nature populations of organisms tend to
adapt to their surrounding environment. Books of reference and synthesis in the field
of EC are (4, 5, 11); recent advances are surveyed in (33).

Evolutionary algorithms have enjoyed an increasing popularity as reliable sto-
chastic optimization, search and rule-discovering methods in the last few years. The
original formulation by Holland and others in the seventies was a sequential one.
That approach made it easier to reason about mathematical properties of the algo-
rithms and was justified at the time by the lack of adequate software and hardware.
However, it is clear that EAs offer many natural opportunities for parallel implemen-
tation (20). There are several possible parallel EA models, the most popular being
the fine-grained or grid (18), the coarse-grain or island (31), and the master-slave
or fitness parallelization (10) models. In the grid model, large populations of indi-
viduals are spatially distributed on a low-dimensional grid and individuals interact
locally within a small neighborhood. In the master-slave model, a sequential EA is
executed on what is called the master computer. The master is connected to sev-
eral slave computers to which it sends individuals when they require evaluation. The
slaves evaluate the individuals (fitness evaluation makes up most of the computing
time of an EA) and send the result back to the master.

In the island model, the population is divided into smaller subpopulations which
evolve independently and simultaneously according to a sequential EA. Periodic mi-
grations of some selected individuals between islands allow to inject new diversity
into converging subpopulations. Microprocessor-based multicomputers and worksta-
tion clusters are well suited for the implementation of this kind of parallel EA. Being
coarse-grained, the island model is less demanding in terms of communication speed
and bandwidth, which makes it a good candidate for a cluster implementation.
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8.6 The Approach

Data mining is a process aimed at discovering meaningful correlations, patterns, and
trends between large amounts of data collected in a dataset. A model is determined by
observing past behavior of a financial instrument and extracting the relevant variables
and correlations between the data and the dependent variable. We describe below a
data-mining approach based on the use of evolutionary algorithms, which recognize
patterns within a dataset, by learning models represented by sets of fuzzy rules.

8.6.1 Fuzzy Models

A fuzzy model is described through a set of fuzzy rules. A rule is made by one or
more antecedent clauses (“IF . . . ”) and a consequent clause (“THEN . . . ”). Clauses
are represented by a pair of indices referring respectively to a variable and to one of
its fuzzy sub-domains, i.e., a membership function.

Using fuzzy rules makes it possible to get homogenous predictions for different
clusters without imposing a traditional partition based on crisp thresholds, that often
do not fit the data, particularly in financial applications. Fuzzy decision rules are
useful in approximating non-linear functions because they have a good interpolative
power and are intuitive and easily intelligible at the same time. Their characteristics
allow the model to give an effective representation of the reality and simultaneously
avoid the “black-box” effect of, e.g., neural networks.

The output of the evolutionary algorithm is a set of rules written in plain conse-
quential sentences. The intelligibility of the model and the high explanatory power
of the obtained rules are useful for a trader, because the rules are easy to interpret
and explain. An easy understanding of a forecasting method is a fundamental char-
acteristic, since otherwise a trader would be reluctant to use forecasts.

8.6.2 The Evolutionary Algorithm

The described approach incorporates an EA for the design and optimization of fuzzy
rule-based systems that was originally developed to automatically learn fuzzy con-
trollers (24, 29), then was adapted for data mining, (6) and is at the basis of MOLE, a
general-purpose distributed engine for modeling and data mining based on EAs and
fuzzy logic (30).

A MOLE classifier is a rule base, whose rules comprise up to four antecedent and
one consequent clause each. Input and output variables are partitioned into up to 16
distinct linguistic values each, described by as many membership functions. Mem-
bership functions for input variables are trapezoidal, while membership functions for
the output variable are triangular. Classifiers are encoded in three main blocks:

1. a set of trapezoidal membership functions for each input variable; a trapezoid is
represented by four fixed-point numbers, each fitting into a byte;

2. a set of symmetric triangular membership functions, represented as an area-
center pair, for the output variable;
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3. a set of rules, where a rule is represented as a list of up to four antecedent clauses
(the IF part) and one consequent clause (the THEN part); a clause is represented
by a pair of indices, referring respectively to a variable and to one of its mem-
bership functions.

An island-based distributed EA is used to evolve classifiers. The sequential algorithm
executed on every island is a standard generational replacement, elitist EA. Crossover
and mutation are never applied to the best individual in the population.

The recombination operator is designed to preserve the syntactic legality of clas-
sifiers. A new classifier is obtained by combining the pieces of two parent classifiers.
Each rule of the offspring classifier can be inherited from one of the parent programs
with probability 1/2. When inherited, a rule takes with it to the offspring classifier all
the referred domains with their membership functions. Other domains can be inher-
ited from the parents, even if they are not used in the rule set of the child classifier,
to increase the size of the offspring so that their size is roughly the average of its par-
ents’ sizes. Like recombination, mutation produces only legal models, by applying
small changes to the various syntactic parts of a fuzzy rulebase.

Migration is responsible for the diffusion of genetic material between popula-
tions residing on different islands. At each generation, with a small probability (the
migration rate), a copy of the best individual of an island is sent to all connected
islands and as many of the worst individuals as the number of connected islands are
replaced with an equal number of immigrants. A detailed description of the evolu-
tionary algorithm and of its genetic operators can be found in (24).

8.6.3 The Data

In principle, the modeling problem we want to solve requires finding a function
which, for a given day t, takes the past history of time series X up to t and pro-
duces a trading signal go short, do nothing, or go long, for the next day. One could
therefore try to approach this problem directly, by evolving trading rules in the most
general form by means of genetic programming (19, 22, 23, 34). The search space
for such trading rules is, clearly, incredibly huge. However, there exists an impres-
sive body of expertise used everyday by practitioners in the financial markets about
summarizing all important information of the past history of a financial time series
into few relevant statistics. That body of expertise is called technical analysis.

Technical analysis is the study of past financial market data, primarily
through the use of charts, to forecast price trends and make investment de-
cisions. In its purest form, technical analysis considers only the actual price
behavior of the market or instrument, based on the premise that price reflects
all relevant factors before an investor becomes aware of them through other
channels (32).

The idea is then to reduce the dimensionality of the search space by limiting the
inputs of the models we look for to a collection of the most popular and time-honored
technical analysis statistics and indicators.
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A technical indicator is a short-term statistics of a time series used by technical
analysts to predict future price movements of financial instruments. Price data in-
clude any combination of the open, high, low, and close, plus volume information,
over a (generally short) period of time. As we will see in the next sections, some in-
dicators use only the closing prices, while others incorporate other information like
volume and opening prices into their formulas. Some others consist of a combination
of two or more different indicators.

The advantage of using different technical indicators, is that we can dispose of
different ways to analyze price movements. Some indicators, like moving averages,
are defined by using simple formulas and their mechanics are thus relatively easy to
understand. Others, like stochastic oscillators, have more complex definitions. Re-
gardless of the complexity of their definition, technical indicators can provide valid
elements for predicting the direction of market price movements.

Popular Statistics and Technical Indicators

In this section, we provide definitions and a basic discussion of several popular tech-
nical indicators that have been adopted as inputs to the data mining process and to
the models such process looks for.

A moving average is the average of the closing values of a financial instrument
over a given time period. Generally speaking, moving averages tend to smooth out
the short-term oscillations of a time series and identify longer-term trends. The two
most popular types of moving average indicators are the simple moving average
(SMA) and the exponential moving average (EMA). The difference between these
indicators is uniquely on the weight each of them carry to recent prices compared
to old prices. SMA considers equally important all the prices in a considered period,
whereas EMA considers that recent prices are more important than the old ones. In
general, a buy signal is generated when the instrument’s price rises above a mov-
ing average and a sell signal is generated when the instrument’s price falls below a
moving average.

Simple and exponential moving averages are used in our approach by com-
bining them with the closing price value at current day t. For both forms, we
consider the moving average of closing values over the n days before t, with
n ∈ {5,10,20,50,100,200} noted SMAn(t) and EMAn(t) respectively, and we then
consider the position of the closing price xC

t with respect to the simple (exponential)
moving average, noted xC

t : SMAn(t) (xC
t : EMAn(t)), as follows:

xC
t : SMAn(t) = ln

xC
t

SMAn(t)
(8.21)

and

xC
t : EMAn(t) = ln

xC
t

EMAn(t)
. (8.22)

If the above logarithms are negative, i.e., the closing price at t is lower than the mov-
ing average/exponential moving average value for the previous n days, this means
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that the price tends to decrease. Otherwise, it means the price tends to increase. In
order to get further information about the market trend, we analyze also how the
above result evolves from day t−1 to t. The formulas for these differences are:

∆(xC
t : SMAn(t)) = xC

t : SMAn(t)− xC
t−1 : SMAn(t−1). (8.23)

∆(xC
t : EMAn(t)) = xC

t : EMAn(t)− xC
t−1 : EMAn(t−1). (8.24)

The Moving Average Convergence/Divergence (MACD) is a technical indicator
which shows the difference between a fast and a slow EMA of closing prices. The
simplest version of this indicator is composed of two lines: the MACD line, which
is the difference between the two EMAs, and a signal line, which is an EMA of the
MACD line itself. We use the standard periods recommended back in the 1960s by
Gerald Appel, which are 12 and 26 days (21):

MACD(t) = EMA26(t)−EMA12(t) (8.25)

The signal line we have used is also standard. It consists of an EMA9 of the MACD
line. This allows to further smooth the trend of market price values:

signal(t) = EMA9(t;MACD) (8.26)

We also consider Thomas Aspray’s difference between the MACD and the signal
line, which is often plotted as a solid block histogram style:

histogram(t) = MACD(t)− signal(t). (8.27)

Its change from the previous day is given by:

∆(MACD(t)− signal(t)) = histogram(t)−histogram(t−1). (8.28)

The rate of change (ROC) ia a simple technical indicator showing the difference
between the closing price on a current day t and the corresponding price n days
before day t. Because this indicator is measured in terms of the old closing price, it
represents the increase as a fraction,

ROCn(t) =
xC

t − xC
t−n

xC
t−n

, (8.29)

which is positive when the price value is increasing over the last n days, negative
otherwise. We use the popular version with n = 12.

Developed by George C. Lane in the late 1950s, the Stochastic Oscillator is a mo-
mentum indicator that shows the location of the current close relative to the high/low
range over a set number of periods. Closing levels that are consistently near the top
of the range indicate accumulation (buying pressure) and those near the bottom of
the range indicate distribution (selling pressure). The fast stochastic oscillator, %Kn
calculates the ratio of two closing price statistics — the difference between the lat-
est closing price and the lowest closing price in the last n days over the difference
between the highest and lowest closing prices in the last n days:
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%Kn(t) =
xC

t −mint
i=t−n{xC

i }
maxt

i=t−n{xC
i }−mint

i=t−n{xC
i }
·100. (8.30)

We use the popular time period n of 14 days. %Kn = 0 when the current closing price
is a low for the last n days; %Kn = 100 when the current closing price is a high for
the last n days.

The slow stochastic oscillator %Dn calculates the simple moving average of %Kn
across a period of k days:

%Dn(t) = SMAk(t;%Kn). (8.31)

We use the popular value of k = 3 days.
The relative strength index (RSI) is another oscillator which determines the

strength of a financial instrument by comparing upward and downward close-to-close
movements in a period of n days. For each day t, the amounts of upward change,
U(t) > 0, or downward change, D(t) > 0, are calculated as follows. On an “up”
day t,

U(t) = xC
t − xC

t−1,

D(t) = 0.

Conversely, on a “down” day t,

U(t) = 0,

D(t) = xC
t − xC

t−1.

If the closing price in t−1 is the same as the closing price in t, both U(t) and D(t)
are zero. An exponential moving average of up days in the period of n days, U , is
calculated. Similarly, an exponential moving average of down days in the period of
n days, D, is calculated. The ratio of those averages is the relative strength,

RS(t) =
EMAn(t;U)
EMAn(t;D)

(8.32)

This is converted to a relative strength index between 0 and 100:

RSI(t) = 100−100 · 1
1+RS(t)

. (8.33)

This can be rewritten as follows to emphasize the way RSI expresses the up as a
proportion of the total up and down (averages in each case),

RSI(t) = 100 · EMAn(t;U)
EMAn(t;U)+EMAn(t;D)

. (8.34)

The basic idea behind the use of RSI is that when there is a high proportion of
daily movements in one direction, this suggests an extreme, and prices are likely to
“change direction”. More precisely, a financial instrument is considered overbought
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if RSI ≥ 70, meaning that a speculator should consider the option of selling. Con-
versely, a speculator should consider buying if if RSI≤ 30 (oversold).

The money flow index indicator (MFI) indicates the balance between money flow-
ing into and out of a financial instrument. The construction and interpretation of this
indicator is similar to RSI, with the only difference that volume is also taken into
account. The typical price x̄t is the average of high, low and close values in day t:

x̄t =
xH

t + xL
t + xC

t

3
. (8.35)

Money flow is the product of typical price on a day t and the volume on that day:

MF(t) = x̄t · xV
t . (8.36)

Totals of the money flow amounts over the given n days are then formed. Positive
money flow is the total for those days where the typical price is higher than the
previous day’s typical price, and negative money flow is the total of those days where
the typical price is below the previous day’s typical price. A money ratio is then
formed:

MR(t) =
MF+(t)
MF−(t)

, (8.37)

from which a money flow index ranging from 0 to 100 is formed,

MFI(t) = 100− 100
1+MR(t)

. (8.38)

When analyzing the money flow index, one needs to take into consideration the fol-
lowing points:

• divergences between the indicator and price movement — if prices grow while
MFI falls (or vice versa), there is a great probability of a price turn;

• MFI over 80 or under 20 signals a potential peak or bottom of the market.

The accumulation/distribution indicator (AccDist) is a cumulative total volume tech-
nical analysis indicator created by Marc Chaikin, which adds or subtracts each day’s
volume in proportion to where the close is between the day’s high and low. For ex-
ample, many up days occurring with high volume in a down trend could signal that
the demand for the financial instrument is starting to increase. In practice this indica-
tor is used to find situations where the indicator is heading in the opposite directions
than the price. Once this divergence has been identified, traders will wait to confirm
the reversal and make their transaction decisions using other technical indicators.
A close location value is defined as:

CLV(t) =
(xC

t − xL
t )− (xH

t − xC
t )

xH
t − xL

t
. (8.39)

This ranges from −1, when the close is the low of the day, to +1 when it is the
high. For instance if the close is 3/4 the way up the range, then CLV is +0.5. The
accumulation/distribution index adds up volume multiplied by the CLV factor, ie.
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AccDist(t) = AccDist(t−1)+ xV
t ·CLV(t). (8.40)

Finally, the on-balance volume indicator (OBV) is intended to relate price and vol-
ume in the stock market. OBV is based on a cumulative total volume. Volume on an
up day (i.e., close value at day t higher than close value at day t− 1) is added and
volume on a down day is subtracted. The formula is

OBV(t) = OBV(t−1)+

⎧⎨⎩
xV

t if xC
t > xC

t−1,
0 if xC

t = xC
t−1,

−xV
t if xC

t < xC
t−1.

(8.41)

The starting point for an OBV total is arbitrary. Only the shape of the resulting indi-
cator is used, not the actual level of the total.

Combining Statistics and Technical Indicators

After a careful scrutiny of the most popular technical indicators outlined in the pre-
vious subsection, we concluded that more data were needed if we wanted an evo-
lutionary algorithm to discover meaningful models expressed in the form of fuzzy
IF-THEN rules. Combinations of statistics and technical indicators are required that
mimic the reasonings analysts and traders carry out when they are looking at a techni-
cal chart, comparing indicators with current price, checking for crossings of different
graphs, and so on.

Combinations may take the form of differences between indicators that are pure
numbers or that have a fixed range, or of ratios of indicators such as prices and
moving average, that are expressed in the unit of measure of a currency. Following
the use of economists, we consider the natural logarithm of such ratios, and we define
the following notation: given two prices x and y, we define

x : y≡ ln
x
y
. (8.42)

Eventually, we came up with the following combinations:

• all possible combinations of the Open (O), High (H), Low (L), Close (C), and
previous-day Close (P) prices: O : P, H : P, L : P, C : P, H : O, C : O, O : L, H : L,
H : C, C : L;

• close price compared to simple and exponential moving averages, C : SMAn,
C : EMAn, n ∈ {5,10,20,50,100,200};

• the daily changes of the close price compared to simple and exponential moving
averages, ∆(C : SMAn), ∆(C : EMAn), where ∆(x)≡ x(t)− x(t−1);

• the MACD histogram, i.e., MACD − signal, and the daily change thereof,
∆(Histogram);

• Fast stochastic oscillator minus slow stochastic oscillator, %K −%D, and the
daily change thereof, ∆(%K−%D).

The full list of the statistics, technical indicators, and their combinations used as
model inputs is given in table 8.1.
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Table 8.1. The independent variables of the dataset.

Name Formula Explanation
Open xO

t the opening price on day t
High xH

t the highest price on day t
Low xL

t the lowest price on day t
Close xC

t the closing price on day t
Volume xV

t the volume traded on day t
O:P xO

t : xC
t−1 opening price on day t vs. previous-day closing

price
H:P xH

t : xC
t−1 high on day t vs. previous-day closing price

L:P xL
t : xC

t−1 low on day t vs. previous-day closing price
C:P xC

t : xC
t−1 close on day t vs. previous-day closing price

H:O xH
t : xO

t high on day t vs. same-day opening price
C:O xC

t : xO
t closing on day t vs. same-day opening price

O:L xO
t : xL

t opening price on day t vs. same-day lowest price
H:L xH

t : xL
t high on day t vs. same-day low

H:C xH
t : xC

t high on day t vs. same-day closing price
C:L xC

t : xL
t closing price on day t vs. same-day low

dVolume xV
t : xV

t−1 change in volume traded on day t
C:MAn xC

t : SMAn(t) n-day simple moving averages, for
n ∈ {5,10,20,50,100,200}.

dC:MAn ∆(xC
t : SMAn(t)) daily change of the above

C:EMAn xC
t : EMAn(t) n-day exponential moving averages, for n ∈

{5,10,20,50,100,200}.
dC:EMAn ∆(xC

t : EMAn(t)) daily change of the above
MACD MACD(t) Moving average convergence/divergence on day

t
Signal signal(t) MACD signal line on day t

Histogram MACD(t)− signal(t) MACD histogram on day t
dHistogram ∆(MACD(t)− signal(t)) daily change of the above

ROC ROC12(t) rate of change on day t
K %K14(t) fast stochastic oscillator on day t
D %D14(t) slow stochastic oscillator on day t

K:D %K14(t)−%D14(t) fast vs. slow stochastic oscillator
dK:D ∆(%K14(t)−%D14(t)) daily change of the above
RSI RSI14(t) relative strength index on day t
MFI MFI14(t) money-flow index on day t

AccDist ∆(AccDist(t)) The change of the accumulation/distribution in-
dex on day t

OBV ∆(OBV(t)) The change of on-balance volume on day t
PrevClose xC

t−1 closing price on day t−1
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8.6.4 Fitness

Modeling can be thought of as an optimization problem, where we wish to find the
model M∗ which maximizes some criterion which measures its accuracy in predict-
ing yi = xim for all records i = 1, . . . ,N in the training dataset. The most natural cri-
teria for measuring model accuracy are the mean absolute error and the mean square
error.

One big problem with using such criteria is that the dataset must be balanced,
i.e., an equal number of representatives for each possible value of the predictive at-
tribute yi must be present, otherwise the under-represented classes will end up being
modeled with lesser accuracy. In other words, the optimal model would be very good
at predicting representatives of highly represented classes, and quite poor at predict-
ing individuals from other classes. To solve this problem, MOLE divides the range
[ymin,ymax] of the predictive variable into 256 bins. The bth bin, Xb, contains all the
indices i such that

1+ �255
yi− ymin

ymax− ymin
�= b. (8.43)

For each bin b = 1, . . . ,256, it computes the mean absolute error for that bin

errb(M) =
1
‖Xb‖ ∑i∈Xb

|yi−M(xi1, . . . ,xi,m−1)|, (8.44)

then the total absolute error (TAE) as an integral of the histogram of the absolute
errors for all the bins, tae(M) =∑b:‖Xb‖�=0 errb(M). Now, the mean absolute error for
every bin in the above summation counts just the same no matter how many records
in the dataset belong to that bin. In other words, the level of representation of each
bin (which, roughly speaking, corresponds to a class) has been factored out by the
calculation of errb(M). What we want from a model is that it is accurate in predicting
all classes, independently of their cardinality.The fitness used by the EA is given by
f (M) = 1

tae(M)+1 , in such a way that a greater fitness corresponds to a more accurate
model.

8.7 Experiments

The approach described above has been applied to trading several financial instru-
ments. This section reports some of the experiments that have been carried out and
their results.

8.7.1 Aims of the Experimental Study

There would be many interesting questions to ask of a data-mining approach applied
to single-position day trading like the one described above. Here, we address the
following:
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1. What are the generalization capabilities of the models obtained? This question
has to do with being able to correctly model the behavior of the financial instru-
ment used for learning for a timespan into the future: here the basic question to
ask is, how well can we expect the model perform tomorrow with today’s data,
if we have used data up to yesterday to learn it? However, another relevant ques-
tion is, how does the model’s performance decay as we move into the future, i.e.,
the day after tomorrow, and then in three days, and so forth?

2. How much historical data is needed to obtain a reliable model? This is a critical
issue, as for many financial instruments the history available may be limited:
think for example of the stock of a new company resulting from the merger of
two pre-existing companies, or of the stock of an old company which starts be-
ing traded as a result of an initial public offering. Furthermore, it could been
argued that markets evolve as the context in which they function changes; there-
fore, very old data about a given financial instrument might not be of any help
for learning a model that reflects current (and possibly future) behavior of that
instrument. The issue has thus two faces, which are distinct but related:
a) ideally, for a data-mining approach, the more data is available the better;

however, finance is a domain where only historical data is available; there is
no way of obtaining more data by performing experiments: so the question
is, how much data is required for learning a meaningful model?

b) if too little data exists to allow a meaningful model to be learned, too much
data (especially, data that goes too deep into the past) might lead to a model
which does not correctly reflect current behavior: how old data can be before
it is useless or counterproductive for learning a reliable model?

8.7.2 Experimental Protocol

The following financial instruments have been used for the experiments:

• the Dow Jones Industrial Average index (DJI);
• the Nikkei 225 index (N225);
• the common stock of Italian oil company ENI, listed since June 18, 2001 on the

Milan stock exchange;
• the common stock of world’s leading logistics group Deutsche Post World Net

(DPW), listed since November 20, 2000 on the XETRA stock exchange;
• the common stock of Intel Co. (INTC), listed on the NASDAQ.

For all the instruments considered, three datasets of different length have been gen-
erated, in an attempt to gain some clues on how much historical data is needed to
obtain a reliable model:

• a “long-term” dataset, generated from the historical series of prices since January
1, 2002 till December 31, 2006, consisting of 1,064 records, of which 958 are
used for training and the most recent 106 are used for testing;

• a “medium-term” dataset, generated from the historical series of prices since
January 1, 2004 till December 31, 2006, consisting of 561 records, of which 505
are used for training and the most recent 56 are used for testing;
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• a “short-term” dataset, generated from the historical series of prices since January
1, 2005 till December 31, 2006, consisting of 304 records, of which 274 are used
for training and the most recent 30 are used for testing;

The validation dataset, in all cases, consists of records corresponding to the first half
of 2007, which require a historical series starting from March 17, 2006 (200 market
days before January 2, 2007) to be generated, due to the 200-day moving averages
and their changes that need to be computed. Having six months of validation data
allows us to evaluate the rate of decay of model performance as it “gets stale”.

8.7.3 Results

For each combination of instrument and dataset, ten runs of the MOLE data mining
engine with four islands of size 100 connected according to a ring topology and
with a standard parameter setting have been performed. Each run lasted as many
generations as required to reach convergence, defined as no improvement for 100
consecutive generations. The results are summarized in table 8.2. Fig. 8.2 shows
how the automated trading strategy based on the models found by each run fared
when applied to the validation set.

To correctly interpret the fitness values appearing in table 8.2, the following con-
siderations may be of interest:

• a hypothetical model Mrnd that returns a completely random (i.e., uniformly dis-
tributed) value for the Action variable in the interval [−1,1] will have an expected
mean absolute error of 1 in the −1 bin, of 2

3 in the 0 bin, and of 1 in the +1 bin,
according to Equation 8.44, and thus an expected total average error of 2 and
2
3 , corresponding to an expected fitness E[ f (Mrnd)] = 3

11 = 0.2727 . . . — model
Mrnd is representative of a situation of complete ignorance;

• a “constant” model M0 that always returns zero for the Action variable, which is
equivalent to a do nothing trading signal, will have an expected mean absolute
error of 1 in the −1 bin, of 0 in the 0 bin, and of 1 in the +1 bin, according to
Equation 8.44, and thus an expected total average error of 2, corresponding to an
expected fitness E[ f (M0)] = 1

3 = 0.3333 . . . ;
• the other two “constant” models M−1 and M+1, instead, will have an expected

total average error of 3, corresponding to an expected fitness E[ f (M−1)] =
E[ f (M+1)] = 1

4 = 0.25.

For the calculation of the Sortino ratio, we made the simplifying assumption of a
constant risk-free rate of 3.925% (the average three-month Euribor rate in the first
half of year 20072) for the instruments denominated in euros, of 5.175% (the aver-
age discount rate of 13-week US Treasury Bills in the first half of 20073) for those
denominated in dollars, and of 0.650% (the yield of 3-month Japanese Government
Bills in June 20074) for those denominated in yen.

2 Source: Euribor, URL http://www.euribor.org/.
3 Source: TreasuryDirect, URL http://www.treasurydirect.gov.
4 Source: Bloomberg
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Dow Jones Industrial Average

Long-Term Medium-Term Short-Term
Nikkei 225

Long-Term Medium-Term Short-Term
Deutsche Post World Net

Long-Term Medium-Term Short-Term
ENI

Long-Term Medium-Term Short-Term
Intel Co.

Long-Term Medium-Term Short-Term

Fig. 8.2. Graphs of the cumulative returns obtained by the automated trading strategy based
on the models generated by ten independent runs, for each instrument and training dataset.
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Table 8.2. Summary of experimental results. Minimum, average, and maximum values are
over the best models produced in ten independent runs of the island-based evolutionary algo-
rithm, when applied to the corresponding validation set. When infinite Sharpe ratios occur, the
average is computed over the finite values only.

Dataset
Performance Long-Term Medium-Term Short-Term
Measure min avg max min avg max min avg max

Dow Jones Industrial Average
Fitness 0.3297 0.3394 0.3484 0.3188 0.3327 0.3457 0.3183 0.3398 0.3671
Return* 0.1618 0.2303 0.4017 0.1062 0.2280 0.5503 0.0996 0.3225 0.5416
Sharpe Ratio 1.2250 2.0073 3.6700 0.6123 2.0901 4.9866 0.6064 3.0687 5.1994
Sortino Ratio 1.5380 2.5572 4.7616 0.7642 2.7949 6.5557 0.7215 4.0799 6.9968

Nikkei 225
Fitness 0.3211 0.3414 0.3651 0.3241 0.3418 0.3575 0.3205 0.3351 0.3529
Return* −0.1467 −0.0006 0.2119 −0.1118 0.0006 0.1436 −0.1063 −0.0161 0.1040
Sharpe Ratio −1.6352 −0.0192 2.8201 −1.2708 −0.0238 1.5947 −1.6385 −0.1828 2.0360
Sortino Ratio −1.9181 0.0782 4.1485 −1.5070 0.0253 2.1311 −1.9135 −0.1033 3.2197

ENI Stock
Fitness 0.2459 0.3268 0.3500 0.2475 0.2907 0.3425 0.2402 0.2949 0.3277
Return* −0.1389 0.0122 0.2120 −0.0856 0.0248 0.1547 −0.1936 −0.0372 0.2643
Sharpe Ratio −2.0204 −0.2971 2.2852 −2.1096 −0.1935 1.7443 −2.5211 −0.8458 2.4507
Sortino Ratio −2.3274 −0.2751 3.0867 −2.4578 −0.1799 2.4460 −2.8959 −0.9655 3.2188

Deutsche Post World Net Stock
Fitness 0.3182 0.3306 0.3451 0.3200 0.3342 0.3506 0.3118 0.3299 0.3403
Return* −0.0607 0.0476 0.2646 −0.0246 0.0547 0.2480 0.0117 0.1169 0.2820
Sharpe Ratio −∞ 0.1380 3.7798 −∞ 0.2476 2.0083 −2.7351 0.5796 3.2487
Sortino Ratio −15.8114 −2.3809 10.5500 −15.8114 −0.1780 12.7425 −10.2067 0.0920 4.6700

Intel Co. Stock
Fitness 0.2490 0.3050 0.3443 0.2433 0.2838 0.3658 0.2394 0.2665 0.3333
Return* 0.0247 0.1015 0.1669 0.0131 0.2254 0.4292 −0.0244 0.1252 0.3632
Sharpe Ratio −0.2128 0.6425 2.0494 −0.3872 2.0846 4.1456 −∞ 0.7836 2.7926
Sortino Ratio −0.2467 0.8624 3.2520 −0.4569 2.9042 6.1129 −15.8114 −0.7107 3.4903

*) Annualized logarithmic return.

8.7.4 Discussion of Results

In order to have a better idea of the quality of the results, one can compare them to a
buy-and-hold strategy over the same time period, summarized in table 8.3.

Table 8.3. Annualized logarithmic return and Sharpe ratio of a buy-and-hold strategy over the
validation period for the instruments considered.

Instrument Log-Return Sharpe Ratio
Dow Jones Industrial Average 0.1461 1.4218
Nikkei 225 0.1111 0.7258
ENI 0.1168 0.8074
Deutsche Post World Net 0.1320 0.5509
Intel Co. 0.2365 1.0696

Besides evaluating the results on a quantitative basis, it is also of interest to perform a
qualitative assessment of the model obtained, to see if some useful insight is captured
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by the data mining approach. Fig. 8.3 shows the best model of the Dow Jones Indus-
trial Average obtained from the short-term dataset in Run #1. The model uses in its
rules 13 independent variables only, out of the 54 shown in table 8.1, namely: Close,
O:P, dVolume, C:MA5, C:MA10, dC:MA20, C:MA200, C:EMA10, K, dK:D, MFI,
and OBV. Most rules make sense to an expert: for example, the second rule states
that a closing price below the 200-day moving average speaks in favor going long, as
for a mean-reverting series it can be expected that the price will go back up. Similar
a posteriori explanations have been given by expert traders for these and other rules
on which they were asked for an opinion. Overall, a tendency towards using volume
information can be observed, both directly (dVolume) and through indicators, like
MFI and OBV, whose definitions depend on volume.

IF MFI is high AND OBV is positive AND dVolume is slightlyNegative AND
dK:D is positive

THEN Action is Short

IF C:MA200 is negative THEN Action is Long

IF MFI is high AND dVolume is slightlyNegative AND C:MA5 is aroundZero
THEN Action is Short

IF MFI is between60and70 AND dC:MA20 is positive THEN Action is Short

IF dK:D is positive AND K is between50and70 AND dC:MA20 is smallPositive
AND O:P is positive

THEN Action is Short

IF C:MA10 is slightlyNegative AND Close is around12000 AND
C:EMA10 is aroundZero

THEN Action is Long

IF dK:D is positive AND K is between50and70 AND dC:MA20 is smallPositive
AND O:P is positive THEN Action is Short

IF MFI is high AND OBV is positive AND dVolume is slightlyNegative
AND dK:D is positive THEN Action is Short

IF MFI is high AND OBV is positive AND dVolume is slightlyNegative
AND dK:D is positive THEN Action is Short

Fig. 8.3. The best model of the Dow Jones Industrial Average obtained from the short-term
dataset in Run #1. The definitions of the linguistic values, which are an integral part of the
model, are not shown for conciseness; instead, descriptive labels have been assigned by hand
to improve clarity.

8.8 An Ensemble Technique for Improving Performance

Ensemble techniques are known to be very useful to boost the performance of sev-
eral types of machine learning methods and their benefits have recently been proven
experimentally (3) on Pittsburgh classifier systems, an approach to which the one
proposed in this chapter is very closely related.

Ensemble learning, a family of techniques established for more than a decade
in the Machine Learning community, provides performance boost and robustness to
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the learning process by integrating the collective predictions of a set of models in
some principled fashion (2). In particular, bagging (9) (an abbreviation for bootstrap
aggregating) is an ensemble technique which consists in training several models on
different training sets (called bootstrap samples) sampled with replacement from the
original training set, and combining such models by averaging the output or voting.

A simple but effective ensemble technique to greatly reduce the risk of the trad-
ing rules, similar to bagging, is a model-averaging approach whereby a number of
models, discovered in independent runs of the algorithm, perhaps using different pa-
rameter settings but, unlike in bagging, the same training and test sets, are pooled
and their output is combined by averaging. Table 8.4 reports the results obtained by
such ensemble technique applied to the models resulting from the ten runs summa-
rized in table 8.2 for each combination of instrument and dataset. These results show
a dramatic reduction of risk, in the face of a modest reduction of the returns. Overall,
the performance measures of the model pool are usually better than their averages
over the members of the pool, with notable exceptions on those instruments, like the
Dow Jones Industrial Average, where the performance of the individual model was
already more than satisfactory on average. In some cases, the benefits of pooling do
not manage to turn a negative result into a positive one; however, pooling makes the
losses less severe.

8.9 Conclusions

This chapter has discussed an approach to a very specific class of day-trading prob-
lems, that we have called single-position, by means of a fuzzy-evolutionary modeling
technique. A distributed evolutionary algorithm learns models, expressed in the form
of sets of fuzzy IF-THEN rules, that relate the optimal trading signal for a given fi-
nancial instrument on day t + 1 to a set of 54 statistics and technical indicators for
the same instrument measured on day t, which effectively filter and summarize the
previous history of the relevant time series up to day t.

The capability of the approach to discover useful models, which can provide risk-
adjusted returns in excess of a buy-and-hold strategy, has been demonstrated through
a series of experiments, whose aim was also to assess the generalization capabili-
ties of the models discovered. Finally, an ensemble technique has been suggested
to further improve the performance of the trading rules generated by the modeling
technique.
The strength of the approach described is its simplicity, which makes it accessible
even to unsophisticated traders. Indeed:

• the data considered each day by a trading rule to make a decision about its action
is restricted to those freely available on the Internet; visibility of the past time
series is filtered through a small number of popular and quite standard technical
indicators;

• the underlying trading strategy is among the simplest and most accessible even to
the unsophisticated individual trader; its practical implementation does not even
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Table 8.4. Results of the ensemble technique applied to the best models produced in ten inde-
pendent runs of the island-based evolutionary algorithm, when applied to the corresponding
validation set.

Performance Dataset
Measure Long-Term Medium-Term Short-Term

Dow Jones Industrial Average
Return* 0.1970 0.1272 0.3958
Sharpe Ratio 1.7094 0.8744 3.8192
Sortino Ratio 2.1619 1.0636 4.9320

Nikkei 225
Return* −0.0369 0.0175 0.0164
Sharpe Ratio −0.4849 0.1238 0.1405
Sortino Ratio −0.5878 0.1543 0.1767

ENI Stock
Return* 0.0853 0.0057 −0.0622
Sharpe Ratio 0.9108 −0.7189 −1.2671
Sortino Ratio 1.2734 −1.2080 −1.5334

Deutsche Post World Net Stock
Return* −0.0776 −0.0188 0.0781
Sharpe Ratio −2.2932 −2.4571 0.5558
Sortino Ratio −2.3166 −2.6190 0.7174

Intel Co. Stock
Return* 0.0946 0.2317 0.1041
Sharpe Ratio 0.5099 2.9882 0.5273
Sortino Ratio 0.6134 4.3481 0.6269

*) Annualized logarithmic return.

require particular kinds of information-technology infrastructures, as it could
very well be enacted by placing a couple of orders with a broker on the phone
before the market opens; there is no need to monitor the market and to react in a
timely manner.

Nonetheless, the results clearly indicate that, despite its simplicity, such an approach
may yield, if carried out carefully, significant returns, in the face of a risk that is, to
be sure, probably higher than the one the average investor would be eager to take,
but all in all proportionate with the returns expected.

To conclude, the issue of transaction costs is worth some discussion. Transaction
costs are the sum of two parts: the commissions claimed by the broker or the dealer
who execute the orders, and the price slippage that can occur in some circumstances,
when the price moves before the order can be executed and the trader has to aggres-
sively move the order price accordingly to get it executed. To begin with, no slippage
can occur given the particular structure of the trading strategy (the position is opened
with a market order placed before the opening auction, and closed either by the ex-
ecution of a limit order entered when the position was opened or automatically by
the broker at market close). Commissions are the only component that could have an
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impact on the profitability of the evolved trading rules. However, they can be made
as low as desired simply by increasing the amount invested: under most commis-
sion structures applied by brokers, commissions are calculated as a percentage (e.g.,
0.19%) of the order value with a maximum (e.g., $19); in other cases they are flat,
independent of the order size; many brokers offer substantial discounts on commis-
sions to frequent traders. Therefore, even if transaction costs have not been taken
into account in reporting the experimental results, their impact would be negligible
for an investor with sufficient capitalization.
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Summary. In this chapter we present the application of a genetic programming (GP) algo-
rithm to the problem of bankruptcy prediction. To carry out the research we have used a data-
base that includes extensive information (not only economic) from the companies. In order to
handle the different data types we have used Strongly Typed GP and variable reduction. Also,
bloat control has been implemented to obtain comprehensible classification models. For com-
parison purposes we have solved the same problem using a support vector machine (SVM).
GP has achieved very satisfactory results, improving those obtained with the SVM.

9.1 Introduction

Bankruptcy prediction is a very important economic issue. It is of great significance
for stakeholders as well as creditors, banks and investors, to be able to predict ac-
curately the financial distress of a company. It is also beneficial for companies to be
able to recognise on time the symptoms of economic failure in order to take mea-
sures to avoid failure. Given its relevance in real life, it has been a major topic in
the economic literature. Many researchers have worked on this topic during the last
decades; however, there is no generally accepted prediction model.

According to (6), a survey reviewing journal papers on the field in the period
1932-1994, the most popular methods for building quantitative models for bank-
ruptcy prediction have been discriminant analysis (2) and logit analysis (20). Since
the 1990s there has been an increasing interest in the application of methods orig-
inating from the field of artificial intelligence, mainly neural networks (14). Other
methods from the artificial intelligence field, such as evolutionary computation have
been scarcely used for the bankruptcy prediction problem. After an extensive (but not
exhaustive) review of the literature, only a few papers could be found that applied
evolutionary methods to the bankruptcy prediction problem.

Some authors have used genetic algorithms (GAs), either on its own (10), (23),
(26) or in a hybrid method with a neural network (3) for the insolvency prediction
problem. However, most of the approaches from the evolutionary computation field

E. Alfaro-Cid et al.: Strong Typing, Variable Reduction and Bloat Control for Solving the Bankruptcy Prediction Problem
Using Genetic Programming, Studies in Computational Intelligence (SCI) 100, 161–185 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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use genetic programming (GP)(12). The ability of GP to build functions make this
approach more appropriate to the problem at hand than GA. In the literature we can
find a couple of hybrid approaches that combine GP with another method, such as
rough sets (18) and neural networks (24). Some authors have used GP on its own. In
(27), the authors have used linear GP and have compared its performance to support
vector machines and neural networks. In (13), the authors have used GP to predict
bankruptcy on a database of Norwegian companies and in (22) GP has been used for
the prediction of insolvency in non-life insurance companies, a particular case. Fi-
nally, grammatical evolution, a form of grammar-based genetic programming, has
been used in (4) to solve several financial problems, corporate failure prediction
among them.

One important advantage of the GP approach to bankruptcy prediction is that it
yields the rules relating the measured data to the likelihood of becoming bankrupt.
Thus a financial analyst can see what variables and functions thereof are important in
predicting bankruptcy. Our approach differs from previous GP applications in several
aspects:

• Database. Our database comprises data from Spanish companies from differ-
ent industrial sectors. It is an extensive database that includes not only financial
data from the companies but also general information that can be relevant when
predicting failure. The database has some challenging features: it is highly un-
balanced (only 5-6% of the companies go bankrupt) and some data is missing.
Although this complicates the classification, it is an accurate reflection of the real
world, where few companies go bankrupt in proportion and it is difficult to obtain
all the relevant data from companies.

• Strong typing. Since the database comprises not only economic data we have
used GP with strong typing to ensure that the prediction models evolved make
sense from an economic point of view. Strong typing ensures that the functions
used by GP take arguments of a given type and return values of the proper type
as well.

• Variable reduction. Usually bankruptcy prediction models are based on 7 or 8
economic ratios. In our case, in order to handle the amount of data in the data-
base and in order to ensure that the GP generated models are understandable, the
prediction has been done in two steps. To start with, GP has been used to identify
which data is relevant for solving the problem. This can be done since GP creates
analytical models as a final result. Then the proper prediction models are evolved
using those variables that had been identified as important in the first stage.

• Bloat control. In (15) code bloat is defined as: “the tendency of candidate pro-
gram solutions to grow in size independent of any corresponding increase in
quality”. This flaw causes waste of computer resources, difficulties in the un-
derstanding of the final solutions and spoils the convergence by hampering the
modification of trees in a meaningful way. We have undertaken a comparison
study of various bloat control methods to find which one is best suited to the
problem at hand. Our main goal while trying to control the bloat is for the GP to
generate models that can be analysed and understood.
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• Data from a range of years. In the literature of the field the prediction models are
normally built using data from a single year to predict the insolvency in a cer-
tain time period. In this work we have also considered the possibility of evolving
models that involve data from 3 consecutive years. We have adopted and com-
pared two ways of handling the data: to present the data to the system as a vector
(i.e. simultaneously) and to present the data from various years to the classifier
as a time series (i.e. the evaluation process takes as many steps as time steps are
in the data series).

• Support Vector Machine. We have also analysed the data using a support vec-
tor machine (SVM) classifier, and our results demonstrate that our proposed GP
technique gives improved performance over the SVM.

9.2 Database

9.2.1 Data Description

The work presented in this chapter uses a database supplied by the Department of
Finance and Accounting of the Universidad de Granada, Spain. The data were com-
piled by Axesor (www.axesor.es), a leading company in the business information
industry. The database consists of a 2859× 31 matrix comprising data from 484
Spanish companies from the year 1998 to the year 2003.1 Each row of the matrix
holds the data referent to a company during one year. The database includes not
only financial data such as solvency, profit margin or income yield capacity, but also
general information such as company size, age or number of partners. These inde-
pendent variables are the inputs to the classifier. The desired output of the classifier
is the variable that states whether the company was bankrupt in 2004 or not. We have
used the data from years 2001, 2002 and 2003 to predict bankruptcy in the year 2004,
that is 1, 2 and 3 years in advance. Table 9.1 shows the independent variables, their
description and type.

9.2.2 Preparation of Data

As can be seen in table 9.1, the variables can take values from different numeri-
cal ranges: real, categorical, integer and boolean. Some of the non-financial data
take categorical values; these are the size of the company, the type of company and
the auditor’s opinion. Usually, company size is a real variable but in this case the
companies are grouped in three separated categories according to their size. Each
categorical variable can take 3 different values. To work with them they have been
transformed into 3 boolean variables each (instead of having one variable stating if
the company has size 1, 2 or 3, this has been expressed using 3 boolean variables
that answer the question: “Is the company’s size equal to 1/2/3”). Therefore, after

1 The number of rows in the data matrix should be 2904, i.e. 484× 6, but some companies
do not have available data for all the years
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Table 9.1. Independent Variables

Financial Variables Description Type

Debt Structure Long-Term Liabilities /Current Liabili-
ties

Real

Debt Cost Interest Cost/Total Liabilities Real
Liabilities Liabilities/Equity Real
Cash Ratio Cash Equivalent /Current Liabilities Real
Working Capital Working Capital/ Total Assets Real
Debt Ratio Total Assets/Total Liabilities Real
Operating Income Margin Operating Income/Net Sales Real
Debt Paying Ability Operating Cash Flow/Total Liabilities Real
Return on Operating Assets Operating Income/Average Operating

Assets
Real

Return on Equity Net Income/Average Total Equity Real
Return on Assets Net Income/Average Total Assets Real
Asset Turnover Net Sales/Average Total Assets Real
Receivable Turnover Net Sales/Average Receivables Real
Stock Turnover Cost of Sales/Average Inventory Real
Current Ratio Current Assets/Current Liabilities Real
Acid Test (Cash Equivalent + Marketable Securi-

ties + Net receivables) /Current Liabili-
ties

Real

Continued Losses If the company has suffered continued
losses for 3 consecutive years

Boolean

Non-financial Variables Description Type

Size Small/Medium/Large Categorical
Type of company Categorical
Auditor’s opinion Categorical
Audited If the company has been audited Boolean
Delay If the company has submitted its annual

accounts on time
Boolean

Linked in a group If the company is part of a group hold-
ing

Boolean

Historic number of serious incidences Such as strikes, accidents... Integer
Historic number of judicial incidences Since the company was created Integer
Number of judicial incidences Last year Integer
Number of partners Integer
Age of the company Integer
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this modification the available data set for each company includes 34 independent
variables: 16 real, 5 integer and 13 boolean variables.

One of the problems with this database is that some of the data are missing.
Specifically, around 16% of the companies in the database have one or more data
values missing. To handle this we have used average values where missing data oc-
curs. Although this may compromise the extrapolation of the evolved classifiers to
new data, we have decided not to eliminate these companies from our experiments
since our priority is to check the suitability and robustness of the proposed GP ap-
proach for the evolution of classifiers.

9.2.3 Training and Testing Sets

In order to apply GP to the prediction problem the data sets have been divided into
two groups: the training and testing sets, which were selected randomly. Given that
the data base is highly unbalanced (only 5-6% of the companies went bankrupt), this
ratio needs to be reflected in the choice of the training set. The chosen training set
consists of 367 companies (25 bankrupt vs. 342 healthy). The test set consists of the
remaining 111 companies (8 bankrupt vs. 103 healthy).

9.3 Genetic Programming for Prediction

Genetic Programming (GP) is based on the idea that in nature structure undergoes
adaptation. The structure created over a period of time is the outcome of natural se-
lection and sexual reproduction. Thus, GP is a structural optimisation technique as
opposed to a parametric optimisation technique. The individuals in GP are repre-
sented as hierarchical structures, typically tree structures, and the size and shape of
the solutions are not defined a priori as in other methods from the field of evolution-
ary computation, but they evolve over time. The flow of a GP algorithm is as that of
any evolutionary technique: a population is created at random, each individual in the
population is evaluated using a fitness function, the individuals that performed better
in the evaluation process have more possibilities of being selected for the new popu-
lation than the rest and a new population is created once the individuals are subject to
the genetic operators of crossover and mutation with a certain probability. The loop
is run until a certain termination criterion is met.

In this section we briefly describe the GP framework that we have used for rep-
resenting systems for bankruptcy prediction. Basically, the GP algorithm must find
a structure (a function) which can, once supplied with the relevant data from the
company, decide if this company is heading for bankruptcy or not. In short, it is a
binary classification problem. One of the classes consists of the companies that will
go bankrupt and the other consists of the healthy ones. For further information on
classification using GP see (7), (11).
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9.3.1 Classification

The classification works as follows. Let X = {x0, . . . , xN} be the vector comprising
the data of the company undergoing classification. Let f (X) be the function defined
by an individual GP tree structure. The value y returned by f (X) depends on the
input vector X .

y = f (x0, x1, . . . , xN) (9.1)

We can apply X as the input to the GP tree and calculate the output y. Once the
numerical value of y has been calculated, it will give us the classification result ac-
cording to

y > 0, X ∈ B (9.2)

y≤ 0, X ∈ B (9.3)

where B represents the class to which bankrupt companies belong and B represents
the class to which healthy companies belong. That is, if the evaluation of the GP
tree results in a numerical value greater than 0 the company is classified as heading
for bankruptcy, while if the value is less or equal to 0 the company is classified as
healthy.

9.3.2 Fitness Evaluation

As mentioned previously, the database we are using is very unbalanced in the sense
that only 5-6% of the companies included will go bankrupt. This is something to
consider while designing the fitness function, otherwise the evolution may converge
to structures that classify all companies as healthy (i.e. they do not classify at all)
and still get a 95% hit rate.

We have addressed this problem by modifying the cost associated to misclassify-
ing the positive and the negative class to compensate for the imbalanced ratio of the
two classes (9). For example, if the imbalance ratio is 1:10 in favour of the negative
class, the penalty of misclassifying a positive example should be 10 times greater.
Basically, it rewards the correct classification of examples from the small class over
the correct classification of examples from the over-sized class. It is a simple but
efficient solution. Therefore, the fitness function for maximisation is

Fitness =
n

∑
i=1

ui (9.4)

where

ui =

⎧⎨⎩
0 : incorrect classification
nh
nb

: bankrupt company classified correctly
1 : healthy company classified correctly

(9.5)

nb is the number of bankrupt companies in the training set and nh is the number of
healthy companies in the training set.
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9.3.3 Genetic Programming Algorithm

The GP implementation used is based on ECJ (http://cs.gmu.edu/˜eclab/projects/ecj),
a research evolutionary computation system developed at George Mason University’s
Evolutionary Computation Laboratory (ECLab). Table 9.2 shows the main parame-
ters used during evolution.

Table 9.2. GP parameters

Initialisation method Ramped half and half
Replacement operator Generational with elitism (0.2%)
Selection operator Tournament selection
Tournament group size 7
Cloning rate 0.1
Crossover operator Bias tree crossover
Internal node selection rate 0.9
Crossover rate 0.8
Mutation rate 0.1
Tree maximum initial depth 7
Tree maximum depth 18
Population size 1000
Number of runs 30
Termination criterion 50 generations

9.3.4 Strong Typing

Strongly Typed GP (STGP) (19) is an enhanced version of GP that enforces data-
type constraints, since standard GP is not designed to handle a mixture of data types.
In STGP, each function node has a return-type, and each of its arguments also have
assigned types. STGP permits crossover and mutation of trees only with the con-
straint that each node’s return type matches the corresponding argument type in the
node’s parent. A STGP has been implemented in order to ensure that in the resulting
classifying models the functions operate on appropriate data types so that the final
model has a physical meaning. That is, the objective is to avoid results that operate
on data which are not compatible, for instance, models which add up the liabilities
and the age of a company. The terminal set used consists of 35 terminals: the inde-
pendent variables from table 9.1 plus Koza’s ephemeral random constant (12). Table
9.3 shows the function set used and the chosen typing.

9.4 Variable Reduction

In order to build models that can be applied to an extensive number of practical cases
we need simple models which require the minimum amount of data.
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Table 9.3. Function set

Functions Number of
arguments

Arguments
type

Return

+, -, *, / 2 real real
ln, exp 1 real real
If arg1 ≤ arg2 then arg3 else arg4 4 real real

arg1 is a booleanIf arg1 then arg2 else arg2 3
arg2,arg3 are real

real

If arg1 ≤ int then arg2 else arg2 arg1 is an integer
(int is randomly chosen)

3
arg2,arg3 are real

real

Our initial predictions were made running the GP algorithm with all the available
data for each year. Once these results were analysed we could observe that there
were some variables used more frequently than others. We then ran a second set of
experiments considering only those variables which appeared on, at least, 90% of the
best-of-run trees obtained in the initial phase. This way the number of terminals was
reduced drastically. In table 9.4 the variables found to be more relevant for solving
the prediction problem are presented.

Table 9.4. Reduced Variables

Year Variable Type

2001 Debt Structure Real
Cash Ratio Real
Working Capital Real
Debt Ratio Real
Return on Operating Assets Real
Return on Equity Real
Continued Losses Boolean

2002 Working Capital Real
Return on Equity Real
Return on Assets Real
Asset Turnover Real
Stock Turnover Real
Acid Test Real

2003 Debt Cost Real
Return on Equity Real
Return on Assets Real
Asset Turnover Real
Current Ratio Real

The variables found to be more relevant for the final model are different each year.
This was expected since the indicators of economic distress vary with time. The
only variable that appears in the reduced set of variables for every year is “return
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on equity”. Note that for years 2002 and 2003 it does not make sense to talk about
STGP since all the variables in the reduced set are of the same type.

The reduction in the number of variables should not imply a loss of quality in
the solutions. Therefore, in order to check that the reduction of variables does not
compromise the quality of results we have performed a Kruskal-Wallis test (a non-
parametric statistical test) for the global error for each of the 3 years studied. The
outcome of the Kruskal-Wallis tests allows us to insure that there are not statistically
significant difference between the classification errors (in-sample and out-sample)
obtained using all the variables or the group of reduced variables in the evolution.
Figs. 9.1, 9.2 and 9.3 plot these results. In the figures we can see a box and whisker
plot for each column of data. The boxes have lines at the lower quartile, median, and
upper quartile values. The whiskers are lines extending from each end of the boxes
to show the extent of the rest of the data. Outliers are data with values beyond the
ends of the whiskers. They are represented with a plus symbol. The notches in a box
plot represent a robust estimate of the uncertainty about the medians for box-to-box
comparison. Boxes whose notches do not overlap indicate that the medians of the
two groups differ at the 5% significance level.

As important as getting good overall classification errors is to get results that
minimise both the type I error and the type II error. In our case the type I error is
the percentage of healthy companies that are classified as bankrupt and the type II
error is the percentage of bankrupt companies that are classified as healthy. Although
ideally both errors should be minimised for the bankruptcy prediction problem the
error type II is of greater importance. Not being able to identify that a company
is at risk causes problems to creditors and slows down the taking of measures that
may solve the problem. Therefore the same statistical tests were carried out for the
type I and type II errors. They led to the same conclusion: there was no statistically
significant difference between both sets of results.

9.5 Bloat Control

Our aim when applying a bloat control method is for GP to generate comprehensible
classification models. As an example of bloat fig. 9.4 shows the evolution of the
average size of the population along the generations in a random run. In this work
the size of a tree is measured as its number of nodes. After 50 generations the average
size of the individuals doubles the initial size.

The most popular method to date for controlling bloat is the imposition of size
limits proposed by Koza in (12): depth limitation for the generation of individuals
in the initial population, depth limitation in the generation of subtrees for subtree
mutation and restriction of the crossover and mutation operators so that children
larger than the permissible size are not included in the population.

Recently, an extensive study has been published (17) where several approaches
to bloat control are examined and conclusions are drawn on their success in reducing
population size while maintaining the quality of the best-of-run result.
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Fig. 9.1. Average best error obtained using all variables vs. average best error obtained using
the reduced set of variables for year 2001 (prediction 3 years ahead)
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Fig. 9.2. Average best error obtained using all variables vs. average best error obtained using
the reduced set of variables for year 2002 (prediction 2 years ahead)
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Fig. 9.3. Average best error obtained using all variables vs. average best error obtained using
the reduced set of variables for year 2003 (prediction 1 year ahead)
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We have carried out a comparison of bloat control methods to find out which one
best suits our problem. We compare 4 bloat control methods versus Koza’s method
of restricting the tree depth. All the bloat control methods have been augmented
with Koza’s style tree depth restrictions, since it has been proved that any method
augmented this way is superior to the bloat control method alone (16).

Three of the bloat control methods are chosen among those which provided better
results in (17): double tournament, tarpeian and lexicographic parsimony pressure.
The fourth method is called prune and plant (8). We have used this last method
successfully in previous works on bankruptcy prediction (1).

9.5.1 Double Tournament

Double tournament is a method proposed in (17) that applies two layers of tourna-
ment in sequence, one for fitness and the other for size. The individuals in the tour-
nament group are not chosen at random with replacement from the population, but
they are the winners of a previous tournament. If the final tournament selects based
on fitness then the previous tournaments select on size (or vice versa). Therefore the
algorithm has three parameters: a fitness tournament size (F), a parsimony tourna-
ment size (P) and a switch (do-fitness-first) which indicates whether the qualifiers
select on fitness and the final selects on size or the other way round. We have fixed F
to 7 and P to 1.4 (i.e. two individuals participate in the tournament, and with prob-
ability P/2 the smaller individual wins, else the larger individual wins), a selection
that proved to work well on a variety of problems in (17). Regarding the parameter
do-fitness-first we have included both possibilities (true or false) in our comparison
study.

9.5.2 Tarpeian Method

The Tarpeian method was introduced in (21). It limits the size of the population by
making uncompetitive a fraction W of individuals with above-average size. Before
the evaluation process those individuals are assigned a very bad fitness which reduces
dramatically their chance of being selected. Since this happens before the evaluation
it reduces the number of evaluations necessary. We have fixed W to 0.3 because this
setting performed well across all problem domains in (17).

9.5.3 Lexicographic Parsimony Pressure

This technique (17) treats fitness as the first objective of the optimisation and size
as a secondary objective. In plain lexicographic parsimony pressure an individual is
considered superior to another if it is better in fitness; if they have the same fitness,
then the smallest individual is considered superior. We have used a variation of the
method especially suited for environments where few individuals have the same fit-
ness: lexicographic parsimony pressure with ratio bucketing. Here the individuals
from the population are sorted into ranked buckets and those individuals in the same
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bucket are treated as if they had the same fitness. The buckets are proportioned so
that low-fitness individuals are placed into larger buckets than high-fitness individu-
als. A parameter r fixes the size of the buckets. The bottom 1/r fraction of individuals
of the population are placed in the bottom bucket. Of the remaining individuals, the
bottom 1/r fraction are placed into the next bucket and so on, until all individuals
have been placed in a bucket. Again our choice of r equal to 2 was motivated by the
good results across all problem domains that this setting obtained in (17).

9.5.4 Prune and Plant

This bloat control approach is described in (8) and is inspired in the strategy of the
same name used in agriculture. It is used mainly for fruit trees and it consist of
pruning some branches of trees and planting them in order to grow new trees. The
idea is that the worst tree (in terms of fitness) in a population will be substituted by
branches pruned from one of the best trees and planted in its place. This way the
offspring trees will be of smaller size than the ancestors, effectively reducing bloat.

We have implemented this technique as a bloat-control crossover operator. The
parameter to set is the probability of this kind of crossover. Since there are no pre-
vious studies on the amount of prune and plant to use we have compared 3 set of
parameters (see table 9.5).

Table 9.5. Prune and plant settings

Prune & plant ratio Crossover ratio Cloning ratio Mutation ratio

0.4 0.4 0.1 0.1
0.5 0.3 0.1 0.1
0.6 0.3 0.05 0.05

9.5.5 Bloat Control Results

Summarizing, table 9.6 shows all the methods included in the comparison study and
the choice of settings for each of them. To draw our conclusions we have focused
on the success of the bloat control methods in managing the average population size
while retaining good best-fitness-of-run performance. Every method has been run 30
times. All the numerical results presented are averaged over the 30 runs and have
been compared using a Kruskal-Wallis statistical test.

Regarding the size control (see fig. 9.5), all settings of prune and plant and dou-
ble tournament decrease significantly the average population size as compared to
Koza-style’s depth limiting alone. The magnitude of the size reduction achieved by
both settings of double tournament is remarkable. On the other hand, although lex-
icographic parsimony pressure with ratio bucketing and tarpeian both converge to
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Table 9.6. Bloat control methods

Method Settings

Koza’s depth limitation Tree max initial depth = 7; Tree max depth = 18
F = 7; P = 1.4; do-fitness-first = trueDouble tournament
F = 7; P = 1.4; do-fitness-first = false

Tarpeian W = 0.3
Ratio bucketing r = 2

Prune and plant ratio = 0.4
Prune and plant Prune and plant ratio = 0.5

Prune and plant ratio = 0.6
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Fig. 9.5. Average size of final population averaged across 30 runs for each bloat control
method



9 Bankruptcy Prediction Using GP 175

populations whose average size is smaller than Koza-style’s, the statistical test shows
there is no statistically significant difference.
Fig. 9.6 presents the average best-of-run fitness calculated over the training and test-
ing sets and normalised in [0,1] to which each method has converged. Koza’s-style
depth limiting, lexicographic with ratio bucketing, tarpeian and prune and plant with
probability 0.4, all obtained fitness results that are not statistically significantly differ-
ent. All the other settings of prune and plant and both settings of double tournament
get lower fitness values.
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     (fitness first)
8 − Double tournament
     (size first)

Fig. 9.6. Normalised best-of-run fitness averaged across 30 runs for each bloat control method

Overall the only bloat control method that reduces the final size of the population
while maintaining the quality of the result is prune and plant with a probability of
0.4. Therefore that is the method we have used in the remainder of our experiments.

9.6 Final Results

9.6.1 Prediction Using Data from 1 Year

In this section we present the best results obtained using data from a single year
for a prediction 3, 2 and 1 year ahead. Tables 9.7, 9.8 and 9.9 show these results.
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The results of the prediction 3 and 1 years ahead (see Tables 9.7 and 9.9) are very
similar, which is a little unusual, one would expect the accuracy to drop once you
move three years away. The results of the prediction 2 years ahead are different (see
table 9.8). The global error and the type I error are smaller but at the expense of a
higher percentage of the type II error. As it has already been said in this particular
application the type II error is more relevant so these results are a bit disappointing
in that sense.

Table 9.7. Prediction results 3 years ahead

Training Testing Overall

Global error (%) 15.26 19.82 16.32
Error type I (%) 16.37 20.39 17.3
Error type II (%) 0 12.5 3.03

Table 9.8. Prediction results 2 years ahead

Training Testing Overall

Global error (%) 8.17 15.32 9.83
Error type I (%) 8.48 14.56 9.89
Error type II (%) 4 25 9.09

Table 9.9. Prediction results 1 year ahead

Training Testing Overall

Global error (%) 13.62 18.92 14.85
Error type I (%) 14.62 19.42 13.42
Error type II (%) 0 12.5 3.03

This section includes an alternative set of results obtained using a support vector
machine (SVM) (25). SVMs are learning machines that can perform binary classi-
fication and real valued function approximation tasks. SVMs non-linearly map their
input space into a high dimensional feature space. Then, the SVM finds a linear sep-
arating hyperplane with the maximal margin in this higher dimensional space. In
order to generate these results we have used LIBSVM (5), an integrated software
for support vector classification. We have chosen this particular software because it
supports weighted SVM for unbalanced data. Tables 9.10, 9.11 and 9.12 show the
results obtained.
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Table 9.10. Prediction results 3 years ahead using SVM

Training Testing Overall

Global error (%) 27.52 27.03 27.41
Error type I (%) 29.24 29.12 29.21
Error type II (%) 4 0 3.03

Table 9.11. Prediction results 2 years ahead using SVM

Training Testing Overall

Global error (%) 28.61 34.23 29.92
Error type I (%) 30.41 36.89 31.91
Error type II (%) 4 0 3.03

Table 9.12. Prediction results 1 year ahead using SVM

Training Testing Overall

Global error (%) 26.98 27.03 26.99
Error type I (%) 26.32 27.18 26.52
Error type II (%) 36 25 33.33

The performance of the SVM is definitely inferior. Only the percentages of type
II error for the prediction 2 and 3 years ahead are equivalent to those obtained with
GP. The prediction results one year ahead leave much to be desired.

9.6.2 Prediction combining data from 3 years

Two further models have been constructed combining the data from all three years
to obtain a global model that takes into account the evolution of the variables during
this 3-year period. For these experiments we have also used a reduced set of variables
(see table 9.13), those that were used more frequently in an initial set of runs.

Table 9.13. Reduced Variables

Variable Type

Working Capital Real
Debt Paying Ability Real
Return on Equity Real
Stock Turnover Real
Continued Losses Boolean

The results of the prediction 3 and 1 years ahead (see Tables 9.7 and 9.9) are very
similar, which is a little unusual, one would expect the accuracy to drop once you
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move three years away. The results of the prediction 2 years ahead are different (see
table 9.8). The global error and the type I error are smaller but at the expense of a
higher percentage of the type II error. As it has already been said in this particular
application the type II error is more relevant so these results are a bit disappointing in
that sense. The first of these two models uses a parallel approach, i.e. all data from 3
years are fed into the GP model at the same time. This way the terminal set consists
of 16 terminals (5 data items × 3 years + ephemeral random constant).

In the second model we have considered a sequential approach. Instead of feeding
the model with all the data from the 3 years simultaneously, the evaluation takes
place in three steps in which the model is fed with the data corresponding to that
year. We have also added a further terminal that is the result of the evaluation of
the model in previous years (a kind of feedback) since it seems very relevant for
the analysis to know how the company was doing the previous years. In the first
evaluation step (using data from year 2001) this figure is not available, but in the
following evaluation steps it is.

In table 9.14 we can see the best results obtained when the data from the 3 years
are combined together. The results are very promising. The sequential approach gave
slightly better prediction rates than when introducing all the data in parallel, but the
difference is not significant.

Table 9.14. Prediction results combining data from 3 years

Training Testing Overall

Global error (%) 14.44 19.82 15.69Parallel
Error type I (%) 15.1 21.36 16.55approach
Error type II (%) 4 0 3.03

Global error (%) 12.16 18.02 13.52Sequential
Error type I (%) 12.87 19.42 14.39approach
Error type II (%) 4 0 3.03

Table 9.15 shows the results obtained when using a SVM for solving the problem.
As in the previous section the error rates are larger than those obtained with GP.

Table 9.15. Prediction results combining data from 3 years using SVM

Training Testing Overall

Global error (%) 33.51 35.14 33.89
Error type I (%) 35.67 37.89 36.18
Error type II (%) 4 0 3.03
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9.6.3 Discussion

We begin this section with a comparison of the results obtained using different data
for the prediction. From Tables 9.7, 9.8, 9.9 and 9.14 we can see that the differences
are small. Fig. 9.7 plots the average best-of-run fitness calculated over the training
and testing sets and normalised in [0,1] for each prediction year. It confirms that there
is no statistically significant difference that could allow us to claim that any result is
better than any other.
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Fig. 9.7. Normalised best-of-run fitness averaged across 30 runs for each prediction year

Next, we present two examples of the type of classifier that GP evolves. The fol-
lowing equations state the classification model that has given the best results when
predicting bankruptcy one year ahead (see table 9.9). The function consists of three
nested conditional clauses:
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y = If
x27

x23− x24
≤ x23 exp(x22) (9.6)

then i f0− x22− x27− exp(x14)− exp(x24)
else −1

i f0 = If x24 ≤ x27 (9.7)
then

If x24 ≤ x22 +43.45

then
x22

ln(x23)+ x24
−7.43

else ln(x27)
else x23

where x14 is the debt cost, x22 is the return on equity, x23 is the return on assets, x24
is the asset turnover and x27 is the current ratio. Essentially, what this function does
is to divide the set of companies in seven disjoint sets depending on which of the
following clauses the company meets:

A ≡ x27

x23− x24
≤ x23 exp(x22)

B ≡ x24 ≤ x27

C ≡ x23− x22− x27− exp(x14)− exp(x24)≤ 0
D ≡ x24 ≤ x22 +43.45

E ≡ x22

ln(x23)+ x24
−7.43− x22− x27− exp(x14)− exp(x24)≤ 0

F ≡ ln(x27)− x22− x27− exp(x14)− exp(x24)≤ 0

Table 9.16 presents the classification sets and their classification as well as the per-
centage of companies in each set and the percentage of wrong classifications in each
set. Belonging to one set is determined, as already mentioned, by meeting or not the
inequalities. In the table the symbols ‘F’, ‘T’ and ‘-’ stand for false, true and not
applicable. The highest percentage of error is produced in sets 2, 4 and 6. This is due
to the fact that the emphasis in the fitness function to avoid misclassifying a bankrupt
company leads to an over classification of healthy companies as bankrupt.
Finally, the following equations state the classification model that has given the best
results when predicting bankruptcy using the data from the three years in parallel
(see table 9.14). Again, the function consists of three nested conditional clauses:
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Table 9.16. Classification table according to the best prediction model evolved using data one
year prior to bankruptcy

Set Percentage Percentage
No.

A B C D E F Classification
of cases of error

1 F - - - - - healthy 7.11 2.94
2 T F F - - - fails 10.88 76.92
3 T F T - - - healthy 40.79 0.00
4 T T - T F - fails 4.18 45.00
5 T T - T T - healthy 28.45 0.74
6 T T - F - F fails 7.53 55.56
7 T T - F - T healthy 1.05 0.00

y = If x12 (9.8)
then i f0

else ln(ln(x1601))− exp(exp(x1602))
i f0 = If (2x2603 > x2203)∧ (−63.07≤ x2203) (9.9)

then (x2203 + i f1)
(

x1602 −
x2602 − x2201

ln(x2203)− exp(exp(x1602))

)
else x2603

i f1 = If x2003 −30.18≤ x2203 (9.10)

then ln(x2203)
(

x1602 −
49.91x1601 − x2602

3

)
else x2603

where x12 indicates continued losses, x1601 is the working capital in year 2001, x1602
is the working capital in year 2002, x2003 is the debt paying ability in year 2003, x2201
is the return on equity in year 2001, x2203 is the return on equity in year 2003, x2602 is
the stock turnover in year 2002 and x2603 is the stock turnover in year 2003. This
time the prediction model classifies the companies in eight disjoint sets depending
on whether they meet the following inequalities or not:
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A ≡ x12 = 0
B ≡ ln(ln(x1601))− exp(exp(x1602))≤ 0
C ≡ (2x2603 > x2203)∧ (−63.07≤ x2203)
D ≡ x2603 ≤ 0
E ≡ x2003 −30.18≤ x2203

F ≡
(

x2203 + ln(x2203)
(

x1602 −
49.91x1601 − x2602

3

))
a≤ 0

G ≡ (x2203 + x2603)a≤ 0

where a = x1602 −
x2602 − x2201

ln(x2203)− exp(exp(x1602))

Table 9.17 presents the classification sets for the model created combining data from
the 3 years in parallel. Again the highest percentages of error are yielded by those sets
whose companies are classified as bankrupt for the reason given before: the emphasis
in the fitness function is to avoid misclassifying a bankrupt company, which leads to
an overclassification of healthy companies as bankrupt.

Table 9.17. Classification table according to the best prediction model evolved using data from
the three years in parallel

Set Percentage Percentage
No.

A B C D E F G Classification
of cases of error

1 T T - - - - - healthy 64.44 0.32
2 T F - - - - - fails 0.21 0.00
3 F - F T - - - healthy 3.97 0.00
4 F - F F - - - fails 14.02 68.66
5 F - T - T T - healthy 6.49 0.00
6 F - T - T F - fails 3.77 77.78
7 F - T - F - T healthy 29.29 0.00
8 F - T - F - F fails 4.18 70.00

9.7 Conclusions

The application of GP to the bankruptcy prediction problem has yielded satisfactory
results in spite of the imbalance and missing data in the database we have used for
the analysis. The fact that GP generates results in the shape of an analytical function
allows to analyse the relevance of the variables being used for building the prediction
models. The reduction in the number of these variables makes possible the evolution
of more intelligible models. From the analysis of the frequency of usage of the vari-
ables in the final models we can conclude that the non-financial variables do not
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play an important role in the building of the failure prediction models. On the other
hand “return on equity” is the only variable that appears in all our reduced sets of
variables, confirming its importance for the prediction.

Using Strongly Typed GP ensures that the resulting functions make sense from
an economic point of view. Limiting the type of data that the functions can take and
return also simplifies the task to be performed by the GP by limiting the size of the
search space.

There are no statistically significant differences among the prediction results ob-
tained using different sets of data from one year (1, 2 and 3 years ahead) or com-
bining the data from the three years. Regarding the way of feeding the data in the
system when using the data from the three years (i.e. sequentially or in parallel) the
differences in the results have been minor but we are persuaded that this is due to
the fact that we are considering very short time series (only three time steps). We
are convinced that this approach will be very valuable in cases where the time span
under consideration is longer or the data is available at a higher frequency (monthly,
weekly).

The comparison study of bloat control methods has resulted in two methods that
obtained fitness results as good as those obtained with the benchmark but did not
reduce size efficiently (i.e. lexicographic parsimony pressure with ratio bucketing
and tarpeian), four methods that reduced the average size of the population at the
expense of inferior fitness values (i.e. both settings of double tournament and two
settings of prune and plant) and one method that reduced the average size of the
population while keeping the quality of the results: prune and plant with a probability
of 0.4.

Finally, when compared with the numerical results obtained with SVM the GP
results are clearly better. In addition GP provides us with a nonlinear function in a
tree shape, which is easier to analyse and draw conclusions from than the SVM black
box structure.
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Summary. A Kalman-filtered feature-space approach is taken to forecast one-day changes in
the financial market indices using lagged returns from previous days as inputs. The resulting
model is used to define a time-varying (adaptive) technical trading rule, one which, in cases
examined, achieves an out-of-sample Sharpe (‘reward-to-variability’) Ratio far superior to the
‘buy-and-hold’ strategy and its popular ‘crossing moving-average’ counterparts. The approach
is contrasted with recurrent neural network models and with other previous attempts to com-
bine Kalman-filtering concepts with (more traditional) multi-layer perceptron models and is
demonstrated on two stock indices, the Irish market index (ISEQ) and the FTSE 100 index.
The new method proposed is found to be simple to implement, and represents what is argued
to be the most natural melding to date of the general explanatory capability of neural networks
with the proven adaptive properties of the Kalman filter. Preliminary results presented here,
might be expected to perform well for index arbitrage and related types of problems.

10.1 Introduction

While the vast literature relating to attempts to gain excess returns from technical
(i.e. price history) information is too diverse to summarise effectively here, that part
of it having to do with machine learning is more limited. As mentioned in (3) and
elsewhere, some of the key papers in the area by Lebaron, Lakonishok, and Lo (see
(2) and (1) in particular) have suggested the possibility of weak form inefficiencies
existing in some markets, consistent with the notion of bounded rationality (8), but
the results obtained have stopped short of definitively asserting the affirmative re-
sult. In the manner presented here the notion of efficiency of an asset (or rule) will
be interpreted as giving rise to no greater return, on average, than a standard ‘buy
and hold’ position with a commensurate level of market risk, as measured by Beta.
Specifically, if β or ‘Beta’, is defined as the coefficient of the regression for Rasset ,
the net return (above the interest rate) of an asset (or rule) as a linear function of
market return Rmkt , then generally

E(Rasset) = βassetE(Rmkt) (10.1)

D. Edelman: Using Kalman-filtered Radial Basis Function Networks for Index Arbitrage in the Financial Markets,
Studies in Computational Intelligence (SCI) 100, 187–195 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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via the Capital Asset Pricing Model (CAPM) due to Sharpe (6) and others. Triv-
ially, this implies that any asset uncorrelated with market return (i.e., with zero Beta)
should have zero average net return. If, however, a zero-Beta asset is demonstrated
to have positive net return, on average, then this theory (and by implication the as-
sumption of efficient markets) is violated. Further, it is of interest to quantify the
risk-return profile of the asset, as measured by the Sharpe Ratio (7), which is the
average net return divided by the standard deviation of return, which may be thus
compared with the same measure applied to other available investments.

If, as many believe, one supposes that no fixed technical trading rule could
achieve excess returns over all time (otherwise it would be discovered and ex-
ploited to oblivion), the problem of tracking a potential time-varying rule arises.
In this framework, the first method which would naturally present itself would be the
Kalman filter. Unfortunately, for the most part, this would tend to limit the class of
models to linear functions, which one would doubt as lacking the ‘subtlety’ which
one might expect to be a property of an effective trading model.

Perhaps for this very reason, there has recently been a number of attempts to
combine Kalman-filtering concepts with nonlinear models such as neural networks
(4), arguably with limited success, due primarily to the fact that the concept of a
unique, ‘true’, State or parameter vector does not really have any meaning for most
types of neural network models. However, one approach which appears to have been
overlooked (without the aforementioned drawback) is that of applying Kalman filters
to the linear output layer of a network with fixed nonlinear feature space, prototyp-
ically, one based on radial basis functions at fixed, pre-determined centers. It is the
latter approach (for which there appears to be no published precedent to date) which
will be adopted here, with what appear to be very promising preliminary results from
a very simple model.

10.2 Methods

In what follows, we outline what is a remarkably simple but effective method for
fitting a Kalman-filtered radial basis function network, to the problem of forecasting
daily changes in an equity or an index merely from a number of lagged daily returns
of the same series. We begin by providing a brief review of radial basis function net-
works and Kalman filters, and then describe how they might be effectively combined.
Following this, discussion of some more specifics of the problem at hand precede an
exposition and analysis of the empirical results.

10.2.1 Radial Basis Function Networks

For a given dataset of input-output observations xi and yi (i = 1,2, . . .) a radial basis
function network is formed by first finding the Euclidean distances di j between each
input observation vector xi and each of a number of ‘centers’ c j in the same space,
and then computing exp(− 1

2 d2
i j/b2) for some ‘bandwidth’ b, to form a sort of ‘sensor

array’, where for each j, proximity of an input vector to c j would be indicated by
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a value close to unity, while distance from c j would be indicated by a very small
positive number. Thus a nonlinear feature space transformation Pi j of the vectors xi
is formed. Thus, the output y’s may be regressed against a much richer set of inputs
(typically of much larger dimensionality that the original dimension of x), which
may be better able to explain y in a linear sense. Thus, a radial basis network may
be characterised by a two-step model, which results in a linear fit of variables which
are (in general) a nonlinear transformation of the input. Conceptually, the ‘feature
space’ referred to amounts to a sort of ‘sensor array’ in multiple dimensions, where
each sensor corresponds to a certain location in hyperspace and where the sensor
‘fires’, either strongly or weakly, when a new input data point is near it.

Before determining the location of the ‘sensors’ a sense of scale of the hyper-
space is needed. In what follows, our input space will consist of lagged daily returns
(the differences in logarithm of level over the past five days), where it will be as-
sumed that a crude approximate value for the daily standard deviation of return is
available, so that all variables my be assumed to be scaled to approximately unit
standard deviation.

Typically the simplest choice of centers c j (‘sensor locations’) is just x j, the (re-
cycled) set of input observations themselves. Unfortunately, this leads to a linearly
expanding approximation dimension as sample size increases, and a set of centers
which in a sequential sampling setting, is unknowable for early observation, a prop-
erty which makes this design inappropriate for financial time series.

As mentioned previously, the key to applying radial basis function networks in
a time series setting is to keep the centers (and bandwidth) of a so-called feature
space constant over time. In our example, the lagged returns (in percentage terms)
forming the inputs therefore will have approximate mean zero and standard deviation
approximately equal to 1, a set of centers formed by the {−1,0,1}m-grid, where m is
the number of lags being used on the input, might be likely to each be near the body
of input points. To this end, let xi and c j again denote the ith input and jth center
point. Then (again) the feature space matrix P(x;c) may be defined, where

Pi j = exp(−1
2
||xi− c j||2/b2) (10.2)

|| · || denoting the Euclidean distance (in m-space), for some suitably-chosen ‘band-
width parameter’ b. Thus, the basic model in the non-dynamic case is

yi = P(xi;c) ·w+ εi (10.3)

where w is a fixed but unknown parameter vector, which may be determined eas-
ily via standard least-squares, generally with a penalty which is proportional to the
squared Euclidean distance of w from the origin.

10.2.2 Kalman Filters

In many modeling applications, model parameter values are taken to be constant
over the entire sample of interest. However, frequently, as with financial data, it is
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much more reasonable to assume that any parametric models should allow parame-
ter values (‘states’) to vary over time. The simplest, arguably the most common,
types of models used in a financial context are linear, such as the Capital Asset Pric-
ing Model and Arbitrage Pricing Theory. Fortunately, time-varying linear models
are well-developed in the literature, chief among these being a special case of the
Kalman filter (5) with no control input. Specifically, an unobserved State process is
assumed to vary according to a relationship

xk = Axk−1 +wi (10.4)

where wi is assumed to be Normally distributed with mean of zero and a covariance
matrix Q, where the only observation is via the process

yk = Hxk +νk (10.5)

where νk is assumed to be Normally distributed with mean zero and covariance ma-
trix R. The solution to such a Kalman system is well-known and will not be formally
restated here, though notionally the solution may be described as daily ‘update’ ap-
plication of the following four steps (to incorporate new information):

1. Compute current day’s forecast percentage change
2. Add innovation component to state estimate covariance matrix
3. Use above results plus new observation for ‘error-correction’
4. Update state estimate covariance matrix, given above

At any stage, the state estimate update process may be seen as analogous to a Bayes
update step (there are indeed two parallel interpretations, though Bayes assumptions
are not required), where the current state (i.e,, regression coefficient) estimate and its
associated covariance matrix summarise all previous experience, which is combined
with new observation to produce a new summary of previous experience. While the
original formulation of Kalman specified normally distributed errors, as with most
linear least squares methods, the validity of the procedures is much more general.

10.2.3 A Kalman-filtered Radial Basis Function Network

Having introduced radial basis function (RBF) networks and Kalman filters, it is
worth imagining how they might be combined. Let the observed output at time i
be denoted by yi and P(Xi;c) denote an RBF-feature-space transformation of input
vector xi about centers c. Then

yi = P(xi;c) ·w(i) + εi (10.6)

where the weights w(i) are assumed to be evolving over time in an unobservable
fashion, with

w(i) = w(i−1) +ηiE(ηi) = 0, Cov(ηi) = δ 2IM (10.7)
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M in this case representing the 3m-strong dimension of the chosen basis and δ a tun-
ing ’innovation’ parameter (IM the M by M Identity matrix). Of course, in practice, a
system cannot be iterated from nothing, but must start somewhere. In light of this, in
order to start a system we fit an initial period such as the first 250 days (correspond-
ing to one year of trading) as a group using ordinary least squares, and then begin
the Kalman iteration, forecasting the one-day return, crucially out of sample over the
remaining days in the dataset.

10.2.4 Kelly Trading Rule

Next, given day-by-day forecast relative changes (which are ‘out-of-sample’, us-
ing only previous days’ data) we use a simple trading rule based on investment in
proportion to the predicted return ŷi (this rule is based on the solution to a series
approximation of Expected Logarithmic Utility, or so-called ‘Kelly’ criterion)

bi = Kŷi (10.8)

where K times the daily variance of return is a suitably chosen fraction of current
level of wealth. The Kelly criterion entailing repeated myopic optimisation of log-
arithmic expectation has been proven (under quite general conditions) to maximise
long-run capital growth, in an almost sure sense, and has been shown to be extremely
effective in many practical applications. For any risky portfolio with net return RP
with finite moments, an investment of a units results in an expected net logarithmic
return of

E log(1+aRP) .= a(µP)− 1
2

a2(σ2
P +µ2

P) (10.9)

as the time-interval of investment tends to zero, where µP an σP denote the mean and
standard deviation of RP. For a taken to be µP/σ2

P , the expected net growth rate is
optimised and the result well-approximated by

1
2
(
µP

σP
)2 (10.10)

recognisable as one-half the square of the Sharpe Ratio. If, as in many trading appli-
cations, the variation of volatility is taken to be much smaller than that of expected
return, an investment strategy based on proportional expected return emerges.

In order to evaluate the results of applying this rule to the Kalman filter forecasts,
a plot of cumulative returns which would have been achieved via the trading rule
will be produced, and a Sharpe (‘Reward-to-Variability’) calculated, along with a
‘Beta’ with respect to the index. As it happens, the empirical Beta for this rule will
typically be close to zero (as will be discussed below), and the average net position
(and hence cost of carry) zero. Hence, any significant return obtained, if it could be
demonstrated to be net of transaction costs would constitute a violation of the weak
form of the efficient markets hypothesis. While preliminary calculations suggest that
a statistically significant inefficiency exists here ‘in-house’ (for brokers themselves,
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who are not charged transaction costs) this is not the emphasis of this chapter, and
hence will be deferred to a future article.

10.3 Empirical Results

Below are two studies to test the out-of-sample effectiveness of the aforementioned
methods on two data series, the (Irish) ISEQ and FTSE equity indices.

10.3.1 Daily Returns for the (Irish) ISEQ Index

For our first dataset, the (logarithmic) returns for 1306 trading days (from September
2001 to September 2005) of the Irish ISEQ Index index were computed and lags
produced, resulting in an input series consisting of 5 lags by 1300 observations, with
a corresponding output variable of 1300 daily returns. In this case, all of the variables,
input and output, have similar character, being returns series with approximate mean
zero and standard deviation 1.1%.

As has been mentioned previously, the method applied here is that of radial ba-
sis function networks, where a single hidden layer is used, as well as the Gaussian
kernel. Most often with models of this type, the centers of the basis functions are
taken to be the input datapoints themselves, thus ensuring they occur in the vicinity
of the actual data. However, as the present problem requires the basis functions to
remain constant and future input datapoints are not known in advance, this approach
cannot be taken. Instead, a 5-dimensional grid (as centers for radial basis functions)
is thought to constitute a sensible alternative, as each point in the input dataset can
be expected to be relatively close to some point in the grid, while the grid points
themselves can be expected to be fairly evenly spread throughout the data. For radial
basis function networks which use input data points as centers, the bandwidth cho-
sen always effectively decreases with sample size. In this case, however, the number
of centers remains constant (at 35 = 243) and the bandwidth also, here set at .01
(though sensitivity analysis performed indicates that the results are not too sensitive
to this choice, so long as the basis functions are not too highly correlated nor highly
concentrated).

Formally, the specification of an initial parameter value and covariance matrix at
the start of a Kalman filter for regression parameters is equivalent to the specifica-
tion of a ridge penalty configuration in regression, where the ‘initial values’ in the
Kalman filter case are merely the values towards which coefficients are shrunk in
ridge regression. In this case, then, it was decided to apply ridge regression to an ini-
tial sample, taken to be 250 days, the results of which were used to initialise a Kalman
filter beginning at day 251. From this point onwards, the coefficients of the network
merely follow from the standard Kalman update equations, where the only parame-
ter which requires specification is the process innovation covariance matrix, which
is taken to be diagonal with common standard deviation 0.1%. In each case, prior to
performing the update, the prediction given all previous information is recorded, for
purposes of (‘out-of-sample’) comparison with the actual realised values. The result
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is a prediction of daily return yi, where it may be shown that investment (positive or
negative) in proportion to the forecast ŷi is optimal.

The cumulative returns (on the logarithmic scale) for the resulting filtered trading
rule are summarised in Fig. 1, with the raw ISEQ itself over the same period included
for comparison.

0 200 400 600 800 1000 1200 1400
−0.5

0

0.5

1

Fig. 10.1. Cumulative Returns for ISEQ (below) and RBF-Kalman fund (above) for period
2001-2005

The risk-adjusted Sharpe (‘Reward to Variability’) ratio is computed to be approxi-
mately 100%, nearly twice the value attained by mere long positions on most major
world indices during a typical ‘bull run’ period.

10.3.2 Daily Returns on the FTSE

In order to test the methods, the same model is applied to the FTSE 100 series,
beginning from 4 February, 1984 and continuing to 8 March, 2007, with cumulative
returns for the raw FTSE 100 and resulting trading fund (log-scale) shown in Fig. 2.
Following some initial volatility, the fund based on the forecasts soon stabilises and
demonstrates a surprisingly steady growth, achieving a Sharpe Ratio in this case of
approximately 200% over the final 20 year period. This would, for instance, suggest
the safety of increasing, or ‘leveraging’ the overall level of investment in the trading
fund, in order to achieve returns which are as high or higher than those of the raw
FTSE series, but with much better Risk profile (graphically, this would result in a
multiplicative increase in the lower series).
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Fig. 10.2. Cumulative Returns for the FTSE 100 (above) and RBF-Kalman fund (below) for
the period 1984-2007

It should be emphasised that the trading results presented above were (following
an initial period of 1 year) all out-of-sample, by the nature of the Kalman Filter-
ing framework, though transaction costs (as mentioned previously) have not been
accounted for here.

10.4 Discussion and Conclusions

The primary contribution here is the suggestion of a simple paradigm which com-
bines the power of neural network modeling (specifically, RBF networks with fixed
centers) with the effectiveness of Kalman filtering for tracking time-varying unob-
servable systems.

The main user-specified parameters required for application of the method are
the grid spacing, the RBF bandwidth, and the ‘signal-to-noise’ ratio of the system.
These should be optimised during a ‘pre-online’ phase, here taken to be a time span
of one year. While here this step has been carried out via trial-and-error on a small
number of combinations only, it is believed that some form of evolutionary algorithm
might be expected to greatly improve on this. Also worth noting is the special case
of a static system, or ‘signal-to-noise’ ratio zero, which while not being presented
here was found to be wholly inadequate for investment purposes.

Also worth noting is that as favourable as the performance presented in the pre-
vious section appears, for the case of the ISEQ, visual inspection of the graph of
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returns suggests some degree of serial correlation in performance, which might sug-
gest scope for further modeling improvement for that dataset. Though on the other
hand, if the short period high growth evident from the graph is omitted from the
sample, the value of the Sharpe Ratio actually increases, suggesting a type of perfor-
mance characterised by generally stable growth punctuated by a few sharp rises, in a
manner presumably not unattractive to investors.

One extension to the current model was considered but dismissed after prelim-
inary investigation, which involves using the input data points themselves as RBF
centers, instead of the fixed ones used above. This would be more in keeping with
the majority of RBF neural network and SVMR applications, and would have the
advantage of ensuring that the RBF centers lie within the body of the input data.
The disadvantage of this as an approach is that the Kalman filtering framework re-
quires that the bases of the input data remain constant over time. The way to impose
this is by completely rerunning the entire system from the beginning for each new
basis at each new timestep, an experiment which was indeed performed, with dis-
appointing results. It is felt that this may have been due to the (implicitly assumed)
non-stationarity of the series, which would of course apply to the input data as well
as the output, and might hence introduce a systematic bias to the system. For this
reason, the above studies have been limited to the grid-center approach.

Finally, for completeness, it deserves mentioning that this model is a particular
case of a recurrent neural network, but where the nature of the recurrence (i.e., the
use of previous prediction in estimation and forecasting) has a clear formal ‘filter-
ing’ interpretation, as opposed to a ‘black box’ one. On the whole, it is hoped that
the preliminary findings reported here may suggest that this simple approach merits
further investigation.
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Summary. The entropy rate of a dynamic process measures the uncertainty that remains in
the next information produced by the process given complete knowledge of the past. It is thus
a natural measure of the difficulty faced in predicting the evolution of the process. The first
question investigated here is whether stock price time series exhibit temporal dependencies
that can be measured through entropy estimates. Then we study the extent to which the return
of GP-induced financial trading rules is correlated with the entropy rates of the price time
series. Experiments are conducted on end of day (EOD) data of the stocks making up the
NYSE US 100 index during the period 2000-2006, with genetic programming being used to
induce the trading rules.

11.1 Introduction

One fundamental issue which remains unclear for both financial econometricians and
financial engineers is the relationship between the predictability and profitability of
financial times series. The literature, so far, has reached no conclusion with regard
to the proposition that a time series is profitable if it is predictable, and vice versa.
While this proposition may sound obvious, it is not. What makes it subtle is that the
two groups of researchers have employed different approaches to tackle the finan-
cial time series, and have caused predictability and profitability to be two separate
entities. Financial econometricians are more concerned with predictability. For this
purpose, formal statistical or information-theoretic approaches are applied to mea-
sure the predictability of financial time series. On the other hand, financial engineers
or financial practitioners are more concerned with profitability. For that purpose,
various heuristic trading algorithms have been used in an attempt to make proper
market-timing decisions. There seems to have been a series of efforts made recently
to bridge the gap between the two, but it is far from enough; more often than not what
we see is that these two groups in the literature have developed without referring to
or conforming to each other.

N. Navet and S.-H. Chen: On Predictability and Profitability: Would GP Induced Trading Rules be Sensitive to the
Observed Entropy of Time Series?, Studies in Computational Intelligence (SCI) 100, 197–210 (2008)
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This chapter, therefore, purports to shed some light on this issue by further cross-
referencing the empirical evidence. In other words, we shall connect the empirical
results on predictability more closely with the empirical results on profitability. The
approach taken by us is, first, to determine the predictability of some sampled finan-
cial time series, and, second, to gauge the profitability of time series with different
predictability. To do so, we need to choose one principal measure of predictability
as well as a trading algorithm. For the former, we choose an information-based mea-
sure, i.e., an entropy-based measure, and for the latter we use genetic programming
to induce trading algorithms.

Using entropy to measure the degree of randomness and the predictability of a
series has a long history, that goes back almost to the very beginning of the develop-
ment of communication and information theory. Its significance has been introduced
to economists since the 1960s. In section 11.2, we shall give a brief review of the
entropy measure and the associated estimator used in this paper. This set-up en-
ables us to determine the degree of predictability of any time series coming later. In
section 11.2.2, the reasonable behavior (performance) of this proposed measure (es-
timated entropy) is further illustrated with pseudo random series and financial time
series. However, to show that there is no unique measure of predictability, in section
11.3 we further compare the results of our entropy-based measure with those from a
well-known nonlinear dependence test, namely, the Brock, Dechert and Scheinkman
(BDS) test (section 11.3.1), and the linear dependence test based on the familiar auto-
correlation function (section 11.3.2). The purpose is to show that there are some dis-
crepancies existing among different measures of predictability, which may become
another obstacle to successfully establishing the connection between predictability
and profitability.

Using genetic programming to evolve trading rules has gradually become a part
of the practice of financial investment (22). In this chapter, we continue this trend and
use genetic programming to exploit the potential profitable opportunities. We start
section 11.4 with a simple review of genetic programming. The idea of using genetic
programming to test the profitability performance is first established in (4, 5), where
the random trading rule, known as lottery trading, is first formulated as a benchmark.
This chapter applies the same idea to gauge the profitability of different financial
time series. The experimental designs and results are given in sections 11.4.1 and
11.4.2, respectively, followed by concluding remarks in section 11.5.

11.2 Entropy Estimation

Entropy estimation is a field of investigation that has been very active over the last
10 years, one of the reasons being the crucial practical importance of information-
theoretic techniques in the advances of neuroscience and, in particular, in the un-
derstanding of how the brain works. Methods for estimating the entropy rate can be
roughly classified in two main classes (11):

• “Plug-in” (or maximum-likelihood) estimators that basically consist of evaluat-
ing the empirical distribution of all words of fixed length in the data, for instance
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by constructing an n-th order Markov chain, and calculating the entropy of its
distribution. Unfortunately, the sample size that is needed increases exponen-
tially in the length of the words and, in practice, plug-in methods are not well
suited to capture medium or long range dependencies. In the context of financial
time-series, we cannot rule out that there are medium or long range dependen-
cies, after all this is the assumption underlying many trading strategies, and thus
we choose to not measure entropy with an estimator belonging to that family.

• Estimators based on data compression algorithms, either estimators based on
Lempel-Ziv (ZV, see (9) and (17)) or the Context-Tree Weighting algorithm
(see (26) and (15)). Both approaches have been shown (10, 11) to have fast con-
vergence rates (i.e., they are accurate even with a limited amount of observations)
and to be able to capture medium and long-range dependencies.

11.2.1 ĥSM entropy rate estimator

In this study, we use an estimator belonging to the Lempel-Ziv class that has been
proposed in (17) (estimator a) from Theorem 1 in (17) - as in (16), it will be named
ĥSM in the following). Let n be the size of time series s and si the symbol at location
i in s, the ĥSM estimator is defined as:

ĥSM =

(
1
n

n

∑
i=1

Λi

)−1

log2 n (11.1)

where Λi is the length of the shortest substring starting at position si that does not
appear as a contiguous substring of the previous i symbols s0, ...,si−1.

This estimator, which is well known and often used in the literature (see, for
instance, (16)), has been shown in (17) to have better statistical properties and per-
formances than earlier Lempel-Ziv estimators. To get further confidence in the effi-
ciency of ĥSM , we measured the entropy rate of a sample made of independent draws
of a uniform random variable P that takes its value in the set {1,2, ...,8}. The theo-
retical entropy is equal to H(P) =−∑8

i=1(1/8) log2(1/8) = 3. The entropy estimate
depends on the size of the sample, the quality of the random number generator and
the efficiency of the entropy estimator. Using ĥSM with a sample of size 10000, the
entropy estimate is equal to 2.96 with the random generator from the boost C++ li-
brary (19) , which demonstrates the quality of the estimator since 3 is the best that
can be obtained with a “perfect” random generator.

11.2.2 Entropy of NYSE US 100 stocks

Here we estimate the entropy of the daily price time series of the stocks that make up the
NYSE US 100 index (the composition of the index can be found at urlhttp://www.
nyse.com/marketinfo/indexes/nyid components.shtml). The data
is processed so that the data points are the log ratios between consecutive daily
closing prices: rt = ln(pt/pt−1) and points are then further discretized into 8 distinct
states. The boundaries between states are chosen so that each state is assigned
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the same number of data points (“homogeneous” partitioning). This design choice
has the advantage that the model is parameter free and thus no heuristic decision
that may change the conclusion reached is required. Furthermore, this experimental
setup proved to be very efficient at revealing the randomness of the original data,
which is the main quality criterion for partition schemes (23).
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Fig. 11.1. Distribution of the entropy rate of the stocks that make up the NYSE US 100 index
(log. ratios of consecutive daily closing prices). A normal distribution with the same mean and
standard deviation is plotted for comparison. The reference period is 2000−2006.

The distribution of the entropy rate for the stocks of NYSE US 100 index between
from 01/01/2000 to 31/12/2006 is shown in fig. 11.1. The minimum value is 2.68,
the median 2.75, the mean 2.75 and the maximum value is 2.79. The time series
have a high entropy since the theoretical upper bound is 3 and uniformly randomly
generated samples achieve 2.90 with the same number of data points.1 This is not
very surprising per se since high entropy rates have been observed even for smaller
time scales (see for instance (18)). The 5 stocks from NYSE US 100 index with the
highest entropy, identified by their symbol, are OXY (2.789), V LO (2.787), MRO
(2.785), BAX (2.78), WAG (2.776) and the five stocks with the lowest entropy are
TWX (2.677), EMC (2.694), C (2.712), JPM (2.716), GE (2.723). These 10 stocks
will be considered in the experiments in the next sections.

Although the entropy is high, there is evidence that the original time series are not
random. Indeed, we compare the entropy of the original time series with the entropy

1 A value of 2.90 is obtained using the boost C++ random generator, but with the standard
rand() function from the C library, the entropy rate achieved is as low as 2.77, which is
less that the entropy value of some stocks.
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Fig. 11.2. Distribution of entropy rates of the original time series (left-hand graphics - rescaled
with regard to Figure 11.1) and shuffled time series (right-hand graphics). The x-axis ranges
from 2.65 to 2.85 on both graphics.

of randomly shuffled variants of the original data (surrogate testing). Precisely, 100
shuffled time series for each original time series (after the discretization step) are
generated and their average entropy is measured. The complexity of the surrogate
time series is greater (2.8 versus 2.75) with a lower standard deviation (9 · 10−3

versus 1.9 ·10−2) and distributed differently as can be seen in fig. 11.2. This provides
evidence that, at least for some stocks, there are (weak) temporal dependencies in the
original time series.

11.3 Linear and Nonlinear Dependencies

Since some limited temporal dependences have been highlighted we now wish to
estimate more precisely their extent through the Brock, Dechert and Scheinkman
test (BDS), and to try to find out whether they are linear or nonlinear by performing
an autocorrelation analysis.

11.3.1 BDS test statistics

We employ the BDS statistics (see (2)) to test the null hypothesis that the daily log
price changes are independent and identically distributed (i.i.d.). The BDS is a widely
used and powerful test serving to identify departure from independence and identical
distribution caused by non-stationarity, as well as linear and nonlinear dependencies.
The test can be applied to raw data or residuals of an estimated model to test for omit-
ted dynamics (see, for instance, (3)), and thus help to decide the model’s relevance.
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The reader is referred to (2) for the description of the test as well as an assessment
of its power, and to (8, 13) for some applications to financial data.

The samples under study are sufficiently large for the test to be accurate (i.e., with
a sample size greater than 500, see (13)). The two parameters of importance are the
“embedding dimension”, parameter m in what follows, and parameter δ , the maximal
distance (expressed in terms of sample standard deviations) between points that are
considered to be “close”. Both parameters are used in the test for the computation
of the correlation integral, which is a measure of serial dependence originating from
physics (12). The parameter values used in the following analysis are classical in the
BDS literature and conform to the recommendations given by the authors of the test.

Table 11.1. BDS test statistics of daily log price changes for the highest entropy stocks. All
values are significant at the 1% level.

m δ OXY V LO MRO BAX WAG
2 0.5 5.68 4.23 6.60 7.38 6.78
3 0.5 6.40 5.38 9.52 11.17 7.79
5 0.5 9.86 7.18 13.62 17.73 9.94
2 1 5.66 4.17 6.69 8.13 7.45
3 1 6.61 5.35 9.40 11.11 8.89
5 1 9.04 6.88 13.08 15.31 11.17
2 1.5 5.34 4.01 6.17 8.33 7.63
3 1.5 6.53 5.34 8.75 10.46 9.52
5 1.5 8.66 6.86 12.08 13.30 11.55
2 2 4.81 3.48 5.32 7.29 6.82
3 2 6.08 4.80 7.97 8.57 9.00
5 2 8.24 6.39 10.86 10.32 10.64

Table 11.1 presents the BDS values of the daily log price changes between 01/01/2000
and 12/31/2006 for the highest entropy stocks, while table 11.2 shows the BDS val-
ues for the lowest entropy stocks. The significance levels of the statistics are 1.645
(10%), 1.96 (5%) and 2.576 (1%). The first observation is that, regardless the stock
and the BDS parameters, the null hypothesis that daily log price changes are i.i.d.
should be rejected at the 1% significance level. This suggests that price time series
are not stochastic i.i.d. processes.

What is striking however is that the values of the statistics are much larger for the
lowest entropy stocks than for the highest. For a given set of parameters (e.g., m = 2
and δ = 0.5), the smallest BDS value among the set of lowest entropy stocks is larger
than the highest value among the set of the highest entropy stocks. This shows that
the departure from the i.i.d. property is much more important when the entropy is
weaker, which conforms to what was expected, and provides evidence that the price
dynamics are different between the stocks composing the two sets.
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Table 11.2. BDS test statistics of daily log price changes for the lowest entropy stocks. All
values are significant at the 1% level.

m δ TWX EMC C JPM GE
2 0.5 19.04 14.57 14.60 12.94 11.29
3 0.5 26.84 22.15 20.91 18.12 17.12
5 0.5 51.26 39.00 38.57 35.70 29.48
2 1 18.06 14.21 13.9 11.82 11.67
3 1 22.67 19.54 18.76 16.46 16.34
5 1 34.18 29.17 28.12 26.80 24.21
2 1.5 14.67 10.97 12.57 9.5 10.72
3 1.5 17.30 14.59 16.16 13.25 14.24
5 1.5 23.41 20.15 21.54 19.26 18.67
2 2 12.07 8.51 11.40 7.47 9.27
3 2 13.87 11.61 14.25 10.95 13.04
5 2 17.57 15.53 17.72 15.17 16.20

11.3.2 Autocorrelation analysis

The BDS test enables us to reject the null hypothesis that price changes are i.i.d. but
it does not provide us with the precise cause of the rejection. In particular, we would
like to know whether the rejection is caused by linear or nonlinear dependencies
in the time series because this would have implications in terms of forecasting and
trading strategies. Here, to obtain some insight into this question, we analyze the
autocorrelation of the daily log price changes.

Low Entropy Stocks High Entropy Stocks
C 8 BAX 2

EMC 5 MRO 1
GE 1 OXY 1

JPM 5 V LO 1
TWX 4 WAG 4

Fig. 11.3. Number of autocorrelation coefficients up to a lag of 100 that are significant at the
1% level.

What can be observed is that the autocorrelation of the log-returns is much larger for
the lowest entropy stocks than for the highest entropy stocks. As shown in table 11.3,
up to a lag of 100, there are on average 4.6 autocorrelations that are significant at the
1% level for the lowest-entropy stocks versus 1.8 for the highest-entropy stocks.
However, even for low-entropy stocks, the autocorrelation is very limited. Let us
consider the CITIGROUP stock (symbol C) whose autocorrelation coefficients up to
a lag 100 are shown in fig. 11.4. This stock has 8 autocorrelation coefficients that are
significant at the 1% level, which is the highest count among all stocks under study.
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However, no single coefficient is larger than 0.08, which is too weak to be of any
value for the purpose of forecasting.

Given the limited serial correlation that can be found in the time series, we can-
not conclude that the departure from i.i.d. is solely caused by linear dependencies,
and, most likely, it should be explained by a combination of linear and nonlinear de-
pendencies. The question addressed in the next section is whether GP is able to take
advantage of these temporal dependencies, be they linear or nonlinear, and come up
with profitable trading strategies.

11.4 Experiments with Genetic Programming

Genetic programming (GP) applies the idea of biological evolution to a society of
computer programs. Specifically, in financial trading, each computer program rep-
resents a trading system - a decision rule - which when applied to the market pro-
vides trading recommendations. The society of computer programs evolves over the
course of the successive generations until a termination criterion is fulfilled, usually a
maximum number of generations or some property of the best individuals (e.g., stag-
nation for a certain number of generations, or a minimum performance threshold is
reached). Classical genetic operators, namely, mutation, crossover and reproduction,
are applied at each generation to a subset of individuals and the selection among the
programs is biased towards the individuals that constitute the best solutions to the
problem at hand. The reader may for instance refer to (7, 20) for GP applied to trad-
ing in foreign exchange markets, (1, 7, 21) in stock markets, (25) in futures markets
and (6, 14) for GP used for pricing options.
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Fig. 11.4. Autocorrelation coefficients of the CITIGROUP stock (symbol C) daily log price
changes up to a lag of 100. The points outside the region comprised of the area between the
horizontal dotted lines are significant at the 1% level.
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The aim of the experiments is to evaluate whether there is a link between the entropy
of the time series and the profitability of the GP-induced trading rules. To assess its
efficiency, GP is tested against a strategy that would consist of making the invest-
ment decision randomly (“Lottery Trading”). We follow the methodology proposed
in (4, 5) and, in particular, we constrain the randomness so that the expected number
of transactions for lottery trading is the same as for GP in order to allow a fair com-
parison. Hypothesis testing is performed with the Student’s t-test at a 95% confidence
level.

11.4.1 Experimental setup

Experiments are conducted for the period 2000− 2006, which is divided into three
sections: the training (2000− 2002), validation (2003− 2004) and out-of-sample
test periods (2005− 2006). The trading rules are created by genetic programming
on the training set, and a subset of top-performing rules are further selected on the
unseen data (validation set). The best rule on the validation set is then evaluated for
the out-of-sample test period. As classically done in the literature in terms of data-
preprocessing, data is normalized with a 100-day moving average. The individuals
of GP are trading rules that decide when to enter a long position (no short selling
allowed). Exits are decided by a maximum stop loss (−5%), a profit target stop (10%)
and a 90-day stop (exit from a position that has been held for the last 90 days). The
performance metric is the net profit, with a starting equity of $100,000 and the size
of each position equal to 100% of the current equity. The functions, terminals and
parameters of the GP runs are described in table 11.5.

Fig. 11.5. GP control parameters
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The price time series used in the experiments are shown in figs. 11.6 and 11.7. The
first section of each graphic is the training period, the second section is the validation
period and the last is the test period.

Fig. 11.6. Price time series of stocks having the highest entropies : BAX , MRO, OXY , V LO,
WAG.

Fig. 11.7. Price time series of stocks having the lowest entropies : C, EMC, GE, JPM, TWX .
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11.4.2 Experimental results

The outcomes of applying GP to the highest entropy stocks are shown in table 11.3.
What can be first observed is that GP always leads to profitable strategies but this
is not very informative since the price time series of these stocks, except for WAG,
exhibit a strong upward trend during the test period (see fig. 11.6) and short selling
is not possible in these experiments. What is more significant is that GP outperforms
Lottery trading (LT) 2 times out of the 5 experiments, while LT is never better than
GP.

Table 11.3. Net return of GP and Lottery trading (LT) on the highest entropy stocks (rounded
to the nearest 500$). The first two columns are the average profit with GP (20 runs) and Lottery
Trading (1000 runs). The third (resp. fourth) column indicates whether one should reject the
hypothesis that GP (resp. LT) does not outperform LT (resp. GP) at the 95% confidence level.

GP net profits LT net profits GP>LT? LT>GP?

OXY 15.5K$ 14K$ No No
V LO 7K$ 11.5K$ No No
MRO 15K$ 18.5K$ No No
BAX 24K$ 13K$ Yes No
WAG 6K$ −0.5K$ Yes No

Table 11.4 shows the results of GP on the lowest entropy stocks. It turns out that
GP is never better than LT while LT outperforms GP 2 times out of 5. This suggests
to us that the evolution process is not efficient here, and might even be detrimental.

Table 11.4. Net return of GP and Lottery trading (LT) on the lowest entropy stocks (same
settings as table 11.3). Experiments conducted with the possibility of selling the stocks short
do not show significant improvements.

GP net profits LT net profits GP>LT? LT>GP?

TWX −9K$ −1.5K$ No Yes
EMC −16.5K$ −11K$ No Yes

C 15K$ 18.5K$ No No
JPM 6K$ 10K$ No No
GE −0.5K$ 0.5K$ No No

From the results shown in Tables 11.3 and 11.4, it should be concluded that, with
our experimental setup, selecting the stocks with the lowest entropy does not lead
to a better profitability for the GP induced trading rules. We actually observe the
opposite which can be explained, as highlighted in (7), because GP is usually not
efficient when the training interval exhibits a time series pattern which is significantly
different from the out-of-sample period (e.g., “bull” versus “bear”, “sideways” versus
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“bull”, etc.). This is exactly what happens here for the lowest entropy stocks as can
be seen in fig. 11.7.

On the contrary, in the two cases (BAX and WAG, see fig. 11.6) where the train-
ing period is very similar to the test period, GP clearly outperforms Lottery Trading.
This suggests to us that improvements can be made by rethinking the data division
scheme and coming up with criteria to select stocks that would integrate a mea-
sure of the dissimilarity between current and past market conditions. A contribution
that might prove useful in that regard is given in (24) where the authors show that
the Haar wavelet transform is suitable for providing estimates of similarity between
time series.

11.5 Conclusion and Future Work

It has been shown that the EOD price time series of the NYSE U.S. 100 stocks do
not all have equal entropies and, based on surrogate testing, that there are some weak
temporal dependencies in the time series. The BDS statistics and the autocorrelation
suggest that these temporal dependencies are both linear and nonlinear. The next step
has been to test the hypothesis that selecting the stocks with the lowest entropy - the
ones with the most predictable price time series - would lead to less risky invest-
ments. In the experiments, however, we did not observe that this hypothesis holds.

Recent studies (e.g., (11, 16)) have shown that Context Tree Weighting (CTW)
entropy estimators often lead to faster convergence rates than Lempel-Ziv-based es-
timators. Since the samples of daily data are small in size, the use of CTW may lead
to some improvements, although what is really crucial here is not the precise entropy
estimate but the relative ordering between distinct time series.

Here, the empirical evidence suggests that predictability is neither a necessary not
a sufficient condition for profitability. The predictability test only tells us about the
existence of temporal patterns, but it does not give further information on how easy
or difficult it is to discover the pattern. Therefore, predictability may not necessarily
lead to profitability. On the other hand, we observed on two series with high entropy
that it was possible to come up with efficient trading rules. As the large literature on
the subject suggests, predictability has a multi-dimensional description, and only one
measure of predictability may not be enough to capture all of its attributes. We think
that further study regarding the relationship between predictability and profitability
should not rest only upon a single measure.

In this study we limit ourselves to the stocks making up the NYSE US 100 be-
cause they are of primary interest to investors. The stocks are very liquid and have
huge capitalizations (47% of the entire market capitalization of US companies). It
is possible that the price time series of these stocks share many common structural
characteristics, and so would not be not good candidates for a selection technique
based on entropy. Future experiments should include stocks of lower entropy that
do not belong to the NYSE US 100, and other time scales should be considered. In
particular, higher frequency data would enable us to study the variations in entropy
over time.
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Summary. In this chapter, a new hierarchical hybrid wavelet - artificial neural network strat-
egy for exchange rate prediction is introduced. The wavelet analysis (the Mallat’s pyramid
algorithm) is utilised for separating signal components of various frequencies and then sepa-
rate neural perceptrons perform prediction for each separate signal component. The strategy
was tested for predicting the US dollar/Polish zloty average exchange rate. The achieved ac-
curacy of prediction of value alterations direction is equal to 90%.

12.1 Introduction

Generally, two hypothesis concerning predictability of markets exist. The first one
states that it is impossible to predict market behaviour whereas according to the sec-
ond hypothesis, markets can be described by their own statistical dynamics modelled
by walk-type processes with a memory (see (28)). Generally, a market which is weak
dependent on political decisions, ecological catastrophes, which has a great number
of participants, a great inertia of its processes, is usually, partially predictable. There
are several tools, based on statistical methods, dynamical systems theory, approxima-
tion theory and artificial intelligence, used for forecasting time-series behaviour. The
review of these methods, areas of applications, and obtained results, can be found in
(40). In this chapter, time series prediction of the currency market is considered. The
specifics of the currency market is discussed in detail in section 12.3.

The aim of this chapter is to present results obtaining by using a hybrid artificial
intelligence (AI) system for forecasting of the Polish zloty - US dollar exchange rate.
A hybrid artificial neural network (ANN) - wavelet analysis system is used.

In the next section the specifics of hybrid AI neural systems is discussed. Section
12.3 is devoted to describing the currency market and previous literature on currency
market prediction. Later sections describe the methodology used and the results ob-
tained - see also (10). Finally, some conclusions are presented.

A. Bielecki et al.: Hybrid Neural Systems in Exchange Rate Prediction, Studies in Computational Intelligence (SCI) 100,
211–230 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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12.2 Neural Networks and Hybrid Systems

An artificial neural network is a cybernetic system whose structure and activity is
modelled after animals’ and humans’ nervous systems, in particular brains. A neu-
ron is a basic signal processing unit. The first neural model, very simplified in com-
parison with a biological neural cell, was described in 1943 (see (25)). According
to this model, a neuron is a module having a few weighted inputs and one output -
see fig.12.1. Input signals, say x1, ...,xM, and weights w1, ...,wM constitute vectors
x = [x1, ...,xM] ∈ RM and w = [w1, ...,wM] ∈ RM respectively. Then a scalar product
s = x ◦w is calculated. An output signal y = f (s), where f : R→ R is called an
activation function.

w1 w2 . . . . . . wM

y=f
(
∑M

m=1 wm ·xm
)

x1 x2 . . . . . . xM

�

� � �

Fig. 12.1. Neuron model

An ANN is a structure consisting of neurons connected to each other in such a way
that output signals of some neurons are input signal of others. Furthermore, some
neurons constitute an input to the whole system, processing signals from the external
environment. The structure of inter-neural connections and weight values determine
the properties of the ANN. In this chapter multi-layer ANNs are used. In this kind of
network, neurons constitute layers in which neurons are not connected but a neuron
belonging to the kth layer is connected with each neuron of the k+1th layer - see fig.
12.3. The last layer is the output of the whole system.

There are several methods of artificial neural networks learning i.e. setting their
weights. Most of them are iterative processes. In order to explain a perceptron learn-
ing process in detail, assume that a finite sequence

(
(x(1),z(1)), ...,(x(N),z(N))

)
,

called the learning sequence, is given, where z(n) is a desired response of the per-
ceptron if the vector x(n) is put to its input and N is a number of input vectors used
in the learning process. Let a real function E be a criterion how correctly all weights
of the perceptron are set. It should have nonnegative values and exactly one global
minimum having a value equal to zero at the point w0 such that y(n)(w0) = z(n) for
each n ∈ {1, ...,N}. Furthermore, greater differences between responses y(n) of the
perceptron and the proper responses z(n), greater value of the function E. Assuming
that the perceptron has J weights and that a learning sequence is given, the function
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E : RJ → R. Most often the square criterial function is used, which is defined by the
formula

E(w) =
1
2

N

∑
n=1

[
y(n)(w)− z(n)

]2
, (12.1)

where y(n)(w) is the output signal of the perceptron if the vector x(n) is put to its
input. Assuming that the activation functions of each neuron is a mapping of the
class C r(R,R), where r≥ 1 - most types of activation functions used in practice, for
instance bipolar and unipolar sigmoid functions and most radial functions, satisfy
this assumption - the criterial function E is also of the class C r(R,R). The simplest
differential one-step method - so called the gradient descent method - leads to the
iterative variation of synapses given by the following difference scheme

w(p+1) = w(p)−h ·grad E(w(p)), (12.2)

where w = [w1, ...,wJ] is a vector of all weights of a perceptron (see fig.12.2) whereas
p numerates steps of the learning process. The formula 12.2 describes a process of
finding a local minimum of the function E using the Euler method which is a Runge-
Kutta method of order 1. The Runge-Kutta methods of order 2 are also sometimes
considered as learning processes (see (13)). The formula 12.2 can be rewritten in the
following form

∆w(p) =−h ·grad E(w(p)), (12.3)

where ∆w(p) := w(p + 1)−w(p). In order to accelerate the learning process an
additional term can be added

∆w(p) =−h ·grad E(w(p))+η ·∆w(p−1). (12.4)

The formula 12.4 is called a gradient descent method with momentum. It is a two-
step method of order 1. This method was applied for training neural networks in the
system described in this chapter.

Every AI system has its own specific advantages and limitations. Considering
neural networks, multi-layer ones have universal approximation capabilities (see (6),
(11), (12), (14), (15), (16), (19)). Furthermore, neural networks can model automat-
ically complex, nonlinear, relations between its input data and output signals basing
only on sample training set of input data. On the other hand, a single ANN often
cannot achieve satisfactory accuracy, especially when a very high-level of accuracy
is demanded.

Because of AI system limitations, there is a demand for complex systems com-
bining various approaches. Generally, AI systems can be combined with other AI
systems or with mathematical tools. Hybrid systems consisting of a neural network
aided by genetic algorithms, fuzzy or rule systems, have been become a standard
approach. Dividing a task into subtasks in such a way that a single module solves a
single subtask in order to organise a neural system as a modular one, is the second
approach to a neural system improving.
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Fig. 12.2. An example of a perceptron (a two-layer one)

The partial solutions are combined in order to obtain the complete solution of the
task. In such a case, deep analysis of the task is necessary. The third possibility is
combining a neural approach with statistical analysis or approximation models, in-
cluding wavelet analysis. In this case a mathematical tool is used to study properties
of training sample in order to prepare the optimal one or to decompose it into subsets.
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The mathematical analysis of the problem can, sometimes, help to optimise a neural
network architecture (see (33)).

In this chapter a hybrid wavelet-neural system for exchange rate forecasting is
presented - see section 12.3. It should be mentioned that ANNs has been widely
used for capital markets modelling, for example (35, 36, 38, 41).

12.3 Exchange Rate Prediction

Characteristics of currency markets are well described in (4) and (5). A few key
points from these papers are described here. Foreign exchange markets are among
the deepest financial markets in the world. Currency liberalisation and technologi-
cal innovations have led to enormous levels of currency trading. The behaviour of
currency markets affects trade flows, international investment, key determinants of
economic performance and also political outcomes.

The efficient markets hypothesis states that the forward exchange rate is an unbi-
ased predictor of the future spot exchange rate. Empirical studies, however, conclude
that the forward rate is often a biased predictor of future exchange rate. Economists
offers a variety of explanations for this bias existence. One of the most prevalent ar-
guments attributes the bias to the existence of a risk premium. Many of studies point
to politics as a source of exchange rate risk. In parliamentary systems, for instance,
four distinct event-periods when political news affects currency markets, can be iden-
tified: election campaigns, post-elections negotiations, cabinet dissolutions, and the
immediate month after government formation. This means, for example, that the for-
ward exchange rate is biased more often during these periods. However many other
factors, including political ones, can influence currency markets. For instance, news
about macroeconomic variables is rapidly incorporated into exchange rates. Sum-
ming up, exchange rates are affected by many highly correlated economic, political
and even psychological factors. These factors interact in a very complex fashion. Ex-
change rate series exhibit high volatility, complexity and noise that result from an
elusive market mechanism generating daily observation. Therefore studies concern-
ing exchange rate markets behaviour, including prediction of exchange rates values,
are in constant demand.

A short review of a sample of the large literature concerning currency market
predictability is provided below. Both mathematical models and applications of arti-
ficial intelligence systems, as well as their effectiveness are briefly outlined. It should
be stressed, however, that it is not possible to fully describe all the literature on this
topic, and the survey presented below concerns only selected examples.

In (26), (28) and (31), the predictability of the Yen currency market is discussed.
The authors analysed the Japanese yen - US dollar exchange rate with a focus of
its up and down movement using probabilistic and stochastic models. A time se-
ries of D(t) := Y (t + 1)−Y (t), where Y (t) denotes a value of yen at the time t, is
composed and it is shown that there exists a significant negative correlation between
D(t + u) and D(t) if u is very small - ranging from about 10 seconds (see (28)) to 1
minute (see (26)). A time series X , reflecting only information on whether the price
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of yen increases (X(t) = +1) or decreases (X(t) =−1), is constructed as well. A one-
dimensional random-walk model Z(t + 1) = Z(t)+ X(t) is studied. It is shown that
a high frequency yen-dollar exchange dynamics is not completely random and it is
possible to design a profitable strategy using higher order statistical analysis of the
model (see (28)). Furthermore, some interesting phenomena related to the stochastic
resonance appears (see (31)).

Fractal analysis was applied to analyse Malaysian currency exchange rate be-
haviour in (27). The time series was examined using the fractal model based on
Brownian motions. The authors applied not only the mono-fractal model with the
Hurst exponents determined using R/S analysis, detrended analysis and the method
of second moment, but a new approach based on multi-fractional Brownian motions
with time-varying Hurst exponents was proposed as well. Long-range fluctuations
Malaysian ringgit price were investigated for a number of leading currencies: US
dollar, Japanese yen and Singapore dollar. The applied methodology allowed to ob-
serve the scaling behaviours in the time series.

The paper (2) is an example of the application of both mathematical and AI tools
for nonlinear time-series analysis of the Greek exchange-rate market. Dynamical sys-
tems theory, including the theory of chaos, was used to study four major currencies
- US dollar, German mark, French franc and British pound - against Greek drachma.
Generally, long memory components were found in mark and franc series whereas
pound and US dollar behaviours were random. The results were confirmed using a
multi-layer ANN. In their conclusions, the authors stressed that the analysis showed
that a chaotic explanation could not be ruled out for currencies in general. Each cur-
rency should be analysed separately, considering any special conditions issuing in
the market.

Simultaneous nearest-neighbour predictors were used for the analysis of nine
currencies participating in the exchange rate mechanism of the European Monetary
System at the end of the twentieth century: the Belgian franc, Danish crown, Por-
tuguese escudo, French franc, Dutch guilder, Irish pound, Italian lira, Spanish peseta
and British pound - see (7). Evaluating the forecasting performance using Theil’s U
statistic, the nonlinear simultaneous nearest-neighbour performed marginally better
than both a random walk model and linear auto-regressive integrated moving aver-
age (ARIMA) predictors. The Diebold Mariano test suggested that in most cases,
the nearest-neighbour predictor outperforms the random walk at the 1% significance
level. Moreover, the Pesaran Timmermann test (see (30)) showed that the probability
of correctly predicting the sign of change was higher for the nearest-neighbour pre-
dictions than the ARIMA case. Thus, the presented analysis confirmed the presence
of predictable components in exchange rates.

The approach described in (33) is a combination of three methods: wavelet analy-
sis, genetic algorithms and neural networks. Wavelet analysis processes informa-
tion at different scales and therefore is useful for feature detection in complex and
chaotic time series. Detecting significant patterns from historical data is crucial for
good performance in time-series forecasting. The proposed methodology consists of
four phases. First, the studied time-series is decomposed into different time and fre-
quency components using the discrete wavelet transform. Then the refined highpass,
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lowpass and bandpass filters are extracted from the decomposed time-series that are
based on the feedback from the third phase - genetic learning of the neural net-
work. Its input is stated as a multi-scale extraction layer giving data obtained in the
second phase to the ANN’s first layer. The desired multi-scaled input structure in
a neural network is near-optimally extracted by a genetic algorithm. In the fourth
phase weights of the ANN are fixed by the hill climbing algorithm. The introduced
method was applied to Korean won / US dollar exchange rate forecasting.

A wide review of ANNs applications for exchange rate forecasting is presented
in (17). First of all, data preprocessing is crucial in exchange rate prediction. Many
kinds of ANNs are used for prediction including feedforward, radial basis function,
recurrent, competitive and modular networks. ANNs can also be combined with other
approaches including fuzzy inference, genetic algorithms and approximation meth-
ods. Comparing neural network results for exchange rate prediction with those of
other forecasting methods is inconclusive. It is clear, however, that ANNs can be
effective tools for time-series prediction.

12.4 Discrete Wavelet Transformation

Foundations of wavelet analysis can be found in (37), where it is compared with the
Fourier transform method. The monograph (39) provides an advanced presentation
of the topic.

12.4.1 Theoretical foundations

Let us recall briefly foundations of wavelet theory and its applications to signal
processing. The wavelet theory evolved in the mid-1980s (see (3, 21, 24, 34)),
though some constructions and theoretical results were discovered much earlier (see
(8, 9, 32, 34)). It can be regarded as an extension of Fourier analysis, specially in the
scope of signal processing. Wavelets are functions, whose localisations in time and
frequency can be fully controlled. This leads to improved and new signal process-
ing applications. Wavelet transforms are used in physics, geophysics, astronomy,
biology, chemistry, image processing (NMR, tomography), sound processing, data
compression and economics.

Definition 1 A functionΨ ∈ L2(R) is a wavelet, if the functionsΨj,k, such that

Ψj,k(t) := 2
j
2Ψ(2 jt− k), j,k ∈ Z

almost everywhere in R, create an orthonormal basis in L2(R), where L2(R) denotes
the set of functions f : R→ C, such that:∫ ∞

−∞
| f (t)|2dt < ∞

with the inner product defined by:
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f ◦g =
∫ ∞

−∞
f (t)g(t)dt.

An example is the Haar wavelet, defined as follows:

Ψ :=

⎧⎪⎨⎪⎩
1 for t ∈ [0, 1

2 ),
−1 for t ∈ [ 1

2 ,1],
0 otherwise.

(12.5)

Definition 1 A multi-resolution analysis (MRA) is a nested sequence

. . .⊂V−1 ⊂V0 ⊂V1 ⊂ . . .

of subspaces of L2(R) satisfying

1.
⋃

n∈ZVn is dense in L2(R),
2.
⋂

n∈ZVn = {0},
3. f (t) ∈Vn if and only if f (2−nt) ∈V0,
4. there exists a function Φ(t), called a scaling function, such that
{Φ(t− k)}k∈Z is an orthonormal basis for V0.

Property 1 Because Φ ∈ V0 ⊂ V1, condition 3 of the MRA definition implies, that
Φ(x/2) ∈V0. This leads to

Φ(x/2) = ∑
n∈Z

anΦ(x−n).

We define mΦ :

mΦ(ξ ) =
1
2 ∑n∈Z

ane−inξ .

There exists a relationship between wavelets and a multi-resolution analysis ((39),
section 3.4):

Lemma 1 Let us suppose, that we have a MRA. Let, furthermore, W0 be given by the
condition V0⊕W0 = V1. A functionΨ ∈W0 is a wavelet if and only if

Φ̂(ξ/2) = eiξ/2v(ξ )mΦ(ξ/2+π)Ψ̂(ξ/2),

where Φ̂ and Ψ̂ are Fourier transforms of Φ and Ψ respectively, v(ξ ) is a 2π-
periodic function such that |v(ξ )| = 1. Additionally, for Ψ and every s ∈ Z span
{ψ j,k}k∈Z, j<s = Vs.

If v = 1, the waveletΨ is defined by:

Ψ(x) = ∑
n∈Z

an(−1)nΦ(2x+n+1),

where an =
∫ ∞
−∞Φ(x/2)Φ(x−n)dx.
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Definition 1 Having a MRA, we define an orthogonal subspace V⊥j ⊂ L2(R) to sub-
space Vj ⊂ L2(R) with the following condition:

Vj⊕V⊥j = Vj+1.

The MRA definition implies (see (39), section 3.40) that

L2(R) =⊕ j∈ZV⊥j .

The theory of a multi-resolution analysis states that if a MRA is given, we can find
a function Ψ , which generates an orthonormal wavelet basis for Vs for all s ∈ Z, in
other words, span{ψ j,k}k∈Z, j<s = Vs. In practical applications we are interested in
examining the orthogonal projections Pn( f ) of a function f ∈ L2(R) onto wavelet
spaces Vn. This process is realized by using wavelet filters (see (1), p. 70 and (18)
7.1-7.8).

12.4.2 Signal processing by wavelets

Let us assume that signals are given as a bi-infinite time series. Such signal s =
[. . . ,s−1,s0,s1, . . .] defines a function f ∈Vn by

f = ∑
k∈Z

sk ·ψk,n. (12.6)

Now the wavelet filters process this signal by using two operators, H (the low-pass
filter) and G (the high-pass filter), where

H(s)k = ∑
j∈Z

h j−2k · s j

and
G(s)k = ∑

j∈Z

g j−2k · s j.

The sequences {hk}, {gk} arise from MRA and inner product properties (see (1),
p. 70) and are unique for every wavelet family. Having a signal s, and the associ-
ated function f ∈ Vn (as in 12.6), H(s) are coefficients of the orthogonal projection
Pn−1( f ) onto Vn−1 and G(s) coefficients of Pn−1( f ) onto V⊥n−1. A good practical in-
terpretation of this is that H(s) and G(s) contain the low and the high frequencies
respectively.

Once we know how to decompose a signal s, it is equally important to have a
tool to recompose it. Each of the operators H and G has a so-called dual operator,
denoted H∗ and G∗ respectively, defined by

H∗(s∗)k = ∑
j∈Z

hk−2 j · s∗j

and
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G∗(d∗)k = ∑
j∈Z

gk−2 j ·d∗j .

The filters and their dual operators act as follows

s = H∗(H(s))+G∗(G(s)).

In real world we cannot deal with sequences of the infinite length. The wavelet fam-
ilies that are used (Daubechies, CDF, etc.) have a finite number of non-zero {hk},
{gk} filter coefficients. And the solutions for the assumption of the infinite length of
the signal s are periodization, mirroring, Gram-Schmidt boundary filters and zero-
padding (see (18), section 10).
The algorithm for processing a signal using wavelet filters is called a Mallat’s pyra-
mid algorithm. Let us consider a finite signal s = [s0,s1, . . . ,s2n−1], and wavelet fil-
ters H, G with {hk}, {gk} coefficients from a chosen wavelet family. Frequencies in
s range from 0 to fN , where fN is the Nyquist frequency, the highest frequency one
can observe in a signal sampled with sampling frequency fS, fN = fS

2 .
We compute s1 = H(s) and d1 = G(s). The length of s1, d1 is 2n−1 (see (1), p.72).

The frequencies contained in s1 range from 0 to fN
2 (the low part) while in d1 from

fN
2 to fN (the high part). Then we apply the same procedure to s1, obtaining s2 and

d2, each of length 2n−2. The available frequencies are: 0 to fN
4 (s2) and fN

4 to fN
2 (d2).

After n steps the algorithm stops and we get a vector

s∗ = [sn
0,d

n
0 ,dn−1

0 ,dn−1
1 , . . . ,d2

2n−2−1,d
1
0 , . . . ,d1

2n−1−1].

This is the discrete wavelet transform (DWT) of s. To this form of s one can apply
some operations like zero-padding of high-frequency coefficients for noise reduction
or to separate only the desirable frequencies in order to get data to train an ANN,
which was important in the described application. Obviously an inverse process is
also possible, using H∗ and G∗ operators and a reversed version of the Mallat’s algo-
rithm. It is called the inverse discrete wavelet transform (iDWT).

12.5 Hybrid Wavelet-neural System

In economic time series prediction a typical set of data is a signal x = [x1, . . . ,xk],
containing e.g. stock market index values or currency exchange rates. Each entry
comes from another time point, which means, that x1 is the exchange rate value at
the beginning, x2 the value on the next day and so on.

12.5.1 The basic approach

The problem of time-series forecasting can be defined in the following way. Having
the values x1, . . . ,xk of economic data at consecutive time points (e.g. stock index at
day no. 1, day no. 2, day no. 3) it is desired to estimate its unknown value on the
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forthcoming day. In other words, we would like to have a function g : Rk→ R, such
as:

xk+1 = g(x1, . . . ,xk),

where xk+1 is the next step value of the time-series. Obviously, the future is generally
unpredictable. And to find such a function g is not possible. What can be done, to
try to observe as much regularity of our data as possible and to look for a function
f : Rk→ R, such that:

x̃k+1 = f (x1, . . . ,xk)

where the distance |xk+1− x̃k+1| is small enough. A first idea could be splitting our
data into patterns for a multi-layer perceptron (MLP). Assuming the data is a vector
x = [x1,x2, ...,xm] the patterns look like this:

([x1,x2, . . . ,xk],xk+1)
([x2,x3, . . . ,xk+1],xk+2)
([x3,x4, . . . ,xk+2],xk+3)
. . .
([xm−k,xm−k+1, . . . ,xm−1],xm),

where k < m. Next, an architecture for an ANN must be chosen. Lula designed a
network ((23), p. 158) for testing the market efficiency hypothesis based on Warsaw
Stock Exchange index data. The author used an MLP with three layers, 6 neurons
in the input layer, 6 neurons with a tangensoidal activation function and 1 neuron
in the output layer with a linear activation function. The value of k = 6 is estimated
with a BDS input data test, described in (22). After this MLP is trained, it realises
the function f for k = 6

x7 ≈ f (x1, . . . ,x6)
x8 ≈ f (x2, . . . ,x7)
x9 ≈ f (x3, . . . ,x8)
. . .
xm ≈ f (xm−6,xm−5, . . . ,xm−1).

That is just an input (known) data approximation. But now we can try to estimate the
unknown values:

x̃m+1 = f (xm−5,xm−4, . . . ,xm)
x̃m+2 = f (xm−4,xm−3, . . . ,xm, x̃m+1)
x̃m+3 = f (xm−3,xm−2,xm−1,xm, x̃m+1, x̃m+2).
. . .

However, this basic “one-network” idea has not been used in this work, because
of the poor results Lula achieved with the Warsaw Stock Exchange index. Despite
using sophisticated training algorithms the DIR coefficient (the percent of correctly
guessed directions of market fluctuations) on the testing patterns was only 61% (see
(23), p. 159). These results are of low practical usefulness. In contrast, the MLPs
used in the application described in this chapter achieved a DIR on testing patterns of
ca. 86%-90%. Crucially, the patterns used for forecasting contained wavelet-filtered
oscillations, not raw economic data.
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12.5.2 The wavelet approach

The wavelet approach is based on applying Mallat’s pyramid algorithm to the given
data, splitting the data into separated frequency bands, approximating each band by
an ANN and predicting their values as described above. The input data is a vector
x = [x0, . . . ,x2n−1]. The assumption of its length is important because of Mallat’s
algorithm. In practical applications zero-padding can be used to achieve this. We
compute the DWT of x, getting a vector

x∗ = [xn
0,d

n
0 ,dn−1

0 ,dn−1
1 , . . . ,d2

2n−2−1,d
1
0 , . . . ,d1

2n−1−1].

In order to split x into different frequency ranges we need to set all entries in x∗
responsible for unwanted frequencies to zero.

Range Vector
fN
2 to fN x(n)∗ = [0, . . . ,0,d1

0 , . . . ,d1
2n−1−1]

fN
4 to fN

2 x(n−1)∗ = [0, . . . ,0,d2
0 , . . . ,d2

2n−2−1,0, . . . ,0]
. . . . . .

fN
2n to fN

2n−1 x(1)∗ = [0,dn
0 ,0, . . . ,0]

0 to fN
2n x(0)∗ = [xn

0,0, . . . ,0].

Now the inverse DWT of each x(i)∗ is computed:

y(i) = IDWT (x(i)∗),

where i = 0, . . . ,n. Note that y(i) contains a range of frequencies from x as shown
above and its length is 2n. To approximate and predict y(i) for i = 1 . . .n MLPs are
used with the same three layer architecture as shown in the basic approach. The
patterns are given as vectors

([y(i)
1 ,y(i)

2 , . . . ,y(i)
6 ],y(i)

7 )

([y(i)
2 ,y(i)

3 , . . . ,y(i)
7 ],y(i)

8 )

([y(i)
3 ,y(i)

4 , . . . ,y(i)
8 ],y(i)

9 )
. . .

([y(i)
n−6,y

(i)
n−5, . . . ,y

(i)
n−1],y

(i)
n ),

where i = 1, . . . ,n. There is no need to build an ANN to approximate y(0) since all
the entries in this vector are equal to the mean value of x0, . . . ,x2n−1. Let N(i) denote
the ANN used to approximate y(i). Unknown values of y(i) can be predicted:

ỹ(i)
n+1 = N(i)(y(i)

n−5,y
(i)
n−4, . . . ,y

(i)
n )

ỹ(i)
n+2 = N(i)(y(i)

n−4,y
(i)
n−3, . . . ,y

(i)
n , ỹn+1)(i)

ỹ(i)
n+3 = N(i)(y(i)

n−3,y
(i)
n−2,y

(i)
n−1,y

(i)
n , ỹ(i)

n+1, ỹ
(i)
n+2),

. . .
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where i = 1, . . . ,n. Thus

x̃n+ j =
n

∑
i=1

ỹ(i)
n+ j +M,

where j > 0 and M = y(0)
0 is the average value of x0, . . . ,x2n−1. This is a consequence

of wavelet filter properties and the Orthogonal Decomposition Theorem ((1), p. 101).
The structure of the forecasting system is shown in fig.12.3.

Fig. 12.3. A scheme of the forecasting wavelet-neural system

Each MLP is forecasting a next sample of a time series which comes from decom-
posing the original data with discrete wavelet transform, then removing undesired
frequency coefficients and finally applying the reverse wavelet transform. This ap-
proach, based on Mallat’s pyramid algorithm, leaves only a range of frequencies
from the original data in the new data series. The MLP approximates a next sample
using the nonlinear autoregression model.

12.5.3 A small improvement

There exists a simple method of improving the wavelet-neural prediction. It can
be easily observed that there is no need to approximate low frequency ranges with
ANNs if it is intended to forecast just a few values.

In the application example developed below, a data vector of length 1561 is used.
It was intended to predict just the next 5 observations from this time series. The data
was zero padded to achieve a length of 211 and split into 11 frequency ranges.
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Range Oscillations length
fN
2 to fN 2-4 samples
fN
4 to fN

2 4-8 samples
. . . . . .

fN
211 to fN

210 2048-4096 samples.

Let us denote with s = [s1,s2, . . . ,s1561,0, . . . ,0] the first data set of length 211 and
with t = [s1,s2, . . . ,s1561,s1562, . . . ,s1566,0, . . . ,0] the other, where s1562, . . . ,s1566 are
the desired real, not forecasted values. As there is no way for this future 5 entries
s1562, . . . ,s1566 to generate long oscillations (i.e. 1024–2048, 512− 1024, . . . ,64−
128 samples) they have very little or no effect on low and medium frequency wavelet
coefficients.

So having the s∗ = DWT (s) only high frequency bands are separated and used as
samples for ANNs (as above). The high frequency coefficients in s∗ are zero padded
and the IDWT is applied. The resulting signal s̃ is a rough approximation of s and
of t. The unknown values s1562, . . . ,s1566 are approximated in the following way:

s1561+ j ≈
n

∑
i=k

ỹ(i)
1561+ j + s̃1561+ j,

where in the described application j = 1, . . . ,5, n = 11 (the number of frequency
ranges). Ranges k,k +1, . . . ,n are approximated by ANNs (ỹ(i)

1561+ j) and 1, . . . ,k−1
are contained in s̃. k = 8 gave the best results (lowest error) for forecasting the next
5 values.

The described improvement helped to remove errors generated by ANNs predict-
ing low frequencies and to reduce time needed to train all networks.

12.5.4 An application

In this section results obtained by Hajto are described (see (10)). The described
wavelet-neural method was applied to a USD/PLN average exchange rate. The
archival data was downloaded from National Bank’s of Poland web site (http://
www.nbp.pl) and covered the period 1996.01.02 – 2002.03.08, that is 1561 values.
To test the prediction method the following procedure was developed and repeated 5
times:

1. Let k = 100.
2. Let s = [s1, . . . ,s1561−k−5,0, . . . ,0] be the vector containing the exchange rates,

zero padded to fulfill the Mallat’s algorithm assumptions (length: 211).
3. Five consecutive values: s̃1561−k−4, . . . , s̃1561−k are forecasted using the improved

wavelet-neural method on s.
4. Predicted data is saved.
5. If k > 1 then k := k−1 and go to step 2.
6. End.

In step 3 four MLPs were used to approximate the four highest frequency ranges,
since this number of MLP forecasted ranges generated the smallest prediction error.
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The filter coefficients came from the Daubechies 4 wavelet family. Optimal ANN
architectures were estimated using JavaNNS (a Java interface to SNNS kernel ) and
its Optimal Brain Surgeon algorithms. The networks had an input layer (6 input
neurons), one hidden layer and an output layer (1 neuron). The hidden and output
neurons used the logistic activation function. Table 12.1 contains details about archi-
tectures and frequency ranges.

Table 12.1. Frequency ranges and ANN architectures

Network Range Oscillations length Hidden neurons
1 fN

16 to fN
8 16–32 samples 1

2 fN
8 to fN

4 8–16 samples 2
3 fN

4 to fN
2 4–8 samples 6

4 fN
2 to fN 2–4 samples 6

In order to explain the term oscillation length let us notice that the wavelet trans-
form is in fact an orthogonal projection of a vector (input time series) onto vector
spaces generated by wavelet functions. This process can be regarded as decompos-
ing the input series into new series (new vectors) each containing a frequency range
of variations.

The highest possible frequency that can be recognised in a discrete signal sam-
pled with the frequency Fs is Fs/2 (Nyquist Theorem). Fs/2 in a periodic signal means
a period of 2 samples length. Due to wavelet transform properties (see e.g. (18), page
109) the frequency ranges in which the signal is split are: Fs/2-Fs/4 (oscillations 2-4
samples long), Fs/4-Fs/8 (oscillations 4-8 samples long) and so on. Please note, that
this decomposition is not “sharp”, because wavelet functions are not sharp localised
in frequency, nor in time. It depends on the properties of the chosen wavelet family.

The MLPs were trained with the back-propagation algorithm with momentum
and the ANN patterns were split into learning (L) and testing (T) sets. The testing
set contained 80 randomly selected patterns, the learning set 1380 – 1480 (depending
on k). A typical learning result during the prediction test procedure (for a particular k)
is shown in table 12.2.
Note that the error measures are computed using learning and testing patterns, but
not prediction errors of the whole, aggregated wavelet-neural model. These are the
error measure definitions:

1. Sum of Squares Error

SSE =
N

∑
i=1

(yi− ỹi)2.

2. Mean Squared Error

MSE =
1
N

N

∑
i=1

(yi− ỹi)2.
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Table 12.2. A typical learning result during the prediction test procedure (L denotes learning
set, T denotes testing set)

Net Set SSE MSE RMSE NRMSE R2 DIR
1 L 0,0787 0,00005 0,0073 0,2828 0,920 85,36%
2 L 0,0717 0,00005 0,0069 0,3858 0,851 84,34%
3 L 0,0285 0,00002 0,0044 0,3391 0,884 89,85%
4 L 0,0428 0,00003 0,0054 0,4825 0,767 88,49%
1 T 0,0316 0,00040 0,0198 0,3299 0,891 90,00%
2 T 0,0051 0,00006 0,0080 0,5451 0,702 86,25%
3 T 0,0053 0,00007 0,0081 0,4577 0,790 86,25%
4 T 0,0016 0,00002 0,0044 0,3533 0,875 90,00%

3. Root of MSE
RMSE =

√
MSE.

4. Normalised RMSE
NRMSE =

RMSE√
σ

.

5. R2
R2 = 1− MSE

σ
,

where σ = 1
N ∑

N
i=1(y− yi)2, y = 1

N ∑
N
i=1 yi. yi, ỹi denote the expected and obtained

MLP’s output value on i-th pattern, respectively. DIR is the percentage of correctly
predicted directions of value alteration.

After the prediction testing procedure was 5 times repeated, 2500 of predicted
exchange rates were obtained. They were divided into 5 groups containing the 1st,
2nd, 3rd, 4th and 5th forecasted rate. In each of these groups all predicted values
were compared to the real data to estimate the prediction error. The following error
measures were used:

1. Root Average Square Error

RASE =

√
1
N

N

∑
i=1

(si− s̃i)2.

2. Mean Absolute Percentage Error

MAPE =
1
N

N

∑
i=1

∣∣∣ si− s̃i

si

∣∣∣∗100.

3. Theil’s information coefficient

T R =

√
∑R

i=1(si− s̃i)2√
∑R

i=1(si− si−1)2
,
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where si is the real value, s̃i its prediction, N the number of predictions of a value.
Note that RASE and MAPE are applied to all N = 500 values in each of 5 groups,
while T R to results of each forecasting. It means that having forecasted values
s̃k+1, . . . , s̃k+5 and real data sk+1, . . . ,sk+5 five Theil’s coefficients are computed:

T R =

√
∑R

i=1(sk+i− s̃k+i)2√
∑R

i=1(sk+i− sk+i−1)2
,

where R = 1, . . . ,5. The purpose is to focus on the relationship between a prediction’s
length and quality. The forecasting method results are presented in table 12.3.

Table 12.3. Prediction test procedure’s results (the predicted value’s number equals to R in
T R, σ(.) denotes the standard deviation.)

Predicted value’s number
Error measure 1 2 3 4 5

RASE 0,028 0,041 0,048 0,056 0,061
MAPE 0,544% 0,789% 0,960% 1,107% 1,227%

Avg(T R) 2,281 1,363 1,492 1,670 1,808
T R < 1 51,4% 33,8% 29,4% 20,8% 16,6%

Avg(T R < 1) 0,322 0,240 0,211 0,155 0,131
σ(T R < 1) 0,278 0,298 0,293 0,279 0,276

DIR 55% 58,6% 64% 51,2% 49,2%

Values of T R < 1 are exposed in Table 12.3 because of their importance. T R = 0
means there was no prediction error, T R > 1 means it was worse than the trivial
“forecasting with the previous value”.

12.6 Concluding Remarks

The test results presented above indicate that the developed prediction algorithm
works pretty well while generating values for short time periods. The errors rise as
the forecast period is extended, which is intuitive. Simultaneously the amount of
T R < 1 falls. The MAPE, RASE errors and direction coefficients from the 1st, 2nd

and 3rd forecasted exchange rate are very satisfactory. The fact that DIR rises achiev-
ing the maximum value at the 3rd rate is rather surprising. This value of 64% may
make some practical applications possible. However, DIR′s next values: 51,2% and
49,2% indicate that there is no possibility to trust the forecasted 4th and 5th value of
the exchange rate direction change forecast.

It is likely that an improvement of prediction could be achieved adding some
additional economic data to the learning patterns (like stock market indices, interest
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rates, inflation rates etc.) on which the USD/PLN exchange rate may depend. To
reiterate the most important results:

1. A high (64%) direction coefficient while forecasting the future 3rd exchange
rate.

2. A low (0,544%, 0,789%) MAPE error while forecasting the future 1st and 2nd

rates.
3. A satisfactory (51,4%) amount of good-quality (low T R and its standard devia-

tion) predictions of the 1st rate.
4. The designed MLPs achieved a high DIR coefficient (86,25% – 90.00%) on

testing patterns.

Summing up, the applied methods gave satisfactory results comparable with the ones
described in literature. For instance in (20), a neuro-fuzzy system was applied for
the one-day ahead Australian dollar/US dollar exchange rate prediction. The RMSE
belonged to the interval (0.0023,0.0083) in dependence of the day for which the
prediction was done. In (29), the Indian rupia/US dollar weekly exchange rate was
predicted using multi-layered ANNs. The RMSE of the applied neural systems varied
from 0.0235 to 0.0522 in dependence of the ANN’s architecture.

Both our results and those of other authors seem to indicate that artificial neural
networks are effective in forecasting market behaviour particularly if they constitute
a hybrid system consisting of both neural and non-neural modules. The neuronally
aided wavelet approach used in this chapter turned to give quite good results whereas
a complex, rule-neural system gave results comparable with the best ones described
in the bibliography. Prospects for application of hybrid systems to market prediction
seem therefore to be promising. It is out of discussion that, till now, neural networks
have been a widely used tool for time-series prediction, including economic ones
(see (40)). Probably, artificial intelligence, particularly in combination with mathe-
matical approach, in particular statistical, approximation, fuzzy and logical tools will
be widely developed both in theoretical and practical aspects.
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Summary. This chapter introduces an artificial payment card market in which we model
the interactions between consumers, merchants and competing card issuers with the aim of
determining the optimal pricing structure for card issuers. We allow card issuers to charge
consumers and merchants fixed fees, provide net benefits from card usage and engage in mar-
keting activities. The demand by consumers and merchants is only affected by the size of the
fixed fees and the optimal pricing structure consists of a sizeable fixed fee to consumers, no
fixed fee to merchants, negative net benefits to consumers and merchants as well as a high
marketing effort.

13.1 Introduction

Payment cards - more commonly referred to as credit and debit cards - are of ever
increasing importance for making payments. In 2002 (7) report that 1.8 billion cards
were used to buy products and services worth more than US$ 2.7 trillion with high
growth rates since then. Despite the importance of payment cards the competition
between the different card issuers, most prominently Mastercard, Visa, American
Express, Discovery, JCB and Diners Club, is not well understood. In this paper we
provide a model of this competition by using an agent-based approach allowing us to
introduce complex interactions between the various market participants which is not
easily possible using other modeling approaches. In our model we are able to derive
the main driving factors of the demand for payment cards and the profits made by
card issuers, as well as the optimal pricing strategy.

What distinguishes the market for payment cards from most other markets is that
it is a two-sided market, i.e. both partners in the transaction, consumers and mer-
chants, using a payment card need a subscription to a specific payment card. Model-
ing such markets is challenging as the behavior of market participants is determined
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by a set of complex interactions between consumers and merchants as well as within
the group of consumers and the group of merchants. Consumers and merchants face
network externalities as a larger number of merchants and consumers using a certain
card makes a subscription to it more valuable and card issuers will also affect be-
havior by changing subscription fees and benefits associated with the cards. In order
to capture these numerous interactions we have developed a novel approach to the
payment card market using an agent-based model.

Agent-based models study dynamic systems of interacting agents, where agents
can be any participants in a system. In economic systems such agents might be con-
sumers, merchants or investors. A good introduction to agent-based modeling in gen-
eral is given in (15). A main characteristic of agent-based models is that each agent
can be given his own behavioral rule, they are generally interacting with a small frac-
tion of available agents and for that reason exhibit significant heterogeneity. Agent-
based models in economics and finance have become more popular in recent years,
in particular as they have been able to provide insights into the complex dynamics of
economic systems, financial markets in particular. These advances, as summarized in
(11), have given rise to the insight that the interactions between agents are of central
importance for the emergence of realistic properties. As traditional economic and
financial models do not consider such interactions between (mostly homogenous)
agents, they fail to derive such properties. Similarly such models have brought im-
portant insights into macroeconomics, the spatial development of economies as well
as the structure of organizations, among many others, see (16) for an overview of
the current literature. The interactions between agents and heterogeneity of their be-
havioral rules makes it in most cases impossible to obtain an analytical solution and
therefore requires the use of computer experiments to analyze their properties.

Most models of the payment card market only give cursory considerations to
these complex interactions and how they affect competition; the literature focuses
on a peculiarity of the payment card market, the so called interchange fee (7, 9, 12–
14, 17, 18). This fee arises as follows: card issuers do not directly issue payment
cards to customers but rather allow banks to distribute them in their own name; card
issuers only provide a service in form of administering the payments made using
these cards. Similarly, merchants have a contract with a bank that allows them to
accept payments made using a specific payment card. In the majority of cases the
consumer will have been given his card from one bank with the merchant having a
contract with another bank. In this case the bank of the merchant will have to pay the
bank of the consumer a fee for making the payment, which is called the interchange
fee. Not only does much of the academic literature focus on the interchange fee, it is
also the focus of regulators (4–6, 8).

With the focus on the interchange fee the literature makes a number of very sim-
plifying assumptions on the behavior of consumers and merchants. In contrast, we
explicitly model the behavior of consumers and merchants and concentrate on the
competition between payment cards to attract subscribers and transactions. We ab-
stract from the interchange fee by implicitly assuming that payment cards are directly
issued by card issuers, i.e. neglecting the role of banks in the market. This approach
allows us to analyze all the fees paid by consumers and merchants using payments



13 Optimal Pricing Strategy in an Artificial Payment Card Market 235

cards rather than only the interchange fee. This will enable us to gain an understand-
ing of the competitive forces in the payment card market and how the competition
between different payment cards affects consumers, merchants and the payment card
issuers themselves. So far no other study has investigated this issue adequately.

The remainder of this chapter is organized as follows: the coming section intro-
duces the artificial payment card market with its elements and interactions, section
13.3 then briefly introduces the learning algorithm used to optimize the card issuers’
strategies and discusses the parameter constellation used in the computer experi-
ments. The results of the computer experiments are presented in section 13.4, where
we evaluate the demand and profits functions as well as the optimal pricing structure
by card issuers. Finally section 13.5 concludes.

13.2 The Artificial Market

In this section we introduce our model of an artificial payment card market by de-
scribing in detail the market participants - consumers, merchants and card issuers -
and how they arrive at their decisions through interactions with each other.

13.2.1 Model Elements

In this subsection we formally introduce the three key elements of the model - mer-
chants, consumers and payment cards - with their attributes.

Merchants

Suppose we have a set of merchants M with |M |= NM , who are offering a homo-
geneous good at a common price and face marginal cost of production lower than
this price. With the elimination of price competition among merchants, we can con-
centrate on the competition among payment card providers and how the card choice
affects merchants. The merchants are located at random intersections of a N ×N
lattice, where N2 � NM , see fig. 13.1 and for each computer experiment we use
different random locations of merchants. Let the top and bottom edges as well as the
right and left edges of this lattice be connected into a torus.

Consumers

Consumers occupy all the remaining intersections of the above lattice. The set of
consumers is denoted C with |C | = NC , where NC � NM and N2 = NC + NM .
Each consumer has a budget constraint that allows him in each time period to buy
exactly one unit of the good offered by the merchants in a single interaction with
one merchant. By making this transaction the utility of the consumer increases. In
order to obtain the good any consumer c ∈ C has to travel to a merchant m ∈M .
The distance imposes travel costs on consumers, which reduces the attractiveness
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Fig. 13.1. Sample of a lattice with consumers (c) and merchants (m)

of visiting a merchant. We have explored the case where the connections among
consumers and merchants are local and the distance traveled by a consumer c to a
merchant m, is measured by the “Manhattan distance” dc,m between the intersections
on the lattice. The distance between two neighboring nodes has been normalized
to one. We further restrict the consumer to visit only the nearest mc merchants and
denote by Mc the set of merchants a consumer considers going to.

Payment Cards

We consider a set of payment methods P with |P|= NP +1 and NP � NM . The
first payment method is the benchmark and can be interpreted as a cash payment,
whereas all other payment forms are card payments. Cash is available to all con-
sumers and accepted by all merchants. For a card payment to occur, the consumer as
well as the merchant must have a subscription to the card in question. We assume that
card payments, where possible, are preferred to cash payments by both, consumers
and merchants. In each time period a fixed subscription fee of Fp ≥ 0 is charged to
the consumer, and Γp ≥ 0 to the merchant. Cash payments do not attract any fees.

For each unit of goods sold using a payment card p ∈P , a merchant m ∈M
receives net benefits of βp ∈ R. Such benefits may include reduced costs from cash
handling, and could differ across payment cards and are assumed to be identical for
all merchants for any given card. Note that the benefits βp could have a negative
value. This means that the variable fee paid by the merchant to the card issuer is big-
ger than the benefits he received from the same payment card in which case they can
be interpreted as a transaction fee. Cash payments do not provide any net benefits.

Consumers also receive net benefits from paying by card, bp ∈ R, but no net
benefits from cash payments. Here, the benefits may arise from delayed payment,
insurance cover or cash-back options. As with the benefits to merchants, the benefits
to consumers can also be negative and again represent a transaction fee.

In addition, the issuer of the payment card has to decide how much he should
spend on marketing effort lp≥ 0, in order to increase the awareness by the consumers
and the merchants for the payment card that he is providing.The strategy employed
by a payment card issuer is defined as the set of variables controlled by them: S =



13 Optimal Pricing Strategy in an Artificial Payment Card Market 237{
Fp,Γp,βp,bp, lp

}
. It is this set of variables that we will be optimizing for payment

cards in section 13.4.

13.2.2 Decision-making of market participants

Decisions by market participants are arrived at through interactions with each other.
This section sets out how these interactions drive decisions by consumers and mer-
chants. The decisions on the strategies chosen by card issuers are considered in sec-
tion 13.3.

Decisions by consumers

Consumers face three important decisions: which merchant to choose, which pay-
ment card to use in the transaction with the merchant, and to which payment cards
to subscribe to. This section addresses each of these decisions in turn.

The consumers’ choice of a merchant

We assume that when deciding which merchant to visit, the consumer has not yet
decided which of the cards he holds will be used. Suppose Pc,m is the set of cards
consumer c ∈ C and merchant m ∈M have in common and let |Pc,m| = NPc,m .
The more payment cards the merchant and the consumer have in common, the more
attractive a merchant becomes, as the consumer always carries all his cards with him.
Additionally the smaller the distance dc,m between the consumer and the merchant,
the more attractive this merchant will be to the consumer. From these deliberations
we propose to use a preference function for the consumer to visit the merchant as
follows

vc,m =

NPc,m
dc,m

∑m′∈Mc

NPc,m′
dc,m′

. (13.1)

Each consumer c ∈ C chooses a merchant m ∈M with probability vc,m as defined in
equation (13.1). The consumers will continuously update their beliefs on the number
of common payments they share with a particular merchant, by observing the number
of common payments of all shops they can visit - i.e. not only those actually visited
- as subscriptions change over time in the way introduced below.

The consumers’ choice of a payment card

The consumer decides which payment card he wants to use with the merchant he has
selected. We assume a preferred card choice in which he chooses the card with the
highest benefits bp from the set Pc,m; if there are multiple cards with the highest
net benefits the card is chosen randomly from them. In cases where the merchant
does not accept any of the consumers’ cards, the transaction is settled using cash
payment.1

1 Please note that even for a negative bp consumers prefer to use payment cards. Without
changing the argument we also could associate a large transaction fee with cash payments
to justify our previous assumption that card payments are preferred.
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Consumer subscriptions

Initially consumers are allocated payment cards such that each consumer is given a
random number of randomly assigned payment cards. Periodically consumers have
to decide whether to cancel a subscription to a card they hold and whether to sub-
scribe to new cards. The frequency with which consumers take these decisions is
defined by a Poisson distribution with a mean of λ time periods between decisions.
The reasoning behind this assumption is that consumers (and similarly merchants
as outlined below) will not constantly consider their subscriptions but do so only at
certain times, which we here assume to be random.

In order to make decisions on subscriptions, every consumer c∈C keeps track of
whether the cards he owns, Pc, are accepted by a merchant or not. If a card p ∈Pc
is accepted by the merchant m ∈Mc he is visiting, the consumer increases the score
of the card ω−c,p by one.2 Assume that he cancels his subscription to a card with
probability3

π−c,p =
x−c k

x−c k + e
ω−c,p
ωc

, (13.2)

where ωc denotes the number of merchants visited and x−c k accounts for the propen-
sity of the consumer to cancel his subscription of the payment card. We define
k = 1 + Fp + NPc + ε

κ+bp
, ε and x−c are constants and κ is another constant with

the restriction that κ+bp > 0. A larger value for x−c k implies that for a given number
of merchants accepting the card, the consumer is more likely to cancel his subscrip-
tion. As long as x−c k < 1 we can interpret the influence of this term as the inertia to
cancel a subscription. The parameter constellation used below ensures that with opti-
mized strategies we find x−c k < 1 and obtain the realistic case of inertia in consumers
with respect to changing their status quo.

The decision to cancel a subscription is also affected by the fees and benefits
associated with a payment card. A card becomes more attractive to subscribe and
existing subscriptions are less likely to be canceled if the fixed fee charged is low
and the net benefits from each transaction are high. Furthermore, the more cards
a consumer holds, the less attractive it becomes to maintain a subscription as the
consumer has many alternative payment cards to use with merchants.

Let P−
c = P \Pc denote the set of cards the consumer does not subscribe

to, with |P−
c | = NP−c . If the merchant and the consumers have no payment card

in common, i.e. Pc,m = /0, and the merchant accepts at least one payment card, i.e.
Pm �= /0, the consumer increases the scoreω+

c,p by one for all p∈Pm∩P−
c . With x+

c
a constant, the probability of subscribing to a card not currently held by the consumer
is then determined by

2 Please note that here consumers only take into account the merchant he actually visits. This
is in contrast to the decision which merchant he visits where he is aware of the number of
common cards for potential merchants.

3 The probabilities defined in equations (13.2) and (13.3) are also affected by the marketing
effort of each payment card provider.
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π+
c,p =

e
ω+

c,p
ωc

x+
c k + e

ω+
c,p
ωc

. (13.3)

This probability uses the inertia of consumers to subscribe to new cards through
the use of x+

c k. A large value of this term implies that consumers are less likely to
subscribe to new cards for a given number of merchants accepting the payment card.

Decisions by merchants

The decisions of merchants are limited to the choice of card subscriptions. Similar
to consumers the frequency with which merchants review their subscriptions is gov-
erned by a Poisson distribution specific to each individual with a common mean of
λ time periods, the same as for the subscription decisions of consumers. As with
consumers the initial subscriptions of merchants are a random number of randomly
selected payment cards.

Merchants keep track of all cards presented to them by consumers. Every time
a card p ∈P is presented to the merchant m ∈M and he has a subscription to
this card, i.e. p ∈Pm, he increases the score of θ−m,p by one. With |Pm|= NPm the
probability of canceling this subscription4 is given by

π−m,p =
x−mq

x−mq+ e
θ−m,p
θm

, (13.4)

where θm denotes the number of cards presented and x−mq represents the propensity
to cancel the subscription similar to that of consumers with x−m being a constant
and q = 1 +Γp + NPm + ε

κ+βp
. κ takes the same value as for consumers and has to

fulfill the additional restriction that κ +βp > 0. The interpretation of the term x−mq
follows the same lines as for consumers and the parameter setting ensures inertia by
merchants to cancel their subscriptions with the optimized payment card strategies.

Similarly, if the merchant does not have a subscription to the card, i.e p ∈P−
m ,

the score of θ+
m,p is increased by one and the probability of subscribing to a card is

given by

π+
m,p =

e
θ+

m,p
θm

x+
mq+ e

θ+
m,p
θm

, (13.5)

where once again x+
m is a constant.

Decisions by card issuers

Card issuers have to decide on all variables in their strategy space S, i.e. decide on the
fees and net benefits of consumers and merchants as well as the marketing expenses.

4 The probabilities defined in equations (13.4) and (13.5) are also affected by the marketing
effort of each payment card provider.
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While optimizing these variables will be the main subject of the following sections,
we want to establish the impact these variables have on the profits of card issuers
as well as the impact of the marketing effort on the decisions of consumers and
merchants. The total profit Φp of a card issuer is calculated applying the following
equation

Φp =ΦCp +ΦMp −Lp, (13.6)

where ΦCp are the profits received from consumers and ΦMp those from merchants.
These profits are given by

ΦCp =
I

∑
t=1

Nt,CpFp−
I

∑
t=1

Nt,Tpbp, (13.7)

ΦMp =
I

∑
t=1

Nt,MpΓp−
I

∑
t=1

Nt,Tpβp, (13.8)

where the additional index t denotes the time period, I the number of time periods
considered by the card issuer and NTp the number of transactions using card p. The
fees and net benefits set by the card issuers will affect the number of subscriptions
and transactions using a card, which then determine the profits for the card issuers.
Thus we have established a feedback link between the behavior of card issuers on the
one hand and consumers and merchants on the other hand. The sum of all publicity
cost is denoted Lp and is calculated as

Lp =
I

∑
t=1

lp = Ilp, (13.9)

where lp denotes the publicity costs for each time period, which we assume to be
constant. These publicity costs now affect the probabilities with which consumers
and merchants maintain their subscriptions and subscribe to new cards. The prob-
abilities, as defined in equations (13.2) - (13.5), are adjusted due to these publicity
costs as follows

ξ = τπ (1−π) , (13.10)

where π represents , π+
c,p, π−c,p , π+

m,p , or π−m,p, as appropriate and τ = α
(
ϕ− e−lp

)
.

The constants α and ϕ satisfy the constraint 0≤ π+ξ ≤ 1. The revised probabilities
as used by consumers and merchants are then given by π ′ = π+ξ .
Fig. 13.2 summarizes the structure of our model by showing the dependencies of the
model elements. Card issuers now seek to maximize their profits and market share as
measured through the number of transactions conducted by optimally choosing their
strategies. The way this optimization is accomplished by card issuers is discussed in
the coming section.

13.3 Set-up of the Computer Experiments

The above model is implemented computationally and the optimization of the strate-
gies chosen by card issuers conducted using machine learning techniques.
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Fig. 13.2. Structure of the model

13.3.1 The optimization procedure of card issuers

For our optimization procedure we consider an Estimation of Distribution Algorithm
(EDA) which analyzes the population of agents with the aim of identifying the best-
performing parameter constellation. A distribution of the parameter constellations in
the population is built with the next generation being drawn from a revised distrib-
ution where the likelihood of selecting a well-performing parameter constellation is
increased and that of selecting a poorly performing parameter constellation reduced.
Different versions of how to build and modify this distribution have been proposed,
where our model will be based on the Population-based Incremental Learning algo-
rithm (PBIL) developed in (3).

The PBIL algorithm in its original form assumes the parameters to be binary
and attempts to find the optimal binary combination. By changing the probabilities
for each parameter for the coming generation according to the relative performance
of the agent, the algorithm slowly identifies the best performing parameter constel-
lation. The randomness of parameter choices ensures that all possible combinations
are eventually searched to obtain the global optimum. Various extensions of the PBIL
have been introduced, most notably for our purpose the introduction of continuous
rather than binary parameters.

In our model we use a combination of the PBIL with the Multiple Algorithms
Parameter Adaptation algorithm (MAPA), introduced in (10) as the Generalized
Population-based Incremental Learning algorithm (GPBIL). In a MAPA algorithm
two different criteria to assess the performance are combined. This algorithm di-
vides the domain of a variable x, [a;b], into n sub-domains a ≤ a1 < a2 < · · · <
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an−1 < an ≤ b. We can now define subintervals as
[
a; a1+a2

2

)
,
[ a1+a2

2 ; a2+a3
2

)
, . . . ,[

ai−1+ai
2 ; ai+ai+1

2

)
, . . . ,

[
an−1+an

2 ;b
]
.

Each subinterval is equally likely to be selected, i.e. with probability 1
n . The

algorithm changes the location of the parameters ai such that the subintervals with
the best performance are selected with a higher likelihood. This learning is achieved
through a positive and a negative feedback mechanism. Suppose we have a value
of x ∈ [a;b]; we can then determine the new value of ai with the help of a j, the
value closest to x. If the outcome associated with x is positive we then determine the
updated âi as follows

âi = ai +ζνxhδ (i, j)(x−ai), (13.11)

where ζ denotes the learning rate, the role of νx is explained below and

hδ (i, j) =
{

1 if |i− j| ≤ δ
0 if |i− j|> δ (13.12)

denotes the neighborhood in which learning occurs, where δ denotes cylinder size of
the kernel. This ensures that values close to x get chosen more frequently. In the case
of a negative outcome we want values on either side of x to be chosen less frequently
and therefore use the following rule on updating the values of ai

âi =
{

ai +ζνxhδ ′(i, j)(ai−δ ′ −ai) if ai ≤ x
ai +ζνxhδ ′(i, j)(ai+δ ′ −ai) if ai > x . (13.13)

If ai−δ ′ or ai+δ ′ are not defined we set them as a and b, respectively. In our model
a positive outcome is achieved if the market share of the payment card as determined
by the number of transactions using the payment card is higher than the average
market share, i.e. 1

NP
; otherwise it is regarded as a negative outcome.

Once it has been determined whether an outcome is positive or negative from its
market share, the positive and negative outcomes are ordered ascending according
to the profits achieved from the strategy. The position of a strategy x determines
its weight in the updating of the values through νx. If we denote by φ the number
of positive or negative outcomes, respectively, and 1 ≤ ρ(x) ≤ φ the position, we
define νx = ρ(x)

φ . The domain of the strategy variables as well as the parameters of
the learning algorithm are shown in table 13.1. We employ the GPBIL algorithm to
optimize the strategy vector S.

13.3.2 Parameter investigation

The model is characterized by a large number of free parameters which need to be
exogenously fixed in the experiments. Table 13.2 provides an overview of the values
chosen for further analysis. An analysis of a wide range of parameter constellations
has shown the results to be not very sensitive to these values and we can thus treat
them as qualitatively representative examples for the remainder.
It might be noted that the inertia resulting from net benefits, ε , is relatively small
compared to the fixed fee. We can justify this choice by pointing out that consumers
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Table 13.1. Domains of the strategy variables

Description Symbol Value range

Consumer fixed fee Fp [0;10]
Merchant fixed fee Γp [0;10]
Net benefits of consumers bp [−1;1]
Net benefits of merchants βp [−1;1]
Publicity costs lp [0;20]
Number of subintervals n 5
Learning rate ζ 0.1
Kernel size for positive outcomes δ 2
Kernel size for negative outcomes δ ′ 1

Table 13.2. Parameter settings

Description Symbol Value

Network size N 35
Number of consumers NC 1100
Number of merchants NM 125
Number of payment cards NP 9
Number of merchants considered by each consumer NMC

5
Inertia/propensity with respect to net benefits ε 1
Inertia/propensity with respect to net benefits κ 1.1
Propensity of consumers to cancel their subscriptions x−c 0.05
Inertia with respect to consumers making new subscriptions x+

c 2
Propensity of consumers to cancel their subscriptions x−m 0.05
Inertia with respect to merchants making new subscriptions x+

m 9
Size of the probability adjustment due to marketing effort α 0.1
Size of the probability adjustment due to marketing effort ϕ 0.05
Expected time between subscription decisions λ 20
Number of time steps I 20000

and merchants will in many cases not be aware of the size of these benefits because
they are not commonly recognized, e.g. small charges for overseas usage is hidden in
a less favorable exchange rate. Empirical evidence suggests that such hidden charges
and benefits are much less relevant than fees directly charged to customers. It is also
for this reason that we limit the domain of the net benefits to [−1;1] such that we
avoid them becoming too visible to consumers and merchants relative to the fixed
fee. In doing so we willingly accept a possible corner solution in the optimal pricing
strategy.

13.4 Outcomes of the Computer Experiments

Using the model of the payment card market as developed in the previous sections,
we can now continue to analyze the resulting properties of the market. Before eval-
uating the optimal strategies chosen by payment card issuers, we will assess the
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resulting demand function for the payment cards by consumers and merchants as
well as the profit function of card issuers, which we then can use to interpret the
optimal pricing strategies.

13.4.1 Demand for payment cards

We evaluate the demand for payment cards by assigning each card a random strategy
as detailed in table 13.3. Using these fixed strategies we conduct a single computer
experiment from which we estimate the demand function at the end of the experi-
ment; it has to be noted that the results from this single experiment is representative
and was confirmed for other random strategies.5 Estimates of the demand for pay-
ment cards held by consumers NCp , merchants NMp and the number of transactions
NTp as well as the profits made by the card issuers, Φp, are given as follows:

lnNCp = 6.433−0.156Fp,

lnNMp = 4.339−0.088Fp−0.0222Γp,

lnNTp = 10.837−0.208Fp−0.244Γp,

lnΦp = 16.769+0.054Fp−0.091βp.

We only show those strategy variables which were found to have a significant impact
on the demand or profits. The equations presented above provide a nearly perfect fit
of the data and the coefficients are highly significant. It is interesting to note that the
demand is not affected by the net benefits consumers and merchants receive from
each transaction; instead the demand is entirely driven by the fixed fees. We also
observe a feature of two-sided markets as the demand by merchants depends on both
the consumer and merchant fixed fee, where the consumer fixed fee is much more
relevant than the merchant fixed fee. The reason for this outcome can be found in the
importance of consumer demand and usage for the subscription of merchants. For
the transaction demand we observe that both fees are of similar importance.

Interestingly, the profits made by card issuers only depend on the consumers
fixed fee and the net benefits given to merchants; the increased revenue of a potential
fixed fee to merchants is offset by a reduced usage resulting in its insignificance
for the outcome. It has also to be noted that while these outcomes are statistically
significant, their economic impact is relatively small, e.g. by increasing the fixed fee
for consumers from zero to 10 (the maximum value), the profits would only increase
by about 3% and an increase of the net benefits to the merchant from -1 to 1 would
decrease the profits only by about 1%. Thus the sensitivity of the profits to these
strategies is very low. The demand and thereby the market share of a payment card
itself reacts more sensitively with changes of up to 20%.

A final observation is that despite 9 cards being present in the market, the frac-
tion of cash transactions remains high at about 35%, implying frequent mismatches

5 It has also been confirmed that the demand for payment cards had stabilized a considerable
time before the end of the experiment.
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between the cards subscribed to by consumers and merchants. The reasons for this
frequent coordination failure is discussed in (1, 2). Having investigated the demand
function for payment cards we can now proceed to evaluate the optimal payment
card strategies.

13.4.2 Optimal payment card strategies

With the objective function being the market share of the payment cards and the
profits made by card issuers, we can now employ the GPBIL algorithm to optimize
the pricing structure of the card issuers. The results of this optimization are discussed
in this section.

The results of the optimization using the GPBIL algorithm are presented in table
13.4. From the profit function derived in the previous section we would expect the
optimal strategy to consist of a high fixed fee for consumers and negative net bene-
fits, i.e. a transaction fee, for merchants. The negative effect of the fixed fee on the
transaction demand would, however, imply that this fee should be limited in size and
the fixed fee for merchants should be low. The results confirm these assertions fully.

The negative net benefits to consumers and merchants would make the payment
cards less attractive to prospective subscribers and make existing subscribers more
likely to cancel their subscription while only having a limited influence on the profits
of the issuer. This negative effect is, however, offset by the relatively high marketing
effort the issuers make; essentially the revenue generated by the negative net bene-
fits is used for marketing purposes. Hence the negative impact on the payment card
switching behavior by applying negative net benefits is offset by marketing activi-
ties. We also observe a weak positive relationship between the size of the fixed fee
to consumers and the marketing costs, providing further evidence for an offsetting
relationship between these costs charged to consumers and marketing efforts.

The high marketing costs by card issuers provide a good example how market
participants can get locked into certain strategies by competitive pressures, although
they are not beneficial to them and even detrimental to other market participants.
Once a card issuer decides to increase his marketing effort, his competitors will have
to follow to avoid losing market share. To offset the incurred costs those fees to
which market participants react least sensitively, are likely to be increasing, which in
our case are the net benefits to consumers and merchants.

In fig. 13.3 we show from a representative sample experiment how the parameters
of the nine payment cards evolve over the generations until their values converge as is
clearly visible. We clearly see the convergence of the parameters over time. We have
also compared the performance of the optimized strategies in a market populated
with otherwise random strategies and find that the optimized strategies achieve a sig-
nificantly higher market share and also outperform the random strategies in term of
profits generated. This result provides evidence that the optimization of the strategies
has indeed produced strategies that are performing better than randomly generated
strategies. Finally, we found that the market share of all competing payment cards
are approximately equal, providing evidence for the effectiveness of the learning
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Fig. 13.3. Evolution of strategy parameters in one experiment

algorithm and the convergence of the learning as well as the reaching of the steady
state of the computer experiment.



13 Optimal Pricing Strategy in an Artificial Payment Card Market 249

Fig. 13.3. Evolution of strategy parameters in one experiment (ctd.)

13.5 Conclusions

We have developed an artificial payment card market in which consumers and mer-
chants are interacting with each other through payments made for purchases. Based
on the usage and acceptance of payment cards, merchants and consumers continu-
ously review their subscriptions to payment cards and card issuers seek to maximize
their market share and maximize their profits by setting optimal fees and market-
ing efforts. Evaluating such a model we were able to derive the demand function
for payment cards as well as the profit function of card issuers, observing that most
importantly the fixed fees charged by the card issuers drive demand and profits.

The optimized strategies of payment card issuers are characterized by a relative
high fixed fee to consumers, no fixed fee to merchants as well as large negative net
benefits (i.e. a transaction fee) to consumers and merchants alike and high market-
ing costs. Such a fee structure with high fixed and transaction fees to consumers
can be observed in many markets where substantial annual fees are charged along
transaction fees in the form of higher-than-usual interest on purchases or fees on the
use of payment cards overseas. Similarly merchants pay a considerable fee for each



250 B. Alexandrova-Kabadjova et al.

transaction while not being charged a significant fixed fee. These characteristics are
replicated in our model, along with the high marketing costs card issuers often face.

For the first time in the literature we have been able to reproduce realistic prop-
erties of the payment card market with our model. While our model can be extended
in a wide range of manners, e.g. by using different numbers of competitors, differ-
ent physical locations of merchants and consumers to name only two possibilities, it
provides a first foundation for the analysis of this market which does not limit itself
to the interchange fee between different card issuers as commonly done in the litera-
ture. It is finally possible to use the model as a basis for the analysis of any proposed
regulation of the payment card market, e.g. through the introduction of caps on fees
charged by card issuers or limits in benefits granted.
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Summary. This chapter uses a simple stochastic market fraction (MF) asset pricing model to
investigate market dominance, profitability, and how traders adopting fundamental analysis or
trend following strategies can survive under various market conditions in the long/short-run.
This contrasts with the modern theory of finance which relies on the paradigm of utility maxi-
mizing representative agents and rational expectations assumptions which some contemporary
theorists regard as extreme. This school of thought would predict that trend followers will be
driven out of the markets in the long-run. Our analysis shows that in a MF framework this is
not necessarily the case and that trend followers can survive in the long-run.

14.1 Introduction

The modern theory of finance relies on the paradigm that asset prices are the out-
come of the market interaction of utility maximizing representative agents who are
rational when forming expectations about future market outcomes. The assumption
that agents rationally impound all relevant information into their trading decisions
produces price changes which are random, and consequently exhibit random walk
behaviour. The representative agent assumption, as argued by Friedman (14), leads
to the conjecture that irrational traders (also called less informed traders or chartists)
could profit in the short-run, but are expected to perish in the long-run while rational
traders (also called informed traders or fundamentalists) should be the only long-run
survivors.

Despite all the evidence presented in academic journals that security prices fol-
low random walks the use of technical trading rules is widespread amongst financial
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market practitioners as evidenced by the growth in hedge funds employing quantita-
tive trading strategies: trend following is one of the most popular trading rules. Also,
finance theory provides limited economic explanations for the well documented styl-
ized facts reported in the empirical finance literature (see Pagan (30)). The existence
of excess volatility (asset return is more volatile relative to the dividends and under-
lying cash flows), volatility clustering (high/low asset return fluctuations tend to clus-
ter), either positive or negative skewness and excess kurtosis (compared to normally
distributed returns), and long-range dependence (insignificant autocorrelations (ACs)
of raw returns and hyperbolic decline of ACs of the absolute and squared returns, see
Ding et al. (13)) are difficult to accommodate within the established theoretical struc-
ture of market efficiency and rational expectations (see, for example, Shiller (31)).
In practice, GARCH methodology has been successful modeling volatility clustering
and capturing the short-run dynamics of volatility, but fails to provide an economic
explanation.

Agent-Based Modeling is an alternative paradigm which may provide an ap-
propriate theoretical and methodological framework to explain the stylized facts.
For those new to this area we refer them to the survey papers by Hommes (20)
and LeBaron (24) for the recent developments in this literature. In contrast to the
traditional assumptions of investor homogeneity and rational expectations, the lat-
ter of which is regarded as an extreme informational assumption (see, for exam-
ple, Cochrane (11)), agent-based models allow for heterogeneous agents, potentially
showing bounded rational behaviour, who have different attitudes to risk and differ-
ent expectations about the future evolution of prices. This approach has been shown
to be able to characterize the dynamics of financial asset returns. The works of Arthur
et al. (2), Brock and Hommes (3), Chiarella (6), Chiarella and He (7) and (8), Day
and Huang (12) LeBaron (21), Levy et al. (25), Lux (28), among others, are examples
of this approach. Agent-Based Models attempt to explain various types of market be-
haviour and to replicate the well documented empirical features of actual financial
markets.

Heterogeneous agent-based models have had success in explaining market be-
havior and reproducing stylized facts. However, there are few works explicitly in-
vestigating whether irrational traders can survive in the long-run. In this paper a
market fractions (MF) model with heterogeneous traders - fundamentalists (rational
investors who believe the market price is mean reverting to fundamental price) and
trend followers (irrational investors who believe market price will follow the trend
generated from historical prices) - participate in a simple stochastic asset-pricing
and wealth dynamics framework to investigate market dominance, profitability, and
if they survive in the short/long-run. Although the techniques discussed in Arnold
(1) may be useful for analyzing the stochastic model the mathematical analysis of
nonlinear stochastic dynamical systems is difficult in general. Therefore, this analy-
sis is conducted through Monte Carlo simulation (see Li et al. (26) and (27) for a
more systematic study on this). The results from our simulation analysis show that,
as expected, fundamentalists survive in the long-run and their profitability improves
as they become increasingly confident of their forecasts of fundamental value. More
interestingly, the key insight from our analysis is that trend followers can survive in
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the long-run even though they don’t engage in information processing to establish
the fundamental value of the asset to inform their trading strategy. In the context
of our MF model this can be explained by the learning mechanism encapsulated in
the trend followers forecasts. Our results also show that trend followers’ profitability
increases as their market share increases and when fundamentalists become naive
traders.

This chapter is organized as follows. Section 14.2 outlines a market fraction
model with heterogeneous agents. In this model the market clearing price is set by a
market maker who adjusts the market price in response to aggregate excess demand
in the market. Next, the expectations and learning mechanisms for the fundamental-
ists and trend followers is introduced. The latter part of this section develops the full
market fraction stochastic model for asset prices and wealth dynamics. In section
14.3 the profitability and survivability of fundamental and trend following strategies
is explored under alternative scenarios. Section 14.4 discusses the key insights from
the study and identifies logical extensions for future research.

14.2 Heterogeneous Beliefs and Market Fractions

Intuitively, market population fractions among different types of traders play an im-
portant role in financial markets. Markets can be driven by certain types of investors
at different time periods. This is particularly the case in either a bull or bear mar-
ket. Empirical evidence from Taylor and Allen (32) suggests that at least 90% of
the traders place some weight on technical analysis, such as moving average and
trend following rules, over various time horizons. In particular, traders rely more on
technical analysis, as opposed to fundamental analysis, at shorter horizons. As the
time horizons increases more traders rely on fundamental rather than technical analy-
sis. In addition, there are a proportion of traders who do not change their strategies
over all time horizons. This situation is consistent with money-managers following
a longer-term value investing strategy. Their time horizon for realizing gains is of-
ten years as opposed to days for the technical analyst, see Haugen (16) and Chan
and Lakonishok (5). Theoretically, the study by Brock and Hommes (3) shows that
when different groups of traders have different expectations about future prices and
dividends compete between trading strategies and choose their strategy according to
an evolutionary fitness measure the corresponding deterministic system can exhibit
very complicated, and even, chaotic dynamics. The adaptive switching mechanism
proposed by Brock and Hommes (3) is an important element of the adaptive belief
model. It is based on both a fitness function and a discrete choice probability.

In this chapter we employ the market fraction (MF) model introduced in He and
Li (17). It is a simplified version of Brock and Hommes’ framework which assumes
that the market fraction parameters among heterogeneous agents are fixed. Apart
from its mathematical tractability this simplification has a number of distinct advan-
tages. First, it clearly identifies how different market fractions influence the market
price. In Brock and Hommes’ framework this is difficult due to the amplifying effect
of the exponential function used in the discrete choice probability which makes the
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market fractions very sensitive to price changes and the stated fitness functions. Sec-
ond, our model doesn’t allow agents to switch between trading strategies. This makes
it easier to characterize market dominance, profitability, and survivability. Finally, it
is important to understand how the trading strategies are linked to aspects of price
behaviour. Having market fractions among heterogeneous agents as fixed parameters
allows for an explicit examination of how market fractions influence price behaviour.

The MF model considered in the following discussion, introduced in He and Li
(17), follows the standard discounted value asset pricing model with heterogeneous
agents. The market clearing price is arrived at via a market maker scenario in line
with Day and Huang (12) and Chiarella and He (10) rather than the Walrasian auc-
tioneer scenario used in Brock and Hommes (4). We focus on a simple case in which
there are three classes of participants in the asset market: two groups of traders, fun-
damentalists and trend followers, and a market maker.

14.2.1 Market Fraction and Market Maker

Consider an asset pricing model with one risky asset and one risk-free asset. It is
assumed that the supply of the risk-free asset is perfectly elastic with a gross return
of R = 1+ r/K, where r stands for a constant risk-free rate per annum and K stands
for the trading frequency. Typically, K = 1,12,52 and 250 for trading periods of a
year, month, week, and a day. To calibrate the stylized facts observed from daily
price movements in financial markets K is set equal to 250.

Let Pt be the price (ex-dividend) per share for the risky asset at time t and {Dt}
be the stochastic dividend process for the risky asset. Then the wealth of a typical
investor h at t +1 is given by

Wh,t+1 = RWh,t +[Pt+1 +Dt+1−RPt ]zh,t , (14.1)

where Wh,t and zh,t are the wealth and the number of shares of the risky asset pur-
chased by investor h at t. Let Eh,t and Vh,t be the beliefs of type h traders about the
conditional expectation and variance of quantities at t +1 based on their information
set at time t. Where the excess capital gain on the risky asset at t + 1 is denoted by
Rt+1, that is

Rt+1 = Pt+1 +Dt+1−RPt . (14.2)

Then it follows from (14.1) and (14.2) that

Eh,t(Wt+1) = RWt +Eh,t(Rt+1)zh,t , Vh,t(Wt+1) = z2
h,tVh,t(Rt+1), (14.3)

where zh,t is the demand by agent h for the risky asset. Assume that trader h has a
constant absolute risk aversion (CARA) utility function with the risk aversion coef-
ficient ah (that is Uh(W ) = −e−ahW ), the optimal demand zh,t for the risky asset is
determined by maximizing the expected utility of wealth, that is

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (14.4)
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Given the heterogeneity and the nature of asymmetric information among traders
we consider two trading strategies corresponding to two types of boundedly rational
traders: fundamentalists and trend followers. Their beliefs are defined in the fol-
lowing discussion. Assume the market fraction of the fundamentalists and trend
followers is n1 and n2 with risk aversion coefficient a1 and a2, respectively. Let
m = n1− n2 ∈ [−1,1]. Obviously, m = 1,−1 correspond to the cases when all the
traders are fundamentalists or trend followers. Assume a zero supply of outside
shares. Then, using (14.4), the aggregate excess demand per investor (ze,t) is given
by

ze,t ≡ n1z1,t +n2z2,t =
1+m

2
E1,t [Rt+1]

a1V1,t [Rt+1]
+

1−m
2

E2,t [Rt+1]
a2V2,t [Rt+1]

. (14.5)

To complete the model we assume that the market is cleared by a market maker. The
role of the market maker is to take a long (when ze,t < 0) or short (when ze,t > 0)
position so as to clear the market. At the end of period t, after the market maker
has carried out all transactions, he or she adjusts the price for the next period in the
direction of the observed excess demand. Let µ be the speed of price adjustment
of the market maker. To capture unexpected market news or noise created by noise
traders we introduce a noisy demand term δ̃t which is an i.i.d. normally distributed
random variable with δ̃t ∼N (0,σ2

δ ). In this paper, we assume a constant volatility
noisy demand and the volatility is related to an average fundamental price level.
This noisy demand may also depend on the market price. Theoretically, how the
price dynamics are influenced by adding different noisy demand is still a difficult
problem. Here, we focus on the constant volatility noisy demand case and use Monte
Carlo simulations and statistical analysis to gain some insights into this problem.
Based on these assumptions the market price is determined by

Pt+1 = Pt +µze,t + δ̃t . (14.6)

Using (14.5), this becomes

Pt+1 = Pt +
µ
2

[
(1+m)

E1,t [Rt+1]
a1V1,t [Rt+1]

+ (1−m)
E2,t [Rt+1]

a1V2,t [Rt+1]

]
+ δ̃t . (14.7)

We use fig. 14.1 to illustrate the general role of heterogeneous expectation for our two
groups of agents and how the market cleaning price is arrived at. Let p f ,e

t,t+1 and pc,e
t,t+1

be the expected price at time t + 1 for the fundamentalists and chartists conditional
upon their information set at time t. The market maker aggregates the demand from
agents’ heterogeneous expectations to form the expected market price pe

t,t+1 at time
t and adjusts the market price at time t +1 accordingly. The important feature of this
structure is that the price generating mechanism is driven by expectations feedback.
Observed market prices are then used to form expectations for the next period which
in turn feeds back into the price generating process.

It should be pointed out that market maker behaviour in this model is highly
stylized. For instance, the inventory of the market maker built up as a result of the
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Fig. 14.1. Expectations Feedback

accumulation of various long and short positions is not considered. This could affect
his or her behaviour and the market maker price setting role in (14.7) could be a
function of the inventory. Allowing µ to be a function of inventory would be one
way to model such behaviour. In this chapter it is best thought of as a market friction.
One of the aims of our analysis is to understand how this friction affects the market
dynamics.

14.2.2 Fundamentalists

We assume that Ft = {Pt ,Pt−1, · · · ,Dt ,Dt−1, · · ·} is the common information set at
time t. Apart from the common information set, the fundamentalists have superior
information on the fundamental value, P∗t , of the risky asset and they also realize the
existence of non-fundamental traders such as trend followers to be introduced in the
following discussion. They believe that the stock price may be driven away from the
fundamental value in the short-run, but it will eventually converge to the fundamental
value in the long-run. The speed of convergence measures their confidence level
in the fundamental value. More precisely, we assume that the fundamental value
satisfies a stationary random walk process (as we know that the fundamental value
driven by this random walk process can be negative)

P∗t+1 = P∗t [1+σε ε̃t ], ε̃t ∼N (0,1), σε ≥ 0, P∗0 = P̄ > 0, (14.8)

where ε̃t is independent of the noisy demand process δ̃t . We assume the conditional
mean and variance of the fundamental traders are

E1,t(Pt+1) = Pt +α(P∗t+1−Pt), V1,t(Pt+1) = σ2
1 , (14.9)

where σ2
1 stands for a constant variance for the price. Here parameter α ∈ [0,1] is

the speed of price adjustment toward the fundamental value. It measures their level
of confidence in fundamental value. Specifically, for α = 1 the fundamental traders
are fully confident about the fundamental value and adjust their expected price at
the next period instantaneously to the fundamental value. When α = 0 fundamen-
talists become naive traders. In general, the fundamental traders believe that markets



14 Trend Followers, Fundamentalists and Survival 259

are efficient and prices converge to their fundamental value. An increase (decrease)
in α indicates that the fundamental traders have high (low) confidence in their esti-
mated fundamental value, leading to a quick (slow) adjustment of the expected price
towards the fundamental price.

14.2.3 Trend followers

Unlike the fundamentalists, trend followers are technical traders who believe that fu-
ture price changes can be predicted from various patterns or trends generated from
the history of prices. The trend followers are assumed to extrapolate the latest ob-
served price change over prices’ long-run sample mean and to adjust their variance
estimate accordingly. More precisely, their conditional mean and variance are as-
sumed to satisfy

E2,t(Pt+1) = Pt + γ(Pt −ut), V2,t(Pt+1) = σ2
1 +b2vt , (14.10)

where γ,b2 ≥ 0 are constants, and ut and vt are the sample mean and variance, re-
spectively, which follow a learning process. The parameter γ measures the extrapola-
tion rate. High (low) values of γ correspond to strong (weak) extrapolation from the
trend. The coefficient b2 measures the influence of the sample variance on the condi-
tional variance estimated by the trend followers who believe in a more volatile price
movement. Various learning schemes can be used to estimate the sample mean ut and
variance vt (see Chiarella and He (9), (10) for related studies on heterogeneous learn-
ing and asset pricing models with heterogeneous agents whose conditional mean and
variance follow various learning processes). In this chapter we assume that

ut =δut−1 +(1−δ )Pt , (14.11)

vt =δvt−1 +δ (1−δ )(Pt −ut−1)2, (14.12)

where δ ∈ [0,1] is a constant. This is the limiting process of a geometric decay
process where the memory lag length tends to infinity. Basically, a geometric de-
cay probability process (1− δ ){1,δ ,δ 2, · · ·} is associated with historical prices
{Pt ,Pt−1,Pt−2, · · ·}. The parameter δ measures the geometric decay rate. For δ = 0,
the sample mean ut = Pt , which is the latest observed price, while δ = 0.1,0.5,0.95
and 0.999 gives a half life of 0.43 day, 1 day, 2.5 weeks and 2.7 years, respectively.
The selection of this process is two fold. First, traders tend to put a high weight on the
most recent prices and less weight on the more remote prices when they estimate the
sample mean and variance. Second, it has the mathematical advantage of analytical
tractability.

14.2.4 The Complete Stochastic Model

To simplify our analysis we assume that the dividend process Dt follows a nor-
mal distribution Dt ∼ N (D̄,σ2

D). The expected long-run fundamental value P̄ =
D̄/(R− 1) and the unconditional variances of price and dividend over the trad-
ing period are related by σ2

D = qσ2
1 . In this study, we choose σ2

1 = σ2
P̄/K and
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q = r2. This can be justified as follows. Let σP̄ be the annual volatility of Pt and
D̄t = rPt be the annual dividend. Then the annual variance of the dividend σ̄2

D = r2σ2
P̄ .

Therefore σ2
D = σ̄2

D/K = r2σ2
P̄/K = r2σ2

1 . For all numerical simulations in this pa-
per we choose P̄ = $100,r = 5% p.a. σ = 20% p.a., K = 250. Correspondingly,
R = 1+0.05/250 = 1.0002,σ2

1 = (100×0.2)2/250 = 8/5 and σ2
D = 1/250. Based

on assumptions (14.9)-(14.10), the fundamentalists’ optimal demand is

z1,t =
1

a1(1+q)σ2
1
[α(P∗t+1−Pt)− (R−1)(Pt − P̄)]. (14.13)

In particular, when P∗t = P̄,

z1,t =
(α+R−1)(P̄−Pt)

a1(1+q)σ2
1

. (14.14)

Similarly, from (14.10), (using D̄ = (R− 1)P̄) the trend followers’ optimal demand
is

z2,t =
γ(Pt −ut)− (R−1)(Pt − P̄)

a2σ2
1 (1+q+bvt)

, (14.15)

where b = b2/σ2
1 . Subsisting (14.13) and (14.15) into (14.7), the price dynamics

under a market maker is determined by the following 4-dimensional stochastic dif-
ference system (SDS hereafter)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt+1 = Pt +
µ
2

[
1+m

a1(1+q)σ2
1
[α(P∗t+1−Pt)− (R−1)(Pt − P̄)]

+(1−m)
γ(Pt −ut)− (R−1)(Pt − P̄)

a2σ2
1 (1+q+bvt)

]
+ δ̃t ,

ut = δut−1 +(1−δ )Pt ,

vt = δvt−1 +δ (1−δ )(Pt −ut−1)2,

P∗t+1 = P∗t [1+σε ε̃t ].

(14.16)

Using Monte Carlo simulation and statistical analysis, He and Li (17) found that
the long-run behaviour and convergence of the market prices and various under and
over-reaction autocorrelation patterns of returns can be characterized by the dynam-
ics, including the stability and bifurcations, of the underlying deterministic system.
In the relation to the ability of the MF model to characterize the stylized facts, espe-
cially the long-range dependence in volatility, He and Li (18) demonstrate that agent
heterogeneity, risk-adjusted trend chasing through the geometric learning process,
and the interplay of noisy fundamental and demand processes and the underlying
deterministic dynamics can be the source of power-law distributed fluctuations. In
particular, the noisy demand plays an important role in the generation of insignifi-
cant autocorrelations (ACs) on returns, while the significant decaying AC patterns of
the absolute returns and squared returns are more influenced by the noisy fundamen-
tal process. A statistical analysis based on Monte Carlo simulations is conducted
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to characterize the decay rate. Realistic estimates of the power-law decay indices
and the (FI)GARCH parameters are presented. This analysis provides some insights
into the understanding of financial markets. In the following discussion we intro-
duce measures of wealth dynamics and we explore the potential of the MF model
to characterize the profitability and survivability of fundamental and trend following
strategies.

14.2.5 Wealth Dynamics and Shares

We assume that traders’ wealth follows a stochastic process. To be able to measure
the wealth dynamics among different trading strategies and to examine the market
dominance and price behaviour we introduce two wealth measures. The first mea-
sures the absolute level of the wealth share (or proportion) of the representative agent
from each type, called the absolute wealth share for short, which is defined by

w1,t =
W1,t

W1,t +W2,t
, w2,t =

W2,t

W1,t +W2,t
, (14.17)

where W1,t and W2,t are the wealth at time t of the representative trader of the funda-
mentalists and trend followers, respectively. This measure can be used to measure the
evolutionary performance or profitability of the two trading strategies: As w1,t (w2,t)
increases the profitability of the fundamentalists (trend followers) increases. The sec-
ond measures the overall market wealth share, called the market wealth share for
short, of the different trading strategies. It is defined as the market fraction weighted
average of the absolute wealth proportions,

w̄1,t =
(1+m)W1,t

(1+m)W1,t +(1−m)W2,t
, w̄2,t =

(1−m)W2,t

(1+m)W1,t +(1−m)W2,t
(14.18)

A high market wealth share w̄1,t (w̄2,t) indicates market dominance of the fundamen-
talists (trend followers) with respect to the overall market wealth. Let V1,t = 1/W1,t
and V2,t = 1/W2,t . Then it follows from (14.1) that

V1,t+1 =
V1,t

R+Rt+1z1,tV1,t
, V2,t+1 =

V2,t

R+Rt+1z1,tV2,t
.

Note that

V1,t

V1,t +V2,t
=

1/W1,t

1/W1,t +1/W2,t
=

W2,t

W1,t +W2,t
,

V2,t

V1,t +V2,t
=

1/W2,t

1/W1,t +1/W2,t
=

W1,t

W1,t +W2,t

and, therefore, the absolute wealth shares are determined by

w1,t =
V2,t

V1,t +V2,t
, w2,t =

V1,t

V1,t +V2,t
(14.19)
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and the market wealth shares are governed by

w̄1,t =
(1+m)V2,t

(1+m)V2,t +(1−m)V1,t
, w̄2,t =

(1−m)V1,t

(1+m)V2,t +(1−m)V1,t
. (14.20)

For these wealth measures it is difficult to obtain explicit closed form expressions
in terms of (stationary) state variables. In this study we use the auxiliary functions
(V1,t ,V2,t) and numerical simulations to study the wealth dynamics of the funda-
mentalists and trend followers and the market impact of the two different trading
strategies.

14.3 Wealth Accumulation, Profitability and Survivability

Friedman (14) argued that irrational traders (such as the trend followers in our model)
may do better than rational traders (such as the fundamentalists) in the short-run, but
over the long-run they will be driven out of the market and rational traders will
be the only long-run survivors. We now justify Friedman’s hypothesis by analyzing
the wealth dynamics of our heterogeneous market fraction model in which traders’
beliefs are time invariant. Consequently, we examine profitability and survivability
of both types of trading strategies. The dynamics of the speed of price adjustment
and the market fraction are considered in the following discussion.

14.3.1 Dynamics of the Price Adjustment Speed α

In our model, the market price is related to the fundamental price through the activity
from the fundamentalists. Therefore, how the market price reflects the fundamental
price depends on the reaction of the fundamentalists to the fundamental price. It is
believed that chartists may perform better when the market price is far away from the
fundamental price, while the fundamentalists may do better when the market price
reflect the fundamental price. Hence it is interesting to analyze the wealth dynamics
when the fundamentalists behave differently. In the following we examine the wealth
dynamics of the model when the confidence level of the fundamentalists on the fun-
damental price, measured by parameter α , changes. To assess the impact of α we
choose parameters set to

γ = 2.1, δ = 0.85, µ = 0.43, m = 0, w1,0 = 0.5, α = 1, 0.5, 0.1, 0 (14.21)

by fixing market fraction m and varying α . For each set of parameters, we run one
simulation over 20,000 time periods in order to see possible limiting behaviours.

Fig. 14.2 demonstrates the absolute wealth share accumulations for the funda-
mentalists with α = 1,0.5,0.1,0 and keeping all the other conditions the same. This
figure shows that (i) trend followers survive in the long-run for α = 1,0.5 and 0.1 in
the sense that their absolute wealth share does not vanish, although they accumulate
less wealth shares over the time period; (ii) the trend followers do better than the
fundamentalists when α = 0; (iii) the profitability of the fundamentalists improves
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Fig. 14.2. Time series of the absolute wealth accumulation of the fundamentalists w1,t with
α = 1, 0.5, 0.1 and 0.

as α increases (i.e. as they become more confident in their estimated fundamental
value). For α = 0, the absolute wealth share of the fundamentalists is dropped from
50% to about 43%, while for α = 0.1,0.5 and 1, it is increased from 50% to about
55%, 76% and 86%, respectively. These results are further confirmed when we run
Monte Carlo simulations. We ran 1,000 independent simulations and discard the first
1,000 time periods to wash out the possible initial noise effect. The results are given
in fig. 14.3. For four values of α we plot the average market price (left column),
return (middle column), and the fundamentalists absolute wealth share accumulation
(right column). The initial wealth share for both types of traders are equal w1,0 = 0.5.
Because of m = 0, both the absolute and market wealth shares are the same.

14.3.2 Dynamics of the Market Fraction m

Intuitively it seems that the market price is partially determined by the market dom-
inance of different players in the market. Therefore we would expect that the market
fraction, measured by parameter m, will influence the market price and the conse-
quent performance of fundamentalists and chartists.

Given that both α and m have a similar impact on the local stability of the
deterministic system (see He and Li (17)), we can demonstrate that they play a
similar role in terms of wealth accumulation. Again, by running one simulation
over 20,000 time periods, fig. 14.4 shows the absolute wealth share accumulations
for the fundamentalists for three different values of m = −0.95,0 and 0.5 with
α = 0.5,γ = 2,µ = 0.5,δ = 0.85,w1,0 = 0.5. In this case, the fundamentalists form
their conditional expectation by taking an average of the latest market price and fun-
damental price. In all four cases, (i) the fundamentalists accumulate more wealth
share than the trend followers in the long-run (an increase from 50% to about 70-
75%), however, the trend followers survive in the long-run and they can even accu-
mulate more wealth share in the short-run when they dominate the market (this is
the case when m =−0.95, which corresponds to 97.5% of trend followers and 2.5%
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Fig. 14.3. Average Monte Carlo time series of market prices, returns, absolute wealth share
and market wealth share of the fundamentalists with α = 0, 0.1, 0.5 and 1.

of the fundamentalists); (ii) the profitability of the fundamentalists improves as m
increases (i.e. as the market fraction of the fundamentalists increases). Essentially,
we have shown that both α and m have a similar effect on profitability and surviv-
ability for fundamentalists and trend followers. Comparison of fig.14.2 and fig. 14.4
indicates that the parameter α affects wealth accumulation more than the parameter
m does.

When the fundamentalists are naive traders (i.e. α = 0 and E1,t(Pt+1) = Pt) fun-
damental price doesn’t influence how they form their conditional expectation. We
choose

α = 0, γ = 1, µ = 0.4, δ = 0.85, w1,0 = 0.5, m =−1,−0.5, 0, 0.5, 1. (14.22)

Again, for each set of parameters we run one simulation over 20,000 time periods
such that the corresponding limiting behaviour becomes clear. Fig. 14.5 illustrates
the absolute wealth share accumulations of the fundamentalists with different mar-
ket fraction m = −1,−0.5,0,0.5,1, and keeping all the other conditions the same.
They converge to different constant levels for different values of m in the long-run.
Note that, unlike the market price, the absolute wealth shares are independent from
the market fraction m and they are calculated for the given market price series. In
particular, when m =±1 the market price is affected only by one type of traders, but
the absolute wealth share accumulations can still be calculated based on the market



14 Trend Followers, Fundamentalists and Survival 265

0 1450 2900 4350 5800 7250 8700 10150 11600 13050 14500 15950 17400 18850

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75 m=0

m=−0.95

m=0.5

Fig. 14.4. Time series of the absolute wealth accumulation of the fundamentalists w1,t with
m =−0.95, 0, 0.5 and α = 0.5, γ = 2, µ = 0.5, δ = 0.85, w1,0 = 0.5.

price. Fig. 14.5 shows that, overall, no one does significantly better by accumulating
significant higher absolute wealth share than the others. For m = 1 trend followers
don’t affect the market price. In this case, the long-run absolute wealth share ac-
cumulation of the fundamental trading strategy stays just above the average level,
indicating that the trend followers will survive in long-run, although they have no
impact on the market price and accumulate less absolute wealth share. For m �= 1
trend followers do slightly better by accumulating a higher absolute wealth share.
When m = −1 fundamentalists don’t affect the market price. Under this scenario
the trend followers accumulate more absolute wealth share in long-run. Overall, the
profitability of the fundamentalists improves as m increases (i.e. as their market pop-
ulation share increases). These results are further confirmed when we run Monte
Carlo simulations. The results in fig. 14.6 include the average market price, return,
and absolute wealth share accumulation for the fundamentalists. The initial wealth
share for both types of traders are equal w1,0 = 0.5. For different values of m, the
market wealth shares are different. It is also interesting to see that the average mar-
ket price increases, rather than decreases in the first case, stochastically. Given the
naive expectation of the fundamentalists this may be due to the trend chasing activity
of the trend followers.
The above analysis leads to the following implications for profitability and surviv-
ability:

• Although the trend followers have no information on the fundamental value they
survive in the long-run and can even out-perform fundamentalists in the short-
run. This may be due to the learning mechanism they are engaged in.

• Fundamentalists’ profitability increases as they become more confident in their
estimates of fundamental value or they dominate the market.

• When the fundamentalists become naive traders, trend followers do better and
they accumulate a higher wealth share. In addition, their profitability improves
as their market population share increases.
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m =−1,−0.5, 0, 0.5, 1 and α = 0, γ = 1, µ = 0.4, δ = 0.85, w1,0 = 0.5.
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Fig. 14.6. Average Monte Carlo time series of market prices, returns and absolute wealth share
of the fundamentalists with α = 0, γ = 1, µ = 0.4, δ = 0.85, w1,0 = 0.5, and m = −0.5 (top
row), 0 (second row), 0.5 (third row), 1 (4-th row), -1 (the last row).

The wealth share measures used in this paper compare the relative performance
between two trading strategists. Survivability of the chartists is measured by their
positive wealth share generated from their trading strategy. Overall, we have shown
the short/long-run profitability for both the fundamental and trend following trading
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strategies, and the long-run survivability for the trend following strategy. This re-
sult partially verifies Friedman’s argument that the chartists may do better in the
short-run, but the market will be dominated by the fundamentalists in the long-run.
However, in contrast to Friedman’s argument, chartists do survive in the long-run
due to the learning mechanism.

14.4 Conclusion

In this study a market fractions model with heterogeneous traders in a simple asset-
pricing and wealth dynamics framework is employed to investigate market domi-
nance, profitability, and whether investors who follow fundamental and trend follow-
ing strategies survive in the short/long-run. Two measures of wealth are introduced
to assess the connection between market dominance and wealth dynamics.

The conclusions drawn from the statistical analysis, based on Monte Carlo sim-
ulations, show that when the market is dominated by fundamentalists both their ab-
solute and market wealth proportions increase significantly in the long-run. On the
other hand, when trend followers dominate the market and the deviation between fun-
damental price and the trending price series is small, their wealth proportions fails
to increase significantly. When the deviation is large trend followers’ proportion of
wealth increase.

The level of confidence fundamentalists have in the convergence of market price
to fundamental value impacts upon trend followers wealth proportions. When they
are less confident of convergence the market price can be driven away by trend fol-
lowers and fundamentalists’ wealth proportions decrease. Though, the trend follow-
ers’ commensurate increase in wealth is relatively small. As fundamentalists become
increasingly confident in convergence trend followers’ wealth proportions can be re-
duced dramatically over the long-run. The key finding from our analysis which dif-
fers from what would be predicted by Friedman is that trend followers do survive in
the long-run in all scenarios, while in the short-run they can out-perform fundamen-
talists which is consistent with the traditional view.

A potentially fruitful line for future research would be to explore the impact of in-
formation costs. In practice, information costs can be a non-trivial component of fun-
damental analysis. Integrating a range of plausible costs structures into a MF model
could elucidate their affect on fundamentalists wealth share. In contrast, chartists’
reliance on costless information and learning may explain their survival in the long-
run.

References

[1] Arnold, L (1998) Random Dynamical Systems. Springer-Verlag, Berlin
[2] Arthur W, Holland J, LeBaron B, Palmer R, Tayler P (1997) Asset Pricing Un-

der Endogeneous Expectations in an Artifical Stock Market. Economic Notes
26(2):297–330.



268 X.-Z. He et al.

[3] Brock W, Hommes C (1997) A Rational Route to Randomness. Econometrica
65:1059–1095

[4] Brock W, Hommes C (1998) Heterogeneous Beliefs and Routes to Chaos in
a Simple Asset Pricing Model. Journal of Economic Dynamics and Control
22:1235–1274

[5] Chan, L, Lakonishok J (2004) Value and Growth Investing: Review and Up-
date. Financial Analysts Journal 60:71–86

[6] Chiarella C (1992) The Dynamics of Speculative Behaviour. Annals of Oper-
ations Research 37:101–123

[7] Chiarella C, He X (2001) Asset Pricing and Wealth Dynamics under Hetero-
geneous Expectations. Quantitative Finance 1:509–526

[8] Chiarella C, He X (2002) Heterogeneous Beliefs, Risk and Learning in a Sim-
ple Asset Pricing Model. Computational Economics 19:95–132

[9] Chiarella C, He X (2003a) Dynamics of Beliefs and Learning under αl-
processes - Heterogeneous Case. Journal of Economic Dynamics & Control
27:503–531

[10] Chiarella C, He X (2003b) Heterogeneous Beliefs, Risk and Learning in a
Simple Asset Pricing Model with a Market Maker. Macroeconomic Dynamics
7:503–536

[11] Cochrane J (2001) Asset Pricing. Princeton University Press, Princeton
[12] Day R, Huang W (1990) Bulls, Bears and Market Sheep. Journal of Economic

Behaviour and Organization 14:299–329
[13] Ding Z, Granger C, Engle R (1993) A Long Memory Property of Stock market

Returns and a New Model. Journal of Empirical Finance 1:83–106
[14] Friedman M (1953) The Case for Flexible Exchange Rate. In: Essays in posi-

tive economics. Chicago, University of Chicago Press
[15] Gaunersdorfer A (2000) Endogenous Fluctuations in a Simple Asset Pricing

Model with Heterogeneous Agents. Journal of Economic Dynamics and Con-
trol 24:799–831

[16] Haugen R (2003) The New Finance: Overreaction, Complexity and Unique-
ness. Prentice Hall, Upper Saddle River, NJ

[17] He X, Li Y (2007a) Heterogeneity, Convergence, and Autocorrelations. Quan-
titative Finance in press

[18] He X, Li Y (2007b) Power-law behaviour, Heterogeneity, and Trend Chasing.
Journal of Economic Dynamics and Control 31:3396–3426

[19] Hommes C (2002) Modeling the Stylized Facts in Finance Through Simple
Nonlinear Adaptive Systems, Proceedings of National Academy of Science of
the United States of America, 99, 7221–7228.

[20] Hommes C (2006) Heterogeneous Agent Models in Economics and Finance,
Handbook of Computational Economics. Volume 2, Edited by K.L. Judd and
L. Tesfatsion, Elsevier Science.

[21] LeBaron B (2000) Agent-based Computational Finance: Suggested Readings
and Early Research. Journal of Economic Dynamics & Control 24:679–702

[22] LeBaron B (2001) A Builder’s Guide to Agent-based Financial Markets. Quan-
titative Finance 1(2):254–261



14 Trend Followers, Fundamentalists and Survival 269

[23] LeBaron B (2002) Calibrating an Agent-based Financial Market to Macroeco-
nomic Time Series. Technical report, Brandeis University, Waltham, MA

[24] LeBaron B (2006) Agent-based Computational Finance. In Judd K. and Tes-
fatsion L. (ed) Handbook of Computational Economics Volume 2. Elsevier
Science.

[25] Levy M, Levy H, Solomon S (2000) Microscopic Simulation of Financial Mar-
kets. Academic Press, New York.

[26] Li Y, Donkers B, and Melenberg B (2006a) Econometric Analysis of Micro-
scopic Simulation Models. CentER Discussion Papers 2006-99, Tilburg Uni-
versity. Available at: http://ssrn.com/abstract=939518.

[27] Li Y, Donkers B, and Melenberg B (2006b) The Nonparametric and Semi-
parametric Analysis of Microscopic Simulation Models. CentER Discus-
sion Papers 2006-95, Tilburg University. Available at: http://ssrn.com/
abstract=939510.

[28] Lux T (1998) The Social-economic Dynamics of Speculative Markets: Inter-
acting Agents, Chaos, and the Fat Tails of Return Distributions Journal of Eco-
nomic Behaviour & Organization 33:143–165

[29] Lux T, Marchesi M (1999) Scaling and Criticality in a Stochastic Multi-agent
Model of a Financial Markets. Nature 397(11):498–500

[30] Pagan A (1996) The Econometrics of Financial Markets. Journal of Empirical
Finance 3:15–102

[31] Shiller R (2003) From Efficient Markets Theory to Behavioural Finance. Jour-
nal of Economic Perspectives 17(1):83–104

[32] Taylor M, Allen H (1992) The Use of Technical Analysis in the Foreign Ex-
change Market. Journal of International Money and Finance 11:304–314



15

Co-Evolutionary Multi-Agent System for Portfolio
Optimization
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Summary. Co-evolutionary techniques for evolutionary algorithms can enhance the adap-
tive capabilities of evolutionary algorithms and help maintain population diversity. In this
chapter the concept and a formal model of an agent-based realization of a predator-prey co-
evolutionary algorithm is presented. The resulting system is applied to the problem of effective
portfolio building and is compared to classical multi-objective evolutionary algorithms.

15.1 Introduction

Evolutionary Algorithms (EAs) are global search and optimization techniques based
on analogies to the Darwinian model of natural evolution (3). EAs have demonstrated
efficiency and robustness as global optimization techniques. However, in the case of
some problems (for example, multi-modal optimization, multi-objective optimiza-
tion, and dynamic problems) EAs can show a negative tendency to lose population
diversity. Typically, both experiments and formal analysis show that for multi-modal
problem landscapes a simple EA will locate a single solution (27). If we are in-
terested in localizing multiple solutions (like in the case of so-called “multi-modal
optimization problems”), special techniques should be used. Niching and speciation
methods for EAs (27) are aimed at forming and maintaining subpopulations (species)
throughout the search process, thereby allowing the uncovering of all or most of the
basins of attraction of local minima. The problem of loss of population diversity also
limits the adaptive capabilities of EAs in dynamic environments.

In evolutionary biology the process of co-evolution is defined as the prolonged
mutual interaction between two (or more) species. Examples of co-evolutionary in-
teractions include competition for limited resources, predator-prey interaction, host-
parasite interaction, mutualism and commensalism etc. Also, sexual selection results
from the co-evolution of female mate choice and male displayed traits, where fe-
males evolve to reduce the direct costs associated with mating, and males evolve to
attract females to mating (sexual conflict) (15). It is acknowledged that co-evolution
is responsible for bio-diversity, and may lead to speciation (the formation of new
species).
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In co-evolutionary algorithms which are, generally speaking, evolutionary algo-
rithms with co-evolutionary mechanisms embedded, the fitness of each individual
depends not only on the quality of its solution to a given problem (like in the case of
EAs) but also (or solely) on other individuals’ fitness. Such techniques are applica-
ble in the case of problems for which the fitness function formulation is difficult or
impossible (like game strategies), or where there is a need to improve the adaptive
capabilities of EA, or where there is a need to maintain useful population diversity.

Because many financial and economic decision and optimization problems are
multi-modal (there exist many comparable solutions) and / or multi-objective (multi-
ple, possibly conflicting, objectives) different techniques for maintaining population
diversity in EAs may be found useful and applicable. In the case of such problems, an
intelligent computer system can provide alternative solutions to the decision maker,
allowing him to make a final decision based on his experience. In order to do so, evo-
lutionary algorithms must maintain a high level of population diversity—otherwise
it simply will not be able to provide many different solutions to the given problem.

Besides the positive effect of maintaining population diversity, co-evolutionary
algorithms also provide us with useful analogies between co-evolution, financial
markets, and generally speaking market-oriented economic systems. These include
for example “arms races” between capitalist enterprises and financial institutions
(comparable to predator-prey or host-parasite interactions). Such “arms races” help
avoid economic stagnation. These “Red Queen effects” (“It takes all the running
you can do, to keep in the same place.”) can be observed in market and economic
processes. Capitalist enterprises need to continually innovate, merely to “keep in the
same place”.

Co-evolutionary mechanisms can also be found useful when we are interested in
socio-economic modeling and simulations, for example simulation of antagonistic
and non-antagonistic interactions between different classes and groups in society
(generally speaking problems of social stratification).

In the case of multi-objective optimization problems, which are the main subject
of this chapter, the loss of population diversity may mean that the population locates
in areas far away from the Pareto frontier or that individuals are located only in
selected areas of Pareto frontier. In the case of multi-objective problems with many
local Pareto frontiers (defined by Deb in (7)) the loss of population diversity may
result in locating only local Pareto frontier instead of the global one.

The notion of an “agent” is now very well established in the area of social science
(psychology, sociology, and economy), artificial intelligence, and computer model-
ing and simulation. According to J. Ferber (13) an agent can be defined as a physical
or virtual entity which can act within an environment, can communicate with other
agents, tries to realize some goals or optimize its fitness function, possesses some
resources, may observe the environment (but only in a restricted way), possesses re-
stricted knowledge about the environment, has some abilities and may offer some
services to other agents, may reproduce, acts in the way that leads to the realization
of its own goals taking into account the possessed resources, abilities, and knowl-
edge acquired during the observation of the environment and communication with
other agents.
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A multi-agent system is composed of the following elements (13): an environ-
ment, a set of objects situated within the system which can be observed, created,
destroyed and modified by agents (which are active entities), a set of agents, a set of
relations between objects (including agents), a set of operations which allow agents
to observe, create, destroy, “consume”, and modify objects, and finally the operators
which represent the operations performed by agents and the reaction of the envi-
ronment. The above features of multi-agent systems makes them an ideal tool for
social and economic simulation as they include all the tools necessary for model-
ing and simulation of different kinds of societies, social structures, modes of pro-
duction, competing or co-operating enterprises, social mechanisms of conflict and
co-operation, and so on.

Evolutionary multi-agent systems (EMAS) are multi-agent systems, in which the
population of agents evolves (agents can die, reproduce and compete for limited re-
sources). The model of co-evolutionary multi-agent system (CoEMAS) (8) introduces
additionally the notions of species, sexes, and interactions between them. CoEMAS
allows modeling and simulation of different co-evolutionary interactions, which can
serve as the basis for constructing the techniques of maintaining population diversity
and improving adaptive capabilities of such systems. CoEMAS systems with sexual
selection and host-parasite mechanisms have already been applied with promising
results to multi-objective optimization problems (9, 10).

Co-evolutionary multi-agent systems have of course all the advantages and mech-
anisms of multi-agent systems, which can be used in artificial life modeling and
simulations (especially in the area of psychology, sociology and economy). Addi-
tionally, we can utilize the evolutionary optimization of agents and co-evolutionary
interactions between them. This is a very promising area for future interdiscipli-
nary research including for example, psychological, social and economic simulations
which can embed emergent phenomena in society and economy, the problems of so-
cial stratification, the role of conflict in the society, antagonistic and non-antagonistic
conflicts between classes and groups, the effects of particular economic policy, the
role of the state and institutions in economy and society, the role of ideology, its role
in the reproduction of relations of production, social power, and stratification, etc.

In the following sections an introduction to multi-objective optimization prob-
lems is presented. Then, we concentrate on previous research on techniques for main-
taining population diversity in multi-objective evolutionary algorithms. Next, the
co-evolutionary multi-agent system with population diversity maintaining technique
based on predator-prey interactions is formally described. The presented system is
applied to problem of effective portfolio building. Results from the experiments with
the CoEMAS system are then compared to other classical evolutionary techniques’
results.

15.2 Multi-Objective Optimization

The most natural process of decision making for human beings consists in analyzing
many—often contradictory—factors and searching for a compromise among them.
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Such decision processes are known as multi-criteria decision making (MCDM). Ob-
viously, human beings are equipped with natural abilities for making multi-criteria
decisions. While these natural gifts may be sufficient in everyday life they are not
sufficient in more complex technical, business or scientific decision environments.

In such cases a decision maker, has to be equipped with appropriate mathe-
matical and computing techniques to make a proper decision. The most common,
MCDM process is based on an appropriately defined multi-objective optimization
problem (MOOP). Following (7)—the multi-objective optimization problem in its
general form is defined as follows:

MOOP≡

⎧⎪⎪⎨⎪⎪⎩
Minimize/Maximize fm(x̄), m = 1,2 . . . ,M
Subject to g j(x̄)≥ 0, j = 1,2 . . . ,J

hk(x̄) = 0, k = 1,2 . . . ,K
x(L)

i ≤ xi ≤ x(U)
i , i = 1,2 . . . ,N

The set of constraints—both constraint functions (equalities hk(x̄), inequalities g j(x̄))
and decision variable bounds (lower bounds x(L)

i and upper bounds x(U)
i ) — define

all possible (feasible) decision alternatives (D).
Because therearemanycriteria—toindicatewhichsolution isbetter thananother—

a specialized ordering relation has to be introduced. To avoid problems with convert-
ing minimization to maximization problems (and vice versa of course) an operator
� can be defined. Then, notation x̄1 � x̄2 indicates that solution x̄1 is better than
solution x̄2 for particular objective. Now, the crucial concept of Pareto optimality i.e.
the so-called dominance relation, can be defined. It is said that solution x̄A dominates
solution x̄B (x̄A ≺ x̄B) if and only if:

x̄A ≺ x̄B⇔
{

f j(x̄A) � f j(x̄B) f or j = 1,2 . . . ,M
∃i ∈ {1,2, . . . ,M} : fi(x̄A) � fi(x̄B)

A solution in the Pareto sense of the multi-objective optimization problem means de-
termining all the non-dominated alternatives from the set D . The Pareto-optimal set
consists of globally optimal solutions. However there may also exist locally optimal
solutions, which constitute locally non-dominated set (local Pareto-optimal set) (7).
The set Plocal ⊆ D is local Pareto-optimal set if (41):

∀xa ∈Plocal : �xb ∈ D such that
xb # xa∧∥∥xb−xa

∥∥< ε ∧∥∥F(xb)−F(xa)
∥∥< δ

where ‖·‖ is a distance metric and ε > 0, δ > 0. The set P ⊆ D is global Pareto-
optimal set if (41):

∀xa ∈P : �xb ∈ D such that xb # xa (15.1)

These locally or globally non-dominated solutions create (in the criteria space) local
(PF local) or global (PF ) Pareto frontiers that can be defined as follows:

PF local =
{

y = F (x) ∈ IRM | x ∈Plocal
}

(15.2a)
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PF =
{

y = F (x) ∈ IRM | x ∈P
}

(15.2b)

Multi-objective problems with one global and many local Pareto frontiers are called
multi-modal multi-objective problems (7).

During the last twenty years of research on evolutionary multi-objective algo-
rithms (EMOAs) many techniques have been proposed. Generally, all of these tech-
niques and algorithms can be classified as elitist, which give the best individuals in
the current population the opportunity to be directly carried over to the next genera-
tion, or non-elitist ones (7).

15.3 Selected Issues of Maintaining Population Diversity
in Evolutionary Multi-Objective Algorithms

In order to maintain useful population diversity and introduce speciation (processes
of forming species—subpopulations—located in different areas of solution space)
special techniques, like niching mechanisms and co-evolutionary models, are used.

Niching techniques are primarily applied in problems of multi-modal optimiza-
tion, but they are also used in evolutionary multi-objective algorithms. Such tech-
niques promote useful population diversity and make possible the creation of species
located within the basins of attraction of local minima or in different parts of the
Pareto frontier. Various niching techniques have been proposed. All these techniques
promote niche formation via the modification of the mechanism for selecting individ-
uals for new generation (crowding model (26)), the modification of the parent selec-
tion mechanism (fitness sharing technique (16) or sexual selection mechanism (33)),
or restricted application of selection and/or recombination mechanisms (by grouping
individuals into subpopulations (20) or by introducing the environment with some
topography, in which the individuals are located (1, 5)).

The fitness-sharing technique was used in Hajela and Lin, which illustrated the
use of a weighting method in a genetic algorithm for multi-objective optimization
(17). The weights were encoded in genotype and fitness sharing was used in objec-
tive space in order to introduce the diversity of the weights. Fitness sharing in the
objective space was also used by Fonseca and Fleming in their multi-objective ge-
netic algorithm using a Pareto-based ranking procedure (14). In the niched Pareto
genetic algorithm (NPGA) (18) fitness sharing mechanism is used in objective space
during the tournament selection in order to decide which individual wins (when the
mechanism based on domination relation fails to choose the winner). In the non-
dominated sorting genetic algorithm (NSGA) (37) the fitness sharing is performed
in decision space, within each set of non-dominated individuals separately, in order
to maintain high population diversity. In the strength Pareto evolutionary algorithm
(SPEA) (41) a special type of fitness sharing is used in order to maintain diversity.
The fitness sharing in SPEA forms niches, not on the basis of distance but, on the
basis of Pareto dominance.

As noted above, co-evolutionary techniques for EAs are applicable in cases where
the fitness function formulation is difficult (or even impossible). Co-evolutionary
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algorithms are also applicable in cases when we want to maintain population diver-
sity, introduce speciation, open-ended evolution, “arms races”, and improve adaptive
capabilities of EAs—especially in dynamic environments. As the result of ongoing
research many co-evolutionary models and techniques have been proposed. Gen-
erally, each belongs to one of two classes: competitive (30) or co-operative (32).
In competitive co-evolution based systems two (or more) individuals compete in a
game and their “competitive fitness functions” are calculated based on their relative
performance in that game (6). In co-operative co-evolutionary algorithms a problem
is decomposed into sub-problems and each sub-problem is then solved by different
subpopulation (32). Each individual from the given subpopulation is evaluated within
a group of randomly chosen individuals coming from different sub-populations. Its
fitness value depends on how well the group solved the problem and on how well the
individual assisted in the solution.

Laumanns, Rudolph and Schwefel (22) proposed co-evolutionary algorithm with
a predator-prey model and a spatial graph-like structure for multi-objective optimiza-
tion. Deb introduced a modified algorithm in which predators eliminated prey not
only on the basis of one criterion but on the basis of the weighted sum of all criteria
(7). Li proposed other modifications to this algorithm (23). The main difference was
that both predators and prey were allowed to migrate within the graph. The model of
cooperative co-evolution was also applied to multi-objective optimization (19).

Sexual selection resulting from female-male co-evolution is considered to be one
of the ecological mechanisms responsible for biodiversity and sympatric speciation
(15, 39). All the work on sexual selection mechanism for multi-objective evolution-
ary algorithms focuses on using this mechanism for maintaining population diversity,
so that individuals are evenly distributed over the Pareto frontier. Allenson proposed
a genetic algorithm with sexual selection for multi-objective optimization (2). In his
technique the number of sexes was the same as the number of criteria of the given
problem and individuals of the given sex were evaluated only according to one cri-
terion (associated with their sex). Sex of the child was determined randomly and
it replaced the worst individual from its sex. Allenson also introduced sexual se-
lection mechanism. For each individual the partner for reproduction was selected
on the basis of individual’s preferences coded within its genotype. Lis and Eiben
proposed a multi-sexual genetic algorithm (MSGA) for multi-objective optimization
(25). They also used one sex for each criterion. If a recombination operator was
used during the reproduction (this was decided randomly) then partners for repro-
duction were chosen from each sex separately with the use of ranking mechanism
and the offspring was created with the use of special multi-parent crossover opera-
tor. The sex of generated offspring was the same as the sex of the parent that pro-
vided most of genes. After the population of next generation was created the group of
Pareto-optimal individuals was selected and this group was merged with the group of
Pareto-optimal individuals from previous generations. During this phase, dominated
individuals were removed from the set of Pareto-optimal individuals. Bonissone and
Subbu (4) continued work on Lis and Eiben’s algorithm. They proposed additional
mechanisms for determining the sex of offspring: random and based on phenotype
(child had the sex associated with the criterion for which it had the best fitness).
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Co-evolution of species and sexes are biological mechanisms which contribute
to biodiversity and sympatric speciation. However these mechanisms are not widely
used as a way of maintaining useful genetic diversity in evolutionary algorithms. It
seems that co-evolution and sexual selection can be used as a basis for constructing
niching and speciation mechanisms (which promote the formation of species located
within basins of attraction of different local optima or in different areas of Pareto
frontier) but this is still an open issue and the subject of ongoing research.

15.4 Co-Evolutionary Multi-Agent System with Population
Diversity Maintaining Mechanism

Fig. 15.1. CoEMAS with predator-prey mechanism

The system presented in this section is based on the CoEMAS model—a general
model of co-evolution in a multi-agent system (8). The most important component of
the population diversity—maintaining mechanism are predator-prey co-evolutionary
interactions (see fig. 15.1). The spatial structure of EMAS systems also plays the role
of diversity maintaining mechanism but it is rather the mechanism of secondary im-
portance. The first prototypes of the CoEMAS with predator-prey interactions were
presented in (11, 12). In the following sections, the system used in experiments is de-
scribed with the use of ideas, notions, and relations introduced in the general model
for co-evolution in a multi-agent system.
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15.4.1 CoEMAS

The co-evolutionary multi-agent system with predator-prey interactions (CoEMAS)
is defined as follows (8):

CoEMAS = 〈E,S,Γ ,Ω〉 (15.3)

where E is the environment of the CoEMAS system, S is the set of species (s∈ S) that
exist and co-evolve in CoEMAS, Γ is the set of resource types (the amount of type γ
resource which is possessed by the given element of the system will be denoted by
rγ ), Ω is the set of information types (the information of type ω , which can be used
or possessed by the given element of the system is denoted by iω ). Two information
types (Ω = {ω1,ω2}) and one resource type (Γ = {γ}) are used. Information of type
ω1 denotes nodes to which agent can migrate. Information of type ω2 denotes the
prey that are located within the particular node in time t.

The selection mechanism is based on the closed circulation of resource within
the system. The overall amount of resources is constant. Resources can be possessed
by the agents, and transferred from dominated prey to dominating prey, and from
prey to predators during killing prey. The environment E is defined in the following
way:

E =
〈
T E ,Γ E = /0,ΩE =Ω

〉
(15.4)

where T E is the topography of the environment E, Γ E is the set of resource types
that exist within the environment, and ΩE is the set of information types that exist
within the environment. The topography of the environment T E = 〈H, l〉, where H
is a directed graph with the cost function c defined (H = 〈V,B,c〉, V is the set of
vertices, B is the set of arches). In the case of the presented system, every node is
connected with its four neighbors, which results in the torus-like environment. The
l : A→V (A is the set of agents) function makes it possible to locate particular agent
in the environment space. Vertex v is given by:

v =
〈
Av,Γ v = Γ E ,Ω v =ΩE〉 (15.5)

Av is the set of agents that are located within the vertice v. There are two types of
information in the vertice. The first one includes all vertices that are connected with
the vertice v:

iω1,v = {u : u ∈V ∧〈v,u〉 ∈ B} (15.6)

The second one includes all agents of species prey that are located within the ver-
tice v:

iω2,v = {aprey : aprey ∈ Av} (15.7)

15.4.2 Species

The set of species S = {prey, pred}. The prey species (prey) is defined as follows:

prey = 〈Aprey,SX prey = {sx} ,Zprey,Cprey〉 (15.8)
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where SX prey is the set of sexes which exist within the prey species, Zprey is the set
of actions that agents of species prey can perform, and Cprey is the set of relations of
prey species with other species that exist in the CoEMAS. The set of actions Zprey is
defined as follows:

Zprey = {die,get,give,accept,seek,clone,rec,mut,migr} (15.9)

where:

• die is the action of death (prey dies when it is out of resources);
• get action gets some resource from another aprey agent located within the same

node, which is dominated by the agent that performs get action or is too close to
it in the criteria space;

• give action gives some resource to another agent (which performs get action);
• accept action accepts partner for reproduction when the amount of resource pos-

sessed by the prey agent is above the given level;
• seek action seeks for another prey agent that is dominated by the prey performing

this action or is too close to it in criteria space. This action is also used in order to
find the partner for reproduction when the amount of resource is above the given
level and agent can reproduce;

• clone is the action of producing offspring (parents give some of their resources
to the offspring during this action);

• rec is the recombination operator (intermediate recombination is used (3));
• mut is the mutation operator (mutation with self-adaptation is used (3));
• The migr is the action of migrating from one node to another. During this action

an agent loses some of its resource.

The set of relations of prey species with other species that exist within the system is
defined as follows:

Cprey =
{

prey,get−−−−−−→,
pred,give+−−−−−−→

}
(15.10a)

The first relation models intra species competition for limited resources (“-” denotes
that as a result of performing get action the fitness of another prey is decreased):

prey,get−−−−−−→= {〈prey, prey〉} (15.10b)

The second one models predator-prey interactions (“+” denotes that when prey gives
all its resources to the predator, the predator fitness is increased):

pred,give+−−−−−−→= {〈prey, pred〉} (15.10c)

The predator species (pred) is defined as follows:

pred =
〈

Apred ,SX pred = {sx} ,Zpred ,Cpred
〉

(15.11)

All the symbols used have analogical meaning as in the case of prey species—see
eq. (15.8). The set of actions Zpred is defined as follows:
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Zpred = {seek,get,migr} (15.12)

where:

• The seek action allows finding the “worst” (according to the criteria associated
with the given predator) prey located within the same node as the predator;

• get action gets all resources from the chosen prey,
• migr action allows predator to migrate between nodes of the graph H—this re-

sults in losing some of the resources.

The set of relations of pred species with other species that exist within the system
are defined as follows:

Cpred =
{

prey,get−−−−−−→
}

(15.13a)

This relation models predator-prey interactions:

prey,get−−−−−−→= {〈pred, prey〉} (15.13b)

As a result of performing get action and taking all resources from selected prey, it
dies.

15.4.3 Prey Agents

Agent a of species prey (a≡ aprey) is defined as follows:

a = 〈gna,Za = Zprey,Γ a = Γ ,Ω a =Ω ,PRa〉 (15.14)

The genotype of agent a consists of two vectors (chromosomes): x of real-coded
decision parameters values and σ of standard deviation values, which are used during
mutation with self-adaptation. Za = Zprey (see eq. (15.9)) is the set of actions which
agent a can perform. Γ a is the set of resource types used by the agent, and Ω a is the
set of information types.

The partially ordered set of profiles includes resource profile (pr1), reproduction
profile (pr2), interaction profile (pr3), and migration profile (pr4):

PRa = {pr1, pr2, pr3, pr4} (15.15a)
pr1 � pr2 � pr3 � pr4 (15.15b)

Each profile pr is defined as follows:

pr = 〈Γ pr,Ω pr,Mpr,ST pr,GLpr〉 (15.16)

whereΓ pr is the set of resource types used in the pr profile (Γ pr ⊆Γ a).Ω pr is the set
of information types (Ω pr ⊆ Ω a). Mpr is the set of informations (the model) which
represent the agent’s knowledge about the environment and other agents. ST pr is the
partially ordered set (ST pr ≡ 〈ST pr,�〉) of strategies which agent can use in order to
realize the active goal of the given profile. The relation � is defined as follows:



15 Co-Evolutionary Multi-Agent System for Portfolio Optimization 281

�=
{〈sti,st j〉 ∈ ST pr×ST pr : strategy sti has equal or higher

priority than strategy st j
} (15.17)

The single strategy st ∈ ST pr is composed of actions, which performing (in the given
order) leads to the realization of a pr profile’s active goal:

st = 〈z1,z2, . . . ,zk〉, st ∈ ST pr, zi ∈ Za (15.18)

GLpr is the partially ordered (GLpr ≡ 〈GLpr,�〉) set of goals. The relation � is
defined in the following way:

�=
{〈gli,gl j〉 ∈ GLpr×GLpr : the goal gli has equal or higher

priority, than the goal gl j
} (15.19)

Now we can define the � relation (see eq. (15.15)):

�=
{〈

pri, pr j
〉 ∈ PRa×PRa : the realization of active goals of the profile pri has

the equal or higher priority than the realization of the active goals of

profile pr j
}

(15.20)

By “active goal” (denoted by gl∗) we mean the goal gl which should be realized in
the given time step.

The Process of Realizing Goals and Choosing the Strategies

The defined above partially ordered sets of profiles (PRa), goals (GLpr) and strategies
(ST pr) are used by agent for selecting the goal and strategy for its realization. The
whole process of decision making is realized in the following way:

1) Agent a activates the profile with highest priority (pri ∈ PRa), which has the
active goal gl∗j ∈ GLpri .

2) If there is more than one active goal in the set GLpri then the goal which has the
highest priority is chosen for realization (let us assume that this goal is gl∗j ).

3) Next, such strategy for the realization of the goal gl∗j is chosen from the set ST pri

that it has the highest priority, it is possible to realize it in the given time, and it
does not contradict with the goals of profiles with the lower priority than profile
pri (let us assume that this strategy is stk ∈ ST pri).

4) If the realization of the chosen strategy is accomplished with success then the gl j
becomes a non-active goal.

5) Next, again activities from 1) are realized.

The Profiles

The processes of realizing goals and choosing the strategies by prey agent are illus-
trated in fig. 15.2. The goal of the pr1 (resource) profile is to keep the amount of re-
sources above the minimal level or to die. In order to realize this goal an agent can use
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Fig. 15.2. The process of realizing goals and choosing the strategies by a prey agent

the following strategies: 〈die〉, 〈seek,get〉. This profile uses the model Mpr1 = {iω2}
(see eq. (15.7)).

The only goal of the pr2 (reproduction) profile is to reproduce. In order to realize
this goal an agent can use the strategy of reproduction: 〈seek,clone,rec,mut〉. The
model is defined in the following way: Mpr2 = {iω2}.

The goal of the pr3 (interaction) profile is to interact with predators with the use
of strategy 〈give〉.

The goal of the pr4 (migration) profile is to migrate within the environment. In
order to realize this goal the migration strategy is used:

〈
migr

〉
. The model used is

defined as follows: Mpr4 = {iω1} (see eq. (15.6).) As a result of migrating, the prey
loses some resource.

15.4.4 Predator Agents

An agent a of species pred is defined analogically to prey agent (see eq. (15.14)).
There exist two main differences. The genotype of a predator agent consists of in-
formation about the criterion associated with the given agent. The set of profiles
consists only of two profiles, a resource profile (pr1), and a migration profile (pr2):
PRa = {pr1, pr2}, where pr1 � pr2.

The processes of realizing goals and choosing the strategies by predator agent are
illustrated in fig. 15.3. The goal of the pr1 (resource) profile is to keep the amount
of resource above the minimal level with the use of strategy 〈seek,get〉. The model
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Fig. 15.3. The process of realizing goals and choosing the strategies by a predator agent

used within this profile is defined as follows: Mpr1 = {iω2}. The goal of pr2 (mi-
gration) profile is to migrate within the environment. In order to realize this goal,
the migration strategy

〈
migr

〉
) is used. The model of the environment is defined in

the following way: Mpr2 = {iω1}. The realization of the migration strategy results in
losing some of the resource possessed by the agent.

15.5 Building an Effective Investment Portfolio

The developed co-evolutionary agent-based system has been tested in (11, 12) us-
ing well known benchmark problems such as: the Kursawe problem (21), Laumanns
problem (22), and—recently also—the set of Zitzler test problems ZDT1—ZDT6
(41) where solving each next problem algorithm which is being tested has to deal
with the more and more difficult and challenging characteristics starting from con-
tinuous and convex Pareto frontier, through concave or disconnected problems until
multi-objective multi-modal problem (discussion about consequences of concavity,
discontinuity or multimodality of the Pareto frontier can be found in (7)).

When analyzing the behavior and characteristics of co-evolutionary computation
techniques in general, and agent-based co-evolutionary techniques in particular (es-
pecially such approaches as predator-prey, or host-parasite approaches)—it is natural
that one of the first associations to such techniques (and obviously one of possible
applications of such computational techniques) are financial and investments mar-
kets in particular. Entrepreneurs, SMEs, corporations—all of them all the time have
to be better, more innovative, cheaper, more effective etc. than the others. That is
why, the free market is so dynamic, all the time some enterprises introduce some
organizational, financial or technological innovations and the rest of market-game
participants has to respond to such changes introducing another innovations, prod-
ucts etc—so, we are witnesses to a continuing arms race. The range of dependen-
cies that can be seen on the market can be pretty wide—from cooperation, through
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competition until antagonism. As can be read in (31)—such a situation is not the
best one for all the market players (the situation when all participants of market
game are the “winners” is not possible—always some of them have to lose). There
is no doubt however, that (only) thanks to such strong relationships, influences and
interactions—the common organizational, technological and economical develop-
ment and progress are possible—and in that way, extremely desirable phenomenon
called “invisible hand of market” by Adam Smith is realized. Of course, the most
desirable situation is the perfect competition—but even the most developed mar-
kets only bring nearer and nearer to such a situation—mainly because of conditions
(third condition in particular) required by “perfect competition”. Mentioned three
conditions of perfect competition are:

1. There are many buyers and many sellers in particular branch.
2. There are mainly small enterprises in the market.
3. The buyers and the sellers possess the full and perfect knowledge about the mar-

ket (uncertainty and information asymmetry do not take place).

Fulfilling especially the third condition is very difficult and if so, it is no wonder
that both, competitive situation as well as possible interactions and relationships
among market-players can vary in a (mentioned above) wide range. It is obvious
however, that in a Darwinian world—all activities of each participant of the mar-
ket game are conformed to one overriding goal—to survive and to gain more and
more wealth. From the interactions with another enterprise’s point of view it can be
realized by: eliminating from the market as many weak rivals as possible and tak-
ing over their customers, products, delivery channels etc. (so by being “predator”),
by sucking out of another (stronger) enterprise’s customers, technologies, products
etc. (so by being “parasite”), by supplementing partners’ portfolio with additional
products, technologies, customers etc.—and vice versa (so by living in symbiosis)
etc. etc. It is seen clearly, that one of the most important activity of all market-
game participants is co-existence with co-development—and from the computational
intelligence point of view we would say—co-evolution. Because (generally speak-
ing of course and under additional conditions) participants of the market game are
autonomous entities (from the computational intelligence point of view we would
say—agents), they are distributed, they act asynchronously, and they interact with
another entities to achieve common goal—prosperity and wealth—in natural way
applying co-evolutionary multi agent systems seems to be the perfect approach for
modeling such phenomenons and environments. This is the first motivation of our
experiments. But why “building effective portfolio”. Well, we are working and per-
ceiving co-evolutionary multi agent systems not only as modeling techniques but
also as computational techniques. When we finished preliminary tests with bench-
mark problems—we wanted to run such systems against real—because of above
stated motivation market-oriented—problems. Additionally, our goal was running
one of proposed approaches against challenging, combinatorial, well defined and
well-known multi-objective optimization problem where arm race interactions can
be observed to test our predator-prey co-evolutionary multi-agent system. Building
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effective portfolio seems to be the perfect candidate test problem fulfilling all above
mentioned requirements.

We know now why building an effective portfolio has been selected as a test prob-
lem. Unfortunately, the next problem arises. How should this problem be formally
defined. Practically, there are some well known models describing the construction
of an effective portfolio i.e. Modern Portfolio Theory (MPT), the one-factor Sharpe
model, CAPM—Capital Asset Pricing Model, APT—Arbitrage Pricing Theory, Post
Modern Portfolio Theory (PMPT) and so on. The starting point for modern consider-
ations about building efficient portfolio is the Nobel prize winner Harry Markowitz’
Modern Portfolio Theory (MPT) (1952) (28, 29), or its extension proposed in 1958
by James Tobin (38)—consisting in introducing risk-free assets to the model. Those
research resulted in defining for the first time formal foundations of risk—rate of
return investing decision making and defining so-called Capital Market Line (CML)
with the following equation:

R = R f +(
RM−R f

SM
)∗S (15.21)

where:

R - rate of return;
S - standard deviation;
RM - rate of return of market portfolio;
SM - standard deviation of market portfolio.

It turned out, after introducing to the model the risk-free assets that effective portfo-
lio(s) belong(s) to the segment of the above defined line. Markowitz’ portfolio analy-
sis (and its expansion by J. Tobin) makes some strong and important assumptions.
The most significant are:

• The goal of investor is to maximize his wealth;
• Investors are characterized by risk aversion;
• Investing horizon is the same for all investors;
• A suitable measure of risk level is the standard deviation of rates of return from

the “average” rate of return of the market portfolio;
• Investors make a decision on the basis of only rates of return and standard devi-

ation;
• No taxes and transaction costs are assumed.

The above theory lays the foundations of modern capital investments. The Capital
Asset Pricing Model (CAPM) was proposed by J. Traynor (40), J. Lintner (24),
J. Mossin and formalized by W. Sharpe (36)—and it was based of course on pre-
vious work of Markowitz and his MPT theory. This time, in this model, not only the
Capital Market Line but also the so-called Security Market Line (SML) is crucial.
The SML is defined as follows:

Ri = R f +βi ∗ (RM−R f ) (15.22)

where RM − R f - is the so-called premium for risk. CAPM is the most popular
effective-portfolio building model. One may ask why this very model was not used
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during our tests. Well, mainly because of its complexity and shortcomings. On the
basis of the critique of CAPM (Roll’s Critique)—Arbitrage Pricing Theory (APT)
was proposed by Stephen A. Ross in mid-1970s (35). APT can be described using
the following equation:

Ri = ai +bi1F1 +bi2F2 + · · ·+bimFm+ ei (15.23)

APT assumes that rates of return depends on m factors. Coefficient bi j indicates how
sensitive the rate of return on the Rith asset is to changes in Fi j factor. The APT
model makes several assumptions:

• The number of F factors used in the model can not be higher than the number of
assets and—more importantly

• In the market we have the perfect competition.

In the 1990s, Post Modern Portfolio Theory was proposed. The notion of PMPT was
used for the first time probably by B.M. Rom and K.W. Ferguson in 1993 (34). The
PMPT model is based on three main assumptions and observations:

1. The risk measure in MPT is symmetrical—i.e. returns above average or target
rates of returns are as risky as returns below this value—whereas from investor’s
point of view—really risky are returns below the target (minimum or average)
value, and the return above those values are perceived as a risk premium. It was
observed and stated already by Markowitz, confirmed by Sharpe and another
researchers—but mainly because of computational difficulties PMT was based
on symmetrical measure.

2. A much better measure of risk (downside risk in this case) is continuous formula
rather than its discrete version.

3. A much better index of rate of return is the Sortino ratio rather than the Sharpe
ratio.

Taking all the pros and cons into consideration—because it was the first attempt at
applying the proposed algorithm to building an effective portfolio—we decided to
use the one-factor Sharpe model during our experiments. This model is discussed
below. The meaning of symbols used in the definitions below, are as follows:

p - the number of assets in the portfolio;
n - the number of periods taken into consideration (the number of rates of return

taken to the model);
αi,βi - coefficients of the equations;
ωi - percentage participation of i-th asset in the portfolio;
ei - random component of the equation;
Rit - the rate of return in the period t;
Rmt - the rate of return of market index in period t;
Rm - the rate of return of market index;
Ri - the rate of return of the i-th asset;
Rp - the rate of return of the portfolio;
si

2 - the variance of the i-th asset;
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sei
2 - the variance of the random index of the i-th asset;

sep
2 - the variance of the portfolio;

Ri - arithmetic mean of rate of return of the i-th asset;
Rm - arithmetic mean of rate of return of market index;

The algorithm (based on the one-factor Sharpe model) of computing the expected
risk level and, generally speaking, income expectation related to the portfolio of p
assets is as follows:

1. Compute the arithmetic means on the basis of rate of returns;
2. Compute the value of α coefficient:

αi = Ri−βiRm (15.24)

3. Compute the value of β coefficient:

βi = ∑n
t=1(Rit −Ri)(Rmt −Rm)
∑n

t=1(Rmt −Rm)2
(15.25)

4. Compute the expected rate of return of asset i:

Ri = αi +βiRm + ei (15.26)

5. Compute the variance of random index:

sei
2 = ∑n

t=1(Rit −αi−βiRm)2

n−1
(15.27)

6. Compute the variance of market index:

sm
2 = ∑n

t=1(Rmt −Rm)2

n−1
(15.28)

7. Compute the risk level of the investing portfolio:

βp =
p

∑
i=1

(ωiβi) (15.29)

sep
2 =

p

∑
i=1

(ω2
i sei

2) (15.30)

risk = β 2
p sm

2 + sep
2 (15.31)

8. Compute the portfolio rate of return:

Rp =
p

∑
i=1

(ωiRi) (15.32)
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The goal of the optimization is to maximize the portfolio rate of return and minimize
the portfolio risk level. The task consists in determining values of decision variables
ω1 . . .ωp forming the vector

Ω = [ω1, . . . ,ωp]T (15.33)

where 0%≤ ωi ≤ 100% and ∑p
i=1ωi = 100% and i = 1 . . . p and which is the subject

of minimization with respect of two criteria:

F = [Rp(Ω)∗ (−1),risk(Ω)]T (15.34)

Model Pareto frontiers for two cases (portfolios consisting of three and seventeen
stocks set), which are the subject of analysis in the following section, are presented
in fig. 15.4.

Fig. 15.4. Building of effective portfolio: visualization of the model Pareto frontier obtained
using utter review method for a) three and b) seventeen stocks set

15.6 Results of Experiments

In this section the results of the experiments are presented. The results obtained by
the proposed system are compared with the results obtained by a “classical” (i.e. non
agent-based) predator-prey evolutionary strategy (PPES) (22) and another “classi-
cal” evolutionary algorithm for multi-objective optimization: the niched pareto ge-
netic algorithm (NPGA) (41). In order to more deeply analyze the results obtained
by compared algorithms—values of HV and HVR metrics (their definitions can be
found in (7)) are also presented. In the case of optimizing an investing portfolio, each
individual in the prey population is represented as a p-dimensional vector. Each di-
mension represents the percentage participation of the i-th (i ∈ 1 . . . p) share in the
whole portfolio. In this section a summary of two single experiments will be pre-
sented.

In the experiments, Warsaw Stock Exchange quotations from 1/1/2003 until
31/12/2005 were used. Simultaneously, the portfolio consists of the following three
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(experiment I) or seventeen (experiment II) stocks quoted on the Warsaw Stock
Exchange: in experiment I: RAFAKO, PONARFEH, PKOBP, in experiment II:
KREDYTB, COMPLAND, BETACOM, GRAJEWO, KRUK, COMARCH, ATM,
HANDLOWY, BZWBK, HYDROBUD, BORYSZEW, ARKSTEEL, BRE, KGHM,
GANT, PROKOM, BPHPBK. The WIG20 is used as the market index proxy.

In fig. 15.5 and fig. 15.6 there are presented Pareto frontiers obtained using
CoEMAS, NPGA and PPES algorithms after 1, 300, 500, 700, 900 and 1000 steps
in experiment I. As one may notice in this case, the CoEMAS-based frontier is more
numerous (especially initially) than NPGA-based and as numerous as the PPES-
based one. Unfortunately, the diversity of population in CoEMAS approach is visibly
worse than that of the NPGA or PPES-based frontiers. What is more, with time the
tendency of CoEMAS-based solver for focusing solutions around small part of the
whole Pareto frontier is more and more distinct.

A similar situation can be observed in fig. 15.7 and fig. 15.8 presenting Pareto
frontiers obtained by CoEMAS, NPGA and PPES—but this time the portfolio that
is being optimized consists of 17 shares. Also this time CoEMAS-based frontier is
quite numerous and quite close to the model Pareto frontier but the tendency for
focusing solutions around only selected part(s) of the whole frontier is very distinct.

In section 13.1 of this chapter, it was mentioned that the CoEMAS system has
been tested using such non-combinatorial test problems as the Kursawe problem,
Laumanns problem and the set of Zitzler problems. In these benchmark tests, Co-
EMAS was definitely the better alternative than NPGA or PPES and the question
appears why in the case of building an effective portfolio the situation is the different
one. Well, the explanation is as follows. With time, the population of agents consists
mainly of mutually non-dominated agents and the situation that during the meetings
agent dominates the opponent is more and more unlikely. If so, also gathering addi-
tional units of resources is more and more unlikely. Because agents pays in each step
with resource for its life—with time the level of its energy falls below the death level
and in the consequence it has to be removed from the system. The solution of such
a situation is introducing to the system mechanisms similar to the elitism—where
elitist agents for instance can migrate to the special island and can not be removed
from the system as long as they are non-dominated. As it can be observed in this
study, mentioned phenomenon is much more dangerous during solving combinato-
rial problems, since meeting dominated agents is more unlikely (as simulation time
passes) than in the case of continuous problems like Kursawe, Laumanns or Zitzler
problems.

In this chapter we decided to present not only Pareto frontiers but also portfolio
composition. It is of course impossible in the course of this chapter to present the con-
secutive portfolios proposed by all non-dominated solutions—that is why we decided
to choose average non-dominated solution in first step and then to follow during con-
secutive steps solutions proposed by this very solution (or its descendant(s)). Such
hypothetical non-dominated average portfolios for experiments I and II are presented
in fig. 15.9 and in fig. 15.10 respectively (in fig. 15.10 shares are presented from left
to right in the order in which they were mentioned above). Generally, it can be said
that during experiment I—the average solution proposed by CoEMAS system is a
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kind of balanced portfolio (percentage share of all three stocks are quite similar, but
the percentage participation in the whole portfolio of PONAR is the lowest one and
finally PKOBP became the most important “ingredient” of the analyzed portfolio),
whereas during experiment II there are more important stocks (with given assump-
tions and parameters of course)—i.e. HANDLOWY, HYDROBUD, ARKSTEEL.

15.7 Conclusions and Future Work

Co-evolutionary techniques for evolutionary algorithms are applicable in the case of
problems for which it is difficult or impossible to formulate an explicit fitness func-
tion, where there is need for maintaining useful population diversity, for forming
species located in the basins of attraction of different local optima, or when introduc-
ing open-ended evolution and “arms races”. Such techniques are also widely used in
artificial life simulations. Although co-evolutionary algorithms have been the subject
of intensive research, their application to multi-modal and multi-objective optimiza-
tion is still an open problem and many research questions remain unanswered.

In this chapter, the agent-based realization of a predator-prey model within the
more general framework of a co-evolutionary multi-agent system has been presented.
The system was tested against a hard, real-life, multi-objective problem (effective
portfolio building) and then compared to two classical multi-objective evolution-
ary algorithms: PPES and NPGA. CoEMAS was able to form more numerous fron-
tier, however a negative tendency to lose population diversity during the experiment
was observed. PPES and NPGA were able to form better-dispersed Pareto frontiers.
When the portfolio composition is considered, the average solution proposed by the
CoEMAS system was a balanced portfolio when it was composed of three stocks
and portfolio with dominating elements when it was composed of seventeen stocks.
The results of experiments with effective portfolio building problem show that more
research is needed on co-evolutionary mechanisms for maintaining population di-
versity used in CoEMAS, especially when we want to stably maintain diversity
of solutions. It seems that the proposed predator-prey mechanism for evolutionary
multi-agent systems may be very useful in the case of hard dynamic and multi-modal
multi-objective problems (as defined by Deb (7)).

Future work will include more detailed analysis of the proposed co-evolutionary
mechanisms, especially focused on problems of stable maintaining population di-
versity. The most important part of this research will be the introduction of the
elitism mechanism for decentralized agent-based evolutionary computation. Also
the comparison of CoEMAS to other classical multi-objective evolutionary algo-
rithms with the use of hard multi-modal multi-objective test problems, and the
application of other co-evolutionary mechanisms like symbiosis (co-operative co-
evolution) are included in future plans. Another, and very important, area of research
on co-evolutionary multi-agent systems will be modeling and simulation of socio-
economic mechanisms and emergent phenomena.
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Bäck T, Schoenauer M, Schwefel HP (eds) Parallel Problem Solving from Na-
ture — PPSN V, Springer-Verlag, LNCS, vol 1498

[23] Li X (2003) A real-coded predator-prey genetic algorithm for multiobjective
optimization. In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds)
Evolutionary Multi-Criterion Optimization, Second International Conference
(EMO 2003), Proceedings, Springer-Verlag, LNCS, vol 2632

[24] Lintner J (1965) The valuation of risk assets and the selection of risky invest-
ments in stock portfolios and capital budgets. Review of Economics and Statis-
tics 47:13–37

[25] Lis J, Eiben AE (1996) A multi-sexual genetic algorithm for multiobjec-
tive optimization. In: Fukuda T, Furuhashi T (eds) Proceedings of the Third
IEEE Conference on Evolutionary Computation, IEEE Press, Piscataway NJ,
pp 59–64

[26] Mahfoud SW (1992) Crowding and preselection revisited. In: Männer R,
Manderick B (eds) Parallel Problem Solving from Nature — PPSN-II, Else-
vier, Amsterdam, pp 27–36, illiGAL report No. 92004



15 Co-Evolutionary Multi-Agent System for Portfolio Optimization 293

[27] Mahfoud SW (1995) Niching methods for genetic algorithms. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL, USA, citeseer.nj.
nec.com/mahfoud95niching.html

[28] Markowitz H (1952) Portfolio selection. Journal of Finance 7(1):77–91
[29] Markowitz H (1999) The early history of portfolio theory: 1600-1960. Finan-

cial Analysts Journal 55(4):5–16
[30] Paredis J (1995) Coevolutionary computation. Artificial Life 2(4):355–375
[31] Paterson R (2002) Compendium of Banking Terms in Polish and English. Foun-

dation of accountancy development in Poland, Warsaw
[32] Potter MA, De Jong KA (2000) Cooperative coevolution: An architecture for

evolving coadapted subcomponents. Evolutionary Computation 8(1):1–29
[33] Ratford M, Tuson AL, Thompson H (1997) An investigation of sexual selec-

tion as a mechanism for obtaining multiple distinct solutions. Tech. Rep. 879,
Department of Artificial Intelligence, University of Edinburgh

[34] Rom B, Ferguson K (1993) Post-modern portfolio theory comes of age. The
Journal of Investing Winter

[35] Ross S (1976) The arbitrage theory of capital asset pricing. Journal of Eco-
nomic Theory 13(3)

[36] Sharpe WF (1964) Capital asset prices: A theory of market equilibrium under
conditions of risk. Journal of Finance 19(3):425–442

[37] Srinivas N, Deb K (1994) Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation 2(3):221–248

[38] Tobin J (1958) Liquidity preference as behavior towards risk. The Review of
Economic Studies 25:65–86

[39] Todd PM, Miller GF (1997) Biodiversity through sexual selection. In: Ch G
Langton, et al (ed) Artificial Life V: Proceedings of the Fifth Int. Workshop on
the Synthesis and Simulation of Living Systems, Bradford Books, pp 289–299

[40] Treynor J (1961) Towards a theory of market value of risky assets. unpublished
manuscript

[41] Zitzler E (1999) Evolutionary algorithms for multiobjective optimization:
methods and applications. PhD thesis, Swiss Federal Institute of Technology,
Zurich
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Fig. 15.5. Pareto frontier approximations after 1 (a,b,c), 300 (d,e,f) and 500 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 3 stocks
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Fig. 15.6. Pareto frontier approximations after 700 (a,b,c), 900 (d,e,f), 1000 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 3 stocks
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Fig. 15.7. Pareto frontier approximations after 1 (a,b,c), 300 (d,e,f) and 500 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 17 stocks
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Fig. 15.8. Pareto frontier approximations after 700 (a,b,c), 900 (d,e,f), 1000 (g,h,i) steps ob-
tained by CoEMAS, PPES, and NPGA for building effective portfolio consisting of 17 stocks
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Fig. 15.9. Effective portfolio consisting of three stocks proposed by CoEMAS in consecutive
steps
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Fig. 15.10. Effective portfolio consisting of seventeen stocks proposed by CoEMAS in con-
secutive steps
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