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Abstract. The use of syndrome coding in steganographic schemes tends
to reduce distortion during embedding. The more complete model comes
from the wet papers [FGLS05] which allow to lock positions that cannot
be modified. Recently, BCH codes have been investigated, and seem to
be good candidates in this context [SW06]. Here, we show that Reed-
Solomon codes are twice better with respect to the number of locked
positions and that, in fact, they are optimal. We propose two methods
for managing these codes in this context: the first one is based on a naive
decoding process through Lagrange interpolation; the second one, more
efficient, is based on list decoding techniques and provides an adaptive
trade-off between the number of locked positions and the embedding
efficiency.

1 Introduction

Steganography aims at sending a message through a cover-medium, in an un-
detectable way. Undetectable means that nobody, except the intended receiver
of the message, should be able to tell if the medium is carrying a message or
not [Sim84]. Hence, if we speak about still images as cover-media, the embedding
should work with the smallest possible distortion, but also not being detectable
with the quite powerful analysis tools available [BW04,Fra02]. A lot of papers
have been published on this topic, and it appears that modeling the embedding
and detection/extraction processes with an error correcting code point of view,
usually called matrix embedding by the steganographic community, may be help-
ful to achieve these goals [Cra98,GK03,FGLS05,FGS05a,FGS06,FS06, SW06].
The main interest of this approach is that it decreases the number of component
modifications during the embedding process. As a side effect, it was remarked
in [FGLS05] that matrix embedding could be used to provide an effective answer
to the adaptive selection channel: the sender can embed the messages adaptively
with the cover-medium to minimize the distortion, and the receiver can extract
the messages without being aware of the sender’s choices. A typical stegano-
graphic application is the perturbed quantization [FGS05b]: during quantization
process, e.g. JPEG compression, real values v have to be rounded between pos-
sible quantized values x0, ..., xj ; when v lies close to the middle of an interval
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[xi, xi+1], one can choose between xi and xi+1 without adding too much distor-
tion. This embeds messages under the condition that the receiver does not need
to know which positions where modified.

It has been shown that if random codes may seem interesting for their asymp-
totic behavior, they impose to solve really hard problems: syndrome decoding
and covering radius computation, which are proved to be NP-complete and Π2-
complete respectively (the Π2 complexity class includes the NP class) [Var97,
McL84]. Moreover, no efficient decoding algorithm is known, even for a small
non trivial family of codes. From a practical point of view, this implies that the
related steganographic schemes are too much complex to be considered as ac-
ceptable for real life applications. Hence, it is of great interest to have a deeper
look at other kinds of codes, structured codes, which are more accessible and
lead to efficient decoding algorithms. In this way, some previous papers studied
the Hamming code [Cra98,Wes01,FGS05a], the Simplex code [FS06] and BCH
codes [SW06]. Here, we focus on this latter paper, that pointed out the interest
in using BCH codes. The authors distinguish two cases, as previously introduced
in [FGLS05]. The first one is the more classical one: the embedder modifies any
position of the cover-data (a vector which is extracted from the cover-medium,
and processed by the encoding scheme), the only constraint being the maximum
number of modifications. In this case, they showed that BCH codes behave well,
but also pointed out that choosing the most appropriate code among the BCH
family is quite hard: we do not know good complete syndrome decoding algo-
rithm for BCH codes. In the second case, some positions are locked and cannot
be used for embedding; this is due to the fact that modifying these positions
lead to a degradation of the cover-medium that is noticeable. Hence, in order
to remain undetectable, the sender restricts himself to keep these positions and
lock them. This case is more realistic. The authors showed there is a trade-off
between the number of elements that can be locked and the efficiency of the
code.

Here, we propose to focus on a particular family of BCH codes: the Reed-
Solomon (RS) codes. We first recall in Section 2 the framework of matrix em-
bedding/syndrome coding. Then, we discuss the interest of using Reed-Solomon
codes in this context: in Section 3, Reed-Solomon codes are presented, explicitly
showing in Section 4 how they can improve realistic steganographic schemes.
We show in Section 4.1 that with these codes we can go beyond the limits of
BCH codes: we can lock twice the number of positions. In fact, we see that RS
codes are optimal according to this criterion, since they enable to manage as
many locked positions as possible. In Section 4.2, we also propose an improved
algorithm based on Guruswami-Sudan list-decoding, that enables to make an
adaptive trade-off between the embedding efficiency and the number of locked
positions.

Before going deeper in the subject, please note that we made the choice to
represent vectors horizontally . For general references to error correcting codes,
we orientate the reader towards [HP03].
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2 Syndrome Coding

The behavior of a steganographic algorithm can be sketched in the following way:
a cover-medium is processed to extract a sequence of bits v, sometimes called
cover-data; v is modified into s to embed the message m; s is sometimes called the
stego-data; modifications on s are translated on the cover-medium to obtain the
stego-medium. Here, we assume that the detectability of the embedding increases
with the number of bits that must be changed to go from v to s (see [Wes01,
KDR06] for some examples of this framework).

Syndrome coding deals with this number of changes. The key idea is to use
some syndrome computation to embed the message into the cover-data. In fact,
this scheme uses a linear code C, more precisely its cosets, to hide m. A word s
hides the message m if s lies in a particular coset of C, related to m. Since cosets
are uniquely identified by the so called syndromes, embedding/hiding consists
exactly in searching s with syndrome m, close enough to v.

We first set up the notation and describe properly the syndrome coding
scheme, and its inherent problems. Let Fq = GF (q) denote the finite field with
q elements1. Let v ∈ Fq

n denote the cover-data and m ∈ Fq
r the message. We

are looking for two mappings, embedding Emb and extraction Ext, such that:

∀(v, m) ∈ Fq
n × Fq

r, Ext(Emb(v, m)) = m (1)
∀(v, m) ∈ Fq

n × Fq
r, dH(v, Emb(v, m)) ≤ T (2)

Eq. (1) means that we want to recover the message in all cases; Eq. (2) means
that we authorize the modification of at most T coordinates in the vector v.

Let C be a q-ary linear code of length n, dimension k and parity check matrix
H . That is, C = {c | c · Ht = 0} is a vector subspace of Fq

n of dimension
k. The syndrome of a vector y, with respect to the code C, is the row vector
y · Ht of length n − k; we denote it by E(y). The covering radius of C is the
minimum integer ρ such that {E(y) | wH(y) ≤ ρ} = Fq

n−k. Let us denote by D
the mapping that associates with a syndrome m a vector a of Hamming weight
less than or equal to ρ, and which syndrome is precisely equal to m (that is,
wH(a) ≤ ρ and E(a) = a · Ht = m). Remark that effective computation of D
is the complete syndrome decoding problem, which is hard. It is quite easy to
show that the scheme defined by

Emb(v, m) = v + D(m − E(v))
Ext(y) = E(y) = y · Ht

enables to embed messages of length r = n−k in a cover-data of length n, while
modifying at most T = ρ elements of the cover-data.

The parameter (n − k)/ρ represents the (worst) embedding efficiency2, that
is, the number of embedded symbols per embedding changes in the worst case.
1 Recall that when q is a power of two, elements of Fq can be regarded as blocks of

bits.
2 Remark this is with respect to symbols and not bits. If elements of Fq are viewed as

blocks of � bits, changing a symbol by an other roughly leads to �/2 flips.
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In a similar way, one defines the average embedding efficiency (n − k)/ω, where
ω is the average weight of the output of D for uniformly distributed inputs.

A problem raised by the syndrome coding, as presented above, is that any po-
sition in the cover-data v can be changed. In some cases, it is more reasonable to
keep some coordinates unchanged because they would produced too big artifacts
in the stego-medium. This can be done in the following way. Let I = {i1, ..., ij}
be the coordinates that must not be changed, let HI be the matrix obtained
from H by removing3 the columns i1, ..., ij , and EI and DI the corresponding
mappings. That is, EI(y) = y · Ht

I for y ∈ Fq
n−|I|, and DI(m) ∈ Fq

n−|I| is a
vector of weight at most ρI such that its syndrome, with respect to HI , is m.
Here, ρI is the covering radius of CI , the code obtained from C by removing
the coordinates in I from all the codewords. Of course, this is also the code
of parity check matrix HI . Finally, let us define D∗

I as the vector of Fq
n such

that the coordinates in I are zeros and the vector obtained by removing these
coordinates is precisely DI . Now, we have D∗

I(m) · H = DI(m) · Ht
I = m and,

by definition, D∗
I(m) has zeros at coordinates set by I. Naturally, the scheme

defined by

Emb(v, m) = v + D∗
I(m − E(v))

Ext(y) = E(y) = y · Ht

performs syndrome coding without disturbing the positions in I. But, it is worth
noting that for some sets I, the mapping DI cannot be defined for all possible
values of m because the equation y · Ht

I = m has no solution. This always
happens when |I| > k, since HI has dimension (n − k) × (n − |I|), but can also
happen for smaller sets.

Please, keep in mind that using syndrome coding leads to essentially two
problems. First, the parameters n, r, ρ depend on the choice of C, and most of
the time ρ is hard to compute. Second, the mapping D is difficult to compute.

3 What Reed-Solomon Codes Are, and Why They May
Be Interesting

Reed-Solomon codes over the finite field Fq are optimal linear codes. The narrow-
sense RS codes have length n = q − 1 and can be defined as a particular sub-
family of the BCH codes. But, we prefer the alternative, and larger, definition
as an evaluation code, which leads to the Generalized Reed-Solomon codes (GRS
codes).

Roughly speaking, a GRS code of length n ≤ q and dimension k is a set of
words corresponding to polynomials of degree less than k evaluated over a subset
of Fq of size n. More precisely, let {γ0, ..., γn−1} be a subset of Fq and define
ev(P ) = (P (γ0), P (γ1), . . . , P (γn−1)), for P (X) a polynomial over Fq. Then, we
define GRS(n, k) as
3 In coding theory, this is called shortening the code on I: we only keep codewords

that have zero on I, and then we remove the coordinates set by I.
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GRS(n, k) = {ev(P ) | deg(P ) < k} .

This definition, a priori, depends on the choice of the γi and the order of eval-
uation, but as far as we are concerned, only the number of γi is important, so
we consider a fixed set of γi and a fixed order. Remark that when γi = βi with
β a primitive element of Fq and i ∈ {0, ..., q − 2}, we obtain the narrow-sense
Reed-Solomon codes.

GRS codes are optimal: they reach the Singleton bound, that is, the minimal
distance of GRS(n, k) is d = n − k + 1, which is the largest possible. On the
other hand, the covering radius of GRS(n, k) is known and equal to ρ = n − k.

Concerning the evaluation function, recall that if we consider n ≤ q elements
of Fq, then it is known that there is a unique polynomial of degree at most n−1
taking particular values on these n elements. This means that for every v in Fq

n,
one can find a polynomial V with deg(V ) ≤ n−1, such that ev(V ) = v; moreover,
V is unique. Of course, ev is a linear mapping, ev(α·P+β·Q) = α·ev(P )+β·ev(Q)
for any polynomials P, Q and field elements α, β.

For convenience, in the sequel, we identify any polynomial of degree less than
n with a vector of length n, the i-th coordinate of the vector being the coefficient
of the monomial of degree i. Thus, the evaluation mapping can be represented
by the matrix

Γ =

⎛
⎜⎜⎜⎜⎝

ev(X0)
ev(X1)
ev(X2)

· · ·
ev(Xn−1)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

γ0
0 γ0

1 · · · γ0
n−1

γ0 γ1 · · · γn−1
γ2
0 γ2

1 · · · γ2
n−1

...
γn−1
0 γn−1

1 · · · γn−1
n−1

⎞
⎟⎟⎟⎟⎟⎠

.

If we denote by Coeff(V ) ∈ Fq
n the vector consisting in the coefficients of V ,

then Coeff(V ) ·Γ = ev(V ). On the other hand, Γ being non-singular, its inverse
Γ−1 computes Coeff(V ) from ev(V ). For our purpose, it is noteworthy that the
coefficients of monomials of degree at least k can be easily computed from ev(V ):
splitting Γ−1 in two parts,

Γ−1 = ( A︸︷︷︸
k columns

B︸︷︷︸
n−k columns

) ,

ev(V ) ·B is precisely the coefficients vector of the monomials of degree at least k
in V . In fact, B is the transpose of a parity check matrix of the GRS code since
a vector c is an element of the code if and only if we have c · B = 0. So, instead
of B, we write Ht, as it is usually done.

Now, let us look at the cosets of GRS(n, k). A coset is a set of the type y +
GRS(n, k), with y ∈ Fq

n not in GRS(n, k). As usual with linear codes, a coset is
uniquely identified by the vector y · Ht, syndrome of y. In the case of GRS code,
this vector consists in the coefficients of monomials of degree at least k.
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4 What Can Reed-Solomon Codes Do

Our problem is the following. We have a vector v of length n of symbols of Fq,
extracted from the cover-medium, and a message m of length r of symbols of
Fq. We want to modify v into s such that m is embedded in s, changing at most
T coordinates in v.

The basic principle is to use syndrome coding with a GRS code: we use the
cosets of GRS(n, k) to embed the message, finding a vector s in the proper
coset, close enough to v. Thus, k must be equal to n − r, and we suppose we
have fixed γ0,...,γn−1 ∈ Fq, constructed the matrix Γ whose i-th row is ev(X i),
and inverted it. In particular, we denote by Ht the last n − k columns of Γ−1

and, therefore, according to the previous section, H is a parity-check matrix.
Recall that a word s embeds the message m if s · Ht = m.

To construct s, we need a word y such that its syndrome is m − v · Ht; thus,
we can set s = y + v, which leads to s · Ht = y · Ht + v · Ht = m. Moreover, the
Hamming weight of y is precisely the number of changes we apply to go from v
to s; so, we need w(y) ≤ T .

When T is equal to the covering radius of the code corresponding to H , such a
vector y always exists. But, explicit computation of such a vector y, known as the
bounded syndrome decoding problem, is proved to be NP-hard for general linear
codes. Even for well structured codes, we usually do not have polynomial time
(in the length n) algorithm to solve the bounded syndrome decoding problem
up to the covering radius. This is precisely the problem faced by [SW06].

GRS codes overcome this problem in a nice fashion. It is easy to find a vector
with syndrome m: let us consider the polynomial M(X) that has coefficient mi

for the monomial Xk+i, i ∈ {0, ..., n − 1 − k}; according to the previous section,
we have ev(M) ·Ht = m. Now, finding y can be done by computing a polynomial
P of degree less than k such that for at least k elements γ ∈ {γ0, ..., γn−1} we
have P (γ) = M(γ) − V (γ). With such a P , the vector y = ev(M − V − P ) has
at least k coordinates equal to zero, and the correct syndrome value. Hence, T
can be as high as the covering radius ρ = n − k, and the challenge lies in the
construction of P .

It is noteworthy to remark that locking the position i, that is, requiring si = vi,
is equivalent to ask for yi = 0 and, thus, P (γi) = M(γi) − V (γi).

4.1 A Simple Construction of P

Using Lagrange Interpolation. A very simple way to construct P is by using
the Lagrange interpolating polynomials. We choose k coordinates I = {i1, ..., ik},
and compute

P (X) =
∑
i∈I

(M(γi) − V (γi)) · L
(i)
I (X) ,

where L
(i)
I is the unique polynomial of degree at most k − 1 taking values 0 on

γj , j �= i and 1 on γi, that is,
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L
(i)
I (X) =

∏
j∈I\{i}

(γi − γj)−1(X − γj) .

The polynomial P we obtain this way clearly satisfies P (γi) = V (γi) − M(γi)
for every i ∈ I and, thus, we can set y = ev(M −V −P ). As pointed out earlier,
since, for i ∈ I, we have yi = 0, we also have si = vi + yi = vi, i.e. positions in
I are locked.

The above proposed solution has a nice feature: we can choose the coordinates
on which s and v are equal, and this does not require any loss in computational
complexity nor embedding efficiency. This means that we can perform the syn-
drome decoding directly with the additional requirement of wet papers, keeping
unchanged the coordinates whose modifications are detectable.

So far, what do GRS codes allow?

Optimal Management of Locked Positions. We can embed r = n − k
elements of Fq, changing not more than T = n − k, so the embedding efficiency
is equal to 1 in the worst case. But, we can lock any k positions to embed our
information.

This is to be compared with [SW06], where BCH codes are used. The max-
imal number of locked positions, without failing to embed the message m, is
experimentally estimated to be k/2. To be able to lock up to k−1 positions, it is
necessary to allow a non-zero probability of non embedding. It is also noteworthy
that the average embedding efficiency decreases fast.

In fact, embedding r = n − k symbols while locking k symbols amongst n is
optimal. We said in Section 2 that locking the positions in I leads to an equation
y ·Ht

I = m, where HI has dimension (n− k)× (n− |I|). So, when |I| > k, there
exist some values m for which there is no solution y. On the other hand, let us
suppose we have a code with parity check matrix H such that for any I of size
k, and any m, this equation has a solution, that is, HI is invertible. This means
that any (n−k)× (n−k) submatrix of H is invertible. But, it is known that this
is equivalent to require the code to be MDS (see for example [HP03, Cor 1.4.14]),
which is the case of GRS code. Hence, GRS codes are optimal in the sense that
we can lock as many positions as possible, that is, up to k for a message length
of r = n − k.

4.2 A More Efficient Construction of P

Using List Decoding. A natural idea to improve the results of the last section
is to use decoding algorithms for GRS codes, whenever it is possible. Such algo-
rithms compute, from a vector ev(Q), polynomials P of degree at most k−1, such
that ev(P ) are close to ev(Q), according to the Hamming distance. Stated dif-
ferently, they provide good approximations of Q. Using these algorithms reduce
the average number of changes required by the embedding and, thus, improve
the average efficiency.

Essentially, the output of the decoding algorithms may be: a single polynomial
P , if it exists, such that the vector ev(P ) is at distance at most �(n − k + 1)/2�
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from ev(Q) (remark that if such a P exists, it is unique), and nothing otherwise;
or, a list of all polynomials P such that the vectors ev(P ) are at distance at
most T from ev(Q).

The second case corresponds to the so called list decoding; an efficient al-
gorithm for GRS codes was initially provided by [Sud97], and was improved
by [GS99], leading to what is known as the Guruswami-Sudan algorithm. Clearly,
list decoding is the more interesting: like the first kind of decoding, it provides
the solution of minimum weight if it exists; moreover, the possibility to choose
between different vectors improves the undetectability targeted by the stegano-
graphic applications.

Guruswami-Sudan algorithm outlines. The reader interested in detailed ex-
position may refer to [GS99, McE03, HP03]. The Guruswami-Sudan algorithm
uses a parameter called the interpolation multiplicity μ. For an input vector
(a0, ..., an−1), the algorithm computes a bivariate polynomial R(X, Y ) such that4

each couple (γi, ai) is a root of R with multiplicity μ. The second and last step is
to compute the list of factors of R, of the form Y − P (X), with deg(P ) ≤ k − 1.
For a fixed μ, the list contains all the polynomials which are at distance at
most λμ ≈ n −

√
(1 + 1

μ)(k − 1)n. The maximum decoding radius is, thus,

λGS = n − 1 −
√

n · (k − 1). Moreover, the overall algorithm can be performed
in less than O(n2μ4) arithmetic operations over Fq.

Guruswami-Sudan for shortened GRS codes. The Guruswami-Sudan algorithm
can be used for decoding shortened GRS codes: for a fixed set I of indices, we
are looking for polynomials P such that deg(P ) < k, P (γi) = 0 for i ∈ I
and P (γi) = Q(γi) for as many i �∈ I as possible. Such P can be written
P (X) = F (X)G(X) with F (X) =

∏
i∈I(X −γi). Hence, decoding the shortened

code reduces to obtain G such that deg(G) < k − |I| and G(γi) = Q(γi)/F (γi)
for as many i �∈ I as possible. This means, we are using the GS algorithm to
decode a word of GRS(n − |I|, k − |I|).

Algorithm Description. Our general scheme becomes: try to perform list
decoding on ev(M − V ), in order to get a P as close as possible to ev(M − V );
if it fails, fall back onto Lagrange interpolation – as in the previous section – to
compute P .

In fact, it is still possible to keep some positions locked: Let I be the set
of coordinates to be untouched, construct the polynomial P such that P (γi) =
M(γi)−V (γi); Let us consider Y = M −V −P and use GS decoding to compute
an approximation U of Y of degree at most k − 1, such that U(γi) = 0 for i ∈ I;
If GS decoding fails, add a new position to I and retry until it succeeds or
I = k; If no GS decoding succeeds (and, so, I = k), define U(X) = 0; Finally,
the stegoword is v + ev(Y − U).

Figure 1 depicts the complete algorithm. The description uses two external
procedures. The GSdecode procedure refers to the Guruswami-Sudan list decod-
4 R must also satisfy another important constraint on the so called weighted degree.
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ing: it decodes the polynomial Y (X) of degree at most k−1, with respect to the
code GRS(n, k) defined by the evaluation on (γi), and shortened on positions
set by I. So, this procedure returns a good approximation U(X) of Y (X), on
the evaluation set, of degree less than k − 1, with the additional condition that
U(γi) = 0 for i ∈ I. Remark that when I = ∅, we simply use the GS decoding,
whereas when I �= ∅, we use the modified decoding for shortened codes. The
selectposition procedure returns an integer from the set given as a parame-
ter. This procedure is used to choose the new position to lock before retrying
the list decoding.

The correctness of this algorithm follows from the fact that through the whole
algorithm we have ev(Y ) · Ht = m − v · Ht and Y (γi) = 0 for i ∈ I.

Inputs: v = (v0, ..., vn−1), the cover-data
m = (m0, ..., mn−k−1), symbols to hide
I, set of coordinates to remain unchanged, |I| ≤ k

Output: s = (s0, ..., sn−1), the stego-data
(s · Ht = m; si = vi, i ∈ I; dH(s, v) ≤ n − k)

1: V (X) ⇐= v0X
0 + · · · + vn−1X

n−1

2: M(X) ⇐= m0X
k + · · · + mn−k−1X

n−1

3: Y (X) ⇐= M(X) − V (X)
4: for all i ∈ I do
5: L

(i)
I (X) ⇐=

�

j∈I\{i}

(γi − γj)−1(X − γj)

6: end for
7: P (X) ⇐=

�

i∈I
ai · L

(i)
I (X)

8: Y (X) ⇐= Y (X) − P (X)
9: while |I| < k and GSdecode(Y (X), I) = ∅ do

10: i ⇐= selectposition({0, . . . , n − 1} \ I)
11: I ⇐= I ∪ {i}
12: L

(i)
I (X) ⇐=

�

j∈I\{i}

(γi − γj)−1(X − γj)

13: Y (X) ⇐= Y (X) − Y (γi) · L
(i)
I (X)

14: end while
15: if GSdecode(Y (X), I) �= ∅ then
16: U(X) ⇐= GSdecode(Y (X), I)
17: Y (X) ⇐= Y (X) − U(X)
18: end if
19: s ⇐= v + ev(Y )
20: return s

Fig. 1. Algorithm for embedding with locked positions using a GRS(n, k) code,
(γ0, ..., γn−1) fixed. It embeds r = n − k symbols of Fq with up to k locked positions
and at most n − k changes.
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Analysis. The most important property of an embedding algorithm is the num-
ber of changes introduced during the embedding. This analysis, for our algo-
rithm, depends on two parameters.

The first parameter is the probability p(n, k) that list decoding of a word in
Fq

n outputs a non-empty list of codewords in GRS(n, k). We denote by q(n, k)
the probability of the complementary event, namely the return of an empty list.
Thus, the probability that the first 
−1 list decodings fail and the 
-th succeeds
is p(n − |I| − 
, k − |I| − 
)

∏�−1
e=0 q(n − |I| − e, k − |I| − e).

The second parameter is the average distance δ(n, k) between the closest code-
words in the (non-empty) list and the word to decode. This last parameter leads
to the average number of changes required to perform the embedding:

ω =

⎛
⎝

k′−1∑
�=0

δ′(
) · p′(
)
�−1∏
e=0

q′(e)

⎞
⎠ + (n − k)

k′−1∏
e=0

q′(e) ,

where p′(e) = p(n − |I| − e, k − |I| − e), q′(e) = q(n − |I| − e, k − |I| − e) and
δ′(e) = δ(n − |I| − e, k − |I| − e).

Estimating p and δ. To (upper) estimate p(n, k), we proceed as follows. Let
us denote by Z the random variable equal to the size of the output list of the
decoding algorithm. The Markov inequality yields Pr(Z ≥ 1) ≤ E(Z), where
E(Z) denotes the expectation of Z. But, Pr(Z ≥ 1) is the probability that the
list is non-empty and, thus, Pr(Z ≥ 1) = p(n, k). Now, E(Z) is the average
number of elements in the output list, but this is exactly the average number
of codewords in a Hamming ball of radius λGS . Unfortunately, no adequate
information can be found in the literature to properly estimate it; the only paper
studying a similar quantity is [McE03], but it cannot be used for our E(Z). So,
we set

E(Z) =
qk

qn
· VλGS =

λGS∑
i=0

(q − 1)i

(
n

i

)

qn−k
,

where VλGS is the volume of a ball of radius λGS . This would be the correct
value if GRS codes were random codes over Fq of length n, with qk codewords
uniformly drawn from Fq

n. That is, we estimate E(Z) as if GRS codes were
random codes. Thus, we use p = min(1, qk−nVλGS ) to upper estimate p.

The second parameter we need is the average number of changes required
when the list is non-empty. We consider that the closest codeword is uniformly
distributed over the ball of radius λGS and, therefore, we have

δ(n, k) =

λGS∑
i=0

(q − 1)i

(
n

i

)
i

VλGS

.
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(a) p (b) α

Fig. 2. Figure (a) plots the estimated probability p of list decoding success on a random
input vector for GRS(n, k) over F8. Figure (b) plots the relative average number of
changes α. As usual, n is the length and k the dimension.

(a) p (b) α

Fig. 3. Same as figure 2 for F16

A Simplified Analysis. A simple (upper) estimate of the average number of
changes can be obtained by setting I = ∅ and considering that if the first list
decoding fails, the others will fail too. Doing so, we clearly underestimate the
performance of our algorithm. This leads to the very simple quantity

α =
δ(n, k) · p(n, k) + (n − k) · (1 − p(n, k))

n − k
.

This value is plotted in Figures 2, 3, 4, 5 and 6 for small values of q (the number
of elements of the field). For each figure, the left part (a) plots p and the right
part (b) plots α.
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(a) p (b) α

Fig. 4. Same as figure 2 for F32

(a) p (b) α

Fig. 5. Same as figure 2 for F64

Let us first briefly depict the meaning of the colors for both figure sides. In
all figures, dark colors correspond to small values, and bright colors to high
values. So, on the left hand side figures, dark areas mean a decoding failure
(small p), and bright areas mean a successful list decoding. On the right hand
side figures, dark areas correspond to a number of coordinate modifications that
remains far less than n − k, which is the maximum value; bright pixels mean
we are close to the maximum. These figures show that, when k is close to n,
the code is sufficiently dense in the space to warranty a high value of E(Z);
hence, p is close to 1 and the list decoding is successful. Other favorable cases
for decoding are for small values of k, where the radius λGS is close to n, and
the decoding balls cover the space quite well. On the contrary, when k is far
away from its extremal values (1 and n − 1), the decoding balls are too small
to contain enough codewords, and the decoding fails. Clearly, these figures also
show that this behavior increases when q becomes higher. The previous analysis
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(a) p (b) α

Fig. 6. Same as figure 2 for F128

also explains what we observe on the right hand side figures, since the relative
average number of changes α heavily depends on the probability of successful
decoding. Remark that the improvement in the embedding efficiency may be
significant, compared with the algorithm given in Section 4.1. As an example,
for q = 8, GRS(7, 3) embeds 4 symbols with up to 3 locked positions and an
embedding efficiency improvement up to 37.4% compared with the Lagrange
interpolation algorithm. Over F16, GRS(14, 9) embeds 5 symbols with up to 9
locked positions and an embedding efficiency improvement up to 67.6%.

5 Conclusion

We have shown in this paper that Reed-Solomon codes are good candidates
for designing realistic efficient steganographic schemes. If we compare them to
the previous studied codes, like BCH codes, Reed-Solomon codes improve the
management of locked positions during embedding, hence ensuring a better man-
agement of the distortion: they are able to lock twice the number of positions,
that is, they are optimal in the sense that they enable to lock the maximal num-
ber of positions. We proposed two methods for managing these codes in this
context: the first one is based on a naive decoding process through Lagrange
interpolation; the second one, more efficient, is based on the Guruswami-Sudan
list decoding and provides an adaptive trade-off between the number of locked
positions and the embedding efficiency.
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