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Abstract. This paper presents a security analysis for data hiding meth-
ods based on nested lattice codes, extending the analysis provided by
previous works. The security is quantified in an information-theoretic
sense by means of the information leakage between the watermarked
signals seen by the attacker and the secret key used in the embedding
process. The theoretical analysis accomplished in the first part of the pa-
per addresses important issues such as the possibility of achieving perfect
secrecy and the impact of the embedding rate and channel coding in the
security level. In the second part, a practical algorithm for estimating
the secret key is proposed, and the information extracted is used for
implementing a reversibility attack on real images.

1 Introduction

Watermarking security has emerged in the last years as a new research topic,
whose basics can be found in [1],[2],[3] and the references therein. The framework
for security analysis adopted in these works follows a cryptanalytic approach:
all the parameters of the watermarking scheme are assumed to be public, and
the security relies only on a secret key, which is assumed to remain unchanged
in the contents watermarked by the same user. The main target of the security
analysis is to determine whether the watermarking scheme conceals properly the
secret key; if it is not the case, then we are interested in assessing the security
level of the scheme, defined as the number of observations needed to achieve an
estimate of the secret key up to a certain accuracy [2].

In this paper we focus on the security analysis of data hiding schemes based on
nested lattice codes [4], usually known as lattice DC-DM schemes. Specifically,
the work in the present paper extends the theory and algorithms developed in
[5] to a more general scenario. The analysis in [5] was mainly restricted to the so-
called “Known Message Attack” (KMA) scenario, where the messages embedded
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Fig. 1. Block diagram showing the lattice data hiding model

in each watermarked signal were assumed to be known by the attacker. This
paper considers a general scenario (which encompasses most of the practical data
hiding applications), termed “Watermarked Only Attack” (WOA), where the
attacker no longer knows anything about the embedded messages. As in [5], the
security level is measured by means of the mutual information (a.k.a. information
leakage) between the watermarked signals and the secret key, which is related to
the variance of the key estimation error. The first part of this paper measures the
information leakage for lattice DC-DM schemes, paying special attention to the
comparison between KMA and WOA scenarios, and considering also possible
strategies that achieve good security levels. The second part shows how the
information about the key provided by the observations can be extracted and
used in practical scenarios, proposing a reversibility attack based on an estimate
of the secret dither. The proposed estimation algorithm works with any arbitrary
nested lattice code, and is applicable to high embedding rate scenarios.

The main notational conventions used in the paper are the following: Λf and
Λ are the n-dimensional fine and coarse (shaping) lattices of the nested lattice
code, respectively. The alphabet that encodes the messages to be transmitted
is defined as M � {0, 1, . . . , p − 1}, with p denoting its cardinality. Random
variables are denoted by capital letters, and vectors are represented by boldface
letters. H(·) and h(·) denote entropy and differential entropy [6], respectively.

2 Theoretical Model

The mathematical model for lattice data hiding considered in this paper is shown
in Fig. 1. First, the host signal is partitioned into non-overlapping blocks Xk of
length n. The message to be embedded may undergo channel coding, yielding
the symbols Mk ∈ M which are assumed to be equiprobable, unless otherwise
stated. Each symbol Mk is embedded in one block Xk by means of a randomized
lattice quantizer yielding a watermarked signal Yk as follows:

Yk = Xk + α(QΛ(Xk − dMk
− T) − Xk + dMk

+ T), (1)

where QΛ(x) is a nearest neighbor quantizer whose centroids are distributed
according to Λ, the coarse (shaping) lattice, α ∈ [0, 1] is the distortion
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Fig. 2. Nested lattice codes of rate R = log(9)/2 with hexagonal shaping lattice, ob-
tained by means of self-similar construction (a) and Construction A with g = (1, 2)T

(b). Voronoi regions of Λf and Λ are represented by thin and thick lines, respectively.

compensation parameter, dMk
is the coset leader associated to Mk, and T =

g(Θ) is the secret dither signal, which remains constant in each watermarked
block. The embedding distortion per dimension in a mean-squared-error sense
can be computed as Dw = 1

nE
[
||Xk − Yk||2

]
= α2P (Λ), where P (Λ) denotes

the second-order moment per dimension of V(Λ).
The coset leaders dMk

∈ {d0, . . . ,dp−1} that encode each symbol Mk are
chosen so that

⋃p−1
k=0(dk + Λ) = Λf and they coincide with the coset leaders of

minimum norm of the nested lattice code. Nested lattice codes can be obtained
in a number of ways; we consider in this paper self-similar lattice partitions and
Construction A [7]. In self-similar lattice partitions, Λf = p−

1
n Λ, for p

1
n ∈ N.1

The lattice Λ is a sublattice of Λf , resulting in a “nesting ratio” vol(V(Λ))
vol(V(Λf ))

= p,

and an embedding rate R = log(p)/n. The coset leaders dk can be obtained as
Λf ∩ V(Λ). Construction A is more flexible, and is summarized as follows:

1. Define a positive integer p. In order to construct a nested lattice code with
good asymptotic properties, p must be prime.

2. Define a generating vector g ∈ Z
n
p and compute the codebook C � {c ∈ Z

n
p :

c = q · g mod p, q = 0, . . . , p − 1}. Then, define the lattice Λ′ = p−1C + Z
n.

3. Define the generating matrix G ∈ R
n×n (where each row is a basis vector) of

the coarse (shaping) lattice Λ. Apply the linear transformation Λf = Λ′G.

It follows that Λ is a sublattice of Λf and the nesting ratio is vol(V(Λ))
vol(V(Λf ))

= p,

resulting in a coding rate R = log(p)/n.
4. The coset leaders are given by Λf ∩ V(Λ), or equivalently, p−1CG mod Λ.

Examples of 2-dimensional nested lattice codes are shown in Fig. 2.
With regard to the attacker’s strategy, it is assumed that he manages to

gather an ensemble of watermarked blocks {Yk, k = 1, . . . , No} (hereinafter,
1 More general self-similar lattice partitions consider also rotations of Λ, but we will

restrict our attention to those obtained through scaling.
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observations), which may belong to different host signals, but all of them were
watermarked with the same secret key Θ. He knows the parameters of the nested
lattice code being used, i.e. Λ, {di, i = 0, . . . , p − 1}, α, whereas he ignores the
host blocks Xk, the embedded symbols Mk, and T = g(Θ). The objective of the
attacker is to obtain an estimate of T. The first step performed by him is the
modulo reduction of the watermarked blocks as Ỹk � Yk mod Λ, where the
modulo operation is defined as X mod Λ � X− QΛ(X). Under the assumption
(a.k.a. “flat-host assumption”) that the variance of the components of Xk is
much larger than the embedding distortion, such modulo reduction does not
imply any loss of information for the attacker, as discussed in [5]. Let us define

f0(x) �
{

(vol(Z(Λ)))−1, x ∈ Z(Λ)
0, otherwise, (2)

with Z(Λ) � (1 − α)V(Λ), where V(Λ) � {x ∈ R
n : QΛ(x) = 0} denotes the

Voronoi region of Λ [8]. The probability density function of the signals seen by
the attacker can be computed by taking into account that, under the flat-host
assumption, f(ỹk|mk, t) = f0(ỹk − dmk

− t mod Λ). Finally, the function g(·)
is assumed to yield a secret dither T uniformly distributed in the Voronoi region
V(Λ), which turns out to be the worst case for the attacker [5].

3 Theoretical Security Analysis

The amount of information that leaks from the observations is quantified by
means of the mutual information I(Ỹ1, . . . , ỸNo ;T). Making use of the chain
rule for entropies [6], it can be written in a more illustrative manner as

I(Ỹ1, . . . , ỸNo ;T)

= I(Ỹ1, . . . , ỸNo ;T, M1, . . . , MNo) − I(Ỹ1, . . . , ỸNo ; M1, . . . , MNo|T)
= I(Ỹ1, . . . , ỸNo ;T|M1, . . . , MNo) + I(Ỹ1, . . . , ỸNo ; M1, . . . , MNo)
− I(Ỹ1, . . . , ỸNo ; M1, . . . , MNo |T). (3)

The first term of (3) is the information leakage in the KMA case, that was
studied in [5]. One fundamental property of the KMA scenario is that, under
the assumption T ∼ U(V(Λ)), the conditional pdf of the dither signal is [5]

f(t|ỹ1, . . . , ỹNo
,m) =

{
(vol(SNo(m)))−1, t ∈ SNo(m)
0, otherwise, (4)

where m � (m1, . . . , mNo),

SNo(m) �
No⋂

j=1

Dj(mj), (5)

Dj(mj) = (ỹj − dmj − Z(Λ)) mod Λ. (6)



Exploiting Security Holes in Lattice Data Hiding 163

Eq. (5) denotes the “feasible region” for the secret dither, conditioned on the
observations and the message sequence m. This property will be frequently used
in the remaining of this paper. The third term of (3) represents the achievable
rate for a fair user, i.e., knowing the secret dither T, whereas the second term
is the rate achievable by unfair users (which is not null, in general) that do
not know T. A similar reasoning to that followed in [5, Sect. II] shows that the
mutual information in (3) is concave and increasing with No. Notice that

I(Ỹ1, . . . , ỸNo ; M1, . . . , MNo) − I(Ỹ1, . . . , ỸNo ; M1, . . . , MNo |T) < 0, (7)

so the information leakage in the WOA case never exceeds that in the KMA
case, as expected. In order to compute the asymptotic gap (when No → ∞)
between the security level of KMA and WOA scenarios, the left hand side of (7)
is rewritten as No ·H(M1|Ỹ1,T)−H(M1, . . . , MNo|Ỹ1, . . . , ỸNo). Although the
proof cannot be included here due to space limitations, it is possible to show
that, for equiprobable message sequences,

lim
No→∞

(H(M1, . . . , MNo |Ỹ1, . . . , ỸNo) − No · H(M1|Ỹ1,T)) → log(p). (8)

Hence, the asymptotic gap between KMA and WOA scenarios in terms of in-
formation leakage per dimension is R = log(p)/n, i.e., the embedding rate. This
result has important implications, since in practical scenarios we usually resort
to low embedding rates that allow to recover the embedded message without
the use of complex channel coding schemes. The problem is that low embedding
rates may yield a security level similar to that of the KMA scenario. In spite
of this, the WOA scenario still provides one major advantage over the KMA
in terms of security, because in the WOA case the attacker cannot aspire to
acquire perfect knowledge of the secret dither vector (even for infinite No) un-
less he has information about the a priori probabilities of the message sequences
(introduced by the specific channel coding scheme being applied, for instance).
This is a consequence of the following property: 2

Pr(m|ỹ1, . . . , ỹNo
)

= Pr((m + j · 1) mod p|ỹ1, . . . , ỹNo
) · Pr(m)

Pr((m + j · 1) mod p)
, j ∈ M, (9)

where the modulo operation is applied componentwise, and 1 denotes the n-
dimensional vector with all components equal to 1. The obtention of Eq. (9)
follows by combining equations (18) and (20) of the Appendix, and taking into
account that the addition of a constant vector to the observations does not
change the a posteriori probabilities of the embedded messages. This ambiguity
makes impossible to reduce the uncertainty about T beyond a set of p discrete
(equiprobable) points. However, such uncertainty can be further reduced by ex-
ploiting the statistical dependence between the symbols embedded in different
blocks if a channel code has been applied.
2 Eq. (9) holds directly for nested codes obtained through Construction A, and also

for codes obtained through self-similar partitions if the coset leaders are properly
arranged in M.
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3.1 Coding Strategies for Achieving Perfect Secrecy

Under certain assumptions it is possible to achieve null information leakage,
a.k.a. “perfect secrecy”, i.e., I(Ỹ1, . . . , ỸNo ;T) = 0. In the following lemma,
two different strategies are considered.

Lemma 1. Assuming equiprobable symbols and independence between the mes-
sages embedded in different blocks, the two following strategies achieve perfect
secrecy:

1. Using self-similar lattice partitions with nesting ratio p and distortion com-
pensation parameter αk = 1 − kp−

1
n , k = 1, . . . , p

1
n − 1.

2. Making |M| → ∞ with the coset leaders dk, k = 0, . . . , ∞ uniformly distrib-
uted in V(Λ).

Outline of the proof: Due to the lack of space, a detailed proof is not included.
The proof is based on the fact that, under the assumption of independence
between the embedded messages, h(Ỹ1) = h(Ỹ1|T) is a necessary and sufficient
condition for achieving perfect secrecy. For proving the first part of the lemma,
we have to prove that

f(ỹ1|T = t) =
1
p

p−1∑

i=0

f0(ỹ1 − t − di mod Λ) =
1

vol(V(Λ))
∀ ỹ1 ∈ V(Λ), (10)

where f0(·) is given by (2). Intuitively, Eq. (10) turns out to be true for the
considered values of α because in that case the union of p regions Z(Λ) (which are
scaled versions of V(Λf )) shifted by the corresponding coset leaders dk, k ∈ M,
perfectly packs in space, yielding a watermarked signal uniformly distributed
in V(Λ). The proof of the second part of the lemma consists in showing that
f(ỹ1|T = t) = (vol(V(Λ)))−1 ∀ ỹ1 ∈ V(Λ), which is true due to the uniform
distribution of the coset leaders. �

Some remarks to the results stated in Lemma 1 are in order:
1) The first strategy stated in Lemma 1 yields a finite and discrete set of

values for α that permit to achieve perfect secrecy; however, the choice of these
values may be in conflict with robustness requirements. Notice also that the
second strategy is independent of α and the type of lattice partition.

2) Lemma 1 suggests that, for achieving good security levels, the codewords
(coset leaders) must be uniformly distributed over V(Λ) in order to completely
fill the space (also with help of the self-noise introduced when α < 1). Thus,
simple coding schemes (as repetition coding, see Section 3.2) do not necessarily
yield good security levels, even for high embedding rates.

3) The condition of mutual independence between the symbols embedded in
different observations is key to guarantee perfect secrecy. To see this, note that
the conditional pdf of the dither signal can be written as

f(t|ỹ1, . . . , ỹNo
) =

∑

m∈MNo

f(t|m, ỹ1, . . . , ỹNo
) · Pr(m|ỹ1, . . . , ỹNo

),
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where MNo denotes the whole message space. When perfect secrecy is achieved,
the probability distribution Pr(m|ỹ1, . . . , ỹNo

) makes the conditional pdf of the
dither uniform over V(Λ). If the symbols mi are not mutually independent, then
the a posteriori distribution of the messages is changed, so the conditional pdf
of the dither is no longer uniform. Hence, the strategies proposed in Lemma 1
in conjunction with channel coding across different blocks will provide perfect
secrecy only if the attacker ignores the channel code being applied and the
dependencies between symbols that it introduces.

4) The proof of the lemma resorts to the flat-host assumption to show null
information leakage. In practice, small information leakages may exist due to
the finite variance of the host signal, which causes the host distribution to not
be strictly uniform in each quantization cell. However, this information leakage
seems to be hardly exploitable in practical attacks.

3.2 Theoretical Results for Cubic Lattices with Repetition Coding

One of the most popular schemes for lattice data hiding is DC-DM with repeti-
tion coding [9], which can be seen as a particular case of Construction A using
g = (1, . . . , 1)T and Λ = ΔZ

n. In order to obtain the information leakage for
this scheme, Eq. (3) is rewritten using the chain rule for mutual informations [6]
and the results in [5, Sect. III] as (assuming equiprobable message sequences)

1
nI(Ỹ1, . . . , ỸNo ;T)

=
1
n

No · H(M1|Ỹ1,T) − 1
n

H(M1, . . . , MNo|Ỹ1, . . . , ỸNo)

+
No∑

i=2

1
i

− log(1 − α), No ≥ 2. (11)

Eq. (11) does not admit a closed-form expression, although it is possible to
obtain the entropies of interest numerically. The second term of Eq. (11) is

EỸ1,...,ỸNo

[
H(M1, . . . , MNo|Ỹ1 = ỹ1, . . . , ỸNo = ỹNo

)
]
, (12)

which can be computed through the a posteriori probability distribution of the
message sequences, that can be obtained according to the Appendix, arriving at
(assuming equiprobable message sequences again)

Pr(m1, . . . , mNo |ỹ1, . . . , ỹNo
) =

vol(SNo(m1, . . . , mNo))∑
m∈MNo vol(SNo(m))

, (13)

where MNo denotes the whole message space for No observations (actually, only
the message sequences with non-null probability need to be taken into account).
The feasible region is always a hypercube, and as such it can be computed compo-
nentwise. Finally, the entropy (12) is obtained by averaging over the realizations
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Fig. 3. Information leakage per dimension for cubic Λ using repetition coding. Impact
of the repetition rate (n) for α = 0.52 and p = 2 (a), and impact of the alphabet size
(p) for α = 0.6 and n = 10 (b).

of Ỹ1, . . . , ỸNo . For repetition coding, the problem of computing H(M1|Ỹ1,T)
is the dual of the computation of h(T|Ỹ1, . . . , ỸNo , M1, . . . , MNo), which was
addressed in [5]. For the entropy of interest, we have

H(M1|Ỹ1,T) = H(M1|Ỹ1,T = 0) = EỸ1

[
H(dM1 |Ỹ1 = y,T = 0)

]
. (14)

and H(dM1 |Ỹ1 = y,T = 0) = log(
∑p−1

k=0 II((Δ · k/p) mod Δ)), where II(·) is
the indicator function:

II(x) �
{

1, x ∈ I
0, otherwise,

and I � [maxi=1,...,n{ỹi} − (1 − α)Δ/2, mini=1,...,n{ỹi} + (1 − α)Δ/2],with
yi, i = 1, . . . , n, the components of ỹ1. The expectation (14) is obtained by
averaging over the realizations of Ỹ1.

The results are illustrated in Fig. 3 and compared to the results obtained for
the KMA scenario, supporting some of the conclusions given in sections 3 and 3.1.
Specifically, Fig. 3(a) shows the negative impact in the security level of increasing
the dimensionality while keeping constant the embedding rate, whereas Fig. 3(b)
shows the security improvement brought about by the increase of the alphabet
size. Fig. 3(a) shows that the gap in the information leakage between KMA and
WOA tends asymptotically to log(2)/n. On the other hand, Fig. 3(b) shows that
increasing p does not yield a significant improvement; in fact, it can be shown
that with repetition coding is not possible to achieve perfect secrecy in any way
(but for n = 1, which yields a self-similar partition), because the distribution of
the coset leaders (in a diagonal of the n-dimensional hypercube) does not allow
to fulfill the condition of perfect secrecy (h(Ỹ1) = h(Ŷ1|T)).



Exploiting Security Holes in Lattice Data Hiding 167

4 A Practical Dither Estimator

4.1 Dither Estimator Based on Set-Membership Theory for KMA

In case the embedded symbols m = {m1, . . . , mNo} are known by the attacker,
the algorithm proposed in [5, Sect. IV] gives an accurate estimate of the secret
dither. This estimator exploits the fact that each observation defines a bounded
feasible region for T, according to Eq. (5). It works under the assumption that
α > 0.5, in order to assure convergence. The feasible region corresponding to the
ith observation (Eq. (6)) is redefined as Di(mi) � ṽi+Z(Λ), i = 1, . . . , No,where
ṽi � (ỹi − dmi − ỹ1 + dm1) mod Λ. By introducing the offset −ỹ1 + dm1 in
every observation, we get a convex Sk(m) for all k and m, as discussed in [5].
Obviously, this offset must be removed from the final dither estimate.

Since the exact computation of SNo(m) is, in general, computationally pro-
hibitive, the algorithm proposed in [5, Sect. IV] computes an outer bound of
SNo(m) in order to an keep an affordable computational complexity. We will
consider in this paper the “inner polytope” algorithm [5], where SNo(m) is de-
scribed by means of an n-dimensional ellipsoid. This allows to describe the fea-
sible region with a reduced and constant number of parameters, independently
of its complexity.

4.2 Joint Bayesian and Set-Membership Estimation for WOA

The uncertainty about the embedded symbols mk invalidates the straightforward
application of the estimation algorithm described in Section 4.1 to the WOA
scenario. A possible solution would be to consider all the possible sequences
of embedded messages so as to transform the WOA problem into pNo parallel
KMA problems. Obviously, this brute force approach is not practical due to
the huge number of possible message sequences, which grows exponentially with
the number of observations. However, the a priori search space for the correct
sequence of embedded symbols can be dramatically reduced if one considers their
a posteriori probability, since certain message sequences have null or negligible
probability of occurrence. This is the approach that will be followed here.

From the Appendix, we know that the a posteriori probability of a certain
message sequence m (hereinafter, a “path”) reads as

Pr(m|ỹ1, . . . , ỹNo
) =

vol(SNo(m)) · Pr(m)
(vol(Z(Λ)))No · vol(V(Λ)) · f(ỹ1, . . . , ỹNo

)
. (15)

In the following we consider a priori equiprobable paths (either because no coding
across different blocks takes place or because we do not know the actual coding
scheme being applied), which represents the worst case for the attacker.3 Under
this assumption, the only term of (15) that depends on the hypothesized path
is vol(V(Λ)). In practical terms, the most probable paths are those with the
3 If the attacker had knowledge about the coding scheme being applied, he could

consider the a priori probability of each path in order to simplify the estimation.
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largest feasible region, SNo(m). Hence, we can define the “score” of a path m
as λ(m) � vol(SNo(m)), which can be used to compare the probabilities of
different paths as long as they have the same length. It follows that, given No

observations, maximum-likelihood (ML) estimation of the most probable path is
given by m̂ = arg maxm λ(m), and the ML estimate (if T ∼ U(Λ), as assumed
in this paper) of the secret dither would be given by any point in SNo(m̂).

A possible implementation of the proposed estimator is by means of a tree
search where each branch of the tree represents a hypothesized path with a se-
cret dither estimate associated. The tree search can be accomplished iteratively,
discarding those paths with null probability, thus producing a subexponential
increase in the number of feasible paths. Nevertheless, this tree search cannot be
directly applied as is, in general, due to the some computational issues: 1) despite
the subexponential increase in the number of feasible paths, the computational
requirements may still become unaffordable; 2) as mentioned in Section 4.1, the
exact computation of the feasible regions may be unfeasible in practice, except
for some simple lattices. In order to overcome these computational restrictions,
the following strategies are proposed.

1) Outer bounds of the feasible regions can be computed by means of the
“inner polytope” algorithm [5], as mentioned in Section 4.1, providing a huge
reduction of the computational complexity. However, this approximation may
impact negatively the performance of the estimation algorithm because it mod-
ifies the actual scores of the paths.

2) A fast algorithm for checking null intersections (without computing the
outer bound to the feasible region) can be used for speeding up the estimation
procedure. An algorithm based on the OVE algorithm [10] for set-membership
estimation is suited to our purposes.

3) In order to limit the number of feasible paths in each iteration, we resort to a
“beam search” strategy: let λ(m0) be the score of the most probable path. In each
iteration, those paths mi for which λ(m0)/λ(mi) > β are discarded from the
tree search. The parameter β > 0 is termed “beam factor” and causes a prunning
of the tree by keeping only the branches with the highest probabilities. Besides
the beam search strategy, an additional prunning criterion is implemented by
limiting the maximum number of allowable feasible paths.

4) The a priori path space, given by MNo , can be divided into equivalence
classes (with p elements each) defined by the relation

m1 ∼ m2 if m2 = (m1 + j · 1) mod p, for any j = 0, . . . , p − 1, and m1,m2 ∈ MNo .

Since the paths belonging to the same equivalence class have the same a poste-
riori probability (recall Eq. (9)), the search space can be reduced to one repre-
sentative per equivalence class, thus reducing the cardinality of the search space
by a factor p without incurring in any loss of performance.

For the sake of clarity, the steps of the proposed estimation algorithm are
summarized here. The input data are the observations {ỹi, i = 1 . . . , No} and
the parameters of the nested lattice code.

1. Initialization: m0 = 0, D1(0) = (1 − α)V(Λ), and K1 = 1, with K1 denoting
the number of feasible paths for the first observation (1 in our case). This
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initialization takes into account the offset introduced in Section 4.1 and the
division of MNo into equivalence classes.

2. For i = 2, . . . , No

(a) Let {mk, k = 1, . . . , Ki−1} be the set of feasible paths for the i − 1 first
observations. Construct a set of candidate paths as {mk,l = [mk l], k =
1, . . . , Ki−1, l = 0, . . . , p − 1}.

(b) Compute the regions Si(mk,l) using ṽr = (ỹr − dmk,l(r) − ỹ1) mod Λ,
r = 1, . . . , i, where mk,l(r) denotes the rth element of mk,l. If the inner
polytope algorithm is applied, this step yields the ellipsoids that bound
the true feasible regions. Prior to this step, the algorithm that checks
null intersections may be applied for saving computational resources.

(c) Compute the score λ(mk,l) of each path as vol(Si(mk,l)). The paths
with non-null score are added to the tree. If a prunning criterion is
being applied, retain only those paths that fulfill the requirements. This
step yields Ki paths {m0, . . . ,mKi−1} with non-null probability, termed
“surviving paths”.

3. The dither estimate is computed as the center of SNo(m0) (or its bounding
region), where m0 is the path with the highest score (hence, the most likely)
among the KNo surviving branches of the tree. The p paths belonging to the
equivalence class [m0] can be computed as mk = (m0+k·1) mod p, k ∈ M,
and the p corresponding dither estimates are given by t̂k = (t̂0 + dk + ỹ1)
mod Λ, k ∈ M, where t̂0 is the dither estimate associated to the path m0.
Note that ỹ1 is added for canceling the offset introduced in Step 2-b.

4.3 Experimental Results

This section presents the results of applying the estimation algorithm proposed
in 4.2 over some practical schemes. The experiments have been carried out under
the following assumptions: the host signals follow a Gaussian distribution with
zero mean and variance σ2

X = 10, and the DWR is 30 dB in all cases (DWR �
10 log10(σ2

X/Dw)); the embedded messages are equiprobable (i.e., no coding is
applied along different blocks), and the attacker knows the parameters of the
nested lattice code being used, as stated in Section 2. In all cases, a beam factor
β = 1045/10 has been used, and the maximum number of feasible paths was
limited to 250. The performance of the estimator is measured in terms of the
mean squared error (MSE) per dimension between the dither estimate and the
actual dither. In order to compute the MSE without ambiguities (due to the
existence of p equiprobable paths), it is assumed that the message conveyed by
the first observation corresponds to the symbol 0.

Fig. 4 shows the results obtained for a scheme using a cubic shaping lattice in
10 dimensions and repetition coding (see Section 3.2) with α = 0.6. In this case,
the simplicity of the feasible regions allows to compute them exactly. It can be
seen that for p = 4 is still possible to attain the same accuracy as in the KMA
scenario, whereas for p = 7 and p = 10 a significant degradation of the MSE is
observed. This degradation is a consequence of the fact that, as p is increased,
the probability of decoding the correct path decreases. In the experiments, the
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Fig. 4. MSE per dimension (a) and average number of surviving paths in the tree search
(b) using cubic Λ with repetition coding (n = 10), α = 0.6, and different embedding
rates

probability of choosing an incorrect path has been shown to be around 0.05 and
0.1 for p = 7 and p = 10, respectively. The average number of surviving paths in
the tree search is plotted in Fig. 4 for illustrating the complexity of the search
procedure. In this regard, it can be seen that even in a difficult case as p = 10
with α = 0.6, the tree search can still be performed with low complexity.

Fig. 5(a) shows the results obtained for a hexagonal shaping lattice and α =
0.7, using the inner polytope algorithm in order to compute the approximate
feasible regions. Notice that, although α is higher than in the former case, the
maximum embedding rate considered now is substantially larger: 1

2 log2(9) bits
vs. 1

10 log2(10) bits (the case with p = 9 corresponds to the lattice code shown in
Fig. 2(b)). Similar comments as above apply in this case: increasing p degrades
the MSE, and the spurious peaks in the plots are due to incorrect decisions about
the actual path. Finally, Fig. 5(b) shows the results obtained for the E8 shaping
lattice [8], the best lattice quantizer in 8 dimensions.

An accurate dither estimate (subjected to an unknown modulo-Λ shift, as the
one obtained here) allows to implement a number of harmful attacks. We are
going to focus on a reversibility attack as follows: based on a dither estimate t̂
and an estimated path m̂, the host vector corresponding to the kth watermarked
block can be computed as

x̂k = yk − α

1 − α
(QΛ(yk − dm̂k

− t̂) − xk + dm̂k
+ t̂). (16)

It is interesting to notice that the ambiguity in the estimated message does not
affect negatively the host estimation whenever the estimated path m̂ fulfills

m̂ = (m + k · 1) mod p, for any k ∈ M, (17)

being m the actual embedded path. The reason is that the dither estimate
associated to any of those paths yields the same fine lattice Λf , and thus it is
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Fig. 5. MSE per dimension for α = 0.7 and different embedding rates. Results for
hexagonal (n = 2) (a) and E8 (n = 8) (b) shaping lattices.

(a) (b)

Fig. 6. Illustration of a reversibility attack based on dither estimate according to
Eq. (16). Image watermarked using Λ = E8, α = 0.7, p = 10 and PSNR = 38.2
dB (a), and estimate of the original image with PSNR = 55.9 dB (b).

valid for performing a successful reversibility attack. Fig. 6 shows the result of
implementing this attack on a real watermarked image. The parameters of the
watermarking algorithm are the same as above, and the watermark is embedded
in the low frequency coefficients of 8 × 8 non-overlapping DCT blocks, yielding
a PSNR = 38.2 dB. The resulting host estimate, shown in Fig. 6(b), presents
a PSNR of approximately 56 dB. Nevertheless, if each pixel value of this host
estimate is rounded off to the closest integer, then the PSNR goes to ∞.
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5 Conclusions

We have presented in this paper an investigation of the security provided by
data hiding schemes based on nested lattice codes randomized by means of se-
cret dithering. It has been shown that, although it is theoretically possible to
achieve perfect secrecy, the security level of many practical scenarios (i.e., sim-
ple shaping lattices, low embedding rates) can be fairly low. In fact, the security
holes of the data hiding schemes studied in this paper have been shown to be ex-
ploitable in practice with affordable complexity, allowing for instance to reverse
the watermarking process with high fidelity. In general, the information leakage
about the secret dither can be reduced by increasing the embedding rate, but
this solution demands for more powerful error correcting codes (ECC) if one
wants to guarantee reliable transmission. A possible drawback, as noted in this
paper, is that the use of ECCs introduces statistical dependence between dif-
ferent observations that could be exploited by an attacker, specially for simple
ECCs. The complexity of exploiting the information leakage provided by channel
coding deserves further attention in future works.
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Appendix

A Posteriori Probability of the Message Sequences

In order to compute the probability a posteriori of a message sequence m =
(m1, . . . , mNo) (hereinafter, a “path”), this probability is first rewritten using
Bayes’ rule:

Pr(m1, . . . , mNo |ỹ1, . . . , ỹNo
)

=
f(ỹ1, . . . , ỹNo

|m1, . . . , mNo) · Pr(m1, . . . , mNo)
f(ỹ1, . . . , ỹNo

)
. (18)

The a posteriori probability of the observations can be factored as:

f(ỹ1, . . . , ỹNo
|m1, . . . , mNo) =

No∏

k=1

f(ỹk|m1, . . . , mk, ỹ1, . . . , ỹk−1)

=
No∏

k=1

∫

V(Λ)
f(ỹk|mk, t) · f(t|ỹ1, . . . , ỹk−1|m1, . . . , mk−1)dt. (19)

In order to compute each factor of (19), we will resort to the flat-host assumption,
which implies that f(ỹk|mk, t) = f0(ỹk − dmk

− t mod Λ). Thus, each factor
of (19) can be seen as a circular convolution over V(Λ):

f(ỹ1, . . . , ỹNo
|m1, . . . , mNo)

=
No∏

k=1

f0(ỹk − dmk
mod Λ) � f(t|ỹ1, . . . , ỹk−1, m1, . . . , mk−1)

Furthermore, under the assumption that T ∼ U(V(Λ)), we have that the condi-
tional pdf of the dither is given by Eq. (4). By combining (2) and (4), it can be
seen that the integrand of the kth factor in (19) is given by
{

(vol(Z(Λ)) · vol(Sk−1(m)))−1, t ∈ Sk−1(m) : (ỹk − dmk
− t) mod Λ ∈ Z(Λ)

0, otherwise.

The condition on t in the equation above is equivalent to t ∈ Sk−1(m) : t ∈
(ỹk −dmk

− Z(Λ)) mod Λ, so each factor in (19) is proportional to the volume
of Sk(m) = Sk−1(m) ∩Dk(mk). Finally, Eq. (19) can be succinctly expressed as

f(ỹ1, . . . , ỹNo
|m1, . . . , mNo) =

No∏

k=1

vol(Sk(m1, . . . , mk))
vol(Z(Λ)) · vol(Sk−1(m1, . . . , mk−1))

=
vol(SNo(m1, . . . , mNo))

(vol(Z(Λ)))No · vol(V(Λ))
. (20)
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