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Abstract. We describe new attacks on the financial PIN processing
API. The attacks apply to switches as well as to verification facilities.
The attacks are extremely severe allowing an attacker to expose customer
PINs by executing only one or two API calls per exposed PIN. One of
the attacks uses only the translate function which is a required function
in every switch. The other attacks abuse functions that are used to al-
low customers to select their PINs online. Some of the attacks can be
applied in switches even though the attacked functions require issuer’s
keys which do not exist in a switch. This is particularly disturbing as it
was widely believed that functions requiring issuer’s keys cannot do any
harm if the respective keys are unavailable.
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1 Introduction

Personal Identification Number (PIN) is the means used by a bank account
holder to verify his/her identity to the issuing bank. When a PIN is entered
by the card holder at a service point (e.g., an Automatic Teller Machine), the
PIN and account number are sent to the verification facility (the issuing bank
or other authorized entity) for verification. To protect the PIN on transit, it is
formatted into a PIN block, the PIN block is encrypted under a transport key
and the resulting Encrypted PIN Block (EPB) is sent for verification. As there
usually isn’t direct communication between the service point and the verification
facility, the PIN goes through switches. Each switch decrypts the EPB, verifies
the resulting PIN block format (so the format serves as some form of Message
Authentication Code), re-formats the PIN block if necessary, and re-encrypts the
PIN block with a transport key shared with the next switch (or the verification
facility when arriving there). Switches may be part of other issuers’ verification
facilities or may be stand alone. There is generally no connection between a
switch facility that handles an incoming EPB, and the issuer of the respective
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account number. Additionally, switches may be physically far from the issuer
(for example, when a customer withdraws money overseas).

To protect the PIN and the encryption keys both in switches and in the issuer’s
environment, all operations involving a clear PIN are handled within a Hardware
Security Module (HSM). Such operations are controlled by an application at the
site using a cryptographic API. The Financial PIN Processing API is a 30-years
old standard which includes functions for, e.g., PIN issuing, PIN verification,
PIN reformatting, and PIN change.

The issuer’s environment is usually physically separated into an issuing facility
and an online verification facility. The issuing facility where customer PINs are
generated and printed for delivery is usually isolated logically and physically from
the rest of the issuer’s environments. The verification facility as well as switches
on the other hand, are connected to the outside world and required to be online
so they are much more prone to attack. Much of the required functionality in the
issuing facility is sensitive, so HSMs implementing the Financial PIN processing
API should separate (at least logically) the functionality required for the issuing
facility from that of the verification facility. Switches are treated as verification
facilities in this respect so HSMs in switches should contain (at least logically)
only functions required for the verification facility.

In this paper we describe attacks on the Financial PIN Processing API, which
result in discovering customers PINs. The attacks can be applied in switches as
well as in verification facilities. The attacks require access (i) to the HSM in the
attacked facility for executing API calls; (ii) to EPBs incoming to the attacked
facility. Applying such attacks thus requires the help of an insider in the attacked
facility. However, when the attacks are applied on a switch, one cannot relate to
them as insider attacks. Since the switch, and the issuer whose EPBs are attacked
on the switch, are unrelated, an insider of the switch facility is an outsider from
the issuer’s point of view. The issuer has no control, neither on the environment
nor on the employees in the attacked facility. We stress that our attacks only
require the use of API functions (and only the ones approved for the verification
facility) and do not assume that the attacker can perform sensitive operations
such as loading known keys into the attacked HSM.

Attack 1 uses a single API function denoted translate. The translate function
allows to reformat an EPB in any PIN block format to an EPB in another PIN
block format. It also allows to change the transport key which encrypts the PIN
block. It is a required function in every switch, and exists also in verification
facilities as part of the API. The attack executes a (one-time) preprocessing
step of 20,000 HSM calls in which a (small) look-up table is built. This table
allows revealing the PIN packed in each EPB arriving to the attacked switch
using one or two HSM calls.

Attack 2 requires the use of one of two API functions - calculate offset or
calculate PVV - which are used primarily for allowing customers to select their
PINs online. The attack has four variants. These variants allow discovering a
PIN given its respective account number (Attack 2.1), discovering a PIN from its
EPB (Attack 2.2), setting a new value for a customer’s PIN given the respective



226 O. Berkman and O.M. Ostrovsky

account number (Attack 2.3), and partitioning all EPBs arriving to the attacked
facility into groups having the same PIN (Attack 2.4). The attacks on account
numbers (2.1 and 2.3) are applied in a verification facility. The attacks on EPBs
(2.2 and 2.4) can be applied both in switches and in verification facilities. Each
of the four variants can be performed in one or two HSM calls per attacked
entity (account number or EPB), and requires no preprocessing.

Both calculate offset and calculate PVV functions require issuer keys so it is
quite surprising that they can be attacked in switches as switches do not contain
issuer keys. This is particularly disturbing as it is widely believed that functions
requiring issuer’s keys cannot do any harm if the respective keys are unavailable.

In some of the cases above, the attacked functions are not used by the appli-
cation at the site. For example, the calculate offset and calculate PVV functions
are generally not required in switches and translate is generally not required in
a verification facility. It is important in such cases to irreversibly disable these
functions (as well as other unused functions) if this capability is offered. Issuers
certainly have the incentive to apply such measures in their verification (and
issuing) facilities. However, it is not clear how to verify that switch facilities
adhere to these measures.

The attacks abuse integrity and secrecy weaknesses in the financial PIN
processing API, some of which are well known ([1,2,3,4,5,6], see also Section 3).
For example, integrity in the financial PIN processing API is so weak that one
can easily trick API functions into accepting a customer’s EPB together with
an account number which is not the customer’s.

As the attacks target the standard itself, they apply to all common com-
mercial HSMs implementing the API and affect all financial institutions. The
attacks apply also to systems employing the EMV standard ([7]) when on-line
verification takes place, as is the case in ATM transactions.

The attacks enable the discovery of several thousand customer PINs per at-
tacked HSM per second enabling an attacker to apply serious attacks on issuing
banks, such as simultaneous withdrawals of aggregate large sums of money. The
attacks may also explain cases of phantom withdrawals where a cash withdrawal
from an ATM has occurred, and neither the customer nor the bank admits liability.

To prevent the attacks described in this paper, changes in the standard must
be introduced. Such changes require worldwide modifications in ATMs, HSMs
and other components implementing the Financial PIN processing API.

The rest of the paper is organized as follows. Section 2 discusses the threat
model. In Section 3 we describe known vulnerabilities in the standard. Sections 4
and 5 describe our attacks. A discussion of the attacks is given in Section 6 and
is followed by concluding remarks in Section 7. Finally, an appendix contains
information on the attacked functions for reference.

2 Threat Model

A potential attacker is an insider of the attacked facility - a switch or a veri-
fication facility. Such an insider should have logical access to the HSM in the
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facility and should be able to generate API calls (the required API functions
depend on the attack). In many cases this is easy as the HSM is connected to
the organization’s internal network. When this is not the case, the attacker can,
for example, interfere with or masquerade as the legal application working with
the HSM in the attacked facility.

In most of the attacks the attacker is required to generate EPBs which contain
known PINs and which share a transport key with the attacked HSM. To do this,
the attacker can use any banking card (genuine or fake) and enter a desired PIN
at an ATM adjacent physically or logically to the attacked HSM. The attacker
then needs to record the EPB when it arrives to the attacked facility. This can
be done in various ways, e.g., by a program that reads the EPB on its way from
the application to the HSM in the site. In the same way an attacker is able to
record EPBs incoming to the switch, e.g., in order to expose the PINs they hide.

In order to prevent insider attacks on their HSMs, a few banks install a (hard-
ware) mechanism by which their on-line application timeouts whenever the HSM
is used by a different entity. However, it is hard to figure out whether a short
timeout really signifies an attack. Furthermore, it is possible to attack a system
employing such a mechanism by, for example, physically intervening with the
low-level communication between the application and the HSM.

All API functions use cryptographic keys. The standard does not specify how
keys should be input to an API function but most implementations either keep
keys outside the HSM encrypted by a master key, or keep them inside the HSM.
In the first case, HSMs accept encrypted keys in each API call. In this case, an
attacker is only required to record the desired encrypted key buffer from a real
transaction. The same encrypted key can then be used in the attacker’s API calls
to the HSM. In the second case where keys are stored and managed inside the
HSM, the attacker only needs to know the required key ID. In this case, however,
the HSM may also handle user access rights to the keys. To use the required keys
in such cases the attacker can, as before, interfere with or masquerade as the legal
application working with the HSM in the attacked facility. In any case, we never
assume that the attacker has any knowledge of the value of cryptographic keys.

Transport keys sometimes change. However, parameters to the API functions
that control the keys to be used in the API function come from the outside
so the attacker can always direct the HSM to use the same key. Additionally,
when required, the attacker can use the translate function to translate an EPB
encrypted with one transport key to an EPB encrypted with another.

It should be noted that an attacker is not required to be an authorized user
- a maintenance employee or after-hours cleaner can generally do the job on
the attacker’s behalf. Moreover, in all variants of Attack 2, the attacker can
also be an insider programmer that applies the attack innocently, believing that
the PVVs or offsets (see Section 5 and the appendix for definitions) he/she
was asked to supply are required for legitimate purposes as they are output in
clear from the relevant API functions, and treated as non-sensitive. In switches,
insiders (perhaps even high-ranking) may conduct the attacks but target EPBs
of foreign banks only, dramatically decreasing the chances of their being caught.
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3 Basics and Previous Work

As we mentioned in the introduction, on its way for verification, the PIN is format-
ted into a PIN block and the result is encrypted using a transport key to generate
an Encrypted PIN Block (EPB). Specifically, [8] describes four different PIN Block
formats. ISO-0, ISO-1, ISO-2, and ISO-3, which differ in whether the customer’s
account number and/or random data is involved in the format in addition to the
PIN itself. ISO-0 uses only account number, ISO-1 uses only random data, ISO-2
uses neither account number nor random data, and ISO-3 uses both account num-
ber and random data. [9] approves ISO-0, ISO-1, and ISO-3 for online PIN trans-
actions. ISO-2 is not approved for online PIN transactions since an EPB based on
ISO-2 (and on a given transport key) has only 10,000 possible values (assuming
the PIN is of length 4) enabling the use of a look-up table.

Our attacks abuse the following known weaknesses:

1. The translate API function allows reformatting an EPB from any of the
approved formats (ISO-0, ISO-1, or ISO-3) to another ([3,6,4]).

2. The ISO-1 format is independent of any account number ([6]).
3. A result of Weaknesses 1 and 2 is that an EPB in ISO-0 (or ISO-3) associated

with a given account number can be converted (by going through ISO-1) to
an EPB in ISO-0 associated with a different account number ([1], [3] and [6]).
Note that doing this unties the link between the customer’s account number
and the customer’s PIN and creates a fabricated link between a different
account number and this customer’s PIN.

4. An EPB based on ISO-0 and a particular account number has only 10,000
possible values enabling the use of a look-up table ([3,1,6]). We note that this
weakness implies that for a particular account number, the ISO-0 format is
as weak as ISO-2.

5. As mentioned in the introduction, the format of PIN block serves as a form of
Message Authentication Code (MAC). The weakness is that in ISO-0 format,
digits of the PIN are XORed with digits of the account number, making it
impossible to correctly authenticate neither ([6,4,3]).

We are not aware of previous attacks abusing the calculate offset and calculate
PVV functions but note that Attack 2.1 which abuses the calculate offset function
is reminiscent of an attack (described in [10,11,6]) on a non-API function which
was added temporarily to the implementation of the API in a certain bank in
order to enable changing all customers’ account numbers without re-issuing new
PINs.

Previous API-level attacks appear in [12,13,14]. Previous attacks on the Fi-
nancial PIN Processing Standard appear in the references above as well as in
[11]. Among these, of particular interest is the decimalisation-table attack ([5]),
which targets the verify function in verification facilities. It allows revealing a
PIN from its account number or EPB by executing 15 HSM calls on the aver-
age. Contrary to our attacks, the decimalisation-table attack does not apply to
switches. Additionally, it targets only one of the two verification methods in the
standard (see Section 5 for details) while we attack both.
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4 Attack 1 - Attacking the Translate Function

The attack we describe in this section, enables revealing for any EPB arriving to
the attacked switch (or verification facility), the PIN that the EPB packs. The
attack uses at most two API calls per EPB. The attack requires also a one-time
preprocessing step consisting of 20,000 API calls (assuming the PIN is of length
4 as is normally the case). The attack uses the translate API function only.

We start by observing that Weakness 3 (in Section 3) degrades the security
of the system to the strength of ISO-2 (recall that ISO-2 is the weak and thus
non-approved PIN block format): Fixing an account number to some value A
and translating all EPBs arriving to the attacked switch to ISO-0 with account
number A (going through ISO-1) ensures that all resulting EPBs are based
on account number A, thus degrading their strength to that of ISO-2. This
observation has extremely serious implications on the security of the Financial
PIN Processing API, as it implies that a single look-up table of size 10,000 is all
that is required in order to discover the PIN packed in every EPB arriving
to the attacked switch, regardless of its account number. Clulow ([6]) was
evidently aware to this saying ”it is noteworthy that regardless of format, key
and pan, all encrypted pins are potentially vulnerable to a single codebook”, but
his words seem to have gone almost unnoticed probably because he and others
had no efficient way of building the required table.

In this section we do exactly this. Specifically, we show how to generate a
table of 10,000 EPBs, where the ith EPB, 1 ≤ i ≤ 10, 000 contains the PIN
whose value is i, and such that each EPB in the table is formatted in ISO-0
using a fixed account number A.

One obvious way such a table can be generated is by brute force - generating
10,000 EPBs by ATMs: For each i, 1 ≤ i ≤ 10, 000 use a card with any account
number and type PIN value i. When the respective EPB arrives at the attacked
HSM, translate it to ISO-0 using account number A (by one or two calls to the
translate function depending on the format of the incoming EPB). Using different
account numbers when generating EPBs via ATMs would make it harder to
discover the attack.

We now describe a much more practical method of building the table. Instead
of generating an EPB per each possible PIN as in the brute force manner above,
this method uses Weakness 5 to generate an EPB per 100 possible PINs. Thus,
by generating 100 EPBs we can build the whole 10,000-entries look-up table (it
is also possible to generate less than 100 EPBs and build a partial look-up table).

We start by describing the ISO-0 PIN block format. Denote the PIN P1P2P3P4
and the respective account number A1A2 . . . A12 (only 12 digits of the account
number are used in the ISO formats). The PIN block is the XOR of two 16-
hexadecimal digits blocks. An original block containing the PIN (”F” stands for
the hexadecimal value F)

0 4 P1 P2 P3 P4 F F F F F F F F F F

with an account number block containing the account number
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0 0 0 0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

When an API function receives an EPB in ISO-0 as a parameter, it also
receives its associated account number. To use the PIN packed in the EPB, the
function decrypts the EPB, and XORs the result with the account number block
to recreate the original block. It then authenticates the result by verifying that
the values of the first two digits of the original block are 0 and 4, that the last
10 digits are hexadecimal F and that the PIN is composed of decimal digits.

Weakness 5 - the fact that two digits of the PIN are XORed with two digits
of the account number - is used for generating the table. The attacker gener-
ates in ATMs 100 EPBs packing, respectively, PIN values 0000, 0100, . . . , 9900.
Each of these EPBs is formatted in ISO-0 and associated with account number
00A3 . . . A12 where the values A3, . . . , A12 are immaterial to the attack and can
be different for each PIN value to make the attack more innocent. (It is also
possible to generate the 100 EPBs in ATMs using completely arbitrary account
numbers and then change the account number of each EPB to the desired one
using the translate function.)

We complete our description by showing how the attacker generates an EPB
containing PIN value xyuv for any decimal values x, y, u, v:

To generate an EPB that packs PIN value xyuv, the attacker uses the EPB
packing xy00 which was generated by ATM. Using the translate function this
EPB is reformatted to ISO-1 but instead of using the original account number
00A3 . . . A12 the attacker provides the translate function with account number
uvA3 . . . A12.

The translate function decrypts the EPB and gets a block which is the XOR
of the original block

0 4 x y 0 0 F F F F F F F F F F

and the original account number block

0 0 0 0 0 0 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Note that the function only sees the decrypted block - the XOR of these two
blocks. It then XORs the decrypted block with the following:

0 0 0 0 u v A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

to get

0 4 x y u v F F F F F F F F F F

This resulting block will be authenticated (its first two digits are 0 and 4, its
10 last digits are hexadecimal F, and the PIN consists of decimal digits). Con-
sequently, PIN value xyuv will be packed in an EPB in ISO-1 PIN block and
returned. The attacker can now translate this EPB to ISO-0 with the desired
account number A.
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5 Attack 2 - Attacking Functions Allowing PIN Change

In the Financial PIN Processing API, the PIN is verified using one of two ap-
proved methods - the IBM 3624 or the VISA PIN verification value (PVV)
methods. In both methods the input to the verify function is as follows:

– An EPB containing the PIN presented by the customer.
– The customer’s account number.
– A four decimal digits customer’s verification value (called offset in the first

method and PVV in the second).

This customer’s verification value is not secret. It is kept either in a database
or on the customer’s card.

Denote by P the PIN packed in the EPB, by A the customer’s account number,
and by V the customer’s verification value.

The verify function decrypts the EPB, authenticates it by verifying the PIN
block format, extracts P from the EPB, and verifies whether V = f(P, A) where
f is a function which depends on an issuer’s secret key. The function f and the
issuer’s key are different between the two methods.

In order to allow customers to select their PINs online, the Financial PIN
Processing API contains two functions (one for each method) that allow recal-
culating the customer’s verification value when the customer’s PIN changes. The
functions are denoted calculate offset and calculate PVV. Both functions receive
the following input:

– An EPB containing the customer’s selected PIN.
– The customer’s account number.

The functions return V = f(P, A) where P , A, V and f are as before. We note
that in both functions, the value V is pseudo random as a result of using the
random issuer’s key in f .

The main weakness in both functions regardless of f is that the new PIN
supplied to the function (packed in an EPB) is not bound to the old PIN.
Indeed, the main step in each of the four variants 2.1-2.4 abuses this weakness,
so the variants have much in common.

Note that since an attacker can carry out the attack by directly using the
API, it would not be enough to check the above binding by the application at
the site. Note also that it would not be enough to change the API by adding each
of these functions a parameter consisting of an EPB that packs the customer’s
old PIN (and a means to verify it, i.e., the respective verification value) since
the attacker can record a customer’s real EPB on its way for verification, and
use it as the additional parameter.

To attack any of the two API functions, we are required to send as parameters
an EPB and an account number. In all four attacks, the EPB would be generated
by one customer and the account number would belong to another. To force the
attacked function to accept the non-matching parameters, weaknesses 1 and 2
of Section 3 are utilized: We use the translate function to reformat each EPB to
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ISO-1 before sending it to the respective API function. Because ISO-1 does not
depend on account number, there would be no inconsistency between the EPB
parameter and the account number parameter. When describing the attacks
below, we do not mention this reformatting any more (but we count it in the
number of HSM calls required). Note that restricting the calculate offset or
calculate PVV functions to accept only EPBs with a certain format would not
thwart the attacks, as we can reformat the EPB to that format. Note also that
with the exception of Attack 2.4, all the attacks below can be applied (though in
a more restricted form) even if the translate function is disabled. See Section 5.3.

In Section 5.1 we describe our attacks on the calculate offset function. In
Section 5.2 we describe our attacks on the calculate PVV function. It is worth
noting that except for assuming that the value V is pseudo random, the attacks
on calculate PVV do not use any properties of the respective f (so, for example,
they apply also to calculate offset).

We use a shorthand O = offset(E, A) (respectively, V = PV V (E, A)) to
denote calling the calculate offset function (respectively, the calculate PVV func-
tion) with an EPB E and an account number A.

5.1 Attacks on the Calculate Offset Function

The specific function f in calculate offset is V = P − g(A) where P is the PIN
packed in the EPB parameter, A is the account number parameter, V is the
returned offset, g is a function that depends on an issuer’s key and computes a
4 decimal digits number, and ”−” is minus modulo 10 digit by digit.

Attack 2.1 - Attacking Account Numbers in a Verification Facility.
This attack reveals for every customer account number associated with the at-
tacked issuer, the respective customer’s PIN. It requires one HSM call per at-
tacked account number. In addition, it requires generating by ATM an EPB that
packs a known PIN. This single EPB will be used to attack all account numbers
associated with the issuer.

We start by generating an EPB in an ATM that packs an arbitrary known
PIN (the account number associated with this EPB is immaterial as we reformat
the EPB to ISO-1 prior to using it). This EPB, denoted Ea (for attacker’s EPB)
is used to attack the account numbers of all customers.

For each customer’s account number Ac, compute O = Offset(Ea, Ac). De-
note by Pa the value of the known PIN packed in the attacker’s EPB, by Pc the
required customer PIN, and by Oc the customer’s offset (stored in the issuer’s
database or on the magnetic stripe of the card). We thus have O = Pa − g(Ac).
Since Pa is known, g(Ac) can be easily computed. We also know that Oc =
Pc − g(Ac). Since g(Ac) is known and since the value of Oc is not secret (it can
be recorded during a transaction or read from the database or from the card)
the customer’s PIN Pc can be trivially calculated. Note that the exact nature
of g is immaterial, but the attack requires that the real value of g(Ac) be used
(since the value of Oc depends on it) so it needs to be applied in the verification
facility where the required issuer’s key exists.
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Attack 2.2 - Attacking EPBs Incoming to a Switch. The attack reveals
for each customer’s EPB arriving to the attacked switch, the PIN it packs.
It requires one or two HSM calls per attacked EPB. In addition, it requires
generating by ATM an EPB that packs a known PIN. This single EPB will be
used to attack all EPBs arriving to the attacked switch. We note that the attack
can be applied also in verification facilities.

Generate an EPB in an ATM that packs a known PIN and denote it Ea.
Fix an arbitrary account number B. Compute O1 = Offset(Ea, B). For each
customer’s EPB arriving to the attacked switch compute O2 = Offset(Ec, B)
where Ec is the customer’s EPB.

Denote by Pa and Pc the values of PINs packed in the attacker’s and cus-
tomer’s EPBs, respectively. We thus have O1 = Pa − g(B) and O2 = Pc − g(B).
Since the value of Pa is known, the value of Pc can be trivially calculated. Note
that the value of g(B) is immaterial, so the attack can be applied in a switch
which does not contain the required issuer’s key.

5.2 Attacks on the Calculate PVV Function

Attack 2.3 - Attacking Account Numbers in a Verification Facility. This
attack reveals for any account number associated with the attacked issuer, the
PVV that corresponds to this customer’s account number and an attacker’s chosen
PIN. Replacing the verification value on the card or in the database (depending
on the system) enables withdrawing money from the customer’s account using the
chosen PIN. The attack requires one HSM call per account number attacked. In
addition, it requires generating by ATM an EPB that packs a known PIN. This
single EPB will be used to attack the account numbers of all customers.

Generate an EPB in an ATM that packs an arbitrary known PIN and denote
it Ea. For each customer’s account number Ac, compute V = PV V (Ea, Ac).

The computed PVV value V corresponds to the customer’s account number
and the chosen PIN. Since the attack takes place in the verification facility, the
required issuer’s key is used, and the PVV is valid.

It remains to explain how the attacker can replace the customer’s original
PVV used by the system by the PVV computed in the attack.

According to [9], the clear PVV can be stored on the card’s magnetic stripe or
in a PVV database. In case the PVV is stored on both, the PVV is taken from
the database. In many implementations the PVV is stored only on the card as
long as the customer uses the initial PIN generated by the issuer.

Setting the customer’s PVV to the computed PVV can be done as follows:

Case 1: The PVV is stored only on the card. Generate a card containing the
customer’s details and set the PVV value on the magnetic stripe to the PVV
that was calculated by the attacker. In this case the fabricated card (associated
with the attacker’s chosen PIN) and the customer’s original card (associated
with the customer’s PIN) will both be valid at the same time. It is important
to note that in this case, issuing a new PIN to a customer will not prevent the
attack as the fabricated card with the false PVV will remain valid.
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Case 2: The PVV entry of this customer exists in the PVV database. In this case
the attacker needs write access to the PVV database. As both PVVs and offsets
are not considered sensitive, access to this database is generally not restricted.
In many banks, for example, HSM service personnel can access this database.
As a result of the attacks published in this paper, the attitude towards PVVs
and offsets is now being changed. Anyway, given write access, the attacker can
do one of the following:

– Delete the PVV entry (and then apply the steps described in Case 1).
– Set the customer’s entry in the PVV database to the PVV that was calcu-

lated by the attacker. If the entry does not exist - create it. In this case the
fabricated card will be the only valid card.

Attack 2.4 - Attacking EPBs Incoming to a Switch. Consider all customer
EPBs arriving to the attacked switch. The attack discovers for each such EPB
(and its associated account number) a list of other EPBs having the same PIN
(with high probability). It requires one or two HSM calls per attacked EPB. We
note that the attack can be applied also in verification facilities.

We use a table of 10,000 entries. The table is indexed by values of computed
PV V s. Each entry of the table contains customer EPBs (and their associated
account numbers). Initially all entries are empty.

Fix an arbitrary account number B. We show how to attack any customer’s
EPB arriving to the switch. Denote by Ec the customer’s EPB.

1. V = PV V (Ec, B).
The computed PVV value V equals f(Pc, B) where Pc is the PIN packed in
the customer’s EPB.

2. Add the customer’s EPB Ec to the table entry corresponding to the resulting
PVV value V .
For example, if V is 5678 then Ec will be added to table entry 5678.

The computed PVV value V depends only on Pc, B, and on the key k used
by the function f . Since the attack is applied in a switch, k is not the issuer’s
key as required, but some other arbitrary value (not known to the attacker). The
value of k is immaterial to the attack. All that we require is that the value V be
a pseudo random function of Pc, B, and k. Since B and k are fixed, V can be
regarded as a pseudo random function of Pc only.

Suppose we have performed the above with many EPBs. What actually hap-
pens in steps 1 and 2 above is that all EPBs that pack the same PIN value are
thrown into the same table entry. Since the process is random, a table entry
may be empty, may contain EPBs corresponding to a single value of PIN, or
may contain EPBs corresponding to several PIN values. Combinatorically, the
process is equivalent to throwing balls (PINs) to bins (table entries) and asking
questions on the number of balls (distinct PINs) in each bin. It can be shown
that when the number of balls and bins is the same (10,000 in our case) the
average number of balls in a non-empty bin is less than 2. In other words, EPBs
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that ended in the same table entry correspond to less than 2 distinct PINs on
the average.

To decrease the probability that EPBs in the same table entry correspond to
more than a single PIN, we repeat the procedure with respect to the EPBs in
each table entry using a different fixed account number C. EPBs from a given
table entry that again end together in the same table entry, have high probability
of having the same PIN.

5.3 What If Reformatting Is Disabled

In each of the attacks 2.1, 2.2, and 2.3 above, the attacker uses the translate
function to reformat EPBs to ISO-1. This enables using a single recorded EPB
for attacking all account numbers in attacks 2.1 and 2.3 (and all EPBs in At-
tack 2.2). Could the attacks still work if the translate function (or its reformatting
capability) is disabled and all EPBs are in either ISO-0 or ISO-3 format?

An easy solution is for the attacker to record for each account number at-
tacked, an EPB associated with that account number. Although such an attack
cannot be applied on very large scale, it can still be harmful (especially when
the attacker is interested in attacking specific customers).

Moreover, using the overlapping between PIN digits and account number dig-
its (Weakness 5 in Section 3), a single recorded EPB in ISO-0 format may be
used to attack up to 100 account numbers. Using Weakness 5 together with
overlapping between account number digits and random digits, an EPB in ISO-3
format may be used to attack up to 6 · 109 account numbers. The details appear
in [15].

6 Discussion

Attack 1 is perhaps the most hard to handle as the translate function is a required
function in every switch. Attacks 2.1 and 2.3 deserve special attention as they
do not even require that the customer know his/her PIN. Moreover, if one is
interested in attacking a specific account number, the translate function is not
required for the attack (as discussed in Section 5.3). Attack 2.2 is surprising, as
it implies that customer fake cards having PINs different from the customer’s
original PIN, can be valid together with the customer’s genuine card. Attack 2.4
does not require generating an EPB in an ATM. On the negative side, Attack 1
requires generating in ATMs 100 EPBs, and all variants of Attack 2 require that
calculate PVV or Calculate offset be available.

Our recommendation to issuers is as follows. In their facilities, issuers should
disable the calculate offset and Calculate PVV functions as well as the reformat-
ting capability of translate, even for the price of eliminating customer selected
PINs or other capabilities. Warning mechanism (e.g., with respect to the number
of times API functions are called) may also be useful. With respect to switches,
issuers should ensure good control over their country’s local switches and apply
detection and other mechanisms with respect to overseas transactions.
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7 Conclusions

We have shown in this paper that the Financial PIN processing API is exposed
to severe attacks on the functions translate, calculate PVV and calculate offset
inside and outside of the issuer environment.

The attacks we describe provide possible explanations to many Phantom
Withdrawals. The attacks are so simple and practical that issuers may have
to admit liability not only for future cases but even retroactively. The attacks
can be applied on such a large scale (in some of the attacks up to 18,000,000
PINs can be discovered in an hour) that banks’ liability can be enormous.

As some of the attacks apply to switches, which are not under the issuers con-
trol, countermeasures in the issuers environment do not suffice. To be protected
from this attack, countermeasures in all verification paths to the issuer must be
taken. As this is unrealistic, solutions outside the standard must be sought.

We have also shown that physical and/or logical separation of the issuing
and verification facilities does not prevent severe attacks, as part of the API
functionality intended for use in verification facilities is vulnerable.

We have demonstrated that reformatting capability between different PIN
block formats, can go further than degrading the security of the system to the
weakest format, as weaknesses of several formats may be abused. Our attacks also
show that the ISO-1 format is extremely weak and thus should be immediately
removed from the list of approved interchange transaction formats.

Another interesting insight from the attacks described is that the offset and
the PVV values may reveal as much information as the PIN itself. One possible
remedy is treating them as secret values.

In addition to all implementations of this API, systems applying the EMV
standard ([7]) and using online (rather than off-line) PIN verification are also
vulnerable to the attacks.

The vulnerabilities exposed in this paper require worldwide modifications in
ATMs, HSMs and other components implementing the PIN processing API.
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Appendix

We describe below, for reference, the attacked functions parameters, and the
computation performed by each function.

Translate Calculate PVV Calculate offset
EPB EPB EPB
account number account number account number
input PIN block format PIN block format PIN block format
input transport key transport key transport key
output PIN block format issuer’s PVV key issuer’s PIN key
output transport key

The translate function extracts the PIN from the EPB by decrypting the EPB
using the input transport key and authenticating the result using the account
number and input PIN block format (Section 4 describes the authentication
process). It then re-formats the PIN into a PIN block using the output PIN
block format and account number, and re-encrypts the result using the output
transport key. The resulting EPB is the output of the function.
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The calculate PVV function extracts the PIN from the EPB (as in translate).
It then concatenates the PIN to the account number, encrypts the result using
the issuer’s PVV key, and extracts four decimal digits from the encrypted result.
These four digits constitute a PIN Verification Value (PVV) which is the output
of the function.

The calculate offset function extracts the PIN from the EPB. It then encrypts
the account number using the issuer’s PIN key and extracts four decimal digits
denoted natural PIN from the encrypted result. The natural PIN is then sub-
tracted (modulus 10) from the PIN. The result constitute an offset which is the
output of the function.


	The Unbearable Lightness of PIN Cracking
	Introduction
	Threat Model
	Basics and Previous Work
	Attack 1 - Attacking the Translate Function
	Attack 2 - Attacking Functions Allowing PIN Change
	Attacks on the Calculate Offset Function
	Attacks on the Calculate PVV Function
	What If Reformatting Is Disabled

	Discussion
	Conclusions




