
Improved Multi-party Contract Signing

Aybek Mukhamedov and Mark Ryan

School of Computer Science
University of Birmingham, UK

{A.Mukhamedov, M.D.Ryan}@cs.bham.ac.uk

Abstract. A multi-party contract signing protocol allows a set of par-
ticipants to exchange messages with each other with a view to arriving in
a state in which each of them has a pre-agreed contract text signed by all
the others. “Optimistic” such protocols allow parties to sign a contract
initially without involving a trusted third party T . If all signers are hon-
est and messages are not arbitrarily delayed, the protocol can conclude
successfully without T ’s involvement. Signers can ask T to intervene if
something goes amiss, for example, if an expected message is not re-
ceived. Two multi-party contract signing protocols have been proposed
so far.

One solution to this problem was proposed by Garay and MacKenzie
(DISC’99) based on private contract signatures, but it was subsequently
shown to be fundamentally flawed (it fails the fairness property). Another
more efficient protocol was proposed by Baum-Waidner and Waidner
(ICALP’00). It has not been compromised, but it is based on a non-
standard notion of a signed contract.

In this paper, we propose a new optimistic multi-party contract sign-
ing protocol based on private contract signatures. It does not use a non-
standard notion of a signed contract and has half the message complexity
of the previous solution.

1 Introduction

A contract signing protocol allows a set of participants to exchange messages
with each other with a view to arriving in a state in which each of them has
a pre-agreed contract text signed by all the others. An important property of
contract signing protocols is fairness : no participant should be left in the position
of having sent another participant his signature on the contract, but not having
received signatures from the other participants.

One way in which this can be achieved is by employing a trusted party T . All
the signers of the contract send their signatures to T . When T has them all, he
sends them out to each of the signers. It would be desirable to have a protocol
which does not require a trusted party, but this is known to be impossible for de-
terministic protocols [7]. This has led to the invention of “optimistic protocols”,
which employ a trusted party only in the case that something goes wrong. If all
the signers are honest and there are no adverse network delays which prevent the
protocol from completing, the trusted party is not needed. But if a participant

S. Dietrich and R. Dhamija (Eds.): FC 2007 and USEC 2007, LNCS 4886, pp. 179–191, 2007.
c Springer-Verlag Berlin Heidelberg 2007

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-77366-5_37

http://dx.doi.org/10.1007/978-3-540-77366-5_37

180 A. Mukhamedov and M. Ryan

of the protocol has sent messages which commit him to the contract and has not
received corresponding commitment from the other participants, he can contact
the trusted party who will intervene.

As well as fairness, there are other desired properties of contract signing pro-
tocols. Timeliness ensures that every signer has some recourse to prevent endless
waiting. A third property called abuse-freeness guarantees that a signer is not
able to prove to an external observer that she is in a position to choose between
successfully completing the protocol and aborting it. This property is desirable
because being in such a position would give the signer an unfair advantage.

Optimistic contract signing protocols have been first described for synchro-
nous networks in [1,2,11,13]. 2-party protocols for asynchronous networks, have
been proposed in [3,8,13], where all messages are eventually delivered, but with-
out upper bounds on network delays. Later, two protocols for n-party case
have been proposed: one by Garay and MacKenzie [9], and the other one by
Baum-Waidner and Waidner [5]. Chadha, Kremer and Scedrov in [6] revealed
and claimed to have fixed a flaw in the trusted party’s protocol of Garay and
MacKenzie’s scheme. Later, we showed that Garay and MacKenzie’s main pro-
tocol is flawed for n > 4 and fairness can not be restored whatever the trusted
party does [12].

Baum-Waidner and Waidner’s protocol requires (n + 1)n(n − 1) messages in
the “optimistic” execution, where n is the number signers and the number of
dishonest signers can be up to n − 1. However, their protocol is based on a non-
standard notion of a signed contract: a contract on a text m signed by an agent
A is defined to be a tuple (m, n + 1) digitally signed by A. Any other digitally
signed (m, i) with i < n+1 is not considered to be a signed contract; it is merely
A’s promise to sign the contract. Such a notion has undesirable side-effects. The
validity of the contract produced by Baum-Wainder and Waidners’s protocol
depends on the integer it is tupled with. Hence, when a party is presented with
such contract it must be able to reliably establish n+1 (which could, for instance,
be embedded in the body of the contract m) and compare with the integer that
the contract is tupled with.

Baum-Waidner[4] further reduced the complexity of the previous scheme. This
was achieved by adjusting trusted party T ’s protocol with an assumption that
T knows in advance the number of dishonest signers (and sets the parameters of
its protocol accordingly) and fairness is guaranteed provided all honest signers
continue the protocol (i.e. if some honest signer decides to quit, when the protocol
requires it to participate, fairness can not be guaranteed for other honest signers).

Our contribution. We propose a new optimistic multi-party contract signing
protocol based on private contract signatures. It does not use a non-standard
notion of a signed contract and achieves improvement in the message complexity
of the optimisitc execution without assuming that T or any signer know the total
number of dishonest signers. Our scheme requires n(n − 1)�n/2� + 1 messages,
which is about half the complexity of the previous protocol by Baum-Waidner
and Waidner [5]. For example, if n = 6 our protocol requires 120 messages to
“optimistically” sign a contract, whereas the previous scheme requires 210.

Improved Multi-party Contract Signing 181

2 Model and Definitions

Let P1, . . . , Pn denote signers, who want to sign a contract m and T a trusted
third party. Signers may be honest, in which case they execute the protocol
faithfully or dishonest, i.e. they deviate from the protocol. We assume that up
to n − 1 of signers may be dishonest and are coordinated by a single party, the
adversary. We assume that the ordered list (P1, P2, . . . , Pn) of signers is fixed in
advance and included in the text m of the contract, and that all signers reliably
know each others public key, and all contracts are distinct. SPi(m) denotes Pi’s
universally-verifiable signature on m.

We shall say that Pi has a valid contract m, if it receives all signers’ signatures
on m. When Pi runs a contract signing protocol and acquires a valid contract
m, we shall say “Pi decided signed”. Otherwise, if it quits or receives an abort
token from T we say “Pi decides failed”.

We consider an asynchronous communication model with no global clocks,
where messages can be arbitrarily delayed. However, the communication channels
between signers and the trusted party T are assumed to be resilient, viz. the
messages are guaranteed to be delivered eventually. The adversary is allowed to
schedule and insert its own messages into the network. The protocol is expected
not to fail, whatever such adversary does.

An optimistic contract signing protocol consists of two protocols, one executed
by signer (Main), and another by trusted party T (Abort or Resolve). Usually
signers try to achieve the exchange by executing Main. They contact T using
Abort or Recovery only if something goes amiss in Main. Once a participant
contacts T , it no longer takes part in Main. A request to T via Abort or Recovery
can result in T sending back an abort token or a signed contract. The decision
of whether to reply with an abort token or a signed contract is taken by T on
the basis of the evidence included in the request, and also the previous requests
that have been made by other participants. T has the property that if it decides
to send back a signed contract, it sticks to that decision when answering further
requests from other participants. However, if it issues an abort, it may later
overturn that abort in order to maintain fairness. An honest participant (namely,
one who adheres to the protocol) will not receive an abort and later have it
overturned.

An optimistic contract signing protocol is expected to guarantee fairness. It
is also desirable for the protocol to guarantee abuse-freeness and timeliness:

Definition 1. An optimistic contract signing protocol is said to be fair for an
honest signer Pi if whenever some signer Pj obtains SPi(m) then Pi obtains
SPk

(m) for all 1 ≤ k ≤ n.

Definition 2. An optimistic contract signing protocol is said to be abuse-free if
it is impossible for any set of signers at any point in the protocol to be able to
prove to an outside party that they have the full power to terminate (abort) or
successfully complete the contract signing.

Definition 3. An optimistic contract signing protocol is said to satisfy timeli-
ness if each signer has recourse to stop endless waiting.

182 A. Mukhamedov and M. Ryan

3 The Protocol

The following is an optimistic multi-party contract signing protocol. The Main
protocol, consists of �n/2�+1 rounds. In each round a signer Pi waits for promises
from lower numbered signers (below), sends its promise to higher numbered sign-
ers (above), waits for promises from signers above and then send its promise to
signers below. In the last round signers exchange actual signatures, together with
their promises. If a signer does not receive some of the messages, it either quits
the protocol or asks T to intervene.

PCS promises. Our protocol employs a cryptographic primitive known as
private contract signature [8]. A private contract signature by Pi for Pj on text
m with respect to trusted party T , denoted PCSPi(m, Pj , T), is a cryptographic
object with the following properties:

1. PCSPi(m, Pj , T) can be created by Pi, and faked by Pj .
2. Each of Pi, Pj and T (but no-one else) can tell the difference between the

versions created by Pi and faked by Pj .
3. PCSPi(m, Pj , T) can be converted into a regular universally-verifiable sig-

nature by Pi, and by T ; and by no-one else.

The idea is that PCSPi(m, Pj , T) acts as a promise by Pi to Pj to sign m. But
Pj cannot prove to anyone except T that he has this promise, since he can create
it himself and only T can tell the difference between one created by Pi and one
created by Pj .

In our protocol, agents exchange several such promises before issuing a signed
contract. A promise issued by a signer at a later stage of the protocol signifies
its stronger commitement to the contract as well possession of certain promises
from other signers. Hence, τ -level promise of a signer Pi to Pj on m is a mes-
sage PCSPi((m, τ), Pj , T), where τ ≥ 0 expresses the temporal ordering of Pi

promises.

3.1 Main Protocol for Signer Pi

Each signer waits for 1-level promises from the signers below. On receipt of
these, it sends its 1-level promises to the signers above it. Then it waits for
1-level promises from above, and on receipt, sends 1-level promises below. This
sequence is repeated for r-level promises, for r ranging from 2 to �n/2�, as shown
in Figure 3.1. Finally, in the last round, �n/2� + 1-level promises and signatures
are exchanged. The protocol is defined formally in Table 1.

If expected messages are not received, a participant Pi may simply quit the
protocol, or request abort or resolve from T , depending on where Pi is in the
main protocol.

When Pi requests abort it sends to T the message:

SPi((m, Pi, (P1, . . . , Pn), abort))

Improved Multi-party Contract Signing 183

For the resolve requests Pi sends

SPi({PCSPj ((m, τj), Pi, T)}j∈{1,...,n}\{i}, SPi(m, 0))

to T , where for j > i, τj is the maximum level of promises received from all
signers P ′

j with j′ > i, and for i > j, τj is the maximum level of promises
received from all signers P ′

j with i > j′:

τj =
{

max{τ | ∀j′ > i, Pi has received PCSPj′ ((m, τ), Pi, T)} if j > i

max{τ | ∀j′ < i, Pi has received PCSPj′ ((m, τ), Pi, T)} if j < i

(For example, if the maximum level promises P4 receives from P1 and P2 is 3,
and from P3 it is 2, then P4 would send 2-level promises for signers below.)

Table 1. Main protocol for signer Pi

Round 1
1. For each j < i, wait for promise PCSPj ((m, 1), Pi, T) from Pj .

If any of them is not received in a timely manner, then quit.
2. For each j > i, send promise PCSPi((m, 1), Pj , T) to Pj .
3. For each j > i, wait for promise PCSPj ((m, 1), Pi, T) from Pj .

If any of them is not received in a timely manner, then request abort.
4. For each j < i, send promise PCSPi((m, 1), Pj , T) to Pj .

For r = 2 to �n/2�: Round r

5. For each j < i, wait for promise PCSPj ((m, r), Pi, T) from Pj .
If any of them is not received in a timely manner, then request resolve.

6. For each j > i, send promise PCSPi((m,r), Pj , T) to Pj .
7. For each j > i, wait for promise PCSPj ((m, r), Pi, T) from Pj .

If any of them is not received in a timely manner, then request resolve.
8. For each j < i, send promise PCSPi((m,r), Pj , T) to Pj .

Round �n/2� + 1

9. For each j < i, wait for promise PCSPj ((m, �n/2�+1), Pi, T) and signature SPj (m)
from Pj .
If any of them is not received in a timely manner, then request resolve.

10. For each j �= i, send promise PCSPi((m, �n/2� + 1), Pj , T) and signature SPi(m)
to Pj .

11. For each j > i, wait for promise PCSPj ((m, �n/2�+1), Pi, T) and signature SPj (m)
from Pj .
If any of them is not received in a timely manner, then request resolve.

3.2 Protocol for T

For each contract m with signers P1, . . . , Pn, when T learns about the contract
(through abort or resolve request) it sets up a variable validated(m) initiated

184 A. Mukhamedov and M. Ryan

Fig. 1. Messages in the main protocol when n = 5

to false, which indicates if T decided to enforce the contract and has a full set
of signatures (some converted by T from promises). T must reliably know the
position of each signer in the run of the protocol, which can be deduced from
the ordered list of signers included in the contract text m. T also maintains a
set S(m) of indexes of parties that contacted it in the past: signers are allowed
to contact T only once. This set is also used when T considers whether to
overturn its previous abort decision. For each signer Pi such that i ∈ S(m), T
also maintans two integer variables hi(m) and li(m). Intuitively, hi(m) is the
highest level promise Pi could have sent to any signer above, and similarly,
li(m) is the highest level of promise Pi could have sent to a signer below. This
construction was inspired by the paper of Chadha, Kremer and Scedrov [6], even
though it does not work for the protocol they consider [12].

Depending on the request T executes either Abort or Resolve protocol.

Abort protocol. When T receives an abort message from Pi, it adds i to the
set S(m). Then if the protocol has already been successfully recovered it sends
back a signed contract; otherwise, it sends back an abort token (see table 2).

Improved Multi-party Contract Signing 185

Table 2. Abort protocol for T

The first time T is contacted for contract m (either abort or recovery), T initialises
S(m) to ∅ and validated(m) to false.

If the abort message SPi(m,Pi, (P1, . . . , Pn), abort) is received from Pi

Check that the signature is valid

if not validated(m) then
if S(m) = ∅ then store ST (SPi(m, Pi, (P1, . . . , Pn), abort))
S(m) = S(m) ∪ {i}
hi(m) := 1; li(m) = 0
Send ST (SPj (m, Pj , (P1, . . . , Pn), abort)) to Pi

else
Send {SPj ((m, τj))}j∈{1,...,n}\{i} to Pi

where τj is the level of the promise from Pj that was converted to a
universally-verifiable signature during the recovery protocol.

Resolve protocol. The recovery messages that T receives are designed so that
T can infer what promises an honest signer could have sent and whether all
the previous requests were made by dishonest signers. The protocol works is as
follows:

1. T checks that all promises and signatures are valid, and promises from above
and below are consistent (for details, see Table 3. If any of the checks fail, T
ignores the request.

2. If there has been no previous query to T on m, i.e. validated(m) is false,
it derives a signed contract by converting all the promises contained in the
resolve request to universally-verifiable signatures. T puts the signed contract
in its database, sends it back in reply to the request, and sets validated(m)
to true.

3. If there has been a positive resolution before, i.e. validated(m) is true, T
sends back the stored signed contract.

4. If there has been an abort, T replies with an abort token or overturns its
previous abort decision if it deduces that all the previous requests were made
by dishonest signers. T deduces that Pj is dishonest from Pi’s resolve request
if: Pi presents to T a promise made by Pj such which shows that Pj continued
the protocol after making a request to T .

The protocol is defined formally in Table 3.

4 Properties of the Protocol

Our protocol respects timeliness, since all signers can choose to stop waiting
(quit, request abort or resolve) at any time they are waiting to receive a message.
In order to prove fairness, we need the following lemmas.

186 A. Mukhamedov and M. Ryan

Table 3. Recovery protocol for T

The first time T is contacted for contract m (either abort or recovery), T initialises
S(m) to ∅ and validated(m) to false.

If the recovery message SPi({PCSPj ((m,τj), Pi, T)}j∈{1,...,n}\{i}, SPi(m, 0)) is received
Check that promises and signature are valid, and promises from above and below
are consistent, i.e.:

for all j < i, check that τj = τi−1

for all j > i, check that τj = τi+1

check that τi−1 = τi+1 or τi−1 = τi+1 + 1

if i ∈ S(m) or one of the above checks failed then
ignore the message

else if S(m) = ∅ then
validated(m) := true
Send {SPj (m, τj)}j∈{1,...,n}\{i} to Pi

else if validated(m) then
Send {SPj (m, τj)}j∈{1,...,n}\{i} to Pi

where τj is the level of the promise from Pj that was converted to a
universally-verifiable signature.

else // note that validated(m)=false ∧ S(m) �= ∅
if ∃p ∈ S(m) ((p < i ∧ τp ≤ hp(m)) ∨ (p > i ∧ τp ≤ lp(m))) then

Send the stored abort token ST (SPj (m, Pj , (P1, . . . , Pn), abort)) to Pi

S(m) := S(m) ∪ {i}
Compute hi(m) and li(m) as follows:
if i = 1

// P1 has contacted T in some step 7 of the main protocol
(hi(m), li(m)) = (τ2 + 1, 0)

else if i = n
// Pn has contacted T in some step 5 of the main protocol
(hi(m), li(m)) = (0, τn−1)

else if 1 < i < n and τi+1 = τi−1

// Pi has contacted T in some step 5 of the main protocol
(hi(m), li(m)) = (τi+1, τi+1)

else if 1 < i < n and τi−1 > τi+1

// Pi has contacted T in some step 7 of the main protocol
(hi(m), li(m)) = (τi+1 + 1, τi+1)

else
Convert the promises into signatures {SPj (m,τj)}j∈{1,...,n}\{i}
Store the signatures
Send the signatures to Pi

validated(m) := true

Improved Multi-party Contract Signing 187

Lemma 1. If a resolve request in round r > 1 results in an abort decision, then:

1. for all r′ such that 1 < r′ < r there are two resolve requests in round r′ that
resulted in an abort decision.

2. there is an abort request in round 1.

Proof. 1. We define the following predicates:

A(r): there exists a resolve request in round r from some signer Pi that results
in an abort decision. Pi’s request has r − 1 level promises from all other
signers. We call such requests “type A”.

B(r): there exists a resolve request in round r from some signer Pi that results
in an abort decision. Pi’s request has r level promises from signers Pj , where
j < i and r − 1 level promises from Pj where j > i. We call such requests
“type B”.

Point 1 of the lemma states that if r > 1 then A(r) ∨ B(r) → ∀r′.(1 < r′ < r →
A(r′)∧B(r′)). We show this by proving the following: (a) A(r)∧r > 2 → B(r−1);
(b) B(r) ∧ r > 1 → A(r).

To show (a): Suppose A(r)∧ r > 2. Let Pi be the signer whose request results
in abort. Pi’s request has r − 1 level promises from all other signers. So, there
has been a resolve request made by some signer Pk in round r − 1 (otherwise
according to T ’s protocol any previous abort would be overturned). Moreover, k
can be chosen to be less than i, since according to T ’s protocol, if all such k were
greater than i, than Pi’s request would have resulted in resolve. Therefore, Pk’s
resolve request contains r − 1 level promises from below and r − 2 level promises
from above, since if it had only r − 2 level promises then Pi’s request would
overturn the abort received by Pk. Therefore, Pk’s request shows B(r − 1).

For (b): Suppose B(r) and r − 1. Let Pi be the signer whose request results
in abort. Pi’s request has r-level promises from below and r − 1-level promises
from above. Since Pi’s request results in abort, there has been a resolve request
made by some other signer in round r′ ≤ r. To see this, suppose that the highest
r′ for which there is a resolve request by a signer Pk other than Pi resulting in
abort is less than r.

– if Pk’s request is type B, then T sets hk(m) = r − 1, lk(m) = r − 2.
• if k < i, then Pi’s request has an r-level promise from Pk, contradicting

hk(m) = r − 1. So T overturns Pk’s abort.
• if k > i, then Pi’s request has an r − 1-level promise from Pk, contra-

dicting lk(m) = r − 2. Again, T overturns Pk’s abort.
– if Pk’s request is type A, then T sets hk(m) = lk(m) = r − 2. Pi’s request

has an r − 1-level promise from Pk contradicting hk(m) or lk(m) as above.
So T overturns Pk’s abort.

Thus, in all cases, the assumption r′ < r leads to contradiction; and therefore
r′ = r. Pk’s request proves A(r).

2. If there is no abort in round 1, then according to T ’s protocol, any request
by any participant in a later round will result in resolve.

��

188 A. Mukhamedov and M. Ryan

Lemma 2. If T issues abort to Pi in a round r > 1 and then later resolve to
Pj, then Pi is dishonest.

Proof. Suppose Pi gets abort at round r > 1. The variables hi and li are set
according to T ’s Recovery protocol. We verify that hi is the highest level promise
Pi could have sent to any signer above, and similarly, li(m) is the highest level
of promise Pi could have sent to a signer below. There are four cases to consider:

– i = 1. Then hi = τ2 +1 = · · · = τn +1 since P1 sends out τ +1-level promises
after receiving all τ -level promises, and li = 0 because P1 doesn’t send any
promises to below.

– i = n. Then hi = 0 since Pn doesn’t send any promises to above, and
li = τn−1 = · · · = τ1 since Pn has received τ -level promises from everyone
before he sends out any τ -level promises.

– 1 < i < n and all the τk’s are equal. Pi has requested resolve while waiting
for promises from below, and the evidence it sends are the promises it got in
the previous round, which is now complete and it has sent out its promises
in that round too. Therefore hi = li = τk for all k.

– 1 < i < n and τ1 = · · · = τi−1
= τi+1 = · · · = τn. Here, Pi’s request for
resolve is while waiting for promises from above, and its evidence consists
of promises it received in two different rounds. The promises it has sent to
signers above are τi+1 + 1-level promises, and to below they are τi+1-level
promises, so hi and li are set accordingly.

Now Pj asks for resolve with a request that contains PCSPi((m, τ ′
i), Pj , T). Since

this request does not result in abort, the conditions for abort (which begin “∃p”
in Table 3) must fail. Therefore, for all p, (p < j → τ ′

p > hp)∨(p > j → τ ′
p > lp).

Take p = i and we obtain i < j ∧ τ ′
i > hi or i > j ∧ τ ′

i > li; each case includes
evidence that Pi continued the protocol since its request to T and is therefore
dishonest. ��

Theorem 1. The optimistic multi-party contract signing protocol above is fair.

Proof. Assume Pi is an honest signer participating in the protocol to sign a
contract m. Suppose Pi executed the protocol and decided failed, and some
signer Pj decided signed. Then Pj has Pi’s signature on m, because either: (1)
Pi sent it in the last round of the main protocol; or, (2) T converted Pi’s promise
to Pj into a signed contract for Pj . We consider the two cases in turn.

1. Suppose Pi executed the last round of the protocol and sent out its signature
on m. Then i < n since Pn does not send out his signature until he has
received everyone else’s. Thus, Pi requested resolve from T in the last round
with the request

SPi({PCSPj ((m, �n/2� + 1), Pi, T)}j∈{1,...,i−1},

{PCSPj ((m, �n/2�), Pi, T)}j∈{i+1,...,n}, SPi(m))

Improved Multi-party Contract Signing 189

and received abort. Since i < n and Pi gets abort in the last round, T has
evidence to overturn any abort issued in any previous round. Since T does
not overturn all previous aborts, there is an abort given to Pk with k > i in
the last round. Thus Pi and Pk got abort in the final round (�n/2� + 1). By
lemma 1, rounds 2 to �n/2� have two failed resolve requests and round 1 has
an abort request. The total number of requests is thus 2+(�n/2�−1)×2+1 =
2�n/2�+1. This is at least n+1, but there are only n signers and each signer
can make at most one request: a contradiction.

2. Suppose T returned a signed contract in response to a resolve request from
Pj . There are three cases to consider:
– If Pi quit the protocol in round 1, T could not have returned a signed

contract, since Pi did not release any promises.
– If Pi requested abort in round 1 from T , then it could have sent 1-level

promises to signers above. Hence, T sets hi(m) = 1 and, since Pi is
honest, it does not release further promises. According to T ’s protocol,
T could not have returned a signed contract, since any subsequent resolve
request would only have PCSPi((m, 1), Pk, T), where k > i.

– If Pi received an abort decision for its resolve request in some round
1 < r ≤ �n/2� + 1, and then Pi’s promise to Pj got converted to a
signature, then by lemma 2 Pi is dishonest.

In all three cases we reach a contradiction. �

Abuse-freeness. Intuitively, the protocol is abuse-free, because of the use of
private-contract signatures. No party has publicly verifiable information about
Pi’s commitment to the contract until a point from which Pi has the power to
acquire a signed contract from all the other participants. (In future work, we in-
tend to investigate our protocol in terms of formal definitions of abuse-freeness,
such as that of [10]).

Timeliness. Our protocol also satisfies timeliness, since a participant can give
up waiting for a message at any time and take recourse with the trusted party.

Remarks. Our protocol above works for up to n−1 dishonest signers. It can be
optimized in the same way as it was done by Baum-Waidner and Waidner [5]:
if the number of dishonest signers t is less and is known advance to all honest
signers, then we can reduce the number of messages for the Main protocol.
For Baum-Waidner, it results in (t + 2)n(n − 1) messages; in our case it is
(�(t + 1)/2� + 1)n(n − 1).

The number of messages of the “optimistic” execution can also be reduced
if we allow signers to forward other signers’ messages. In particular, a signer
Pi instead of broadcasting its promise to all signers above, can now send those
messages to Pi+1, who will then send Pi’s promises intended for other signers
(together with his) to Pi+2, and so on. Similarly, the same changes are applied
when Pi sends promises to signers below. As a result, the number of messages
sent in the “optimistic” execution is now (�n/2� + 1)2(n − 1).

Garay and MacKenzie [9] state that any complete and fair optimistic contract-
signing protocol with n participants requires at least n rounds in an optimistic

190 A. Mukhamedov and M. Ryan

run. Our result appears to contradict that statement, but it is not clear since
they did not define what a round is. Different protocols group messages into
rounds in different ways, so the only meaningful comparison is by number of
messages in the optimistic execution.

5 Conclusions

We have presented a new multi-party contract signing protocol which uses pri-
vate contract signatures. The previous multi-party contract signing protocol
based on private contract signatures by Garay and MacKenzie [9] has been shown
to be incorrect [6,12].

Our scheme improves on the state-of-the-art protocol by Baum-Waidner and
Waidner [5] in two important aspects. Firstly, our schemce requires only half
the number of messages to complete “optimistic” execution . (In contrast with
Baum-Waidner’s improvement reported in [4], we do not require the unrealistic
assumptions that the number of dishonest signers is known in advance to the
trusted party, and that honest signers don’t quit the protocol.) Secondly, our
scheme does not use a non-standard notion of a signed contract.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for multi-party fair
exchange. Research Report RZ 2892 (# 90840), IBM Research (December 1996)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange.
In: Matsumoto, T. (ed.) 4th ACM Conference on Computer and Communications
Security, Zurich, Switzerland, pp. 8–17. ACM Press, New York (1997)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998)

4. Baum-Waidner, B.: Optimistic asynchronous multi-party contract signing with re-
duced number of rounds. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 898–911. Springer, Heidelberg (2001)

5. Baum-Waidner, B., Waidner, M.: Round-optimal and abuse free optimistic multi-
party contract signing. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 524–535. Springer, Heidelberg (2000)

6. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multi-party fair exchange
protocols. In: Focardi, R. (ed.) 17th IEEE Computer Security Foundations Work-
shop, Asilomar, CA, USA, pp. 266–279. IEEE Computer Society Press, Los Alami-
tos (2004)

7. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
report, Technion, Haifa (March 1980)

8. Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-free optimistic contract sign-
ing. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

9. Garay, J.A., MacKenzie, P.D.: Abuse-free multi-party contract signing. In: Jayanti,
P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 151–165. Springer, Heidelberg (1999)

Improved Multi-party Contract Signing 191

10. Kähler, D., Küsters, R., Wilke, T.: A Dolev-Yao-based Definition of Abuse-free
Protocols. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 95–106. Springer, Heidelberg (2006)

11. Micali, S.: Certified E-mail with invisible post offices. Available from author; an
invited presentation at the RSA 1997 conference (1997)

12. Mukhamedov, A., Ryan, M.D.: Resolve-impossibility for a contract-signing proto-
col. In: CSFW 2006. 19th Computer Security Foundations Workshop, IEEE Com-
puter Society Press, Los Alamitos (2006)

13. Pfitzmann, B., Schunter, M., Waidner, M.: Optimal efficiency of optimistic contract
signing. In: Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, pp. 113–122. ACM Press, New York (1998)

	Improved Multi-party Contract Signing
	Introduction
	Model and Definitions
	The Protocol
	Main Protocol for Signer P_i
	Protocol for T

	Properties of the Protocol
	Conclusions

