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Preface

SAC 2007 was the 14th in a series of annual workshops on Selected Areas in
Cryptography. This is the first time this workshop was held at the University
of Ottawa. Previous workshops were held at Queen’s University in Kingston
(1994, 1996, 1998, 1999, and 2005), Carleton University in Ottawa (1995, 1997,
and 2003), University of Waterloo (2000 and 2004), Fields Institute in Toronto
(2001), Memorial University of Newfoundland in St. Johns (2002), and Concor-
dia University in Montreal (2006). The intent of the workshop is to provide a
stimulating atmosphere where researchers in cryptology can present and discuss
new work on selected areas of current interest. The themes for SAC 2007 were:

– Design and analysis of symmetric key cryptosystems
– Primitives for symmetric key cryptography, including block and stream

ciphers, hash functions, and MAC algorithms
– Efficient implementations of symmetric and public key algorithms
– Innovative cryptographic defenses against malicious software

A total of 73 papers were submitted to SAC 2007. Of these, one was with-
drawn by the authors, and 25 were accepted by the Program Committee for
presentation at the workshop. In addition to these presentations, we were fortu-
nate to have two invited speakers:

– Dan Bernstein: “Edwards Coordinates for Elliptic Curves”
– Moti Yung: “Cryptography and Virology Inter-Relationships.” This talk was

designated the Stafford Tavares Lecture.

We are grateful to the Program Committee and the many external reviewers
for their hard work and expertise in selecting the program. They completed all
reviews in time for discussion and final decisions despite events conspiring to
compress the review schedule. We apologize if anyone was missed in the list of
external reviewers.

We would like to thank the Ontario Research Network for Electronic Com-
merce (ORNEC) for financial support of the workshop. We would also like to
thank Gail Deduk for administrative support and Aleks Essex and Terasan
Niyomsataya for technical support.

Finally, we thank all those who submitted papers and the conference partic-
ipants who made this year’s workshop a great success.

October 2007 Carlisle Adams
Ali Miri

Michael Wiener
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Reduced Complexity Attacks on the

Alternating Step Generator

Shahram Khazaei1, Simon Fischer2, and Willi Meier2

1 EPFL, Lausanne, Switzerland
2 FHNW, Windisch, Switzerland

Abstract. In this paper, we present some reduced complexity attacks on
the Alternating Step Generator (ASG). The attacks are based on a quite
general framework and mostly benefit from the low sampling resistance
of the ASG, and of an abnormal behavior related to the distribution of
the initial states of the stop/go LFSR’s which produce a given segment of
the output sequence. Our results compare well with previous results as
they show a greater flexibility with regard to known output of the ASG,
which amounts in reduced complexity. We will also give a closed form
for the complexity of attacks on ASG (and SG) as presented in [13].

Keywords: Stream Cipher, Clock-Controlled Generator, Alternating
Step Generator.

1 Introduction

The Alternating Step Generator (ASG), a well-known stream cipher proposed
in [11], consists of two stop/go clocked binary LFSR’s, LFSRX and LFSRY, and
a regularly clocked binary LFSR, LFSRC of which the clock-control sequence is
derived. The original description of ASG [11] is as follows. At each time, the
clock-control bit determines which of the two stop/go LFSR’s is clocked, and
the output sequence is obtained as bit-wise sum of the two stop/go clocked
LFSR sequences. It is known [13,8, 12] that instead of working with the original
definition of ASG we can consider a slightly different description for which the
output is taken from the stop/go LFSR which has been clocked. More precisely,
at each step first LFSRC is clocked; then if the output bit of LFSRC is one, LFSRX

is clocked and its output bit is considered as the output bit of the generator,
otherwise LFSRY is clocked and the output bit of the generator is taken from this
LFSR. Since in a cryptanalysis point of view these two generators are equivalent,
we use the later one all over this paper and for simplicity we still call it ASG.

Several attacks have been proposed on ASG in the literature. Most of these
attacks are applied in a divide-and-conquer based procedure targeting one or
two of the involved LFSR’s. We will focus on a divide-and-conquer attack which
targets one of the two stop/go LFSR’s.

A correlation attack on individual LFSRX or LFSRY which is based on a specific
edit probability has been introduced in [10]. The amount of required keystream
is linear in terms of the length of the targeted LFSR and the correct initial state

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 S. Khazaei, S. Fischer, and W. Meier

of the targeted LFSR is found through an exhaustive search over all possible
initial states. In [13] some reduced complexity attacks on ASG and SG (Shrinking
Generator, see [2]) were presented and the effectiveness of the attacks was verified
numerically for SG while only few general ideas were proposed for ASG without
any numerical or theoretical analysis. These methods avoid exhaustive search
over all initial states, however, the amount of needed keystream is exponential
in terms of the length of the targeted LFSR. One of our contributions of this
paper is to give a closed form for these reduced complexity attacks.

Our major objective of this paper is to investigate a general method which
does not perform an exhaustive search over all possible initial states of the tar-
geted LFSR. We will take advantage of the low sampling resistance of ASG. The
notion of sampling resistance was first introduced in [1] and it was shown that a
low sampling resistance has a big impact on the efficiency of time/memory/data
trade-off attacks. Sampling is the capability of efficiently producing all the ini-
tial states which generate an output sequence starting with a particular m-bit
pattern. Recently it was noticed that sampling may be useful along with other
attacks in a unified framework [3]. The results of this paper represent a positive
attempt to exploit such a connection for a concrete stream cipher.

For ASG, sampling is easy if the output length m is chosen to be about the total
length of the two stop/go LFSR’s. Another weakness of ASG which enables us to
mount our attack is that different initial states of any of the two stop/go LFSR’s
have far different probabilities to be accepted as a candidate which can produce
a given segment of length m of the output sequence. Systematic computer sim-
ulations confirm this striking behavior. The highly non-uniform distribution of
different initial states of any of the stop/go LFSR’s is valid for any segment of
length about m, and the effect is more abnormal for some special outputs which
we refer to as weak outputs. Thanks to the low sampling resistance of ASG we
first try to find a subset of the most probable initial states which contains the
correct one, then using the probabilistic edit distance [10] we distinguish the
correct initial state. Our general approach can be faster than exhaustive search
even if the amount of keystream is linear in terms of the length of the targeted
LFSR, improving the results in [10]. With regard to reduced complexity attacks,
our approach does assume less restricted output segments than in [13], a fact
that has been confirmed by large-scale experiments. This enables attacks with
significantly lower data complexity even for large instances of ASG (whereas
asymptotical complexity is shown to be comparable over known methods).

The paper is organized as follows. In section 2 we will give a comprehensive
list of the known attacks on ASG along with a short overview of them. A closed
form for the reduced complexity attacks of [13] on ASG is given in Sect. 3. In
Sect. 4 we present our attack in detail. Experimental results are in Sect. 5, and
we finally conclude in Sect. 6.

2 Previous Attacks on ASG

Several attacks have been proposed on the ASG in the literature. This section
will provide an overview of the different attacks. We will denote the length of
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registers LFSRC, LFSRX and LFSRY by LC , LX and LY , respectively. If we only
use parameter L, we apply the simplification L := LC = LX = LY .

2.1 Divide-and-Conquer Linear Consistency Attack

It is shown in [11] that the initial state of LFSRC can be recovered by targeting
its initial state in a divide-and-conquer based attack based on the fact that
the output sequence of the ASG can be split into the regularly clocked LFSRX

and LFSRY sequences, which are then easily tested for low linear complexity.
Hence the complexity of this attack is O(min2(LX , LY )2LC ) assuming that only
the feedback polynomial of LFSRC is available. Under the assumption that the
feedback polynomial of all LFSR’s are available, which is the basic assumption
of all other known attacks (including ours in this paper), the complexity of
this attack would be O(min(LX , LY )2LC) instead, since a parity check test can
be used in place of linear complexity test. In this case the attack is a linear
consistency attack [17]. We will use the idea of this attack to sample ASG in
Sect. 4.1.

2.2 Edit Distance Correlation Attack

A correlation attack on LFSRX and LFSRY combined, which is based on a specific
edit distance, was proposed in [8]. If the initial states of LFSRX and LFSRY are
guessed correctly, the edit distance is equal to zero. If the guess is incorrect,
the probability of obtaining the zero edit distance was experimentally shown to
exponentially decrease in the length of the output string. Later, a theoretical
analysis of this attack was developed in [12, 5]. The minimum length of the
output string to be successful for an attack is about four times total lengths of
LFSRX and LFSRY. As the complexity of computing the edit distance is quadratic
in the length of the output string, the complexity of this attack is O((LX +
LY )22LX+LY ). In addition, it was shown that the initial state of LFSRC can
then be reconstructed with complexity O(20.27LC ).

2.3 Edit Probability Correlation Attack

A correlation attack on individual LFSRX or LFSRY which is based on a spe-
cific edit probability was developed in [10]. For a similar approach, see [13].
The edit probability is defined for two binary strings: an input string, produced
by the regularly clocked targeted LFSR from an assumed initial state, and a
given segment of the ASG output sequence. The edit probability is defined as
the probability that the given output string is produced from an assumed in-
put string by the ASG in a probabilistic model, where the LFSR sequences are
assumed to be independent and purely random. It turns out that the edit prob-
ability tends to be larger when the guess about the LFSR initial state is correct.
More precisely, by experimental analysis of the underlying statistical hypothesis
testing problem, it was shown that the minimum length of the output string
to be successful for an attack is about forty lengths of the targeted LFSR. As
the complexity of computing the edit probability is quadratic in the length of



4 S. Khazaei, S. Fischer, and W. Meier

the output string, the complexity of reconstructing both LFSR initial states is
O(max2(LX , LY )2max(LX ,LY )). This yields a considerable improvement over the
edit distance correlation attack if LX and LY are approximately equal and rel-
atively large, as is typically suggested (for example, see, [15]).

Remark 1. Note that ”edit distance correlation attack” means that the initial
states of LFSRX and LFSRY can be recovered regardless of the unknown initial
state of LFSRC, whereas ”edit probability correlation attack” means that the ini-
tial state of LFSRX (LFSRY) can be recovered regardless of unknown initial states
of LFSRY (LFSRX) and LFSRC. However, the targeted LFSR initial states should
be tested exhaustively. The main motivation for this paper is to investigate if
the initial states of LFSRX (LFSRY) can be reconstructed faster than exhaustive
search regardless of unknown initial states of LFSRY (LFSRX) and LFSRC.

2.4 Reduced Complexity Attacks

A first step to faster reconstruction of LFSR’s initial states was suggested in [13],
in which some reduced complexity attacks on ASG and SG are presented. In the
next section, we will give a general expression in the parameter LX , the length
of target register LFSRX (and in Appendix A, we give general expressions for
SG). A second movement to faster reconstruction of LFSR initial states was sug-
gested in [7], using an approach based on computing the posterior probabilities
of individual bits of the regularly clocked LFSRX and LFSRY sequences, when
conditioned on a given segment of the output sequence. It is shown that these
probabilities can be efficiently computed and the deviation of posterior proba-
bilities from one half are theoretically analysed. As these probabilities represent
soft-valued estimates of the corresponding bits of the considered LFSR sequences
when regularly clocked, it is argued that the initial state reconstruction is thus
in principle reduced to fast correlation attacks on regularly clocked LFSR’s such
as the ones based on iterative probabilistic decoding algorithms. Although this
valuable work shows some vulnerability of the ASG towards fast correlation at-
tacks, the practical use of these probabilities has not yet been deeply investi-
gated. Nonetheless, these posterior probabilities can certainly be used to mount
a distinguisher on ASG. This can be compared with [4], a similar work on SG for
which a distinguisher was later developed in [9].

3 Johansson’s Reduced Complexity Attacks

In [13] some reduced complexity attacks on the ASG and SG were presented,
and the effectiveness of the attacks was verified numerically for the SG (while
only few general ideas were proposed for the ASG without any numerical or
theoretical analysis). We give a closed form for the reduced complexity attack on
ASG, using the approximation

(
n
w

) ≈ 2nh(w/n) where h(p) is the binary entropy
function defined as

h(p) := −p log2(p)− (1− p) log2(1− p) . (1)
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In the first scenario, the attacker waits for a segment of M consecutive zeros (or
ones) in the output sequence and assumes that exactly M/2 of them are from
LFSRX. This is true with probability β =

(
M

M/2

)
2−M . The remaining L−M/2 bits

of LFSRX are then found by exhaustive search. Time and data complexities of
this attack are CT = L22L−M/2β−1 = L22L+M/2

(
M

M/2

)−1
and CD = 2M−1β−1 =

22M−1
(

M
M/2

)−1
(using overlapping blocks of keystream). Ignoring the polynomial

and constant terms and equaling the time and data complexities, we have L −
M/2 = M , which shows M = 2

3L. Thus the optimal complexities of this attack
are CT = O(L22

2
3 L) and CD = O(2

2
3 L). These arguments apply to both LFSRX

and LFSRY.

Remark 2. The total time of the attack is composed of the time to filter the
blocks of data with desired properties, and of the time to further process the
filtered blocks. Although the unit of examination time of these two phases are
not equal, we ignore this difference to simplify the analysis.

In another scenario in [13], it is suggested to wait for a segment of length M
containing at most w ones (zeros) and make the assumption that only half of the
zeros (ones) come from the LFSRX. All the ones (zeros) and the remaining zeros
(ones) are assumed to come from the LFSRY. This is true with probability β =
2−w

(
M−w

(M−w)/2

)
2−(M−w). The time and data complexities of this attack are then

CT = L22L−(M−w)/2β−1 and CD = 2M−1
(
M
w

)−1
β−1, respectively. With w :=

αM , ignoring the constant and polynomial terms, and equaling the time and data
complexities, we have L−(1−α)M/2+αM = M−h(α)M+αM , which results in
M = L/(3/2−α/2−h(α)). The minimum value of the exponents M(1−h(α)+α)
is 0.6406L, which is achieved for α ≈ 0.0727 (and hence M = 0.9193L and
w = 0.0668L). Therefore, the optimal complexities are CT = O(L220.64L) and
CD = O(20.64L). Note that this complexity is only for reconstruction of the initial
state of LFSRX. The complexity for recovering the initial state of LFSRY highly
depends on the position of ones (zeros) in the block. In the best case, the block
starts with w ones (zeros) and the complexity becomes CT = L22L−(M+w)/2. In
the worst case, the attacker has to search for the positions of ones (zeros), and
the complexity becomes CT =

(
(M+w)/2

w

)
L22L−(M−w)/2. It is difficult to give an

average complexity, but we expect that it is close to the worst case complexity.
With M = 0.9193L and w = 0.0668L, this gives CT = O(L220.69L) to recover
the initial state of LFSRY. Consequently, as a distinguishing attack, this scenario
operates slightly better than the previous one, but as an initial state recovery it
is slightly worse.

4 New Reduced Complexity Attack

Before we describe our attack in detail, let us introduce some notations. Through-
out the paper, the symbols Pr and E are respectively used for probability of an
event and expectation of a random variable. For simplicity we do not distinguish
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between random variables and their instances. We use A := {ai} for a general
binary sequence, Am

k := {ai}mi=k for a segment of it and Am := {ai}mi=1 for a
prefix of length m. The number of 1’s in A is denoted by wt(A). We define the
first derivative of A as {ai+ai+1} and denote it by Ȧ. Let C, X , Y and Z denote
the regular output sequences of LFSRC, LFSRX, LFSRY and the output sequence
of the ASG itself, respectively. The initial state of the LFSR’s can be represented
by CL, XLand Y L.

4.1 Sampling Resistance

Any initial state (CL, XL, Y L) of ASG which can produce Zm, a given prefix of
the output sequence of ASG, is called a preimage of Zm. The sampling resistance
is defined as 2−m where m is the maximum value for which we can efficiently pro-
duce all preimages of m-bit outputs. As will be shown in this subsection, the low
sampling resistance of ASG is an essential ingredient for our attack. Let A(Zm)
denote the set of all preimages of Zm. Based on the divide-and-conquer linear con-
sistency attack, introduced in Sect. 2, we can compute A(Zm) as in Alg. 1.

Algorithm 1. Sampling of ASG

Input: Output sequence Zm of m bits.
Output: Find A(Zm) with all preimages of Zm.
1: Initially, set A(Zm) = ∅.
2: for all non-zero initial states CL do
3: Set X = Y = ∅.
4: Compute Cm, a prefix of length m of the output sequence of LFSRC.
5: Based on Cm, split up Zm into Xw and Y m−w , where w = wt(Cm).
6: Add all (non-zero) XL to X , if LFSRX can generate Xw .
7: Add all (non-zero) Y L to Y, if LFSRY can generate Y m−w .
8: For all XL ∈ X and Y L ∈ Y, add (CL, XL, Y L) to the set A(Zm).
9: end for

Let us discuss the complexity of Alg. 1. If |A(Zm)| ≤ 2L, then the overall
complexity is 2L, because the complexity of Steps 3 to 8 are O(1). On the other
hand, if |A(Zm)| > 2L, then Steps 3 to 8 introduce additional solutions, and
overall complexity is about |A(Zm)|. The following statement is given under the
assumption of balancedness, i.e. the average number of preimages of ASG for
any output Zm is about 23L−m, where m ≤ 3L.

Statement 1. Time complexity of Alg. 1 is CT = O(max(2L, 23L−m)).

With the previous definition of sampling resistance, this algorithm can be con-
sidered as an efficient sampling algorithm iff |A(Zm)| ≥ O(2L) or equivalently
m ≤ 2L. That is, the sampling resistance of ASG is about 2−k with k = 2L the
total length of the two stop/go LFSR’s.

A related problem is how to find a multiset B with T uniformly random inde-
pendent elements of A(Zm). We suggest to modify Alg. 1 as follows: A(Zm) is
replaced by B and T is added as another input parameter. In Step 2, a uniform
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random (non-zero) initial state CL is chosen, and Steps 3 to 8 are not modified.
The new Steps 2 to 8 are then repeated, until T preimages have been found.
This modified algorithm will be referred to as Alg. 1B. We assume correctness
of the algorithm, i.e. the preimages found with Alg. 1B are uniformly random
elements of A(Zm) (for which we will give experimental evidence). The follow-
ing statement is presented under the assumption that the average number of
preimages of ASG for any output Zm, given some fixed initial state of LFSRC, is
about 22L−m, where m ≤ 2L.

Statement 2. Time complexity of Alg. 1B is CT = O(T ) for m ≤ 2L, and
CT = O(min(2L, T 2m−2L)) for m > 2L, where 1 ≤ T ≤ O(23L−m).

4.2 Conditional Distribution of the Initial States

With the sampling algorithm described in Sect. 4.1, we can find T random
preimages of an output sequence Zm. The natural question which arises is how
large should T be so that our subset contains the correct initial state of one of the
LFSR’s, let say LFSRX? The answer is related to the conditional distribution of
different initial states of LFSRX which can produce a given segment of length m of
the output sequence of the ASG. Consider the following two general propositions
(with proofs in Appendix B):

Proposition 1. Let X0, . . . , XT be a sequence of i.i.d. random variables, defined
over the finite set {s1, . . . , sN} with probability distribution p := (p1, . . . , pN ) and
pi := Pr(Xj = si). Then, the probability P := Pr(X0 ∈ {X1, . . . , XT }) that a
realisation of X1, . . . , XT contains a realisation of X0 is

P = 1−
N∑

i=1

(1 − pi)T pi . (2)

Proposition 2. Let H := −∑N
i=1 pi log2(pi) be the entropy of random variable

Xj. With about T = 2H , the probability Pr(X0 ∈ {X1, . . . , XT }) is significant.

To apply these propositions to the situation of ASG, let AX(x, Zm) be a sub-
set of A(Zm), defined by {(u, v, w) ∈ A(Zm) | v = x}. The conditional prob-
ability for a fixed initial state x of LFSRX is then defined by pX(x|Zm) =
|AX(x, Zm)|/|A(Zm)|. Consequently, we need to draw about T = 2HX uni-
formly random elements of A(Zm) to include the correct initial state of LFSRX

where HX is the conditional entropy of the initial state of the LFSRX given Zm,
defined by

HX(Zm) = −
∑

x

pX(x|Zm) · log2 pX(x|Zm) . (3)

The same argument applies to LFSRY, and the symmetry of ASG motivates the
simplification H := HX = HY (if not mentioned otherwise). Another natural
question is the expected number of different elements Q drawn in this sample
of size T . This is related to the Coupon-Collector Problem with non-uniform
distribution. However, we can assume that Tpi � 1, which results in Q ≈ T .
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Remark 3. Any adversary who would know the distribution pX could try to
recover the unknown initial state of LFSRX by considering the most probable
initial state first, then the second most probable one and so on. Here, to cope
with unknown distribution pX , we simulate it by choosing uniformly random
elements of A(Zm) (where element x is chosen with probability pX(x|Zm)). This
procedure is similar to [14] in which an equivalent description of the underlying
cipher was used, for which the initial states were no longer equiprobable.

Remark 4. As mentioned in Sect. 2.4, it has been suggested in [7] to take advan-
tage of the posterior probabilities of the individual bits of the regularly clocked
LFSRX and LFSRY sequences, when conditioned on a given segment of the out-
put sequence for faster reconstruction of LFSR initial states. Our attack can be
considered as a generalization of this attack in which we take advantage of the
posterior probabilities of the initial states rather than individual bits, when con-
ditioned on a given segment of the output sequence. Although unlike [7] we are
able to give an estimation for the time and data complexities of our attack, a
theoretical analysis of the conditional entropy of the initial states remains an
open problem, see Sect. 5.1.

4.3 Description of the Attack

In the basic edit probability correlation attack on the ASG [6,10], the edit prob-
ability is computed for each of the 2L possible initial states of LFSRX (given a
segment of length n ≈ 40L of the output sequence of the ASG) to find the correct
initial state. This is repeated also for LFSRY, and finally the initial state of LFSRC

can be recovered. In our improved attack, we take the output sequence Zm into
account to compute a smaller multiset B of candidates of initial states, which
is of size T and contains the correct initial state of LFSRX (resp. LFSRY) with
some probability P , see Prop. 1. The multiset B is constructed with Alg. 1B. In
Alg. 2, we give a formalisation of this attack.

Remark 5. One would think that it is better to compute the edit probability
between Zn and only the LFSR output sequence of all distinct initial states
suggested by multiset B to avoid processing the same initial state several times.
However, this needs memory of O(|B|) and extra effort to keep the track of
the non-distinct initial states. Since |B| ≈ T the achieved gain is negligible and
therefore we alternatively compute the edit probability at the time where a
preimage is found.

Algorithm 2. Attack on ASG

Input: Parameters T , m, n, output Zn.
Output: Recover the initial state of ASG with some success probability δ.
1: Given the segment Zm, find T preimages using Alg. 1B.
2: Compute the edit probability between Zn and the output sequence for each sug-

gested initial state.
3: Choose the most probable candidates for LFSRX resp. LFSRY.
4: Recover LFSRC and verify the validity, see Sect. 2.3.
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Parameters for the Entropy. The complexity of the attack is related to the
conditional entropy H . However, for large instances of ASG, the conditional prob-
abilities and hence H are unknown. To be able to evaluate our attack and give
an explicit expression for the data and time complexities, we need to know the
relation between conditional entropies H and all parameters which can possibly
affect them. The parameters are LFSR’s feedback polynomials and the output
prefix Zm, which implicitly include the lengths of LFSR’s and output segment
length as well. In our simulations we noticed that feedback polynomials have
almost no effect and the only important parameters are LFSR lengths L, the size
of the output segment m (as larger values of m reduce uncertainty about the
correct preimage), and the weight w of the output segment Zm or the weight w
of the first derivative of the output segment Zm (as will be shown in our simula-
tions). The entropy is significantly reduced if |wt(Zm)/m− 0.5| � 0 (i.e. many
zeros or ones) or if wt(Żm)/m� 0.5 (i.e. many runs of zeros or ones). This can
be explained by the fact that a biased output segment results in a biased LFSR
segment, and we will refer to such outputs as weak outputs. In Sect. 5.1, we
will predict the average value of H depending on these parameters using some
regression analysis, hence E(H) = f(L, m, w).

Time Complexity. Let us discuss time complexity of Alg. 2. According to
Prop. 2, we set T = 2H . Complexity of Step 1 is described in Statement 2.
Computation of the edit probability distance of a single preimage takes about
O(L2), hence complexity of Step 2 is at most O(L2T ). Finally, the complexity
of Step 4 is O(20.27L), which can be neglected here.

Statement 3. Time complexity of Alg. 2 is about CT = O(L22H) for m ≤ 2L,
and CT = O(2H+m−2L) for m� 2L.

This should be compared to the attack by Golic et al. of complexity CT =
O(L22L) using an output sequence of length about CD = 40L which was de-
scribed in Sect. 2.3, and Johansson’s attack of complexity CT = O(L22

2
3 L) using

an output sequence of length CD = O(2
2
3 L) as described in Sect. 3.

Data Complexity. The parameter w has some influence on the data complexity
of our attack. Once we know that the weight of Zm is at most w or at least m−w,
or that the weight of the first derivative of Zm is at most w, a prefix of length
about n = 40L suffices to recover the initial states, see [10]. However, in order
to obtain such an output segment Zt+m

t+1 for some t, the required amount of
keystream bits is CD = 2m(3

∑w
i=0

(
m
i

)
)−1. This can be roughly approximated

by CD = O(2m(1−h(w/m))).

Success Probability. The success probability δ of the attack depends on three
events: 1) The probability that our multiset B of size T = 2H contains the correct
initial state. 2) The probability that our prediction of the entropy gives at least
H . 3) The success probability of the edit distance correlation attack. The first
probability corresponds to P according to Eq. 2. The second probability comes
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from the fact that we use an estimation of the average value of H instead of the
exact value of H .

5 Experimental Results

In this section, we give experimental results on ASG. We estimate the conditional
entropy, give a detailed discussion of the complexity for different scenarios and
present an example of an attack.

5.1 Distribution of Initial States

For specific instances of ASG, we investigate the distributions of initial states.
Here, ASG is small enough such that an exact computation of initial states with
Alg. 1 is feasible. We use registers of the same length, but our results do not
significantly change if the lengths are pairwise coprime and about the same,
as suggested in [15]. The following example has illustrative character: First, we
compute the distributions for one fixed output sequence. Second, the block size
m is varied for average-weighted output sequences. Third, an output sequences
of low weight is investigated.

Example 1. Consider a setup with L = 20 and some randomly chosen primi-
tive feedback polynomials. Fix a random output sequence Zm of m = 40 bits
according to

Zm = 1110110110100101010000100100101011000110 .

The number of preimages is |A(Zm)| = 1 046 858 = 220.00, and the entropies are
HC = 17.49, HX = 17.32, and HY = 17.34. If this output is padded by the 2
additional bits 01, then the number of preimages becomes |A(Zm)| = 264 265 =
218.01 and the entropies are HC = 16.26, HX = 16.46, and HY = 16.45. On the
other hand, consider the following output sequence for m = 40 and with weight
w = 7,

Zm = 0001010000100000000110000001000100000000 .

The number of preimages for this low-weight output sequence is |A(Zm)| =
1117725 = 220.09, with entropies HC = 17.39, HX = 12.24, and HY = 12.63. �	
Let us discuss this example. The number of preimages is about 260−m, as ex-
pected. In all three registers, the entropy is not maximal for the random output
sequence of size m = 40. This may be explained by the fact that sequences are
not fully random, as they satisfy a linear recurrence. In the stop/go LFSR’s, the
entropy is strongly reduced for outputs of low weight, without any losses in the
number of preimages. Notice that HC does not depend on the weight of the
output, which is optimal for efficient sampling.

In the following we will focus on the case m = 2L. The entropy H of the
stop/go LFSR’s is exactly determined for different values of L and w, where
L = 5, . . . , 21 and w = 0, . . . , m. More precisely, given some L (and randomly
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Fig. 1. E(H)/L versus w/m for all 0 ≤ w ≤ m and 5 ≤ L ≤ 21

chosen primitive feedback polynomials), we determine the average entropy E(H)
using 500 randomly chosen outputs of weight w. The values of E(H)/L as a
function of w/m are shown in Fig. 1. The inner dots in this figure relate to
smaller values of L, and the outer dots relate to larger values of L. A convergence
behavior of E(H)/L for increasing L is perceivable from this figure.

It turns out that E(H)/L can be well approximated by a scaled binary entropy
function, namely E(H)/L ≈ γ · h(w/m) with 0 < γ ≤ 1 depending on L. Notice
that γ = maxw(E(H)/L), which can be well approximated by γ ≈ 1−1/(0.19L+
3.1), see Appendix C. Consequently, with this regression analysis, the average
value of the entropy is approximated by:

E(H) ≈ γ(L) · L · h
(w

m

)
(4)

γ(L) ≈ 1− 1
0.19L + 3.1

. (5)

In the case w = wt(Żm) the shape is not symmetric, however it seems that for
w/m < 0.5 for a fixed L the figures of E(H) versus w/m are well comparable
regardless of what w represents (w = wt(Żm) or w = wt(Zm)), see Appendix C.
For m > 2L, the expected entropy does not correspond to this functional form
anymore. The maximum of H(w/m) decreases linearly with m, but the graph
of E(H)/L versus w/m is broader compared to h(w/m), which means that a
reduction of the entropy requires an output of very low weight. We do not further
investigate this scenario.

5.2 Complexity of the Attack

Our attack allows different time/data trade-offs. We describe the complexity of
our attack for m = 2L and different values of parameters L and w. According
to Statement 3, time complexity of our attack is CT = O(L22H). Including
the approximation for H , we obtain CT = O(L22γLh(w/m)). Given an random
output sequence, the complexity of our attack is CT = O(L22γL). In this case
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the data complexity is minimal and our attack should be compared to the attack
by Golic et al. [10] which shows an improvement by a factor 2(1−γ)L. In the limit
γ → 1 (hence for L → ∞), our attack reduces to the previous attack. However
for moderate values there is some gain. For example, we expect γ = 0.945 for
L = 80, which gives an improvement of a factor 24.4.

Reduced complexity attacks can be mounted by using weak outputs. This
can be compared to the attack by Johansson [13]. Asymptotical data complex-
ity of our attack becomes CD = O(2m(1−h(w/m))). Similar to what we do in
Sect. 3, the optimised complexity is achieved if time and data complexities are
almost equal. Considering only the exponential terms and γ = 1, this hap-
pens when h(w/m)L = m(1 − h(w/m)), that is h(w/m) = 2/3 and hence
w ∈ {0.174m, 0.826m}. The asymptotical complexities become CT = O(L22

2
3 L)

and CD = O(2
2
3 L), which is identical to the complexities of the attack by Johans-

son, see Sect. 3. However, compared to the simple attack in [13], it is clear that
our attack allows for more flexibility in the structure of the output sequence: the
weight can be arbitrary, we can also use outputs of low weight derivative, and
we do not need a hypothesis about the origin of the output bits. With a more
subtle (non-asymptotical) investigation of the complexities, we show that data
(and/or time) complexity can be significantly reduced with our attack. More
precisely, we evaluate the exact complexities of our and Johansson’s attack for
reasonable value of L. Regarding Johansson’s attack, consider the special point
M = 2

3L in the time/data tradeoff curve. For L = 80, this gives CT = 269.4 and
CD = 255.2. If we choose w = 0.21m in our attack, we obtain about the same
time complexity and require only CD = 242.3 data. This is an improvement of a
factor 212.9 (notice that a significant reduction can be expected even for γ = 1).

5.3 Example of an Attack

In this section, we present a large-scale example of a partial attack. We fix a
random initial state in all three registers, such that the corresponding output
sequence has weight w = 0.174m. Then, H is computed according to Eq. 4 and
5. Alg. 1B is used to compute the multiset B of size T = 2H , and we check if the
correct initial state of the LFSRX (resp. LFSRY) is included in B. This is repeated
several times, in order to determine the success probability P . In addition, time
complexity of Alg. 1B is measured experimentally: For each choice of CL, the
complexity is increased by the number of preimages found (and by one if no
preimage can be found), see Remark 5. For m = 2L, this should be compared
to CT = O(T ), see Statement 2. Notice that we do not implement the edit
probability correlation attack and rely on the results of [10].

Example 2. Let L = 42 and fix a random initial state such that the correspond-
ing output sequence Zm of m = 84 bits has weight w = 14. The expected entropy
becomes H = 24.16, we set T = 2H = 18 782 717 and apply Alg. 1B. This is
repeated 200 times, and the correct initial state of LFSRX is found in 84 cases
which shows a success probability of P = 0.42 for our algorithm. The average
time complexity of the sampling algorithm is 225.35. �	
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6 Conclusions

A reduced complexity attack on the Alternating Step generator (ASG) has been
presented, the success of which has been confirmed experimentally. For com-
parison, the complexity of the best previous attack has been determined and
described in closed form. Estimates of the overall complexity of our new attack
are shown to improve the complexity of the previous attack. Our attack allows
for greater flexibility in known output data constraints, and hence for lower data
complexity, for being successful. The attack method demonstrates the usefulness
of a quite general attack principle exemplified in the case of ASG: to exploit low
sampling resistance and heavily biased inputs for outputs satisfying certain con-
straints.
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A Johansson’s Reduced Complexity Attack on SG

Here, we give a closed form for the reduced complexity attacks on SG in [13]. In
the approach B, the attacker waits for an output sequence of length 2M + 1 of
the form (zt−M , zt−M+1, ..., zt−1, zt, zt+1, ..., zt+M−1, zt+M ) = (0, 0, ..., 0, 1, 0, ...,
0, 0). Then, an exhaustive search is performed over all typical initial states
(x1, x2, ..., xL) satisfying

Pr(xi = 0) =

⎧
⎨

⎩

0 for i = �L+1
2 

3/4 for 1 ≤ |i− �L+1
2 | ≤ 2M

1/2 for 1 ≤ i < �L+1
2  − 2M, �L+1

2 + 2M < i ≤ L
(6)

for the LFSR from which the output sequence of the SG is derived. The time
and data complexities are CT = L22L−4M−1

(
4M
M

)
and CD = 22M , with the

restriction 2M + 1 ≤ L. Assuming 2M = αL with α ≤ 1, again ignoring the
polynomial and constant terms and equaling the time and data complexities, we
have L − 2αL + 2αLh(0.25) = αL which shows α = 1/(3 − 2h(0.25)) ≈ 0.726.
Thus in the best case, the complexities of this attack are CT = O(L220.726L)
and CD = O(20.726L), where M = 0.363L. For approach C, the gain is negligible
when L is increased.

B Proofs

B.1 Proof of Prop. 1

The probability P can be expressed as

Pr(X0 ∈ {X1, . . . , XT }) = 1− Pr(X0 �= Xj , 1 ≤ j ≤ T )

= 1−
N∑

i=1

Pr(X0 �= Xj , 1 ≤ j ≤ T | X0 = si) · Pr(X0 = si)
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= 1−
N∑

i=1

Pr(si �= Xj , 1 ≤ j ≤ T ) · Pr(X0 = si)

= 1−
N∑

i=1

(1− pi)T pi . �	

B.2 Proof of Prop. 2

From Prop. 1 we have Pr(X0 ∈ {X1, . . . , XT }) = 1−∑N
i=1(1− pi)T pi. With the

assumption Tpi � 1, we obtain (1 − pi)T ≈ 1 − Tpi, which gives the approxi-
mation Pr(X0 ∈ {X1, . . . , XT }) ≈ 1−∑N

i=1(1 − Tpi)pi = T
∑N

i=1 p2
i . Assuming

Pr(X0 ∈ {X1, . . . , XT }) ≈ 1, we have T ≈ 1/
∑N

i=1 p2
i , or equivalently T ≈ 2G

with G := − log2

∑N
i=1 p2

i . This can be compared with the entropy function H .
Both H and Q are approximated with a multivariate Taylor series of order 2 at
the point p0, such that pi = p0 + εi. If T2 denotes the second order part, this
gives

T2(H) =
Np0

ln 2
− 1

ln 2
− log2 p0

T2(G) =
2

ln 2
− 2

Np0 ln 2
− log2 N − log2 p2

0 .

Now let p0 := 1/N , then we have T2(H) = log2 N and T2(G) = − log2 N +
2 log2 N = log2 N . Consequently, the difference becomes T2(H) − T2(G) = 0,
hence H = G of order 2 on the points pi = 1/N . �	

Remark 6. The quantity G := − log2

∑N
i=1 p2

i is the Rényi entropy of order 2.
It is known that guessing a random value, drawn from a known nonuniform
probability distribution, on average requires the number of steps related to the
Rényi entropy of order 2, e.g. see [16] or references therein. The Prop. 2 shows
that this is still true when the distribution is not directly known but can be
simulated. One can directly use this entropy instead of Shannon entropy which
is only an approximation in this regard, however, we prefer to use the better
known Shannon entropy.

For the case pi = 1/N we have G = H = log2 N , hence T = N and P =
1−∑N

i=1(1− 1/N)N(1/N). For N � 1 we have (1− 1/N)N ≈ e−1 which shows
P ≈ 1−e−1 ≈ 0.63. We guess that in general we have P ≥ 1−e−1. Our extensive
simulations for several distributions verifies this conjecture. �	

C Additional Figures

Fig. 2 shows some additional figures of the average entropy, together with our
approximations using nonlinear regression. Fig. 3 compares the average value of
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Fig. 2. Left: E(H)/(maxw(E(H))) versus w/m for L = 21, approximated by the en-
tropy function. Right: maxw(E(H)) versus L, approximated by γ(L).
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versus w/m for L = 17 in two cases: w = wt(Żm) and w = wt(Zm)

the entropy as a function of the weight of the output sequence and as a function
of the weight of the derivative of the output sequence.
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Abstract. The main application of stream ciphers is online-encryption
of arbitrarily long data. Many practically used and intensively discussed
stream ciphers consist of a small number of linear feedback shift regis-
ters (LFSRs) and a compression function that transforms the bitstreams
produced by the LFSRs into the output keystream. In 2002, Krause pro-
posed a Binary Decision Diagram (BDD) based attack on this type of
ciphers, which ranges among the best generic short-keystream attacks
on practically used ciphers such as the A5/1 generator used in GSM
and the E0 generator from the Bluetooth standard. In this paper we
show how to extend the BDD-technique to nonlinear feedback shift regis-
ters (NFSRs), feedback shift registers with carry (FCSRs), and arbitrary
compression functions. We apply our findings to the eSTREAM focus ci-
phers Trivium, Grain and F-FCSR. In the case of Grain, we obtain the
first nontrivial cryptanalytic result besides generic time-memory-data
tradeoffs.

Keywords: Stream cipher, cryptanalysis, BDD, Trivium, Grain, F-
FCSR.

1 Introduction

The main purpose of LFSR-based keystream generators is online encryption
of bitstreams p ∈ {0, 1}∗ that have to be sent over an insecure channel, e.g.,
for encrypting speech data to be transmitted from and to a mobile phone over
the air interface. In many stream ciphers, the output keystream z ∈ {0, 1}∗ of
the generator is bitwise XORed to the plaintext stream p in order to obtain
the ciphertext stream c ∈ {0, 1}∗, i.e., ci = pi ⊕ zi for all i. Based on a secret
key, which has to be exchanged between the sender and the authorized receiver
prior to the transmission, and a public initialization vector (IV), the receiver
can compute the keystream z in the same way as the sender computed it and
decrypt the message using the above rule.

We consider the special type of FSR-based keystream generators that con-
sist of an internal bitstream generator with a small number of Feedback Shift
Registers (FSRs) and a compression function C : {0, 1}∗ → {0, 1}∗. The secret
key and the IV determine the initial state of the FSRs, which produce an inter-
nal bitstream w ∈ {0, 1}∗ that is transformed into the output keystream z via

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 17–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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z = C(w). Practical examples for this design include the E0 generator used in
Bluetooth [4], the A5/1 generator from the GSM standard for mobile telephones
[5], and the self-shrinking generator [18].

In 2002, Krause proposed a Binary Decision Diagram (BDD) attack [14,15] on
stream ciphers that are based on Linear Feedback Shift Registers (LFSRs). The
BDD-attack is a generic attack in the sense that it does not depend on specific
design properties of the respective cipher. It only relies on the assumptions that
the generator’s output behaves pseudorandomly and that the test whether a
given internal bitstream w produces a sample keystream can be represented in a
Free Binary Decision Diagram (FBDD) of size polynomial in the length of w. In
addition, the attack reconstructs the secret key from the shortest information-
theoretically possible prefix of the keystream (usually a small multiple of the
keysize), whereas other generic attack techniques like algebraic attacks [1,6] and
correlation attacks [10] in many cases require amounts of known keystream that
are unlikely to be available in practice. In the case of E0, the A5/1 generator and
the self-shrinking generator, it has been shown in [16] that the performance of the
attack in practice does not deviate significantly from the theoretical figures. The
inherently high memory requirements of the attack can be reduced by divide-
and-conquer strategies based on guessing bits in the initial state at the expense
of slightly increased runtime [16,20].

In the ECRYPT stream cipher project eStream [8], a number of new ciphers
have recently been proposed and analyzed. Many new designs partly replace LF-
SRs by other feedback shift registers such as nonlinear feedback shift registers
(NFSRs) and feedback shift registers with carry (FCSRs) in order to prevent
standard cryptanalysis techniques like algebraic attacks and correlation attacks.
Moreover, combinations of different types of feedback shift registers permit alter-
native compression functions. We show that the BDD-based approach remains
applicable in the presence of NFSRs and FCSRs combined with arbitrary output
functions as long as not too many new internal bits are produced in each clock
cycle of the cipher.

Three of the most promising hardware-oriented submissions to the eStream
project are the ciphers Trivium [7], Grain [12], and the F-FCSR family [2].
All three ciphers are part of the focus group and are now being considered
for the final portfolio that will be announced in the middle of 2008. We show
that the BDD-attack is applicable to these ciphers and obtain the first ex-
ploitable cryptanalytic result on the current version of Grain besides generic
time-memory-data-tradeoff attacks. Our results for the F-FCSR family empha-
size already known but differently motivated security requirements for the choice
of parameters.

This paper is organized as follows. We discuss some preliminaries on FSR-
based keystream generators and BDDs in Sect. 2 and explain the extended BDD-
attack in Sect. 3. Section 4 presents generic constructions for the BDDs that are
used in the attack, and Sect. 5 applies our observations to the eStream focus
ciphers Trivium, Grain and F-FCSR.
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2 Preliminaries

2.1 FSR-Based Keystream Generators

A keystream generator consists of an n-bit internal state s = (s0, . . . , sn−1),
a state update function F : {0, 1}n → {0, 1}n and an output function C :
{0, 1}n → {0, 1}∗. The starting state s0 of the generator is derived from a secret
key K and a public initialization vector IV. At each clock t, output bits are
produced according to C(st) from the current state st, and the internal state
is updated to st+1 = F (st). Hence, the output of the generator is completely
determined by the starting state s0.

A widely adopted architecture especially for hardware oriented keystream gen-
erators is to represent the internal state in a number of Feedback Shift Registers
(FSRs) R1, . . . , Rk−1 of lengths n(0), . . . , n(k−1). The state s of the generator is
the combined state of the FSRs, hence n =

∑k−1
i=0 n(i). Among the many types of

FSRs discussed in the literature, Linear and Nonlinear Feedback Shift Registers
as well as Shift Registers with Carry have proved to be particularly suitable
building blocks for keystream generators.

Definition 1. A Feedback Shift Register (FSR) consists of an n-bit register
a = (a0, . . . , an−1) and a state update function F : {0, 1}n → {0, 1}. Starting
from an initial configuration a0, in each clock a0 is produced as output and the
register is updated according to a := (a1, . . . , an−2, F (a0, . . . , an−1)). Depending
on whether F is a linear function, we call the register a Linear Feedback Shift
Register (LFSR) or a Nonlinear Feedback Shift Register (NFSR).

The FSR-construction is illustrated in Fig. 1.

a0 an−1· · ·

F

a1

Fig. 1. Feedback Shift Register (FSR) of length n

The definition implies that the output bitstream (wt)t≥0 produced from an
initial configuration a0 = (a0

0, . . . , a
0
n−1) can be expressed as

wt =
{

a0
t for t ∈ {0, . . . , n− 1}

F (wt−n, . . . , wt−1) for t ≥ n
.

As an alternative to LFSRs and NFSRs, Feedback Shift Registers with Carry
were introduced and extensively analyzed in [13].

Definition 2. A Feedback Shift Register with Carry in Fibonacci architecture
(Fibonacci FCSR) consists of an n-bit feedback shift register a = (a0, a1, . . . ,
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an−1) with feedback taps (c1, . . . , cn) and an additional q-bit memory b with q ≤
�log2(n)�.

Starting from an initial configuration (a0, b0), in each clock a0 is produced as
output, the sum σ := b+

∑n
i=1 an−ici is computed over the integers, and the shift

register and memory are updated according to a := (a1, . . . , an−1, σ mod 2) and
b := σ div 2.

A Fibonacci FCSR of length n is illustrated in Fig. 2.

a0 ban−1· · ·

∑

mod 2 div 2an−2

c1cn c2· · ·

Fig. 2. FCSR of length n in Fibonacci architecture

We call an FCSR state (a, b) periodic if, left to run, the FCSR will eventually
return to that same state. In case the Fibonacci FCSR is in a periodic state, the
memory required to store the integer sum b can be further bounded as follows
(cf. [11], Proposition 3.2).

Proposition 1. If a Fibonacci FCSR is in a periodic state, then the value of
the memory b is in the range 0 ≤ b < wt(c), where wt(x) for an x ∈ {0, 1}∗
denotes the Hamming weight of x.

Hence, if we know that the initial state (a0, b0) is periodic, we can limit the size
of the memory to q := �log2(wt(c)− 1)�+ 1 bits.

Based on the initial configuration (a0, b0), we can describe the output bit-
stream (wt)t≥0 of a Fibonacci FCSR by

wt =
{

a0
t for t ∈ {0, . . . , n− 1}

σt mod 2 for t ≥ n
,

where σt = bt−n +
∑n

i=1 wt−ici and bt−n+1 = σt div 2 for t ≥ n, which implies

σt = (σt−1 div 2) +
n∑

i=1

wt−ici with σn−1 = 2b0 . (1)

Similarly to the Galois architecture of LFSRs, there exists a Galois architec-
ture for FCSRs, which was first observed in [19] and further analyzed in [11].

Definition 3. A Feedback Shift Register with Carry in Galois architecture (Ga-
lois FCSR) consists of a main register and a carry register. The main register
has n register cells a0, . . . , an−1 and an associated multiplier vector (c1, . . . , cn)
with cn 	= 0. The cells of the carry register are denoted b1, . . . , bn−1. The sign

∑

represents a full adder. At the j-th adder, the following input bits are received:
1) aj from the preceding cell, 2) a0cj from the feedback line and 3) bj from the
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memory cell. These are added to form a sum σj (with 1 ≤ j ≤ n − 1). At the
next clock cycle, this sum modulo 2 is passed on to the next cell in the register,
and the higher order bit is used to replace the memory, i.e., a′j−1 = σj mod 2
and b′j = σj div 2. At the beginning of the computation, the register is initialzied
with a start configuration (a0, b0).

We note that the Galois architecture is generally more efficient than the Fi-
bonacci architecture because the feedback computations can be performed in
parallel and each addition involves at most 3 bits. An example Galois FCSR is
illustrated in Fig. 3.

a0
∑ a1

∑ . . . ∑

bn−1

an−1

cn−1 cnc2

b2

c1

b1

Fig. 3. FCSR of length n in Galois architecture

If memory bits are only present at those positions i ∈ {1, . . . , n−1} for which
ci = 1, which is equivalent to bi ≤ ci for all i, the Galois-FCSR can be mapped
to a Fibonacci-FCSR (cf. Theorem 5.2 and Corollary 5.3 of [11]).

Theorem 1. For a Galois FCSR with multiplier vector (c1, . . . , cn) and an ini-
tial loading (a0, b0) where b0

i ≤ ci for all i ∈ {1, . . . , n−1} there exists a Fibonacci
FCSR with feedback taps (c1, . . . , cn) and a starting state (ã0, b̃0) such that both
FCSRs will produce the same output.

In an FSR-based keystream generator, the FSRs may be interconnected in the
sense that the update function F i of Ri may also depend on the current content
of the other registers, i.e., we have F i : {0, 1}ni → {0, 1}, ni ≤ n, for all i ∈
{0, . . . , k − 1}. The output function C : {0, 1}n → {0, 1}∗, which derives the
output of each clock from the current state, usually depends on one or more
state bits from each FSR.

Similarly to a single FSR, we can think of an FSR-based keystream generator
with k registers as producing an internal bitstream (wt)t≥0, where

wt := w
r(t)
s(t) with r(t) = t mod k and s(t) = s div k ,

i.e., the t-th internal bit of the generator corresponds to the s(t)-th bit in the
bitstream produced by Rr(t). Again, the internal bitstream and hence the output
of an FSR-based keystream generator are entirely determined by its starting
state s0, and the first m bits of the internal bitstream w can be computed as
(w0, . . . , wm−1) = H≤m(s0), where H≤m : {0, 1}n → {0, 1}m. We denote the
prefix of the keystream that is produced from an m-bit internal bitstream w by
Cm(w) with Cm : {0, 1}m → {0, 1}∗.
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We call an integer i an initial position in an internal bitstream w, if wi cor-
responds to a bit from the initial state of some FSR, and a combined position
otherwise. Correspondingly, we denote by IP(i) the set of initial positions and
by CP(i) the set of combined positions in {0, . . . , i−1}. For an internal bistream
w, let IB(w) denote the bits at the initial positions in w. Let nmin denote the
maximum i for which all i′ ≤ i are initial positions and nmax the minimum i for
which all i′ > i are combined positions.

Definition 4. We call an FSR-based keystream generator regular, if |Cm(w)| =
β(m) for all w ∈ {0, 1}m, i.e., an internal bitstream of length m always yields
β(m) keystream bits.

Two important parameters of FSR-based keystream generators are the best-case
compression ratio and the information rate, which we define as follows.

Definition 5. If γm is the maximum number of keybits that the generator pro-
duces from internal bitstreams of length m, we call γ ∈ (0, 1] the best-case com-
pression ratio of the generator. Moreover, for a randomly chosen and uniformly
distributed internal bitstream W (m) ∈ {0, 1}m and a random keystream Z, we
define as information rate α the average information that Z reveals about W (m),
i.e., α := 1

mI
(
W (m), Z

) ∈ (0, 1].1

Assumption 1 (Independence Assumption). For all m ≥ 1, a randomly
chosen, uniformly distributed internal bitstream w(m), and all keystreams z ∈
{0, 1}∗, we have Probw[C(w) is prefix of z] = pC(m), i.e., the probability of C(w)
being a prefix of z is independent of z.

As shown in [14], the computation of α can be simplified as follows if the gener-
ator fulfills the independence assumption.

Lemma 1. If the Independence Assumption holds for a keystream generator,
we have α = − 1

m log2(pC(m)).

Corollary 1. The information rate α of a regular FSR-based keystream gener-
ator fulfilling the Independence Assumption is given by α = β(m)

m .

Proof. The Independence Assumption and Definition 4 imply that the 2β(m)

possible keystream blocks of length β(m) that can be produced from the m-
bit internal bitstream all have probability pC(m). Hence pC(m) = 2−β(m) and
therefore α = − 1

m log2(2
−β(m)) = β(m)

m . 
�
Finally, we assume the output keystream to behave pseudorandomly, which we
formalize as follows.

Assumption 2 (Pseudorandomness Assumption). For m ≤ �α−1n, let
w(m) and s0 denote randomly chosen, uniformly distributed elements of {0, 1}m
and {0, 1}|IP(m)|, respectively. Then, it holds for all keystreams z that
Probw[C(w) is prefix of z] ≈ Probs0 [C(H≤m(s0)) is prefix of z].
1 Recall that for two random variables A and B, the value I(A,B) = H(A)−H(A|B)

defines the information that B reveals about A.
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We expect the Pseudorandomness Assumption to hold since a significant viola-
tion would imply the vulnerability of the generator to a correlation attack.

2.2 Binary Decision Diagrams (BDDs)

We briefly review the definitions of Binary Decision Diagrams and their most
important algorithmic properties.

Definition 6. A Binary Decision Diagram (BDD) over a set of variables Xn =
{x1, . . . , xn} is a directed, acyclic graph G = (V, E) with E ⊆ V × V × {0, 1}.
Each inner node v has exactly two outgoing edges, a 0-edge (v, v0, 0) and a 1-edge
(v, v1, 1) leading to the 0-successor v0 and the 1-successor v1, respectively. A BDD
contains exactly two nodes with outdegree 0, the sinks s0 and s1. Each inner node
v is assigned a label v.label ∈ Xn, whereas the two sinks are labeled s0.label = 0
and s1.label = 1. There is exacly one node with indegree 0, the root of the BDD.
We define the size of a BDD to be the number of nodes in G, i.e., |G| := |V |. Each
node v ∈ V represents a Boolean Function fv ∈ Bn = {f |f : {0, 1}n → {0, 1}} in
the following manner: For an input a = (a1, . . . , an) ∈ {0, 1}n, the computation
of fv(a) starts in v. In a node with label xi, the outgoing edge with label ai is
chosen, until one of the sinks is reached. The value fv(a) is then given by the
label of this sink.

Definition 7. For a BDD G over Xn, let G−1(1) ⊆ {0, 1}n denote the set of
inputs accepted by G, i.e., all inputs a ∈ {0, 1}n such that froot(a) = 1.

Since general BDDs have many degrees of freedom for representing a partic-
ular Boolean function, many important operations and especially those that
are needed in our context are NP-hard. We therefore concentrate on the more
restricted model of Ordered Binary Decision Diagrams (OBDDs), which are de-
fined as follows.

Definition 8. A variable ordering π for a set of variables Xn = {x1, . . . , xn} is
a permutation of the index set I = {1, . . . , n}, where π(i) denotes the position of
xi in the π-ordered variable list xπ−1(1), xπ−1(2), . . . , xπ−1(n).

Definition 9. A π-Ordered Binary Decision Diagram (π-OBDD) with respect
to a variable ordering π is a BDD in which the sequence of tests on a path from
the root to a sink is restricted by π, i.e., if an edge leads from an xi-node to an
xj-node, then π(i) < π(j). We call a BDD G an OBDD, if there exists a variable
ordering π such that G is a π-OBDD. We define the width of an OBDD G as
w(G) := maxi{|{v ∈ G|v.label = xi}|}.
Figure 4 shows a π-OBDD that computes the function f(z0, . . . , z3) = z0z2 ∨
z0z̄2z3 ∨ z̄0z1z3.

In contrast to BDDs, OBDDs allow for efficient implementations of the op-
erations that we are interested in. Let π denote a variable ordering for Xn =
{x1, . . . , xn} and let the π-OBDDs Gf , Gg and Gh represent Boolean functions
f, g, h : {0, 1}n → {0, 1}. We have |Gf | ≤ m · w(Gf ), and there exists an al-
gorithm MIN that computes in time O(|Gf |) the uniquely determined minimal
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Fig. 4. A π-OBDD over {z0, . . . , z3} with π(0) = 0, π(1) = 2, π(2) = 1 and π(3) = 3

π-OBDD G with w(G) ≤ |G−1
f (1)| that represents f . In time O(|Gf | · |Gg| · |Gh|),

we can compute a minimal G0-OBDD G with w(G) ≤ w(Gf ) · w(Gg) · w(Gh)
that represents the function f ∧ g ∧ h. Additionally, it is possible to enumerate
all elementes in G−1

f (1) in time O
(
n · |G−1

f (1)|
)
. We refer the reader to [21] for

details on BDDs, OBDDs and the corresponding algorithms.
Note that we can straightforwardly use BDDs as a datastructure for subsets

of {0, 1}n. In order to represent an S ⊆ {0, 1}n, we construct a BDD GS that
computes the characteristic function fS of S given by fS(x) = 1 if x ∈ S and
fS(x) = 0 otherwise. Hence, GS will accept exactly the elements of S. More-
over, we can compute a BDD representing the intersection S ∩ T of two sets S
and T from their BDD-representations GS and GT by an AND-synthesis of GS

and GT .

3 BDD-Based Initial State Recovery

The BDD-based attack on keystream generators, which was first introduced in
[14], is a known-plaintext initial state recovery attack, i.e., the attacker tries to
reconstruct the unknown initial state s0 of the keystream generator from a few
known plaintext bits p1, p2, . . . and their encryptions c1, c2, . . .. Since a ciphertext
bit ci is computed from a plaintext bit pi and a keystream bit zi via ci = pi⊕zi,
the keystream bit zi can be reconstructed from (pi, ci) by computing pi⊕ci = zi.

We observe that for any internal bitstream w ∈ {0, 1}m that yields a prefix of
the observed keystream, the following two conditions must hold.

Condition 1. w is an m-extension of the initial state bits in w, i.e., we have
H≤m(IB(w)) = w.

Condition 2. Cm(w) is a prefix of the observed keystream z.

We call any w ∈ {0, 1}m that satisfies these conditions an m-candidate. Our
strategy is now to start with m = nmin and to dynamically compute the m-
candidates for m > nmin, until only one m-candidate is left. The first bits of
this m-candidate will contain the initial state s0 that we are looking for. We
can expect to be left with only one m-candidate for m ≥ �α−1n, which follows
directly from the following Lemma (cf. [14] for a proof).



Extended BDD-Based Cryptanalysis of Keystream Generators 25

Lemma 2. Under Assumption 2, it holds for all keystreams z and all m ≤
�α−1n that |{s0 ∈ {0, 1}n : Cm(H≤m(s0)) is prefix of y}| ≈ 2|IP(m)|−αm ≤
2n−αm. Hence, there exist approximately 2n−αm m-candidates.

In order to compute and represent the intermediate m-candidates efficiently, we
use the following BDD-based approach. For a given regular keystream genera-
tor we choose a suitable reading order π and represent bitstreams w fulfilling
conditions 1 and 2 in the minimal π-OBDDs Rm and Qm, respectively. Start-
ing from Pnmin = Qnmin , we compute for nmin < m ≤ �α−1n the π-OBDD
Pm = MIN(Pm−1 ∧Qm ∧ Sm), where the minimum π-OBDD Sm tests whether
wm−1 is in the m-extension of IB(w). Note that we have Pm = MIN(Qm ∧Rm)
with Rm =

∧m
i=1 Si for all m, and Pm accepts exactly the m-candidates.

The cost of this strategy essentially depends on the sizes of the intermediate
results Pm, which can be determined as follows.

Assumption 3 (BDD Assumption). For all m ≥ nmin, it holds that w(Rm)
≤ 2p·|CP(m)| for an integer p ≥ 1 and w(Sm), w(Qm) ∈ mO(1).

Lemma 3. Let K denote a regular FSR-based keystream generator with k FSRs
R0, . . . , Rk−1 of lengths n(0), . . . , n(k−1). If K fulfills the BDD assumption and
the Pseudorandomness Assumption, it holds for n =

∑k−1
i=0 n(i) and all nmin <

m ≤ �α−1n that w(Pm) ≤ nO(1)2
p(1−α)

p+α n.

The proof of Lemma 3 is analogous to the LFSR-case presented in [14,15] and
can be found in Appendix A.

From this bound on w(Pm), we can straightforwardly derive the time, space
and data requirements of the BDD-based attack.

Theorem 2. Let K denote a regular FSR-based keystream generator with an
unknown initial state s0 ∈ {0, 1}n, information rate α and best-case compres-
sion ratio γ. If K fulfills the Independence Assumption, the Pseudorandomness
Assumption and the BDD Assumption, an initial state s̃0 that yields the same
keystream as s0 can be computed in time and with space nO(1)2

p(1−α)
p+α n from the

first �γα−1n consecutive keystream bits of K under s0.

4 Generic BDD Constructions

4.1 Keystream Consistency Check Qm

In most cases, the BDD Qm that checks Condition 2 can be straightforwardly
derived from the definition of the output function C. If the computation of an
output bit zt depends on u(j) > 1 bits from an FSR Rj , a fixed bit in the
bitstream produced by Rj will generally appear and have to be read in the
computation of up to u(j) output bits. In this case, we compute an output bit
zt from a number of new bits which are being considered for the first time, and
several old bits that were already involved in the computation of previous output
bits. This would imply reading a fixed variable more than once on the same
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path in Qm, which is prohibited by the OBDD-definition. The less restrictive
BDDs permit this construction, but can no longer guarantee the efficiency of the
operations that our attack depends on. A similar problem has been considered
in [14] in the context of the irregularly clocked A5/1 generator [5], which uses
the bits of the internal bitstream both for computing output bits and as input
for the clock control mechanism. A possible solution, which was also proposed in
[14], is to increase the number of unknowns by working with u(j) synchronized
duplicates of the Rj-bitstream at the expense of a reduced information rate α.

We now consider the more general situation that the update function depends
on the new bits and some function(s) g1, . . . , gr in the old bits. In this case, it
suffices to introduce auxiliary variables for the values of these functions in order
to ensure that zt is computed only from new bits. This construction is illustrated
in the following example.

Example 1. Consider the output function zt = C(wt+5, wt+7, wt+9), where C
is defined by C(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. Assuming canonical reading order,
wt+9 would be the new bit and wt+5 and wt+7 the old bits. With the auxiliary
variable w̃t := g1(wt+5, wt+7) and g1(x1, x2) := x1 ⊕ x2, we can express zt as
zt = w̃t ⊕ wt+9.

If we add for each auxiliary variable an FSR to the generator that outputs at
clock t the corresponding value of gj, we can compute zt without considering
the bits from the internal bitstream more than once. Obviously, the resulting
equivalent generator is regular, but will have a lower information rate as before,
since more bits of the internal bitstream have to be read in order to compute
the same number of keystream bits.

4.2 FSR Consistency Check Rm

Recall that each bit wt of an internal bitstream w is either an initial state bit of
some FSR or a combination of other internal bits. In order to decide for a given
internal bitstream whether it satisfies Condition 1, we need to check whether
the update relations imposed on the bits at the combined positions are fulfilled.
Hence, if a combined bit wt is produced by an update relation f i(s0, . . . , sn−1),
we need to check whether f i(wi1 , . . . , wip) = wt, which is equivalent to testing
whether

f̃ i(wi1 , . . . , wip , wt) := f i(wi1 , . . . , wip)⊕ wt = 0 .

The OBDD Sm implements this test for a single combined bit wm−1 and rep-
resents the constant-one function if wm−1 is an initial bit. The OBDD Rm =∧m

i=1 Si performs the consistency tests for the whole internal bitstream.
We first consider the case of FSRs (without additional memory), for which

we need the following definition.

Definition 10. For a polynomial f : {0, 1}n → {0, 1} with

f(w1, . . . , wn) =
⊕

j∈M

mj with mj =
∧

l∈Mj

wl and M j ⊆ {1, . . . , n} ,

and a reading order π ∈ σn, we define the set of active monomials at clock t as
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AMπ(f, t) := {mj : 0 < |{π−1(1), . . . , π−1(t)} ∩M j | < |M j |} .

Hence, AM(f, t) contains all monomials in f for which at least one, but not all
factors are known after the first t inputs have been read.

Lemma 4. For a polynomial f : {0, 1}n → {0, 1} with n > 1 and a reading
order π for the inputs, the set of inputs satisfying f(w1, . . . , wn) = 0 can be
represented in a π-OBDD of width 2max1≤t≤n{|AMπ(f,t)|}+1.

Proof. Let p := max1≤t≤n{|AMπ(f, t)|}. In order to compute f(w1, . . . , wn), we
may proceed in the following way. We define p auxiliary variables b1, . . . , bp,
which will store the intermediate values of partly evaluated monomials, and an
additional variable b0 for the sum of evaluated monomials. We initialize b0 := 0,
bt := 1 for t > 0, and read the variables w1, . . . , wn in the order given by
π. For each variable wt, we update all auxiliary variables that are associated
with monomials containing wt. If a monomial becomes active by reading wt, we
allocate an auxiliary variable bj and define bj := wt. If a monomial is entirely
evaluated after reading wt, we add its value to b0 and free the associated auxiliary
variable. Since there are at most p active monomials at any time, no more than
p + 1 auxiliary variables will be needed simultaneously.

From this strategy, we construct a π-OBDD Gf as follows. We define the
vertex set

V (Gf ) := {(t, b0, . . . , bp)} ⊆ {1, . . . , n} × {0, 1}p+1

and the root of Gf as (1, 1, . . . , 1). For a monomial mj , let bδ(j) denote the
auxiliary variable associated with mj . For each t ∈ {1, . . . , n− 1} and i ∈ {0, 1},
we define the i-successor of (π−1(t), b0, . . . , bp) as (π−1(t + 1), bi

0, . . . , b
i
p). If mj

became inactive in π−1(t), i.e., mj is active in π−1(t−1) but inactive in π−1(t), we
set bi

0 := b0⊕bδ(j) ·i and reset bδ(j) to 1. If mj is active in t, we set bi
δ(j) := bi

δ(j) ·i.
For all remaining auxiliary variables, we define bi

δ(j) := bδ(j). If t = n, we compute
bi
0, . . . , b

i
p as before, and the i-successor of (π−1(t), b0, . . . , bp) is defined to be the

sink labeled with the value of bi
0⊕1. This construction results in a π-OBDD that

accepts only those inputs (w1, . . . , wn) that satisfy f(w1, . . . , wn) = 0.
For all i ∈ {1, . . . , n}, the OBDD contains at most 2p+1 vertices that are

labeled with wi, which implies the claim. 
�
From Lemma 4, we can directly derive an upper bound for the width of the
π-OBDD Sm for an FSR.

Corollary 2. For a given reading order π, an integer m > 0, an FSR R with
update relation f , and p := max0≤t<m{|AMπ(f̃ , t)|} + 1, we can construct a π-
OBDD Sm of width at most 2p that tests for an internal bitstream w ∈ {0, 1}m
if w fulfills the update relation imposed on wm−1.

Note that for p = 1, we obtain the LFSR-bound that was proved in [14].
We now turn to the case of Fibonacci FCSRs. Equation (1) implies that we

need access to σt−1 in order to check whether the update relation holds for wt.
Therefore, we work with a modified FCSR that outputs the sum σt instead of the
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bit wt = σt mod 2 in each clock. More precisely, the modified FCSR outputs for
an initial memory state (b0

q−1, . . . , b
0
0) with b0 =

∑q−1
i=0 b0

i 2
i the values a0

t =: σ0
t

for t < n− 1, (bq−1
0 , . . . , b0

0, a
0
n−1) for t = n− 1, and (σq

t , σq−1
t , . . . , σ0

t ) for t ≥ n
with σt =

∑q
i=0 σi

t2
i and wt = σ0

t .

Lemma 5. For a Fibonacci FCSR R with q bits of memory, an integer m > 0,
and π the canonical reading order, we can construct a π-OBDD Sm of width at
most 2q+1 that tests for the internal bitstream w ∈ {0, 1}m of the modified FCSR
with m = n− 1 + t(q + 1) whether the last q + 1 bits fulfill the update relation.

Proof. In order to check whether σt = (σt−1 div 2) +
∑n

i=1 wt−i · ci, we can
equivalently test if

σt =
q∑

i=1

σi
t−1 +

n∑

i=1

σ0
t−i · ci .

This test can be performed in a π-OBDD as follows. Define the vertex set V as

V := {0, . . . , m− 1} × {0, 1}q+1 ,

such that a vertex v = (k, σ) with σ = (σ0, . . . , σq) consists of a variable number
k corresponding to some σj

l , and q + 1 bits for storing the comparison value for
σ0

t , . . . , σq
t . The root of the OBDD is (0, 0, . . . , 0). For each vertex v ∈ V and

each i ∈ {0, 1}, the i-successor vi = (k + 1, σ̃), σ̃ = (σ̃0, . . . , σ̃q), is defined as
follows. If l ∈ {t − n, . . . , t − 1} and j = 0, we compute σ̃ = σ + σ0

t−j · cj . If
l = t− 1 and j ∈ {1, . . . , q}, we define σ̃ = σ +σj

t−12
j. If l = t and j ∈ {0, . . . , q}

and σj
l 	= σj , we define vi to be the 0-sink. If l = t, j = q and σj

l = σj , vi is the
1-sink.

We can straightforwardly verify that this construction yields a π-OBDD of
width at most 2q+1 which accepts only those inputs for which σt satisfies the
update relations. 
�
In the case of Galois FCSRs with bi ≤ ci at all times, we denote by ai(t) and bi(t)
the value of the register cells ai and bi at time t. The definition of Galois FCSRs
implies an−1(t) = a0(t− 1) and for i ∈ {n− 2, . . . , 0} that ai(t) = ai+1(t− 1) if
ci = 0 and ai(t) = ai+1(t−1)⊕bi+1(t−1)⊕a0(t−1) if ci = 1. We therefore focus
on the nontrivially computed bits and think of the main register as producing
the bitstream

a0(0), a1(0), . . . , an−1(0), . . . , ai1(t), . . . , ail
(t), . . . ,

where {i1, . . . , il} = {1 ≤ i < n|ci+1 = 1}, l = wt(c) − 1, and t > 0. Similarly,
we view the bitstream produced by the carry register as bi1(t), . . . , bil

(t), . . . for
t ≥ 0.

Lemma 6. For a Galois FCSR R with bi ≤ ci for all i ∈ {1, . . . , n − 1}, an
integer m > 0, and π the canonical reading order, we can construct a π-OBDD
Sm of width at most 2 that tests whether a bit in the bitstream produced by
the main register fulfills the corresponding update relations. For a bit in the
bitstream of the carry register, we can perform this consistency test in a π-OBDD
of maximum width 8.
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Proof. According to Corollary 2, we can test the linear conditions on the ai(t)
where ci+1 = 1 in a π-OBDD of width at most 2. Similarly, Corollary 2 yields
a maximum width of 23 = 8 in the case of the carry register since bij (t) can be
computed as

bij (t) = aij (t− 1)bij (t− 1)⊕ bij (t− 1)a0(t− 1)⊕ a0(t− 1)aij (t− 1) . 
�
From the bounds on w(Sm) for the different types of FSRs, we can now straight-
forwardly derive a bound for w(Rm) for an FSR-based keystream generator. Let
K denote an FSR-based keystream generator consisting of k FSRs R0, . . . , Rk−1

with π-OBDDs S0
m, . . . , Sk−1

m with sizes at most mO(1)2pi for all i ∈ {0, . . . , k−1}.
Moreover, let si denote the fraction of combined bits that Ri contributes to the
internal bitstream.

Corollary 3. There exists a π-OBDD Rm of width at most 2|CP(m)|∑k−1
i=0 pisi

that tests for a bitstream w ∈ {0, 1}m whether it is an m-extension of the initial
bits.

Proof. The claim follows directly from Rm =
∧m

i=1 Si and the OBDD-properties
described in Sect. 2.2. 
�

5 Applications

5.1 Trivium

Trivium [7] is a regular keystream generator consisting of three interconnected
NFSRs R0, R1, R2 of lengths n(0) = 93, n(1) = 84, and n(2) = 111. The 288-bit
initial state of the generator is derived from an 80 bit key and an 80 bit IV.
The output function computes a keystream bit zt by linearly combining six bits
of the internal state, with each NFSR contributing two bits (cf. Appendix 6 for
details). In order to mount the BDD-attack on Trivium, we write the output
function as

zt = g1(s1, s94, s178)⊕ s28 ⊕ s109 ⊕ s223

and proceed as described in Sect. 4.1 by adding an LFSR R3 which computes
g1 to the generator. For π equal to the canonical reading order, we have pi =
max1≤t≤288{|AMπ(f̃ i, t)|} + 1 = 2 and si = 1

4 for i ∈ {0, 1, 2} as well as p3 = 1
and s3 = 1

4 , which implies p =
∑3

i=0 pisi = 7
4 . Since the modified generator

computes one keystream bit from four internal bits, we have β(m) = 1
4m and

α = γ = 1
4 . Based on Lemma 4, we can obviously construct a π-OBDD Qm

with w(Qm) ≤ 2 that performs the consistency test for the observed keystream
z such that the generator fulfills the BDD Assumption. Since each keystream bit
involves 3 new bits, we can expect the Independence Assumption to hold. By
plugging α, γ and p into the statement of Theorem 2, we obtain:

Theorem 3. The secret initial state of the Trivium automaton can be recovered
from the first n keystream bits in time and with space nO(1)20.65625n ≈ 2189 for
n = 288.
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Theorem 3 shows that the BDD-attack is applicable to Trivium, but its per-
formance is not competitive with recently published attacks, which recover the
initial state in around 2100 operations from 261.5 keystream bits [17] or in around
2135 operations from O(1) keystream bits [9].

5.2 Grain-128

The regularly clocked stream cipher Grain-128 was proposed in [12] and supports
key size of 128 bits and IV size of 96 bits. The design is based on two intercon-
nected shift registers, an LFSR R0 and an NFSR R1, both of lengths n(0) =
n(1) = 128 and a nonlinear output function. The content of the LFSR is denoted
by st, st+1, . . . , st+127 and the content of the NFSR by bt, bt+1, . . . , bt+127. The
corresponding update functions and the output function are given in
Appendix C.

We add to the keystream generator an NFSR R2 which computes the output
bits zt and have the generator output the values produced by R2 in each clock.
Hence, we can compute one keystream bit from 3 internal bits, which implies
β(m) = 1

3m and α = γ = 1
3 . For π equal to the canonical reading order, it is

p0 = 1, and we have p1 = max0≤i≤117{|AMπ(f̃1, t + i)|} + 1 = 4, and p2 =
max0≤i≤95{|AMπ(f̃2, t + i)|}+ 1 = 4. Hence, p = 1

3 + 4
3 + 4

3 = 3. Obviously, the
consistency test for an observed keystream can be performed by a π-OBDD Qm

with w(Qm) ≤ 23 = 8 according to Lemma 4. Therefore, the modified generator
fulfills the BDD Assumption. Since new bits are utilized in the computation of
each keybit, we can expect the Independence Assumption to hold. Hence, the
application of Theorem 2 yields

Theorem 4. The secret initial state of the Grain automaton can be recovered
from the first n keystream bits in time and with space nO(1)20.6n ≈ 2154 for
n = 256.

Theorem 4 is to the best of our knowledge the first exploitable cryptanalytic
result besides generic time-memory-data-tradeoff attacks [3], which require time
and keystream around 2128.

5.3 The F-FCSR Stream Cipher Family

The F-FCSR stream cipher family in its current version is specified in [2]. It
consists of the variants F-FCSR-H and F-FCSR-16.

F-FCSR-H has keylength 80 bits and consists of a single Galois FCSR M of
length n = 160 and a feedback tap vector c of Hamming weight 83. Memory
cells are only present at those 82 positions i ∈ {1, . . . , n − 1}, for which ci = 1.
At each clock, eight output bits bj are created by taking the XOR-sum of up to
15 variables of the current internal state (cf. Appendix D for details).

In order to mount the BDD-attack, we split the FCSR into the main register
R0 and the carry register R1. Since each output bit is computed as the sum of up
to 15 internal bits, we are in a similar situation as described in Example 1 and
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need additional LFSRs R2, . . . , R9 to compute the keystream bits bj , 0 ≤ j < 8.
The modified output function simply returns these bits in each clock. With l :=
wt(c)−1 we obtain eight output bits from 2l+8 internal bits, hence β(m) = 8

2l+8m

and α = γ = 8
2l+8 = 2

43 . We have p0 = p1 = l, pi = 1 for i ∈ {2, . . . , 9}, s0 =

s1 = l
2l+8 , and si = 1

2l+8 for 2 ≤ i ≤ 9, which implies p = 2l2+1
2l+1 . Obviously, the

consistency test for the observed keystream z can be performed by an OBDD Qm

with w(Qm) ≤ 2. Hence, the modified F-FCSR-H fulfills the BDD Assumption.
Since the computation of the keybits involves new internal bits in every clock, we
can expect the Independence Assumption to hold. Note that we have l additional
unknowns from the initial value of the carry register. Plugging the computed
values into the statement of Theorem 3 implies the following theorem.

Theorem 5. The secret initial state of the F-FCSR-H automaton can be recov-
ered from the first n+ l keystream bits in time and with space nO(1)20.9529(n+l) ≈
2231 for n = 160 and l = 82.

The F-FCSR-16 generator has the same structure as F-FCSR-H, but larger pa-
rameters. More precisely, we have keylength 128 bits, n = 256, and the feedback
tap vector has Hamming weight 131 (i.e., l = 130), where memory cells are only
present at nonzero tap positions as before. Since F-FCSR-16 produces 16 out-
put bits per clock, we construct 16 additional LFSRs that produce these bits.
Hence, we can compute 16 output bits from 2l + 16 internal bits, which implies
β(m) = 16

2l+16m and α = γ = 16
2l+16 = 4

69 . Analogously to the case of F-FCSR-H,

we obtain p = 2l2+16
2l+16 . The modified generator satisfies the Independence As-

sumption and the BDD assumption as before, and we have l = 130 additional
unknowns. We obtain by applying Theorem 3:

Theorem 6. The secret initial state of the F-FCSR-16 automaton can be recov-
ered from the first n + l keystream bits in time and with space nO(1)20.94(n+l) ≈
2363 for n = 256 and l = 130.

Our analysis supports the security requirement that the Hamming weight of
c should not be too small, which was also motivated by completely different
arguments in [2]. Although the BDD-attack is to the best of our knowledge the
first nontrivial attack on the current version of the F-FCSR family, it is far less
efficient than exhaustive key search.

6 Conclusion

In this paper, we have shown that the BDD-attack can be extended to keystream
generators based on nonlinear feedback shift registers (NFSRs) and feedback
shift registers with carry (FCSRs) as well as arbitrary output functions. We have
applied our observations to the three eStream focus candidates Trivium, Grain
and F-FCSR. In the case of Grain, we obtain the first exploitable cryptanalytic
result besides generic time-memory-data tradeoffs. Our analysis of the F-FCSR
family provides additional arguments for already proposed security requirements.
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A A Proof for Lemma 3

Proof. The definitions of Qm and Rm imply that Pm = Qm∧Rm for nmin < m ≤
�α−1n, and therefore w(Pm) ≤ w(Qm) · w(Rm). Under the BDD assumption
we obtain

w(Pm) ≤ w(Qm) · 2p·|CP(m)| . (2)

On the other hand, Lemma 2 implies that w(Pm) ≤ |P−1
m (1)| ≈ m · 2n∗−αm

for n∗ = |IP(m)| and nmin < m ≤ �α−1n, which means

w(Pm) ≤ 2n∗−αm = 2(1−α)n∗−α·|CP(m)| . (3)

Combining eqns. (2) and (3), we obtain for nmin < m ≤ �α−1n

w(Pm) ≤ w(Qm)min{2p·|CP(m)|, 2(1−α)n∗−α·|CP(m)|}
= w(Qm)min{2p·r(n∗), 2(1−α)n∗−αr(n∗)} with r(n∗) = m− |IP(m)|
≤ w(Qm) · 2p·r∗(n∗) ,

where r∗(n∗) denotes the solution of p · r(n∗) = (1 − α)n∗ − αr(n∗). We obtain
r∗(n∗) = 1−α

p+αn∗ and hence w(Pm) ≤ w(Qm)2
p(1−α)

p+α n∗
. With nmin < m ≤ �α−1n

and therefore w(Qm) ∈ mO(1) ⊆ nO(1) and n∗ = |IP(m)| ≤ n, we get

w(Pm) ≤ nO(1)2
p(1−α)

p+α n for all nmin < m ≤ �α−1n ,

which concludes the proof. 
�

B Trivium Algorithm

From a starting state (s1, . . . , s288) the algorithm produces keystream bits zt as
follows.

for t = 0 to N − 1 do
t1 ← s1 ⊕ s28

t2 ← s94 ⊕ s109

t3 ← s178 ⊕ s223

zt ← t1 ⊕ t2 ⊕ t3
u1 ← t1 ⊕ s2s3 ⊕ s100

u2 ← t2 ⊕ s95s96 ⊕ s202
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u3 ← t3 ⊕ s179s180 ⊕ s25

(s1, . . . , s93)← (s2, . . . , s93, u3)
(s94, . . . , s177)← (s95, . . . , s177, u1)
(s178, . . . , s288)← (s179, . . . , s288, u2)

end for

C Grain Algorithm

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84 .

In each clock, an output bit zt is derived by

zt =

⎛

⎝
⊕

j∈A

bt+j

⎞

⎠⊕ bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42

⊕st+60st+79 ⊕ bt+12bt+95st+95

with A = {2, 15, 36, 45, 64, 73, 89}.

D F-FCSR-H Algorithm

At each clock, the generator uses the following static filter to extract a pseudo-
random byte:

F = (ae985dff 26619fc5 8623dc8a af46d590 3dd4254e)16

The filter splits into 8 subfilters (subfilter j is obtained by selecting the bit j
in each byte of F )

F0 = (0011 0111 0100 1010 1010)2 , F4 = (0111 0010 0010 0011 1100)2
F1 = (1001 1010 1101 1100 0001)2 , F5 = (1001 1100 0100 1000 1010)2
F2 = (1011 1011 1010 1110 1111)2 , F6 = (0011 0101 0010 0110 0101)2
F3 = (1111 0010 0011 1000 1001)2 , F7 = (1101 0011 1011 1011 0100)2

The bit bi (with 0 ≤ i ≤ 7) of each extracted byte is expressed by

bi =
19⊕

j=0

f
(j)
i a8j+i where Fi =

19∑

j=0

f
(j)
i 2j ,

and where the ak are the bits contained in the main register.
The cipher is initialized with an 80-bit key and an IV of length 32 ≤ v ≤ 80

according to the following procedure.
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1. The main register a is initialized with the key and the IV:

a := K + 280 · IV = (080−v||IV||K)

2. All carry cells are initialized to 0.

C := 0 = (082) .

3. A loop is iterated 20 times. Each iteration of this loop consists in clocking
the FCSR and then extracting a pseudorandom byte Si, 0 ≤ i ≤ 19, using
the filter F .

4. The main register a is reinitialized with these bytes:

a :=
19∑

i=0

Si = (S19|| · · · ||S1||S0) .

5. The FCSR is clocked 162 times (output is discarded in this step).

After the setup phase, the output stream is produced by repeating the follow-
ing two steps as many times as needed.

1. Clock the FCSR.
2. Extract one pseudorandom byte (b0, . . . , b7) according to the linear filter

described above.
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Abstract. Trivium is a stream cipher designed in 2005 by C. De
Cannière and B. Preneel for the European project eSTREAM. It has
an internal state of 288 bits and the key of length 80 bits. Although
the design has a simple and elegant structure, no attack on it has been
found yet.

In this paper a family of Trivium-like designs is studied. We propose
a set of techniques for methodological cryptanalysis of these structures in
general, including state recovering and linear distinguishing attacks. In
particular, we study the original Trivium and present a state recovering
attack with time complexity around c283.5, which is 230 faster than the
best previous result. Our attack clearly shows that Trivium has a very
thin safety margin and that in its current form it can not be used with
longer 128-bit keys.

Finally, we identify interesting open problems and propose a new de-
sign Trivium/128, which resists all of our attacks proposed in this paper.
It also accepts a 128 bit secret key due to the improved security level.

1 Introduction

Additive stream ciphers are an important class of data encryption primitives,
in which the process of encryption simulates the one-time-pad. The core of any
stream cipher is its pseudo-random keystream generator (PRKG). It is initial-
ized with a secret key K, and an initial value (IV). Afterwards, it produces a
long pseudo-random sequence called keystream u. In the encryption procedure,
the ciphertext c is then obtained by a bitwise xor of the message m and the
keystream u, i.e., c = m⊕ u.

Many stream ciphers are currently used in various aspects of our life. To men-
tion some of them, they are: RC4 [Sma03] (is used on the Internet), E0 [Blu03]
(in Bluetooth), A5/1 [BGW99] (in GSM communication), and others. However,
it has been shown that these primitives are susceptible to various kinds of weak-
nesses and attacks [FM00, MS01, LV04, LMV05, BSW00, MJB04]. In 1999 the
European project NESSIE was launched [NES99] and among other encryption
and signature primitives it attempted to select stream ciphers for its final port-
folio. However after a few rounds of evaluation and cryptanalysis, most of the

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 36–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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proposals were broken1. As a result the board of the project NESSIE could not
select any of the stream cipher proposals for its final portfolio.

The recent European project ECRYPT [ECR05] has started in 2004 within the
Sixth Framework Programme (FP6). It announced a new call for stream cipher
proposals, for its subproject eSTREAM. In the first phase 34 proposals were
received, but only a few of them got the status of “focused” algorithms in the
second phase. In the hardware portfolio only four new designs are in focus, they
are: Trivium [CP05], Grain [HJM05], Mickey [BD05], and Phelix [WSLM05].

In this paper we analyze one of these designs – Trivium. The stream cipher
Trivium was proposed in 2005 for the project eSTREAM by C. De Canniére
and B. Preneel [CP05]. It has an internal state of 288 bits and the key of 80
bits. Though the cipher was designed for hardware implementation it is also
very fast in software, which makes it one of the most attractive candidates of
the competition. The structure of the cipher is elegant and simple, and it fol-
lows clearly described design principles. After the design was announced many
cryptographers tried to analyze it. However, only two results on Trivium are
known so far.

The first known result is actually given on the eSTREAM discussion fo-
rum [eDF05] where the complexity to recover the internal state from given
keystream is argued to be 2135. The second result is a paper from H. Rad-
dum [Rad06], where a new algorithm for solving nonlinear systems of equations
is proposed and applied on Trivium. The attack complexity found was 2164.
Two reduced versions of this design, Bivium -A and -B, were proposed in that
paper as well. The first reduced version was broken “in about one day”, whereas
the second version required time of around 256 seconds.

In this paper we consider the design of Trivium in general, and as examples
we consider two instances: the original design of Trivium and a reduced version
Bivium, the one given in [Rad06] under the name Bivium-B. We propose a set of
techniques to analyse this class of stream ciphers, and show how its internal state
can be recovered given the keystream. The complexity of this attack determines
the upper bound for the security level of the cipher. Its complexities for Trivium
and Bivium are found to be c · 283.5 and c · 236.1, respectively, where c is the
complexity of solving a sparse system of linear equations (192 for Trivium and
118 for Bivium). It means that, for example, the secret key cannot be increased
to 128 bits in a straightforward way unless the design in general is changed. This
time complexity is much better than in [eDF05] and [Rad06], and is the best
known result on Trivium so far.

In the second attack linear statistical methods are applied. We show how a
distinguisher can be built, and propose a linear distinguishing attack on Bivium
with less than 232 operations in total. This attack was implemented and in
practice works even slightly better than expected.

We also show how cryptanalysis of Trivium can be related to another general
problem. For example, if one would know how to solve a highly structured system

1 There was a discussion at NESSIE on whether a distinguishing attack of very high
complexity qualifies as a break of a cipher.
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of 576 quadratic equations on 576 unknowns efficiently, he would be able find
the full secret state of the cipher. On the other hand, putting a designer hat
on, we propose several simple ideas which could help strengthen a Trivium-like
design. Following those we propose a tweaked design Trivium/128, which is a
slight modification of Trivium, but is believed to have a larger security margin,
and thus can be used with a larger 128 bit secret key.

This paper is organized as follows. In Section 2 we define the structures of
Trivium and Bivium. Afterwards, in Section 3, we give methods for a state
recovering attack, and propose a set of attack scenarios for both Trivium and
Bivium. In Section 4 we propose a general attack scenario on the whole family
of Trivium-like stream ciphers. A linear distinguishing attack is given in Sec-
tion 5. We identify a few interesting open problems, and propose an improved
design Trivium/128 in Section 6 (and in Appendix A). The paper ends with
the summary of our results and conclusions.

1.1 Notation

In this paper we accept the following notation. A single bit will commonly be
denoted by x

(t)
i , where i is an index of a variable, and t is the time instance.

Bold symbols u represent a stream or a vector of bit-oriented data u1, u2, . . ..
Let us also define triple-clock of a cipher as just three consecutive clocks of it.

2 Bivium and Trivium

In Figure 1 two classes of stream ciphers are shown, namely, Bivium and
Trivium.

The number of basic components is two or three, respectively. Each basic
component (a register) consist of three blocks, each of size divisible by 3. An
instance of this class is a specification vector with the blocks’ sizes specified, i.e.,

Bivium⇒ Bi(A1, A2, A3; B1, B2, B3),
Trivium⇒ Tri(A1, A2, A3; B1, B2, B3; C1, C2, C3).

(1)

Notation on the registers is summarized in Table 1.
The exact algorithm of Trivium is given in Table 2.
At any time t, the keystream bits of Bivium and Trivium are derived as

ut = xt + yt, and vt = xt + yt + zt, respectively. In this paper two examples from

Table 1. The structure of the internal state’s registers

Reg total length cells denoted the AND gate In:Out Res

RA A = A1 + A2 + A3 a
(t)
0 , . . . , a

(t)
A−1 a

(t)
A−3 · a(t)

A−2 pt : qt xt

RB B = B1 + B2 + B3 b
(t)
0 , . . . , b

(t)
B−1 b

(t)
B−3 · b(t)

B−2 qt : pt/rt yt

RC C = C1 + C2 + C3 c
(t)
0 , . . . , c

(t)
C−1 c

(t)
C−3 · c(t)

C−2 rt : pt zt
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Fig. 1. Bivium and Trivium classes of stream ciphers

Table 2. Trivium stream cipher

Initialisation Procedure(Key, IV)
Repeat until enough of keystream is produced

a
(t+1)
0 = a

(t)
A1+A2−1 ⊕ c

(t)
C−1 ⊕ c

(t)
C1−1 ⊕ c

(t)
C−3 · c(t)

C−2

b
(t+1)
0 = b

(t)
B1+B2−1 ⊕ a

(t)
A−1 ⊕ a

(t)
A1−1 ⊕ a

(t)
A−3 · a(t)

A−2

c
(t+1)
0 = c

(t)
C1+C2−1 ⊕ b

(t)
B−1 ⊕ b

(t)
B1−1 ⊕ b

(t)
B−3 · b(t)

B−2

a
(t+1)
i = a

(t)
i−1, ∀i ∈ [1 : A− 1]

b
(t+1)
j = b

(t)
j−1, ∀j ∈ [1 : B − 1]

c
(t+1)
k = c

(t)
k−1, ∀k ∈ [1 : C − 1]

ut = a
(t)
A−1 ⊕ a

(t)
A1−1 ⊕ b

(t)
B−1 ⊕ b

(t)
B1−1 ⊕ c

(t)
C−1 ⊕ c

(t)
C1−1

Table 3. Two instances’ specifications, Trivium and Bivium

Description Specification A : B : C Size, θ

Trivium [CP05] Tri(66, 3, 24; 69, 9, 6; 66, 21, 24) 93 : 84 : 111 288
Bivium [Rad06] Bi(66, 3, 24; 69, 9, 6) 93 : 84 : − 177

this class of stream ciphers are considered in detail, the specification of which
is given in Table 3. These correspond to Trivium and Bivium as described
in [CP05, Rad06].
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For simplicity in further derivations let us introduce three subsets:

T (t)
0 = {a(t)

3i+0} ∪ {b(t)
3j+0} ∪ {c(t)

3k+0}
T (t)

1 = {a(t)
3i+1} ∪ {b(t)

3j+1} ∪ {c(t)
3k+1}

T (t)
2 = {a(t)

3i+2} ∪ {b(t)
3j+2} ∪ {c(t)

3k+2}
where

i = 0, 1, . . . , A/3− 1,

j = 0, 1, . . . , B/3− 1,

k = 0, 1, . . . , C/3− 1.

(2)

3 First Analysis: State Recovering

In this attack, given a keystream u of some length n an attacker wants to recover
the internal state of the cipher. Since the cipher has invertible state-update
function this also leads to a key recovery attack. A classical time-memory trade-
off technique based on the birthday paradox gives the upper bound for such
an attack of O(2θ/2) known keystream, and memory, where θ is the size of the
internal state. The importance of the state recovering analysis is that it gives the
upper bound for the length of the secret key K. When the design of Trivium
appeared, several researchers raised the question: Whether the secret key can be
increased from 80 bits till, for example, 128 bits, thus, improving the security
level? In this section we will give the precise answer.

3.1 Guessing T (t)
0 at Some Time t

One of the main observations is that all blocks of the cipher are divisible by 3.
Moreover, the transition of the internal state at time t to time t + 1 is a linear
transformation of the subset T (t)

t mod 3, plus a minor one bit disturbance from the
adjacent two subsets. Therefore, the attack scenario can consist of the following
phases.

Phase I: Guess the state T (t)
0 at some time t,

Phase II: Having the state T (t)
0 guessed correctly, recover the rest of the bits.

Since the second phase depends on the first phase, the total complexity of the
attack Ctot is

Ctot = CPhase I · CPhase II. (3)

Phase I could be done by an exhaustive search of the true state T (t)
0 at some

time t. The time complexity of this search is O(2θ/3), and the keystream length
required is O(1). However, this complexity can be reduced if we note that the
first d = min{A1, B1, C1}/3 forward triple-clocks we receive d linear equations
on the bits of T (t)

0 . By this way the total time complexity is reduced down to

O(2(θ−min{A1,B1,C1})/3).

For Trivium and Bivium these complexities are 274 and 237, respectively. In
the following subsections we discuss other ideas on what can be done to make
the total complexity of an attack smaller.
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3.2 Guessing Outcomes for Specific AND Gates

To receive more linear equations for the two phases, one can consider a set of
specific AND gates:

a
(t+3i)
A−3 · a(t+3i)

A−2 , i = 0, 1, . . . , ga − 1,

b
(t+3j)
B−3 · b(t+3j)

B−2 , j = 0, 1, . . . , gb − 1,

c
(t+3k)
C−3 · c(t+3k)

C−2 , k = 0, 1, . . . , gc − 1,

(4)

where ga, gb, gc are some chosen parameters. Whenever the outcomes of these
gates are guessed, the number of linear equations that one can derive for the
first phase is

d′ = min{ga +
B1

3
, gb +

C1

3
, gc +

A1

3
}.

The most probable guess would be that all these gates produce zeros, since
Pr{x&y = 0} = 0.75, and we simply search in the keystream for the place where
this is satisfied. The expected length of the keystream in this case is around
(0.75)−(ga+gb+gc). However, if we allow some of the gates to produce ones, the
length of the keystream can be reduced significantly.

Let G gates out of ga + gb + gc AND gates produce zeros, and the remaining H
gates produce ones. The total probability of this event is

pg = 0.75G0.25H .

Note that we can allocate H ones among G+H positions in
(
G+H

H

)
ways. There-

fore, the keystream is needed to be of length approximately O
(
1/

[
pg ·

(
G+H

H

)])
.

3.3 Guessing Sums of Specific AND Gates

The right guess of the specific AND gates from the previous subsection allowed
us to increase the number of linear equations for the first phase till d′. How-
ever, the remaining bits of T (t)

0 should be guessed with probability 1/2. The
total probability of the remaining guess could, however, be reduced if the avail-
able keystream can be increased. Below we show another trade-off between the
keystream and the complexity of the remaining guessing part.

After d′ triple-clocks, we start receiving nonlinear equations, where the linear
part consists of the bits from T (t)

0 , and the nonlinear part is the sum of w AND
gates, for some small w. Since the outcome of each of them is biased, then their
sum is biased as well. Let pw be the probability that the sum of w gates is zero,
which is derived as

pw =
�w/2�∑

i=0

(
w

2i

)
0.75w−2i0.252i (> 0.5), (5)

or, via its recursive formula as pw+1 = 0.75pw + 0.25(1− pw), with p0 = 1. Let
lw be the number of nonlinear equations with the sum of w AND gates. The time
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complexity to recover lw bits is plw
w , instead of 0.5lw , but, however, it requires to

increase the length of the keystream by the ratio p−lw
w . The total probability of

such an event is

q =
∞∑

w=1

plw
w .

This approach is reasonable to use for small ws, say for w ∈ {1, 2, 3, 4}, since
for large ws the probability pw is close to 0.5 and, therefore, it does not give
a big gain versus a truly random guess, but rather increases the length of the
keystream rapidly.

3.4 Collecting System of Equations for Remaining Unknowns

Assume that the state of T (t)
0 and the outcomes of specific G + H AND gates are

guessed and derived correctly. To recover the remaining 2/3 of the state we need
to collect a number of equations on T (t)

1 and T (t)
2 , enough to derive the exact

solution.
At any time t, if the values a

(t)
A−3, b

(t)
B−3, c

(t)
C−3 are known, then two consecutive

clocks of the cipher are linear. Because of our specific guess, we know that d′

triple-clocks the system is linear. In one triple-clock two linear equations on the
remaining unknowns of the internal state are received. The first nonlinearity will
not affect on the degree of receiving equations immediately, but rather with some
delay. The first nonlinear equations will be of degree 2, and then of degree 3,
and so on. Also note that each of H guesses also give us two equations of degree
1 of the form xi = 1 and xi+1 = 1, and each of the G guesses give us another
equation of degree 2 of the form xixj = 0. The structure of this cipher is such
that backward clocks increase the degree of equations rapidly2. Therefore, only
a few equations of low degree can be collected by backward clocking.

Let the number of equations of degrees 1 and 2 that can be collected be n1

and n2, respectively. Whenever all the parameters are fixed, a particular scenario
can be described.

3.5 Attack Scenarios for Trivium and Bivium

In this subsection we accumulate techniques given in the previous subsections,
and propose a set of attack scenarios for Trivium and Bivium in Table 43.
Moreover, a brief algorithm of the scenario T1 is presented in Table 5.

In all scenarios above the constant c is the time required for the second phase,
where the remaining bits are recovered, and it is different for different scenarios.

T0 and B0 are trivial scenarios for Trivium and Bivium, where no out-
comes of any AND gates are guessed. However, the number of linear equations

2 Trivium is designed to maximize parallelism in forward direction. This allows hard-
ware designers to choose trade-off between speed and chip-size.

3 The keystream length given in the table is an average number of positions at the
keystream from where we need to study a window of around A + B + C consecutive
bits.
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Table 4. Attack scenarios

Scenario T0 Descr. = Tri l1:l2:l3:l4 = 0:0:0:0 Ph.II unknowns=192

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

0:0:0 0:0 1 22 1 1 100 61 c · 274.0 O(1)

Scenario T1 Descr. = Tri l1:l2:l3:l4 = 5:5:4:1 Ph.II unknowns=192

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

46:37:42 125:0 1 59 2−9.7 2−51.9 192 178 c · 283.5 261.5

Scenario T2

42:33:38 113:4 222.6 55 2−9.7 2−53.2 192 162 c · 288.9 240.3

Scenario T3 Descr. = Tri l1:l2:l3:l4 = 0:0:5:4 Ph.II unknowns=192

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

29:30:30 89:0 1 52 2−7.8 2−36.9 158 152 c · 279.7 244.7

Scenario B0 Descr. = Bi l1:l2:l3:l4 = 0:0:0:0 Ph.II unknowns=118

ga:gb:gc G:H r d′ q pg n1 n2 time keystream

0:0:— 0:0 1 22 1 1 100 61 c · 237.0 O(1)

Scenario B1

9:5:— 14:0 1 27 1 2−5.8 118 67 c · 237.8 25.8

is not enough to recover the remaining bits using simple Gaussian elimination.
Therefore, equations of a higher degree need to be collected and used. These
scenarios have the least possible time and keystream complexities, and are the
lower bounds.

In T1 and B1 we show optimal, on our view, choice of parameters such that
the second phase has enough linear equations and the time complexity is mini-
mal. However, along with linear equations we also have many equations of degree
2, which we are not using at all. Note that the attack complexities presented here
are much lower than those given in [Rad06].

In T2 we show how the trade-off between the length of the keystream and
time works. For a small increase of time we can reduce keystream significantly.

In T3 we receive a system of equations of degree ≤ 2 on 192 variables. This
system is quite over-defined (more than 50%), and it might be possible to have
an efficient algorithm for solving such a system.

However, the results given in these scenarios can be improved significantly if
a pre- or/and a post- statistical tests can be applied efficiently. The goal of such
a test is to reduce the constant c. For these approaches see Appendices A and B.

Another possibility to reduce the constant c can be achieved via efficient
solving a system of sparse linear equations (in cases of T1, T2, B1), or through
the use of high degree equations (in cases of T3, B0). Finding such an algorithm
is a hard problem, and we leave it as an open problem, identified in a more general
form in Section 6.

3.6 Our Results vs. Exhaustive Search

We have shown that Bivium can be broken in time around c · 237, which de-
termines a really low bound for the security level. This example was taken into
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Table 5. Attack scenario T1 for Trivium in brief

Given: u = u1, u2 – the keystream of Trivium of length 261.5

Attack Scenario T1:

1. For every t = 0, 1, 2, . . . , �261.5� assume that a
(t+3i)
90 a

(t+3i)
91 =

0, b
(t+3j)
81 b

(t+3j)
82 = 0, c

(t+3k)
108 c

(t+3k)
109 = 0, for i = [0 : 45], j = [0 : 36], k =

[0 : 41].
2. Collect 59 linear equations on T0 with probability 1, and 15 more linear

equations with the total probability 2−9.7, see Subsection 3.3.
3. For every guess of the remaining 22 bits from T0, derive the state of T0

using the linear equations collected in step 2.
4. Collect 192 linear equations on T1 and T2, clocking the cipher forward,

under the assumption that the guess above was correct.
5. Recover the state of T1 and T2 by any linear technique (e.g., Gaussian

elimination) in fixed time, and verify the solution in time O(1).
6. Repeat the loops in steps 1 and 3 until the right internal state is found.

account in order to make a comparison of the techniques versus the ones used
in the paper [Rad06], where the best attack on this design has been found to be
of the complexity around c · 256 seconds.

Although the security level of Trivium is 280, we believe that an exhaustive
search will require much more time, γ280, where γ is the initialization time
of the cipher that includes 1152 clocks to be done before the first keystream
bits are produced. Because of different implementation issues can be applied,
including parallelism, an average time required for one clock of the cipher can
vary. However, we believe that a conservative value for the coefficient γ is around
210, and an exhaustive search would require around 210+80 operations. This
means that such scenarios, such as T1, T3, are competitive in terms of the time
complexity, and at least are very close to the exhaustive search, if not faster.

Obviously, in this particular design the security level cannot be improved by
simply increasing the size of the key – our attack will definitely be faster than
an exhaustive search in that case. Therefore, in order to increase the security
level the design of Trivium should be changed, for example, the size of the state
could be increased. This would result in a longer initialization time and a larger
hardware footprint.

4 General Attack Scenario

Let us investigate a general structure of Trivium-like stream ciphers with the
following properties4.

– It has k nonlinear shift registers S = (S1, S2, . . . , Sk), with the corresponding
lengths L = (L1, L2, . . . , Lk). The bits of each register Si are Si[1], . . . , Si[Li];

4 In this section a slightly changed manner of the indexation for the vectors is used,
starting to count the indices from 1, instead of 0.



Two Trivial Attacks on Trivium 45

– Each register is divided into blocks, all divisible by d;
– There are k AND gates, and they are placed as AND(Si[Li− 2], Si[Li− 1]) like

in Trivium.

Let us denote this structure as TrivGen(k, d, L). For simplicity, Let the vec-
tor of the lengths L be sorted such that Li ≤ Li+1, ∀i. In this section we study a
scenario of a general state recovering attack on the whole class of the Trivium-
like family of stream ciphers. The total size of the internal state S is

l =
k∑

i=1

Li. (6)

The d subsets of the total state S are defined as

Ti =

{{
∀j = 1, . . . , k

∀t = 0, . . . ,
Lj

d − 1
: Sj [td + i]

}

, ∀i = 1, . . . , d. (7)

4.1 Phase I: Deriving T1 and T2

Let us first explain how |T1| bits of the first subset T1 can be derived. We simply
assume (or guess) that during consecutive d · |T1| clocks of TrivGen enough
linear equations on T1 are collected. One observes every d’s output bit at the
keystream and writes up equations one by one, where every new AND term is
approximated by zero.

Assume Δ is the number of linear equations that can be received from the
keystream without any approximations. Let for the remaining |T1|−Δ equations
the number of G AND terms have to be approximated. The values of Δ and G
are easy to calculate once an exact instance of the design is given. The number
of such guesses G is upper bounded as

G ≤ k

(
l

d
−Δ

)
. (8)

The same procedure can be done for T2. Note that these two parts share the
same values of Δ and G.

Instead of approximating 2G AND gates with probability 0.75 each, when de-
riving linear equations on T1 and T2, one can use the fact that these gates are
not independent. At some time i two gates, one for the equation on T1 and one
on T2, share one variable, i.e., if the first gate is AND(a, b), then the second is
AND(b, c). The probability that both gates produce zeros is 5/8. Therefore, the
total probability of the required guess is

pI = (5/8)G. (9)

4.2 Phase II: Calculating T3 . . . Td

In the first phase two subsets T1 and T2 are received. Additionally, by guessing
every AND term we also guaranteed that during the first l clocks only linear
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transformations over the two subsets are applied. It means that an outcome of
every AND gate that is connected to T3 is known. Thus, required number of linear
equations on T3 can be collected, and then Gaussian elimination is applied.

After T3 is determined, we can start with a similar procedure to derive T4,
and so on. When the final subset Td is derived, one can use the guesses from the
first phase to check if they are in a conflict with the recovered state or not.

The total complexity of this part is

cII ≈ O(d · (l/d)2.808), (10)

if the Strassen’s algorithm for computing solution of a linear system is used. In
this complexity we also included time for similar computation of the first phase.
This attack scenario requires around p−1

I of the keystream, and cII/pI of time.

4.3 Example: Trivium-6

Let us consider the following construction

Trivium-6⇒ Tri(66, 6, 24; 72, 12, 6; 66, 24, 24). (11)

This is a slightly modified Trivium stream cipher with the internal state of size
300 bits, and all building blocks are divisible by 6 (still divisible by 3, but also by
2). The design of Trivium-6 belongs to the class TrivGen(3, 6, (90, 96, 114)).

I.e., we have k = 3, d = 6, l = 300, and T1, . . . , T6 are defined as in (7), each
of size |Ti| = 50 (= l/d). One can easily check that

Δ = min{66, 72, 66}/6 + 1 = 12,

G =
[
(|T1| −Δ)− (

66
6
− 11)

]
+

[
(|T1| −Δ)− (

72
6
− 11)

]

+
[
(|T1| −Δ)− (

66
6
− 11)

]
= 38 + 37 + 38 = 113,

(12)

where 11 equations of Δ are received from 11 · 6 forward clocking, and one from
backward clockings. Thus,

pI ≈ 2−76.6, cII ≈ 218.4. (13)

It means that the total time complexity is 295 for this example, which is smaller
than for Trivium, although the internal state is larger. Note also that the
keystream complexity can significantly be reduces in a similar manner as in
Section 3.2 for a small penalty in time.

5 Second Analysis: Statistical Tests

Linear cryptanalysis is one of the most powerful tools for analysis of stream
ciphers. In this section we find a way of sampling from the keystream such that
their distribution is biased. By this mean we build a linear distinguisher for the
cipher.
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5.1 Standard Approximation Technique

Let the variables of T0 be denoted as {w0, w1, . . . , w95}. Then, assuming that all
AND terms are zeros, we receive a system of linear equations of rank 93 (instead
of 96). It means that we can sample from the stream as follows

∑

i∈Ik

wi = Nk, ∀k ∈ {93, 94, 95, 96}, (14)

where

I93 = {0, 1, 4, 6, 8, 9, 12, 13, 14, 17, 19, 20, 23, 25, 27, 30, 31, 34, 35, 38, 39, 41, 43, 44,

67, 68, 70, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93};
I94 = {0, 2, 4, 5, 6, 7, 8, 10, 12, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36,

38, 40, 41, 42, 43, 45, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94};
I95 = {0, 3, 4, 5, 7, 11, 12, 14, 16, 17, 18, 22, 23, 24, 26, 28, 29, 30, 33, 34, 37, 38, 42,

46, 67, 71, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95};
I96 = {0, 5, 9, 14, 15, 18, 20, 24, 29, 41, 44, 47, 67, 70, 73, 96}.

(15)

The noise variable Nk is a sum of a set of random AND gates. Therefore, the
bias and the complexity of a distinguisher can be summarized in Table 6.

Table 6. Linear distinguishers for Trivium and its attack complexities

k # of AND gates in Nk bias ε attack complexity

93 108 2−108 2216

94 126 2−126 2252

95 112 2−112 2224

96 72 2−72 2144

Table 7. Linear distinguishers for Bivium and their attack complexities

k # ANDs time Ik

57 49 298 {0, 2, 4, 5, 6, 7, 8, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34,
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57}

58 49 298 {1, 3, 5, 6, 7, 8, 9, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 34, 35,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}

59 16 232 {0, 5, 9, 10, 14, 33, 36, 59}

Obviously, we could also mix these four equations to receive other 8 linear
combinations that are different in principal from the found four. However, we
could not achieve complexity lower than 2144.

For Bivium, the rank appeared to be 57 (instead of 59), and similar resulting
Table 7 is as follows.
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Table 8. A linear distinguishing attack on Bivium in detail

Given: v = v1, v2 – the keystream of Bivium of length 232

Init: P [2] = 0 – a binary distribution, not normalized
A linear distinguishing attack on Bivium:

1. For every t = 1, 2, . . . , 232 calculate

s = vt + vt+15 + vt+27 + vt+30 + vt+42 + vt+99 + vt+108 + vt+177,

and attune the distribution as P [s] + +.
2. After the loop is finished, calculate the distance

ξ = P [0]/232 − 0.5.

3. Make the final decision

δ(ξ) =

{
v is from Bivium, if ξ > 2−16/2,

v is Random, if ξ ≤ 2−16/2.

I.e., Bivium can be distinguished from random in time complexity 232, which
is much faster than all previously known attacks on it. Since the complexity of
the attack is feasible, we could run the simulation of the attack on Bivium, which
confirmed the found theoretical bias. This attack is shown in brief in Table 8.

5.2 Another Way of Approximation

In the previous section all AND terms were approximated as zero. However, an-
other sort of approximation is possible, such as

AND(x, y) = τxx + τyy + n,

where τx, τy are chosen coefficients, and n is the noise variable with the bias
ε = 2−1. Whenever approximations for every AND gate are appropriately chosen,
there must exist a biased linear equation on a shorter window of the keystream
than that in the previous subsection. Our goal is to reduce the number of noise
variables in the final expression for sampling. Unfortunately, the search for ap-
propriate coefficients, which give us a strongly biased expression for sampling,
is a hard task. Moreover, the probability that we can find an expression with
the number of gates less than 72 is low. In our simulations we could find several
biased equations on a shorter window, but the number of approximations were
larger than 72. This issue is an interesting open problem.

5.3 Multidimensional Approximation

In Subsection 5.1 we gave a set of linear relations for a biased sampling from
the keystream. The best equations for Trivium and Bivium require 72 and
16 approximations of AND gates, respectively. However, these samples are not
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independent, and some of the noises appear in several samples at different time
instances. Therefore, the attack complexity can be improved by considering sev-
eral samples jointly. I.e., we suggest to test a multidimensional approximation
where one sample comes from a joint distribution.

Unfortunately, this did not give us a significant improvement. We considered
three samples jointly, and the bias of that noise was 2−15.4, which is larger than
2−16, but does not differ significantly.

6 Open Problems

Below we would like to identify several interesting open problems that we found
while working on Trivium.

OP-1 Let the complete internal state of Trivium be 288 unknowns. When clock-
ing forward, we receive several equations on these unknowns. Every time
when a new AND gate appears, we will make a substitution, introducing
a new variable into the system. After exactly k = 288 clocking, we will
receive k linear equations on 3k unknowns, and also 2k equations of degree
2 (substitutions). All terms of degree 2 will look like a0a1, a1a2, a2a3, . . .,
and the same for b’s and c’s. After partial Gaussian elimination we can
remain with 2k nonlinear equations on 2k unknowns5.

Let X be a variable, an integer number of length 2k bits (=576),
representing the solution. Then, the problem of breaking Trivium can,
after a slight modification, be interpreted as solving the following equation
in Z22k .

X&(X 	 1)⊕M ·X = V, (16)

where M is a known and fixed Boolean matrix, and V is a known vector,
constructed from the keystream. Our task is to find at lest one solution
of the equation (guaranteed to exist).

OP-2 The set T0 is a set of 96 unknowns. We know that each guess of T0 allows
us to construct a system of linear equations on the remaining sets T1 and
T2. However, we believe that after a partial Gaussian elimination that
matrix will look similar to

(T1
T2

)
·
(

I W1

W2 I

)
= V, (17)

where W1 and W2 are sub-matrices dependent on the guess of T0, and V is
a known vector. Since we made a set of guesses that particular AND(T1, T2)
gates are zeros, we would like then to “extract” somehow only one pair
of bits from this system. Afterwards, we can make a test whether their

5 The idea of writing up equations with specific substitutions was first proposed by
Steve Babbage at SASC-06.



50 A. Maximov and A. Biryukov

product is zero or not, and then in a case of a wrong result, skip the
calculations of the remaining bits.

If it would be possible, then this technique would allow to reduce the
constant c in the time complexity of the attack significantly.

OP-3 Finally an interesting open problem is how to strengthen Trivium, while
keeping its elegance, simplicity and degree of parallelism. We propose one
possible solution to this problem in Appendix A.

7 Results and Conclusions

In this paper we have studied various methods for analysis of Trivium-like
stream ciphers. Below we give a comparison Table 9 of the known attacks on
two instances, original Trivium and a reduced version called Bivium.

Table 9. Resulting comparison of various attacks

C
a
se

S
ta

te Comp- Exhaustive State Recovering Attack Distinguishing Attack

lexity search previous new attack previous new attack

time γ280 δ · 2135 [eDF05] c · 283.5 2144 [CP05] —
γ ≈ 210 2164 [Rad06] c ≈ 216

T
r
iv

iu
m

2
8
8

b
it
s

keystream O(1) O(1) 261.5 2144 —

time γ280 256 sec. [Rad06] c · 236.1 — 232

c ≈ 214 verified

B
iv

iu
m

1
7
7

b
it
s

keystream O(1) O(1) 211.7 — 232

time — — c · 276.6 — —
c ≈ 218.4

T
r
iv

-6
3
0
0

b
it
s

keystream — — 276.6 — —

A brief summary for the algorithm of the state recovering attack on Trivium
is given in Table 5, and a distinguishing attack on Bivium is presented in Table 8.

With the key of 80 bits Trivium seems to be secure. However, contrary to
what one could expect from its almost 300 bit state, there is no security margin.
This also means that one cannot use 128 bit keys and IVs with the current design.
For this purpose, either the internal state has to be increased or some other re-
design should take place. Moreover, we have clearly shown on the example of
Trivium-6 that one has to be very carefully when introducing the property of
d-divisibility of the construction blocks’ lengths.

In this paper we have proposed a modified design Trivium/128, which we
believe is more secure than the original Trivium. In hardware, its speed of
encryption is the same as in Trivium, but the footprint is slightly larger due to
the 3 additional AND terms. For the same reason, in software it is also slightly
slower. However, its security level seems to be much better.
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Appendix A: Modification of Trivium: Trivium/128

In this section we present several modifications of the original Trivium design
which improve its security against our attacks and which allow to use Trivium
with 128-bit keys.
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Fig. 2. A 128-bit improved design Trivium/128

Suggestions for possible improvements of Trivium are as follows.

I-1 Although clocking forward allows us to receive many linear or low degree
equations, the backward clocking does not. The backward evaluation of
Trivium seem to be “well-protected”, since the outcome of the AND gates are
connected forward, thus, supporting a huge avalanche effect of noise propa-
gation when clocking backward. We suggest to introduce 3 additional gates,
but connected backward, in order to support a similar effect when clocking
forward. To keep the parallelism property (64 clocks at once), the distance
between the taps and the outcome pins of the new gates should be not less
than 64;

I-2 In all our attacks we used the property that the building blocks of Trivium
are divisible by 3. We think that if one can remove this property, the attack
could be more complex. However, this could create a risk of an existence of
a good distinguisher.

According to the suggestions above we propose a modification Trivium/128,
which is similar to Trivium, but possibly more secure. Trivium/128 is pre-
sented in Figure 2. We keep the size of the internal state to be 288 bits, as well

http://www.ecrypt.eu.org/stream
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as the sizes of the nonlinear registers, 94, 84, and 111 bits, respectively. In each
register the size of the first block is decreased by 1 bit, and the second block is
increased by 1 bit. This would destroy the “3-divisibility” property. Moreover,
in each register we introduce an additional AND gate, the inputs of which are the
first and the third taps of the second block. For example, in the register A the tap
positions are a65 and a67. The new gate will make the complexity of equations
to grow faster than in the original Trivium, keeping the parallelism property of
the cipher (ideally we should jump just a few bits back, but this would destroy
parallelism). If only 32-bit parallelism suffices, then the new AND gates could
jump in the middle of the first blocks in the registers. The propagation of the
noise would be twice faster then. Yet another option which would have very fast
growth of non-linearity would be to move the AND gates to the beginning of the
long register (ex. tap positions a1, a2). We keep the same initialization procedure
as in Trivium, but with a 128 bit secret key to be loaded instead.

We believe that this tweak of the original design would resist our attacks and,
possibly stay resistant against distinguishing attacks as well. We are currently
checking Trivium-like designs in order to find one with best security/performance
tradeoff.

Appendix B: Statistical Pre-Test for the Phase I

In the scenarios above the constant c within time complexity denotes the time
needed for solving a system of equations in the second phase. Although the equa-
tions are sparse, this constant can still be large. When the number of variables
is 192, we assume that this constant is approximately lower bounded as c ≈ 216.

One idea to reduce the total time complexity is to consider only those “win-
dows” in the stream where the probability for the guess of the AND gates is larger
than in a random case.

g1

g3

g5

g2

g4

g6

...

...

...
vt
vt+1

ut
ut+1

Fig. 3. Statistical pre-test
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Table 10. Keystream influence for the pre-test technique

(ut, ut+1) Pr{the sum of AND gates is zero}
(vt, vt+1) in Trivium in Bivium

(0, 0) 0.53125 0.625
(0, 1) 0.5 0.5
(1, 0) 0.5 0.5
(1, 1) 0.5 0.5

Let us observe an output pair (ut, ut+1) (or (vt, vt+1)) at some time t and
t + 1, each component of which is the sum of 6 (respectively, 4) bits of the state
from T (t)

1 and T (t)
2 , as shown in Figure 3. The question here is: What is the

probability that the sum of six (four) AND gates is zero, given the observed pair?
We can use this criteria to cut undesired cases, since the sum of the gates must
be zero when all of them are zeros as well. Below, in Table 10, we give these
probabilities in accordance.

I.e., when the keystream in a specified “window” is a zero sequence, then
the probability of our guess, a set of specific AND gates is zero, is larger than
otherwise. However, this approach would require a much longer keystream, and
the gain in time complexity is not significant. More complicated tests can also
be developed.

Appendix C: Statistical Post-test of the Phase I

Another approach is to make a test after the first 1/3rd of the state is guessed
and derived. Let us introduce a decision rule for the test

δ(T (t)
0 ) =

{
Accept, T (t)

0 passes the test,
Reject, otherwise.

(18)

Associated with the decision rule δ there are two error probabilities.

α = Pr{δ(T (t)
0 ) = Reject|the guess T (t)

0 is correct},
β = Pr{δ(T (t)

0 ) = Accept|the guess T (t)
0 is wrong}.

(19)

Thus, the time complexity can be reduced from c ·Q down to β ·c ·Q. However,
the success of the attack will be Psucc = 1− α. If the test is statistically strong,
then α and β are small, lowering the time complexity significantly.

One such a test could be as follows. At a time t the sequence of d′ triple-
clocks allows us to receive d′ linear equations on the bits of T (t)

0 . However, if we
continue clocking, we will then receive a sequence of biased samples. The bias
decreases rapidly as long as the number of random AND terms in the equation
for the noise variable grows.

Unfortunately, for Trivium there is no valuable gain, but for Bivium the
gain is more visible. Consider the scenario B1. After the first phase the following
triple-clocks give us the following samples.
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AND gates in the noise, i = 1 2 3 4 ...
Number of samples, li = 5 4 1 13∞

Let us denote the first 23 samples (24=5+4+1+13) as s23 = s0, s1, . . . , s22,
and the decision rule for our test be

δ(s23) =

{
Accept, if Hw(s23) ≥ σ0,

Reject, otherwise,

where 0 ≤ σ0 ≤ 23 is some appropriately chosen decision threshold. The error
probabilities are then as follows.

α =
∑

{ ∀tw : 0 ≤ tw ≤ lw, w = 1 . . . 4
t1 + t2 + t3 + t4 < σ0

4∏

w=1

(
lw
t1

)
ptw

w (1− pw)lw−tw ,

β = 2−23
23∑

t=σ0

(
23
t

)
,

(20)

where the probabilities pw are calculated via (5). Additional information is ex-
tracted from the fact that the distribution of α is “shifted” with regard to the
distribution of β, and, therefore, the gain can be achieved. In Table 11 these
probabilities are given for several values of the threshold σ0.

Table 11. Error probabilities for the post-test technique

σ0 0 7 11 12 14 18 23

α ∼ 0 0.0038 0.1585 0.2964 0.6275 0.9839 ∼ 1

β ∼ 1 0.9826 0.6612 0.5000 0.2024 0.0053 ∼ 0

I.e., if we choose σ0 = 18 in B1, then the time complexity will be c · 230.2,
instead of 237.8. The length of the keystream remains the same. However, the
success probability of this attack is Psucc = 0.0161, which is low.

The situation with the success rate can be improved if the attack will be
repeated 1/Psucc times. Thus, we have the overall time complexity around 25.9 ·
230.2 = 236.1, but the keystream is also increased till 211.7. We could trade-off a
better time complexity with the length of the keystream, and the overall success
probability is around 1.

Searching for a proper statistical test is a challenge and is not an easy task.
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Abstract. The diversity of methods for fast collision search in SHA-1
and similar hash functions makes a comparison of them difficult. The
literature is at times very vague on this issue, which makes comparison
even harder. In situations where differences in estimates of attack com-
plexity of a small factor might influence short-term recommendations of
standardization bodies, uncertainties and ambiguities in the literature
amounting to a similar order of magnitude are unhelpful. We survey dif-
ferent techniques and propose a simple but effective method to facilitate
comparison. In a case study, we consider a newly developed attack on
70-step SHA-1, and give complexity estimates and performance measure-
ments of this new and improved collision search method.

1 Introduction

Recently, claims for small improvements of collision search attacks attract the
attention of the cryptographic community. Examples are a 23-fold speed-up for
collision search in SHA-1 reduced to 58 steps [14] and full SHA [10] (the pre-
decessor of SHA-1). Apart from the interest in new techniques, reports on new
improvements (especially in the case of SHA-1) might also influence short-term
recommendations of standardization bodies.

Motivated by the growing importance of estimating the complexity of newly
developed or improved collision search attacks on members of the SHA family,
we point out a number of technical issues which are, if at all, only very vaguely
addressed in the literature.

– Computational cost of message modification (and similar methods)
– Influence of early-stop technique
– Impact of the last conditions of both blocks in a 2-block attack

All these issues contribute to the total cost of a differential collision search.
Once devised, these methods require very little memory, are trivially paralleliz-
able with negligible communication cost. Note that this contrasts the situation
� This author is supported by the Austrian Science Fund (FWF), project P18138.
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in many other types of cryptanalytic attacks, where e. g. the need for memory
access significantly contributes to the full cost of an attack [21].

As an example of our findings we show that a very new and promising speed-up
method named Boomerang-method is less efficient than expected in an collision
search. Additionally, we are describing the technical details of a fast collision
search method for SHA-1 reduced to 70 steps and for the first time give an
example of a colliding message pair.

2 Short Description of SHA-1

SHA-1 is an iterative hash function that processes 512-bit input message blocks
and produces a 160-bit hash value. Like all dedicated hash functions used today,
it is based on the design principle of MD4, pioneered by Rivest. In the following
we briefly describe the SHA-1 hash function. It basically consists of two parts: the
message expansion and the state update transformation. A detailed description
of the hash function is given in [11]. For the remainder of this article we follow
the notation of [3] and restate it whenever needed.

Table 1. Notation

notation description

X ⊕ Y bit-wise XOR of X and Y
X + Y addition of X and Y modulo 232

X arbitrary 32-bit word
X2 pair of words, shortcut for (X, X∗)
Mi input message word i (32 bits)
Wi expanded input message word t (32 bits)

X ≪ n bit-rotation of X by n positions to the left, 0 ≤ n ≤ 31
X ≫ n bit-rotation of X by n positions to the right, 0 ≤ n ≤ 31

N number of steps of the compression function

2.1 Message Expansion

The message expansion of SHA-1 is a linear expansion of the 16 message words
(denoted by Mi) to 80 expanded message words Wi.

Wi =

{
Mi, for 0 ≤ i ≤ 15,
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 for 16 ≤ i ≤ 79 .

(1)

2.2 State Update Transformation

The state update transformation of SHA-1 consists of 4 rounds of 20 steps each.
In each step the expanded message word Wi is used to update the 5 chaining
variables Ai, Bi, Ci, Di, Ei as follows:



58 C. De Cannière, F. Mendel, and C. Rechberger

Ai+1 = Ei + Ai ≪ 5 + f(Bi, Ci, Di) + Kj + Wi

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

Note that the function f depends on the actual round: round 1 (steps 0 to 19)
use fIF and round 3 (steps 40 to 59) use fMAJ . The function fXOR is applied in
round 2 (steps 20 to 39) and round 4 (steps 60 to 79). The functions are defined
as follows:

fIF(B, C, D) = B ∧ C ⊕B ∧D (2)
fMAJ(B, C, D) = B ∧ C ⊕B ∧D ⊕ C ∧D (3)
fXOR(B, C, D) = B ⊕ C ⊕D . (4)

Note that Bi = Ai−1, Ci = Ai−2 ≫ 2, Di = Ai−3 ≫ 2, Ei = Ai−4 ≫ 2. This
also implies that the chaining inputs fill all Aj for −4 ≤ j ≤ 0. Thus it suffices
to consider the state variable A, which we will for the remainder of this paper.

After the last step of the state update transformation, the chaining variables
A0, B0, C0, D0, E0 and the output values of the last step A80, B80, C80, D80, E80

are combined using word-wise modular addition, resulting in the final value of
one iteration (feed forward). The result is the final hash value or the initial value
for the next message block.

3 Collision Search Strategies

In order to construct efficient attacks, differentials with high probability are used.
Since no secret key is involved, in addition to the message difference, also the
actual values of bits in certain positions in the message influence the probability
of such a differential. Exploitation of this additional degree of freedom led to
remarkable progress in the cryptanalysis of hash function in recent years. For
hash functions like SHA-1, most (complex) differentials through the earlier parts
of the compression function can have for various reasons a very low probability.
More recently, the impact of this fact was systematically studied in detail in [3].
It is shown that the degrees of freedom from the message largely neutralize
the disadvantages of this low probability. This shifts the goal to optimizing the
probability of a differential through the later part of the compression function.
Additionally, this allows to remove all restrictions on the input differences of such
high probability differentials. By using a second message block as an additional
degree of freedom also all restrictions on the output differences of such a high
probability differential can be removed.

Methods for searching high probability characteristics through (parts of) the
compression function suitable for such an optimization were already discussed
in [5,7,12,13,18]. In Section 5.1, we describe an improved variant of such an
optimization we used for our case study of 70-step SHA-1.
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Optimality of 2-block approach. It turns out that by removing the con-
straint to have a collision already after a single message block, differentials with
significantly better probabilities can be found. On the other hand, more than
two blocks do not give any additional exploitable degrees of freedom anymore.
Hence, aiming for a differential spanning two message blocks is preferable, since
the workloads to find the right message pairs for each block add up. Note that
due to less effective methods, the first collision for SHA (the predecessor of
SHA-1) was built using a differential spanning four message blocks [2].

4 Computational Cost of Differential Collision Search

By fixing a difference and having random trials we expect to have to try around
2n times. With appropriate choices for differences and part of the actual mes-
sages, the aim is to reduce the work to find a colliding pair below the work of a
birthday search of order 2n/2 trials.

We divide the involved computational costs into three categories.

– Determining a suitable message difference
– Determining a suitable characteristic
– Searching for a message pair that roughly follows this characteristic

For complexity estimates in the literature, usually only the last step is con-
sidered. We note that the first two steps used to have manual steps. With the
possibility to fully automate also these parts (as shown in [3]) it becomes possi-
ble to also estimate this computational effort and consider trade-offs with other
parts of an collision search attack.

4.1 General Method to Estimate Work Factor of a Chosen
Characteristic

We briefly recall some methods and definitions given in [3] needed for the sub-
sequent discussion.

Generalized conditions and generalized characteristics. Generalized con-
ditions for hash functions were first defined in [3]. The generalized conditions on
a particular pair of words X2 will be denoted by ∇X . ∇X represents as a set,
containing the values for which the conditions are satisfied. In order to write this
in a more compact way, we will use the notation listed in Table 2.

Total work factor for generalized characteristic. Let us assume that
we have given a complete generalized characteristic for SHA-1, specified by
∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1. Our goal is to estimate how much ef-
fort it would take to find a pair of messages which follows this characteristic,
assuming a simple depth-first search algorithm which tries to determine the pairs
of message words M2

i one by one starting from M2
0 .

In order to estimate the work factor of this algorithm, we will compute the
expected number of visited nodes in the search tree. But first some more defini-
tions, which are all needed to estimate the work factor.
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Table 2. Notation for generalized conditions, possible conditions on a pair of bits

(xi, xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
# - - - -

(xi, x
∗
i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

Definition 1. The message freedom FW (i) of a characteristic at step i is the
number of ways to choose W 2

i without violating any (linear) condition imposed
on the expanded message, given fixed values W 2

j for 0 ≤ j < i.

We note that since the expanded message in SHA-1 is completely determined
by the first 16 words, we always have FW (i) = 1 for i ≥ 16.

Definition 2. The uncontrolled probability Pu(i) of a characteristic at step i
is the probability that the output A2

i+1 of step i follows the characteristic, given
that all input pairs do as well, i.e.,

Pu(i) = P
(
A2

i+1 ∈ ∇Ai+1 | A2
i−j ∈ ∇Ai−j for 0 ≤ j < 5, and W 2

i ∈ ∇Wi

)
.

Definition 3. The controlled probability Pc(i) of a characteristic at step i is
the probability that there exists at least one pair of message words W 2

i following
the characteristic, such that the output A2

i+1 of step i follows the characteristic,
given that all other input pairs do as well, i.e.,

Pc(i) = P
(∃W 2

i ∈ ∇Wi : A2
i+1 ∈ ∇Ai+1 | A2

i−j ∈ ∇Ai−j for 0 ≤ j < 5
)

.

With the definitions above, we can now easily express the number of nodes
Ns(i) visited at each step of the compression function during the collision search.
Taking into account that the average number of children of a node at step i is
FW (i) ·Pu(i), that only a fraction Pc(i) of the nodes at step i have any children
at all, and that the search stops as soon as step N is reached, we can derive the
following recursive relation:

Ns(i) =

{
1 if i = N ,

max
{
Ns(i + 1) · FW (i)−1 · P−1

u (i), P−1
c (i)

}
if i < N .

The total work factor is then given by

Nw =
N∑

i=1

Ns(i) .
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Once a characteristic has been fixed, we have to find a message pair that
follows the characteristic. By using a simple greedy approach or techniques such
as message modification or neutral bits the probability of the characteristic after
step 16 can be improved. In the following we will describe these techniques in
more detail.

4.2 Corrective Factors for Speed-Up Methods

In order to include methods that speed-up collision search into the very useful
general method to estimate the work factor of a chosen characteristic as described
above, we introduce corrective factors. It is easy to see that if a method aims for
higher speed, less steps need to be computed and hence less nodes in the search
tree are visited.

We now briefly describe how corrective factors can be derived for the different
methods that can be found in the literature. Because of its actuality, we chose
the so-called Boomerang-method as an example for our model in Section 4.8.
The adaption of our model to other methods works similarly.

Before that, we discuss how to incorporate also less probable characteristics
and the impact of conditions at the end of a block into this general model by the
use of corrective factors C1...n(i) where i < N and n enumerates all considered
corrective factors. The corrected probability for each step is hence

Pcorr(i) = Pu(i)
∏

Cn(i) .

The corrected number of nodes Ncorr and total work factor is then based on
Pcorr instead of Pu.

4.3 Effect of Additionally Considering Related Characteristics

We give here two methods to consider additional characteristics that are related
to the originally chosen main characteristic.

Less probable characteristics. Even if all message conditions for the main
characteristic are already in place, there exist a number of less probable charac-
teristics. For the case of high probability characteristics through the compression
function of SHA/SHA-1, these have been systematically studied in [9]. We pro-
pose to model the impact of them by setting a C(i) > 1 for each disturbance
in step i where there exist also less probable characteristics. Examples will be
given in Section 5.4.

Conditions at the end of each block. By using a 2-block approach, char-
acteristics with a better probability can be found. Furthermore, the conditions
at the end of each block can be partially ignored (without further explanation
already observed in [18]). This improves the probability of the characteristic sig-
nificantly. For the first message block all the conditions in the last 2 steps can
be ignored. For the second block this is not the case, since for every difference in
the initial value a correcting difference is needed to cancel it out. However, if we
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can guarantee that the sign of the disturbances in the last 2 steps is opposite to
the sign of the according differences in the initial value, then we can ignore the
carry conditions for these disturbances. This also improves the probability of the
characteristic in the second block. In general the attack complexity is dominated
by the complexity of the second block, since only the carry conditions in the last
2 steps can be ignored. We propose to model the impact of them by setting a
C(i) > 1 for each case. An example will be given in Section 5.4.

4.4 Greedy Approach

The simple greedy approach was introduced in [3]. The idea is to run through
all bit positions of every state variable and every expanded message word, check
which conditions can be added to improve the total work factor, and finally
pick the position and corresponding condition which yields the largest gain.
By repeating this many times, the work factor can be gradually improved. No
corrective factor is needed.

4.5 Message Modification

Message Modification was introduced by Wang et al. in the cryptanalysis of
MD4 [15], MD5 [19] and the SHA-family [18,20]. The main idea of message
modification is to use the degrees of freedom one has in the choice of the message
words to fulfill conditions on the state variables. Since every message word is only
used once in the first 16 steps, all the conditions on the state variables can be
easily fulfilled for these steps. This method is referred to as simple message
modification. After step 16 each message word depends on at least 4 previous
message words. Hence, a more sophisticated method (referred to as advanced
message modification) is needed to fulfill conditions after step 16. It can be
described as follows:
1. Check if one of the conditions on the state variables is not satisfied. (starting

at the LSB)
2. If one condition does not hold then flip the according bit in message word Wi.

This causes a change in a previous Wt for some t < 16 due to the message
expansion. Hence, a change in At+1. This can be compared to introducing a
new difference (disturbance) in step t.

3. Correct the differences in At+1, . . . , At+6 by adjusting the according message
words Wt+1, . . . , Wt+5.

In detail this correction is equal to constructing a new local collision with
a disturbance in step t. Note that this method does not work if the correction
in the message words affects one of the conditions on the state variables or
message words themselves. Thus, the degree of freedom for advanced message
modification is determined by the characteristic in the first 16 steps.

As shown in unpublished but informally presented results by Wang [16,17] the
attack complexity of 269 can be improved to 263 by doing message modification
up to step 25. Wang et al. estimated the cost for message modification of about
22 SHA-1 compression function evaluations. Note that a new characteristic for
the first 16 steps was needed to do message modification up to step 25.
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4.6 Equation Solving

At FSE 2007, Sugita et al. presented a new method for message modification in
SHA-1 using symbolic computation [14]. Their method reduces the number of
trials (needed message pairs) significantly at the cost of increased message modi-
fication costs. With their method a collision in 58-step SHA-1 can be constructed
with complexity close to 28 message modification (symbolic computation) steps
which they claim is approximately 231 SHA-1 computations (experimentally).
Note that the complexity of Wang’s attack on 58-step SHA-1 is about 234 hash
computations. Unfortunately, Sugita et al. do not give any information how this
comparison to SHA-1 was done. This makes it very difficult to compare their
approach to others. Furthermore, the description of their method is vague and
they do not give any estimations for the attack complexity on the full SHA-1
hash function. At the current state it is not clear if this method can lead to any
improvements in the attack complexity of SHA-1.

4.7 Neutral Bits

This technique was invented by Biham and Chen in the analysis of SHA [1]. The
main idea of this approach is to start the collision search from some intermediate
step r and hence improving the complexity of the attack. Therefore, Biham and
Chen invented the notion of neutral bits. For a given message pair (m, m∗) that
follows the characteristic up to step r the jth-bit is called neutral if the message
pair (m⊕ 2j, m∗ ⊕ 2j) also follows the characteristic up to step r. Every set of
neutral bits can be used to generate 2t new message pairs, where t denote the
number of neutral bits. The attack is based on the observation that a fraction
(1/8) of these message pairs again follow the characteristic up to step r. Hence,
one get 2t−3 message pairs following the characteristic up to step r. It is easy to
see that this reduces the complexity of the collision search in SHA.

4.8 Boomerangs/Tunnels

At CRYPTO 2007, Joux and Peyrin presented a new idea on how to improve the
attack complexity of SHA-1 [6]. It uses a variant of the boomerang attack, known
from analysis of block ciphers. The method is similar to the idea of tunneling
as introduced by Klima [8]. Each message pair that follows the characteristic in
the first steps is related to another message pair by a high probability auxiliary
differential. This auxiliary differential ensure that the characteristic also holds
in the first steps for the other message pair. Hence, each auxiliary differential
doubles the number of message pairs that follow the characteristic in the first
steps, which improves the complexity of the attack. An easy method to con-
struct these auxiliary differentials is to combine several local collisions. With
this method auxiliary differentials can be constructed up to step 29. However,
to guarantee that the auxiliary differential holds a set of additional conditions
have to be fulfilled in the steps before. This on the one hand reduces the de-
grees of freedom needed in the final collision search and on the other hand a
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characteristic is needed for the first 16 steps that is compatible with the auxil-
iary differential. It is an interesting research problem to maximize the number
of auxiliary differentials that fit into a suitable characteristic for collision search.
However, issues like available message freedom and implementation aspects can
hugely influence the resulting work factor for collision search.

We propose to model the impact of auxiliary differentials as follows. Each
auxiliary differentials allows to increase a single C(i) by 2 · paux, where i is
the first step where Pcorr(i) < 1, and paux is the probability for the auxiliary
differential to hold up to step i which is often 1 or close to 1. The details depend
on the characteristic being used and the auxiliary differentials. The consequences
are interesting: even in favorable settings, the resulting corrected work factor can
not be improved by a factor of 2 per auxiliary differential, but noticeably less. As
an example, consider a setting where 6 auxiliary differentials are used. Instead
of a 64-fold improvement, the improvement is less than 45-fold. This has several
reasons, i. e. the precise way our model takes the early-stop strategy into account.

4.9 Comparison of Methods

Comparison of different approaches to speed-up collision search for SHA and
SHA-1 is difficult because usually not enough information is provided in the
respective descriptions.

Chabaud and Joux count in their attack on SHA [4] the number of needed
message pairs for constructing a collision to estimate the attack complexity.
Furthermore, they provide some measurements to confirm their estimates. This
makes it easy to compare their results with other implementations. Unfortu-
nately, this is not the case for most of the recent published attacks on SHA and
SHA-1.

In their recent attacks on SHA and SHA-1 Wang et al. count the number
of conditions that have to be fulfilled such that the message follows the char-
acteristic to estimate the complexity of attack. Furthermore, they consider im-
provements achieved by message modification techniques as well as early stop.
This lead to an estimated attack complexity for SHA and SHA-1 of about 239

and 263 hash computations, respectively. However, since the description message
modification is vague, it is difficult to compare it to other methods.

In [14], Sugita et al. count the number of symbolic computations (message
modification steps) needed for their message modification technique. Unfortu-
nately, they do not give any timing information for the algorithm, which makes
it difficult to compare the method to others.

In [3], De Cannière and Rechberger count the number of nodes in a search
tree that have to be visited to find a collision in the hash function to estimate
the complexity of the attack. This estimation already includes improvement of
message modification and early stop. With their approach a collision for 64-step
SHA-1 can be found with a complexity of about 235 hash computations.

An other notable example is the SHA collision by Naito et al. given in [10].
They improved the collision attack of Wang et al. on SHA by a factor of 23. To
estimate the complexity of the attack, they build upon the work of Wang et al. in
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the original attack. In addition to counting conditions for the characteristic and
considering the improvement of early stop and the cost for message modification,
they also provide measurements. Their finding is that a collision in SHA has a
complexity of about 236 hash computations and takes on average about 100
hours (on a Pentium4 3.4GHZ CPU). This shows an interesting gap between
claimed complexity and measurement. In fact one can expect more than 220

SHA compression function calls per second on such a machine and hence would
expect a runtime of less than 20 hours.

4.10 Proposal

In order to avoid misinterpretation and allow fair comparison of different meth-
ods, we propose to directly compare every fast collision search method with a
standard implementation of SHA-1 (e. g. OpenSSL) on the same platform. This
would make comparison of different approaches easier in the future. In cases
where collision search can not be implemented it is still possible to give mea-
surement results for parts of the characteristic. We refer to our case study for
an example.

5 Case Study: Collision Search for 70-Step SHA-1

5.1 Message Difference

We developed efficient search algorithms to find suitable message differences.
They are based on methods developed in [12], with the improvement that exact
probabilities as described in [3,9] instead of Hamming weights are used to prune
and rank them.

As described in Section 3, the effort to find colliding message pairs for SHA-1
mainly depends on the number of conditions between state and/or message bits
where no method to fulfill them better than random trials is known. For evalu-
ating and comparing candidate message differences, it will be useful to have the
following definition:

Definition 4. The truncated total work from step i Nt(i) of a characteristic is
the product of all corrected probabilities down to step i, i.e.,

Nt(i) =
∏

Pcorr(j),

where j runs from R downto i .

Assuming that the controlled probability Pc(i) can be ignored (which is perfectly
reasonable for i > 16), Nt(i) for i > 16 can be used as an estimate of the total
work without fully specifying the generalized characteristic from step 0 on. The
argument i in Nt(i) can be interpreted as the threshold up to which methods
more efficient than random trials are known to look for right message pairs.

For the attack we used the message difference MD 2, since it has the best
truncated total work after step 18 and 20. This perfectly matches to the greedy
method we use to speed-up collision search.
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Table 3. Disturbance vectors for 70-step SHA-1

steps 18-70 steps 20-70
message Hamming weight Nt(18) Hamming weight Nt(20)

MD 1 19 251.66 17 247.40

MD 2 19 248.66 17 247.23

MD 3 19 250.36 16 247.37

MD 4 19 250.22 17 249.87

MD 5 19 249.09 17 247.32

MD 6 19 250.14 18 248.50

5.2 Detailed Characteristic

Table 4 shows the used message difference, which is the same for both blocks.
The characteristics found for the two blocks are given in Tables 5 and 6 re-
spectively. For improved collision search efficiency the probability of them was
further improved by fixing the actual values of certain bits in the message and
the internal state using available degrees of freedom. Table 7 and 8 show the
respective results.

The total expected work for both blocks amounts to about 244 compression
function equivalents. In contrast to other figures given in the literature this
includes the impact of a less than ideal implementation (which is in our case
about a factor 10).

We run experiments for parts of the used characteristic to give this esti-
mate. Our experiment which produced an actual 70-step collision confirms this
estimates. Note that this includes the impact of a less than optimal implemen-
tation of the collision search and compares to a fast implementation of SHA-1
(OpenSSL) on the same platform. For that, we used as a means of comparison
the SHA-1 implementation of OpenSSL, which can do about 220 compression
functions per second on our PC.

A straightforward extension of the method used for the 64-step collision as
presented in [3] to 70 steps would have required more than 250 compression
function equivalents. The gain in speed is partly due to the choice of a different
disturbance vector, and partly due to an improvement of the greedy-approach.

5.3 The Employed Improved Greedy-Approach

In our case study, we employ the greedy approach as described in Section 4.4.
We improve upon [3] in the following way. Instead of picking only single bit
positions, we pick several of them at once. This results in a larger search space
but also in better results. We always pick a set of 7 bits (a local collision) and
test for each bit which condition would yield to the largest gain in the work
factor. This is an easy way to estimate the improvement of the work factor for
one local collision. Note that checking all 27 possibilities to add conditions for
a local collision would be inefficient. After testing all local collisions we pick
the one with the largest improvement and set the corresponding conditions. By
repeating this method the work factor can be gradually improved.
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Table 4. Example of a 70-step SHA-1 collision using the standard IV

i Message 1 (m0), first block Message 1 (m1), second block
1–4 3BB33AAE 85AECBBB 57A88417 8137CB9C ABDDBEE2 42A20AC7 A915E04D 5063B027
5–8 4DE99220 5B6F12C7 726BD948 E3F6E9B8 4DDF989A E0020CF7 7FFDC0F4 EFEFE0A7
9–12 23607799 239B2F1D AAC76B94 E8009A1E 0FFBC2F0 C8DE16BF 81BBE675 254429CB
13–16 C24DE871 5B7C30D8 000359F5 90F9ED31 5F37A2C6 CD1963D3 FFCA1CB9 9642CB56

i Message 2 (m∗
0), first block Message 2 (m∗

1), second block
1–4 ABB33ADE 35AECBE8 67A8841F 8137CBDF 3BDDBE92 F2A20A94 9915E045 5063B064
5–8 9DE99252 EB6F12D7 826BD92A 23F6E9FA 9DDF98E8 50020CE7 8FFDC096 2FEFE0E5
9–12 236077A9 C39B2F5F 8AC76BF4 08009A5F 0FFBC2C0 28DE16FD A1BBE615 C544298A
13–16 E24DE821 9B7C3099 E0035987 30F9ED32 7F37A296 0D196392 1FCA1CCB 3642CB55

i XOR-difference are the same for both blocks
1–4 90000070 B0000053 30000008 00000043 90000070 B0000053 30000008 00000043
5–8 D0000072 B0000010 F0000062 C0000042 D0000072 B0000010 F0000062 C0000042
9–12 00000030 E0000042 20000060 E0000041 00000030 E0000042 20000060 E0000041
13–16 20000050 C0000041 E0000072 A0000003 20000050 C0000041 E0000072 A0000003

i The colliding hash values
1–5 151866D5 F7940D84 28E73685 C4D97E18 97DA712B

5.4 Some Corrective Factors

Conditions at the end of each block. Applying the rules described in Sec-
tion 4.3 to the characteristic in both blocks (Tables 7 and 8) we can remove all 6
conditions in the last two steps of the first block and 2 conditions in the second
block. In terms of corrective factors as introduced in Section 4.2, we arrive at a
C(69) = 23 and C(70) = 23 for the first block and C(69) = 21 and C(70) = 21

for the second block.

Impact of additional less probable characteristics. We achieve some more
speedup if also less probable characteristics are allowed. Once at bit position 0
in step 34, we would get a speed-up by 25%. The three disturbances in step
62, 65 and 66 would each allow a speedup of about 6.25%. By avoiding strict
checking of conditions/differences in the implementation, we can hence expect
to visit only about 66% nodes in order to find a suitable message pair. In terms
of corrective factors as introduced in Section 4.2, we arrive at a C(34) = 1.25,
and C(62) = C(65) = C(66) = 1.0625. Note that this speed-up applies to both
blocks in the same way.

6 Conclusions

Currently known differential collision search attacks on hash functions like SHA-1
need little memory and are trivially parallizable. Still, theoretical analysis (count-
ing conditions, calculate probabilities for successful message modification) of-
ten leads to optimistic conclusions about actual collision search implementation
costs.

Measurement results and comparison with standard hash implementations on
the same platform are needed to compare different collision search strategies. As
a case study, a collision search method and an example of a colliding message
pair for 70-step SHA-1 was used. The highest number of steps for which a SHA-1
collision was published so far was 64.
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Table 5. Characteristic for the first block of the 70-step collision before optimization

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 n--u1011--1-------111---1nun1110 14 -4.42 0.00 0.00
1: u1-u1011--10---1--010-1-nuun0001 u0nn----------1----01----n1u--uu 20 -13.00 -0.79 0.79
2: 0u0u10--0-01--100--0nun1-00nnn1u --nu-----------0----0-----01n111 22 -17.09 -1.00 1.00
3: 111n111---1-nuuu1u-00n11u-0110u1 100------------11----01-1n0111nn 17 -16.00 -1.00 1.83
4: 101001111--nn011n1u11n000101n10n nu0n--------10------0010-nun00n0 15 -14.83 -2.83 2.83
5: 1100100u0--010101u110unn-100u10u n1nu--11-------------------n011- 21 -19.09 -1.00 1.00
6: n10--0unnnnnnnnnnnnn0--0n10-0un- nuuu00-----------------1-un---n- 22 -18.27 -2.00 2.00
7: 000111----11101u001u10-1100nn-00 uu------------1---1------n--10n0 23 -18.16 -2.75 2.75
8: u-0-----10111111--1010u-0-0uu0u1 0-1-----------------------nu---1 26 -11.00 -1.42 1.42
9: 1-0--------------0-111u-1----01- nnu----------------------n0---n- 25 -11.00 -3.42 3.42

10: 0-0-----------------1nu---nn001- 1-u----------------------nn----0 23 -6.00 -1.00 1.00
11: ----------------------n1----100n uuu----------------------n-1---n 25 -7.00 -3.42 3.42
12: u1--------------------------00nn -1n----------------------u-u---- 22 -7.00 -0.61 13.00
13: u-1-0-------------------1--0-1n- nu-----------------------u-----n 13 -3.00 -1.00 28.00
14: -0-------------------------1---u nnn----------------------uuu--n- 11 -6.00 -2.19 38.00
15: 110-0-----------------------0u-- u0n---------------------------nu 14 -4.00 -2.42 43.00
16: n0--------------------------1-01 nn-------------------------u--n- 0 -3.00 -1.00 53.00
17: --0---------------------------u1 0un---------------------1n---1-n 0 -3.00 -2.00 50.00
18: n-0----------------------------- nu------------------------un--n- 0 0.00 -0.00 47.00
19: -------------------------------- 0-u-----------------------1---1n 0 -0.00 -0.00 47.00
20: -------------------------------- nu----------------------0-----u- 0 -2.00 -1.42 47.00
21: ------------------------------u- nun----------------------n----u1 0 -2.00 -2.00 45.00
22: ------------------------------u- 1un----------------------n----n0 0 -1.00 -1.00 43.00
23: -------------------------------- n----------------------------1u0 0 -1.00 -1.00 42.00
24: -------------------------------- -------------------------------1 0 -0.00 0.00 41.00
25: -------------------------------- 10----------------------0------0 0 0.00 -0.00 41.00
26: -------------------------------- u0-------------------------0---- 0 0.00 0.00 41.00
27: -------------------------------- 100---------------------------u- 0 -1.00 -0.42 41.00
28: ------------------------------u- 0------------------------n------ 0 0.00 0.00 40.00
29: -------------------------------- 0------------------------------0 0 -2.00 -1.00 40.00
30: ------------------------------n- u------------------------u---1-0 0 -0.00 -0.00 38.00
31: -------------------------------- u-0----------------------------1 0 -2.00 -1.00 38.00
32: ------------------------------n- 0-0----------------------u----1- 0 -0.00 -0.00 36.00
33: -------------------------------- n0----------------------------0n 0 -2.00 -2.00 36.00
34: -------------------------------u -------------------------nu----0 0 0.00 0.00 34.00
35: -------------------------------- n1---------------------------0nu 0 -1.00 -1.00 34.00
36: -------------------------------- -n----------------------------u1 0 -2.00 -2.00 33.00
37: ------------------------------u- uu-----------------------n----1- 0 -1.00 -1.00 31.00
38: -------------------------------- nu---------------------0------n- 0 -1.00 -1.00 30.00
39: -------------------------------- u----------------------------00- 0 0.00 -0.00 29.00
40: -------------------------------- u------------------------------- 0 -1.00 -1.00 29.00
41: -------------------------------- u-0---------------------------u0 0 -1.00 -1.00 28.00
42: ------------------------------u- 0------------------------n------ 0 0.00 0.00 27.00
43: -------------------------------- -1----------------------------n0 0 -1.00 -1.00 27.00
44: -------------------------------- u------------------------------- 0 -1.00 -1.00 26.00
45: -------------------------------- n-----------------------------10 0 -1.00 -1.00 25.00
46: -------------------------------- n-----------------------------0- 0 -0.00 0.00 24.00
47: -------------------------------- 11---------------------------0u1 0 -1.00 -1.00 24.00
48: ------------------------------u- -------------------------n----0- 0 0.00 0.00 23.00
49: -------------------------------- -----------------------------1-1 0 -2.00 -1.00 23.00
50: ------------------------------u- u------------------------n-----0 0 -1.00 -1.00 21.00
51: -------------------------------- x---------------------------11n- 0 -2.00 -2.00 20.00
52: -------------------------------- 0------------------------------- 0 -1.00 -1.00 18.00
53: -------------------------------- x0----------------------------11 0 -1.00 -1.00 17.00
54: -------------------------------- x------------------------------- 0 -0.00 0.00 16.00
55: -------------------------------- -------------------------------1 0 0.00 0.00 16.00
56: -------------------------------- -------------------------------- 0 -0.00 0.00 16.00
57: -------------------------------- ----------------------------0--- 0 0.00 0.00 16.00
58: -------------------------------- ----------------------------1-0- 0 0.00 0.00 16.00
59: -------------------------------- -------------------------------- 0 -0.00 0.00 16.00
60: -------------------------------- -------------------------------- 0 0.00 -0.00 16.00
61: -------------------------------- -----------------------------u-1 0 -1.00 -0.42 16.00
62: -----------------------------u-- ------------------------n--0---- 0 0.00 0.00 15.00
63: -------------------------------- -----------------------------x-- 0 -1.00 0.00 15.00
64: -------------------------------- ----------------------------n--x 0 -2.00 -0.19 14.00
65: ----------------------------n--- -----------------------u--0--n-x 0 -2.00 -0.42 12.00
66: -----------------------------n-- ------------------------u---x--n 0 -1.00 0.00 10.00
67: -------------------------------- ---------------------------n-xx- 0 -3.00 -0.36 9.00
68: ---------------------------n---- ----------------------u-----u-xx 0 -3.00 -0.42 6.00
69: ----------------------------u--- -----------------------n---xx-ux 0 -3.00 -0.42 3.00
70: ----------------------------x---
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Table 6. Characteristic for the second block of the 70-step collision before optimization

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 01010011010101010100101101110n00
-3: 01100110101100010100011111001010
-2: 00000011110101011011000000nu1011
-1: 0100010101011010000011001101u010
0: 0101001110100011001110111000n101 u01n1011-----------111101uun0010 11 -2.52 0.00 0.00
1: n11n1000-------1-1-11001nnun0nuu n1nn-----------------0101u0n01uu 17 -8.00 -0.96 0.96
2: 1u0u10100------0---n-nn11100010u 10un-----------------0000100u101 17 -9.38 -0.35 0.35
3: u1un00001-----nn-u-0-00nu1011u0n 010----------------1-0000n1001uu 17 -14.00 0.00 3.79
4: n0101110n1u-u-101-n1011011uu0010 nu0n11-------------1-0001nnu10u0 14 -14.62 -2.61 6.79
5: 010n011u11010n1-nu-10u01u0101nnu u1un000000-------------0111u0111 13 -16.19 -5.17 6.18
6: 1n000111100uu001-0100-n00011001u nuuu1111111------------01uu--1n0 14 -12.44 -2.99 2.99
7: 1nnnnnnnnnnnnnnn-111--01nn1--u00 uu1-111111--------------1n10-1u1 16 -6.00 0.00 0.00
8: 100-11000-----1100-u---1un11-101 000----------------------1uu---0 25 -19.68 0.00 0.00
9: 010011111111100111--01-0-100--0n uun----------------------n111-u1 23 -10.00 -4.00 4.00

10: u1--01--------------11--nu0u0un0 10n----------------------uu10--1 22 -6.42 -1.61 1.61
11: 111-1-----------------n--0000011 nnu----------------------x00---u 25 -7.83 -2.61 2.61
12: 0-1-0---------------------1n-1n1 01n----------------------u-n---0 22 -2.42 -0.68 9.51
13: u--------------------------0-0-u uu0----------------------x0----u 14 -7.00 -3.00 29.09
14: 101------------------------1-1-u uuu----------------------xuu--n1 13 -5.09 -0.29 36.09
15: --1-0----------------------11u-- u0n------------------------10-un 13 -4.00 -2.83 44.00
16: n1--------------------------0-11 un0----------------------0-u--n1 0 -3.00 -2.00 53.00
17: --0---------------------------n1 0un----------------------u0--10n 0 -3.00 -2.00 50.00
18: n-0----------------------------- uu1-----------------------un--n1 0 0.00 0.00 47.00
19: -------------------------------- 00u-----------------------0---0n 0 -0.00 0.00 47.00
20: -------------------------------- nu0---------------------1-----n0 0 -2.00 -2.00 47.00
21: ------------------------------n- nun----------------------u----n0 0 -2.00 -2.00 45.00
22: ------------------------------n- 0un----------------------u----u1 0 -1.00 -1.00 43.00
23: -------------------------------- u11--------------------------1n1 0 -1.00 -1.00 42.00
24: -------------------------------- 100---------------------10----00 0 0.00 0.00 41.00
25: -------------------------------- 110---------------------------11 0 -0.00 -0.00 41.00
26: -------------------------------- u00------------------------0--11 0 0.00 -0.00 41.00
27: -------------------------------- 100---------------------------n0 0 -1.00 -1.00 41.00
28: ------------------------------n- 011----------------------u----00 0 0.00 -0.00 40.00
29: -------------------------------- 001---------------------------01 0 -2.00 -2.00 40.00
30: ------------------------------u- n10----------------------n---111 0 0.00 -0.00 38.00
31: -------------------------------- u00--------------------------110 0 -2.00 -2.00 38.00
32: ------------------------------u- 100----------------------n--1011 0 0.00 0.00 36.00
33: -------------------------------- u10-------------------------000u 0 -2.00 -2.00 36.00
34: -------------------------------n 011----------------------un-0001 0 0.00 -0.00 34.00
35: -------------------------------- u10-------------------------01un 0 -1.00 -1.00 34.00
36: -------------------------------- 0u0------------------------1-1n1 0 -2.00 -2.00 33.00
37: ------------------------------n- uu-----------------------u--1011 0 -1.00 -1.00 31.00
38: -------------------------------- un---------------------1-----1n0 0 -1.00 -1.00 30.00
39: -------------------------------- u10--------------------------011 0 -0.00 -0.00 29.00
40: -------------------------------- u-0--------------------1-----110 0 -1.00 -1.00 29.00
41: -------------------------------- n-0--------------------------1n0 0 -1.00 -1.00 28.00
42: ------------------------------n- 10-----------------------u---010 0 0.00 -0.00 27.00
43: -------------------------------- -1---------------------------0u1 0 -1.00 -1.00 27.00
44: -------------------------------- x11--------------------------100 0 -1.00 -1.00 26.00
45: -------------------------------- u----------------------------101 0 -1.00 -1.00 25.00
46: -------------------------------- n-1-------------------------011- 0 0.00 0.00 24.00
47: -------------------------------- 11--------------------------00n- 0 -1.00 -0.42 24.00
48: ------------------------------n- -------------------------u--0011 0 0.00 -0.00 23.00
49: -------------------------------- -1----------------------1---10-0 0 -2.00 -1.00 23.00
50: ------------------------------n- u-1----------------------u--11-0 0 -1.00 -1.00 21.00
51: -------------------------------- x-1-------------------------10u- 0 -2.00 -2.00 20.00
52: -------------------------------- 1---------------------------1-1- 0 -1.00 -1.00 18.00
53: -------------------------------- x0--------------------------0-10 0 -1.00 -1.00 17.00
54: -------------------------------- x---------------------------11-- 0 0.00 0.00 16.00
55: -------------------------------- -----------------------------0-1 0 0.00 0.00 16.00
56: -------------------------------- 0----------------------------01- 0 0.00 0.00 16.00
57: -------------------------------- 0---------------------------0--- 0 0.00 0.00 16.00
58: -------------------------------- ----------------------------0-1- 0 0.00 0.00 16.00
59: -------------------------------- ----------------------------11-1 0 -0.00 0.00 16.00
60: -------------------------------- -------------------------------- 0 0.00 -0.00 16.00
61: -------------------------------- -----------------------------n-0 0 -1.00 -0.42 16.00
62: -----------------------------n-- ------------------------u--01-0- 0 0.00 0.00 15.00
63: -------------------------------- -----------------------------x1- 0 -1.00 0.00 15.00
64: -------------------------------- ----------------------------u--x 0 -2.00 -0.19 14.00
65: ----------------------------u--- -----------------------n1-11-u-x 0 -2.00 -0.42 12.00
66: -----------------------------u-- ------------------------n---x--u 0 -1.00 0.00 10.00
67: -------------------------------- -----------------------1---u-xx- 0 -3.00 -0.36 9.00
68: ---------------------------u---- ----------------------n-----n-xx 0 -3.00 -0.42 6.00
69: ----------------------------n--- -----------------------u---xu-nx 0 -3.00 -0.42 3.00
70: ----------------------------u---
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Table 7. Characteristic for the first block of the 70-step collision after applying the
greedy approach. Bold numbers in column Pcorr(i) highlight impact of new corrective
factors.

i ∇Ai ∇Wi FW Pu(i) Pcorr(i) Ns(i) Ncorr(i)
-4: 01010011010101010100101101110n00
-3: 01100110101100010100011111001010
-2: 00000011110101011011000000nu1011
-1: 0100010101011010000011001101u010
0: 01100111010001010010001100000001 n01u101110110011001110--1nun1110 2 -1.00 0.00 1.02 0.00
1: u10u1011011001111101001-nuun0001 u0nn01011010111011-010111n1u10uu 1 -1.00 0.00 2.02 0.00
2: 0u0u1001010110100000nun1000nnn1u 01nu011110101000100001000001n111 0 0.00 0.00 2.02 0.00
3: 111n11111111nuuu1u100n11u10110u1 1000000100110111110010111n0111nn 0 0.00 0.00 2.02 0.00
4: 10100111100nn011n1u11n000101n10n nu0n110111101001100100100nun00n0 0 0.00 0.00 2.02 0.00
5: 1100100u000010101u110unn0100u10u n1nu1011011011110001001---0n0111 3 -3.00 0.00 2.02 0.00
6: n10000unnnnnnnnnnnnn0100n1000un1 nuuu001001101011110110-10un010n0 1 0.00 -3.00 2.02 0.00
7: 000111110011101u001u10-1100nn000 uu100011111101101-1010--1n1110n0 3 -2.00 -1.00 3.02 0.00
8: u000110110111111011010u-010uu0u1 001000110110000001-1011-10nu1001 2 -1.00 -5.00 4.02 0.00
9: 1100111111110001100111u-11001011 nnu0001110011011--------0n0111n1 8 -4.00 -2.00 5.02 0.00

10: 01000100001000101---1nu-10nn0010 10u0101011000-110--------nn10100 9 -6.00 -4.00 9.02 2.88
11: 10011101100011-1000---n1--10100n uuu010000-00000----------n01111n 11 -3.00 -7.42 12.02 5.88
12: u101111110100001----------0000nn 11n000100100-1-----------u1u0001 12 -8.00 -7.00 20.02 13.88
13: u11001111110011111------1-1011n1 nu011011011111-00--------u01100n 9 -4.00 -2.00 24.02 17.88
14: 1010111000100000----------11111u nnn000000000001----------uuu01n1 10 -1.00 -8.00 29.02 22.88
15: 110101110111----------------0u01 u0n10000111-1---1----------100nu 14 -5.00 -6.00 38.02 31.88
16: n0111011--0011--------------1001 nn10100000001-11--------111u00n0 0 -0.02 -0.55 47.02 40.88
17: 000--1111-------------------11u1 0un01110000000----------1n01111n 0 0.00 0.00 47.00 40.86
18: n00----------------------------- nu00000011-1---1----------un01n0 0 -1.00 -1.00 47.00 40.86
19: --0----------------------------- 00u10100-010-1-----------110101n 0 0.00 0.00 46.00 39.86
20: -------------------------------- nu100111100-1-----------000011u1 0 -1.00 -1.00 46.00 39.86
21: ------------------------------u- nun001100-1---0----------n0001u1 0 -2.00 -2.00 45.00 38.86
22: ------------------------------u- 1un0101-010-1-----------1n0111n0 0 -1.00 -1.00 43.00 36.86
23: -------------------------------- n110111000-1--------------1101u0 0 -1.00 -1.00 42.00 35.86
24: -------------------------------- 11001111-0---0----------11110101 0 0.00 0.00 41.00 34.86
25: -------------------------------- 100111-1-0-0------------00000010 0 -0.00 0.00 41.00 34.86
26: -------------------------------- u00011001-0-------------11101110 0 -0.00 0.00 41.00 34.86
27: -------------------------------- 1001000-----0-----------101100u0 0 -1.00 -1.00 41.00 34.86
28: ------------------------------u- 01110-0-1---------------0n010010 0 0.00 0.00 40.00 33.86
29: -------------------------------- 00000010-1----------------000000 0 -2.00 -2.00 40.00 33.86
30: ------------------------------n- u11001-----0------------0u010110 0 -0.00 0.00 38.00 31.86
31: -------------------------------- u000-0-0------------------010111 0 -2.00 -2.00 38.00 31.86
32: ------------------------------n- 0100101-0-------------100u000011 0 -0.00 0.00 36.00 29.86
33: -------------------------------- n0000-----0-------------0100000n 0 -2.00 -1.91 36.00 29.86
34: -------------------------------u 010-0-1-----------------1nu00100 0 -0.00 0.00 34.00 27.94
35: -------------------------------- n10100-0----------------001110nu 0 -1.00 -1.00 34.00 27.94
36: -------------------------------- 1n11------------------11100000u1 0 -2.00 -2.00 33.00 26.94
37: ------------------------------u- uu-1-0-1----------------0n101010 0 -1.00 -1.00 31.00 24.94
38: -------------------------------- nu100-1----------------0000011n1 0 -1.00 -1.00 30.00 23.94
39: -------------------------------- u00---------------------01000001 0 0.00 0.00 29.00 22.94
40: -------------------------------- u-1-0------------------011100101 0 -1.00 -1.00 29.00 22.94
41: -------------------------------- u101-1-----------------1111110u0 0 -1.00 -1.00 28.00 21.94
42: ------------------------------u- 01-----1---------------00n110010 0 -0.00 0.00 27.00 20.94
43: -------------------------------- -1-0---------------------10111n0 0 -1.00 -1.00 27.00 20.94
44: -------------------------------- u11-0------------------001111011 0 -1.00 -1.00 26.00 19.94
45: -------------------------------- n-----0-----------------00011110 0 -1.00 -1.00 25.00 18.94
46: -------------------------------- n-0---------------------1000100- 0 -0.00 0.00 24.00 17.94
47: -------------------------------- 11-0---------------------10110u1 0 -1.00 -1.00 24.00 17.94
48: ------------------------------u- ----------------------100n111001 0 0.00 0.00 23.00 16.94
49: -------------------------------- -0-1-------------------0000101-1 0 -2.00 -2.00 23.00 16.94
50: ------------------------------u- u-1---------------------1n011100 0 -1.00 -1.00 21.00 14.94
51: -------------------------------- x-----------------------111011n- 0 -2.00 -2.00 20.00 13.94
52: -------------------------------- 0---------------------1111000-0- 0 -1.00 -1.00 18.00 11.94
53: -------------------------------- x0---------------------111010011 0 -1.00 -1.00 17.00 10.94
54: -------------------------------- x---------------------01000110-- 0 -0.00 0.00 16.00 9.94
55: -------------------------------- ------------------------0100-0-1 0 0.00 0.00 16.00 9.94
56: -------------------------------- 1---------------------100111101- 0 -0.00 0.00 16.00 9.94
57: -------------------------------- ------------------------01010--- 0 0.00 0.00 16.00 9.94
58: -------------------------------- ----------------------01001-1-0- 0 0.00 0.00 16.00 9.94
59: -------------------------------- ------------------------101010-1 0 0.00 0.00 16.00 9.94
60: -------------------------------- ----------------------001100---- 0 0.00 0.00 16.00 9.94
61: -------------------------------- ------------------------01-1-u-1 0 -1.00 -0.99 16.00 9.94
62: -----------------------------u-- ----------------------00n0000-0- 0 0.00 0.00 15.00 8.96
63: -------------------------------- ------------------------100--x-- 0 -1.00 -1.00 15.00 8.96
64: -------------------------------- --------------------10110-0-n--x 0 -2.00 -1.98 14.00 7.96
65: ----------------------------n--- --------------------001u0101-n-x 0 -2.00 -1.98 12.00 5.98
66: -----------------------------n-- ---------------------011u1--x--n 0 -1.00 -1.00 10.00 4.00
67: -------------------------------- ---------------------111-0-n-xx- 0 -3.00 -3.00 9.00 3.00
68: ---------------------------n---- ---------------------0u0100-u-xx 0 -3.00 0.00 6.00 0.00
69: ----------------------------u--- ----------------------1n0--xx-ux 0 -3.00 0.00 3.00 0.00
70: ----------------------------x---
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Table 8. Characteristic for the second block of the 70-step collision after applying the
greedy approach. Bold numbers in column Pcorr(i) highlight impact of new corrective
factors.

i ∇Ai ∇Wi FW Pu(i) Pcorr(i) Ns(i) Ncorr(i)
-4: 01010011010101010100101101110n00
-3: 01100110101100010100011111001010
-2: 00000011110101011011000000nu1011
-1: 0100010101011010000011001101u010
0: 0101001110100011001110111000n101 u01n101111011101101111101uun0010 0 0.00 0.00 0.97 0.00
1: n11n10001001000101011001nnun0nuu n1nn001010100010000010101u0n01uu 0 0.00 0.00 0.97 0.00
2: 1u0u101001010010010n0nn11100010u 10un100100010101111000000100u101 0 0.00 0.00 0.97 0.00
3: u1un0000100111nn1u00100nu1011u0n 0101000001100011101100000n1001uu 0 0.00 0.00 0.97 0.00
4: n0101110n1u1u11010n1011011uu0010 nu0n110111011111100110001nnu10u0 0 0.00 0.00 0.97 0.00
5: 010n011u11010n10nu010u01u0101nnu u1un00000000001000001-00111u0111 1 0.00 0.00 0.97 0.00
6: 1n000111100uu00110100-n00011001u nuuu1111111111---1000-001uu101n0 4 -3.00 -3.00 1.97 0.00
7: 1nnnnnnnnnnnnnnn01111-01nn101u00 uu10111111101111-1100--01n1001u1 3 -1.00 -1.00 2.97 0.24
8: 1000110000111111001u---1un110101 0000111111111011--000---11uu0000 5 -5.00 -5.00 4.97 2.24
9: 0100111111111001110001-00100010n uun0100011011110--------1n1111u1 8 -2.00 -2.00 4.97 2.24

10: u1010110010011------11--nu0u0un0 10n0000110111-1-1--------uu10101 10 -4.00 -4.00 10.97 8.24
11: 111010101111----------n--0000011 nnu001010-00010----------x00101u 12 -7.42 -7.42 16.97 14.24
12: 0011001000011-------------1n01n1 01n111110011-1-----------u0n0110 12 -7.00 -7.00 21.55 18.82
13: u00100011111000----------000001u uu0011010001-0-1---------x01001u 12 -2.00 -2.00 26.55 23.82
14: 10110001010----------------1111u uuu1111111-0101----------xuu10n1 12 -8.00 -8.00 36.55 33.82
15: 0010010001111--------------11u10 u0n10110010-0-1-1----------101un 13 -6.00 -6.00 40.55 37.82
16: n1100111111000-------------10011 un000000010-0-0----------00u10n1 0 -0.55 -0.55 47.55 44.82
17: 000001111--------------------1n1 0un010111-1010-----------u00110n 0 0.00 0.00 47.00 44.27
18: n00--------------------------100 uu10011001-0-1-0----------un10n1 0 -1.00 -1.00 47.00 44.27
19: --0----------------------------- 00u01010-1-0-0-----------000010n 0 0.00 0.00 46.00 43.27
20: -------------------------------- nu001101-11-1-----------110010n0 0 -1.00 -1.00 46.00 43.27
21: ------------------------------n- nun010010-1-0-0----------u0101n0 0 -2.00 -2.00 45.00 42.27
22: ------------------------------n- 0un0101-0-0-1------------u1100u1 0 -1.00 -1.00 43.00 40.27
23: -------------------------------- u111100-00-1--------------0011n1 0 -1.00 -1.00 42.00 39.27
24: -------------------------------- 10001110-1-0-0----------10010000 0 0.00 0.00 41.00 38.27
25: -------------------------------- 110110-0-1-1-------------0010111 0 -0.00 0.00 41.00 38.27
26: -------------------------------- u00000-11-1-------------10101111 0 0.00 0.00 41.00 38.27
27: -------------------------------- 1001100---1-1------------00110n0 0 -1.00 -1.00 41.00 38.27
28: ------------------------------n- 01101-1-1----------------u000000 0 -0.00 0.00 40.00 37.27
29: -------------------------------- 00100-11-0----------------111101 0 -2.00 -2.00 40.00 37.27
30: ------------------------------u- n10110-----1-------------n010111 0 0.00 0.00 38.00 35.27
31: -------------------------------- u001-1-0------------------101110 0 -2.00 -2.00 38.00 35.27
32: ------------------------------u- 1001-11-1--------------10n111011 0 0.00 0.00 36.00 33.27
33: -------------------------------- u1000---1-0------------11001000u 0 -2.00 -1.91 36.00 33.27
34: -------------------------------n 011-1-0-----------------0un00001 0 0.00 0.00 34.00 31.36
35: -------------------------------- u10-10-1----------------111001un 0 -1.00 -1.00 34.00 31.36
36: -------------------------------- 0u01-------------------0110101n1 0 -2.00 -2.00 33.00 30.36
37: ------------------------------n- uu-1-1-1----------------1u001011 0 -1.00 -1.00 31.00 28.36
38: -------------------------------- un-01-1----------------1001001n0 0 -1.00 -1.00 30.00 27.36
39: -------------------------------- u10---0-----------------11000011 0 0.00 0.00 29.00 26.36
40: -------------------------------- u-0-1------------------110011110 0 -1.00 -1.00 29.00 26.36
41: -------------------------------- n-01-0------------------011101n0 0 -1.00 -1.00 28.00 25.36
42: ------------------------------n- 10-----0----------------1u011010 0 0.00 0.00 27.00 24.36
43: -------------------------------- -1-1---------------------01110u1 0 -1.00 -1.00 27.00 24.36
44: -------------------------------- x11-1------------------011101100 0 -1.00 -1.00 26.00 23.36
45: -------------------------------- u---0-0-----------------10000101 0 -1.00 -1.00 25.00 22.36
46: -------------------------------- n-1---------------------0110011- 0 0.00 0.00 24.00 21.36
47: -------------------------------- 11-0---------------------01000n- 0 -1.00 -1.00 24.00 21.36
48: ------------------------------n- -----------------------01u000011 0 0.00 0.00 23.00 20.36
49: -------------------------------- -1-1-------------------0110010-0 0 -2.00 -2.00 23.00 20.36
50: ------------------------------n- u-1---------------------1u0111-0 0 -1.00 -1.00 21.00 18.36
51: -------------------------------- x-1---------------------101010u- 0 -2.00 -2.00 20.00 17.36
52: -------------------------------- 1---------------------1110101-1- 0 -1.00 -1.00 18.00 15.36
53: -------------------------------- x0---------------------010100-10 0 -1.00 -1.00 17.00 14.36
54: -------------------------------- x----------------------0111011-- 0 0.00 0.00 16.00 13.36
55: -------------------------------- ------------------------0111-0-1 0 0.00 0.00 16.00 13.36
56: -------------------------------- 0----------------------00100-01- 0 0.00 0.00 16.00 13.36
57: -------------------------------- 0-----------------------11010--- 0 0.00 0.00 16.00 13.36
58: -------------------------------- -----------------------1001-0-1- 0 0.00 0.00 16.00 13.36
59: -------------------------------- ------------------------101-11-1 0 -0.00 0.00 16.00 13.36
60: -------------------------------- -----------------------11110---- 0 -0.00 0.00 16.00 13.36
61: -------------------------------- ------------------------01-0-n-0 0 -1.00 -0.99 16.00 13.36
62: -----------------------------n-- -----------------------1u1-01-0- 0 0.00 0.00 15.00 12.37
63: -------------------------------- ------------------------111--x1- 0 -1.00 -1.00 15.00 12.37
64: -------------------------------- --------------------10000-1-u--x 0 -2.00 -1.98 14.00 11.37
65: ----------------------------u--- --------------------010n1-11-u-x 0 -2.00 -1.98 12.00 9.39
66: -----------------------------u-- ---------------------001n1--x--u 0 -1.00 -1.00 10.00 7.42
67: -------------------------------- ----------------------11-0-u-xx- 0 -3.00 -2.42 9.00 6.42
68: ---------------------------u---- ---------------------1n0-01-n-xx 0 -3.00 -2.00 6.00 4.00
69: ----------------------------n--- ----------------------1u1--xu-nx 0 -3.00 -2.00 3.00 2.00
70: ----------------------------u---
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Abstract. Iterated Halving has been suggested as a replacement to the
Merkle-Damg̊ard construction following attacks on the MDx family of
hash functions. The core of the scheme is an iterated block cipher that
provides keying and input material for future rounds. The CRUSH hash
function provides a specific instantiation of the block cipher for Iterated
Halving. In this paper, we identify structural problems with the scheme,
and show that by using a bijective function, such as the block cipher
used in CRUSH or the AES, we can trivially identify collisions and sec-
ond preimages on many equal-length messages of length ten blocks or
more. The cost is ten decryptions of the block cipher, this being less
than the generation of a single digest. We show that even if Iterated
Halving is repaired, the construction has practical issues that means it
is not suitable for general deployment. We conclude this paper with the
somewhat obvious statement that CRUSH, and more generally Iterated
Halving, should not be used.

Keywords: CRUSH, Iterated Halving, Hash Functions, Cryptanalysis,
Collisions, Second preimages.

1 Introduction

The CRUSH hash function was proposed by Gauravaram, Millan and May [3][5]
as an example of a new hash-function design paradigm called Iterated Halving,
also described in the same paper. Iterated Halving was based on the designers’
almost prescient observation that the repeated use of the Merkle-Damg̊ard (MD)
construction within hash function design constituted a single point of failure, and
that a forthcoming attack on one member of that family may also apply to oth-
ers. Of course, this view was vindicated by the quick succession of multi-block
collision attacks by Wang, et al. on MD4, MD5, SHA-1, etc. [6][7][8]. Following
this, Gauravaram et al. promoted Iterated Halving, specifically CRUSH, as a
viable alternative to MD-type hash functions [3][4]. However CRUSH had until
now not received significant analysis. In this paper, we demonstrate severe secu-
rity and implementation problems with the technique of Iterated Halving, and
the CRUSH hash function instantiation.

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 74–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Good hash functions possess at least three primary security properties, in-
cluding collision resistance, preimage resistance and second preimage resistance.
Collision resistance refers to the property whereby it is hard to find two mes-
sages x and y, such that for x �= y, H(x) = H(y) for hash function H . Second
preimage resistance refers to the difficulty, given message x and its hash H(x),
to find y such that H(y) = H(x). A hash function that is not a collision resis-
tant hash function, meaning that it does not offer both collision resistance and
second preimage resistance, has limited application. We show that collisions and
second-preimages can be found within CRUSH in ten operations. In fact, the
same attack applies even if we substitute the Advanced Encryption Standard
(AES) [1] with 192-bit or 256-bit keys for CRUSH.

In Section 2, we describe the CRUSH hash function in the context of Iterated
Halving. In Section 3, we show how to use the bijective properties of Iterated
Halving to find collisions and second preimages on provided messages for CRUSH
or instantiations of Iterated Halving using other block ciphers. In Section 4, we
show a persistent weakness in the structure of Iterated Halving with relaxed
assumptions about the nature of its block cipher core. In Section 5, we indicate
a practical issue that shows Iterated Halving to be inferior to Merkle-Damg̊ard
construction from an implementation viewpoint. This issue is likely to prevent
the uptake on many platforms, of any hash function implemented in the context
of Iterated Halving, even assuming that the security issues could be repaired.
Finally, in Section 6, we offer closing remarks.

2 The CRUSH Hash Function

The structure of CRUSH is shown in Figure 1. CRUSH consists of a data buffer,
a Bijection Selection Component (BSC), boolean functions fi, 1 ≤ i ≤ 3, and a
bijective function B. B is effectively a block cipher, where the plaintext comes
from the data buffer, and the key material from the boolean functions. The
function B contains a repeated sub-function F , the details of which do not
affect our attack.

The authors of CRUSH suggest that another hash function within the Iterated
Halving paradigm can be constructed by replacing B with another block cipher.
For example, this could be the AES with 192-bit or 256-bit keys.

2.1 Compressing a Message Using CRUSH

Initially the data buffer contains the entire message to be processed – that is,
n 64-bit blocks. The value of n is at least 17, and padding must be applied to
short messages to accomplish this. The padding includes length encoding, which
means that in this paper, we consider only attacks on messages of equal length.

In each round, a pair of blocks, Ma and Mb, are removed from the head of the
buffer for processing by the B function. B also accepts three “keying” elements
k1, k2 and k3. The output of B is a pair of blocks ya and yb. B is a bijective
function. Aside from that, its details are unimportant to our attack.
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Fig. 1. The CRUSH hash function

Block yb is appended to the buffer. Thus with each round, the buffer shrinks
by one block. After n

2 iterations of the B function, there will be n
2 blocks in the

buffer. After another n
4 iterations, the buffer will contain n

4 blocks and so on1.
This is the “halving” aspect of iterated halving. The process is iterated until the
point when there are only d blocks remaining in the buffer, where d is the desired
digest size in 64-bit blocks. The algorithm terminates, and its output, the digest,
is taken as the remaining contents of the buffer. The CRUSH paper suggests a
value of d = 4, and we analyze CRUSH according to this recommendation.
However, the attacks in this paper apply no matter what the value of d.

The BSC holds four 64-bit blocks in its state. In each round, the states in the
BSC are shifted such that at time i, block Si

t = Si−1
t+1 for 0 ≤ t < 3. State Si−1

0

is discarded. The block Si
3 is populated with yi

a.

Table 1. A toy example of Iterated Halving

Round Buffer BSC State B Function
0 a b c d e f g h c0 c1 c2 c3 (a, b)→ (y1

a, y1
b )

1 c d e f g h y1
b – y1

a c0 c1 c2 (c, d)→ (y2
a, y2

b )
2 e f g h y1

b y2
b – – y2

a y1
a c0 c1 (e, f)→ (y3

a, y3
b )

3 g h y1
b y2

b y3
b – – – y3

a y2
a y1

a c0 (g, h)→ (y4
a, y4

b )
4 y1

b y2
b y3

b y4
b – – – – y4

a y3
a y2

a y1
a —

A toy example of a message compression illustrates the principle of Iterated
Halving below. This example (ignoring padding and message length constraints)
compresses an eight-block message abcdefgh into the four-block digest y1

by2
by3

by4
b .

1 This description does not quite apply if the number of initial blocks is not a power of
two. When the number of blocks on the buffer is odd, a dummy block is taken from
the BSC to maintain pairing of message blocks. For expediency we do not consider
this case in detail.
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3 Finding Collisions and Second Preimages

CRUSH implements iterated halving by taking a pair of blocks from the data
buffer, processing them concurrently within the B function, returning one ele-
ment of the pair to the data buffer, and moving the other into the BSC. The BSC
and associated boolean functions implement an analog to Key Feedback Mode,
whereby one half of the output of one B function round becomes the key for
the next. This appears to makes differential cryptanalysis of the function more
difficult since the attacker does not have direct control over the key material,
which is a highly non-linear function of the input. However, the BSC contains a
flaw which allows differential cryptanalysis to be simply applied. Furthermore,
the F sub-function within the B block cipher is designed to be bijective so that
for x0, x1 when F (x0) = F (x1), then by necessity x0 = x1. This is intended to
complicate the identification of collisions on the B structure.

However we can easily find collisions and second-preimages by making use of
the fact that B is a bijection and reversible. In addition to the bijection property,
we use the fact that any difference entering into the BSC endures for only four
rounds before it is discarded. By ensuring that differences enter into the BSC
rather than the buffer, we need only be concerned with message words for five
rounds (ie. ten pairs of words), including the words that introduce the difference.

Recall that at round i, the B block cipher function takes two message words
M i

a and M i
b as inputs, and produces yi

a and yi
b as outputs. Then for the ten pairs

of message words (M i
a, M ′i

a ), (M i
b , M

′i
b ), . . . , (M i+4

a , M ′i+4
a ) and (M i+4

b , M ′i + 4b),
we want to use a differential D1 : (Δx0, Δx1) → (Δy0, Δ0) at all times. This
ensures that the difference never goes into the buffer. Without loss of generality,
we assume that i = 0. However, it can be any value less than L

2 − 5, where L is
the length of the message in 64-bit blocks.

3.1 Identifying Collisions

Because the block cipher B is reversible, it is possible to work backwards through
the function by starting with the desired outputs and crafting the message words
to satisfy them. To generate a collision, set the outputs of the first call to the
block cipher in each message such that y0

a �= y′0a and y0
b = y′0b . In the example

below, we set y0
a = 0, y′0a = 1, and y0

b = y′0b = 0. Since the keying material to
the block cipher is readily known – the initial state of the BSC is public – it
is trivial to calculate M0

a , M0
b , M ′0

a , M ′0
b (respectively C51F7BC286ECFA2B,

877C26794DC08412 and BF24001D4DF6E8E5 and 2DA41C2E7C0DBBCD
in the example below).

For the following three output words, set yi
a = y′ia and yi

b = y′ib , 1 ≤ i ≤ 4.
The only input differences occur in the BSC. In the example below, we set all
words equal to 0, but any other value is equally legitimate. Calculate the message
words that act as input to B as before. After four rounds, the difference intro-
duced by y0

a �= y′0a disappears from the BSC. An internal collision results (ie. the
states of both instances of CRUSH are now the same). Of the course, the collision
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is maintained by appending identical words to each message, and the resulting
digests are identical.

The complexity for finding a collision on any two messages that differ in ten
words is just ten decryptions of B (five per message instance). Since all digests,
even including a null message, involve the processing of at least seventeen blocks,
the collision complexity is at most 10

17 of generating a single digest.
An example collision on two length-ten messages is shown below.

Message 1 (before padding):

C51F7BC286ECFA2B 877C26794DC08412 36E90FCF9B55342D 5CA8F7C75E0DDC9D
64955AF928952224 05C8EFFDC93A2C3B 1009BAE571FC033B 3F9716020BD2918D
AA727095411A8B26 81B4ED776F2ADA41

Message 2 (before padding):

BF24001D4DF6E8E5 2DA41C2E7C0DBBCD E125E4AFB770AAC9 5C3BEE7C15F27ED0
64955AF928952224 05C8EFFDC93A2C3B B07155E6E33D428E EAAC9F125F2CF906
BA6A889D411A9B26 2E5A2980EC439EBB

Colliding 256-bit digest:

AF1E98C1CAFD0CC8 FC0421CCE65C9902 E7478613CD9C2867 D5EAFE307674B3AF

3.2 Identifying Second Preimages

The technique for finding second preimages is very similar to that for identi-
fying collisions. It too deals with five rounds and has a complexity of only ten
operations.

Generate a digest for message M , taking note of the output of B for rounds
i . . . i + 4. For the second preimage M ′, set y′ib = yi

b and y′ia = x, x �= yi
a. Then

for the following four rounds for M ′, set y′jb = yj
b and y′ka = yk

a for i < j ≤ i + 4.
Decrypt over B for each y′ia , yi

b to obtain M ′i
a , M i

b.
An example second preimage is shown for the ten-block message containing

all zeroes prior to padding. It is easy to find any of the 264 ten-block preimages
for this message. The second state word of the BSC is not used as an input to
the boolean functions - hence the all zero values in the fifth and sixth words of
the preimage.
Message (before padding):

0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000

256-bit Digest of Message:

0923D64E00506F55 FB0B37D9841B5B23 12DEE7CAB0C369B8 1D5F834530C72B22
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Second preimage (before padding):

B0D922EE3E5BF143 D32F46652DA2CEEA 51FE1E43AF1B4800 78F085DFDD4ADC23
0000000000000000 0000000000000000 1136516598C9E675 183DA3ED247AC07D
1030627ADD029C59 C9E9BA651935AE16

Digest of Second preimage:

0923D64E00506F55 FB0B37D9841B5B23 12DEE7CAB0C369B8 1D5F834530C72B22

3.3 Constraints on Messages

These attacks apply to all messages of equal length which are at least ten blocks
in length, and differ only in four consecutive words, provided that differences in
the BSC are not transferred as dummy blocks to the buffer. This occurs only
for the last word of a message with an odd number of blocks, hence is not a
major concern to the applicability of our attack. In the majority of cases in
which the attack applies, there are 232 choices for the paired values of each word
with a difference. These conditions are much less restrictive than the attacks on
MD4 [6], etc, which must adhere to specially prescribed bit-conditions. It is very
unusual to find such an low complexity attack on a hash function that also has
such a large degree of freedom in choice of message words.

4 Corner-Then-Pass: An Observation on Iterated Halving

Our best attack on CRUSH, presented in the previous section, relies on the fact
that the B function is bijective and reversible, as is the case whenever B is
a block cipher. Here we relax that assumption to make an observation about
Iterated Halving that shows that its problems are more deeply ingrained than
in the selection of the B function.

In the case where B is not bijective (that is, we replace it with an ideal
compression function, using for example, a block cipher with a feed-forward),
we are able to generate a collision on a single round by a (standard) birthday
attack on B, which is of complexity 264. For example, find different message
words (M1

a , M ′1
a ) and (M1

b , M ′1
b ), such that the outputs y1

a = y′1a and y1
b = y′1b .

Subsequently the internal states for the two messages are equal and a collision
is easily found. This attack is far better than a generic birthday collision attack
on CRUSH which is of complexity 2128 for a 256 bit construction.

Note that in the above collision attack, the inputs to BSC were kept equal in
the collision on B. In the defense of CRUSH one may argue that it is possible
to find constructions for B such that the complexity of finding these collisions
is larger than a standard birthday attack when some of the input is kept con-
stant. However in the following it is demonstrated that iterated halving method
contains a fundamental flaw which allows collisions faster than the generic ones
for any constructions of B.

We augment differential D1 : (Δx0, Δx1)→ (Δy0, Δ0) from the previous sec-
tion with D2 : (Δx2, Δx3)→ (Δ0, Δy1). The values of Δx0, Δx1, Δx2, Δx3, Δy0
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and Δy1 are immaterial - we are interested in the half collisions Δ0. Nor do we
need to concern ourselves with the internal structure of either B or F to find
these half collisions. By the birthday paradox, we can find inputs and outputs
that match each differential with an effort2 of around 232.

Using differential D1 we can keep non-zero (active) differences flowing into the
BSC, and using differential D2 we can direct active differences into the buffer.
In the latter case, the active difference either becomes part of the digest or is
processed by B at a later time. If it becomes part of the digest, then no collision
is possible. Therefore we want to avoid this outcome in our attack.

On the other hand, using differential D1 directs active differences to the BSC,
where it will be used in three of the following four rounds as input into the
boolean functions. This will affect the subsequent differences into B in a non-
linear way, and make them harder to control. We also want to avoid this in our
attack.

So it seems that in either case, an active difference hinders our attack. But this
is not so. We place message differences very carefully. We then use D2 to direct
active differences to the buffer until just before the digest is formed, and in the
very last round, use the D1 differential to route the sole remaining difference to
the BSC, removing it from the buffer and creating a collision. The active element
is retired to the BSC at just the moment the digest is formed. The algorithm
terminates before the boolean functions propagate the difference in the BSC.
Therefore the differences coming from the BSC into the B function are zero at
all times.

This kind of ‘corner-then-pass’ technique is possible due to another flaw in
Iterated Halving - that the BSC is a sink for differences in message input which
may be delayed so that they have no effect on the digest. The technique does
not apply to the Merkle-Damg̊ard construction, as it does not have this delay
component.

The shortest message pair from which this collision can be generated has a
length of twenty 64-bit blocks, due to padding requirements, the need to use
both differentials, and on the limitation that the D1 differential can only be
used to produce the last block of the digest. In this message pair, differences
must be introduced only in words 5, 6, 7 and 8.

This can be seen in the diagram below, which shows the differences in the
message words within the buffer. For clarity, the message difference Δ0 is repre-
sented by ‘–’, and padding by P . At round 17, the requisite amount of material
in the buffer is available and the algorithm terminates.

D2a and D2b can be generated independently at a cost of 232 operations each.
The success of finding a collision on D2c depends upon the choice of message
values made for D2a and D2b, and D1a on all three prior message choices. If the

2 In practice, at the time of publication, the complexity will become slightly higher as
storing 232 × 8 bytes of material in order to find a match is beyond the capability
of most modern hardware. Virtual memory could be used, but this will add a large
coefficient to the cost of each operation. In the near future, sufficient volatile memory
will be available on commodity machines to avoid this penalty.
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Round Buffer B
0 – – – – ΔA ΔB ΔC ΔD – – – – – – – – – – – – P P
1 ΔA ΔB ΔC ΔD – – – – – – – – – – – – P P – –
2 ΔC ΔD – – – – – – – – – – – – P P – – ΔE D2a: (ΔA,ΔB)→ (Δ0, ΔE)
3 – – – – – – – – – – – – P P – – ΔE ΔF D2b: (ΔC, ΔD)→ (Δ0, ΔF )
9 P P – – ΔE ΔF – – – – – –
11 ΔE ΔF – – – – – – – –
12 – – – – – – – – ΔG D2c: (ΔE,ΔF )→ (Δ0, ΔG)
16 ΔG – – – –
17 – – – – D1a: (ΔG, Δ0)→ (ΔH,Δ0)

values do not successfully chain, then backtracking is required. Therefore the
complexity of the attack is 233+32+32 = 297. This is well below the complexity of
finding collisions on the whole hash function by the birthday paradox (ie. 2128

for a 256-bit digest), and is an attack that does not depend upon the bijective
nature of the embedded block cipher.

5 Iterated Halving Is Not Implementation-Friendly

In [3], it is noted that dedicated hash functions are generally more efficient than
hash functions based upon block ciphers. This may be the case in terms of raw
throughput, but efficiency is multi-dimensional and Iterated Halving (also [3]),
which defines CRUSH as a new dedicated hash function, is an interesting case
study in why this statement may not be true in other dimensions, specifically
storage costs.

Iterated Halving is embodied by the behaviour of CRUSH’s data buffer in
accepting one data block for every two that it releases. The buffer is a First-in
First-out (FIFO) queue, and blocks must be processed in order. All blocks of the
original message must be processed before any blocks produced as output from
the B function are reprocessed by B and appended to the buffer. This impacts
another dimension of efficiency, since after r rounds, the number of blocks in
the buffer will be min(n − r, d). Therefore, assuming streaming of the original
message, the buffer must be allocated to contain n

2 blocks.
This imposes limits on the length of a message that can be hashed using Iter-

ated Halving. A hardware chip that implements Iterated Halving using x bytes
of memory cannot process a (2×x+1)-length message. For very large messages,
this even applies to general purpose processors aided by virtual memory. The
limit imposed by Iterated Halving is far short of the 264 − 1-bit message limit
imposed by the length-encoding of SHA-1.

Consider the performance of SHA-1 on a hardware accelerator. It requires
approximately 80 bytes of memory (five 32-bit states, and 512 bits for the cur-
rent message block), and can handle all real-world messages. It can also be
implemented very cheaply, in contrast to a flexible implementation of Iterated
Halving, in which the cost is linearly related to the amount of on-board mem-
ory and maximum message size. The SHA-1 accelerator does not obsolete faster
than its algorithm: it can process a High-Density (HD)-DVD equally as well as
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a standard DVD. This is in contrast to an Iterated Halving accelerator carry-
ing 2.5 Gb of onboard memory, which is already substantial and expensive, but
incapable of processing in one pass the data on a HD-DVD.

This dimension of efficiency was signposted early on in the history of hash
functions. Quoting from Damg̊ard [2],

...things seem to get more complex as the length of the messages hashed
increase. On the other hand, a hash function is of no use, if we are not
allowed to hash messages of arbitrary lengths.

It is important for hash function designers to consider the efficiency of their
designs in multiple dimensions, rather than just in terms of raw throughput.
Iterated Halving, irrespective of its security flaws, is not suitable for practical
deployment.

6 Conclusion

In this paper, we have shown that CRUSH, and more generally Iterated Halving,
which mandates a bijective B function, do not satisfy the requirements of good
hash functions from either implementation or security viewpoints.

We have shown how to generate collisions and second preimages for Iterated
Halving using a block cipher, for messages of equal length in which four words
differ. The freedom in choosing those words is very large. The ability to create
these collisions and second preimages relies upon the B function of CRUSH being
bijective, and upon the BSC rapidly discarding differences. The complexity of
these attacks is extremely small, amounting to only ten decryptions of the B
function irrespective of the digest size. The attacks apply when any block cipher
is used, including the AES with 192-bit or 256-bit keys. It is rare to see practical
attacks on symmetric ciphers or hash functions with such a low complexity.

We have also shown that irrespective of the properties of the B function,
the structure of Iterated Halving is flawed, because it introduces a delay into
the effect of its state upon the message digest. Careful positioning of differences
in the message words may result in a collision through the ‘corner-and-pass’
technique.

Iterated Halving has shown itself to be inefficient relative to the Merkle-
Damg̊ard construction, which has a small, fixed memory requirement irrespective
of the message length to be hashed. This will almost certainly inhibit the real-life
usage of CRUSH and/or Iterated Halving.

CRUSH is not by itself an especially significant hash function. However, the
cryptographic community, following the attacks on the MDx family, now has
a particular interest in finding alternative constructions to the long established
Merkle-Damg̊ard construction. To be useful to industry, such a replacement must
meet the efficiency benchmarks set by Merkle-Damg̊ard, and must surpass its
level of security. Iterated Halving has been suggested by its designers as such
a replacement. As it stands, Iterated Halving as an abstract construction, with
CRUSH as a concrete instantiation, is far from the desirable replacement for
which the community is searching. We do not recommend the use of CRUSH.
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Abstract. Side-channel collision attacks were proposed in [1] and ap-
plied to AES in [2]. These are based on detecting collisions in certain
positions of the internal state after the first AES round for different
executions of the algorithm. The attack needs about 40 measurements
and 512 MB precomputed values as well as requires the chosen-plaintext
possibility.

In this paper we show how to mount a collision attack on AES us-
ing only 6 measurements and about 237.15 offline computational steps
working with a probability of about 0.85. Another attack uses only 7
measurements and finds the full encryption key with an offline complex-
ity of about 234.74 with a probability of 0.99. All our attacks require
a negligible amount of memory only and work in the known-plaintext
model. This becomes possible by considering collisions in the S-box lay-
ers both for different AES executions and within the same AES run.
All the attacks work under the assumption that one-byte collisions are
detectable.

Keywords: AES, collision attacks, side-channel attacks, generalized col-
lisions, connected components, random graphs.

1 Introduction

An internal collision, as defined in [1] and [2], occurs, if a function f within
a cryptographic algorithm processes different input arguments, but returns an
equal output argument. As applied to AES, Schramm et al. [2] consider the
byte transforms of the MixColumn operation of the first AES round as the
colliding function f . To detect collisions, power consumption curves bytewise
corresponding to separate S-box operations in the second round at a certain
internal state position after the key addition are compared.

The key idea of our improved collision attacks on AES is that one can detect
equal inputs to various S-boxes by comparing the corresponding power consump-
tion curves. This turns out to be possible not only for the outputs of the same
function f : Using this technique, it can be possible to detect whether two in-
puts to the AES S-box are equal within the same AES execution as well as for
different AES runs.
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We introduce the notion of a generalized internal collision for AES that occurs
within one or several AES runs, if there are two equal input bytes to the S-
box operation in some (possibly different) rounds at some (possibly different)
byte positions for one or several measurements. In other words, we take all
applications of the S-box transform within a number of AES executions and
compare them pairwise to each other. As the S-box operation is applied 16 times
in each of the 10 rounds (160 varied S-box operations), this gives us about 40
generalized collisions within a single AES run or about 710 generalized collisions
within just 6 AES executions.

Each of such collisions can be considered as a (generally) non-linear equa-
tion over GF (28). The set of all detected collisions corresponds to a system of
non-linear equations with respect to the key bytes. In this paper we explore the
question of how to solve this large number of equations linearly. To be able to
linearize, we restrict our consideration to the first two rounds. There are three
most efficient attacks in this class we found. The first one requires 7 measure-
ments and 234.74 offline operations on average with a probability of 0.99. The
second attack needs about 6 measurements and about 237.15 offline operations
with probability 0.854 or about 244.3 operations with probability 0.927. The
third one recovers the key with just 5 measurements and about 237.34 simple
offline operations with probability 0.372 or about 245.5 operations with proba-
bility 0.548. This is to be compared to about 40 measurements required in the
basic collision attack [2] on AES with some non-negligible post-processing, 29
measurements required for the AES-based Apha-MAC internal state recovery
in [3] with about 234 offline operations with a success probability > 0.5, and
typically several hundred measurements for a DPA (differential power analysis)
attack.

Our attacks work, as DPA and the collision attacks on Alpha-MAC in [3], in
the known-plaintext model, while the attack in [2] is applicable in the chosen-
plaintext scenario only. Moreover, as in [3], we do not need to know the output
of the cryptographic transformation for the side-channel attack itself. However,
our attacks mentioned above do need one plaintext-ciphertext pair for choosing
the correct key from a set of key candidates in the offline post-processing stage.
Note that this input-output pair does not have to be one of the those for which
the measurements have been performed.

We use both theoretical and experimental tools for estimating the efficiency
of our attacks. Linear systems of equations are rewritten in terms of associated
undirected graphs. As the resulting equation systems never possess the full rank,
combinatorial methods are applied to solve these systems. The complexity of
these methods can be analyzed through connected components of those graphs.
The expected number of edges in such a graph is computed theoretically. The
number of connected components, which defines the overall complexity of the
offline attack stage, is estimated using thorough computer simulations for the
numbers of edges obtained theoretically.

The remainder of the paper is organized as follows. Section 2 outlines the
basic collision attack on AES. Section 3 rigorously introduces the notion of
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a generalized internal collision for AES as well as specifies and analyzes our
enhanced collision attacks. In Section 4 we discuss the technical framework and
practical feasibility of our attacks. We conclude in Section 5.

2 Basic Collision Attack on AES

Side-channel collision attacks were proposed for the case of the DES in [1] and
enhanced in [4]. AES was attacked using collision techniques in [2]. This side-
channel collision attack on AES is based on detecting internal one-byte collisions
in the MixColumns transformation in the first AES round. The basic idea is
to identify pairs of plaintexts leading to the same byte value in an output byte
after the MixColumns transformation of the first round and to use these pairs
to deduce information about some key bytes involved into the transformation.

Let A = (aij) with i, j = 0, 3 and aij ∈ GF (28) be the internal state in the first
AES round after key addition, byte substitution and the ShiftRows operation.
Let B = (bij) with i, j = 0, 3 and bij ∈ GF (28) be the internal state after the
MixColumns transformation, B = MixColumns(A), where the MixColumns
transformation is defined for each column j as follows:

⎛

⎜⎜
⎝

b0j

b1j

b2j

b3j

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟⎟
⎠×

⎛

⎜⎜
⎝

a0j

a1j

a2j

a3j

⎞

⎟⎟
⎠ . (1)

Here all operations are performed over GF (28). Let P = (pij) with i, j = 0, 3,
pij ∈ GF (28), and K = (kij) with i, j = 0, 3, kij ∈ GF (28), denote the plaintext
block and the first subkey, respectively. Then b00 can be represented as:

b00 = 02 · a00 ⊕ 03 · a10 ⊕ 01 · a20 ⊕ 01 · a30 =
= 02 · S(p00 ⊕ k00)⊕ 03 · S(p11 ⊕ k11)
⊕01 · S(p22 ⊕ k22)⊕ 01 · S(p33 ⊕ k33).

(2)

For two plaintexts P and P ′ with p00 = p11 = p22 = p33 = δ and p′00 = p′11 =
p′22 = p′33 = ε, δ �= ε, one obtains the following, provided b00 = b′00:

02 · S(k00 ⊕ δ)⊕ 03 · S(k11 ⊕ δ)⊕ 01 · S(k22 ⊕ δ)⊕ 01 · S(k33 ⊕ δ)
= 02 · S(k00 ⊕ ε)⊕ 03 · S(k11 ⊕ ε)⊕ 01 · S(k22 ⊕ ε)⊕ 01 · S(k33 ⊕ ε) (3)

Let Cδ,ε be the set of all key bytes k00, k11, k22, k33 that lead to a collision (3) with
plaintexts (δ, ε). Such sets are pre-computed and stored for all 216 pairs (δ, ε).
Each set contains on average 224 candidates for the four key bytes. Actually,
every set Cε,δ can be computed from the set Cε⊕δ,0 using some relations between
the sets. Due to certain dependencies within the sets, this optimization reduces
the required disk space to about 540 megabytes.

The attack on the single internal state byte b00 works as follows. The attacker
generates random values (ε, δ) and inputs them to the AES module as described
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above. The power consumption curve for the time period, where b00 is processed,
is stored. Then the attacker proceeds with other random values (ε′, δ′), measures
the power profile, stores it and correlates it with all stored power curves. And so
on. One needs about 4 collisions (one in each output byte of a column) to recover
the four bytes involved into the MixColumns transformation. The probability
that after N operations at least one collision b00 = b′00 occurs in a single byte is:

pN = 1−
N−1∏

l=0

(1 − l/28). (4)

Actually, the attack can be parallelized to search for collisions in all four columns
of B in parallel. In this case the attacker needs at least 16 collisions, 4 for each
column of B, so p16

N ≥ 1/2 and N ≈ 40. Once the required number of collisions
was detected, he uses the pre-computed tables Cε⊕δ,0 to recover all four key
bytes for each column by intersecting the pre-computed key sets corresponding
to the collisions (ε, δ) detected. Thus, on average one has to perform about 40
measurements to obtain all 16 collisions needed and to determine all 16 key
bytes. Note that since the cardinality of the intersections for the sets Cε,δ is
not always 1, there are a number of key candidates to be tested using a known
plaintext-ciphertext pair.

AddRoundKey

SubBytes

AddRoundKey

SubBytes
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α
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β

k
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03

p1
03

k
(1)
22 p3
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k
(1)
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(1)
22 = p1

03 ⊕ p3
22

Fig. 1. Generalized internal collision within the first round of two AES runs



88 A. Bogdanov

3 Our Improved Collision Attacks on AES

3.1 Generalized Internal Collisions

In round i = 1, 10, AES performs the SubSytes operation (16 parallel S-box
applications) on the output bytes of the previous round XORed with the i-th
round subkey K(i). A generalized internal AES collision occurs, if there are two
S-boxes within the same AES execution or within several AES runs accepting
the same byte value as their input.

In Figure 1 a collision within the first round of two different AES executions
(number 1 and 3) is illustrated. pj

v,u, v, u = 0, 3, are plaintext bytes for the jth
measurement. k

(1)
v,u, v, u = 0, 3, are the first subkey bytes remaining constant for

the both executions. In the example of Figure 1, byte 03 in the first execution
and byte 22 in the third execution collide.

A detected collision in the S-box layer of the first round in bytes (i1, j1) and
(i2, j2) with i1, j1, i2, j2 = 0, 3 corresponds to the following linear equation:

S(k(1)
i1,j1
⊕ px

i1,j1) = S(k(1)
i2,j2
⊕ py

i2,j2
), (5)

k
(1)
i1,j1
⊕ k

(1)
i2,j2

= Δ
(1)
(i1,j1),(i2,j2) = px

i1,j1 ⊕ py
i2,j2

(6)

for some known plaintext bytes px
i1,j1

and py
i2,j2

with some positive integers x, y
indicating measurement numbers. In the same way, one can rewrite equations
resulting from collisions within some other round i = 2, 10. In this case we
have some unknown key- and plaintext-dependent byte variables instead of the
plaintext bytes px

i1,j1 and py
i2,j2

.

3.2 Systems of Equations and Associated Graphs

First, we consider the structure of a random system of m linear equations of
type (6) resulting from a number of collisions detected within the S-box layer in
the first round:

Sm :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k
(1)
i1,j1
⊕ k

(1)
i2,j2

= Δ
(1)
(i1,j1),(i2,j2)

k
(1)
i3,j3
⊕ k

(1)
i4,j4

= Δ
(1)
(i3,j3),(i4,j4)

. . .

k
(1)
i2m−1,j2m−1

⊕ k
(1)
i2m,j2m

= Δ
(1)
(i2m−1,j2m−1),(i2m,j2m).

(7)

Note that this system has 16 variables (bytes of the first round subkey). In
system (7) the key byte numbers and the variables are not necessarily pairwise
distinct.

The following straightforward proposition holds for Sm:

Proposition 1. The maximal rank of Sm is 15, rank(Sm) ≤ 15.
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Proof. The maximal rank of 15 is attained, for instance, for
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k
(1)
0,0 ⊕ k

(1)
0,1 = Δ

(1)
(0,0),(0,1)

k
(1)
0,1 ⊕ k

(1)
0,2 = Δ

(1)
(0,1),(0,2)

. . .

k
(1)
3,1 ⊕ k

(1)
3,2 = Δ

(1)
(3,1),(3,2)

k
(1)
3,2 ⊕ k

(1)
3,3 = Δ

(1)
(3,2),(3,3).

(8)

It is easy to see that the XOR of any other pair of variables can be obtained as
a sum of two of the 15 equations in (8). Thus, 15 is the maximal rank for Sm �

We use the graph representation of Sm for our analysis.

Definition 1. A random graph Gm = 〈V, E〉 is associated with the random
system Sm of linear equations, where V = {k(1)

0,0, k
(1)
0,1, . . . , k

(1)
3,3} is the set of

16 vertices of Gm and the edge (k(1)
i1,j1

, k
(1)
i2,j2

) belongs to the edge set E iff the
binomial equation

k
(1)
i1,j1
⊕ k

(1)
i2,j2

= Δ(i1,j1),(i2,j2)

belongs to the system Sm, |E| = m.

Among others, the associated graph possesses the following obvious properties:

Proposition 2. The system Sm is of the maximal rank 15 iff its associated
graph Gm is connected.

Proposition 3. Let G = 〈V, E〉 be a non-directed graph with n vertices, |V | = n.
If

|E| >
(

n− 1
2

)
,

the graph G is connected.

For Gm Proposition 3 implies that if |E| > 105, Gm is necessarily connected and,
thus, Sm has the maximal rank of 15. A system of type (7) having the maximal
rank can be solved by assigning a byte value to some variable k

(1)
i,j (which is

equivalent to adding a further, linearly non-dependent equation k
(1)
i,j = Δ

(1)
i,j to

the system) and uniquely solving the system

Sm ∪
{
k

(1)
i,j = Δ

(1)
i,j

}

of rank 16. Then another byte value is assigned to that variable. The correct key
is identified on the basis of a known plaintext-ciphertext pair.

Generally speaking, it is not necessary for Sm to have the maximal rank.
If there are several isolated subsystems within Sm, then each of them can be
solved independently as described above. If there are q independent subsystems
SS1

m, . . . , SSq
m in Sm, then Sm can be represented as a union of these subsystems:

Sm = SS1
m ∪ · · · ∪ SSq

m, SSi
m ∩ SSj

m = ∅, i �= j.



90 A. Bogdanov

To solve Sm in this case, one has to assign q byte values to some q variables in
the subsystems {SSi

m}qi=1. At the end there are 28q key candidates. The correct
key is identified using a known plaintext-ciphertext pair as outlined above.

It is clear that the independent subsystems {SSi
m}qi=1 of Sm correspond to

the q connected components of the associated graph Gm.
The number of connected components of a random graph has the following

asymptotic behaviour:

Proposition 4. Let G be a random graph with n labeled vertices and N =
� 12n log n + cn for some constant c. Let q = qn,N be the number of connected
components in G. Then:

lim
n→∞Pr {q = i + 1} =

(e−2c)i

i!
exp

{−e−2c
}

.

Proof. See Theorem 2.3 in [5] �

Unfortunately, the estimate of Proposition 4 for the number of connected com-
ponents cannot be directly applied for Sm, since its associated graph has only
16 vertices.

3.3 Expected Number of Random Binomial Equations

The number of edges in the associated graph Gm can be estimated using the
following

Proposition 5. If generalized byte collision in AES are always detectable, the
expected number E(m) of edges in Gm (equivalently, the expected number of
binomial equations in Sm) for the first round of AES after t ≥ 1 measurements is

E(m) = 120 ·
(

1−
(

119
120

)16t−256+256·exp{16t·ln 255
256})

.

Proof. The expected number of generalized collisions within the first round after
t measurements can be estimated as:

N1R = 16t− 256 + 256 ·
(

255
256

)16t

, (9)

where 16t is the number of S-box operations in one AES round within t mea-
surements. This equation is a reformulation of the birthday paradox.

The expected number of edges in a random graph with n labeled vertices
after N1R random selections of edges (after N1R generalized collisions) can be
interpreted as the expected number of filled boxes after N1R random shots in
the classical shot problem, which was studied e.g. in Chapter 1 of [6]. In the case

of a graph,one deals with
(

n
2

)
boxes (possible graph edges) and the expected

number of edges after N1R collisions is
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Table 1. Number of collisions and edges in Gm according to Proposition 5

Measurements, t 4 5 6 7 8 9 11 29

1R collisions, N1R 7.27 11.18 15.82 21.14 28.12 33.70 48.55 249.64

Edges, E(m) 7.09 10.72 14.88 19.46 24.36 29.49 40.07 105.14

E(m) =
(

n
2

)
⎛

⎜
⎜
⎝1−

⎛

⎜
⎜
⎝1− 1

(
n
2

)

⎞

⎟
⎟
⎠

N1R
⎞

⎟
⎟
⎠ . (10)

As n = 16 for the case of AES, one obtains the claim of the proposition by
combining (9) and (10) �

Table 1 contains theoretical estimations for the numbers of 1R-collisions N1R and
edges E(m) depending on the number of measurements t for some interesting t’s.

Note that according to Proposition 3, it is expected that after 29 measure-
ments one obtains 105 edges which provide the maximal rank of Sm. However,
on average a lower number of edges are sufficient for the Gm to be connected
with a high probability (see Section 3.4).

3.4 Number of Connected Components in Associated Graphs

In order to estimate the number q of connected components for Gm accounting
for the offline complexity, statistical simulation was applied consisting of gener-
ating a random graph on 16 vertices corresponding to t measurements as well as
counting the number of connected components q using a variation of Karp and
Tarjan’s algorithm [7] for finding connected components of a graph. Note that
the expected complexity of this algorithm in O(n), that is, linear in the number
of vertices. For each number of measurement we performed 216 simulations with
random graphs.

The results of our simulations are shown in Table 2. The first and second
rows of the table represent measurement numbers and average numbers of edges
in Gm according to Proposition 5 (see also Table 1), respectively. The offline

Table 2. Offline complexity and success probabilities

Measurements, t 4 5 6 7 8 9 11 29

Number of edges in Gm, m 7.09 10.72 14.88 19.46 24.36 29.49 40.07 105.14

Connected components of Gm, q 8.81 5.88 3.74 2.20 1.43 1.15 1.04 1.00

Offline complexity ≤ 40 bit 34.70 37.34 37.15 34.74 30.32 21.36 12.11 8

Success probability ≤ 40 bit 0.037 0.372 0.854 0.991 0.999 1.000 1.000 1.000

Offline complexity ≤ 48 bit 43.90 45.50 44.30 41.14 30.32 21.36 12.11 8

Success probability ≤ 48 bit 0.092 0.548 0.927 0.997 0.999 1.000 1.000 1.000
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Fig. 2. Typical random graph with 13 edges and 4 components

complexity is given for two cases: ≤ 40 bit and ≤ 48 bit. In the first case, only
offline complexities≤ 240 are considered in the computation of the average offline
complexity value. For each number of measurements the probability is provided
that the overall offline complexity is ≤ 240. In the second case, the upper bound
for the offline complexities taken into account is 248. The corresponding success
probabilities are also provided in the table.

A low-complexity offline stage of the attack becomes probable after 5 measure-
ments (245.5 simple steps with a probability of 0.548). Practically all instances of
linear systems resulting from 7 measurements are easily solvable with an average
complexity of 234.74 steps (with a probability of 0.99). After 11 measurements
the expected offline attack complexity is about 212.11.

Figure 2 shows a typical random graphGm associatedwith a randomsystem Sm

of linear equations with m = 13 and 4 independent subsystems (4 connected com-
ponents): {k(1)

0,0, k
(1)
2,3, k

(1)
0,1, k

(1)
0,2, k

(1)
0,3, k

(1)
1,3, k

(1)
2,0}, {k(1)

2,2, k
(1)
3,0, k

(1)
3,1, k

(1)
3,2, k

(1)
1,0, k

(1)
1,2},

{k(1)
1,1, k

(1)
2,1}, {k(1)

3,3}.

3.5 Optimization of the Attack

In this subsection we propose an optimization of the attack described in the
previous subsections. It consists in generating additional collisions for the first
round by considering the second round and key schedule.

The basis of this optimization is the fact that there are also generalized byte
collisions within the second AES round as well as between the first and the
second AES rounds. However, as opposed to those in the first round, the values
of inputs to the second round are not known and depend on the key and plaintext
bytes in a non-linear way.
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Suppose after N1R collisions have been detected, the graph Gm consists of q
connected components, but their number is too high to allow for an efficient so-
lution of the corresponding system (e.g. q = 7). Let 2 or 3 connected components
of this graph contain at least two diagonals of the first subkey K(1). Then we
can test all 216 or 224, respectively, possible candidates for these diagonals. Each
subkey diagonal in the first round corresponds to a column in the second round.
Thus, at least two columns of the input to the second round can be considered
as known. Now we assume that a number of other bytes of the first round subkey
also lie in the same 2 or 3 connected components of Gm. This can allow for the
recovery of some of the second round subkey bytes corresponding to the known
input columns. Thus, the corresponding inputs to the S-box layer of the second
round can be assumed as known.

Now we have a number of variables in the second round virtually belonging
to the 2 or 3 connected components of Gm. Note that adding the vertices cor-
responding to the second round subkey bytes described above does not increase
the number of connected components. These can be seen as further reference
points for the recovery of the remainder of the first subkey bytes by reducing
the number of connected components in the new, larger graph.

Our thorough simulations show that such methods do increase the expected
number of edges in the original graph Gm. Note that this improvement of our
attack is not enough to decrease the number of measurements needed, though
it increases the success probability of all our attacks for a fixed number of mea-
surements.

4 Practical Feasibility

To make the detection of byte collisions during the S-box applications within
AES possible, the AES implementation has to satisfy the property that all in-
stances of the AES S-box are implemented in a similar way. The requirement is
not necessary for [2] or [3]. This is the only difference of our technical framework
with respect to that in [2] or [3]. Note that this requirement is very likely to
be fulfilled in low-end real-world embedded systems, which are the main target
of such attacks, since AES implementations in these systems are deliberately
simplified by reducing diversity in order to save code size in software and area
in hardware. On constrained 8-bit microcontrollers, the implementation of the
AES S-box transform is likely to be a separate routine, thus, being exactly the
same for all S-box applications.

As in standard collision attacks on AES, the attacker has to precisely know
the times when the S-boxes leak. Note that this is not the case for DPA or
similar differential techniques. Another advantage of the DPA method is that
it works for the absolute majority of AES implementations including software
and hardware ones. At the same time, the collision attacks on AES are mainly
constrained to 8-bit software implementations on simple controllers.

However, the practical feasibility of collision attacks for AES was shown in [3]
for a PIC16F687 microcontroller and in [2] for an i8051-type controller. To detect
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a collision, the attacker compares the corresponding power curves using such
basic techniques as correlation functions or more advanced wavelet methods [2].

Measurements of high accuracy are required to detect byte collisions. The
usage of averaging techniques can improve the probability of correct collision
detection in the cases where the implementation and the measurement setup
do not allow for a reliable byte collision detection using a single power curve
for each input. In this case, one cannot speak of a known-plaintext model any
more, since the same plaintexts have to be input several times to increase the
signal-to-noise ratio.

Note that our collision attack, as any other power analysis attack, can be sig-
nificantly hampered or even made impossible by minimizing the signal-to-noise
ratio, using sound masking techniques [8], [9] or advanced clock randomizing
methods [10]. However, the collision attack is likely to break through basic time
randomization countermeasures such as simple random wait states, which can
be detected using SPA or alignment techniques.

5 Conclusions

In this paper we proposed and analyzed several improved side-channel collision
attacks on AES. The first one requires 7 measurements and 234.74 offline op-
erations on average with a probability of 0.99. The second attack needs about
6 measurements and about 237.15 offline operations with probability 0.854 or
about 244.3 operations with probability 0.927. The third one recovers the key
with just 5 measurements and about 237.34 simple offline operations with prob-
ability 0.372 or about 245.5 operations with probability 0.548. This is to be
compared to about 40 measurements required in the basic collision attack [2]
on AES with some non-negligible post-processing, 29 measurements required
for the AES-based Apha-MAC internal state recovery in [3] with about 234 of-
fline operations with a success probability > 0.5, and typically several hundred
measurements for a classical DPA attack.
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Abstract. Cache based attacks (CBA) exploit the different access times
of main memory and cache memory to determine information about in-
ternal states of cryptographic algorithms. CBAs turn out to be very
powerful attacks even in practice. In this paper we present a general
and strong model to analyze the security against CBAs. We introduce
the notions of information leakage and resistance to analyze the secu-
rity of several implementations of AES. Furthermore, we analyze how
to use random permutations to protect against CBAs. By providing a
successful attack on an AES implementation protected by random per-
mutations we show that random permutations used in a straightforward
manner are not enough to protect against CBAs. Hence, to improve upon
the security provided by random permutations, we describe the property
a permutation must have in order to prevent the leakage of some key bits
through CBAs.

Keywords: cache attacks, AES, threat model, countermeasures, ran-
dom permutations.

1 Introduction

Modern computers use a hierarchical organization of different types of memories
among them fast but small cache memory and slow but large main memory.
In 2002 Page [14] presented a theoretical attack on DES that exploited timing
information to deduce information about cache accesses, which in turn reveal
information about secret keys being used. In the sequel we call attacks that
exploit information about the cache behavior cache based attacks or CBAs. In
particular, it turned out that large tables such as sboxes render an encryption
algorithm susceptible to CBAs. Tsunoo et al. [17] published a practical CBA
against DES. Further publications of Page [15], Percival [16], Bernstein [3], Osvik
et al. [13] and Brickell et al. [7] disclosed the full power of CBAs. See [4,10,12,1,2]
for further improvements of CBAs. In particular, the fast AES implementation
[8] is susceptible to CBAs. Note that the fast implementation is used in virtually
all crypto libraries. It is susceptible to CBAs since it depends heavily on the
usage of 5 large sboxes T0, . . . ,T4 each of the size of 1024 bytes.
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In this paper we present a strong model for CBAs. Within this model we
propose and analyze countermeasures that although they are quite general we
describe in detail only for AES. As was pointed out by Bernstein in [3], the
threat model that is often implicitly used for CBAs may not be strong enough. In
particular, often it is assumed that the adversaryA only can extract information
from the cache before and after the encryption. This assumption is wrong from
the theoretical point of view due to the process switching of the operating system.
Moreover, it also has been practically disproved in [11]. Hence, several of the
countermeasures proposed in the literature so far may not be effective. In this
paper, we take into account powerful adversaries that are able to obtain cache
information even during the encryption. Within this model we show that using
random permutations to mitigate the leakage of information as proposed in [7] is
not an effective countermeasure for CBAs against AES. On one hand, we present
a CBA that shows that random permutations do not increase the complexity of
CBAs as much as one might expect. On the other hand, the same attack shows
that a random permutation does not prevent the leakage of the complete secret
key. We also consider a modified countermeasure based on so called distinguished
permutations that hedge a certain number of bits of the last round key in AES.
By this we mean, that using our countermeasure a CBA on the last round of
AES, say, will only reveal about half the bits of the last round key. As one
can see, this is the least amount of leaking information that can be provably
protected by permutations. To determine the remaining bits, an attacker has to
combine the CBA with another attack, for example a CBA on the next to last
round. We give a mathematical precise description and analysis of the property
of permutations that we need for our countermeasure. This analysis also sheds
some light on the difference between the CBA by Osvik et al. on the first two
rounds of AES [13] and the attack of Brickell et al. on the tenth round of AES
[7]. We give a more detailed comparison of these two attacks in [6]. Finally, we
analyze the security of several implementations of AES against CBAs. One of
these implementations is provably secure within our model and can also be used
to protect the applications of permutations that are realized as table lookups.
How to apply permutations securely has not been considered before.

The paper is organized as follows. In Section 2 we introduce our threat model.
After that we introduce our main security measures, information leakage and
resistance in Section 3. We use our security measures to analyze the security
of several different implementations of AES in Section 4. In Section 5, first we
consider random permutations as a countermeasure and describe a CBA on
this countermeasure. Then, we present and discuss an improved countermeasure
using so called distinguished permutations.

2 Threat Model

We consider computers with a single processor, fast but small cache memory and
large but slow main memory. Every time a process wants to read a word from
the main memory a portion of data in the size of a cache line is transferred to the
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cache. An AES encryption or decryption process is running on that computer
that takes as input a plaintext (or ciphertext) and computes the corresponding
AES ciphertext (or plaintext) with a fixed secret key k. To define our threat
model we make the following assumptions about an adversary A.

1. A knows all technical details about the underlying cryptographic algorithm
and its implementation, i.e., the position of sbox tables in memory.

2. A can feed the AES process with chosen plaintexts (or ciphertexts) and gets
the corresponding ciphertexts (or plaintexts).

3. A can determine the indices of the cache lines that were accessed during the
encryption (decryption). To do so A could use a similar method as described
in [9]. In the sequel, we call the set of indices of accessed cache lines cache
information. The plaintext or ciphertext together with the cache information
is called a measurement.

4. A can restrict the cache information to certain rounds of the encryption. As
mentioned in [3] that this assumption might be realistic and the authors of
[7] practically proved its correctness.

5. A cannot distinguish between the elements of a single cache line.

A more detailed description of our threat model, i.e., further explanations and
justifications of our assumptions, can be found in [6].

3 Information Leakage and Resistance

The threat model described above is stronger than the threat models published
so far. The adversary is more powerful because A can restrict the cache infor-
mation to a smaller interval of encryption operations. This reduces the number
of accessed cache lines per measurement and increases the efficiency of CBAs.
The main questions when analyzing the security against CBAs are information
leakage and complexity of a CBA. After giving a formal definition of information
leakage we introduce the notion of the so called resistance of an implementation
as a measure that allows to estimate the complexity of a CBA.

Information leakage. The most important aspect of an implementation regarding
the security against access driven CBAs is to determine the maximal amount
of information that leaks via access driven CBAs. As we will see, the amount
of leaking information about the secret key varies depending on the details of
the CBA and the implementation of the cryptographic algorithm. We make the
following definition:

Definition 1 (information leakage). We consider an adversary who can
mount a CBA using an arbitrary number of measurements as described in Assump-
tion 3. Let K̂i be the set of remaining key candidates for a key byte k10

i at the end
of the attack on AES. Then the leaking information is 8− log2

(
|K̂i|

)
bits.

The amount of leaking information allows to estimate the uncertainty of an at-
tacker about the secret key that remains after an access driven CBA. To quantify
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the maximal amount of information A can obtain about the secret key by access
driven CBAs, we define |CL| to be the size of a cache line in bits, |S| the number
of entries of the sbox and s the size of a single sbox element in bits. Hence, the
number of elements that fits into a cache line is |CL|

s and the cache information

of a single measurement leaks at most log2(|S|) − log2

(
|CL|

s

)
= log2

(
|S|
|CL| · s

)

bits. Depending on the exact nature of an attack, the sets of measurements
let the attacker reduce the number of remaining key candidates after the attack.
The information leakage varies between 0 and 8 bits of information per byte. For
example, the attack on the first round of [13] mounted on the fast implementa-
tion can determine at most 4 bits of every key byte regardless of the number of
measurements. In contrast, the attack of [7] based on the last round allows an
adversary to determine all key bits. In Section 4 we present an implementation
that does not leak any information in our model.

Complexity of a CBA. The information leakage as defined above measures the
maximal amount of information a CBA can provide using an arbitrary number of
measurements. Determining the expected number of measurements an attacker
needs to obtain the complete leaking information depends on the details of the
implementation and on details of the CBA. For simplification we introduce the
notion of so called resistance. It is a general measure to estimate the complexity
of CBAs on different implementations.

Definition 2 (resistance). The resistance of an implementation is the expected
number Er of key candidates that are proven to be wrong during a single mea-
surement that is based on r rounds of the encryption.

The larger Er the more susceptible is the implementation to access driven CBAs.
In particular, if an implementation does not leak any information, then an adver-
sary cannot rule out key candidates and hence the resistance is 0. To compute
Er we always assume that all sbox lookups are independently and uniformly
distributed. This assumption is justified because an attacker A usually does not
have any information about the distribution of the sbox lookups. Hence, the best
he can do in an attack is to choose the parts of the plaintexts/ciphertexts that
are not relevant for the attack uniformly at random.

Let m be the number of cache lines needed to store the complete sbox. Each
cache line can store v elements of an sbox. Furthermore, let w be the number
of sbox lookups per round and let r be the number of rounds the attack focuses
on. In an access driven CBA a key candidate is proven to be incorrect if it
causes an access of a cache line that was not accessed during a measurement.
Assuming that all sbox lookups are uniformly distributed the expected number
of key candidates that can be sorted out after a single measurement is

Er :=
(

m− 1
m

)r·w
·m · v (1)

However, the maximal amount of information an arbitrary number of measure-
ments can reveal is limited by the information leakage. Further measurements will
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not reveal additional information. We verified by experiments that the number of
measurements needed to achieve the full information leakage only depends on Er.

In the sequel, we focus on methods to counteract CBAs. In general, there are
two approaches to counteract such a side channel. The first approach is to use
some kind of randomization to ensure that the leaking information does not re-
veal information about the secret key. Using randomization is a general strategy
that protects against several kinds of side channel attacks, see for example [5].
In Section 5 we analyze a more efficient method based on random permutations.
Before that, we consider the second approach, that is methods to reduce the
bandwith of the side channel. We present several implementations of AES and
examine their information leakage and their resistance.

4 Countermeasure 1: Modify Implementation

As Bernstein pointed out in [3] to thwart CBAs it is not sufficient to load all sbox
entries into the cache before accessing the sbox in order to compute an inter-
mediate result because A can get cache information at all times. Hence, loading
the complete sbox into the cache does not suffice to hide all cache information.
Therefore, he advises to avoid the usage of table lookups in cryptographic al-
gorithms. Computing the AES SubBytes operation according to its definition
f : {0, 1}8 → {0, 1}8, x �→ a · INV(x)⊕ b would virtually cause no cache accesses
and hence seems to be secure against CBAs. However, implementing SubBytes
like this would result in a very inefficient implementation on a PC. To achieve
a high level of efficiency people prefer to use precomputed tables. In the sequel,
we analyze the security of some well known and some novel variations of im-
plementations of AES. First, we explain the different implementations of AES.
See [8] for a detailed description of AES. After that we examine the information
leakage and the resistance as defined in (1) against CBAs:
the standard implementation as described in Section 3 of [8].
the fast implementation as described in Section 4.2 of [8].
fastV1 is based on the fast implementation. The only difference is that the sbox
T4 of round 10 is replaced by the standard sbox as proposed in [7].
fastV2 is also based on the fast implementation but uses only sbox T0. The
description of the fast implementation of AES shows that the ith entry of the
sboxes T1, . . . ,T3 is equal to the ith entry of the sbox T0 cyclically shifted by
1, 2 and 3 bytes to the right respectively (see [8]). Hence, we propose to use only
sbox T0 in the encryption and shift the result as needed to compute the correct
AES encryption. E.g., to compute the sbox lookup T1[i] using the sbox T0 we
simply cyclically shift the value T0[i] by 1 byte to the right.
small-n: A simple but effective countermeasure to counteract CBAs is to split
the sbox S into n smaller sboxes S0, . . . ,Sn−1 such that every small sbox Si fits
completely into a single cache line. An application Si[x] of sbox Si yields di bits
of the desired result S[x]. Hence, the correct result can be calculated by com-
puting all bits separately and shift them into the correct position. We construct
the small sboxes Si for 0 ≤ i ≤ n− 1 as follows:
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Si : {0, 1}8 → {0, 1}di, x �→ �S[x]�(∑ i−1
j=0 dj ,(

∑
i
j=0 dj)−1)

where �y�(b,e) are the bits yb . . . ye of the binary representation of y = (y0, . . . , y7).
Instead of applying the sbox S to x directly each Si is applied. The result is com-
puted as S[x] =

∑n−1
i=0 Si[x]·2

∑ i−1
j=0 dj . In the sequel, we assume that the size of the

sbox is a multiple of the size of a cache line and that all dj are equal. Depending
on the number n of required sboxes we call this implementation small-n. E.g., let
|CL| = 512 and for 0 ≤ i ≤ 3 let each Si store the bits 〈S[x]〉2i,2i+1. The result
S[x] is then computed as S[x] = S0[x]⊕ S1[x] · 4⊕ S2[x] · 16⊕ S3[x] · 64. We call
this implementation small-4. Obviously, the performance depends on the number
of involved sboxes and shifts to move bits into the right position. To estimate the
efficiency we used the small-n variants in the last round of the fast implementation.
Due to the inefficient bit manipulations on 32 bit processors our ad hoc implemen-
tation of using small-4 only in the last round shows that the penalty is about 60%.
We expect that a more sophisticated implementation reduces this penalty signif-
icantly. Table 1 in the appendix shows a summary of timing measurements of the
implementations described above. The measurements were done on a Pentium M
(1400MHz) running linux kernel 2.6.18, gcc 4.1.1.

Next, we consider CBAs based on different sboxes and examine the informa-
tion leakage and the resistance of each of the implementations described above.
The standard implementation uses only a single sbox. Hence, a CBA as de-
scribed above is based on that sbox. We verified by experiments that measure-
ments taken over ≤ 3 rounds of the standard implementation leak all key bits.
Experiments with a larger number of rounds are too complex due to the rapidly
decreasing resistance Er. We assume that even more rounds will leak all key
bits. The resistance for all numbers of rounds is listed in column 1 of Table 2 in
the appendix.

The second implementation is the fast implementation. The CBA on the first
round of [13] on one of the sboxes T0, . . . ,T3 shows that in this case the fast
implementation will reveal half of the key bits, even with an arbitrary number of
measurements. The resistance of the fast implementation against such an attack
is shown in column 2 of Table 2. The CBA on the last round of [7] based on the
sbox T4 shows that in this case the fast implementation leaks all key bits. Since
this sbox is only used in the last round the resistance as shown in column 3 of
Table 2 does not change for a different number of rounds.

The implementation called fastV1 also leaks all key bits. The resistance against
CBAs based on sboxes T0, . . . ,T3 remains the same as listed in column 2 of Table
2. The resistance against CBAs based on the standard sbox is shown in column 4
of Table 2. It remains constant over the number of rounds because the standard
sbox is only used in the last round.

Like the fast implementation, the variation called fastV2 also leaks all key
bits. It uses only the large sbox T0 in every round. The resistance for all possible
numbers of rounds is listed in column 5 of Table 2.

Last, we consider the variants small-2, small-4 and small-8 that use smaller
sboxes than the standard sboxes. Computing S[x] using variant small-4 or
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small-8 leaks 0 bits of information having cache lines of size 512 bits because of
two reasons:

1. Every Si fits completely into a single cache line.
2. For every x each Si is used exactly once to compute S[x].

Hence, the cache information remains constant for all inputs. The only assump-
tion that is involved is that A cannot distinguish between the accesses on dif-
ferent elements within the same cache line (Assumption 5). We expect that the
variant small-2 leaks all key bits in our setting. As we have shown above, the
variants small-4 and small-8 leak no key bit and hence have resistance 0 (see
column 7 and 8 of Table 2). The resistance of small-2 is listed in column 6 of
Table 2.

Comparison of implementations. As Table 2 shows, the standard implementation
provides rather good resistance against CBAs but only has low efficiency. The
fast implementation provides the lowest resistance against CBAs but is very
efficient. Its variants fastV1 and fastV2 are almost as efficient on 32 bit platforms
but provide better resistance against CBAs. The variants using small sboxes
provide the best resistance. Especially small-4 and small-8 prevent the leakage of
information. For high security applications we propose to use one of the variants
using small sboxes and adapt the number of sboxes to the actual size of cache
lines of the system.

5 Countermeasure 2: Random Permutation

Another class of countermeasure that was already proposed but not analyzed in
[7] is to use secret random permutations to randomize the accesses to the sbox.
In this section we present a CBA against an implementation of AES secured
by a random permutation that needs roughly 2300 measurements to reveal the
complete key. This shows that the increase of the complexity of CBAs induced
by random permutations is not as high as one would expect. In particular, the
uncertainty of the permutation is not a good measure to estimate the gain of
security. A random permutation has uncertainty of log2(256!) ≈ 1684 bits and
the uncertainty of the induced partition on the cache lines is log2(256!/(16!)16) ≈
976 bits.

On the other hand, we present a subset of permutations, so called distin-
guished permutations, that reduce the information leakage from 8 bits to 4 bits
per key byte. Hence, the remaining bits must be determined by an additional
attack thereby increasing the complexity. In our standard scenario this is the
best one can achieve.

We focus only on the protection of the last round of AES and we assume
that the output x of the 9th round is randomized using some secret random
permutation π. To be more precise, each byte xi of the state x = x0, . . . , x15

is substituted by π(xi). To execute the last round of AES a modified sbox T′4
that depends on π fulfilling T′4[π(xi)] = T4[xi] is applied to every byte xi. This
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ensures that the resulting ciphertext c = c0, . . . , c15 is correct. We denote the �-
th cache line used for the table lookups for T′4 by CL�, � = 0, . . . , 15. Hence, CL�

contains the values {S[π−1(x)]|x = 16�, . . . , 16� + 15}. Using a permutation π,
information leaking through accessed cache lines does not depend directly on xi

but only on the permuted value π(xi). Since π is unknown to A the application
of π prevents him to deduce information about the secret key k10 = k10

0 , . . . , k10
15

directly. However, in the sequel we will show how to bypass random permutations
by using CBAs.

5.1 An Access Driven CBA on a Permuted Sbox

We assume that we have a fast implementation of AES that is protected by a
random permutation π as described above. We also assume that the adversary
A has access to the AES decryption algorithm. This assumption can be avoided.
However, the exposition becomes easier if we allow A access to the decryption.
We show how A can compute the bytes k10

0 , . . . , k10
15 of the last round key. Let

k̂0 denote a candidate for byte k10
0 of the last round key. In a first step for

each possible value k̂0 the adversary A determines the assignment Pk̂0
of bytes

to cache lines induced by π under the assumption that k̂0 = k10
0 . To be more

precise A computes a function

Pk̂0
: {0, 1}8 → {0, . . . , 15}

such that if k̂0 is correct then for all x:

π(x) ∈ {16Pk̂0
(x), . . . , 16Pk̂0

(x) + 15}.

I.e., if k̂0 is correct then Pk̂0
is the correct partition of values π(x) into cache

lines. Let us fix some x and a candidate k̂0 for k10
0 . We set c0 = S[x] ⊕ k̂0 and

M̂0 = {0, . . . , 15}. The adversary repeats the following steps for j = 1, 2, . . . ,

until M̂0 contains a single element.

1. A chooses a ciphertext cj , whose first byte is c0, while the remaining bytes
of cj are chosen independently and uniformly at random.

2. Using his access to the decryption algorithm, A computes the plaintext pj

corresponding to the cj .
3. By encrypting pj , the adversary A determines the set Dj

0 of indices of cache
lines accessed for the table lookups for T ′4 during the encryption of pj.

4. A sets M̂0 := M̂0 ∩Di
0.

If M̂0 = {y}, then A sets Pk̂0
(x) = y. Repeating this process for all x yields the

function Pk̂0
which has the desired property.

Under the assumption that the guess k̂0 was correct, the function Pk̂0
is the

correct partition of values π(x) into cache lines. Moreover, it is not difficult to
see that the information provided by Pk̂0

enables the adversary to mount an
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attack similar to the CBA on the last round of [7]. This attack can be used to
determine for each possible k̂0 a set of vectors k̂1, . . . , k̂15 of hypotheses for the
other key bytes. For the time being, we assume that π has the property that for
each k̂0 there remains only a single vector of hypotheses for the other key bytes.
In general, a random permutation has this property (for a mathematical precise
definition and analysis of that property see Section 5.2). Hence, based on this
property in the end there are only 256 AES keys left and a simple brute force
attack reveals the correct one.

Cost Analysis. Experiments show that in the first step of the attack A needs
on average 9 measurements consisting of a pair (pi, ci) and the corresponding
cache information Di

0 such that the intersection M̂0 :=
⋂

Di
0 contains only a

single element y = Pk̂0
(x). We need to determine the mapping Pk̂0

(x) for ev-

ery key candidate k̂0 and every argument x ∈ {0, 1}8. Hence, a straightforward
implementation of the attack needs roughly 256 · 256 · 9 measurements to deter-
mine the function Pk̂0

(x) for all arguments x ∈ {0, 1}8 and all key candidates

k̂0 ∈ {0, 1}8. However, one can reuse measurements for different key candidates
k̂0, k̂

′
0 to reduce the number of measurements to roughly 256 · 9 = 2304. To de-

termine the vector of hypothesis based on the candidate k̂0 we can reuse the
measurements obtained by determining the function Pk̂0

. Hence, the expected
number of measurements of this attack is 2304.

5.2 Separability and Distinguished Permutations

From a security point of view, it is desirable to reduce the information leakage.
E.g., a CBA alone should reveal as little information as possible, in particular
it should not reveal the complete key. Then the adversary is forced to either
mount a refined and more complex CBA based on other intermediate results or
combine the CBA with some other method to determine the key bytes uniquely.
In this case, the situation is similar to the attack of [13], where a CBA on the
first round only reveals 4 bits of each key byte. Hence Osvik et al. combine CBAs
on the first and second round of AES.

First, we present the property a permutation applied to the result of the 9-th
round should have such that A cannot determine the key bytes uniquely using
only a CBA on the last round. We denote the �th cache line by CL� and the
elements of CL� by a

(�)
0 , . . . , a

(�)
15 . Hence, the underlying permutation used to

define this cache line is given by

π−1(16� + j) = S−1[a(�)
j ]. (2)

We say that a key candidate k̂0 is separable from the first key byte k0 of the
last round if there exists a measurement that proves k̂0 to be wrong. Conversely,
a key candidate k̂0 is inseparable from the key k0 if there does not exist a
measurement that proves k̂0 to be wrong. More precisely, writing k̂0 = k0 ⊕ δ
the bytes k̂0 and k0 are inseparable if and only if

∀� ∈ {0, . . . , 15}∀a ∈ CL� : a⊕ δ ∈ CL�. (3)
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Notice that this property only depends on the difference δ and not on the
value of k0. Since there are 16 elements of the sbox in every cache line property
(3) can only be satisfied by at most 16 differences. It turns out that for |Δ| = 16
the set

Δ := {δ | for all k0 ∈ {0, 1}8 the bytes k0 and k0 ⊕ δ are inseparable}

forms a 4 dimensional subspace of F28 viewed as a 8 dimensional vector space
over F2. It is obvious that the neutral element 0 is an element of Δ and that
every δ ∈ Δ is its own inverse. It remains to show that Δ is closed with respect to
addition. Consider δ, δ′ ∈ Δ and an arbitrary a ∈ CL� . Then a′ = a⊕ δ ∈ CL�

implies that a′ ⊕ δ′ = a⊕ δ ⊕ δ′ ∈ CL� because of (3) and δ ⊕ δ′ ∈ Δ holds.
Hence, any partition that has the maximal number of inseparable key can-

didates must generate a subspace of dimension 4. Using this observation we
describe how to efficiently construct permutations such that the set Δ of insep-
arable differences has size 16. In the sequel, we will call any such permutation a
distinguished permutation. Next, we describe how to construct the subspace.

Construction of the subspace. We first construct a set Δ of 16 differences that
is closed with respect to addition over F256. We can do this in the following way

1. set Δ := {δ0 := 0}, choose δ1 uniformly at random from the set {1, . . . , 255},
set Δ := Δ ∪ {δ1}

2. choose δ2 uniformly at random from {1, . . . , 255}\Δ, set Δ := Δ∪{δ2, δ3 :=
δ1 ⊕ δ2}

3. choose δ4 uniformly at random from {1, . . . , 255}\Δ, set Δ := Δ∪{δ4, δ5 :=
δ4 ⊕ δ1, δ6 := δ4 ⊕ δ2, δ7 := δ4 ⊕ δ3}

4. choose δ8 uniformly at random from {1, . . . , 255}\Δ, set Δ := Δ∪{δ8, δ9 :=
δ8 ⊕ δ1, δ10 := δ8 ⊕ δ2, δ11 := δ8 ⊕ δ3, δ12 := δ8 ⊕ δ4, δ13 := δ8 ⊕ δ5, δ14 :=
δ8 ⊕ δ6, δ15 := δ8 ⊕ δ7}

This construction ensures that Δ is closed with respect to addition and hence
Δ forms a subspace as desired.

Construction of the permutation. Now we can compute the function P that
maps S[x] ∈ F

8
2 to a cache line. We use the fact that 16 proper translations of

a 4 dimensional subspace form a partition of a 8 dimensional vector space F
8
2.

A basis {b0, . . . b3} of the subspace Δ can be expanded by 4 vectors b4, . . . b7

to a basis of F
8
2. The 16 translations of Δ generated by linear combinations of

b4, . . . , b7 form the quotient space F
8
2/Δ that is a partition of F

8
2 . To construct

the function P we do the following:

1. for every cache line CL� do
2. choose a(�) uniformly at random from F256/{a(j) ⊕ δ | j < �, δ ∈ Δ}
3. fill CL� with the values of the set {a(�) ⊕ δ | δ ∈ Δ}

Using (2) this partition into cache lines defines the corresponding permutation.
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Analysis of the countermeasure. The security using a distinguished permutation
as defined above rests on two facts.

1. Using a distinguished permutation where the set Δ of inseparable differences
has size 16, a CBA on the last round of AES will reveal only four bits of
each key byte k10

i . Overall 64 of the 128 bits of the last round key remain
unknown. Therefore, the adversary has to combine his CBA on the last round
with some other method to determine the remaining 64 unknown bits. For
example, he could try a modified CBA on the 9-th round exploiting his
partial knowledge of the last round key. Or he could use a brute force search
to determine the last round key completely.

2. There are several distinguished permutations and each of these permutations
leads to 16! different functions mapping elements to 16 lines. If we choose
randomly one of these functions, before an adversary can mount a CBA on
the last round of [7], he first has to use some method like the one described
in Section 5.1 to determine the function P that is actually used.

We stress that we consider the first fact to be the more important security fea-
ture. We saw already in Section 5.1 that determining a random permutation
used for mapping elements to cache lines is not as secure as one might expect.
Since we are using permutations of a special form the attack described in Sec-
tion 5.1 can be improved somewhat. In the remainder of this section we briefly
describe this improvement. To do so, first we have to determine the number of
subspaces leading to distinguished permutations. As before view F

n
2 := {0, 1}n

as an n-dimensional F2 vector space. For 0 ≤ k ≤ n we define Dn,k to be the
number of k-dimensional subspaces of F

n
2 . To determine Dn,k for V an arbitrary

m-dimensional subspace of F
n
2 we define

Nm,k := |{(v1, . . . , vk)|vi ∈ V, v1, . . . vk are linearly independent}|.
The number Nm,k is independent of the particular m-dimensional subspace V ,
it only depends on the two parameters m and k. Then Dn,k = Nn,k

Nk,k
. Next we

observe that Nm,k =
∏k−1

j=0 (2m − 2j) = 2k(k−1)/2
∏k−1

j=0 (2m−j − 1). Hence, we
obtain that

Dn,k =

∏k−1
j=0 (2n−j − 1)

∏k−1
j=0 (2k−j − 1)

.

In our special case we have n = 8 and k = 4 and hence the number of 4
dimensional subspaces is D8,4 = 255·127·63·31

15·7·3·1 = 200787.
As mentioned above, each subspace leads to 16! different distinguished permu-

tations. Hence, overall we have 200787 · 16! ≈ 260 distinguished permutations.
On the other hand, because of the special structure of our permutations, to de-
termine the function P by CBAs can be done more efficiently than determining
an arbitrary function mapping elements to cache lines (see Section 5.1). In par-
ticular, A only needs to observe about 7 accesses of a single but arbitrary cache
line. With high probability this will be enough to determine a basis of the sub-
space being used. In addition, A needs at least one access for every other cache
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line in order to determine the function P . The corresponding probability exper-
iment follows the multinomial distribution. We did not calculate the expected
number of tries exactly. Experiments show that if we can determine the accessed
cache line exactly, on average 62 measurements suffice to compute the function
P exactly. However, a single measurement only yields a set of accessed cache
lines. But arguments similar to the ones used for the first part of the attack in
Section 5.1 show that we need on average 9 measurements to uniquely determine
an accessed cache line. Therefore, on average we need 62 · 9 = 558 experiments
to determine the function P .

Hence, compared to the results of Section 5.1 we have reduced the number of
measurements used to determine the function P by a factor of 3. However, we
want to stress again, that the main security enhancement of using distinguished
permutations instead of arbitrary permutations is the fact, that distinguished
permutations have a lower information leakage. To improve the security, one
can choose larger key sizes such as 192 bits or 256 bits. Since distinguished
permutations protect half of the key bits, the remaining uncertainty about the
secret key after CBAs can be provably increased from 64 bits to 96 bits or 128
bits, respectively. In the full version of the paper [6] we describe an efficient and
secure realization of random and distinguished permutations using small sboxes
as described in Section 4.

Separability and random permutations. In our CBA on an implementation pro-
tected by a random permutation (Section 5.1) we assumed that fixing a candidate
k̂0 determines the candidates for all other key bytes. With sufficiently many mea-
surements for a fixed k̂0 we can determine the function Pk̂0

as defined in Section

5.1. Furthermore, we saw that the separability of candidates k̂, k̂′ depends only
on their difference δ = k̂ ⊕ k̂′. Hence, to be able to rule out all but one candi-
date k̂i at position i for a fixed k̂0 the permutation π must have the following
property:

∀δ �= 0∃j ∈ {0, . . . , 15}∃a ∈ CLj : a⊕ δ �∈ CLj.

There are less than 2844 of the 256! ≈ 21684 permutations that do not have this
property. Hence, a random permutation satisfies this condition with probability
1− 2844

21684 .

6 Summary of Countermeasures and Open Problems

In this paper we presented and analyzed the security of several different imple-
mentations of AES. Moreover, we analyzed countermeasures based on permu-
tations: random permutations and distinguished permutations. We give a short
overview over the advantages and disadvantages of selected countermeasures:

countermeasure # measurements information in bits /security efficiency

small-4 ∞ 0 / high slow
random permutation 2300 128 / low fast

distinguished permutations 560 64 / medium fast
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The second column shows the expected number of measurements an attacker
has to perform in order to get the amount of information shown in the third
column.
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CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

http://cr.yp.to/papers.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


Analysis of Countermeasures Against Access Driven Cache Attacks on AES 109

A Appendix

Table 1. Timings for different implementations of AES

# sboxes fast standard fastV1 fastV2 small-2 small-4 small-8

time factor 1 ∼ 3 ∼ 1 ∼ 1 1.32 1.6 1.95

Table 2. The resistance Er of AES implementations as defined in (1)

1 2 3 4 5 6 7 8

standard fast fast T4 fastV1 fastV2 small-2 small-4 small-8

S T0, . . . ,T3 T4 S T0 S0,S1 S0, . . . ,S3 S0, . . . ,S7

E1 2.57 198.0 91.2 2.57 91.2 3.91 · 10−3 0 0
E2 2.57 · 10−2 153.0 91.2 2.57 32.5 5.96 · 10−8 0 0
E3 2.58 · 10−4 118.0 91.2 2.57 11.6 9.09 · 10−13 0 0
E4 2.58 · 10−6 91.2 91.2 2.57 4.12 1.39 · 10−17 0 0
E5 2.59 · 10−8 70.4 91.2 2.57 1.47 2.12 · 10−22 0 0
E6 2.59 · 10−10 54.4 91.2 2.57 5.22 · 10−1 3.23 · 10−27 0 0
E7 2.60 · 10−12 42.0 91.2 2.57 1.86 · 10−1 4.93 · 10−32 0 0
E8 2.61 · 10−14 32.5 91.2 2.57 6.62 · 10−2 7.52 · 10−37 0 0
E9 2.61 · 10−16 25.1 91.2 2.57 2.36 · 10−2 1.15 · 10−41 0 0

E10 2.62 · 10−18 25.1 91.2 2.57 8.39 · 10−3 1.75 · 10−46 0 0
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to improve the security of tamper resistant products such as Trusted
Platform Module (TPM). The study has evolved from initial basic tech-
niques like simple and differential power analysis to more complex models
such as correlation. However, works on correlation techniques have es-
sentially been focused on symmetric cryptography. We analyze here the
interests of this technique when applied to different smartcard coproces-
sors dedicated to asymmetric cryptography implementations. This study
leads us to discover and realize new attacks on RSA and ECC type al-
gorithms with fewer curves than classical attacks. We also present how
correlation analysis is a powerful tool to reverse engineer asymmetric
implementations.
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1 Introduction

Public key cryptography has been widely used since its introduction by Diffie and
Hellman [DH76] in 1976. Nowadays most famous applications are RSA [RSA78],
invented in 1978 by Rivest, Shamir, and Adleman, and elliptic curves cryptosys-
tems independly introduced by Koblitz [Kob87] and Miller [Mil86].Both kinds of
asymmetric schemes require arithmetic operations in finite fields. For instance
the use of modular arithmetic is necessary for exponentiation primitive in RSA
or DSA [NIS00], as well as for point multiplication in elliptic curves. Therefore
to obtain efficient computations, dedicated arithmetic coprocessors have been
introduced in embedded devices.

For years tamper resistant devices have been considered as secure until 1996
when Kocher introduced the first side-channel attack (SCA) based on execution
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time measurements [Koc96]. A few years later power analysis was introduced
by Kocher, Jaffe and Jun [KJJ99]. Their techniques, named simple power anal-
ysis (SPA) and differential power analysis (DPA), threaten any naive crypto-
graphic algorithm implementation. Because an electronic device is composed of
thousands of logical gates that switch differently depending on the executed op-
erations, the power consumption depends on the executed instructions and the
manipulated data. Thus by analyzing the power consumption of the device on an
oscilloscope it is possible to observe its behavior and then to deduce from this
power curve some secret data. Later, in 1999, Messerges, Dabbish and Sloan
[MDS99] applied DPA to modular exponentiation which is the heart of several
public key algorithms. In 2004, Brier, Clavier and Olivier [BCO04] introduced
correlation power analysis (CPA) with a leakage model. This method has proven
its efficiency on symmetric key algorithms, and needs very few curves to recover
a secret key compared to classical DPA.

In this paper, we focus on this technique for which application to asymmet-
ric algorithms has not been yet publicly reported. We introduce new attacks,
illustrated by concrete experiments, to apply CPA on these algorithms. Indeed
any arithmetic operation can be threatened by correlation analysis. For instance,
we show how to reveal on a single correlation curve the whole private exponent
during RSA exponentiation, and even during RSA CRT exponentiations. In ad-
dition we introduce a new case for CPA: the ability to realize precise reverse
engineering. Once secret implementation and component hardware design have
been recovered more powerful attacks can be envisaged.

The paper is organized as follows. Section 2 gives an overview of asymmet-
ric algorithms embedded implementations. Section 3 describes well-known SCA
techniques related to this article. New applications of correlation analysis on
public key algorithms are discussed in Section 4. Practical results on different
smartcard coprocessors are presented, they validate our attacks and their effi-
ciency compared to classical differential power analysis. In Section 5 we present
another application domain of correlation analysis by describing how it can be
used to realize reverse engineering. We conclude our research in Section 6.

2 Public Key Embedded Implementations

We introduce here principles used later in this paper: modular multiplication and
exponentiation, especially the ones designed by Montgomery that are particularly
suitable for embedded implementations, and the RSA public key cryptosystem.

2.1 Modular Multiplication

Chip manufacturers usually embed arithmetic coprocessors to compute modular
multiplications x× y mod n for long integers x, y and n.

Montgomery introduced in [Mon85] an efficient algorithm named Montgomery
Modular Multiplication. Other techniques exist: interleaved multiplication-
reduction with Knuth, Barrett, Sedlack or Quisquater methods [Dhe98].



112 F. Amiel, B. Feix, and K. Villegas

Montgomery modular multiplication
Given a modulus n and two integers x and y, of size v in base b, with gcd(n, b) = 1
and r = b�logb(n)�, MontMul algorithm computes:

MontMul(x, y, n) = x× y × r−1 mod n

Algorithm 2.1. MontMul: Montgomery modular multiplication algorithm
Input: n, 0 ≤ x = (xv−1xv−2 . . . x1x0)b, y = (yv−1yv−2 . . . y1y0)b ≤ n − 1 ,
n′ = −n−1 mod b
Output: x× y × r−1 mod n

Step 1. a = (av−1av−2 . . . a1a0)← 0

Step 2. for i from 0 to v − 1 do
ui ← (a0 + xi × y0)× n′ mod b
a← (a + xi × y + ui × n)/b

Step 3. if a ≥ n then a← a− n

Step 4. Return(a)

Refer to papers [Mon85] and [KAK96] for details of MontMul implementation.

2.2 RSA

RSA signature of a message m consists in computing the value s = md mod n.
Signature s is then verified by computing m = se mod n. Integers e and d are
named the public exponent and the private exponent, n is called the modulus.

Some of the attacks introduced in this paper aim at recovering this private
exponent d during decryption. Many implementations of the RSA algorithm rely
on the Chinese Remainder Theorem (CRT) as it greatly improves performance
in terms of execution speed, theoretically up to four times faster, cf. Alg. 2.2..

Algorithm 2.2. RSA CRT
Input: p, q, dp, dq, iq = q−1 mod p: the private elements, m: the message
Output: s: the signature

Step 1. Compute mp = m mod p and mq = m mod q

Step 2. Compute sp = m
dp
p mod p and sq = m

dq
q mod q

Step 3. Compute s = sq + ((sp − sq)× iq mod p)× q

Step 4. Return(s)

In this case SCA is applied either to exponentiations to recover dp and dq, or to
the recombination step to find q or to the initial reductions to recover p and q.

Modular exponentiation is the most time-consuming operation of RSA primi-
tives. It is then essential to use an efficient method for exponentiation. Alg. 2.3.
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below, based on MontMul, gives the Montgomery exponentiation algorithm and
is particularly suited for embedded RSA implementations.

For a given modulus n = (nv−1nv−2 . . . n1n0)b, we define r = b�logb(n)� and
the following function fn:

fn : [0, n− 1] −→ [0, n− 1]
x −→ x× r mod n

Let x and y be integers such that 0 ≤ x, y < n, we denote x = fn(x) and
y = fn(y). We have the following property: MontMul(x, y, n)=x×y×r mod n =
fn(x×y) which is very useful to define the Montgomery modular exponentiation,
cf. Alg. 2.3..

Algorithm 2.3. MontExp: Montgomery Square and Multiply from left to
right
Input: integers m and n such that m < n, k-bit exponent d = (dk−1dk−2 . . . d1d0)2
Output: MontExp(m,d,n)= md mod n

Step 1. a = r

Step 2. m = fn(m)

Step 3. for i from k − 1 to 0 do
a = MontMul(a,a,n)
if di = 1 then a = MontMul(a,m,n)

Step 4. a = a× r−1 mod n = MontMul(a,1,n)

Step 5. Return(a)

3 Power Analysis

Among the different side-channel analysis techniques, we present in this section
DPA applied to modular exponentiation and recall the principles of CPA based
on a Hamming distance linear model.

3.1 Differential Power Analysis on Exponentiation

We want to recover the secret exponent d during Alg. 2.3.. We explain here the
Zero-ExponentMultiple-Data (ZEMD) attack from Messerges,Dabbish and Sloan
[MDS99]. Suppose we know the u most significant bits of d; i.e. dk−1 . . . dk−u, and
we want to recover the (u + 1)st bit of d. We make the guess dk−u−1 = g with
g = 0 or 1, and we want to confirm this guess. We execute on the device to attack
t executions of the algorithm with input messages m1 . . . mt and collect the curves
C1 . . . Ct corresponding to the power consumption of these executions.

Let Sε be the integer Sε =
∑ε−1

j=0 dk−1−j .2ε−j−1. A selection function
D(mj , dk−u−1) is defined and used to split the set of curves into two subgroups
such as: G0,u+1 = {Cj such that D(mj , dk−u−1) = 0} and G1,u+1 = {Cj such
that D(mj , dk−u−1) = 1}. For instance D(mj , dk−u−1) could be equal to the least
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significant bit of fn(mSu+1
j ) = fn(m2Su+g

j ) (if the guess of g is correct). Then com-
pute the differential trace Tu+1:

Tu+1 =

∑
Cj∈G1,u+1

Cj

|G1,u+1| −
∑

Cj∈G0,u+1
Cj

|G0,u+1|
Finally if the guess of dk−u−1 is correct, the trace Tu+1 will have DPA peaks in
the part of the curve corresponding to the manipulation of data associated to
D(mj , dk−u−1), for instance in the next square. If the guess of dk−u−1 is wrong,
no peak should be visible on trace Tu+1. Once dk−u−1 is recovered, the same
analysis can be applied successively to the following secret bits of exponent d
with Tu+2, Tu+3 . . . This attack can be improved by multi-bit selection. In that
case, the function D(mj , dk−u−1) takes into consideration several bits of the
value fn(m2Su+dk−u−1

j ) [Mes00].
We refer the reader to Appendix C where differential trace results are pre-

sented.

3.2 Correlation Power Analysis

As published by Brier, Clavier and Olivier [BCO04], it is known that CPA can be
applied to obtain successful attacks on symmetric algorithms, for instance DES
and AES, with fewer messages than classical DPA. The power consumption of the
device is supposed to be linear in H(D⊕R), the Hamming distance of the data
manipulated D, with respect to a reference state R. The linear correlation factor
is used to correlate the power curves with this value H(D ⊕R). The maximum
correlation factor is obtained for the right guess of secret key bits.

Let W be the power consumption of the chip, its consumption model is:

W = μH(D ⊕R) + ν.

The correlation factor ρC,H between the set of power curves C and values
H(D ⊕R) is defined as: ρC,H = cov(C,H)

σCσH
.

The principle of the attack is then the following:

– Perform t executions on the chip with input data m1 . . . mt and collect the
corresponding power curves C1 . . . Ct.

– Predict some intermediate data Di as a function of mi and key hypothesis
g.

– Produce the set of the t predicted Hamming distances: {Hi,R = H(Di ⊕
R), i = 1 . . . t} .

– Calculate the estimated correlation factor:

ρ̂C,H =
cov(C, H)

σCσH
=

t
∑

(CiHi,R)−∑
Ci

∑
Hi,R

√
t
∑

C2
i − (

∑
Ci)2

√
t
∑

H2
i,R − (

∑
Hi,R)2

, i = 1 . . . t

When the attacker makes the right guesses for values of the reference state R
and secret leading to data D, the correlation factor ρ is maximum. It can also
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be seen graphically by tracing the correlation curve Cρ,g. Of course, peak(s) of
correlation is (are) visible on Cρ,g when the guess is correct. The attacker has
recovered a part of the secret value and a reference state during the execution.
R can be an opcode value or a look-up-table address for instance.

4 Correlation Power Analysis of Asymmetric
Implementations

Previous CPA publications were mainly focused on symmetric algorithms such as
DES and AES. The use of CPA against public key implementations has never been
publicly investigated, except for Joye who theoretically introduced its application
to a second order attack in ECC [Joy04]. This is the subject of this section where
we present new attacks based on CPA.

4.1 Correlation on Intermediate Value in Modular Exponentiation

When computing an RSA exponentiation, if a guess g (0 or 1) is made for a
bit dk−u−1 of the secret exponent, for a message mj you can aim to correlate
the power curve with the full data R⊕m2Su+g

j mod n. A more realistic choice
is to select, depending on the size b of the chip multiplier, only a part of the
intermediate data :

(R⊕ (m2Su+g
j mod n)) ∧ ωb,s

where ωb,s = bs(b − 1) and s ∈ [0, v − 1], for instance choose s = 0. Thus from
ZEMD DPA we derive a ZEMD CPA (Alg. 4.4. with MontExp).

Algorithm 4.4. ZEMD CPA on Montgomery exponentiation
Input: n the modulus, m1, . . . , mt t messages
Output: the secret exponent d = (dk−1dk−2 . . . d1d0)2

Step 1. Choose s ∈ {0, .., v-1}
Step 2. for u from 0 to k − 1 do

Guess dk−1−u = 1

A1 =
{

H((R⊕ fn(m
2Su+dk−u−1
i )) ∧ ωb,s), i = 1, . . . , t

}

ρ1 = ρ̂C,A1

Conclude dk−1−u = 1 if Cρ1 has correlation peaks else dk−1−u = 0

Step 3. Return(d)

This attack can be optimized by simultaneously searching for many bits (α) of
d, kind of α-ary CPA. In that case you have to compare 2α−1 correlation values,
the maximum correlation value corresponding to the right guess of the α bits of d.

Reference state value: The difficulty in correlation analysis is the knowl-
edge of the reference state value R, which must be known or at least guessed by
the attacker. The natural choice is to take R = 0. In that case the correlation
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Fig. 1. ZEMD CPA on MontExp: correct
guess

Fig. 2. ZEMD CPA on MontExp: wrong
guess

model is reduced from the Hamming distance model to the Hamming weight
one. Indeed we can expect to have either a hardware erase operation on ini-
tial register(s) of the multiplication algorithm, or the combinatorial part of the
hardware modular multiplier to be in a stall state. If not, suppose b = 28 and
s = 0: if R is a constant value then try the whole 256 different possible values
for R. The correlation analysis will be successful only for right guess of dk−1−u

and R. A more complex case can be envisaged to evaluate H(R⊕D): it consists
in choosing for R previous intermediate data, for instance R = ui, and for the
newly obtained data D the value D = ui+1 at step 2 in Alg. 2.1. (Practical
results are shown in Fig. 1 and Fig. 2.)

The correlation peaks can appear either during the data handling of the
guessed intermediate value leading to the output result of the current operation,
or caused by setting this value as input operand of the next operation (for in-
stance, in the next square). Therefore, there are two different possible sources of
correlation.

4.2 Correlation on Multiplicand Data

The drawback of ZEMD CPA is that the attack must be iterated for each guessed
bit of d (or even l-bit per l-bit), we need then to compute k (or k/l) correlation
curves. A more efficient attack can be considered when the correlation peaks are
caused by the handling of the input operand. Indeed, during an exponentiation,
for each multiplication (as opposed to squarings), one of the multiplicands is
constant and equal to m (or fn(m) for Montgomery). Therefore, by computing
correlation on this multiplicand value we can expect to obtain CPA peaks each

Fig. 3. CPA on multiplicand partial size
during exponentiation, R = 0

Fig. 4. CPA on multiplicand full size
during exponentiation, R = 0
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time it is manipulated. Thus all the multiplications by m (or fn(m)) could be
seen on this single correlation curve. The full secret d is thus recovered with a
single correlation computation on all the curves. This attack has been realized
with success on different chips. Practical results for a partial and a full correlation
on the multiplicand value during an exponentiation are shown in Fig. 3 and Fig.
4. Indeed in Fig. 4 each multiplication can be seen on the correlation curve and
as result d can be easily deduced as it would be done in SPA.

Algorithm 4.5. CPA on Multiplicand Data in Montgomery exponentiation
Input: n the modulus, m1, . . . , mt t messages
Output: secret exponent d = (dk−1dk−2 . . . d1d0)2

Step 1. Choose s ∈ {0, .., v − 1}
Step 2. Compute A = {H((R⊕ fn(mi)) ∧ ωb,s), i = 1, . . . , t}
Step 3. Compute ρ = ρ̂C,A and its related correlation curve Cρ

Step 4. Detect on Cρ the peaks to identify all the multiplications and deduce d

Step 5. Return(d)

4.3 Correlation on RSA CRT

This section introduces new CPA attacks to recover the private key elements for
each step of the Algorithm 2.2..

Correlation during CRT modular exponentiations
During modular exponentiations of message mj ; sp = m

dp

j mod p and sq = m
dq

j

mod q, it is not possible to apply ZEMD because p and q are unknown to the
attacker.

However it is possible to do correlation on the multiplicand’s value to recover
dp when mj < p and dq when mj < q. Choose mj < min(p, q) to recover
simultaneously dp and dq. For instance if p and q are both k-bit primes, select
messages mj in [2, 2k−1].

Note that this attack is not applicable to RSA CRT using Montgomery expo-
nentiation as fp(mj) and fq(mj) are unpredictable. However it can be done on
other exponentiations, using different modular arithmetic such as Barrett.

Correlation during the CRT recombination
The recombination (Step 3 of Alg. 2.2.) gives the ability to guess bits of the
value of q by CPA as s is known. Indeed, one can observe that for the upper half
bits of s we have:

⌊
s

q

⌋
= ((sp − sq)× iq mod p) +

⌊
sq

q

⌋
= (sp − sq)× iq mod p

As (sp−sq)×iq mod p is an operand of the recombination step, it is then obvious
that for the right guess of q we should be able to obtain the best correlation
factor by estimating this operand value. In practice, the attack realization needs
to guess the value of q by groups of b bits starting from the most significant
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words. For instance take b = 28 and the right guess of b bits of q corresponds to
the highest correlation value obtained among the 256 guesses. For more details
please refer to Alg. 4.6..

Algorithm 4.6. CPA on RSA CRT recombination
Input: s1, . . . , st t signatures
Output: the secret element q = (qv−1qv−2 . . . q1q0)b

Step 1. q = 0

Step 2.
for i from v − 1 to 0 do

gmax = 0, ρmax = 0
for g from 0 to b− 1 do

q̂ = q + (g + 0.5) × bi

A =
{

H((R⊕
⌊

sj

q̂

⌋
) ∧ ωb,i), j = 1 . . . t

}

ρg = ρ̂C,A

if |ρg | > |ρmax| then gmax = g, ρmax = ρ
q = q + gmax × bi

Step 3. Return(q)

Choosing q̂ = q + (g + 0.5)× bi instead of q̂ = q + g × bi as estimator gives the
correct decision when the correct value belongs to

[
g × bi, (g + 1)× bi

]
+ q.

On our implementation based on a Montgomery multiplier, one should take
into account that the estimation of A will depend on fn (see Paragraph 2.2).

Correlation during the initial reductions
Attacks on the initial reductions m mod p and m mod q would aim at recov-
ering p and q. Previous studies have been presented by Boer, Lemke and Wicke
[BLW02] and Akkar [Akk04]. Contrary to those previous attacks, CPA works with
any messages and fewer curves on any arithmetic operation such as addition or
subtraction. Indeed, for message reduction and no matter what the algorithm is,
the first steps always require a subtraction and/or an addition between a part
of the message and the secret modulus p or q. Note that even if the implemen-
tation is supposed to be protected against SPA, like the secure shift and reduce
division algorithm [JV02], it is possible to perform CPA. For example, if p has k
bits and the messages used for CPA, m1, . . .mt, have 2k bits, the guesses will be
performed on operands

⌊
mi−mi mod 2k

2k

⌋
− p, for i = 1, . . . , t. All the bytes of p

or q from the least significant bytes to the most significant ones can be retrivied
using this technique.

4.4 Application to Elliptic Curves Cryptosystems

ECDSA and El Gamal are two of the most widely known elliptic curves schemes.
For details we suggest the reader refer to Appendix A and [ACD+06].
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Fig. 5. CPA on ECDSA, correct guess Fig. 6. CPA on ECDSA, wrong guess

CPA on El Gamal Decryption: This primitive can be vulnerable to CPA
during the scalar multiplication Pk = [d]Qk where d is the private key. Qk is
a point of the curve returned in the ciphertext. CPA targets d. If the scalar
multiplication is performed with the Double and Add algorithm (cf. Appendix
A), different processes are done whether a given bit of d is equal to 0 or 1. An
attacker could identify the addition part by correlating consumption curves with
g(xQ) a function of coordinate(s) of the point added according to the targeted
implementation. For instance g(xQ) can be xQ ∧ ωb,0.

CPA on ECDSA signature: here, d×r mod n operation, with d the private
key and r known as part of the signature, could be sensitive to CPA. On a mod-
ular multiplier based on Montgomery implementation (see Alg. 2.1 for further
details) such leakage could occur during xi × y0 or xi × y operations. Fig. 5
illustrates a successful attack, the most significant byte of d is recovered among
256 guesses. The attack algorithm is described in Appendix B.

4.5 Practical Results and Remarks

All the attacks presented have been tested with success on several smartcard
coprocessors using different modular arithmetic implementations, cf. Fig. 7. In

Chip Algorithm Attack Curves for DPA Curves for CPA

Coprocessor 1 RSA Exponentiation Intermediate value 1500 150
RSA Exponentiation Multiplicand value 2500 300

Coprocessor 2 RSA Exponentiation Intermediate value 500 100
RSA Exponentiation Multiplicand value 1500 250

RSA CRT Recombination step No success 150

Coprocessor 3 RSA CRT Recombination step No success 4000
ECDSA d× r mod n No success 4000

RSA Exponentiation Intermediate value No success 1000
RSA Exponentiation Multiplicand value No success 3000

Fig. 7. Practical results
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our experiments, the best results are obtained for b parameter in ωb,s equal to
the radix of the multi-precision multiplier. On the other hand, another important
parameter is the reference state value R. Successful results have been obtained
with R = 0, which confirms the hypothesis that either a hardware erase operation
is done on initial register(s) of the multiplication algorithm, or the combinatorial
part of the hardware modular multiplier is in a stall state.

5 Reverse Engineering

Side channel analysis has already been used by Novak [Nov03] and Clavier
[Cla04] to reverse engineer secret GSM A3/A8 algorithms. Later Daudigny, Ledig,
Muller and Valette processed similarly on a DES implementation [DLMV].

Previously we showed that each data manipulation by the coprocessor could
be observed by CPA. It has been used to recover secret keys and data in the
previous analysis. We now show how CPA can also be used to recover the design
of the coprocessor embedded in the chip.

In most software implementations, encryption and signature verification prim-
itives do not implement any countermeasure as they do not manipulate secret
data. Such primitives could then be used by an attacker to increase knowledge
about the hardware multiplier. It could be useful as in software implementations,
unsecure and secure primitives share the same hardware resources.

Fig. 8 gives the details of the leakage of a hardware multiplier during a square
operation in RSA exponentiation.

Fig. 8. Reverse engineering by CPA on Montgomery multiplication

By CPA, we are able to determine the precise implementation of the b-bit words
multiplications in the modular multiplication algorithm: the size b of the hard-
ware multiplier and the order in which the operands are used can be determined.
We can precisely localize the instant when each data xi, yi, xi × y, ui × n, etc.
in Alg. 2.1. is manipulated. The order of use of such intermediate values de-
pends on the algorithm supposed to be implemented (for instance FIOS, CIOS
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in [KAK96]). Thus, for each guessed implementation, we can observe if the ex-
pected intermediate values appear and their exact position on the correlation
curves. If not, the guess of the implementation is incorrect. Else, by combining
many correlation curves for the different consecutives intermediate values, the
exact implementation of the multiplication can be deduced. Fig. 8 illustrates
part of the analysis we made on a chip using a Montgomery multiplier. We suc-
cessfully recovered the size b of the hardware multiplier, the sequence and the
kind of operations processed and thus the algorithm implemented for MontMul.

With such a precise knowledge, more complex attacks can be considered and
achieved to defeat the classical DPA countermeasures. Indeed higher order power
analysis attacks can also be envisaged with more precision on the cycles to com-
bine together. In [Wal01] Walter introduced the Big Mac Attack to recover a
secret exponent d only with the single power curve of the executed exponentia-
tion. Such a reverse engineering by CPA gives the necessary knowledge required
to realize this attack in the best conditions.
Such information can also be used to recover secret variables in asymmetric algo-
rithms based on private specifications when the basic structure of the algorithm
is known. Of course this implies that the attacker also needs to learn about the
implementation done: the kind of coordinates that are used for elliptic curves
(projective, Jacobian), kind of modular arithmetic, etc.

Furthermore in a fault attack scenario, the benefit of such information can-
not be neglected as the effect of each fault injection during hardware multiplier
execution could become predictable and with a really precise effect.

To avoid risks of reverse engineering we advise randomizing public elements
during the computations using techniques such as described in [Cor99], [Koc96].

6 Conclusion

Several new attacks based on CPA have been presented in this paper. These at-
tack schemes threaten most of public key algorithms such as RSA, RSA CRT or
Elliptic Curves ones (ECES, ECDSA) if efficient countermeasures, such as blind-
ing technics, are not implemented. Through experiments, we have demonstrated
that CPA can detect and characterize leakages of arithmetic coprocessors. There-
fore it gave us the ability to successfully implement the attacks we present by
using the power consumption model based on the Hamming distance between
the handled data and a constant reference state. As results of these experiments,
we have proven also that the use of CPA is an improvement compared to classi-
cal attacks such as DPA. The efficiency of CPA has led us to proceed to reverse
engineering of the design of coprocessors and then it has given the knowledge
of the type of algorithm implemented (Montgomery, Barrett, . . . ), the size of
hardware multiplier, the way to interleave operations and words in the multipli-
cation algorithm etc. Furthermore, we have stressed that such precise knowledge
of an arithmetic coprocessors can make realistic high-order side channel attacks
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or even fault attack scenarios and improves their efficiency. Therefore, in order
to avoid any potential attacker gaining experience on a secure device, we sug-
gest using randomization techniques even for encryption or signature verification
primitives usually considered as not sensitive.
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A Elliptic Curves

A.1 Double and Add Algorithm

Algorithm A.7. Double and Add
Input: E the curve, Q = (xQ, yQ) a point of E, d = (dk−1dk−2 . . . d1d0) a
scalar of k bits
Output: value P = [d]Q

Step 1. P = Q

Step 2. for i from k − 2 to 0 do
P = 2P
if di = 1 then P = P + Q

Step 3. Return(P )
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A.2 ECDSA Signature

Let the knowledge of the domain parameters be D = (p, a, b, G, n, h), the key
pair be (d, Q) with Q = [d]G and the required hash function be h(.).

Algorithm A.8. ECDSA signature
Input: D, private key d = (dk−1dk−2 . . . d1d0)2, message m, h(.).
Output: m signature= (s, r).

Step 1. Select a random u, 1 ≤ u ≤ n− 1

Step 2. Compute R = [u]G = (xR, yR)

Step 3. Compute r = xR mod n, if r = 0 go to Step1

Step 4. Compute s = u−1 (h(m) + d× r) mod n, if s = 0 go to Step1

Step 5. Return(r, s)

B Algorithm for CPA on ECDSA

Algorithm B.9. CPA on ECDSA signature
Input: (s1, r1), . . . , (st, rt) t signatures
Output: the secret element d = (dk−1dk−2 . . . d1d0)b

Step 1. d = 0

Step 2.
for i from k − 1 to 0 do

gmax = 0, ρmax = 0
for g from 0 to b− 1 do

d̂ = d + (g + 0.5) × di

A =
{

H((R⊕ f(d̂× rj)) ∧ ωb,i), j = 1 . . . t
}

ρg = ρ̂C,A

if |ρg | > |ρmax| then gmax = g, ρmax = ρ
d = d + gmax × bi

Step 3. Return(d)
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C ZEMD DPA Practical Result

Fig. 9. ZEMD DPA: right guesses for
dn−2 and dn−4, single bit selection

Fig. 10. ZEMD DPA: wrong guess for
dn−2, single bit selection
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Abstract. Scalar multiplication on Koblitz curves can be very efficient
due to the elimination of point doublings. Modular reduction of scalars is
commonly performed to reduce the length of expansions, and τ -adic Non-
Adjacent Form (NAF) can be used to reduce the density. However, such
modular reduction can be costly. An alternative to this approach is to
use a random τ -adic NAF, but some cryptosystems (e.g. ECDSA) require
both the integer and the scalar multiple. This paper presents an efficient
method for computing integer equivalents of random τ -adic expansions.
The hardware implications are explored, and an efficient hardware im-
plementation is presented. The results suggest significant computational
efficiency gains over previously documented methods.

Keywords: Koblitz curves, elliptic curve cryptography, digital signa-
tures.

1 Introduction

While compact keys and signatures occur naturally when using elliptic curves,
the computational efficiency of elliptic curve cryptosystems is the subject of
much research. Koblitz [1] showed that scalar multiplication can be done very
fast on a certain family of binary curves now commonly referred to as Koblitz
curves. In the same paper, Koblitz credited Hendrik Lenstra for first suggesting
random base-τ expansions for key agreement protocols using Koblitz curves.

Meier and Staffelbach [2] showed how to significantly reduce the length of τ -
adic expansions by performing modular reduction on scalars. Solinas [3,4] later
built on this idea and additionally reduced the weight by designing a τ -adic
analogue of Non-Adjacent Form (NAF).

Unfortunately, performing suchmodular reduction canbe costly.As futurework,
Solinas suggested a study of the distribution of random τ -adic NAFs. Lange and
Shparlinski [5,6] have studied the distribution of such expansions in depth.
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For key agreement protocols like Diffie-Hellman [7], the integer equivalent of
such a random τ -adic expansion is not needed. However, for ElGamal [8] type
digital signatures like ECDSA [9], both the integer and the scalar multiple are
needed to generate a signature. Lange [10] discussed many of the details of this
approach, as well a straightforward method for recovering the integer equivalent
using a number of multiplications.

In this paper, we present a new method for recovering integer equivalents of
random τ -adic expansions using only additions and one field multiplication. This
method is shown to be very efficient and has significant hardware implications.
A hardware implementation is also presented and studied in depth. The results
are then compared to current similar methods in hardware.

Sec. 2 reviews background information on Koblitz curves and τ -adic expan-
sions. Sec. 3 covers more recent research on random τ -adic expansions, as well
as our new method for efficiently computing integer equivalents of such expan-
sions. Sec. 4 presents an efficient hardware implementation of our new method
on a field programmable gate array (FPGA), as well as a comparison to current
methods. We conclude in Sec. 5.

2 Koblitz Curves

Koblitz curves [1] are non-supersingular elliptic curves defined over F2, i.e.

Ea(F2m) : y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1} . (1)

These curves have the nice property that if a point P = (x, y) is on the curve,
so is the point (x2, y2). The map σ : Ea(F2m) → Ea(F2m); (x, y) �→ (x2, y2) is
called the Frobenius endomorphism. From the point addition formula, it can be
shown that for all (x, y) ∈ Ea

(x4, y4) + 2(x, y) = μ(x2, y2), where μ = (−1)1−a, equivalently

(σ2 + 2)P = μσP , and hence

σ2 + 2 = μσ as curve endomorphisms. (2)

The last equation also allows us to look at σ as a complex number τ and we can
extend scalar multiplication to scalars d0 + d1τ from Z[τ ]. Higher powers of τ
make sense as repeated applications of the endomorphisms.

Koblitz showed how to use use the Frobenius endomorphism very efficiently
in scalar multiplication: A scalar n = d0 + d1τ is expanded using (2) repeatedly,
i.e. put ε0 = d0 (mod 2) and replace n by (d0 − ε0)/2μ + d1 − (d0 − ε0)/2τ
to compute ε1 etc. This iteration leads to a so called τ -adic expansion with
coefficients ε ∈ {0, 1} such that nP =

∑
i=0 εiτ

i(P ).
As a result of representing integers as the sum of powers of τ , scalar mul-

tiplication can be accomplished with no point doublings by combining point
additions and applications of σ. Koblitz noted in [1] that such base-τ expansions
unfortunately have twice the length when compared to binary expansions. This
leads to twice the number of point additions on average.
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2.1 Integer Equivalents

To overcome this drawback, Meier and Staffelbach [2] made the following obser-
vation. Given any point P ∈ Ea(F2m), it follows that

P = (x, y) = (x2m

, y2m

) = τmP

O = (τm − 1)P .

Two elements γ, ρ ∈ Z[τ ] such that γ ≡ ρ (mod τm−1) are said to be equivalent
with respect to P as γ multiples of P can also be obtained using the element ρ
since for some κ

γP = ρP + κ(τm − 1)P = ρP + κO = ρP .

While this relation holds for all points on the curve, cryptographic operations
are often limited to the main subgroup; that is, the points of large prime order.
Solinas [4] further improved on this. The small subgroup can be excluded since
(τ − 1) divides (τm − 1), and for multiples of points in the main subgroup
scalars can be reduced modulo δ = (τm−1)/(τ −1) to further reduce the length
to a maximum of m + a. For computational reasons, it is often convenient to
have the form δ = c0 + c1τ as well. For reference, the procedure for performing
such modular reduction is presented as Algorithm 1, which calculates ρ′ such
that the probability that ρ′ �= ρ holds is less than 2−(C−5). This probabilistic
approach is used to avoid costly rational divisions, trading them for a number
of multiplications.

Algorithm 1. Partial reduction modulo δ = (τm − 1)/(τ − 1).
Input: Integer n, constants C > 5, s0 = c0 + μc1, s1 = −c1,

Vm = 2m + 1−#Ea(F2m).
Output: n partmod δ.
n′ ← �n/2a−C+(m−9)/2�
for i← 0 to 1 do

g′ ← sin
′

j′ ← Vm�g′/2m�
λi ← �(g′ + j′)/2(m+5)/2 + 1

2
�/2C

end
(q0, q1)← Round(λ0, λ1) /* Using Algorithm 2 */

d0 ← k − (s0 + μs1)q0 − 2s1q1, d1 ← s1q0 − s0q1

return d0 + d1τ

Solinas [4] also developed a τ -adic analogue of Non-Adjacent Form (NAF).
Signed representations are used as point subtraction has roughly the same cost
as point addition; NAF guarantees that no two adjacent coefficients are non-zero.
By reducing elements of Z[τ ] modulo δ and using τ -adic NAF, such expansions
have roughly the same length and average density (1/3 when εi ∈ {0, 1,−1}) as
normal NAFs of the same integers.
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Algorithm 2. Rounding off in Z[τ ].
Input: Rational numbers λ0 and λ1.
Output: Integers q0, q1 such that q0 + q1τ is close to λ0 + λ1τ .
for i← 0 to 1 do

fi ← �λi + 1
2
�

ηi ← λi − fi, hi ← 0
end
η ← 2η0 + μη1

if η ≥ 1 then
if η0 − 3μη1 < −1 then h1 ← μ
else h0 ← 1

end
else

if η0 + 4μη1 ≥ 2 then h1 ← μ
if η < −1 then

if η0 − 3μη1 ≥ 1 then h1 ← −μ
else h0 ← −1

end
else

if η0 + 4μη1 < −2 then h1 ← −μ
q0 ← f0 + h0, q1 ← f1 + h1

return q0, q1

3 Random τ -adic Expansions

Instead of performing such non-trivial modular reduction, Solinas [4] suggested
(an adaptation of an idea credited to Hendrik Lenstra in Koblitz’s paper [1])
producing a random τ -adic NAF; that is, to build an expansion by generating
digits with Pr(−1) = 1/4, Pr(1) = 1/4, Pr(0) = 1/2, and following each non-zero
digit with a zero. Lange and Shparlinski [5] proved that such expansions with
length 	 = m− 1 are well-distributed and virtually collision-free.

This gives an efficient way of obtaining random multiples of a point (for exam-
ple, a generator). For some cryptosystems (e.g. Diffie-Hellman [7]), the integer
equivalent of the random τ -adic NAF is not needed. The expansion is simply
applied to the generator, then to the other party’s public point. However, for
generating digital signatures (e.g. ECDSA [9]), the equivalent integer is needed.

Lange [10] covered much of the theory of this approach, as well as a method
for recovering the integer. Given a generator G of prime order r and a group
automorphism σ, there is a unique integer s modulo r which satisfies σ(G) = sG,
and s (fixed per-curve) is obtained using (T − s) = gcd((T m − 1)/(T − 1), T 2 −
μT + 2) in Fr[T ]. We note that s also satisfies s = (−c0)(c1)−1 (mod r). Values
of s for standard Koblitz curves are listed in Table 1 for convenience.

Given some τ -adic expansion
∑�−1

i=0 εiτ
i with εi ∈ {0, 1,−1}, it follows that

the equivalent integer can be recovered deterministically as
∑�−1

i=0 εis
i using at

most 	 − 2 multiplications and some additions for non-zero coefficient values,
all modulo r [10]. Our approach improves on these computation requirements
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Table 1. Integer s such that σP = sP modulo r on Ea(F2m)

Curve a s

K-163 1 00000003 81afd9e3 493dccbf c2faf1d2 84e6d34e bd67a6da

K-233 0 00000060 6590ef0a

0a0abf8d 755a2be3 1f5449df ff5b4307 33472d49 10444625

K-283 0 00d5d05a 1b6c5ace e76b8ee3

f925a572 19bcb952 12945154 588d0415 a5b4bb50 57f69216

K-409 0 0024ef90

54eb3a6c f4bdc6ed 021f6e5c b8da0c79 5f913c52 ebaa9239

8d1b7d3d 0adb8a34 add81800 acf7e302 a7d25095 1701d7a4

K-571 0 01cc6c27 e62f3e0d df5ea7eb 1ab1cc4d 0da631c0 d70a969a

a14b0350 85b31511 f5a97455 20cba528 e2d1e647 f4f708d3

9fba0c3b e4e35543 821344d1 662727bd 2d59dbc0 5e6853b1

to recover the integer equivalent. Solinas [4] showed that given the recurrence
relation

Ui+1 = μUi − 2Ui−1 where U0 = 0, U1 = 1 ,

it is true that
τ i = τUi − 2Ui−1 for all i > 0 .

Solinas noted that this equation can be used for computing the order of the curve.
In addition to the aforementioned application, it is clear that this equation can
also be directly applied to compute the equivalent element d0 + d1τ ∈ Z[τ ] of a
τ -adic expansion. Once d0 + d1τ is computed, the equivalent integer n modulo
r is easily obtained using n = d0 + d1s (mod r).

We present an efficient algorithm to compute d0 and d1 as Algorithm 3.
Note that the values d0 and d1 are built up in a right-to-left fashion. Clearly it
makes sense to generate the fixed U sequence right-to-left. So if the coefficients
are generated left-to-right and are not stored then U should be precomputed
and stored and given as input to Algorithm 3, which is then modified to run

Algorithm 3. Integer equivalents of τ -adic expansions.
Input: �-bit τ -adic expansion ε, curve constants r, s, μ
Output: Integer equivalent n
d0 ← ε0, d1 ← ε1 /* accumulators */

j ← 1, k← 0 /* j = Ui−1, k = Ui−2 */

for i← 2 to �− 1 do
u← μj − 2k /* u = Ui */

d0 ← d0 − 2jεi

d1 ← d1 + uεi

k← j, j ← u /* setup for next round */

end
n← d0 + d1s mod r /* integer equivalent */

return n
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left-to-right. The storage of ε is small; indeed it can be stored in 	-bits if ze-
ros inserted to preserve non-adjacency are omitted. Either way, the choice of
which direction to implement Algorithm 3 is dependent on many factors, includ-
ing storage capacity and direction of the scalar multiplication algorithm. In any
case, the main advantage we are concerned with in this paper is the ability to
compute the integer equivalent in parallel to the scalar multiple, and hence in
our implementations ε is assumed to be stored. Thus, we omit any analysis of
generating coefficients of ε one at a time, and concentrate on the scenario of
having two separate devices, each with access to the coefficients of ε: one for
computing the integer equivalent, and one for computing the scalar multiple.

As s is a per-curve constant, it is clear that the integer equivalent n can be
computed using one field multiplication and one field addition. This excludes
the cost of building up d0 + d1τ from the τ -adic expansion, done as shown in
Algorithm 3 using the U sequence with only additions.

For the sake of simplicity, only width-2 τ -adic NAFs are considered here (all
εi ∈ {0, 1,−1}). Since generators are fixed and precomputation can be done
offline, it is natural to consider arbitrary window width as well; we defer this to
future work.

Following this reasoning, our method can be summarized as follows.

1. Generate a random τ -adic NAF of length m − 1. (After this, the scalar
multiple can be computed in parallel to the remaining steps.)

2. Build up d0 + d1τ from the expansion using the U sequence as shown in
Algorithm 3.

3. Calculate the integer equivalent n = d0 + d1s (mod r).

4 Hardware Implementation

If scalar multiplication is computed with a random integer, the integer is typically
first reduced modulo δ. The τ -adic NAF then usually needs to be computed before
scalar multiplication because algorithms for producing the τ -adic NAF presented
in [4] produce them from right-to-left1, whereas scalar multiplication is typically
more efficient when computed from left-to-right. In either case, the end-to-end
computation time is Tτ + Tsm where Tτ is the conversion time (including reduc-
ing modulo δ and generating the τ -adic NAF) and Tsm is the scalar multiplication
time. However, when scalar multiplication is computed on hardware with a ran-
dom τ -adic NAF of length 	, the calculation of an integer equivalent can be per-
formed simultaneously with scalar multiplication (assuming separate dedicated
hardware) thus resulting in an end-to-end time of only max(Tτ , Tsm) = Tsm with
the reasonable assumption that Tsm > Tτ . In this case, Tτ denotes the time needed
to generate a random τ -adic NAF and calculate the integer equivalent. We assume
storage for the coefficients εi exists. This parallelization implies that our method
is especially well-suited for hardware implementations.
1 There are alternatives which produce an expansion with similar weight from right-

to-left, but this does not change the arguments that follow.
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Fig. 1. Block diagram of the design. All registers are reset to zero at the beginning of
a conversion, except the 2Ui−1 register which is initialized to −1. Shifts to the left and
to the right are denoted as ≪ and ≫, respectively.

An FPGA design was implemented in order to investigate the practical fea-
sibility of our method on hardware. The implementation consists of two adders,
two comparators, a U sequence block and certain control logic. The structure
of the implementation is shown in Fig. 1. An integer equivalent is computed so
that, first, d0 and d1 are built up using the U sequence and, second, n = d0 +d1s
is calculated as shown in Sec. 3. The design operates in two modes.

The first mode computes d0 and d1 in parallel using the adders. A τ -adic
expansion is input into the design in serial starting from ε0 and the U sequence
is either read from ROM or computed on-the-fly. As shown in Sec. 3, Ui can
be directly applied in computing d1 by simply adding or subtracting Ui to d1

according to εi. In d0 calculation, 2Ui−1 is received by shifting Ui to the left
and delaying it by one clock cycle. Because the least significant bit (LSB) ε0
is handled similarly, an additional value U−1 = −0.5 is introduced into the U
sequence in order to get d0 = ε0.
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Table 2. ROM sizes for the NIST curves

Curve m Depth Width Bits

K-163 163 163 83 13,529
K-233 233 233 118 27,494
K-283 283 283 143 40,469
K-409 409 409 204 83,436
K-571 571 571 287 163,877

If the U sequence is precomputed and stored in ROM, the required size of the
ROMdepends onm. The depth of theROMism and thewidth is determinedby the
longest Ui in the sequence. ROM sizes for the NIST curves [9] are listed in Table 2.
It makes sense not to reduce the sequence U modulo r, as r > 1+2

∑m−3
i=0 |Ui| and

hence U modulo r requires significantly more storage space than U alone.
If the amount of memory is an issue, the U sequence can be computed on-the-

fly by using an adder as shown in Algorithm 3. This implies that extra storage
for the coefficients εi is also needed for performing the scalar multiplication
simultaneously. The width of the adder is also determined by the longest Ui. As
shown in Table 2, the size of the ROM grows rapidly with m and in practice
ROMs can be used only when m is small. However, the on-the-fly computation
is also a viable approach for large m.

The second mode computes n = d0 +d1s in two phases which are repeated for
all bits of s. In the first phase, the first adder accumulates d0 with d1 according
to the LSB of s and, at the same time, d1 is shifted to the left resulting in 2d1

and s is shifted to the right. In the second phase, r is either added to d0,1 if
d0,1 < 0 or subtracted from d0,1 if d0,1 ≥ r. This ensures that both d0 and d1 are
in the interval [0, r[. When all bits of s have been processed, the register d0 holds
n. In order to guarantee that the procedure results in n ∈ [0, r[, r must fulfill
r > 1+2

∑m−3
i=0 |Ui| which is the maximum value of d0 after the first mode. This

ensures that d0,1 ∈ ]−r, r[ in the end of the first mode for all τ -adic expansions
with 	 ≤ m − 1 and εi ∈ {0, 1,−1}. It is easy to check that all r listed in [9]
fulfill this condition.

The first mode requires 	 + 1 clock cycles. Because both phases in the second
mode require one clock cycle and the length of s is m bits, the latency of the
second phase is 2m clock cycles. Thus, the latency of a conversion is exactly
	+2m+1 clock cycles where 	 is the length of the τ -adic expansion. As 	 = m−1,
the conversion requires 3m clock cycles. The design is inherently resistant against
side-channel attacks based on timing because its latency is constant.

If the U sequence is stored in ROM, it would be possible to reduce the latency
by on average 2

3m clock cycles by skipping all zeros in random τ -adic NAFs
in the first mode. This could also be helpful in thwarting side-channel attacks
based on power or electromagnetic measurements. Unfortunately, latency would
not be constant anymore making the design potentially insecure against timing
attacks. Reductions based on zero skippings are not possible if the U sequence is
computed on-the-fly because that computation always requires m clock cycles.
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4.1 Results

The design presented in Sec. 4 was written in VHDL and simulated in ModelSim
SE 6.1b. To the best of our knowledge, the only published hardware implemen-
tation of the integer to τ -adic NAF conversion was presented in [11] where the
converter was implemented on an Altera Stratix II EP2S60F1020C4 FPGA. In
order to ensure fair comparison, we synthesized our design for the same device
using Altera Quartus II 6.0 SP1 design software. Two curve-specific variations
of the design were implemented for the NIST curves K-163 and K-233.

The K-163 design with ROM requires 929 ALUTs (Adaptive Look-Up Ta-
bles) and 599 registers in 507 ALMs (Adaptive Logic Modules) and 13,529 bits
of ROM which were implemented by using 6 M4K memory blocks. The maxi-
mum clock frequency is 56.14MHz which yields the conversion time of 8.7μs.
The K-233 design with ROM has the following characteristics: 1,311 ALUTs and
838 registers in 713 ALMs, 27,612 memory bits in 7 M4Ks and 42.67MHz re-
sulting in 16.4μs. Implementations where the U sequence is computed on-the-fly
require 1,057 and 1,637 ALUTs and 654 and 934 registers in 592 and 894 ALMs
for K-163 or K-233, respectively. They operate at the maximum clock frequencies
of 55.17 and 43.94MHz resulting in the computation times of 8.9μs and 15.9μs.
The differences in computation times compared to the ROM-based implementa-
tions are caused by small variations in place&route results which yield slightly
different maximum clock frequencies. The latencies in clock cycles are the same
for both ROM-based and memory-free implementations, i.e. 489 for K-163 and
699 for K-233. As the required resources are small and the conversion times are
much shorter than any reported scalar multiplication time, our method is clearly
suitable for hardware implementations.

4.2 Comparisons

The implementation presented in [11] computes τ -adic NAF mod (τm − 1) so
that it first converts the integer to τ -adic NAF with an algorithm from [3], then
reduces it modulo (τm−1) and finally reconstructs the NAF which was lost in the
reduction. This was claimed to be more efficient in terms of required resources
than reductions modulo δ presented in [3] because their implementation is prob-
lematic on hardware as they require computations of several multiplications, and
hence either a lot of resources or computation time.

Table 3 summarizes the implementations presented here and in [11]. Com-
paring the implementations is straightforward because FPGAs are the same. It
should be noted that the converter in [11] has a wider scope of possible applica-
tions since our approach is only for taking random multiples of a point (this is
not useful in signature verifications, for example). Obviously, the computation
of an integer equivalent can be performed with fewer resources. The reductions
are 35% in ALUTs and 39% in registers for K-163 and 27% and 30% for K-233
when the U sequence is stored in the ROM. However, it should be noted that the
implementations presented in [11] do not require such additional memory. When
the U sequence is computed with logic and no ROM is needed, the reductions in
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Table 3. Comparison of the published designs on Stratix II FPGA

Design m ALUTs Regs. M4Ks Clock (MHz) Tτ (μs) Total time

[11]a 163 1,433 988 0 80.44 6.1 Tsm + Tτ

233 1,800 1,198 0 58.89 11.9 Tsm + Tτ

This workb 163 929 (-35%) 599 (-39%) 6 56.14 8.7 Tsm

163 1,057 (-26%) 654 (-34%) 0 55.17 8.9 Tsm

233 1,311 (-27%) 838 (-30%) 7 42.67 16.4 Tsm

233 1,637 (-9%) 934 (-22%) 0 43.94 15.9 Tsm
a Integer to τ -adic NAF conversion.
b τ -adic expansion to integer conversion.

ALUTs and registers are 26% and 34% for K-163 and 9% and 22% for K-233
and so it is obvious that our converter is more compact.

The average latencies of both converters are approximately the same. The
difference is that the latency of our converter is always exactly 489 or 699 clock
cycles whereas the converter in [11] has an average latency of 491 or 701 clock
cycles for K-163 and K-233, respectively. The maximum clock frequencies of our
converters are lower and, thus, the implementations of [11] can compute con-
versions faster. However, an integer equivalent can be computed in parallel with
scalar multiplication and, thus, it can be claimed that the effective conversion
time is 0 μs.

To support the argument that the effective elimination of the conversion time
Tτ is significant, there are several implementations existing in the literature
computing scalar multiplications on K-163 in less than 100μs. For example, [12]
reports a time of 44.8μs, and [13] a time of 75μs. Hence conversions requiring
several μs are obviously significant when considering the overall time.

To summarize, computing the integer equivalent of a random τ -adic expansion
offers the following two major advantages from the hardware implementation
point-of-view compared to computing the τ -adic NAF of a random integer:

– Conversions can be computed in parallel with scalar multiplications.
– Computing the integer equivalent can be implemented with fewer resources.

As a downside, the calculation of an integer equivalent has a longer latency;
however, this is insignificant since the conversion is not on the critical path.

5 Conclusion

As shown, our new method for computing integer equivalents of random τ -adic
expansions is very computationally efficient. This has been demonstrated with an
implementation in hardware, where the parallelization of computing the integer
equivalent and the scalar multiple yields significant efficiency gains. It seems
unlikely that such gains are possible with this approach in software.
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Future Work

Side-channel attacks based on timing, power, or electromagnetic measurements
are a serious threat to many implementations; not only on smart cards, but on
FPGAs [14] as well. Our converter provides inherent resistance against timing
attacks because its latency is constant. Side-channel countermeasures against
other attacks are beyond the scope of this paper. However, before the suggested
implementation can be introduced in any practical application where these at-
tacks are viable, it must be protected against such attacks. This will be an
important research topic in the future.

As mentioned, only width-2 τ -adic NAFs have been considered here (all εi ∈
{0, 1,−1}). Arbitrary window width would clearly be more efficient for the scalar
multiplication. We are currently researching efficient methods for scanning ε
multiple bits at once, as well as simple alternatives to using the U sequence.
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11. Järvinen, K., Forsten, J., Skyttä, J.: Efficient circuitry for computing τ -adic non-
adjacent form. In: ICECS 2006. Proc. of the IEEE Int’l. Conf. on Electronics,
Circuits and Systems, Nice, France, pp. 232–235 (2006)

12. Dimitrov, V.S., Järvinen, K.U., Jacobson, J.M.J., Chan, W.F., Huang, Z.: FPGA
implementation of point multiplication on Koblitz curves using Kleinian integers.
In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459.
Springer, Heidelberg (2006)

13. Lutz, J., Hasan, M.A.: High performance FPGA based elliptic curve cryptographic
co-processor. In: Goubin, L., Matsui, M. (eds.) ITCC 2004. International Confer-
ence on Information Technology: Coding and Computing, vol. 02, pp. 486–492.
IEEE Computer Society Press, Los Alamitos (2004)

14. Standaert, F.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power
analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–394
(2006)



Another Look at Square Roots

(and Other Less Common Operations)
in Fields of Even Characteristic

Roberto Maria Avanzi

Faculty of Mathematics and Horst Görtz Institute for IT-Security
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Abstract. We discuss a family of irreducible polynomials that can be
used to speed up square root extraction in fields of characteristic two.
They generalize trinomials discussed by Fong et al. [20]. We call such
polynomials square root friendly.

The main application is to point halving methods for elliptic curves
(and to a lesser extent also divisor halving methods for hyperelliptic
curves and pairing computations).

We note the existence of square root friendly trinomials of a given
degree when we already know that an irreducible trinomial of the same
degree exists, and formulate a conjecture on the degrees of the terms of
square root friendly polynomials. Following similar results by Bluher, we
also give a partial result that goes in the direction of the conjecture.

We also discuss how to improve the speed of solving quadratic equa-
tions. The increase in the time required to perform modular reduction is
marginal and does not affect performance adversely. Estimates confirm
that the new polynomials mantain their promises. Point halving gets a
speed-up of 20% and scalar multiplication is improved by at least 11%.

Keywords: Binary fields, Polynomial basis, Square root extraction,
Trace computation, Quadratic equations, Point halving.

1 Introduction

The main topic of this paper is square root extraction in binary fields, even
though also other operations are considered.

In [20] it is shown that the extraction of square roots can be accelerated if a
suitable irreducible trinomial is used to define the field.

Let p(X) be the irreducible polynomial of degree d used to define the extension
field F2d/F2. If the polynomial in X representing the square root of the image
x of X in F2d has low weight and/or degree, then general square roots can be
extracted in F2d efficiently. In this case we call p(X) square root friendly. (This
definition will be made more precise later.)

We give here sufficient conditions for an irreducible polynomial of odd degree
d to yield a low weight

√
x. In particular, we give examples of pentanomials
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and heptanomials, but in at least one case, that of F2233 , that can be defined by
trinomials, we show how one can perform square root computations even faster
than in [20]1.

As the motivation comes from elliptic curve cryptography, in particular from
point halving based methods for scalar multiplication, in Section 2 we recall
point and divisor halving. In Section 3 we introduce square root computations
and our new sufficient conditions. Polynomials for several useful (and used in
practice) binary fields are presented in Section 4, together with a result about
the existence of square root friendly trinomials, a conjecture about the degrees
of the non-leading terms of square root friendly polynomials, and a theorem that
supports the conjecture itself.

Finally, we move to implementation issues in Section 5. Not only square root
extraction is implemented (§ 5.1), but also the computation of traces over F2

(§ 5.2) and solving quadratic equations in F2d (§ 5.3). These routines are bench-
marked showing gains, whereas multiplication and squaring either experience
a negligible slowdown or even a minimal speedup. The costs of various elliptic
curve group operations and scalar multiplication algorithms using different re-
duction polynomials for the definition field are also given. The discussion of these
results (§ 5.4) also provides the conclusion to the paper. In particular, we prove
that a performance gain of around 20% can be expected for the point halving
alone, with a speed increase in excess of 11% for scalar multiplication.

Space constraints forced us to omit most proofs. These, as well as further
results, will be given in the full version of the paper.

2 Point and Divisor Halving

Let E be an elliptic curve defined over F2d by a Weierstrass equation

E : Y 2 + XY = X3 + aX2 + b

with a, b ∈ F2d and having a subgroup G ≤ E(F2d) of large prime order.
Since computing the double of any given point P is the most common opera-

tion in a scalar multiplication performed by double-and-add methods, an impor-
tant direction of research consists in optimizing doubling formulæ (for surveys on
scalar multiplication methods and elliptic curve operations see, for example [8,
Chs. 9 and 13] or [21, Ch. 3]).

Point halving [22,27], on the other hand, consists in computing a point R
whose double is P , i.e. such that 2R = P . Being the inverse operation of the
doubling, it is an automorphism of G. Therefore, given a point P ∈ G, there is
a unique R ∈ G such that 2R = P .

In order to perform this operation one needs to solve a quadratic equation of
the form λ2 +λ+α = 0 for λ, extract a square root, perform two multiplications

1 Scott [28] considers searching the polynomials until the one giving the optimal re-
duction and square root routines is found in terms of the amount of logic and shift
operations.
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and some additions. We refer the reader to [22,26,27,20] for details, including
the usage of halving in place of doubling in scalar multiplication algorithms.
Furthermore, there are two points R1 and R2 on the curve with 2R1 = 2R2 = P ,
such that R1 − R2 is the unique point of order 2 of the curve. To determine
which one is in G, an additional check involving a trace computation is required.
Knudsen [22] and Schroeppel [26,27] show how to perform all these operations.
According to the analysis in [20], halving is about two times faster than doubling.

Birkner [14] has devised a divisor halving formula for genus two curves based
on the doubling formulae by Lange and Stevens [24]. Birkner and Thériault [15]
have dealt with genus three divisors. The performance of all known halving for-
mulæ depends (to a variable degree) on the performance of square root extrac-
tion. Further uses of point halving to speed up scalar multiplication on elliptic
Koblitz Curves [23] are found in [7,9] and [10].

3 Square Root Extraction and Defining Polynomials

3.1 Background

Let p(X) be an irreducible polynomial of odd degree d, and the field F2d be
constructed as the quotient ring F2[X ]/(p(X)). Let us call x the image of X
in F2d . We consider here polynomial basis representation because we are solely
concerned with software applications.

Whereas with a normal basis [4] a square root computation is just a shift of
the bits internal representation of the field element by one position, matters are
more complicated with polynomial bases. In fact, even the cost of a squaring
becomes no longer negligible. If α =

∑d−1
i=0 aix

i then α2 =
∑d−1

i=0 aix
2i which,

as a polynomial in x, has degree no longer necessarily bounded by d, and mod-
ular reduction (modulo p(X)) is necessary. Its cost is very low, but cannot be
completely ignored.

Things are more complicated for square roots. Even though squaring just
consists in “spacing” the bits of the original element with zeros, the bits of
a generic field element cannot be just “compressed”. The classic method for
computing

√
α is based on Fermat’s little theorem α2d

= α, hence
√

α = α2d−1
.

This requires d − 1 squarings. In general, the cost of this operation is that of
several field multiplications.

A more efficient method stems from the observation that
√

α can be expressed
in terms of ζ :=

√
x. If

α =
d−1∑

i=0

aix
i

we separate the even exponents from the odd exponents

α =

d−1
2∑

i=0

a2ix
2i +

d−3
2∑

i=0

a2i+1x
2i+1 = (αeven)2 + x · (αodd)2
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where

αeven =
∑ d−1

2

i=0
a2ix

i and αodd =
∑ d−3

2

i=0
a2i+1x

i

and, since square root in a field of even characteristic is a linear operation:
√

α = αeven + ζ · αodd (1)

Therefore, once ζ has been computed on a per-field basis, the computation
of a generic square root is reduced to “bits extraction and packing”, a “rect-
angular” multiplication of a degree ≤ d − 1 polynomial ζ with a polynomial∑(d−3)/2

i=0 a2i+1x
i of degree ≤ (d − 3)/2 in x, and a modular reduction. Intu-

itively, the cost should approach a half of the cost of a field multiplication and
this is confirmed by the analysis in [20,22].

3.2 Square-Root Friendly Polynomials

The speed of square root computation depends on the efficiency of the multi-
plication of a generic polynomial of degree ≤ (d − 1)/2 by ζ =

√
x. If ζ is very

sparse, for example of weight two or four (i.e. it has just two or four nonzero
terms), then this product can be computed by a few shift and XOR operations.
In [20] two types of trinomials have been shown that allow this. The kind that
interests us is

p(X) = Xd + Xm + 1

with m odd. Then x = xd+1 + xm+1 with d + 1 and m + 1 even, and

ζ = x(d+1)/2 + x(m+1)/2 ,

and p(X) is square root friendly. In fact, this idea is much more general.
Assume the irreducible polynomial p(X) defining F2d over F2 has form

p(X) = X · U(X)2 + 1 (2)

where U is a polynomial of degree (d− 1)/2 and even weight w (hence p(X) has
weight w + 1). Then, ζ has a very simple form in F2d : from x2 · U(x)2 + x = 0
we obtain

ζ = x · U(x) ,

and ζ is represented by a polynomial of degree 1 + d−1
2 = d+1

2 and weight w.
Furthermore, note that the polynomial product

ζ ·
d−3
2∑

i=0

a2i+1x
i

has degree bounded by d+1
2 + d−3

2 = d− 1, therefore no polynomial reduction is
required if a square root is computed by formula (1).

Hence, irreducible polynomials of form (2) are square root friendly.
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Note that the low degree of ζ not only guarantees that no modular reduction
is necessary, but puts also a bound on the complexity of the multiplication
by ζ (even though its sparseness has an even bigger influence). It is therefore
interesting to ask whether there are irreducible polynomials P (X) that lead to
a ζ of even lower degree. This cannot happen, and requiring the degree of the
polynomial representing ζ to be at most (d + 1)/2 in fact almost characterizes
the polynomials (2).

Theorem 1. Let the field extension F2d/F2 be defined by an irreducible polyno-
mial P (X) of odd degree d, and let x be a zero of P (X) in F2d . Suppose that
ζ :=

√
x is a polynomial of degree at most (d + 1)/2 in x.

Then the degree of ζ is exactly (d + 1)/2 and either

(i) P (X) = 1 + X · U(X)2 and ζ = x · U(x) for some U(X) ∈ F2[X ] of degree
exactly (d− 1)/2; or

(ii) P (X) = 1 + (X + 1) ·X2 · W(X)2 and ζ = 1 + (x + 1) · x · W(x) for some
W(X) ∈ F2[X ] of degree exactly (d− 3)/2.

Definition 1. An irreducible polynomial of form (2) is called a special square
root friendly (SSRF) polynomial of type I.

An irreducible polynomial

P (X) = 1 + (X + 1) ·X2 · W(X)2 (3)

for some W(X) ∈ F2[X ] of degree exactly (d − 3)/2 is called a special square
root friendly polynomial of type II.

We do not know whether there are irreducible polynomials which are not trino-
mials, not of the forms listed in Theorem 1, and for which

√
x has small weight.

Even for trinomials Xd + Xm + 1 with even m one has to check on a case by
case basis, but examples are known [20].

Still, square root friendly polynomials abound. For example X163 + X57 +
X49 +X29 +1 is irreducible, and the corresponding ζ has weight 4. On the other
hand, the standard NIST polynomial [25] X163 + X7 + X6 + X3 + 1 defines a ζ
of weight 79.

Remark 1. Changing polynomial is easy without introducing incompatibilities
in cryptographic applications: we just change the base used for representation of
the field elements before and after the bulk of the computation. The cost is com-
parable to a polynomial basis multiplication, and the conversion routines require
each a matrix that occupies O(d2) bits of storage (cf. [19] where the particular
base change is to and from a normal basis representation, but the results are the
same). Therefore this overhead is essentially negligible with respect to the full
cost of a scalar multiplication, that is in the order of magnitude of hundreds to
thousands of field multiplications (see for example § 5.3 of [5]).

Remark 2. The cost of a square root extraction implemented by using the sparse
version of ζ offered by the above polynomials can be roughly estimated using,
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for example, already published results. For example in [20], Example 3.12, the
NIST-recommended trinomial

p(X) = X233 + X74 + 1 (4)

for the finite field F2233 is used. Even though the term X74 does not have an odd
exponent, ζ has a sparse representation

ζ = (x32 + x117 + x191)(x37 + 1) .

By this, finding a root via equation (1) requires roughly 1/8 of the time of a field
multiplication. As we shall show in the next section we can choose

p(X) = X233 + X159 + 1

and in this case
ζ = x117 + x80 .

It is clear that an even smaller amount of shift operations and XOR operations
are required to multiply by ζ. Furthermore, as already remarked, there is no need
to perform a reduction modulo p(X) while with non-SSRF polynomials this is
almost always necessary, even with the polynomial (4). Implementation results
show the cost of a square root to be less than 9% of that of a multiplication. See
§ 5.4 for precise results.

Remark 3. Similar formulæ for cube root computations are found in [1] – their
results are easily partially generalised to any odd characteristic.

Remark 4. Type I SSRF polynomials enjoy another very useful property. In [2] it
is proved that the only trace-one element in the polynomial basis defined by these
polynomials is 1. Therefore the trace of an element

∑d−1
i=0 aix

i is just a0. This
is very important, for instance, for point halving. It is especially fortunate that
the same family of polynomials makes both square roots and trace computations
faster.

Type II SSRF polynomials do not enjoy this property, however they are not
relevant anyway for most applications: They were also investigated in [2], because
all element of the polynomial basis, except at most for 1, have trace one, but the
connection to the minimality of the degree of

√
x is new and surprising.

4 Existence and Degrees of the Terms

Square root friendly polynomials are easy to find. For example, a simple Magma
[17] script determines all 713 (special) square root friendly pentanomials of de-
gree 163 in less than one minute.

In Table 1 we list square root friendly polynomials of several degrees. The
degrees have been taken from the NIST list of recommended binary curves and
from the extension degrees used in [12]. All these extension degrees are interesting
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Table 1. Some special square root friendly trinomials and pentanomials

Degree Irreducible tri/pentanomial ζ =
√

x Standard?

47 X47 + X5 + 1 x24 + x3 Yes
53 X53 + X19 + X17 + X15 + 1 x27 + x10 + x9 + x8 No
59 X59 + X21 + X17 + X15 + 1 x30 + x11 + x9 + x8 No
67 X67 + X25 + X17 + X5 + 1 x34 + x13 + x9 + x3 No
71 X71 + X9 + 1 x36 + x5 No
73 X73 + X25 + 1 x37 + x13 Yes
79 X79 + X9 + 1 x40 + x5 Yes
83 X83 + X29 + X25 + X3 + 1 x42 + x15 + x13 + x2 No
89 X89 + X51 + 1 x45 + x26 No
97 X97 + X33 + 1 x49 + x17 No
101 X101 + X35 + X31 + X3 + 1 x51 + x18 + x16 + x2 No
107 X107 + X37 + X33 + X23 + 1 x54 + x19 + x17 + x12 No
109 X109 + X43 + X41 + X23 + 1 x55 + x22 + x21 + x12 No
127 X127 + X + 1 x64 + x Yes
131 X131 + X45 + X41 + X9 + 1 x66 + x23 + x21 + x5 No
137 X137 + X21 + 1 x69 + x11 Yes
139 X139 + X53 + X33 + X25 + 1 x70 + x27 + x17 + x13 No
149 X149 + X51 + X47 + X9 + 1 x75 + x26 + x24 + x5 No
157 X157 + X55 + X47 + X11 + 1 x79 + x28 + x24 + x6 No
163 X163 + X57 + X49 + X29 + 1 x82 + x29 + x25 + x15 No
179 X179 + X61 + X57 + X41 + 1 x90 + x31 + x29 + x21 No
199 X199 + X67 + 1 x100 + x34 No
211 X211 + X73 + X69 + X35 + 1 x106 + x37 + x35 + x18 No
233 X233 + X159 + 1 x117 + x80 No
239 X239 + X81 + 1 x120 + x41 No
251 X251 + X89 + X81 + X3 + 1 x126 + x45 + x41 + x2 No
269 X269 + X91 + X87 + X61 + 1 x135 + x46 + x44 + x31 No
283 X283 + X97 + X89 + X87 + 1 x142 + x49 + x45 + x44 No
409 X409 + X87 + 1 x205 + x44 Yes
571 X571 + X193 + X185 + X5 + 1 x286 + x97 + x93 + x3 No

because they are either used in standards for elliptic curve cryptography or they
represent good choices for extension degrees for defining hyperelliptic curve for
cryptographic applications.

When no trinomial is available, a pentanomial is listed. We always report
the polynomial with least degree sediment (the sediment of an univariate is
obtained by removing the leading term). Only in a handful of cases is the square
root friendly polynomial with least degree sediment the same as the standard
one, i.e. the irreducible polynomial with least degree sediment but without the
restriction on being square root friendly.

We first note that if an irreducible trinomial of a given degree exists, then we
can always find one which is square root friendly. The following result is in fact
well known, and we state it only for completeness’ sake.

Theorem 2. Let d be an odd positive integer. If an irreducible trinomial p(X) =
Xd + Xm + 1 over F2 of degree d exists, then p(X) can be chosen of form (2),
i.e. where the exponent m of the middle term is odd.
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Existence results for pentanomial-defined fields are still an open question. On
the basis of Table 1 and further experimental results, we found further evidence
for an observation of Ahmadi and Menezes [2]: if the degree d ≡ ±3 (mod 8),
the degree of the sediment is at least d/3, whereas if d ≡ ±1 (mod 8), then the
degree of the sediment is usually quite small.

For the extension degrees for which there are no trinomials we computed
not only the square root friendly pentanomials but also the heptanomials with
smallest degree sediment – the idea was, that perhaps one can find good hep-
tanomials with a lower degree sediment than the best pentanomials, to improve
modular reduction2 : they are given in Table 2. Similar searches for polynomi-
als with nine and eleven terms have been performed. We immediately observe
here that sediment degree differences are very limited, so the heptanomials do
not bring advantages. The same observation applies to polynomials with nine or
eleven terms. A pattern in the distribution of degrees of the second term of the
sediment of square root friendly polynomials up to degree 3000 and with up to
eleven terms prompts us to formulate the following conjecture:

Conjecture 1. Let d be an odd positive integer, and let c, resp. c′ be the expo-
nents of the second, resp. third largest exponent in the lexicographically minimal
square root friendly polynomial of degree d. Then

3 c− d = c− c′ =

{
8 if d ≡ 1 (mod 3)
4 if d ≡ 2 (mod 3) .

A first result in this direction has already been proved by Bluher [16] using a
result of Swan [29] (that in fact goes back to Stickelberger). Her result is: The
odd degree polynomial p(X) = Xd +

∑
i∈S X i + 1 in F2[X ], where S ⊂ {i :

i odd , 0 < i < d/3} ∪ {i : i ≡ d (mod 4), 0 < i < d} has no repeated roots; if
d = ±1 (mod 8), then f has an odd number of irreducible factors; and if d = ±3
(mod 8), then f has an even number of irreducible factors. In fact, by adapting
the proof given in [3] of Bluher’s result, it is possible to prove the following
theorem:

Theorem 3. Let d be an odd positive integer and the polynomial p(X) ∈ F2[x]
have degree d and satisfy one of the following conditions:

1. If d ≡ 1 (mod 3), then p(X) is either of the form

– Xd + X
d+8
3 +

∑

j∈J

Xj + 1 where J =
{
j : j odd, 1 ≤ j < d−19

3

}

– or Xd +
∑

j∈J′
Xj + 1 where J ′ =

{
j : j odd, 1 ≤ j ≤ d+5

3

}
;

2. If d ≡ 2 (mod 3), then p(X) is either of the form

2 This quite common assumption is heuristic and not necessarily always true [28].
The search for polynomials with minimal degree sediment among those with given
properties is however an interesting mathematical endeavor per se.
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Table 2. Some special square root friendly heptanomials

Degree Irreducible heptanomial ζ =
√

x

53 X53 + X19 + X15 + X5 + X3 + X + 1 x27 + x10 + x8 + x3 + x2 + x
59 X59 + X21 + X17 + X13 + X3 + X + 1 x30 + x11 + x9 + x7 + x2 + x
67 X67 + X25 + X17 + X7 + X3 + X + 1 x34 + x13 + x9 + x4 + x2 + x
83 X83 + X29 + X25 + X7 + X5 + X3 + 1 x42 + x15 + x13 + x4 + x3 + x2

101 X101 + X35 + X31 + X9 + X7 + X + 1 x51 + x18 + x16 + x5 + x4 + x
107 X107 + X37 + X33 + X15 + X9 + X7 + 1 x54 + x19 + x17 + x8 + x5 + x4

109 X109 + X39 + X31 + X9 + X5 + X3 + 1 x55 + x20 + x16 + x5 + x3 + x2

131 X131 + X45 + X41 + X13 + X9 + X + 1 x66 + x23 + x21 + x7 + x5 + x
139 X139 + X49 + X41 + X7 + X5 + X3 + 1 x70 + x25 + x21 + x4 + x3 + x2

149 X149 + X51 + X47 + X9 + X7 + X + 1 x75 + x26 + x24 + x5 + x4 + x
157 X157 + X55 + X47 + X15 + X9 + X3 + 1 x79 + x28 + x24 + x8 + x5 + x2

163 X163 + X57 + X49 + X15 + X9 + X + 1 x82 + x29 + x25 + x8 + x5 + x
179 X179 + X61 + X57 + X13 + X9 + X5 + 1 x90 + x31 + x29 + x7 + x5 + x3

211 X211 + X73 + X65 + X13 + X11 + X3 + 1 x106 + x37 + x33 + x7 + x6 + x2

251 X251 + X85 + X81 + X7 + X5 + X3 + 1 x126 + x43 + x41 + x4 + x3 + x2

269 X269 + X91 + X87 + X15 + X13 + X11 + 1 x135 + x46 + x44 + x8 + x7 + x6

283 X283 + X97 + X89 + X13 + X9 + X + 1 x142 + x49 + x45 + x7 + x5 + x
571 X571 + X193 + X185 + X15 + X11 + X3 + 1 x286 + x97 + x93 + x8 + x6 + x2

– Xd + X
d+4
3 +

∑

j∈J

Xj + 1 where J =
{
j : j odd, 1 ≤ j ≤ d−11

3

}

– or Xd +
∑

j∈J′
Xj + 1 where J ′ =

{
j : j odd, 1 ≤ j ≤ d+1

3

}
.

Then p(X) is square-free. Furthermore, if d ≡ ±1 mod 8 then p(X) has an odd
number of irreducible factors, whereas d ≡ ±3 mod 8 then p(X) has an even
number of irreducible factors and therefore must be reducible.

Remark 5. We already mentioned in Remark 4 that in [2] the polynomials we
study are proven to permit efficient computation of traces. In Conjecture 9 of [2]
it is also speculated that if an irreducible pentanomial of degree d exists, then an
irreducible pentanomial of the same degree defining a polynomial basis with only
one trace-one element also exists. In the similar vein we could try to restrict our
Conjecture 1 to pentanomials, but we have the following example for degree 1987:

X1987 + X665 + X661 + X549 + 1 .

This polynomial has minimal degree sediment, and the sediment has minimal
degree second term among all irreducible pentanomials with minimal degree
sediment. We have d ≡ 1 (mod 3) and 3 c− d = 8, but the second term of the
sediment has degree 661, not 657. On the other hand, with heptanomials we find
following irreducible

X1987 + X665 + X657 + X25 + X21 + X9 + 1 ,

and we know of no other irreducibles of the form
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X1987 + Xc + Xc′ + other lower odd degree terms + 1

with c smaller than 665 or with c = 665 and c′ smaller than 657.

5 Implementation

For several binary fields F2d we implemented a few operations, including (but
not only) multiplication, squaring, square roots, and also trace and half-trace
computations (the latter is used for solving quadratic equations). The current
implementation is an extension of the implementation described in [11], that is
also used in [12] and [6], (some performance discrepances are due to the fact
that some other routines have been improved in the meantime) and as such in
the current version processes the operands with a 32-bit granularity.

Depending on the nature of the chosen reduction polynomial we implemented
some routines such as modular reduction and square root extraction in different
ways. In a few cases we implement the same field twice using two different
reduction polynomials in order to compare the different situations.

5.1 Extracting a Square Root

To implement square root extraction of a field element α we use formula (1): the
only part that changes between different implementations is how the multiplica-
tion ζ · αodd is realized.

To compute αeven and αodd from α we use a 16-bit to 8-bit look-up table to
compress the bits. Using a trick due to Robert Harley, this table is stored in 256
consecutive bytes by mapping the input i to (i + i >> 7)& 0xff.

If the reduction polynomial p(X) is not square root friendly, then the Ham-
ming weight of the square root is counted at the time of initialization of the
library - hence only once. If this weight is low enough then a simple routine
that XORs together shifted copies of αodd according to which bits in ζ are set
is used. If the weight is higher than a certain threshold, then a comb binary
polynomial multiplication method is used, where the precomputations relative
to ζ are performed only once, at initialization time. A reduction modulo p(X)
is then performed, if necessary.

By means of this we can always keep the time of the multiplication ζ ·αodd to
just under a half of the time of a generic field multiplication: Note, however, that
this time can be substantially higher than the time required for the per-field,
ad-hoc optimized implementation of multiplication, as our experimental results
in § 5.4 show.

In the case where the degree d reduction polynomial p(X) is square root
friendly, we also have a simple routine that XORs together shifted copies of αodd

according to which bits in ζ are set, but since the weight is very low and known,
the routine can be unrolled completely. Furthermore, as already mentioned, in
this case no modular reduction is necessary. This routine is the one that delivers
the best performance.
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5.2 Trace Computation

We follow here [20] and [2]. For generic binary fields, to compute the trace
from F2d to F2 we use the fact that it is linear. In other words, once we have
computed Tr(xi) for all i with 0 ≤ i < d, in order to compute the trace of an
element α ∈ F2d , α =

∑d−1
i=0 aix

i where the ai ∈ F2, we have

Tr (α) =
d−1∑

i=0

ai Tr(xi) .

The latter sum can be implemented by a componentwise multiplication (hence,
a logical AND operation) of the bit vector representing the element α with a bit
vector whose i-th component (starting with the zeroth component!) is the trace
of xi, called the trace vector, followed by a bit count modulo 2. Both operations
can be performed very efficiently. The trace vector is of course computed once
for each field.

However, when a square root friendly polynomial is used to represent the
field Fd with d odd, the trace vector contains just one bit set, namely the least
significant bit, and Tr (α) = a0.

We therefore implemented two different routines: the first one uses a trace
vector and the second one just polls the value of a single bit.

5.3 Solving Quadratic Equations (Half-Traces)

In order to solve quadratic equations of the form

λ2 + λ = α (5)

for λ ∈ F2d where α ∈ F2d we implement just one generic routine, that takes the
element α as an input.

The half-trace operator on F2d (d odd) is defined as

H(α) =
(d−1)/2∑

i=0

α22i

.

It is easily verified that it is F2-linear, and that it satisfies H(α)2 + H(α) =
α+Tr(α). Therefore, in order to solve equation (5) we first have to check whether
Tr(α) = 0. Only in that case (5) solvable: Then we compute the half-trace H(α)
of α by adding together precomputed half-traces of elements of the polynomial
base, i.e. H(xi), and H(α), H(α) + 1 are the solutions.

One optimization in [20] consists in removing the coefficients of even powers
of x: We write H(α) = H(α′)+β where α′ has fewer nonzero coefficients than α.
This can be done by observing that H(x2i) = H(xi) + x2i + Tr(x2i). Therefore
each coefficient of an even power of x can be set to zero. This halves the amount
of stored half-traces of powers of x.

Our approach differs from the one in [20] in that we do not make ad-hoc
attempts to minimize memory requirements. Instead, we reduce the number of
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half-traces to be accumulated by increasing the amount of precomputations. We
compute and store H(�0x

8i+1 + �1x
8i+3 + �2x

8i+5 + �3x
8i+7) for all i ≥ 0 such

that 8i+1 ≤ d− 2 and all (�0, �1, �2, �3) ∈ F
4
2 � {(0, 0, 0, 0)} such that the degree

of the argument of H is at most d − 2. By means of this we reduce by a factor
32/15 the expected number of table lookups and additions of half-traces.

5.4 Results, Conclusions

We benchmarked our implementation. Table 3 collects the timings of our routines
on a PowerPC G4 running at 1.5Ghz. (Table 5 shows the timings on an Intel Core
2 Duo CPU running at 1.83Ghz.) Several field operations are timed, and the
costs relative to a field multiplication are provided. The reduction polynomials
are given (as decreasing lists of exponents) as well as whether the considered
polynomial is square root friendly or not.

We have chosen degrees in various more or less evenly spaced ranges to fulfil
the following requirements: the “classical” extension degrees 163, 191, and 233
must be included, fields around integer submultiples of these sizes should also
be taken into account (that’s the reason for degrees in the ranges 40-50 and 80-
100, and 127), and we should provide examples of fields where the “standard”
polynomial (either in the sense that it comes from standard documents, or that
it is the most common one used for computations in computer algebra systems)
already is square root friendly as well as cases where it is not – in the latter
scenario we also choose a second defining polynomial that is square root friendly.
Furthermore, all these combination of cases should happen with trinomial defined
fields as well as when pentanomials are used. The “submultiples” ranges are
relevant because of Trace Zero Varieties coming from elliptic curves [18], and

Table 3. Operations in some Binary Fields on a PowerPC G4 running at 1.5 Ghz. Mul,
Sqr, Inv, Sqrt, Tr and Eq denote multiplication, squaring, field inversion, square root
extraction, trace and half-trace computation respectively

Field Reduction Sqrt Operation Timings (μsec) Costs relative to one Mul
(Bits) Polynomial Frnd Mul Sqr Inv Sqrt Trace Eq Sqr Inv Sqrt Trace Eq

41 41,3,0 Yes .084 .013 .448 .015 .007 .129 .160 5.340 .178 .078 1.536

43 43,6,4,3,0 No .090 .016 .453 .327 .020 .128 .179 5.010 3.619 .227 1.422
43 43,17,9,5,0 Yes .090 .017 .454 .018 .007 .126 .186 5.029 .196 .072 1.400

47 47,5,0 Yes .089 .013 .478 .015 .007 .128 .150 5.344 .167 .083 1.438

83 83,7,4,2,0 No .212 .030 .915 .383 .023 .191 .141 4.313 1.806 .107 .901
83 83,29,25,3,0 Yes .214 .045 .925 .054 .007 .192 .209 4.316 .254 .034 .897

89 89,38,0 No .253 .023 .958 .354 .023 .200 .089 3.782 1.398 .092 .791
89 89,51,0 Yes .253 .024 .958 .025 .007 .201 .093 3.782 .098 .027 .794

97 97,6,0 No .311 .028 1.598 .401 .025 .256 .091 5.139 1.289 .081 .823
97 97,33,0 Yes .304 .024 1.576 .028 .006 .252 .080 5.191 .091 .020 .829

127 127,1,0 Yes .418 .053 1.814 .062 .007 .288 .127 4.345 .149 .016 .689

163 163,7,6,3,0 No .819 .086 5.317 .679 .033 .388 .105 6.491 .829 .040 .474
163 163,57,49,29,0 Yes .821 .090 5.327 .095 .007 .391 .110 6.491 .116 .009 .476

191 191,9,0 Yes .896 .083 5.804 .093 .008 .429 .093 6.474 .104 .009 .479

223 223,33,0 Yes 1.198 .098 12.865 .113 .006 .501 .082 10.737 .094 .005 .418

233 233,74,0 No 1.336 .101 14.599 .918 .037 .582 .076 10.925 .687 .028 .436
233 233,159,0 Yes 1.330 .090 14.593 .117 .006 .584 .068 10.971 .088 .005 .439
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future investigation will consider the use of point and divisor halving for these
algebraic groups.

Our implementation shows some interesting results.

1. The claims made in [20] about the speed of optimized square root extrac-
tion for fields defined by suitable trinomials are extended to pentanomials.
Our results show for fields of 163, 191, and 233 bits an even further re-
duced Sqrt/Mul ratio. The gain w.r.t. generic implementations of square
roots ranges from 8 to 20, and it is higher for smaller fields.

2. Multiplication and squaring may get marginally slower because the square
root friendly polynomials usually do not have minimal degree sediments,
and thus the reduction routine has to be a bit longer. The differences are
minimal, field squaring paying a slightly higher toll than field multiplica-
tion. Sometimes a negligible performance improvement (presumably due to
randomness) is observed. Field inversion and half-trace computation are un-
affected by the choice of polynomial.

3. Computing traces with square root friendly polynomials takes nearly negli-
gible time.

4. In [20] computing an half-trace requires approximately 2/3 the time of a
field multiplication, but for fields of the same sizes our ratios are lower than
1/2, because we use a lot of precomputations.

In Table 4 we give estimates of the costs relative to one field multiplication of
elliptic curve group addition, doubling, halving and scalar multiplication using
various algorithms. We have used the operations counts from [5, § 5.2], but the
ratios between field operations come from our Table 3. We can see that the use
square root friendly polynomials has a noticeable impact on scalar multiplication
performance based on point halving. Point halving alone is sped up by about
20%, and the whole scalar multiplication by about 14% for curves defined over
F2163 and by 11% if the base field is F2233 . These improvements are much larger
than the difference in field multiplication performance (a 2.5 � loss for F2163 ,

Table 4. Estimated costs of elliptic curve group operations and scalar multiplication
relative to those of a field multiplication. Add, resp. Dbl, Hlv mean Addition, resp.
Doubling, Halving, and D& A, resp. H& A means windowed scalar multiplication based
on Double-and-Add, resp. Halve-and-Add. Scalar multiplications methods use affine
coordinates as well as mixed affine-Lopez-Dahab coordinates.

Field Group Operations Scalar Multiplication

Degree
Sqrt Affine Coords. Mixed A + LD Affine Coords. Mixed
Frnd Add,Dbl Hlv mixed A Dbl D& A H& A D &A

163 N 8.596 3.343 8.525 5.175 1550.3 834.5 1137.2
163 Y 8.601 2.601 8.550 5.200 1551.4 715.0 1141.1

191 Y 8.567 2.592 8.465 5.115 1801.3 825.0 1310.7

233 N 13.001 3.151 8.380 5.030 3369.4 1291.0 1588.6
233 Y 13.039 2.532 8.340 4.990 3379.2 1149.4 1579.8
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Table 5. Operations in some Binary Fields on an Intel Core 2 Duo running at 1.83 Ghz

Field Reduction Sqrt Operation Timings (μsec) Costs relative to one Mul
(Bits) Polynomial Frnd Mul Sqr Inv Sqrt Trace Eq Sqr Inv Sqrt Trace Eq

41 41,3,0 Yes .065 .019 1.343 .023 .012 .057 .292 20.662 .358 .184 .883

43 43,6,4,3,0 No .067 .017 1.381 .141 .023 .057 .253 20.611 2.099 .337 .837
43 43,17,9,5,0 Yes .069 .021 1.368 .021 .012 .057 .304 19.826 .326 .174 .829

47 47,5,0 Yes .074 .015 1.452 .025 .012 .063 .203 19.621 .335 .162 .853

83 83,7,4,2,0 No .184 .041 2.727 .245 .022 .094 .223 14.821 1.333 .120 .512
83 83,29,25,3,0 Yes .172 .035 2.727 .049 .012 .092 .203 15.855 .285 .070 .537

89 89,38,0 No .207 .028 2.813 .203 .018 .083 .135 13.589 .982 .089 .402
89 89,51,0 Yes .201 .036 2.837 .044 .012 .080 .179 14.114 .217 .060 .394

97 97,6,0 No .223 .032 3.677 .200 .021 .118 .144 16.523 .898 .093 .530
97 97,33,0 Yes .220 .031 3.670 .046 .012 .118 .141 16.489 .201 .054 .536

127 127,1,0 Yes .305 .038 4.375 .050 .012 .122 .125 14.344 .164 .039 .400

163 163,7,6,3,0 No .495 .069 6.855 .314 .028 .160 .139 13.855 .635 .056 .324
163 163,57,49,29,0 Yes .445 .078 7.055 .066 .012 .158 .175 13.848 .148 .027 .355

191 191,9,0 Yes .648 .051 8.873 .052 .012 .243 .079 13.692 .081 .018 .375

223 223,33,0 Yes .775 .072 9.413 .073 .012 .313 .093 12.415 .094 .015 .404

233 233,74,0 No .945 .086 12.246 .358 .019 .321 .091 12.959 .379 .020 .340
233 233,159,0 Yes .951 .094 12.225 .070 .012 .320 .099 12.854 .074 .013 .336

a 4.5 � gain for F2233). It is safe to assume that similar improvements can be
achieved on the Yao-like scalar multiplication algorithms from [5].

We already mentioned that square root extractions are used in some pairing
computation algorithms. For instance, the main loop of Algorithm 2 from [13]
requires 7 multiplication, two squarings and two square root extractions in fields
of even characteristic. In this context, the overall gain obtained by faster square
root extraction is going to be less important than with point halving, but still
noticeable.

Square root friendly polynomials should be used when implementing formulæ that
make heavy use of square root extraction in fields of characteristic two. For solv-
ing quadratic equations then we advise to increase the amount of precomputed
half-traces to improve performance. In particular, the improvements in scalar
multiplication performance based on point halving obtained in [20] by using spe-
cial trinomial can be carried over to fields defined by pentanomials. Around 20%
can be expected for the point halving alone, with an impact of 11% to 14% on
the entire scalar multiplication.

Acknowledgement. The author acknowledges interesting discussions on the
subject with Peter Birkner, Toni Bluher, Darrel Hankerson, Alfred Menezes,
Mike Scott, and Nicolas Thériault.
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Thesis. Universitá degli Studi di Milano (in Italian) (2005)
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A Comparing Some Modular Reduction Routines

The use of a square root friendly polynomial can slow down modular reduction,
but we already observed that this performance loss is minimal. This is explained
by the fact that even though reduction does become more expensive, the amount
of additional operations is rather small.

As an example, we report here the reduction code for the two degree 163 poly-
nomials which we used. The input is given as eleven 32-bit words rA,r9,r8,...,
r1,r0 and the reduced output is computed in place in the six least significant
words r5,r4,r3,r2,r1,r0.

To reduce modulo X163 + X7 + X6 + X3 + 1, the number of necessary logical
operations between CPU registers is 74. Reduction modulo X163 +X57 +X49 +
X29 + 1 takes 89 logical operations. This example is the one with the largest
complexity increase in all the comparisons we worked out.

#define bf_mod_163_7_6_3_0(rA,r9,r8,r7,r6,r5,r4,r3,r2,r1,r0) do { \
/* reduce rA */ \
r5 ^= (rA) ^ ((rA) << 3) ^ ((rA) << 4) ^ ((rA) >> 3); \
r4 ^= ((rA) << 29); \
/* reduce r9 */ \
r5 ^= ((r9) >> 29) ^ ((r9) >> 28); \
r4 ^= (r9) ^ ((r9) << 3) ^ ((r9) << 4) ^ ((r9) >> 3); \
r3 ^= ((r9) << 29); \
/* reduce r8 */ \
r4 ^= ((r8) >> 29) ^ ((r8) >> 28); \
r3 ^= (r8) ^ ((r8) << 3) ^ ((r8) << 4) ^ ((r8) >> 3); \
r2 ^= ((r8) << 29); \
/* reduce r7 */ \

http://csrc.nist.gov/csrc/fedstandards.html
http://eprint.iacr.org/2007/192
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r3 ^= ((r7) >> 29) ^ ((r7) >> 28); \
r2 ^= (r7) ^ ((r7) << 3) ^ ((r7) << 4) ^ ((r7) >> 3); \
r1 ^= ((r7) << 29); \
/* reduce r6 */ \
r2 ^= ((r6) >> 29) ^ ((r6) >> 28); \
r1 ^= (r6) ^ ((r6) << 3) ^ ((r6) << 4) ^ ((r6) >> 3); \
r0 ^= ((r6) << 29); \
/* reduce the 29 most significant bits of r5 */ \
r6 = (r5) >> 3; r5 &= 0x00000007; \
r0 ^= (r6) ^ ((r6) << 3) ^ ((r6) << 6) ^ ((r6) << 7); \
r1 ^= ((r6) >> 26) ^ ((r6) >> 25); \

} while (0)

#define bf_mod_163_57_49_29_0(rA,r9,r8,r7,r6,r5,r4,r3,r2,r1,r0) do { \
/* reduce rA */ \
r6 ^= ((rA) << 22) ^ ((rA) << 14); \
r5 ^= ((rA) << 26) ^ ((rA) >> 3); \
r4 ^= ((rA) << 29); \
/* reduce r9 */ \
r6 ^= ((r9) >> 10) ^ ((r9) >> 18); \
r5 ^= ((r9) << 22) ^ ((r9) << 14) ^ ((r9) >> 6); \
r4 ^= ((r9) << 26) ^ ((r9) >> 3); \
r3 ^= ((r9) << 29); \
/* reduce r8 */ \
r5 ^= ((r8) >> 10) ^ ((r8) >> 18); \
r4 ^= ((r8) << 22) ^ ((r8) << 14) ^ ((r8) >> 6); \
r3 ^= ((r8) << 26) ^ ((r8) >> 3); \
r2 ^= ((r8) << 29); \
/* reduce r7 */ \
r4 ^= ((r7) >> 10) ^ ((r7) >> 18); \
r3 ^= ((r7) << 22) ^ ((r7) << 14) ^ ((r7) >> 6); \
r2 ^= ((r7) << 26) ^ ((r7) >> 3); \
r1 ^= ((r7) << 29); \
/* reduce r6 */ \
r3 ^= ((r6) >> 10) ^ ((r6) >> 18); \
r2 ^= ((r6) << 22) ^ ((r6) << 14) ^ ((r6) >> 6); \
r1 ^= ((r6) << 26) ^ ((r6) >> 3); \
r0 ^= ((r6) << 29); \
/* reduce the 29 most significant bits of r5 */ \
r6 = (r5) >> 3; r5 &= 0x00000007; \
r2 ^= ((r6) >> 7) ^ ((r6) >> 15); \
r1 ^= ((r6) << 25) ^ ((r6) << 17) ^ ((r6) >> 3); \
r0 ^= ((r6) << 29) ^ (r6); \

} while(0)
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Abstract. We analyze all the cases and propose the corresponding ex-
plicit formulae for computing 2D1 + D2 in one step from given divisor
classes D1 and D2 on genus 2 hyperelliptic curves defined over prime
fields. Compared with naive method, the improved formula can save two
field multiplications and one field squaring each time when the arith-
metic is performed in the most frequent case. Furthermore, we present a
variant which trades one field inversion for fourteen field multiplications
and two field squarings by using Montgomery’s trick to combine the two
inversions. Experimental results show that our algorithms can save up
to 13% of the time to perform a scalar multiplication on a general genus
2 hyperelliptic curve over a prime field, when compared with the best
known general methods.

Keywords: Genus 2 hyperelliptic curves, explicit formulae, Cantor’s
algorithm, Harley’s variant, efficient implementation.

1 Introduction

In 1988, Koblitz proposed for the first time to use the Jacobian of a hyperelliptic
curve (HEC) defined over a finite field to implement cryptographic protocols
based on the difficulty of the discrete logarithm problem [14]. During the past
few years, hyperelliptic curve cryptosystems (HECC) have become increasing
popular for use in practice to provide an alternative to the widely used elliptic
curve cryptosystems (ECC) because of much shorter operand length than that
of ECC. Moreover, recent research has also shown that HECC are well suited for
various software and hardware platforms and their performance is compatible to
that of ECC [1,4,21,22].

The most important and expensive operation in ECC and HECC is the scalar
multiplication by an integer k, i.e., computing a scalar multiple kP of a point P
on the points group or kD of a divisor class D on the Jacobian, where k might be
160 bits or more. Various techniques for efficiently computing the scalar multi-
plication have been proposed [2,13]. For general elliptic curves, Eisenträger et al.
proposed a very elegant method for accelerating the scalar multiplication [10].

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 155–172, 2007.
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Their improvements are based on the efficient computation of 2P + Q in one
step from given points P and Q on an elliptic curve. Since the point doubling is
slightly more expensive than the point addition in the group operations of ECC,
it is more efficient to calculate 2P + Q as P + (P + Q) than first doubling P
and then adding Q. This trick can save one field multiplication each time the
certain sequence of operations occurs. Furthermore, their method finds applica-
tions to simultaneous multiple scalar multiplication, the Elliptic Curve Method
of factorization, as well as the computation of the Weil and Tate pairings [10].
In the rest of this paper I represents a field inversion, M a field multiplication,
and S a field squaring.

This work generalizes Eisenträger et al.’s idea to genus 2 HECs over prime
fields where the group doubling costs two more field squarings than the group
addition [16]. We analyze all the possible cases during the computation procedure
of 2D1+D2 from given divisor classes D1 and D2 on a genus 2 HEC over Fp. For
the most frequent case, we propose a basic algorithm and its variant which cost
2I+42M+5S and 1I+56M +7S, respectively, to compute 2D1+D2 in one step.
Compared to the naive method using two separate group additions, our basic
algorithm can save 2M+1S. In the variant, which is faster whenever one inversion
is more expensive than about sixteen field multiplications, Montgomery’s trick [8]
is employed to combine the two inversions in the basic algorithm. Furthermore,
we implement the proposed algorithms on a Pentium processor to verify the
correctness and test the performance of our new explicit formulae. For genus 2
HECs over binary fields, the fastest doubling formula, which requires only half
the time of an addition, has been obtained by Lange and Stevens for a special
family of curves [17]. We note that the Eisenträger et al.’s trick can not be
applied to optimize the computation of 2D1 +D2 for the special family of genus
2 curves over binary fields when the group doubling is more efficient than the
group addition.

The rest of this paper is organized as follows: Section 2 gives a short introduc-
tion to the mathematical background of genus 2 HECs over prime fields.
Section 3 makes a thorough case study for the computation of 2D1 +D2, presents
the corresponding explicit formulae and analyzes the cost of the NAF scalar mul-
tiplication. Section 4 gives the experimental results of our newly derived explicit
formulae. Finally, Section 5 ends this contribution.

2 Mathematical Background on Genus 2 Hyperelliptic
Curves over Prime Fields

In this section, we present a brief introduction to the theory of genus 2 hyper-
elliptic curves over prime fields, restricting attention to the material which is
relevant to this work. For more details, the reader is referred to [3,6,15,18].

Let Fq be a finite field of characteristic p �= 2, q = pn, and let Fq denote the
algebraic closure of Fq. Let Fq(C)/Fq be a quadratic function field defined via
an equation

C : Y 2 = F (X) (1)
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where F (X) = X5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0 ∈ Fq[X ] is a monic and

square-free polynomial of degree 5. The curve C/Fq associated with this function
field is called a hyperelliptic curve of genus 2 defined over Fq. For our purpose
it is enough to consider a point P as an ordered pair P = (x, y) ∈ F

2

q which
satisfies y2 = F (x). Besides these tuples there is one point P∞ at infinity. The
inverse of P is defined as −P = (x,−y). We call a point P that satisfies P = −P
a ramification point. Note that for p �= 5 the transform X → X − f4/5 makes
the coefficient of X4 in F (X) zero.

The divisor class group JC(Fq) of C forms a finite Abelian group and there-
fore we can construct cryptosystems whose security is based on the difficulty
of the discrete logarithm problem on the Jacobian of C. Each element of the
Jacobian can be represented uniquely by a so-called reduced divisor [6]. Mum-
ford [19] showed that a reduced divisor can be represented by means of two
polynomials U(X), V (X) ∈ Fq[X ], where U(X) and V (X) satisfy the following
three conditions: (i) U(X) is monic, (ii) deg V (X) < deg U(X) ≤ 2, and (iii)
U(X) | V (X)2 − F (X). In the remainder of this paper, we will use the notation
[U, V ] for the divisor class represented by U(X) and V (X). For a genus 2 HEC,
we have commonly [U, V ] = [X2 + u1X + u0, v1X + v0].

Cantor’s algorithm [6] describes how to perform the group addition of two
divisor classes in Mumford’s representation. We review Cantor’s algorithm for
genus 2 HECs over prime fields in the following Algorithm 1. Cantor’s algorithm
only involves polynomial arithmetic over the finite field in which the divisor
class group is defined. However, there are some redundant computations of the
polynomial’s coefficients in this classical algorithm. In order to simplify Can-
tor’s algorithm, Harley proposed the first explicit formulae for a group addition
and a group doubling of divisor classes on JC(Fq) in 2000. In [11], Gaudry and
Harley significantly reduced the computational complexity of the group opera-
tions by distinguishing different cases according to the properties of the input
divisor classes. They presented a very efficient algorithm, which uses many mod-
ern polynomial computation techniques such as Chinese remainder theorem,
Newton’s iteration, and Karatsuba’s multiplication. Algorithm 2 gives a high
level description of Harley’s variant for adding two reduced divisor classes in the
most frequent case for genus 2 HECs over prime fields. The most frequent cases
mean that for the addition the inputs are two co-prime polynomials of degree 2,
which occur with the overwhelming probability [20], and the remainder cases are
called exceptional cases. For more details about Cantor’s algorithm and Harley’s
variant, the reader is referred to [3,16,22].

3 Efficient Algorithms for Computing 2D1 + D2

In this section we adapt the idea of [10] to genus 2 HECs over prime fields.
We obtain D3 = 2D1 + D2 by the following two steps: we first compute D

′
=

[U
′
, V

′
] = D1 + D2 and omit the computation of the coefficients of V

′
because

V
′
will not be used in the next phase. And then, we find D3 = D

′
+ D1. Hence,

we use two group additions to form 2D1 + D2 instead of a group addition and
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Algorithm 1. Cantor’s Algorithm for Group Addition (g = 2, Fp)

Input: D1 = [U1, V1], D2 = [U2, V2], C : Y 2 = F (X)

Output: D3 = [U3, V3] reduced with D3 ≡ D1 + D2

1. Compute d1 = gcd (U1, U2) = e1U1 + e2U2

2. Compute d = gcd (d1, V1 + V2) = c1d1 + c2(V1 + V2)

3. Let s1 = c1e1, s2 = c1e2, s3 = c2

4. U
′
= U1U2

d2

5. V
′
= s1U1V2+s2U2V1+s3(V1V2+F )

d
mod U

′

6. U3 = F−V 2

U
′ , V3 = −V

′
mod U3

7. make U3 monic

Algorithm 2. Harley’s Variant for Group Addition (g = 2, Fp)

Input: D1 = [U1, V1], D2 = [U2, V2], C : Y 2 = F (X)

Output: D3 = [U3, V3] reduced with D3 ≡ D1 + D2

1. K =
F−V 2

1
U1

(exact division)

2. S ≡ V2−V1
U1

mod U2

3. L = SU1

4. U3 = K−S(L+2V1)
U2

(exact division)

5. make U3 monic

6. V3 ≡ −(L + V1) mod U3

a group doubling. To derive explicit formulae, we first study all the exceptional
cases during the computation 2D1 + D2 based on the properties of the input
divisor classes and the immediate result D

′
. We then determine how many field

operations are required to calculate 2D1 + D2 in one step in the most frequent
case. Furthermore, we also propose a variant of our basic algorithm by using
Montgomery’s trick to compute the two inversions simultaneously at cost of
some multiplications, which will be more efficient whenever a field inversion is
more expensive than about sixteen field multiplications.

3.1 Explicit Formulae in Exceptional Cases

In this subsection we discuss all the exceptional cases appearing in the procedure
of calculating 2D1 + D2. Suppose that D1 = [U1, V1] and D2 = [U2, V2] are two
reduced divisor classes as the inputs of the composition step of the Cantor’s
algorithm. The final output is D3 = 2D1 +D2 = [U3, V3]. We need to distinguish
the following cases:

1. U1 is of degree zero, this is only possible in the case [U1, V1] = [1, 0], i.e. D1

is the zero element of the divisor class group. The result of 2D1 + D2 is the
second class D2 = [U2, V2].



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 159

2. U1 is of degree one and U2 has degree zero, one or full degree. Let U1 = X+u10

and V1 = v10 �= 0 is a constant.
A. Assume deg U2 = 0, i.e., D2 is the zero element of the divisor class group.

Therefore, the result of 2D1 + D2 is 2D1 and we double the divisor D1

with 1I + 4M + 1S to obtain

U3 = U2
1 = (X + u10)2, (2)

V3 =
F

′
(−u10)(X + u10)

2v10
+ v10.

B. Assume deg U2 = 1, i.e., U2 = X + u20 and V2 = v20 �= 0 is a constant.
i. If U1 = U2 and V1 = −V2, the result of D1 + D2 is the zero element

[1, 0]. Hence, we get 2D1 + D2 = [1, 0] + D1 = D1;
ii. If U1 = U2 and V1 = V2, the result of 2D1 + D2 is 3D1, which can be

computed with 1I + 12M + 4S (See Table 5 in the appendix).
iii. Otherwise the result of D1 + D2 is [U

′
, V

′
] where

U
′
= U1U2 = (X + u10)(X + u20), (3)

V
′
=

(v20 − v10)X + v20u10 − v10u20

u10 − u20
.

And then we use Table 6 (see the appendix) to obtain 2D1 + D2 in
an additional 1I + 18M + 4S.

C. Assume deg U2 = 2, i.e. U2 = X2 + u21X + u20 and V2 = v21X + v20.
Then the corresponding divisors are given by D1 = (P1) − (P∞) and
D2 = (P2) + (P3)− 2(P∞), with Pi �= P∞ (i = 1, 2, 3).
i. If U2(−u10) �= 0 then P1 and −P1 do not occur in D2. This case is

dealt with Table 7 (see the appendix). We can obtain 2D1 + D2 at
the cost of I + 28M + 4S.

ii. Otherwise if V2(−u10) = −v10 the −P1 occurs in D2 and the result
of D1 + D2 is D

′
= [U

′
, V

′
] = [X + u21− u10, v21(−u21 + u10) + v20]

because −u21 equals the sum of the x−coordinates of the points.
And then we compute D3 using (2), unless D2 = 2(−P1) − 2(P∞)
where we can obtain D3 = 2D1 + D2 = [1, 0].

iii. The remaining case is that P1 occurs in D2. If D2 = 2(P1)−2(P∞) =
2D1, which holds if u21 = 2u10 and u20 = u2

10, then we have 2D1 +
D2 = 2D2. Therefore, we obtain D3 by doubling a class D2 of order
different from 2 and with first polynomial of full degree as in 3.A.
Otherwise we first use Table 6 (see the appendix) to compute D

′
=

[U
′
, V

′
] = [X+u

′
1X+u

′
0, v

′
1X+v

′
0] = D1+D2 with 1I+18M+4S and

then differentiate the following three cases to obtain D3 = D
′
+ D1:

a. If U
′
(−u10) �= 0 then P1 and −P1 do not occur in the support

set of D
′
. In this case, D3 can be calculated with the explicit

addition formula of the case of deg U1 = 1 and deg U2 = 2 in
[16] at the cost of 1I + 10M + S.
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b. Otherwise If V
′
(−u10) = −v10 then the −P1 occurs in the sup-

port set of D
′
. In this case, D3 = [X+u

′
1−u10, v

′
1(−u

′
1+u10)+v

′
0].

c. The remaining case is that P1 occurs in D
′
. This case can be

handled with steps 2∼7 of Table 6 (see the appendix) at the cost
of 1I + 11M + 4S.

3. U1 is of degree two and U2 has degree zero, one or two. Let U1 = X2 +
u11X + u10 and V1 = v11X + v10. The corresponding divisor is given by
D1 = (P1) + (P2)− 2(P∞) with Pi �= P∞ (i = 1, 2).
A. Assume deg U2 = 0, i.e. D2 is the zero element of the divisor class group.

Therefore, the result of 2D1 + D2 is 2D1 and we are in the case of
doubling a divisor of order different from 2 and with first polynomial of
full degree. Again we need to consider two subcases depending on wether
a point Pi in the support has order 2. The point Pi = (xi, yi) is equal to
its opposite if and only if yi = 0. To check for this case we compute the
resultant of U1 and V1.
i. If res(U1, V1) �= 0 then we are in the usual case where both points are

not equal to their opposite. This can be computed with the doubling
explicit formula of the most frequent case in [16].

ii. Otherwise we compute the gcd(U1, V1) = (X − xi) to get the coordi-
nate of Pi and double the divisor [X +u11 +xi, v11(−u11−xi)+ v10]
to obtain 2D1 = 2(Pj)− 2(P∞) (j �= i) with (1).

B. Assume deg U2 = 1, i.e. U2 = X + u20 and V2 = v20 �= 0 is a constant.
The corresponding divisor is given by D2 = (P3)− (P∞) with P3 �= P∞.
i. If U1(−u20) �= 0 then P3 and −P3 do not occur in D1. This case is

dealt with Table 8 (see the appendix). We can obtain 2D1 + D2 at
the cost of I + 46M + 7S.

ii. Otherwise if V1(−u20) = −v10 then −P3 occurs in D1 and the result
of D1 + D2 is D

′
= [U

′
, V

′
] = [X + u11− u20, v11(−u11 + u20) + v10]

because −u11 equals the sum of the x−coordinates of the points.
And then we compute D3 = D1 +D

′
using steps 2∼7 of Table 6 (see

the appendix) in an additional 1I + 11M + 4S.
iii. The remaining case is that P3 occurs in D1. If D1 = 2D2 = 2(P3)−

2(P∞), which holds if u11 = 2u20 and u10 = u2
20, then we first use

Table 5 (see the appendix) to compute D
′
= 3D2 with 1I+12M+4S.

Otherwise we first obtain D
′

= D1 + D2 using Table 6 (see the
appendix) with 1I + 18M + 4S. And then we consider the following
two cases:
a. If res(U1, U

′
) �= 0 then there is no point in the support of D1

which is equal to a point or its opposite in the support of D
′
.

We deal with this case with the addition explicit formula of the
most frequent case in [16].

b. If the above resultant is zero, then D
′

= (P1) + (P3) − 2(P∞)
or D

′
= (−P1) + (P3) − 2(P∞). We first obtain gcd(U1, U

′
) =

(X − up1). And then we calculate D3 = D1 + D
′

at cost of
1I +32M +3S and 1I +7M with Table 9 (see the appendix) for
these two subcases, respectively.
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C. Assume deg U2 = 2, i.e. U2 = X2 + u21X + u20 and V2 = v21X + v20.
The corresponding divisor is given by D2 = (P3) + (P4) − 2(P∞) with
Pi �= P∞ (i = 3, 4).
i. Let U1 = U2. This means that the x−coordinates of Pi and Pi+2

(i = 1, 2) are equal for an appropriate ordering.
a. If V1 ≡ −V2 mod U1 then we obtain 2D1 +D2 = D1 +[1, 0] = D1.
b. If V1 = V2 then we have 2D1 + D2 = 3D1. We first double D1 to

get D
′
based on the two cases in 3.A. If the degree of U

′
is one,

then we need to consider three subcases in 2.C.iii. Otherwise, we
differentiate two subcases in 3.B.iii to compute D3.

c. The remaining case is that Pi = Pi+2 and Pj �= Pj+2 (i, j ∈ {1, 2}
and i �= j) is the opposite of Pj+2. Without loss of generality,
we assume P1 = P3 and P2 �= P4 is the opposite of P4. We first
calculate D

′
= D1 + D2 = 2(P1)− 2(P∞) by using (1) to double

the divisor class [X−(v10−v20)/(v21−v11), V1((v10−v20)/(v21−
v11))]. And then we calculate D3 = D

′
+ D1 by considering two

subcases in 3.B.iii.
ii. For the remainder cases U1 �= U2, the following possibilities may

appear:
a. If res(U1, U2) �= 0 then there is no point in the support of D1

which is equal to a point or its opposite in the support of D2.
We first only compute the first part U

′
of D

′
with the addition

explicit formula of the most frequent case in [16]. And then we
require to consider the following three subcases:
�. If the degree of U

′
is one, which appears when s

′
1 = 0 (see

Table 1), we first calculate the second part V
′
of D

′
with the

addition explicit formula of the special case in [16]. And then
we need to consider three subcases in 2.C.iii to compute D3.

�. If deg U
′
= 2 and res(U1, U

′
) = 0, we first calculate the second

part V
′

of D
′

with the addition explicit formula of the most
frequent case in [16]. And then we compute D3 with Table 9
(see the appendix).

�. The remainder case is deg U
′
= 2 and res(U1, U

′
) �= 0. This

is the most frequent case and we will deal with this case in the
next subsection.

b. If res(U1, U2) = 0 then we first compute D
′
with Table 9 (see the

appendix). If the degree of U
′

is one, then we need to consider
three subcases in 2.C.iii. Otherwise, we differentiate two subcases
in 3.B.iii to compute D3.

Although there are many exceptional cases during the computation of 2D1 +
D2, most frequently we are in the case of gcd (U1, U2) = gcd (U1, U

′
) = 1 and

U
′

being quadratic. Therefore, if we can reduce the computational complexity
of explicit formulae in the most frequent case, the performance of the whole
cyptosystem will be improved on average.
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3.2 Explicit Formulae in the Most Frequent Case

In this subsection, we present efficient explicit formulae for computing 2D1 +D2

in the most frequent case where U1, U2 and U
′
are quadratic and gcd (U1, U2) =

gcd (U1, U
′
) = 1. Studying Harley’s variant carefully, we note that the polyno-

mial V
′

in the intermediate result D
′

only is used to obtain S in the second
group addition (see Step 2 in Algorithm 2). Therefore, when we substitute the
expression of V

′
into S, we find the following important lemma which results in

a significant speedup for calculating 2D1 + D2.

Lemma 1. Let C be a genus 2 HEC over Fq given by the equation (1). Assume
that D1 = [U1, V1], D2 = [U2, V2] and D

′
= [U

′
, V

′
] = D1 + D2 are reduced

divisor classes in the Jacobian JC(Fq) of C and satisfy that U1, U2 and U
′

are
quadratic, and gcd (U1, U2) = gcd (U1, U

′
) = 1. Let S and S

′
satisfy the congru-

ent relations: S ≡ V2−V1
U1

mod U2 and S
′ ≡ V

′−V1
U1

mod U
′
, then we have

S
′ ≡ −S − 2V1

U1
mod U

′
.

Proof. From Harley’s variant (see Algorithm 2), we know that

V
′ ≡ −(SU1 + V1) mod U

′
.

Substitute V
′
into S

′
, we obtain

S
′ ≡ V

′ − V1

U1
≡ −SU1 − 2V1

U1
≡ −S − 2V1

U1
mod U

′
.

Lemma 1 suggests that we can eliminate the computation of V
′

during the
procedure of calculating 2D1 + D2. Table 1 presents our new explicit formula
(Basic Algorithm) for computing 2D1 + D2 on a genus 2 HEC over Fp in the
most frequent case.

Table 1. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp – Basic Version

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10, V1 = v11X + v10;

U2 = X2 + u21X + u20, V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2;

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 3M, 1S

i1 = u21 − u11, w = u10 − u20, i0 = i1u21 + w, r = i0w + i21u20;

2 Compute the pseudo-inverse I = i1X + i0 ≡ r/U1 mod U2: –
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Table 1. (continued)

3 Compute S
′
= s

′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 5M

w0 = v20 − v10, w1 = v21 − v11, w2 = i0w0, w3 = i1w1, s
′
0 = w2 − u20w3;

s
′
1 = (i0 + i1)(w0 + w1)− w2 − w3(1 + u21); If s

′
1 = 0, see 3.C.ii.a.�.

4 Compute S” = X + s0/s1 = X + s
′
0/s

′
1 and s1: 1I, 5M, 1S

w1 = (rs
′
1)

−1(= 1/r2s1), w2 = rw1(= 1/s
′
1), w3 = rw2(= 1/s1);

w4 = w2
3, w5 = s

′
1w1, s”

0 = s
′
0w2;

5 Compute U
′
= (s(l + 2V1) − k)/U2 = X2 + u

′
1X + u

′
0: 4M

u
′
0 = (s”

0 − u21)(s”
0 − i1) + u11s”

0 + w + 2v11w3 + (u11 + u21)w4;

u
′
1 = 2s”

0 − i1 − w4;

6 Compute the resultant r̃ of U1 and U
′
: 4M, 1S

ĩ1 = u
′
1 − u11, w̃ = u10 − u

′
0, ĩ0 = ĩ1u

′
1 + w̃, r̃ = ĩ0w̃ + ĩ21u

′
0;

7 Compute the pseudo-inverse Ĩ = ĩ1X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′
= s̃

′
1X + s̃

′
0 = r̃S̃ ≡ −r̃S

′
/r − 2V1Ĩ mod U

′
: 7M

r̃
′

= r̃w5, w̃0 = ĩ0v10, w̃1 = ĩ1v11, s̃
′
0 = −[r̃

′
s
′
0 + 2(w̃0 − u

′
0w̃1)];

s̃
′
1 = −[r̃

′
s
′
1 + 2((̃i0 + ĩ1)(v10 + v11)− w̃0 − w̃1(1 + u

′
1))]; If s̃

′
1 = 0, see below

9 Compute S̃
′′

= X + s̃0/s̃1 = X + s̃
′
0/s̃

′
1 and s̃1: 1I, 5M, 2S

w̃1 = (r̃s̃
′
1)−1(= 1/r̃2s̃1), w̃2 = r̃w̃1(= 1/s̃

′
1), w̃3 = s̃

′2
1 w̃1(= s̃1);

w̃4 = r̃w̃2(= 1/s̃1), w̃5 = w̃2
4, s̃

′′
0 = s̃

′
0w̃2;

10 Compute l̃
′
= S̃

′′
u1 = X3 + l̃

′
2X2 + l̃

′
1X + l̃

′
0: 2M

l̃
′
2 = u11 + s̃

′′
0 , l̃

′
1 = u11 s̃

′′
0 + u10, l̃

′
0 = u10 s̃

′′
0 ;

11 Compute U3 = (s̃(l̃
′
+ 2V1) − k)/U ′ = X2 + u31X + u30: 3M

u30 = (s̃
′′
0 − u

′
1)(s̃

′′
0 − ĩ1)− u

′
0 + l̃

′
1 + 2v11w̃4 + (u

′
1 + u11)w̃5;

u31 = 2s̃
′′
0 − ĩ1 − w̃5;

12 Compute V3 = −(l̃
′
+ V1) mod U3 = v31X + v30: 4M

w1 = l̃
′
2 − u31, w2 = u31w1 + u30 − l̃

′
1, v31 = w2w̃3 − v11;

w2 = u30w1 − l̃
′
0, v30 = w2w̃3 − v10;

Sum s̃
′
1 �= 0 2I, 42M, 5S

9’ Compute s̃0: 1I, 1M

w̃1 = r̃−1, s̃0 = s̃
′
0w̃1;

10’ Compute U3 = (k − s̃(l̃ + 2V1))/U ′ = X + u30: 1S

u30 = −(u
′
1 + u11 + s̃2

0);

11’ Compute V3 = −(l̃ + V1) mod U3 = v30: 2M

w1 = s̃0(u
′
1 + u30) + v11, w2 = s̃0 + v10, v30 = u

′
0w1 − w2;

Sum s̃
′
1 = 0 2I, 31M, 4S

Our explicit formula of the basic version requires 2I + 42M + 5S to calculate
2D1+D2 for genus 2 HECs over Fp. However, the naive method which separately
computes the two divisor class additions will cost 2I + 44M + 6S [16]. There-
fore, our improvements can save 2M + 1S each time the operation 2D1 + D2 is
performed.

We note that there exist two inversions in the above explicit formula of the
basic version. Therefore, we propose a variant of the basic algorithm where we
delay the inversion in Step 4 of Table 1 and combine it with the inversion in Step
6 of Table 1 using Montgomery’s trick of simultaneous inversions [8]. Table 2
presents the explicit formula for this variant of the basic algorithm.
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Table 2. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp – Variant

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10, V1 = v11X + v10;

U2 = X2 + u21X + u20, V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 3M, 1S

i1 = u21 − u11, w = u10 − u20, i0 = i1u21 + w, r = i0w + i21u20;

2 Compute the pseudo-inverse I = i1X + i0 ≡ r/U1 mod U2: –

3 Compute S
′
= s

′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 5M

w0 = v20 − v10, w1 = v21 − v11, w2 = i0w0, w3 = i1w1, s
′
0 = w2 − u20w3;

s
′
1 = (i0 + i1)(w0 + w1)− w2 − w3(1 + u21); If s

′
1 = 0, see 3.C.ii.a.�.

4 Monic S” = X + s0/s1 = X + s
′
0/s

′
1: –

5 Compute U
′
= (s(l + 2V1) − k)/U2 = X2 + u

′
1X + u

′
0: 7M, 2S

sq = s
′2
1 , w1 = i1s

′
1, w2 = s

′
0 − w1, R = r2, u

′
1 = s

′
1(s

′
0 + w2)− R;

u
′
0 = s

′
0(w2 − w1) + i0sq + 2rv11s

′
1 + R(u11 + u21);

6 Compute the resultant r̃ of U1 and U
′
: 6M, 1S

ĩ1 = u
′
1 − u11sq, w̃ = u10sq − u

′
0, ĩ0 = u

′
1 ĩ1 + w̃sq , r̃ = ĩ0w̃ + ĩ21u

′
0;

7 Compute the pseudo-inverse Ĩ = ĩ1X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′
= s̃

′
1X + s̃

′
0 = r̃S̃ ≡ −r̃S

′
/r − 2V1Ĩ mod U

′
: 11M

w̃0 = ĩ0v10, w̃1 = ĩ1v11, w̃2 = rsq, s̃
′
0 = −[r̃s

′
0 + 2w̃2(w̃0 − u

′
0w̃1)];

s̃
′
1 = −[r̃s

′
1 + 2w̃2((̃i0 + ĩ1sq)(v10 + v11)− w̃0 − w̃1(sq + u

′
1))];

If s̃
′
1 = 0, see below

9 Compute S̃
′′

= X + s̃0/s̃1 = X + s̃
′
0/s̃

′
1 and s̃1: 1I, 12M, 3S

t1 = r̃s̃
′
1, t2 = (t1w̃2)

−1, t3 = w̃2t2, t4 = t1t2, t5 = rt4, t6 = sqt4;

w̃1 = rt3, t7 = (t6s̃
′
1)2, w̃3 = t7w̃1, w̃4 = r̃2w̃1, w̃5 = w̃2

4, s̃
′′
0 = r̃s̃

′
0t3;

10 Adjust: 3M

u
′
1 = u

′
1t5, u

′
0 = u

′
0t5, ĩ1 = ĩ1t5;

11 Compute l̃
′
= S̃

′′
u1 = X3 + l̃

′
2X2 + l̃

′
1X + l̃

′
0: 2M

l̃
′
2 = u11 + s̃

′′
0 , l̃

′
1 = u11 s̃

′′
0 + u10, l̃

′
0 = u10s̃

′′
0 ;

12 Compute U3 = (s̃(l̃
′
+ 2V1) − k)/U ′ = X2 + u31X + u30: 3M

u30 = (s̃
′′
0 − u

′
1)(s̃

′′
0 − ĩ1)− u

′
0 + l̃

′
1 + 2v11w̃4 + (u

′
1 + u11)w̃5;

u31 = 2s̃
′′
0 − ĩ1 − w̃5;

13 Compute V3 = −(l̃
′
+ V1) mod U3 = v31X + v30: 4M

w1 = l̃
′
2 − u31, w2 = u31w1 + u30 − l̃

′
1, v31 = w2w̃3 − v11;

w2 = u30w1 − l̃
′
0, v30 = w2w̃3 − v10;

Sum s̃
′
1 �= 0 I, 56M, 7S

9’ Compute s̃0 and Adjust: 1I, 7M

w̃1 = (r̃sq)−1, t1 = sqw̃1, t2 = r̃w̃1, s̃0 = s̃
′
0t1sq, u

′
1 = u

′
1t2, u

′
0 = u

′
0t2;

10’ Compute U3 = (k − s̃(l̃ + 2V1))/U ′ = X + u30: 1S

u30 = −(u
′
1 + u11 + s̃2

0);

11’ Compute V3 = −(l̃ + V1) mod U3 = v30: 2M

w1 = s̃0(u
′
1 + u30) + v11, w2 = s̃0 + v10, v30 = u

′
0w1 − w2;

Sum s̃
′
1 = 0 I, 38M, 6S
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In Table 2, the variant of the basic algorithm needs I +56M +7S to calculate
2D1+D2 for genus 2 HECs over Fp. Compared to our explicit formula of the basic
version, we trade 1I for 14M+2S. Therefore, when we implement genus 2 HECC
on some application environments where a field inversion is more expensive than
fourteen field multiplications and two field squarings, the variant in Table 2 will
be faster than the basic algorithm in Table 1.

3.3 Cost of the NAF Scalar Multiplication

The above trick of efficiently computing 2D1 + D2 has found important appli-
cations in some scalar multiplication algorithms such as NAF, JSF and so on
[7]. In this subsection, we only compare the average cost per bit scalar when
implementing NAF scalar multiplication algorithm with the naive method and
our newly derived formulae, respectively, because the NAF scalar multiplication
algorithm will be used in our implementation in the next section. The results of
comparisons are listed in the following Table 3 (The pre- and post-computations
are neglected as in [7]).

Table 3. Average Cost Per Bit for NAF on Genus 2 HECs over Fp

Method Cost of 2D1 + D2 Cost per bit scalar S = 0.8M

Naive 2I + 44M + 6S 4
3
I + 88

3
M + 16

3
S 1.33I + 33.6M

Basic Algorithm (Table 1) 2I + 42M + 5S 4
3
I + 86

3
M + 5S 1.33I + 32.67M

Variant (Table 2) 1I + 56M + 7S 1I + 100
3

M + 17
3

S 1I + 37.87M

From Table 3, we can see clearly that our basic algorithm saves about 2.8%
cost for per bit scalar compared to the naive method and the break-even point
of the performance between the basic algorithm and the variant is still when one
inversion is equivalent to about sixteen field multiplications.

4 Implementation Results

We implement the proposed algorithms on a Pentium-4 @2.8GHz processor and
with C programming language in order to check the correctness and test the
performance of our explicit formulae. Microsoft Developer Studio 6 is used for
compilation and debugging. For genus 2 HECC over Fq, the most efficient attack
is Pollard’s Rho algorithm which takes O(

√
#JC(Fq)) group operations. This

means that for genus 2 HECC a 80-bit finite field is enough to achieve the same
security level as 160-bit ECC. Considering the security and efficiency of the
implementation, we choose a Mersenne prime p = 289 − 1 as the characteristic
of the prime field Fp and develop a fast library for the required field and group
operations. The implementation of Fp-arithmetic is basically due to [5,9] and
further optimized by using the idea in [12] to yield a fast modular reduction
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Table 4. Timings of Group Operation on Genus 2 HECs over F289−1

Method 2D1 + D2 Scalar Multiplication Performance

in µs in ms Improvement

Naive 23.1 2.85 –

Basic Algorithm (Table 1) 21.7 2.78 2.46%

Variant (Table 2) 16.4 2.48 12.98%

procedure. Table 4 summarizes our implementation results and comparisons for
the group operation 2D1 + D2 and the NAF scalar multiplication algorithm.

The experimental results of Table 4 show that when compared to the im-
plementation with the naive method the performance of genus 2 HECC can be
improved by 2.46% and 12.98% with our basic algorithm and the variant, re-
spectively. Furthermore, due to the high MI -ratio (the ratio of the timing of one
inversion to one multiplication) in the target processor, the variant is about 10%
faster than the basic algorithm.

5 Conclusion

In this paper, we propose the efficient algorithms for computing 2D1 + D2 in
one step for genus 2 HECs over prime fields. Our basic algorithm is the direct
generalization of Eisenträger et al.s’ idea, which can save 2M + 1S compared
with the naive method in the most frequent case. The performance of the vari-
ant will be better than that of the basic algorithm whenever a field inversion
is more expensive than about sixteen field multiplications. Based our new ex-
plicit formulae, we analyze the average cost of per bit scalar in the NAF scalar
multiplication algorithm and implement fast genus 2 HECC over F289−1. The
experimental results show that we can obtain up to 13% performance gain when
implementing genus 2 HECC with our newly derived explicit formulae.
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Appendix: Explicit Formulae in Exceptional Cases

In this appendix, we give the explicit addition formulae for the exceptional cases
during the computation procedure of 2D1 + D2, which have been discussed in
detail in subection 3.1. These cases usually appear with a very low probability
and therefore have not important influence on the performance of genus 2 HECC.
Tables 5 to 9 list the detailed steps and the corresponding cost of the group
addition in the exceptional cases. In Tables 5 to 9, ADDi+j→k denotes the divisor
class addition D3 = [U3, V3] = D1+D2 = [U1, V1]+[U2, V2], and TRIi→k denotes
the divisor class tripling D3 = [U3, V3] = 3D1 = 3[U1, V1], where i, j and k are
the degrees of U1, U2 and U3, respectively.

Table 5. Explicit Formula for 3D1 on a HEC of Genus 2 over Fp: TRI1→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1), U1 = X + u10, V1 = v10,

Output Reduced Divisor D3 = (U3, V3) = 3D1,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute V2 = v21X + v20 (See Equation (1)): 1I, 4M, 2S

ũ10 = u2
10, ṽ10 = v2

10, t1 = 5ũ10, t2 = t1 + 3f3, t3 = u10t2;

t4 = t3 − 2f2, t5 = u10t4, t6 = t5 + f1, t7 = (2v10)−1;

v21 = t6t7, v20 = u10v21 + v10;

2 Compute d1 = gcd (U1, U2) = X + u10 = e1U1 + e2U2: –

e1 = 1, e2 = 0;

3 Compute d = gcd (d1, V1 + V2) = 1 = c1d1 + c2(V1 + V2): –

s1 = c1e1 = c1, s2 = c2e2 = 0, s3 = c2 = t7;

4 Compute U
′
= U3

1 d−2 = (X + u10)
3: –

5 Compute V
′

= v
′
2X2 + v

′
1X + v

′
0 ≡ [s1U1V2 + s3(V1V2 + F )]d−1 mod U

′
: 4M, 1S

ṽ21 = v2
21, v

′
2 = t7(f2 − ṽ21 − u10(t1 + t2));

v
′
1 = v21 + 2u10v

′
2, v

′
0 = v20 + ũ10v

′
2;

6 Compute U3 = X2 + u31X + u30 = (F − V
′2)/U

′
: 2M, 1S

u31 = −(v
′2
2 + 3u10), u30 = f3 + t1 + ũ10 + v

′
2(3u10v

′
2 − 2v

′
1);

7 Compute V3 = v31X + v30 = −V
′

mod U3: 2M

v31 = u31v
′
2 − v

′
1, v30 = u30v

′
2 − v

′
0;

Sum 1I, 12M, 4S
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Table 6. Explicit Formula for D1 + D2 on a HEC of Genus 2 over Fp: ADD1+2→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X + u10, V1 = v10, U2 = (X + u10)(X + u20), V2 = v21X + v20

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute V2 = v21X + v20 (See Equation (2)): 1I, 7M

t1 = u10 − u20, t2 = v20 − v10, t3 = 2v10, t4 = v20u10, t5 = v10u20;

t6 = (t1t3)
−1, t7 = t3t6, t8 = t1t6, v21 = t2t7, v20 = (t4 − t5)t7;

2 Compute d1 = gcd (U1, U2) = X + u10 = e1U1 + e2U2: –

e1 = 1, e2 = 0;

3 Compute d = gcd (d1, V1 + V2) = 1 = c1d1 + c2(V1 + V2): –

s1 = c1e1 = c1, s2 = c2e2 = 0, s3 = c2 = t8;

4 Compute U
′
= U1U2d−2 = (X + u10)

2(X + u20): –

5 Compute V
′

= v
′
2X2 + v

′
1X + v

′
0 ≡ [s1U1V2 + s3(V1V2 + F )]d−1 mod U

′
: 6M, 3S

ũ10 = u2
10, ũ20 = u2

20, ṽ21 = v2
21, w1 = u10 + u20, w2 = u10 + w1;

w3 = f2 − ṽ21 − w2(f3 + ũ10 + ũ20) − 2ũ10w1, v
′
2 = w3t8;

v
′
1 = v

′
2w1 + v21, w4 = u10u20, v

′
0 = v

′
2w4 + v20;

6 Compute U3 = X2 + u31X + u30 = (F − V
′2)/U

′
: 3M, 1S

u31 = −(v
′2
2 + w2), w5 = u10(w1 + u20), u30 = f3 − 2v

′
1v

′
2 − w5(u31 + 1);

7 Compute V3 = v31X + v30 = −V
′

mod U3: 2M

v31 = u31v
′
2 − v

′
1, v30 = u30v

′
2 − v

′
0;

Sum 1I, 18M, 4S
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Table 7. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp: ADD1+2→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X + u10, V1 = v10, U2 = X2 + u21X + u20, V2 = v21X + v20

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 1M

i0 = u10 − u21, r = i0u10 + u20;

2 Compute the pseudo-inverse I = −X + i0 ≡ r/U1 mod U2: –

3 Compute S
′
= s

′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 3M

w0 = v20 − v10, s
′
1 = u10v21 − w0, s

′
0 = i0w0 + u20v21;

4 Compute S = s1X + s0 = (s
′
1/r)X + (s

′
0/r): –

5 Compute U
′
= (k − S(l + 2V1))/U2 = X2 + u

′
1X + u

′
0: 5M, 3S

R = r2, w0 = u10 + u21, w1 = f3 + u2
10, u

′
1 = −(s

′2
1 + Rw0);

u
′
0 = R(w1 − u20 + u21w0)− s1(s1i0 + 2s0);

6 Compute the resultant r̃ of U1 and U
′
: 2M

ĩ0 = Ru10 − u
′
1, r̃ = ĩ0u10 + u

′
0;

If r̃ = 0 then factor U
′

= (X + u10)(X + u
′
20) and see Table 6

7 Compute the pseudo-inverse Ĩ = −X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′
= s̃

′
1X + s̃

′
0 = r̃S̃ ≡ −S

′ − 2V1Ĩ mod U
′
: 2M

s̃
′
1 = 2v10 − s

′
1, s̃

′
0 = −(Rs

′
0 + 2v10 ĩ0);

9 Compute S̃ = s̃1X + s̃0: 1I, 6M

w̃ = (r̃R)−1, t1 = Rw̃, t2 = r̃w̃, s̃1 = Rs̃
′
1t1, s̃0 = s̃

′
0t1;

10 Adjust: 3M

u
′
1 = u

′
1t2, u

′
0 = u

′
0t2, ĩ0 = ĩ0t2;

11 Compute U3 = (k − S̃(l̃ + 2V1))/U
′
= X2 + u31X + u30: 3M, 1S

w̃0 = u10 + u
′
1, u31 = −(s̃2

1 + w̃0), u30 = w1 − u
′
0 + u

′
1w̃0 − s̃1(s̃1 ĩ0 + 2s̃0);

12 Compute V3 = −(l̃ + V1) mod U3 = v31X + v30: 3M

v31 = s̃1(u31 − u10)− s̃0, v30 = s̃1u30 − s̃0u10 − v10;

Sum I, 28M, 4S
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Table 8. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp: ADD2+1→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10, V1 = v11X + v10, U2 = X + u20, V2 = v20

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r = U1 mod U2: 1M

r = u10 − (u11 − u20)u20;

2 Compute the inverse i ≡ 1/U1 mod U2: –

3 Compute S = s0 ≡ (V2 − V1)i mod U2: 1M

s0 = v20 − v10 − v11u20;

4 Compute K = (F − V 2
1 )/U1 = X3 + k2X2 + k1X + k0: 1S

k1 = f3 + u2
11 − u10;

5 Compute U
′
= (k − S(l + 2V1))/U2 = X2 + u

′
1X + u

′
0: 6M, 2S

R = r2, u
′
1 = −(s2

0 + R(u11 + u20)), u
′
0 = Rk1 − s0(s0u11 + 2rv11) − u20u

′
1;

6 Compute the resultant r̃ of U1 and U
′
: 6M, 1S

ĩ1 = u
′
1 − Ru11, w̃ = Ru10 − u

′
0, ĩ0 = ĩ1u

′
1 + Rw̃, r̃ = ĩ0w̃ + ĩ21u

′
0;

If r̃ = 0 then see Table

7 Compute the pseudo-inverse Ĩ = ĩ1X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′
= s̃

′
1X + s̃

′
0 = r̃S̃ ≡ −S − 2V1Ĩ mod U

′
: 8M

w̃0 = ĩ0v10, w̃1 = ĩ1v11, s̃
′
0 = −(Rrs0 + 2(w̃0 − u

′
0w̃1));

s̃
′
1 = −2((̃i0 + Rĩ1)(v10 + v11)− w̃0 − w̃1(R + u

′
1)); If s̃

′
1 = 0 See Below

9 Compute S̃
′′

= X + s̃0/s̃1 = X + s̃
′
0/s̃

′
1 and s̃1: 1I, 12M, 3S

w̃0 = r̃s̃
′
1, w̃1 = (Rw̃0)−1, R1 = w̃0w̃1, R2 = R2

1, R3 = R1R2, w̃2 = r̃w̃1R2;

w̃3 = s̃
′2
1 w̃1R3, w̃4 = r̃w̃2R3, w̃5 = w̃2

4, s̃
′′
0 = s̃

′
0w̃2R2;

10 Adjust: 3M

u
′
1 = u

′
1R1, u

′
0 = u

′
0R1, ĩ1 = ĩ1R1;

11 Compute l̃
′
= S̃

′′
u1 = X3 + l̃

′
2X2 + l̃

′
1X + l̃

′
0: 2M

l̃
′
2 = u11 + s̃

′′
0 , l̃

′
1 = u11 s̃

′′
0 + u10, l̃

′
0 = u10 s̃

′′
0 ;

12 Compute U3 = (s̃(l̃ + 2V1) − k)/U ′ = X2 + u31X + u30: 3M

u30 = (s̃
′′
0 − u

′
1)(s̃

′′
0 − ĩ1)− u

′
0 + l̃

′
1 + 2v11w̃4 + (u

′
1 + u11)w̃5;

u31 = 2s̃
′′
0 − ĩ1 − w̃5;

13 Compute V3 = −(l̃ + V1) mod U3 = v31X + v30: 4M

w1 = l̃
′
2 − u31, w2 = u31w1 + u30 − l̃

′
1, v31 = w2w̃3 − v11;

w2 = u30w1 − l̃
′
0, v30 = w2w̃3 − v10;

Sum s̃
′
1 �= 0 I, 46M, 7S

9’ Compute s̃0: 1I, 5M

w̃1 = (r̃R)−1, t1 = r̃w̃1, t2 = Rw̃1, s̃0 = Rs̃
′
0t2;

10’ Adjust: 2M

u
′
1 = u

′
1t1, u

′
0 = u

′
0t1;

11’ Compute U3 = (k − s̃(l̃ + 2V1))/U ′ = X + u30: 1S

u30 = −(u
′
1 + u11 + s̃2

0);

12’ Compute V3 = −(l̃ + V1) mod U3 = v30: 2M

w1 = s̃0(u
′
1 + u30) + v11, w2 = s̃0 + v10, v30 = u

′
0w1 − w2;

Sum s̃
′
1 = 0 I, 31M, 5S
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Table 9. Explicit Formula for D1 + D2 on a HEC of Genus 2 over Fp: ADD2+2→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10 = (X + up1)(X + up2), V1 = v11X + v10,

U2 = X2 + u21X + u20 = (X + up1)(X + up3), V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute d1 = gcd (U1, U2) = X + up1 = e1U1 + e2U2: –

e1 = 1, e2 = 0;

2 Compute d = gcd (d1, V1 + V2) = c1d1 + c2(V1 + V2): –

If d = X + u10 then see below, else d = 1 and we have

s1 = c1e1 = c1, s2 = c2e2 = 0, s3 = c2;

3 Compute U
′

= U1U2d−2 = X4 + u
′

3X3 + u
′

2X2 + u
′

1X + u
′

0: 3M

u
′

3 = u11 + u21, t0 = u11u21, u
′

2 = u10 + u20 + t0, u
′

0 = u10u20;

u
′

1 = (u11 + u10)(u20 + u21) − t0 − u
′

0;

4 Compute V
′

= v
′

3X3 + v
′

2X2 + v
′

1X + v
′

0 ≡ [s1U1V2 + s3(V1V2 + F)]d−1 mod U
′

: 1I, 20M, 1S

t1 = v11 + v21, t2 = u11v21, t3 = u21v20, t4 = v11v21, t5 = v10v20;

t6 = (v10 + v11)(v20 + v21) − t4 − t5, t7 = (u11 + u21)(v20 + v21) − t2 − t3;

t8 = v10 + v20 − t1up1, t9 = f3 − t1v21 − u
′

2 + u
′2
3 , t10 = (t8t9)

−1;

c2 = t9t10, v
′

3 = c2t9, v
′

2 = c2(f2 + t4 − t1(t2 + v20) − u
′

1 + u
′

2u
′

3);

v
′

1 = c2(f1 + t6 − t1t7 − u
′

0 + u
′

1u
′

3), v
′

0 = c2(f0 + t5 − t1t3 + u
′

0u
′

3);

5 Compute U3 = X2 + u31X + u30 = (V
′2

− F )/U
′

: 5M, 2S

t1 = t28t10, u31 = t1(2v
′

2 − t1) − u
′

3, u30 = (v
′

2t1)
2 + 2v

′

1t1 − u
′

2 − u
′

3u31;

6 Compute V3 = v31X + v30 = −V
′

mod U3: 4M

t2 = u31v
′

3 − v
′

2, v31 = u30v
′

3 − v
′

1 − u31t2, v30 = −(u30t2 + v
′

0);

Sum d = 1 1I, 32M, 3S

3’ Compute U3 = U1U2d−2 = (X + up2)(X + up3): 1M

u31 = up2 + up3, u30 = up2up3;

4’ Compute V
′

= v31X + v30: 1I, 6M

t0 = (up2 − up3)−1, t1 = v11up2 + v10, t2 = v21up3 + v20;

t3 = t2 − t1, v31 = t0t3, t4 = t2up2 − t1up3, v30 = t0t4;

Sum d = X + u10 I, 7M
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Abstract. Efficient computation of the Tate pairing is an important
part of pairing-based cryptography. Recently with the introduction of
the Duursma-Lee method special attention has been given to the fields
of characteristic 3. Especially multiplication in F36m , where m is prime,
is an important operation in the above method. In this paper we propose
a new method to reduce the number of F3m -multiplications for multipli-
cation in F36m from 18 in recent implementations to 15. The method is
based on the fast Fourier transform and its explicit formulas are given.
The execution times of our software implementations for F36m show the
efficiency of our results.

Keywords: Finite field arithmetic, fast Fourier transform, Lagrange in-
terpolation, Tate pairing computation.

1 Introduction

Efficient multiplication in finite fields is a central task in the implementation of
most public key cryptosystems. A great amount of work has been devoted to
this topic (see [1] or [2] for a comprehensive list). The two types of finite fields
which are mostly used in cryptographic standards are binary finite fields of type
F2m and prime fields of type Fp, where p is a prime (cf. [3]). Efforts to efficiently
fit finite field arithmetic into commercial processors resulted into applications
of medium characteristic finite fields like those reported in [4] and [5]. Medium
characteristic finite fields are fields of type Fpm , where p is a prime slightly smaller
than the word size of the processor, and has a special form that simplifies the
modular reduction. Mersenne prime numbers constitute an example of primes
which are used in this context. The security parameter is given by the length of
the binary representations of the field elements, and the extension degree m is
selected appropriately. Due to security considerations, the extension degree for
fields of characteristic 2 or medium characteristic is usually chosen to be prime.
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With the introduction of the method of Duursma and Lee for the computation
of the Tate pairing (see [6]), fields of type F3m for m prime have attracted
special attention. Computing the Tate pairing on elliptic curves defined over
F3m requires computations both in F3m and in F36m . In [7] calculations are
implemented using the tower of extensions

F3m ⊂ F32m ⊂ F36m .

Multiplications in F32m and F36m are done using 3 and 6 multiplications, respec-
tively. This requires a total 18 multiplications in F3m . In this paper we make
use of the same extension tower, using 3 multiplications in F3m to multiply el-
ements in F32m . Since we represent the elements of F36m as polynomials with
coefficients in F32m , we can use Lagrange interpolation to perform the multi-
plication. This requires only 5 multiplications in F32m , thus reducing the total
number of F3m multiplications from 18 to 15. The method that we propose has a
slightly increased number of additions in comparison to the Karatsuba method.
Notice however that for m > 90 (which is the range used in the cryptographic
applications) a multiplication in F3m requires many more resources than an ad-
dition, therefore the overall resource consumption is reduced, as also shown by
the results of our software experiments shown in Sect. 4.

In comparison to the classical multiplication method, the Karatsuba method
(see [8], [9], and [7]) reduces the number of multiplications while introducing
extra additions. Since the cost of addition grows linearly in the length of the
polynomials, when the degree of the field extension gets larger multiplication
will be more expensive than addition. Hence the above tradeoff makes sense.
The negligibility of the cost of addition compared to that of multiplication has
gone so far that the theory of multiplicative complexity of bilinear maps, espe-
cially polynomial multiplication, takes into account only the number of variable
multiplications (see e.g. [10] and [11]). Obviously this theoretical model is of
practical interest only when the number of additions and the costs of scalar
multiplications can be kept small. A famous result in the theory of multiplica-
tive complexity establishes a lower bound of 2n + 1 for the number of variable
multiplications needed for the computation of the product of two polynomials
of degree at most n. This lower bound can be achieved only when the field con-
tains enough elements (see [12] or [13]). The proof of the theorem uses Lagrange
evaluation-interpolation, which is also at the core of our approach. This is sim-
ilar to the short polynomial multiplication (convolution) methods for complex
or real numbers in [14]. In order for this method to be especially efficient, the
points at which evaluation and interpolations are done are selected as primitive
(2n + 1)st roots of unity. In a field of type F32m , fifth roots of unity do not exist
for odd m. We overcome this problem by using fourth roots of unity instead. No-
tice that a primitive fourth root of unity always exists in a field of type F32m . We
use an extra point to compute the fifth coefficient of the product. An advantage
of using a primitive fourth root of unity is that the corresponding interpolation
matrix will be a 4 × 4 DFT matrix, and the evaluations and interpolations can
be computed using radix-2 FFT techniques (see [15] or [16]) to save some fur-
ther number of additions and scalar multiplications. The current work can be
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considered as the continuation of that in [17] for combination of the linear-time
multiplication methods with the classical or Karatsuba ones to achieve efficient
polynomial multiplication formulas.

Our work is organized as follows. Section 2 is devoted to explaining how
evaluation-interpolation can be used in general to produce short polynomial mul-
tiplication methods. In Sect. 3 we show how to apply this method to our special
case, and produce explicit formulas for multiplication of polynomials of degree at
most 2 over F32m . In Sect. 4 we fine-tune our method using FFT techniques, and
give timing results of software implementations and also explicit multiplication
formulas. Section 5 shows how our results can be used in conjunction with the
method of Duursma-Lee for computing the Tate pairing on some elliptic and
hyperelliptic curves. Section 6 contains some final remarks and conclusions.

2 Multiplication Using Evaluation and Interpolation

We now explain the Lagrange evaluation-interpolation for polynomials with co-
efficients in Fpm . Throughout this section m is not assumed to be prime (in the
next section we will replace m by 2m). Let

a(z) = a0 + a1z + · · ·+ anzn ∈ Fpm [z]
b(z) = a0 + a1z + · · ·+ anzn ∈ Fpm [z]

be given such that
pm > 2n. (1)

We represent the product of the two polynomials by

c(z) = a(z)b(z) = c0 + c1z + · · ·+ c2nz2n

and let e = (e0, · · · , e2n) ∈ F
2n+1
pm be a vector with 2n + 1 distinct entries.

Evaluation at these points is given by the map φe

φe : Fpm [z]→ F
2n+1
pm

φe(f) = (f(e0), · · · , f(e2n)).

Let A, B, C ∈ F
2n+1
pm denote the vectors (a0, · · · , an, 0, · · · , 0),

(b0, · · · , bn, 0, · · · , 0), and (c0, · · · , c2n), respectively. Using the above notation
we have

φe(a) = VeA
T , φe(b) = VeB

T , and φe(c) = VeC
T ,

where Ve is the Vandermonde matrix

Ve =

⎛

⎜
⎜
⎜
⎝

1 e0 · · · e2n
0

1 e1 · · · e2n
1

...
...

. . .
...

1 e2n · · · e2n
2n

⎞

⎟
⎟
⎟
⎠

.
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The 2n+1 coefficients of the product c(z) = a(z) ·b(z) can be computed using
interpolation applied to the evaluations of c(z) at the chosen 2n + 1 (distinct)
points of Fpm . These evaluations can be computed by multiplying the evaluations
of a(z) and b(z) at these points. This can be formally written as

φe(c) = φe(a) ∗ φe(b)

where we denote componentwise multiplication of vectors by ∗. Equivalently, if
we let We be the inverse of the matrix Ve, we have that

CT = We(φe(a) ∗ φe(b))

which allows us to compute the vector C, whose entries are the coefficients of
the polynomial c(z).

When condition (1) is satisfied, the polynomial multiplication methods con-
structed in this way have the smallest multiplicative complexity, i.e. the number
of variable multiplications in Fpm achieves the lower bound 2n + 1 (see [12]).
Indeed (1) can be relaxed to hold even for pm = 2n. In this case, a virtual ele-
ment∞ is added to the finite field. This corresponds to the fact that the leading
coefficient of the product is the product of the leading coefficients of the factors.

Application of this method to practical situations is not straightforward, since
the number of additions increases and eventually dominates the reduction in the
number of multiplications. In order for this method to be efficient, n must be
much smaller than pm. An instance of this occurs when computing in extensions
of medium size primes (see e.g. [13]). The case of small values of p is more
complicated, even for small values of n. We recall that in this case the entries of
the matrix Ve are in Fpm and are generally represented as polynomials of length
m− 1 over Fp. For multiplication of Ve by vectors to be efficient, the entries of
this matrix must be chosen to be sparse. However, this gives no control on the
sparsity of the entries of We. Indeed one requirement for the entries of We, in
the basis B, to be sparse is that the inverse of the determinant of Ve, namely

∏

0≤i,j≤2n,i�=j

(ei − ej)

has a sparse representation in B. We are not aware of any method which can be
used here. On the other hand, it is known that if the ei’s are the elements of
the geometric progression ωi, 0 ≤ i ≤ 2n, and ω is a (2n + 1)st primitive root
of unity, then the inverse We equals 1/(2n + 1) times the Vandermonde matrix
whose ei’s are the elements of the geometric progression of ω−1 (see [2]). We
denote these two matrices by Vω and Vω−1 , respectively. The above fact suggests
that choosing powers of roots of unity as interpolation points should enable us
to control the sparsity of the entries of the corresponding Vandermonde matrix.
Roots of unity are used in different contexts for multiplication of polynomials,
e.g. in the FFT (see [2]) or for the construction of short multiplication methods
in [14]. In the next section we discuss how to use fourth roots of unity to compute
multiplication in Fp6m , using only 5 multiplications in F32m .
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3 Multiplication Using Roots of Unity

Elements of F36m can be represented as polynomials of degree at most 2 over
F32m . Therefore, their product is given by a polynomial of degree at most 4
with coefficients in F32m . In order to use the classical evaluation-interpolation
method we would need a primitive fifth root of unity. This would require 32m−1
to be a multiple of 5, and this is never the case unless m is even (recall that
cryptographic applications require m to be prime). However using the relation

c4 = a2b2 (2)

we can compute the coefficients of c(x) via
⎛

⎜
⎜
⎝

1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

c0

c1

c2

c3

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a(1)b(1)− c4

a(ω)b(ω)− c4

a(ω2)b(ω2)− c4

a(ω3)b(ω3)− c4

⎞

⎟
⎟
⎠ (3)

where ω is a fourth root of unity. Now we apply (2) and (3) to find explicit
formulas for multiplying two polynomials of degree at most 2 over F32m , where
m > 2 is a prime.

We follow the tower representation of [7], i.e.

F3m ∼= F3[x]/(f(x))
F32m

∼= F3m [y]/(y2 + 1) (4)

where f(x) ∈ F3[x] is an irreducible polynomial of degree m. Denote by s the
equivalence class of y. Note that for odd m > 2, 4 	 |3m − 1 and hence y2 + 1 is
irreducible over F3m since the roots of y2 + 1 are fourth roots of unity and are
not in F3m . Let

a(z) = a0 + a1z + a2z
2, b(z) = b0 + b1z + b2z

2 (5)

be polynomials in Fp32m [z]≤2. Our goal is computing the coefficients of the poly-
nomial

c(z) = a(z)b(z) = c0 + c1z + · · · c4z
4.

Evaluation of a(z) and b(z) at (1, s, s2, s3) = (1, s,−1,−s) can be done by mul-
tiplying the Vandermonde matrix of powers of s

Vs =

⎛

⎜⎜
⎝

1 1 1 1
1 s −1 −s
1 −1 1 −1
1 −s −1 s

⎞

⎟⎟
⎠ (6)

by the vectors (a0, a1, a2, 0)T and (b0, b1, b2, 0)T , respectively. This yields the
vectors

φe(a) =

⎛

⎜
⎜
⎝

a0 + a1 + a2

a0 + sa1 − a2

a0 − a1 + a2

a0 − sa1 − a2

⎞

⎟
⎟
⎠ and φe(b) =

⎛

⎜
⎜
⎝

b0 + b1 + b2

b0 + sb1 − b2

b0 − b1 + b2

b0 − sb1 − b2

⎞

⎟
⎟
⎠ .
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Let φe(c) = φe(a) ∗ φe(b) be the componentwise product of φe(a) and φe(b)

φe(c) =

⎛

⎜
⎜
⎝

P0

P1

P2

P3

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

(a0 + a1 + a2)(b0 + b1 + b2)
(a0 + sa1 − a2)(b0 + sb1 − b2)
(a0 − a1 + a2)(b0 − b1 + b2)

(a0 − sa1 − a2)(b0 − sb1 − b2)

⎞

⎟
⎟
⎠ .

Using (2) and (3) we get
⎛

⎜
⎜
⎝

c0

c1

c2

c3

⎞

⎟
⎟
⎠ = Ws

⎛

⎜
⎜
⎝

P0 − P4

P1 − P4

P2 − P4

P3 − P4

⎞

⎟
⎟
⎠ ,

where P4 = a2b2 and

Ws = V −1
s =

⎛

⎜⎜
⎝

1 1 1 1
1 −s −1 s
1 −1 1 −1
1 s −1 −s

⎞

⎟⎟
⎠ (7)

Thus the explicit formulas for the coefficients of the product are

c0 = P0 + P1 + P2 + P3 − P4

c1 = P0 − sP1 − P2 + sP3

c2 = P0 − P1 + P2 − P3

c3 = P0 + sP1 − P2 − sP3

c4 = P4.

(8)

4 Efficient Implementation

We owe the efficiency of our method to the Cooley-Tukey factorization of the
DFT matrix ([15]). The matrices Vs and Ws in (6) and (7) are not sparse, but
they are the DFT matrices of the fourth roots of unity s and s3, respectively.
Hence they can be factored as a product of two sparse matrices as shown in (9)
and (10).

Vs =

⎛

⎜
⎜
⎝

1 1 1 1
1 s −1 −s
1 −1 1 −1
1 −s −1 s

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 1 0 0
0 0 1 s
1 −1 0 0
0 0 1 −s

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞

⎟
⎟
⎠ , (9)

Ws =

⎛

⎜
⎜
⎝

1 1 1 1
1 −s −1 s
1 −1 1 −1
1 s −1 −s

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 1 0 0
0 0 1 −s
1 −1 0 0
0 0 1 s

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞

⎟
⎟
⎠ . (10)

The factorizations in (9) and (10) allow us to efficiently compute the product of
the matrices Vs and Ws with vectors. Notice also that the product of an element
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ω = us + v ∈ F3m [s]≤1 ∼= F32m with s equals vs− u. Hence multiplying by s an
element of F32m is not more expensive than a change of sign.

Notice that in alternative to the Vandermonde matrix corresponding to s we
could use the matrix

⎛

⎜
⎜
⎝

1 0 0 0
1 1 1 1
1 −1 1 −1
1 s −1 −s

⎞

⎟
⎟
⎠

whose inverse is
⎛

⎜
⎜
⎝

1 0 0 0
s 1− s −1− s s
−1 −1 −1 0
−s 1 + s −1 + s −s

⎞

⎟
⎟
⎠ .

Obviously the latter matrices are sparse but since they do not possess any special
structure up to our knowledge, multiplying them by vectors is more expensive
than multiplying Vs and Ws.

Multiplying elements in the field F36·97 is required in the Tate pairing compu-
tation on the group of F397-rational points of the elliptic curves

Ed : y2 = x3 − x + d d ∈ {−1, 1}

defined over F3. An efficient algorithm for the computation of the Tate pairings
on these curves is discussed in [6].

We have implemented the multiplication over F36·97 using the Karatsuba
method, the Montgomery method from [18], and our proposed method on a
PC with an AMD Athlon 64 processor 3500+. The processor was running at
2.20 GHz and we have used the NTL library (see [19]) for multiplication in F397 .
Please note that although we have chosen m = 97 for benchmarking purposes,
these methods can be applied to any odd m > 2 as mentioned in Sect. 3.

Table 1. Comparison of the execution times of the Karatsuba and Montgomery mul-
tipliers with the proposed method for F36m

Multiplication method Elapsed time (ms)

Karatsuba method 1.698
Montgomery method 1.605
Proposed method 1.451

The execution times are shown in Table 1. For the Karatsuba and the proposed
methods we have used the tower of extensions

F397 ⊂ F32·97 ⊂ F36·97 ,
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where

F397 ∼= F3[x]/(x97 + x16 + 2)

F32·97 ∼= F397 [y]/(y2 + 1)

F36·97 ∼= F32·97 [z]/(z3 − z − 1),

whereas for the Montgomery method the representation

F36·97 ∼= F397 [y]/(y6 + y − 1)

has been used. Our implementations show that the new method is almost 14%
faster than the Karatsuba and 10% faster than the Montgomery method, which
is almost the ratio of saved multiplications. This provides further evidence for
the fact that the number of multiplications in F397 is a good indicator of the
performance of the method for F36·97 .

Our multiplications are based on the following formulas. Let α, β ∈ F36·m be
given as:

α = a0 + a1s + a2r + a3rs + a4r
2 + a5r

2s,

β = b0 + b1s + b2r + b3rs + b4r
2 + b5r

2s,

where a0, · · · , b5 ∈ F3m and s ∈ F 2·m
3 , r ∈ F

6·m
3 are roots of y2+1 and z3−z−1,

respectively. Let their product γ = αβ ∈ F36·m be

γ = c0 + c1s + c2r + c3rs + c4r
2 + c5r

2s.

The coefficients ci, for 0 ≤ i ≤ 5 are computed using:

P0 = (a0 + a2 + a4)(b0 + b2 + b4)
P1 = (a0 + a1 + a2 + a3 + a4 + a5)(b0 + b1 + b2 + b3 + b4 + b5)
P2 = (a1 + a3 + a5)(b1 + b3 + b5)
P3 = (a0 − a3 − a4)(b0 − b3 − b4)
P4 = (a0 + a1 + a2 − a3 − a4 − a5)(b0 + b1 + b2 − b3 − b4 − b5)
P5 = (a1 + a2 − a5)(b1 + b2 − b5)
P6 = (a0 − a2 + a4)(b0 − b2 + b4)
P7 = (a0 + a1 − a2 − a3 + a4 + a5)(b0 + b1 − b2 − b3 + b4 + b5)
P8 = (a1 − a3 + a5)(b1 − b3 + b5)
P9 = (a0 − a3 − a4)(b0 + b3 − b4)
P10 = (a0 + a1 − a2 + a3 − a4 − a5)(b0 + b1 − b2 + b3 − b4 − b5)
P11 = (a1 − a2 − a5)(b1 − b2 − b5)
P12 = a4b4

P13 = (a4 + a5)(b4 + b5)
P14 = a5b5

c0 = −P0 + P2 − P3 − P4 + P10 + P11 − P12 + P14;
c1 = P0 − P1 + P2 + P4 + P5 + P9 + P10 + P12 − P13 + P14

c2 = −P0 + P2 + P6 − P8 + P12 − P14

c3 = P0 − P1 + P2 − P6 + P7 − P8 − P12 + P13 − P14

c4 = P0 − P2 − P3 + P5 + P6 − P8 − P9 + P11 + P12 − P14

c5 = −P0 + P1 − P2 + P3 − P4 + P5 − P6 + P7 − P8 + P9 − P10+
P11 − P12 + P13 − P14
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5 Other Applications of the Proposed Method

Consider the family of hyperelliptic curves

Cd : y2 = xp − x + d d ∈ {−1, 1} (11)

defined over Fp, for p = 3 mod. 4. Let m be such that (2p, m) = 1 (in practice
m will often be prime), and consider the Fpm -rational points of the Jacobian
of Cd. An efficient implementation of the Tate pairing on these groups is given
by Duursma and Lee in [6] and [20], where they extend analogous results of
Barreto et. al. and of Galbraith et. al. for the case p = 3. Notice that this family
of curves includes the elliptic curves Ed that we mentioned in the last section.
In the aforementioned papers it is also shown that the curve Cd has embedding
degree 2p. In order to compute the Tate pairing on this curve, one works with
the tower of field extensions

Fpm ⊂ Fp2m ⊂ Fp2pm

where the fields are represented as

Fp2m ∼= Fpm [y]/(y2 + 1) and Fp2pm ∼= Fp2m [z]/(zp − z + 2d).

Let a(z), b(z) ∈ Fp2pm [z]≤p−1,

a(z) = a0 + a1z + . . . + ap−1z
p−1,

b(z) = b0 + b1z + . . . + bp−1z
p−1.

Then c(z) = a(z)b(z) has 2p− 1 coefficients, two of which can be computed as

c0 = a0b0 and c2(p−1) = a2(p−1)b2(p−1).

In order to determine the remaining 2p− 3 coefficients, we can write a Vander-
monde matrix with entries in F

∗
p2m using, e.g., the elements

1, 2, . . . , p− 1,±s, . . . ,±p− 3
2

s,
p− 1

2
s.

Another option is writing a Vandermonde matrix using a primitive
2(p− 1)-st root of unity combined with the relation:

c2(p−1) = a2(p−1)b2(p−1).

Notice that there is an element of order 2(p− 1) in Fp2 , since 2(p− 1)|p2 − 1. If
a is a primitive element in Fp2 , then ω = a(p+1)/2 is a primitive 2(p− 1)st root
of unity.
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6 Conclusion

In this paper we derived new formulas for multiplication in F36m , which use only
15 multiplications in F3m . Being able to efficiently multiply elements in F36m is a
central task for the computation of the Tate pairing on elliptic and hyperelliptic
curves. Our method is based on the fast Fourier transform, slightly modified
to be adapted to the finite fields that we work on. Our software experiments
show that this method is at least 10% faster than other proposed methods in
the literature. We have also discussed use of these ideas in conjunction with the
general methods of Duursma-Lee for Tate pairing computations on elliptic and
hyperelliptic curves.
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Abstract. In this paper we re-visit distinguishing attacks. We show
how to generalize the notion of linear distinguisher to arbitrary sets. Our
thesis is that our generalization is the most natural one. We compare it
with the one by Granboulan et al. from FSE’06 by showing that we can
get sharp estimates of the data complexity and cumulate characteristics
in linear hulls. As a proof of concept, we propose a better attack on their
toy cipher TOY100 than the one that was originally suggested and we
propose the best known plaintext attack on SAFER K/SK so far. This
provides new directions to block cipher cryptanalysis even in the binary
case. On the constructive side, we introduce DEAN18, a toy cipher which
encrypts blocks of 18 decimal digits and we study its security.

1 Introduction and Mathematical Background

In the digital age, information is always seen as a sequence of bits and, naturally,
most practical block ciphers and cryptanalytic tools assume that the text space
is made of binary strings. In the literature, a block cipher over a finite set M is
commonly defined as a set of permutations Ck : M→M indexed by a key k ∈ K,
with M = {0, 1}� [36]. This restriction is quite questionable though, as it is easy
to think of specific settings in which it could be desirable to adapt the block size
to the data being encrypted. For example, when considering credit card numbers,
social security numbers, payment orders, schedules, telegrams, calendars, string
of alphabetical characters,... it seems that there is no reason what so ever to
restrict to binary strings. Whereas an apparently straightforward solution would
be to encode the data prior encryption, the loss in terms of simplicity (inevitably
affecting the security analysis) and of efficiency would be unfortunate.

Although most modern block ciphers (e.g., [9, 1, 48, 21, 2]) are defined on a
binary set, practical and efficient examples of block ciphers defined on a set
of arbitrary size exist (see for example Schroeppel’s “omnicipher” Hasty Pud-
ding [45]). Some others, although still defined on binary sets, use a mixture of
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group laws over the same set. For example, IDEA [30] combines three group
structures: exclusive bit or, addition modulo 216 and a tweaked multiplication
modulo 216 + 1. Designing a block cipher with an arbitrary block space can be
particularly challenging since the state of the art concerning alternate group
structures is very limited. Although differential cryptanalysis [5] (through the
theory of Markov ciphers [29]) can be specified over an arbitrary group, lin-
ear cryptanalysis [34] is based on a metric (the linear probability) that sticks
to bit strings. Applying it to a non-binary block cipher would at least require
to generalize this notion. Although several generalizations of linear cryptanal-
ysis exist [23, 50, 15, 28, 46, 16, 18, 17, 37, 20, 19, 42, 47, 24], to the best of our
knowledge, none easily applies to, say, modulo 10-based block ciphers. So far,
only Granboulan et al. [13] provide a sound treatment on non-binary cipher
but mostly address differential cryptanalysis. We show that, for linear crypt-
analysis, their data complexity cannot be precisely estimated. Furthermore, no
cumulating effect of “linear hull” seems possible. We propose another notion of
nonlinearity which fixes all those drawbacks and makes us believe that it is the
most natural one.

Outline. In the three first sections of this paper, we re-visit distinguishing
attacks on random sources (like stream ciphers or pseudo-random generators)
and on random permutations (like block ciphers), in the spirit of Baignères et
al. [3], but without assuming that domains are vector spaces. Consequently, the
only structure we can consider on these sets is that of finite Abelian groups. In
particular, we reconsider linear, optimal, and statistical distinguishers against
random sources and linear distinguishers against block ciphers.

The following sections apply this theory to TOY100 and SAFER K/SK (on
which we devise the best known plaintext attack so far, showing that our gen-
eralization can be useful even in the binary case). On the constructive side, we
introduce DEAN18, a toy cipher which encrypts blocks of 18 decimal digits.

Notations. Throughout this paper, random variables X, Y, . . . are denoted by
capital letters, whilst their realizations x ∈ X , y ∈ Y, . . . are denoted by small
letters. The cardinal of a set X is denoted |X |. The probability function of a
random variable X following a distribution D is denoted Pr X∈DX [x], PD(x), or
abusively Pr X [x], when the distribution is clear from the context. A sequence
X1, X2, . . . , Xn of n random variables is denoted Xn. Similarly, a sequence
x1, x2, . . . , xn of realizations is denoted xn. We call support of a distribution
D the set of all x ∈ X such that PD(x) �= 0. As usual, “iid” means “independent
and identically distributed”. 1A is 1 if the predicate A is true, 0 otherwise. The
distribution function of the standard normal distribution is denoted

Φ(t) =
1√
2π

∫ t

−∞
e−

1
2 u2

du .

Mathematical Background. Let G be a finite group of order n. We let L2(G)
denote the n-dimensional vector space of complex-valued functions f on G. The
conjugate f of f is defined by f(a) = f(a) for all a ∈ G. We define an inner
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product on L2(G) by (f1, f2) =
∑

a∈G f1(a)f2(a). The Euclidean norm of f ∈
L2(G) is simply ‖f‖2 = (f, f)1/2 = (

∑
a |f(a)|2)1/2. Consequently, L2(G) is a

Hilbert Space. A character of G is a homomorphism χ : G → C×, where C×

is the multiplicative group of nonzero complex numbers. Then χ(1) = 1 and
χ(a1a2) = χ(a1)χ(a2) for all a1, a2 ∈ G. Clearly, χ(a) is a nth root of unity,
hence χ(a) = χ(a)−1. The product of two characters χ1 and χ2 is defined as
χ1χ2(a) = χ1(a)χ2(a) for all a ∈ G. The character 1 defined by 1(a) = 1 for all
a ∈ G is the neutral element for this operation. Clearly, χ−1 = χ. The set Ĝ of
all characters of G is the dual group of G and is isomorphic to G.

Lemma 1 (Theorems 4.6 and 4.7 in [40]). Let G be a finite Abelian group
of order n, and let Ĝ be its dual group. If χ ∈ Ĝ (resp. a ∈ G) then

∑

a∈G

χ(a) =

{
n if χ = 1,
0 otherwise,

resp.
∑

χ∈Ĝ

χ(a) =

{
n if a = 1,
0 otherwise.

If χ1, χ2 ∈ Ĝ (resp. a, b ∈ G) then

∑

a∈G

χ1(a)χ2(a) =

{
n if χ1 = χ2,
0 otherwise,

resp.
∑

χ∈Ĝ

χ(a)χ(b) =

{
n if a = b,
0 otherwise.

If χ1, χ2 ∈ Ĝ, we deduce (χ1, χ2) = n if χ1 = χ2 and 0 otherwise. Therefore, the
n characters of Ĝ is an orthogonal basis of the vector space L2(G).

Definition 2 (Fourier transform). The Fourier transform of f ∈ L2(G) is
the function f̂ ∈ L2(Ĝ) such that f̂(χ) = (f, χ) for all χ ∈ Ĝ.

If f̂ ∈ L2(Ĝ) is the Fourier transform of f ∈ L2(G), the Fourier inversion is

f =
1
n

∑
χ∈Ĝf̂(χ)χ.

Theorem 3 (Plancherel’s formula). If f̂ ∈ L2(Ĝ) is the Fourier transform
of f ∈ L2(G), then ‖f̂‖2 =

√
n‖f‖2.

Consider the particular case where G = {0, 1}k, χu(a) = (−1)u•a for all u, a ∈ G,
and where • denotes the inner dot product in G. The mapping u �→ χu is an
isomorphism between G and Ĝ. Consequently, when G = {0, 1}k any character
χ of G can be expressed as χ(a) = (−1)u•a for some u ∈ G. In linear crypt-
analysis, u is called a mask and there is a one-to-one mapping between masks
and characters. So, it seems reasonable to generalize linear cryptanalysis on any
finite Abelian group by using characters instead of masks.

2 Distinguishing a Biased Source of Finite Support

We consider a source generating a sequence of d iid random variables Zd fol-
lowing a distribution Ds of finite support Z. We wonder whether Ds = U or
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Ds = D (where U is the uniform distribution over Z) knowing that these two
events are equiprobable and that one of them is eventually true. An algorithm
which takes a sequence of d realizations zd as input and outputs either 0 or 1 is
a distinguisher D limited to d samples. The ability to distinguish a distribution
from another is the advantage of the distinguisher and is defined by

Advd
D =

∣
∣
∣Pr Ud [D outputs 1]− Pr Dd [D outputs 1]

∣
∣
∣, (1)

which is a quantity an adversary would like to maximize. If the set Z has the
structure of an Abelian group, we denote it G and denote by n its cardinality.

2.1 Optimal Distinguishers

Due to the Neyman-Pearson lemma, the best distinguisher is based on the max-
imum likelihood strategy. It consists in comparing PrUd [zd] and PrDd [zd].

Definition 4 (Baignères et al. [3]). The Squared Euclidean Imbalance ( SEI)
of a distribution D of finite support Z is defined by

Δ(D) = |Z|
∑

z∈Z

(
PD(z)− 1

|Z|
)2

= |Z|
∑

z∈Z
PD(z)2 − 1 = |Z| 2−H2(D) − 1

where H2(D) is the Rényi entropy of order 2.

It was shown in [3] that when using d samples Z1, . . . , Zd ∈ Z the advantage of
the best distinguisher A is such that

Advd
D ≈ 1− 2Φ(−

√
λ/2), (2)

where λ = d ·Δ(D). When λ = 1 we obtain Advd
D ≈ 0.38. Note also that when

λ	 1, the previous equation simplifies to Advd
D ≈

√
λ
2π , whereas, when λ
 1,

it simplifies to Advd
D ≈ 1 − 4e−λ/8√

2πλ
. This motivates the rule of thumb that the

data complexity for the best distinguisher should be d ≈ 1/Δ(D).
Using Theorem 3, we obtain the following expression for the SEI.

Lemma 5. Given a distribution D whose support is a finite Abelian group G of
order n, we have Δ(D) = n‖PD − PU‖22 = ‖P̂D − P̂U‖22 =

∑
χ∈Ĝ\{1}

∣
∣P̂D(χ)

∣
∣2.

2.2 Linear Probabilities

Typically, performing a linear cryptanalysis [34] against a source of bit-strings
of length � consists in analyzing one bit of information about each sample zi, by
means of a scalar product between a (fixed) mask u ∈ {0, 1}�. By measuring the
statistical bias of this bit, it is sometimes possible to infer whether Ds = U (in
which case, the bias should be close to 0) or Ds = D (in which case, the bias may
be large). Chabaud and Vaudenay [8] adopted the linear probability (LP) [35]
defined by LPD(u) = (2 PrX∈D{0,1}� [u • X = 0]− 1)2 = (EX∈D{0,1}�((−1)u •X))2

as a fundamental measure for linear cryptanalysis. Given the fact that the source
is not necessarily binary, it seems natural to generalize the LP as follows.
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Definition 6. For all group character χ : G→ C×, the linear probability of a
distribution D over G with respect to χ is defined by

LPD(χ) = |EA∈DG (χ(A))|2 =
∣
∣∑

a∈Gχ(a)PD(a)
∣
∣2 =

∣
∣P̂D(χ)

∣
∣2.

The LP of χ is simply the square of magnitude of the discrete Fourier transform
of the probability distribution. In the particular case where G = {0, 1}�, we
can see that for any u we have LPD(u) = LPD(χu), so that Definition 6 indeed
generalizes the notion of linear probability.

Granboulan et al. [13] adopted a different metric which can be expressed
by LPalt

D (χ) = maxz

(
PrA∈DG[χ(A) = z]− 1

m

)2 where m is the order of χ. When
m = 2, we easily obtain LPalt

D (χ) = 4·LPD(χ) but when m > 2, there is no simple
relation. Nevertheless, we have LPD(χ) ≤ m2

2 LPalt
D (χ) for m > 2. This bound

is fairly tight since the following distribution reaches LPD(χ) = m2

4 LPalt
D (χ): we

let G = Zm for m > 2, χ(x) = e
2iπ
m x, and PD(x) = 1

m + ε × cos 2πx
m . We have

LPalt
D (χ) = ε2 and we can easily compute LPD(χ) = m2

4 ε2. This shows that our
LPD(χ) maybe quite larger than LPalt

D (χ).

2.3 Linear Distinguisher

We construct a linear distinguisher as follows. Let

sa(zd; χ) =
1
d

d∑

j=1

χ(zj) and lp(zd; χ) =
∣
∣sa(zd; χ)

∣
∣2 .

The statistical average sa(zd; χ) over the sample vector zd can serve for distin-
guishing U from D. We define the order of the linear distinguisher as the order
m of χ in Ĝ. For example, linear distinguishers of order 2 correspond to clas-
sical linear distinguishers. Note that this order must be reasonable so that the
implementations can compute the complex number sa(zd; χ).

The law of large numbers tells us that lp(zd; χ) −−−→
d→∞

|EZ∈DG(χ(Z))|2 =

LPD(χ). Informally, when lp is large, it is likely that Ds = D, whereas when it
is close to 0, it is likely that Ds = U. Consequently, the advantage of a linear
distinguisher D can be defined by optimizing a decision threshold τ , i.e., we have

Advd
D(χ) = max

0<τ<1

∣
∣PrUd [lp(Zd; χ) < τ ] − PrDd [lp(Zd; χ) < τ ]

∣
∣ .

When the exact distribution of χ(Z) (for Z ∈D G) on the unit circle is known,
one can build a more powerful distinguisher. However, we will later show that the
best improvement factor that is achievable is not particularly large, due to the
fact that the order of χ must be small. Besides, one only knows in practice that
the distribution of χ(Z) belongs to a set of m possible distributions. For instance,
considering (regular) linear cryptanalysis (that is, using characters of order 2), the
expected value of the statistical average is±ε and thus lies on circle of radius ε. The
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sign is unknown as it depends on an unknown key. This generalizes to characters
of higher order, for which the exact value of the mean of the statistical average
might allow to know which of the m possible distributions we are dealing with
and thus give more information about the key. As for the distinguishing issue, we
rather stick to the simpler statistical test based on lp(Zd; χ) only.

The following theorem allows to lower bound the advantage of a linear distin-
guisher in terms of the linear probability of the source with respect to D.

Theorem 7. Let G be a finite Abelian group and let χ ∈ Ĝ. Using heuristic
approximations, the advantage Advd

D of a d-limited linear distinguisher D trying
to distinguish the uniform distribution U from D is such that Advd

D(χ) � 1−
2 ·e− d

4 LPD(χ) (resp. Advd
D(χ) � 1−4 ·Φ(− 1

2

√
d · LPD(χ)

)
) for χ of order at least

3 (resp. of order 2), when d is large enough and under the heuristic assumption
that the covariance matrix of lp(Zd; χ) is the same for both distributions.1

Proof. Let m be the order of χ. We denote χ(Zj) = e
2iπ
m θj for all j = 1, . . . , d

and let Xj = cos(2π
m θj) and Yj = sin(2π

m θj), so that

lp(Zd; χ) =
∣
∣ 1
d

∑d
j=1Xj + i · 1

d

∑d
j=1Yj

∣
∣2 =

(
1
d

∑d
j=1Xj

)2 +
(

1
d

∑d
j=1Yj

)2
.

The law of large numbers gives 1
d

∑d
j=1Xj + i · 1

d

∑d
j=1Yj → EZ∈DsG(χ(Z))

when d → ∞. Considering complex numbers as bidimensional vectors, we ob-
tain from the multivariate central limit theorem [11] that the distribution of√

d( 1
d

∑d
j=1(Xj + iYj) − EZ(χ(Z))) tends to the bivariate normal distribution

with zero expectation and appropriate covariance matrix Σ. We can show that

Σ =
(

1
2 0
0 1

2

)
for m ≥ 3 and Σ =

(
1 0
0 0

)
for m = 2.

We conclude that, when Ds = U and m ≥ 3, the sums 1√
d

∑
Xj and 1√

d

∑
Yj

are asymptotically independent and follow a normal distribution with zero ex-
pectation and standard deviation equal to 1/

√
2. Consequently, (

√
2√
d

∑
Xj)2 and

(
√

2√
d

∑
Yj)2 both follow a chi-square distribution with 1 degree of freedom and

2 ·d · lp(Zd; χ) = (
√

2√
d

∑
Xj)2 +(

√
2√
d

∑
Yj)2 follows a chi-square distribution with

2 degrees of freedom [44]. Hence,

PrUd [2 · d · lp(Zd; χ) < α] −−−→
d→∞

1
2

∫ α

0

e−u/2du = 1− e−
α
2 . (3)

On the other hand, by making the heuristic approximation that the covariance
matrix is the same in the case where Ds = D, we similarly obtain that

PrDd

[
2·d·∣∣1d

∑d
j=1(Xj+iYj)−EZ(χ(Z))

∣∣2 < β
] ≈ 1

2

∫ β

0

e−u/2du = 1−e−
β
2 . (4)

1 We use the � symbol instead of ≥ to emphasize the heuristic assumptions.
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Moreover, assuming that τ < LPD(χ),

PrDd

[
lp(Zd; χ) < τ

]≤PrDd

[∣∣ 1
d

∑d
j=1(Xj+iYj)−ED(χ(Z))

∣
∣2≥(

√
LPD(χ)−√τ )2

]

so that for α ≤ 2dτ and β ≤ 2d(
√

LPD(χ)−√τ)2,

Advd
D(χ) ≥ PrUd

[
2·d·lp(Zd; χ)<α

]−PrDd

[
2d·∣∣ 1d

∑
(Xj +iYj)−EZ(χ(Z))

∣
∣2≥β

]
.

Using Approximation (4) with τ = 1
4LPD(χ) we obtain for α ≤ d

2LPD(χ)

Advd
D(χ) ≥ 2 · Pr U

[
2 · d · lp(Zd; χ) ≤ α

]− 1.

Taking (3) as a heuristic approximation with α = d
2LPD(χ) leads to the an-

nounced result for m ≥ 3.
For m = 2 and Ds = U, we have that 1√

d

∑d
j=1 Xj tends towards a stan-

dard normal distribution, so that
(

1√
d

∑d
j=1 Xj

)2 tends towards a chi-square
distribution. Consequently,

PrUd

[
d · lp(Zd; χ) < α

] −−−→
d→∞

1√
2π

∫ α

0

e−x/2

√
x

dx = 1− 2Φ(−√α).

Similar techniques than in the m ≥ 3 case lead to the announced result. ��
Note that these lower bounds are only useful (otherwise too low) if the num-
ber of samples exceeds 4 ln 2

LPD(χ) in the large order case and 2
LPD(χ) in the order

2 case. For example, when d = 4/LPD(χ) the advantage is greater than 0.26
in the first case and greater than 0.36 in the second. They validate the rule
of thumb that the distinguisher works with data complexity d ≈ 1/LPD(χ). In
contrast, [13] claims without further justification that 1/LPalt

D (χ) samples are
sufficient to reach a large advantage. It appears that this approximation overes-
timates the data complexity, actually equal to 1/Δ(χ(Z)), which lies in between
1

m2 (LPalt
D (χ))−1 (when all values of χ(z) are biased, like for the distribution exam-

ple in Section 2.2 for which we have LPD(χ) = m2

4 LPalt
D (χ)) and 1

2m (LPalt
D (χ))−1

(like when only two output values u1 and u2 of χ are biased and the others are
uniformly distributed, and for which LPD(χ) = |u1 − u2|2LPalt

D (χ)). The correct
estimate of the data complexity requires more than just the LPalt

D (χ) quantity.

2.4 Case Study: Zr
m-Based Linear Cryptanalysis

We illustrate the theory with a concrete example, that is, linear cryptanalysis
over the additive group Zr

m. The mr characters of this group are called additive
characters modulo m and are the ϕm

a ’s for a = (a1, . . . , ar) where a� ∈ [0, m− 1]
for � = 1, . . . , r defined by ϕm

a (x) = e
2πi
m

∑ r
�=1 a�x� for x ∈ Zr

m (see [40]).
We revisit an example proposed in [3] where a source generating a random

variable X = (X1, . . . , Xn+1) ∈ Zn+1
4 is considered (n being any large odd inte-

ger). When the source follows distribution U, X is uniformly distributed. When
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the source follows distribution D, X1, . . . , Xn are uniformly distributed mutu-
ally independent random variables in Z4 and Xn+1 = B +

∑n
�=1 X�, where B

is either 0 or 1 with equal probability and where the addition is performed
modulo 4. Considering X as a bitstring of length 2n + 2, it was shown in
[3] that maxα LPD(ϕ2

α) = 2−(n+1) (the max being taken over classical lin-
ear masks), which means that the source cannot be distinguished from a per-
fectly random one using a classical linear distinguisher. On the other hand, let
a = (−1, . . . ,−1, 1) ∈ Zn+1

4 and consider the character ϕ4
a over Zn+1

4 . In this
case we have LPD(ϕ4

a) =
∣
∣E
(
e

πi
2 (Xn+1−

∑n
�=1 X�)

)∣∣2 =
∣
∣E
(
e

πi
2 B
)∣∣2 = 1

2 . Note that
LPalt

D (ϕ4
a) = 1

16 . Theorem 7 suggests that d = 8 would be enough for an advan-
tage greater than 0.26. More specifically, the distinguisher can eventually decide
that Ds = U as soon as ϕ4

a(X) �∈ {1, i} (since 1 and i are the only possible
values for Ds = D) for some sample X and that Ds = D if all samples X return
ϕ4

a(X) ∈ {1, i}. For this distinguisher, Advd
D = 1− 1

2d , so that d = 1 is enough to
reach an advantage equal to 1

2 . We notice that there can be a huge gap between
linear distinguishers of order 2 and linear distinguishers of order 4.

2.5 A Dash of Differential Cryptanalysis

We can consider a natural (see [13]) generalization of the differential probability
(DP) and show the link between the LP and the DP (as in [8]). Let u ∈ G be
an arbitrary group element. The differential probability of distribution D over G

is defined by DPD(u) = Pr[A−1 · B = u] = Pr[A · u = B], where A and B are
independent random variables following the distribution D. We have D̂PD(χ) =
LPD(χ) for any χ ∈ Ĝ. Indeed, by definition, LPD(χ) = ED(χ(A))ED(χ(B)),
where A and B are independent random variable following distribution D. Suc-
cessively using the facts that A and B are independent, that the mean is linear,
and that χ is a homomorphism, we have for all u ∈ G

L̂PD(u) =
∑

χ∈ĜED(χ(A)χ(B))χ(u) = ED

(∑
χ∈Ĝχ(A · u)χ(B)

)
,

which is an expression that can be further simplified using Lemma 1, finally
leading to L̂PD(u) = nED

(
1A·u=B

)
= nPrD[A ·u = B] = nDPD(u). Generalizing

the LP as we do in Definition 6 naturally leads to a real duality between linear
and differential cryptanalysis. We note that this is not the case when considering
the LPalt

D measurement suggested in [13].

2.6 Links Between Linear and Optimal Distinguishers

Given Lemma 5 and the definition of LP we obtain the following result.

Theorem 8 (Generalization of Proposition 11 in [3]). Let D be a proba-
bility distribution of support G. The SEI of D and the linear probability of D are
related by

Δ(D) =
∑

χ∈Ĝ\{1}LPD(χ).
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This equation is pretty insightful when trying to improve linear distinguishers by
using the rule of thumb. If there is a character χ such that LPD(χ) overwhelms
all other linear probabilities in the previous equation, a single characteristic χ
can be used to approximate the linear hull (that is, the cumulative effect of all
the characteristics). In that case, one linear distinguisher becomes nearly optimal
in term of required number of samples. As another example we can look at the
problem of cumulating linear characteristics. In linear cryptanalysis, if we use
k independent characteristics of same bias we can best hope to decrease the
data complexity by a factor within the order of magnitude of k. This generalizes
results by Kaliski and Robshaw [23] and by Biryukov et al. [6].

We can easily deduce useful results for computing the SEI of combinations
of independent sources. Namely, for two independent random variables A and
B, Δ(A + B) ≤ Δ(A)Δ(B) (Piling-up Lemma) and Δ(A||B) + 1 ≤ (Δ(A) +
1)(Δ(B) + 1) so Δ(A||B) is roughly less than Δ(A) + Δ(B) (cumulating effect).

Definition 9. Let D be a probability distribution over a group G and let LPmax
D

be the maximum value of LPD(χ) over χ ∈ Ĝ \ {1} of order dividing m, i.e.,

LPmax
D (m) = max

χ∈Ĝ\{1}
χm=1

LPD(χ).

We note that Δ(D) does not depend on the group structure whereas LPmax
D does.

We define a metric LPMAX
D which does not.

Definition 10. Let D be a probability distribution of support G and ♦ denote
an arbitrary group operation on G. We define

LPMAX
D (m) = max

♦
LPmax

D (m).

Corollary 11. Let D be a probability distribution whose support is the finite
group G of order n. For the exponent m of G, we have

Δ(D) ≤ (n− 1) · LPmax
D (m) and Δ(D) ≤ (n− 1) · LPMAX

D (m).

This result says that the best distinguisher for D has a data complexity at least
n− 1 times less than the one of the best linear distinguisher.

Going back to the distinguisher based on χ(Z) for a given χ of order m, we
assume that the support of distribution D of χ(Z) matches the range of χ which
is a group G of order n = m. Assuming that χ is such that LPD(χ) = LPmax

D (m)
we deduce that the best distinguisher between χ(Z) and a uniformly distributed
random variable on its support needs at most m times less data than the linear
distinguisher that we proposed.

2.7 Optimal Distinguisher Made Practical Using Compression

From a computational point of view, the best distinguisher of Section 2.1 cannot
be implemented if the order of the group is too large. We consider this situation
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by denoting H a finite set of large cardinality N and compress the samples using
a projection

h : H −→ G,

where G is a set of cardinality n 	 N . We assume that h is balanced. This
implies that n | N . This projection defines, for a random variable H ∈ H of
distribution D̃s (either equal to the uniform distribution Ũ or to D̃), a random
variable h(H) = Z ∈ G of distribution Ds (either equal to U or to D). We can
easily prove state the following (intuitive) result by using Cauchy’s inequality.

Lemma 12 (Projections reduce the imbalance). Let H and G be two finite
Abelian groups of order N and n respectively, such that n | N . Let h : H→ G be a
balanced function. Let D̃ be a probability distribution of support H and let H ∈ H

be a random variable following D̃. Let D denote the distribution of h(H) ∈ G.
Then Δ(D) ≤ Δ(D̃).

The following theorem shows that, in the particular case where the projection
is homomorphic, bounding the linear probability of the source is sufficient to
bound the advantage of the best distinguisher on the reduced sample space.

Lemma 13 (Generalization of Theorem 13 in [3]). Let H and G be two
finite Abelian groups of order N and n respectively, such that n | N . Let h : H→
G be a surjective group homomorphism. Let D̃ be a probability distribution of
support H and let H ∈ H be a random variable following D̃. Let D denote the
distribution of h(H) ∈ G. Then Δ(D) ≤ (n− 1)LPmax

D̃
(n).

Proof. From Theorem 8, we have

Δ(D) =
∑

χ∈Ĝ\{1}LPD(χ) =
∑

χ∈Ĝ\{1}LPD̃(χ◦h) ≤ (n−1) max
χ∈Ĝ\{1}

LPD̃(χ◦h).

We note that κ = χ◦h is a group character of H such that κn = 1. Consequently,
maxχ∈Ĝ\{1}LPD̃(χ ◦ h) ≤ maxκ∈Ĥ\{1}

κn=1

LPD̃(κ). ��
We stress that the previous theorem only applies when the adversary reduces
the text space through a group homomorphism, i.e., in a linear way. Indeed,
there exists practical examples of random sources with a small LPmax

D̃s
that are

significantly broken when the source space is reduced by a (well chosen) non-
homomorphic projection (see the example of Section 2.4 with h(x) = msb(ϕ4

a(x))
and G = Z2). Consequently, the previous result tells us nothing about the ad-
vantage of an adversary using an arbitrary projection. In what follows we show
a security criterion which is sufficient to obtain provable security against any
distinguisher using a balanced projection.

Theorem 14. Let H and G be two finite sets of cardinality N and n respectively,
such that n | N . Let h : H→ G be a balanced projection. Let D̃ be a probability
distribution of support H and let H ∈ H be a random variable following D̃. Let
D denote the distribution of h(H) ∈ G. Then

Δ(D) ≤ (n− 1)LPMAX
D̃

(n).
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Proof. We first define an arbitrary group structure on G. Given h, we can easily
construct a group structure on H such that h is a homomorphism. The final
result then follows from Lemma 13. ��
Consequently, assuming there exists an “efficient” projective distinguisher on D̃
using a balanced h on a “small” set G, Δ(D) must be large and n must be small,
therefore, LPMAX

D̃s
(n) is large. Thus, there exists a group structure on H and a

character of small order on this group that define an effective linear cryptanal-
ysis: if we can efficiently distinguish by compressing the samples, we can also
do it linearly. To the best of our knowledge, all widespread block ciphers prov-
ably secure against linear cryptanalysis consider in the proof a specific group or
field structure on the text space. Usually, the more convenient is the one used
to actually define the block cipher. Obviously, a potential adversary is not lim-
ited to the description considered by the designers. The previous theorem shows
that, provided that a known plaintext attack on the block cipher exists, then
some change to the group structure of the text space is sufficient to perform a
successful linear cryptanalysis of the cipher (note that finding the correct group
structure might be a non-trivial task). In other words, although the cipher is
stated to be provably secure against linear cryptanalysis, it might not be the
case when generalizing linear cryptanalysis to other group structures. This is
mainly due to the fact that the SEI does not depend on the group structure
given to the text space (only the distance of D from the uniform distribution is
relevant) whereas the linear probability is a measure that depends on the group
structure. Consequently, when proving the resistance against linear cryptanaly-
sis, one should ideally bound the value of LPMAX

D̃
(m) and not of LPmax

D̃
(m) (as

it is currently the case for most block ciphers).

3 Linear Cryptanalysis of Block Ciphers

The theory developed in the previous section can be applied as-is to study the
indistinguishability of a pseudo-random sequence (e.g., the output of a stream
cipher) from a perfectly random one. We show in this section how it can be
adapted to study the security of block ciphers.

3.1 Generalized Linear Cryptanalysis of Block Ciphers

We consider a block cipher defined on a finite group M and an adversary who
is given access to a generator G generating iid random variables (M, C(M)) ∈
M ×M, where M is a uniformly distributed random variable, and where C is
a random permutation of M either equal to CK (a random instance of a block
cipher, the randomness coming from the secret key K ∈ K) or to C∗ (the perfect
cipher, that is, a uniformly distributed random permutation defined on M).
The objective of the adversary is to guess whether C = CK or C = C∗ (i.e.,
if the permutation implemented by G was drawn uniformly at random among
the set of permutations defined by the block cipher or among the entire set
of permutations of M) after a limited number d of samples Si = (Mi, C(Mi))
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for i = 1, . . . , d. In a classical linear cryptanalysis (i.e., when M = {0, 1}n),
the adversary would typically run over all plaintext/ciphertext pairs and add
the value of a • Mi ⊕ b • C(Mi) to a counter, where a and b are input/output
masks defined on the text space. The adversary eventually guesses whether the
generator is implementing an instance of the block cipher or not by measuring the
bias of the counter with respect to d/2. By choosing the masks with care, the bias
may be large when C = Ck for some key k. In this situation, the linear probability
LPCk(a, b) = (2 · PrM (a • M ⊕ b • Ck(M) = 0) − 1)2 =

∣
∣E((−1)a•M⊕b•Ck(M))

∣
∣2

estimates the efficiency of the attack against Ck. The following definition extends
this notion to non-binary linear cryptanalysis.

Definition 15. Let C : M → M be a permutation over a finite set M. Let G1

and G2 be two group structures over the same set M. For all group characters
χ ∈ Ĝ1 and ρ ∈ Ĝ2 the linear probability of C over M with respect to χ and ρ is
defined by

LPC(χ, ρ) =
∣
∣EM∈UM

(
χ(M)ρ(C(M))

)∣
∣2.

If C is a random permutation, we denote the expected linear probability by
ELPC(χ, ρ) = EC(LPC(χ, ρ)).

As direct computation of the linear probability on a realistic instance of a block
cipher is not practical, the cryptanalyst typically follows a bottom-up approach,
in which he first computes the linear probability of small building blocks of the
cipher and then extends the result to the whole construction. In the following
section, we study several typical building blocks on which block ciphers are often
based. We illustrate our results on a toy cipher in Appendix 6.

3.2 A Toolbox for Linear Cryptanalysis

We can look at a block cipher as a circuit made of building blocks and in which
every edge is attached to a specific group. From this point of view, a linear
characteristic is a family mapping every edge to one character of the attached
group. The building blocks we consider are represented on Figure 1. If χ1 and χ2

are characters on G1 and G2 respectively, we denote by χ1‖χ2 : G1 ×G2 → C×

the character mapping (a, b) ∈ G1 × G2 on χ1(a)χ2(b). We assume that the
cryptanalyst constructs a linear characteristic in a reversed way [4] (i.e., starting
from the end of the block cipher towards the beginning), his objective being to

Fig. 1. Typical Building Blocks of Block Ciphers
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carefully choose the characters in order to maximize the linear probability on
each individual building block.

Building Block (a): We consider a duplicate gate such that a, b, c ∈ G and
a = b = c. Let χ1, χ2 be two characters defined over G, we have (by definition)
χ1(b)χ2(c) = χ1(a)χ2(a) = χ1χ2(a). Simply denoting (a) the duplicate gate, we
have LP(a)(χ1χ2, χ1‖χ2) = 1, so that χ1‖χ2 is an appropriate character on the
input of the gate.

Building Block (b): We consider a layer that applies a group homomorphism
from G = G1 × · · · ×Gm to H = H1 × · · · ×Hn. We denote the homomorphism
by hom, the m inputs as a1, a2, . . . , am and the n outputs b1, b2, . . . , bn, so that
hom(a1, a2, . . . , am) = (b1, b2, . . . , bn). Given n characters χi on Hi, i = 1, . . . , n,
we have χ(b1, . . . , bn) = (χ ◦ hom)(a1, . . . , am) for χ = χ1‖ · · · ‖χn. As χ ◦ hom

is still a homomorphism from G to C× we obtain LP(b)(χ ◦ hom, χ) = 1. Note
that we do have χ ◦ hom = χ′1‖ · · · ‖χ′m for some (χ′1, . . . , χ

′
m) ∈ Ĝ1 × · · · × Ĝm,

so that χ′i is an appropriate character for ai.

Building Block (c): Given hom(a) = a+k on a given group G (adopting a more
traditional additive notation), we have χ(b) = χ(a)χ(k). Since k is constant,
LP(c)(χ, χ) = 1, so that χ is an appropriate character on the input.

Building Block (d): When considering a (non-homomorphic) permutation S,
LPS(χ, ρ) should be computed by considering the substitution table of S.

By piling all relations up on a typical substitution-permutation network C,
we obtain a relation of the form χ(M)ρ(C(M)) =

(∏
i χi(Xi)ρ(Si(Xi))

) ×(∏
j χj(kj)

)
where the first product runs over all building blocks of type (d)

and the second over building blocks of type (c). Hence, by making the heuristic
approximation of independence of all Xi’s (which is commonly done in classical
linear cryptanalysis), we obtain that

LPC(χ, ρ) ≈∏iLPSi(χi, ρi).

This is the classical single-path linear characteristic. Provided that we can lower
bound (e.g. using branch numbers) the number of active substitution boxes S to
b and that we have LPSi

max ≤ λ for all boxes we obtain that LPC
max is heuristically

bounded by λb for single-path characteristics.
For multipath characteristics, we easily obtain the linear hull effect [41].

Theorem 16. Given finite Abelian groups G0 . . . , Gr, let C = Cr ◦ · · · ◦ C1 be
a product cipher of independent Markov ciphers Ci : Gi−1 −→ Gi. For any
χ0 ∈ Ĝ0 and χr ∈ Ĝr we have

ELPC(χ0, χr) =
∑

χ1∈Ĝ1
· · ·∑χr−1∈Ĝr−1

∏r
i=1ELPCi(χi−1, χi).

It is a common mistake to mix up this result with the hypothesis of stochastic
independence. This is a real equality which depends on no heuristic assumptions.
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Proof (Sketch). Recall that a Markov cipher C : G −→ G′ between two groups G

and G′ is a random mapping such that for any δ ∈ G and δ′ ∈ G′ the probability
Pr[C(x + δ) = C(x) + δ′] does not depend on x.

A straightforward proof is provided in [51] for the binary case. We only have to
rephrase it using characters. As a classical result (see e.g. [29]) we easily obtain

EDPC(δ0, δr) =
∑

δ1∈G1
· · ·∑δr−1∈Gr−1

∏r
i=1EDPCi(δi−1, δi).

Then we simply apply r Fourier transforms. ��
Given d plaintext/ciphertext pairs zi = (Mi, C(Mi)), this geometrically means
that the expected value of sa(zd; (χ, ρ)) lies on a circle of squared radius equal
to LPC(χ, ρ), its exact position on the circle depending on

∏
j χj(kj).

4 A Z16
100 Linear Cryptanalysis of TOY100

In [13], Granboulan et al. introduce TOY100, a block cipher that encrypts blocks
of 32 decimal digits. The structure of TOY100 is similar to that of the AES. An
r rounds version of TOY100 is made of r − 1 identical rounds followed by a
slightly different final round. Each block is represented as a 4 × 4 matrix A =
(ai,j)i,j∈{0,...,3}, the ai,j ’s being called subblocks. Round i (for i = 1, . . . , r − 1)
first adds modulo 100 a subkey to each subblocks (we do not describe the key
schedule here as we assume that the round keys are mutually independent),
then applies a fixed substitution box to each resulting subblocks, and finally
mixes the subblocks together by applying a linear transformation. The last round
replaces the diffusion layer by a modulo 100 subkey addition. The round key
addition, confusion and diffusion layers are respectively denoted σ[K], γ, and θ.
The diffusion layer can be represented as a matrix product M ×A×M where

M =

(
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

)

and where all computations are performed modulo 100. The best attack against
TOY100 is based on the generalization of linear cryptanalysis suggested in [13]. It
breaks TOY100 reduced to 7 rounds with a data/time complexity of 0.66·1031. We

Table 1. Complexities of the best linear cryptanalysis we obtained on reduced round
versions of TOY100

r Lower bound on Data/Time Complexity of the attack

maxα0,αr−2 ELP(θ◦γ◦σ[K])r−2◦θ(α0, αr−2) against r rounds

4 0.37 · 10−9 0.27 · 1010

5 0.47 · 10−14 0.21 · 1015

6 0.66 · 10−19 0.15 · 1020

7 0.10 · 10−23 0.97 · 1024

8 0.18 · 10−28 0.55 · 1029

9 0.34 · 10−33 0.30 · 1034
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propose here a linear cryptanalysis that breaks up to 8 rounds. We first observe
that any block

A(δ) =

(
δ 0 100 − δ 0
0 0 0 0

100− δ 0 δ 0
0 0 0 0

)

where δ ∈ {1, . . . , 99} is such that M × A(δ) ×M = A(δ), i.e., is not changed
by the diffusion layer. We let I = {A(δ), δ = 1, . . . , 99} be the set of these 99
blocks. Our attack against TOY100 reduced to r rounds first guesses 4 subblocks
of the first round key and 4 subblocks of the last (the positions of which exactly
correspond to the non-zero subblocks of A(δ)). This allows to peel-off the first
and last layers of substitution boxes, so that we now consider the transformation
(θ ◦ γ ◦ σ[K])r−2 ◦ θ (where it is understood that the round keys are mutually
independent). For any 4×4 input/output masks (i.e., blocks) α = (αi,j)i,j∈{1,...,4}
and β = (βi,j)i,j∈{1,...,4} we let, for any transformation C on Z16

100,

ELPC(α, β) =
∣
∣EM

(
ϕα(M)ϕβ(C(M))

)∣∣2 where ϕα(M) = e
2πi
100

∑ 4
i,j=1 αi,jmi,j .

Applying Theorem 16 and the observation on the diffusion layer of TOY100 we
obtain that the linear probability on (θ ◦ γ)r−2 ◦ θ with input (resp. output)
masks α0 ∈ I (resp. αr−2 ∈ I) is such that

ELP(θ◦γ◦σ[K])r−2◦θ(α0, αr−2) = ELP(θ◦γ◦σ[K])r−2
(α0, αr−2)

=
∑

α1∈Z4
100

· · ·
∑

αr−3∈Z4
100

r−2∏

i=1

ELPθ◦γ◦σ[K](αi−1, αi)

≥
∑

α1∈I
· · ·

∑

αr−3∈I

r−2∏

i=1

ELPθ◦γ◦σ[K](αi−1, αi)

=
∑

α1∈I
· · ·

∑

αr−3∈I

r−2∏

i=1

LPγ(αi−1, αi).

Practical computations of the previous equations are given in Table 1. Using an
8-round linear hull and guessing the necessary keys on an extra round, we can
thus break 9 rounds of TOY100 with data complexity 0.55 · 1029. We can prove
that the time complexity is similar by using classical algorithmic tricks from
linear cryptanalysis techniques.

5 A Generalized Cryptanalysis of SAFER K/SK

5.1 A Short Description of SAFER K/SK and Previous Cryptanalysis

The encryption procedures of SAFER K-64, SAFER K-128, SAFER SK-64, and
SAFER SK-128 are almost identical. They all iterate the exact same round func-
tion, the only difference being that the recommended number of iteration of this
round function is 6 for SAFER K-64 [31], 8 for SAFER SK-64 [33], and 10 for
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Fig. 2. The ith encryption round function of SAFER

both 128-bit versions of SAFER [31, 33]. The round function is represented on
Figure 2. An r-round version of SAFER encrypts 8 bytes of text by applying the
round function r times followed by a final mixed key addition (whose structure
is identical to the first mixed key addition layer of the round function). Each
round is parameterized by two 8-byte round keys so that a 2r + 1 round keys
must be derived from the secret key.

The round function first applies a byte-wise key addition, mixing xor’s and
additions modulo 256. Then, each byte goes through a substitution box. Two
kinds of boxes are used on SAFER: x �→ (45x mod 257) mod 256 and its inverse.
The output of the substitution box layer goes through another byte-wise key
addition before being processed by a diffusion layer made of boxes called 2-PHT
and defined by 2-PHT(a, b) = (2a+b, a+b), the addition being performed modulo
256. Denoting x ∈ Z8

256 the input of the linear layer, the output y ∈ Z8
256 can be

written as y = M × x where

M =

⎛

⎜
⎜
⎜⎜
⎜
⎝

8 4 4 2 4 2 2 1
4 2 2 1 4 2 2 1
4 4 2 2 2 2 1 1
2 2 1 1 2 2 1 1
4 2 4 2 2 1 2 1
2 1 2 1 2 1 2 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟⎟
⎟
⎠

.

Finally, we adopt a special notation to denote reduced-round versions of SAFER.
We consider each of the four round layers as one fourth of a complete round.
Consequently, a 2.5 reduced-round version of SAFER corresponds to two full
rounds followed by the first mixed key addition and substitution layer of the
third round. With these notations, the encryption procedure of SAFER K-64 is
actually made of 6.25 rounds. To be consistent with the notations of the original
publications, when we refer to a r-round version of SAFER, we actually mean a
r + 0.25 reduced-round version of SAFER.

For the sake of simplicity, we restrict to give the dependencies of each round
key bytes with respect to the main secret key instead of describing the key
schedules of the various versions of SAFER.
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Table 2. Cryptanalytic results on SAFER K/SK

Type # rounds Type of the Attack Time Plaintexts Reference

SAFER K 2 KPA 229 213 This paper

SAFER SK 2 KPA 237 213 This paper

SAFER K-64 3 KPA/Weak keys 212 212 [39]

SAFER K/SK 3 KPA 236 236 This paper

SAFER K-64 4 KPA/Weak keys 228 228 [39]

SAFER K/SK 4 KPA 247 247 This paper

SAFER K-64 5 KPA/Weak keys 258 258 [39]

SAFER K 5 CPA 261 239 [27, 26]

SAFER K-64 5 CPA 249 244 [27, 26]

SAFER K/SK-64 5 CPA 246 238 [52]

SAFER K/SK 5 KPA 259 259 This paper

SAFER K/SK-64 6 CPA 261 253 [52]

• SAFER K-64: The jth round key byte (1 ≤ j ≤ 8) only depends on the jth
main secret key byte. For example, guessing the third byte of the main secret
key allows to derive the third byte of each round key.

• SAFER SK-64: The jth byte (1 ≤ j ≤ 8) of round key number i (1 ≤ i ≤ 2r+
1), depends on the �th byte of the secret key, where � = (i+ j−2) mod 9+1
and where the 9th byte of the secret key is simply the xor of its previous 8
bytes.

In our analysis we assume that the key is a full vector of subkeys. When studying
the average complexity of our attack, we further assume that these subkeys are
randomly picked with uniform distribution.

Previous Cryptanalysis (see Table 2). Known attacks against SAFER are
summarized in Table 2. The resistance of SAFER against differential cryptanaly-
sis [5] was extensively studied by Massey in [32], where it is argued that 5 rounds
are sufficient to resist to this attack. It is shown by Knudsen and Berson [27,26]
that 5 rounds can actually be broken using truncated differentials [25], a re-
sult which is extended to 6 rounds by Wu et al. in [52]. In [15], Harpes et al.
apply a generalization of linear cryptanalysis [34] to SAFER K-64 but do not
manage to find an effective homomorphic threefold sum for 1.5 rounds or more.
Nakahara et al. showed in [39] that for certain weak key classes, one can find a
3.75-round non-homomorphic linear relation with bias ε = 2−29 (which leads to
a time/plaintext complexity of 1/ε2 = 258 known plaintexts on five rounds).

The diffusion properties of the linear layer of SAFER have also been widely
studied and, compared to the confusion layer, seem to be its major weakness.
In [38], Murphy proposes an algebraic analysis of the 2-PHT layer, showing
in particular that by considering the message space as a Z-module, one can
find a particular submodule which is an invariant of the 2-PHT transformation.
In [49], Vaudenay shows that by replacing the original substitution boxes in a
4 round version of SAFER by random permutations, one obtains in 6.1% of the
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cases a construction that can be broken by linear cryptanalysis. This also lead
Brincat and Meijer to explore potential alternatives of the 2-PHT layer [7]. The
other major weakness of SAFER K is indubitably its key schedule. The analysis
proposed in [38,26] lead Massey to choose the one proposed by Knudsen in [26]
for SAFER SK.

5.2 Linear Cryptanalysis of SAFER: from Z8
2 to Z28

A possible reason why linear cryptanalysis does not seem to be a threat for
SAFER is that Matsui’s linear characteristics (that fits so well the operations
made in DES) are in fact not linear when it comes to the diffusion layer of
SAFER except when they only focus on the least significant bit of the bytes. Yet,
those bits are not biased through the substitution boxes [49]. Indeed, whereas
a classical linear cryptanalysis combines text and key bits by performing xor’s
(i.e., additions in Z2), SAFER mostly relies on additions in Z28 . In other words,
the group structure that is classically assumed in linear cryptanalysis does not
fit when it comes to study SAFER. We will thus focus on the additive group
(Zr

256, +). As noted already in Section 2.4, the 256r characters of this group are
called additive character modulo 256 and are the χa’s for a = (a1, . . . , ar) ∈
[0, 255]r defined by χa(x) = e

2πi
256

∑ r
�=1 a�x� for all x = (x1, . . . , xr) ∈ Zr

256. The
attack on SAFER will only involve additive characters modulo 256. To simplify
the notation (and to somehow stick to the vocabulary we are used to in classical
linear cryptanalysis), we denote in this section the linear probability of C with
respect to χa and χb by LPC(a, b) instead of LPC(χa, χb). We call it the linear
probability of C with input mask a and output mask b.

Hiding the Z8
2 Group. As the encryption procedure uses additions modulo 256

together with bit-wise exclusive or, we have to deal with two types of characters.
Nevertheless, one can notice that the mixture of group operations only occurs
within the confusion layer. To simplify the analysis we can think of the succession
of a round key xor and a fixed substitution box as a keyed substitution box (see
Figure 3). Using this point of view, we represent one round of SAFER in Figure 4.

Studying SAFER’s Building Blocks. Most of the building of blocks of SAFER
were already considered in Section 3.2. With the notations used in this section,
the study of the building block (c) can be written as LP·+k(a, a) = 1, where a and
k are arbitrary values of Z256. If the key K is random, the previous equation im-
plies that EK(LP·+K(a, a)) = 1. Building block (b) allows to deal with the 2-PHT

Fig. 3. Viewing key xor and fixed substitution boxes as keyed substitution boxes
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Fig. 4. Another view of SAFER

transformation (which is a homomorphism of Z2
256): denoting by a = (a1, a2) ∈

Z2
256 and b = (b1, b2) ∈ Z2

256 the input and output masks on this transformation,
and noting that the 2-PHT transformation is a symmetric linear operator (in
the sense that 2-PHTT = 2-PHT), LP2-PHT(a, b) = 1 ⇔ a = 2-PHT(b). Using
the same notations, it is easy to show that when considering the parallel com-
putation of two fixed substitution boxes S1 and S2 over Z256, LPS1‖S2(a, b) =
LPS1(a1, b1) · LPS2(a2, b2). When the boxes are random and independent, this
leads to ES1,S2(LPS1‖S2(a, b)) = ES1(LPS1(a1, b1)) · ES2(LPS2(a2, b2)).

Assuming that the key bits are mutually independent, we can now compute
the linear probability of one full round of SAFER. Indeed if an input/output
pair of masks a = (a1, . . . , a8), b = (b1, . . . , b8) are given, and letting b′ =
MT × b = (b′1, . . . , b

′
8) (where M is the matrix defined in Section 5.1), then the

linear probability on one full round, simply denoted Round, is given by

ELPRound(a, b) =
∏8

i=1ELPSi(ai, b
′
i)

where Si corresponds to a keyed E box for i = 1, 4, 5, 8 and to a keyed L otherwise.

5.3 Considering Several Rounds of SAFER: the Reduced Hull Effect

When several rounds are considered, Nyberg’s linear hull effect [41] applies just as
for classical linear cryptanalysis of Markov ciphers (see Theorem 16). Considering
a succession of r > 1 rounds with independent round keys, and denoting a0 and
ar the input and the output masks respectively, this leads to

ELPRoundr◦···◦Round1(a0, ar) =
∑

a1,...,ar−1

∏r
i=1ELPRoundi(ai−1, ai).

When cryptanalyzing a block cipher, it is often considered that one specific
characteristic (i.e., a succession of r + 1 masks a0, a1, . . . , ar) is overwhelming
(i.e., approximates the hull) so that

ELPRoundr◦···◦Round1(a0, ar) ≈
∏r

i=1ELPRoundi(ai−1, ai).

This approach was taken by Matsui when cryptanalyzing DES. In that particular
case, the correctness of this approximation could be experimentally verified [34].
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In this paper we do not consider the full linear hull effect nor restrict ourselves
to one specific characteristics. Instead, we consider the characteristics among the
hull following a specific pattern.

Definition 17. Let a ∈ Z8
256 be an arbitrary mask. The pattern corresponding

to the mask a is the binary vector of length eight, with zeroes at the zero position
of a and ∗ at the non-zero positions of a. The weight w(p) of a pattern p is
the number of ∗ in this pattern. We denote the fact that a mask a corresponds
to pattern p by a ∈ p. We denote by and the byte-wise masking operation, i.e.,
given an element m ∈ Z8

256 and a pattern p, m′ = m and p is such that m′i = 0
if pi = 0 and m′i = mi otherwise, for i = 1, . . . , 8. We denote by intp(m) the
integer representation of the concatenation of the bytes of m andp corresponding
to the non-zero positions of p, and by I(p) = {intp(m) : m ∈ Z8

256}. Finally,
for an arbitrary integer i ∈ I(p), we denote int−1

p (i) the element m ∈ p such
that intp(m) = i.

For example, the pattern corresponding to a = [0,128,0,0,0,255,7,1] is p =
[0*000***] (of weight 4). If m = [3,128,128,255,0,255,7,1], then m andp =
a, and intp(m) = 100000001111111100000111000000012. Note that for an
arbitrary element m ∈ Z8

256 and any pattern p, int−1
p (intp(m)) = m andp.

The fact that we only consider, among the hull, the characteristics following
a given sequence of pattern p0, p1, . . . , pr can be written as

ELPRoundr◦···◦Round1(a0, ar) ≈
∑

a1∈p1
...

ar−1∈pr−1

r∏

i=1

ELPRoundi(ai−1, ai). (5)

where a0 ∈ p0 and ar ∈ pr. We call this approximation the reduced hull effect.
Note that in any case, (5) actually underestimates the true linear hull.

5.4 Sketching the Construction of Reduced Hulls on Two Rounds

In order to construct such reduced hulls on SAFER, we start by enumerating
the possible sequences of patterns p1

n−→ p2 on the linear diffusion layer, where
n denotes the number of distinct pairs of input/output masks following the
pattern p1/p2.2 We store these sequences in tables (that we do not report here
due to space constraints) that we order according to the input/output weights
w1 → w2 (1 ≤ w1, w2 ≤ 8) of the sequence p1 → p2. To reduce the size of the
list, we restrict it to patterns of weight sum 7 or less.

2 For example, on the linear layer, the output mask [128,0,0,0,0,0,0,0] corresponds
to the input mask [0,0,0,0,0,0,0,128]. Moreover, there is no other possible mask

with the same input/output patterns, which is denoted [0000000*]
1−→ [*0000000].

Two distinct pairs of masks on the linear layer following the input pattern input
pattern [0000000*] and the output pattern [***0*000] can be found (namely,
[0,...,0,64] corresponds to [192,128,128,0,128,0,0,0] and [0,...,0,192] to

[64,128,128,0,128,0,0,0]). This is denoted [0000000*]
2−→ [***0*000].
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Fig. 5. The characteristics on two successive linear layers of examples 1 and 2

Next, we build characteristics on several rounds based on the lists of possible
succession of patterns on the linear layer. We proceed step-by-step, starting
with characteristics on two rounds. Two characteristics on full rounds can only
be concatenated if the output mask of the first one is equal to the input mask
of the second one. This translates for patterns as follows: two successions of
patterns on the linear layer can only be concatenated if the output pattern of
the first succession is equal to the input pattern of the second succession.

Example 1. We can concatenate [000*000*] 1−→[0*000000] and [0*000000]
1−→

[**00**00]. We denote this by [000*000*]
1−→ [0*000000]

1−→ [**00**00].
This means that succession of patterns of weights 2 → 1 → 4 on two rounds
exist. In this particular example, there is only one characteristic corresponding
to this succession of masks, which is represented on Figure 5(a).

Example 2. Similarly, we can obtain the succession [****0000]
252−−→[**000000]

254−−→ [**00**00] which is a succession of pattern of weights 4 → 2→ 4 on two
rounds. In this case, 252 × 254 = 64008 distinct characteristics correspond to
this succession (one of which is represented on Figure 5(b)).

Finally, it should be noted that the characteristic of Example 1 actually
leads to an ELP equal to 0, as both input and output masks on the sub-
stitution box are equal to 128, which is equivalent to computing the tradi-
tional linear probability by only considering the least significant bit. In the
second example, the computation of the reduced hull leads to a non-zero linear
probability.
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Table 3. Key Recovery Attack against a r reduced-round version of SAFER

Input: A reduced hull on r rounds with input mask a0 ∈ p0 and output mask ar ∈ pr .

Output: A set of counters lpκ1,κ2,κ2r+1
with κ1, κ2 = 0, . . . , 28w(p0) − 1 and κ2r+1 =

0, . . . , 28w(pr) − 1.

Memory: A set of counters Ni,j initialized to 0, with i = 0, . . . , 28·w(p0) − 1 and j =

0, . . . , 28·w(pr) − 1.
0: foreach of the d plaintext/ciphertext pair (m, c) do
1: i← intp0(m) and j ← intpr (c)
2: Ni,j ← Ni,j + 1
3: done
4: foreach (κ1, κ2, κ2r+1) ∈ I(p0)× I(p0)× I(pr) do

5: k1 ← int−1
p0

(κ1), k2 ← int−1
p0

(κ2), and k2r+1 ← int−1
pr

(κ2r+1)

6: /* compute the lp corresponding to the round keys guess */
7: L ← 0
8: foreach (i, j) ∈ [0, . . . , 28w(p0) − 1]× [0, . . . , 28w(pr) − 1] such that Ni,j > 0 do

9: m← int−1
p0

(i) and c← int−1
pr

(j)

10: Add/xor k1 to m, apply the subst. box layer, add/xor k2, call the result m′.
11: Subtract k2r+1 to c, call the result c′

12: L ← L+ Ni,j · χa0 (m′)χar (c′)
13: done
14: lpκ1,κ2,κ2r+1

← |L|2.

15: done

5.5 Attacks on Reduced-Round Versions of SAFER

From Distinguishing Attacks to Key Recovery. In this section, a reduced
hull on r diffusion layers of SAFER corresponds to a succession patterns on r
successive linear layers separated by confusion layers. The weight of a reduced
hull is the number of active substitution boxes (i.e., the number of boxes with
non-zero input/output masks) for any characteristic of the hull. For example,
the succession [****0000]

252−−→[**000000]
254−−→[**00**00] (of Example 2) is a

reduced hull of weight 2 on two diffusion layers. A reduced hull easily leads to
a distinguishing attack on a reduced-round version of SAFER that would start
and end by a diffusion layer.

Table 3 describes a key recovery attack on a SAFER reduced to r rounds by
use of a reduced hull on r diffusion layers. Each of the counters obtained with
this algorithm measures the probability that the corresponding subset of round
key bits (for round keys 1,2, and 2r+1) is the correct one. We expect the correct
guess to be near the top of a list sorted according to these counters when the
number of plaintexts/ciphertext pairs is close to d = 1/ELPC(a0, ar).

In the worst case, line 4 loops 28·(2w(p0)+w(pr)) times. In practice, the complex-
ity is much lower (by considering key dependence due to the key schedule) and
depends on the number of bits nk that we need to guess in our attacks. When con-
sidering SAFER K-64 for example, a guess for the meaningful bytes of k1 uniquely
determines the bytes of k2 (for the reasons given in Section 5.1). Similarly, the
meaningful bytes of k2r+1 that are at the same positions than those of k1 are
also uniquely determined. When considering SAFER SK-64, similar techniques
may apply, depending on the specific shapes of the input/output masks and the
number of rounds. In all cases, if the meaningful bytes of k2 and k2r+1 are
actually added modulo 256, then they don’t need to be guessed (as they don’t
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Fig. 6. Reduced hull on two diffusion layers used to attack two rounds of SAFER K

alter the linear probability). If we only consider SAFER SK, this observation
also applies to k2. Finally, line 8 loops 2np times where np = min(8 · (w(p0) +
w(pr)), log2 d) (as

∑
i,j Ni,j = d). Consequently, given any input/output masks

a0 ∈ p0 and ar ∈ pr, the time complexity of the attack is given by

T =
1

ELPC(a0, ar)
+ 2nk+np . (6)

An attack on 2 Rounds. The best attacks we could find on two rounds are
based on reduced hull of weight 2 and are listed in Table 4. The best attack
on SAFER K exploits the reduced hull represented on Figure 6. To perform the
attack, one needs to guess 8 bits of K1, no bits of K2 (as those that could be
meaningful are added modulo 256 and thus do not influence the linear probabil-
ity), and 8 bits of K5 (as those in position 4 are uniquely determined by the guess
made on K1). We thus obtain nk = 24. The algorithm then loops through the
d = 1/ maxa0,a2

(
ELPH(2)

(a0, a2)
)

pairs, where H(2) here denotes the reduced
hull and where a0 (resp. a2) denote the input (resp. output) mask on H(2). The
final complexity is computed according to (6) and given in Table 4.

For SAFER SK, the previous reduced hull leads to a higher complexity as 8
more bits of K5 must be guessed. It appears that the best attack on two rounds
of SAFER SK makes use of the first characteristics given in Table 4.

Attacks on 3, 4, and 5 Rounds. To attack three rounds of SAFER K/SK,
we make use of reduced hulls on two diffusion layers of weight 6. We restricted
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Table 4. Selected reduced hulls on r diffusion layers and attack complexities against

r rounds of SAFER K/SK (with ELPmax denoting maxa0,ar ELPH(r)
(a0, ar))

r Reduced hull ELPmax np nk Complexity

2 [000*0000]
1−→[**000000]

254−−−→[**00**00] 2−13 13 24/24 237/237

2 [000*0000]
1−→[**000000]

255−−−→[00**00**] 2−13 13 16/24 229/237

3 [0*000000]
1−→[**00**00]

255−−−→[000*000*]
1−→[0*000000] 2−36 16 8/16 236/236

4 [000*0000]
1−→[**000000]

254−−−→[**00**00]
255−−−→[000*000*]

1−→[0*000000] 2−47 16 16/24 247/247

5 [000*0000]
1−→[**000000]

254−−−→[**00**00]
254−−−→[0*000*00]

1−→[0*000*00]
254−−−→[0*0*0*0*] 2−59 40 16/24 259/259

our search to input/output patterns of weight 1 to limit the number of key bits
guess. Using similar techniques as for the two rounds case, we manage to mount
an attack against both versions of SAFER reduced to three rounds within a
complexity of 237 (see Table 4).

To attack four rounds, we use the reduced hull on four diffusion layers listed
in Table 4. It appears that SAFER K/SK reduced to four rounds can be attacked
within a complexity of 247. Whereas our generalization of linear cryptanalysis
seems necessary to derive this reduced hull on four rounds, the attack itself
(which only involves the input and output masks, not the intermediate ones)
actually exactly corresponds to the original version of linear cryptanalysis: as
the non-zero bytes of both input/output masks maximizing the expected linear
probability are equal to 128, they only focus on one single bit. The last reduced
hull of Table 4 shows that 5 rounds of SAFER K can be broken within a complex-
ity of 259. Finally, we noted that among the output masks that maximize the
expected linear probability, several end by an even byte. For example the best
reduced hull is obtained when the last output masks ends by a 2. This remarks
applies to the fourth byte of the output mask. Consequently, strictly less than
16 key bits need to be guessed in the last round key, so that the same reduced
hull can also be used break 5 rounds of SAFER SK.

6 DEAN: A Toy Example

We introduce DEAN18 (as for Digital Encryption Algorithm for Numbers) a
toy cipher that encrypts blocks of 18 decimal digits (which approximatively
corresponds to a block size of 60 bits). This could be used to encrypt a credit-card
number for example. The structure of the toy cipher we suggest is inspired from
that of the AES [9]. We consider an R-round substitution-permutation network,
each round being based on the same structure. Blocks are represented as 3 × 3
arrays of elements of the additive group Z10 × Z10. Each round successively
applies to the plaintext the following operations:

• AddRoundKeys, that performs a digit-wise addition of a round key to the
input (the addition being taken modulo 10),
• SubBytes, that applies a fixed bijective substitution box S (defined in Ta-

ble 5, where an element (a, b) ∈ Z2
10 are represented as an integer 10 ·a+ b ∈

[0, 99]) on each 2-digit element of the array,
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• ShiftRows, that shift to the left each row of the input over a given offset
(equal to the row number, starting from 0 at the top),
• MixColumns, that multiplies each column of the input by the matrix

M =
(

α 1 1
1 α 1
1 1 α

)

where the multiplication of an arbitrary element (a, b) ∈ Z2
10 by α (resp. 1) is

defined by α · (a, b) = (a + b,−a) (resp. 1 · (a, b) = (a, b)).3 One can easily see
that this defines a structure on Z2

10 or Z3
10 that is isomorphic to GF(4)×GF(25)

or GF(8)×GF(125) on which the matrix is an MDS matrix [49, 22].
The branch number of the matrix multiplication is 4, i.e., the total number

of non-zero elements of the input and output columns is either 0 or 4 or more.
Consequently, given a non-trivial character ρ = (ρ1, ρ2, ρ3) on the output of the
transformation we obtain (given that we are considering a building block of type
(b)) that the appropriate character χ = (χ1, χ2, χ3) on the input is non-trivial
and that among the 6 characters χ1, . . . , ρ3, at least 4 are non-trivial. When at
least one of the six characters is non-trivial, we say that the column is active.

Extending this result to the whole MixColumns transformation and applying
similar arguments than those used on the AES [9], one can obtain that any
two rounds characteristic (i.e., succession of three characters on the text space)
has a weight lower bounded by 4Q, where the weight is simply the number of
non-trivial characters on Z2

10 among the 27 components of the three characters
and Q is the number of active columns at the output of the first round. Similar
arguments also lead to the fact that the sum of the number of active columns
at the output of the first and of the third round of a 4-round characteristic is at
least 4. Consequently, the weight of a 4-round characteristic is at least 16.

Denoting by LPS
max the maximum value of LPS(χ, ρ) over pairs of non-trivial

characters, we conclude (under standard heuristic assumptions on the indepen-
dence of the output of the characters at each round) that the linear probability of
a 4r-rounds characteristic is upper-bounded by (LPS

max)
16r. Assuming that one

characteristic among the linear hull [41] is overwhelming and that the bound
given by Theorem 7 is tight, this suggest that in the best case (from an adver-
sary point of view), a distinguishing attack against a 4r-round version of our toy
cipher needs at least d ≈ (LPS

max)
−16r samples. For the substitution box of our

toy cipher, we obtain LPS
max ≈ 0.069, so that the number of samples that is nec-

essary to attack four rounds with linear cryptanalysis is close to 3.8×1018 ≈ 261.
We conclude that R = 8 rounds are enough for DEAN18 to keep a high security
margin (as far as linear cryptanalysis is concerned).

TOY100 [13] is a similar construction using 11 rounds and blocks of 32 digits,
but where a block is a 4 × 4 array of Z100 elements. One problem with the
algebraic structure of Z100 is that its 2-Sylow subgroup is cyclic so there are no
MDS matrices. This is not the case of Z2

10.
3 Considering the elements of Z2

10 as elements of Z10[α]/(α2 − α + 1) naturally leads
to this definition. One could also try to encrypt blocks of 27 digits by using Z3

10

considered as Z10[α]/(α3 − α2 − 1).
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Table 5. A fixed substitution box on Z2
10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

27 48 46 31 63 30 91 56 47 26 10 34 8 23 78 77 80 65 71 43

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

36 72 29 79 83 7 58 95 69 74 67 35 32 59 82 14 75 99 24 87

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

16 90 76 51 28 93 50 38 25 3 13 97 55 60 49 86 57 89 62 45

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

18 37 1 6 98 68 39 17 19 20 64 44 33 40 96 2 12 41 52 85

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

81 5 0 15 54 88 92 21 84 22 53 11 4 94 42 66 70 9 61 73

7 Conclusion

The theory developed in this paper makes it possible to generalize linear crypt-
analysis to random sources and random permutations defined over sets of any
cardinality. This generalization appears to be very natural as it encompasses
the original one in the binary case, always preserves cumulative effects of linear
hulls, and keeps the intrinsic link with differential cryptanalysis. We also showed
that there always exists a group law allowing to express the best distinguisher
in a linear way (yet, finding this law certainly is a hard task in general). The
theory proves to be useful not only in the non binary case but also in the binary
case, e.g. when a mixture of group laws is used in the block cipher design.

Acknowledgments. The authors would like to thank anonymous referees for
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Matthieu Finiasz for a priceless help regarding the attack on SAFER.
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key schedule algorithm and shows that a block cipher with a weak key schedule
algorithm may be vulnerable to this kind of attack. Many cryptanalytic results
of this attack model were presented in [6, 10, 11, 12, 15].

Illuminated by the complex local collisions of the analysis of SHA-0 which
were pointed in the earlier papers in 1997 by X.Y.Wang [25], SHA-0 [24], and
SHA-1 [22], we show that in the case of SHACAL-1 [8], all previous differential
attacks [2, 7, 10, 13, 14, 17] fail due to this fact. For example, we show that the
attack of [10] uses a differential that can never be satisfied. For other attacks,
e.g., the related-key rectangle attack on the full SHACAL-1 in [7], we show that
the attack is applicable only to a weak key class (of 2496 keys). We show that
the combination of XOR differentials (or related-key XOR differentials) when
the addition operation is used should be done in a very delicate manner.

After pointing out the problems in the various attacks on SHACAL-1, we try
to salvage them. Some of the attacks are fully salvaged, while some others are
either shortened (due to lower probabilities of the differentials), or are applicable
only in a weak key class (which is larger than previously known).

We then present a related-key rectangle attack on the full SHACAL-1. We
use two related-key differentials, where the first one of 33 rounds is built using
the technique of modular differences, achieving high probability and correctness.
The new attack has a data complexity of 2146 related-key chosen plaintexts and
time complexity of 2465 encryptions. The attack is successful against one out
of 256 keys (or more precisely one quartet of keys out of 256 quartets). We
summarize the results on SHACAL-1 and our findings in Table 1.

The attack is applicable against the largest set of weak keys (one out of 256).
Finally, we show how to improve the 6.5-round rectangle attack on IDEA from [4]
by using the additive properties of the differentials. We succeed in reducing the
time complexity of the attack by a factor of two.

The rest of the paper is organized as follows: in Section 2, we give the notations
used in the paper, present SHACAL-1 and introduce some useful properties of
the nonlinear functions in SHACAL-1. Section 3 describes the flaws in previous
attacks against SHACAL-1. We present fixes to the various problems in Section 4.
In Section 5 we give a related-key rectangle attack on the full SHACAL-1 which
can be applied to one out of 28 keys (quartets of keys). We improve the 6.5-round
related-key rectangle attack on IDEA in Section 6. Finally, we summarize the
paper in Section 7.

2 Background

2.1 Notations

Throughout the paper we shall use the following notations which are partially
based on these of [21, 23]:

– We shall address the words in a little endian manner, where x0 is the least
significant bit of x, and x31 is the most significant bit of 32-bit words.
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Table 1. Comparison of our results with the previous attacks on SHACAL-1

Attack Rounds Complexity Observation
Data Time

Differential [14] 30 (0–29) 2110 CP 275.1 AF
Differential [14] 41 (0–40) 2141 CP 2491 AF
Differential [17] 49 (0–48) 2141 CP 2496.5 AF
Differential [17] 55 (15–69) 2154 CP 2507.3 AF

Amplified Boomerang [14] 47 (0–46) 2158.5 CP 2508.4 AF

Rectangle [2] 47 (0–46) 2151.9 CP 2482.6 AF
Rectangle [2] 49 (29–77) 2151.9 CC 2508.5 AF
Rectangle [17] 51 (0–50) 2153.7 CP 2503.7 AF
Rectangle [17] 52 (28–79) 2160 CP 2510.0 AF

Related-Key Rectangle [13] 57 (0–56) 2154.8 RK-CP 2503.4 AF
Related-Key Rectangle [13] 59 (0–58) 2149.7 RK-CP 2503.4 AF
Related-Key Rectangle [10] 70 (0–69) 2151.8 RK-CP 2500.1 AF
Related-Key Rectangle [7] 80 (0–79) 2159.8 RK-CP 2420.0 WK (2496)
Related-Key Rectangle [7] 80 (0–79) 2153.8 RK-CP 2501.2 WK (2498)

Related-Key Rectangle (New) 70 (0–69) 2146 RK-CP 2145 WK (2504)
Related-Key Rectangle (New) 80 (0–79) 2146 RK-CP 2465 WK (2504)
Related-Key Rectangle (New) 70 (0–69) 2144 RK-CP 2174 WK (2504)
Related-Key Rectangle (New) 80 (0–79) 2144 RK-CP 2494 WK (2504)

Differential (New) 39 (30–68) 2144 CC 2176

Differential (New) 49 (20–68) 2144 CC 2496

Rectangle (New) 41 (0–40) 2150.3 CP 2176.9

Rectangle (New) 51 (0–50) 2150.3 CP 2496.9

CP: Chosen Plaintexts, CC: Chosen Ciphertexts.
RK-CP: Relate-Key Chosen Plaintexts.
AF: The Attack is Flawed, WK: Weak Key Class (with size).

– xi[j] and xi[−j] denote the resulting values by only changing the jth bit of
the word xi. In case the change of the bit is from 0 to 1, then xi[j] is used
and the sign is considered to be positive. Otherwise, xi[−j] is used and the
sign of the difference is negative.

– xi[±j1,±j2, . . . ,±jl] is the value obtained by changing j1th, j2th, ..., jlth bits
of xi. The “+” sign (which may be omitted) means that the bit is changed
from 0 to 1, where the “−” denotes the opposite change.

– [j] denotes a difference in bit j such that the pair (x, x∗) satisfies x∗i − xi =
2j (i.e., x∗i = xi[j]). [−j] denotes a difference in bit j such that the pair
(x, x∗) satisfies x∗i − xi = −2j (i.e., x∗i = xi[−j]). Similarly, [j1, j2] denotes
x∗i − xi = 2j1 + 2j2 and [j1,−j2] denotes x∗i − xi = 2j1 − 2j2 , etc.

– ej represents the 32-bit word composed of 31 0′s and 1 in the jth place,
ej,k = ej ⊕ ek and ej,k,l = ej ⊕ ek ⊕ el, etc.

– Δ(A, A∗) denotes A∗ − A or A∗ ⊕ A according the the value attached to
it. Δ(A, A∗) = ej stands for XOR difference, i.e., A∗ ⊕ A = ej. Otherwise
Δ(A, A∗) = [j] stands for an modular difference, i.e., A∗ − A = 2j and
A∗ ⊕A = ej .
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2.2 Description of SHACAL-1

SHACAL-1 [8] is a 160-bit block cipher supporting variable key lengths (0,. . . ,512
bits). It is based on the compression function of the hash function SHA-1 [20]
introduced by NIST. The 160-bit plaintext P is divided into five 32-bit words
A0, B0, C0, D0 and E0. The encryption process iterates the following round
function for 80 rounds:

Ai+1 = Ki + ROTL5(Ai) + Fi(Bi, Ci, Di) + Ei + Coni

Bi+1 = Ai

Ci+1 = ROTL30(Bi)
Di+1 = Ci

Ei+1 = Di

for i = 0, . . . , 79, where ROTLj(X) represents rotation of the 32-bit word X to
the left by j bits, Ki is the round subkey, Coni is the round constant, and

Fi(X, Y, Z) = IF (X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z), (0 ≤ i ≤ 19)
Fi(X, Y, Z) = XOR(X, Y, Z) = X ⊕ Y ⊕ Z, (20 ≤ i ≤ 39, 60 ≤ i ≤ 79)
Fi(X, Y, Z) = MAJ(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), (40 ≤ i ≤ 59)

The ciphertext is composed of A80, B80, C80, D80 and E80.
The key schedule of SHACAL-1 supports a variable key length of 0–512 bits.

Keys shorter than 512 bits are first padded with as many zeroes as needed to
obtain 512 bits. Let the 512-bit (padded) key be K = K0K1 . . . K15, where Ki

is a 32-bit word. The key expansion of 512-bit K to 2560 bits is as follows:

Ki = ROTL1(Ki−3 ⊕Ki−8 ⊕Ki−14 ⊕Ki−16), (16 ≤ i ≤ 79)

We note that in [8] a minimal key length of 128-bit is required.

2.3 Several Propositions on the Differential Behavior of Addition
and IF

In this section we present some properties of additive differences and XOR dif-
ferences, as well as some properties of the nonlinear function IF (X, Y, Z) which
were summarized in [22].

Proposition 1. Let A1, A2 and B be n-bit words, and let Ci = Ai + B
(mod 2n) for i = 1, 2. If A1 ⊕ A2 = ej for 0 ≤ j ≤ n− 2, then C1 ⊕ C2 = ej if
and only if Ci,j = Ai,j for i = 1, 2 and 0 ≤ j ≤ n− 2.

Proof. Assume without loss of generality that A1,j = 0. Thus, A2,j = 1, and
A1 +2j = A2. It follows that C2 = C1 +2j. Hence, if C1,j = 0 then C2,j = 1 and
there is no carry due to the difference, i.e., C1 ⊕ C2 = ej . In the other way, if
C1 ⊕C2 = ej , there was no carry by the addition of 2j to C1, which means that
C1,j = 0. Q.E.D.
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Proposition 2. Let A1, A2, B1 and B2 be n-bit words, and let Ci = Ai + Bi

(mod 2n) for i = 1, 2. If A1 ⊕ A2 = B1 ⊕ B2 = ej for some bit 0 ≤ j ≤ n − 2,
then C1 = C2 if and only if Ai,j = ¬Bi,j for i = 1, 2.

Proof. Without loss of generality assume that A1,j = 0 and that A2,j = 1, thus,
A2 = A1 + 2j. If B1,j = 1, then it follows that B2 = B1− 2j , and thus C1 = C2.
To prove the other direction we note that C1 = C2 requires that B2 = B1 − 2j

(mod 2n). As B1 and B2 differ only in one bit, i.e., bit j, it follows that B1,j = 1
and B2,j = 0. Q.E.D.

Proposition 3. For the nonlinear function IF (X, Y, Z) = (X ∧Y )∨(¬X ∧ Z),
the following properties hold [21, 23]:

1. IF (x, y, z) = IF (¬x, y, z) if and only if y = z.
IF (0, y, z) = 0 and IF (1, y, z) = 1 if and only if y = 1 and z = 0.
IF (0, y, z) = 1 and IF (1, y, z) = 0 if and only if y = 0 and z = 1.

2. IF (x, y, z) = IF (x,¬y, z) if and only if x = 0.
IF (x, 0, z) = 0 and IF (x, 1, z) = 1 if and only if x = 1.

3. IF (x, y, z) = IF (x, y,¬z) if and only if x = 1.
IF (x, y, 0) = 0 and IF (x, y, 1) = 1 if and only if x = 0.

3 Flaws in Previously Published Attacks

We find all previous differential attacks on SHACAL-1 have some flaws illu-
minated by Wang’s modular difference. In some cases, these flaws prevent the
attacks from being applicable to all keys. The first flaw, which affects the attacks
in [2, 10, 13, 14, 17] is an impossibility flaw, i.e., the differentials which are used
in these attacks can not hold. The second flaw, which affects the related-key
attacks in [7, 10, 13] is the fact that the related-key differential holds only if the
key satisfies some conditions. The third flaw is wrong keys which suggest the
same number of “right” pairs/quartets as the right key. We show that the same
pairs suggest even wrong keys.

3.1 The Use of Differentials with Probability 0

In the attacks of [2, 10, 13, 14, 17] there is a part of the differentials (or the
related-key differentials) which cannot hold. We present the problem with the
related-key differential of [10], but note that the key difference has no affect on
the problem, and thus it exists in all the attacks mentioned earlier.

The related-key rectangle attack on 70-round SHACAL-1 [10] uses a 33-round
related-key differential characteristic for rounds 0–32 with probability 2−45. The
differential characteristic in [10] from round 6 to round 12 is shown in Table 2.

We shall now prove that this differential characteristic can never hold, i.e.,
the actual probability is 0. Let A, B, C, D, E and A∗, B∗, C∗, D∗, E∗ be the in-
termediate encryption values corresponding to a pair which allegedly satisfies
this differential.
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Table 2. The differential Characteristic in [10] from Round 6 to Round 12

i ΔAi ΔBi ΔCi ΔDi ΔEi ΔKi Prob.

6 e3 0 0 e13,31 0 0 2−3

7 e8 e3 0 0 e13,31 e31 2−3

8 0 e8 e1 0 0 0 2−2

9 0 0 e6 e1 0 0 2−2

10 0 0 0 e6 e1 0 2−2

11 e1 0 0 0 e6 0 2−2

12 0 e1 0 0 0 0 2−1

1. According to Ai+1 = Ki + ROTL5(Ai) + Fi(Bi, Ci, Di) + Ei + Coni and
proposition 1, we get that A7,8 = A6,3 and A∗7,8 = A∗6,3.

2. From the encryption algorithm and proposition 1, we get that A11,1 =
E10,1 = A6,3, A∗11,1 = E∗10,1 = A∗6,3, E11,6 = A7,8 and E∗11,6 = A∗7,8.

3. From 1 and 2, we obtain that A11,1 = E11,6 and A∗11,1 = E∗11,6. By Ai+1 =
Ki + ROTL5(Ai) + Fi(Bi, Ci, Di) + Ei + Coni and proposition 2, we obtain
that A12 �= A∗12, i.e., ΔA12 �= 0, which is a contradiction with ΔA12 = 0 in
the differential characteristic.

To summarize the above, as there is no carry from the addition of the differences
in round 6, the sign of A7,8 is the same as the sign of A6,3. The sign of A6,3 is
then copied to A11,1 (as there is no carry). Thus, when these two differences
enter the addition in round 12 they have the same sign, and thus, cannot cancel
each other. Therefore the attack on 70-round SHACAL-1 [10] is infeasible (as
well as other attacks which use this transition).

We note that when considering only XOR differences (as was done in [10]), the
probabilities of the differential is larger than 0. However, only when we consider
modular difference, this problem is found.

3.2 Conditions on the Keys

The related-key differential attacks [7, 10, 13] have to deal with another issue
which follows from the addition operation. Some of the XOR differences of the
differentials can hold only if some key conditions are applied. We show that the
related-key attacks in [7, 10, 13] imposes conditions on the keys, so they can actu-
ally be used only for weak key classes. The attack in [13] has one such condition,
the attack in [10] has 2 conditions, and the attack in [7] has 16 conditions. Thus,
the attack of [7] is applicable only for a weak key class with the size of 2496 keys
(rather than all the keys as implicitly assumed in [7]).

Consider rounds 26–34 of the first related-key differential used in [7] which
are depicted in Table 3. Consider for example the difference e2 in A27, we know
the the sign of this difference is as the sign of key difference that caused it. In
order for this difference to be canceled during the addition of round 27 (with
the key difference of K27), by proposition 2 it must hold that the sign of the
key difference is opposite to that of A27,2. This imposes a condition on the keys
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Table 3. The Related-Key Differential Characteristic in [7] (Steps 26–34)

i ΔAi ΔBi ΔCi ΔDi ΔEi ΔKi Prob.

26 0 0 0 0 0 e2 2−1

27 e2 0 0 0 0 e7 2−1

28 0 e2 0 0 0 e2 2−1

29 0 0 e0 0 0 e0,3 2−2

30 e3 0 0 e0 0 e0,8 2−2

31 0 e3 0 0 e0 e0,3 2−2

32 0 0 e1 0 0 e1,4 2−2

33 e4 0 0 e1 0 e1,9 2−2

34 0 e4 0 0 e1

used in the attack, as otherwise, there is going to be a carry, and the related-
key differential cannot hold. We note that the same problem exists in the first
related-key differential of [7] in five other places, in rounds 0–1, 4–5, 29–30, 32–
33, and rounds 26–31 (where the sign of the difference in E31 should be the
opposite of the sign of the key difference).

The same is true for the second related-key differential used in rounds 34-
69, where 10 conditions are imposed on the key. As a side observation, we note
that when the keys satisfy these conditions, the probability of the transitions is
increased, as we are assured that the required differences cancel. Thus, while this
defines a weak key class which contains one out of 216 keys (or more precisely
a quartet of keys), for these weak keys, the probabilities of the differentials
are actually 2−35 and 2−29 rather than 2−41 and 2−39 for the first and second
differentials, respectively.

In Table 4 we summarize for the three related-key attacks the number of
conditions imposed on any of the related-key differentials, derive the weak key
class size, and the actual data and time complexities of the attacks in the weak
key class. We ignored the impossibility issues that were mentioned earlier, but
we remind the reader that these attacks still fail due to the previously mentioned
reasons.

3.3 Wrong Keys That Pass the Basic Attacks

While this problem is the smallest of all, this observation can actually be used
to reduce the time complexities of the attacks (usually by a negligible factor).
Consider for example the last step in the attack from [7]:

“Partially decrypt all the remaining quartets (under the corresponding keys)
. . . For each of the remaining quartets, check whether C′′′aE

⊕C′′′cE
= δE = e1 . . . ”

Consider for example the case where the most significant bit of the real key is
flipped. As noted in [7], this has no affect on the difference of the pair. Thus,
when checking the real key, and the real key with a flipped most significant bit,
the same quartets are suggested. More accurately, if we consider the additive
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Table 4. Conditions on the Keys in Previous Related-Key Attacks and the Effect on
their Complexities

Attack Rounds Conditions on Complexity Number of
1st Differential 2nd Differential Data Time Weak Keys

[13] 57 1 0 2153.8 RK-CP 2501.4 2511

[13] 59 0 0 2149.7 RK-CP 2498.3 2512

[10] 70 1 0 2150.8 RK-CP 2498.1 2511

[7] 80 6 10 2143.8 RK-CP 2388.0 2496

[7] 80 6 8 2139.8 RK-CP 2473.1 2498

The first three attacks fail.
The number of weak keys is the number of weak keys quartets out of all the 2512 possible
ones which satisfy the related-key XOR differences.

differences in the last step of the attack, the additive difference depends on the
additive difference of the subkey and the data, and not on the actual key bits.
Thus, all bit positions which are more significant than all the bits with difference
in the key, has no affect whatsoever on the difference of a pair.

Thus, in the case of the attack from [7] the number of subkeys which has
more than two quartets is increased by 227. One one hand this increases the
time complexity of the exhaustive key search phase by a factor of 227. On the
other hand, as there is no point in guessing these key bits during the normal
execution of the attack (again besides in the exhaustive key search phase), their
guesses and partial decryptions during the attacks can be eliminated.

We observe that the each of these keys is suggested by the same quartet.
Thus, increasing the data used in the attack has no effect on the correctness of
the attack.

4 Fixing the Previous Attacks

We concentrate at showing how to fix the the differential attack on 55-round
SHACAL-1 from [17]. We show that by using the correct modular differences
we obtain a valid attack on 49-round SHACAL-1. The new modular differential
uses the cases where we add two difference, either they have the opposite signs
(and produce no carry) or they are in the most significant bit. We also note that
when a difference in the most significant bit is introduced, its sign might change
without producing a carry. This might be useful in cases where a difference
is introduced, and we need to change its sign (the change of sign occurs with
probability 1/2, and it may happen without carry, while for other bit positions
this occurs with probability 1/2, but produces a carry).

We summarize in Table 5 the parameters of the fixed attacks: the new number
of rounds, the new data and time complexity. We also list the major changes
that must be done to these attacks to make them work. We note that the best
attack on SHACAL-1 in the regular model (i.e., with one key) is a 51-round
rectangle attack on rounds 0–50.
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Table 5. The results of the fixed attacks on SHACAL-1

Attack Rounds Complexity Comments
Data Time

Differential [14] 28 (0–27) 293 CP 293 Using the new differentials from
Appendix B. Fixing 6 input bits

Differential [14] 40 (0–39) 298 CP 2482 As before, not using the early
abort technique.

Differential [17] 49 (20–68) 2144 CC 2496 See Section 4.1

Amplified Boomerang [14] 47 (0–46) 2154.5 CP 2502.4 Changing the first differential to the
first 21 rounds of the differential
from Appendix B.

Rectangle [2] 47 (0–46) 2149.7 CP 2478.2 Same change as the amplified
boomerang attack. p̂ = 2−41.42

rather than 2−43.62 , tb = 12.7
(rather than 9.9) and rb = 32 rather
than 25.

Rectangle [2] 48 (30–77) 2149.7 CC 2482.1 As before, not using the early
abort technique. tf = 12.7 (originally
9.9), rf = 32 (origanlly 32).

Rectangle [17] 51 (0–50) 2150.3 CP 2496.9 Using the 24-round differential from
Appendix B. Fixing 6 plaintext
bits, p̂ = 2−44 (rather than 2−47.39).

Rectangle [17] 50 (30–79) 2160 CP 2505.0 q̂ = 2−47.9 (orignally 2−47.8),
tf = 73.7 (originally 24.9), and
rf = 90 (originally 31).

Related-Key Rectangle [13] 57 (0–56) 2143.6 RK-CP 2481 Change the first related-key
differential to the first one from
Appendix A. p = 2−35 after fixing
9 plaintext bits.

Related-Key Rectangle [13] 59 (0–58) 2146.5 RK-CP 2479.0 Replace the first differential to the
21 first rounds of the differential
from Appendix B. p̂ = 2−35.4

after fixing 6 plaintext bits.
Related-Key Rectangle [10] 70 (0–69) 2142.7 RK-CP 2481.9 As before, change the first

related-key differential.

CP: Chosen Plaintexts, CC: Chosen Ciphertexts, RK-CP: Relate-Key Chosen Plaintexts.
WK: Weak Key Class (with size).

4.1 Fixing the Differential Attacks

For the differential attack in [17] we change the used differential. The basic
24-round differential is given in Table 9 in the Appendix. The basic 24-round
differential from [17] (which is extended 16 more rounds) has four contradictions.
Thus, we first start by fixing the first three by changing the differential conditions
from XOR ones to modular ones. The fourth contradiction is solved by rotating
the differential such that the problematic addition occurs with both differences
in the most significant bit.

The new 24-round differential has probability of 2−52, compared to the claimed
probability of the flawed differential of 2−50. It is possible to improve the prob-
ability of the new differential by a factor of 26 by fixing several plaintext bits
which ensure the transitions that we seek. For example, by fixing C0,22 = D0,22,
we make sure that despite the difference in B0,22, there is no difference in
IF (B0,22, C0,22, D0,22). We also note that by negating the signs (i.e., flipping
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all the signs) in the differential, we obtain a second differential with the same
probability.

The extension of this differential forward and backward is a bit more complex
than in [17]. This is mostly due to the fact that we have to maintain the correct-
ness of the differential by restricting the signs of the differences. In Table 10 in
the appendix we present a possible extension of the 24-round differential to the
six rounds before the differential (the 24-round differential can be used also for
rounds 40–63). Table 11 presents a possible extension of the 24-round differen-
tial (whether this is in rounds 24–29 or in rounds 64–68). Thus, it is possible to
construct a 36-round differential for SHACAL-1 in rounds 33–68 with probabil-
ity 2−157 (which can be improved to 2−144 by fixing the equivalent of 13 plain
text bits).

Using this 36-round differential, we can attack rounds 18–68. This is done
in a chosen ciphertext attack. The attacker has to fix 10 bits to satisfy the
additive requirements of the differential, and thus, it is impossible to use the
differential as-is (as its probability is 2−157, i.e., 2157 pairs are needed). However,
if we use structures of 232 ciphertexts each, we eliminate the last round of the
differential (round 68), and thus increase the probability of the differential by
a factor of 2−14, and reduce 2 conditions on the ciphertexts. In exchange for
that, we cannot automatically distinguish right pairs (as each plaintext has 232

candidate counterparts).
The attacker obtains 2144 chosen ciphertexts (in 2112 structures), and asks

for their decryption. Then, he guesses the subkeys of rounds 68, and rounds 20–
29, partially encrypts the obtained plaintexts, and then repeats the early abort
technique found in [17] and in our attack described later. The resulting attack
has a time complexity of about 2496 encryptions.

5 A New Related-Key Rectangle Attack on the Full
SHACAL-1

The key schedule of SHACAL-1 is operated by a linear shift feedback register,
and has slow diffusion, i.e., low difference propagations. If we fix a difference
of any consecutive 16 subkeys, the differences in the remaining 64 subkeys are
known. The key schedule weaknesses of SHACAL-1 allows us to obtain two
consecutive good related-key differential characteristics. We can constructed a
33-round related-key differential characteristic for rounds 0–32 (E0) without any
conditions on the key. For the rounds 33–65 (E1) we use a differential character-
istic based on the the second differential used in [7] and we impose 8 conditions
on the key. The characteristics are given in the Appendix. We combine the two
related-key differential characteristics to obtain a 66-round related-key rectangle
distinguisher for SHACAL-1.

5.1 Related-Key Differential Characteristics for SHACAL-1

We first propose a 66-round related-key rectangle distinguisher based on the
differentials found in the Appendix. The input difference for the first sub-cipher
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Table 6. Values for Plaintexts bits that Increase the Probability of the Differential of
Table 7

A0 B0 C0 D0

A0,3 = 1, A0,12 = B0,12 B0,16 = 1, B0,20 = 0, B0,10 = C0,8 C0,1 = 1 D0,3 = 1

A0,20 = 1 B0,31 = 0

Table 7. The First Related-Key Differential Characteristic for SHACAL-1

Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔKi Probability

0 [−8, 1] [3] [−20, 3] [16, 31] 213 − 210 − 26 e31

1 [−10] [−8, 1] [1] [−20, 3] [16, 31] e31 2−1

2 [15] [−10] [−6, 31] [1] [−20, 3] 0 2−1

3 [3] [15] [−8] [−6, 31] [1] 0 2−4

4 [1] [3] [13] [−8] [−6, 31] e31 2−5

5 0 [1] [1] [13] [−8] 0 2−3

6 [−8] 0 [31] [1] [13] 0 2−3

7 0 [−8] 0 [31] [1] 0 2−2

8 [1] 0 [−6] 0 [31] e31 2−3

9 0 [1] 0 [−6] 0 0 2−1

10 [1] 0 [31] 0 [−6] e31 2−3

11 0 [1] 0 [31] 0 0 2−1

12 0 0 [31] 0 [31] e31 2−2

13 0 0 0 [31] 0 0 2−1

14 0 0 0 0 [31] e31 2−1

15 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . . . .

30 0 0 0 0 0 e0 1

31 e0 0 0 0 0 0 2−1

32 e5 e0 0 0 0 0 2−1

33 e0,10 e5 e30 0 0 e1 2−2

The key difference is ΔK∗ = (e31, e31, 0, 0, e31, 0, 0, 0, e31, 0, e31, 0, e31, 0, e31, 0).

is α = ([−8, 1], [3], [3,−20], [16, 31], 213 − 210 − 26), and the output difference
is β = (e10,0, e5, e30, 0, 0) under key difference ΔK∗ with probability 2−35. For
the second sub-cipher the input difference γ = (e1, e1, 0, e30,31, e31) becomes
output difference δ = (0, e3, 0, 0, e0) under key difference ΔK ′ with probability
2−36. The second differential defines a weak key class which contains one out
of 28 keys, for these weak keys, the probability of the second differential is
increased to 2−28(= 2−36 · 28). The probability of the first three rounds of the
first differential can be increased by a factor of 29 by fixing the equivalent of 9
plaintext bits (presented in Table 6) in each of the plaintexts of the pair, and
after the increase the probability of the first differential is 2−35. Thus, starting
with N plaintext pairs with input difference α and fixed the 9 bits in each of the
plaintexts to the first sub-cipher we expect N2 · (p2q22−160) = N2 · 2−286 right
quartets. Therefore, Given 2144 related-key chosen plaintext pairs, we expect
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4(= (2144)2 · 2−160 · (2−63)2) right quartets, while for a random cipher only
2−32(= (2144)2 · (2−160)2) are expected.

The following is the derivation for the sufficient conditions in round 0 of
Table 7. The input difference in round 0 is α = ([−8, 1], [3], [3,−20], [16, 31], 213−
210 − 26), and the desired output difference in round 0 of ([−10], [−8, 1], [1], [3,
−20], [16, 31]).

1. According to (2) of Proposition 1, the condition B0,20 = 0 ensures that the
change in the 20th bit in C0 results in no change in A1.

2. According to (3) of Proposition 1, the condition B0,16 = 1 ensures that the
change in the 16th bit in D0 results in no change in A1.

3. According to (3) of Proposition 1, the condition B0,31 = 0 ensures that the
change in the 31st bit in D0 and ΔK1 = 231 result in no change in A1.

4. From the property of the function F0, the condition D0,3 = 1 ensures that
the changes in the 2nd bits of B0 and C0 result in no change in A1.

5. From ΔE0 = 213 − 210 − 26 and ΔA0 = −28 + 2, the condition A1,10 = 1
ensures that A1 = A1[−10].

Therefore ΔA1 = [−10] holds with the probability of 2−1 by fixing the equivalent
to 4 bits in the plaintexts.

In the same way, we can prove that the conditions C0,1 = 1, B0,10 = C0,8 and
A0,3 = A0,20 = 1 ensure that ΔA2 = [15] holds with the probability of 2−1, and
the condition A0,12 = B0,12 ensures that ΔA3 = [3] holds with the probability
of 2−4.

5.2 The Key Recovery Attack Procedure for the Full SHACAL-1
with 512-Bit Keys

Let the four different unknown keys be K, K∗ = K⊕ΔK∗, K ′ = K⊕ΔK ′, K ′∗ =
K ′ ⊕ΔK∗, where ΔK∗ is the key difference of the first related-key differential
and ΔK ′ is the key difference for the second key differential. Assume the plain-
texts P , P ∗, P ′ and P ′∗ are encrypted under the keys K, K∗, K ′ and K ′∗

respectively. Denote the intermediate values encrypted under E0 by IM , IM∗,
IM ′ and IM ′∗, respectively. (P, P ∗) and (P ′, P ′∗) are the pairs with respect to
the first differential, and (IM, IM ′), (IM∗, IM ′∗) are the pairs with respect to
the second differential, i.e. (C, C′), (C∗, C′∗) are the pairs with respect to the
second differential.

We denote the 160-bit value Xi is by the five 32-bit words XiA, XiB , XiC ,
XiD and XiE . Also, we denote the set of all possible additive differences of
ΔA67 by S′. The attack finds the four related-keys using 2146 related-key chosen
plaintexts using the following algorithm:

1. Choose two pools of 2144 plaintext pairs (Pi, P
∗
i ) and (P ′j , P

′∗
j ) such that

(a) P ∗i − Pi = P ′∗j − P ′j = α;
(b) Pi and P ∗j have the fixed bits as given in Table 6 and required by the

modular differential, i.e., for Pi: PiA,3 = PiA,8 = PiA,20 = PiB,16 =
PiC,1 = PiC,20 = PiD,3 = 1, PiA,1 = PiB,3 = PiB,20 = PiB,31 = PiC,3 =
PiD,16 = 0, and PiA,12 = PiB,12, PiB,10 = PiC,8.
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(c) Pi, P ∗i , P ′j and P ′∗j are encrypted using the keys K, K∗, K ′ and K ′∗,
respectively, which result in the ciphertexts Ci, C∗i , C′j , and C′∗j .

2. Guess a 323-bit key quartet (k, k∗, k′, k′∗) for rounds 70–79 and K69,1, K69,3,
K69,4. For the guessed key quartet (k, k∗, k′, k′∗), and decrypt all the
ciphertexts Ci, C

∗
i , C′j , C

′∗
j from round 79 to round 70 and compute the addi-

tive difference before round 69. Denote the corresponding intermediate val-
ues by Ui, U

∗
i , U ′j , U

′∗
j , respectively. Then we obtain words A, B, C, D of all

words and the additive difference for all the pairs UiE , U∗iE and all the pairs
U ′iE , U ′∗iE . Find all quartets (Ui, U

∗
i , U ′j , U

′∗
j ) satisfying UiC,D,E⊕U ′jC,D,E ∈ S

and U∗iC,D,E ⊕ U ′∗jC,D,E ∈ S, where S = {(a, b, c) : ROTR30(a) ∈ S′, b =
ROTL30(ΔA66) = 0, c = ROTL30(ΔB66) = e1}. Discard all other quartets.

3. Guess the remainder bits of K69 and bits 1,9 of K68. For each of the guessed
subkeys:
(a) Decrypt the remaining quartets to get UiE , U ′jE , U∗iE and U ′∗jE . Partially

decrypt all the remaining quartets (Ui, U
∗
i , U ′j , U

′∗
j ) using the keys k, k∗,

k′ and k′∗ respectively, and denote the resulting intermediate values by
(Zi, Z

∗
i , Z ′j ,

Z ′∗j ). We will get A, B, C, D of Zi (Z∗i , Z ′j , Z
′∗
j ), and the additive differ-

ence between ZiE and Z ′jE (and the additive difference between Z∗iE and
Z ′∗jE). Check whether ZiE⊕Z ′jE = ΔC66 = 0 and discard all the quartets
that do not satisfy the condition.

(b) For each of the remaining quartets, check whether Z∗iE⊕Z ′∗jE = ΔC66 = 0
and discard all the quartets that do not satisfy the condition.

4. Guess the remainder bits of K68 and bits 1,4 of K67. For each of the guessed
subkeys:
(a) Decrypt the quartets to get ZiE , Z ′jE , Z∗iE and Z ′∗jE . Partially decrypt all

the remaining quartets (Zi, Z
∗
i , Z ′j , Z

′∗
j ) using the keys k, k∗, k′ and k′∗

respectively, and denote the resulting intermediate values by (Yi, Y
∗
i , Y ′j ,

Y ′∗j ). We will get A, B, C, D of Yi (Y ∗i , Y ′j , Y ′∗j ), and the additive differ-
ence between YiE and Y ′jE (and the additive difference between Y ∗iE and
Y ′∗jE). Check whether YiE⊕Y ′jE = ΔD66 = 0 and discard all the quartets
that do not satisfy the condition.

(b) For each of the remaining quartets, check whether Y ∗iE⊕Y ′∗jE = ΔD66 = 0
and discard all the quartets that do not satisfy the condition.

5. Guess the remainder bits of K67 and bits 0,3 of K66. For each of the guessed
subkeys:
(a) Decrypt the quartets to get YiE , Y ′jE , Y ∗iE and Y ′∗jE . Partially decrypt all

the remaining quartets (Yi, Y
∗
i , Y ′j , Y ′∗j ) using the keys k, k∗, k′ and k′∗

respectively, and denote the resulting intermediate values by (Xi, X
∗
i ,

X ′j , X
′∗
j ). We will get A, B, C, D of Xi (X∗i , X ′j, X

′∗
j ), and the additive

difference between XiE and X ′jE (and the additive difference between
X∗iE and X ′∗jE). Check whether XiE ⊕X ′jE = ΔE66 = e0 and discard all
the quartets that do not satisfy the condition.

(b) For each of the remaining quartets, check whether X∗iE⊕X ′∗jE = ΔE66 =
e0 and discard all the quartets that do not satisfy the condition.
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6. Exhaustively search for the remaining 94 key bits by trial encryption for the
suggested key k.

The first 9 fixed bits as given in Step 1(b) of Pi ensure that the probability of the
first differential is increased by a factor of 29. According to the input difference of
the plaintexts, we will know that P ∗i , P ′j and P ′∗j also have the 9 fixed bits as given
in Table 6, i.e. P ∗iA,3 = 1, P ′iA,3 = 1, P ′∗iA,3 = 1, P ∗iA,12 = P ∗iB,12, P ′iA,12 = P ′iB,12,
P ′∗iA,12 = P ′∗iB,12, etc. Besides these bits, the nature of the modular differential,
i.e., the signs, set 6 more bits to predetermined values. These 6 bits in Step 1(b)
are deduced as follows: for each bit whose difference according to the differential
from Table 7 is positive, we set Pi to be zero and P ∗i to be one (and of course
P ′j to zero and P ′∗j to one as well). If the difference is negative, we perform the
same but with opposite values.

This means our related-key differential characteristic exploits plaintexts pairs
for which 15 bits are effectively fixed respectively. Pi, P ∗i , P ′i and P ′∗i has 15
fixed bits respectively, and we choose 2144 pairs (Pi, P

∗
i ) and (P ′j , P

′∗
j ), which

can be realized while each plaintext has 160 bits.
According to the key schedule of SHACAL-1, we know that for the pairs we

consider, ΔK67 = e1,4, ΔK68 = e1,9 and ΔK69 = e1,3,4. A pair which satisfies
the differential has difference in bit B66,3, i.e., the difference in B66 is either
[3] or [−3] (or more precisely, after the XOR of the three words the difference
is either [3] or [−3]), in bit E66,0 (difference [0] or [−0]) and in bits 0, 3 of the
subkey, i.e., it is either [0, 3],[0,−3],[−0, 3], or [−0,−3]. Thus, there are only 9
possible additive differences in A67: 0, [1], [−1], [1, 4], [−1,−4], [4], [−4], [−1, 4]
and [1,−4]. As noted earlier, that means that there is no point in guessing bits
4–31 of the subkey of round 66. Similarly, that means that in order to verify
that a pair might satisfy the differential, given A70, B70, C70, D70, E70, in order
to achieve ΔE69 = e1, we can consider the modular difference of the key, and
disregard the bits in positions 5–31. Thus, we only guess bits 1,3,4 of the subkey
in round 69, i.e. actually only guess its key modular difference since we know
whether the XOR difference between K69 and K ′69 satisfy the differential.

The data complexity of this attack is 2146 related-key chosen plaintexts. The
memory requirements are about 2150.33(= 2146 × 20) memory bytes.

In Step 1, the time complexity is 2146 SHACAL-1 encryptions. The time
complexity of Step 2 is about 2465 = (2323 × 2146 × 1

2 × 11
80 ) encryptions on

average. The factor 1
2 means the average fraction of 323-bit subkey which are

used in Step 2. We guess 3 bits of K69 and there are 232 the modular difference
between E69 and E69′, so the probability of ΔE69 = e1 is 2−29 = 23

232 . Also we
know that there are about 9 possible ΔA67 values in S′ and the attack starts
with 2288 quartets, therefore we expect that 2288 × (2−32 × 2−29 × 9

232 )2 = 2108

quartets pass Step 2.
For a given subkey guess, Step 3 consists of 2108 × 229 × 22 = 2139 partial

decryptions of one SHACAL-1 round. Therefore, the time complexity of Step 3
is about 2323× 2139× 4× 1

2 × 1
80 = 2457. The time complexity of the other steps

are relatively smaller. Hence, the time complexity of this attack is about 2465

SHACAL-1 encryptions.
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A different method can be adopted in the attack. The last round of the second
differential can be removed, then we will get a 66-round related-key rectangle
distinguisher with probability 2−61. Using the similar analysis approach, we can
present a related-key rectangle attack on SHACAL-1 with data complexity of
2144 chosen plaintexts and time complexity of 2494 = (2354 × 2144 × 1

2 × 11
80 )

SHACAL-1 encryptions.

6 Improving the Attack on IDEA

A careful investigation of the way XOR differences behave through addition can
also be used to improve results of previous attacks. Consider for example the
related-key rectangle attack on 6.5-round IDEA from [4]. The attack uses two
related-key differentials, where the first related-key differential starts with an
input difference (0, 0, 0001x, 0), while the key difference is in bit 40, and with
probability 1/2 the key difference cancels the input difference. While in [4], the
probability of this first part of the differential was assumed to be half, it is
actually 1 for plaintext pairs with the opposite sign of the key difference, and 0
for plaintext pairs with the same sign.

The above observation lead to an obvious improvement. The attacker first
considers only pairs with the same sign in the differing bit, and applies the
attack. If the attack fails, the attacker repeats the attack with the opposite sign.

We note that this approach indeed increases the value of p̂ by a factor of
two. Thus, for the right guess of the sign, the data complexity can be reduced
by a factor of two (recall that the number of pairs is proportional to 1/p̂q̂).
However, the actual sign of the key difference is unknown, thus the attack has
to be repeated twice — once for each guess (each time with half the data).

However, we gain a factor of two in the time complexity, as in each application
we have only a quarter of the number of quartets that we expected in the orig-
inal attack. As the attack is repeated twice, then the total number of analyzed
quartets is reduced by a factor of two.

We note that for a differential attack a similar scenario holds (no reduction in
the data complexity, but a possible reduction in the time complexity). However,
for boomerang attacks, as the data complexity is proportional to 1/p̂2q̂2, then
we expect a reduction in the data complexity besides the probable reduction in
time complexity.

7 Conclusion

In this paper we identified the misuse of XOR differences through addition. The
observation led us to examine all the differential-based attacks on SHACAL-1,
showing that these attacks fail. After pointing out the problems and by using
modular differences, we fix some of the attacks, and present the best known
(valid) attack on SHACAL-1 in the one key model (a rectangle attack on the
first 51 rounds).



The Delicate Issues of Addition with Respect to XOR Differences 227

We continue to present a new related-key rectangle attack on the full
SHACAL-1, which is applicable to one out of 256 keys (rather than out of 214 for
the previously best result). The new attack uses 2146 chosen plaintexts (or 2144

chosen plaintexts) and has a time complexity of 2465 SHACAL-1 encryptions (or
2494 SHACAL-1 encryptions, respectively).

We verified all the differentials that we used in the paper. Each differential
was tested under 100 keys (or 100 key pairs), where each time we verified several
rounds of the differential. The sets of rounds were chosen to be overlapping to
reduce the chance that some condition from one round affects the differential’s
behavior in a later round.

We conclude that differential attacks should be very carefully applied when
XOR differences are used in addition. We note that the related-key rectangle
attack based on the modular differences can be applied to analyze other block
ciphers, thus increasing the toolbox of the cryptanalyst.
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A The New Related-Key Differentials of SHACAL-1

Table 8. The Second Related-Key Differential Characteristic for SHACAL-1

Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔKi Probability

33 e1 e1 0 e30,31 e31 e1,6,30

34 0 e1 e31 0 e30,31 e1,30 2−3

35 0 0 e31 e31 0 [a1] 2−2

36 e1 0 0 e31 e31 [−a6] 2−1

37 0 e1 0 0 e31 e1,31 2−1

38 0 0 e31 0 0 e31 2−1

39 0 0 0 e31 0 [s1]e31 1

40 e1 0 0 0 e31 [−s6]e31 2−1

41 0 e1 0 0 0 0 2−1

42 e1 0 e31 0 0 [−s6]e31 2−2

43 0 e1 0 e31 0 e31 2−2

44 e1 0 e31 0 e31 [−s6] 2−3

45 0 e1 0 e31 0 e31 2−2

46 e1 0 e31 0 e31 [−s6] 2−3

47 0 e1 0 e31 0 [−s1]e31 2−2

48 0 0 e31 0 e31 0 2−3

49 0 0 0 e31 0 e31 2−1

50 0 0 0 0 e31 e31 2−1

51 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . . . .

60 0 0 0 0 0 0 1

61 0 0 0 0 0 [t2] 1

62 e2 0 0 0 0 [−t7] 2−1

63 0 e2 0 0 0 e2 2−1

64 0 0 e0 0 0 [b3]e0 2−1

65 e3 0 0 e0 0 [−b8]e0 2−2

66 0 e3 0 0 e0 e0,3 2−2

The key difference is ΔK′ = (e1,6,28,29,31 , e0,4,6,28,30,31 , e5,28,30, e29,0, e1,4,5,29,30,
e1,6,29,30,31 , e1,6,29, e6,29,30,31, e29,30, e0,31, e5, e1, e1,4,6,30, e1,6,30,31 , e4,6,29,30,31 , e1,29).
[?i] denotes [i] or [-i]. When [?i] denotes [i], then [-?i] denotes [-i], and vice versa.
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Table 9. The Fixed 24-Round Differential Characteristic for SHACAL-1 for the Attack
in [17]

Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi Probability

0 [−0] [22] [−16] 0 [6]
1 [5] [−0] [20] [−16] 0 2−3

2 [10] [5] [−30] [20] [−16] 2−4

3 [−15] [10] [3] [−30] [20] 2−4

4 0 [−15] [8] [3] [−30] 2−3

5 [−30] 0 [−13] [8] [3] 2−4

6 0 [−30] 0 [−13] [8] 2−2

7 [8] 0 [−28] 0 [−13] 2−3

8 0 [8] 0 [−28] 0 2−1

9 0 0 [6] 0 [−28] 2−2

10 [−28] 0 0 [6] 0 2−2

11 [−1] [−28] 0 0 [6] 2−2

12 0 [−1] [−26] 0 0 2−1

13 0 0 [−31] [−26] 0 2−2

14 0 0 0 [−31] [−26] 2−2

15 [−26] 0 0 0 [−31] 2−2

16 0 [−26] 0 0 0 1
17 0 0 [−24] 0 0 2−1

18 0 0 0 [−24] 0 2−1

19 0 0 0 0 [−24] 2−1

20 [−24] 0 0 0 0 2−1

21 [−29] [−24] 0 0 0 2−1

22 [−2,±24] [−29] [−22] 0 0 2−2

23 [−7,±22] [−2,±24] [−27] [−22] 0 2−3

24 [±{2, 22, 24},−12] [−7,±22] [−0,±22] [−27] [−22] 2−5
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Abstract. We show how to represent a non-linear equation over GF (2)
using linear systems with multiple right hand sides. We argue that this
representation is particularly useful for constructing equation systems
describing ciphers using an S-box as the only means for non-linearity.
Several techniques for solving systems of such equations were proposed
in earlier work, and are also explained here. Results from experiments
with DES are reported. Finally we use our representation to link a par-
ticular problem concerning vector spaces to the security of ciphers with
S-boxes as the only non-linear operation.

Keywords: cryptanalysis, algebraic attacks, DES, non-linear equation
systems.

1 Introduction

For the last years, most of the activity in cryptanalysis has been focused on
algebraic attacks and solving non-linear equation systems. Several interesting
properties and observations have been found and studied, and techniques for
solving equation systems associated with a cipher have been proposed. So far
there is no method for solving such systems which stands out as the “best” way
to solve non-linear systems, the structure of the system plays a part. Moreover,
it may be difficult to implement the ideas on a large system in practice, normal
computers run out of memory too fast, see [1].

The traditional way of representing an equation has been by the use of a
multivariate polynomial (MP) written in algebraic normal form (ANF). In [2]
systems representing the block cipher DES are studied, and the authors propose
to convert them to SAT-problems and use SAT-solvers. In this paper we will
look at another way of representing non-linear equations, and with it follows
new ways for solving systems of these equations. These methods were recently
presented in [3], and earlier versions can also be found in [4] and [5].

We will use these techniques on systems representing the DES cipher for
various rounds to see how they do in practice. As a side effect of our view on the
equations we also discover a simply stated problem which makes a foundation
of the security of a specific class of ciphers, in the same way as factoring is a
fundamental problem for the security of RSA and finding discrete logarithms is
a basis for the security of Diffie-Hellman key exchange.
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The paper is organized as follows. In Section 2 we describe the way we rep-
resent equations, and show that systems coming from ciphers where the only
non-linear part is the use of an S-box are easy to construct and are particularly
suited for this representation. In Section 3 we describe some of the methods we
have developed for solving our equation systems, and in Section 4 we try them on
systems constructed from the DES cipher. In Section 5 we describe a problem,
which must be hard to solve in order for the AES (among other ciphers) to be
secure. Conclusions are made in Section 6.

2 MRHS Equation Systems

All variables in our equations will be over GF (2). In most of the literature on
algebraic cryptanalysis a non-linear equation over GF (2) is represented as a MP
f(x1, . . . , xn) = 0. The set V (f) = {(x1, . . . , xn)|f(x1, . . . , xn) = 0} is the set
of satisfying assignments of f , and is what really defines the constraints the
equation puts on the solution. Instead of the representation using MP, we will
write a linear system with Multiple Right Hand Sides (MRHS) to describe the
constraints:

Ax = [b1, . . . , bs], (1)

where A is a (k× n)-matrix of full rank and the bi’s are vectors of length k over
GF (2). A vector x satisfies (1) if Ax = bi for some i. For shorter notation we
will usually write an equation as Ax = [B], where B is a matrix with the bi’s as
columns. We keep square brackets around B to underline that the equation is
not to be understood as a normal matrix/vector product where B is the product
Ax, but rather that Ax can be any column of B.

2.1 MRHS Equations vs. MP Equations

It is rather straight-forward to map between polynomial equations f(x) = 0 and
MRHS equations Ax = [B]. Given a MRHS equation E we may construct the set
V of points in GF (2)n that satisfy E. This can be done by getting the solutions
to the ordinary linear system Ax = bi and take the union of these solutions for
i = 1, . . . , s as V . Then we may use a method like Lagrange interpolation to
construct an f with V (f) = V . Both f and E will then give the same constraint
on the solution space.

Conversely, given f(x) = 0, we may compute V (f) = {b1, . . . , bs}, and create
the MRHS equation Inx = [b1, . . . , bs]. As we will see, this way of creating a MRHS
equation is not optimal, we should take advantage of any linearity inherent in f .

We show this with a small example. Suppose we are given the polynomial
equation

f(x1, x2, x3, x4, x5) = x1x2 + x1x5 + x2x3 + x3x5 + x4 = 0. (2)

Writing the MRHS equation as I5x = [b1, . . . , bs] we get s = 16 possible right
hand sides. However, if we notice that (2) can be factored as (x1 +x3)(x2 +x5)+
x4 = 0 we can set up the MRHS equation
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⎡

⎣
1 0 1 0 0
0 1 0 0 1
0 0 0 1 0

⎤

⎦

⎛

⎜
⎜
⎜⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟
⎟
⎟⎟
⎠

=

⎡

⎣
0 0 1 1
0 1 0 1
0 0 0 1

⎤

⎦

which gives the same constraint, but only has four possible right hand sides.

2.2 MRHS Equations from Ciphers

We will now show that MRHS representation of equations is very well suited
for algebraic cryptanalysis of ciphers where the only source of non-linearity is
the use of S-boxes. We call this class of ciphers S-box based ciphers. This class
contains the most important block cipher, the AES [7], as well as several other
well known ciphers, like DES [8], Serpent [9], Noekeon [10], etc.

Suppose we are looking at the AES and want to construct a system of equa-
tions describing the cipher. In order to keep equations small enough to handle
we need to introduce variables in each round. Let us say the bits in the cipher
block right after one application of SubBytes are x1, . . . , x128 and that the bits
in the cipher block after the next application of SubBytes are y1, . . . , y128. Look
at the first of the S-boxes used between x and y. The bits input to this S-box
will be l1(x)+k1, . . . , l8(x)+k8, where ki are the first eight bits of the round key
used in this round, and the li are linear combinations using 32 of the x-variables
coming from ShiftRows and MixColumns. The bits at the output of this S-box
will be y1, . . . , y8. We can now set up the MRHS equation for this S-box as

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

l1(x) + k1

...
l8(x) + k8

y1

...
y8

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

=
[

0 1 . . . 255
S(0) S(1) . . . S(255)

]
, (3)

where both i and S(i) are written as 8-bit vectors. This equation has the 256
possible input/output combinations of the S-box as right hand sides and is a
compact representation of the constraints imposed by the S-box when linking
the x and y variables.

To construct MRHS equations in a general S-box based cipher, we will in-
troduce variables between applications of S-boxes, so that the input and output
bits of each S-box are linear combinations of variables and constants. The ma-
trix A will have these linear combinations as rows and the columns of B will
be the possible input/output combinations for the S-box. Setting up an MRHS
equation system describing a complete S-box based cipher is then easily done by
constructing one equation for each S-box used in the cipher.

Note that apart from linear combinations of variables, there is no need to
compute MPs. The MRHS equations are constructed directly from the cipher
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specifications. The size of the system depends only on the size and the number
of S-boxes, and not on the degree of MPs defining the S-box or on diffusion
properties of the linear operations in the cipher.

3 Techniques for Solving MRHS Equation Systems

In this section we will explain some techniques for solving an MRHS equation
system. To make the presentation of this simpler, we first make a note on the
number of columns in the A-matrices appearing in the MRHS equations in the
system.

When setting up an MRHS equation system

A1x = [B1], . . . , Amx = [Bm], (4)

it is usually the case that the total number of variables in the system is quite
large, but that any individual equation only involves a small subset of those
variables. When writing an equation Aix = [Bi], it is always assumed that
x = (x1, . . . , xn)T , where n is the total number of variables in the system. This
is done by inserting 0-columns in Ai for variables not occuring in the equation,
such that the Ai-matrices all have exactly n columns.

A solution to (4) will be an x-vector such that the product Aix is a column
found in Bi, for all i = 1, . . . , m. One can say that the solution picks out the
correct right hand side in each Bi, and that the other columns in Bi are wrong.
The main strategy we use for trying to solve a system like (4) is to identify
columns in Bi which can not be the correct right hand side for a solution, and
delete them. If we are able to delete all wrong columns from each Bi we will be
left with an ordinary system of linear equations (with only one right hand side),
which can be easily solved.

The methods described below were all presented in [3], but we repeat them
here for completeness since this work is quite recent and not well known.

3.1 Agreeing

This is the core method we use for finding right hand sides in equations that can
not possibly be correct. This is done by looking for inconsistencies in a pair of
equations and is done as follows. Let the equations Aix = [Bi] and Ajx = [Bj ]
be given. By concatenating Ai and Aj on top of each other and expanding the
columns in Bi and Bj with zeros we get the following identity:

[
Ai

Aj

]
x =

[
Bi

0

]
+
[

0
Bj

]

The possible right hand sides for the concatenated equation are made by picking

one column from
[
Bi

0

]
and one column from

[
0

Bj

]
and adding them. Compute

U such that C = U

[
Ai

Aj

]
is upper triangular, and let Ti = U

[
Bi

0

]
and Tj =
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U

[
0

Bj

]
. By multiplying through with U we get the equation Cx = [Ti] + [Tj ].

If
[

Ai

Aj

]
does not have full rank the last r > 0 rows of C will be all-zero.

We only proceed if this is the case. Since the last r rows of C are all-zero,
only columns from Ti and Tj that are equal in the last r coordinates can be
added to make a possible right hand side for Cx, other choices would lead to an
inconsistent system. Let Pri and Prj be the projection of Ti and Tj onto the last
r coordinates, repectively. Any column in Ti whose projection is not found in
Prj can not come from the correct column in Bi since adding it to any column
of Tj will produce a right hand side inconsistent with Cx. The same applies to
Tj, so all columns in Ti and Tj whose projections are not in Pri∩Prj will always
create an inconsistency and the corresponding columns in Bi and Bj are wrong
and can be deleted. An example of agreeing two MRHS equations can be found
in the Appendix.

Agreeing pairs of equations may cause a domino effect of deletions of right
hand sides. For example, say that no deletions occur when agreeing equations E1

and E2, but that deletions occur in E2 when agreeing it with E3. These deletions
may cause E1 and E2 to disagree, so deletions will now occur in E1 when agreeing
it with E2. These deletions may again trigger deletions in other equations, and
so on. We run agreeing on every pair of equations in the system until no more
deletions occur and all pairs of equations agree. We call this process the agreeing
algorithm.

3.2 Extracting Linear Equations

The agreeing algorithm itself is normally not strong enough to solve a system
of MRHS equations. When all pairs of equations agree but there still are many
wrong right hand sides in the equations we may check to see if it is possible
to squeeze ordinary linear equations out of them. This method is applied to
equations individually and is done as follows.

Consider the equation Ax = [B]. Compute U , such that UB is upper trian-
gular and transform the equation to UAx = [UB]. Assume the last r > 0 rows
of UB are all-zero, and let the r last rows of UAx be l1, . . . , lr. All columns in
B have 0 in the last r coordinates, so the correct column in particular have 0 in
the last r coordinates. We then know the r linear equations l1 = 0, . . . , lr = 0
must be true.

It may also be possible to make one more linear equation from the MRHS
equation. We check if the all-one vector is found in the space spanned by the
rows of B. This is easy to do, we may add the all-one vector to B and see if
the rank of the resulting matrix increases by one, and can be done even faster
when we have a basis for the row space of B in triangular form, as in UB. If we
find that vB = 1 for some v, we know with certainty that the linear equation
vAx = 1 is true. An example of extracting linear equations is found in the
Appendix.
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The linear equations produced this way can be used to eliminate variables in
the system. As variables are eliminated, the rank of some of the A-matrices in
the equations may not be full anymore. When this happens, we can find a vector
v �= 0 such that vA = 0, and we can compute u = vB. Columns in B found
in positions where u has a 1-bit would lead to an inconsistent system, and can
safely be removed as wrong columns. In this way, finding linear equations will
also help to identify wrong columns and bring a solution to the system closer to
the surface.

3.3 Gluing

When the agreeing algorithm works, it is because the spaces spanned by the
rows of the A-matrices in some equations overlap in non-trivial common sub-
spaces. When the agreeing algorithm stops, and no more linear equations can be
extracted, we may try merging several equations into one. The spaces spanned
by the A-matrices of the resulting equations will be larger, and hopefully have
more overlap among them, so some new disagreements can be created. When
merging two equations we say we glue them together.

When gluing two MRHS equations Aix = [Bi] and Ajx = [Bj ] together into a
new equation Ax = [B], much of the same steps as with agreeing are taken. The
matrices Ai and Aj are concatenated, and the matrix C and the two expanded
sets of right hand sides Ti and Tj are computed as explained under agreeing.
Assume the last r rows of C are all-zero rows. We now create the columns in
B by xoring every pair of one column from Ti and one column from Tj that
are equal in the last r coordinates. The last r (all-zero) coordinates of the sum
should be removed. The matrix A of the glued equation will then be C with
the last r all-zero rows removed. The two equations we started with are now
redundant and can be removed since all information contained in them is kept
in the glued equation. Gluing reduces the number of equations in the system.

Let us say that the number of right hand sides in the equations Bi and Bj are
si and sj , respectively. Let u = (u0, . . . , u2r−1) be a vector of integers where uk

is the number of columns in Ti that have the binary representation of k in the
last r coordinates. Let v = (v0, . . . , v2r−1) be the same kind of vector for Tj. The
number of right hand sides in B will be the inner product u · v =

∑2r−1
k=0 ukvk.

In general, the number of right hand sides in B will be much larger than si + sj,
and in the case r = 0 it will simply be sisj.

Assume we have three MRHS equations E1, E2, E3 that all pairwise agree.
If we glue E1 and E2 into E it may be the case that E and E3 do not agree,
and that right hand sides will be removed from E3 when agreeing it with E.
What we are really doing is searching for inconsistencies across all three initial
equations, and not only two as with ordinary agreeing. When gluing several
equations together we will increase the probability of creating disagreements,
which again will reduce the number of right hand sides.

In fact, if we could glue all equations in a system into one big MRHS equation,
we would actually solve the system. What prevents us from doing that in practice
is the fact that the number of right hand sides in a glued equation is (much)
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bigger than the number of right hand sides in the two equations we started with,
assuming they agreed. In practice we have to set a limit on the number of right
hand sides we are capable of storing in one MRHS equation. For the system to
be solvable by gluing it is then necessary that enough disagreements occur after
intermediate gluings so this threshold is never passed.

We will return to the scenario of gluing all equations in a system in Section 5.

3.4 A Complete Algorithm for Solving a System of MRHS
Equations

When all pairs of equations agree, no linear equations can be extracted and we
can not afford to glue any equations together, the last resort is to guess on the
value of one variable, or a sum of variables. Guessing on the sum of some variables
has the same effect as taking a linear equation and eliminating a variable with
it. The sum of variables to be guessed could be one of the vectors occurring in
the span of the rows of some A-matrices, in order to make sure some deletions of
right hand sides occur. In the case for systems constructed from ciphers, it is a
good idea to guess on the value of some of the user-selected key bits since these
variables are special. If the value of the key bits are substituted into the system
it will collapse; the rest of the system will be solved by simple agreeing alone.

We present here an algorithm where we try to find how few bits of information
we need to guess in order to solve a system of MRHS equations. We call this the
FewGuess algorithm, and the idea is to only guess one bit of information when
all else has been tried. The maximum number of right hand sides we will handle
in one equation is S. After each step in the algorithm we check if the system has
been solved or become inconsistent, and exit with the number of guesses made
if it has.

FewGuess
1. Run the agreeing algorithm.
2. Try to extract linear equations. If any linear equations were extracted, elimi-
nate variables and go back to 1.
3. Glue together any pair of equations where the number of right hand sides in
the glued equation is ≤ S. If any gluings occurred go back to 1.
4. Guess on the value of a linear combination of variables, eliminate one variable
and go back to 1.

This algorithm is designed to find how few bits we need to guess in order
to determine whether a guess was right or wrong, and is not very efficient in
terms of running time. After running this algorithm we know a set of linear
combinations of variables to be guessed, and we know in which order equations
were glued together. To set up a key recovery attack, we should first make all
the guesses at once. Then we should glue together equations in the order given
by our algorithm, and possibly run agreeing and extract linear equations first if
some gluings will break the limit S.
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If we need to guess b bits of information the complexity for solving a system
will be of the order 2b, multiplied with a constant that depends on S. This
constant will be the complexity of running the agreeing algorithm, extracting
linear equations and gluing together equations. These are not trivial operations,
and implementing them in the most efficient way is a difficult task in itself.
We will not investigate the complexities and the implementation issues of these
operations here, but rather focus on the number of bits of information needed
to guess in order to solve a system.

4 Experiments with DES

Inspired by the work in [2], we have constructed the MRHS equation system
representing DES for various number of rounds, and tested the methods for
solving described in the previous section. We assume the reader is familiar with
the basic structure of DES, we repeat here the features that are most important
for the construction of the MRHS equation system.

4.1 Constructing Equations

DES is a Feistel network, with a round function that takes a 32-bit input and
a 48-bit round key to compute a 32-bit output. The bits of the round keys in
DES are selected directly from the 56 user-selected key bits, so we need only
56 variables to represent the round keys. The only non-linear operation in DES
is the use of the eight S-boxes in each round. We construct the equations as
explained in Section 2.2, so we need that the bits at the input and output of
each S-box can be written as a linear combination of variables and constants.
We give variable names to the bits going into the round function in each round,
except for the first and last rounds. The inputs of the first and last rounds are
parts of the plaintext and ciphertext, considered constants in a cryptanalytic
attack. The input and output bits of all S-boxes can then be expressed as linear
combinations of variables and constants.

The number of variables in a system representing an r-round version of DES
will be 56 + 32(r − 2). Each S-box gives one MRHS equation, so the system
will consist of 8r equations. The S-boxes used in DES all take 6-bit inputs and
produce 4-bit outputs. The A-matrix in each equation will thus consist of 10
rows, and the B-matrix will have 64 columns, one for each possible S-box input.

4.2 Results

We have tried the FewGuess algorithm on systems representing DES with a
various number of rounds to see how few bits that were needed to guess in order
to solve a system. The 56 key-variables are special, once these are determined
the values of the other variables will be given by the system straight away. It is
therefore natural to guess on the key variables when we need to guess since we
know that at most 56 guesses are needed.
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Table 1. Number of guesses needed to solve DES systems

# of rounds guessing most used guessing k1, k2, . . .

4 3 3
5 26 17
6 34 28
7 38 38
8 38 38
10 38 38
12 38 38
16 41 38

Table 2. Number of key variables needed to guess for various limits S

S # of guesses

28 48
212 45
216 41
220 36

The order of the variables to be guessed also plays a part. Since some key bits
appear in round keys more often than others in DES, we tried the strategy of
guessing on the most used key variables first, in the hope that eliminating these
variables would create a bigger impact on the system. We also tried guessing the
key bits in the order 1, 2, 3, . . . to see if there was a difference. The maximum
number of right hand sides we would allow in one equation was set to S = 218.
The results were as follows.

As can be seen, the order in which the variables are guessed makes a difference,
and it is not the greedy approach of guessing the most used variables first that
is most efficient. A reason for this can maybe be found in the key schedule of
DES. The key schedule is designed such that the key bits occuring in the inputs
of the S-boxes S1 - S4 are all taken from k1, . . . , k28. When these key bits are
guessed, the inputs to S1 - S4 in the first and last round will be known. This
will immediately give the value of 32 of the variables entering the second and
the second to last rounds. When guessing on the most used key variables the
guesses will be spread out over all 56 key variables and more guesses are needed
before the values of all key variables entering one S-box are known.

Of course, the number of guesses increases with the number of rounds and it
is necessary to guess 38 key variables to break seven rounds of DES this way.
However, the number of guesses to break more rounds does not increase from
38, at least when guessing in the increasing order. It is natural to believe the
number 38 is linked to the limit S = 218 since 18 + 38 = 56, the number of
user-selected key variables.

This suggests that 18 bits are guessed “implicitly” when storing up to 218

right hand sides in the equations and that there is a number-of-guesses/memory
tradeoff. The hypothesis is that setting the limit to S = 2l means we do not
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have to guess more than 56− l key variables. We tried FewGuess on the system
representing 16-round DES using other values for S and guessing the key bits in
the order 1, 2, . . . to check this hypothesis.

These few tests show the hypothesis is not exactly true, but almost. The order
in which the variables are guessed plays a part.

5 The Security of S-Box Based Ciphers

In this section we will use the MRHS representation of equations to find an
easily stated problem about vector spaces. This problem is independent of the
structure of a particular S-box based cipher, and it has to be hard to solve if
ciphers in this class are to remain secure.

Assume we are given an S-box based cipher and construct its MRHS equation
system using a total of n variables. Let the number of input bits to the S-box(es)
used be p, let the number of S-boxes used to process one encryption be q and let
the number of output bits of the S-box be k − p. The MRHS equation system
we get will be

A1x = [B1], . . . , Aqx = [Bq], (5)

where each Ai is a k × n-matrix and each Bi is a k × 2p-matrix. Let us set this
system up as if we are going to glue all equations into one big MRHS equation
Ax = [B] in one operation:

⎡

⎢
⎢
⎢
⎣

A1

A2

...
Aq

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎝

x1

x2

...
xn

⎞

⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎣

B1

0
...
0

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0
B2

...
0

⎤

⎥
⎥
⎥
⎦

+ . . . +

⎡

⎢
⎢
⎢
⎣

0
...
0
Bq

⎤

⎥
⎥
⎥
⎦

(6)

Using linear algebra we compute U such that U multiplied by the matrix on
the left hand side of (6) is upper triangular. As in Section 3.3, let us call the
resulting matrix C and let U multiplied with the bracket containing Bi be Ti.
Multiplying through with U gives us

Cx = [T1] + [T2] + . . . + [Tq], (7)

where we are supposed to select exactly one column from each Ti and add them
together to create a possible right hand side for Cx.

The matrix C has qk rows and n columns, and there are no linear relations
among the variables (if there were, we would eliminate some variables first).
Hence the last qk − n rows of C are all-zero rows and put the constraint on the
selection of the columns from the Ti’s that their sum must be zero in the last
qk − n coordinates. If we can find such a selection of columns from the Ti’s we
get a consistent linear system with a unique right hand side, and solving this we
get the solution to (5).
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Let Pr(·) be the projection onto the last qk − n coordinates and let Zi =
(Pr(Ti))T . Concatenate the matrices Zi like in the left hand side of (6) and call
the resulting matrix Z.

Z =

⎡

⎣
Z1

. . .
Zq

⎤

⎦

The number of rows in Z is 2pq and the number of columns is qk − n. Our
problem has been transformed to picking exactly one row from each Zi such
that they add up to 0. Similarly to the computation of U , we can compute a
(2pq× 2pq)-matrix M such that MZ is upper triangular. Let the matrix formed
by the last 2pq− qk+n rows of M be called M0. Then any v from the row space
of M0 will give vZ = 0.

Definition 1. We say that a binary vector v = (v1, . . . ,vq) where |vi| = 2p for
some q and p has the q1-property if the Hamming weight of each vi is one.

We can now state the problem as follows.

A fundamental problem for S-box based ciphers. Given a binary matrix
M0 with 2pq columns for some p and q. If there are vectors in the row space of
M0 with the q1-property, find one.

If we can solve this problem, the 1-bits in the found vector will indicate exactly
which right hand sides that can be added together in (7) to form a consistent lin-
ear system. This would solve (5) and break any S-box based cipher, hence it must
be a hard problem if these ciphers are to remain secure. On the other hand, if we
can break an S-box based cipher (find its key given some plaintext/ciphertext
pairs) we find the solution to the corresponding MRHS equation system and
the positions of the correct right hand sides in each equation. Setting a 1-bit
in these positions will give us a vector with the q1-property which is found in
the rowspace of the associated M0. This shows that solving the fundamental
problem corresponding to an S-box based cipher is equivalent to breaking the
cipher.

We do not propose any ideas for efficiently solving the fundamental problem
here, but instead we take a look at the actual values of p, q, k and n for DES and
AES to briefly see what the problem will look like in these specific instances.

For the full 16 round DES, we get p = 6, q = 128, k = 10 and n = 56+14·32 =
504. The matrix M0 will in this instance be a 7416× 8192-matrix. For the full
AES with 128-bit key we get p = 8, q = 200, k = 16 and n = 1600. This gives a
M0 with 49600 rows and 51200 columns. In both cases we see that the number
of rows in M0 is so much larger than the number of bits in the user-selected
key that any algorithm solving the fundamental problem must be polynomial
(or very close to polynomial) in the number of rows of M0 to give an efficient
attack.



MRHS Equation Systems 243

6 Conclusions

The purpose of this paper is to show that the MRHS representation of non-linear
equations should be taken into consideration when discussing algebraic attacks.

The representation of equations does matter. In [2] the authors do algebraic
cryptanalysis of reduced-round DES, comparing their own technique to those
implemented in software packages like MAGMA and Singular. The representa-
tion used for the equations is MPs, and the results are not as good as when
they convert the equation system into CNF form and use a SAT-solver. There
are some important differences between the MRHS representation and the MP
representation.

First, the size of an MRHS equation is independent of the linear operations
taking place between the use of two S-boxes. We may describe an S-box using a
set of MPs in x- (input) and y- (output) variables. When the x and y are linear
combinations of variables the size of these polynomials in ANF form will be very
dependent on the number of variables in each linear combination.

Second, the degree of the MPs representing an S-box plays a crucial role for the
complexity of solving a MP equation system. For MRHS equations this degree
is irrelevant, the complexity of using the techniques described in this paper does
not depend on it.

Third, there are fewer equations in an MRHS equation system than in a
system of MP equations representing a cipher. One S-box gives rise to one MRHS
equation, while there are a number of MP equations associated with one S-box.
The strategies taken for solving these systems are also different in nature. When
using MP representation we usually want to create more equations, to be able to
solve by re-lienarization or find a Gröbner basis. This consumes a lot of memory
in implementations. When using MRHS representation we want to reduce the
number of equations by gluing, and to remove right hand sides.

Fourth, we are not aware of any method for finding and extracting all linear
equations that might implicitly be hiding in a non-linear MP equation. The
method described in Section 3.2 allows us to efficiently do this for an MRHS
equation.

Using the MRHS representation also allowed us to derive a problem about
finding a vector with a special property in a given vector space and show that
solving this problem is equivalent to breaking any S-box based cipher. A lot
of effort has been spent on the problems of factoring and discrete logarithms
for assessing the security of several primitives in public key cryptography. It
is reasonable to look more closely on the fundamental problem of S-box based
ciphers stated in this paper, since the security of the AES depends on it.

We think that the MRHS representation of equations is better suited than
MPs for systems representing an S-box based cipher. As traditional methods for
solving MP equation systems tend to run out of memory, even on rather small
systems, MRHS equation systems representing full ciphers can be constructed,
and worked with. The MRHS representation of equations should go into the
toolbox for algebraic cryptanalysis.
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A Example of Agreeing and Extracting Linear Equations

A.1 Agreeing Example

We want to agree the following two equations:

A1⎡

⎣
1 1 0 0 0
0 1 0 1 0
0 0 1 1 0

⎤

⎦

⎛

⎜
⎜
⎜⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟
⎟
⎟⎟
⎠

=

B1⎡

⎣
0 0 1 1
0 1 0 1
1 1 1 0

⎤

⎦

A2⎡

⎣
0 0 1 0 1
0 1 0 1 0
0 1 1 0 0

⎤

⎦

⎛

⎜
⎜
⎜⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟
⎟
⎟⎟
⎠

=

B2⎡

⎣
0 0 1 1
0 1 0 1
0 0 0 1

⎤

⎦

We compute U to make
[
A1

A2

]
triangular and find T1 = U

[
B1

0

]
and T2 =

U

[
0

B2

]
.

U =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 1 0 0 1

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

C = U

[
A1

A2

]
=

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

,

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/triviump3.html
http://eprint.iacr.org/
http://www.cl.cam.ac.uk/~rja14/serpent.html
http://gro.noekeon.org/
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T1 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0 1 1
0 1 0 1
1 1 1 0
1 1 1 0
0 1 0 1
1 0 1 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

T2 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1
0 1 0 1
0 0 0 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

.

We see that r = 2, and that Pr1 ∩ Pr2 = {(10
)
,
(
1
1

)}. The projections of the first
and third columns from both T1 and T2 fall outside the intersection, hence the
first and third columns from both B1 and B2 have been identified as wrong.
After agreeing the equations are

A1⎡

⎣
1 1 0 0 0
0 1 0 1 0
0 0 1 1 0

⎤

⎦

⎛

⎜⎜
⎜
⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟⎟
⎟
⎟
⎠

=

B1⎡

⎣
0 1
1 1
1 0

⎤

⎦

A2⎡

⎣
0 0 1 0 1
0 1 0 1 0
0 1 1 0 0

⎤

⎦

⎛

⎜⎜
⎜
⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟⎟
⎟
⎟
⎠

=

B2⎡

⎣
0 1
1 1
0 1

⎤

⎦ .

A.2 Example of Extracting Linear Equations

We take the equation A1x = [B1], and extract linear equations from it. First we
compute U to make B upper triangular, and multiply through to arrive at the
following MRHS equation

UA1⎡

⎣
0 0 1 1 0
1 1 0 0 0
1 0 1 0 0

⎤

⎦

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟
⎟
⎟
⎟
⎠

=

UB1⎡

⎣
1 0
0 1
0 0

⎤

⎦

From the bottom row we get the linear equation x1 + x3 = 0. Adding the two
top rows will create the 1-vector in UB1, hence by adding the two top rows from
UA1 we also get the linear equation x1 + x2 + x3 + x4 = 1.
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Abstract. Recent personal computers have high-spec CPUs and plenty
of memory. The motivation of this study is to take these advantages in
designing a tough and fast key-stream generator. Natural controversies
on using a large state space for a generator are (1) effectiveness is unclear,
(2) slower generation speed, (3) expensive initialization, and (4) costs in
a hardware implementation.

Our proposal is to combine a linear feedback shift register (LFSR) and
a uniform quasigroup filter with memory of wordsize. We prove theorems
which assure the period and the distribution property of such generators,
answering to (1). As for (2), the generation speed of a LFSR is indepen-
dent of the state size. In addition, we propose a filter based on integer
multiplication, which is rather fast in modern CPUs. We analyze the al-
gebraic degree of such filters. We answer to (3) by a simple trick to use
another small generator to initialize LFSR while outputting. We have no
answer to (4), but comment that recent hardwares tend to have larger
memory and sophisticated instructions.

As a concrete example, we propose CryptMT stream generator with
period (no less than) 219937− 1, 1241-dimensional equidistribution prop-
erty, which is sometimes faster than SNOW2.0 in modern CPUs.

Keywords: stream cipher, combined generator, filter with memory,
quasigroup filter, multiplicative filter, CryptMT, eSTREAM, period,
distribution.
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Let B be the set of symbols. Throughout this article, we assume B to be the
set of one byte integers, which is identified with F2

8, where F2 = {0, 1} is the
two-element field. We consider a stream cipher based on a key-stream generator
over B. A generator receives a key k in the set of possible keys K, then generates
a sequence of elements

b0(k), b1(k), . . . , bn(k), . . . ,∈ B.

A plain text (a sequence of elements of B) is encrypted by taking bitwise exor
with the sequence (bn(k)), and then decrypted by the same method.

1.1 Combined Generator

Such a sequence is typically generated by a finite state automaton.

Definition 1. A finite state automaton A without input is a quadruple A =
(S, f, O, o), where S is a finite set (the set of states), f : S → S is a function
(the state transition function), O is a set (the set of the output symbols), and
o : S → O is the output function.

For a given initial state s0, A changes the state by the recursion sn := f(sn−1)
(n = 1, 2, 3, . . .) and generates the sequence

o(s0), o(s1), o(s2), . . . ∈ O.

For a stream cipher, we prepare an initializing function init : K → S, and take
O := B. By setting s0 := init(k), the automaton A generates a sequence of
elements in B. Its period is bounded by #(S).

To obtain a secure generator, larger #(S) and complicated f and o are de-
sirable. However, if f is complicated, then the analysis of the sequence (such
as computing the period and the distribution) often becomes difficult. A typical
choice is to choose an F2-linear transition function. We take S := F2

d and choose
a linear transition function f . Then, the period can be computed by the linear
algebra and polynomial calculus. In particular, the following linear feedback shift
register generators (LFSRs) are widely used: S := (F2

w)n where w is the word
size of the machine (e.g. w = 32 for 32-bit machines), and the transition is

f(x1, x2, . . . , xn−1, xn) := (x2, x3, . . . , xn, g(x1, . . . , xn)). (1)

Here g : (F2
w)n → F2

w is a linear function called the feedback function. This
state transition is equivalent to the recursion

xi+n := g(xi, xi+1, . . . , xi+n−1) (i = 0, 1, 2, . . .).

The output of LFSR is given by

o : S → F2
w, (x1, . . . , xn) �→ x1,

which is not secure as it is. A software implementation technique using a cyclic
array ([9, P.28 Algorithm A]) reduces the computation of f to that of g and an
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index change. Consequently, the computation time is independent of the size of
n, which allows a fast generator with huge state space. This type of generator
is common for the pseudorandom number generation in Monte Carlo method
(PRNG for MC), such as Mersenne Twister (MT19937) [10], whose period is
219937 − 1.

As a stream cipher, any linear recurring sequence is vulnerable, so we need
to introduce some non-linearity. A conventional method is to choose a “highly
non-linear” o : S → O. In this context, o is called a filter.

One of the estimators of the non-linear property of a function is the algebraic
degree.

Definition 2. Let h(c1, c2, . . . , cn) be a boolean function, i.e.,

h : F2
n → F2.

Then, the function h can be represented as a polynomial function of n variables
c1, c2, . . . , cn with coefficients in F2, namely as a function

h =
∑

T⊂{1,2,...,n}
aT cT

holds, where aT ∈ F2 and cT :=
∏

t∈T ct. This representation is unique, and called
the algebraic normal form of h. Its degree is called the algebraic degree of h.

Let hi,n(s0) denote the i-th bit of the n-th output bn(s0) of the generator for the
initial state s0. This is a boolean function, when we consider s0 ∈ S = F2

d as d
variables of bit. Thus, an adversary can obtain s0 by solving the simultaneous
equations hi,n(s0) = oi,n for unknown s0 for various i and n, where oi,n are the
outputs of the generator observed by the adversary. This is the algebraic attack
(see for example [4], [3]).

A problem of a linear generator with filter is the following. Since any sn is
a linear function of the bits in s0 = init(k), the algebraic degree of hi,n(s0)
is bounded from the above by the algebraic degree of the i-th bit of the filter
function o, namely that of the function

oi : S
o−→ F2

8 ith−−→ F2.

To attain the high-speed generation, oi cannot access so many bits in S, and
its algebraic degree is bounded by the number of accessed bits. This decreases
the merits of the large state space. A filter with memory, which is just a finite
state automaton with input, solves this conflict (see §2.3 for its effect on the
algebraic degree).

Definition 3. A finite state automaton A with input is a five-tuple A = (S, I, f,
O, o). The data S, O, o are same with Definition 1. The difference is that it has
another component I (the set of input symbols), and that the state transition
function is of the form f : I × S → S. For an initial state s0 and an input se-
quence i0, i1, . . . ∈ I, A changes the state by sn = f(in−1, sn−1) (n = 1, 2, 3, . . .).
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Fig. 1. Combined generator

Definition 4. (A combined generator with filter with memory.)
Let AM := (SM , fM , OM , oM ) be an automaton without input (called the mother

generator, M for mother). Let AF := (SF , IF , fF , OF , oF ) be an automaton with
input (called the filter with memory, F for the filter). We assume that OM = IF .
Consider a pair of initial states sM,0 ∈ SM and sF,0 ∈ SF . We generate a sequence
of OM = IF by AM with initial state sM,0, and pass it to AF with initial state sF,0,
to obtain a sequence of OF as the output sequence. This amounts to considering an
automaton C without input, named the combined generator: the state space SC of
C is SM × SF , the transition function is

fC : (sM , sF ) �→ (fM (sM ), fF (oM (sM ), sF )),

and the output function is

oC : (sM , sF ) �→ oF (sF ) ∈ OF .

Figure 1 describes a combined generator.

Example 1. The output function oC in the above definition depends only on SF ,
but we may consider a function depending both SM and SF .

Such an example is famous SNOW stream cipher [5] [6]. The mother generator
of SNOW2.0 is a LFSR with 512-bit state space, and its filter has 64-bit state
space. Non-linearity is introduced by four copies of one same S-box of 8-bit size,
based on arithmetic operations in 28-element filed F28 .

SNOW has no rigorous assurance on the period and the distribution of the
generated sequence. We shall introduce the notion of quasigroup filter, which
allows to compute the period and distribution property.

2 Quasigroup Filter

Definition 5. A function f : X × Y → Z is said to be bi-bijective if f(−, y) :
X → Z, x �→ f(x, y) is bijective for any fixed y, and so is f(x,−) : Y →
Z, y �→ f(x, y) for any fixed x. If X = Y = Z, this coincides with the notion of
a quasigroup.

A quasigroup filter is an automaton in Definition 3 where the state transition
function f : I × S → S is bi-bijective.
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Example 2. (Multiplicative filter)
Let I = S be the set of odd integers in the ring Z/232 of integers modulo 232.
Let f : I×S → S be the integer multiplication modulo 232. This is a quasigroup
(actually the multiplicative group of the ring Z/232).

We choose oF : S → OF = B as the function taking the 8 MSBs from the
32-bit integer.

Example 3. If we correspond a 32-bit integer x to a 33-bit odd integer 2x + 1
modulo 233, then the multiplication formula

(2x + 1)× (2y + 1) = 2(2xy + x + y) + 1

gives a quasigroup structure

×̃ : (x, y) �→ x×̃y := 2xy + x + y mod 232

on the set of 32-bit integers. We can consider the corresponding multiplicative
filter with I = S being the set of 32-bit integers.

Modern CPUs often have a fast integer multiplication for 32-bit integers. We
shall discuss mathematical property of such filters in §2.3.

Example 4. (CryptMT1: MT with multiplicative filter)
We choose a LFSR described in (1) as the mother generator AM , with OM =
F2

w. We can choose its parameters so that the period is a large Mersenne prime
Q = 2p − 1 (e.g. p = 19937 as in the case of MT19937 [10]). By identifying OM

as the set of w-bit integers, we can use the multiplicative filter AF described
in Example 3. We call this generator as MT19937 with multiplicative filter. The
output function oF : SF → OF = F2

8 is extracting 8 MSBs. This generator is
called CryptMT Version 1 (CryptMT1) [11].

2.1 k-Dimensional Distribution

Let k be an integer, and let A be an automaton without input as in Definition 1.
We define its k-tuple output function o(k) by

o(k) : S → Ok s �→ (o(s), o(f(s)), o(f2(s)), . . . , o(fk−1(s))) (2)

(i.e. o(k) maps the state to the next k outputs). Consider the multi-set of the
possible output k-tuples for all states:

O(k) := {o(k)(s) |s ∈ S}.
This is the image of S by o(k) counted with multiplicities.

Definition 6. The output of the automaton A is said to be k-dimensionally
equidistributed if the multiplicity of each element in O(k) is same.

This type of criteria is commonly used for PRNG for MC: MT19937 as a 32-bit
integer generator has this property with k = 623. This criterion is equivalent to
the uniformness of the function o(k) defined below.
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Definition 7. A mapping g : X → Y is uniform if the cardinality of g−1(y) is
independent of y ∈ Y . A bijection is uniform, and the composition of uniform
mappings is uniform.

A filter with memory is uniform if its output function is uniform.

Example 4 is uniform. The next proposition shows that a uniform quasigroup
filter increases the dimension of equidistribution by 1. A proof is in Appendix B.1.

Proposition 1. We keep the set-up of Definition 4. Assume that AF is a uni-
form quasigroup filter. Suppose that the output of AM is k-dimensionally equidis-
tributed. Then, the combined generator C is (k+1)-dimensionally equidistributed.

Corollary 1. CryptMT1 explained in Example 4 is 624-dimensionally equidis-
tributed.

We mean by a simple distinguishing attack of order N to choose a real function F
with N variables and to detect the deviation of the distribution of the values of F
applied to the consecutive N -outputs. If N does not exceed the dimension of the
equidistribution, then one can observe no deviation from the true randomness,
under the assumption of uniform choice of the initial state.

By this reason, it seems very difficult to apply a correlation attack or a dis-
tinguishing attack to such generators. For example, to observe some deviation
of MT19937 with multiplicative filter in Example 4, one needs to observe the
correlation of outputs with the lag more than 624. Because of the high nonlin-
earity of the multiplicative filter discussed below, we guess that this would be
infeasible.

2.2 A Theorem on the Period

Theorem 1. Consider a combined generator C as in Definition 4. Let sM,0 be
the initial state of the mother generator AM , and assume that its state transition
is purely periodic with period P = Qq for a prime Q and an integer q. Let
So ⊂ SM be the orbit of the state transition. Let k be an integer. Assume that
the k-tuple output function of the mother generator o

(k)
M : So → Ok

M as defined
in (2) is surjective when restricted to So. Suppose that AF is a quasigroup filter
as in Definition 1.

Let r be the ratio of the occupation of the maximum inverse image of one
element by oF : SF → OF in SF , namely

r = max
b∈OF

{#(o−1
F (b))}/#(SF ).

If
r−(k+1) > q · (#(SF ))2,

then the period of the output sequence of C is a nonzero multiple of Q.

A proof is given in Appendix B.2.
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Example 5. For MT19937 with multiplicative filter, this theorem shows that any
bit in the output sequence has a period being a multiple of the prime 219937− 1,
as follows.

We have Q = 219937 − 1 and q = 1. If oF : SF → OF = F2
m is extracting

some m bits from the 32-bit integers, then r = 2w−m/2w = 2−m. The inequality
condition in the theorem is now

2m(k+1) > 22w,

and hence if this holds, then the m-bit output sequence has a period which is a
multiple of Q.

In the case of MT19937 and the multiplicative filter, since k = 623 and w = 32,
the above inequality holds for any m ≥ 1, hence any bit of the output has a period
at least 219937 − 1.

2.3 A Proposition on the Algebraic Degree of Integer Products

Definition 8. Let us define a boolean function ms,N of (s − 1)N variables, as
follows. Consider N of s-bit integer variables x1, . . . , xN . Let

cs−1,ics−2,i · · · c0,i

be the 2-adic representation of xi, hence cj,i = 0, 1. We fix c0,i = 1 for all
i = 1, . . . , N , i.e. assuming xi odd. The boolean function ms,N has variables cj,i

(j = 1, 2, . . . , s − 1, i = 1, 2, . . . , N), and its value is defined as the s-th digit
(from the LSB) of the 2-adic expansion of the product x1x2 · · ·xN as an integer.

Proposition 2. Assume that N, s ≥ 2. The algebraic degree of ms,N is bounded
from below by

min{2s−2, 2�log2 N�}.
A proof is given in Appendix B.3. This proposition gives the algebraic degree of
the multiplicative filter, with respect to the inputs x1, . . . , xN .

This proposition implies that we should use MSBs of the multiplicative fil-
ter. On the other hand, using 8 MSBs among 32-bit integers as in Example 2
seems to have enough high algebraic degree. We check this using a toy model in
Appendix A.

3 A Fast Initialization of a Large State Space

Consider LFSR in (1) as a mother generator. Its state space is an array of w-bit
integers with size n. We need to give initial values to such a large array in the
initialization. If one wants to encrypt a much shorter message than n, then this
is not efficient. A possible solution is to use a PRNG with relatively small state
space (called the booter) which can be quickly initialized, and use it to generate
the initial array x0, x1, . . . , xn−1, and at the same time, its outputs are passed
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to the filter for key-stream generation. If the message length is smaller than n,
then the mother generator is never used: the outputs of the booter are used as
the output of the mother generator. If the message length exceeds n, then the
first n outputs of the booter are used as the outputs of the mother generator,
and at the same time for filling up the state space of the mother generator. After
the state space is filled up, the mother generator starts to work. See Appendix C
for more detail.

The first outputs come from the booter. One may argue why not using the
booter forever, without using the mother generator. The answer is that we do
not need to care about the attacks to the booter based on a long output stream.

4 A Concrete Example Using 128-Bit Instructions

Recent CPUs often have Single Instruction Multiple Data (SIMD) instructions.
These instructions treat a quadruple of 32-bit integers at one time. We propose
a LFSR and a uniform quasigroup filter, based on 128-bit instructions, named
CryptMT Version 3 (CryptMT3) in the rest of this paper. CryptMT3 is one of
the phase 3 candidates in eSTREAM stream cipher competition [13]. We shall
describe the generation algorithm below.

4.1 SIMD Fast MT

In the LFSR (1), we assume that each xi is a 128-bit integer or equivalently a
vector in F2

128. We choose the following recursion: n = 156 and

x156+j := (x156+j−1 & ffdfafdf f5dabfff ffdbffff ef7bffff)⊕
(x108+j >>64 3)⊕ x108+j [2][0][3][1]⊕ (xj [0][3][2][1]). (3)

Here, & denotes the bit-wise-and operation, and the hexadecimal integer is a
constant 128-bit integer for the bit-mask. The notation ⊕ is bitwise exor. The
notation

(x108+j >>64 3)

means that x108+j is considered as two 64-bit integers, and each of them is
shifted to the right by 3 bits. The notation x108+j [2][0][3][1] is a permutation of
four 32-bit integers. The 128-bit integer x108+j is considered as a quadruple of
(0th, 1st, 2nd, 3rd) 32-bit integers, and then they are permuted by 2→ 0, 1 →
0, 2→ 3, 3→ 1. The next notation xj [0][3][2][1] is a similar permutation. These
instructions are available both in SSE2 SIMD instructions for Intel processors
and in AltiVec SIMD instructions in PowerPC. We call this generator SIMD
Fast MT (SFMT) (This is a variant of [14]). A description is in Figure 2. We
proved its 155-dimensional equidistribution property. We proved that, if the third
component x0[3] of x0 is 0x4d734e48, then the period of the generated sequence
of the SFMT is a multiple of the Mersenne prime 219937 − 1. Note that since
19937 is a prime, there is no intermediate field of F219937 . This is in contrast to
SNOW1.0, where the existence of the intermediate field F232 introduces some
weakness (see [6]).
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Fig. 2. The mother generator of CryptMT3: SIMD Fast Mersenne Twister
permute: y �→ y[0][3][2][1].
perm-shift: y �→ y[2][0][3][1] ⊕ (y >>64 3).
bit-mask: ffdfafdf f5dabfff ffdbffff ef7bffff

4.2 A Modified Multiplicative Filter

Our filter AF has IF = SF being the set of 128-bit integers, and OF being the
set of 64-bit integers, as described below.

For given 128-bit integers y ∈ IF and x ∈ SF , we define

fF (y, x) := (y ⊕ (y[0][3][2][1] >>32 1))×̃32x. (4)

Here, the notation “>>32 1” means to consider a 128-bit integer as a quadruple
of 32-bit integers, and then shift each of them to the right by 1 bit. The binary
operator x×̃32y means that 32-bit wise binary operation ×̃ (see Example 3)
is applied for each 32-bit components, namely, i-th 32-bit integer of x×̃32y is
x[i]×̃y[i] (i = 0, 1, 2, 3).

The operation applied to y is an invertible linear transformation, hence is bijec-
tive. Since ×̃ is bi-bijective, so is fF . The purpose to introduce the permutation-
shift is to mix the information among four 32-bit memories in the filter, and to
send the information of the upper bits to the lower bits. This supplements the
multiplication, which lacks this direction of transfer of the information.

The output function is

oF (y) := LSB16
32(y ⊕ (y >>32 16)). (5)

This means that y is considered as a quadruple of 32-bit integers, and for each
of them, we take the exor of the MSB 16 bits and LSB 16 bits. Thus we obtain
four 16-bit integers, which is the output 64-bit integer (see Figure 3). To obtain
8-bit integers, we dissect it into 8 pieces.

CryptMT3 is the combination of the SIMD Fast MT (§4.1) and this filter.
Initialization by the booter is explained in Appendix C.
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Fig. 3. Filter of CryptMT3.
perm-shift3: y �→ y ⊕ (y[0][3][2][1] >>32 1).
perm-shift4: y �→ y ⊕ (y >>32 16).
×̃: multiplication of 33-bit odd integers.

Table 1. Summary from eSTREAM benchmark [2]

Core 2 Duo AMD Athlon 64 X2 Motorola PowerPC G4
Primitive Stream Key setup IV setup Stream Key IV Stream Key IV
CryptMT3 2.95 61.41 514.42 4.73 107.00 505.64 9.23 90.71 732.80

HC-256 3.42 61.31 83805.33 4.26 105.11 88726.20 6.17 87.71 71392.00
SOSEMANUK 3.67 848.51 624.99 4.41 1183.69 474.13 6.17 1797.03 590.47

SNOW-2.0 4.03 90.42 469.02 4.86 110.70 567.00 7.06 107.81 719.38
Salsa20 7.12 19.71 14.62 7.64 61.22 51.09 4.24 69.81 42.12
Dragon 7.61 121.42 1241.67 8.11 120.21 1469.43 8.39 134.60 1567.54

AES-CTR 19.08 625.44 18.90 20.42 905.65 50.00 34.81 305.81 34.11

4.3 Speed Comparison

Comparison of the speed of generation for stream ciphers is a delicate problem:
it depends on the platform, compilers, and so on. Here we compare the number
of cycles consumed per byte, by CryptMT3, HC256, SOSEMANUK, Salsa20,
Dragon (these are the five candidates in eSTREAM software cipher phase 3
permitting 256-bit Key), SNOW2.0 and AES (counter-mode), in three different
CPUs: Intel Core 2 Duo, AMD-Athlon X2, and Motorola PowerPC G4, using
eSTREAM timing-tool [7]. The data are listed in Table 1. Actually, they are
copied from Bernstein’s page [2]. The number of cycles in Key set-up and IV
set-up are also listed.

CryptMT3 is the fastest in generation in Intel Core 2 Duo CPU, reflecting
the efficiency of SIMD operations in this newer CPU. CryptMT3 is slower in
Motorola PowerPC. This is because AltiVec (SIMD of PowerPC) lacks 32-bit
integer multiplication (so we used non-SIMD multiplication instead).

5 Conclusions

We proposed combination of a LFSR and a uniform quasigroup filter as a stream
cipher in software. As a concrete example, we implemented CryptMT3 generator.
CryptMT3 is as fast as SNOW2.0 and faster than AES counter-mode for
recent CPUs. CryptMT3 satisfies the conditions of Theorem 1 and Proposition 1,
and it can be proved to have the astronomical period ≥ 219937 − 1 and the
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156-dimensional equidistribution property as a 64-bit integer generator (and hence
1241-dimensional equidistribution property as a 8-bit integer generator).

CryptMT3 uses integer multiplication instead of an S-box. This is an advantage
over generators with large look-up tables for fast software implementation of the
S-box, such as SNOW or AES, where cache-timing attacks might be applied [1].

A toy model of CryptMT3 shows high algebraic degrees and nonlinearity for
the multiplicative filter, which supports its effectiveness.
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variables, then each bit of the outputs is a boolean function of these variables,
and algebraic degree and non-linearity are defined.

However, it seems difficult to compute them explicitly for CryptMT3, because
of the size. So we made a toy model and obtained experimental results. Its mother
generator is a linear generator with 16-bit internal state, and generates a 16-bit
integer sequence defined by

xj+1 := (xj >> 1)⊕ ((xj&1) · a),

where >> 1 denotes the one-bit shift-right, (xj&1) denotes the LSB of xj ,
a = 1010001001111000 is a constant 16-bit integer, and (xj&1) · a denotes the
product of the scalar (xj&1) ∈ F2 and the vector a.

Then it is filtered by
yj+1 = (xj |1)× yj mod 216,

where (xj |1) denotes xj with LSB set to 1. We put y0 = 1, and compute the
algebraic degree of each of the 16 bits in the outputs y1 ∼ y16, each regarded as
a polynomial function with 16 variables being the bits in x0. The result is listed
in Table 2. The lower six bits of the table clearly show the pattern 0, 1, 1, 2, 4, 8,
which suggests that the lower bound 2s−2 for s ≥ 2 given in Proposition 2 would
be tight, when the iterations are many enough. On the other hand, eighth bit
and higher are “saturated” to the upper bound 16, after 12 generations.

We expect that the algebraic degrees for CryptMT3 would behave even better,
since its filter is modified. So, if we consider each bit of the internal state of
CryptMT3 as a variable, then the algebraic degree of the bits in the outputs will
be near to 19937, after some steps of generations.

Also, we computed the non-linearity of the MSB of each yi (i = 1, 2, . . . , 8) of
this toy model. The result is listed in Table 3, and each value is near to 216−1.
This suggests that there would be no good linear approximation of CryptMT3.

Table 2. Table of the algebraic degrees of output bits of a toy model

y1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
y2 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0
y3 15 15 14 13 12 11 10 9 8 6 4 3 2 1 1 0
y4 15 16 15 14 13 12 11 10 9 7 5 4 2 1 1 0
y5 16 16 15 15 14 13 12 11 10 7 5 4 2 1 1 0
y6 16 16 15 15 15 14 13 11 10 9 7 4 2 1 1 0
y7 16 15 16 16 15 15 14 13 12 9 7 4 2 1 1 0
y8 15 15 15 16 16 15 15 14 13 10 8 4 2 1 1 0
y9 16 15 16 15 15 16 15 15 13 10 8 4 2 1 1 0
y10 15 16 16 16 16 16 15 15 14 12 8 4 2 1 1 0
y11 15 16 16 15 15 15 16 15 15 12 8 4 2 1 1 0
y12 15 16 16 16 16 15 16 16 15 13 8 4 2 1 1 0
y13 16 15 15 15 15 15 16 15 16 13 8 4 2 1 1 0
y14 15 15 16 15 15 16 16 15 16 15 8 4 2 1 1 0
y15 15 16 16 16 15 16 16 16 15 14 8 4 2 1 1 0
y16 16 15 16 15 15 15 15 15 16 14 8 4 2 1 1 0
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Table 3. The non-linearity of the MSB of each output of a toy model

output y1 y2 y3 y4 y5 y6 y7 y8 y9

nonlinearity 0 32112 32204 32238 32201 32211 32208 32170 32235

B Proof of Theorems and Propositions

B.1 Proof of Proposition 1

Proof. Consider the k-tuple output function of the mother generator o
(k)
M : SM →

Ok
M as in (2). Then, the k-dimensional equidistribution property is equivalent to

the uniformness of o
(k)
M . The (k+1)-tuple output function o

(k+1)
C of the combined

generator C is the composite

o
(k+1)
C : SM × SF

o
(k)
M ×idSF−−−−−−−→ Ok

M × SF
µ−→ Sk+1

F

ok+1
F−−−→ Ok+1

F ,

where the second map μ is given by

μ : ((xk, xk−1, . . . , x1), y1) �→ (yk+1, yk, . . . , y1)

where yi’s are inductively defined by yi+1 := fF (xi, yi) (i = 1, 2, . . . , k). The
last map ok+1

F is the direct product of k+1 copies of oF . The quasigroup property
of fF implies the bijectivity of μ. The last map is uniform. Since the composition
of uniform mappings is uniform, we obtain the proof.

B.2 Proof of Theorem 1

Proof. We may replace SM with the orbit starting from s0. Then, replace SM

with its quotient set where two states are identified if the output sequences from
them are identical. Thus, we may assume #(SM ) = P , where P is the period of
the output sequence of AM . In this proof, we do not consider multi-sets. Consider
the k-tuple output function o

(k+1)
C as in the proof of Proposition 1. Since o

(k)
M is

surjective and μ is bijective (by the quasigroup property), the image I ⊂ On+1
M

of SM ×{y0} by μ◦ (o(k)
M × idY ) has the cardinality #(OM )k. By the assumption

of the pure periodicity of xi and the bijectivity of fF , the output sequence oF (yi)
(i = 0, 1, 2, . . .) is purely periodic. Let p be its period. Then, ok+1

F (I) ⊂ Ok+1
F

can have at most p elements. Thus, by the assumption on oF and the definition
of r,

#(I) ≤ p(r#(SF ))k+1.

Since #(OM )k = #(I) and #(OM ) = #(SF ), we have an inequality

r−(k+1) ≤ p#(SF ).

The period P ′ of the state transition of C is a multiple of P = Qq. Since the state
size of C is P ×#(SF ), P ′ = Qm holds for some m ≤ q#(SF ). Consequently, p
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is a divisor of Qm. If p is not a multiple of Q, then p divides m and p ≤ q#(SF ).
Thus we have

r−(k+1) ≤ q#(SF )2,

contradicting to the assumption.

B.3 Proof of Proposition 2

Let h(c1, c2, . . . , cn) be a boolean function as in Definition 2, andh=
∑

T⊂{1,2,...,n}
aT cT be its algebraic normal form.

The following lemma is well known.

Lemma 1. It holds that aT =
∑

U⊂T h(U), where h(U) := h(c1, . . . , cn) with
ci = 0, 1 according to i /∈ U , ∈ U , respectively.

Proof of Proposition

Proof. For s = 2, the claim is easy to check. We assume s ≥ 3.
Case 1. s − 2 ≤ log2 N . In this case, it suffices to prove that the algebraic
degree is at least 2s−2. Take a subset T of size 2s−2 from {1, 2, . . . , N}, say
T = {1, 2, . . . , 2s−2}. Then, we choose c1,1, c1,2, . . . , c1,2s−2 as the #T variables
“activated” in Lemma 1, and consequently, the coefficient of c1,1c1,2 · · · c1,2s−2

in the algebraic normal form of ms,N is given by the sum in F2:

aT :=
∑

U⊂T

(s-th bit of x1 · · ·xn, where cj,i = 1 if and only if j = 1 and i ∈ U).

Note that c0,i = 1. It suffices to prove aT = 1. Now, each term in the right
summation is the s-th bit of the integer 3#U , so the right hand side equals to

2s−2
∑

m=0

[(
2s−2

m

)
× the s-th bit of 3m

]
.

However, the well-known formula

(x + y)2
s−2 ≡ x2s−2

+ y2s−2
mod 2

implies that the binary coefficients are even except for the both end, so the
summation is equal to the s-th bit of 32s−2

.
A well-known lemma says that if x ≡ 1 mod 2i and x �≡ 1 mod 2i+1 for

i ≥ 2, then x2 ≡ 1 mod 2i+1 and x2 �≡ 1 mod 2i+2. By applying this lemma
inductively, we know that

32s−2
= (1 + 8)2

s−3 ≡ 1 mod 2s, �≡ 1 mod 2s+1.

This means that s-th bit of 32s−2
is 1, and the proposition is proved.
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Case 2. s − 2 > log2(N)�. In this case, we put t := log2(N)� + 2, and hence
s > t and 2t−2 ≤ N . We apply the above arguments for T = {1, 2, . . . , 2t−2},
but this time instead of c1,i, we activate

{cs−t+2,i | i ∈ T }.

The same argument as above reduces the non-vanishing of the coefficient of the
term cs−t+2,1 · · · cs−t+2,2t−2 to the non-vanishing of

2t−2
∑

m=0

[(
2t−2

m

)
× the s-th bit of (1 + 2s−t+2)m

]
.

Again, only the both ends m = 0 and m = 2t−2 can survive, and the above
summation is the s-th bit of (1 + 2s−t+2)t−2. Since s − t + 2 ≥ 2, the lemma
mentioned above implies that

(1 + 2s−t+2)2
t−2 ≡ 1 mod 2s, �≡ 1 mod 2s+1,

which implies that its s-th bit is 1.

C The Key, IV, and the Booter

The design of the booter (see §3) goes independently of the key-stream generator.
However, as the referees pointed out, we need to specify one to have a complete
description of the generator. Thus, we here include the booter of CryptMT3 for
self-containedness. The booter is described in Figure 4.

We choose an integer H later in §C.1. The state space of the booter is
a shift register consisting of H 128-bit integers. We choose an initial state
x0,x1, . . . ,xH−1 and the initial value a0 of the accumulator (a 128-bit mem-
ory) as described in the next section. Then, the state transition is given by the
recursion

aj := (aj−1 ×̃32 perm-shift2(xH+j−1))
xH+j := perm-shift1(xj +32 xH+j−2)−32 aj ,

where
perm-shift1(x) := (x[2][1][0][3])⊕ (x >>32 13)
perm-shift2(x) := (x[1][0][2][3])⊕ (x >>32 11).

The notation +32 (−32) denotes the addition (subtraction, respectively) modulo
232 for each of the four 32-bit integers in the 128-bit integers. The output of the
j-th step is xj +32 xH+j−2.

As described in Figure 4, the booter consists of an automaton with three
inputs and two outputs of 128-bit integers, together with a shift register. In the
implementation, the shift register is taken in an array of 128-bit integers with
the length 2H + 2 + n, where n = 156 is the size of the state array of SFMT.
This redundancy of the length is for the idling, as explained below.



A Fast Stream Cipher with Huge State Space 261

Fig. 4. Booter of CryptMT3.
perm-shift1: x �→ (x[2][1][0][3]) ⊕ (x >>32 13).
perm-shift2: x �→ (x[1][0][2][3]) ⊕ (x >>32 11).
×̃: multiplication of (a quadruple of) 33-bit odd integers.
+, −: addition, subtraction of four 32-bit integers modulo 232.

C.1 Key and IV Set-Up

We assume that both the IV and the Key are given as arrays of 128-bit integers.
The size of each array is chosen by user, from 1 to 16. Thus, the Key-size is
chosen from 128 bits to 2048 bits, as well as the IV-size. We claim the security
level that is the same with the minimum of the Key-size and the IV-size.

We concatenate the IV and the Key to a single array, and then it is copied
twice to an array, as described in Figure 5. To break the symmetry, we add a
constant 128-bit integer (846264, 979323, 265358, 314159) (denoting four 32-bit
integers in a decimal notation, coming from π) to the bottom row of the second
copy of the key (add means +32). Now, the size H of the shift register in the
booter is set to be 2 × (IV-size + Key-size (in bits))/128, namely, the twice of
the number of 128-bit integers contained in the IV and the Key. For example,
if the IV-size and the Key-size are both 128 bits, then H = 2 × (1 + 1) = 4.
The automaton in the booter described in Figure 4 is equipped on this array, as
shown in Figure 5. The accumulator of the booter-automaton is set to

(the top row of the key array) | (1, 1, 1, 1),

that is, the top row is copied to the accumulator and then the LSB of each of
the 32-bit integers in the accumulator is set to 1.
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Fig. 5. Beginning of Key and IV set-up. The IV-array and Key-array are concatenated
and copied to an array twice. Then, a constant is added to the bottom of the second
copy of the key to break a possible symmetry. The automaton is described in Figure 4.

At the first generation, the automaton reads three 128-bit integers from the
array, and write the output 128-bit integer at the top of the array. The feedback
to the shift register is written into the (H + 1)-st entry of the array. For the
next generation, we shift the automaton downwards by one, and proceed in the
same way.

For idling, we iterate this for H +2 times. Then, the latest modified row in the
array is the (2H +2)-nd row, and it is copied to the 128-bit memory in the filter
of CryptMT3. We discard the top H +2 entries of the array. This completes the
Key and IV set-up. Figure 6 shows the state after the set-up.

After the set-up, the booter produces 128-bit integer outputs, at most n times.
Let L be the number of bits in the message. If L ≤ n×64, then we do not need the

Fig. 6. After the Key and IV set-up
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mother generator. We generate the necessary number of 128-bit integers by the
booter, and pass them to the filter to obtain the required outputs. If L ≥ n×64,
then, we generate n 128-bit integers by the booter, and pass them to the filter to
obtain n 64-bit integers, which are used as the first outputs. At the same time,
these n 128-bit integers are recorded in the array, and they are passed to SFMT
as the initial state.

To eliminate the possibility of shorter period than 219937 − 1, we set the
32 MSBs of the first row of the state array of SFMT to the magic number
0x4d734e48 in the hexadecimal representation, as explained in §4.1. That is, we
start the recursion (3) of SFMT with x0,x1, . . . ,xn−1 being the array of length
n generated by the booter (with 32 bits replaced with a magic constant), and
then SFMT produces xn,xn+1, . . .. Since xn might be easier to guess because of
the constant part in the initial state, we skip xn and pass the 128-bit integers
xn+1,xn+2, . . . to the filter.
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Abstract. At DRM 2002, Chow et al. [4] presented a method for im-
plementing the DES block cipher such that it becomes hard to extract
the embedded secret key in a white-box attack context. In such a con-
text, an attacker has full access to the implementation and its execution
environment. In order to provide an extra level of security, an implemen-
tation shielded with external encodings was introduced by Chow et al.
and improved by Link and Neumann [10]. In this paper, we present an
algorithm to extract the secret key from such white-box DES implemen-
tations. The cryptanalysis is a differential attack on obfuscated rounds,
and works regardless of the shielding external encodings that are applied.
The cryptanalysis has a average time complexity of 214 and a negligible
space complexity.

Keywords: White-Box Cryptography, Obfuscation, DES, Data En-
cryption Standard, Cryptanalysis.

1 Introduction

White-box cryptography aims to protect secret keys by embedding them into a
software implementation of a block cipher. The attack model for these imple-
mentations is defined as the white-box attack model. In this model, an attacker
has full control over the implementation and its execution environment. This
includes static and dynamic analysis of the implementation, altering of compu-
tation, and modification of internal variables. In such a model, it is much more
difficult to protect cryptographic implementations than in the classical black-box
model. In the black-box model, an adversary can only use the input and output
behaviour of the implementation in order to find the key. Another model is the
grey-box model, where an adversary can use side-channel information such as
power consumption, and timing information.
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For the black-box model, several cryptographic block ciphers have been pro-
posed, such as DES (Data Encryption Standard) [13], and its successor AES
(Advanced Encryption Standard). Although these ciphers provide cryptographic
strength in their full number of rounds, attacks have been presented on reduced
round versions. Cipher designers aim to reduce the number of rounds, for which
a cipher provides sufficient security, while cryptanalysists try to construct an at-
tack on as many rounds as possible. For AES-128 and AES-192, a cryptanalysis
on 7 and 8 rounds has been presented respectively (out of 10 and 12 rounds) [9].
In a white-box attack model, this game of design and cryptanalysis fails com-
pletely, since an attacker has access to the round functions, and can thus perform
a cryptanalysis on a chosen part of the implementation representing a reduced
number of round functions.

In 2002, Chow et al. [4] proposed a white-box implementation of DES. The
main idea is to implement the block cipher as a network of lookup tables. All
the operations of the block cipher, such as the key addition, are embedded into
these lookup tables, which are then randomised to obfuscate their behaviour.
This process of obfuscation intends to preclude cryptographic attacks on a re-
duced number of rounds, timing attacks, such as cache attacks (e.g., [11]) or
implementation attacks [8]. Parallel with the white-box DES implementation
proposal, Chow et al. [3] described a white-box AES implementation based on
similar design principles. For both implementations, a variant was presented that
is shielded with external encodings. Several publications describe cryptanalysis
results of ‘naked’ white-box DES implementations, i.e., without the shielding
external encodings [4,7,10]. The encoded white-box AES implementation has
been cryptanalysed by Billet et al. [2]. They use algebraic properties of the AES
to attack the implementation on the obfuscated round functions.

In this paper, we describe a cryptanalysis which applies to both naked and en-
coded white-box DES implementations. Independently, Goubin et al. [6] present
similar results. Their paper describes a cryptanalysis of the improved naked
white-box DES implementation proposed by Link and Neumann [10]. Based on
this attack and the analysis of the typical external encodings, an attack is derived
for encoded white-box DES implementations. In contrast, the attack we discuss
in this paper is independent of the definition of the external encodings. Hence,
unlike the attack of Goubin et al., a white-box DES implementation cannot be
protected against our attack by choosing different external encodings. The attack
presented in this paper targets the internal behaviour of the implementation; it
is a differential cryptanalysis [1] on the obfuscated round functions, which are
accessible in a white-box environment. Because the attack is independent of the
definition and implementation of the external encodings, it applies to both the
(improved) naked and the encoded white-box DES implementations.

The reminder of this paper is organised as follows: in Sect. 2 we give a brief
overview of the white-box DES implementation. The core of this paper, the
cryptanalysis of the implementation, is described in Sect. 3. We have also imple-
mented our attack and performed tests on white-box DES binaries. The results
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and considerations of the implementation are described in Sect. 4. Section 5
presents the conclusions.

2 White-Box DES Implementations

For the sake of completeness and to introduce the notation and terminology
used in the description of the cryptanalysis, we briefly outline the construction
of white-box DES implementations as presented by Chow et al. [4].

The Data Encryption Standard (DES) is a block cipher operating on 64-bit
blocks and with a key length of 56 bits; it is a Feistel cipher with 16 rounds,
embedded between an initial permutation IP before the first round, and its
inverse permutation IP−1 after the last round. Fig. 1 (a) depicts one round of
the DES. It has the following building blocks: an expansion operation E ; an
addition of a 48-bit round key kr which is generated from the key schedule; 8
S-box operations Si (each S-box is a non-linear mapping from 6 bits to 4 bits);
and a bit permutation P .

A DES white-box implementation represents DES as a functional equivalent
sequence of obfuscated lookup tables. In this section, we describe the transforma-
tion techniques as presented by Chow et al. [4]. Figure 1 (a) depicts one round
of DES, and (b) a functionally equivalent representation which consist of the
functions Cr and Dr. The DES permutation, XOR, and expansion operation are
implemented as a 96-to-96 bit affine function Dr, which can be represented as a
matrix. Using a technique referred to as matrix decomposition by Chow et al.,
Dr is transformed into a sequence of lookup tables. To avoid sparse submatrices,
Dr can be split into non-sparse matrices by introducing mixing bijections [4].
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Fig. 1. (a) One round of DES (b) One round of white-box DES, before internal encod-
ings are applied
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At the heart of each round of the white-box DES implementation are 12 T-
boxes that implement the Cr function. These T-boxes contain the S-boxes and
the round key addition and are defined as

{
T r

j = b0b1||b2b7||Sj(b2b3b4b5b6b7 ⊕ kr
j ) ∀j = 1 . . . 8

T r
j = b0b1b2b3||b4b5b6b7 ∀j = 9 . . . 12 ,

where r denotes the round number (1 ≤ r ≤ 16), b0...7 represent the 8 input bits
to each T-box, and kr

j represents 6 bits of the round key. The first 8 T-boxes are
called non-linear T-boxes, as they contain the non-linear S-boxes. The other 4
are called bypass T-boxes. The 12 T-boxes of Cr are defined in such a way that
they are functionally equivalent to the round key addition, S-box operations and
the bypass of all 32 left bits (Lr−1) and 32 right bits (Rr−1). Moreover, due
to the bijective relation between the inner 4 input bits and the output bits of
an S-box, these T-boxes are 8-to-8 bit bijections. This 8 bit entropy property is
desirable as it prevents the isolated T-boxes to leak information as described by
Chow et al. [4]. The order of the T-boxes can be permuted. Note that in that
case, the affine operations Dr−1 and Dr must be adjusted accordingly. Denote
with π the permutation operation, i.e., Si is implemented inside T r

π(i).
The result is a network of key dependent lookup tables. To protect the key

information in these tables, input and output encodings are applied to them. Let
Λ be a lookup table, and f and g be random bijections. Then g◦Λ◦f−1 is defined
an encoded lookup table. We encode all the lookup tables in the network in such
a way that an output encoding is canceled by the input decoding incorporated
into the next lookup table. Note that these input and output encodings are not
wide, because they cannot exceed the boundaries of the lookup tables they are
applied to. From now on, we refer to an encoded T-box as gi ◦ T r

π(i) ◦ f−1
i , and

the internal state as the 12-byte vector f1||f2|| . . . ||f12(Φr(Lr−1||Xr−1||Rr−1))
where Φr is the function which arranges the bits to the inputs of the T-boxes.
Remark that in Fig. 1 the internal states are depicted unencoded.

Once the full network of lookup tables has been encoded, the input encodings
at the beginning and output encodings at the end of the implementation are not
canceled out. Without these encodings, we call the white-box DES implementa-
tion naked. Attacks on a naked implementation have been presented in [4,7,10].
In order to avoid such attacks, Chow et al. recommend to add affine mixing
bijections before and after DES. As a result, not DES, but an encoded variant
G ◦DESk ◦ F is implemented. F and G are called external encodings.

3 Cryptanalysis

Examination of the white-box DES implementation as presented by Chow et
al. shows that plaintext input differences between the rounds do not propagate
randomly. Denote the internal state before round r as the 96 bits that represent
the encoded version of Lr−1||Xr−1||Rr−1. This is a 12-byte vector vr

1 ||vr
2 || . . . vr

12,
where vr

j is the encoded input to a T-box T r
j . In our cryptanalysis we apply

changes to the internal states and analyse their propagation in the consecutive
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rounds to gain information about the implementation. This information is then
used to recover the key. The applied technique builds on a generic strategy
described for the first time by Billet et al. [2]. The cryptanalysis also applies to
the improved implementation as presented by Link and Neumann [10], because
only the inputs to the T-boxes are used. Merging Cr and Dr, or any change
to Dr ◦ Cr (e.g., with mixing bijections) that does not change the inputs to Cr

beyond the input size boundary, does not affect the attack.
Below, we present the steps to classify differences to the input of the T-boxes

and show how this results in the recovery of the embedded secret key. In Sect. 3.1,
we identify the set of differences which represent flips of restricted (Rr−1) bits.
This leads to the identification of flips of the two middle input bits of S-boxes
in round r + 2, and results also in the identification of single input bit flips to
S-boxes in round r + 3, as described in Sect. 3.2. This information is then used
in Sect. 3.3 to identify the S-boxes contained inside the T-boxes, and the precise
value of the input to these S-boxes. In Sect. 3.4, we explain how this leads to
the recovery of the embedded key.

Initialisation Phase. At the initialisation of our cryptanalysis, we choose a
random plaintext and run it through the implementation, storing all internal
states. We will deduce the inputs to the S-boxes for this plaintext in Sect. 3.3.
Because we are only interested in the propagation of differences applied to the
internal states, the value of the plaintext is of no importance. Hence, preceding
external input encodings do not affect the success of this cryptanalysis.

3.1 Finding Restricted Bit Flips

Let T r
j be an arbitrary encoded T-box in round r, encoded with input encoding

f r
j and output encoding gr

j . Let vr
j denote the 8-bit input vector to the encoded T-

box computed at the initialisation phase. In this section we present an algorithm
to construct the set SR(T r

j ) = {Δv = vr
j ⊕ v′ | v′ ∈ GF (2)8; v′ �= vr

j ; f r
j (vr

j ) ⊕
f r

j (v′) an Rr−1 bit flip} of all input differences to the encoded T r
j which represent

flips of one or two restricted bits (|f r
j (vr

j ) ⊕ f r
j (v′)| = 1, 2). Similarly, we define

the sets SR(T r
j ) and SR\R(T r

j ). An input difference Δv is applied to T-box T r
j as

follows: change the jth byte of the internal state before round r from vr
j into v′,

and compute the round function Dr ◦ Cr with this new internal state as input.
The algorithm consists of two parts: (1) constructing the set SR(T r

j ) of all
differences which represent single bit flips and some double bit flips of Rr−1, and
(2) to divide this set into SR(T r

j ) and SR\R(T r
j ).

Finding Single Rr−1 Bit Flips. Let Δv = vr
j ⊕ v′(= Δvr

j ) be a difference
of the input of T r

j while the inputs vr
l to the other T-boxes T r

l are fixed to
the values from the initialisation phase (∀l �= j : Δvr

l = 0). The following two
properties can be proved for Δv. The proofs are given in Appendix A.

Property 1. If Δv represents a single bit flip of Rr−1, then in round r + 2, at
most 2 T-boxes are affected (i.e., their input change).
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Property 2. If Δv represents flips of bits of Lr−1 or Yr, then in almost all
cases more than 2 T-boxes are affected in round r + 2. The exceptions (false
positives) can be detected by repeating this process up to α times with different
fixed inputs to the other T-boxes T r

l .

Hence, we are able to distinguish flips Δv that represent flips of Rr−1 bits, and
build the set SR(T r

j ). Algorithm 1 describes this procedure. The total number of
differences representing flips of bits of Rr−1 for all the T-boxes of one round, is
exactly 40: 16 single flips of bits of Rr−1 originating from Xr−1, 16 single flips
of bits of Rr−1, and 8 double flips of bits of Rr−1. To agree with property 2,
these double flips of restricted bits are those that affect the both middle bits of
an S-box in round r+2, and are bypassed together through the implementation.
Therefore they cannot be distinguished from single bit flips of Rr−1. Because
there are only 8 S-boxes, there cannot be more than 8 double bit flips. Depending
on the design of Φr, the number of double flips can reduce, but this does not
influence our cryptanalysis. To keep the discussion clear, we assume the bypass
bits are ordered, and therefore we will have 8 double bit flips.

Algorithm 1. Selecting single Rr−1 bit flips

1: Set all vr
l

2: for all Δv ∈ GF (2)8\{0} do
3: Compute 2 round functions
4: while # affected T-boxes ≤ 2 and # checks ≤ α do
5: Extra check: set new vr

l ; ∀l �= j
6: Compute 2 round functions
7: end while
8: if # affected T-boxes ≤ 2 then
9: Δv → SR(T r

j )
10: end if
11: end for

Split Rr−1 into Rr−1 and Rr−1\Rr−1 Flips. Let Δv represent flips of Rr−1

bits. The following properties can be proved for Δv ∈ SR(T r
j ). The proofs are

given in Appendix A.

Property 3. If Δv represents a flip of bits of Rr−1, there are exactly 2 prop-
agated differences in round r + 2: Δm, Δn. One (say Δm, input difference to
T-box T r+2

m ) will affect strictly more than 2 T-boxes in round r + 4, the other
difference will affect at most 2 T-boxes in round r + 4. Moreover, T r+2

m will be
a non-linear T-box; Δm represents flips of one or both of the two middle bits of
the internal S-box; and Δn represents flips of respectively one or two Rr+1 bits.

Property 4. If Δv represents a flip of bits of Rr−1\Rr−1, there are exactly
2 propagated differences in round r + 2. Both affected T-boxes are non-linear
T-boxes, and each of their input differences will affect strictly more than two
T-boxes in round r + 4.
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Based on these properties, we have a tool to identify restricted bit flips, and
to distinguish non-linear T-boxes. In Algorithm 2, this procedure is described.
Note that during the algorithm, we also store the differences Δm representing
flips of middle bits (b4b5) to an S-box Sm in the set SM (T r+2

m ).

Algorithm 2. Split Rr−1 into Rr−1 and Rr−1\Rr−1 flips

1: for all Δv ∈ SR(T r
j ) do

2: Compute 2 round functions
3: Δm, Δn← propagated differences in round r + 2 of T r+2

m , T r+2
n m �= n

4: δm← # affected T-boxes in round r + 4 propagated by Δm in round r + 2.
5: δn← # affected T-boxes in round r + 4 propagated by Δn in round r + 2.
6: if δm > 2 and δn = 2 then
7: Δv → SR(T r

j ); Δm→ SM (T r+2
m )

8: Denote T r+2
m as non-linear T-box

9: else if δm = 2 and δn > 2 then
10: Δv → SR(T r

j ); Δn→ SM (T r+2
n )

11: Denote T r+2
n as non-linear T-box

12: else if δm > 2 and δn > 2 then
13: Δv → SR\R(T r

j )

14: Denote both T r+2
m and T r+2

n as non-linear T-box
15: end if
16: end for

The combination of Algorithm 1 and Algorithm 2 results into the following
useful information:⎧
⎨

⎩

Sr
R

= ∪jSR(T r
j ): differences representing restricted bit flips

Sr+2
M = ∪jSM (T r+2

j ): differences representing S-box middle bit flips
T r+2

π(1) . . . T r+2
π(8): the 8 non-linear T-boxes (π unkown)

3.2 Finding Single Bit Flips

In Sect. 3.1, differences representing flips of the 2 middle bits (b4b5) of the S-
boxes of round r + 2 are found. Let T r+2

j be an arbitrary non-linear T-box in
round r + 2, and SM (T r+2

j ) its set of middle bit flips. We have SM (T r+2
j ) =

{Δm1, Δm2, Δm3} with Δmi : vr+2
j → vr+2

j ⊕Δmi the 3 generated differences.
One can verify that, except for S-box S8, each of the four output bits of the
S-box Sr+2

j are flipped at least once by going through one of the values vr+2
j ⊕

Δm1, v
r+2
j ⊕Δm2, v

r+2
j ⊕Δm3. Furthermore, as the middle bits are not bypassed

in the same T-box, no other output bits of the T-box are affected. Due to the
diffusion property of the DES permutation P, the 4 output bits of an S-box
affect a single input bit of 6 S-boxes in the next round, with two of them middle
input bits (See Coppersmith [5]). Based on the previously mentioned study, the
two differences representing bypass bits can be detected. Under the assumption
of ordered bypass bits, we have already built this set to compare with (Sr+3

R
).

The other propagated input differences to the T-boxes in round r + 3 represent
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single bit flips. Algorithm 3 describes this procedure, which constructs the set
SS(T r+3

i ) of differences representing single bit flips.
As mentioned, the described property does not hold for S8: for the input

11b4b501, with arbitrary b4 and b5, the rightmost output bit cannot be flipped
by flipping the input bits b4 and b5. Thus, with a probability of 1/16, we are not
able to find all single bit flips of round r + 3. However, it will become clear in
the next section that we do not need all information to successfully apply our
cryptanalysis.

Algorithm 3. Finding single bit flips

1: for all Δv ∈ SM (T r+2
π(j)) j = 1 . . . 8 (for non-linear T-boxes) do

2: Compute one round function
3: for all Δwi propagated difference to a non-linear T-box T r+3

i do
4: if Δwi /∈ SS(T r+3

i ) then
5: Δwi → SS(T r+3

i )
6: end if
7: end for
8: end for

3.3 Obtaining the Inputs to the S-Boxes

Let T r+3
j be an arbitrary non-linear T-box in round r + 3. Using the acquired

information from the steps above, we deploy a filter algorithm to identify the
S-box (Sπ−1(j)) in the T-box T r+3

j , and to find the value of its 6-bit input vector
(f r+3

j |2...7(vr
j )⊕ kr+3

j ).
We define the set P(T r+3

j ) = {(Sq, wl) | 1 ≤ q ≤ 8, wl ∈ GF (2)6} as the set of
all possible pairs of S-boxes and input vectors. Our strategy is to remove all the
invalid pairs from the set. We can do this by comparing the number of affected
T-boxes in round r +4 when a difference Δvi ∈ SS(T r+3

j )∪SM (T r+3
j ) is applied

to the input of T r+3
j , with the number of affected S-boxes in a non-white-box

DES simulation with a pair (Sq, wl) ∈ P(T r+3
j ).

We define δi as the number of non-linear T-boxes that are affected in round
r+4 when Δvi is applied to the input of T r+3

j . To verify a pair (Sq, wl), we take
part of a non-white-box DES implementation with S-box Sq and S-box input wl,
and simulate the behaviour of a flip of the i’th input bit to the S-box. Then, δ′i
is defined as the number of affected S-boxes in the next round of this simulation.
Define Δwi as the difference to the input of the internal S-box of the T-box to
which Δvi is applied (Δwi : wl → wl ⊕ f r+3

j |2...7(Δvi)).
If (Sq, wl) is a candidate solution, it should satisfy the following conditions:

– There can only be one Sq for each round.
– Δv7 = SM (T r+3

j )\SS(T r+3
j ) is the flip of both middle bits, represented as

Δw7 = 001100, for which δ′7 can be computed. δ′7 must be smaller or equal
to δ7.
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– {Δv3, Δv4} = SM (T r+3
j ) ∩ SS(T r+3

j ) represent the two single flips of the
input bits to the S-box, but we do not know in which order. Moreover they
only affect bits of Yr+3, and thus we must have {δ′3, δ′4} ≤ {δ3, δ4}.

– Similarly {δ′1, δ′2, δ′5, δ′6} ≤ {δ1, δ2, δ5, δ6}.
Any pair (Sq, wl) that does not fulfil these conditions is removed from the set
P(T r+3

j ). At the end, if only pairs with one type Sq remain, then this Sq is the
internal S-box of T r+3

j (π(q) = j). As soon as S-boxes are identified, we can also
make use of S-box relations between consecutive rounds. E.g., S1 in round r
does not affect S-box S1 and S7 in round r + 1. Moreover, if for example S3 is
identified in round r + 1, then S1 affects its second input bit, which allows us to
narrow down the conditions (δ2 = δ′2).

Because all 8 DES S-boxes are very different, and are highly non-linear, the
filtering process will reduce most P(T r+3

j ) sets to a singleton (Sq, wl), where
Sq = Sπ−1(j) is the internal S-box and wl = f r+3

j |2...7(vr+3
j ) the 6-bit input

vector to this S-box.

3.4 Key Recovery

Given that we have found a sufficient number of inputs to S-boxes, we start an
iterated recovery of key bits, initiated by guessing one single key bit, using the
following two observations:

– The expansion operation E maps some of the input bits to 2 different S-
boxes, prior to the key addition. From Sect. 3.3, we know the value of the
input bits to these S-boxes, after the round key addition. Hence, if we know
one of the corresponding two bits of the round key, we are able to compute
the other key bit.

– The value of one single bit can be followed through several rounds. Consider
an Rr−1 bit. In round r and r + 2, after the expansion and the round key
addition, this is the (known) input to an S-box. In round r + 1 it is XOR-ed
with an output bit b of an S-box after the permutation P operation. Because
P is known, the S-boxes in round r + 1 are identified and their input is
known, we can compute the value of b. Hence, if one bit of the round key bit
in round r or r + 2 is known, we can compute the other key bit.

Iterated use of these algorithms generates the DES key bits. When a new
round key bit is computed, we can pull this back through the DES key schedule.
This is possible, because the 48-bit round key is a fixed permutation of a subset
of the 56-bit DES key. New key bits in turn result into new round key bits, to
which the two described methods can be applied.

Depending on the initial key bit guess, two complementary keys k0 and k1

can be computed. Because of the complementation property DES exhibits, both
keys are a valid result. The complementation property of DES [12] is defined
as DESk =

⊕
1 ◦DESk⊕1 ◦

⊕
1 , where

⊕
1 represents the XOR with the all

one vector. Then G ◦ DESk ◦ F = G′ ◦ DESk⊕1 ◦ F ′ , with F ′ =
⊕

1 ◦F and
G′ = G◦⊕1. Hence if k is the original DES key, and F, G the external encodings
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used to shield the white-box DES implementation, then the complementary key
k ⊕ 1 is also a valid DES key with external encodings F ′, G′.

3.5 Recovery of the External Encodings

The main goal in cryptanalysis of white-box implementations is to find the em-
bedded secret key. However, to break specific white-boxed implementations or
decode ciphertext, recovery of the external encodings can be required.

These external encoding can be recovered as follows: for every input vEXTin

to the encoded implementation, we are able to find the inputs to the S-boxes.
For Feistel ciphers, given the input to two consecutive rounds and the secret
key, the plaintext can be computed easily. Hence we are able to compute the
input to the naked DES, i.e., vDESin = F (vEXTin). Moreover, we can also
compute the output of the naked DES, i.e., vDESout = DESk(vDESin). This is
the input to the external output encoding for which its output vEXTout is the
output of the white-box implementation. Hence for any given input to the white-
box implementation, we can build different input-output pairs of the external
encodings. This way, with a sufficient number of chosen inputs, the external
encodings can be computed. Here we assume that these encodings are not too
complex, that is, rather affine or simple non-linear mapping.

Chow et al. [4] proposed a specific class of external encodings, which are block
encoded affine mixing bijections. Suppose these block encodings are nibble en-
codings. Then, for each of the 24 nibble encodings, we run over all its possible
inputs (24), and compute the value of the 96-bit output vDESin. With the knowl-
edge of all these mappings, we are able to recover the external input encoding.
The external output encoding can be recovered similarly.

4 Implementation

We have implemented our cryptanalysis in C++, and conducted tests on a Pen-
tium M 2GHz. On average, about 6000 ≤ 213 obfuscated round functions of
the white-box DES implementation are needed to be computed to check the
difference propagations. This is less than our complexity study in Appendix B
indicates, due to some extra optimisations we have applied (e.g., introducing
requirements regarding round r + 1 in Property 1 substantially improves the ef-
ficiency of the algorithm). Moreover, our tests indicate that computations with
8 consecutive obfuscated round functions is sufficient for the attack to succeed.
There is no restriction on which window of 8 round functions to chose.

In the conducted tests on several white-box DES implementations, our crypt-
analysis algorithm extracted the DES key in all tests in under a second. On
average the cryptanalysis requires 0.64 seconds.

5 Conclusion

We have described how to extract the embedded secret key of both the naked as
encoded white-box DES implementations of Chow et al. [4]. This cryptanalysis
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also applies to the improved implementation as presented by Link and Neu-
mann [10], because the outputs of the T-boxes are not used, only their inputs.
The attack is a differential cryptanalysis on the obfuscated rounds, and is inde-
pendent of the definition of the external encodings, in contrast to the attack of
Goubin et al. [6].

The success of this cryptanalysis originates from properties which are specific
to the DES. The confusion property of the DES S-boxes, the diffusion property
of the DES permutation P and the design of the expansion operation are used
to extract the key. The analysis, while specific to DES, nevertheless points the
way to techniques to analyse other ciphers.
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A Appendix: Proofs

Property 1. If Δv represents a single bit flip of Rr−1, then in round r + 2, at
most 2 T-boxes are affected (i.e., its input changes).

Proof. When Δv represents a flip of a single bit of Rr−1, then in round r + 1
it represents a flip of single bit of Lr, as the reader can deduce from Fig. 1(b).
Because of the expansion and selection operation, this will result into 2 bits
flipped to round r + 2 (one of Xr+1 and one of Rr+1; or both Xr+1 flips). Thus
at most 2 T-boxes in round r + 2 are affected. ��
Property 2. If Δv represents flips of bits of Lr−1 or Yr, then in almost all
cases more than 2 T-boxes are affected in round r + 2. The exceptions (false
positives) can be detected by repeating this process up to α times with different
fixed inputs to the other T-boxes T r

l .

Proof. In round r+1, besides bypass bits, these differences represent flips to the
inputs of S-boxes. Therefore, the number of flips to the inputs of round r + 2
explodes, and strictly more than 2 T-boxes will be affected.

There are a few exceptions in which not more than 2 T-boxes are affected
(false positives). Observe an affected S-box in round r+1. (There will always be
at least one affected S-box). The input to this S-box changes in at least one and
at most 3 bits (one for Yr and two for Lr−1 bit flips). The effect on the output
bits of this S-box depends on its other input bits, which depend on the inputs
vr

l set at the initialisation phase. Hence the number of affected T-boxes in round
r + 2 will very likely change if we set other inputs to T r

l , witch l �= j. With a
very high probability, 2 extra checks are sufficient to detect these false positives,
if we change all the inputs to the other T-boxes (α = 2). ��
Property 3. If Δv represents a flip of single bits of Rr−1, there are exactly 2
propagated differences in round r + 2: Δm, Δn. One (say Δm, input difference
to T-box T r+2

m ) will affect strictly more than 2 T-boxes in round r + 4, the other
difference will affect at most 2 T-boxes in round r + 4. Moreover, T r+2

m will be
a non-linear T-box; Δm represents flips of one or both of the two middle bits of
the internal S-box; and Δn represents flips of respectively one or two Rr+1 bits.

Proof. Let Δv ∈ SR(T r
j ) represent a flip of single (or double) bits of Rr−1.

Then, in round r + 2, this will propagate to a flip of one (or both) of the two
middle input bits of an S-box Sm in T-box T r+2

m . Hence T r+2
m is a non-linear

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
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T-box. Denote Δm the propagated input difference to T r+2
m . Furthermore, this

flip will also be bypassed because of the selection operation (see Fig. 1(b)). If
this would be bypassed by T r+2

m as well, then this T-box has an entropy of 7, in
contradiction to the T-box design. Thus a second T-box T r+2

n is affected, with
input difference Δn. Therefor, Δv will affect exactly 2 T-boxes T r+2

m , T r+2
n with

input differences Δm, Δn.
Consider the following DES S-box design properties [5]:

Δin = 0wxyz0⇒ |Δout| ≥ 2 (1)
|Δin| = 1⇒ |Δout| ≥ 2 , (2)

with Δin the input difference to an S-box, Δout its resulting output difference,
and wxyz ∈ GF (2)4\{0}. Because of (1), Δm represents a flip of at least two
Yr+2 bits at the output of the S-box. Due to the DES permutation P diffusion
property and (2), Δm will affect more than 2 T-boxes in round r + 4. Δn
represents a flip of bits of Rr+1, and affects no more than two T-boxes in round
r + 4 (see Property 1). ��
Property 4. If Δv represents a flip of bits of Rr−1\Rr−1, there are exactly
2 propagated differences in round r + 2. Both affected T-boxes are non-linear
T-boxes, and each of their input differences will affect strictly more than two
T-boxes in round r + 4.

Proof. If Δv ∈ SR(T r
j ) represents a flip of bits of Rr−1\Rr−1, then for 2 S-

boxes in round r + 2, exactly one input bit will be affected, and thus exactly 2
non-linear T-boxes in round r + 2 are affected.

Because of S-box design property (2), each of these differences will represent
a flip of at least two Yr+2 bits. As a consequence of the DES permutation P
diffusion property, both these differences in round r + 2 will affect strictly more
than two T-boxes in round r + 4. ��

B Complexity

We define the complexity of the cryptanalysis as the number of round functions
of the white-box implementation that need to be computed. The first step de-
scribed, to retrieve flips of bits of Rr−1, has the largest complexity. Because
of the lack of any prior information on internal flips, all differences have to be
computed through several rounds in order to learn this bit flip information.

In Algorithm 1, for all 12 T-boxes, and all 28−1 possible differences, 2 rounds
need to be computed to observe the difference propagation. This corresponds
to a total of 12 · (28 − 1) · 2 = 6120 round function computations. For each
positive result, we perform at most 2 double checks as described in Property 2.
Algorithm 2 requires 6 round computations for each difference of SR (2 for Δv, 2
for Δl and 2 for Δm). Hence, 240 round functions computations are performed.

Consequently, we can retrieve all flips of bits of Rr−1 for one round in less than
213 round computations in total. As described in Property 2, from Δv ∈ Sr

R
, we
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can efficiently compute Δn ∈ Sr+2

R
. Because of the one-to-one relation between

Δv and Δn, this is sufficient to find all the single Sr+2

R
bit flips. Thus, when for

two consecutive rounds, SR is found, we can compute this set for all subsequent
rounds using Property 3 only. Hence, with about 214 round computations, we
can compute all flips of single bits of Rr−1 for all rounds.

The complexity of the other steps of the cryptanalysis is negligible. In Algo-
rithm 3, for each Δm ∈ Sr

M , one round function needs to be computed. Hence, for
each round, at most 24 round computations are needed (for 16 single bit flips and
at most 8 double bit flips). To compute the exact inputs to the S-boxes, a filtering
process needs to be applied to each non-linear T-box. In the worst case, we need
to compute the difference propagation for all 7 input differences. Thus at most
7 round computations for each of the 8 non-linear T-boxes. The simulation pro-
cess for each T-box needs to be performed at most 26 · 8 = 29(= |P(T r

j )|) times,
which is the equivalent effort of computing one white-box DES round function
(which consists of 552 ∼ 29 lookup table computations). The total complexity
to compute the inputs to all S-boxes of one round is thus 8 · (7 + 1) = 26.

The space complexity is negligible too. Most space is used in Sect. 3.3 to
store the set P(T r

j ) of candidate pairs (Si, wl). We can also choose to store the
simulations of these pairs. They can be pre-computed because the simulation
does not require any information on the implementation or the key.
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Abstract. Obfuscation is a method consisting in hiding information of
some parts of a computer program. According to the Kerckhoffs princi-
ple, a cryptographical algorithm should be kept public while the whole
security should rely on the secrecy of the key. In some contexts, source
codes are publicly available, while the key should be kept secret; this is
the challenge of code obfuscation. This paper deals with the cryptanal-
ysis of such methods of obfuscation applied to the DES. Such methods,
called the “naked-DES” and “nonstandard-DES”, were proposed by Chow
et al. [5] in 2002. Some methods for the cryptanalysis of the “naked-DES”
were proposed by Chow et al. [5], Jacob et al. [6], and Link and Neu-
man [7]. In their paper, Link and Neuman [7] proposed another method
for the obfuscation of the DES.

In this paper, we propose a general method that applies to all schemes.
Moreover, we provide a theoretical analysis. We implemented our method
with a C code and applied it successfully to thousands of obfuscated
implementations of DES (both “naked” and “non-standard” DES). In
each case, we recovered enough information to be able to invert the
function.

Keywords: Obfuscation, cryptanalysis, DES, symmetric cryptography,
block cipher.

1 Introduction

In recent years, the possibility of obfuscating programs has been investigated.
From a theoretical point of view, Barak et al. [1] have proven impossibility
results for the task of obfuscating computer programs. In particular, it turns
out that there exists a family of programs such that: on the one hand each
program is non learnable (i.e. its execution does not give any information about
its original source code), but on the other hand every obfuscator (i.e. the program
producing an obfuscation) fails completely when given any program of this family
as input. However it has not been proved that specific instances, particularly
cryptographic primitives, are impossible to obfuscate.
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In 2002, Chow et al. [4,5] suggested two different obfuscations, one for the
AES, the other for the DES. The AES obfuscation was cryptanalysed by Billet
et al. [2,3] in 2004. Chow et al. [5] also mounted an attack on their first DES
obfuscation version (called “naked-DES”). Jacob et al. [6] and Link and Neuman
[7], proposed two other attacks on the “naked-DES”. Here, breaking the “naked-
DES” means recovering the secret key.

A second version of DES obfuscation, called “nonstandard-DES”, was given
by Chow et al. [5]. This “nonstandard-DES” is obtained by obfuscating the usual
DES composed with initial and final secret permutations. In this context, break-
ing such a “nonstandard-DES” implementation means recovering the secret key
and the secret initial and final permutations.

Moreover, many industrial actors have developed obfuscated implementations
of cryptographic algorithms, in particular for DRM, Pay-TV, and intellectual
property protection. (e.g. cloakware [12], retroguard [13], Yguard [14]).

This paper is structured as follows : In Section 2, we give an overview of the
obfuscation methods given by Chow et al. and by Link and Neumann. Section 3
is devoted to our attack on the “naked-DES”. In Section 4, we adapt our attack
to the “non standard” DES. Section 5 is devoted to our implementation of this
attack. In Section 6, we compare our attack to the one of Wyseur et al. [11].
Finally, we conclude in Section 7. All proofs are available in the appendices.

2 DES Obfuscation Methods

Chow et al. [5] proposed two types of DES obfuscation. The first one, called
“naked-DES”, produces an usual DES. The second one, called the “nonstandard-
DES”, is a slight modification of the standard DES algorithm. This last version
is the one they recommend.

Let us describe the “naked-DES” (see Figure 7). The standard DES is imple-
mented by means of many functions. The first one is an affine function M1, which
is the composition of the initial permutation, the expansion (slightly modified in
order to duplicate all the 32 right bits), and a bit-permutation φ0 : IF96

2 → IF96
2 .

The role of φ0 is to send 48 bits to the corresponding S-box entries, the 48 re-
maining bits being sent randomly to the T-box entries (see Figure 8). Eight of
these T-boxes are derived from the eight S-boxes of the DES (see Figure 1), and
the four remaining T-boxes are identities (or more generally bit permutations,
see Figure 8 (T12)). An affine function M2,1 follows the T-boxes. This affine func-
tion is the composition of the P and Xor operation of the standard DES, and a
bit-permutation φ1 (see Figure 7). Each of the 16 rounds is the composition of
the T-boxes and an affine function M2,i. The last round is followed by an affine
function M3 which is the composition of a selection function, and the final per-
mutation. This function takes for arguments the outputs of the affine function
M2,16 of the last round and returns the ciphertext (see Figure 7).

We will denote by Ai, one of these components (Ti, M1, M2,i or M3). The
obfuscator program computes numbers of random nonlinear permutations on
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Fig. 1. T-Box

IFs
2, bk,l (s = 4 or 8). These permutations are referred by Chow et al. [5] as

io-block encoding bijections. Twenty-four or twelve of these io-block encoding
bijections are concatenated in order to obtain nonlinear permutations on IF96

2 ,
Pi,j . Each component Ai is obfuscated between permutations Pi,1 and Pi,2. The
resulting functions Pi,1 ◦ Ai ◦ Pi,2 are stored in arrays in order to be used by
the obfuscated program. When considering consecutive components, the final
permutation of the first component, and the initial permutation of the second
component, cancelled out (see Figure 7) i.e. :

(Pi,1 ◦Ai ◦ Pi,2) ◦ (Pj,1 ◦Aj ◦ Pj,2) = Pi,1 ◦ (Ai ◦Aj) ◦ Pj,2 .

This “naked-DES” was cryptanalysed by the authors themselves [5].

In order to repair the scheme, they proposed the “nonstandard-DES”. It consists
in adding two affine bijections M0 and M4 before and after the “naked-DES”,
respectively (see Figure 7). It is not specified by Chow et al. [5] whether M0

and M4 are block encoded (i.e. respectively preceded and followed by nonlinear
random permutations). In this paper, we consider that M0 and M4 are not block
encoded.

Further improvement on the attack of the “naked-DES” were given by Link
and Neumann [7]. They suggested another solution which consists in merging the
T-boxes and the affine function M2,i of each round. This way, we do not have
access to the T-boxes outputs. Moreover, the M2,i functions of the different
rounds are block encoded in another way.

In this paper, we describe an attack that defeats both “nonstandard-DES”
and the Link and Neumann’s schemes.

3 Attack on the “Naked-DES”

As mentioned before, the “naked-DES” proposed by Chow et al. [5] was already
cryptanalysed in the papers [5,6,7]. In this section, we show how to cryptanalyse
the improved version of the “naked-DES” proposed by Link and Neumann [7].
Note that our method also works for the “naked-DES” proposed by Chow et al.
[5]. In what follows, we will denote by “regular DES”, the one described in the
standard [10] (without PC1), and we will use the same notations.

Our attack is divided into two phases and is based on a truncated differential
attack. Roughly speaking, the first phase consists in generating pairs of messages
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Fig. 2. One round of DES, and attack principle

(X ,X ′) such that the right part of the images, through IP and the first round of
a regular DES, are equal (for a given key K) (see Figure 2.b). The second phase
consists in evaluating those pairs of messages (X, X ′) on the “naked-DES” and
in checking a condition that we specify below. The pairs that satisfy the test
provide a key candidate.

Let us go into the details. Remember that f(., K) denotes the function of the
regular DES, we will also denote it by fK(.) (see Figure 2.a). Let X be an initial
message, (L0, R0) denotes its image through IP , and (L1, R1) is the image of
(L0, R0) through the first round, i.e. (L1, R1) = (R0, L0 ⊕ f(R0, K)). Consider
a function f , vectors X and Δ, the derivative f(X)⊕ f(X ⊕Δ) will be denoted
by DΔf(X). Let us first motivate our algorithm. Let K be a fixed unknown key.
Assume we want to find the first round 6-bit subkey corresponding to Si (for the
sake of clarity, we will restrain ourselves to i = 1). We generate candidate keys
such that only the 6 key bits of S1 of the first round are modified. For each of
these keys, we compute pairs of messages (X ,X ′) such that,

1. Δ = R0 ⊕R′0 is zero, except for the second and third bits.
2. L′0 = L0 ⊕DΔfK(R0)

Observe that the second and third bits of R0 only affect the output of S1 (see
Figure 2.a) . Therefore, f(R0, K) and f(R′0, K) are identical except for the four
bits corresponding to the output of S1.

Under these conditions, in the next round we have R1 = R′1 and L′1(= R′0)
is identical to L1(= R0) except for at most two bits. Consider now these two
messages X and X ′ applied to the “naked-DES” with the correct key candidate.
We observe that these bits (non-zero bits of L′1 ⊕ L1) influence at most two
io-block encoding bijections bi,3 and bj,3 (see Figure 8). If the key candidate is
wrong, we will have R1 �= R′1. Therefore many bits will change at the output
of M2,1, and we will be able to distinguish this situation from the correct key
guess.

Here is an overview of the attack:

– Randomly choose a message X .
– Compute (L0, R0) = IP (X) with IP public.
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– Choose Δ such that only the second and third bits are different from 0.
– For any possible candidate value of 6-bit subkey:
• Compute L′0 = L0 ⊕DΔfK(R0).
• Compute X ′ = IP−1(L′0, R0 ⊕Δ).
• Apply X and X ′ to the obfuscated DES and save the values Y and Y ′

at the end of the first round.
• Compare Y and Y ′ and compute in how many io-block encoding bijec-

tions they differ.
• Reject the candidate if this number is strictly greater than 2. Otherwise,

the candidate is probably correct.

This way, we can recover the 48 key bits of the first round of the DES. The 8
remaining bits are found by exhaustive search.

Remark 1. This algorithm can produce more than one candidate for the 6-bit
subkey. It will provide wrong 6-bit subkeys in two situations.

1. Due to the balance property of the S-boxes and the fact they map six bits
to four bits, four different inputs produce the same output. Therefore for
each S-box, three wrong 6-bit subkeys will produce the same output as the
correct key. To avoid this problem, we can launch this algorithm with another
random initial message, or simply another Δ. In fact, we only have to change
the values of the bits of R0 and Δ corresponding to the input of S1 (the bits
32,1,. . . ,5). Actually, we can choose different pairs (X, X ′) such that the
intersection of the key candidates associated to each of them is the correct
key.

2. The second one is due to a propagation phenomena. Suppose we have a
wrong 6-bit subkey producing a wrong S1 output. It means that there are
more than three bits of difference between (L1, R1) and (L′1, R

′
1). These

differences could be mapped to the same io-block encoding bijection, leading
to the flipping of only two io-block encoding bijections at the output of M2,1.
In this case, we launch this algorithm with several values for R0. It leads to
several lists of key candidates and the correct key belongs to the intersection.
This way, wrong keys will be discarded.

4 Attack on the “Nonstandard-DES”

This section is dedicated to an attack on the “nonstandard-DES”. Remind that
the “nonstandard-DES” is a “naked-DES” where the affine functions M1 and M0

are replaced by M1◦M0 and M4◦M3 respectively (where M0 and M4 are mixing
bijections, see Chow et al. [5]). As mentioned before, we assume that the inputs
of M1 ◦M0 (respectively the outputs of M4 ◦M3) are not io-block encoded. Note
that all the other functions are io-block encoded using bijections on IF4

2 (the
same principle applies for the obfuscation proposed by Link and Neuman [7]
where the bijections are defined on IF8

2). Moreover, we assume that the T-Boxes
follow the same ordering in the different rounds. In what follows, we will not
consider IP (inside M1) w.l.o.g, for the sake of clarity.
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In what follows, the term preimage will implicitly refer to the preimage with
respect to the linear bijection M0. Moreover, we say that a bit of a vector is
touching an io-block encoding bijection if this bijection depends on this bit.
Similarly, we will say that a vector touches an S-Box if non-zero bits touch it.

Our attack on the “nonstandard-DES” is based on the one on the “naked-DES”.
Our approach is based on a truncated differential attack. It consists in computing
the images of a random vector X0 at different levels in the obfuscated DES. We
compare these values (called initial-entries) to the corresponding images of X0⊕
Δ, where Δ satisfies some conditions depending on the context. This approach
allows providing information about the key and the matrix M−1

0 , gradually. The
full key and the matrix M−1

0 will be known at the end of the process. The way
we store information about M−1

0 consists in considering lists of candidates for
preimages of unspecified canonical vectors. Lists of candidates containing only
one vector are called distinguished lists. This vector is then a column of M−1

0 .
Note that these lists are actually vector spaces and can be shared by several
canonical vectors. In practice, a list E will be shared by dimE canonical vectors
(that are not necessary specified). Our algorithm works sequentially and consists
in specifying these canonical vectors and shortening the lists. Our method can
therefore be understood as a “filtering process”. The different filters are described
below.

Section 4.1 describes a preliminary step almost independent of the structure of
the block cipher. It consists in finding vector spaces associated to a particular io-
block encoding bijection at the input of the first round. This step allows getting
global information about M−1

0 .
Section 4.2 describes a set of filters intending to refine information about

M−1
0 . These steps are highly related to the studied block cipher. The first filter,

described in Section 4.2, allows distinguishing lists that are associated to canon-
ical vectors belonging either to right bits or left bits of the input of the first
round (L0 or R0). The second filter, described in Section 4.2, extracts all the
lists (marked as “right” in the previous filter) touching a single S-box (we will see
that these lists play an important role). The third filter, described in Section 4.2,
gathers the lists (marked as “left” in the previous filter) in sets associated to the
output of S-boxes. Section 4.2 links T-Boxes (obfuscation of the keyed S-boxes)
to S-Boxes. This information allows the last filter, presented in Section 4.2, to
precisely specify the 1-to-1 link between the lists (marked as “left”) and the (left)
canonical vectors.

Section 4.3 explains how to extract the key and how to recover the full invert-
ible matrices M−1

0 and M4.

4.1 Block Level Analysis of M1 ◦ M0

Recovering of the Bk’s. Denote by Kk the space ({0}4k−4× IF4
2×{0}96−4k),

and by Kk, the space (IF4k−4
2 × {0}4 × IF96−4k

2 ). In what follows, the vector
space spanned by a set of vectors S will be denoted 〈S〉. Also, ei denotes the
ith canonical vector (the position of the “one” is computed from the left and
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start from one) of the vector space IF64
2 . The sets {ei ∈ IF64

2 | i = 1 . . . 32} and
{ei ∈ IF64

2 | i = 33 . . . 64} will be denoted by SL and SR, respectively.
Ideally, we are looking for 24 vector spaces such that their vectors influence

only one io-block encoding bijection at the output of M1 ◦ M0. This would
allow modifying only the input of one particular io-block encoding bijection.
Unfortunately, due to the duplication of the bits in M1 (because of the expansion
E) this goal is impossible to reach. We will therefore try to approximate this
situation and deal with the drawbacks afterwards. First we will have to give
some notations, definitions and properties.

Denote by F : IF64
2 → IF96

2 the obfuscation of M1 ◦M0 (see Figure 7).
Let X be a vector in IF96

2 . Denote by πk the projection πk : (IF4
2)24 → IF4

2 :
X = (x1, . . . , x24) 	→ xk. Let bk be the kth io-block encoding bijection at the
output of M1 ◦M0. The function F is written as

F (X) = (b1 ◦π1 ◦M1 ◦M0(X), b2 ◦π2 ◦M1 ◦M0(X), . . . , b24 ◦π24 ◦M1 ◦M0(X)) .

Definition 1. Let k be an integer, k ∈ [1, 24]. We denote by Bk the vector space
{X ∈ IF64

2 | πk ◦M1(X) = 0}. In other words, it is the subspace of vector X
such that for any non-zero component ei of X, M1(ei) does not touch bk, i.e.
Bk = 〈ej | πk ◦M1(ej) = 0〉.
Definition 2. Let k be an integer, k ∈ [1, 24]. We denote by Ek the subspace of
vector X such that for any non-zero component ei of X, M1(ei) touches bk, i.e.
Ek = 〈ej | πk ◦M1(ej) �= 0〉.

Fig. 3. Example

Remark 2. Note that IF64
2 is the direct sum of Bk and Ek for any k, i.e. IF64

2 =
Bk

⊕ Ek.

We will denote by Bk the subspace M−1
0 (Bk), and by Ek the subspace M−1

0 (Ek).

Proposition 1. For any k integer, k ∈ [1, 24], Bk = {Δ ∈ IF64
2 | DΔF (IF64

2 ) ⊂
Kk}, the probability that Δ belongs to Bk, when Δ is randomly chosen, is greater
or equal to 1

24 = 1
16 , and 60 ≤ dim(Bk) < 64.

Combining Definition 2 and Property 1, the vector space Ek can be described as
the set of vectors Δ such that for any vector X0 ∈ IF64

2 , M0(X0)⊕M0(X0 ⊕Δ)
has in total at most four non-zero components ei, all of them touching the kth
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io-block encoding bijection through M1. Due to Property 1, it is easier to recover
a basis for Bk’s, than for Ek’s. That is why we will first recover all the Bk’s.
Using Property 1, we only have to compute DΔF (X0) for random Δ ∈ IF64

2 and
determine to which space Kk it belongs. Using Bk’s, we will recover Ek’s, or at
least, 24 vector spaces Êk containing Ek with minimal dimension.

Recovering of the Êk’s. Let us now explain how to recover Êk. First, let us
remark that for any X ∈ IF64

2 and for any Δ ∈ IF64
2 , we have DΔF (X) ∈ Kk if

and only if DΔπk ◦M1 ◦M0(X) ∈ Kk. Let us introduce the following lemma.

Lemma 1. Let k be an integer belonging to [1, 24]. If Ej ∩ Ek = {0} for any
integer j distinct from k belonging to [1, 24], then

Ek =
⋂

j �=k

Bj .

Since M0 is a bijection, this lemma means that if Ej ∩ Ek = {0} for any integer
j ∈ [1, 24] different from k, then Ek =

⋂

j �=k

Bj . Nevertheless, due to the bit-

duplication, there exist indices k and j such that Ej ∩ Ek �= {0} (and then
Ej ∩ Ek �= {0}). Denote by Jk the set {j | Ej ∩ Ek = {0}}, by Êk the subspace
⋂

j∈Jk

Bj , and by Êk the subspace
⋂

j∈Jk

Bj where k is an integer belonging to [1, 24].

Proposition 2. For any integer k ∈ [1, 24], Ek ⊆ Êk.
Let us introduce a property that will allow us to give another characterization
of Jk.

Proposition 3. For any integer i ∈ [1, 24] and for any integer j ∈ [1, 24]

dim(Ei ∩ Ej) = 64 + dim(Bi ∩Bj)− dim(Bj)− dim(Bi) .

A straightforward application of this property to the definition of Jk leads to
Jk = {j ∈ [1, 24] | 64 = dim(Bj) + dim(Bk) − dim(Bk ∩ Bj)}. This characteri-
zation will be useful in order to compute Êk. If dim(Êk) + dim(Bk) > 64 then
Ek � Êk, and we have found a vector space containing strictly the one we search.
Note that when dim(Êk) + dim(Bk) = 64, Ek = Êk. This case is particularly
interesting because it reduces the complexity of the full cryptanalysis.

4.2 Bit Level Analysis of M−1
0

In the previous section, we were looking for differences Δ associated to a specific
io-block encoding bijection. It allowed us to get some information about M−1

0 . In
this section, we refine our search and this will allow us to get enough information
about M−1

0 in order to apply our method on the “naked-DES” to “nonstandard-
DES”. Our algorithm works sequentially and consists in a “filtering process”. The
different filters are described below.
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Search for Candidates for Preimages of Elements Belonging to the
Sets SL and SR. Consider Δ be an element of IF64

2 such that M0(Δ) = ei

and ei ∈ SL. The only non-zero bit of M1 ◦M0(Δ) touches only one io-block
encoding bijection (recall that we do not consider IP ). Therefore, Δ belongs to
a single Êk. Assume now that Δ ∈ IF64

2 such that M0(Δ) = ei and ei ∈ SR

then M1 ◦M0(Δ) has exactly two non-zero bits that may touch the same or
two distinct io-block encoding bijections or equivalently Δ belongs to one or two
spaces Êk. In what follows, we will call double an element Δ ∈ IF64

2 such that
M0(Δ) ∈ SR and the two non-zero bits of M1 ◦M0(Δ) touch the same io-block
encoding bijection. For example, on Figure 8, the bit R2 could be a double, since
its two instances are in the input of T1. By considering intersections between the
spaces Êk, taken pairwise, we can distinguish preimages of elements of SR from
doubles or preimages of elements of SL.

Note that the intersections between spaces Êk taken pairwise provide more
information. Indeed, Êi ∩ Êj contains preimages of unknown canonical vectors.
In particular, if dim(Êi ∩ Êj) = 1 then Êi ∩ Êj = 〈M−1

0 (ek)〉 for some k. In
this case, we already know the preimage of an unknown canonical vector. When
dim(Êi ∩ Êj) > 1 we can still take advantage of this fact even if it requires some
extra searches.

Recovering Middle Bits. In order to apply our attack presented in Section 3,
we need to exactly know the preimage of canonical vectors touching only a single
S-Box of the first round (e.g. Right bits 2,3,6,7,10, . . . ). In what follows, we will
refer to such a canonical vector as a middle bit. If a middle bit is not a double, then
its two copies touch two different io-block encoding bijections. The first copy is in
input of an S-box, leading to at least two bits of difference at the end of the first
round of a regular DES, and 4 bits in our case, due to the expansion. The second
copy is a by-passed bit (see Figure 1), leading to only one bit of difference at the
end of the first round. Consider the bold path in Figure 8 starting from R3 bit, in
order to have a global view. Let us explain how we use this property.

Recall that X0 is the initial-vector defined in Section 4. For each difference Δ
belonging to the lists marked as input of the studied T-box, we apply X0 ⊕ Δ
to the obfuscated DES by making an injection fault. This means that we set the
input of this T-box to the initial-entry while we keep the input of the other T-
Boxes (see Figure 4). We evaluate the number of io-block encoding bijections at

Fig. 4. Injection fault
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the output of the first round that differs from the corresponding initial-entries.
If only one io-block encoding bijection (at the output of the first round) differs
from the corresponding initial-entry, we deduce that Δ could be the preimage of
a middle bit. Therefore, a list containing preimages of several canonical vectors
can be divided into two shorter lists; one list containing preimages of middle bits
while the other contains preimages of non-middle bits.

Remark 3. If a T-box is touched by more than three middle bits or left bits, we
deduce that this T-box does not contain any S-box. Note also that doubles can
only be preimages of middle bits. Finally, a T-box touched by a double contains
necessarily an S-box.

Recovering Left Bits. In order to apply our attack presented in Section
3, we need to know which group of four canonical vectors are xored with the
output of each S-box of the first round. First, we determine the io-block en-
coding bijections that are touched by the outputs of the studied S-box and
we denote by BS this set of bijections. In Figure 8, we can see that BS =
{b1,3, b3,3, b8,3, b12,3, b15,3, b20,3, b24,3} for the S-box S1. The elements bi,3 of BS
are characterised by DΔmbi,3◦πi◦M2,1◦T ◦M1◦M0(X0) �= 0, for all Δm belonging
to a list marked as a middle bit of the studied S-box. Then, we store in an extra
list L each Δ marked as left bits touching exactly two bijections of BS. This list
contains all the preimages associated to canonical vectors that are potentially
xored with the output of the S-box. Finally, we find Δl ∈ 〈L〉 such that for any
bijection bi,3 ∈ BS we have DΔm⊕Δl

bi,3 ◦πi ◦M2,1 ◦T ◦M1 ◦M0(X0) = 0, where
Δm belongs to a list marked as a middle bit of the studied S-box. This process
is repeated with different Δm or X0, until we find four linearly independent
Δl or equivalently the vector space spanned by the preimages of the searched
canonical vectors. We then compute the intersection between this space and all
the lists. It allows us to split some of them in shorter lists (the intersection and
the complementary space of the intersection). It may lead to lists containing a
single vector (distinguished list).

Chaining. In this section, we will try to determine precisely the correspondence
between T-boxes and S-boxes. Due to the remark in Section 4.2, we know which
are the T-boxes containing an S-box. The probability that a selected T-box,
denoted by T1, contains S1 is 1/8. We determine the two T-Boxes that are
touched by a canonical vector associated to a list marked as “right bit”, “non-
middle bit” and associated to T1. Selecting one of these T-Boxes randomly, the

Fig. 5. Chaining
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probability that it contains S2 is 1/2. Out of the set of unselected T-Boxes, we
select the one that is touched by a canonical vector associated to a list marked as
“right bit”, “non-middle bit” and associated to the previous selected T-Box. We
continue the process until all T-Boxes have been selected (see Figure 5). Note
that the probability to determine the right correspondence is 1/8× 1/2 = 1/16.

Bit Positions. At this stage, we have recovered between others, 32 preimages
corresponding to unspecified left canonical vectors. In order to determine the
correspondence, we use the following observation on the DES:

Out of the four left bits that are xored with the output of a specified S-Box,
exactly two become (in the second round) middle bits.

Now, we just have to apply each of the preimages to the obfuscated DES and
check whether the image of this vector in front of the second round is a middle
bit (cf. 4.2). Assuming that the T-Boxes follow the same ordering in the different
rounds, preimages corresponding to a middle bit (resp. non-middle bit) can be
distinguished by observing the indices of the touched T-Boxes.
For example, for the first S-box, among the preimages of the four identified left
canonical vectors,

– one of such vectors is the preimage of e23 (resp. e31) if it is the preimage of
a middle bit of S6 (resp. S8) in the second round.

– one of such vectors is the preimage of e9 (resp. e17) if it is not the preimage
of a middle bit and it is in the input of S2 and S3 (resp. S4 and S5) of the
second round.

4.3 The Attack

In Section 4.2, we have shown how to recover all the preimages of the left canon-
ical vectors. In other words, we have recovered half of M−1

0 (columns and their
positions). Also, some of the lists marked as middle bits contain only one vector
but their corresponding canonical vector is however unknown. Therefore, some
columns of M−1

0 are known up to their positions. Finally, the remaining lists
marked as middle bits contain preimages of some canonical vectors ei1 , . . . , ein

(their number is the dimension of the vector space spanned by the list). In this
case, we select linearly independent vectors in the list and we associate each
of them to one of the canonical vector eij . Therefore, we are in the context of
the attack of the “naked-DES” up to some adaptations. In particular, we have to
choose X0 belonging to the vector space spanned by the known columns of M−1

0 .
The evaluation of the first round on X0⊕Δ may lead to some difficulties. Indeed,
we have to choose Δ belonging to the preimage of middle bits space which is
not necessarily included in the vector space spanned by the known columns of
M−1

0 . It turns out that we have to try all the candidates for this part of the
matrix M−1

0 . For each of these candidates, we mount an attack like we did on
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the “naked-DES”, which provides 48-bit key candidates. Note that wrong keys
may be recovered. More importantly, here may be no key for this candidate for
this part of the matrix M−1

0 . In other words, it means that we have to discard
this candidate.

In order to determine the remaining part of M−1
0 (columns associated to non-

middle bits), we apply a similar principle that we used for the “naked-DES”.
Indeed, we know the key and we know that for the “naked-DES” for any initial-
message X0 there always exists a difference Δ with non-zero right component
such that the right part of the differential (evaluated in X0) of the first round is
zero. It means that in the context of the “nonstandard-DES”, wrong candidates
for M−1

0 can be discarded. Denote by K the space spanned by the known columns
of the candidate for M−1

0 and by U the unknown columns of the candidate for
M−1

0 . We have K ⊕ U = IF64
2 . The candidate for M−1

0 can be discarded if there
exists X0 ∈ K such that there does not exist Δ with a non zero-component in
U such that the right part of the differential (evaluated in X0) is zero.

At this stage, we have a 48-bit key candidate and a candidate for M−1
0 . We

make an exhaustive search in order to determine the 8 remaining bits of the key.
For each of them we try to solve a linear system in order to find the matrix M4.
If there is no solution for M4 we deduce that the 8-bit key candidate is wrong.
If all the 8-bit key candidates are wrong, we discard this particular M−1

0 . Note
that this method also works if M4 has io-block encoding bijections at its output.

Attack on Link and Neumann obfuscation: Our methods only use the outputs
of the first and second round. In particular, we never use the outputs of the T-
boxes. Therefore, our two attacks (“naked-DES”, and “nonstandard-DES”) can be
applied on the Link and Neumann [7] obfuscation method. The only difference
is that we will deal with larger lists.

5 Results

This attack was implemented with a C code. At each stage of the attack, the
number of candidates decreases both for the key and for M−1

0 . Finally, it will
lead to a unique 48-bit key candidate, a unique M−1

0 candidate, and a unique
M4 candidate. We have tested our attack on thousands of randomly generated
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Fig. 6. Repartition of the attacks durations
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obfuscated implementations of DES (both “naked” and “nonstandard” DES).
Figure 6 shows the necessary time to complete the attack. We can observe that
95% of the attacks require less than 50 seconds, and 75% less than 17 seconds.
The mean time is about 17 seconds. However, the attacks were executed on a
standard PC. The code was not optimized and the performance can be further
improved.

6 Comparison to Wyseur et al.’s Work

In this section, we try to clarify the differences between our paper and the one
of Wyseur et al. [11]. The main advantage of their method is that they are able
to recover the key for the “nonstandard-DES” even when the transformations
M0 and M4 are nonlinear. They also briefly explain how to recover these trans-
formations when they are linear, provided the key is known. Our method also
allows recovering linear transformations in a short amount of time. The nonlinear
case is still an open problem. Finally, Wyseur et al. [11] consider an obfuscation
where the φi’s have a restricted shape. While our model is unrestricted, they
consider only φi’s where all middle-bits touch only the four trivial T-boxes. It is
not obvious whether their methodology can be adapted to the general case.

7 Conclusion

In this paper, we have given new techniques of cryptanalysis for the current
obfuscation methods of DES. These techniques rely on a theoretical analysis
and have also been implemented as a C program. We have implemented our
method with a C code and have applied it successfully to more than a thousand
obfuscated implementations of DES (both “naked” and “nonstandard” DES). All
the studied instances have lead to a unique candidate for the DES key and for the
M0 and M4 secret linear transformations. The key and the two linear transforms
have been obtained within 17 seconds in average.

Acknowledgements. The authors would like to thank Sylvie Baudine for proof-
reading the text.
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Proof of Property 1: Let E be the set {Δ ∈ IF64
2 | DΔF (IF64

2 ) ⊂ Kk}.
– Let Δ be an element belonging to Bk. Let X be an element belonging to

IF64
2 .

DΔF (X) = (DΔ(b1 ◦ π1 ◦M1 ◦M0(X)), . . . , DΔ(b24 ◦ π24 ◦M1 ◦M0(X)))

According to the definitions, if Δ ∈ Bk then M0(Δ) ∈ Bk or equivalently
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This means that DΔF (X) belongs to Kk or equivalently Δ belongs to E.
We conclude that Bk ⊂ E.

– Let Δ be any element of E. According to the definition of E, we have in
particular DΔ(0) ∈ Kk. This means that

bk(0)⊕ bk ◦ πk ◦M1 ◦M0(Δ) = 0 ,

or equivalently
bk(0) = bk ◦ πk ◦M1 ◦M0(Δ) .
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We deduce that πk ◦M1 ◦M0(Δ) = 0 because bk is a bijection. According to
the definitions, it means that M0(Δ) ∈ Bk or equivalently Δ belongs to Bk.
Therefore E ⊂ Bk. We conclude that E = Bk.

– Note that in fact Bk is the kernel of πk ◦M1 ◦M0. Since rank(πk ◦M1 ◦M0)
is less or equal to 4, and greater or equal to 1, we have simultaneously
60 ≤ dim(Bk) ≤ 63 and the probability that Δ belongs to Bk when Δ is
randomly chosen, is equal to dim(Bk)

264 . The results follows. ��

Proof of Lemma 1: First recall that Bk = 〈ej | πk ◦M1(ej) = 0〉 and Ek =
〈ej | πk ◦M1(ej) �= 0〉. Let j and k be two distinct integers, then the following
conditions are equivalent.

– Ej ∩ Ek = {0}.
– πk ◦M1(ei) = 0 or πj ◦M1(ei) = 0 for any integer i ∈ [1, 64].
– πk ◦M1(X) = 0 or πj ◦M1(X) = 0 for any vector X ∈ IF64

2 .

We conclude that if X ∈ Ej and Ej∩Ek = {0} then πk◦M1(X) = 0 or equivalently
X ∈ Bk.
Consider X �= 0 belonging to

⋂

j �=k

Bj . We have that πj ◦ M1(X) = 0 for any

j �= k. Note that M1 is injective. Therefore M1(X) �= 0 and πk ◦M1(X) �= 0. We
conclude that all the bits of M1(X) that touch bj (j �= k) are zeros. Therefore,
for any non-zero component ei of X , M1(ei) touches bk or equivalently X ∈ Ek,
and

⋂

j �=k

Bj ⊂ Ek.

Let us use an argument by contraposition. Consider ei /∈ ⋂

j �=k

Bj. Then, there

exists j �= k, such that ei /∈ Bj , i.e. πj ◦M1(ei) �= 0 or equivalently ei ∈ Ej .
Therefore, according to the previous three equivalent conditions, ei /∈ Ek. We
deduce that for any ei ∈ Ek we have ei ∈

⋂

j �=k

Bj. It means that Ek = 〈ei | ei ∈
Ek〉 ⊂

⋂

j �=k

Bj. We conclude Ek =
⋂

j �=k

Bj. �

Proof of Property 2: Let ei be an element of Ek and j be an element of Jk.
We have πk ◦M1(ei) �= 0 and Ej ∩Ek = {0}. It implies that πj ◦M1(ei) = 0, and
ei ∈ Bj. Therefore, ei ∈

⋂

j∈Jk

Bj , and 〈ei | ei ∈ Ek〉 ⊂ Êk. ��

Proof of Property 3: We will first prove that (Bi ∩ Bj)⊕ 〈Ei ∪ Ej〉 = IF64
2 .

Consider a canonical vector ek /∈ Bi∩Bj . This is equivalent to πi ◦M1(ek) �= 0 or
πj ◦M1(ek) �= 0. In other words ek ∈ Ei or ek ∈ Ej, or equivalently ek ∈ 〈Ei∪Ej〉.
This means that for any canonical vectors ek of IF64

2 , we have either ek belongs
to Bi ∩ Bj or ek belongs to 〈Ei ∪ Ej〉.

Assume that there exists a canonical vector ek ∈ (Bi∩Bj)∩〈Ei∪Ej〉. We have
πi ◦M1(ek) = πj ◦M1(ek) = 0, and either πi ◦M1(ek) �= 0 or πj ◦M1(ek) �= 0. It
leads to a contradiction. Hence (Bi∩Bj)∩〈Ei∪Ej〉 contains no canonical vectors.
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Assume now that there exists an element Δ ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 having
a non-zero component ek. The vector Δ belongs to (Bi ∩ Bj), hence ek belongs
to (Bi ∩ Bj). Moreover Δ belongs to 〈Ei ∪ Ej〉, hence ek belongs to 〈Ei ∪ Ej〉.
Therefore ek belongs to (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 which is impossible. We conclude
that (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 = {0}. Therefore (Bi ∩ Bj)⊕ 〈Ei ∪ Ej〉 = IF64

2 .
We deduce that

64 = dim(〈Ei ∪ Ej〉) + dim(Bi ∩ Bj)
= dim(Ei + Ej) + dim(Bi ∩ Bj)
= dim(Ei) + dim(Ej)− dim(Ei ∩ Ej) + dim(Bi ∩ Bj)

Moreover Ei⊕Bi = IF64
2 = Ej⊕Bj. Hence 64 = 64−dim(Bi)+64−dim(Bj)−

dim(Ei ∩ Ej) + dim(Bi ∩ Bj). The result follows. ��
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Appendix B: Figures

Fig. 7. “Naked-DES” and “Nonstandard-DES”
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Fig. 8. General view of the attack
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Abstract. The ESA-PSS-04-151 Authentication Layer of the European
Space Agency is a MAC mechanism for authenticating telecommands
transmitted to spacecrafts. We show that in spite of the very large key
length of 2940 bits there are (under certain circumstances) feasible known
message attacks. In particular, we show that an attacker who is given
about n ≈ 80-100 message/MAC pairs and 60 special bits of the key can
forge the MAC of any further message with high probability (> 5% for
n = 100) by a single LLL lattice reduction modulo 248 of a matrix of
size approximately (n−60)×n. Most of the 2880 remaining key bits can
also be recovered. Furthermore, we show that the attacker can find the
60 special key bits as well if he is given, in addition, another set of about
40-50 message/MAC pairs of a special kind with a workload of less than
231 LLL lattice reductions modulo 248 of the same size.

Keywords: message authentication code (MAC), lattice reduction.

1 Introduction

The Authentication Layer of ESA-PSS-04-151 [2] specified by the European
Space Agency (ESA) is a MAC scheme intended to protect spacecrafts against
unauthorized telecommands. This ESA-PSS MAC employs the design idea of
the Rueppel-Massey subset sum generator [3],[4]: The output bits of a (secret)
Linear Feedback Shift Register (LFSR) determine a subset of a set of (secret)
weights, the subset sum is calculated and a couple of least significant bits is
discarded. In the case of the ESA-PSS the length of the LFSR is 60 bits, the
60 weights are elements of �/248

� and the 8 least significant bits are discarded
so that the key length of the MAC is 2940 = 60 + 60 × 48 bits and the MAC
value consists of 40 bits. In other words, the ESA-PSS basically consists of a
combination of a single �2-linear step followed by a single �/248

�-linear step.
It is clear a priori that such a simple design will entail theoretical weaknesses

in contrast to more sophisticated schemes like HMAC or CMAC based on suit-
able hash functions and block ciphers, respectively. But the large key length
of 2940 bits for the ESA-PSS MAC might still ensure a level of security much
more than acceptable in practice for the intended purpose: There will only be
a very restricted amount of message/MAC pairs (“telecommands”) given to the
attacker and also the number of “on-line” tries an attacker is able to perform

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 296–310, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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will be restricted; in particular, brute force on-line attacks are completely out of
the question in spite of the relatively short MAC length of 40 bits. The attacks
on the scheme described in [5] basically are chosen message attacks, probably a
non-realistic attack scenario against spacecrafts. We are going to show that there
are also feasible known message attacks in realistic attack scenarios abandoning
to specify optimized versions of these attacks.

After describing the design of the ESA-PSS MAC in detail in Sect. 2 we first
mention some preliminary observations on the scheme in Sect. 3 which explain
its design idea to a certain extent. In Sect. 4 we assume that the 60 feedback
coefficients of the LFSR are known to the attacker (but not the 2880 bits of
the weights) and that he knows n ≈ 80-100 message/MAC pairs. We show
that by a LLL lattice reduction modulo 248 of a matrix of size approximately
(n − 60) × n the attacker can easily guess the MAC of any further message
with high probability. Concretely, for n = 100 a single guess is successfull with
probability > 5%; further guesses with high success probability for the same
message+counter can be calculated without further lattice reductions; the whole
attack takes a few seconds on a PC. Also attack variants with much higher
success probablility and recovering most of the bits of the weights are sketched.

In Sect. 5 we describe attack methods to find also the 60 feedback coefficients.
The trivial method given in Sect. 5.1 is to use the attack of Sect. 4 as a distin-
guisher and apply LLL lattice reduction for each of the 260 possible feedback
”vectors”. In fact, the matrix size for the distinguishing lattice reduction can be
much smaller than in Sect. 4 (n ≈ 65): A single one of the required lattice re-
ductions (implemented with MAGMA) took only 0.3 seconds on a 2.2 GHz Dual
Core Opteron. But even if the attack could be optimized to a certain extent the
workload of 260 of such lattice reductions still can hardly be regarded as feasible.
In Sect. 5.2 we therefore assume that the attacker is, in addition, given a second
set of about 40-50 different MACs of the same message but with different counter
values which differ only in a few bit positions. Then with a workload of about
230 LLL lattice reductions of even smaller size about half of the 60 bits can be
determined. The remaining other half of the feedback coefficients can then be
found by the method described in Sect. 5.1 but this time with only 230 possible
feedback vectors to check. Our (non-optimized) implementation of the attack
would take about 2 months (overall) on a cluster of 100 such Opteron nodes.
Knowing the feedback coefficients the attacker would then be able to effectively
control the spacecraft by the method of Sect. 4. Basically the attack scenario
could occur in practice as, for example, certain special telecommands could be
repeated many times within a short period for test reasons.

In Sect. A.3 we explain an alternative method to find the 60 feedback co-
efficients, a collision attack already described in [5]. For this attack about 230

message/MAC pairs are needed. Although the attack is even more efficient than
that of Sect. 5.2 such a large number of messages was apparently not intended
by the designers as the maximal allowed counter value for the ESA-PSS MAC
is z = 230 − 1.
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Sect. 6 contains a result applicable in certain special chosen message attacks.
In particular, it is shown that if the same message is sent 63 times with suc-
cessive counter values z, z + 1, z + 2, . . . , z + 62 an attacker monitoring the 63
message/MAC pairs can efficiently (no lattice reduction needed, just a small
number of additions and subtractions) calculate the MAC of the same message
with counter value z + 63 with a probability of about 85%. In contrast to the
above known message attacks this chosen message attack appears to be a rela-
tively harmless threat for a real spacecraft. But it in fact reveals the weakness
of the scheme: The number of bits given to the attacker (2520) is much less than
the key length!

It should be pointed out that our attacks do not apply to the Rueppel-Massey
subset sum pseudo random generator; for partial results (no practical break) on
that random generator see [1].

Notation: For simplicity we sometimes will not distinguish between an element
of �/248

� the representing integer x ∈ [0, 248−1] and the bit string (x0, . . . , x47)
derived from its binary representation x =

∑47
i=0 xi247−i.

2 Description of the ESA-PSS Authentication Scheme

The ESA-PSS1 Authentication Layer [2] is a MAC for the authentication of
messages m = (m1, . . . , mN ) ∈ �N

2 . In fact, a real ”telecommand” m consists of
bytes (octets), i.e., N is a multiple of 8.

The MAC key consists of a secret bit vector c = (c0, c1, . . . , c59) ∈ �60
2 (ac-

tually the feedback coefficients of a LFSR) and 60 ”weights” Wi ∈ �/248
�,

i = 0, 1, . . . , 59; i.e., the Wi are integers modulo 248. Thus the key length is
60 + 60× 48 = 2940 bit.

The MAC of the message has a length of 40 bits. Its calculation involves four
very simple steps:

Step 1. The message m is ”formatted” into a (N + 57)-bit string M = FZ(m)
by prepending a ”1” bit and concatenating a certain value Z ∈ �56

2 specified
below.

Step 2. A 60 bit value p = LN,c(M) is calculated with a �2-linear function
LN,c : �N+57

2 → �
60
2 specified in A.1.

Step 3. A 48 bit value (the so-called pre-MAC) s′ = KW (p) is calculated with
a �/248

�-linear form KW : (�/248
�)60 → �/248

� specified below (with the
bits of p interpreted as elements of �/248

�).
Step 4. The pre-MAC s′ is truncated by deleting the 8 least significant bits

which results in an integer s = T (s′), the MAC of m.

The MAC value is given by MACc,W,Z(m) := s = T (KW (LN,c(FZ(m)))).
This MAC depends on the key as the function LN,c (actually a 60-bit LFSR)
depends on c and the function KW (a ”knapsack” function) depends on the
weights Wi.
1 The abbreviation PSS stands for “Procedures Standards and Specifications” (not for

“Provably Secure Signature” as one might suspect).
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m p s′ sTruncation

T

Format
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M Knapsack

KW

LFSR

LN,c

Fig. 1. MAC calculation

Here is the exact specification of the four steps:

Step 1 (Formatting): The value Z ∈ �56
2 is the concatenation Z = t||z||o,

where t ∈ �2
2 is the “Logical Authentication Channel ID” (LAC ID) which can

be regarded as fixed, z = (z0, . . . , z29) ∈ �30 is the counter value with lsb z29 and
o = (0, . . . , 0) ∈ �24

2 . (The counter z is incremented by one after the successful
verification of a MAC and ensures that identical telecommands normally will
not produce the same MAC unless the number of messages exceeds 230.) Thus

M = (M0, . . . , MN+56) = FZ(m) = 1||m||Z.

Remark 1. Actually there are three different types of messages (“Logical Au-
thentication Channels”, LACs) with respective LAC IDs t = (t0, t1): “Principal
LAC” (ID t = (0, 0)), “Auxiliary LAC” (ID t = (0, 1)) and “Recovery LAC”
(ID t = (1, 0)). There is a separate counter for each but apparently there is only
one LFSR used for all three of them. So, for example, key bits ci recovered from
“Auxiliary” LAC telecommands can be used to attack the “Principal” LAC.
Step 2 (LFSR): The exact specification can be found in A.1; it is is needed
only in A.2, A.3 and A.4.

Step 3 (Knapsack): The pre-MAC s′ ∈ �/248
� is calculated via

s′ = KW (p) :=
59∑

i=0

pi ·Wi

with the 60 secret weights W0, . . . , W59 ∈ �/248
� and the values p1, . . . , p59 ∈

{0, 1} being interpreted as elements of �/248
�.

Step 4 (Truncation): This step deletes the 8 least significant bits of the pre-
MAC s′ = (s′0, . . . , s

′
47) resulting in the integer s = T (s′) = (s′0, . . . , s

′
39), i.e.,

T (s′) = s′div 28.

MAC verification: The sender transmits the string m||t||z||s. The receiver
first checks the counter value z and then verifies the MAC value s with the
knowledge of c and W , i.e., calculates MACc,W,Z(m) and compares this value
with s.

3 Some Preliminary Observations

In this section we are going to discuss some preliminary observations which might
explain some of the design criteria of the ESA-PSS MAC.
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First of all, each single component of the composition T ◦ KW ◦ LN,c ◦ FZ

can easily be broken, i.e., the keys can be found. For example, if a number
of pairs (M (i), LN,c(M (i))) of equal message lengths are given, then the feed-
back coefficients c0, . . . , c59 can be recovered by determining LN,c via simple
linear algebra over �2. Similarly, if pairs (p(i), KW (p(i))) are given, the secret
weights W0, . . . , W59 can be recovered by solving a linear system of equations
over �/248

�.
Moreover, for the modified MAC function T ◦KW ◦LN,c build by omitting the

formatting step FZ a simple chosen message attack is possible: With Hc,W :=
KW ◦ LN,c we have Hc,W (M1 := (1)) = W0 and after truncation the 40 most
significant bits of W0 are recovered. Then because of Hc,W (M2,1 := (1, 0)) =
W1 + c0W0 and Hc,W (M2,2 := (1, 0)) = W1 + (c0 ⊕ 1)W0 modulo 248 the bit
c0 can be determined and with this also most of the bits of W1. Continuing
in this manner c1, . . . , c59 and most of the bits of the weights can be found.
Prepending a ”1” in the formatting step FZ makes it impossible to forge MACs
by prepending zeroes in front of a message. The 24 concatenated zeroes after the
counter ensure that FZ(m) is at least 65 bits long (as the length N of a message
m is at least 8) and so no bit of LN,c(FZ(m)) is independent of (m, t, z) or c.

Lastly, with respect to the truncation it should be remarked that for constant
message length N the least significant bit of s′ = KW (LN,c(M)) depends �2-
linearly on the message bits, so can easily be predicted by linear algebra as soon
as enough message/MAC pairs are known. More generally let x1, . . . , xn ∈ {0, 1}
and

fk(x1, . . . , xn) := k − th least significant binary digit of (x1 + · · ·+ xn).

It is well known that

fk(x1, . . . , xn) =
∑

i1<···<i2k

xi1 · · · · · xi2k
,

i.e., fk is a homogeneous polynomial of degree 2k. As a consequence the alge-
braic degree (in terms of the xi) of the 6 least significant bits of the expression∑59

i=0 xiWi is not greater than 32. Truncating the 8 least significant bits ensures
that all remaining bits have an algebraic degree of about 60 in x0, . . . , x59. Sim-
ilar considerations are contained in [4] where bits of expressions

∑
xiWi with

outputs x0, x1 . . . of an LFSR are used as pseudo random generator. Apparently
the design idea for the ESA-PSS scheme was taken from this Rueppel-Massey
generator (see also [3]).

4 The Case of Known Feedback Coefficients c: A Known
Message Attack Via Lattice Reduction

In this section we assume that the attacker knows the feedback coefficients c =
(c0, . . . , c59) but not the weights Wi and describe a known message attack. The
attacker is given n (different) formatted message/MAC pairs

(M (0), s(0)), . . . , (M (n−1), s(n−1))
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(here M (i) = 1||m(i)||t||z(i)||o are the formatted messages). Now let m(n) be an-
other (arbitrary) telecommand and M (n) := 1||m(n)||t||z(n)||o the corresponding
formatted message. The attacker’s goal is to find the corresponding MAC value
s(n) of M (n).

As the coefficients of the LFSR are known to the attacker he has n valid pairs
(p(i), s(i)), i = 0, 1, . . . , n−1 and, furthermore, p(n) with p(i) = LN,c(M (i)) ∈ �60

2 ,
i = 0, 1, . . . , n. One has

s′(i) := KW (p(i)), s(i) = T (s′(i))

where the values s′(0), . . . , s′(n) are unknown and s(n) has to be determined. In
practice n ≈ 80-100 suffices for the attack described now.

4.1 The Attack

The idea of the attack is very simple: Given l = (l0, . . . , ln) ∈ �n+1 such that
modulo 248 (in particular the p

(i)
k ∈ {0, 1} are interpreted as values in �/248

�)

n∑

i=0

lip
(i) = 0. (1)

Then by the linearity of the ”knapsack” map KW one has (modulo 248)

n∑

i=0

lis
′(i) = 0. (2)

Now because of s′(i) = 28(s(i) + ε(i)) with some 0 ≤ ε(i) < 1 equation (2) yields

n∑

i=0

lis
(i) = −

n∑

i=0

liε
(i)

︸ ︷︷ ︸
=:Δ∈�

(3)

modulo 240. If ln is odd, i.e., invertible modulo 240 we arrive at

s(n) = −l−1
n

(
n−1∑

i=0

lis
(i) + Δ

)

(4)

modulo 240. Now if all the li are small then also Δ will be small as in practice
positive and negative summands of Δ will almost cancel and thus there will be
a chance to guess Δ.

Such a ”short” vector l satisfying (1) can be found by employing LLL lattice
reduction, we will describe two different methods (Method 1 and Method 2) in
Sect. 4.2. Explicitly the attack then runs as follows:

(1) Find a short vector l with ln odd and satisfying (1).
(2) Choose a small integer Δ̃ and calculate
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s̃(n) := −l−1
n

(
n−1∑

i=0

lis
(i) + Δ̃

)

(mod 240).

(3) If s̃(n) �= s(n) go back to (2) and try another Δ̃.

From some reasonable statistical assumptions and because of the Central
Limit Theorem one would expect that the distribution of the actual values
Δ is close to a normal distribution with average value 0. So one would first
try such Δ̃ with small absolute value and then increase the absolute value
(Δ̃ = 0, 1,−1, 2, . . .). Of course in practice the attacker can recognize a suc-
cess of the MAC verification in step (3) (performed by the spacecraft) only
indirectly by observing the reactions of the spacecraft. It appears to be realistic
that the attacker can try different values of Δ̃ for the same formatted message
M (n) = 1||m(n)||t||z(n)||o without waiting for a reaction. Only if the counter
value z was increased in the meantime (by a message of an authentic sender)
the attacker needs to perform a new LLL lattice reduction.

Experimental Result: We implemented both Method 1 and Method 2 of Sect.
4.2 with MAGMA (using the Nullspace and LLL commands) and with n = 100
pairs (p(i), s(i)); in each case the experiment was repeated 20000 times.

Method 1: Each lattice reduction took about 3 seconds on a 2.2GHz Dual-Core
Opteron. The empirical mean value was Δ = 0.01 and the empirical standard
deviation of Δ was σ = 6.99. The probability that s̃(n) = s(n) for Δ̃ = 0 was
about 5.9% and trying all the 9 integer values in [−4, 4] led to success in about
48.5% of the cases.
Method 2: The results of course depend on the constant C. With C ≈ 212 both
speed and accuracy where fine; we chose C = 4095. Each lattice reduction took
about 0.25 seconds on a 2.2GHz Dual-Core Opteron. The empirical mean value
was Δ = 0.04 and the empirical standard deviation of Δ was σ = 6.95. The
probability that s̃(n) = s(n) for Δ̃ = 0 was about 5.7% and trying all the 9
integer values in [−4, 4] led to success in about 49% of the cases.

Remark 2. (i) Observe that for n = 100 the number of MAC bits given to the
attacker (100× 40 = 4.000) is not too much greater than the number of key bits
not known to the attacker (60× 48 = 2.880). (Even for n = 75-90 the observed
actual values of Δ turned out to be reasonably small.)

(ii) By taking p(n) := (0, . . . , 0, 1, 0, . . . , 0) and applying the above attack one
can also recover most of the 40 most significant bits of the weights Wi.

Remark 3. By taking into account more than just one short vector l the suc-
cess probability can be increased significantly. For example, we implemented the
following attack variant for n = 100: (1) For each of the first 30 rows of the
LLL-reduced matrix check whether ln is odd; if this is the case calculate the set
of candidate s̃(n) with Δ̃ ∈ {−20, . . . , 20}. (2) Determine the intersection of all
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these (not more than 30) sets of candidates. (3) If the intersection is nonemtpty
choose one element at random.

In our experiments the success probability was about 20% for a single guess
and about 75% for nine guesses (compared to 6% and 50%, resp., for the method
described above). There is probably still much space for optimization.

4.2 LLL Lattice Reduction Methods for Attack Step (1)

Method 1: Let l(0), . . . , l(d−1) ∈ �n+1 be a basis of the solution lattice of the
following system of linear equations over �:

n∑

i=0

xip
(i) = (0, . . . , 0) , x0, x1, . . . , xn ∈ �.

Obviously, d (the dimension of the solution lattice) depends on the p(i) but
d ≥ (n + 1)− 60 and typically d ≈ n − 59. Apply LLL lattice reduction to the
�-lattice spanned by the rows of the matrix

L =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

l
(0)
0 l

(0)
1 · · · l

(0)
n

...
...

. . .
...

l
(d−1)
0 l

(d−1)
1 · · · l

(d−1)
n

248 0 · · · 0
0 248 · · · 0
...

...
. . .

...
0 0 · · · 248

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

to obtain short vectors of the form (α0, α1, . . . , αn) ∈ �n+1; pick out one with
odd αn and set li = αi, for i = 0, . . . , n.

Method 2: Regard the �-lattice spanned by the rows of the matrix

L′ =

⎛

⎜
⎜
⎜
⎜
⎝

C · p(0)
0 · · · C · p(0)

59 1 0 · · · 0
C · p(1)

0 · · · C · p(1)
59 0 1 · · · 0

...
. . .

...
...

...
. . .

...
C · p(n)

0 · · · C · p(n)
59 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

with a big constant C. Applying LLL lattice reduction results in short vectors
typically of the form

( 0, . . . , 0
︸ ︷︷ ︸
60−times

, α0, α1, . . . , αn);

Pick out one with odd αn and set li = αi, for i = 0, . . . , n.
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5 Known Message Attacks for Completely Unknown Key

In this section we assume that the attacker also does not know the feedback
coefficient vector c = (c0, . . . , c59) and we describe methods to determine c. A
feasible attack is given for the case of special messages. As was seen in the pre-
vious section the knowledge of c enables an attacker to efficiently forge MACs
for any message (with satisfying success probability) once about 80-100 mes-
sage/MAC pairs are known. In Sect. A.3 a collision attack using an idea from
[5] is described which is even more efficient but needs the unrealistic amount of
about 230 known message/MAC pairs.

5.1 Arbitrary Messages

Given n+1 ≈ 80-100 formatted message/MAC pairs (M (i), s(i)) and a candidate
c the methods described in the previous section can of course be used to check
whether c is the actual feedback coefficient vector. Concretely, the attacker would
calculate the values p(i) = LN,c(M (i)) for each c and perform one of the lattice
reduction methods of Sect. 4.2 to find two or three short vectors (l0, . . . , ln)
satisfying (1), not necessarily with odd ln. For each of these two or three vectors
the actual value for Δ according to (3) is calculated. If c was the right guess then
the values for Δ are all small; otherwise at least one of them should be large as Δ
behaves like a random 40-bit value if c is a wrong guess and if the messages are
“reasonably different”. The reason why one has to regard more than one short
vector and calculate the respective Δ is that there are 260 (significantly greater
than 240) candidate c. Thus with Method 1 the workload is 260 LLL-lattice
reductions modulo 248 of a matrix of (approximate) size (n− 59)× (n + 1).

Remark 4. The lattice reduction step can be made considerably faster: Experi-
ments indicate that n′ ≈ 65 message/MAC pairs suffice to find the correct c with
Method 1 (an estimated 235 of the candidate c pass the test with a single short
l derived with LLL reduction). That means 6 × 66 lattices modulo 248 instead
of 40 × 100-lattices taking about 0.3 seconds on a 2.2GHz Dual-Core Opteron.
(Method 2 with C ≈ 220 was about as accurate and took only 0.25 seconds.)
Also the experiments indicate that often a full LLL reduction will not be nec-
essary. However, the attack still can hardly be regarded as feasible. The next
subsection gives a feasible method to find c if the attacker is given, in addition,
some message/MAC pairs of a special form.

5.2 A Feasible Attack for Messages of a Special Kind

We consider formatted messages M (i), i = 0, 1, . . . , n − 1, all of equal length
N + 57 and equal LAC ID (t0, t1) such that the messages differ only in the r
least significant bits of the counter. In other words, there is

Mconst = (1, m0, . . . , mN , t0, t1, z0, . . . , z29, 0, . . . , 0
︸ ︷︷ ︸

24−times

)
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and with certain z̃(i) of the form

z̃(i) = ( 0, . . . . . . . . . . . . , 0
︸ ︷︷ ︸

(N + 33− r)−times

, z
(i)
29−r+1, . . . , z

(i)
29 , 0, . . . , 0

︸ ︷︷ ︸
24−times

)

we have M (i) = Mconst ⊕ z̃(i) for every i = 0, . . . , n − 1. The attacker is given
the n message/MAC pairs (M (i), s(i)). To perform the attack described below n
should be significantly greater than 25 + r which, in particular, implies r ≥ 6.

Remark 5. For “Auxiliary” telecommands (t = (0, 1)) such a situation could
really occur in practice, e.g., if for test reasons a certain command is repeated
many times with different counter values.

If we define

pconst := LN,c(Mconst), p
(i)
trunc := LN,c(z̃(i))

then for p(i) := LN,c(M (i)) we have

p(i) = pconst ⊕ p
(i)
trunc.

Proposition 1. a) For all j > 23 + r one has p
(i)
trunc,j = 0. The p

(i)
trunc depend

on c0, . . . , c22+r but not on c23+r, . . . , c59.
b) If

p
(i)
trunc := (p(i)

trunc,0, . . . , p
(i)
trunc,23+r, 1) ∈ �25+r

and l = (l0, . . . , ln−1) ∈ �n is such that modulo 248

n−1∑

i=0

lip
(i)
trunc = 0. (5)

then the pre-Mac values s′(i) = KW (p(i)) modulo 248 satisfy

n−1∑

i=0

lis
′(i) = 0 (6)

c) If the l in b) is short, i.e., its entries are small then
∑n−1

i=0 lis
(i) is small

modulo 240.

Proof. See A.2.

The attack runs as follows: For a guessed tuple (c0, . . . , c22+r) of feedback co-
efficients the attacker searches for several short vectors l = (l0, . . . , ln−1) ∈ �n

satisfying (5). One of the two methods of Sect. 4.2 can be applied if n is signifi-
cantly larger than 25 + r (the length of p

(i)
trunc), e.g., n ≈ 40-50 for r = 7. If the

guessed tuple was the right one then

n−1∑

i=0

lis
(i) ≈ 0 (7)
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modulo 240 is satisfied according to Prop. 1, otherwise the approximation will
be violated for some of the l. (It is necessary to test more than one of the l as
for some wrong guesses with small Hamming distance to the correct one also the
Hamming distance of the resulting p(i) are small.) So the workload is 223+r LLL
lattice reductions modulo 248 of a matrix of a size of about (n − 25 − r) × n.
After that only about 237−r candidate vectors (c0, . . . , c59) remain as the first
23 + r bits have just been determined. With another set of about ng = 80-100
message/MAC pairs of general kind (reasonably different and independent of the
set of n pairs of the special kind) the attack of Sect. 5.1 can be performed with
only about 237−r LLL lattice reductions to find the remaining bits c23+r, . . . , c59.
For r = 7 the overall workload is about 230 modulo 248 lattice reductions of size
(n−25−r)×n plus 230 modulo 248 lattice reductions of size (ng−60)×ng. Once
again, both groups of lattice reductions can be made faster by the observations
described in Remark 4, in particular ng ≈ 65 suffices. Experiments with n = 45
indicate that if the n = 45 counter values where randomly picked out of 27

successing counter values then in the typical case the bits c0, . . . , c29 can in fact
be determined as described with workload of 230 times about 0.2 seconds on a
2.2. GHz Dual-Core Opteron for the LLL reductions. (In some cases when the
45 counter values follow certain patterns also some wrong guesses can pass the
test, increasing the workload for the remaining bits; here effects described in
Sect. 6 come into play.) Then with ng ≈ 65 the overall workload would sum up
to about 2 months on a 100 node cluster of 2.2Ghz Dual-Core Opterons. There
is probably still much space for improvement.

Remark 6. If the formatted messages M (i) do not only differ in the counter
values but there are only, e.g., 2 or 3 different occurring pairs (m, t) then the
above attack can easily be adapted in the obvious way by adding a further bit
or two, respectively, to the vectors p

(i)
trunc.

6 A Chosen Message Attack

In this section we describe a special but very efficient chosen message attack
not requiring any lattice reductions. We consider n = 2r (different) formatted
messages M (μ), μ = (μ1, . . . , μr) ∈ �r

2, all of equal length N +57 differing only at
r fixed bit positions (counter bits in practice). In other words, there are pairwise
distinct bit positions j1, . . . , jr ∈ {1, . . . , N +30} and Mconst ∈ �N+57 such that

M (μ) := Mconst ⊕
r∑

i=1

μieji

with ej ∈ �
N+57
2 having only one non-vanishing component, namely, at bit

position j. We have the following observation:

Proposition 2. In the situation above let Λ ∈ Mat(�2, 60 × r) be the matrix
such that

LN,c

(
r∑

i=1

μieji

)

= Λμ
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and let λ0, λ1, . . . , λ59 ∈ �
r
2 be the rows of Λ. Then for the values s′(μ) :=

KW (LN,c(M (μ))) the following equation is valid modulo 248 for all ν ∈ �r
2\{0}

such that ν ⊕ λi �= 0 for all rows λi:
∑

μ∈�r
2

(−1)〈μ,ν〉s′(μ) = 0. (8)

Hence, the MAC values s(μ) := T (s′(μ)) satisfy the (modulo 240) inequality
∣
∣∣
∣
∣
∣

∑

μ∈�r
2

(−1)〈μ,ν〉s(μ)

∣
∣∣
∣
∣
∣
< 2r. (9)

Proof. See A.4.

Remark 7. Actually (9) is a very coarse estimate: If the ε(i) (comp. the derivation
of (3)) were independent and equally distributed on [0, 1] then the standard
deviation of the alternating sum on the left hand side of (9) (whose average will
be 0) would be about 2

r
2 /3. In practice it is even significantly lower.

If an attacker is in the described situation the approximation (9) can deliver
much information about the unknown feedback coefficients: A ν will usually
satisfy (9) if and only if it does not occur as a row of the matrix Λ. This could
improve the efficiency of the attack in Sect. 5.2 but we will not describe the
details. Instead we give a very simple and efficient example chosen message
attack exploiting the above proposition.

Example 1 (r = 6). An attacker observed that for 63 successive times the same
pair m, t was transmitted (perhaps an ”Auxiliary” command) and only the
counter bits z24, . . . , z29 were different, actually assuming all 63 binary strings
from 000000 to 111110. The attacker can then derive the MAC value s(111111)

from the previous 63 MAC values by the following method: Because of (9) for
every ν ∈ �6

2\{0} he calculates the candidate value

s
(111111)
(ν) := −(−1)〈(1,1,1,1,1,1),ν〉 ∑

μ�=(111111)

(−1)〈μ,ν〉s(μ).

modulo 240. Of these 63 values there will be at least about 20 which are almost
equal, the others will be random integers in [0, 240[. (This can easily be seen: The
probability that a certain ν does not occur among 60 independent random row
vectors λi is (63/64)60, so the expectation value of the number of non-occurring ν
is 63×(63/64)60 ≈ 24.5.) Now the arithmetic mean of these more than 20 almost
equal values will with high probability be equal to the MAC value s(111111) the
attacker is searching for. In our experiments this attack lead to the correct MAC
value in about 85% of the cases.

Remark 8. Observe that in the above example the information given to the at-
tacker (2520 = 63 × 40 bit) is much less than the information of the key (2940
bit)!
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7 Conclusion

We described several attacks on the ESA-PSS-04-151 Authentication Layer. It
was shown that also from a practical point of view the scheme can be broken
under certain circumstances. The scheme thus is not sufficiently secure for the
intended use. A practical implication of this paper is that for implementations
already or still in use transmitting the same message several times with different
counter values should be avoided (compare Sect. 5.2 for details).

Acknowledgment. We thank Andreas Wiemers for interesting remarks.
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A Appendix

A.1 The LFSR

In this section the exact specification of Step 2 in Sect. 2 is given. The 60-bit
LFSR in Fig. 2 is initialized with all bits 0. Then the bits M0, M1, . . . , MN+56

of M are fed in one by one.
More formally (recall length(M) = N +57) let p(0), p(1), . . . , p(N +57) ∈ �60

2

recursively be defined by p(0) = (0, . . . , 0) and

p0(k + 1) := Mk ⊕
59⊕

i=0

cipi(k)

pi+1(k + 1) := pi(k), i = 1, . . . , 58

for k = 0, . . . , N + 56. Then

p = LN,c(M) := p(N + 57)

and the map LN,c obviously is �2-linear in M (but not in the secret vector c).

http://www.aiaa.org/spaceops2006/presentations/55955.ppt
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Mk
p0(k) p1(k) p2(k) p3(k) p59(k)

c0 c1 c2 c3 c59

Fig. 2. The 60−bit LFSR

A.2 Proof of Proposition 1

a) Clear from the description in A.1.
b)

n−1∑

i=0

lis
′(i) =

n−1∑

i=0

li

⎛

⎝
59∑

j=0

p
(i)
j Wj

⎞

⎠

=
23+r∑

j=0

(
n−1∑

i=0

li(p
(i)
trunc,j ⊕ pconst,j)

)

Wj +
59∑

j=24+r

(
n−1∑

i=0

li

)

pconst,jWj

= 0

modulo 248 because of

n−1∑

i=0

li(p
(i)
trunc,j ⊕ pconst,j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1∑

i=0

lip
(i)
trunc,j for p

(i)
const,j = 0

n−1∑

i=0

li(1 − p
(i)
trunc,j) for p

(i)
const,j = 1

and because of (5) which also implies
∑n−1

i=0 li = 0 (observe that the last com-
ponent of p

(i)
trunc is 1).

c) This approximation follows from (6) in the same way as (3) follows from (2). 
�

A.3 A Collision Attack for Finding c

The vector c can be found even more efficiently than by the attack of Sect. 5.2
using a collision method which can already be found in [5]. We will briefly de-
scribe the attack here restricting ourselves to the case of an irreducible feedback
polynomial Pc(x) := x60 + c0x

59 + . . . + c59 ∈ �2[x]. (Allthough not specified in
[2] this will probably be the case in actual implementations.) Let Ac : �60

2 → �
60
2

be the step function of the LFSR, i.e., if a ∈ �60
2 is a state then Ac(a) is the state

after one clocking (without exterior bits being fed in). Ac is an �2-endomorphism
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and the field �2[x]/Pc(x) is isomorphic to the algebra �2[Ac] via x �→ Ac as Pc

is the minimal polynomial of Ac.
For a (formatted) message M = (M0, . . . , MN+56) one obviously has p =

LN,c(M) = QM (Ac)((1, 0, . . . , 0)) with QM (x) :=
∑N+56

i=0 Mix
N+56−i ∈ �2[x]

and (1, 0, . . . , 0) being the state of the LFSR register with all bits zero ex-
cept bit position p0. Now if p = (0, . . . , 0) then QM (Ac) as element of the
field �2[Ac] must vanish as otherwise QM (Ac) would be invertible. So p =
0 implies Pc(x)|QM (x). Thus if M (1), M (2) are such that p(1) = p(2) then
Pc(x)|(QM(1) (x)+QM(2)(x)). So by factoring the polynomial QM(1)(x)+QM(2)(x)
just a few candidates remain for Pc, i.e., for c.

Now if the attacker is given about
√

2 · 230 message/MAC pairs (M, s) there
will on average be one pair of these pairs with equal p ∈ {0, 1}60 (birthday
paradox). Then by the method above some candidate c are given which can be
tested as described in Sect. 5.1.

Unfortunately for the attacker there will on average be 220 pairs of the mes-
sages (M (1), M (2)) with the same MAC value s and as he does not ”see” the
p-value it is not clear which of these pairs is ”the one” with equal p. So he must
factorize QM(1)(x) + QM(2)(x) for all of these 220 pairs and then perform the
LLL reduction method of Sect. 5.1. This method is still faster than the one de-
scribed in Sect. 5.2 (about 220 instead of about 231 lattice reductions). However,
in practice it is hardly imaginable that such a huge number of telecommands is
transmitted during the lifetime of a spacecraft; this is reflected by the design of
the ESA-PSS as there are only 230 different possible counter values anyway.

A.4 Proof of Proposition 2

Let
p(μ) := LN,c(M (μ)) = pconst ⊕ Λμ

with pconst := LN,c(Mconst). Then

p
(μ)
i =

1
2

(
1− (−1)〈μ,λi〉⊕pconst,i

)
. (10)

With s′(μ) =
∑59

i=0 p
(μ)
i Wi we obtain

∑

μ∈�r
2

(−1)〈μ,ν〉s′(μ) =
59∑

i=0

⎛

⎝
∑

μ∈�r
2

(−1)〈μ,ν〉p(μ)
i

⎞

⎠Wi

modulo 248. Because of (10) and applying
∑

μ∈�r
2
(−1)〈μ,ν〉 = 0 for all ν �= 0 as

well as (−1)pconst,i
∑

μ∈�r
2
(−1)〈μ,λi⊕ν〉 = 0 (remember ν ⊕ λi �= 0) equation (8)

is an immediate consequence (treat the inner sum as an expression in rational
numbers) from which also (9) follows at once. 
�
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Abstract. The XCB mode of operation was outlined in 2004 as a con-
tribution to the IEEE Security in Storage effort, but no security analysis
was provided. In this paper, we provide a proof of security for XCB, and
show that it is a secure tweakable (super) pseudorandom permutation.
Our analysis makes several new contributions: it uses an algebraic prop-
erty of XCB’s internal universal hash function to simplify the proof, and
it defines a nonce mode in which XCB can be securely used even when the
plaintext is shorter than twice the width of the underlying block cipher.
We also show minor modifications that improve the performance of XCB
and make it easier to analyze. XCB is interesting because it is highly ef-
ficient in both hardware and software, it has no alignment restrictions
on input lengths, it can be used in nonce mode, and it uses the inter-
nal functions of the Galois/Counter Mode (GCM) of operation, which
facilitates design re-use and admits multi-purpose implementations.

1 Introduction

There are several scenarios in which length-preserving, deterministic encryption
is useful. An encryption method is length-preserving if the ciphertext has ex-
actly the same number of bits as does the plaintext. Such a method must be
deterministic, since it is impossible to accommodate random data (such as an
initialization vector) within the ciphertext. In some cases, deterministic length-
preserving encryption exactly matches the requirements. For example, in some
encrypted database applications, determinism is essential in order to ensure a
direct correspondence between plaintext values being looked up and previously
stored ciphertext values.

In some other cases, there is a length-preservation requirement that makes
it impossible to provide all of the security services that are desired. Length-
preserving algorithms cannot provide message authentication, since there is no
room for a message authentication code, and they cannot meet some strong
definitions of confidentiality [1]. Essentially, these algorithms implement a code-
book; repeated encryptions of the same plaintext value with the same key result
it identical ciphertext values. An adversary gains knowledge about the plaintext
by seeing which ciphertext values match, and which do not match. Despite these
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limitations, in many scenarios it may be desirable to use length-preserving en-
cryption because other methods are unworkable. Length-preservation may allow
encryption to be introduced into data processing systems that have already been
implemented and deployed. Many network protocols have fixed-width fields, and
many network systems have hard limits on the amount of data expansion that
is possible. One important example is that of disk-block encryption, which is
currently being addressed in the IEEE Security in Storage Working Group [2].

Our goal is to provide the best security possible, given the length-preservation
limitation. We require our cipher to be a pseudorandom permutation; it is indis-
tinguishable from a uniformly chosen random permutation on the set of messages
to a computationally bounded adversary. Because we want our cipher to handle
plaintexts whose size may vary, we require the cipher to be a pseudorandom ar-
bitrary length permutation: for each of the possible plaintext lengths, the cipher
acts as a pseudorandom permutation. To provide as much flexibility as possible,
we allow the plaintext lengths to vary even for a single fixed key.

In some cases, some additional data can be associated with the plaintext. By
using this data as an input, we can provide better security, by letting each distinct
associated data value act as an index into a set of pseudorandom permutations.
That is, we require the cipher to be a pseudorandom arbitrary-length permutation
with associated data: for each plaintext length and each value of the associated
data, the cipher acts as a pseudorandom permutation. For maximum flexibility,
we allow the length of the associated data field to vary even for a single fixed
key. In the disk block example, we can use the block number as the associated
data value. This will prevent some attacks which rely on the codebook property,
since identical plaintext values encrypted with distinct associated data values
give unrelated ciphertext values.

The use of an associated data input to a pseudorandom permutation first
appeared in the innovative Hasty Pudding Cipher of Schroeppel [3], where it
was called a ‘spice’, and was given a rigorous mathematical treatment by Liskov,
Rivest, and Wagner [4], who called it a ‘tweak’. Our security goal follows that of
the latter work, with the distinction that we allow the associated data to have
an arbitrary length.

1.1 Comparison to Existing Work

Naor and Reingold [5] outlined an mode of operation implementing arbitrary
length permutation which used a hash-ECB-hash method in which the hash
stages are invertible. Other work used a Feistel approach [6]. These early designs
do not include a provision for associated data. More recently, block cipher modes
of operation that implement pseudorandom arbitrary-length permutations with
associated data have been defined. The first such algorithms to be proven secure
were the CMC [7] and EME [8] modes of Halevi and Rogaway. CMC cannot
be efficiently pipelined; EME can be pipelined, but lacks flexibility. EME∗ [9]
was designed to address that issue. All of those algorithms use an encrypt-mix-
encrypt approach, and do not use universal hashing. ABL4 [10] uses a four-round
unbalanced Feistel network. The original XCB version [11], HCTR [12], and
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HCH [13], use a hash-CTR-hash approach. PEP [14] and TET [15] make use of
the hash-ECB-hash approach. Some of the modes have restrictions on the lengths
of their inputs (CMC, EME, PEP), or require length-specific precomputation
(TET). A detailed comparison of these modes is beyond the scope of this paper,
but we highlight some differences below.

XCB encrypts nw bits of data with only n + 1 block cipher invocations and
2n + 6 multiplications in GF (2w), where w is the number of bits in the block
cipher inputs and outputs. The relative efficiency of these modes of operation
depends on the relative efficiency of a block cipher invocation and a multipli-
cation in GF (2w). In software, XCB is faster than EME∗ if the time taken by
that multiply is less than half of the time taken by the block cipher; otherwise,
EME∗ is faster. Multiplication can be done efficiently using precomputed tables,
so that XCB outperforms EME∗, but in practice the size of such tables could be
undesirable, and the performance of the two modes should be considered roughly
equivalent. HCTR is faster than XCB by a single block cipher invocation. ABL4
and PEP are considerably less efficient. XCB uses only a single hash key, which
is a significant advantage for software implementations, because it reduces the
amount of memory needed to store and encryption or decryption context.

In hardware, XCB has the lowest latency of any of these modes; in this context,
latency measures the time between when encryption starts and when the first bit
of the ciphertext leaves the circuit. XCB also has the merit that a single circuit
can implement both encryption and decryption; the algorithms are equivalent
up to a reversal of their subkeys.

XCB is unique in that it has been shown to be secure in nonce mode, and
can securely accept plaintexts with lengths between w and 2w bits when the
associated data contains a nonce. This property allows XCB to protect short
plaintexts. An example of an application where that feature is useful is the use
of Secure RTP [16] to protect voice over IP with the widely used G.729 voice
codec, in which case the plaintext is 20 octets long.

The basic components of XCB are identical to those of the Galois/Counter
Mode (GCM) of operation [17], making XCB easy to implement given an imple-
mentation of GCM, and making compact GCM/XCB implementations possible.

2 XCB Definition

This section contains the specification for XCB for use with w-bit block ci-
phers. A typical value is w = 128, as with the Advanced Encryption Standard
(AES) [21].

2.1 Interface

The encryption operation takes as input a secret key K, a plaintext P , and
associated data Z, and outputs a ciphertext C. This operation is denoted as
C = E(K, Z, P ). The values K, P, Z, and C are bit strings. The length of C is
identical to that of P .



314 D.A. McGrew and S.R. Fluhrer

The decryption operation takes as input a secret key K, a ciphertext C, and
associated data Z, and outputs a plaintext P . This operation is denoted as
P = D(K, Z, C). The identity D(K, Z, E(K, Z, P )) = P holds for all values of
K and Z.

There are two distinct ways in which XCB can be used. For any fixed value
of the key, if all of the values of the associated data Z in all of the encryption
operations are distinct, then the plaintext can have a length between w and 239

bits, inclusive. We call this nonce mode. Otherwise, if the associated data values
are not distinct, then the plaintext must have a length between 2w and 239 bits,
inclusive. We call this normal mode.

2.2 Notation

The two primitive functions used in XCB are block cipher encryption and mul-
tiplication over the field GF (2w). The block cipher encryption of the value X
with the key K is denoted as e(K, X), and the block cipher decryption is de-
noted as d(K, X). (Note that we reserve the symbols E and D to denote XCB
encryption and decryption, respectively.) The number of bits in the inputs and
outputs of the block cipher is denoted as w. The multiplication of two elements
X, Y ∈ GF (2w) is denoted as X · Y , and the addition of X and Y is denoted
as X ⊕ Y . Addition in this field is equivalent to the bitwise exclusive-or opera-
tion, and the multiplication operation is as defined in GCM [17]. We denote the
number of bits in a bit string X as #X .

The function len(S) returns a w/2-bit string containing the nonnegative inte-
ger describing the number of bits in its argument S, with the least significant bit
on the right. The expression 0l denotes a string of l zero bits, and A‖B denotes
the concatenation of two bit strings A and B. The function msbt(S) returns
the initial t bits of the string S. We consider bit strings to be indexed starting
on the left, so that bit zero of S is the leftmost bit. When S is a bit string and
0 ≤ a < b < #S, we denote as S[a; b] the length b − a subtring of S consisting
of bits a through b of S. The symbol {} denotes the bit string with zero length.

2.3 Definition

The XCB encryption operation is defined in Algorithms 1; the decryption op-
eration is similar and is left implicit. The values Ke, Kd, and Kc can be stored
between evaluations of these algorithms, in order to trade off some storage for a
decreased computational load.

The function c : {0, 1}k × {0, 1}w → {0, 1}l, where the output length l is is
bounded by 0 ≤ l ≤ 239, generates an arbitrary-length output by running the
block cipher e in counter mode, using its w-bit input as the initial counter value.
Its definition is

c(K, W, l) = e(K, W )‖e(K, incr(W )‖ . . . ‖msbt(e(K, incrs−1(W )), (1)

where we make the number of bits l in the output an explicit parameter for
clarity; s = �l/w� is the number of w-bit blocks in the output and t = l mod w
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Algorithm 1. The XCB encryption operation. Given a key K ∈ {0, 1}k, a
plaintext P ∈ {0, 1}m where m ∈ [w, 239], and associated data Z ∈ {0, 1}n
where n ∈ [0, 239], this operation returns a ciphertext C ∈ {0, 1}m.

H ← e(K, 0w)
Ke ←msbk(e(K, 0w−3‖001)‖e(K, 0w−3‖010))
Kd ←msbk(e(K, 0w−3‖011)‖e(K, 0w−3‖100))
Kc ←msbk(e(K, 0w−3‖101)‖e(K, 0w−3‖110))
A← P[#P−w; #P− 1]
B ← P[0; #P− w − 1]
C ← e(Ke, A)
D ← C ⊕ h1(H,Z, B)
E ← B ⊕ c(Kc, D, #B)
F ← D ⊕ h2(H,Z, E)
G← d(Kd, F )
return E‖G

is number of bits in the trailing block. Here the function incr : {0, 1}w → {0, 1}w
is the increment operation that is used to generate successive counter values.
This function treats the rightmost 32 bits of its argument as a nonnegative
integer with the least significant bit on the right, increments this value modulo
232. More formally,

incr(X) = X [0; w − 33] ‖ (X [w− 32; w − 1] + 1 mod 232), (2)

where we rely on the implicit conversion of bit strings to integers.
The functions h1 and h2 are defined in terms of the underlying hash function

h as

h1(H, Z, B) = h(H, 0w‖Z, B‖0#B mod w+w)

h2(H, Z, B) = h(H, Z‖0w, E‖0#B mod w‖len(Z‖L)‖len(B)). (3)

The function h : {0, 1}w × {0, 1}a × {0, 1}c → {0, 1}w, a ∈ [w, 239], c ∈ [0, 239]
is defined by h(H, A, C) = Xm+n+1, where the variables Xi ∈ {0, 1}w for i =
0, . . . , m + n + 1 are defined as

Xi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0
(Xi−1 ⊕Ai) ·H for i = 1, . . . , m− 1
(Xm−1 ⊕ (A∗m‖0w−v)) ·H for i = m

(Xi−1 ⊕ Ci−m) ·H for i = m + 1, . . . , m + n− 1
(Xm+n−1 ⊕ (C∗n‖0w−u)) ·H for i = m + n

(Xm+n ⊕ (len(A)‖len(C))) ·H for i = m + n + 1.

(4)

Here we let Ai denote the w-bit substring A[(i− 1)w; iw− 1], and let Ci denote
C[(i − 1)w; iw − i]. In other words, Ai and Ci are the ith blocks of A and C,
respectively, if those bit strings are decomposed into w-bit blocks. Here u and v
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denote the number of bits in the trailing blocks of A and C, respectively. This
function is identical to GHASH, the universal hash that is used as a component
of the AES Galois/Counter Mode (GCM) of Operation [17] when w = 128.

2.4 Improvements in Our Version

The initial version of XCB appeared on the IACR eprint website in 2004 [11].
Our new definition of XCB incorporates changes that make its security properties
easier to analyze. First, only a single hash key is used, which enables algebraic
relations about the hash function to be brought to bear during the analysis. This
change also benefits software implementations by relieving them of the need to
store precomputed tables for an additional hash key. Second, the inputs to the
hash functions are slightly rearranged, in order to make use of the properties of
the hash function; this strategy is explained through the lemmas and theorems
of Section 3.1. Additionally, the new design reorders the operations in a way
that makes XCB more amenable to pipelined implementation, by changing the
way that plaintexts are mapped to internal variables.

3 Security Analysis

In this section, we analyze the security of XCB in the concrete security model
introduced by Bellare et. al. [18], and show that XCB is a secure pseudorandom
arbitrary-length permutation with associated data (ALPA), using only the as-
sumption that e is a secure w-bit pseudorandom permutation, as follows. We
review the properties of h and how they are used in XCB (Section 3.1), then
define our security model and analyze security under the assumption that e
is a random permutation (Section 3.2), then bound the security when e is a
pseudorandom permutation (Section 3.3).

3.1 Properties of h and XCB

In this section we describe several properties of the hash function h, and some
properties of XCB that follow from them. Foremost, h is an ε-almost xor uni-
versal function; loosely speaking, this means that the exclusive-or of any two
hash values has a low probability to take on any particular value. We provide a
precise definition below.

Definition 1. A function f : {0, 1}k × {0, 1}m → {0, 1}t is ε-almost xor uni-
versal if

P[f(K, M)⊕ f(K, M ′) = a | K R← {0, 1}k] ≤ ε (5)

for all M 
= M ′ ∈ {0, 1}m and all a ∈ {0, 1}t

Here the expression P[E | F] denotes the probability of the event E given that
the event F has occurred, and the expression K

R← {0, 1}k means that K is
chosen uniformly at random from the set {0, 1}k. We diverge slightly from the
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usual definition for explicitness1. This definition extends naturally to the case
in which f has multiple arguments, as is the case below.

Lemma 1 (h is ε-AXU). The function h defined by Equation 4 is εh(l)-almost
xor universal where εh(l) = �l/w + 2�2−w whenever the inputs A and C are
restricted to so that the sum of their lengths is l or fewer bits.

The proof of this lemma appears in Appendix A.
Because the increment function incr() defined in Equation 2 that is used to

generate successive counters does not commute with addition in GF (2w), we
need to establish another property of h, which is related to but slightly different
from the ε-almost xor universal property.

Theorem 1 (h is unlikely to collide with incrs(h)). For any A, A′, C, C′, E,
E′ where either A′ 
= A or C′ 
= C or both inequalities hold, and any index s,

P[h(H, A, C) ⊕ E = incrs(h(H, A′, C′)⊕ E′) | H R← GF (2w)] ≤ εh(l), (6)

whenever the inputs A and C are restricted to so that the sum of their lengths
is l or fewer bits.

This theorem is proved in Appendix A.
The function h(H, A, C) has the property that it is linear in terms of its

arguments A and C, and this fact is used in the XCB design. We next establish
the linear property in Theorem 2, then we use it to show a useful expression for
the XCB variables F and C in Theorem 3.

Theorem 2 (h is linear). For any H ∈ V w and any A, A′, C and C′ such that
#A = #A′ and #C = #C′,

h(H, A, C) ⊕ h(H, A′, C′) = h(H, A⊕A′, C ⊕ C′)⊕ (len(A)‖len(C))) ·H.

The proof appears in Appendix A.
A simple relationship between F and C follows from this theorem, which

is captured in the next lemma. The proof is simple, so we include it in this
section.

Theorem 3 (F and C have a simple relation)

F = C ⊕ g(H, V (Z), c(Kc, D, #B)), (7)

where g(H, A, C) = h(H, A, C) ·H and V (Z) = (Z‖0w)⊕ (0w‖Z).

Proof

F = C ⊕ h(H, Z‖0w, E‖0#B mod w‖(len(Z‖0w)‖len(B)))

⊕ h(H, 0w‖Z, B‖0#B mod w+w) (8)
= C ⊕ h(H, (Z‖0w)⊕ (0w‖Z), c(Kc, D, len(D))) ·H.

1 In the standard definition, g would define a hash function family, and the selection
of a key K would choose a particular hash function from that family of functions.
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Figure 1 illustrates these identities. The lowest term of the function h, considered
as a polynomial in H , cancels with the term (len(A)‖len(C))) · H . The presence
of len(Z‖0w)‖len(B) as the last block of the last argument to h makes the
coefficient of H2 in that polynomial match that of the usual coefficient of H in
h, and the other coefficients are similarly shifted by one. The presence of the
term 0#B mod w ensures the alignment of the final w bits. ��
During the evaluation of an XCB encryption or decryption operation, the first
argument of h, during both of its evaluations, has the value 0w prepended or
appended to it. If these 0w terms had not been incorporated into the design, then
the second argument to g in Theorem 3 would have been 0#Z , and the variable
F would have no dependancy on Z during an encryption operation. This aspect
of the XCB design utilizes the property captured in the following simple lemma.

Lemma 2. The function V (Z) defined in Theorem 3 has the property that, for
any two distinct values Z and Z ′, the values V (Z) and V (Z ′) are distinct.

The validity of this lemma follows from the fact that V (Z) is an invertible
transformation of Z; it is easy to compute Z given V (Z) by considering successive
w-bit blocks of V .

evaluation H7 H6 H5 H4 H3 H2 H

first 0w Z1 Z2 E1 E∗
2‖0#B mod w 0w len(Z‖0w)‖len(B)

second Z1 Z2 0w E1 E∗
2‖0#B mod w len(Z‖0w)‖len(B) len(Z‖0w)‖len(B)

equivalent Z1 Z1 ⊕ Z2 Z2 S1 S∗
2‖0#B mod w len(Z‖0w)‖len(B) 0w

Fig. 1. An example of the evaluation of h during an XCB encryption operation; the
table entries are the coefficients of the terms of H in the column headings. The third
row shows the equivalent hash operation as in Equation 8. Zi and Ei denote the ith

blocks of Z and E, respectively, and Si denotes the ith block of c(Kc, D, #B).

Lastly, the function g as defined in Theorem 3 is almost xor universal as well,
as shown by the following lemma; the proof is in Appendix A.

Lemma 3 (g is almost xor universal). The function g is (εh(l) + 2−w)-
almost xor universal when its second and third inputs are restricted so that their
lengths sum to l or fewer bits.

3.2 Security in the Ideal Model

In this section, we show that XCB is secure against adaptive chosen plain-
text/ciphertext attacks, by showing that it is a secure ALFA under the ’ideal’ as-
sumption that e is a random permutation. More specifically, we model e(Ke, X),
e(Kd, X), and e(Kc, X) as independent random permutations. We first establish
our security model.

We denote the set of all functions that map {0, 1}m to {0, 1}n as Fm,n.
A random function is a function chosen uniformly at random from Fm,n. We
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denote as In the set of all uniquely invertible functions in Fn,n, and a random
permutation is a function chosen uniformly at random from In.

A keyed pseudorandom function (PRF) is a subset PRFm,n ⊆ Fm,n in which
the key selects a particular function from PRFm,n. Similarly, a keyed pseudo-
random permutation (PRP) is a subset PRPn ⊆ In in which the key selects a
particular function from PRPn. In the following, we assume that a key chosen
uniformly at random will choose a function from PRFm,n or PRPn uniformly
at random.

To measure the ‘pseudorandomness’ of a particular keyed pseudorandom func-
tion F ⊆ Fm,n, we use the conventional indistinguishability experiment in which
an adversary is challenged to distinguish the PRF from a random function. The
adversary is given access to an oracle that provides an interface to a function
f ∈ Fm,n. When the adversary provides an input x ∈ {0, 1}m to the oracle, the
oracle returns f(x). The adversary is free to choose the inputs adaptively. At the
outset of the experiment, the oracle makes a choice to either select f from F or
from Fm,n. This choice is made uniformly at random and kept hidden from the
adversary. At the conclusion of the experiment, the adversary guesses from which
set the function has been chosen. We view the adversary as a probabilistic algo-
rithm and consider the probability that it will correctly distinguish a PRF from a
random function. We let CF denote the event that the function f was chosen from
the PRF F at the outset of the experiment, and let GF denote the event that the
adversary guesses that the function f was chosen from that PRF at the conclusion
of the experiment. An adversary’s effectiveness at distinguishing F from a random
function is measured by the advantage APRF

F defined as

APRF
F = P[GF | CF ]−P[GF | Cc

F ]. (9)

Here E
c denotes the complement of the event E, that is, the event that E does

not occur. An adversary’s advantage in distinguishing a PRP P from a random
permutation is defined similarly as

APRP
P = P[GP | CP ]−P[GP | Cc

P ] (10)

where the events CP and GP are the analogues of CF and GF . In the PRP
experiment, we give the attacker access to two oracles, one for P , and one for
the inverse function P−1. In this case, q counts the total number of queries.
Definition 2 encapsulates these ideas.

Definition 2. A PRF F is (q, a)-secure if any adversary making at most q
oracle queries has advantage APRF

F that is less than or equal to a. Similarly, a
PRP P is (q, a)-secure if any adversary making at most q oracle queries is has
advantage APRP

P that is less than or equal to a.

The definition of a secure ALPA is identical, taking into account the fact that
the adversary is presented with an ALPA oracle instead of a PRP oracle.

We label the XCB internal variables as {Ai, Bi, Ci, Di, Ei, Fi, Gi} for the ith

invocation. If the the ith query is to the XCB encryption oracle, then the ad-
versary determines the values of Ai and Bi, and is given Ei and Gi in return.
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If the ith query is to the XCB decryption oracle, then the adversary determines
the values of Ei and Gi and is given Ai and Bi in return. We assume without
loss of generality that the adversary never repeats a query, and never asks for
the decryption of a ciphertext value returned by a previous encryption query,
and never asks for the encryption of a plaintext value returned by a previous
decryption query.

The basic idea behind our proof is that the each of the ciphertext values
B ⊕ c(Kc, D, #B))‖d(Kd, F ) returned from an encryption query are indistin-
guishable from random as long as the values D and F do not repeat across
different invocations of that function, and the functions c and e are indistinguish-
able from random. Similarly, the plaintext values E ⊕ c(Kc, D, #B))‖e(Ke, C)
returned from a decryption query are indistinguishable from random as long as
the values of D and C do not repeat. We handle our use of the PRP e as a PRF
in the standard way, using the PRP-PRF switching lemma [18].

Lemma 4 (e is a good PRF). If a function f is a (q, a)-secure w-bit PRP,
then it is a (q, a + q(q − 1)2−w−1)-secure PRF.

We also make use of the fact that the outputs of a PRP are unpredictable to
an adversary, as given by the following lemma.

Lemma 5 (e is unpredictable). If e is a random permutation, an adversary
with oracle access to e can cause the output e(X) of the ith query to be equal to
a particular value Y with probability no greater than (2w − i)−1, for any fixed
value of Y .

We next define an event Ω whose occurrence ensures the security of XCB in the
ideal model, as long as c and e are secure PRFs. The event Ω is the conjunction
of the events Ω1∩Ω2∩· · ·∩Ωi, where Ωi is the event that the following conditions
hold during the ith query to the ALPA oracle:

1. Di 
= incrs(Dj) for each integer s such that −�#Pi/w�+1 ≤ s ≤ �#Pj/w�−
1, for all j < i, and

2. If the ith query is an encryption query, then Fi 
= Fj ; if it is a decryption
query, then Ci 
= Cj , for all j < i.

The first condition ensures that, during the invocation of the function c, all of
the inputs to e using the key Kc are distinct from all of the inputs that have
previously been made with that key.

We next assume that Ω1, Ω2, . . . , Ωi−1 have occurred and show that Ωi will
occur with probability close to one. We bound the total length of the data
processed during each query as l > #Pi + #Zi .

Lemma 6. For any of the previous queries j < i, and for any single value of s
such that −2w < s < 2w,

P[Di = incrs(Dj)] ≤ (2w − i)−1 + εh(l), and
P[Di = Dj ] ≤ εh(l),

given that the events Ω1, Ω2, . . . , Ωi−1 have occured. Here j is either an encryp-
tion or decryption query.
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Proof. We first assume that the ith query is an encryption query, in which case
the condition that Di = incrs(Dj) can be expressed as

e(Ke, Ai)⊕ h1(H, Zi, Bi) = incrs(e(Ke, Aj)⊕ h1(H, Zj , Bj)). (11)

We first consider the case that the inputs to the first invocation of h1 are identical
during queries i and j; that is, Zi = Zj and Bi = Bj . In this case Ai 
= Aj

because the queries are required to be distinct. In this case, Di 
= Dj follows
from the invertibility of e. From Lemma 5, the probability that Di = incrs(Dj)
will occur for some value s 
= 0 is at most (2w − i)−1, for any particular values
of j and s. Otherwise, if Ai = Aj , then the inputs to h must be distinct, and
P[Di = incrs(Dj)] ≤ εh follows from Theorem 1; this bound holds for 0 ≤ j < i.

When the ith query is a decryption query, then similar arguments hold by
considering the functions h2 and d and the variable G instead of the functions
h1 and e and the variable A. Thus the probability that Di = incrs(Dj) is no
more than (2w − i)−1 + εh(l), for any values of j and s. ��
Lemma 7. P[Ωi | Ω1 ∩Ω2 ∩ · · · ∩Ωi−1] ≥ 1− (i− 1)�l/w + 2�21−w.

Proof. Since Lemma 6 holds for any value of s, the probability that it holds for
any value of s in the range under consideration is no more than ((2w − i)−1 +
εh(l))�(2l)/w − 2�.

We now assume that Di 
= Dj and consider the probability that Fi = Fj when
the ith query is an encryption query. From Theorem 3, that event is equivalent
to the condition that

g(H, V (Zi), c(Kc, Di, #Bi))⊕ g(H, V (Zj), c(Kc, Dj , #Bj)) = Ci ⊕ Cj . (12)

If XCB is being used in normal mode (as defined in Section 2.1), then #Bi, #Bj ≥
w, and the initial w bits of c(Kc, Di, #Bi) and c(Kc, Dj , #Bj) must be distinct,
because Di and Dj are distinct and e is an invertible function. If XCB is being used
in nonce mode (as defined in Section 2.1), then Zi 
= Zj , in which case V (Zi) 
=
V (Zj). In either mode, the inputs to the invocations of g are distinct, and
P[Fi = Fj | Di 
= Dj] ≤ εh(l)+2−w from Lemma 3. Thus, when the ith query is
an encryption query, and the events Ω1, Ω2, . . . , Ωi−1 have occurred, then

P[Fi 
= Fj | Di 
= Dj ]P[Di 
= Dj ] ≥ (1− εh(l)− 2−w)(1 − εh(l)

≥ 1− 2(εh(l) + 2−w). (13)

When the ith query is a decryption query, then similar arguments show that
P[Ci 
= Cj | Di 
= Dj ]P[Di 
= Dj] is bounded by the same value.

Equation 13 holds for each value of j between 1 and i − 1, inclusive. Thus
P[Ωi | Ω1 ∩Ω2 . . . ∩Ωi−1] is at least

1−
∑

j=1,i−1

2(εh(l) + 2−w) + ((2w − i)−1 + εh(l))�(2l)/w − 2�

≥ 1− (i− 1)εΩ. (14)

where εΩ = �l/w + 2�222−w. ��
We can now bound the probability of the event Ω.
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Lemma 8 (Ω is likely). The probability P[Ω] is at least 1− i2�l/w+2�222−w.

Proof. For any set of events A1, A2, . . . , An such that P[A1 ∩A2 ∩ . . . ∩An] > 0,

P[A1 ∩A2 ∩ . . . ∩An] = P[An | A1 ∩A2 ∩ . . . ∩An−1]×
P[An−1 | A1 ∩ . . . ∩An−2]×P[An−2 | A1 ∩ . . . ∩An−3]× · · · ×P[A1].

The probability P[Ω1 ∩Ω2 . . . ∩Ωi] is thus no less than

i∏

j=1,

(1− (j − 1)εΩ) ≥ (1− iεΩ)i ≥ 1− 2i2εΩ. (15)

Theorem 4 (XCB is secure in the ideal model). If e(Kc, ∗), e(Kd, ∗),
e(Ke, ∗) are independent random permutations and H is chosen uniformly at
random, then XCB is a (q, q2�l/w + 2�223−w)-secure arbitrary length PRP with
associated data with input length between w and l bits in nonce mode, and with
input length between 2w and l bits otherwise.

Proof. If the event Ω occurs, then the adversaries advantage is no greater than
that due to our use of the PRP e as a PRF. No more than q�l/w�) queries
are made to e in which it needs to be considered as a PRF. The result follows
directly from Lemmas 4 and 8.

3.3 Security as a Block Cipher Mode

Up to this point, we have assumed that the function e is a random permutation,
while in fact it is a block cipher. Our next step is to assume that the advan-
tage with which any adversary can distinguish that function from a random
permutation is low, and then show that this assumption implies that XCB is an
ALPA.

Theorem 5. If e is a (q, a)-secure w-bit PRP, then XCB is a (q, a + q2�l/w +
2�223−w + 22 · 2−w)-secure l-bit arbitrary length PRP with associated data.

The proof is in the Appendix.

4 Conclusions

We have shown that our version of XCB is secure in the concrete reduction-based
security model, whenever it is used with a block cipher that can be regarded as
a secure PRP in that model. We also introduced the definition of nonce mode
for a pseudorandom permutation, and showed that XCB is secure when used in
this mode.
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A Proofs

In this appendix we provide proofs for some of the Lemmas and Theorems.

Proof (Lemma 1). We consider two distinct inputs (A, C) and (A′, C′), then
analyze the probability of the event that

h(H, A, C)⊕ h(H, A′, C′) = a, (16)

for some fixed value a ∈ {0, 1}w. We assume that these inputs are formatted
as described in Section 2, in which A, C, A′, and C′ consist of m, n, m′, and n′

w-bit blocks, respectively, the final blocks of which have lengths v, u, v′, and u′,
respectively. We assume without essential loss of generality that m+n ≥ m′+n′,
and we define f = m + n−m′ − n′.

We define the blocks Di ∈ {0, 1}w for 1 ≤ i ≤ m + n + 1 as

Di =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ai for i = 1, . . . , m− 1
A∗m‖0w−v for i = m

Ci−m for i = m + 1, . . . , m + n− 1
C∗n‖0w−u for i = m + n

len(A)‖len(C) for i = m + n + 1

(17)

D′i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0w for i = 1, . . . , f

Ai−f for i = f, . . . , f + m′ − 1
A∗m′‖0w−v for i = f + m′

Ci−f+m′ for i = f + m + 1, . . . , f + m′ + n′ − 1
C∗n′‖0w−u for i = f + m′ + n′

len(A)‖len(C) for i = f + m′ + n′ + 1

(18)

The condition that Equation 16 holds can be expressed as R(H) = 0, where
the polynomial R of degree at most m + n + 1 over GF (2w) is defined by

R(H) = a⊕
m+n+1⊕

i=1,

(Di ⊕D′i) ·Hm+n−i+2. (19)

grouper.ieee.org/groups/1619/email/pdf00019.pdf
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The polynomial R must be nonzero, that is, at least one of its coefficients must
be nonzero, because the pairs (A, C) and (A′, C′) are distinct. There are at most
m+n+1 values of H ∈ GF (2w) for which R(H) = 0 holds. This follows from the
fact that an dth degree polynomial over GF (2w) has at most d distinct roots (this
is the fundamental theorem of algebra over a finite field; see, for example, [22,
Theorem 15.8.2]), and the fact that R is nonzero. The probability that R(H) = 0
holds, given that H is chosen at random from GF (2w), is (m + n + 1)/2w ≤
�l/w + 2�2−w, when the cumulative length of the inputs is restricted to l bits.

For each vector D, there is a unique pair (A, C) where both A and C are bit
strings as described in Section 1, and vice-versa. This is because the last element
of D unambiguously encodes the lengths of both A and C. Thus, the probability
that R(H) = 0 holds for any two given messages (A, C) and (A′, C′), and a given
vector a, is equal to the probability that h(H, A, C)⊕h(H, A′, C′) = a. Equation
16 holds with probability �l/w + 2�2−w for any given values of (A, C), (A′, C′),
and a. ��
Proof (Theorem 1). We let Di and D′i be the coefficients defined as in Equa-
tion 17, then we define the polynomials R1 and R2 as

R1(H) = E ⊕
m+n+1⊕

i=1,

Di ·Hm+n−i+2 (20)

and

R2(H) = E′ ⊕
m+n+1⊕

i=1,

D′i ·Hm+n−i+2. (21)

The condition h(H, A, C)⊕ E = incrs(h(H, A′, C′)⊕ E′) can be expressed as

R1(H) = incrs(R2(H)) = T (22)

for some value of T ∈ {0, 1}w. For any fixed value of T , there are at most m+n+1
values of H such that R1(H) = T , and at most m + n + 1 values of H such that
R2(H) = incr−s(T ). Thus the number of values of H that satisfy both equations
is at most m + n + 1. When H is drawn uniformly at random, the chance of
choosing one of these values is at most (m + n + 1)2−w = εh(l), where l is an
upper bound on the total number of bits in A and C. ��
Proof (Theorem 2). We consider the evaluation of h(H, A, C) and h(H, A′, C′),
and let Xi be as defined in equation 4, and let X ′i be defined similarly, but
with X ′i, A

′
i, and C′i replacing Xi, Ai, and Ci, respectively. We define δXi to be

Xi ⊕X ′i, δAi to be Ai ⊕A′i, and δCi to be Ci ⊕ C′i. Then we note that

δXi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0
(δXi−1 ⊕ δAi) ·H for i = 1, . . . , m− 1
(δXm−1 ⊕ (δA∗m‖0w−v)) ·H for i = m

(δXi−1 ⊕ δCi−m) ·H for i = m + 1, . . . , m + n− 1
(δXm+n−1 ⊕ (δC∗n‖0w−u)) ·H for i = m + n

δXm+n ·H for i = m + n + 1.

(23)
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In the case ii=m+n+1 of the previous equation, the term (len(A)‖len(C))) does
not appear due to cancelation. Thus h(H, A, C) ⊕ h(H, A′, C′) = δXm+n+1 =
h(H, A⊕A′, C ⊕ C′)⊕ (len(A)‖len(C))) ·H . ��
Proof (Lemma 3). The condition that g(H, A, C) ⊕ g(H, A′, C′) = a holds can
be expressed as S(H) = 0, where the polynomial S of degree at most m + n + 2
over GF (2w) is defined by

S(H) = a⊕
m+n+1⊕

i=1,

(Di ⊕D′i) ·Hm+n−i+3. (24)

Here Di and D′i are as defined in Equation 17. The result follows from arguments
similar to those made for Lemma 1. ��
Proof (Theorem 5). We build an e-distinguisher out of an XCB distinguisher
by implementing XCB by replacing each invocation of e and its inverse by a
call to the block cipher oracle, running the XCB distinguisher against that XCB
implementation. We denote as CXCB the event that the ALPA oracle is chosen
to be XCB. If the XCB-distinguisher indicates that it believes that the inputs
were created by XCB (that is, the event GXCB occurs), then our E-distinguisher
indicates that the block cipher oracle is E (that is, the event Ge occurs).

We proceed by first considering the case that Kc, Kd, Ke, and H are chosen
uniformly at random. We call this algorithm RXCB, and we define the events
CRXCB and GRXCB analogous to CXCB and GXCB, respectively. Our analysis
uses the following facts.

Fact 1. P[Ge | Ce] = P[GRXCB | CRXCB], because the events Ce and CRXCB

both provide equivalent inputs to the distinguisher, and the distinguishers are
identical.

Fact 2. For any three events A, B and C (with P[B] 
= 0),

P[A | B] = P[A | B ∩ C]P[C | B] + P[A | B ∩ Cc]P[Cc | B].

Fact 3. The events Bc
e ∩Ω and Bc

RXCB provide equivalent inputs to the distin-
guishers.

The advantage with which our distinguisher works against e is

Ae = P[Ge | Ce]−P[Ge | Bc
e]

= P[GRXCB | CRXCB]−P[Ge | Bc
e]

=P[GRXCB | CRXCB]−P[Ge | Bc
e∩Ω]P[Ω | Bc

e]−P[Ge | Bc
e ∩Ωc]P[Ωc | Bc

e]
≥ P[GRXCB | CRXCB]−P[GRXCB | Bc

RXCB]−P[Ge | Bc
e ∩Ωc]P[Ωc | Bc

e]
= ARXCB −P[Ge | Bc

e ∩Ωc]P[Ωc | Bc
e]

≥ ARXCB −P[Ωc | Bc
e], (25)

using the facts outlined above. Here ARXCB denotes the adversary’s advantage
at distinguishing RXCB from a randomly chosen ALPA.
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We next consider the case in which XCB is used exactly as defined in Al-
gorithm 1, with Kc, Kd, Ke, and H being derived via seven invocations of e,
instead of being set to uniformly random values. Consider the experiment of
distinguishing XCB from RXCB; from Lemma 4, we know that

AXCB −ARXCB = 43 · 2−w−1.

Combining this result with Equation 25 gives the theorem. ��
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Abstract. Given a PRP defined over {0, 1}n, we describe a new generic
and efficient method to obtain modes of operation with a security level
beyond the birthday bound 2n/2. These new modes, named NEMO (for
New Encryption Modes of Operation), are based on a new contribution
to the problem of transforming a PRP into a PRF. According to our
approach, any generator matrix of a linear code of minimal distance d,
d ≥ 1, can be used to design a PRF with a security of order 2dn/(d+1).
Such PRFs can be used to obtain NEMO, the security level of which
is of the same order (2dn/(d+1)). In particular, the well-known counter
mode becomes a particular case when considering the identity linear
code (of minimal distance d = 1) and the mode of operation CENC [7]
corresponds to the case of the the parity check linear code of minimal
distance d = 2. Any other generator matrix leads to a new PRF and
a new mode of operation. We give an illustrative example using d = 4
which reaches the security level 24n/5 with a computation overhead less
than 4% in comparison to the counter mode.
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1 Introduction

An encryption mode of operation is an algorithm which uses a pseudo-random
permutation (PRP) defined over {0, 1}n to encrypt a message of size tn bits into
a string of size tn bits. Several modes of operation exist such as electronic code
book (ECB), chaining block cipher (CBC), counter (CTR). The latter is one of
the most interesting since it presents both efficiency and security.

Using the framework of [4] for concrete security, Bellare et al. [2] proved the
two following properties.
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– The CTR mode used with a PRP defined over {0, 1}n cannot be used to
encrypt more than 2n/2 blocks; this bound is generally called the birthday
bound.

– The CTR mode used with a PRF is as secure as the PRF itself.

The birthday bound concerns almost all modes of operation when using a PRP
as primitive. But, reaching a security level beyond such a bound can be easily
obtained using a pseudo-random function (PRF) instead of a PRP. However,
such an approach is not widespread. Some reasons can explain this fact: on one
hand, block ciphers (PRP) have been studied and cryptanalyzed for several years
so that they are implemented everywhere; on the other hand, designing a secure
and efficient PRF from scratch is not so easy.

An alternative to this lack of consideration for PRFs consists in constructing
a PRF from a given PRP. Such a problem has already been extensively analyzed.
For example, in 1998, Bellare et al. [5] suggested the re-keying construction an
illustrative special case of which the PRF F is defined from the PRP E by
F (K, x) = E

(
E(K, x), x

)
. But, this solution significantly increases the number

of calls to the PRP.
In 1998, Hall et al. [6] suggested the truncate construction. It truncates the

output of the given PRP, but it does not preserve the security of the latter.
In 2000, Lucks [9] suggested the construction

Twind(K, x) = E(K, dx)⊕ E(K, dx + 1) . . .⊕ E(K, dx + d− 1)

for all d ≥ 1 (the case d = 2 has also been independently analyzed in [3]).
The security of Twind depends on d: the larger d, the more secure the PRF.
According to a targeted level of security, an adequate value d can be chosen.
However, the computation overhead is also highly dependant on d.

Finally, in 2006, Iwata suggested the mode of operation CENC [7]. To our
knowledge, it is the only mode (with a full1 security proof) that is beyond the
birthday bound. CENC is also based on a PRF built from a PRP. The main
advantage of this PRF is that it outputs a string of several blocks of n bits
(not only one n-bit block as Twind). However, the level of security can not be
adjusted.

In this paper, we add a new contribution to the problem of constructing a
PRF from a PRP. Our solution is the convergence of Twind and CENC without
their drawbacks. We propose a generic method to construct efficient PRFs with
several n-bit output blocks (as the one involved in CENC) and with an adjustable
security level (as Twind) of order 2dn/(d+1) depending on a parameter d. Our
approach is based on linear code theory. More precisely, it relies on the generator
matrix associated to a linear code of minimal distance d. Our solution is both a
theoretical generalisation and a practical method to obtain secure and efficient
PRFs from PRPs.
1 Two modes of operation beyond the birthday bound have been suggested, but one

of them was proved in a weak security model [1] and the other one has no security
proof [8].
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With such a generalization, the PRF involved in CENC becomes a particular
case of our method when used with the parity check code (d = 2). And, consid-
ering any linear code of minimal distance d ≥ 3 leads to a new PRF with a level
of security of order (at least) 23n/4 which is beyond the security of Iwata’s PRF.

The organisation of this paper is the following. In section 2, we recall secu-
rity notions and we describe more precisely Twind and the PRF of CENC. In
section 3, we describe our generic method to obtain new PRFs with a security
level of order 2dn/(d+1). In particular, we show that the PRF of CENC becomes
a particular case of our construction, when considering the parity check code (of
minimal distance d = 2). In section 4, we describe NEMO, our New Encryption
Modes of Operation which preserve the security of our PRFs. Finally, in section
5, we present a direct application of our method to obtain a PRF with a secu-
rity level of order 24n/5. This PRF can be used to obtain a mode of operation
with a security level of order 24n/5 with a computation overhead around 4% (in
comparison to the CTR mode).

2 Preliminaries

2.1 PRFs and PRPs Security

We denote by Rand(m, n) the set of all functions F : {0, 1}m → {0, 1}n and we
denote by Perm(n) the set of all permutations defined over {0, 1}n.

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a block cipher. For each key K ∈ {0, 1}k,
we denote by EK the bijection defined by EK(x) = E(K, x). A block cipher E
determines the family

F(E) =
{
EK , K ∈ {0, 1}k

}
.

Let D be an algorithm, called a distinguisher, having access to an oracle
parametrized by a bit b. According to b, the oracle simulates a function randomly
chosen in F(E) or in Rand(n, n). We denote by D(t, q) an algorithm D making
q queries to the oracle and with a running time bounded by t.

The adversarial (distinguisher) advantage Advprf
E (t, q) in distinguishing the

block cipher from a truly random function is a good estimate for the quality of
a block cipher. It is defined by

Advprf
E (t, q) = max

D(t,q)

{
Pr
[D = 1 | b = 1

]− Pr
[D = 1 | b = 0

]}
.

In the same way, we now assume that the oracle simulates a function ran-
domly chosen in F(E) or in Perm(n). The adversarial (distinguisher) advantage
Advprp

E (t, q) in distinguishing the block cipher from a truly random permutation
is a good estimate for the quality of a block cipher. It is defined by

Advprp
E (t, q) = max

D(t,q)

{
Pr
[D = 1 | b = 1

]− Pr
[D = 1 | b = 0

]}
.
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2.2 Security Analysis of Modes of Operation

To analyze the security of a mode of operation used with a block cipher E,
we consider the real or random indistinguishably notion [2] against a chosen
plaintext attack (cpa). More precisely, let A be an adversary having access to
an oracle parametrized by a bit b. According to b, the oracle encrypts the re-
quested plaintext or a random string of the same size. We denote by A(t, q) an
adversary making q requests to the oracle and A with a running time bounded
by t.

The security of the mode of operation mode[E] in the real or random model
against a chosen plaintext attack is denoted by Advror-cpa

mode[E](t, q) and is defined by

Advror-cpa
mode[E](t, q) = max

A(t,q)

{
Pr
[A = 1 | b = 1

]− Pr
[A = 1 | b = 0

]}
.

2.3 The Twind Construction

In [9], Lucks analyzes the security of the PRF Twind. Let P ∈ Perm(n), Twind

is defined by

Twind : {0, 1}n−�log2 d� −→ {0, 1}n
x �−→ P (dx)⊕ P (dx + 1)⊕ · · · ⊕ P (dx + d− 1).

The security of Twind is given by Advprf
Twind(t, q) ≤ qd2

2n + dd

2dn−1

∑

0≤i<q

id, for any

q, q ≤ 2n−1/d2.

2.4 The CENC Construction

CENC is a mode of operation presented by Iwata [7]. It is based on a PRF,
denoted by F+ which has two parameters: a permutation P of Perm(n) and an
integer u. The PRF F+ is defined by

F+: {0, 1}n −→ ({0, 1}n)u

x �−→ (
P (x)⊕ P (x+1), P (x)⊕ P (x+2), . . . , P (x)⊕ P (x+u)

)
.

The security of F+ is given by Advprf
F+(t, q) ≤ (u+1)4q3

22n+1 + u(u+1)q
2n+1 assuming all

the q requests xi, are such that for all i, j, 1 ≤ i < j ≤ q, the sets {xi, xi +
1, . . . , xi + u} and {xj , xj + 1, . . . , xj + u} are disjoint. Such a constraint does
not matter since it exactly reflects the different calls to F+ in CENC. Indeed,
given a message of size kun bits, the algorithm CENC uses k calls to the PRF
F+. The first nu bits are encrypted using the output of F+(x), the nu following
bits are encrypted using the output of F+(x+u+1) and so on until the nu last
bits encrypted using the output of F+

(
x + (k − 1)(u + 1)

)
.
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3 New PRFs Based on Linear Code

3.1 Description

Let P be a permutation in Perm(n). Our new PRFs are parametrized by a
generator matrix G = (gi,j) ∈ Mu×�

(
GF (2)

)
, associated to a linear code defined

over GF (2) of length �, of dimension u and of minimal distance d so that G is
of size u× �. Define ω = 1 + �log2 �	. For any given generator matrix G and any
permutation P , we construct a new PRF F : {0, 1}n−ω → ({0, 1}n)u, defined by

F (x) =
( ⊕

1≤ j≤ �

g 1,j �=0

P (�x + j − 1),
⊕

1≤ j≤ �

g 2,j �=0

P (�x + j − 1), . . . ,
⊕

1≤ j≤ �

gu,j �=0

P (�x + j − 1)
)
.

As for Twind and the underlying PRF of CENC, when using this PRF for
encryption, we will rather use a modification of this PRF to be able to use n-bit
input strings instead of (n− ω)-bit input strings. Thus, in the following we will
consider and prove the security of the PRF F+ : {0, 1}n → ({0, 1}n)u defined
by

F+(x) =
( ⊕

1≤ j≤ �

g1,j �=0

P (x + j − 1),
⊕

1≤ j≤ �

g2,j �= 0

P (x + j − 1), . . . ,
⊕

1≤ j≤ �

gu,j �=0

P (x + j − 1)
)
.

The security analysis will be the same as for F , since during the proof we
assume that the q requests xi, 1 ≤ i ≤ q, are such that for all i, j, 1 ≤ i < j ≤ q,
the sets {xi, xi + 1, . . . , xi + �− 1} and {xj , xj + 1, . . . , xj + �− 1} are disjoint.

3.2 Example

Let us consider the matrix G of size u× � with � = u+1 associated to the parity
check code of minimal distance d = 2. The canonical form of G corresponds
to the identity matrix u × u with a last additional column filled with “1”. An
equivalent form of the matrix G is

G′ =

⎡

⎢
⎢
⎢
⎢⎢
⎣

1 1 0 0 . . . 0 0 0
1 0 1 0 . . . 0 0 0

...
1 0 0 0 . . . 0 1 0
1 0 0 0 . . . 0 0 1

⎤

⎥
⎥
⎥
⎥⎥
⎦

.

According to our method, this matrix defines a PRF F+ : {0, 1}n → ({0, 1}n)u

such that

F+(x) =
(
P (x)⊕ P (x + 1), P (x)⊕ P (x + 2), . . . , P (x)⊕ P (x + u)

)
.

Thus, to encrypt u blocks, it requires u + 1 calls to the permutation P .
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This PRF is exactly the same as the one from CENC (see section 2.4). The
security bound given by Iwata is

Advprf
F+(t, q) ≤ (u + 1)4q3

22n+1
+

u(u + 1)q
2n+1

in comparison with our bound (given in theorem 1) equal to

Adv prf
F+(t, q) ≤ (u + 1)4 q3

22n
+

(u + 1)2q
2n

.

A second example consists in considering the generator matrix u × u of the
identity code (of minimal distance d = 1). Our PRF F+ just corresponds to the
PRP, and has the same security (i.e. q u2

2n + u2 q2

2n ). Indeed, we obtain F+(x) =(
P (x), P (x + 1), . . . , P (x + u − 1)

)
. Our security bound is of same order as

the birthday bound (security of any permutation). Our bound is not optimal
because of the method used in the security proof (however, the significant terms
are almost the same).

3.3 Security Theorem

The security of our new PRFs is given in the following theorem.

Theorem 1. Let G = (gi,j) ∈ Mu×�

(
GF (2)

)
a generator matrix associated to

a linear code defined over GF (2), of length �, of dimension u and of minimal
distance d. Let P be a random permutation with an n-bit output. Let F+ be
our PRF parametrized with G and P . Let q be the number of requests xi (1 ≤
i ≤ q) sent to the oracle. If q ≤ 2n−1/�2, and if for all i, j, 1 ≤ i < j ≤ q,
{xi, xi + 1, . . . , xi + � − 1} ∩ {xj , xj + 1, . . . , xj + �− 1} = ∅, then

Adv prf
F+(t, q) ≤ q �2

2n
+

N �d qd+1

2dn

with N =
∑u−1

k=0

(
d+k−1

d−1

)
.

Remark 1. The binomial coefficient
(
d+k−1

d−1

)
involved in N can be bounded by

(d + k − 1)d−1 so that

N =
u−1∑

k=0

(
d + k − 1

d− 1

)
≤

u−1∑

k=0

(d + k − 1)d−1 ≤ u(d + u− 2)d−1 ≤ �d.

The last inequality relies on the Singleton bound recalled in definition 3. As a
consequence,

Adv prf
F+(t, q) ≤ q �2

2n
+

�2d qd+1

2dn
.

The proof of the theorem is given in appendix A.
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4 NEMO: New Encryption Modes of Operation Beyond
the Birthday Bound

4.1 Description

We describe how to use our new PRFs to obtain NEMO. The approach is the
same as the one used in CENC and is a generalisation of the counter mode.

Let P be a n-bit permutation, G be a generator matrix of size u × � of a
binary linear code (of minimal distance d), F+ : {0, 1}n → ({0, 1}n)u be our
new PRF constructed from P and G, and M be a message of size m n-bit blocks
denoted by M1, . . . , Mm (m ≥ 1). Let α and r be such that 0 ≤ α, 0 ≤ r < u
and m = α × u + r. To encrypt M , F+ can be used to obtain a mode denoted
NEMO[F+], as described in algorithm 1.

Algorithm 1. NEMO[F+] : a mode of operation using our PRF F+

Input: a message M of α× u + r n-bit blocks denoted by Mj , 1 ≤ j ≤ α× u + r.
Output: the encrypted message C of α× u + r n-bit blocks associated to M .

Let x be an initial value.
for i from 0 to α− 1 do

Compute F+(x + i× �) = (S1, . . . , Su) ∈ ({0, 1}n)u
for j from 1 to u do

Ci×u+j = Mi×u+j ⊕ Sj

Compute F+(x + α× �) = (S1, . . . , Su) ∈ ({0, 1}n)u
for j from 1 to r do

Cα×u+j = Mα×u+j ⊕ Sj

Store x + (α + 1)× � in place of x
Return C1, . . . , Cα×u+r

4.2 Security of NEMO

We give the security level of NEMO using the framework recalled in section 2.2.

Theorem 2. Let P be a n-bit random permutation. Let G = (gi,j) ∈ Mu×�(
GF (2)

)
a generator matrix associated to a linear code defined over GF (2),

of length �, of dimension u and of minimal distance d. Let F+ be the PRF
parametrized with G. Let NEMO[F+] be the mode of operation described in al-
gorithm 1. Then, we have

Advror-cpa
NEMO[F+](t, q) ≤

(L/u + q)�2

2n
+

N �d (L/u + q)d+1

2dn

with N =
∑u−1

k=0

(
d+k−1

d−1

)
and L is the overall number of n-bit blocks requested to

the oracle.

Remark 2. The security level of the mode of operation relies on the term
N �d (L/u+q)d+1

2dn which is of order O
(

qd+1

2dn

)
. The security of NEMO is beyond

the birthday bound for any d ≥ 2.
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Proof. The proof of this theorem is quite simple. It relies on a contradiction
argument. Let A(t, q) be an adversary with a running time bounded by t and
making q requests to an oracle parametrized by a bit b. According to b, the oracle
encrypts the requested plaintext or a random string of the same size. We denote
by Mi, 1 ≤ i ≤ q, the q messages requested to the oracle. For all i, 1 ≤ i ≤ q,
we denote by Li the n-bit block size of Mi and we define L = L1 + · · ·+ Lq.

The q requests Mi leads to �L1/u + �L2/u + · · · + �Lq/u ≤ L/u + q = q̃
calls to the PRF F+. Thus if the advantage of the adversary is greater than

q̃ �2

2n
+

N �d q̃d+1

2dn

with N =
∑u−1

k=0

(
d+k−1

d−1

)
, this adversary can be used to obtain the same advan-

tage against our new PRF, which is in contradiction with the security of the
PRF given in theorem 1.

5 Applications

In this section we present a direct application of our method to construct a PRF
with a high level of security. The security level of the CTR mode and of the
CENC mode are respectively of order 2n/2 and of order 22n/3. Using a linear
code, the minimal distance of which is d = 4, we build a PRF with a level of
security of order 2dn/(d+1) = 24n/5.

Let C be a linear code of length 256 and of dimension 247. Its minimal distance
is 4. The generator matrix of C may be viewed as the join of two matrices
C = (M |I) where M is a matrix with 247 rows and 9 columns, and where I is
the identity matrix of dimension 247. The transpose of M is equal to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0

· · ·

· · ·

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

· · ·

· · ·

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1

· · ·

· · ·

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0
0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1

· · ·

· · ·

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1
1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The information rate of C is 247/256 ≈ 0.965. This means that the compu-
tation overhead in comparison to the counter mode is between 3% and 4%. In
this construction, we need to compute and store 9 cipher blocks. The 247 next
outputs will be the combination of one new cipher block with some of the first
9 cipher blocks.

6 Conclusion

In this paper we present a new contribution to the problem of transforming a
PRP into a PRF. Our new construction allow to reach a security level beyond
the birthday bound (2n/2). It is based on a linear code with a minimal distance
d, and its security level is of order 2dn/(d+1). This work leads to New Encryption
Modes of Operation, named NEMO, which generalize the CTR mode, and the
CENC mode. Actually, the CTR mode can be built from a linear code, the
minimal distance of which is 1, and the CENC mode can be seen as a special
case of our model with a linear code, the minimal distance of which is 2. From
a practical point of view, the computation overhead is very small and tends to
zero.
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A Security Proof of Theorem 1

A.1 Notations and Definitions

To make easier the understanding of the proof, we introduce the following nota-
tions. From an n-bit input x, the computation of F+(x) can be decomposed in
the two following steps:

– compute the �-tuple
(
P (x), P (x + 1), . . . , P (x + �− 1)

)
,

– apply to the above �-tuple an applicationdenoted F̃+ :
({0, 1}n)�→({0, 1}n)u

such that F̃+
(
P (x), . . . , P (x + �− 1)

)
is equal to

( ⊕

1≤ j≤ �

g1,j �=0

P (x + j − 1),
⊕

1≤ j≤ �

g2,j �=0

P (x + j − 1), . . . ,
⊕

1≤ j≤ �

gu,j �=0

P (x + j − 1)
)
.

The function F̃+ is defined by the matrix G.

Lucks has introduced properties to prove the security of Twind [9]. He only
considers the case of an image set included in {0, 1}n. Here we extend his defi-
nitions to fit with image sets included in

({0, 1}n)u.

Definition 1. Let � and u be two integers and f :
({0, 1}n)� → ({0, 1}n)u. The

set T ⊆ ({0, 1}n)� is fair for f , if for every y ∈ ({0, 1}n)u

∣
∣
∣
{
(t1, . . . , t�) ∈ T | f(t1, t2, . . . , t�) = y

}∣∣
∣ =
|T |
2un

.

If T ⊆ ({0, 1}n)� is fair for f :
({0, 1}n)� → ({0, 1}n)u, there is a uniform

distribution over the output of f when applied to an element randomly picked
in T . However, we will consider sets that are not fair, but almost fair. Such a
property is defined as follows.

Definition 2. Let � and u be two integers and f :
({0, 1}n)� → ({0, 1}n)u. The

set T ⊆ ({0, 1}n)� is z-fair for f , if:

– a set V ⊆ ({0, 1}n)� exists with |V | = z and V ∩ T = ∅, such that V ∪ T is
fair for f . The set V is called a ”completion set” for T ;

– or if a set U ⊆ T with |U | = z exists such that T \ U is fair for f . The set
U is is called an “overhanging set” for T .

During the proof, we will also require some linear code theory results. In partic-
ular, we recall the Singleton bound (see [10] for example).

Definition 3 (Singleton bound). Any linear code of length �, of dimension
u and of minimal distance d verifies �− u ≥ d− 1.

An other important result is that any generator matrix of size u × � associated
to a linear code defined over GF (2), of length � and of dimension u has some
equivalent forms in which the identity matrix of u× u appears.
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A.2 Overview of the Proof

As recalled in section 2.1, to analyse the security of our PRF, we consider a
distinguisher making q requests xi, 1 ≤ i ≤ q, to an oracle. The latter simulates
the PRF or a random function of Rand(n, nu), depending on the value of a bit
parameter b.

The general idea of the proof is the same as the one for Twind [9]. For a given
request xi, 1 ≤ i ≤ q, we denote Ti the set of all possible instantiations of the
�-tuple

(
P (xi), P (xi + 1), . . . , P (xi + � − 1)

)
. To simulate our PRF, the oracle

randomly picks an element in Ti and apply F̃+ on it. For each request, if the set
Ti is fair (see definition 1 on the previous page), there is a uniform distribution
over the output of F̃+ so that the distinguisher has no advantage (to determine
the value of the bit b).

However, the set Ti is not fair. The goal of the proof is to show that Ti is
almost fair, i.e. Ti is zi-fair, for a given zi to determine. Let us denote T ∗i the
fair set obtained from Ti. We analyse the oracle simulation assuming it randomly
picks an �-tuple in T ∗i instead of Ti. In a second step of the simulation, the oracle
will verify that the selected element can actually be used as an instantiation, i.e.
it is also in Ti (so that the simulation is not altered).

As it will be proved, T ∗i and Ti will only differ from few elements; i.e. Ti is
zi-fair with a small zi. Thus, if the selected �-tuple is in T ∗i ∩ Ti (most of the
time as proved later), the distinguisher has no advantage over the bit b. And, if
the picked element is not in T ∗i ∩ Ti, the probability of such an event (equals to
zi/|Ti|) bounds the advantage of the distinguisher for the request. By summing
this advantage among the q different requests, we obtain the advantage of the
distinguisher.

The main goal of the proof is to bound the value zi, for each request xi,
1 ≤ i ≤ q.

A.3 Security Analysis of F+ (and F )

In theorem 1, the hypothesis ∀(i, j) ∈ N
2, 1 ≤ i < j ≤ q, {xi, xi + 1, . . . , xi +

�− 1}∩{xj, xj +1, . . . , xj + �− 1} = ∅ ensures that among the q requests xi, we
will exactly have to instantiate q × � outputs of the permutation P since there
will not exist collision over the input of the permutation P . For each request xi,
1 ≤ i ≤ q, we denote

– Ti the set of all possible instantiations of
(
P (xi), P (xi+1), . . . , P (xi+�−1)

)
;

– T ∗i the fair set constructed from Ti;
– (πi,1, . . . , πi,�) the �-tuple used to instantiate

(
P (xi), . . . , P (xi + �− 1)

)
;

– Li, the set of all the values πk,j , 1 ≤ k < i, 1 ≤ j ≤ � appearing in the
chosen instantiations of previous requests xk, 1 ≤ k < i.

Remark 3. For all i, 2 ≤ i ≤ q − 1, |Li| = �(i− 1).

Simulation Description. The oracle simulation can be summed up by al-
gorithm 2 on page 340. In a first step of the simulation, for each request xi,



A Generic Method to Design Modes of Operation 339

1 ≤ i ≤ q, we first accept to instantiate
(
P (xi), P (xi + 1), . . . , P (xi + � − 1)

)

with �-tuples containing eventually two equal components (which cannot exist
since P is a permutation). Thus, we consider Ti defined by

Ti =
{

(t1, . . . , t�), ∀j, 1 ≤ j ≤ �, tj ∈ {0, 1}n \ Li

}
.

Note that the cardinality of Ti verifies

|Ti| =
(
2n − �(i− 1)

)�

≥ 2�n − �
(
� (i− 1) 2�(n−1)

)
= 2�n − �2 (i− 1) 2�(n−1).

(1)

The fair set T ∗i also contains �-tuples with eventually two equal components. As
said in the overview of the proof, the oracle first randomly picks (πi,1, πi,2, . . . , πi,�)
in the fair set T ∗i . In a second step, the oracle checks if (πi,1, πi,2, . . . , πi,�) is also
in T ∗i ∩ Ti. If not, (step denoted “Bad case 1” in algorithm 2 on the next page),
the oracle then randomly picks a new �-tuple in Ti.

Finally, let C∗ be the subset of
({0, 1}n)� containing �-tuples with at least 2

equal components. The cardinality of C∗ is bounded by

(2n − |Li|)�−1

(
�

2

)
≤ (2n)�−1�2/2.

The oracle checks if (πi,1, πi,2, . . . , πi,�) is in C∗. In such a case (denoted “Bad
case 2” in algorithm 2) a new �-tuple with � different components is randomly
picked in Ti∩C∗. (Thus, for each request xi, 1 ≤ i ≤ q, the set Li always contains
exactly �(i− 1) elements).

These two steps “Bad case 1” and “Bad case 2” ensure a valid oracle simulation
and if no such “bad case” appends, the distinguisher has no advantage since the
�-tuple has been randomly picked in a fair set. The advantage of the distinguisher
is bounded by the probability of the event “Bad case 1” or “Bad case 2”. The
main technical point of the proof is to bound the value zi such that the Ti,
1 ≤ i ≤ q, is zi-fair.

Fairness of Ti. We first give a useful lemma. Without loss of generality, we
assume that the u columns of identity matrix u× u are already in G.

Lemma 1. Let G be the generator matrix (of size u × �) associated to a linear
code defined over GF (2), of length �, of dimension u and of minimal distance
d such that the u columns of the identity matrix are the u columns i1, . . . , iu of
G. Let F̃+ be the function defined on page 337 and let T ⊆ ({0, 1}n)�. If the
components i1, . . . , iu of T are defined over {0, 1}n, then the set T is fair for
F̃+.

Proof. The components i1, . . . , iu of T are associated to the columns of the
identity matrix appearing in G. Thus, these components correspond to the terms
P (x−1+ j), for all j ∈ {i1, . . . , iu} and are used only once and each for only one
of the u components of the output of F̃+. Thus, for any instantiation of the �−u
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Algorithm 2. Oracle simulation
bad← 0
for i from 1 to q do

Determine the fair set T ∗
i from Ti

Randomly pick an element (πi,1, . . . πi,�) in T ∗
i

{Bad case 1}
if (πi,1, . . . πi,�) /∈ T ∗

i ∩ Ti then
bad← 1
Randomly pick a new element (πi,1, . . . πi,�) in Ti

{Bad case 2}
if (πi,1, . . . πi,�) ∈ C∗ then

bad← 1
Randomly pick a new element (πi,1, . . . πi,�) in Ti ∩ C∗

Output F̃+(πi,1, . . . πi,�)

other components of T , there is a bijection between the image set
({0, 1}n)u and

the u components P (x − 1 + j), for all j ∈ {i1, . . . , iu}. As a consequence, T is
fair and each image element y ∈ ({0, 1}n)u is reached as often as the number of
possible instantiations of the �− u other components.

The core of the proof consists in decomposing the set Ti into a union and/or
difference of subsets of

({0, 1}n)�, 1 ≤ j, each verifying only one of the two
following properties:

Property 1: u components i1, i2, . . . , iu are defined over {0, 1}n and there exists
a generator matrix G′, equivalent to G, which contains the identity matrix
u× u in columns i1, i2, . . . , iu. Lemma 1 can be applied to conclude that the
set is fair for F̃+;

Property 2: d components are defined over Li. These sets will be of negligible
cardinality in comparison with the cardinality of Ti, and will correspond to
completion or overhanging sets for Ti.

For the proof, we consider the list of images L(Ti) obtained by applying F̃+

to Ti. In this list, an element of
({0, 1}n)u appears as often as its number of

pre-images in Ti.
The method to obtain an adequate decomposition consists in the recursive

algorithm named Decomposition(MAT, T ) and described in algorithm 3. It takes
as input a generator matrix MAT and a subset T of

({0, 1}n)�. The algorithm
is initialized with G and Ti.

Let us consider the tree of the recursive execution of the algorithm
Decomposition(G, Ti). The root corresponds to the set Ti. At each generation of
the tree, the definition set of one of the � components of a given node is modified
into {0, 1}n or Li which leads to two child nodes. Thus, after u+d−1 generations
in the tree, each leaf verifies property 1 or 2 (the sets involved in the (u+d−1)th

generation of the tree contain d − 1 components defined over Li and u compo-
nents defined over {0, 1}n). Using the Singleton bound (� ≥ u+d−1), and since
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Algorithm 3. Decomposition(MAT, T )
Let k, 1 ≤ k ≤ u be the least integer such that the kth row of MAT contains no “1”
with a corresponding component in T defined over {0, 1}n. {We select the first

row involving no component of T defined over {0, 1}n}
Let j, 1 ≤ j ≤ � be the least integer such that MATk,j = 1 and the jth component
of T is defined over {0, 1}n \ Li.

Decompose T into the form A \B according to the jth component such that the jth

component of A and B are now defined respectively over {0, 1}n and Li {We obtain

L(T ) = L(A)− L(B)}
Compute the generator matrix MAT′, equivalent to MAT, such that the kth row of
MAT′ is the only row with a “1” in column j {We obtain the kth column of the

identity matrix u× u}
if A verifies property 1 then

return A and execute Decomposition(MAT, B)
else

if B verifies property 2 then
return B and execute Decomposition(MAT′, A)

else
execute Decomposition(MAT′, A) and Decomposition(MAT, B)

the algorithm Decomposition is applied to G and Ti, it is always possible to
obtain u + d− 1 generations in the tree, i.e. Decomposition(G, Ti) always ends
with sets verifying property 1 or 2.

Let us evaluate the number denoted N of sets verifying property 2. These sets
have k, 0 ≤ k ≤ u− 1, components defined over {0, 1}n among the first k + d− 1
generations in the tree. Thus, the number of sets verifying property 2 is given by

N =
u−1∑

k=0

(
d + k − 1

d− 1

)
.

The cardinality of such a set with exactly k, 0 ≤ k ≤ u− 1, components defined
over {0, 1}n is |Li|d × 2nk × (2n − |Li|)�−d−k.

When the algorithm ends, we obtain one of the two following equalities, de-
pending of the parity of d.

L(Ti) =
∑

j

L(Ai
j)−

∑

j

L(Bi
j)−

N∑

j=1

L(Ci
j) if d is odd, (2)

L(Ti) =
∑

j

L(Ai
j)−

∑

j

L(Bi
j) +

N∑

j=1

L(Ci
j) if d is even. (3)

In both equalities, the sets Ci
j verify property 2 and the sets Ai

j and Bi
j verify

property 1: lemma 1 can be applied, i.e. the sets Ai
j and Bi

j are fair.
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After a first step of the decomposition algorithm, we obtain L(T ) = L(A) −
L(B) where A has no component defined over Li and B has one component
defined over Li. When applying the algorithm to A and B, we obtain L(A) =
L(A1)− L(A2) and L(B) = L(B1)− L(B2) so that we obtain L(T ) = L(A1)−
L(A2)−L(B1)+L(B2). The set A1 has no component defined over Li, A2 and B1

have one component defined over Li and B2 has two such components. It is quite
easy to see by induction that the sign of a term L(D) is directly linked to the
parity of the number of components of D defined over Li. Thus, in equalities (2)
and (3), the sets Ai

j (resp. Bi
j) have an even (resp. odd) number of components

defined over Li. Since the sets Ci
j have exactly d components defined over Li,

the sign of L(Ci
j) depends on the parity of d. This justifies the distinction over

the parity of d in equalities (2) and (3).
Let us first consider equality (2). The sets Ci

j , 1 ≤ j ≤ N are not neces-
sarily disjoint. However, if |Ti| +

∑N
j=1 |Ci

j | ≤ 2n�, there are enough �-tuples in
({0, 1}n)� \ Ti to construct a set C such L(C) =

∑N
j=1 L(Ci

j). In the same way
for equality (3), if 0 ≤ |Ti|−

∑N
j=1 |Ci

j | there is enough �-tuples in Ti to construct
a set C ⊆ Ti such L(C) =

∑N
j=1 L(Ci

j). Thus, we can rewrite equalities (2) and
(3) as

L(Ti ∪ C) =
∑

j

L(Ai
j)−

∑

j

L(Bi
j) if d is odd,

L(Ti \ C) =
∑

j

L(Ai
j)−

∑

j

L(Bi
j) if d is even.

Since the sets Ai
j and Bi

j are fair, the set C is a completion set for Ti if d is odd
or an overhanging set for Ti if d is even. Thus, Ti is zi-fair, with

zi = |C| =
u−1∑

k=0

(
d + k − 1

d− 1

)
|Li|d × 2nk × (2n − |Li|)�−d−k

≤ �d × |Li|d × 2n(�−d) ≤ �2d(i− 1)d 2n(�−d)

(the first inequality uses the remark 1).

The inequalities |Ti|+
∑N

j=1 |Ci
j | ≤ 2n� and 0 ≤ |Ti| −

∑N
j=1 |Ci

j | are verified
if

1 ≤ i ≤ q ≤ 2n−1/�2. (4)

For a given request xi, an �-tuple randomly picked in T ∗i may not be in T ∗i ∩Ti

with a probability p1,i verifying

p1,i =
zi

|Ti| ≤
�2d(i− 1)d 2n(�−d)

|Ti| .

Using inequality (1) and inequality (4), we obtain |Ti| ≥ 2n�−1 so that

p1,i ≤ �2d

2dn−1
(i− 1)d.
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As explained previously, an �-tuple randomly picked in Ti may also be in
Ti ∩ C∗ �= ∅. This is a problematic case and a new �-tuple must be chosen to
leave the simulation correct. As seen previously, |Ti| ≥ 2n�−1, so the probability
p2,i of this event verifies

p2,i =
|C∗|
|Ti| ≤

(2n)�−1�2/2
2n�−1

≤ �2

2n
.

Thus, at each request xi, 1 ≤ i ≤ q, the advantage of the distinguisher is
bounded by p1,i + p2,i. The overall advantage of the distinguisher is given by

q∑

i=1

( �2d

2dn−1
(i− 1)d +

�2

2n

)
≤ qd+1�2d

2dn
+

q�2

2n
.

The security level is determined by the term qd+1�2d

2dn which is beyond the
birthday bound for any d ≥ 2.
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Abstract. We present several weaknesses in the key scheduling algo-
rithm of RC4 when the secret key contains an initialization vector – a
cryptographic scheme typically used by the WEP and WPA protocols to
protect IEEE 802.11 wireless communications. First, we show how the
previously discovered key recovery attacks can be improved by reducing
the dependency between the secret key bytes. Then, we describe two
new weaknesses related to the modulo operation of the key scheduling
algorithm. Finally, we describe a passive-only attack able to significantly
improve the key recovery process on WEP with a data complexity of 215

eavesdropped packets.

Keywords: RC4, stream cipher, cryptanalysis, key related attack, WEP.

1 Introduction

RC4 is a stream cipher designed by Ronald Rivest in 1987. It had been initially
a trade secret until the algorithm was anonymously posted to the Cypherpunks
mailing list in September 1994. Nowadays, RC4 is still widely used: it is the
default cipher of the SSL/TLS protocol and a cryptographic primitive of the
WPA protocol. Its popularity probably comes from its simplicity and the cheap
computational cost of the encryption and decryption. Due to its straightfor-
wardness, RC4 has initiated extensive research, revealing weaknesses in case of
misuse. The most famous example is the attack on the WEP (Wired Equivalent
Privacy) protocol.

WEP is a part of the IEEE 802.11 wireless standard ratified in 1999 [1]. It was
designed to provide confidentiality on wireless communications by using RC4.
In order to simplify the key set up, WEP uses preinstalled fixed keys. However,
RC4 is a stream cipher: the same secret key must never be used twice. To prevent
any repetition, WEP concatenates to the key an initialization vector (IV), where
the IV is a 24-bit value which is publicly disclosed in the header of the protocol.

The first analysis of the WEP standard has been done in 2001 by Borisov,
Goldberg and Wagner in [2]. They demonstrated major security flaws revealing
that WEP does not provide confidentiality, integrity and authentication. The
same year, Fluhrer, Mantin and Shamir in [3] showed a noteworthy ciphertext-
only attack on WEP based on the concatenated IV scheme on RC4. They proved
that the secret part of the key can be recovered if a large amount of encrypted
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packets with some specific IV values are passively eavesdropped. In fact, these
so called weak keys or weak IV classes were previously discovered by Andrew
Roos [4] and David Wagner [5] four years before the publication of the IEEE
802.11b standard.

A practical issue of the key recovery process is to passively obtain a large
amount of encrypted packets (about 4 millions of encrypted packets to recover
the secret key with a success probability of 50%). To reduce this constraint,
David Hulton [6] in 2002, Andrea Bittau [7] in 2003 and a hacker nicknamed
Korek [8,9] in 2004 highlighted more weak IV classes. Thus, the amount of
encrypted packets needed to recover the secret key with the same probability of
success has been divided by four.

On the active side, WEP is not protected against active replay attacks: it
is possible to replay some specific eavesdropped packets to generate wireless
network traffic. Thus, the amount of encrypted packets with different IVs may
be obtained faster. In 2004, tools merging all these attacks were publicly dis-
closed [10,11].

In 2005, Mantin presented additional attacks on truncated RC4 in [12], based
on the Jenkins correlations [13]. In 2006, Klein applied the same correlations to
WEP [14] to provide a remarkable known-plaintext attack which does not need
weak IVs to recover the secret key. The same year, Bittau, Handley and Lackey
presented in [15] new active attacks able to inject and decrypt data without
recovering the secret key (these attacks are based on the fragmentation feature
provided by the IEEE 802.11 standard). Finally, in 2007, a correlation related
to the first three bytes of the secret key and the first byte of the keystream has
been presented in [16].

In order to correct the weaknesses discovered before 2004, the Wi-Fi Alliance
proposed in [17] a WEP improved protocol called WPA (Wi-Fi Protected Ac-
cess). It has been established that WPA must be hardware compatible with
existing WEP capable devices to be deployed as a software patch. Basically,
WPA is a WEP wrapper which contains anti-replay protections and a key man-
agement scheme to avoid key reuse. However, the correlations discovered in this
paper are still almost theoretically applicable to WPA despite that the RC4 se-
cret key is completely different for each encrypted packet. In 2004, the Wi-Fi
Alliance finally proposed a new standard called IEEE 802.11i or WPA2 [18],
where RC4 can be replaced by AES.

Limitation of the Existing Attacks. Almost all key recovery attacks are
related to the value of the IV: each recovered secret key byte is provided by a
specific weak IV class. However, an attacker does not control the value of the
IV. It means that the attacker cannot recover the secret byte K[i] if he was not
able to eavesdrop encrypted packets from its weak IV class.

In parallel, Klein’s key recovery attack is related to the knowledge of the plain-
text, which cannot be completely determined with passive-only attacks. Indeed,
the secret key byte K[i] cannot be recovered if the ith byte of the plaintext is
unknown.
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Moreover, all existing key recovery attacks suffer from a relation between
the secret key bytes. To recover the byte K[i] of the secret key, we need to
successfully rederive the previous bytes K[0], K[1], . . . , K[i−1]. In practice, this
constraint is a significant limitation because if the key recovery process does
not work for only one key byte (because not enough encrypted packets were
captured by the attacker from the concerning weak IV class or because a byte
of the plaintext is unknown), all the following key bytes will be probably mis-
recovered. Furthermore, WPA and some implementations of WEP filter the weak
IV classes discovered by Fluhrer, Mantin and Shamir in [3].

Our Contribution. In this paper, we propose an improvement, applicable to all
the key recovery attacks to significantly reduce the key dependency. Therefore,
it becomes possible to independently recover some parts of the secret key. It
means that even if an attacker has passively eavesdropped a very limited number
of encrypted packets, he is now able to recover a part of the secret key1. The
missing key bytes may be recovered by an exhaustive search. Because we can
do the assumption that the secret key byte K[i] can be recovered even if the
preceding key bytes are unknown, new weak IV classes have been discovered.
These new attacks improve the global key recovery process.

By significantly reducing the secret key byte dependency, we have highlighted
additional weaknesses. In RC4, the key is used modulo its size. It means that
the secret key byte K[i] is equal to K[i + k�] (where � is the size of the key,
k = 1, 2, . . . and i = 0, 1, 2, . . . , � − 1). This property was irrelevant for the
existing key recovery attacks because the whole secret key had to be recovered
to attack the repetition. Without the secret key byte dependency, we are able
to provide new weak IV classes attacking K[i + k�], where k = 1, 2, . . . , m. A
practical analysis of this improvement is given in order to prove the efficiency of
these new key recovery attacks on WEP.

Structure of the Paper. Section 2 describes the foundation of the key recovery
attacks on WEP, in particular the attack discovered by Fluhrer, Mantin and
Shamir in [3] and the Klein attack, described in [14]. In Section 3, we study how
to reduce the key bytes dependency. In section 4, we explain how to exploit the
modulo operation in the KSA and how the repetition of the secret key provides
new weak IV classes. Section 5 describes our practical attack. Finally we conclude
with further improvements.

2 Foundation of the Key Recovery Attacks

2.1 Description of RC4

The stream cipher RC4 is divided into two parts: the Key Scheduling Algo-
rithm (KSA) and the Pseudo Random Generator Algorithm (PRGA). The KSA
1 This attack has been independently rediscovered later in April 2007 by Tews, Wein-

mann, and Pyshkin in [19]. It is based on [14] but applies to active attacks. In this
paper, we decided to focus on passive ones since it is the gateway for the WPA
analysis.



Passive–Only Key Recovery Attacks on RC4 347

generates an initial state from a random key K of � words of n bits as described
in Algorithm 1. It starts with an array {0, 1, . . . , N − 1}, where N = 2n and
swaps N pairs. At the end, we obtain the initial state SN−1.

Algorithm 1. RC4 Key Scheduling Algorithm (KSA)
1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] + K[i mod �]
7: swap(S[i],S[j])
8: end for

Once the initial state SN−1 created, it will be used by the second part of RC4,
the PRGA. Its role is to generate a keystream of bytes which will be XORed
with the plaintext to obtain the ciphertext. Thus, RC4 computes the loop of the
PRGA each time a new keystream byte zi is needed, according to Algorithm 2.

Algorithm 2. RC4 Pseudo Random Generator Algorithm (PRGA)
1: i← 0
2: j ← 0
3: loop
4: i← i + 1
5: j ← j + S[i]
6: swap(S[i],S[j])
7: keystream byte zi = S[S[i] + S[j]]
8: end loop

Let Si[k] denotes the value of the array S at the index k, after the round i in the
KSA. Let S−1

i [p] be the index of the value p in the array S after the round i in
the KSA. For example S−1

i [Si[k]] = k and Si[S−1
i [p]] = p. Let ji be the value of

j during the round i where the rounds are indexed in accordance with i. Thus,
the KSA has rounds 0, 1, . . . , N − 1 and the PRGA has rounds 1, 2, . . . Let S′1
denotes the array S after the first round of the PRGA (i.e. S′1 is equal to SN−1

with SN−1[1] and SN−1[SN−1[1]] swapped). We define z1, the first byte of the
keystream as:

z1 = S′1[S
′
1[1] + S′1[SN−1[1]]] = S′1[SN−1[SN−1[1]] + SN−1[1]] (1)

2.2 KSA Evolution

Definition 1 (p–protected). During the KSA process, if S−1
p [m] ≤ p, we say

that the value m is p–protected.
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To illustrate this definition, we present an example with the first three rounds
of some KSA process. The values in bold are i–protected. We remark that if
m = Si[k] is i–protected, then m = Si+1[k] if and only if ji+1 �= k. In the KSA,
this happens with probability of about 1− 1/N .

Si i ji i–protected values
0 1 2 3 4 . . . 255 Init Init
3 1 2 0 4 . . . 255 0 3 {3}
1 3 2 0 4 . . . 255 1 0 {1, 3}
1 3 42 0 4 . . . 255 2 42 {1, 3, 42}

During the KSA, a permutation is done between two values at the end of each
round. The indices of the two swapped values are given by i and ji. Although the
value of i is predictable, the evolution of ji depends on the secret key and may be
considered as random. To facilitate the analysis of the KSA we will approximate
some rounds of the KSA by an idealized version in which step 6 assigns a random
byte in register j.2 However, even if ji is considered as random, it is possible
to guarantee with a relatively high probability that some values will not be
modified during the process of the KSA. We propose to redefine the Evolution
lemma given by Mantin in [12]:

Lemma 2 (Evolution Lemma). Consider an idealized KSA where j is picked
randomly for the last (N − p) rounds. Let I be a set of p–protected values of
cardinality x. The probability that no element of I is swapped during the last
(N − p) rounds of the KSA is

P (x, p) =
(

N − x

N

)N−p

Furthermore, if I is a set of (p−1)–protected values and J is a non-intersecting
set of p–protected values, the probability that no element of I is swapped during
round p and no element of I ∪ J is swapped during the last rounds is

P (#I, #J , p) =
N −#I

N

(
N −#I −#J

N

)N−p

2.3 Description of WEP

According to [1], WEP uses RC4 with N = 256 and n = 8 to provide confiden-
tiality. The key contains a 24-bit long IV concatenated to a secret key of 40 or
104 bits. Thus, the complete key size is either 64 or 128 bits. Consider a 64-bit
(8 bytes) key size:

K = K[0]||K[1]||K[2]||K[3]|| . . . ||K[7] = IV0||IV1||IV2||K[3]|| . . . ||K[7]

2 This approximation was also used by Mironov in [20].
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where IVi represents the ith byte of the IV and K[3]|| . . . ||K[7] the secret part
of the key. In theory, the value of the IV should be random but in practice, it
is a counter mostly in little-endian and incremented by one each time a new
802.11b frame is encrypted. Thus, each packet uses a slightly different key. The
key K is used by RC4 and the resulting keystream is XORed with the plaintext
to obtain the ciphertext. Unfortunately, a portion of the plaintext is practically
constant [21] and some of the following bytes can be derived. They correspond
to the LLC header and the SNAP header and some bytes of the TCP/IP encap-
sulated frame. For example, by XORing the first byte of the ciphertext with the
constant value 0xAA, we obtain the first byte of the keystream.

2.4 Description of WPA

WPA has been designed for use with an IEEE 802.1X authentication server with
the aim to distribute different keys to each user. However, it can also be used
in a lightweighted mode called ”pre-shared key” (WPA-PSK), where every user
is given the same key. According to [17], each user must enter a pass-phrase
to access the network. The pass-phrase may be from 8 to 63 printable ASCII
characters or 64 hexadecimal digits. The major improvement in WPA over WEP
is the Temporal Key Integrity Protocol (TKIP), a key management scheme to
avoid key reuse. TKIP is a key scheduling in two phases used to generate a
completely different RC4 key for each transmitted packet (called Per Packet
Key). Thus, even if the attacks based on weak IVs and the Klein attack still
exist, an attacker will have only one trial to recover a specific RC4 secret key.
Moreover, a filter avoids the use of some weak IV classes (but only the weak IV
class discovered by Fluhrer Mantin and Shamir in [3]). In addition, WPA also
provides packet integrity which prevents replay attacks being executed. Thus,
only passive key recovery attacks are theoretically applicable to WPA.

2.5 The Fluhrer Mantin and Shamir (FMS) Attack

To understand how key recovery attacks work, we briefly present the FMS attack.
According to [3], this attack uses the property of some specific IV values called
weak keys. Let IV0 = 3, IV1 = 255 and IV2 equals some arbitrary value x �∈
{251, 252}. We assume that j3 is different from {0, 1}. Our goal is to obtain the
value of the first secret byte of the key K[3]. Due to the assumption on x, x + 5
is different from {0, 1}. Together with the assumptions on j3, we obtain that the
first four rounds of the KSA are given by:

Si i j
0 1 2 3 4 · · · 255
3 1 2 0 4 · · · 255 0 0 + 0 + IV0 = 3
3 0 2 1 4 · · · 255 1 3 + S0[1] + IV1 = 3
3 0 x + 5 1 4 · · · 255 2 3 + S1[2] + IV2 = x + 5
3 0 · S2[j3] · · · · 255 3 x + 5 + S2[3] + K[3] = j3
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Because K[3] is unknown, we cannot predict the values of S[i], i ∈ {3, . . . , 255}
after the round 2, however they will eventually change, according to the KSA.
Now we suppose that S2[0] = S3[0] = S255[0] = 3, S2[1] = S3[1] = S255[1] = 0
and S3[3] = S255[3] = S2[j3]. Following the Evolution lemma with I = {0, 3},
J = {S2[3]} and p = 3, the probability that j3 �= {0, 1} and S2[j3] remains at
the same place is P (2, 1, 3) ≈ 5%. According to our assumptions and (1), the
first byte of the keystream generated by the PRGA is:

S i j
3 0 · S2[j3] · · · · 255
0 3 · S2[j3] · · · · 255 1 j + S255[i] = 0 + 0 = 0

z1 = S′1[S
′
1[1]+S′1[S255[1]] = S′1[S255[0]+S255[1]] 5%= Sp[Sp−1[0]+Sp−1[1]] = S2[j3]

Note that z1 �= {0, 3} when this holds. We can now easily recover the secret key
byte K[3] because the first byte of the keystream can be recovered: z1 = S2[j3] =
c0 ⊕ 0xAA where c0 is the first byte of the ciphertext and 0xAA the first constant
byte of the plaintext, the LLC header. Thus, K[3] = S−1

2 [z1] − S2[3] − j2 =
S−1

2 [z1]− x− 6. We notice that the weak IV class given by IV0 = 3, IV1 = 255
and IV2 = x can be described as a specific S2 table state class where S2[1] = 0
and S2[0] = 3.

We can generalize the FMS attack: we need a large amount of encrypted
packets where the value of the IV gives the state Sp−1 such that Sp−1[1] =
0, Sp−1[0] = p and z1 �= {0, p}. This defines the weak IV class which recovers
the secret key byte K[p]. The secret key byte is rederived with a probability of
success PFMS(p) = P (2, 1, p) according to the Evolution lemma.

K[p]
PFMS(p)

= S−1
p−1[z1]− Sp−1[p]− jp−1

= S−1
p−1[z1]−

p∑

j=1

Sj−1[j]−
p−1∑

i=0

K[i] (2)

The attacker will then collect the probed values for K[p], according to (2) and
finally select the one with the highest vote. Note that to rederive the secret
key byte K[p], the attack must successfully recover the previous bytes K[p −
1], . . . , K[3] in order to compute Sp−1[p] and jp−1.

Nowadays, there are dozens of known key recovery attacks similar to the
FMS attack. In order to have a relevant list of the known attacks, one has to
read [22] or the source code of the tool Aircrack [11] or Weplab [10]. These
attacks are divided into three categories. The first kind of attack uses only z1

and the state of the array Sp−1 of the KSA to recover the secret key (typically
the FMS attack). The second one uses z1 and z2. Note that they can easily
be extended to the combination of every known zi to provide more weak IV
classes.The last one highlights the unprobable secret key bytes, they are called
negative attacks.



Passive–Only Key Recovery Attacks on RC4 351

2.6 The Klein Attack

In 2006, Andreas Klein presented in [14] a practical application of the Jenkins
correlation [13] to WEP.

Theorem 3. Let S′i be the ith step of the PRGA where the internal state is a
random permutation, and a random value j,

Pr (zi + S′i[j] mod N = c) =

⎧
⎨

⎩

2
N if c = i

N−2
N(N−1) if c �= i

Klein demonstrated a strong correlation in the 7th step of the PRGA which is
not related to a specific weak IV class. It means that each eavesdropped packet
may rederive the secret key.

S′i[j]
Pj= i− zi (From Theorem 3 with Pj = 2/N) (3)

S′i−1[i]
P ′
= Si[i] P ′ = ((N − 1)/N)N−2 (4)

S′i[j] = S′i−1[i] (step 6 of the PRGA) (5)
Si[i] = Si−1[ji] (KSA) (6)

ji = Si−1[i] + ji−1 + K[i] (step 6 of the KSA) (7)

From (3) with respectively (4), (5), (6) and (7) we have

K[p] PKlein= S−1
p−1 [p− zp mod N ]− Sp−1[p]− jp−1 mod N (8)

which hold with a probability

PKlein =
2
N
·
(

N − 1
N

)N−2

+
N − 2

N(N − 1)
·
(

1−
(

N − 1
N

)N−2
)

≈ 1.36
N

(9)

A significant limitation of the Klein key recovery attack is that to recover the
secret key byte K[i], the ith byte of the keystream has to be known.

3 The VX Attack: How to Reduce the Secret Key Bytes
Dependency

A major issue related to all key recovery attacks is that if a secret key byte
has not been correctly recovered, the whole key will be probably mis-recovered
due to the key byte dependency (to rederive K[i], the previous secret key bytes
K[i − 1], K[i − 2], . . . , K[3] must be successfully recovered). In this section we
present a new attack, called VX, able to recover more efficiently the secret key
by significantly reducing the key bytes dependency.
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3.1 The FMS Key Recovery Attack

The paradigm of this attack is to recover independently the sum of the secret
key bytes by computing some predictable parts of the equation (2). Consider the
FMS attack described above. According to (2), we obtain

p∑

i=0

K[i]
PFMS(p)

= S−1
p−1[z1]−

p∑

j=1

Sj−1[j] (10)

Consider that we only know the state S2 specified by the IV. We define P1(p),
the probability that S−1

p−1[z1] = S−1
2 [z1] in the idealized version of the KSA by

P1(p) = Pr
(
S−1

p−1[z1] = S−1
2 [z1]

)
=
(

N − 1
N

)p−2

, p ≥ 2 (11)

The array Sj with j = 0, 1, . . . , p−1 is partially known if p is small, because it is
close to the initialization state of S at the beginning of the KSA where S[i] = i.
Thus the sum

∑p
j=1 Sj−1[j] is equivalent to S0[1] + S1[2] +

∑p
j=3 S2[j] with a

probability P2(p).3

P2(p) = Pr

⎛

⎝
p∑

j=1

Sj−1[j] = S0[1] + S1[2] +
p∑

j=3

S2[j]

⎞

⎠

≈
p∏

m=3

(
N − p + m

N

)
, p ≥ 3 (12)

Thus, we can recover independently each sum of the key bytes K[0 . . . p], where
K[i . . . j] = K[i] + K[i + 1] + . . . + K[j], j ≥ i with a probability of success
PVXF (p) = PFMS(3) ·P1(p) · P2(p) and p = 3, 4, . . . , �− 1. Indeed, using (11) and
(12) in (10), we have

K[3 . . . p]
PVXF

(p)
= S−1

2 [z1]− S0[1]− S1[2]−
p∑

j=3

S2[j]−
2∑

v=0

IVv (13)

since the key bytes K[0], K[1] and K[2] are known and different for each packet
because they correspond to the IV, we store the votes for the secret and fixed
part of the key, the sum K[3 . . . p]. Equation (13) is a correlation between a byte
depending on the secret key only and a byte which can be computed from the
802.11b frame only. Finally, each secret key byte K[i] can be recovered with

K[p] = K[3 . . . p]−K[3 . . . (p− 1)]

3.2 The Klein Key Recovery Attack

The same technique can be applied to the Klein key recovery attack. Indeed, the
dependency is based on the same values, only the probability PFMS is different.
According to (8) we have,
3 This is an improvement of the correlation discovered by Roos in [4].
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p∑

i=0

K[i]
PKlein(p)

= S−1
p−1[p− zp mod N ]−

p∑

j=1

Sj−1[j]

Thus, we can apply the same technique described above and we obtain that

K[3 . . . p]
PVXK

(p)
= S−1

2 [p− zp mod N ] (14)

−S0[1]− S1[2]−
p∑

j=3

S2[j]−
2∑

v=0

IVv

where

PKleinTot = P1(p) · P2(p) ·
(

N − 1
N

)N−2

PVXK
(p) =

2
N
· PKleinTot +

N − 2
N(N − 1)

· (1− PKleinTot)

Note that for some values of the key bytes, the Klein attack may not work.

4 Weaknesses in the Modulo Operation of the KSA

During the KSA of RC4, the key is used modulo its size. It means that the
secret key byte K[i] = K[i + k�], where � is the size of the key, k = 1, 2, . . . , m
and i = 3, . . . , � − 1. We remark that if an attacker is unable to recover the
secret key byte K[i] (because not enough frames were captured from its weak
IV class or because the keystream byte needed to recover the secret key byte
is unknown), he could be interested to recover the key byte K[i + �] (through
another weak IV class or another keystream byte) instead of K[i]. Due to the
key bytes dependency, this property was irrelevant for the existing key recovery
attacks. Indeed, the whole secret key had to be recovered to attack the modulo
repetition.

4.1 Weakness in the Repetition of the Secret Key

According to the VX attack, it is possible to recover independently the value
of the secret key bytes sum K[3 . . . p] where p = i + k�, k = 0, 1, . . . .m and
i = 3, . . . �− 1. Consider the FMS attack described above and the equation (13).
We define,

K[p] � K[3 . . . i] + k ·K[3 . . . (�− 1)]

PVXF
(p)

= S−1
2 [z1]− S0[1]− S1[2]−

p∑

j=3

S2[j]− (k + 1) ·
2∑

v=0

IVv (15)

If an attacker has not enough weak IV to recover the sum K[3 . . . i] but he is able
to rederive correctly K[3 . . . (�− 1)], the targeted sum can be recovered when a
vote for K[p] is collected, according to (15) with k ≥ 1. The same technique can
be used with the Klein attack when the keystream byte needed to recover the
secret key byte is unknown.



354 S. Vaudenay and M. Vuagnoux

4.2 Weakness in the Repetition of the IV

In the previous section, we have seen that the key repetition can be used to
recover a part of the secret key if the sum K[3 . . . (� − 1)] has been correctly
rederived. An interesting feature of WEP is that the three first repeated bytes of
the key are publicly disclosed, they correspond to the IV. Because these values
are known, they can be used to recover more efficiently the critical secret key
bytes sum K[3 . . . (� − 1)]. For p = i + k� with i = {0, 1, 2} we define K[p] =
k ·K[3 . . . (�− 1)]. Thus,

K[p] � k ·K[3 . . . (�− 1)]

PVXF
(p)

= S−1
2 [z1]− S0[1]− S1[2]−

p∑

j=3

S2[j]− k ·
2∑

j=0

IVj −
i∑

j=0

IVj (16)

Thus, four weak IV classes, instead of only one are dedicated to the recovery of
the critical sum above. The same technique can be used with the Klein attack:
four different keystream bytes may rederive the secret key sum. This finally leads
us to many attack on byte K[p] where all bytes are linked by,

K[p] =
{

k ·K[3 . . . (�− 1)] + K[3 . . . (p mod �)] for p mod � = 3 . . . �− 1
k ·K[3 . . . �− 1] for p mod � = 0, 1, 2 (17)

5 Attack Principle

The principle of the attack is composed of three parts. The first one collects
the IVs and the known keystream bytes of the passively eavesdropped 802.11
packets. Note that some keystream bytes are unknown (the Appendix A gives
the probable plaintext bytes, for TCP and ARP packets, needed to recover the
keystream bytes). For each known keystream byte zp, the extended Klein attack
described above will return a probed byte n for the sum of secret key bytes K[p]
weighted by Pv the success probability of the vote. The key recovery attacks
based on the IV are similarly used, by using the IV and the two first bytes of
the keystream z1 and z2.

Once the vote process is accomplished, we use two techniques to rederive more
efficiently the secret key sum K[�−1]. Firstly we take profit of the modulo repeti-
tion of the IV according to (16). Secondly, we do an autocorrelation on the r dis-
crete signals K[3] + k ·K[�− 1]||K[4] + k ·K[�− 1]|| . . . ||K[�− 2] + k ·K[�− 1]
k = 0, 1, . . . , r where the time shifting value corresponds to K[�− 1]. When the
autocorrelation is maximized for a given K[� − 1], it is considered as the most
probable value. We merge the results given by the autocorrelation for each po-
tential value of K[�−1] with the votes given by (16) and we sort them according
to their votes. Once K[� − 1] is fixed we compute the votes for the repeated
secret keys and we merge all the votes.

Finally, we successively test the first M secret keys, according to their distance
to the most probable value (with the highest amount of vote). Note that each
time a new value for K[�− 1] is selected, we have to recompute the votes for all
the repetition of the secret key bytes. See Algorithm 3 for more details.
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Algorithm 3. VX Key Recovery Attack
VX(IV,Z): IV , the set of known keystream bytes Z where zi is the ith byte of the

keystream.
Data: V is a (N × (� ·m− 3)) matrix
Data: V ′ is a (N × (�− 1)) matrix
Output: The secret key K
1: for each passively eavesdropped packet {IV, Z} do
2: (n, p, Pv)← WeakAttack(IV, z1, z2)
3: Vn,p ← Vn,p + Pv

4: (n, p, Pv)← KleinAttack(IV,Z)
5: Vn,p ← Vn,p + Pv

6: end for
7: for each r repetition of the secret key do
8: for n = 0 to N − 1 do
9: Vn,r·�−1 ← Vn.r·�−1 + Vn.r·� + Vn.r·�+1 + Vn.r·�+2

10: end for
11: end for
12: V ← Autocorrelation(V )
13: V ′ ← MergeVotes(V )
14: for i = 0 to M do
15: pick K the next most probable secret key in V ′

16: if K uses another value for K[�− 1] then
17: V ← Autocorrelation(V )
18: V ′ ← MergeVotes(V )
19: end if
20: if K is correct return K
21: end for

5.1 Practical Results on WEP

To demonstrate the improvement of the VX attack, we tried to recover ran-
domly generated WEP 104-bit secret keys with a limited number of frames and
randomly chosen IVs.

A first issue concerning the Klein attack, which is more efficient than the
key recovery attacks based on weak IVs, is the ability to obtain the plaintext.
Thus, we firstly concentrated our analysis on passively eavesdropped ARP frames
because the plaintext of an ARP frame can be practically guessed until the
32nd byte (see Appendix A). Then, we chose a more realistic scenario where
the eavesdropped traffic is mainly based on TCP frames (we used real network
traffic dumps for this scenario). According to Appendix A, when a TCP frame
is passively eavesdropped, the first and the second byte of the keystream, used
by the key recovery attacks based on weak IVs are practically always known.
However, the following keystream bytes needed for the Klein attack cannot be
completely recovered. By significantly reducing the key bytes dependency and
according to the modulo repetition, the VX attack is able to recover the secret
key, even if some keystream bytes are still unknown.
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Fig. 1. The probability to recover the correct key after an exhaustive search of 220

trials, according to the number of passively eavesdropped packets

The table (Figure 1) gives the average number of ARP frames needed to
recover the complete secret key with an exhaustive search on a keyspace subset of
M = 220 entries (with the highest probability of success, according to our votes).
We notice that the average amount of ARP packets needed to recover the secret
key with a probability > 1/2 is 32,700. The same table gives, according to the
second scenario, the average number of frames needed to recover the complete
secret key with an exhaustive search on a subset keyspace of M = 220 entries
(with the highest probability of success, according to our votes). We notice that
the average amount of packets needed to recover the secret key for the same
probability is 44,500.

If we compare the VX attack with the previously published passive-only key
recovery attacks on WEP [10,11], we reduce the data complexity from 220 to
215 for the same success probability to recover the secret key. We significantly
reduce the computational complexity as well because the recomputation of the
votes is not needed for each key trial.

Moreover, the VX attack can be transformed to an active one and needs about
25% less eavesdropped packets than the attack described in [19] thanks to the
weaknesses in the modulo repetition and the use of the enhanced key recovery
attacks based on weak IVs.

6 Conclusion

In this paper, we have seen that all the previously discovered key recovery attacks
(the Klein attack as well as the key recovery attacks based on weak IVs) suffer
from a relation between the secret key bytes. To rederive the ith byte of the
secret key, we have to successfully recover the (i − 1) previous key bytes. In
practice, this constraint is a significant limitation because if the key recovery
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process does not work for only one byte of the key, the complete key will be
probably mis-recovered.

According to the VX attack presented in this paper, we are now able to
significantly reduce the key bytes dependency and thus, to recover correctly
each key byte with a stronger probability, even if some preceding secret key
bytes are still unknown.

Because the ith byte of the secret key can be recovered even if some previous
bytes are missing, new weak IV classes appear.

Moreover, it becomes possible to take profit of the modulo repetition weak-
nesses of the secret key in the KSA of RC4 described in this paper, to improve
the global key recovery process.

We showed that the Klein attack needs to know the (i − 1)th byte of the
keystream to recover the ith byte of the secret key. However, this information
cannot always be obtained with passive-only key recovery attacks. Associated to
the enhanced attacks based on weak IVs and the modulo repetition weaknesses
of the secret key (both presented in this paper), a part of the missing secret key
bytes can be passively recovered.

Consequently, the VX attack is to the best of our knowledge, the most effi-
cient passive-only key recovery attack on WEP. The previous ones needed about
one million of passively eavesdropped packets to recover the secret key with a
probability bigger than one half. The VX attack needs about 44,500 packets for
the same success probability.

A question raised in this paper is the motivation to find new key recovery
attacks on WEP: a still widely used protocol, but already broken since 2001. The
weaknesses highlighted in this paper concern theoretically WPA as well. Indeed,
only passive attacks are applicable on WPA because of anti-replay protections.In
spite of the fact that the VX attack cannot be practically exploited on WPA, it
represents a relevant first step for its analysis.
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A Appendix

ARP Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00
0x00 ORG Code
0x00

0x08 ARP
0x06

0x00 Ethernet
0x01

0x08 IP
0x00

0x06 Hardware size
0x04 Protocol
0x00 Opcode Request/Reply
0x??

0x?? MAC addr src
0x??
0x??
0x??
0x??
0x??

0x?? IP src
0x??
0x??
0x??

0x?? MAC addr dst
0x??
0x??
0x??
0x??
0x??

0x?? IP dst
0x??
0x??
0x??

TCP Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00
0x00 ORG Code
0x00

0x08 IP
0x00

0x45 IP Version + Header length
0x?? Packet length
0x??

0x?? IP ID RFC815
0x??

0x?? Fragment type and offset
0x?? TTL
0x06 TCP type
0x?? Header checksum
0x??

0x?? IP src
0x??
0x??
0x??

0x?? IP dst
0x??
0x??
0x??

0x?? Port src
0x??

0x?? Port dst
0x??

Fig. 2. The tables above represent the plaintext bytes of 802.11 data frames encap-
sulating resp. ARP and TCP protocols. The value in white are almost fixed or can be
computed dynamically. The values in light grey can be guessed. The values in dark
grey are not predictable.
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Abstract. A theoretical analysis of the RC4 Key Scheduling Algorithm
(KSA) is presented in this paper, where the nonlinear operation is swap-
ping among the permutation bytes. Explicit formulae are provided for
the probabilities with which the permutation bytes after the KSA are
biased to the secret key. Theoretical proofs of these formulae have been
left open since Roos’s work (1995). Based on this analysis, an algorithm
is devised to recover the l bytes (i.e., 8l bits, typically 5 ≤ l ≤ 16) secret
key from the final permutation after the KSA with constant probabil-
ity of success. The search requires O(24l) many operations which is the
square root of the exhaustive key search complexity 28l. Further, a gener-
alization of the RC4 KSA is analyzed corresponding to a class of update
functions of the indices involved in the swaps. This reveals an inherent
weakness of shuffle-exchange kind of key scheduling.

Keywords: Bias, Cryptanalysis, Key Scheduling, Permutation, RC4,
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1 Introduction

Two decades have passed since the inception of RC4. Though a variety of other
stream ciphers have been discovered after RC4, it is still the most popular and
most frequently used stream cipher algorithm due to its simplicity, ease of im-
plementation, speed and efficiency. RC4 is widely used in the Secure Sockets
Layer (SSL) and similar protocols to protect the internet traffic, and was inte-
grated into Microsoft Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL,
etc. Though the algorithm can be stated in less than ten lines, even after many
years of analysis its strengths and weaknesses are of great interest to the com-
munity. In this paper, we study the Key Scheduling Algorithm of RC4 in detail
and find out results that have implications towards the security of RC4. Before
getting into the contribution in this paper, we first revisit the basics of RC4.
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The RC4 stream cipher has been designed by Ron Rivest for RSA Data
Security in 1987, and was a propriety algorithm until 1994. It uses an S-Box
S = (S[0], . . . , S[N − 1]) of length N , each location being of 8 bits. Typi-
cally, N = 256. S is initialized as the identity permutation, i.e., S[i] = i for
0 ≤ i ≤ N − 1. A secret key of size l bytes (typically, 5 ≤ l ≤ 16) is used
to scramble this permutation. An array K = (K[0], . . . , K[N − 1]) is used to
hold the secret key, where each location is of 8 bits. The key is repeated in the
array K at key length boundaries. For example, if the key size is 40 bits, then
K[0], . . . , K[4] are filled by the key and then this pattern is repeated to fill up
the entire array K.

The RC4 cipher has two components, namely, the Key Scheduling Algorithm
(KSA) and the Pseudo-Random Generation Algorithm (PRGA). The KSA turns
the random key K into a permutation S of 0, 1, . . . , N − 1 and PRGA uses this
permutation to generate pseudo-random keystream bytes. The keystream output
byte z is XOR-ed with the message byte to generate the ciphertext byte at the
sender end. Again, z is XOR-ed with the ciphertext byte to get back the message
byte at the receiver end.

Any addition used related to the RC4 description is in general addition modulo
N unless specified otherwise.

Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling:

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Note that defining the array K to be of size N enables us to write K[i] instead
of the typical K[i mod l] in the description of the algorithm. This is done for the
sake of simplification in the subsequent analysis of the algorithm.

1.1 Outline of the Contribution

In this paper, the update of the permutation S in different rounds of the KSA
is analyzed and it is theoretically proved that after the completion of the KSA,
the initial bytes of the permutation will be significantly biased towards some
combination of the secret key bytes. Such biases were observed by Roos in [15]
for the first time. It has been noted in [15] that after the completion of the
KSA, the most likely value of the i-th element of the permutation for the first
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few values of i is given by S[i] = i(i+1)
2 +

i∑

x=0

K[x]. However, the probability

P (S[i] = i(i+1)
2 +

i∑

x=0

K[x]) could not be theoretically arrived in [15] and experi-

mental values have been provided as in Table 1 below.

Table 1. The probabilities experimentally observed by Roos [15]

i P (S[i] = i(i+1)
2

+
i∑

x=0

K[x])

0-15 .370 .368 .362 .358 .349 .340 .330 .322 .309 .298 .285 .275 .260 .245 .229 .216

16-31 .203 .189 .173 .161 .147 .135 .124 .112 .101 .090 .082 .074 .064 .057 .051 .044

32-47 .039 .035 .030 .026 .023 .020 .017 .014 .013 .012 .010 .009 .008 .007 .006 .006

We theoretically prove for the first time with what probabilities the final per-
mutation bytes after the KSA are correlated with the secret key bytes. Roos [15]
commented that “Swapping is a nasty nonlinear process which is hard to ana-
lyze.” That process is analyzed in a disciplined manner in this paper that unfolds
the effect of swapping in the KSA of RC4 (see Lemma 1, Lemma 2 and Theorem 1
in Section 2).

In Section 3, we use these biases to show that if the permutation after the
KSA is available, then one can retrieve the key bytes in time much less than
the exhaustive key search. For a secret key of size 8l bits (40 ≤ 8l ≤ 128), the
key can be recovered in O(2

8l
2 ) effort with a constant probability of success. In

a shuffle-exchange kind of stream cipher, for proper cryptographic security, one
may expect that after the key scheduling algorithm one should not be able to get
any information regarding the secret key bytes from the random permutation in
time complexity less than the exhaustive key search. We show that the KSA of
RC4 is weak in this aspect.

Further, we consider the generalization of the RC4 KSA where the index
j can be updated in different manners. In RC4 KSA, the update rule is j =
(j + S[i] + K[i]). We show that for any arbitrary secret key and for a certain
class of update functions (see Section 4) which compute the new value of the
index j in the current round as a function of “the permutation S and j in the
previous round” and “the secret key K”, it is always possible to construct explicit
functions of the key bytes which the final permutation will be biased to. This
shows that the RC4 KSA cannot be made more secure by replacing the update
rule j = j+S[i]+K[i] with any rule from a large class that we present. Such bias
is intrinsic to shuffle-exchange kind of paradigm, where one index (i) is updated
linearly and another index (j) is modified pseudo-randomly.
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1.2 Background

There are two broad approaches in the study of cryptanalysis of RC4: attacks
based on the weaknesses of the KSA and those based on the weaknesses of
the PRGA. Distinguishing attacks are the main motivation for PRGA-based
approach [1,3,6,7,8,13,14]. Important results in this approach include bias in the
keystream output bytes. For example, a bias in the second output byte being
zero has been proved in [6] and a bias in the equality of the first two output
bytes has been shown in [14]. In [10], RC4 has been analyzed using the theory
of random shuffles and it has been recommended that initial 512 bytes of the
keystream output should be discarded in order to be safe.

Initial empirical works based on the weaknesses of the RC4 KSA were done
in [15,17] and several classes of weak keys had been identified. Recently, a more
general theoretical study has been performed in [11] which includes the observa-
tions of [15]. The work [11] shows how the bias of the “third permutation byte”
(after the KSA) towards the “first three secret key bytes” propagates to the first
keystream output byte (in the PRGA). Thus, it renews the interest to study
how the permutation after the KSA (which acts as a bridge between the KSA
and the PRGA) is biased towards the secret key, which is theoretically solved in
this paper.

Some weaknesses of the KSA have been addressed in great detail in [2] and
practical attacks have been mounted on RC4 in the IV mode (e.g. WEP [4]).
Further, the propagation of weak key patterns to the output keystream bytes
has also been discussed in [2]. Subsequently, the work [5] improved [2]. In [9,
Chapter 6], correlation between the permutations that are a few rounds apart
have been discussed.

2 Theoretical Analysis of the Key Scheduling

Let S0 be the initial permutation and j0 = 0 be the initial value of the index
j before the KSA begins. Note that in the original RC4, S0 is the identity
permutation. Let ji+1 be the updated value of j and Si+1 be the new permutation
obtained after the completion of the round with i as the deterministic index (we
call it round i + 1), 0 ≤ i ≤ N − 1. Then SN would be the final permutation
after the complete KSA.

We now prove a general formula (Theorem 1) that estimates the probabili-
ties with which the permutation bytes after the RC4 KSA are related to certain
combinations of the secret key bytes. The result we present has two-fold signifi-
cance. It gives for the first time a theoretical proof explicitly showing how these
probabilities change as functions of i. Further, it does not assume that the initial
permutation is an identity permutation. The result holds for any arbitrary initial
permutation. Note that though j is updated using a deterministic formula, it is
a linear function of the pseudo-random secret key bytes, and is therefore itself
pseudo-random. If the secret key generator produces the secret keys uniformly
at random, which is a reasonable assumption, then the distribution of j will also
be uniform.
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The proof of Theorem 1 depends on Lemma 1 and Lemma 2 which we prove
below first.

Lemma 1. Assume that during the KSA rounds, the index j takes its val-

ues from {0, 1, . . . , N − 1} uniformly at random. Then, P (ji+1 =
i∑

x=0

S0[x] +

i∑

x=0

K[x]) ≈(N−1
N )1+

i(i+1)
2 + 1

N , 0 ≤ i ≤ N − 1.

Proof. One contribution towards the event E : (ji+1 =
i∑

x=0

S0[x] +
i∑

x=0

K[x])

is approximately (N−1
N )

i(i+1)
2 . This part is due to the association based on the

recursive updates of j and can be proved by induction on i.

– Base Case: Before the beginning of the KSA, j0 = 0. Now, in the first
round with i = 0, we have j1 = j0 + S0[0] + K[0] = 0 + S0[0] + K[0] =
0∑

x=0

S0[x] +
0∑

x=0

K[x] with probability 1 = (N−1
N )

0(0+1)
2 . Hence, the result

holds for the base case.
– Inductive Case: Suppose, that the result holds for the first i rounds, when

the deterministic index takes its values from 0 to i− 1, i ≥ 1. Now, for the
(i+1)-th round, we would have ji+1 = ji +Si[i]+K[i]. Thus, ji+1 can equal

i∑

x=0

S0[x] +
i∑

x=0

K[x], if ji =
i−1∑

x=0

S0[x] +
i−1∑

x=0

K[x] and Si[i] = S0[i].

By inductive hypothesis, we get P (ji =
i−1∑

x=0

S0[x] +
i−1∑

x=0

K[x]) ≈(N−1
N )

i(i−1)
2 .

Further, Si[i] remains the same as S0[i], if it has not been involved in any
swap during the previous rounds, i.e., if any of the values j1, j2, . . . , ji has not
hit the index i, the probability of which is (N−1

N )i. Thus, the probability that

the event E occurs along the above recursive path is ≈ (N−1
N )

i(i−1)
2 · (N−1

N )i

= (N−1
N )

i(i+1)
2 .

A second contribution towards the event E is due to random association
when the above recursive path is not followed. This probability is approxi-
mately

(
1−(N−1

N )
i(i+1)

2

)
· 1N . Adding these two contributions, we get the total

probability≈ (N−1
N )

i(i+1)
2 +

(
1−(N−1

N )
i(i+1)

2

)
· 1N = (1− 1

N )·(N−1
N )

i(i+1)
2 + 1

N =

(N−1
N )1+

i(i+1)
2 + 1

N . ��
Corollary 1. If the initial permutation is the identity permutation, i.e., S0[i] =

i for 0 ≤ i ≤ N − 1, then P (ji+1 = i(i+1)
2 +

i∑

x=0

K[x]) ≈(N−1
N )1+

i(i+1)
2 + 1

N for

0 ≤ i ≤ N − 1.
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Lemma 2. Assume that during the KSA rounds, the index j takes its values
from {0, 1, . . . , N−1} uniformly at random. Then, P (SN [i] = S0[ji+1]) ≈ (N−i

N )·
(N−1

N )N−1, 0 ≤ i ≤ N − 1.

Proof. During the swap in round i + 1, Si+1[i] is assigned the value of Si[ji+1].
Now, the index ji+1 is not involved in any swap during the previous i many
rounds, if it is not touched by the indices {0, 1, . . . , i − 1}, the probability of
which is (N−i

N ), as well as if it is not touched by the indices {j1, j2, . . . , ji}, the
probability of which is (N−1

N )i. Hence, P (Si+1[i] = S0[ji+1]) ≈ (N−i
N ) · (N−1

N )i.
After round i + 1, index i is not touched by any of the subsequent N − 1 − i
many j values with probability (N−1

N )N−1−i. Hence, P (SN [i] = S0[ji+1]) ≈
(N−i

N ) · (N−1
N )i · (N−1

N )N−1−i = (N−i
N ) · (N−1

N )N−1. ��

Theorem 1. Assume that during the KSA rounds, the index j takes its values

from {0, 1, . . . , N − 1} uniformly at random. Then, P
(
SN [i] = S0

[ i∑

x=0

S0[x] +

i∑

x=0

K[x]
])
≈ (N−i

N ) · (N−1
N )[

i(i+1)
2 +N ] + 1

N , 0 ≤ i ≤ N − 1.

Proof. SN [i] can equal S0

[ i∑

x=0

S0[x] +
i∑

x=0

K[x]
]

in two ways. One way is that

ji+1 =
i∑

x=0

S0[x] +
i∑

x=0

K[x] following the recursive path as in the proof of

Lemma 1, and SN [i] = S0[ji+1]. Combining the results of Lemma 1 and Lemma 2,
we get the contribution of this part ≈ (N−1

N )
i(i+1)

2 · (N−i
N ) · (N−1

N )N−1 = (N−i
N ) ·

(N−1
N )[

i(i+1)
2 +(N−1)]. Another way is that neither of the above events happen and

still SN [i] equals S0

[ i∑

x=0

S0[x] +
i∑

x=0

K[x]
]

due to random association. The con-

tribution of this second part is approximately
(
1− (N−i

N ) · (N−1
N )[

i(i+1)
2 +(N−1)]

)
·

1
N . Adding these two contributions, we get the total probability ≈ (N−i

N ) ·
(N−1

N )[
i(i+1)

2 +(N−1)] +
(
1− (N−i

N ) · (N−1
N )[

i(i+1)
2 +(N−1)]

)
· 1

N = (1 − 1
N ) · (N−i

N ) ·
(N−1

N )[
i(i+1)

2 +(N−1)] + 1
N = (N−i

N ) · (N−1
N )[

i(i+1)
2 +N ] + 1

N . ��

Corollary 2. If the initial permutation is the identity permutation, i.e., S0[i] =

i for 0 ≤ i ≤ N−1, then P (SN [i] = i(i+1)
2 +

i∑

x=0

K[x]) ≈(N−i
N )·(N−1

N )[
i(i+1)

2 +N ]+

1
N for 0 ≤ i ≤ N − 1.
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Table 2. The probabilities following Corollary 2

i P (S[i] = i(i+1)
2

+

i∑

x=0

K[x])

0-15 .371 .368 .364 .358 .351 .343 .334 .324 .313 .301 .288 .275 .262 .248 .234 .220

16-31 .206 .192 .179 .165 .153 .140 .129 .117 .107 .097 .087 .079 .071 .063 .056 .050

32-47 .045 .039 .035 .031 .027 .024 .021 .019 .016 .015 .013 .011 .010 .009 .008 .008

In the following table (Table 2) we list the theoretical values of the probabilities
to compare with the experimental values provided in [15] and summarized in
our Table 1.

After the index 48 and onwards, both the theoretical as well as the experi-
mental values tend to 1

N (= 0.0039 for N = 256) as is expected when we consider
the equality between two randomly chosen values from a set of N elements.

3 Recovering the Secret Key from the Permutation After
the KSA

In this section, we discuss how to get the secret key bytes from the random-
looking permutation after the KSA using the equations of Corollary 2.

We explain the scenario with an example first.

Example 1. Consider a 5 byte secret key with K[0] = 106, K[1] = 59, K[2] =

220, K[3] = 65, and K[4] = 34. We denote fi = i(i+1)
2 +

i∑

x=0

K[x]. If one runs the

KSA, then the first 16 bytes of the final permutation will be as follows.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fi 106 166 132 200 238 93 158 129 202 245 105 175 151 229 21 142
S256[i] 230 166 87 48 238 93 68 239 202 83 105 147 151 229 35 142

The strategy of key recovery would be to consider all possible sets of 5 equations
chosen from the 16 equations SN [i] = fi, 0 ≤ i ≤ 15, and then try to solve them.
Whether the solution is correct or not can be checked by running the KSA and
comparing the permutation obtained with the permutation in hand. Some of the
choices may not be solvable at all. The case of correct solution for this example
correspond to the choices i = 1, 4, 5, 8 and 12, and the corresponding equations
are:

K[0] + K[1] + (1 · 2)/2 = 166 (1)
K[0] + K[1] + K[2] + K[3] + K[4] + (4 · 5)/2 = 238 (2)

K[0] + . . . + K[5] + (5 · 6)/2 = 93 (3)
K[0] + . . . + K[8] + (8 · 9)/2 = 202 (4)

K[0] + . . . + K[12] + (12 · 13)/2 = 151 (5)
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In general, the correctness of the solution depends on the correctness of the
selected equations. The probability that we will indeed get correct solutions is
related to the joint probability of SN [i] = fi for the set of chosen i-values. Note
that we do not need the assumption that the majority of the equations are
correct. Whether indeed the equations selected are correct or not can be cross-
checked by running the KSA again. Moreover, empirical results show that in a
significant proportion of the cases we get enough correct equations to solve for
the key.

For a 5 byte key, if we go for an exhaustive search for the key, then the
complexity would be 240. Whereas in our approach, we need to consider at the
most

(
16
5

)
= 4368 < 213 sets of 5 equations. Since the equations are triangular in

form, solving each set of 5 equations would take approximately 52 = 25 (times a
small constant) < 25 many additions/subtractions. Hence the improvement over
exhaustive search is almost by a factor of 240

213·25 = 222.
From Corollary 2, we get how SN [i] is biased to different combinations of

the key bytes. Let us denote fi = i(i+1)
2 +

i∑

x=0

K[x] and P (SN [i] = fi) = pi

for 0 ≤ i ≤ N − 1. We initiate the discussion for RC4 with secret key of size
l bytes. Suppose we want to recover exactly m out of the l secret key bytes by
solving equations and the other l −m bytes by exhaustive key search. For this,
we consider n (m ≤ n ≤ N) many equations SN [i] = fi, i = 0, 1, . . . , n − 1, in
l variables (the key bytes). Let EIt denote the set of all independent systems
of t equations, or, equivalently, the collection of the indices {i1, i2, . . . , it} ⊆
{0, 1, . . . , n − 1}, corresponding to all sets of t independent equations (selected
from the above system of n equations).

If we want to recover m key bytes by solving m equations out of the first n
equations of the form SN [i] = fi, in general, we need to check whether each of
the

(
n
m

)
systems of m equations is independent or not. In the next Theorem, we

present the criteria for checking the independence of such a set of equations and
also the total number of such sets.

Theorem 2. Let l ≥ 2 be the RC4 key length in bytes. Suppose we want to select
systems of m independent equations, 2 ≤ m ≤ l, from the following n equations,
m ≤ n ≤ N , of the form SN [i] = fi involving the final permutation bytes, where

fi = i(i+1)
2 +

i∑

x=0

K[x], 0 ≤ i ≤ n− 1.

1. The system SN [iq] = fiq , 1 ≤ q ≤ m, of m equations selected from SN [i] =
fi, 0 ≤ i ≤ n − 1, corresponding to i = i1, i2, . . . , im, is independent if
and only if any one of the following two conditions hold: either (i) iq mod l,
1 ≤ q ≤ m, yields m distinct values, or (ii) iq mod l �= (l−1), 1 ≤ q ≤ m, and
there is exactly one pair ix, iy ∈ {i1, i2, . . . , im} such that ix = iy (mod l),
and all other iq mod l, q �= x, q �= y yields m−2 distinct values different from
ix, iy (mod l).
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2. The total number of independent systems of m (≥ 2) equations is given by

|EIm| =
m∑

r=0

(
n mod l

r

)(
l−n mod l

m−r

)
(
n

l �+ 1)r(
n
l �)m−r

+
(
n mod l

1

)(�n
l �+1
2

) m−2∑

r=0

(
n mod l−1

r

)(
l−n mod l−1

m−2−r

)
(
n

l �+ 1)r(
n
l �)m−2−r

+
(
l−n mod l−1

1

)(�n
l �
2

) m−2∑

r=0

(
n mod l

r

)(
l−n mod l−2

m−2−r

)
(
n

l �+ 1)r(
n
l �)m−2−r,

where the binomial coefficient
(
u
v

)
has the value 0, if u < v.

Proof. (Part 1 ) First, we will show that any one of the conditions (i) and (ii) is
sufficient. Suppose that the condition (i) holds, i.e., iq mod l (1 ≤ q ≤ m) yields
m distinct values. Then each equation involves a different key byte as a variable,
and hence the system is independent. Now, suppose that the condition (ii) holds.
Then there exists exactly one pair x, y ∈ {1, . . . , m}, x �= y, where ix = iy mod l.
Without loss of generality, suppose ix < iy. Then we can subtract SN [ix] = fix

from SN [iy] = fiy to get one equation involving some multiple of the sum s =
l−1∑

x=0

K[x] of the key bytes. So we can replace exactly one equation involving either

ix or iy by the new equation involving s, which will become a different equation
with a new variable K[l − 1], since l − 1 /∈ {i1 mod l, i2 mod l, . . . , im mod l}.
Thus, the resulting system is independent.

Next, we are going to show that the conditions are necessary. Suppose that nei-
ther condition (i) nor condition (ii) holds. Then either we will have a triplet x, y, z
such that ix = iy = iz = mod l, or we will have a pair x, y with ix = iy mod l
and l− 1 ∈ {i1 mod l, i2 mod l, . . . , im mod l}. In the first case, subtracting two
of the equations from the third one would result in two equations involving s and
the same key bytes as variables. Thus the resulting system will not be indepen-
dent. In the second case, subtracting one equation from the other will result in
an equation which is dependent on the equation involving the key byte K[l− 1].

(Part 2 ) We know that n = (
n
l �)l + (n mod l). If we compute i mod l, for

i = 0, 1, . . . n− 1, then we will have the following residue classes:

[0] = {0, l, 2l, . . . , (
n
l �)l}

[1] = {1, l + 1, 2l + 1, . . . , (
n
l �)l + 1}

...
...

...
[n mod l − 1] = {n mod l − 1, l + (n mod l − 1), 2l + (n mod l − 1), . . . ,

(
n
l �)l + (n mod l − 1)}

[n mod l] = {n mod l, l + (n mod l), 2l + (n mod l), . . . , (
n
l � − 1)l

+(n mod l)}
...

...
...

[l − 1] = {l− 1, l + (l − 1), 2l + (l − 1), . . . , (
n
l � − 1)l + (l − 1)}

The set of these l many residue classes can be classified into two mutually exclu-
sive subsets, namely A = {[0], . . . , [n mod l−1]} and B = {[n mod l], . . . , [l−1]},
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such that each residue class a ∈ A has 
n
l �+ 1 members and each residue class

b ∈ B has 
n
l � members. Note that |A| = n mod l and |B| = l − (n mod l).

Now, the independent systems of m equations can be selected in three mutu-
ally exclusive and exhaustive ways. Case I corresponds to the condition (i) and
Cases II & III correspond to the condition (ii) stated in the theorem.

Case I: Select m different residue classes from A∪B and choose one i-value (the
equation number) from each of these m residue classes. Now, r of the m residue
classes can be selected from the set A in

(
n mod l

r

)
ways and the remaining m− r

can be selected from the set B in
(
l−n mod l

m−r

)
ways. Again, corresponding to each

such choice, the first r residue classes would give 
n
l �+1 choices for i (the equa-

tion number) and each of the remaining m − r residue classes would give 
n
l �

choices for i. Thus, the total number of independent equations in this case is

given by
m∑

r=0

(
n mod l

r

)(
l−n mod l

m−r

)
(
n

l �+ 1)r(
n
l �)m−r.

Case II: Select two i-values from any residue class in A. Then select m−2 other
residue classes except [l−1] and select one i-value from each of those m−2 residue
classes. We can pick one residue class a ∈ A in

(
n mod l

1

)
ways and subsequently

two i-values from a in
(�n

l �+1
2

)
ways. Of the remaining m − 2 residue classes, r

can be selected from A \ {a} in
(
n mod l−1

r

)
ways and the remaining m − 2 − r

can be selected from B \ {[l− 1]} in
(
l−n mod l−1

m−2−r

)
ways. Again, corresponding to

each such choice, the first r residue classes would give 
n
l �+ 1 choices for i (the

equation number) and each of the remaining m−2−r residue classes would give

n

l � choices for i. Thus, the total number of independent equations in this case

is given by
(
n mod l

1

)(�n
l �+1
2

) m−2∑

r=0

(
n mod l−1

r

)(
l−n mod l−1

m−2−r

)
(
n

l �+ 1)r(
n
l �)m−2−r.

Case III: Select two i-values from any residue class in B \ {[l− 1]}. Then select
m−2 other residue classes and select one i-value from each of those m−2 residue
classes. This case is similar to case II, and the total number of independent equa-

tions in this case is given by
(
l−n mod l−1

1

)(�n
l �
2

) m−2∑

r=0

(
n mod l

r

)(
l−n mod l−2

m−2−r

)
(
n

l �+

1)r(
n
l �)m−2−r.

Adding the counts for the above three cases, we get the result. ��
Proposition 1. Given n and m, it takes O(m2 · (n

m

)
) time to generate the set

EIm using Theorem 2.

Proof. We need to check a total of
(

n
m

)
many m tuples {i1, i2, . . . , im}, and

using the independence criteria of Theorem 2, it takes O(m2) amount of time to
determine if each tuple belongs to EIm or not. ��
Proposition 2. Suppose we have an independent system of equations of the
form SN [iq] = fiq involving the l key bytes as variables corresponding to the

tuple {i1, i2, . . . , im}, 0 ≤ iq ≤ n−1, 1 ≤ q ≤ m, where fi = i(i+1)
2 +

i∑

x=0

K[x]. If
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there is one equation in the system involving s =
l−1∑

x=0

K[x], then we would have

at most 
n
l � many solutions for the key.

Proof. If the coefficient of s is a, then by Linear Congruence Theorem [16], we
would have at most gcd(a, N) many solutions for s, each of which would give a
different solution for the key. To find the maximum possible number of solutions,
we need to find an upper bound of gcd(a, N).

Since the key is of length l, the coefficient a of s would be 
 is

l �, where is is
the i-value ∈ {i1, i2, . . . , im} corresponding to the equation involving s. Thus,
gcd(a, N) ≤ a = 
 is

l � ≤ 
n
l �. ��

Let us consider an example to demonstrate the case when we have two i-values
(equation numbers) from the same residue class in the selected system of m
equations, but still the system is independent and hence solvable.

Example 2. Assume that the secret key is of length 5 bytes. Let us consider 16
equations of the form SN [i] = fi, 0 ≤ i ≤ 15. We would consider all possible sets
of 5 equations chosen from the above 16 equations and then try to solve them.
One such set would correspond to i = 0, 1, 2, 3 and 13. Let the corresponding
SN [i] values be 246, 250, 47, 204 and 185 respectively. Then we can form the
following equations:

K[0] = 246 (6)
K[0] + K[1] + (1 · 2)/2 = 250 (7)

K[0] + K[1] + K[2] + (2 · 3)/2 = 47 (8)
K[0] + K[1] + K[2] + K[3] + (3 · 4)/2 = 204 (9)

K[0] + . . . + K[13] + (13 · 14)/2 = 185 (10)

From the first four equations, we readily get K[0] = 246, K[1] = 3, K[2] = 51 and
K[3] = 154. Since the key is 5 bytes long, K[5] = K[0], . . . , K[9] = K[4], K[10] =
K[0], . . . , K[13] = K[3]. Denoting the sum of the key bytes K[0] + . . . + K[4] by
s, we can rewrite equation (10) as:

2s + K[0] + K[1] + K[2] + K[3] + 91 = 185 (11)

Subtracting (9) from (11), and solving for s, we get s = 76 or 204. Taking the
value 76, we get

K[0] + K[1] + K[2] + K[3] + K[4] = 76 (12)

Subtracting (9) from (12), we get K[4] = 134. s = 204 does not give the correct
key, as can be verified by running the KSA and observing the permutation
obtained.

We now present the general algorithm for recovering the secret key bytes from
the final permutation obtained after the completion of the KSA.
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Algorithm RecoverKey
Inputs:
1. The final permutation bytes: SN [i], 0 ≤ i ≤ N − 1.
2. Number of key bytes: l.
3. Number of key bytes to be solved from equations: m (≤ l).
4. Number of equations to be tried: n (≥ m).
Output:
The recovered key bytes K[0], K[1], . . . , K[l− 1], if they are found.
Otherwise, the algorithm halts after trying all the |EIm| systems of
m independent equations.
Steps:
1. For each distinct tuple {i1, i2, . . . , im}, 0 ≤ iq ≤ n− 1, 1 ≤ q ≤ m do

1.1. If the tuple belongs to EIm then do
1.1.1 Arbitrarily select any m variables present in the system;
1.1.2 For each possible assignment of the remaining l −m variables do

1.1.2.1 Solve for the m variables;
1.1.2.2 Run the KSA with the solved key;
1.1.2.3 If the permutation obtained after the KSA is the same as

the given SN , then the recovered key is the correct one.

If one does not use the independence criteria (Theorem 2), all
(

n
m

)
sets of equa-

tions need to be checked. However, the number of independent systems is |EIm|,
which is much smaller than

(
n
m

)
. Table 3 shows that |EIm| < 1

2

(
n
m

)
for most

values of l, n, and m. Thus, the independence criteria in step 1.1 reduces the
number of iterations in step 1.1.2 by a substantial factor.

The following Theorem quantifies the amount of time required to recover the
key due to our algorithm.

Theorem 3. The time complexity of the RecoverKey algorithm is given by

O
(
m2 · (n

m

)
+ m2 · |EIm| · 
n

l � · 28(l−m)
)
,

where |EIm| is given by Theorem 2.

Proof. According to Proposition 1, for a complete run of the algorithm, checking
the condition at step 1.1 consumes a total of O(m2 · (n

m

)
) amount of time.

Further, the loop in step 1.1.2 undergoes |EIm| many iterations, each of which
exhaustively searches l−m many key bytes and solves a system of m equations.
By Proposition 2, each system can yield at the most O(
n

l �) many solutions for
the key. Also, finding each solution involves O(m2) many addition/subtraction
operations (the equations being traingular in form). Thus, the total time con-
sumed by step 1.1.2 for a complete run would be O(m2 · |EIm| · 
n

l � · 28(l−m)).

Hence, the time complexity is given by O
(
m2 ·(n

m

)
+m2 · |EIm| ·
n

l �·28(l−m)
)
.
��

Next, we estimate what is the probability of getting a set of independent correct
equations when we run the above algorithm.
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Proposition 3. Suppose that we are given the system of equations SN [i] = fi,
i = 0, 1, . . . , n− 1. Let c be the number of independent correct equations. Then

P (c ≥ m) =
n∑

t=m

∑

{i1,i2,...,it}∈EIt

p(i1, i2, . . . , it),

where EIt is the collection of the indices {i1, i2, . . . , it} corresponding to all sets
of t independent equations, and p(i1, i2, . . . , it) is the joint probability that the
t equations corresponding to the indices {i1, i2, . . . , it} are correct and the other
n− t equations corresponding to the indices {0, 1, . . . , n− 1} \ {i1, i2, . . . , it} are
incorrect.

Proof. We need to sum |EIt| number of terms of the form p(i1, i2, . . . , it) to get
the probability that exactly t equations are correct, i.e.,

P (c = t) =
∑

{i1,i2,...,it}∈EIt

p(i1, i2, . . . , it).

Hence, P (c ≥ m) =
n∑

t=m

P (c = t) =
n∑

t=m

∑

{i1,i2,...,it}∈EIt

p(i1, i2, . . . , it). ��

Note that P (c ≥ m) gives the success probability with which one can recover
the secret key from the permutation after the KSA.

As the events (SN [i] = fi) are not independent for different i’s, theoreti-
cally presenting the formulae for the joint probability p(i1, i2, . . . , it) seems to
be extremely tedious. In the following table, we provide experimental results
on the probability of having at least m independent correct equations, when
the first n equations SN [i] = fi, 0 ≤ i ≤ n − 1 are considered for the Recov-
erKey algorithm for different values of n, m, and the key length l, satisfying
m ≤ l ≤ n. For each probability calculation, the complete KSA was repeated a
million times, each time with a randomly chosen key. We also compare the values
of the exhaustive search complexity and the reduction due to our algorithm. Let
e = log2(m

2 ·(n
m

)
+m2 ·|EIm|·
n

l �·28(l−m))�. The time complexity of exhaustive
search is O(28l) and that of the RecoverKey algorithm, according to Theorem 3,
is given by O(2e). Thus, the reduction in search complexity due to our algorithm
is by a factor O(28l−e). One may note from Table 3 that by suitably choosing
the parameters one can achieve the search complexity O(2

8l
2 ) = O(24l), which is

the square root of the exhaustive key search complexity. The results in Table 3
clearly show that the probabilities (i.e., the empirical value of P (c ≥ m)) in most
of the cases are greater than 10%. However, the algorithm does not use the prob-
abilities to recover the key. For certain keys the algorithm will be able to recover
the keys and for certain other keys the algorithm will not be able to recover the
keys by solving the equations. The success probability can be interpreted as the
proportion of keys for which the algorithm will be able to successfully recover
the key. The keys, that can be recovered from the permutation after the KSA
using the RecoverKey algorithm, may be considered as weak keys in RC4.

It is important to note that the permutation is biased towards the secret key
not only after the completion of the KSA, rather the bias persists in every round
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Table 3. Running the RecoverKey algorithm with different parameters

l n m
(

n
m

) |EIm| 8l e 8l − e P (c ≥ m)

5 16 5 4368 810 40 18 22 0.250

5 24 5 42504 7500 40 21 19 0.385

8 16 6 8008 3472 64 34 30 0.273

8 20 7 77520 13068 64 29 35 0.158

8 40 8 76904685 1484375 64 33 31 0.092

10 16 7 11440 5840 80 43 37 0.166

10 24 8 735471 130248 80 40 40 0.162

10 48 9 1677106640 58125000 80 43 37 0.107

12 24 8 735471 274560 96 58 38 0.241

12 24 9 1307504 281600 96 50 46 0.116

16 24 9 1307504 721800 128 60 68 0.185

16 32 10 64512240 19731712 128 63 65 0.160

16 32 11 129024480 24321024 128 64 64 0.086

16 40 12 5586853480 367105284 128 64 64 0.050

of the KSA. If we know the permutation at any stage of the KSA, we can use
our key recovery technique to get back the secret key [12]. Moreover, the PRGA
is exactly the same as the KSA with the starting value of i as 1 (instead of 0)
and with K[i] set to 0 for all i. Thus, if we know the RC4 state information at
any round of PRGA, we can deterministically get back the permutation after
the KSA [12] and thereby recover the secret key.

4 Intrinsic Weakness of Shuffle-Exchange Type KSA

In the KSA of RC4, i is incremented by one and j is updated pseudo-randomly
by the rule j = j + S[i] + K[i]. Here, the increment of j is a function of the
permutation and the secret key. One may expect that the correlation between
the secret key and the final permutation can be removed by modifying the update
rule for j. Here we show that for a certain class of rules of this type, where j
across different rounds is uniformly randomly distributed, there will always exist
significant bias of the final permutation after the KSA towards some combination
of the secret key bytes with significant probability. Though the proof technique
is similar to that in Section 2, it may be noted that the analysis in the proofs
here focus on the weakness of the particular “form” of RC4 KSA, and not on
the exact quantity of the bias.

Using the notation of Section 2, we can model the update of j in the KSA
as an arbitrary function u of (a) the current values of i, j, (b) the i-th and j-th
permutation bytes from the previous round, and (c) the i-th and j-th key bytes,
i.e.,

ji+1 = u(i, ji, Si[i], Si[ji], K[i], K[ji]).
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For subsequent reference, let us call the KSA with this generalized update rule
as GKSA.

Lemma 3. Assume that during the GKSA rounds, the index j takes its values
from {0, 1, . . . , N − 1} uniformly at random. Then, one can always construct
functions hi(S0, K), which depends only on i, the secret key bytes and the initial
permutation, and probabilities πi, which depends only on i and N , such that
P (ji+1 = hi(S0, K)) = (N−1

N )πi + 1
N , 0 ≤ i ≤ N − 1.

Proof. By induction on i, we will show (i) how to construct the recursive func-
tions hi(S0, K) and probabilities πi and (ii) that one contribution towards the
event (ji+1 = hi(S0, K)) is πi.

– Base Case: Initially, before the beginning of round 1, j0 = 0. In round 1, we
have i = 0 and hence j1 = u(0, 0, S0[0], S0[0], K[0], K[0]) = h0(S0, K) (say),
with probability π0 = 1.

– Inductive Case: Suppose, P (ji = hi−1(S0, K)) = πi−1, i ≥ 1 (inductive hy-
pothesis). We know that ji+1 = u(i, ji, Si[i], Si[ji], K[i], K[ji]). In the right
hand side of this equality, all occurrences of Si[i] can be replaced by S0[i]
with probability (N−1

N )i, which is the probability of index i not being in-
volved in any swap in the previous i many rounds. Also, due to the swap
in round i, we have Si[ji] = Si−1[i − 1], which again can be replaced by
S0[i − 1] with probability (N−1

N )i−1. Finally, all occurrences of ji can be
replaced by hi−1(S0, K) with probability πi−1 (using the inductive hypothe-
sis). Thus, ji+1 equals u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)])
with some probability πi which can be computed as a function of i, N , and
πi−1, depending on the occurrence or non-occurrence of various terms in u. If
we denote hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i−1], K[i], K[hi−1(S0, K)]),
then (i) and (ii) follow by induction.
When the recursive path does not occur, then the event

(ji+1 = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)]))

occurs due to random association with probability (1− πi) · 1
N . Adding the

above two contributions, we get P (ji+1 = hi(S0, K)) = πi + (1 − πi) · 1
N =

(N−1
N )πi + 1

N . ��

Theorem 4. Assume that during the GKSA rounds, the index j takes its values
from {0, 1, . . . , N − 1} uniformly at random. Then, one can always construct
functions fi(S0, K), which depends only on i, the secret key bytes and the initial
permutation, such that P (SN [i] = fi(S0, K)) ≈ (N−i

N ) · (N−1
N )N ·πi + 1

N , 0 ≤ i ≤
N − 1.

Proof. We will show that fi(S0, K) = S0[hi(S0, K)] where the function his are
given by Lemma 3.

Now, SN [i] can equal S0[hi(S0, K)] in two ways. One way is that ji+1 =
hi(S0, K)) following the recursive path as in Lemma 3 and SN [i] = S0[ji+1].
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Combining Lemma 3 and Lemma 2, we find the probability of this event to
be approximately (N−i

N ) · (N−1
N )N−1 · πi. Another way is that the above path

is not followed and still SN [i] = S0[hi(S0, K)] due to random association. The
contribution of this part is approximately

(
1−(N−i

N )·(N−1
N )N−1 ·πi

)
· 1

N . Adding

the above two contributions, we get the total probability ≈ (N−i
N ) · (N−1

N )N−1 ·
πi +

(
1 − (N−i

N ) · (N−1
N )N−1 · πi

)
· 1

N = (1 − 1
N ) · (N−i

N ) · (N−1
N )N−1 · πi + 1

N =

(N−i
N ) · (N−1

N )N · πi + 1
N . ��

Next, we discuss some special cases of the update rule u as illustrative examples
of how to construct the functions fis and the probabilities πis using Lemma 3.
In all the following cases, we assume S0 to be an identity permutation and hence
fi(S0, K) is the same as hi(S0, K).

Example 3. Consider the KSA of RC4, where

u(i, ji, Si[i], Si[ji], K[i], K[ji]) = ji + Si[i] + K[i].

We have h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0 + 0 + K[0] = K[0].
Moreover, π0 = P (j1 = h0(S0, K)) = 1. For i ≥ 1,
hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)])

= hi−1(S0, K) + S0[i] + K[i]
= hi−1(S0, K) + i + K[i].

Solving the recurrence, we get hi(S0, K) = i(i+1)
2 +

i∑

x=0

K[x]. From the analysis

in the proof of Lemma 3, we see that in the recurrence of hi, Si[i] has been
replaced by S0[i] and ji has been replaced by hi−1(S0, K). Hence, we would
have πi = P (Si[i] = S0[i]) · P (ji = hi−1(S0, K)) = (N−1

N )i · πi−1. Solving this

recurrence, we get πi =
i∏

x=0

(N−1
N )x = (N−1

N )
i(i+1)

2 . These expressions coincide

with those in Corollary 1.

Example 4. Consider the update rule

u(i, ji, Si[i], Si[ji], K[i], K[ji]) = ji + Si[ji] + K[ji].

Here, h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0 + 0 + K[0] = K[0] and
π0 = P (j1 = h0(S0, K)) = 1. For i ≥ 1,
hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)])

= hi−1(S0, K) + S0[i− 1] + K[hi−1(S0, K)]
= hi−1(S0, K) + (i− 1) + K[hi−1(S0, K)].

From the analysis in the proof of Lemma 3, we see that in the recurrence of
hi, Si−1[i − 1] and ji are respectively replaced by S0[i − 1] and hi−1(S0, K).
Thus, we would have πi = (N−1

N )i−1 · πi−1. Solving this recurrence, we get

πi =
i∏

x=1

(N−1
N )x−1 = (N−1

N )
i(i−1)

2 .
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Example 5. As another example, suppose

u(i, ji, Si[i], Si[ji], K[i], K[ji]) = ji + i · Si[ji] + K[ji].

As before, h0(S0, K) = u(0, 0, S0[0], S0[0], K[0], K[0]) = 0 + 0 · S[0] + K[0] =
0 + 0 + K[0] = K[0] and π0 = P (j1 = h0(S0, K)) = 1. For i ≥ 1,
hi(S0, K) = u(i, hi−1(S0, K), S0[i], S0[i− 1], K[i], K[hi−1(S0, K)])

= hi−1(S0, K)]) + i · S0[i− 1] + K[hi−1(S0, K)]
= hi−1(S0, K)]) + i · (i− 1) + K[hi−1(S0, K)].

As in the previous example, here also the recurrence relation for the probabilities

is πi = (N−1
N )i−1 · πi−1, whose solution is πi =

i∏

x=1

(N−1
N )x−1 = (N−1

N )
i(i−1)

2 .

Our results show that the design of RC4 KSA cannot achieve further security
by changing the update rule j = j + S[i] + K[i] by any rule from a large class
that we present.

5 Conclusion

We theoretically prove Roos’s [15] observation about the correlation between
the secret key bytes and the final permutation bytes after the KSA. In addition,
we show how to use this result to recover the secret key bytes from the final
permutation bytes with constant probability of success in less than the square
root of the time required for exhaustive key search. Since the final permuta-
tion is in general not observable, this does not immediately pose an additional
threat to the security of RC4. However, for a perfect key scheduling, any infor-
mation about the secret key from the final permutation should not be revealed,
as the final permutation may in turn leak information in the PRGA. Our work
clearly points out an intrinsic structural weaknesses of RC4 KSA and its certain
generalizations.
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Abstract. Correlation-immunity is a cryptographic criterion on Boolean
functions arising from correlation attacks on combining functions. When it
comes to filtering functions, the status of correlation-immunity lacks study
in itself and, if it is commonly accepted as a requirement for nonlinear filter
generators, this is for other concerns. We revisit the concept of correlation-
immunity and clear up its meaning for filtering functions. We summarize
existing criteria similar to correlation-immunity and attacks in two differ-
ent models, showing that such criteria are not relevant in both models. We
also derive a precise property to avoid correlations due to the filter function
only, which appears to be a bit looser than correlation-immunity. We then
propose new attacks based on whether this property is verified.

Keywords: Nonlinear filter generator, Boolean function, correlation-
immunity, distinguishing attacks.

1 Introduction

Most stream ciphers proposed in the literature are built upon Linear Feedback
Shift Registers (LFSR). One well-known proposal for destroying the linearity
inherent to LFSRs is to use a nonlinear function to filter the contents of a single
LFSR. All the components of a filter generator (i.e. the LFSR, the filtering
function and the taps) must be chosen carefully to ensure the cryptographic
security of the keystream generated by the generator. As often in symmetric
cryptography, criteria on the filter generator components are mostly derived
from known attacks.

The correlation-immunity property is a well-known cryptographic criterion
for Boolean functions. Correlation-immunity is sometimes stated as a criterion
dedicated to combining functions only, and sometimes as a requirement that also
applies to filtering functions. In order to clear up the role of correlation-immunity
for filtering functions, we investigate known distinguishing attacks on filter gen-
erators that consist in finding correlation relations between the keystream bits
by using properties of the filter function only.
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1.1 Related Work

The nonlinear filter model is a classical model of synchronous stream ciphers
that involves a nonlinear Boolean function to filter the contents of a single shift
register.

The correlation-immunity criterion has been introduced by Siegenthaler [15]
for combining functions, in order to protect them from a “divide and conquer”
attack well-known under the name (fast) correlation attack [17,11,4,5]. These
attacks also apply to nonlinear filter generators [16,7]. Notice that such attacks
require that the internal state memory of the generator is updated in a determin-
istic way. The only criterion on the filtering function involved in this attack is
the nonlinearity of the Boolean function, not the correlation-immunity. Canteaut
and Filiol [3] studied the fast correlation attack given in [5] for filter generators
and they showed that the keystream length which guarantees a successful attack
does not depend on the filtering function, except for functions which are very
close to affine functions. Then, they suggest that the choice of the Boolean func-
tion in the design of a filter generator should be mostly conditioned by other
types of attacks. Thus, fast correlations attacks are out of the scope of this paper.

Anderson [1] found other correlations in nonlinear filter generators and pro-
posed an optimum correlation attack. This attack is based on the (un)balanced-
ness of the augmented filter function. The update of the internal state memory
of the generator is assumed to be probabilistic. Hence, this attack does not
take advantage of a deterministic update, and it targets correlation relations
between the keystream bits that arise from properties of the filter function only.
Golic [8] studied a different definition of the augmented filter function and de-
rived a construction of Boolean functions that resist the optimum correlation
attack. Still in [8], Golic recommended to use in practice only filtering functions
coming from his construction (with additional criteria on the filtering function
including correlation-immunity). However, it is unclear to what extent this con-
struction captures all the filtering functions that are immune to this attack, as
Dichtl [6] showed by exhibiting such a filtering function that does not follow
Golic’s construction.

The relevance of the correlation-immunity criterion for filtering functions has
been partially studied by Ding et al. [7]. Many Boolean functions which are not
correlation-immune can be transformed into correlation-immune functions by
performing a linear transform on the input variables and adding a linear func-
tion. Indeed, Ding et al. gave a general method to construct, from a correlation
immune function f that filters an LFSR, an equivalent filter generator which
differs from the original one only by its initial state vector and by its filter func-
tion g, which is not correlation immune. Even if there is no efficient method
known to construct such an equivalent generator, stream ciphers with corre-
lation immune filter functions are theoretically vulnerable provided that those
with non-correlation-immune functions are. In [7], the authors concluded that
using correlation-immune filter functions may not get any advantage in the case
when the filter function and the feedback polynomial of the LFSR are known.
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Thus, from the state of the art on the application of the correlation-immunity
criterion to filtering functions, it is still unclear to what extent one must or not
choose a correlation-immune function when designing a filter generator.

1.2 Our Contribution

In this paper, we give in-depth analysis of correlation-related criteria in filter
generators. We investigate known distinguishing attacks on filter generators that
take advantage of correlation relations between the keystream bits that arise from
properties of the filter function only. So as to better understand the attacks, we
introduce two security models for filter generators depending on the memory
update procedure: the probabilistic nonlinear filter model and the deterministic
nonlinear filter model. We show that considering separately these two models
helps to shed light on the design criterion for filtering function, while there is no
interest to do the same for combining generators.

We revisit the optimal correlation attack [1,8] that targets correlation due
to the filtering function. We precisely study the criteria to resist this attack
depending on whether it is performed in the probabilistic or in the deterministic
model. We show that the relevance of this criterion in the deterministic model
is questionable, and that it does not target the initial attack in this model.

Next, we reconsider the original observation of Anderson and give a practical
criterion on the filter to avoid the optimal correlation attack in both models.
This criterion also thwarts a recent distinguishing attack focusing on a filtering
function [19]. We call this new criterion quasi-immunity, since it appears to be
a bit looser than correlation-immunity. This criterion embeds previous criteria,
and it turns out to be the criterion most directly related to correlations of the
filtering function.

We then provide the complexity of different types of attack against filtering
function that do or do not meet the quasi-immunity requirement. We show that
if the filtering function f does not fulfil the quasi-immunity criterion (of or-
der 1), then there always exists a distinguisher between random sequences and
keystream outputted by the filter generator even when considering the proba-
bilistic filter generator model. We next evaluate the cost of state recovery attack
depending on whether the filtering function fulfils the quasi-immunity criterion.
Finally, we discuss the construction of equivalent filter generators that are po-
tentially weaker against such attacks.

1.3 Organization of the Paper

In Section 2, we give the main cryptographic properties of Boolean functions, we
briefly describe the components of filter generators and update procedure, and we
summarize well-known criteria on the filter generator components. In Section 3,
we study correlation attacks targeted at the filtering function in filter generators,
and next we derive a new criterion called “quasi-immunity” criterion. In Section 4,
we study the complexity of general attacks for filters that do or do not meet the
new criterion. At last, we give directions for future work and we conclude.
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2 Preliminaries

In this section, we briefly recall the main properties of Boolean functions. Next,
we describe the components of a filter generator and give the main known design
criteria.

2.1 Boolean Functions

Every n-variable Boolean function f can be uniquely represented by its alge-
braic normal form, f(x1, . . . , xn) =

∑
I⊆{1,...,n} a

I

∏
i∈I xi, where the a

I
’s are

in F2. The terms
∏

i∈I xi are called monomials. For any Boolean function f

of n variables, we denote by F(f) the quantity F(f) =
∑

x∈GF (2)n(−1)f(x) =
2n − 2wH(f), where wH(f) is the Hamming weight of f , related to the Fourier
transform of f . In the following, we denote by e1, . . . , en, the n coordinate vec-
tors of the vector space GF (2)n with Hamming weight 1. For u ∈ GF (2)n, we
denote by ϕu the linear Boolean function x �→ x · u where · denotes the inner
product.

A Boolean function f is called balanced if 0 and 1 have the same number of pre-
images by f . The nonlinear order of a Boolean function f equals the maximum
degree of those monomials whose coefficients are nonzero in its algebraic normal
form. The nonlinearity of an n-variable Boolean function f is the minimum
Hamming distance between f and the set of affine functions.

An n-variable Boolean function f is correlation-immune of order m with
1 ≤ m ≤ n if the output of f and any m input variables are statistically in-
dependent. The correlation-immunity criterion can be characterized by means
of Walsh coefficients:

Proposition 1. [20] A Boolean function f : GF (2)n → GF (2) is correlation-
immune of order m if, and only if, F(f +ϕu) =

∑
x∈GF (2)n(−1)f(x)+u·x = 0 for

all u with 1 ≤ wH(u) ≤ m.

The nonlinear order and the nonlinearity of a Boolean function are both affine
invariant whereas the correlation-immunity is not [12].

2.2 Nonlinear Filter Generators

A nonlinear filter generator is defined by a finite memory, a filtering function, a
tapping sequence defining the input stages to the filter function and a procedure
to update the memory.

Finite memory. We assume that every nonlinear filter has a finite input mem-
ory of r bits. The value of the initial state of the memory is assumed to be
random. At each time t, the r − 1 first bits of the memory are shifted right
by one position and the leftmost bit is a new bit, that is either random, or
determined by the current bits in the register. The indexes in the register are
numbered from right to left, starting at 1. We denote by s = (st)∞t=−r the binary
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sequence of the state memory. Then, the finite sequence (st)−1
t=−r is the initial

state of the memory.
It is recommended to choose r ≥ 2L where 2L is the target security level to

avoid time-memory tradeoff attacks [2,9]. More precisely, the number of possible
initial states before keystream generation should be at least 22L.

Filtering function. Let f be a Boolean function of n non-degenerate input
variables with 1 ≤ n ≤ r. The inputs of the filtering function f are some values
st−γ1 , st−γ2 , . . . , st−γn of the finite memory, where γ = (γi)n

i=1 is an increasing
sequence of positive integers such that γ1 = 1, and γn ≤ r. The output sequence
z = (zt)∞t=0 of f is called the keystream sequence.

The function f must be balanced since the output sequence is expected to be
balanced. The nonlinear order of f must be high enough and f should include
many terms of each order up to the nonlinear order of f [13]. Indeed, filter
generators can be vulnerable to the Berlekamp-Massey algorithm if the linear
complexity of the output sequence is too small. Also, the Boolean function f must
not be close to affine functions in order to avoid fast correlation attacks [3].

Taps. The sequence γ = (γi)n
i=1 defining the indexes of the input to the filtering

function is called the tapping sequence, and the corresponding output sequence
z = (zt)∞t=0 is defined by zt = f(st−γ1 , . . . , st−γn), t ≥ 0 . The choice of the
tapping sequence defining the input stages to the filter function f must be done
as indicated in [8]: the input memory size should be close to its maximum value
r − 1, and the set of the tap positions should be a full positive difference set.

Update of the leftmost bit. In the literature, depending on the context,
authors either consider that the leftmost bit is a random bit, or that it is deter-
mined by the current bits in the register. Nevertheless, these two points of view
and their impact in terms of security model have not been studied or even un-
derlined. We call these two models respectively the probabilistic nonlinear filter
model and the deterministic nonlinear filter model.

Probabilistic nonlinear filter model. At each time t, the leftmost bit b is the
output of an unbiased random bit source. In this case, the input sequence is
perfectly random and then s = (st)∞t=−r is a random sequence. In this model,
the aim of an attack is not to recover the key since the knowledge of (st)i−1

t=−r

does not reveal anything about si. Here, the aim is to distinguish the keystream
sequence z from a random sequence. Thus, an attack on the nonlinear filter
generator in the probabilistic model reveals weaknesses of the filter.

Deterministic nonlinear filter model. At each time t, the leftmost bit b is com-
puted from the current memory state, e.g. by using a linear feedback of the reg-
ister. The best-known criterion on the feedback polynomial is that it should be a
primitive polynomial of degree r to ensure that the LFSR sequence s = (st)∞t=−r

is a binary maximum-length sequence of period 2r − 1 [14]. In this model, the
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aim of an attack can be either to recover the initial state or to distinguish the
keystream from a random sequence.

A successful attack in the probabilistic nonlinear filter model can be adapted
to the deterministic model, whereas the converse is not true. However, a criterion
to prevent an attack in the probabilistic model does not always translate to the
deterministic model.

3 Correlation Attacks on the Filtering Function

In this section, we first review the optimal correlation attack presented by An-
derson [1] that targets correlations due to the filtering function, before studying
criteria to resist this attack in the probabilistic and deterministic models. Next,
we consider a distinguishing attack on a filter generator that targets exactly the
optimal correlation of Anderson. At last, we deduce the quasi-immunity criterion
for filtering functions.

In the sequel, we assume the filtering function f to be balanced.

3.1 The Optimal Correlation Attack

The optimal correlation attack proposed by Anderson [1] is the first attack on
filter generators that exploits correlations due to the filtering function only. This
attack relies on the fact that each bit going along the register is input to the
filtering function at each one of its taps. This results in correlations between
the internal register state and the keystream produced. These correlations are
avoided if an augmented filter function defined accordingly is balanced.

This augmented filter function is constructed as follows: consider a single bit
b moving along the register. Each time this bit is at a tap location, the filter
combines it with other register bits to form a keystream bit. The augmented
function is the vectorial function that maps all these (independent) register bits
to the n-bit-vector consisting of the n values that involve bit b. One can then
distinguish the generator from a random sequence by studying the distribution
of the n-tuples in the output sequence that correspond to the output of the
augmented filter function.

Anderson provides an example of a filter whose taps are consecutive entries
of the register:

f(x1, x2, x3, x4, x5) = x1 + x2 + (x1 + x3)(x2 + x4 + x5) + (x1 + x4)(x2 + x3)x5.

This Boolean function is balanced, correlation-immune of order 2 and of non-
linear order 3. However, the augmented function that maps 9-tuples of the shift
register sequence to 5-tuples of the keystream output is not balanced, which
yields an attack. Notice that here, as the attacks takes place in the probabilistic
model, we assume that all 9-tuples are equiprobable.
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3.2 Analysis of the Optimal Correlation Attack - Probabilistic
Model

Both in [1] and in [8], the authors consider a probabilistic model in which the
input sequence s = (st)∞t=−r is regarded as a sequence of balanced and indepen-
dent bits. The output sequence z = (zt)∞t=0 is a sequence of balanced bits if and
only if the filter function f is balanced. The aim of the attacker is to distinguish
the keystream outputted by the filter from a random sequence.

Augmented filter function. The augmented filter function h̄ constructed by
Anderson in [1] makes it possible to find an optimal correlation between the
output keystream bits and the internal state of the register. The keystream bit
produced at time t is equal to

zt = f(st−γ1 , . . . , st−γn) .

The function h̄ is defined as follows. Consider the n2 (not necessarily distinct)
variables involved in the n values of the filter function at time t + γ1, . . . , t +
γn, which all involve the bit st, and denote by G the set of all independent
variables among those n2 variables. The function h̄ maps every element of G to
the corresponding n-tuple of keystream bits (zt+γi)i=1...n.

In [8], Golic studied the randomness of the keystream in the probabilistic
model. Assuming that the input sequence s = (st)∞t=−r is a sequence of balanced
and independent bits, the output sequence z = (zt)∞t=0 is a sequence of balanced
bits if and only if the filter function f is balanced. The output sequence z is
purely random if and only if for each t ≥ 0, the output bit zt is balanced for any
fixed value of the previous output bits (zi)t−1

i=0 .
For a finite nonlinear filter generator with input memory size r, zt depends

only on the current input bit st and on the r preceding input bits (si)t−1
i=t−r .

Golic showed that the output sequence is purely random given that the input
sequence is such if and only if the vectorial Boolean function FM+1 that maps
2M + 1 consecutive input bits to the M + 1 corresponding consecutive output
bits is balanced, where M = γn − γ1.

It appears that Golic’s construction generalizes the augmented filter function
h̄ and the corresponding attack to an arbitrary choice of taps for the filter. The
criterion for the keystream to be purely random and thus to resist the optimum
correlation attack in the probabilistic model is the balancedness of this new
augmented filter function.

We now precisely establish the link between the augmented functions of An-
derson and Golic.

Proposition 2. If the augmented function of Golic FM+1 is balanced, then the
augmented function of Anderson h̄ is balanced.

Proof. The functional graph in Figure 1 links h̄ and FM+1 augmented functions,
with P and Q being projections respectively from the 2M + 1 bit variables onto
those involved in h̄, and from the M + 1 consecutive output bits to the subset
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F
2M+1
2

FM+1−−−−−→ F
M+1
2

P

⏐
⏐
�

⏐
⏐
�Q

G
h̄−−−−−→ F

n
2

Fig. 1. Commutative diagram of augmented functions of Anderson and Golic

of n output bits observed at t + γn, . . . , t + γ1. Using the commutative diagram
in Figure 1, the proof is straightforward. ��

Remark 1. The augmented function h̄ is a restriction of the augmented function
FM+1, and both functions h̄ and FM+1 coincide if all the filter taps are consec-
utive. Thus, h̄ being balanced does not imply that FM+1 also is. Indeed, for the
register with output zt = st−3 + st−6 · st−1, the function h̄ is balanced, whereas
FM+1 is not.

Golic’s formulation in the same framework as Anderson is thus a generaliza-
tion that enables finding optimal so-called correlations, as it involves the whole
memory of the generator. Thus, a nonlinear filter generator is immune to the
optimum correlation attack in the probabilistic model if, and only if, Golic’s
augmented filter function is balanced.

Unfortunately, straightforward study of the balancedness of FM+1 is too com-
plex when the taps of the function are located at both ends of the register as
recommended in [8].

Criterion on the filter function. We now study the criterion on the filter
function for the augmented filter function FM+1 to be balanced, which is equiv-
alent to the output being purely random. Golic in [8] gave a characterization
in terms of the filter function f and the tapping sequence γ in the following
theorem, for which only the sufficiency of the conditions was proven:

Theorem 1. [8] For a nonlinear filter generator with the filter function f and
independent of the tapping sequence γ, the output sequence is purely random
given that the input sequence is such if (and only if) f(x1, . . . , xn) is balanced
for each value of (x2, . . . , xn), that is, if

f(x1, . . . , xn) = x1 + g(x2, . . . , xn), (1)

or if f(x1, . . . , xn) is balanced for each value of (x1, . . . , xn−1), that is, if

f(x1, . . . , xn) = xn + g(x1, . . . , xn−1), (2)

Function FM+1 depends on the choice of the taps, while Theorem 1 gives a char-
acterization independent from the tap sequence. However, filtering functions that
yield a purely random output for a specific choice of the taps exist, thus con-
tradicting Theorem 1. Indeed, Sumarokov in [18] had already defined perfectly
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balanced Boolean functions as those functions whose augmented function is bal-
anced when the taps are consecutive, and had given an example that is not of the
form (1) or (2). Dichtl [6] also found a similar filtering function. More recently,
Logachev [10] gave a general construction to obtain new such functions.

Then, it appears that perfect balancedness of filter functions was not properly
defined by Golic, and the definition should enclose the choice of the taps. The fil-
ter function to consider is thus the M +1-variable Boolean function constructed
from f and γ = (γi)n

i=1 by adding M + 1 − n mute variables. However, filter-
ing functions of the form (1) or (2) have the particularity that the associated
augmented functions are balanced regardless of the choice of the taps.

To summarize, the set of filters that thwart the optimum correlation attack
in the probabilistic model includes not only the functions from [8], but also
functions whose suitability may depend on the choice of the taps.

3.3 Analysis of the Optimal Correlation Attack - Deterministic
Model

We now consider a deterministic model such that the memory is updated using
a deterministic linear relation. At each clock, the new leftmost bit is a linear
combination of the memory state bits. Then, the input sequence s = (st)∞t=−r

is regarded as a sequence of balanced bits which are dependent. The output
sequence z = (zt)∞t=0 is a sequence of balanced bits if and only if the filter
function f is balanced. The aim of the attacker is to distinguish the keystream,
i.e. the output of the filtering function, from a random sequence.

In this case, the approach of [1] and [8] is not valid anymore. Indeed, a very
simple counterexample shows that correlation may appear even in the case of
functions of the form (1) or (2).

Proposition 3. Consider the filter generator consisting of a 4-bit register with:
{

zt = st−2 + st−4 · st−3

st = st−4 + st−3

The deterministic counterparts of the augmented functions of Anderson and
Golic are unbalanced.

Proof. Anderson’s augmented function h̄ is defined as follows:

h̄ : F
4
2 → F

3
2

st−4, st−3, st−2, st−1 �→ (st−2 + st−4 · st−3, st−1 + st−3 · st−2, st + st−2 · st−1)

Taking the correlation into account yields st+st−2·st−1 = st−4+st−3+st−2·st−1.
Thus, the edge random variable x4 (in the random input model) which had a
balancing role disappears, and, whenever pattern 101 appears in the keystream,
the register content is 0101, hence the result. ��
The reason for this observation is that, as feedback bits are produced by bits
that have already passed through the register and mixed in previous values of
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the filter function, the criterion in Theorem 1 is less relevant. Indeed, there is no
reason to consider the edge bits as being “more random” than the others, and
to consider filtering functions of the form (1) or (2) only.

We now study the augmented function of Golic with respect to the deter-
ministic model in general. Remember that the augmented function FM+1 maps
2M + 1 consecutive input bits to the M + 1 corresponding consecutive output
bits. A proper choice of the taps implies maximizing the size of the range of
the inputs to the filter [8], so that the length of the register is equal to M + 1.
Therefore, among the 2M + 1 input bits of FM+1, the last M bits are uniquely
determined by the first M + 1 input bits. Therefore, we have

Proposition 4. Consider a register with length M + 1, filtered by a Boolean
function f whose distance between the extremity taps is M . In the deterministic
model, the augmented function FM+1 maps the internal state of size M + 1 to
the first M + 1 output bits.

In the deterministic model, the balancedness of the original augmented filter
function is not relevant, as not all inputs of the function are possible. Therefore,
instead of studying the augmented function FM+1 itself, it is necessary to study
its restriction to its possible inputs. This amounts to study the balancedness of
the first M +1 output bits of the nonlinear filter, which is related to well-known
distinguishing attacks consisting in studying the distribution of the first output
bits, and also to algebraic attacks.

3.4 A Practical Criterion to Avoid Optimal Correlations

As we have seen, in the deterministic model, not only cannot we assume that
the leftmost bit is perfectly random, but also the definition of the augmented
filter function is no longer sound. Instead of studying the augmented function, it
is necessary to take the feedback function into account and to study the output
sequence itself.

Therefore, in this section, we refer to the probabilistic model, and we consider
a distinguishing attack on a filter generator that attempts to exploit a weakness
of the filtering function only to distinguish the output of the filtering function
from a random sequence.

The study of the balancedness of Golic’s augmented filter function FM+1

captures related biases, but the complexity is too high when the length between
extreme taps is maximal: in this case, FM+1 maps 2r − 1-bit-vectors to r-bit-
vectors, which makes finding a bias as hard as an exhaustive search.

We thus come back to the original idea of Anderson in [1] to derive a criterion
that prevents optimal correlations from appearing in the output, by considering
only the n output bits that share an equal bit in the input to the filter.

The aim of the attack is to correlate n keystream bits that are output within
intervals equal to each difference between two consecutive tap positions having
at least one bit in common.
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We denote by x(t) the input of the filtering function at time t, i.e. , x(t) =
[st−γ1 , . . . , st−γn ]. At time t, the value of the i-th variable xi which is st−γi is
denoted by xi(t).

Proposition 5. Consider a nonlinear filter generator with filter f , where f is
an n-variable Boolean function. Assume that the input sequence s = (st)∞t=−r is
purely random, and that the tapping sequence γ is a full positive difference set.
For 1 ≤ i ≤ n, let δi = γi − γ1.

Then, for every t > 0, the n-tuple (zt+δi)1≤i≤n is unbiased, if and only if,

F(f + ϕei) =
∑

x∈GF (2)n

(−1)f(x)+xi = 0 (3)

for at least n− 1 integers i, 1 ≤ i ≤ n.

Proof. First, notice that the bit st−γ1 is at tap xi at time t + δi for each i,
1 ≤ i ≤ n. For 1 ≤ i ≤ n, let pi be the probability defined by

pi = Prob (f(x(t + δi)) = 0 | xi(t + δi) = 1) .

The LFSR sequence being balanced, we have

Prob(f(x(t)) = 0) =
1
2

=
1
2
(Prob(f(x(t)) = 0 | xi(t) = 1)

+ Prob(f(x(t)) = 0 | xi(t) = 0)).

We deduce
pi = Prob (f(x(t + δi)) = 0 | xi(t + δi) = 1)

= Prob (f(x(t + δi)) = 1 | xi(t + δi) = 0)

1− pi = Prob (f(x(t + δi)) = 0|xi(t + δi) = 0)
= Prob (f(x(t + δi)) = 1|xi(t + δi) = 1) .

Thus, the probability that f(x(t+δi)) is equal to a given bit bi given xi(t+δi) =
st−γ1 = 0 is equal to (1−bi)(1−pi)+bipi, and it is equal to (1−bi)pi +bi(1−pi)
given xi(t + δi) = st−γ1 = 1.

As the choice of the taps is a full positive difference set, two n-tuples of
bits input to the filter share at most one bit in common, and their other bits
are supposed to be independent. Therefore, the n-tuple (zt, zt+δ2 , . . . , zt+δn)
is equal to a given n-tuple (b1, . . . , bn) of bits with probability 1

2

∏n
i=1((1 −

bi)(1 − pi) + bipi) + 1
2

∏n
i=1(bi(1 − pi) + pi(1 − bi)). In order to have no bias

in (zt, zt+δ2 , . . . , zt+δn), it is thus necessary and sufficient that the equality
1
2

∏n
i=1((1 − bi)(1 − pi) + bipi) + 1

2

∏n
i=1(bi(1 − pi) + pi(1 − bi)) = 1

2n holds
for all choices of bi’s. This is equivalent to all the pi’s being equal to 1

2 , apart
from at most one pi. This is true if and only if Equation 3 holds for at least n−1
integers i, 1 ≤ i ≤ n. ��
The attack we considered also generalizes the attack against the stream cipher
Decim presented by Wu and Preneel in [19] where a bias in the probability that
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two output bits with a common input bit were equal was taken advantage of.
Therefore, the criterion in Proposition 5 thwarts this attack, as it encompasses
all the biases arising from the fact that several outputs of the function can share
a common input bit.

Remark 2. Notice that the condition stated in Proposition 5 is close to the
correlation-immunity of order 1, as introduced in Proposition 1. Indeed, this
new criterion allows for at most one unbalanced 1-variable restriction, instead
of none.

Definition 1. We say that a Boolean function satisfying the property in Propo-
sition 5 is quasi-immune to correlations of order 1.

Quasi-immunity of order 1 is not only close to correlation-immunity of order 1,
but it is also close to the perfect balancedness definition from Golic. Indeed, it
is also a criterion on the filter function only, and a function that is not quasi-
immune has a bias, as shown in the proof of Proposition 5, so its output for
a random input cannot be random. Moreover, functions satisfying the criterion
given by Golic in Theorem 1 are quasi-immune of order 1.

More precisely, quasi-immunity of order 1 is exactly equivalent to the bal-
ancedness of the augmented filter function h̄ of Anderson in the setting of Propo-
sition 5. Unlike the balancedness of FM+1, the balancedness of h̄ is thus easy
to check, which makes quasi-immunity a practical criterion to avoid optimal
correlation attacks. However, this criterion should be completed to avoid key
recovery attack based on a weakness of the filtering function. We will see in the
next section that this amounts to bound the bias of the only possible unbalanced
1-variable restriction of a quasi-immune function.

4 Attack Complexity and Quasi-immunity

In this section, we compare different types of attacks targeting filtering functions
that are quasi-immune to correlations of order 1, and functions that are not.

4.1 Distinguishing Attack

The scope of this attack is to distinguish the output sequence from a random
sequence.

Case of a quasi-immune filtering function. In the probabilistic model, the
input sequence is assumed to be random. In this case, if f is perfectly balanced,
then the output is also random. Therefore, the output cannot be distinguished
from a random sequence.

However, as we have shown, this is not always the case in the deterministic
model. On the contrary, in this model, some quasi-immune functions which are
not perfectly balanced, might result in balanced augmented functions with a prop-
erly chosen feedback polynomial. Recall that a function f that is quasi-immune
to correlations of order 1 has at most one restriction ei, 1 ≤ i ≤ n, such that
x1, . . . , xn �→ f(x1, . . . , xn)⊕ϕei(x1, . . . , xn) = f(x1, . . . , xn)⊕xi is unbalanced.
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Case of a non quasi-immune filtering function. When a function is not
quasi-immune to correlations of order 1, then there exist two unbalanced restric-
tions ei and ej, with two associated probabilities both distinct from 1

2 :

p = Prob (f(x(t)) = b1 | xi(t) = 1) and

q = Prob (f(x(t + γ)) = b2 | xj(t + γ) = 1)

Without loss of generality (by exchanging bi and b̄i if necessary), we assume
p < 1

2 and q < 1
2 . Then, the output bits pair (zt, zt+γ) related to the two

inputs x(t) and x(t + γ) is equal to (b1, b2) or (b̄1, b̄2) with probability pq +
(1− p)(1− q) > 1

2 . Therefore, in order to distinguish between the output and a
random sequence, it is sufficient to consider pairs of output bits distant from one
another by γ, and to check that pairs (b1, b2) and (b̄1, b̄2) appear with probability
pq + (1 − p)(1 − q). Thus, if the filtering function f is not quasi-immune to
correlations of order 1, then there always exists a distinguisher between random
sequences and keystream output by the filter generator (even when considering
the probabilistic filter generator model).

4.2 State Recovery Attack

A standard aim of an attack against an LFSR-based cipher is to retrieve the
internal content of the register. This attack takes place necessarily in the deter-
ministic model.

Case of a quasi-immune filtering function. In the case of a quasi-immune
function f , if there is one unbalanced restriction ei, it is possible to guess the
internal state of the cipher as the output bit is correlated to the bit with unbal-
anced restriction. For instance, suppose

p = Prob (f(x(t)) = b | xi(t) = 1) 
= 1
2 ,

with p < 1
2 for instance (otherwise exchange b and b̄). Then, for each bit in the

output, we guess the input bit with probability 1 − p. The complexity of the
related attack is

(
1

1−p

)r

.

Remark 3. Even if f is perfectly balanced, it can have unbalanced restrictions, so
perfect balancedness is not sufficient to avoid such correlation attacks. Here, we
need to choose f and r such that ( 1

1−p )r ≥ 2k where k is the security parameter.

Case of a non quasi-immune filtering function. Suppose now that the
function is not quasi-immune to correlations of order 1. Then, we have:

Proposition 6. Let (xi, xj) be a pair of variables whose relative restrictions are
unbalanced, and let

p = Prob (f(x(t)) = b1 | xi(t) = 1) ,

q = Prob (f(x(t + γ)) = b2 | xj(t) = 1) ,
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with b1 and b2 such that p < 1
2 and q < 1

2 . Then, the nonlinear filter generator
with filter f and internal state of length r is vulnerable to a state recovery attack
of complexity O

(
P (r)

(
1 + pq

(1−p)(1−q)

)r)
, with P a polynomial corresponding to

the resolution of a linear system.

The proof is given in Appendix A.

4.3 Building of a Weaker Equivalent Filter Generator

From the attacker side, the first step to attack a filter generator by focusing on
the filtering function is to look for an equivalent filter generator with a weaker
filtering function. Indeed, correlation-immunity is not an affine invariant, and
neither is quasi-immunity. Indeed, the quasi-immunity of the filtering function
of a given filter generator does not guarantee the quasi-immunity of the filtering
functions of equivalent generators.

We consider an LFSR of length r with feedback polynomial C(x) = 1+ c1x+
c2x

2 + · · ·+ cr−1x
r−1 + xr. The sequence generated by the LFSR with feedback

polynomial C and initial value [s−r, . . . , s−1] is denoted by s = (st)∞t=−r. The
filtering function f0 is an n-variable Boolean function where 0 < n ≤ r. Let
γ = (γi)n

i=1 be an increasing sequence of positive integers such that γ1 = 1, and
γn ≤ r.

We denote by f̃0 the r-variable Boolean function constructed from f0 and
γ = (γi)n

i=1 by adding r − n mute variables. The function f̃0 is defined by
f̃0(x1, . . . , xr) = f0(xγ1 , xγ2 , . . . , xγn). The keystream sequence z = (zt)∞t=0 is
the output sequence of f̃0, i.e. zt = f̃0 (st−1, . . . , st−r), t ≥ 0. We consider in the
following the filter generator FG0 =

(
C, f̃0, [s−r, . . . , s−1]; z = (zt)∞t=0

)
.

For every i > 0, it is possible to construct an equivalent generator FGi with
the same feedback polynomial and output sequence, but with different initial
state and filtering function: FGi =

(
C, f̃i, [s−r+i, . . . , s−1+i]; z = (zt)∞t=0

)
.

We now show how to construct f̃i. Given an LFSR state [x1, . . . , xr], the
previous state is computed using the transformation

A : {0, 1}r → {0, 1}r
x1, . . . , xr �→ (xr + cr−1x1 + cr−2x2 + · · ·+ c1xr−1, x1, . . . , xr−1),

For every i ≥ 1, we have: f̃i(x1, . . . , xr) = f̃i−1 ◦A(x1, . . . , xr). We deduce that
f̃i(x1, . . . , xr) = f̃0 ◦ Ai(x1, . . . , xr), where Ai(x1, . . . , xr) denotes the iteration
of i times the transformation A.

Proposition 7. Consider a filter generator with a balanced and quasi-immune
of order 1 filtering function f0. All the functions f̃i are quasi-immune of order
1 for every i ≥ 0 if, and only if, for every i > 0, one of the following properties
is satisfied:
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1. the function x1, . . . , xr �→ f̃i ◦A(x1, . . . , xr)⊕ xr is balanced,
2. the restrictions of f̃i following xj, for all 2 ≤ j ≤ r, are all balanced.

The proof is given in Appendix B.

Remark 4. Balancedness is invariant under linear transformations. Hence, Con-
dition 1 of Proposition 7 is fulfilled if and only if the function x1, . . . , xr �→
(f̃i ◦ A + ϕer ) ◦ A−1(x1, . . . , xr) is balanced, i.e. , if and only if x1, . . . , xr �→
f̃i(x1, . . . , xr)⊕ x1 ⊕ cr−1x2 ⊕ · · · ⊕ c2xr−1 ⊕ c1xr is balanced.

As we have seen, the quasi-immunity criterion is not affine-invariant, so it should
be satisfied not only by the filtering function of a given filter generator, but also
by the filtering functions of equivalent generators. Thus, the filtering function f0

should be chosen such that f̃i is quasi-immune of order 1 for every i ≥ 0. Note
that this requirement is clearly a consequence of taking the linear feedback into
consideration, and it is therefore related to the notion of an extended augmented
function as mentioned in Section 3.3.

4.4 Summary of Our Results on Attacks Complexity

Recall that if the filtering function of a filter generator is balanced then all
the filtering functions f̃i, i ≥ 0, of equivalent generators are balanced since the
balancedness is an affine invariant. We summarize our complexity attack results
by taking into account, given a filter generator, all the filtering functions of
equivalent generators.

Proposition 8. Let f be the filtering function of a filter generator, and let f̃i,
i ≥ 0, be the filtering functions of the equivalent generators. Assuming that f is
balanced, we have:

1. if f̃i is quasi-immune and has a unique unbalanced restriction xj, then the
filter generator is vulnerable to a state recovery attack that exploits this re-
striction, with time and space complexity O

((
1

max(p,1−p)

)r)
, where p is the

probability that the value of the restriction of f̃i in xj is equal to 0 (c.f.
subsection 4.2);

2. if fi is not quasi-immune, then the filter generator is vulnerable to a straight-
forward distinguishing attack based on a bias of pq + (1− p)(1− q)− 1

2 , with
p and q being the probabilities relative to two distinct unbalanced restrictions
of f̃i (c.f. subsection 4.1);

3. if f̃i is not quasi-immune, then the filter generator is vulnerable to a state
recovery attack of time and space complexity O

((
1 + pq

(1−p)(1−q)

)r)
(c.f.

subsection 4.2).

Thus, when designing a filter generator, the filtering function must be chosen
quasi-immune of order 1 to avoid distinguishing attacks focusing on the filtering
function. Furthermore, the at most unbalanced 1-variable restriction must be
chosen such that O

((
1

max(p,1−p)

)r)
≥ 2k where k is the security parameter to

avoid key reconstruction attack focusing on the filtering function.
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5 Conclusion

In the case of nonlinear filter generators, correlation-based attacks and the cri-
teria to avoid them depend heavily on the considered security model. We have
shown that perfect balancedness prevents the optimal correlation attack in the
probabilistic model, but that it does not apply to the deterministic model. In the
deterministic model, perfect balancedness is equivalent to the absence of bias in
the output of the system.

We also extracted a precise criterion on filtering Boolean functions, related to
correlation between the output bits as in the optimal correlation attack, based
on the fact that input bits at different stages may be correlated in case of non-
linear filter generators. This is a major difference with combiners, and pointing
this out clears up the status of correlation-based attacks against nonlinear filter
generators. We also provided the complexity of different types of attacks against
filtering function that do or do not satisfy this new criterion.

Still, several criteria related to correlation exist, but their relevance is now
clear. This should provide a convenient basis for designers. Moreover, we believe
that the distinction between two security models is also promising, and new
attacks should refer to one model or the other in order to precise their relevance.
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A Proof of Proposition 6

Proof. Every bit in the input sequence (st)∞t=0 is a linear combination of the
initial state bits of the register, that is, in the variables (st)−1

t=−r. Therefore, in
order to reconstruct the initial state, one can proceed as follows: first, guess
R ≥ r bits of the input sequence, write the R equations in the r initial state
bits, solve the system to find the initial state, and at last check that the guess is
correct by comparing the keystream it generates with the actual keystream. In
practice, R is chosen to be equal to r, and, if the system solving leads to multiple
solutions, there are two solutions: either we add one (or more) equation(s) by
guessing some more input bits, or we drop this system and construct another
from r new input bits.

In order to guess R bits of the input sequence, we parse the keystream into
pairs of bits distant from one another by γ, and guess the value of the correspond-
ing input bit xk(t) = xj(t+γ). When the pair belongs to B = {(b1, b2), (b̄1, b̄2)},
then we guess the input bit - 0 when (b1, b2) is observed, 1 for (b̄1, b̄2) - with
probability (1−p)(1−q)

pq+(1−p)(1−q) .
If the pair belongs to B′ = {(b1, b̄2), (b̄1, b2)}, then we guess it with proba-

bility max(p(1−q),q(1−p))
p+q−2pq . However, it is easy to show that max(p(1−q),q(1−p))

p+q−2pq <
(1−p)(1−q)

pq+(1−p)(1−q) , so the R bits we guess are those producing pairs of B.

http://eprint.iacr.org/
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We notice that knowing the output pair (zt, zt+γ) does not impact the prob-
ability that the pair (zt+γ , zt+2γ) belongs to B or not, as the bit z(t + γ) is the
first bit of exactly one pair of bits in B and in B′. Therefore, the probability
that a pair of bits is or is not in B does not depend on previous output, and it is
equal to pq + (1− p)(1− q). This value being greater than 1

2 , finding such pairs
of bits is easy.

Let us now assume that we know R pairs of output bits distant from one
another by γ, and that all these pairs belong to B. Then, the success probability
of reconstruction is (

(1− p)(1− q)
pq + (1 − p)(1− q)

)R

.

In practice, we have R = r, and the reconstruction complexity (both in time and

space) is thus O(P (r)
(
1 + pq

(1−p)(1−q)

)r

), with P the polynomial corresponding
to solving the system to retrieve the r bits of the initial state. ��

B Proof of Proposition 7

Proof. For f̃0, if the filtering function f0 fulfils the quasi-immunity criterion,
then so does the entire function f̃0. Indeed, f0 is balanced and thus x1, . . . , xr �→
f̃0(x1, . . . , xr)⊕ϕej (x1, . . . , xr) is balanced for every mute variable xk. Therefore,
f̃0 is quasi-immune.

Suppose now that f̃i is a r-variable quasi-immune function such that
x1, . . . , xr �→ f̃i(x1, . . . , xr)+ ϕej (x1, . . . , xr) is unbalanced for every j such that
1 ≤ j ≤ r, apart for at most one value j0 of j.

Due to the special form of A, we have:
{

(f̃i + ϕej ) ◦A(x) = f̃i+1(x)⊕ xj−1

(f̃i + ϕe1) ◦A(x) = f̃i+1(x) ⊕ xr ⊕ cr−1x1 ⊕ cr−2x2 ⊕ · · · ⊕ c1xr−1

If j0 > 1, then x1, . . . , xr �→ f̃i+1(x1, . . . , xr) ⊕ xj is balanced for every 1 ≤
j ≤ r − 1, apart from j = j0 − 1. As f̃i+1 is quasi-immune if, and only if, it is
unbalanced for at most one 1-variable restriction, then it is quasi-immune if, and
only if, x1, . . . , xr �→ f̃i+1(x1, . . . , xr) ⊕ xr is also balanced, which is equivalent
to x1, . . . , xr �→ f̃i ◦A(x1, . . . , xr)⊕ xr being balanced.

If j0 = 1, then x1, . . . , xr �→ f̃i+1(x1, . . . , xr) ⊕ xj is balanced for every 1 ≤
j ≤ r − 1, so f̃i+1 is quasi-immune. ��
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Abstract. TPypy is a tweaked version of the Py stream cipher algo-
rithm submitted to eSTREAM. Py uses a kind of processing referred to
as a ‘rolling array’, the mixing of two types of array and one variable,
to generate the keystream. TPypy is proposed as a highly secure stream
cipher that fixes all of the previously identified weaknesses of Py.

This paper reports a significant bias in the pseudo-random generation
algorithm of TPypy that can be exploited to distinguish the keystream
obtained from multiple arbitrary secret key and initial vector pairs from
a truly random number sequence using about 2199 words.

Keywords: distinguishing attack, ECRYPT, eSTREAM, Py family of
stream ciphers, TPypy.

1 Introduction

Many stream ciphers have been proposed over the past 20 years. Most of them
are constructed using a linear feedback shift register (LFSR), which is easily
implemented in hardware, but the software implementations are mostly slow. In
1987, Rivest designed the RC4 stream cipher, which is suited to software imple-
mentation [11]. RC4 has been implemented for many applications, including the
Secure Socket Layer (SSL) and Wired Equivalent Privacy (WEP), and is one
stream cipher that is widely used around the world.

In the past few years, several modified RC4 algorithms have been proposed.
One of them is the Py stream cipher proposed by Biham and Seberry for eS-
TREAM in 2005 [1,3]. The secret key is up to 32 bytes long and the initial vec-
tor (IV) is up to 16 bytes long. Both are selectable in multiples of one byte. An
8-byte keystream is generated at each time. However, from a security standpoint,
the designers limited the keystream that can be generated for one secret key and
IV pair to 264 bytes. Py employs processing called a ‘rolling array’ to generate
a keystream while mixing two arrays and one variable.

For the analysis of Py, a number of distinguishing attacks that focus on weak-
nesses in the pseudo-random generation algorithm (PRGA) have been proposed
[6,9,10]. None of those methods, however, threaten the security of Py because of
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the limit on the length of the keystream. Nevertheless, the designers have further
proposed Pypy, a model in which security can be guaranteed without a limit on
the length of the keystream [4]. Pypy includes the modification that a 4-byte
keystream is generated at each time.

Since 2006, however, a number of key recovery attacks that exploit weakness in
the IV schedule have been reported [7,13,14,15]. Those methods pose a security
problem for Py, Py6, and Pypy. Accepting those reports, Biham and Seberry
tweaked the IV schedule and proposed a secure model as TPy, TPy6, and TPypy
[5]. On the basis of various analyses [7,9,14], however, the Py family of stream
ciphers was not selected as a phase 3 candidate by eSTREAM.

Here, we report a significant bias in the output sequence of the newly pro-
posed TPypy PRGA based on a detailed analysis. Exploiting that bias allows
the keystream that can be obtained with mulitple arbitrary secret key and IV
pairs to be distinguished from a truly random number sequence with about 2199

words. Furthermore, our method succeeds with a greatly smaller amount of data
than results that have been reported previously [8,12].

The Py family of stream ciphers is explained in Section 2. Section 3 explains
the distinguishing attack on TPypy and Section 4 is the conclusion.

2 Py Family of Stream Ciphers

In this section, we explain the Py family of stream ciphers. For a more detailed
description refer to the proposal papers [3,4,5].

2.1 Proposals and Analyses of the Py Family of Stream Ciphers

In this section, we summarize the flow of the Py family of stream cipher proposals
as well as analyses of them.

In 2005, Biham and Seberry proposed Py [3] to improve implementability and
security. Py has an 8-bit index array P and a 32-bit array Y for mixing data as
an internal state. It changes these arrays by a process known as ‘rolling array’.
An evaluation of the implementability of Py by Biham et alia showed Py to be
about 2.5 times as fast as RC4 on a 32-bit processor. Py6 was also proposed
at the same time as a model that has fast initialization. For security reasons,
however, Biham et alia limited the keystreams that can be generated by one
secret key and IV pair to 264 bytes in Py and 240 bytes in Py6.

Nevertheless, in 2006 Paul et alia proposed a distinguishing attack against
Py [9]. By their method, Py output can be distinguished from a truly random
number sequence using a keystream of about 289.2 bytes. In the same year,
Crowley increased the efficiency of the method of Paul et alia with respect to
amount of data by applying a hidden Markov model [6]. By Crowley’s method,
Py can be distinguished from a truly random number sequence with a keystream
of about 272 bytes. In the same year, Paul et alia also showed that the same
method could be applied to Py6 [10]. With the method of Paul et alia, Py6
can be distinguished from a truly random number sequence with a keystream of
about 268.61 words (64 bits/word).
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The security standard of Py and Py6 are that attack is not possible with a
keystream of less than 264 bytes for Py and of less than 240 bytes for Py6, so
the method of [6,9,10] does not go as far as to threaten the security Py or Py6.
Nevertheless, Biham et alia proposed at the FSE 2006 rump session a further
modified algorithm as Pypy, to which the method of [6,9,10] cannot be applied,
even with keystreams larger than 264 bytes [4]. Although Pypy is basically the
same algorithm as Py, only 32 bits of data are output as the keystream, which
is half that of Py.

After that, Wu and Preneel proposed a key recovery attack that exploits the
weakness in the IV schedule of Py and Pypy that equivalent keystreams can
be output from different IV [13,14]. By that method, the Py and Pypy with a
16-byte secret key and a 16-byte IV can be broken by using 224 chosen IV and
assuming 72-bit keys. After that, Isobe et alia showed that an improvement in
the efficiency of the Wu et alia method allows 16-byte secret key and 16-byte
IV Py and Pypy to be broken by using 224 chosen IV and a 48 bit key [7]. In
2007, Wu et alia further improved the efficiency of their attack and reported
that 16-byte secret key and 16-byte IV Py and Pypy can be broken by using 223

chosen IV and a 24-bit key [15].
To prevent attacks that exploit the weakness of the IV schedule, Biham et

alia improved the IV schedule and proposed TPy, TPy6, and TPypy [5]. TPy,
TPy6, and TPypy inherit the respective security standards of Py, Py6, and Pypy,
so TPypy can be considered the model that has the highest security of the Py
family of stream ciphers.

Recently, Kogiso and Shimoyama proposed a distinguishing attack against
Pypy [8]. By their method, Pypy can be distinguished from a truly random
number sequence with a keystream of about 2220 words. Because Pypy and
TPypy have the same PRGA structure, this attack can also be applied to TPypy.
Sekar et alia also proposed a distinguishing attack against TPypy and TPy
[12] that can distinguish TPypy from a truly random number sequence with a
keystream of about 2281 words.

2.2 Description of TPypy

TPypy has arrays P and Y , and 32-bit variable s. P is an array of 256 bytes that
contains a permutation of all values from 0 to 255, and Y is an array of 260 32-bit
words indexed from −3 to 256. TPypy uses a process called a ‘rolling array’ to
mix the data of arrays P and Y and variable s to generate the keystream. The
keystream is output 32 bits at a time. The encryption generates a keystream
whose length is the number of bytes of the input plaintext, with the ciphertext
generated by a taking the bit-wise exclusive-OR of the plaintext.

TPypy consists of roughly three phases: the key schedule, which performs
initialization with the secret key; the IV schedule, which performs initialization
with the IV; and the keystream generating PRGA. In the analysis we report here,
we are concerned only with the structure of the PRGA, so we omit explanation
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Input: Y[-3,…,256], P[0,…,255], a 32-bit variable s

Output: 32-bit random output

/* update and rotate P */

1. swap(P[0], P[Y[185] & 0xFF]);

2. rotate(P);

/* Update s */

3. s += Y[P[72]] – Y[P[239]];

4. s = ROTL32(s, ((P[116] + 18) & 31));

/* Update 4 bytes (least significant byte first) */

5. output((s ⊕ Y[-1]) + Y[P[208]]);

/* Update and rotate Y */

6. Y[-3] = (ROTL32(s, 14) ⊕ Y[-3]) + Y[P[153]];

7. rotate(Y);

Fig. 1. PRGA of TPypy

related to the key schedule and the IV schedule. The TPypy PRGA is shown in
Fig. 1. TPypy is a modification of the initialization of Pypy, so it has the same
PRGA structure as Pypy.

In Fig. 1, the ⊕ symbol refers to a bit-wise exclusive-OR operation. The bit-
wise AND operation is denoted as &. Addition and subtraction with modulus
232 are denoted as + and −. ROTL32(X , i) denotes i-bit rotation of word X to
the left. The exchange of entry 0 and entry j of array P is denoted as swap(P [0],
P [j]). The notation rotate(P ) means a cyclic rotation of the elements of array
P by one position.

In this paper, the keystream at time t is defined as Ot. In the same way, the
arrays P and Y , and the internal variable s at time t are denoted as Pt, Yt, st.
After completion of the IV schedule, it becomes P0, Y1, s0, and the output at
time t = 1 is as follows.

O1 = (s1 ⊕ Y1[−1]) + Y1[P1[208]]

Bit n of word X is defined as X(n). Here, n = 0 means the least significant
bit.

3 Distinguishing Attack

In this section, we explain a bias that exists in the TPypy output sequence
and show that the bias can be exploited to distinguish the output from a truly
random number sequence.
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3.1 Bias in Output Sequence

In this section, we show that Theorem 1 holds for the TPypy output sequence.

Theorem 1. When the following conditions hold,
O1(0) ⊕O3(0) ⊕O6(0) ⊕O7(0) = 0 necessarily holds.

C1. P6[208] = 254
C2. P7[208] = 255
C3. P2[116] ≡ −18 (mod 32)
C4. P2[72] = P3[239] + 1
C5. P2[239] = P3[72] + 1
C6. P4[116] ≡ −18 (mod 32)
C7. P4[72] = P5[239] + 1
C8. P4[239] = P5[72] + 1
C9. P3[116] ≡ P5[116] ≡ −18 (mod 32) or P3[116] ≡ P5[116] ≡ 0 (mod 32)
C10. P7[116] ≡ −18 (mod 32)
C11. P1[208] = 4
C12. P3[208] = 3
C13. P3[153] = P7[72] + 4
C14. P5[153] = P7[239] + 2

Proof. First, from the TPypy output generation equation, we derive the
following.

O1 = (s1 ⊕ Y1[−1]) + Y1[P1[208]]
O3 = (s3 ⊕ Y3[−1]) + Y3[P3[208]]
O6 = (s6 ⊕ Y6[−1]) + Y6[P6[208]]
O7 = (s7 ⊕ Y7[−1]) + Y7[P7[208]]

Thus, if Z(0) = O1(0) ⊕O3(0) ⊕O6(0) ⊕O7(0), we have

Z(0) = s1(0) ⊕ Y1[−1](0) ⊕ Y1[P1[208]](0)
⊕s3(0) ⊕ Y3[−1](0) ⊕ Y3[P3[208]](0)
⊕s6(0) ⊕ Y6[−1](0) ⊕ Y6[P6[208]](0)
⊕s7(0) ⊕ Y7[−1](0) ⊕ Y7[P7[208]](0) (1)

Here, when conditions C1 and C2 hold, the following relations are derived
from the values of A′ and B′ for the state transitions of array Y in Fig. 2.

A′ = Y6[P6[208]] = Y6[254] = (ROTL32(s3, 14)⊕ Y1[−1]) + Y3[P3[153]] (2)
B′ = Y7[P7[208]] = Y7[255] = (ROTL32(s5, 14)⊕ Y3[−1]) + Y5[P5[153]] (3)

From the relation of Eq. (2) and Eq. (3), Eq. (1) is as follows.

Z(0) = s1(0) ⊕ s3(18) ⊕ Y3[P3[153]](0) ⊕ Y1[P1[208]](0)
⊕s3(0) ⊕ s5(18) ⊕ Y5[P5[153]](0) ⊕ Y3[P3[208]](0)
⊕s6(0) ⊕ s7(0) ⊕ Y6[−1](0) ⊕ Y7[−1](0) (4)
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Fig. 2. State transitions of array Y

Next, from the update equation for variable s of TPypy, we derive the
following.

s3 = ROTL32(s2 + Y3[P3[72]]− Y3[P3[239]], ((P3[116] + 18) & 31))
s2 = ROTL32(s1 + Y2[P2[72]]− Y2[P2[239]], ((P2[116] + 18) & 31))

Thus, when conditions C3 through C5 hold,

P2[116] + 18 ≡ −18 + 18 ≡ 0 (mod 32)
Y2[P2[72]] = Y2[P3[239] + 1] = Y3[P3[239]]

Y2[P2[239]] = Y2[P3[72] + 1] = Y3[P3[72]]

also hold, so the following relation is obtained.

s3 = ROTL32(s1, ((P3[116] + 18) & 31)) (5)

In the same way, we derive the following from the update equation of variable
s of TPypy.

s5 = ROTL32(s4 + Y5[P5[72]]− Y5[P5[239]], ((P5[116] + 18) & 31))
s4 = ROTL32(s3 + Y4[P4[72]]− Y4[P4[239]], ((P4[116] + 18) & 31))

Thus, when conditions C6 to C8 hold, the following also hold.

P4[116] + 18 ≡ −18 + 18 ≡ 0 (mod 32)
Y4[P4[72]] = Y4[P5[239] + 1] = Y5[P5[239]]

Y4[P4[239]] = Y4[P5[72] + 1] = Y5[P5[72]]
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Thus, the following relation is obtained.

s5 = ROTL32(s3, ((P5[116] + 18) & 31)) (6)

In Eq. (5) and Eq. (6), taking the case when P3[116] ≡ P5[116] ≡ −18 (mod 32)
of the two conditions in C9 holds as condition C9a, the following relation holds.

s5 = s3 = s1 (7)

Therefore, when condition C9a holds, which is to say when Eq. (7) holds, the
following relations are satisfied.

s3(0) = s1(0) (8)
s5(18) = s3(18) (9)

Also, taking the case when P3[116] ≡ P5[116] ≡ 0 (mod 32) of the two condi-
tions in C9 holds as condition C9b, the following relations hold.

s3 = ROTL32(s1, 18) (10)
s5 = ROTL32(s3, 18) (11)

Therefore, when condition C9b holds, that is to say when both Eq. (10) and
Eq. (11) hold, the following relations are satisfied.

s3(18) = s1(0) (12)
s5(18) = s3(0) (13)

In other words, when condition C9 holds, either both Eq. (8) and Eq. (9)
hold, or both Eq. (12) and Eq. (13) hold, so Eq. (4) becomes as follows in either
case.

Z(0) = Y3[P3[153]](0) ⊕ Y1[P1[208]](0) ⊕ Y5[P5[153]](0) ⊕ Y3[P3[208]](0)
⊕s6(0) ⊕ s7(0) ⊕ Y6[−1](0) ⊕ Y7[−1](0) (14)

Also, when condition C10 holds, the following relation is satisfied.

s7 = s6 + Y7[P7[72]]− Y7[P7[239]]

Thus, Eq. (14) becomes as follows.

Z(0) = Y3[P3[153]](0) ⊕ Y1[P1[208]](0) ⊕ Y5[P5[153]](0) ⊕ Y3[P3[208]](0)
⊕Y6[−1](0) ⊕ Y7[−1](0) ⊕ Y7[P7[72]](0) ⊕ Y7[P7[239]](0) (15)

Finally, when conditions C11 through C14 hold, the following hold.

Y1[P1[208]] = Y1[4] = Y6[−1]
Y3[P3[208]] = Y3[3] = Y7[−1]
Y3[P3[153]] = Y3[P7[72] + 4] = Y7[P7[72]]
Y5[P5[153]] = Y3[P7[239] + 2] = Y7[P7[239]]

Thus, from Eq. (15), the following relation necessarily holds.

Z(0) = O1(0) ⊕O3(0) ⊕O6(0) ⊕O7(0) = 0 (16)

This completes the proof. �
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3.2 Probability of Distinguisher Existing and Amount of Data
Required

In this section, we consider the probability that Eq. (16), which is used as the
distinguisher, holds. If the TPypy output sequence is a truly random number
sequence, the probability that the Eq. (16) distinguisher holds is 2−1. The prob-
ability that Eq. (16) holds depends on the structure of the TPypy PRGA and
does not depend on the key schedule or the IV schedule. Therefore, in the follow-
ing estimation, we take it that variable s and arrays P and Y are independent
and follow a uniform distribution after completion of the IV schedule.

First, we consider conditions C3, C6, C9, C10, which concern the number of ro-
tations for updating variable s. When condition C3 holds, the relation P2[116] ≡
−18 (mod 32) holds, which is to say P2[116] ∈ {14, 46, 78, 110, 142, 174, 206, 238}.
Therefore, we take the probability that condition C3 holds to be Pr[C3] and get
the following.

Pr[C3] =
8

256

In the same way, when the relation P3[116] ≡ −18 (mod 32) or P3[116] ≡
0 (mod 32) holds, P3[116] ∈ {14, 46, 78, 110, 142, 174, 206, 238} or P3[116] ∈
{0, 32, 64, 96, 128, 160, 192, 224}. However, it is clear from the TPypy updating
equation for array P that the value of P2[116] can transition only to P3[115]
or P3[255] as a result of the restriction imposed by condition C3. Considering
this restriction condition, the probability that conditions C3, C6, C9, and C10
hold simultaneously can be estimated in the following way according to Bayes’
theorem.

Pr[C3 ∩ C6 ∩ C9 ∩ C10] = Pr[C3 ∩ C6 ∩ C9a ∩ C10]
+Pr[C3 ∩C6 ∩C9b ∩ C10]

=
8

256
· 7
255
· 6
254
· 5
253
· 4
252

+
8

256
· 8
255
· 7
254
· 7
253
· 6
252

Next, consider that an entry of array P has a particular value, and that there
is a relationship between the entries of array P . We assumed that these condi-
tions occur independently with probability of approximately 2−8.1 Also, if for
each condition there are multiple patterns for the combinations for which terms
cancel in the Z(0) relationship, the number of combinations is also taken into
account. Taking conditions C11 and C12 for example, in Eq. (15), Y1[P1[208]]
and Y6[−1], and Y3[P3[208]] and Y7[−1] cancel out, but Y3[P3[208]] and Y6[−1],
Y1[P1[208]] and Y7[−1] canceling out is another possibility. However, when con-
sidering the number of combinations for which the various terms can cancel in
the Z(0) relationship equation, the following constraints apply.
1 Actually, the constraint condition of the previous time applies, but it is difficult to

accurately evaluate all of the conditions, so in this work we performed an approxi-
mate evaluation.
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– For the combinations of Y6[−1] and (Y7[−1], Y7[P7[72]], Y7[P7[239]]), the
terms cannot cancel.

– For variable pairs at the same time t, the terms cannot cancel.

Also, because conditions C4 and C5, and conditions C7 and C8 are subject
to the constraint that Eq. (7) must be satisfied in units of the word because Eq.
(9) holds when condition C9a holds, their respective combinations are limited to
one case. Taking these constraint conditions into consideration, the numbers of
combinations that are possible for the various conditions are listed in Table 1.
Specific examples of all of the conditions are given in the appendix A.

Table 1. Numbers of combinations of the conditions

Conditions Combinations

C1 ∩ C2 1

C4 ∩ C5 ∩ C9a 1

C4 ∩ C5 ∩ C9b 2

C7 ∩ C8 ∩ C9a 1

C7 ∩ C8 ∩ C9b 2

C11 ∩ C12 ∩ C13 ∩ C14 24

Therefore, defining event E for which all of the conditions C1 through C14
hold, the probability that event E holds, Pr[E], is as follows.

Pr [E] = Pr

[
14⋂

i=1

Ci

]

= Pr

[
2⋂

i=1

Ci

]

×
⎧
⎨

⎩

Pr
[(⋂8

i=3 Ci
)
∩ C9a ∩ C10

]

+Pr
[(⋂8

i=3 Ci
)
∩ C9b ∩C10

]

⎫
⎬

⎭
× Pr

[
14⋂

i=11

Ci

]

= 1 ·
(

1
256

)2

×
{

1 · ( 1
256

)2 × 1 · ( 1
256

)2 × 8
256 · 7

255 · 6
254 · 5

253 · 4
252

+2 · ( 1
256

)2 × 2 · ( 1
256

)2 × 8
256 · 8

255 · 7
254 · 7

253 · 6
252

}

×24 ·
(

1
256

)4

≈ 2−99.04

Here, when any of the conditions C1 through C14 are not satisfied, assuming
that the probability that Eq. (16) holds is ideally 2−1, the probability that Eq.
(16) holds for the TPypy output sequence, Pr[Z(0) = 0], is as follows.

Pr
[
Z(0) = 0

]
= Pr

[
Z(0) = 0 | E] · Pr [E] + Pr

[
Z(0) = 0 | Ec

] · Pr [Ec]
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= 1 · 2−99.04 +
1
2
· (1− 2−99.04)

=
1
2
· (1 + 2−99.04)

This is large compared to the 2−1 probability for a truly random number
sequence.

Here, we regard N samples as independent binary sequences that follow the bi-
ased distribution DBIAS . In addition, denoting a uniform distribution as DUNI ,
the amount of data N required for constructing the optimal distinguisher can
be obtained from the following Theorem 2 [2].

Theorem 2. Taking the input to an optimal distinguisher to be a binary
random variable zi (0 ≤ i ≤ N − 1) that follows DBIAS, to achieve an
advantage greater than 0.5 requires at least the number of samples from the
optimal distinguisher derived by the following equation.

N = 0.4624×M2 where

PDBIAS [zi = 0]− PDUNI [zi = 0] =
1
M

Thus, from Theorem 2, the amount of data N that is required to distin-
guish the TPypy output sequence from a uniform distribution can theoreti-
cally be estimated as 2198.96. Here, Theorem 1 constructs a distinguisher for
Z(0) = O1(0) ⊕ O3(0) ⊕ O6(0) ⊕ O7(0) = 0, but it is clear that the same relation
holds for any time t (t ≥ 1).

Ot(0) ⊕Ot+2(0) ⊕Ot+5(0) ⊕Ot+6(0) = 0

Therefore, when about 2199 words of the keystream obtained with multiple
arbitrary secret key and IV pairs are collected, it is possible to distinguish the
TPypy output sequence from a truly random number sequence. Therefore, the
countermeasure of discarding the first few words of the keystream is ineffective
against the method described in this paper.

4 Conclusion

We have reported a bias in the output sequence of TPypy, which has the highest
security of the Py family of stream ciphers. That bias can be exploited to dis-
tinguish the keystream obtained with multiple arbitrary secret key and IV pairs
from a truly random number sequence by using about 2199 words. This method
can also be applied to Pypy in exactly the same way. Furthermore, our method
is powerful in that it succeeds with a greatly smaller amount of data that results
that have been reported previously.

Acknowledgements. The authors would like to thank the anonymous referees
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Table 2. Specific examples of conditions C4 ∩ C5 ∩ C9

C4 C5 C9

P2[72] = P3[239] + 1 P2[239] = P3[72] + 1 P3[116] ≡ P5[116] ≡ −18 (mod 32)

P2[72] = P3[239] + 1 P2[239] = P3[72] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

P2[72] = P3[72] + 1 P2[239] = P3[239] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

Table 3. Specific examples of conditions C7 ∩ C8 ∩ C9

C7 C8 C9

P4[72] = P5[239] + 1 P4[239] = P5[72] + 1 P3[116] ≡ P5[116] ≡ −18 (mod 32)

P4[72] = P5[239] + 1 P4[239] = P5[72] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

P4[72] = P5[72] + 1 P4[239] = P5[239] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

Table 4. Specific examples of conditions C11 ∩ C12 ∩ C13 ∩ C14

C11 C12 C13 C14

P1[208] = 4 P3[208] = 3 P3[153] = P7[72] + 4 P5[153] = P7[239] + 2

P1[208] = 4 P3[208] = 3 P3[153] = P7[239] + 4 P5[153] = P7[72] + 2

P1[208] = 4 P3[153] = 3 P3[208] = P7[72] + 4 P5[153] = P7[239] + 2

P1[208] = 4 P3[153] = 3 P3[208] = P7[239] + 4 P5[153] = P7[72] + 2

P1[208] = 4 P5[153] = 1 P3[208] = P7[72] + 4 P3[153] = P7[239] + 4

P1[208] = 4 P5[153] = 1 P3[208] = P7[239] + 4 P3[153] = P7[72] + 4

P3[208] = 2 P1[208] = 6 P3[153] = P7[72] + 4 P5[153] = P7[239] + 2

P3[208] = 2 P1[208] = 6 P3[153] = P7[239] + 4 P5[153] = P7[72] + 2

P3[208] = 2 P3[153] = 3 P1[208] = P7[72] + 6 P5[153] = P7[239] + 2

P3[208] = 2 P3[153] = 3 P1[208] = P7[239] + 6 P5[153] = P7[72] + 2

P3[208] = 2 P5[153] = 1 P1[208] = P7[72] + 6 P3[153] = P7[239] + 4

P3[208] = 2 P5[153] = 1 P1[208] = P7[239] + 6 P3[153] = P7[72] + 4

P3[153] = 2 P1[208] = 6 P3[208] = P7[72] + 4 P5[153] = P7[239] + 2

P3[153] = 2 P1[208] = 6 P3[208] = P7[239] + 4 P5[153] = P7[72] + 2

P3[153] = 2 P3[208] = 3 P1[208] = P7[72] + 6 P5[153] = P7[239] + 2

P3[153] = 2 P3[208] = 3 P1[208] = P7[239] + 6 P5[153] = P7[72] + 2

P3[153] = 2 P5[153] = 1 P1[208] = P7[72] + 6 P3[208] = P7[239] + 4

P3[153] = 2 P5[153] = 1 P1[208] = P7[239] + 6 P3[208] = P7[72] + 4

P5[153] = 0 P1[208] = 6 P3[208] = P7[72] + 4 P3[153] = P7[239] + 4

P5[153] = 0 P1[208] = 6 P3[208] = P7[239] + 4 P3[153] = P7[72] + 4

P5[153] = 0 P3[208] = 3 P1[208] = P7[72] + 6 P3[153] = P7[239] + 4

P5[153] = 0 P3[208] = 3 P1[208] = P7[239] + 6 P3[153] = P7[72] + 4

P5[153] = 0 P3[153] = 3 P1[208] = P7[72] + 6 P3[208] = P7[239] + 4

P5[153] = 0 P3[153] = 3 P1[208] = P7[239] + 6 P3[208] = P7[72] + 4
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