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Abstract. This paper describes the mechanization of the proofs of the
first height chapters of Schwabäuser, Szmielew and Tarski’s book: Meta-
mathematische Methoden in der Geometrie. The proofs are checked for-
mally using the Coq proof assistant. The goal of this development is to
provide foundations for other formalizations of geometry and implemen-
tations of decision procedures. We compare the mechanized proofs with
the informal proofs. We also compare this piece of formalization with
the previous work done about Hilbert’s Grundlagen der Geometrie. We
analyze the differences between the two axiom systems from the formal-
ization point of view.

1 Introduction

Euclid is considered as the pioneer of the axiomatic method, in the Elements,
starting from a small number of self-evident truths, called postulates or common
notions, he derives by purely logical rules most of the geometrical facts that were
discovered in the two or three centuries before him. But upon a closer reading of
Euclid’s Elements, we find that he does not adhere as strictly as he should to the
axiomatic method. Indeed, at some steps in certain proofs he uses a method of
“superposition of triangles”. This kind of justifications can not be derived from
his set of postulates.

In 1899, in der Grundlagen der Geometrie, Hilbert described a more formal
approach and proposed a new axiom system to fill the gaps in Euclid’s system.

Recently, the task consisting in mechanizing Hilbert’s Grundlagen der Ge-
ometrie has been partially achieved. A first formalization using the Coq proof
assistant [1] was proposed by Christophe Dehlinger, Jean-François Dufourd and
Pascal Schreck [2]. This first approach was realized in an intuitionist setting, and
concluded that the decidability of point equality and collinearity is necessary
to check Hilbert’s proofs. Another formalization using the Isabelle/Isar proof
assistant [3] was performed by Jacques Fleuriot and Laura Meikle [4]. Both for-
malizations have concluded that, even if Hilbert has done some pioneering work
about formal systems, his proofs are in fact not fully formal, in particular de-
generated cases are often implicit in the presentation of Hilbert. The proofs can
be made more rigorous by machine assistance. Indeed, in the different editions
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of die Grundlagen der Geometrie the axioms were changed, but the proofs were
note always changed accordingly, this obviously resulted in some inconsistencies.
The use of a proof assistant solves this problem: when an axiom is changed it is
easy to check if the proofs are still valid.

In the early 60s, Wanda Szmielew and Alfred Tarski started the project of
a treaty about the foundations of geometry based on another axiom system for
geometry designed by Tarski in the 20s1. A systematic development of euclidean
geometry was supposed to constitute the first part but the early death of Wanda
Szmielew put an end to this project. Finally, Wolfram Schwabhäuser continued
the project of Wanda Szmielew and Alfred Tarski. He published the treaty in
1983 in German: Metamathematische Methoden in der Geometrie [6]. In [7], Art
Quaife used a general purpose theorem prover to automate the proof of some
lemmas in Tarski’s geometry.

In this paper we describe our formalization of the first eight chapters of the
book of Wolfram Schwabhäuser, Wanda Szmielew and Alfred Tarski in the Coq
proof assistant.

We will first describe the different axioms of Tarski’s geometry and give an
history of the different versions of this axiom system. Then after a shot intro-
duction to the system Coq, we present our formalization of the axiom system
and the mechanization of one example theorem. Finally, we compare our formal-
ization with existing ones and compare Tarski’s axiomatic system with Hilbert’s
system from the mechanization point of view.

2 Motivations

We aim at two applications: the first one is the use of a proof assistant in the
education to teach geometry [8,9], the second one is the proof of programs in the
field computational geometry.

These two themes have already been partially addressed by the community.
Frédérique Guilhot has realized a large Coq development about euclidean ge-
ometry following a presentation suitable for use in french high-school [10]. Con-
cerning the proof of programs in the field of computational geometry we can
cite the formalization of convex hulls algorithms by David Pichardie and Yves
Bertot in Coq [11] and by Laura Meikle and Jacques Fleuriot in Isabelle [12] and
the formalization of an image segmentation algorithm by Jean-François Dufourd
[13]. In [14,15], we have presented the formalization and implementation in the
Coq proof assistant of the area decision procedure of Chou, Gao and Zhang [16].

Formalizing geometry in a proof assistant has not only the advantage of pro-
viding a very high level of confidence in the proof generated, it also permits
to insert purely geometric arguments within other kind of proofs such as for
instance proof of correctness of programs or proofs by induction. For the time
being all the formal developments we have cited are distinct and as they do not
use the same axiomatic system, they can not be combined.
1 These historical pieces of information are taken from the introduction of the publi-

cation by Givant in 1999 [5] of a letter from Tarski to Schwabhäuser (1978).
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The goal of our mechanization is to do a first step in the direction of the
merging of these developments. We aim at providing very clear foundations for
other formalizations of geometry and implementations of decision procedures.

3 Tarski’s Axiom System

Alfred Tarski worked on the axiomatization and meta-mathematics of euclidean
geometry from 1926 until his death in 1983. Several axiom systems were produced
by Tarski and his students. In this section, we first give an informal description
of the propositions which appeared in the different versions of Tarski’s axiom
system, then we provide an history of these versions and finally we present the
version we have formalized.

The axioms are based on first order logic and two predicates:

betweenness. The ternary betweenness predicate β AB C informally states
that B lies on the line AC between A and C.

equidistance. The quaternary equidistance predicate AB ≡ CD informally
means that the distance from A to B is equal to the distance from C to D.

Note that in Tarski’s geometry, only a set of points is assumed, in particular,
lines are defined by two distinct points whereas in Hilbert’s axiom system lines
and planes are assumed.

3.1 Axioms

We reproduce here the list of propositions which appear in the different versions
of Tarski’s axiom system. We adopt the same numbering as in [5]. Free variables
are considered to be implicitly quantified universally.

1 Symmetry for equidistance

AB ≡ BA

2 Pseudo-transitivity for equidistance2

AB ≡ PQ ∧ AB ≡ RS ⇒ PQ ≡ RS

3 Identity for equidistance

AB ≡ CC ⇒ A = B

4 Segment construction

∃X, β Q AX ∧ AX ≡ BC

2 Note that we call this property pseudo-transitivity because the transitivity property
for equidistance should be:

AB ≡ PQ ∧ PQ ≡ RS ⇒ AB ≡ RS.
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The segment construction axiom states that one can build a point on a ray
at a given distance.
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A �= B ∧ β AB C ∧ β A′ B′ C′∧
⇒ CD ≡ C′D′

AB ≡ A′B′ ∧ BC ≡ B′C′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′

51 Five segments (variant)

A �= B ∧ B �= C ∧ β AB C ∧ β A′ B′ C′∧
⇒ CD ≡ C′D′

AB ≡ A′B′ ∧ BC ≡ B′C′ ∧ AD ≡ A′D′ ∧ BD ≡ B′D′

This second version differs from the first one only by the condition B �= C.

6 Identity for betweenness

β AB A ⇒ A = B

The original Pasch axiom states that if a line intersects one side of a triangle
and misses the three vertexes, then it must intersect one of the other two sides.
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Fig. 1. Axioms of Pasch

7 Pasch (inner form)

β AP C ∧ β B Q C ⇒ ∃X, β P X B ∧ β Q X A

71 Pasch (outer form)

β AP C ∧ β Q C B ⇒ ∃X, β AX Q ∧ β B P X

72 Pasch (outer form) (variant)

β AP C ∧ β Q C B ⇒ ∃X, β AX Q ∧ β X P B
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73 weak Pasch

β AT D ∧ β B D C ⇒ ∃X, Y, β AX B ∧ β AY C ∧ β Y T X

Dimension axioms provide upper and lower bound for the dimension of the
space. Note that lower bound axioms for dimension n are the negation of upper
bound axioms for the dimension n − 1.

8(2) Dimension, lower bound 2

∃ABC, ¬β AB C ∧ ¬β B C A ∧ ¬β C AB

There are three non collinear points.

8(n) Dimension, upper bound n

∃ABCP1P2 . . . Pn−1,

∧
1≤i<j<n Pi �= Pj∧

∧n−1
i=2 AP1 ≡ APi ∧ BP1 ≡ BPi ∧ CP1 ≡ CPi∧

¬β AB C ∧ ¬β B C A ∧ ¬β C AB

9(1) Dimension, upper bound 1

β AB C ∨ β B C A ∨ β C AB

Three points are always on the same line.

9(n) Dimension, upper bound n
∧

1≤i<j≤n Pi �= Pj∧∧n
i=2 AP1 ≡ APi ∧ BP1 ≡ BPi ∧ CP1 ≡ CPi

⇒ β AB C ∨ β B C A ∨ β C AB

91(2) Dimension, upper bound 2 (variant)3

∃Y, (ColXY A ∧ β B Y C) ∨ (ColXY B ∧ β C Y A) ∨ (ColXY C ∧ β AY B)

10 Euclid’s axiom

β AD T ∧ β B D C ∧ A �= D ⇒ ∃X, Y β AB X ∧ β AC Y ∧ β X T Y

101 Euclid’s axiom (variant)

β AD T ∧ β B D C ∧ A �= D ⇒ ∃X, Y β AB X ∧ β AC Y ∧ β Y T X

11 Continuity

∃a, ∀xy, (x ∈ X ∧ y ∈ Y ⇒ β a x y) ⇒ ∃b, ∀xy, x ∈ X ∧ y ∈ Y ⇒ β x b y

Schema 11 Elementary Continuity (schema)

∃a, ∀xy, (α ∧ β ⇒ β a x y) ⇒ ∃b, ∀xy, α ∧ β ⇒ β x b y

where α and β are first order formulas, such that a, b and y do not appear free
in α; a, b and x do not appear free in β.
3 ColABC is a shorthand for β A B C∨β B C A∨β C A B to simplify the presentation.

The Col predicate does not belong to the language of the theory of Tarski.
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A geometry defined by the elementary continuity axiom schema instead of the
higher order continuity axiom is called elementary.

12 Reflexivity of β

β AB B

B is always between A and B.

14 Symmetry of β

β AB C ⇒ β C B A

If B is between A and C then B is between C and A.

13 Compatibility of equality with β

A = B ⇒ β AB A

19 Compatibility of equality with ≡

A = B ⇒ AC ≡ BC

15 Transitivity (inner) of β

β AB D ∧ β B C D ⇒ β AB C

16 Transitivity (outer) of β

β AB C ∧ β B C D ∧ B �= C ⇒ β AB D

17 Connectivity (inner) of β

β AB D ∧ β AC D ⇒ β AB C ∨ β AC B

18 Connectivity (outer) of β

β AB C ∧ β AB D ∧ A �= B ⇒ β AC D ∨ β AD C

20 Triangle construction unicity

AC ≡ AC′ ∧ BC ≡ BC′∧
β AD B ∧ β AD′ B ∧ β C D X∧
β C′ D′ X ∧ D �= X ∧ D′ �= X

⇒ C = C′

201 Triangle construction unicity (variant)

A �= B∧
AC ≡ AC′ ∧ BC ≡ BC′∧
β B D C′ ∧ (β AD C ∨ β AC D)

⇒ C = C′

21 Triangle construction existence

AB ≡ A′B′ ⇒ ∃CX,
AC ≡ A′C′ ∧ BC ≡ B′C′∧
β C X P ∧ (β AB X ∨ β B X A ∨ β X AB)
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Year : 1940 1951 1959 1965 1983
Reference : [18] [17] [19] [20] [6]
Axioms : 1 1 1 1 1

2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
51 51 5 5 5
6 6 6 6
72 72 71 71 7

8(2) 8(2) 8(2) 8(2) 8(2)
91(2) 91(2) 9(2) 9(2) 9(2)
10 10 101 101 10
11 11 11 11 11
12 12
13
14 14
15 15 15 15
16 16
17 17
18 18 18
19
20 → 201

21 21
Nb of axioms : 20 18 12 10 10

+ + + + +
1 schema 1 schema 1 schema 1 schema 1 schema

Fig. 2. History of Tarski’s axiom systems

Identity β A B A ⇒ (A = B)
Pseudo-Transitivity AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Symmetry AB ≡ BA
Identity AB ≡ CC ⇒ A = B

Pasch ∃X, β A P C ∧ β B Q C ⇒ β P x B ∧ β Q x A
Euclid ∃XY, β A D T ∧ β B D C ∧ A �= D ⇒

β P x B ∧ β Q x A

5 segments
AB ≡ A′B′ ∧ BC ≡ B′C′∧
AD ≡ A′D′ ∧ BD ≡ B′D′∧
β A B C ∧ β A′ B′ C′ ∧ A �= B ⇒ CD ≡ C′D′

Construction ∃E,β A B E ∧ BE ≡ CD
Lower Dimension ∃ABC,¬β A B C ∧ ¬β B C A ∧ ¬β C A B
Upper Dimension AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P �= Q

⇒ β A B C ∨ β B C A ∨ β C A B
Continuity ∀XY, (∃A, (∀xy, x ∈ X ∧ y ∈ Y ⇒ β A x y)) ⇒

∃B, (∀xy, x ∈ X ⇒ y ∈ Y ⇒ β x B y).

Fig. 3. Tarski’s axiom system (Formalized version - 11 axioms)
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3.2 History

Tarski began to work on his axiom system in 1926 and presented it during his
lectures at Warsaw university4. He submitted it for publication in 1940 and was
published in his first form in 1967 [18]. This version contains 20 axioms and
one schema. A second version, slightly simpler was published in [17]. This first
simplification consists only in considering a logic with built-in equality, axioms
13 and 19 are then useless. This second version was further simplified by Eva
Kallin, Scott Taylor and Tarski into a system of twelve axioms [19]. The last
simplification was obtained by Gupta in its PhD thesis [20], where he gives the
proof that two more axioms can be derived from the remaining ones.

Figure 2 gives the list of axioms contained in each of these axiom systems.
Figure 3 provides the final list of axioms that we used in our formalization.

4 A Short Introduction to the Coq Proof Assistant

The Coq system [1,21,22] is a proving tool based on a logical formalism called
the calculus of inductive constructions [23]. Even if the Coq system has some
automatic theorem proving features, it is not an automatic theorem prover. The
proofs are mainly built by the user interactively. The system checks whether
the proof is correct. In [14], we have described the formalization of decision
procedure for geometry. This formalization, allows to use the area method to
generate automatically proofs which are double checked by the Coq system. In
this development, we do not want to make use of this procedure. Otherwise we
would have a circularity problem because our goal is to provide solid foundations
for different formal developments about geometry including this one.

The underlying logic of the Coq system is an intuitionist logic. This means
that the proposition A ∨ ¬A is not taken for granted and, if it is needed, the
user has to assume it explicitly. This allows to clarify the distinction between
classical and constructive proofs.

The user interacts with the system using commands which modify the current
state of the proof. The language used to interact with the system is called a tactic
language5.

5 Formalization in Coq

The mechanization of the proof we have realized prove formally that the simplifi-
cations of the first version of Tarski’s axiom system are correct. The unnecessary
axioms are derived from the remaining ones.

Now, we provide a quick overview of the content of each chapter. We will only
detail an example proof in the next section.
4 We use [5] and the footnotes in [17] to give a quick history of the different versions

of Tarski’s axiom system.
5 Note that in the latest version of Coq (8.1) another proof language is available, this

new language allows to write proofs which are more readable, unfortunately it was
not available when have started this work.
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The first chapter contains the declaration of all the axioms and the definition
of the collinearity predicate (noted Col).

The second chapter contains some basic properties of the equidistance pred-
icate (noted Cong). It contains also the proof of the unicity of the point
constructed thanks to the segment construction axiom.

The third chapter contains some properties of the betweenness predicate (no-
ted Bet). It contains in particular the proof of the axioms 12, 14 and 16.

The fourth chapter contains the proof of several properties of Cong, Col and
Bet.

The fifth chapter contains some pseudo-transitivity properties of betweenness
and the definition of the length comparison predicate (noted le) with some
associated properties. It includes in particular the proofs of the axioms 17
and 18.

The sixth chapter defines the out predicate which means that a point lies on
a line out of a segment. This predicate is used to prove some other properties
of Cong, Col and Bet such as transitivity properties for Col.

The seventh chapter defines the midpoint of a segment and the symmetric
points. It has to be noted that at this step the existence of the midpoint is
not derived yet.

The eighth chapter contains the definition of the predicate ’perpendicular’
(Perp), and the proof of some related properties such as the existence of the
foot of the perpendicular. Finally, the existence of the midpoint of a segment
is derived.

5.1 Two Crucial Lemmas

Our formalization follows strictly the lines of the book by Schwabhäuser, Szmie-
lew and Tarski except in the fifth chapter where we introduce two crucial lemmas
which do not appear in the original text, and which are necessary to fill some
gaps in the informal proofs. These two lemmas allows to deduce the equality of
two points which lie on a segment under an hypotheses involving distances.

∀ABC, β AB C ∧ AC ≡ AB ⇒ C = B

� � �

A B C

Proof. We use the lemma 4.6 of [6]:

∀ABCA′B′C′, β AB C ∧ Cong3ABCA′B′C′ ⇒ β A′ B′ C′.

As we know by assumption that β AB C, we apply the lemma with A := A,
B := B, C := C, A′ := A ,B′ := C and C′ := B, to obtain that:

Cong3ABCACB ⇒ β AC B

The predicate Cong3A1A2A3B1B2B3 expresses that:

A1A2 ≡ B1B2 ∧ A1A3 ≡ B1B3 ∧ A2A3 ≡ B2B3
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So here, we need to show that:

AB ≡ AC ∧ AC ≡ AB ∧ BC ≡ CB.

The first conjunct is shown by commutativity of ≡ , the second one by hypoth-
esis and the third one using the pseudo-commutativity property of the oriented
distance.
As β AB C and β AC B, we can conclude that C = B using the lemma
between_equality:

∀ABC : Point, β AB C ∧ β B AC ⇒ A = B

and the symmetry property of β .

The second lemma is the following, we omit the proof.

∀ABDE, β AD B ∧ β AE B ∧ AD ≡ AE ⇒ D = E.

� �� �

A BD E

5.2 A Comparison Between the Formal and Informal Proofs

We first describe in detail the formal proof of a simple example: the first crucial
lemma. Then, we reproduce here one of the non trivial proofs: the proof due to
Gupta [20] that axiom 18 can be derived from the remaining ones. We translate
the proof from [6] and provide in parallel the mechanized proof as a Coq script.
For the conciseness of the presentation we provide only the beginning of the
formal proof6. For the reader not familiar with the Coq proof assistant, we
provide a quick informal explanation of the role of the main tactics we use in
these proofs.

intro is used to introduced hypothesis in the context. It is the equivalent of the
informal sentence: “Suppose that we have A”

assert is used to state what we want to prove. When it is followed by “. . . ” this
means that this assertion can be proved automatically.

DecompExAnd given an existential hypotheses, introduces the witness of the ex-
istential and decompose the knowledge about it.

split splits a conjunction into its components. This used the fact fact that to
show A ∧ B, one can show first A then B.

apply is used to apply an assumption, a lemma or theorem.
Tarski,sTarski,Between,. . . are automatic tactics which try to prove the cur-

rent goal. Informally this can be read as “by simple properties of betweenness”
or “by direct application of one of the axioms”.

unfold replaces something by its definition.
cases_equality perform a reasoning by cases on the equality of two points.

6 The full proofs are available at the address given at the end of this paper.
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A First Example. First we input the statement of the lemma in Coq’s syntax.
β AB C is noted Bet A B C and AC ≡ AB is noted Conq A C A B. The text
displayed after Coq < represents the input, the other pieces of text represent the
output by the system.

Coq < Lemma between_cong : forall A B C,
Coq < Bet A C B -> Cong A C A B -> C=B.
Coq < 1 subgoal

============================
thesis := forall A B C : Point, Bet A C B -> Cong A C A B -> C = B

The Coq system confirms that we have one statement to prove. The statements
appearing above the horizontal line are the hypotheses and the one appearing
under the horizontal line are the fact to be proved. Here we do not have any
hypothesis yet. We can now start the proof.

Coq < Proof.

The first tactic we apply is the intro tactic. This introduces in the context
the left hand side of the implications.

Coq < intros.
1 subgoal

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := C = B

Now, we have five hypotheses. We know that A, B and C are points, that
β AC B and that AC ≡ AB. We need to show that C = B.

Let’s first prove that β AB C.

Coq < assert (Bet A B C).
2 subgoals

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := Bet A B C
subgoal 2 is: C = B
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We have two statements two prove. The first one is β AB C and the second
one is C = B. Now, we apply the lemma 4.6. This changes our first subgoal into
two subgoals which are the assumptions of the lemma 4.6.

Coq < eapply l4_6.
3 subgoals

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := Bet ?X ?Y ?Z
subgoal 2 is: Cong_3 ?X ?Y ?Z A B C
subgoal 3 is: C = B

The first subgoal means that we have to prove β ?X ?Y ?Z for some ?X , ?Y
and ?Z. We choose to apply our assumption H . This instantiate ?X , ?Y and ?Z
with A, C and B respectively.

Coq < apply H.
2 subgoals

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
============================
thesis := Cong_3 A C B A B C
subgoal 2 is: C = B

Now, we need to show that Cong_3 A C B A B C. This can be done by un-
folding the definition of Conq_3, spliting the conjunction we get and solving the
resulting subgoals using an automatic tactic.

Coq < unfold Cong_3;repeat split;sTarski.
1 subgoal

A : Point
B : Point
C : Point
H : Bet A C B
H0 : Cong A C A B
H1 : Bet A B C
============================
thesis := C = B
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Again, we need to show C = B, but this time we have the hypothesis H1.

Coq < esTarski.
Proof completed.

From H and H1 it is possible to conclude using an automatic tactic. Finally,
Coq checks again the proof and add it to its database.

Coq < Qed.
between_cong is defined

Note that during the proof the system checks that the commands we give are
correct but in this last step the proof is checked again by a small part of the Coq
system called the kernel. Only the kernel of the system needs to be bug free to
ensure the correctness of the proof. Bugs which are outside the kernel can not
lead to a proof of a false statement.

Axiom 18

Theorem 1 (Gupta). A �= B ∧ β AB C ∧ β AB D ⇒ β AC D ∨ β AD C

� �

�

�

�

�

�

�

A B

D C’

B’

B”

C D’

E

Proof: Let C′ and D′ be points such that :

β AD C′ ∧ DC′ ≡ CD and β AC D′ ∧ CD′ ≡ CD

assert (exists C’, Bet A D C’ /\ Cong D C’ C D)...
DecompExAnd H2 C’.
assert (exists D’, Bet A C D’ /\ Cong C D’ C D)...
DecompExAnd H2 D’.

We have to show that C = C′ or D = D′.
Let B and B′′ points such that :

β AC′ B′ ∧ C′B′ ≡ CB and β AD′ B′′ ∧ D′B′′ ≡ DB

assert (exists B’, Bet A C’ B’ /\ Cong C’ B’ C B)...
DecompExAnd H2 B’.
assert (exists B’’, Bet A D’ B’’ /\ Cong D’ B’’ D B)...
DecompExAnd H2 B’’.
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Using the lemma 2.117 we can deduce that BC′ ≡ B′′C and that BB′ ≡ B′′B.

assert (Cong B C’ B’’ C).
eapply l2_11.
3:apply cong_commutativity.
3:apply cong_symmetry.
3:apply H11.
Between.
Between.
esTarski.
assert (Cong B B’ B’’ B).
eapply l2_11;try apply H2;Between.

By unicity of the segment construction, we know that B′′ = B′.

assert (B’’=B’).
apply construction_unicity with
(Q:=A) (A:=B) (B:=B’’) (C:=B) (x:=B’’) (y:=B’);Between...
smart_subst B’’.

We know that FSC

(
BCD′C′

B′C′DC

)

(The points form a five segments configuration).

assert (FSC B C D’ C’ B’ C’ D C).
unfold FSC;repeat split;unfold Col;Between;sTarski.
2:eapply cong_transitivity.
2:apply H7.
2:sTarski.
apply l2_11 with (A:=B) (B:=C) (C:=D’) (A’:=B’) (B’:=C’) (C’:=D);
Between;sTarski;esTarski.

Hence C′D′ ≡ CD (because if B �= C the five segments axiom gives the conclu-
sion and if B = C we can use the hypotheses).

assert (Cong C’ D’ C D).
cases_equality B C.
(* First case *)
treat_equalities.
eapply cong_transitivity.
apply cong_commutativity.
apply H11.
Tarski.
(* Second case *)
apply cong_commutativity.
eapply l4_16;try apply H3...

7 The lemma 2.11 states that β A B C ∧ β A′ B′ C′ ∧ AB ≡ A′B′ ∧ BC ≡ B′C′ ⇒
AC ≡ A′C′.
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Using the axiom of Pasch, there is a point E such that :

β C E C′ ∧ β D E D′

assert (exists E, Bet C E C’ /\ Bet D E D’).
eapply inner_pash;Between.
DecompExAnd H13 E.

We omit the rest of the formal proof.

We can deduce that IFS

(
ded′c
ded′c′

)

and IFS

(
cec′d
cec′d′

)

. Hence EC ≡ EC′ and

ED ≡ ED′. Suppose that C �= C′. We have to show that D = D′8. From the
hypotheses, we can infer that C �= D′. Using the segment construction axiom,
we know that there are points P , Q and R such that :

β C′ C P ∧ CP ≡ CD′ and β D′ C R ∧ CR ≡ CE and β P R Q ∧ RQ ≡ RP

Hence FSC

(
D′CRP
PCED′

)

, so RP ≡ ED′ and RQ ≡ ED. We can infer that

FSC

(
D′EDC
PRQC

)

, so using lemma 2.11 we can conclude that D′D ≡ PQ and

CQ ≡ CD (because the case D′ �= E is solved using the five segments axiom,
and in the other case we can deduce that D′ = D and P = Q). Using the
theorem 4.179, as R �= C and R, C and D′ are collinear we can conclude that
D′P ≡ D′Q. As C �= D′, Col CD′B and Col CD′B′, we can also deduce that
BP ≡ BQ and B′P ≡ B′Q. As C �= D′, we have B �= B′ and as Col BC′B′

we have C′P ≡ C′Q. As C �= C′ and Col C′CP we have PP ≡ PQ. Using the
identity axiom for equidistance, we can deduce that P = Q. As PQ ≡ D′D, we
also have D = D′. �

5.3 About Degenerated Cases

Every paper about the formalization of geometry, in particular those about
Hilbert’s foundations of geometry [2,4] emphasizes the problem of the degener-
ated cases. In geometry, the degenerated cases are limit cases such as when two
points are equals, three points are collinear or two lines are parallel. The formal
proof of the theorems in the degenerated cases is often tedious and even some-
times difficult. These cases often do not even appear in the informal proof10. In
order to limit the size of the proofs, we tried to automate some tasks. These pieces
of automation should not be compared with the highly successful decision proce-
dures for geometry, the goal is just to automate some easy but very tedious proofs
8 Note that this step uses the decidability of equality between two points.
9 The theorem 4.17 states that A �= B ∧ ColABC ∧ AP ≡ AQ ∧ BP ≡ BQ ⇒ CP ≡

CQ.
10 It seems that degenerated cases play the same role in geometry as α-conversion

in lambda calculus: they are a great source of difficulties in the context of a
mechanization.
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and, as stated before, as our goal is to build foundations for the implementation
of decision procedures we can not use these more powerful procedures.

The main tactic to deal with degenerated cases is called treat_equalities.
The basic idea is to propagate information about degenerated cases. For instance,
if we know that A = B and AB ≡ CD we can deduce that C = D. This is very
simple but it shortens the proofs of the degenerated cases quite effectively.

Moreover, we think that a source of degenerated cases come from the axiom
system. In our personal experience the formalization of geometry using Hilbert
axioms lead to far more degenerated cases because the axioms are not always
stated in the most general and uniform way. We think that Tarski’s geometry
is a good candidate to mechanization because it is very simple, it has good
meta-mathematical properties (cf [17]) and it produces few degenerated cases.

5.4 Comparison with Other Formalizations

Compared to Frédérique Guilhot formalization [10], our development should be
considered low level. Our formalization has the advantage of being based on the
axiom system of Tarski which is of an extreme simplicity: two predicates and
eleven axioms. But this simplicity has a price, our formalization is not adapted
to the context of education. Indeed, some intuitively simple properties are hard
to prove in this context. For instance, the proof of the existence of the midpoint
of segment is obtained only at the end of the eighth chapter after about 150
lemmas and 4000 lines of proof. Moreover, the small number of axioms imposes
a scheduling of the lemmas which is not always intuitive. Indeed, some simple
intuitive properties can only be proved late in the development. For instance
the transitivity properties for collinearity are only proved in the chapter 6, this
means that in the first fifth chapters we have to live in a world where we do not
assume that collinearity has some transitivity properties.

Compared with formalizations using Hilbert’s axiom system, we think that,
as stated in the previous section, the use of Tarski’s axiom system leads to more
uniform proofs with less degenerated cases. Note that there are degenerated
cases which are inherent to a statement: the statement is false otherwise. There
are also degenerated cases which are inherent to the formulation of a statement,
if one starts with an axiom system which contains numerous degenerated cases
then the proofs of the first lemmas have to deal with these cases to obtain more
uniform statements. The use of Tarski’s axiom system has also the advantage
that, as it is based only on points, it can be easily generalized to other dimensions
by just changing the dimension axiom. In practice, in the context of a formal
proof, this allows to prove the lemmas which do not use the dimension axiom only
once. On the other end using Hilbert’s axiom system, to change the dimension
of the space, the language and axioms have to be changed and the proofs as well,
for dimension 3 for instance, it is necessary to assume the existence of planes.

5.5 Classical vs. Intuitionist Logic

Our formalization of Tarski’s geometry is performed in the system Coq. As the
logic behind Coq is constructive, we need to tell Coq explicitly when we need
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classical logic. This is the case in this development. It appears quite often in
the proofs that we need to distinguish between two cases such that A = B
and A �= B or ColABC and ¬ColABC. This kind of reasoning relies on the
decidability of point equality and collinearity. We proved these two facts using
the excluded middle rule.

6 Future Work and Conclusion

A natural extension of our work consist in mechanizing the remaining chapters
of [6] and proving the axioms of Hilbert. This work is under progress. We also
plan to enrich our formalization to use it as a foundation for other formal Coq
developments about geometry such as Frédérique Guilhot formalization of geom-
etry as it is presented in the french curriculum [10] and our implementation in
Coq of the area method of Chou, Gao and Zhang [14]. A longer-term challenge
would be to perform a systematic development of geometry similar to the book
of Schwabhäuser, Szmielew and Tarski but in the context of a constructive ax-
iom system such as the axiom system of von Plato [24] which has already been
formalized in the Coq proof assistant by Gilles Khan [25].

We have presented the mechanization of the proofs of over 150 lemmas in the
context of Tarski’s geometry. This includes the formal proof that the simplifica-
tions of the first version of Tarski’s axiom system are corrects. Our main con-
clusion is that Tarski axiom system lead to more uniform proofs than Hilbert’s
axiom system and so it is better suited for a formalization.

Availability

The full Coq development with the formal proofs and hypertext links to ease
navigation can be found at the following url:

http://www.lix.polytechnique.fr/Labo/Julien.Narboux/tarski.html
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