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Università “G.D’Annunzio”

Viale Pindaro, 42, Pescara, 65127 Italy
potena@sci.unich.it

Abstract. In Service-Oriented Architectures (SOA) composed services provide
functionalities with certain non-functional properties that depend on the proper-
ties of the basic services. Models that represent dependencies among these prop-
erties are necessary to analyze non-functional properties of composed services.
In this paper we focus on the reliability of a SOA. Most reliability models for
software that is assembled from basic elements (e.g. objects, components or ser-
vices) assume that the elements are independent, namely they do not take into
account the dependencies that may exist between basic elements. We relax this
assumption here and propose a reliability model for a SOA that embeds the “error
propagation” property. We present a path-based model that generates the possi-
ble execution paths within a SOA from a set of scenarios. The reliability of the
whole system is then obtained as a combination of the reliability of all generated
paths. On the basis of our model, we show on an example that the error propa-
gation analysis may be a key factor for a trustworthy prediction of the reliability
of a SOA. Such a reliability model for a SOA may support, during the system
development, the allocation of testing effort among services and, at run time, the
selection of functionally equivalent services offered by different providers.

1 Introduction

“Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of different ownership domains” [23].
A software system based on the SOA paradigm is developed by assembling software
services. Services are offered by providers that hide to users their internal implemen-
tation. The users are only aware of a certain behavior that is specified by the service
description. Given a set of services {s1; ...; sn}, the functional composition of services
can be expressed by the following three operators:
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C ::= (s1; ...; sn)|(s1|...|sn)|(s1 + ... + sn)

(s1; ...; sn) represents the sequential execution of the services, (s1|...|sn) represents
the parallel execution and (s1 + ... + sn) the possible execution of some services [12].
However, the composition of their non-functional properties, such as the reliability, is
not so easy to represent.

In order to keep as simple as possible the modeling aspects of our work, we only con-
sider here the sequential execution of services (1). The interactions within this type of
composition can be implemented in several ways [23], and we assume that the services
communicate by exchanging synchronous messages. In agreement with Parnas [17], se-
quentially executed services Si and Sj may undergo two different relations, that are the
Uses and the Invokes relations. The Uses relation (here represented as USES(Si; Sj))
means that the service Si uses Sj for providing its functionality, i.e. as soon as Si re-
ceives a request of service it provides a request of service to Sj . Then, after received an
answer from Sj , Si can elaborate the answer and provide its functionality. The Invokes
relation (here represented as INV (Si; Sj)) means that the service Si, at the end of its
execution, gives the execution control to Sj . These types of relations will be used in our
model for appropriately composing the reliability of services.

Most reliability models for software that is assembled from basic elements (e.g.
objects, components or services [9] [12]) assume that the elements are independent,
namely the models do not take into account the dependencies that may exist between
elements. They assume that the failure of a certain element provokes the failure of the
whole system. This assumption is not realistic, for example, in cases of distributed
systems where a service interacts with remote services that could run on different
operating systems. In this case the services are not independent each other, in fact
the middleware that connects them could propagate an error from a service to an-
other one. To some extent, applications that include service wrappers ensuring that
a failure is caught in time and close to its source make this assumption more
realistic [5].

The independence assumption implies a complete propagation between the services
along a path, in the sense that if a service returns an erroneous message then the latter is
certainly propagated along the path and the whole system always returns an erroneous
message. Goal of this paper is to relax this assumption and consider a wider “error
propagation” scenario. We introduce the probability that a service may not produce an
erroneous message (i.e. it may “mask” an error to the output, therefore no complete
propagation) whether it gets as input value an erroneous message [2].

Our model is based on the composition of scenarios that describe the dynamics of a
SOA. Assuming that, for each service provided by the system, we dispose of a scenario
represented by a collaboration diagram UML, we provide a technique to generate, for
each scenario, all possible execution paths. The reliability of a service is then obtained
as the composition of the reliability of all the paths based on the stochastic distribution
of the runtime execution of the system, also known as operational profile [16]. The latter
consists, on one hand, of the probability that the user executes a certain system service

1 Being, at the best of our knowledge, the first paper that embeds error propagation in a SOA
reliability model, we prefer to focus on this aspect rather than coping with all the above exe-
cution operators.
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and, on the other hand, of the probability that a service interacts with another one. From
the solution of our model, we show that the error propagation analysis may be a key
factor for a trustworthy prediction of the reliability of service-based systems.

Information on the SOA may be incomplete. However, if (some) scenarios are not
available, then the approach in [22] can be adopted to generate them. Besides, if the
operational profile of the system is not (fully) available, then the technique described in
[16] can be used to estimate it.

The paper is organized as follows: in section 2 we summarize the reliability esti-
mation models presented in literature and we outline the novelty of our approach; in
section 3.1 we introduce a model for SOA reliability that embeds the error propagation
factor; in section 4 we provide an example of application of our model, and finally in
section 5 we give concluding remarks.

2 Related Work and Novelty of Our Approach

In the last few years many reliability models for software that is assembled from ba-
sic elements (e.g. objects, components or services) have been introduced. They can be
partitioned in path-based models and state-based models [9]. The former ones repre-
sent the architecture of the system as a combination of the possible execution paths,
the latter ones as a combination of the possible states of the system. The formulation
of the path-based model presented in [21] for component-based systems is the clos-
est one to our approach. From the scenarios of the system, in [21] a Component De-
pendency Graph (CDG) that summarizes all possible execution paths of the system is
built.

Inspired by the Yacoub’s approach, we introduce in the service domain a model
that allows to generate, with a different methodology, the possible execution paths of
each scenario representing a service provided by the system. We obtain then the re-
liability of a service as a composition of the reliability of each generated path. In
[21], as in most models for software that is assembled from basic elements (e.g. ob-
jects, components or services), it is assumed that the elements are independent, namely
the model does not take into account the dependencies that may exist between ele-
ments. We relax this assumption here and consider the “error propagation” property
in the reliability model for SOA that we propose. This property expresses the prob-
ability that a service may propagate an erroneous message when it receives as input
an erroneous message. In all the current reliability model this probability is implic-
itly assumed to be 1, that is complete propagation of errors. In [1] this property has
been defined for component-based systems and a formula for its estimation has been
provided.

The following aspects characterize the novelty of our approach:

– Our model for SOAs could be adopted to estimate the reliability of software that is
assembled from other basic elements (e.g objects or components), but some modi-
fications should be made in order to adapt to other development paradigms. For ex-
ample, we estimate the reliability of a SOA by partitioning the input domain of the
services in equivalence classes. In order to adapt the model to a component-based
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system, it is necessary to take into account that a component could offer several
services within a scenario. Therefore it is necessary to introduce a new criterion to
partition its input domain.

– Our reliability model for SOA is not tied to any particular architectural style or
to any particular service-based development process. It can be adopted to obtain a
trustworthy prediction of the reliability whether a SOA is completely defined at the
design time or certain services are discovered at runtime.

– In our reliability model for SOA we take into account the dependencies that may
exist among services. In fact, in order to consider the failures that spread between
services, we have embedded the “error propagation” property in the model.

– We model the behavior at runtime of the system by combining the behavior of the
system (modelled by a SDG) with the operational profile and the probability of
interaction between services. In particular, we consider this probability at the level
of input equivalence classes of services.

– Our reliability model is independent from the methodology adopted to represent
the scenarios and from the strategy used to generate the possible execution paths.
In fact, we assume that each scenario of a service offered by the system is rep-
resented by an UML Collaboration Diagram. From the scenario of a service we
generate the possible execution paths of the system and we apply to each path the
reliability model. However, a scenario could be represented with whatever notation
that permits to describe the system scenarios (e.g. the Message Sequence Charts
(MSCs) [13] or the UML Sequence Diagrams).

3 Modeling the Reliability of a SOA

In this section we present our approach to build a reliability model of a SOA. We as-
sume that a scenario is available for each functionality that the SOA offers to the users.
Each scenario describes the internal dynamics of the functionality, in terms of paths of
invoked services. We generate all the possible execution paths, then we estimate the
reliability of each path and we obtain the SOA reliability as a composition of its path
reliabilities.

At a coarse grain, we can classify the failures that could occur during the execution
of a service-based system as follows:

– crash failures, that provoke the crash of the whole system, namely the system
straightforwardly stops its execution.

– no−crash failures, that do not provoke the immediate termination of the whole
system, but they manifest themselves by returning an erroneous message. This mes-
sage may either propagate to the system output (thus generating a failure) or it can
be masked along its path to the output (thus without actual effects on the system
reliability). A finer grain classification of no − crash failures can be made, but
it is out of the scope of this paper.

We focus our attention only on no − crash failures. Let us assume that, when a
service is executed in a path, if it receives as input a correct message then it can fail and
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introduce an error in the path with a certain probability (i.e. probability of failure on
demand, see section 3.2). Instead, if the service receives as input an erroneous message,
then we assume that it may correct the erroneous message that it has received thus
masking the internal error to the external outputs.

In the remainder of this section we first describe how to obtain all the execution
paths from scenarios, then we introduce our model for the reliability of a single path,
and finally we compose those reliabilities to model the whole SOA reliability.

3.1 Generating Execution Paths from Scenarios

Let S be a service oriented architecture composed by n elementary services. Let elsk

be the name of the k-th service (1 ≤ k ≤ n). Let us assume that the input domain
of elsk is partitioned in nclk disjoint equivalence classes, and that erroneous mes-
sages in input that are out of the service domain can be automatically detected and
discarded (e.g. with a service harness that filters them), therefore we deal only with er-
roneous messages that fall within the service domain. The input equivalence classes of
each service can be determined in various ways, e.g. using the outlines of the domain
testing [11].

Through the composition of its n elementary services, the SOA offers m external
services extsk (i.e. system functionalities) to users, as illustrated in Figure 1.

els1
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Service
results
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services
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Fig. 1. A schematic representation of elementary and external services in a SOA

Let us assume that for each offered service we dispose of a scenario describing its
dynamics (e.g. as an UML Collaboration Diagram) in terms of interactions that take
place between elementary services to achieve the goal of the external service (2).

Basing on the structure of the Component Dependency Graph (CDG) in [21], we as-
sociate a Service Dependency Graph (SDGk) for each external service extsk, starting
from its Collaboration Diagram. SDGk is a directed graph that describes the behaviour

2 Note that if the diagrams are incomplete or inconsistent, then the approach in [4] can be
adopted to define a reasonably complete and consistent set of diagrams.
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of the system (in terms of its possible execution paths) when the external service extsk

is executed.
Another strategy can be used to generate the possible execution paths from each

scenario. In [20] Uchitel et. al. synthesize the behaviour of the system from a set of
scenarios. This can be done without changing the structure of our reliability model
because it gets as input only the possible execution paths.

Definition 1: Service Dependency Graph “SDGk” - A Service Dependency Graph is
defined by SDGk = 〈N, E, s, t〉 , where:

– 〈N, E〉 is a directed graph,
– s is the start node, t the termination node,
– N is a set of nodes in the graph,
– E is a set of edges in the graph.

In Figure 2 we show an example of SDG, whose details are given in the following.

Fig. 2. An example of SDG

Definition 2: Nodes in a SDG - A node i in a SDG represents an elementary service
elsi. It is defined by the pair < elsi, faili > where faili is a vector of ncli elements.
Each element of faili, here defined as faili(c), 1 ≤ c ≤ ncli, represents the prob-
ability of failure on demand of the service elsi with respect to the c-th equivalence
class of its input domain. In other words, faili(c) represents the probability that elsi

produces an erroneous output given that it has received an input within the equivalence
class c.

Definition 3: Directed Edges in a SDG - For each pair of nodes i and j, a directed edge
represents the invocation of the service elsj from the service elsi. The invocation is
stochastically ruled by the matrix EXECij = [execcd], made of ncli · nclj elements,
where an element execcd (1 ≤ c ≤ ncli, 1 ≤ d ≤ nclj) represents the probability
that the service elsi maps an element of its c-th input equivalence class into an element
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of the d-th input class of elsj . In other words, the EXECij matrices represent the
operational profile of the SOA at the level of input equivalence classes(3)).

Each edge is also labeled with a pair < p.num, MODE >. p.num is a composed
label, where p identifies the p-th path of execution of the system, and num is a pro-
gressive number that determines the sequence of the messages along the p-th path (4).
MODE is a label that may assume the values “USES” or “INV” if, with respect to the
message p.num, the service elsi is tied to the service elsj through, respectively, the
Uses or the Invokes relation (see section 1).

3.2 Modeling the Reliability of an External Service

After built the SDGk for the external service extsk, its reliability on demand RODk

can be trivially formulated as a function of its probability of failure on demand
POFODk, as follows:

RODk = 1 − POFODk (1)

Let I be the event “the input of the service extsk is correct”, and O the event
“the output of the service extsk is erroneous (i.e. the returned result is not the ex-
pected one)”. Then the probability of failure on demand POFODk can be expressed as
follows:

POFODk = P (I ∩ O) = P (I)P (O|I) (2)

where P (I) is assumed to be equal to 1, because the reliability on demand of a system
is always modelled under the hypothesis that the input of the system is correct (namely
as defined by its specifications) [2].

Let nepk be the number of execution paths of the system generated from the ex-
ecution of the service extsk, 1 ≤ k ≤ n. Under our assumptions, the p-th path
(1 ≤ p ≤ nepk) will be made of a pipeline of np elementary services < s1, ..., snp >.
Following the previous notation, nclj represents the number of equivalence classes of
the j-th service in the p-th path (1 ≤ j ≤ np).

Then P (I ∩ O) for the k-th external service can be formulated as follows:

P (I ∩ O) = P (O|I) =
nepk∑

p=1

(
ncl1∑

c=1

P (O|Ic)

)
(3)

where Ic is the event “the input of the service extsk belongs to the c-th equivalence
class of the service s1 of the pipeline of services of the p-th path”. This formula holds
under the assumption that the equivalence classes are disjoint (see section 3.1).

3 Note that input classes have no meaning for the end point t, thus in Figure 2 scalar probabilities
ptit label the transitions from each elsi service to t. Analogous scalar probabilities could label
transitions from the start node s in case an SDG represents multiple paths with different initial
nodes.

4 Recall that we consider only the sequential composition of the services (see section 1).
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The probability P (O|Ic) that the output of the service extsk is erroneous, given
that the input of the service extsk belongs to the c-th equivalence class of the ser-
vice s1 of the pipeline of services of the p-th path, can be reformulated by summing
over 1 ≤ cn ≤ ncln the probabilities of the events “the last service of the pipeline
of services of the p-th path produces an error given that the input of the last service
of the pipeline of services of the p-th path belongs to its cn-th equivalence class and
that the input of the service extsk belongs to the its c-th equivalence class”. Then we
have:

P (O|Ic) =
ncln∑

cn=1

P (En|Icn ∩ Ic) (4)

where Icn is the event “the input of the service snp belongs to its cn-th equivalence
class”, En is the event “the service snp produces an error”.

In general, for the j-th service of the pipeline of services in the path we can write the
following expression:

P (Ej) = P (CIj) ∗ P (Fj) + (1 − P (CIj)) ∗ P (NMj) (5)

where CIj is the event “the input of the service sj is correct”, Fj is the event “the
service sj fails and returns an erroneous result”, and NMj is the event “the service sj

does not mask an error”.
For two adjacent services i and j in a pipeline of services (where i precedes j) we

can write the following formula based on (5):

P (Ej |Icj) =
ncli∑

ci=1

P (Tcicj) ∗ [(P (CIj |Icj ∩ Ici) ∗ P (Fj |Icj) + (6)

+(1 − (P (CIj |Icj ∩ Ici)) ∗ P (NMj |Icj)]

We can separately obtain each term of the right-side of (6) as follows:

– P (Tcicj) represents the probability of the event Tcicj “the service si maps an ele-
ment of its ci-th equivalence class to an element of the cj-th equivalence class of
sj”(see section 3.1).

– P (CIj |Icj ∩ Ici) = (1 − P (Ei|Ici)),
P (CIj |Icj ∩ Ici) can be recursively estimated. The probability that the service sj

receives a correct input depends on the probability that the services that precede it
in the pipeline (< s1, ..., sj−1 >) have not produced an error.

P (Ei|Ici) that represents the probability of the event “the service si produces
an error given that the input of si belongs to its ci-th equivalence class” should
be estimated by supposing that the input of the service sj belongs to a certain
equivalence class cj of its input domain. In order to keep our model as simple as
possible, we assume that the service si, given an input in one of its equivalence
classes ci, has the same probability to produce an error for each equivalence class
of sj .
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– P (Fj |Icj) = failj(cj),
where failj(cj) is the probability of failure on demand of service sj with respect to
the cj-th equivalence class of its input domain (see section 3.1). P (Fj |Icj) should
be estimated by supposing that the input of the service si belongs to a certain equiv-
alence class ci of its input domain. In order to keep our model as simple as possible,
we assume that the service sj , with respect to an its equivalence class cj, has the
same probability to produce an error for each equivalence class of si.

– P (NMj|Icj) = P (sj [x] �= sj [x
′
]|x �= x

′ ∩ x, x
′
belong to the

cj − th equivalence class),
P (NMj|Icj) should be estimated by supposing that the input of the service si

belongs to a certain equivalence class ci of its input domain. In order to keep our
model as simple as possible, we assume that the service sj , with respect to an
its equivalence class cj, has the same probability to not mask an error for each
equivalence class of si.

Upon estimating the formula (6) for each equivalence class of the last service of
the pipeline of services of a path, we substitute this estimation in formula (4). In turn,
by back substituting in formulas (3), (2) and (1), we obtain an expression for RODk.
Summarizing, the input parameters of RODk are:

– Transition Probability P (Tcicj);
– Probability of failure on demand failj(cj);
– Probability that the service does not mask an error with respect to one of its equiv-

alence classes P (NMj ∩ Icj).

These parameters may be characterized by a not negligible uncertainty. The propa-
gation of this uncertainty should be analyzed, but it is outside the scope of this paper.
Several methods to perform this type of analysis can be found, e.g. it has been done
in [8] for a reliability model. However, in Appendix we discuss how to estimate these
parameters.

In order to provide an operational support to the model that we have introduced here,
we have plugged the previous formulas into an algorithm that estimates the reliability
on demand ROD of the p-th path of execution of the service extsk using the SDGk

graph. The RelEval algorithm is illustrated below.
We assume that the first node of the path models the service els1 that is tied trough

the Invokes relation with the service elsk, 1 < k ≤ n. PEvetc1 is a global variable
that we use to store, for each service that we find in the graph and that belongs to
the pipeline of the path, the probability that it produces an error given that the input
of the system (i.e. that one of the service els1) belongs to its c1-th equivalence class.
For each equivalence class of the j-th service of the pipeline of services, we evaluate
the formula (6) (∀c1 = 1, ..., ncl1) and we store the results in PEvetc1. MODE is the
edge label that specifies Invokes or Uses relations (see section 1). For sake of simplicity,
and without loosing generality, we assume that in a path two adjacent edges with the
Uses relation cannot be found and that the last node of the path is tied to the path with
the Uses relation. POFODp is a structure that we use to store the probability of failure
on demand of the p-th path.
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RelEval Algorithm

Parameters

consumes the p − th path of SDGk

produces POFODp

Algorithm

push (< els1, fail1 >,

∀c1 = 1, ..., ncl1 determine PEvetc1 using (6))
while Stack not EMPTY do

pop (< elsi, faili >)
if elsi = t (terminating node)

∀c1 = 1, ..., ncl1 determine PEvetc1

POFODp =
ncl1∑

c1=1

ncli∑

ci=1

PEvetc1[ci]

else

push (< elsj, failj > |elsj is the service represented in

the successive node of the path)
if (MODE ≡ USES)

∀c1 = 1, ..., ncl1 determine PEvetc1

using (6) with respect to elsj

∀c1 = 1, ..., ncl1 determine PEvetc1

using (6) with respect to elsi

end while

On the loop problem. In the SGDk graph there can exist some loop. This is a frequent
problem of the path-based reliability models. The problem can be solved either by sim-
plifying the number of paths with the ones observed experimentally during the testing
[9], or by introducing the average time of execution of the system and of each service
[21]. In the latter case the termination of a path is determined if its average execution
time (obtained by summing up the average execution time of each component found
along the path) is larger than the average execution time of the system. The average
execution time of each service and the average execution time of the system can be es-
timated with monitoring techniques [3]. The RelEval algorithm can be easily modified
to embed this termination criterion.

3.3 Modeling the System Reliability

It is easy to understand that the reliability of the whole system ROD can be modeled
as follows:
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ROD =
m∑

k=1

RODk (7)

where we recall that RODk represents the reliability of the k-th service offered by the
system

4 An Application Example

In order to show the practical usage of our reliability model, and the relevance of error
propagation, in this section we apply it to an example. We have considered the “bank
account example” used by McGovern et al. in [15], thus readers interested to the appli-
cation details, that we do not provide here, can refer to [15]. We have taken into account
two scenarios of the system, illustrated respectively in Figures 3 and 4. Each scenario
models the dynamics of an external service provided from the system. After estimated
the reliability of both services, the reliability of the whole system has been obtained as
their algebraic mean, under the hypothesis of uniform probability for their invocation.

Fig. 3. First scenario of the bank account example

We have conducted two experiments that differ for probabilities of failures and er-
ror propagation probabilities of services. We describe the experiments in the following
subsections.

4.1 First Configuration: Varying All Error Propagation Probabilities

We have observed the probability of failure on demand of the system while varying,
at the same rate, the probability that all services do not mask an erroneous message
P (NMj) (i.e. a measure of the error propagation property), for different values of the
probability of failure on demand failj of the service BankAccountService. So, we
have assumed that only one service can introduce an error. The error may or may not
be masked by the services in the pipeline of the path that follow the erroneous service,
and this depends on their probability of error propagation.

In Figure 5 we report the results obtained in this configuration. Each curve represents
the probability of failure on demand of the system while varying from 0.1 to 1 the error
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Fig. 4. Second scenario of the bank account example

propagation probability of all services. Curves differ because a different fixed value of
the probability of failure of the service BankAccountService has been assigned for
each curve. We have obtained the curves by varying this last value from 0.1 to 0.9.

Fig. 5. Model solutions

As expected, for a given value of the probability of failure on demand of the ser-
vice BankAccountService (i.e. for a given curve), the probability of failure on de-
mand of the system increases while increasing the error propagation of each service
of the path (i.e. the probability that an erroneous message produced by the service
BankAccountService is not masked by other services that follows it in the
pipeline).

This provides a first evidence of the relevance of the error propagation property in
a SOA reliability model. In fact, the assumption of independence between failures of
services, like in the model presented in [21], corresponds in Figure 5 to the points
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of the curves where the error propagation on the x-axis equals 1. They are, for each
curve, the maximum values of the system POFOD. This means, as expected, that the
independence between failures brings to an overpessimistic prediction of the probability
of failure on demand of the system. This result confirms that the error propagation
analysis is a key factor for a trustworthy prediction of the reliability of service-based
systems, and its estimation leads in our model a more precise (and less pessimistic)
estimation of the SOA reliability.

On the other hand, for the same value of error propagation probability of the ser-
vices, the probability of failure on demand of the system decreases while decreasing
the probability of failure of BankAccountService. This can be observed by fixing a
value on the x-axis and observing the values on the curves while growing POFOD of
els2.

4.2 Second Experiment: Varying One Error Propagation Probability

We have observed the probability of failure on demand of the system while vary-
ing the probability that the service HolderAdress does not mask an erroneous mes-
sage P (NMj), and varying the probability of failure on demand failj of the service
BankAccountService. So, we assume that only one service can introduce an error
in the path, and that only one service can correct the error. Furthermore, we have par-
titioned the domain of the HolderAdress service in two equivalence classes, and we
have assumed that the first class is more used than the second one and that the following
relation ties the two classes:

P (NMj |I2) = 1 − P (NMj|I1) (8)

In Figure 6 we report the results. Each curve represents the probability of failure on
demand of the system while varying the error propagation of the first equivalence class
of the domain of HolderAdress, and with the value of the probability of failure of the
BankAccountService service fixed. We have obtained the curves by varying this last

Fig. 6. Model solutions
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one from 0.1 to 0.9 and the error propagation of the first class of equivalence of the
service HolderAdress from 0.1 to 1.

The partition of the input domain of HolderAdress in two equivalence classes al-
lows to obtain a better estimation of the probability of failure on demand of the system.
In fact, basing on (8), for higher values of the error propagation probability of the first
class we have lower probability of the error propagation of the second class that it could
not be evidenced without domain partition.

A relevant observation is that, for corresponding values of curves in the two experi-
ments, the probability of system failure is higher in the second experiment than in the
first one. This is because in the first experiment we assume that all services in the path
have the ability to correct an error, whereas in the second experiment we consider an
error marking ability only for the service HolderAdress with all the other services
always propagating errors.

5 Concluding Remarks and Future Work

In this paper we have introduced a model for the estimation of the reliability of a SOA,
based on the reliability of each service and the operational profile, that embeds the
error propagation property. The first results that we have obtained supports our intuition
that the error propagation may be a key factor for a trustworthy estimation of a SOA
reliability.

Our approach can be used at development time to appropriately allocate testing ef-
fort. For example, if the SOA reliability is too low, then several alternatives can be easily
evaluated to study the sensitivity of the reliability to the SOA modifications, such as re-
placing a service with a more reliable one. Our approach can be also used at runtime,
for example, as a basis for Service Level Agreement negotiation process. Providers may
use this model to estimate the Quality of Service that they can provide, given the current
status of the system.

The problem of service selection on the basis of their reliability has been widely
investigated in the last few year, and it is not easy to solve. In fact, in [7] the authors
demonstrate that the problem of service allocation for a composite Web service (i.e. a
possible implementation of SOA [24]) is NP-complete.

As future work, we intend to develop the following major aspects of our approach:

– Widening the model experimentation on real world case studies.
– Embedding in our model other specific characteristics of the SOA domain, such as

service discovery and run-time service composition.
– Enhancing our reliability model (and the estimation algorithm) by considering the

other operators that express the composition of the services, such as parallel oper-
ators (see section 1).

– Introducing in our reliability model the probability of failure of a transition between
services, that is modelled by an arc in an SDG graph.

– Introducing in our reliability model the crash failures (see section 3).
– Embedding our reliability model into a decision support automated framework.
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Appendix: Parameters Estimation

Transition Probability “P (Tcicj)” P (Tcicj) represents the probability that the service
si maps an element of its ci-th equivalence class to an element of the cj-th equivalence
class of sj (see section 3).

The literature reports formulas for the estimation of the probability of transition be-
tween basic elements (e.g. objects, components or services). For example, in [10] Ham-
let et al. have defined a formula for the probability of transition from a component to
another one, on the basis of the input domain partition of a component into a set of
functional subdomains (i.e. a subdomain for each functionality of the system). In [21]
the authors have defined this probability with respect to each pair of components, on
the basis of a CDG.

Probability of failure on demand “failj(cj)” failj(cj) represents the probability for
the service sj to fail in one execution [19] with respect to its cj-th equivalence class
(see section 3). We assume that it can be estimated by supposing that the operational
profile of the service with respect to its equivalence classes is uniform. The estimate of
failj(cj) is outside the scope of this paper, however a rough upper bound 1/Nnf can
be obtained by monitoring the service [3] and observing it being executed for a Nnf

number of times with no failures. Besides, several empirical methods to estimate COTS
failure rates [14] could be also used.

Probability that the service does not mask an error “P (NMj ∩Icj )” Since we assume
that a service could fail only if it does not receive an erroneous message (see section
3) P (NMj ∩ Icj ) can be easily estimated with the formula introduced by Abdelmoez
et al. in [1]. Their formula does not embed the probability of failure on demand of
a component. In fact, in [1] the error propagation probability from component A to
component B, that are tied trough the connector X , is defined by the function Prob
Prob([B](x) �= [B](x′)|x �= x′), where [B] denotes the function of component B, and
x is an element of the connector X from A to B.

http://www.oasis-open.org/
www.w3.org/2002/ws/
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