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Preface

On behalf of the Organizing Committee we are pleased to present the proceedings
of the 2007 Symposium on Software Composition (SC 2007). The goal of SC 2007
was to bring together the research and industrial communities in order to address
the challenges of the component-based software development approach. SC 2007
was the sixth symposium on software composition in the SC series that seeks
to develop a better understanding of how software components may be used to
build and maintain large software systems.

This LNCS volume contains the revised versions of the papers presented at
SC 2007, which was held as a satellite event of the European Joint Conferences
on Theory and Practice of Software (ETAPS) in Braga, Portugal, March 24–25,
2007. The symposium began with a keynote on “Composition by Anonymous
Parties” by Farhad Arbab (CWI and Leiden University). The main program
consisted of six technical sessions related to specific aspects of component-based
software development.

In response to the call for papers, we received 59 submissions from over 20
countries and 6 continents. Each paper was reviewed by at least three Program
Committee members. The entire reviewing process was supported by Microsoft’s
Conference Management Toolkit. In total, 15 submissions were accepted as full
papers and 5 submissions were accepted as short papers.

We would like to express our gratitude to the General Chair, Judith Bishop,
for her invaluable support and guidance that made the symposium in Braga pos-
sible. We would like to thank the European Network of Excellence on Aspect-
Oriented Software Development (AOSD-Europe), the International Federation
for Information Processing, Technical Committee on Software: Theory and Prac-
tice (IFIP, TC 2), and IBM Zurich for sponsoring this event. We are also thankful
to the System and Software Engineering Lab at the Vrije Universiteit Brussel
for the administrative support in hosting the symposium’s Web page. Last but
not least, we would like to thank the organizers of ETAPS 2007 for hosting and
providing an organizational framework for SC 2007.

September 2007 Markus Lumpe
Wim Vanderperren
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Welf Löwe University of Växjö, Sweden
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Composition by Anonymous Third Parties

Farhad Arbab

Center for Mathematics and Computer Science (CWI), Amsterdam and
Leiden Institute for Advanced Computer Science, Leiden University

The Netherlands

Composition of algorithms has dominated software composition since the incep-
tion of programming. The ubiquitous subroutine call acts as the primary compo-
sition operator in virtually all programming models and paradigms, appearing
in various guises such as function call, method invocation, remote procedure call,
etc. The inadequacies of the tight coupling imposed by such composition mech-
anisms and the need for more flexible alternatives have become clearer along the
evolution through object-oriented to component-based, and now, service oriented
computing.

Interaction arises out of how a composition allows the active entities in a
composed system to play against one another. Communication primitives used
in classical models of concurrency to allow interaction among processes in a
composed system share the targeted message passing nature of function calls:
in order to interact, they generally require a process to directly address foreign
entities, such as other processes or channels, that belong to the environment of
the process. Interaction constitutes the most interesting and the most difficult
aspect of concurrent systems. We have studied protocols for, and various aspects
of, interaction in concurrency theory. Curiously, however, no model of concur-
rency has hitherto considered interaction as a first-class concept! This makes
dealing with interaction protocols more difficult than necessary, by erecting a
level of indirection that acts as an obstacle between the concrete structures con-
structed and manipulated in a model, on the one hand, and interaction as the
subject of discourse, on the other.

Recognizing the need to go beyond the success of available tools sometimes
seems more difficult than accepting to abandon what does not work. Our con-
currency and software composition models have served us well-enough to bring
us up to a new plateau of software complexity and composition requirements
beyond their own effectiveness. In this sense, they have become the victims of
their own success. Dynamic composition of behavior by orchestrating the in-
teractions among independent distributed components or services has recently
gained prominence. We now need new models for software composition to tackle
this requirement.

In this presentation, I describe our on-going work on a compositional model
for construction of complex concurrent systems out of simpler parts, using in-
teraction as the only first-class concept. This leads to a simple, yet surprisingly
expressive, connector language, together with effective models and tools for com-
position of complex systems of distributed components and services.

M. Lumpe and W. Vanderperren (Eds.): SC 2007, LNCS 4829, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Defining Component Protocols with Service

Composition: Illustration with the Kmelia Model

Pascal André, Gilles Ardourel, and Christian Attiogbé

LINA CNRS FRE 2729 - University of Nantes
F-44322 Nantes Cedex, France

(Pascal.Andre,Gilles.Ardourel,Christian.Attiogbe)@univ-nantes.fr

Abstract. We address in this article the description and usage of
component protocols viewed as specific services. In addition to inter-
component service composition, our Kmelia component model supports
vertical structuring mechanisms that allow service composition inside a
component. The structuring mechanisms (namely state annotation and
transition annotation) are then used to describe protocols which are con-
sidered here as component usage guides. These structuring mechanisms
are integrated in the support language of our component model and are
implemented in our COSTO toolbox. We show how protocol analysis is
performed in order to detect some inconsistencies that may be introduced
by the component designers.

Keywords: Component, Service, Composition, Protocols, Property
Analysis.

1 Introduction

In this work we address the description and usage of component protocols viewed
as specific services and described as such. In [9] Meyer suggests a property clas-
sification for a Component Quality Model that may lead to trusted components.
We consider the assertions and usage documentation properties which range in
the Behaviour category from the classification. The first property requires formal
descriptions which are helpful to ensure the correctness of the components and
their assemblies. The usage documentation property requires specific abstraction
means in order to help the component-based system developer to build correct
assemblies. Clearly, this component documentation property participates in the
development of trusted components: this motivates our work. In this context,
component documentation should therefore be more than a list of available ser-
vices (like IDL descriptions); it should overview the component behaviour and
constraints, provide some guidelines to use services, describe precisely the us-
age conditions of services and the interaction conditions. These requirements are
fulfilled by the present work which builds on the Kmelia component model [4]
which is an abstract component model based on services. Kmelia services are
more than simple operations: they enable complex interactions and are the key

M. Lumpe and W. Vanderperren (Eds.): SC 2007, LNCS 4829, pp. 2–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Defining Component Protocols with Service Composition 3

element to model components and to connect them to make assemblies. The use
of service is central to the verification of compatibility when assembling compo-
nents according to four compatibility layers: signature, structure, contracts and
behaviours layers. In a previous article [4] we presented the Kmelia model and
we studied the definition and the verification of component assemblies which are
based on a horizontal service composition. In the present article we extend the
service composition.

In the horizontal composition, services of the same level in various compo-
nents are composed, with respect to the four compatibility levels, to define new
services.

To enforce the idea of component documentation, we consider a methodologi-
cal layer between services and components. This layer deals with the good usage
of the components: which services can be used to fulfil a given need and in what
order these services should be called. This layer corresponds to the concept of
component protocol already used in various component models. Compared with
related approaches (see Section 4) which are provider-oriented protocols, our
proposal suggests user-oriented protocols. This means that the Kmelia compo-
nent protocols are not a component life-cycle or a component constraint but
merely macro-services which play an important role in component composition.
To support protocols in Kmelia we now introduce a vertical service composition,
based on hierarchical structuring operators, to build new provided services from
existing ones. Building protocols with service composition is beneficial because:
the component model stays simple; protocols can be combined and can play
a central role in component composition and last, the verification support of
service composition may be reused.

The contribution of this article is twofold: new vertical service composition
operators are introduced with their formal descriptions; the definition of powerful
component protocols, using service composition, to structure the component
interface. From the verification point of view we reuse the existing techniques
developed for the service level and we adapt them to the protocol level.

The article is structured as follows. Section 2 is a brief overview of the Kmelia
formal component model. In Section 3 we define the vertical service composition.
Component protocols are developed in Section 4; first we discuss the concept
and compare it with related approaches; then we define protocols in Kmelia and
illustrate with an example of a bank Automatic Teller Machine system. The
verification aspect is studied in Section 5. Last, we conclude in Section 6 and
discuss some perspectives.

2 Overview of the Kmelia Component Model

Kmelia is a component model based on services [4]: an elementary Kmelia compo-
nent encapsulates several services (Fig. 1). The service behaviours are captured
with labelled transition systems. Kmelia makes it possible to specify
abstract components, to compose them and to check various properties. A Kmelia
abstract component is a mathematical model of an open multi-service system
that supports synchronous communication with its environment. A component
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Component C1
Interface <Interface descr>
Types <Type Defs>
Variables <Var list>
Invariant

<Predicate>
Initialisation
... // var. assignments

Services
... // as described at side

end

Provided aService_1 ()
Interface <Interface descr>
Pre <Predicate>
Post <Predicate>
Behaviour
init aStateI
final aStateF
{ state_i --label--> state_j

... }
end
Required aService_2 ()
... //in the same way

Fig. 1. Overview of Kmelia syntax

specification language (also named Kmelia) and a prototype toolbox (COSTO)
support the Kmelia model. The toolbox already permits formal analysis via Lo-
tos/CADP1 and Mec2. We recall (from [4]) in the following the main definitions
and the related notations to facilitate the reading of the article.

Service Description. A service s of a component C is defined with an interface
Is and a (dynamic) behaviour Bs: 〈Is, Bs〉. The interface Is of a service s is defined
by a 5-tuple 〈σ, P, Q, Vs, Ss〉 where σ is the service signature (name, arguments,
result), P is a precondition, Q is a postcondition, Vs is a set of local declarations
and the service dependency Ss is a 4-tuple Ss = 〈subs, cals, reqs, ints〉 of
disjoint sets where subs (resp. cals, reqs, ints) contains the provided services
names (resp. the services required from the caller, the services required from any
component, the internal services) in the s scope.

The behaviour Bs of a service s is an extended labelled transition system (eLTS)
defined by a 6-tuple 〈S, L, δ, S0, SF , Φ〉 with S the set of the states of s; L is the
set of transition labels and δ is the transition relation (δ ∈ S ×L → S). S0 is the
initial state (S0 ∈ S), SF is the finite set of final states (SF ⊆ S), Φ is a state
annotation relation (Φ ∈ S ↔ subs). The transitions in δ (with the((ss, lbl), ts)
abstract form) have the ss--lbl-->ts concrete form.
The transition labels are (possibly guarded) combinations of actions: [guard]

action*. The actions may be either elementary actions or communication ac-
tions. An elementary action (an assignment for example) does not involve other
services; it does not use a communication channel. A communication action is
either a service call/response or a message communication.

Component Description. A component C is a 8-tuple 〈W , Init, A, N , I, DS ,
ν, CS〉 with:

1 www.inrialpes.fr/vasy
2 altarica.labri.fr
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– W = 〈T, V, VT , Inv〉 the state space where T is a set of types, V a set of
variables, VT ⊆ V ×T a set of typed variables, and Inv is the state invariant;

– Init the initialisation of the VT variables;
– A a finite set of elementary actions;
– N a finite set of service names;
– I the component interface which is the union of two disjoint finite sets: Ip the

set of names of the provided services and Ir the names of required services.
– DS is the set of service descriptions which is partitioned into the provided

services (DSp) and the required services (DSr ).
– ν : N → DS is the function that maps service names to service descriptions.

Moreover there is a projection of the I partition on its image by ν:
n ∈ Ip ⇒ ν(n) ∈ DSp ∧ n ∈ Ir ⇒ ν(n) ∈ DSr

– CS is a constraint related to the services of the interface of C in order to
control the usage of the services.

The component behaviour relies on the behaviours of its services. The Kmelia
components are composable via the interfaces of the involved services. Interface-
compatible and behaviour-compatible services are composed at various levels
to build assemblies. Assemblies and services can be encapsulated into a larger
component called a composition.

3 Service Composition

In this section we consider two dimensions for service composition; each dimen-
sion is related to service behaviour (eLTS). The first dimension already pre-
sented in [4] deals with horizontal structuring mechanisms to compose services
and components from existing ones on the basis of a client-supplier relation. The
second dimension is introduced in this article; it deals with vertical structuring
mechanisms for building new services.

3.1 Horizontal Structuring Mechanisms

Horizontal service composition is tightly coupled with component composition
and hierarchical links between components. The horizontal structuring mech-
anisms are established by linking required services to services which are pro-
vided either internally or by the caller service or by a third component. These
service calls are handled with communication mechanisms. The services are
described in such a way that their interactions are made explicit via commu-
nication mechanisms. We use communication channels and the standard com-
munication primitives ! and ?; they are complemented with !! and ?? to deal
respectively with service call and service wait. Indeed as service interactions are
not elementary, we distinguish their communication operators from the primitive
ones.
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The interacting services are viewed (from an observer) as one service. Inter-
component interactions are based on service behaviour communications. The
communications that support the interaction and hence the composition, are
matching pairs: send message(!)-receive message(?), call service(!!)-wait service
start(??), emit service result(!!)-wait service result(??).

Two services are composable if their signatures are matching (types), the
assertions are consistent, the (hierarchical) service dependencies are not con-
flicting and their behaviours are compatible. When services are composed, they
are linked via the information available in their interfaces. Provided services are
linked to corresponding required services. In the same way, subservices are linked
between the composed services. The transition labels of the service behaviours
are used to perform the running of the resulting behaviour: either we have inde-
pendent behaviours or a synchronising behaviour in the case of matching labels.

3.2 Vertical Structuring Mechanisms

In the following we consider and formalise two vertical structuring mechanisms
that enable us to structure hierarchically the services: they are the state annota-
tion mechanism and the transition annotation mechanism. Additionally to the
flexibility of service description with optional behaviours (syntactically expressed
as a state annotation) or mandatory behaviours (syntactically expressed as a
transition annotation) the structuring mechanisms provide a means to reduce
the LTS size, to share common services or subservices and to master the com-
plexity of service specification, while preserving the pre/post condition contract
at the begining/termination of services (both client and supplier constraints).

We maintain the principle that formally the unfolding of an eLTS should
result in a LTS (in a recursive way). The unfolding of a service consists in
the unfolding of all its annotated states (state unfold in the sequel) and the
unfolding of the annotated transitions (transition unfold in the sequel). For the
formalisation we use the (standard) operational semantics rules with premises
and consequences separated by an horizontal line.

The < < > > structuring operator. We use the << >> operator to denote an
optional service call at any state of a service running. The principle is that the
caller of a service s, of a component C, may call a service ss that belongs to the
provided interface subs of s, when the running of s reaches a state ei (of the LTS
of s) annotated with ss.

This optional service call is syntactically noted with ei <<ss>> in the eLTS
of s. In [4] the state annotation mechanisms (called branching states) was infor-
mally introduced. According to the established link between a required and a
provided service, there is a renaming which results in a uniform link name. There-
fore, the service call is performed with linkName!!serviceName(...) where
linkName (resp. serviceName) stands for the established link name (resp. the

service name).
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e0
; display("Hello,pleaseinsertyourcard");

  read(myCard)

e10<<_query_account.code>>

_query_account!!
 query_account(myCard)

e1<<_ask_for_money.code>>

_ask_for_money!!
 ask_for_money(myCard)

e2<<_ask_for_money.code>>

_ask_for_money??
 ask_for_money(myCard)

_query_account??
 query_account(b)

_ask_for_money?rdv()

Fig. 2. An example of optional services in the USER INTERFACE component

Let us illustrate with the example in the Figure 23. It represents the main
service of the user interface component of a bank ATM specification4. This ser-
vice asks either for a withdrawal ( ask for money!!ask for money) or for a
query account ( query account!!query account). The e1, e2 and e10 states
are annotated with <<code>>; it means that the code service can be called from
this state by the service which is interacting with the current one.

The relation Φ : S ↔ subs is used to manage the annotated states of a service
specification (see Section 2). Now let formalise the structuring mechanisms in-
troduced via state annotations. Let s be a service, ej and ei (annotated with ss)
be two states of s. Let ss, a member of subs, be a service provided by (the inter-
face of) s. The behaviour of a service ss is also an (extended) labelled transition
system defined by a 6-tuple 〈Sss, Lss, δss, Φss, S0ss , SFss〉.

The semantics of the unfolding of annotated states (in the domain of Φ) is as
follows. We use the standard α-conversion to rename states and transitions to
avoid name conflict. For this purpose, αstates denotes a renaming function that
renames its parameters so as to avoid conflicts with the state names in s. The
αtransitions

and αlabels
functions are used in the same way to denote transition

and label renaming.

s =̂ 〈Ss, Ls, δs, Φs, S0s , SFs〉 ∧ (ei, ss) ∈ Φs ∧
ss =̂ 〈Sss, Lss, δss, Φss, S0ss , SFss〉 ∧

Sα
ss = αstates

(Sss) ∧ Lα
ss = αlabels

(Lss) ∧ δα
ss = αtransitions

(δss) ∧
ssα =̂ 〈Sα

ss, L
α
ss, δ

α
ss, Φss, S

α
0ss

, Sα
Fss

〉 ∧
S′

s = Ss ∪ Sα
ss ∧ L′

s = Ls ∪ Lα
ss ∪ {?? ss} ∧

δ′s = δs ∪ δα
ss ∪ {((ei, ?? ss), Sα

0ss
)} ∪Sfss∈Sα

Fss
{((Sfss , ε), ei)} ∧

Φ′
s = Φs − {(ei, ss)} ∧

S′
0s

= S0s ∧ S′
Fs

= SFs

state unfold(s, ee) = 〈S′
s, L

′
s, δ

′
s, Φ

′
s, S

′
0s

, S′
Fs

〉

3 This picture is generated by the KmeliaToDot module of our COSTO toolbox.
4 This ATM specification deals with the interaction between component services in or-

der to enable some functionalities provided by the ATM: withdrawal, query account,
etc. Some of these functionalities need the code or the amount from the user [4].
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The rule expresses that after the unfolding of ei, a transition labelled with
??ss goes from the annotated state to the initial state of the ss service; if there
is a call to the service ss from the ei state, provided that the precondition of
ss is true, this transition (as the other matching action) will lead to the initial
state of ss. To handle the end of the ss service, where the postcondition of ss is
true, a transition labelled with ε relates the final states of ss and the annotated
state; finally, all the transitions of ss are allowed in s provided that the control
reaches ss (hence the inclusion of transition relations).

The [[ ]] structuring operator. The [[ ]] operator denotes mandatory
service calls at any stage of a service running. To follow a transition annotated
with [[ss]] the caller of a service s must call the service ss that belongs to
the provided interface subs of s. Again pre/postcondition contract is preserved.
Only one service name is allowed for this operator. In the same way as for
state annotation, we extend the LTS of the service behaviour with a relation
Ψ : S × S ↔ subs to capture the annotated transitions. Note that to preserve
the service composition techniques and existing tools we do not modify the δ
relation.

[[amount]]

__CALLER!!ask_amount()

_ask_for_money!!
ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =USER_INTERFACE.behaviour() =

b1

b2

b3

w0w1

w2
__CALLER??ask_amount()

b0

w3

...
...

...

...

...

...

Fig. 3. An example of mandatory service in the USER INTERFACE component

We use three components to describe the ATM example: the USER INTERFACE
component which provides the behaviour service and requires the amount
service; the ATM CORE component which provides the withdrawal service and
requires the ask amount service and the ATM BASE component. The service with-
drawal is linked with the ask for money one; the link name is ask for money.
In the same way the ask amount service is linked with amount resulting in
the ask amount link. As depicted in the Figure 3, the amount service of the
USER INTERFACE must be called (here from the withdrawal service) after the
b2 state.

In the same way as for the operator << >> we give the semantics of the [[ ]]
operator. Consider a transition between ei and ej which is annotated with ss:
we have ((ei, ej), ss) in Ψ . The semantics of the unfolding of the transition is as
follows.
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s =̂ 〈Ss, Ls, δs, Φs, S0s , SFs〉 ∧
((ei, ss), ej) ∈ δs ∧ (ei, ej) ∈ dom(Ψ) ∧ Ψ(ei, ej) = ss ∧

ss =̂ 〈Sss, Lss, δss, Φss, S0ss , SFss〉 ∧
Sα

ss = αstates
(Sss) ∧ Lα

ss = αlabels
(Sss) ∧ δα

ss = αtransitions
(δss) ∧

ssα =̂ 〈Sα
ss, L

α
ss, δ

α
ss, Φss, S

α
0ss

, Sα
Fss

〉 ∧
S′

s = Ss ∪ Sα
ss ∧ L′

s = Ls ∪ Lα
ss ∪ {?? ss} ∧

δ′s = δs ∪ δα
ss − {((ei, ss), ej)}

∪ {((ei, ?? ss), Sα
0ss

)} ∪Sfss∈Sα
Fss

{((Sfss , ε), ej)} ∧
Ψ ′

s = Ψs − {((ei, ss), ej)} ∧
S′

0s
= S0s ∧ S′

Fs
= SFs

transition unfold(s, ti) = 〈S′
s, L

′
s, δ

′
s, Φ

′
s, S

′
0s

, S′
Fs

〉
The semantic rule expresses that when a transition annotated with ss exists
between the states ei and ej , then an expansion of the ss service is performed
between ei and ej. The behaviour of ss is then reachable from the ei state via a
wait of a call (??ss) ensuring the precondition of ss; after the running of ss (one
reaches a final state), the postcondition of ss is established and the execution
proceeds from the ej state due to the ε transition. A side effect is considered
here; the Ψ relation that extends the service specification is also updated along
the semantic rule. This rule is sufficient to deal with all annotation cases. The
various cases of transition annotation are dealt with as follows:

– when an annotated transition is guarded (((ei, [g] [[ss]]), ej) ∈ δ), the
firing of the transition depends on the value of the guard; in this case the
semantics rule is slightly changed as follows;

s =̂ 〈Ss, Ls, δs, Φs, S0s , SFs〉 ∧
((ei, [g] ss), ej) ∈ δs ∧ (ei, ej) ∈ dom(Ψ) ∧ Ψ(ei, ej) = ss ∧

ss =̂ 〈Sss, Lss, δss, Φss, S0ss , SFss〉 ∧
Sα

ss = αstates
(Sss) ∧ Lα

ss = αlabels
(Lss) ∧ δα

ss = αtransitions
(δss) ∧

ssα =̂ 〈Sα
ss, L

α
ss, δ

α
ss, Φss, S

α
0ss

, Sα
Fss

〉 ∧
S′

s = Ss ∪ Sα
ss ∧ L′

s = Ls ∪ Lα
ss ∪ {?? ss} ∧

δ′s = δs ∪ δα
ss − {((ei, [g] ss), ej)}

∪ {((ei, ?? ss), Sα
0ss

)} ∪Sfss∈Sα
Fss

{((Sfss , ε), ej)} ∧
Ψ ′

s = Ψs − {((ei, ss), ej)} ∧
S′

0s
= S0s ∧ S′

Fs
= SFs

unfold gtransition(s, ti) = 〈S′
s, L

′
s, δ

′
s, Φ

′
s, S

′
0s

, S′
Fs

〉
– when an annotated transition is one of the output transition of a node (there

is a choice of transitions), the used transition is the one which is involved in
the current interaction with another service that call (or which is called by)
the current one.

3.3 Component Maintenance and Consistency

Component maintenance. Decomposing a large behaviour into subservices is
encouraged in Kmelia, but it bears consequences if the service was already used by
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other services. For instance, when the behaviour of an existing component service
s is modified using the [[]] operator to exploit a part of it as a new service ss,
the existing clients of s will cease to be compatible because they miss the (new)
connection to ss. Indeed, the use of [[]] to modify s creates new transitions
between s and ss: especially a call to ss which is of course not included in the
previous client of s. This is what we called interface granularity mismatch in [2]:
a client service considers that all the communications are made in the context of
the unique old service while other newer clients use the new subservice ss. While
being quite difficult to address in the general case, the granularity mismatch is
easily avoided in the case of a maintenance or refactoring operation. For this
reason we use a rather flexible operator noted [||] which expands in the same
way as the (inflexible) [[]] operator but which adds new transitions that allow
old clients to circumvent both the call to the subservice and the waiting for its
termination. Likewise the flexible counterpart of (the inflexible) << >> is the
<| |> operator.

Formally the flexible operators have rules very similar to their inflexible coun-
terparts. We do not detail them here; the main point is that in the case of <| |>
and [||] the final states of ss may not be reached, therefore an ε-transition
relates each predecessor of these final states to ej. Indeed the new clients call
and wait for the termination, but the existing clients do not. In the case of this
formalisation δ′s is changed as follows:

δ′s = δs ∪ δα
ss ∪ {((ei, ε), Sα

0ss
)} ∪ep∈{qp|((qp,lx),sfss )∈δss} {((ep, ε), ej)}

Thanks to the flexible versions of the vertical structuring mechanisms, decom-
posing large services into subservices is expected to be a common refactoring.
The systematic detection of occurrences where such refactorings are performed
will be needed; but the adaptation of subservices that use parameters are out of
the scope of this paper.

Impact of structuring on service consistency. The previous structuring
mechanisms are independent of the service behaviour but they can impact on
its consistency. The correct ordering of services may be checked using precondi-
tions and postconditions. Therefore some control may already be performed at
the provider side. We study these problems and provide some solutions in the
following in the specific case of the component protocols.

Now we have a component model entirely equipped with service structur-
ing mechanisms. The added vertical structuring mechanisms do not impact on
composition since they are defined in terms of elementary LTS. However it is
necessary to check for possible design errors. In the following section we reuse
the service composition mechanisms to describe component protocols.

4 Component Protocols

Component behaviour protocols [14,12,8] have been introduced to extend static
component interfaces to dynamic constraints such as valid sequences of message
exchange, valid condition of service invocation, connection handling, etc.
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4.1 The Component Protocol Concept

The concept of protocol already exists in several component or service models
but its meaning varies from one model to another. In some approaches a proto-
col is a specific layer in a contractual vision including assertions [5,6,4,10] and
non-functional constraints like the quality of service [5,6]. In other approaches
[1,5,7,14] protocols are communication rules on connectors where adaptation is
possible. Protocols can also be recursive [13,15] or subtyped [5,12,14].

In a short comparison5, we use four criteria to compare the approaches: (1)
contents of the protocols (service invocation, actions, message exchange, control
structures...), (2) the attachment unit (component, interface, service, connector
or architecture), (3) the formalism itself (finite state machine, statecharts, reg-
ular expressions, etc), (4) property specification and proof support techniques
(temporal logic, markup language, algorithms, etc). We hereby classify these re-
lated approaches into three categories where the attachment unit is the main
criteria:

1. The first category groups the approaches which define a protocol as a compo-
nent lifecycle [5,8,11,13,15]. A single protocol is associated to the component
(or with its single interface). The component is a process and the services
are either atomic (messages) or defined by a specific behaviour [10].

2. In the second category a protocol defines a component view’s lifecycle. In
some of these approaches, a protocol is associated to an interface and several
interfaces coexist in the component [3,6,12]. In other approaches [1,7,14] a
protocol handles the communications on connection points (just like a usual
communication protocol).

3. In the third category [4] a protocol describes a particular use of the com-
ponent. Several protocols coexist within the component in one or several
interfaces.

The above approaches are not different in terms of expression power but they
are in terms of abstractions (concepts) from the component client point of view.
For example, using a basic component model (single interface, single protocol),
one can model every component system and in particular a system where con-
nectors are considered as components and multiple interfaces as component com-
positions. In such a case the system architect should encapsulate the protocols
in composite components and manage the interface consistency (close to the
inheritance problems in Object-Oriented Design); this solution leads to heavy
modelling. In other words, the approaches of category 1 and some of category
2 consider the protocol as a constraint rather than a guideline for the client. In
Kmelia (third category) we rather emphasise the user point of view; this is more
developed in the following section.

Protocols as Component Macro-services. When a component model does
not have the protocol concept, any service of a component can be invoked at

5 available at lina.atlanstic.net/fr/equipes/team10/Kmelia/

lina.atlanstic.net/fr/equipes/team10/Kmelia/
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any time. This is acceptable for libraries of functions but not for components
whose behaviour evolves with their service behaviours. Indeed the other solutions
would be either to use non trivial preconditions for service specifications or to
use comments to guide the users. We choose the use of protocol instead.

Component protocols enable the distinction between component state con-
straints (preconditions), sequencing constraints (ordering) and thereafter make
easier the verification of each part. Protocols are both a constraint for the com-
ponent supplier and a user guide for the component client (e.g. use case or
scenario):

– A protocol defines the rules which are needed to preserve the component
consistency.

– Protocols are helpful for the component system designer in describing guide-
lines: ”which services one can use and in what order one can use them”.

– Protocols are a coarse grain for component assemblies: instead of connecting
each service, one can connect a pattern of services.

The protocols as considered above, are a means to model user sessions, processes,
user classes or communication protocols.

4.2 Specification of Protocols in Kmelia

Within the Kmelia model a component protocol describes a valid ordering of
service calls. Therefore we beneficially reuse vertical structuring mechanisms to
describe protocols; for instance a sequence of mandatory service calls impose
an ordering of the services. A protocol stands for a provided service that gives
the access to other services of the same component. Thereby a protocol has a
behaviour (eLTS). Among the provided services of a component, those used in
a protocol description are called controlled services ; those which are not used in
the protocol descriptions are called free services. Thereby our model admits the
existence of controlled services which are still offered (at any time) through the
component interface.

A Kmelia component may provide one or several protocols. The provided pro-
tocols may be made interruptible by the component designer. The means to do
that is the use of a property to qualify some services. Therefore the protocol
interfaces have the following form:

provided protoName()
Properties = {protocol, interruptible, ...}

A protocol which does not have the interruptible property is said non-interrupti-
ble; once it is started it cannot be interleaved with other runs.

Protocol Specification. A protocol p is a specific service; it needs an interface
Ip and a behaviour description Bp; therefore we use the same description as for
a service: an eLTS. The behaviour of p is specified with 〈S, LP , δ, Φ, S0, SF 〉. But
to deal with the protocol features, we need some restrictions on the labels of
the transitions of protocols. The labels (LP ) are now either annotations (noted
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ask_code

ask_amount

connection

logout

[[connection]]

[[logout]]

ATMBASE.withdrawProtocol()

withdrawal

withdrawProtocol

e0

f

e1 <<withdrawal>>

i

[[withdrawal]]

ATM_BASE

account_query

provided withdrawProtocol()
Properties= {protocol,

nonInterruptible}
Pre true
Post true
Behaviour
init i
final f
{ i --[[connection]]--> e0

...
}

end

Fig. 4. A protocol of the ATM BASE component

[[ss]] that corresponds to a service ss which should be called by the service
that uses the protocol) or a local variable manipulation (that corresponds for
example to a loop counting or a path predicate).

In the following we adopt the user’s point of view, hence using call to ss to
refer to the annotation of a state or a transition with a service ss using the
vertical composition operators.

The Figure 4 stands for a component ATM BASE that includes a protocol
withdrawProtocol. The protocol gives the user guide of the services
connection, withdrawal and logout. This protocol is rather simple, it does
not include explicit loops, guards, basic actions on variables, etc. It appears in
the component interface in the same way as the other provided services and can
be called as such. The services that appear in the protocol (the controlled ser-
vices) are called in the scope of the protocol in the same way as the subservices
of a service are called. As far as the protocol withdrawProtocol is concerned,
the services connection, withdrawal, logout are controlled but the service
account query is free.

5 Formal Analysis and Experimentations

We have undertaken the behavioural compatibility analysis of Kmelia component
services [4]. The behaviours of linked services are checked for compatibility: the
behavioural analysis is achieved by considering the simultaneous running of two
(pairwise) services involved in a communication; the transitions are performed in-
dependently if they are labelled with elementary actions; the transitions labelled
with communication actions should be matching pairs from both involved ser-
vices. After the extension of service composition with the vertical structuring
mechanisms, the behavioural compatibility analysis of services still works since
the new mechanisms do not modify the behavioural structure of our services:
we have the (unfolded) LTS of each service labelled with elementary actions or
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communication actions. Therefore component interaction via composition of ser-
vices does not change. However, the behavioural compatibility should not hide the
general compatibility rules which include assertion checking. The use of the ver-
tical structuring mechanisms may lead to wrong orderings of services (if the user
does not pay attention to pre/postconditions). For example, in order to perform
safely a transition annotated with [[ss]] during the execution of a service s, the
precondition of ss should be ensured. In the same way, the use of the structuring
mechanisms to support protocol description requires a consistency analysis of the
protocols. In the following section we investigate one kind of protocol analysis.

5.1 Analysis of Protocols: Inconsistency Checking

The absence of inconsistency within protocol descriptions is one of the criteria
of a component correctness. For this reason, we need to detect inconsistency
in protocols specified by component designers. A protocol of a component is
inconsistent if one of its service sequences (from the protocol behaviour) is not
feasible (unfeasible sequences). The following two cases of inconsistency may be
detected:

– the existence of guarded sequences of service calls without other choice lead-
ing to a final state of the protocol;

– the existence in the protocol of a sequence of service calls [si; si+1; · · · ; sj ; sk]
such that the post-conditions of si to sj imply the negation of the pre-
condition of sk; that means, some services called before sk establish a context
which is not altered by other services before the call of sk and which is not
consistent with sk.

For instance, if the service connection has not connected as precondition
and connected as postcondition then the connection; connection sequence
leads to an inconsistent protocol (in the same way as any protocol including
this sequence).

To analyse and detect unfeasible sequences of service calls, we are experiment-
ing the translation of our needs into properties that will be proved using existing
theorem provers such as the Atelier B6.

5.2 Analysis of Protocols: Inconsistency Detection

This section investigates the inconsistency cases of section 5.1. The goal is to help
the component designer to write correct component equipped with protocols.
Practically, the analysis of such components will output some warnings or errors
showing the wrong parts of the component descriptions. Consider a protocol
with its unfolded behaviour and the sub-chains of service calls going from the
initial state to a final one (avoiding loops) of the protocol behaviour. For each
chain we check for all its sub-chains si; sj (with j = i + 1) that

¬(post(si) ⇒ ¬pre(sj)) (P1)
6 www.atelierb.societe.com
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This local property (where pre(s) and post(s) stand for the pre-condition and
post-condition of s) should be extended to take into account the effect of a whole
chain of calls that precedes a call to a service sk.

Remind that the eLTS that specifies a protocol behaviour denotes a finite
set of sequences which are made of the labels of the transitions. Therefore we
have chains made of service calls and simple actions. Practically, a component
protocol imposes an ordering of the component running, where each performed
service has some effect on the component.

A service (say si = 〈〈σ, Psi , Qsi , Vsi , Ssi〉, Bsi) is correctly performed if it
starts with a state satisfying the required precondition Psi . Bsi is the service
behaviour; the effect of a service, via its Bsi behaviour, is indicated by a post-
condition Qsi together with a modification of the component state.
Consequently the initial (P1) property is

¬(Gsi ⇒ ¬Psj ) (P2)
instead of ¬(Qsi ⇒ ¬Psj ) for the chain si; sj , where Gsi is a global property. It
expresses the cumulative effects of services s1..si on a component just before the
call sj that follows si in a chain of the given protocol.

This generalises the situation depicted as follows:
s1

︸︷︷︸

Gs1

; s2; s3; · · · ; sn

s1 ; s2
︸ ︷︷ ︸

Gs2

; s3; · · · ; sn

· · ·
s1; s2; s3; · · · ; si; sj ; · · · ; sn−1
︸ ︷︷ ︸

Gsn−1

; sn

The predicate Psi precondition of a service si is expressed with local variables
(vli) that are the parameters of the service and with global variables (vgk) of the
component, together with typing information (tli; tgk) coming from the service
and component interfaces:

vli : tli; vgk : tgk . Psi(vli, vgk)
In the same way, the predicatePsj of a service sj is expressed with local variables

(vlj) of the sj service and with global variables (vgk) of the component, together
with typing information coming from the sj service and from the component:

vlj : tlj ; vgk : tgk . Psj (vlj , vgk)
As we are reasoning independently of the runtime context of the services, the

values of local variables are not known (we assume in the best case that they
have the right value for the truth of the predicates) when the service are called.
The only working hypotheses are those on global variables; therefore we restrict
Psi(vli, vgk) and Psj (vlj , vgk) predicates to P ′

si
(vgk) and P ′

sj
(vgk).

The previous property (P1)

¬(vli : tli; vgk : tgk . Qsi(vli, vgk) ⇒ ¬(vlj : tlj ; vgk : tgk . P (vlj , vgk)))
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is rewritten with

¬(vgk : tgk . Q′
si

(vgk) ⇒ ¬(vgk : tgk . P ′(vgk)))

and is generalised with the following proof obligation:

¬(vgk : tgk . G′
si

(vgk) ⇒ ¬(vgk : tgk . P ′(vgk)))

Finally, detecting inconsistencies results in the systematic checking of this
proof obligation on components equipped with protocols. The obligation is yet
restrictive (local variables are ignored) but it is possible to alleviate the imposed
restrictions; however the obligation proofs will be very complex as we would
have to explore some value constraints for local variables. The current compro-
mise (i.e. considering only global variables) helps to detect some inconsistencies
with proof obligations which are tractable. Therefore we should integrate, after
preprocessing if needed to meet the input language of the prover, the G′ and P ′

predicates with their contexts (types, variables) into the targeted prover. We are
using the Atelier B prover as a support for our experimentations.

6 Conclusion and Perspectives

We have extended the horizontal structuring mechanisms of the Kmelia model
with two vertical structuring mechanisms: state annotation to deal with op-
tional service calls at some running stage and transition annotation to deal
with mandatory service calls when they are needed by the component users.
We have shown that these structuring mechanisms, first dedicated to service
and component composition, are also appropriate for describing protocols. In
this context component protocols are viewed as specific provided services. The
behaviour of a protocol is described as a service using a LTS with restricted
labels; for example they cannot include basic communication actions. The con-
cept of protocol is added to the model without changing it. The inconsistency
of service ordering may be detected through the protocols. Compared to the
existing approaches, our abstract component model is easily extensible; it can
be incrementally strengthened: in this case by defining the protocol property.

We studied protocol inconsistency detection using service pre/post conditions.
That led to the generation of obligation proofs that can be managed using ex-
isting theorem provers. Robustness with respect to component maintenance was
dealt with: when a service is restructured its clients are not broken. We have
already implemented the structuring mechanisms within our COSTO toolbox
that integrates: Kmelia specification parser, translators to LOTOS and MEC,
static interoperability checkers, dynamic interoperability checkers, a translator
of Kmelia services into dot (for the visualisation of service behaviours).

The challenge of building trusted components remains exciting. The Kmelia
proposal does not yet overcome all aspects of this challenge; additionally to the
improvement of the data and assertion part of the specification language, mech-
anised correctness analysis of services and components, equipped with protocols
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or not, are planned as short term research goals. We started some experiments
with the Atelier B prover to deal with aspects reated to assertions and not cover-
ered by LOTOS or MEC. In this direction, further work is planned to mechanise
the detection of inconsistency. The refinement of Kmelia model into executable
framework such as Fractal and SOFA is also an exciting investigation area.
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Abstract. Abadi and Lamport established a general theorem for com-
posing specifications [1]. Based on an assume-guarantee principle, it en-
ables one to prove the specification of a composite system from the
ones of its components. But the general application of this theorem to
software composition is not that straightforward because the resulting
abstract specification of the composite depends upon the hidden guar-
antees of its subcomponents. In this paper, we investigate how this result
can be exploited without blurring responsibilities between the different
participants. Our contributions leverage an existing contracting frame-
work for hierarchical software components [7], in which contracts are
first-class objects during configuration and run times. This framework
already associates specifications and responsibilities to software compo-
nents, within the traditional horizontal form of composition. We show
here how the vertical one can be made operational using the theorem as
a sound formal basis. The resulting composite contracts make possible
not only to detect violations, but also to determine and exploit precisely
responsibilities upon them, related to both forms of composition.

1 Introduction

Reliably composing pieces of software crucially depends on how well these pieces
observe constraints from each others. Beyond syntactic interfaces, which are
taken into account by all component models, more semantic constraints are also
tremendously important: behavior protocols, pre- and postconditions, and more
and more QoS constraints are also deeply concerned [19]. Some of these con-
straints, expressed in specifications, can be proved at composition time. Others,
because they are too hard to prove in the general case, or because they depend
upon data known only at runtime (some QoS constraints, for example), can be
checked at runtime, both to track down errors and to reason abductively about
the component to blame when failures occur. The contract based approach has
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been used both to express and check, even at runtime, the assumptions and guar-
antees of components with regards to such constraints. Our ConFract platform
[7,6] provides contracts as first-class objects, equipped with generic contract en-
forcement and blame-tracking mechanisms open to different kinds of contracts.
However, as Goguen and Burstall [10] observed a quarter of century ago, compo-
sition is not only a matter of horizontal bindings between components but also
the vertical nesting of subcomponents into more abstract composite ones. This
vertical nesting entails obligations between the subcomponents and their outer
composite, which need to be verified. Moreover, it has been argued that abstract-
ing from the details of the inner obligations between composed components is
essential to reason properly about horizontally composing at the composite level.

This paper therefore addresses the needs for abstract composite contracts
working hand in hand with the nested composition of components to provide a
well-founded tool to enforce obligations among composite components and be-
tween subcomponents and their outer composite. Among several different pro-
posals to do so, we found our abstract composite contracts on the well-known
Abadi’s and Lamport’s theorem [1]. This theorem makes explicit, under some
assumptions and for some type of properties, the dependency between the spec-
ification of a component and the ones of its subcomponents.

One key observation in Abadi’s and Lamport’s theorem stems from the fact
that when an abtract composite contract binding a composite A to its caller B
fails, one cannot blame the horizontally composed B if any of the subcomponents
fails to observe its own obligations towards A. Hence, to fruitfully apply the the-
orem, one needs to be able to monitor composite and hidden contracts and to
correctly reason from effects to causes to blame the defective components either
horizontally or vertically. It turns out that our ConFract model already asso-
ciates specifications and some appropriate responsibilities to the corresponding
software components, upon which it supports the horizontal form of composi-
tion. In this paper, we show how the vertical form can be made operational
using the theorem as a sound formal basis. ConFract, extended with Abadi and
Lamport based composite contracts, can guarantee that in all program runs, the
specification of a component is well-founded on the base of its subcomponents,
and that the vertical composition is sound against the contracted properties.

The rest of the paper is organized as follows. The next section briefly in-
troduces the underpinnings of Abadi’s and Lamport’s theorem. In Section 3, a
running example is described. Section 4 then presents our contract model and
the case of composite contracts is studied in Section 5. Section 6 describes an
application of our proposal with more complete specifications. Related works are
discussed in Section 7 and Section 8 concludes this paper.

2 Foundation

An assume-guarantee specification of a system asserts that this system performs
properly if its environment does [11,1]. It should not assert that its environment
performs properly, as this would be unimplementable since the environment is
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not under the system control. This principle is adequate for rigourous compo-
sition of modular component specifications, and has lead to extensive research
work since the 80s. We summarize here those aspects of the semantic model pro-
posed by Abadi and Lamport [1], and adapted for the provision of end-to-end
QoS guarantees in ODP systems [13]. This model is state-based and lies at the
semantic level, i.e. does not depend upon a particular formalism.

Semantic Overview. A state describes observable parts of a relevant universe, i.e.
the interfaces of all the agents (e.g. components) under consideration. The whole
state is decomposed into the states attached to every component, where a com-
ponent state may be accessed by other components only through explicit interac-
tions. We assume, at this abstract level, that components interact by exchanging
signals through their interfaces and that interactions are either controlled by a
component or by its environment (one of those is responsible). Semantically, a
state is an assignment of values to variables, a behavior is an infinite sequence
of states and a transition of a behavior denotes an action in which an agent is
responsible for changing the state. A property is true or false of a behavior1 and
is said a safety property if it is refutable in a finite time (e.g. the throughput
cannot exceed a certain threshold) or a liveness property if it is never refutable
in a finite time (e.g. an answer will eventually be delivered).

In the following, we assume that safety properties are sufficient in a first ap-
proach to deal with a large class of QoS or behavioral constraints (see [1] for
the possible use of liveness properties). A safety property constrains a compo-
nent if it can be violated only by this component, i.e. by a transition under
its control, such as an internal action or an emitted signal, in which it is re-
sponsible for changing the state. An assume-guarantee specification attached
to a component can be expressed in the form E −�M , where M is a safety
property constraining this component, E is a safety property constraining its
environment and −� means that M must remain true as long as E does2. This
temporal relation form is very useful for modular specifications of components,
and for distinguishing responsibilities among components from the ones of its
environment.

Composing specifications. It should be possible to prove the (QoS or behav-
ioral) specification of a large system from the specifications of its components.
The following result addresses this need and is basically the composition theo-
rem established by Abadi and Lamport [1], in our component-oriented context
considering only safety properties. It generalizes easily to n components.

Theorem 1. Let C1 and C2 be two components with assume-guarantee specifi-
cations, respectively equal to E1 −�M1 and E2 −�M2, and E be a supplementary
assumption on the environment of both components. Let us assume that M1, M2,
E1, E2, E are safety properties such as:
1 Some notions (equivalent behaviors for stuttering, closure of a property...) are omit-

ted here for the sake of brevity.
2 A refinement of this temporal relation is discussed by Abadi and Lamport [2].
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– M1 and M2 constrain respectively C1 and C2,
– E1, E2 and E constrain respectively ¬ C1, ¬ C2 and ¬ (C1 and C2).

Then the following inference rule is sound

E ∩ M1 ∩ M2 ⊆ E1 ∩ E2

(E1 −�M1) ∩ (E2 −�M2) ⊆ (E −�M1 ∩ M2)
. (1)

This theorem provides an agreement criterion for the composability of C1
and C2 and a powerful technique to prove how the resulting contract can
be guaranteed. More precisely, if the premise holds, one can obtain a contract
specified as (E −�M1 ∩ M2), which is satisfied by the composition of C1 and C2.
This contract guarantees that the safety properties M1 and M2 must remain
true as long as E does. At runtime, any violation denotes an observable
action (through some interface) in which either C1, C2 or their environment is
responsible for changing the state. Furthermore, this contract is expressed as an
assume-guarantee specification attached to a system composed of C1 and C2. The
contract model proposed in this article, extended over this formal basis, provides
an operational framework to enforce such compositional contracts. The resulting
system is intended to be used during various phases (design, negotiation, etc.)
of complex systems with QoS or behavioral constraints (see §6).

3 Running Example

Throughout this paper, we use a simplified cruise control system inspired from
[14] as running example. This system is described using an usual component
model, in which components are connected through their provided and required
interfaces, and components may be composite. Currently, our work is validated
on the Fractal component platform [4] that, among others, provides a Java im-
plementation. In the sequel, references to types in the underlying programming
language can be seen as Java interfaces.

The cruise control system is operated with three buttons: resume, on and
off. When the car is running and on is pressed, the system records the current
speed and maintains the car at this speed. When the accelerator, brake or off
is pressed, the system disengages but retains the speed setting. If resume is
pressed, the system accelerates or slows down the car back to the previously
recorded speed (see Figure 1 for the architecture and the interfaces). From an

float TS)

interface Sensor

void accelerate()
void break()
void resume()
void off()
void on()
void engineOff()
void engineOn()

interface Attributes
err {float}
targetSpeed {float}

Component

Client interface
Server interface

Binding
<..>  Component name
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interface CarSpeed
void setThrottle(float val,

Fig. 1. The Cruise Control System
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external point of view, the component <Car> provides the interface sns, of type
Sensor, which methods permit to drive the car. Internally, the <Car> is made of
two subcomponents. The component <CruiseCtrl> is the main control system,
providing a Sensor interface and attributes representing its target speed and a
possible error code. It also requires a CarSpeed interface in order to interact with
the engine. The <Engine> provides an interface csp, of type CarSpeed, which
methods permit to set the throttle and to get the current speed.

Composing specifications. Table 1 shows basic assume-guarantee specifications
applying to the <CruiseCtrl> and <Engine> components (see Section 6 for a
more complete illustration considering feedback control). We assume that the
cruise is active, i.e. the button on or resume has been pressed, and that time
intervals can be observed on the system execution.

The <CruiseCtrl> specification then guarantees that a setThrottle call is
emitted periodically on its required interface csp (i.e. periodic(csp.setThrottle)).
The <Engine> specification means: as long as it receives periodic setThrottle
calls on its provided interface csp and the target speed (TS) is unchanged for
rmax (i.e. cst(TS, rmax)), it guarantees that the actual speed equals the target
speed in less than rmax (i.e. eq(speed, TS, rmax)).

Table 1. Specifications (the notation TS denotes < CruiseCtrl > .att.targetSpeed)

Participant

<CruiseCtrl> offer TRUE −� periodic(csp.setThrottle)

<Engine> offer periodic(csp.setThrottle) ∧ cst(TS, rmax) −� eq(speed, TS, rmax)

Environment E wait(D1) // does nothing for the duration D1

<User> requirement eq(speed, TS, D2) −� TRUE // actual speed = target speed before D2

The composition Theorem 1 can then be applied. To that end, it is easy to
verify that the assume part of the specification of each component can be violated
only by their respective environment, that the guarantee part can be violated
only by itself and that all properties are safety properties. Thus, ignoring similar
terms on both sides of the inclusion, the premise of Rule 1 can be written:

E ∩ M<CruiseCtrl> ∩ M<Engine> ⊆ E<CruiseCtrl> ∩ E<Engine>, (2)
i.e. : wait(D1) ∩ eq(speed, TS, rmax) ⊆ cst(TS, rmax). (3)

We note that eq(speed, TS, rmax) cannot be violated before cst(TS, rmax),
unless the component <Engine> or <CruiseCtrl> violates its specification (cf.
Table 1). Furthermore, since the environment of these two components is as-
sumed to do nothing for the duration D1 (denoted wait(D1) in Table 1), the
target speed TS is unchanged for this period unless the environment violates its
specification. A trivial condition for the premise to happen is then:

rmax < D1.
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If this agreement criterion is verified, the Theorem 1 proves that the conclusion
of the inference rule is verified. Or in other terms that the composition of <Crui-
seCtrl> and <Engine> implements the following contract (in the sense of the
theorem) E −� M<CruiseCtrl> ∩ M<Car>, i.e.:

wait(D1) −� periodic(csp.setThrottle) ∩ eq(speed, TS, rmax), (4)

meaning that as long as the environment (the user) does nothing for D1, the car
system (composed of <CruiseCtrl> and <Engine>) guarantees that setThrottle
calls are emitted periodically and that the current speed equals the target speed
in less than rmax.

In addition, we can consider that the user has the requirement shown in Table
1 (meaning that as long as the actual speed equals the target speed in less than
D2, he will be satisfied). We note that the form of this requirement is similar
to the form of the offers of both components. Thus, it can be included in the
composition. In that case, it is easy to verify that a trivial condition for the
composition to be satisfactory for the user is rmax < min(D1, D2).

4 Contract Model

The overall design of our contract model assumes that the collaboration between
software entities (components, services, etc.) is driven by their architectural con-
figuration. A complete and operational contract model is thus meant to verify
properties of such configurations, and to determine the participating entities and
their responsibilities. This implies that the used specifications should be explicit
enough to allow a contracting system to determine the origin of a failure of a con-
figuration. The model should also make it possible to express guarantees using
various kinds of specification formalisms, provided that they can be interpreted
in terms of contracts. Independently of the compositional relation that we focus
on in this paper, we have previously stated the following properties as essential
for a contract model [6]:

P1 - Make explicit the conformance of individual components to their
specifications.

P2 - Make explicit the compatibility of components specifications (between com-
ponents of same level of composition, and between a composite and its sub-
components), on the base of their architectural configuration.

P3 - Make explicit the responsibilities of participating components against each
specification they are involved in.

P4 - Support various specification formalisms and verification techniques (at
configuration or run times).

We develop a contracting system [7] that reifies different kinds of contracts.
These contracts use executable assertions (P1), follow architectural configuration
and reify responsibility (P3). We have shown [6] how this system is extended
to explicit the conformance (P1), compatibility (P2) and responsibility (P3)
properties, while providing an abstract model supporting P4.
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Fig. 2. Contracting framework

In order to make these properties hold, a contract in our model needs to be
a first-class object, built from specifications at configuration time and that can
check appropriate properties — and interpret violations — both at configura-
tion and run times. The concepts that structure the contract are also partially
inspired from real life contracts. A contract is thus a set of clauses constraining
its participants, that are finally bound by an agreement.

Figure 2 shows a class diagram of the main reified concepts. Our contract
model was originally meant to verify horizontal composition, but to deal with
vertical one we will show next how the model meets the general assume-guarantee
concepts used in the Abadi/Lamport theorem. A Participant is an object that
refers to a compositional entity of the architecture, e.g. a service or a compo-
nent. Guarantee and Assumption hold a predicate and the description of the
observations on the system it constrains. For a given component, the guarantee
constrains what it provides (its emitted messages..., as for the properties Mi in
Theorem 1), the assumption constrains what it requires (its received messages,
etc. as for the properties Ei in Theorem 1). According to the formalism used,
their satisfaction can be evaluated at configuration or run times.

A ContractualSpecification is a predicate that binds together an assumption
and a guarantee for a given component. It follows the assume-guarantee principle:
as long as the assumption is true then the guarantee has to be also true (as
for the temporal relation form E −� M). Consequently, our model applies to
specification formalisms that are modular, i.e. a specification can be attached
to a component, and that can also be interpreted in assume-guarantee terms, as
shown in [6] (property P4).

A Clause is an object associating a contractual specification with a partici-
pant of the contract (property P1), which is then responsible for its guarantee
(property P3). The model relies on architectural paths (APath, inspired from
XPath) to navigate in the component structure. They allow a Clause to enforce
its specification, by checking if its guarantee and assumption denote respectively
observable actions under the control of the component it constrains (e.g. emitted
calls) or of its environment (e.g. received calls). Moreover, strategy objects are
associated to the evaluation of clauses, to detect if a guarantee is violated before
its associated assumption.

An Agreement expresses the compatibility of the clauses (property P2) of the
contract (as does the premise of the inference rule of Theorem 1). More precisely,
it expresses that the assumptions of the collaborating parties are fulfilled by
the their guarantees in a given environment. A ContextAssumption expresses a
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Fig. 3. Contract between <CruiseCtrl> and <Engine>

supplementary assumption on the environment of the components (as for the
property E in Theorem 1), i.e. a predicate constraining the context in which
they are composed.

Finally, an ArchitecturalPattern defines a configuration of relations between
software entities. It is used to discern the entities to which the contract applies,
and can be associated to a precise type of contract if needed. For instance, a
very simple pattern is client-server, expressing that the contract participants are
a client and a server bound by require/provide relationship in the architecture.

Figure 3 shows the object diagram of the contract constraining the <Crui-
seCtrl> and <Engine> components. This contract is related to the horizontal
composition of the two components, following the specifications given in Section
3. For the sake of simplicity, the diagram the ArchitecturalPattern is not shown.
The contract clauses are built from the specifications of the two participating
components, as well as the assumption on their environment (cf. Table 1). In
this case, the agreement expression is given by Formula 3 (the premise of the
Rule 1), which is verified if rmax < D1.

Responsibilities. Being able to determine the responsibility of a contract partici-
pant is the key in a contract model. In our model, a participating component in a
clause can be either guarantor or beneficiary. As expected, the guarantor ensures
the guarantee part of the component specification, whereas the beneficiary can
rely on it as long as it does not violate the assume part. Responsibilities are au-
tomatically determined by the contracting system when contracts are built: for
each clause, all participating components have their responsibilities set accord-
ing to the type of contracts (client-server, composition, etc.) and their current
configuration. More details on responsibilities and contract types are found in
[7], and in the next section about vertical composition.

5 Composite Contract

Our current contract model supports and makes operational the horizontal com-
position of specifications, as long as they can be interpreted in assume-guarantee
terms. We now describe our proposal to support the vertical composition of con-
tracts relying on the Abadi/Lamport theorem presented in Section 2.
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Fig. 4. Composite specification

Enforcing vertical composition consists in checking the compatibility between
the specification of a composite and the composition of its subcomponents speci-
fications. In order to support this, we extend our model with CompositeContrac-
tualSpecification, as shown in Figure 4 (the other concepts and their relations are
described in Section 4). In this figure, the conclusion of the inference rule of The-
orem 1 is linked to its premise. A CompositeContractualSpecification refers to
a Contract between it subcomponents that reifies an agreement (the premise of
the rule). It is itself an assume-guarantee ContractualSpecification obtained from
the specifications of its subcomponents, and then stands for the conclusion of the
rule. The application of this inference rule relies on several prerequisites, which
are going to be either ensured by construction, or checked on the components
by appropriate elements in the contract model:

– A guarantee must constrain its guarantor, and its associated assumption
must constrain the environment of the guarantor. As stated in Section 4,
the ConFract model enables Clause objects to check this prerequisite.

– A guarantee must be true as long as its associated assumption is. In Con-
Fract, all clauses are evaluated following this rule (§4).

– A composite specification must be implemented by a valid composition of
components (i.e. the premise of the inference rule holds). In our model, a
CompositeContractualSpecification object watches (see Figure 4) the Con-
tract between its subcomponents, to check if their Agreement (see Figure 3)
is valid. It thus monitors the conditions of its own soundness.

Figure 5 shows a simplified object diagram of a composite specification, follow-
ing the specifications given in Section 3. The CompositeContractualSpecification
object is the composition of the <CruiseCtrl> and <Engine> components. The
Contract (CruiseAndEngineContract) between these two components is detailed
in Figure 3. The Assumption and Guarantee of the resulting composite specifica-
tion are obtained from the Formula 4 on page 23 (the conclusion of the inference

Fig. 5. Composite specification of the component <Car>
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Fig. 6. Contract between <Car> and <User>

<CruiseCtrl> <Engine>

<Car><User>

figure 6

contract
on
figure 3contract

on

Fig. 7. Scope of the illustrated contracts

rule), by hiding the internal setThrottle events in order to attach them to the
component <Car> (see Figure 1). As this component can itself be composed
with the user, the contract between these two parties is shown in Figure 6. Ap-
plying again the inference rule, it is possible to infer a composite specification
from this contract between the car and the user, etc... Figure 7 shows the scope
of two of the contracts that are studied in the paper, with references to the
respective figures.

Responsibilities. As a result, our framework makes possible to enforce respon-
sibilities at several levels of abstraction. Horizontally, the framework handles
clear responsibilities: a clause is violated only if its guarantee is violated before
its assumption. The blame is on the component it constrains (the guarantor).
When the assumption is violated first, the blame is on this component environ-
ment. If a contract is established, it is then possible to find a faulty participant,
considering the architectural paths and the specification that cause the viola-
tion. For example, in Section 3, if the guarantee of the <Engine> component is
violated first, this component is responsible. If its assumption is violated first,
its environment is responsible. That is, the component <CruiseCtrl> consid-
ering the architectural paths and the specification. Vertically, at a composite
level, when a clause of a contract is violated, the guarantor of this clause could
be held responsible, following the rules described above. But considering the
lower part of the inference rule of Theorem 1, we see that the conjunction of
the subcomponent specifications implies what is represented as a Composite-
ContractualSpecification. Consequently, if a CompositeContractualSpecification
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is not satisfied, we trivially deduce that a subcomponent specification is also not
satisfied, as something false cannot be implied by something true. This reason-
ing is valid in our model since a CompositeContractualSpecification watches the
contract between its subcomponents to ensure its own soundness (see Figure 4).

As the responsible components of the contract clauses are among the subcom-
ponents, the mechanism for discovering responsibility can work at two levels of
the component hierarchy: it can tell which component is to blame at a level of
hierarchy, but also which part of this component did not behave properly in its
content. For example, in Section 3, if we observe that the component <Car>
violates its specification, we can relate this error to one of its subcomponents,
that is the component <Engine>. In complex systems, this kind of reasoning
(horizontal and vertical responsibilities) can help to analyse execution traces re-
sulting from a property violation. It can be used automatically at runtime with
appropriate monitoring mechanisms and/or at design time depending on the
specification formalism used.

6 Application

We now consider a simplified feedback control for the speed at which the car
is traveling when the cruise is active. The intent is to illustrate how classical
results in linear control can be interpreted in contractual terms to constrain an
architecture, rather than focusing on their mathematical treatments .

Transfer functions. As illustrated in Figure 1, the cruise controls the velocity
of the car and forms a close-loop control system with the car engine. We use the
following notations to represent the observable signals in the architecture:

– y(t), the current velocity of the car. This signal is obtained by calling getSpeed
on the provided interface csp of the component <Engine>. It is periodically
observed by the component <CruiseCtrl> when the cruise is active.

– r(t), the desired velocity of the car (reference input of the control loop). This
signal changes when <CruiseCtrl> receives an on call on its provided inter-
face sns. It then records the current value of y(t) in its attribute targetSpeed.

– e(t), the error represented here by r(t) − y(t). This signal is recorded in the
<CruiseCtrl> attribute err when the observed value of r(t) or y(t) changes.

– u(t), the cruise controller output in reaction to e(t). This signal is observed
when the component <CruiseCtrl> emits setThrottle calls on its required
interface csp to maintain the desired velocity of the car.

From classical results in linear control [8], we assume that the <CruiseCtrl>
and <Engine> components (i.e. the controller and the system under control)
are described by linear transfer functions Gc(s) and Gp(s). The <CruiseCtrl>
and <Engine> output are then given by:

U(s) = Gc(s)E(s) = Gc(s)[R(s) − Y (s)] and Y (s) = Gp(s)U(s), (5)

where s is a frequency variable, and capital letters represent transforms in the
frequency domain of the respective time functions u(t), e(t), r(t) and y(t).
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Table 2. Specifications

Participant

<CruiseCtrl> offer PE(s) −� PU(s) // guarantees a control output, assuming an error input

<Engine> offer PU(s) −� PY (s) // guarantees a velocity output, assuming a control input

Environment E PR(s) // the desired velocity, assumed from the two components environment

<User> requirement (∀t > x : y(t) = r(t) ± 5%) −� TRUE // is satisfied, assuming a given precision

Composing specifications. Table 2 shows the individual assume-guarantee
specifications applying to the <CruiseCtrl> and <Engine> components. For
example, the reading of the <CruiseCtrl> specification means that3: as long as
the input error signal e(t) is described by E(s) (assume part), the <CruiseCtrl>
emits the control signal u(t) described by U(s) (guarantee part).

The composition Theorem 1 can be applied. To that end, it is easy to verify
that the assume part of the specification of each component can be violated only
by their respective environment, that the guarantee part can be violated only
by itself and that all properties are safety properties (i.e. are refutable in a finite
time). Thus, the premise of the inference Rule 1 can be written:

E ∩ M<CruiseCtrl> ∩ M<Engine> ⊆ E<CruiseCtrl> ∩ E<Engine>, (6)
i.e. : PR(s) ∩ PU(s) ∩ PY (s) ⊆ PE(S) ∩ PU(s). (7)

In this case, we observe that this is trivially verified by construction since PU(s)
is similar on both sides of this inclusion and since the error E(s) = R(s)−Y (s),
i.e. PE(s) is verified by definition when PR(s) and PY (s) are. Therefore, this
agreement criterion proves that the composition of <CruiseCtrl> and <Engine>
implements the following contract (cf. Theorem 1):

E −� M<CruiseCtrl> ∩ M<Engine> i.e. PR(s) −� PU(s) ∩ PY (s), (8)

meaning that as long as the reference input signal r(t) for the desired velocity of
the car is described by R(s) (assume part), the closed-loop composed of <Crui-
seCtrl> and <Engine> emits the signals u(t) and y(t) described by U(s) and
Y (s) (guarantee part). It turns out that y(t), the actual velocity of the car, is
the signal of interest for the user. By substituting U(s) in Y (s) in Formula 5, we
know that the output signal y(t) emitted by the closed-loop is described by:

Y (s) = [Gc(s)Gp(s)]/[1 + Gc(s)Gp(s)]R(s) = G(s)R(s), (9)

and is guaranteed by Formula 8 as long as the desired velocity is described
by R(s). G(s) represents the closed-loop transfer function relating the actual
velocity to the desired velocity, a classical result in linear control systems.

Contract model. When the car system is undergoing test, the application of
our contract model can be illustrated by the verification of the properties P1,
3 The property PX means that the signal x is described by the transfer function X.
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P2 and P3 presented in Section 4. Using the ConFract system [7] extended to
support the proposed model, contracts are built at configuration time on the
whole architecture of the car system. Each component <CruiseCtrl>... is then
monitored to check whether it respects its specification (P1). The responsible
components (P3) can be precisely determined against a failure observed in P1.
Moreover, as a result of the reification of the composite contract, and following
the Abadi/Lamport theorem, the enforcement framework mechanisms discussed
in Section 5 makes possible to deduce compositional responsibilities if the vio-
lated clause is the result of a vertical composition (P2).

For example, if the framework observes that the actual velocity (output signal)
of the component <Car> is not described by Y (s) (guarantee part), whereas the
assumption on the desired velocity holds, then <Car> is responsible of the failure
at the composite level. But the framework can deduce that a subcomponent is
the actual responsible in the underlying composition: either <Engine> if its
assumption holds, or <CruiseCtrl> if a propagation of failure has occured. The
contract model makes operational this kind of reasoning. It can be exploited
to propose versatile error handling mechanism, spanning from complete logs
to precise identifications of the initial responsible component in a sequence of
violations. This latter strategy is useful in complex hierarchical systems, where
the same error can be observed at several level of nesting.

In practice, finally, control loops have well-known problems such as oscillations
or physical systems that do not respond instantaneously. We briefly introduce
how the contract model allows to support in uniform way user requirements.
A user can be represented in the architecture by a component artifact (cf. Fig-
ure 1). As any other component, this artifact can handle individual specifications,
participate in a composition to establish a contract, or be monitored to handle
violations and responsibilities. Let us consider for illustration that the user (or
designer) of the car system has the additional requirement specified in Table 2
(meaning that as long as the actual/desired velocity precision equals 5% after a
delay x, he will be satisfied). We note that the form of this requirement is similar
to the form of the offers of the other components. Thus, it can be included in
the composition. In order to establish a contract with the car, whose contractual
specification is given by Formula 8, the premise of the inference Rule 1 can be
written:

PU(s) ∩ PY (s) ⊆ PR(s) ∩ (∀t > x : e(t) = r(t) ± 5%). (10)

Comparing to Formula 7, the verification of this new agreement criterion will
require to know the transfer functions. Although such a mathematical treatment
is out of the scope of this illustration, we note that user requirements for quality
of service can be interpreted in contractual terms as for the other terms con-
straining the architecture. In particular, if the system analysis allows formula 10
to be verified, we can prove from Theorem 1 that the composition of <CruiseC-
trl> and <Engine> satisfies the user requirement. We can then enforce that this
composition is valid at configuration or runtime as long as the involved contracts
are satisfied.
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7 Related Work

Numerous works have provided rules for proving properties of systems by rea-
soning about the assume-guarantee specifications of their components. The first
strong result, that could handle circularities for safety properties, is that of Misra
[16] and was followed by extensive research works discussed by Abadi and Lam-
port [2]. This latter result supersedes the composition theorem 1 by providing
rules for handling fairness properties, hiding and decomposition (wich eliminates
the need to reason about the complete low-level system).

Besides, several works have proposed contract frameworks as a mean to ap-
ply formal results to concrete software systems. They all at least consider the
conformance of components to their specifications (property P1 page 23). They
handle quality of service [3,12] or behavioral [20] properties, but are then dedi-
cated to one type of formalism (fail to meet P4). The compatibility of component
specifications (P2) is generally considered, but often handled externally to the
contract model with adequate solvers. For example, CQML [3] does not reify
the compatibility but provides its expression considering the specifications of a
component configuration taken as a whole, with no consideration for architec-
ture. The architecture is taken into account in the contract model [20] but the
compatibility is still not reified.

Some contract models are dedicated to specific concerns, such as correct-
ness guarantees in the composition of web services [15]. Some others are
implicit, e.g. the SOFA component model allows one to apply implicit behav-
ior contracts in terms of both horizontal (client-service) and vertical (nesting)
cooperation of components [17]. Leboucher and Najm [13] apply the Abadi’s
and Lamport’s composition theorem to distributed systems. They propose it
as a basis for an object oriented framework, with rigourous method for prov-
ing end-to-end QoS guarantees in ODP systems, but without a reified contract
model.

In both the work of Reussner et al. [18] and the one of Jézéquel et al. [12],
the contract model reifies the dependency between properties of provided and
required services of a component. We also consider that this relationship is im-
portant and should be reified to study the component compatibility with its
environment. We deal with this through a general assume-guarantee approach,
and we also reify operationnally the global validity condition of an assembly
of components for different formalisms. Moreover none of these consider the
responsibilities of the contract participants.

Findler and Felleisen [9] show how the responsibility in behavioral subtyping of
contracts expressed with assertions can be correctly assigned in object-oriented
systems. They only determine the responsible part, but they can distinguish the
client/provider relationship from the subtyping relationship between the authors
of a class and its subclass. Our intentions are similar, but our model assigns fine-
grained responsibilities to components, which makes possible to exploit them,
for instance to renegotiate contracts in case of violation [5].
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8 Conclusion

Reliably composing components is a long term but crucial goal. It intrinsically
depends upon the capability to monitor the respective obligations both hori-
zontally, between components, and vertically, from subcomponents to composite
ones, in order to identify, trace back and blame the correct components when
such obligations are broken and faults occur. Besides horizontal obligations of
the traditional contract-based approach, in this paper we have proposed to ex-
tend this approach to address vertical composite contracts. Our new composite
contract construct is formally founded in Abadi’s and Lamport’s theorem for
composing specifications [1]. We are currently implementing this new form of
contracts in our ConFract platform [7,6], which provides first-class contracts
equipped with generic contract enforcement and blame-tracking mechanisms.
The cruise control running example for composite contracts illustrates how the
ConFract blame-tracking mechanism is able to exploit both horizontal and ver-
tical compositions to find faulty components when obligations are no longer
fulfilled.

ConFract is currently implemented over the Fractal hierarchical component
model [4]. In this settings, the new composite contract works hand in hand
with the hierarchical vertical composition to allow programmers to compose
contracts as they compose components. However, the use of composite contracts
is not limited to hierarchical component models. They can equally apply to the
large class of models where the relationships between subcomponents and their
composite remain implicit, such as non-hierarchical component models and Web
services.

The current limitations of our composite contracts are linked to the need to
reason about subcomponent specifications, following a bottom-up approach. In
some circumstances, the formalism used will not allow to prove how a composite
contract can be guaranteed, or it would be preferable to reason in a top-down
approach, as proposed for behavior protocols [17]. Another valuable extension
would be to compute the property of a component according to its context of
reuse, as proposed for parametric contracts [18]. Further research is needed to
overcome these limitations. However, the flexibility and the genericity of Con-
Fract, as examplified in this paper, makes it an appropriate testbed and practical
tool to this end.
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Abstract. In the context of Service Oriented Computing, contracts are
descriptions of the externally observable behaviour of services. Given
a group of collaborating services, their contracts can be used to verify
whether their composition is sound, i.e., the services are compliant. In
this paper, we relate the theory of contracts with the notion of chore-
ography conformance, used to check whether an aggregation of services
correctly behaves according to a high level specification of their possi-
ble conversations. The main result of this paper is the definition of an
effective procedure that can be used to verify whether a service with a
given contract can correctly play a specific role within a choreography.
This procedure is achieved via composition of choreography projection
and contract refinement.

1 Introduction

Service Oriented Computing (SOC) is a novel paradigm for distributed comput-
ing based on services intended as autonomous and heterogeneous components
that can be published and discovered via standard interface languages and pub-
lish/discovery protocols. One of the peculiarities of Service Oriented Computing,
distinguishing it from other distributed computing paradigms (such as compo-
nent based software engineering), is that it is centered around the so-called mes-
sage oriented architecture. This means that, given a set of collaborating services,
the current state of their interaction is stored inside the exchanged messages
and not only within the services. From a practical viewpoint, this means that
it is necessary to include, in the exchanged messages, the so-called correlation
information that permits to a service to associate a received message to the cor-
rect session of interaction (in fact, the same service could be contemporaneously
involved in different sessions at the same time).

Web Services is the most prominent service oriented technology: Web Services
publish their interface expressed in WSDL, they are discovered through the
UDDI protocol, and they are invoked using SOAP.

Two main approaches for the composition of services are currently under in-
vestigation and development inside the SOC research community: service orches-
tration and service choreography. According to the first approach, the activities
of the composed services are coordinated by a specific component, called the
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orchestrator, that is responsible for invoking the composed services and collect
their responses. Several languages have been already proposed for programming
orchestrators such as XLANG [Tha01], WSFL [Ley01] and WS-BPEL [OAS].

Choreography languages are attracting a lot of attention within W3C, where
the most credited choreography language WS-CDL [W3C] is currently under de-
velopment. Choreographies represent a “more democratic” alternative approach
for service composition with respect to orchestrations. Indeed, orchestrations
require the implementation of central points of coordination; on the contrary,
choreography languages support a high level description of peer-to-peer interac-
tions among services that directly communicate without the mediation of any
orchestrator. Unfortunately, choreography languages are not yet popular due
to the difficulties encountered while translating the high level description of the
composed services into an actual system obtained as combination of autonomous,
loosely coupled and heterogeneous components.

As an example of service composition, let us consider a travel agency service
that can be invoked by a client in order to reserve both an airplane seat and a
hotel room. In order to satisfy the client’s request, the travel agency contacts
two separate services, one for the airplane reservation and one for the hotel
reservation. A choreographic specification of this service composition describes
the possible flows of invocations exchanged among the four roles (the client,
the travel agency, the airplane reservation service, and the hotel reservation
service). A formal specification of a choreography of this kind can be found in
the Example 1.

The problem that we consider in this paper can be summarized as follows:
given a choreography, we want to define an automatic procedure that can be
used to check whether a service correctly plays one of the roles described by
the choreography. For instance, given a choreographic specification of the above
travel agency example, and an actual travel agency service, we want to check
whether the actual service behaves correctly according to the choreographic spec-
ification. The solution that we propose to this problem assumes that the services
expose in their interface an abstract description of their behaviour. In the ser-
vice oriented computing literature, this kind of information is referred to as the
service contract [CL06]. More precisely, the service contract describes the se-
quence of input/output operations that the service intends to execute within a
session of interaction with other services. In particular, we propose to combine
choreography projection with service contract refinement. The former permits
to extract the expected behaviour of one role and synthesize a corresponding
service contract. The latter permits to characterize an entire class of contracts
(that refine the contract obtained by projection), for which it is guaranteed that
the corresponding services correctly play the considered role in the choreography.

An important property of our theory is that contract refinement is defined
locally, i.e., given a correct implementation of a choreography based on the con-
tracts C1, · · · , Cn, each contract Ci can be replaced by any refinement C′

i, and the
overall system obtained by composition of C′

1, · · · , C′
n is still a correct implemen-

tation. This property permits to retrieve the actual services to be composed to
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implement the choreography independently one from the other (e.g. contempo-
raneously querying different service registries) collecting the services that either
expose the contract obtained by projection, or one of its refined contracts.

The paper is structured as follows. In Section 2 we introduce our model for
choreographies defined in terms of a process calculus. In Section 3 we report
the theory of service contracts and refinement. This section is essentially an
extension of our previous work [BZ06a]; the main novelty is that in the contract
calculus we associate to contracts also an additional information indicating the
location where the corresponding service is located. The presence of locations
permits to prove new interesting results that did not hold in the theory reported
in [BZ06a] (for this reason we need to completely revisit and extend the results
already proved in [BZ06a]). Section 4 describes the exploitation of the theory of
contract refinement in the context of choreography-based service composition.
Finally, Section 5 reports some conclusive remarks and the comparison with the
related literature. The proofs, not reported in the paper, can be found in [BZ06b].

2 The Choreography Calculus

Definition 1 (Choreographies). Let Operations, ranged over by a, b, c, · · ·
and Roles, ranged over by r, s, t, · · ·, be two countable sets of operation and
role names, respectively. The set of Choreographies, ranged over by H, L, · · ·
is defined by the following grammar:

H ::= ar→s | H + H | H ; H | H |H | H∗

The invocations ar→s means that role r invokes the operation a provided by
the role s. The other operators are choice + , sequential ; , parallel | , and
repetition ∗.

The operational semantics of choreographies considers two auxiliary terms 1 and
0. They are used to model the completion of a choreography, which is relevant
in the operational modeling of sequential composition. The formal definition is
given in Table 1 where we take η to range over the set of labels {ar→s | a ∈
Operations, r, s ∈ Roles} ∪ {√} (the label

√
denotes completion). The rules

in Table 1 are rather standard for process calculi with sequential composition
and without synchronization; in fact, parallel composition simply allows for the
interleaving of the actions executed by the operands (apart from completion
labels

√
that are required to synchronize).

Choreographies are especially useful to describe the protocols of interactions
within a group of collaborating services. To clarify this point, we present a simple
example of a protocol described with our choreography calculus.

Example 1 (Reservation via Travel Agency). Let us consider the following
choreography composed of four roles: Client, TravelAgency, AirCompany and
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Table 1. Semantic rules for contracts (symmetric rules omitted)

ar→s
ar→s−→ 1 1

√
−→ 0 H∗

√
−→ 0

H
η−→ H ′

H+L
η−→ H ′

H
η−→ H ′ η �= √

H ;L
η−→ H ′;L

H
√

−→ H ′ L
η−→ L′

H ;L
η−→ L′

H
√

−→ H ′ L
√

−→ L′

H |L
√

−→ H ′|L′

H
η−→ H ′ η �= √

H |L η−→ H ′|L

H
η−→ H ′ η �= √

H∗ η−→ H ′; H∗

Hotel

ReservationClient→TravelAgency ;
( (ReserveTravelAgency→AirCompany; ConfirmFlightAirCompany→TravelAgency)|

(ReserveTravelAgency→Hotel ; ConfirmRoomHotel→TravelAgency) );
ConfirmationTravelAgency→Client + CancellationTravelAgency→Client

According to this choreography, the Client initially sends a reservation request
to a travel agency, that subsequently contacts in parallel an airplane company
AirCompany and a room reservation service Hotel in order to reserve both the
travel and the staying of the client. Then, the travel agency either confirms or
cancels the reservation request of the client.

Even if choreography languages represent a simple and intuitive approach for
the description of the message exchange among services, they are not yet very
popular in the context of service oriented computing. The main problem to their
diffusion is that it is not trivial to relate the high level choreography description
with the actual implementation of the specified system realised as composition
of services that are usually loosely coupled, independently developed by different
companies, and autonomous. More precisely, the difficult task is, given a chore-
ography, to lookup available services that, once combined, are ensured to behave
according to the given choreography.

In order to formally investigate this problem, we need also a calculus for the
description of the behaviour of services. This calculus is reported in the next
section; in Section 4 we will formalize a procedure to verify whether a given
service can play a specific role within a given choreography.

3 The Theory of Contracts with Locations

We assume a denumerable set of action names N , ranged over by a, b, c, . . .. The
set Ncon = {a∗ | a ∈ N} is the set of contract action names. Moreover, we
consider a denumerable set Loc of location names, ranged over by l, l′, l1, · · ·.
The set Nloc = {al | a ∈ N , l ∈ Loc} is the set of located action names. The set
Acon = Ncon ∪ {a∗ | a∗ ∈ Ncon} is the set of input and output contract actions.
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The set Aloc = Nloc ∪ {al | al ∈ Nloc} is the set of input and output located
actions. We use τ /∈ N to denote an internal (unsynchronizable) computation.
Given a set of located action names I ⊂ Nloc, we denote: with I = {al | al ∈ I}
the set of output actions performable on those names and with Il = {a | al ∈ I}
the set of action names with associated location l.

Definition 2 (Contracts and Systems). The syntax of contracts is defined
by the following grammar

C ::= 0 | 1 | τ | a∗ | τ ; a∗ | a | τ ; al |
C; C | C+C | C|C | C\M | C∗

where M ⊆ Ncon. The set of all contracts C is denoted by Pcon. In the following
we will omit trailing “1” when writing contracts.
The syntax of systems (contract compositions) is defined by the following
grammar

P ::= [C]l | P ||P | P\\L

where L ⊆ Aloc. A system P is well-formed if: (i) every contract subterm [C]l
occurs in P at a different location l and (ii) no output action with destination
l is syntactically included inside a contract subterm occurring in P at the same
location l, i.e. actions al cannot occur inside a subterm [C]l of P . The set of all
well-formed systems P is denoted by P. In the following we will just consider
well-formed systems and, for simplicity, we will call them just systems.

We take α to range over the set of syntactical actions SAct = Acon∪N ∪{al | al ∈
Nloc} ∪ {τ}.

The operational semantics of contracts is defined by the rules in Table 2 (plus
symmetric rules). The operational semantics of systems is defined by the rules in
Table 3 plus symmetric rules. We take β to range over the set of actions executable
by contracts and systems, Act = Acon∪N ∪Aloc∪{τ}. We take λ to range over the
set of transition labels L = Act ∪ {√}, where

√
denotes successful termination.

In the remainder of the paper we use the following notations: P
λ−→ to mean

that there exists P ′ such that P
λ−→ P ′ and, given a sequence of labels w =

λ1λ2 · · · λn−1λn (possibly empty, i.e., w = ε), we use P
w−→ P ′ to denote the

sequence of transitions P
λ1−→ P1

λ2−→ · · · λn−1−→ Pn−1
λn−→ P ′ (in case of w = ε we

have P ′ = P , i.e., P
ε−→ P ).

The main results reported in this paper are consequences of a property of
systems that we call output persistence. This property states that once a system
decides to execute an output whose location is not included in the system, its
actual execution is mandatory in order to successfully complete the execution of
the system. In order to formally prove this property we need to formalize two
(easy to prove) preliminary lemmata. Given a system P ∈ P , we use loc(P ) to
denote the subset of Loc of the locations of contracts syntactically occurring
inside P : e.g. loc([C]l1 ||[C′]l2) = {l1, l2}.
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Table 2. Semantic rules for contracts (symmetric rules omitted)

1
√

−→ 0 α
α−→ 1

C
λ−→ C′

C+D
λ−→ C′

C
λ−→ C′ λ �= √

C;D
λ−→ C′;D

C
√

−→ C′ D
λ−→ D′

C;D
λ−→ D′

C
a∗−→ C′ D

a∗−→ D′

C|D τ−→ C′|D′

C
√

−→ C′ D
√

−→ D′

C|D
√

−→ C′|D′

C
λ−→ C′ λ �= √

C|D λ−→ C′|D

C
λ−→ C′ λ �∈ M ∪ M

C\M
λ−→ C′\M

C∗
√

−→ 0
C

λ−→ C′ λ �= √

C∗ λ−→ C′; C∗

Table 3. Semantic rules for contract compositions (symmetric rules omitted)

C
a−→ C′

[C]l
al−→ [C′]l

C
al′−→ C′

[C]l
al′−→ [C′]l

P
λ−→ P ′ λ �= √

P ||Q λ−→ P ′||Q

P
al−→ P ′ Q

al−→ Q′

P ||Q τ−→ P ′||Q′

P
√

−→ P ′ Q
√

−→ Q′

P ||Q
√

−→ P ′||Q′

P
λ−→ P ′ λ �∈ L

P\\L
λ−→ P ′\\L

Proposition 1 (Output persistence). Let P ∈ P be a system such that

P
w−→ P ′ al−→, with l /∈ loc(P ). We have that, for every P ′′ such that P ′ w′

−→
P ′′ and P ′′

√
−→, the string w′ must include al.

Note that, when we apply external restriction on outputs al to a system P such
that l /∈ loc(P ), i.e. we consider P\\O, with O ⊂ Nloc such that Ol = ∅ for
every l ∈ loc(P ), due to the absence of internal communication of actions of
O inside the system, we obtain a transition system isomorphic to that of the
system P{0/α|α ∈ O}, i.e. the syntactical substitution of 0 for every syntactical
occurrence of “α” such that α ∈ O. In the following we will use the abuse of
notation “C\\O” to stand for “C{0/α|α ∈ O}”: this allows us, e.g., to write a
term ([C1]l1 ||[C2]l2)\\O in the format considered above as [C1\\O]l1 ||[C2\\O]l2 . As
far as inputs are concerned, we cannot perform a similar symmetric syntactic
input action removal in the case of restriction on inputs al applied to a general
system P such that l ∈ loc(P ). This because internal communication inside the
system could make use of the inputs that we are considering for removal. However
the property holds if we restrict to a system composed of a single contract. When
we apply external restriction on input directly to a contract C, i.e. we consider
[C]l\\I, with I = {al | a ∈ M} for some M ⊆ N , we obtain a transition system
isomorphic to that of [C{0/α|α ∈ M}]l. In the following we will use the abuse
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of notation “C\\M” to stand for “C{0/α|α ∈ M}”: this allows us to write the
term above simply as [C\\M ]l.

We now define the notion of correct composition of contracts. This notion is
the same as in [BZ06a]. Intuitively, a system composed of contracts is correct if
all possible computations may guarantee completion; this means that the system
is both deadlock and livelock free (there could be an infinite computation, but
given any possible prefix of this infinite computation, it can be extended to reach
a successfully completed computation).

Definition 3 (Correct contract composition). A system P is a correct con-
tract composition, denoted P ↓, if for every P ′ such that P

τ−→
∗

P ′ there exists

P ′′ such that P ′ τ−→
∗

P ′′
√

−→ .

3.1 Independent Subcontracts

We are now ready to define the notion of independent subcontract pre-order.
Given a contract C ∈ Pcon, we use oloc(C) to denote the subset of Loc of the
locations of the destinations of all the output actions occurring inside C.

Definition 4 (Independent Subcontract pre-order). A pre-order ≤ over
Pcon is an independent subcontract pre-order if, for any n ≥ 1, contracts C1, . . . ,
Cn ∈ Pcon and C′

1, . . . , C
′
n ∈ Pcon such that ∀i. C′

i ≤ Ci, and distinguished
location names l1, . . . , ln ∈ Loc such that ∀i. li /∈ oloc(Ci) ∪ oloc(C′

i), we have

([C1]l1 || . . . || [Cn]ln)↓ ⇒ ([C′
1]l1 || . . . || [C′

n]ln)↓

We will prove that there exists a maximal independent subcontract pre-order;
this is a direct consequence of the output persistence property. In fact, if we con-
sider mixed choice it is easy to prove that there exists no maximal independent
subcontract pre-order (see [BZ06a]).

We will show that the maximal independent subcontract pre-order can be
achieved defining a more coarse form of refinement in which, given any system
composed of a set of contracts, refinement is applied to one contract only (thus
leaving the other unchanged). We call this form of refinement singular subcon-
tract pre-order.

Intuitively a pre-order ≤ over Pcon is a singular subcontract pre-order when-
ever the correctness of systems is preserved by refining just one of the contracts.
More precisely, for any n ≥ 1, contracts C1, . . . , Cn ∈ Pcon, 1 ≤ i ≤ n,C′

i ∈ Pcon

such that C′
i ≤ Ci, and distinguished location names l1, . . . , ln ∈ Loc such that

∀k �= i. lk /∈ oloc(Ck) and li /∈ oloc(Ci) ∪ oloc(C′
i), we require

([C1]l1 || . . . || [Ci]li || . . . || [Cn]ln)↓ ⇒ ([C1]l1 || . . . || [C′
i]li || . . . || [Cn]ln)↓

By exploiting commutativity and associativity of parallel composition we can
group the contracts which are not being refined and get the following cleaner
definition. We let Pconpar denote the set of systems of the form [C1]l1 || . . . ||[Cn]ln ,
with Ci ∈ Pcon, for all i ∈ {1, . . . , n}.
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Definition 5 (Singular subcontract pre-order). A pre-order ≤ over Pcon

is a singular subcontract pre-order if, for any C, C′ ∈ Pcon such that C′ ≤ C,
l ∈ Loc such that l /∈ oloc(Ci) ∪ oloc(C′

i), P ∈ Pconpar such that l /∈ loc(P ) we
have ([C]l||P )↓ implies ([C′]l||P )↓ .

The following proposition, which shows that extending possible contexts with
an external restriction does not change the notion of singular subcontract pre-
order, will be used in the following Sect. 3.2. We let Pconpres denote the set of
systems of the form ([C1]l1 || . . . ||[Cn]ln)\\L, with Ci ∈ Pcon for all i ∈ {1, . . . , n}
and L ⊆ Aloc.

Proposition 2. Let ≤ be a singular subcontract pre-order. For any C, C′ ∈ Pcon

such that C′ ≤ C, l ∈ Loc such that l /∈ oloc(Ci) ∪ oloc(C′
i), P ∈ Pconpres such

that l /∈ loc(P ) we have ([C]l||P )↓ implies ([C′]l||P )↓ .

From the simple structure of their definition we can easily deduce that singular
subcontract pre-order have maximum, i.e. there exists a singular subcontract
pre-order includes all the other singular subcontract pre-orders.

Definition 6 (Subcontract relation). A contract C′ is a subcontract of a
contract C denoted C′ � C, if and only if for all l ∈ Loc such that l /∈
oloc(Ci) ∪ oloc(C′

i) and P ∈ Pconpar such that l /∈ loc(P ) we have ([C]l||P ) ↓
implies ([C′]l||P )↓ .

It is trivial to verify that the pre-order � is a singular subcontract pre-order and
is the maximum of all the singular subcontract pre-orders.

In order to prove the existence of the maximal independent subcontract pre-
order, we will prove that every pre-order that is an independent subcontract is
also a singular subcontract (Theorem 1), and vice-versa (Theorem 2).

Theorem 1. If a pre-order ≤ is an independent subcontract pre-order then it
is also a singular subcontract pre-order.

Theorem 2. If a pre-order ≤ is a singular subcontract pre-order then it is also
an independent subcontract pre-order.

We can, therefore, conclude that there exists a maximal independent subcontract
pre-order and it corresponds to “�”.

3.2 Input-Output Subcontract Relation

We now define a notion of subcontract parameterized on the input and output
alphabets of the contracts in the potential contexts. This will allow us to prove
that, thanks to output persistency of contracts and the use of locations, we can
characterize the subcontract relation “�” in terms of a restricted set of contexts.

We first formally define the input and output alphabets of systems.
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Definition 7 (Input and Output sets). Given the contract C ∈ Pcon, we
define I(C) (resp. O(C)) as the subset of N (resp. Nloc) of the potential input
(resp. output) actions of C. Formally, we define I(C) as follows (O(C) is defined
similarly):

I(0)= I(1)= I(τ)= I(a∗)= I(τ ; a∗)= I(τ ; aloc)= ∅ I(a) = {a}
I(C;C′) = I(C+C′) = I(C|C′) = I(C)∪I(C′) I(C\M) = I(C∗)=I(C)

Note that the set M in C \ M does not influence I(C \ M) because it contains
only local names outside N . Given the system P , we define I(P ) (resp. O(P ))
as the subset of Nloc of the potential input (resp. output) actions of P . Formally,
we define I(P ) as follows (O(P ) is defined similarly):

I([C]l) = {al | a ∈ I(C)} I(P ||P ′) = I(P ) ∪ I(P ′) I(P\\L) = I(P ) − L

Note that, given P = (C1|| . . . ||Cn)\\I ∪ O ∈ Pconpres, we have I(P ) =
(
⋃

1≤i≤n I([Ci]li)) − I and O(P ) = (
⋃

1≤i≤n O([Ci]li)) − O. In the following
we let Pconpres,I,O, with I, O ⊆ Nloc, denote the subset of systems of Pconpres

such that I(P ) ⊆ I and O(P ) ⊆ O.

Definition 8 (Input-Output Subcontract relation). A contract C′ is a
subcontract of a contract C with respect to a set of input located names I ⊆ Nloc

and output located names O ⊆ Nloc, denoted C′ �I,O C, if and only if for
all l ∈ Loc such that l /∈ oloc(Ci) ∪ oloc(C′

i) and P ∈ Pconpres,I,O such that
l /∈ loc(P ) we have ([C]l||P )↓ implies ([C′]l||P )↓ .

Due to Proposition 2, we have �=�Nloc,Nloc
. The following Proposition states

an intuitive contravariant property: given �I′,O′ , and the greater sets I and O
(i.e. I ′ ⊆ I and O′ ⊆ O) we obtain a smaller pre-order �I,O (i.e. �I,O⊆�I′,O′).
This follows from the fact that extending the sets of input and output actions
means considering a greater set of discriminating contexts.

Proposition 3. Let C, C′ ∈ Pcon be two contracts, I, I ′ ⊆ Nloc be two sets of
input channel names such that I ′ ⊆ I and O, O′ ⊆ Nloc be two sets of output
channel names such that O′ ⊆ O. We have:

C′ �I,O C ⇒ C′ �I′,O′ C

The following Proposition states that a subcontract is still a subcontract even if
we restrict its actions in order to consider only the inputs and outputs already
available in the supercontract.

Proposition 4. Let C, C′ ∈ Pcon be contracts and I, O ⊆ Nloc be sets of located
names. We have

C′ �I,O C ⇒ C′\\(I(C′) − I(C)) �I,O C

C′ �I,O C ⇒ C′\\(O(C′) − O(C)) �I,O C
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All the results discussed so far do not depend on the output persistence property.
The first relevant result depending on this peculiarity is reported in the following
Proposition. It states that if we substitute a contract with one of its subcontract,
the latter cannot activate outputs that were not included in the potential outputs
of the supercontract.

Proposition 5. Let C, C′ ∈ Pcon be contracts and I, O ⊆ Nloc be sets of located
names and let C′ �I,O C. For every l ∈ Loc, l /∈ oloc(Ci) ∪ oloc(C′

i), and
P ∈ Pconpres,I,O, l /∈ loc(P ), such that ([C]l||P )↓,

([C′]l||P ) τ−→
∗

([C′
der ]l||Pder) ⇒

{

∀ al′ ∈ O(C′) − O(C). C′
der

al′−→/
∀ a ∈ I(C′) − I(C). Pder

al−→/

The following propositions permit to conclude that the set of potential inputs
and outputs of the other contracts in the system (as long as it includes those
needed to interact with the contract) is an information that does not influence
the subcontract relation. The other way around, this allows us to characterize,
in the following Sect 3.3, the general subcontract relation “�” in terms of a
subcontract relation which considers a reduced number of contexts.

Proposition 6. Let C ∈ Pcon be contracts, O ⊆ Nloc be a set of located output
names and I, I ′ ⊆ Nloc be two sets of located input names such that O(C) ⊆ I, I ′.
We have that for every contract C′ ∈ Pcon,

C′ �I,O C ⇐⇒ C′ �I′,O C

Proposition 7. Let C ∈ Pcon be contracts, O, O′ ⊆ Nloc be two sets of located
output names such that for every l ∈ Loc we have I(C) ⊆ Ol, O

′
l, and I ⊆ Nloc

be a set of located input names. We have that for every contract C′ ∈ Pcon,

C′ �I,O C ⇐⇒ C′ �I,O′ C

3.3 Resorting to Should Testing

The remainder of this Section is devoted to the definition of an actual procedure
for determining that two contracts are in subcontract relation. This is achieved
resorting to the theory of should-testing [RV05].

First, we need a preliminary result that is a direct consequence of the fact
that C′ �Nloc,

⋃

l∈Loc I([C]l) C if and only if C′ � C.

Lemma 1. Let C, C′ ∈ Pcon be contracts. We have

C′\\(I(C′) − I(C)) � C ⇒ C′ � C

Note that the opposite implication trivially holds (by taking O = Nloc and
I = Nloc in Proposition 4).

In the following we denote with �test the should-testing pre-order defined
in [RV05] where we consider the set of actions used by terms as being L ∪ {a |
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a ∈ N} (i.e. we consider located and unlocated input and output actions and
√

is included in the set of actions of terms under testing as any other action). We
denote here with

√′ the special action for the success of the test (denoted by
√

in [RV05]). In the following we consider λ to range over L ∪ {a | a ∈ N}.
In order to resort to the theory defined in [RV05], we define a normal form for

contracts of our calculus that corresponds to terms of the language in [RV05].
The normal form of the system P (denoted with NF(P)) is defined as follows,
by using the operator recXθ (defined in [RV05]) that represents the value of X
in the solution of the minimum fixpoint of the finite set of equations θ,

NF(P) = recX1θ where θ is the set of equations
Xi =

∑

j λi,j ; Xder(i,j)

where, assuming to enumerate the states in the labeled transition system of P
starting from X1, each variable Xi corresponds to the i-th state of the labeled
transition system of P , λi,j is the label of the j-th outgoing transition from Xi,
and der(i, j) is the index of the state reached with the j-th outgoing transition
from Xi. We assume empty sums to be equal to 0, i.e. if there are no outgoing
transitions from Xi, we have Xi = 0.

Theorem 3. Let C, C′ ∈ Pcon be two contracts. We have

NF(C′\\I(C′)−I(C)) �test NF(C) ⇒ C′ � C

In [BZ06a] you can find counter examples that prove that the opposite implica-
tion C′ � C ⇒ NF(C′\\I(C′)−I(C)) �test NF(C) does not hold in general.

4 Contract-Based Choreography Conformance

In this section we discuss how to exploit the choreography and the contract
calculus in order to define a procedure that checks whether a service exposing a
specific contract C can play the role r within a given choreography.

First of all we need to uniform the choreography and the contract calculus.
From a syntactical viewpoint, we have to map the operation names used for
choreographies with the names used for contracts assuming Operations = N .
We do the same also for the role names that are mapped into the location
names, i.e., Roles = Loc. From the point of view of the operational semantics,
we need to slightly modify the labels in the operational semantics of the contract
calculus in order to have labels comparable to those used in the choreography
calculus. To this aim we have to add the auxiliary set of labels {ar→s, ars | a ∈
Operations, r, s,∈ Roles} and replace the second and the fourth rules in Table 3
with the following ones:

C
as−→ C′

[C]r
ars−→ [C′]r

P
as−→ P ′ Q

ars−→ Q′

P ||Q ar→s−→ P ′||Q′
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With P
τ∗

−→ P ′ we denote the existence of a (possibly empty) sequence of τ -
labeled transitions starting from the system P and leading to P ′. Given the
sequence of labels w = λ1 · · · λn, we write P

w=⇒ P ′ if there exist P1, · · · , Pm

such that P
τ∗

−→ P1
λ1−→ P2

τ∗
−→ · · · τ∗

−→ Pm−1
λn−→ Pm

τ∗
−→ P ′.

We are now ready to formalize the notion of correct implementation of a
choreography. Intuitively, a system implements a choreography if it is a correct
composition of contracts and all of its conversations (i.e. the possible sequences
of message exchanges), are admitted by the choreography.

Definition 9 (Choreography implementation). Given the choreography H
and the system P , we say that P implements H (written P ∝ H) if

– P is a correct contract composition and

– given a sequence w of labels of the kind ar→s, if P
w
√

=⇒ P ′ then there exists

H ′ such that H
w
√

−→ H ′.

Note that it is not necessary for an implementation to include all possible con-
versations admitted by a choreography.

Example 2. (Implementation of the Travel Agency Choreography). As
an example, we present a possible implementation of the choreography reported
in the Example 1.

[τ ; ReservationTravelAgency ; Confirmation]Client ||
[Reservation; (τ ; ReserveAirCompany; ConfirmFlight |

τ ; HotelAirCompany; ConfirmRoom);
τ ; ConfirmationClient]TravelAgency ||

[Reserve; τ ; ConfirmFlightTravelAgency ]AirCompany ||
[Reserve; τ ; ConfirmRoomTravelAgency ]Hotel

Note that in this implementation we assume that the travel agency always replies
positively to the request of the client sending the Confirmation message.

We are now in place for the definition of the (family of) relations C 	H r
indicating whether the contract C can play the role r in the choreography H .

Definition 10 (Conformance family). Let 	H to denote relations between
contracts and roles parameterized on the choreography H defined on the roles
r1, · · · , rn. A family of relations {	H | H ∈ Choreographies} is a conformance
family if we have that if C1 	H r1, · · · , Cn 	H rn then [C1]r1 || · · · ||[Cn]rn ∝ H.

It is interesting to observe that, differently from subcontract pre-order defined on
contracts in the previous Section, there exists no maximal conformance family.
For instance, consider the choreography H = ar→s|br→s. We could have two
different conformance families, the first one including 	1

H such that
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(τ ; as|τ ; bs) 	1
H r (τ ; a; b + τ ; b; a) 	1

H s

and the second one including 	2
H such that

(τ ; as; τ ; bs + τ ; bs; τ ; as) 	2
H r (a|b) 	2

H s

It is easy to see that it is not possible to have a conformance family that comprises
the union of the two relations 	1

H and 	2
H . In fact, the system

[τ ; as; τ ; bs + τ ; bs; τ ; as]r || [τ ; a; b + τ ; b; a]s

is not a correct composition because the two contracts may internally select two
incompatible orderings for the execution of the two message exchanges (and in
this case they stuck).

The remainder of the paper is dedicated to the definition of a mechanism
that, exploiting the notion of contract refinement defined in the previous section,
permits to effectively characterize an interesting conformance family. The first
step of this mechanism requires the definition of the projection of a choreography
on a specific role.

Definition 11 (Choreography projection). Given a choreography H, the
projection H on the role r, denoted with [[H ]]r, is defined inductively on the
syntax of H in such a way that

[[ar→s]]t =

⎧

⎨

⎩

τ ; as if t = r
a if t = s
1 otherwise

and that it is a homomorphism with respect to all operators.

It is interesting to observe that given a choreography H , the system obtained
composing its projections is not ensured to be an implementation of H . For
instance, consider the choreography ar→s ; bt→u. The system obtained by pro-
jection is [as]r || [a]s || [bu]t || [b]u. Even if this is a correct composition of contracts,
it is not an implementation of H because it comprises the conversation bt→uar→s

which is not admitted by H .
The problem is not in the definition of the projection, but in the fact that the

above choreography cannot be implemented preserving the message exchanges
specified by the choreography. In fact, in order to guarantee that the communi-
cation between t and u is executed after the communication between r and s, it
is necessary to add a further message exchange (for instance between s and r)
which is not considered in the choreography. This problem has been already in-
vestigated in [CHY07] where a notion of well formed choreography is introduced,
and it is proved that well formed choreographies admit a correct projection.1

Nevertheless, the notion of well formed choreography in [CHY07] is rather
restrictive. In particular, after the execution of a message sent from the role v

1 The projection defined in [CHY07] is more complex than ours as their choreography
calculus comprises also an explicit notion of session.
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to the role z, the subsequent message in the conversation should be mandatorily
emitted by z. For instance, the choreography ar→s; br→s does not satisfy this
constraint even if the system [τ ; as; τ ; bs]r || [a; b]s obtained by projection is a
correct implementation.

To be less restrictive than [CHY07], we consider as well formed all those
choreographies for which the system obtained by projection is ensured to be a
correct implementation.

Definition 12 (Well formed choreography). A choreography H, defined on
the roles r1, · · · , rn, is well formed if [ [[H ]]r1 ]r1 || · · · || [ [[H ]]rn ]rn ∝ H.

It is worthwhile to note that well formedness is decidable. In fact, given a chore-
ography H , it is sufficient to take the corresponding system P obtained by projec-
tion, then consider P and H as finite state automata, and finally check whether
the language of the first automaton is included in the language of the second
one. Note that the terms P and H can be seen as finite state automata thanks to
the fact that their infinite behaviours are defined using Kleene-star repetitions
instead of general recursion.

Now, we define the notion of consonance between contracts and roles of a
given choreography, and we prove that it is a conformance family.

Definition 13 (Consonance). We say that the contract C is consonant with
the role r of the well formed choreography H (written C 
	H r) if

NF
(

Cr\\I([[H ]]r) − I(C)
)

�test NF
(

[[H ]]r
)

where \\, defined in Section 3, is the restriction operator that acts independently
on input and output actions; I( ), defined in Section 3.2, is the function that
extracts from a contract the names used as inputs; NF( ), defined in Section
3.3, is the function that returns the normal form of a contract; and �test, defined
in Section 3.3, is the should-testing pre-order.

Theorem 4. The family {
	H | H is a well formed choreography} of conso-
nance relations is a conformance family.

5 Related Work and Conclusion

We have addressed the problem of the deployment of service compositions via
choreography specifications in the context of service oriented computing. In par-
ticular, we have formalized service choreographies and service contracts via pro-
cess calculi and, exploiting the notion of choreography projection in combination
with service contract refinement, we have defined a new relation called conso-
nance. The consonance relation is parameterized on a given choreography H and
relates service contracts to roles: if a contract C is consonant to a role r, then
the services exposing contract C (or one of its refinements) correctly play role r
in the considered choreography H .
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Choreography languages have been already investigated in a process algebraic
setting by Carbone et al. [CHY07] and by Busi et al. [BGG+05, BGG+06].

The paper [CHY07] is the first one, to the best out knowledge, in which the
problem of ill-formed choreographies is considered: a choreography is ill-formed
when it is not possible to achieve by projection a correct implementation that
preserves the message exchanges specified by the choreography. The solution to
this problem presented in [CHY07] is given by three basic principles that, when
satisfied by a choreography, ensure to achieve a corresponding correct projec-
tion. On the one hand, the calculi proposed in [CHY07] are more expressive
than the calculi we define in this paper because they comprise name passing and
an explicit notion of session. On the other hand, the basic principles imposed
in [CHY07] give rise to a more restrictive notion of well formed choreography
with respect to the one proposed in this paper (this technical aspect is discussed
in Section 4). In [BGG+05, BGG+06] a more general notion of conformance be-
tween a choreography and a corresponding implementation as a service system
is defined. According to this more general notion of conformance the implemen-
tation does not necessarily follow from projection, but additional services (not
included at the choreography level) can be added in order to synchronize the
correct scheduling of the the message flow.

The theory of contracts that we discuss in Section 3 is an extension of the theory
reported in our paper [BZ06a]. More precisely, Section 3 is a revisitation of that
theory in a slightly different context. The main novelty here is that we associate
a location to each contract, and we assume that output operations are specified
by indicating, besides the name of the invoked operation, also its actual location.
This difference has a very important consequence which is proved as an original
result in this paper: contract refinement is no longer influenced by the set of out-
put operations that can be executed by the other composed contracts. More pre-
cisely, contract refinement was defined in [BZ06a] with an associated parameter
(the set of output operations available in the other composed contracts) while in
the present paper we can define a new notion of contract refinement independently
of this information. The details of this new results are discussed in Section 3.

The notion of contract refinement that we propose is achieved resorting to
the theory of testing. There are some relevant differences between our form of
testing and the traditional one proposed by De Nicola-Hennessy [DH84]. The
most relevant difference is that, besides requiring the success of the test, we
impose also that the tested process should successfully complete its execution.
This further requirement has important consequences; for instance, we do not
distinguish between the always unsuccessful process 0 and other processes, such
as a.1+a.b.1,2 for which there are no guarantees of successful completion in any
possible context. Another relevant difference is in the treatment of divergence:
we do not follow the traditional catastrophic approach, but the fair approach
introduced by the theory of should-testing of Rensink-Vogler [RV05]. In fact, we
do not impose that all computations must succeed, but that all computations
can always be extended in order to reach success.

2 We use 0 to denote unsuccessful termination and 1 for successful completion.
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Contracts have been investigated also by Fournet et al. [FHR+04] and by
Carpineti et al. [CCL+06]. In [FHR+04] contracts are CCS-like processes; a
generic process P is defined as compliant to a contract C if, for every tuple of
names ã and process Q, whenever (νã)(C|Q) is stuck-free then also (νã)(P |Q)
is. Our notion of contract refinement differs from stuck-free conformance mainly
because we consider a different notion of stuckness. In [FHR+04] a process state
is stuck (on a tuple of channel names ã) if it has no internal moves (but it
can execute at least one action on one of the channels in ã). In our approach,
an end-states different from successful termination is stuck (independently of
any tuple ã). Thus, we distinguish between internal deadlock and successful
completion while this is not the case in [FHR+04]. Another difference follows
from the exploitation of the restriction (νã); this is used in [FHR+04] to explicitly
indicate the local channels of communication used between the contract C and
the process Q. In our context we can make a stronger closed-world assumption
(corresponding to a restriction on all channel names) because service contracts
do not describe the entire behaviour of a service, but the flow of execution of its
operations inside one session of communication.

The closed-world assumption is considered also in [CCL+06] where, as in
our case, a service oriented scenario is considered. In particular, in [CCL+06]
a theory of contracts is defined for investigating the compatibility between one
client and one service. Our paper consider multi-party composition where several
services are composed in a peer-to-peer manner. Moreover, we impose service
substitutability as a mandatory property for our notion of refinement; this does
not hold in [CCL+06] where it is not in general possible to substitute a service
exposing one contract with another one exposing a subcontract. Another relevant
difference is that the contracts in [CCL+06] comprises also choices guarded by
both input and output actions.
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Abstract. This paper describes a process-algebraic approach to spec-
ification and refinement of workflow processes. In particular, we model
both specification and implementation of workflows as CSP processes.
CSP’s behavioural models and their respective refinement relations not
only enable us to prove correctness properties of an individual work-
flow process against its behavioural specification but also allows us to
design and develop workflow processes compositionally. Moreover, cou-
pled with CSP is an industrial strength automated model checker FDR,
which allows behavioural properties of workflow models to be proved au-
tomatically. This paper details some CSP models of van der Aalst et al.’s
control flow workflow patterns, and illustrates behavioural specification
and refinement of workflow systems with a business process scenario.

1 Introduction

Since van der Aalst published his short note [18] comparing Petri nets and
π-calculus with respect to his workflow patterns [19], some attempts have been
made to express these patterns in π-calculus [12,13] and its variants [11,15]. In
this paper, we demonstrate how the process algebra CSP also can be applied to
model complex workflow systems; more importantly, we can exploit CSP’s no-
tion of process refinement [6,14] to specify and compare these workflow systems.
Furthermore, CSP is supported by the automated model checker FDR [4], which
has been used extensively in industrial applications [10,2]. The combination of
the mathematics of refinement and the model checker is crucial in the develop-
ment process of workflow systems, especially when designers do not want to be
concerned with the underlying mathematics. To complement the work described
in this paper, we have given a formal semantics for BPMN in CSP [23], allow-
ing workflow process designers to construct specifications using BPMN, and to
formally compare BPMN diagrams.

We first detail CSP models of some of van der Aalst et al.’s control flow
workflow patterns [19], which serve as “jigsaw” pieces for workflow construction.
We then present a case study of a business process to illustrate the composition
of some of the workflow pattern models and the use of process refinement in
specification and verification.

The rest of this paper is structured as follows. Section 2 gives a brief intro-
duction to CSP, its syntax and semantics. Section 3 describes the CSP models of
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workflow patterns. Section 4 details the business process case study. Sections 5
and 6 discuss the related work and directions for future work respectively.

2 Communicating Sequential Processes

In CSP [6], a process is defined as a pattern of possible behaviour; a behaviour
consists of events which are atomic and synchronous between the environment
and the process. The environment in this case can be another process. Events
can be compound, constructed using ‘.’ the dot operator; often these compound
events behave as channels communicating data objects synchronously between
the process and the environment. For example a.b is a compound event which
communicates object b through channel a. Below is the grammar of a simplied
version of CSP in BNF.

P ,Q ::= P ||| Q | P |[A ]| Q | P \ A | P � Q |
P � Q | P � Q | P o

9 Q | e → P | Skip | Stop

e ::= x | x .e

Process P ||| Q denotes the interleaved parallel composition of processes P
and Q . Process P |[ A ]| Q denotes the partial interleaving of processes P and Q
sharing events in set A. Process P \ A is obtained by hiding all occurrences of
events in set A from the environment of P . Process P � Q denotes a process
initially behaving as P , but which may be interrupted by Q . Process P � Q
denotes the external choice between processes P and Q ; the process is ready to
behave as either P or Q . Process P � Q denotes the internal choice between
processes P or Q , ready to behave at least one of P and Q but not necessarily
offer either of them. Process P o

9 Q denotes a process ready to behave as P ;
after P has successfully terminated, the process is ready to behave as Q . Our
syntactic notation for process sequential composition follows Davies’ style [3].
Process e → P denotes a process capable of performing event e, after which it
will behave like process P . The process Stop is a deadlocked process and the
process Skip is a successful termination. We write � a : { x0 . . . xi } • P(a) to
denote external choice over the set of processes {P(x0) . . .P(xi) } and similarly
for CSP operators � and |||.

CSP has three denotational semantic models: traces (T ), stable failures (F)
and failures-divergences (N ) models, in order of increasing precision. In this
paper our process definitions are divergence-free, so we will concentrate on the
stable failures model. The traces model is insufficient because it does not record
the availability of events and hence only models what a process can do and
nothing about what it must do [14]. Notable is the semantic equivalence of
processes P � Q and P � Q under the traces model. Their trace semantics are
defined below where T [·] is a semantic function which maps a CSP expression to
its set of possible traces P(seq Σ) and Σ is the set of all possible events.

T [P � Q ] = T [P � Q ] = T [P ] ∪ T [Q ]
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In order to distinguish these processes, it is necessary to record not only what a
process can do, but also what it can refuse to do. This information is preserved
in refusal sets, sets of events from which a process in a stable state can refuse
to communicate anything no matter how long it is offered. A (stable) failure
is a pair in which the first element is the trace of a process and the second is
a refusal set of the process after the given trace. Below is the stable failures
semantics of both choice operators where F [·] is a semantic function that maps
a CSP expression to its set of failures P(seq Σ × P Σ).

F [P � Q ] = {ref : P Σ | (〈〉, ref ) ∈ F [P ] ∩ F [Q ] • (〈〉, ref )}
∪ {tr : seq Σ; ref : P Σ | tr 
= 〈〉 ∧ (tr , ref ) ∈ F [P ] ∪ F [Q ] • (tr , ref )}

F [P � Q ] = F [P ] ∪ F [Q ]

Each CSP process hence is characterised by its pattern of behaviour; the
type of specification we are concerned with is termed behavioural specification.
In CSP’s behavioural models (T ,F and N ) a specification R is expressed by
constructing the most non-deterministic process satisfying it, called the char-
acteristic process PR. Any process Q that satisfies specification R has to refine
PR; this is denoted by PR � Q . In the stable failures model, we say process Q
failure-refines process P if and only if every failure of Q is also a failure of P .

P �F Q ⇔ F [Q ] ⊆ F [P ]

Similarly, we say P is failure-equivalent to Q if and only if they have the same
set of failures.

P ≡F Q ⇔ P �F Q ∧ Q �F P ⇔ F [P ] = F [Q ]

While traces only carries information about safety conditions, refinement un-
der the stable failures model allows one to make assertions about a system’s
safety and availability properties. These assertions can be automatically proved
using CSP’s model checker FDR [4]. FDR stands for “Failures-Divergence Refine-
ment”; Model checkers exhaustively explore the state space of a system, either
returning one or more counterexamples to a stated property or guaranteeing that
no counterexample exists. FDR is among the most powerful explicit exhaustive
finite-state exploration tools and has been used extensively in industrial appli-
cations [10,2].

3 Patterns

Van der Aalst et al. introduced workflow patterns as the “gold standard” bench-
mark of workflow languages [19]. These patterns range from simple constructs
to complex routing primitives. Their scope is limited to static control flow.

We model each of these control flow patterns in CSP, adhering to the inter-
pretation of a process instance given by WfMC Reference Model [7] and van der
Aalst et al.’s description of workflow activity [19]. We define set A as the set
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of workflow activities, and define set of compound events {n : A • init .n } as
the set of events representing workflow triggers and { n : A • work .n } as the set
of events representing the execution of workflow activities. We can then define
the CSP process P(a,X ) where a,b,c,... range over A. This process models basic
workflow activity a. We use X ,Y ,... to range over P A.

P(a,X ) = init .a → work .a → ||| b : X • init .b → Skip

The process description P(a,X ) first performs the event init .a with the co-
operation of the environment. This event represents an external trigger to the
start of the activity a; after the trigger has occurred, the event work .a, which
represents some activity a, will be ready to perform. After work .a has occurred,
the process is ready to perform the set of events { b : X | init .b } which trigger
a set of workflow activities X ⊆ A. A workflow activity which only triggers one
subsequent activity can hence be defined.

SP(a, b) = P(a, {b})

Each CSP description of the workflow pattern represents an abstracted view
of a workflow process. In this paper we only concern ourselves with the modelling
of flow of control between activities and external to them. Each CSP process Q
modelling some workflow activities hence has a corresponding process Q ′ which
has the execution of its workflow activities internalised via the hiding operation.

Q ′ = Q \ {|work |}

The hiding operation reflects independent execution of individual workflow
activities and allows us to model workflow processes with different levels of ab-
straction. As these workflow models are refined, more implementation details
about individual activities might be added such as their internal data flow infor-
mation. We use the event init .acts to denote a general trigger for the workflow
activity acts which is outside the scope of the workflow process in which init .acts
occurs. It represents the completion of the relevant activities defined with the
process. We use the event init .null to denote a general trigger to some workflow
activity null that is outside the scope of the workflow process in which init .null
occurs and null is ignored.

The rest of this section is devoted to a detailed description of the CSP model
of these patterns based on the definitions above and the semantics of CSP.
Due to page restriction, we have only included in this paper the CSP model
of the workflow patterns which are relevant in the subsequent case study. A
complete presentation of the CSP models of workflow patterns can be sought
elsewhere [22].

3.1 Basic Control Flow Patterns

In this section the workflow patterns capture the basic control flows of workflow
activities. They form the basis of more advanced patterns.
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Sequence - An activity b in the workflow process is triggered after the com-
pletion of the activity a. This pattern is modelled by the CSP process SEQ(S)

where S is a non empty sequence of activities to be executed sequentially. For ex-
ample, in the example given, S would be 〈a, b〉. (The symbol � denotes sequence
concatenation.)

SEQ(〈〉) = Skip

SEQ(〈s〉) = SP(x , acts)

SEQ(〈s, t〉 � S) = SP(s, t) |[ {init .t} ]| SEQ(〈t〉 � S)

Parallel Split (AND-split) - Both activities b and c are triggered after the
completion of the activity a. The execution of b and c is concurrent. This pattern
can be modelled by the CSP process ASP(a,X ) where a is some activity; set
X ⊆ A is a non empty set of activities to be triggered in parallel after a has
completed; in the example given, X would be {b, c}.

ASP(a,X ) = P(a,X ) |[ { k : X • init .k } ]| ||| k : X • SP(k , acts)

Synchronisation (AND-join) - An activity a is triggered after both activities
b and c have completed execution, The execution of b and c is concurrent. This
pattern may be modelled by the CSP process AJP(X , y) where X ⊆ A is a non
empty set of concurrent activities. In the example given, X would be {b, c}.

AJP(X ,a) = ||| k : X • SP(k , a) |[ {init .a} ]| SP(a, acts)

Exclusive Choice (XOR-split) - Either activities b or c is triggered after the
completion of the activity a. The choice between b and c is internally (demoni-
cally) nondeterministic since such decision is part of the implementation detail.
This pattern is modelled by the CSP process XS(a,X ) where in the example
given, X is {b, c}.

XS(a,X ) =

let XSP(a,X ) = init .a → work .a → � k : X • init .k → Skip
within XSP(a,X ) |[ { k : X • init .k } ]| � k : X • SP(k , acts)

3.2 Multiple Instance Patterns

These patterns allow an activity in a workflow process to have more than one
running, active instance at the same time. In our process descriptions we model a
maximum of N instances of an activity running in any workflow process where N
ranges over the strictly positive naturals N1. We define events trig, done and ntrig
to denote the triggering, the completion and the cancelling of activity instances.

In this section we first define some CSP processes common to all multiple
instance patterns described this paper. Each multiple instance pattern triggers
multiple instances of some activity. We define process SR(a,n) to model the
triggering of n out of N instances of activity a.

SR(a,n) = (||| k : {1 . . n} • init .a → done → Skip) o
9 (||| k : {1 . .N − n} • end → Skip)
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We define process RP1(a) to model the N instances of activity a; standard
CSP does not allow unbounded nondeterminism, as its semantics raises deep
issues.

RP1(a) = ||| k : {1 . . N } • (SP(a,null) [init .null ← done] � end → Skip)

Multiple Instances with a priori Design Time Knowledge - In this pat-
tern multiple instances of activity b are triggered after activity a has completed
execution. The number of instances is known at design time which means static
within the model. Once all instances are completed, activity c is triggered. This
pattern is modelled by the CSP process DES(a,n, b, c) where n is the number of
instances of activity b determined at design time. Process DP(a,n, b, c) sets the
number of instances of activity b before execution.

DES(a,n, b, c) =

let DP(a,n, b, c) = init .a → work .a → SR(b,n) o
9 init .c → Skip

within DP(a,n, b, c) |[ {init .b, end , done} ]| RP1(b)) \ {end , done}
|[{init .c} ]| SP(c, acts)

Multiple Instances with a priori Runtime Knowledge - The semantics of
this pattern is somewhat ambiguous as it offers two patterns of behaviour. Ac-
cording to van der Aalst et al.’s original work [19], multiple instances of activities
may be triggered in parallel with the correct synchronisation or the execution of
these activities may be routed sequentially. In this paper, both cases are consid-
ered. Note in CSP b & P denotes the conditional expression if b thenP elseStop.

First case: we define CSP process PAR(a, b, c) to model multiple instances of
activity b being triggered in parallel after activity a has completed execution.
Activity c is triggered after instances of activity b have completed execution.
The number of instances is not determined until runtime.

SR1(a, b, c) =

let IT1(a,n) = exec → (n ≥ N & SR(a,n) � n < N & IT1(a,n + 1) � SR(a,n))

within init .a → work .a → (IT1(b, 1) o
9 init .c → Skip � SR(b, 0) o

9 init .c → Skip)

PAR(a, b, c) = (SR1(a, b, c) |[ {init .y , end , done} ]| RP1(y)) \ {exec, done, end}
|[{init .z} ]| SP(z , acts)

Second case: we define process SR21(a, n) to model sequential triggering of n
instances of activity a. Process IT21(a,n) models a non-deterministic counter
deciding upto N instances of a to be triggered.

SR21(a, n) =

let SR(a,n) = (n = 0) & Skip � n > 0 & init .a → done → SR(a,n − 1)

within (||| k : {1 . . N − n} • end → Skip) o
9 SR(x ,n)

IT21(a,n) =

exec → (n ≥ N & SR21(a, n) � n < N & IT21(a,n + 1) � SR21(a, n))

We model the second case by defining the process MSEQ(a, b, c).
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SR2(a, b, c) = init .a → work .a → (IT21(b, 1) o
9 init .c → Skip

� SR(b, 0) o
9 init .c → Skip)

MSEQ(a, b, c) = (SR2(a, b, c) |[ {init .b, end , done} ]| RP1(b)) \ {exec, done, end}
|[{init .c} ]| SP(c, acts)

It is easy to see that the sequential triggering of multiple instances, defined
by the CSP model MSEQ ′(a, b, c), failure-refines the parallel triggering defined
by the model PAR′(a, b, c).

PAR′(a, b, c) �F MSEQ ′(a, b, c)

Multiple Instances without a priori Runtime Knowledge - This is a gen-
eralisation of the pattern “Multiple Instances with a priori Runtime Knowledge”.
After the completion of activity a, some instances of activity b are triggered. The
number of instances is not decided at runtime, rather it is decided during the ex-
ecution of instances. Activity c will only be triggered after all triggered instances
of activity b have completed execution. We define the CSP process NPAR(a, b, c)

to model this pattern.

SR31(a,n) = ||| k : {1 . . N − n} • end → Skip

IT31(a,n) = n ≥ N & Skip

� n < N & (init .a → done → IT31(a,n + 1)) � SR31(a, n)

SR3(a, b, c) = init .a → work .a → (IT31(b, 0) o
9 init .c → Skip

� SR31(b, 0) o
9 init .c → Skip)

NPAR(a, b, c) = (SR3(a, b, c) |[ {init .b, end , done} ]| RP1(b)) \ {exec, done, end}
|[{init .c} ]| SP(c, acts)

3.3 State Based Patterns

This type of pattern captures external decisions at certain “states” within a
workflow process. In previous patterns decisions on branching and looping are
made a-priori and their semantics has been represented by the CSP internal
choice operator. However, it is possible that these decisions are offered to the
environment.

Deferred Choice - This is similar to “Multi-choice” pattern formalised above
in which either or both activities b or c will be triggered after activity a has
completed execution. However, in this pattern the choice is made by the envi-
ronment. The semantics of this behaviour can be expressed by the CSP external
choice operator. This pattern is modelled by the CSP process DEF (a,X ) where
X = {b, c}.

DEF (a,X ) = let

DC (a,X ) = init .a → work .a → � y : X • init .y → Skip

within

DC (a,X ) |[ { y : X • init .y } ]| � y : X • SP(y , acts)
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4 Case Study

In this section we study a realistic complex business process of a traveller re-
serving and booking airline tickets, adapted from the Web Service Choreography
Interface (WSCI) specification [20]. A BPMN (Business Process Modelling No-
tation) diagram of the airline ticket reservation workflow is shown in Figure 1.

Fig. 1. Making an airline ticket reservation

4.1 Airline Ticket Reservation

We observe that the traveller can initiate the business process by ordering a trip.
She may change her travel itinerary or cancel it. She may make a reservation
with her chosen itinerary and before she confirms her booking she may at any
time cancel her reservation or be notified of a cancellation by the airline due to
the reservation period elapsing. After the traveller has confirmed her booking,
she will receive the booked tickets and the statement for them.

The textual description given in the previous paragraph is somewhat ambigu-
ous and a graphical representation like Figure 1 becomes difficult to read as the
complexity of the control flow of the business process increases. Furthermore
both of these specifications lack a formal semantics and hence do not support
checking behavioural properties like deadlock and livelock freedom at the im-
plementation level. By modelling such business process in a process algebra like
CSP, we can explore properties such as deadlock freedom by proving assertion
(1). The notion of process refinement allows us to prove such assertion by model
checking if P refines the characteristic process of the property we are interested
in proving. For deadlock freedom we can model check the refinement assertion
(2) where DF = � x : Σ • x → DF is the most non-deterministic deadlock-free
process.
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∀ tr : T (P) • (tr , Σ) /∈ F(P) (1)
DF �F P (2)

We now turn to the definition of the CSP model for this workflow process. We
use TL to denote the CSP process describing control flow of the workflow model
and define the set Wtl as the set of workflow activities performed by TL. The
set Stl is defined as the set of CSP processes to represent the states of control
flow of the workflow model.
Wtl = {order , change, cancelit , reserve, cancelres, timeout , accept , book , ticket , statemt}

Stl = {ORDER,CHANGE ,CANCEL,RESERVE , CANRES ,ACCEPT ,BOOK ,TIME ,

TICKET ,STATE}

We use the events start, complete and fail to denote the start, the completion
and the abortion of the business process. We define αTL as the set of all events
performed by process TL. We use the event init .fault to denote a fault has oc-
curred and to represent an unsuccessful completion of the business process. We
use the event init .succ to denote a successful completion of the business process;
we use init .fault to denote an occurrence of cancellation during reservation; we
use init .itinfault to denote an occurrence of cancellation before reservation. The
events init .null and init .acts denote the triggering of out of scope activities as
defined in Section 3.

αTL = { a : Wtl • init .a,work .a }
∪{ start , complete, fail , init .null , init .acts, init .fault , init .itnfault , init .succ }

Here we specify some behavioural properties that the CSP process TL must
satisfy. These properties are specified by the following assertions (3)–(6). Prop-
erty (3) asserts TL to be a deadlock-free process; property (4) asserts that the
business process must issue tickets if a booking has been made; here,

HB = init .book → init .ticket → HB

Property (5) asserts that the business process either aborts due to cancellation
or completes successfully; here,

CSet = { cancelres, cancelit , timeout }
CC = (� x : CSet • init .x → fail → CC )

� complete → CC

Property (6) asserts that traveller can change her itinerary until she decides
to make her reservation or to cancel her itinerary; here,

ITIN = init .change → ITIN

� init .reserve → (complete → ITIN � fail → ITIN )

� init .cancelit → fail → ITIN
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DF �F TL (3)
HB �F TL \ (Σ \ αHB) (4)
CC �F TL \ (Σ \ αCC ) (5)

ITIN �F TL \ (Σ \ αITIN ) (6)

By employing the CSP models of the workflow patterns described in Section 3,
we define each CSP process in Stl as shown in Figure 2. Processes SR4(a, b,X )

and DC1(a,X ,Y ) are defined in Figure 3. Process SR4(a, b, X ) is a combination of
the processes SR3(a, b, c) and XSP(a,X ) defined in Section 3’s Multiple Instances
without a priori Runtime Knowledge and Exclusive Choice patterns. Process
DC1(a,X ,Y ) is a combination of the processes XSP(a,X ) and DEF (a,X ) defined
in Section 3’s Exclusive Choice and Deferred Choice patterns.

ORDER = SR4′(order , change, {cancelit , reserve})
CHANGE = RP1′(change)

CANCEL = SP ′(cancelit , fault)

RESERVE = DC1′(reserve, {cancelres, book}, {timeout})
CANRES = SEQ ′(cancelres, accept)[init .acts ← init .fault ]

BOOK = P ′(book , {ticket , statemt})
TIME = SP ′(timeout , fault)

TICKET = SP ′(ticket , succ)

STATE = SP ′(statemt , succ)

Fig. 2. The definition of CSP processes in Stl

SR4(a, b,X ) = let SR41(a,X ) = (IT31(a, 0) o
9 � b : X • init .b → Skip)

� (� b : X • init .b → Skip)

within init .a → work .a → SR41(b,X )

DC1(a,Y ,Z ) = let CHO(X ,Y ) = � b : X • init .b → Skip

� (� c : Y • init .c → Skip)

within init .a → work .a → CHO(Y ,Z )

Fig. 3. The definition of processes SR4(x , y ,X ) and DC1(x , Y , Z )

Figure 4 is the definition of the CSP process TL which models the semantics
of the control flows of the airline ticket reservation business process model by
parallel composition of processes from set Stl .
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TLc =

let
final = {init .cancelres, init .book , init .timeout}
RECEIVE = TICKET ||| STATE

within
((ORDER |[ {init .change, end , done} ]| CHANGE ) \ {end , done, exec})
|[{init .cancelit , init .reserve} ]| (CANCEL � (RESERVE |[ { x : final • init .x }]|
(TIME � (CANRES � (BOOK |[ {init .ticket , init .statemt} ]| RECEIVE)))))

TL =

let
decision = {init .succ, init .fault , init .itinfault}
COM = start → init .order → Skip
FIN = init .succ → init .succ → complete → Skip
FAULT = init .fault → cancel → Skip � init .itinfault → cancel → Skip

within
(COM |[ {init .order} ]| (TLc |[ decision ]| (FIN � FAULT ))) o

9 TL

Fig. 4. The definition of processes TL

4.2 Composition and Refinement

Behavioural properties specified by assertions (3)–(6) can be readily checked
by asking the FDR model checker about refinement assertions. Alternatively
behavioural specifications can be composed to give a composite specification in
which many of the assertions can be proved under a single refinement check.
Property (7) asserts that the traveller may change her itinerary or cancellations
may happen, otherwise she must commit to her itinerary and completes her
transaction.

COMP = init .change → COMP

� (� x : CSet • init .x → fail → COMP)

� init .book → init .ticket → complete → COMP

COMP �F TL (Σ \ αCOMP) (7)

A CSP model of the business process like the one described in this paper can be
placed in parallel with CSP models of other business processes to describe their
collaboration where each business process interacts by communicating. The term
service choreography has been coined for such collaboration description. In our
airline ticket reservation example we can define a global business collaboration
protocol between the traveller’s workflow, the airline reservation system and the
travel agent models. We use process names AL and TA to denote the control
flow description of the airline reservation system and the travel agent workflow
models. An example collaboration between these business processes is depicted
as a BPMN diagram in Figure 5. In this paper we do not define AL and TA, a
complete description of their models can be found elsewhere [22].
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Fig. 5. Airline Ticket Reservation Choreography

One effect that can be anticipated when composing complex process defini-
tions like TL in parallel is an exponential state explosion. For example given that
i ranges over {1 . . N } for some positive integer N > 0, if each process Pi has just
two states, then the expression ||| i : {1 . . N } • Pi has 2N . By compositionality
and monotonicity of refinement, we can reduce individual component processes’
state space by abstracting them into sequential processes. For simplicity sup-
pose the process GB is the model of the choreography by composing individual
participating business process in parallel where X is a set of some events. We
denote sequential process by subscript s.

GB = (TA |[X ]| AL) |[X ]| TL

We abstract GB into process GBs then if the refinement assertions (8)–(10) hold,
by monotonicity of refinement we prove assertion (11).

GBs = (TAs |[X ]| ALs ) |[X ]| TLs

ALs �F AL (8)
TLs �F TL (9)
TAs �F TA (10)
GBs �F GB (11)



A Process-Algebraic Approach to Workflow Specification and Refinement 63

if GBs refines some property defined by the characteristic process SPEC , by
transitivity of refinement we prove GB also refines SPEC .

SPEC �F GBs ∧ GBs �F GB ⇒ SPEC �F GB

5 Related Work

Little research has been done to date into the application of CSP to workflow
specification and verification. We have recently defined a process semantics for
BPMN in CSP [23], which allows formal comparison between workflow processes
described in BPMN and encourages automated tool support for the notation.
The only other approach that has applied CSP in workflow process [16] did so
as an extension of abstract machine notation for process specification within the
domain of compositional information systems.

Other process algebras used to model workflow patterns include π-calculus [13]
and CCS [15], a subset of π-calculus. These formalisations did not focus on
process-based behavioural specification, and they did not demonstrate the appli-
cations of their models in workflow design. Moreover, the operational semantics
of π-calculus and CCS do not provide a refinement relation; we have demon-
strated in this paper that refinement is useful in the development of workflow
processes, because it allows formal comparisons between workflows. A similar
observation applies to the work of van der Aalst et al. [9,17] using Petri nets.
Despite Puhlmann et al.’s advocacy of mobility in workflow modelling, our CSP
models suggest it is not necessary when modelling static control flow interactions.
However, it is still possible to introduce mobility into standard CSP semantics
if needed; an attempt has been made by Welch et al. [21].

Although Stefansen [15] mentioned a model checker called Zing which bears
some similarities with FDR, implementing a conformance checker based on stuck-
freedom [5], it is more discriminative and only resembles the CSP concept of
deadlock-freedom.

6 Conclusion

In this paper we described some CSP models of van der Aalst et al.’s workflow
patterns to construct workflow processes. We then modelled a realistic workflow
process by using models of workflow patterns and subsequently demonstrated the
use of process refinement for asserting behavioural properties about the work-
flow process. These properties were described by process-based specifications
defined in CSP and assertions were then proved automatically using the CSP
model checker FDR. Like any development of a complex system, the application
of refinement in workflow design means that development of a workflow design
into an implementation becomes incremental. Due to monotonicity and transi-
tivity of process refinement, it is possible to minimise exponential state explosion
when model checking complex process by abstracting its individual component
processes into corresponding sequential processes.
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Future work will include the following:

– extend the CSP model described in this paper into a global domain, hence
allowing a unified treatment of workflow orchestration and choreography;

– augment our current CSP model with a well-defined exception and compen-
sation semantics, perhaps building on Butler’s compensating CSP [1];

– combine our CSP control flow model with a dataflow semantics to allow a
unified treatment of the semantics of workflow processes, perhaps building
on Josephs’ CSP dataflow model [8].

– automate the translation from workflow descriptions in BPMN to CSP pro-
cesses, based on our recent work on BPMN semantics [23].
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Abstract. Bridging problem domain and solution in product line engi-
neering is a time-consuming and error-prone process. Since both domains
are structured differently (features vs. artifacts), there is no natural way
to map one to the other. Using an explicit and formal mapping creates
opportunities for consistency checking and automation. This way both
the configuration and the composition of product instances can be more
robust, support more product variants and be performed more often.

1 Introduction

In product line engineering, automatic configuration of product line instances
still remains a challenge [1]. Product configuration consists of selecting the re-
quired features and subsequently instantiating a software product from a set of
implementation artifacts. Because features capture elements of the problem do-
main, automatic product composition requires the explicit mapping of features
to elements of the solution domain. From a feature model we can then generate
tool support to drive the configuration process.

However, successful configuration requires consistent specifications. For in-
stance, a feature specification can be inconsistent if selecting one feature would
require another feature that excludes the feature itself. Because of the possibly
exponential size of the configuration space, maintaining consistency manually is
no option.

We investigate how to bridge the “white-board distance” between problem
space and solution space [15] by combining both domains in a single formalism
based on feature descriptions [20]. White-board distance pertains to the different
levels of abstraction in describing problem domain on the one hand, and solution
domain on the other hand. In this paper, feature descriptions are used to formally
describe the configuration space in terms of the problem domain. The solution
domain is modeled by a dependency graph between artifacts.

By mapping features to one or more solution space artifacts, configurations
resulting from the configuration task map to compositions in the solution do-
main. Thus it becomes possible to derive a configuration user interface from the
feature model to automatically instantiate valid product line variants.

M. Lumpe and W. Vanderperren (Eds.): SC 2007, LNCS 4829, pp. 66–80, 2007.
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1.1 Problem-Solution Space Impedance Mismatch

The motivation for feature-based software composition is based on the following
observations: solution space artifacts are unsuitable candidates for reasoning
about the configurability in a product line. Configuration in terms of the problem
domain, however, must stand in a meaningful relation to those very artifacts if
it should be generally useful. Let’s discuss each observation in turn.

First, if software artifacts can be composed or configured in different ways
to produce different product variants it is often desirable to have a high-level
view on which compositions are actually meaningful product instances. That
is, the configuration space should be described at a high level of abstraction. If
such configuration spaces are expressed in terms of problem space concepts, it
is easier to choose which variant a particular consumer of the software actually
needs. Finally, such a model should preferably be a formal model in order to
prevent inconsistencies and configuration mistakes.

The second observation concerns the value of relating the configuration model
to the solution space. The mental gap between problem space and solution space
complicates keeping the configuration model consistent with the artifacts. Every
time one or more artifacts change, the configuration model may become invalid.
Synchronizing both realms without any form of tool support is a time-consuming
and error-prone process. In addition, even if the configuration model is used to
guide the configuration task, there is the possibility of inconsistencies in both
the models and their interplay.

From these observations follows that in order to reduce the effort of configuring
product lines and subsequently instantiating product variants tool support is
needed that helps detecting inconsistencies and automates the manual, error-
prone task of collecting the artifacts for every configuration. This leads to the
requirements for realizing automatic software composition based on features.

– The configuration interface should be specified in a language that allows
formal consistency checking. If a configuration interface is consistent then
this means there are valid configurations. Only valid configurations must be
used to instantiate products. Such configurations can be mapped to elements
of the solution domain.

– A model is needed that relates features to artifacts in the solution space, so
that if a certain feature is selected, all relevant artifacts are collected in the
final product. Such a mapping should respect the (semantic) relations that
exist between the artifacts. For the mapping to be as applicable as possible
no assumptions should be made about programming language or software
development methodology.

1.2 Related Work

This work is directly inspired by the technique proposed in [9]. In that posi-
tion paper feature diagrams are compared to grammars, and parsing is used
to check the consistency of feature diagrams. Features are mapped to software
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packages. Based on the selection of features and the dependencies between pack-
ages, the product variant is derived. Our approach generalizes this technique on
two accounts: first we allow arbitrary constraints between features, and not only
structural ones that can be verified by parsing. Second, in our approach com-
binations of features are mapped to artifacts, allowing more control over which
artifact is required when.

There is related work on feature oriented programming that provides features
with a direct solution space semantics. For instance, in AHEAD [2] features
form elements in an algebra that can be synthesized into software components.
Although this leaves open the choice of programming language it assumes that
it is class-based. Czarnecki describes a method of mapping features to model
elements in an model driven architecture (MDA) setting [7]. By “superimposing”
all variants on top of UML models, a product can be instantiated by selectively
disabling variation points.

An even more fine grained approach is presented in [17] where features become
first-class citizens of the programming language. Finally, a direct mapping of
features to a component role model is described in [12].

These approaches all, one way or the other, merge the problem domain and
the solution domain in a single software development paradigm. In our approach
we keep both domains separate and instead relate them through an explicit
modeling step. Thus our approach does not enforce any programming language,
methodology or architecture beforehand, but instead focuses on the possibility
of automatic configuration and flexibility.

Checking feature diagrams for consistency is an active area of research [20,6,
16] but the level of formality varies. The problem is that checking the consistency
is equivalent to propositional satisfiability, and therefore it is often practically
infeasible. Our approach is based on BDDs [19], a proven technique from model
checking, which often makes the exponential configuration space practically man-
ageable.

1.3 Contributions

The contributions of this paper can be summarized as follows:

– Using an example we analyze the challenges of bridging the gap between
problem space and solution space. We identify the requirements for the ex-
plicit and controlled mapping of features to software artifacts.

– We propose a formal model that allows both worlds to be bridged in order to
achieve (solution space) composition based on (problem space) configuration.
Instances of the model are checked for consistency using scalable techniques
widely used in model-checking.

– The model is unique in that it does not dictate programming language, is
independent of software development methodology or architectural style, and
does not require up-front design. The latter in turn allows the approach to be
adopted late in the development process or in the context of legacy software.
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Organization of this paper In the following section, Sect. 2, feature diagrams [13]
are introduced as a model for the configuration space of product lines. Feature
diagrams are commonly used to elicit commonality and variability of software
systems during domain analysis [21]. They can be formally analyzed so they are
a viable option for the first requirement.

Next, in Sect. 2.3 we present an abstract model of the solution space. Because
we aim for a generic solution, this model is extremely simple: it is based on
the generic notion of dependency. Thus, the solution space is modeled by a
dependency graph between artifacts. Artifacts include any kind of file that shapes
the final software product. This includes source files, build files, property files,
locale files etc.

Then, in Sect. 3 we discuss how feature diagrams and dependency graphs
should be related in order to allow automatic composition. The formalization of
feature diagrams is described in Sect. 3.2, thus enabling the application of model-
checking techniques for the detection of inconsistencies. How both models are
combined is described in Sect. 4. This combined model is then used to derive
product instances. Finally we present some conclusions and provide directions
for future work.

2 Problem and Solution Space Models

2.1 Introduction

To be able to reason about the interaction between problem space an solution
space, models are required that accurately represent the domains in a sufficiently
formal way. In this section we introduce feature diagrams as a model for the
problem space, and dependency graphs for the solution space.

2.2 Problem Space: Feature Diagrams

Figure 1 shows a graphical model of a small example’s problem space using fea-
ture diagrams [13]. Feature diagrams have been used to elicit commonality and

Tree

Factory

arraylist logging

bottom−uptop−down

Visitors

Strategy

Fig. 1. Problem space of a small example visualized as a feature diagram
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TreeFactory Visitability
<<aspect>>

TreeFactory Visitability
<<aspect>>

Visitability
<<aspect>>

TreeFactory
<<abstract>>

<<abstract>>
Strategy

TopDown

BottomUp

Visitor

<<aspect>>
Logging

list

array

tree

visitors

Fig. 2. UML view of an example product line

variability in domain engineering. A feature diagram can be seen as a specifica-
tion of the configuration space of a product line.

In this example, the top feature, Tree, represents the application, in this case
a small application for transforming tree-structured documents, such as parse
trees. The Tree feature is further divided in two sub features: Factory and Visi-
tors. The Visitors feature is optional (indicated by the open bullet), but if it is
chosen, a choice must be made between the top-down or bottom-up alternatives
of the Strategy feature and optionally there is the choice of enabling logging sup-
port when traversing trees. Finally, the left sub-feature of Tree, named Factory,
captures a mandatory choice between two, mutually exclusive, implementations
of trees: one based on lists and the other based on arrays.

Often these diagrams are extended with arbitrary constraints between fea-
tures. For instance one could state that the array feature requires the logging fea-
ture. Such constraints make visually reasoning about the consistency of feature
selection with respect to a feature diagram much harder. In order to automate
such reasoning a semantics is needed. Many approaches exist, see e.g. [16, 3, 4].
In earlier work we interpreted the configuration problem as satisfiability prob-
lem and we will use that approach here too [19]. The description consistency
checking of feature diagrams is deferred to Sect. 3.2.

2.3 Solution Space: Implementation Artifacts

The implementation of the example application consists of a number of Java
classes and AspectJ files [14]. Figure 2 shows a tentative design in UML. The
implementation of the transformation product line is divided over two compo-
nents: a tree component and visitors component. Within the tree component
the Abstract Factory design pattern is employed to facilitate the choice among
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list- and array-based trees. In addition to the choice between different implemen-
tations, trees can optionally be enhanced with a Visitable interface by weaving
an aspect. This enables that clients of the tree component are able to traverse
the trees by using the visitors component. So weaving in the Visitability aspect
causes a dependency on the visitors component.

2.4 Artifact Dependency Graphs

What is a suitable model of the solution space? In this paper we take a an
abstract stance and model the solution space by a directed acyclic dependency
graph. In a dependency graph nodes represent artifacts and the edges represent
dependencies between them. These dependencies may be specified explicitly or
induced by the semantics of the source. As an example of the latter: a Java
class file has a dependency on the class file of its superclass. Another example
are aspects that depend on the classes they will be weaved in. For the example
the dependencies are shown in Fig. 3. The figure shows dependencies of three
kinds: subtype dependency (e.g. between list.Tree and Tree), aspect dependency
(between Visitability and Tree), collaboration dependency (between Visitor and
Strategy).

array.Visitability

array.Tree Visitability

list.Visitability

list.Tree

Tree

array.TreeFactory

TreeFactory

list.TreeFactory

Logging

Visitor

Strategy

BottomUp TopDown

Fig. 3. Solution space model of the example: dependency graph between artifacts

Dependency graphs are consistent, provided that the dependency relation
conforms to the semantics of the artifacts involved and provided that every
node in the graph has a corresponding artifact. A set of artifacts is consistent
with respect to a dependency graph if it is closed under the dependency relation
induced by that graph.

A nice property of these graphs is that, in theory, every node in it represents a
valid product variant (albeit a useless one most of the time). If we, for instance,
take the Visitability node as an example, then we could release this ‘product’
by composing every artifact reachable from the Visitability node. So, similar to
the problem space of the previous section, the solution space is also a kind of
configuration space. It concisely captures the possibilities of delivery.



72 T. van der Storm

3 Mapping Features to Artifacts

3.1 Introduction

Now that the problem space is modeled by a feature diagram and the solution
space by a dependency graph how can we bridge the gap between them? Intu-
itively one can map each feature of the feature diagram to one or more artifacts
in the dependency graph. Such an approach is graphically depicted in Fig. 4.

Tree

Factory

arraylist logging

bottom−uptop−down

Visitors

Strategy

Logging

Visitor

Strategy

BottomUp TopDown

Visitability

Tree

list.Tree

array.Visitability

array.Tree TreeFactory

list.TreeFactory array.TreeFactorylist.Visitability

Fig. 4. Partial mapping of features to artifacts

The figure shows the feature diagram together with the dependency graph of
the previous section. Arrows from features to the artifacts indicate which artifact
should be included if a feature is selected. For instance, if the top-down strat-
egy is chosen to visit trees, then the TopDown implementation will be delivered
together with all its dependencies (i.e. the Strategy interface). Note that the fea-
ture mapping is incomplete: selecting the Visitors feature includes the Visitabil-
ity aspect, but it is unspecified which concrete implementation (list.Visitability
or array.Visitability) should be used. The graphical depiction thus is too weak
to express the fact that if both array/list and Visitors is chosen, both the ar-
ray.Visitability/list.Visitability and Visitability artifacts are required. In Sect. 4
this problem will be addressed by expressing mapping as constraints between
features and artifacts.

3.2 Feature Diagram Semantics

This section describes how feature diagrams can be checked for consistency. We
take a logic based approach that exploits the correspondence between feature
diagrams and propositional logic (see Table 1). Since graphical formalisms are
less practical for building tool support, we use a textual version of feature dia-
grams, called Feature Description Language (FDL) [20]. The textual analog of
feature diagram in Fig. 1 is displayed in Fig. 5. Composite features start with an
upper-case letter whereas atomic feature start in lower-case. Composing features
is specified using connectives, such as, all (mandatory), one-of (alternative), ?
(optional), and more-of (non-exclusive choice). In addition to representing the
feature diagram, FDL allows arbitrary constraints between features.
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Table 1. Feature descriptions as boolean formulas

Features Logic

feature boolean formula
atomic and composite features atoms
configurability satisfiability
configuration valuation
validity of a configuration satisfaction

Tree : all(Factory, Visitors?)
Factory : one-of(list, array)
Visitors : all(Strategy, logging?)
Strategy : one-of(top-down, bottom-up)

Fig. 5. Textual FDL feature description of the example

For instance, in the example one could declare the constraint “array requires
logging”. This constraint has the straightforward meaning that selecting the
array feature should involve selecting the logging feature. Because of these and
other kinds of constraints a formal semantics of feature diagrams is needed,
because constraints may introduce inconsistencies not visible in the diagram,
and they may cause the invalidity of certain configurations, which is also not
easily discerned in the diagram.

3.3 Configuration Consistency

The primary consistency requirement is internal consistency of the feature de-
scription. An inconsistent feature description cannot be configured, and thus it
would not be possible to instantiate the corresponding product. An example of
an inconsistent feature description would be the following:

A : all(b, c)
b excludes c

Feature b excludes feature c, but they are defined to be mandatory for A. This
is a contradiction if A represents the product. Using the correspondence between
feature descriptions and boolean formulas (cf. Table 1), we can check the consis-
tency of a description by solving the satisfiability problem of the corresponding
formula.

Configuration spaces of larger product lines quickly grow to exponential size.
It is therefore essential that scalable techniques are employed for the verification
and validation of feature descriptions and feature selections respectively. Else-
where, we have described a method to check the logical consistency requirements
of component-based feature diagrams [19]. That technique is based on translat-
ing component descriptions to logical formulas called binary decision diagrams
(BDDs) [5]. BDDs are logical if-then-else expressions in which common subex-
pressions are shared; they are frequently used in model-checking applications
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because they often represent large search spaces in a feasible way. Any proposi-
tional formula can be translated to a BDD. A BDD that is different from falsum
(⊥) means that the formula is satisfiable.

A slightly different mapping is used here to obtain the satisfiability result.
The boolean formula derived from the example feature description is as follows:

(Tree → Factory) ∧
(Factory → ((list ∧ ¬array) ∨ (¬list ∧ array))) ∧
(V isitors → Strategy) ∧
(Strategy → ((top-down ∧ ¬bottom-up) ∨ (¬top-down ∧ bottom-up))))

Note how all feature names become logical atoms in the translation. Feature
definitions of the form Name : Expression become implications, just like “re-
quires” constraints. The translation of the connectives is straightforward. Such
a boolean formula can be converted to a BDD using standard techniques (see
for instance [11] for an elegant approach).

The resulting BDD can be displayed as a directed graph where each node rep-
resents an atom and has two outcoming edges corresponding to the two branches
of the if-then-else expression. Figure 6 shows the BDD for the Visitors feature
bot as a graph and if-then-else expression. As one can see from the paths in
the graph, selecting the Visitors feature means enabling the Strategy feature.
This in turn induces a choice between the top-down and bottom-up features.
Note that the optional logging feature is absent from the BDD because it is not
constrained by any of the other variables.

top-down

false

1

true

0

top-down

0 1

bottom-up

1 0

Strategy

0

1

Strategy

0

1

Visitors

1 0

if Visitors then
if Strategy then

if bottom-up then
if top-down then ⊥ else � fi

else
if top-down then � else ⊥fi

fi
else

⊥
fi

else
if Strategy then

if bottom-up then
if top-down then ⊥ else � fi

else
if top-down then � else ⊥fi

fi
else

�
fi

fi

Fig. 6. BDD for the Visitors feature
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4 Selection and Composition of Artifacts

4.1 Introduction

If a feature description is found to be consistent, it can be used to generate a con-
figuration user interface. Using this user interface, an application engineer would
select features declared in the feature description. Selections are then checked
for validity using the BDD. The selection of features, called the configuration,
is then used to instantiate the product. Sets of selected features correspond to
a sets of artifacts. Let’s call these the (configuration) induced artifacts. The in-
duced artifacts form the initial composition of the product. Then, every artifact
that is reachable from any of the induced artifacts in the dependency graph, is
added to the composition.

4.2 Configuration and Selection

In Sect. 3 we indicated that mapping single features to sets of artifacts was not
strong enough to respect certain constraints among the artifacts. The example
was that the concrete Visitability aspects (array.Visitability and list.Visitability)
were not selected if the Visitors feature were only mapped to the abstract as-
pect Visitability. To account for this problem we extend the logical framework
introduced in Sect. 3.2 with constraints between features and artifacts. Thus,
mappings become requires constraints (implications) that allow us to include
artifacts when certain combinations of features are selected. The complete map-
ping of the example would then be specified as displayed in Fig. 7.

list and Visitors requires list.Visitability
array and Visitors requires array.Visitability
list requires list.TreeFactory
array requires array.TreeFactory
top-down requires TopDown
bottom-up requires BottomUp
logging requires Logging

Fig. 7. Mapping features to artifacts

The constraints in the figure – basically a conjunction of implications – are
added to the feature description. Using the process described in the previous
section, this hybrid ‘feature’ description is translated to a BDD. The set of
required artifacts can then be found by partially evaluating the BDD with the
selection of features. This results in a, possibly partial, truth-assignment for
the atoms representing artifacts. Any artifact atom that gets assigned � will
be included in the composition together with the artifacts reachable from it in
the dependency graph. Every artifact that gets assigned ⊥ will not be included.
Finally, any artifact that did not get an implied assignment may or may not be
included, but at least is not required by the selection of features.
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Figure 8 shows all possible configurations for the example product line. The
configurations are shown as a nested tree map. Every box represents a valid sub
composition induced by the feature at left-hand side, upper corner. The artifacts
contained in each composition are shown in italics. The figure shows that even
this very small product line already exposes 12 product variants.

top−down bottom−up

array.Visitability

Visitors

array.TreeFactory

array

BottomUp

bottom−uptop−down

Visitors

list.Visitability

list.TreeFactory

list

Tree

Tree

list.Tree

Strategy
Visitability

Strategy
Visitability

TopDown TopDownBottomUp

Logging

logging

Logging

logging

Logging

logging

Logging

logging

TreeFactory

array.Tree

Fig. 8. All configurations/compositions of the example as a nested tree-map

4.3 Composition Methods

In the previous subsection we described how the combination of problem space
feature models can be linked to solution space dependency graphs. For every valid
configuration of the feature description we can derive the artifacts that should
be included in the final composition. However, how to enact the composition
was left unspecified. Here we discuss several options for composing the artifacts
according to the dependency graph.

In the case of the example composing the Java source files entails collecting
them in a directory an compiling the source files using javac and AspectJ.
However, this presumes that the artifacts are actually Java source files, which
may be a too fine granularity. Next we describe three approaches to composition
that support different levels of granularity:

– Source tree Composition [8]
– Generation of a build scripts [22]
– Container-based dependency injection [10]

Source Tree Composition. Source tree composition is based on source packages.
Source packages contain source code and have an abstract build interface. Each
source package explicitly declares which other packages it requires during build,
deployment and/or operation. The source trees contained in these packages can
be composed to obtain a composite package. This package has a build interface
that is used to build the composition by building every sub-packages in the right
order with the right configuration parameters.
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Applying this to our configuration approach this would mean that artifacts
would correspond to source packages. Every valid selection of features would map
to a set of root packages. From these root packages every transitively required
packages can be found and subsequently be composed into a composite package,
ready for distribution.

Build Script Generation. An approach taken in the Koala framework [22] is
similar to source tree composition but works at the level of C-files. In Koala

a distinction is made between requires interfaces (specifying dependencies of a
component) and provides interfaces (declaring the function that a component
has to offer). The composition algorithm of Koala takes these interfaces and
the component definitions (describing part-of hierarchies) and subsequently gen-
erates a Makefile that specifies how a particular composition should be built.

Again, this could be naturally applied in our context of dependency graphs.
The artifacts would be represented by the interfaces and the providing compo-
nents. The dependency graph then follows from the requires interfaces.

Dependency Injection. Another approach to creating the composition based on
feature selections would consist of generating configuration files (or configuration
code) for a dependency injection container implementation [10]. Dependency
injection is a object-oriented design principle that states that every class should
only reference interfaces in its code. Concrete implementations of these interfaces
are then “injected” into a class via the constructor of via setter methods. How
component classes are connected together (“wiring”) is specified separately from
the components.

In the case of Java components, we could easily derive the dependencies of
those clasess by looking at the interface parameters of their constructors and
setters. Moreover, we can statically derive which classes implement those inter-
faces (which also induces a dependency). Features would then be linked to these
implementation classes. Based on the dependencies between the interfaces and
classes one could then generate the wiring code.

5 Conclusions

5.1 Discussion: Maintaining the Mapping

Since problem space and solution space are structured differently, bridging the
two may induce a high maintenance penalty if changes in either of the two
invalidate the mapping. It is therefore important that the mapping of feature to
artifacts is explicit, but not tangled.

The mapping of features to artifacts presented in this paper allows the au-
tomatic derivation of product instances based on dependency graphs, but the
mapping itself must be maintained by hand. Maintaining the dependency re-
lation manually is no option since it continually co-evolves with the code base
itself, but often these relations can be derived from artifacts automatically (e.g.,
by static analysis).
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It is precisely the separation of feature models and dependency graphs makes
maintaining the mapping manageable if the dependency graphs are available
automatically. For certain nodes in the graph we can compute the transitive
closure, yielding all artifacts transitively required from the initial set of nodes.
This means that a feature has to be mapped only to the essential (root) artifact;
all other artifacts follow from the dependency graph.

Additionally, changes in the dependencies between artifacts (as follows from
the code base) have less severe consequences on such mappings. On other words,
the coevolution between feature model and mapping on the one hand, and the
code base on the other is much less severe. This reduces the cost of keeping
problem space and solution space in sync.

5.2 Conclusion and Future Work

The relation between problem space and solution space in the presence of vari-
ability poses both conceptual and technical challenges. We have shown that both
worlds can be brought together by importing solution space artifacts into the do-
main of feature descriptions. By modeling the relations among software artifacts
explicitly and interpreting the mapping of combinations of features to artifacts
as constraints on the hybrid configuration space, we obtain a coherent formalism
that can be used for generating configuration user interfaces. On the technical
level we have proposed the use BDDs to make automatic consistency checking of
feature descriptions and mapping feasible in practice. Configurations are input
to the composition process which takes into account the complex dependencies
between software artifacts.

This work, however, is by no means finished. The formal model, as discussed
in this paper, is still immature and needs to be investigated in more detail. More
analyses could be useful. For instance, one would like to know which configura-
tions a certain artifact participates in order to better assess the impact of certain
modifications to the code-base. Another direction we will explore is the imple-
mentation of a feature evolution environement that would help in maintaining
feature models and their relation to the solution space.

A case-study must be performed to see how the approach would work in
practice. This would involve building a tool set that allows the interactive editing,
checking and testing of feature descriptions, which are subsequently fed into a
product configurator, similar to the CML2 tool used for the Linux kernel [18].
The Linux kernel itself would provide a suitable case to test our approach.
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Abstract. Software system construction based on the reuse of software
components has to be done with flexibility enough to control the desired
behavior of the resulting assemblies. Applications created by component
composition usually depend on a strict method of construction in which
COTS or in-house components are only integrated with great difficulty.
Actually, reliable assemblies result from being able to observe the inner
workings of components and from getting an in-depth understanding of
them. The need for fine-grained tailoring and adequate setups is also
therefore essential. To enhance the usability, the interoperability and the
runtime adaptability of components, composition management interfaces
are proposed. They aim at preparing and guiding composition by expos-
ing information about components’ inners (states and transitions), which
in turn allow for the making of rules that formalize appropriate composi-
tion conditions. Finally, state-based expressions for composition are built
on a set of primitives discussed in the paper.

1 Introduction

Assembling software components is among others challenges [1] one of the key
problems of Component-Based Software Engineering (CBSE). Nowadays, it is
difficult to find compatible software components due to the diversity of sources
of commercial components. Indeed, many of the COTS components currently on
the market have not been developed with varied collaboration potentialities. As
well as for in-house components, their compositionality must be anticipated, at
design time especially. So, when designing components, one has to equip them
with special interfaces and internal mechanisms to support runtime monitoring
and mechanisms for adjusting composition [2]. This supposes that, at design
time, such adjustment capabilities have been instrumented and transferred to
the executable component for a component composition validation like in [3]
but almost with different orientation. In this scope, this paper promotes compo-
sition primitives which are members of what we call "Composition Management
Interface" (CMI). These primitives create a visibility on selected internal mech-
anisms of components in order to formalize composition in general. This paper
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also discusses two different points of view on the use of these primitives. These
two points of view are:

– the fact that a designer of a software system uses information gathered by
the offered primitives to simulate component compositions in general. In this
case, she/he carries out a verification/validation process. For instance, the
resulting assembly may function while some QoS attributes may be deficient
(e.g., performance);

– the fact that a designer of a software system calls the said primitives in
its application, i.e. at runtime, to avoid composition failures. For instance,
forcing a component to be in a given state before interacting with another
one. Normally, this is an uncommon action since a component aims at, in
general, encapsulating such internal features.

So, the necessity of controlling a system of collaborating components requires
the assessment of the system’s functional behavior and the possibility of manag-
ing abnormal situations, such as defects for instance. These often not only result
from a single component deficiency but from the global collaboration itself. Since
several collaborating components may come from different sources, composition
may either fail or be unreliable if designers (COTS providers, in-house compo-
nent developers) do not organize and offer composition monitoring/control ca-
pabilities for their products. In this paper, it is envisaged and proposed a notion
of CMI which encompasses the ideas of component configurability, component
observability and component controllability to support composition capabilities.
This notion is based on the modeling of explicit states of components. Moreover,
the consistent call sequences of primitives in CMI correspond to state-based de-
sign contracts that are both checked at model time and at runtime. Finally, as-
sembly predictability in terms of an assembly’s expected functional behavior and
the analysis of unsatisfactory QoS properties (essentially failures) are first-class
concerns resulting from the use of CMI. Instead of only having provided inter-
faces that document or instrument syntactical compositions (callable services
[12]), there are described rules which provide a safer composition framework.
For example, forcing a component for being into a given state is often a strict
constraint which has to be satisfied before the component may begin collabo-
rating with another component. Such a primary operation is typically a basic
service of a CMI. As demonstrated in [21], the syntax of interfaces does not offer
information enough for making a component execution adapt to unanticipated
collaborations.

We show in [4] that COTS components benefit from having tangible states
[9] which are accessible in management-based interfaces. From the point of view
of component acquisition, this creates a support for evaluation, selection and
adoption. From the viewpoint of component use and integration, in this paper,
it is explained and illustrated through an example, an appropriate set of state-
based composition primitives. In [5], we describe a software library and explain
how to use this library in order to organize and implement the inner workings
of components based on complex states and complex state dependencies. We
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also apply it to Enterprise JavaBeansTM(EJBs), a widespread and well-known
technological component framework.

In this paper, the notion of component is more open and not limited to EJBs.
A case study in the field of Ambient Intelligence is presented. It is especially show
how to construct components that encapsulate sensor and actuator operations.
Since such components have states and state-based dependencies, it is explained
how to master composition contract disruptions by means of state-based actions
offered in CMI.

In section 2, we review the general kinds of composition, in which only the
provided and required interfaces of components are used for expressing collabo-
rations. In section 3, we define the notion of a State-Based Contract (SBC) and
we state in further details the composition primitives which are grounded on
component states. Section 3 also exposes what constitutes CMI and how they
may be put into practice with an example. Finally, we conclude in section 4.

2 Composition Types

"Components are for composition" [7]. Our vision of components resides in the
understanding of the component paradigm, not as an architectural abstraction
related to an ADL but as an implementation as stated in [15]. To that extent,
in [13] and in [14], they offer composition languages to create a composition
in a correct way. In these two contributions, formal languages are provided to
statically verify and validate the correctness of composition.

Two general-purpose means of composition are here considered: vertical and
horizontal. Vertical composition (Fig.1a) refers to a whole-part relationship, in
which a composite governs all of its compounds. Horizontal composition (Fig.1b)
is defined as the cooperation of a set of distributed/non distributed components
which do not create a bigger component. In a vertical composition, the assem-
bly is itself a component, while within a horizontal composition the resulting

(a) (b)

Fig. 1. a) Vertical composition, the assembly named "Supervisor" is the only way for
clients to request services. b) Horizontal composition, one or more components may
play the role of entry when clients request services.
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assembly is simply a functional collaboration or scenario derived from the re-
quirements. This is composition by interaction where the created message circuit
corresponds to a composition topology with emergent properties. In vertical com-
positions, component states are shared between composites and compounds. In
horizontal compositions, no coercive assumption can be made since composition
conditions are more open than those within the context of vertical composi-
tion. Vertical composition indeed imposes in most cases coincident lifetimes of
components [20].

Realizing horizontal component composition is either based on wrappers or
glue code. This is the notion of exogenous composition [6]. This technique iso-
lates components from their close environment, so that composition is accom-
plished through intermediate adapters: wrappers, glue code, containers, etc. If
such brokers partially or totally hide components from their expected component
clients, this creates a mixing of vertical and horizontal composition, as shown
in Fig.2. The counterpart of exogenous composition is endogenous composition.
This refers to the direct composition of components without any intermediary
"broker" or "proxy" components where the composition primitives reside inter-
nally in the codification of the component. With this second type of composition,
one may notice that technological component models (such as Enterprise Jav-
aBeans for instance) enable the setup of deployment parameters for components
in order to clearly show the linking of required interfaces with provided inter-
faces. This creates a direct and effective composition whose nature is safe1 but
limited in scope.

Fig. 2. Hybrid composition mixing the models in Fig.1a and in Fig.1b

In all cases, component composition stumbles over unknown or unpredictable
execution contexts if key states of components have not been modeled. For in-
stance, the reliable integration of a component requiring a database connection
imposes, as a minimal requirement, the identification of two macroscopic states
for a connection object: open and closed. Additional parallel states may also ex-
ist for states that embody other stable and well-identified contexts: Busy, Idle,
Listening ... So, a connection object can be shared by more than one client, or
1 The underlying composition model of EJBs predefines the numbers of composition

forms and thus creates reliable compositions.
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it may be unshared (only one client is served at a given time), or no client at all
are served, etc. In this example, forcing the state of this component to be "un-
shared" or guarantying such a context, permits safer specialized collaborations
which are often required if one expects to combine this component with others.
Moreover, this decreases the risk of failures. For COTS components especially,
they have not been specifically prepared for working together; the possibility of
expressing composition pre-conditions as sketched above, is therefore useful.

3 State-Based Contracts

The notion of state-based contract relies on the implementation of the body (i.e.
its inside) of a software component by means of a UML 2 state machine diagram
[8] (Fig.3). For a system in which several components are assembled, there will
be so many UML 2 state machine diagrams as existing individual components
in the system.

Fig. 3. C1 component specification

This way of working allows the creation of instances of components in two
different abstraction levels. The high abstraction level is the level in which the
behavior of a software component is modeled in terms of states and transitions.
As for the low abstraction level, the component itself is the one that is imple-
mented. The exercised design method leads to having events labeling transitions
as services in the provided interfaces of the C1 component (Fig.4).

Composition capability limitation. The expression ∧C2.request x in C1
(Fig.3) corresponds to a composition or a required service of the component.
More precisely, it amounts to the sending of an event to another component
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Fig. 4. Component C1 (Fig.3) provided services

instance, in this case C2. This C2 component by definition owns in its state
machine a transition labeled by the request x event. Such an approach (i.e.
expression ∧C2.request x inside C1) makes component composition immutable
at runtime. It creates a high coupling and contradicts the black-box nature of
components especially for COTS components whose future compositions are
undefined. This kind of composition is rigid and looses the sense of independent
component execution. It also makes difficult component composition prediction
activity. In our opinion such composition style should be avoided. Furthermore,
strong mechanisms to create a composition and a prediction-enabled technology
which aims not only at operating at runtime but also managing it are needed
(see section 3.1 and 3.2). In order to create a more flexible and open composition
support, the possibility to express state based contracts is offered. For instance,
a state-based contract has the following shape:

C2.exeT rans(requestx) (1)

This expression represents that inside a component C1 it is defined such an
expression to send an event (request x for this example) to C2, that has the
capability to assume this request.

Our rationale is to externalize (or to avoid at modeling time) the business
rules that require composition from the inside of components. Namely, to create
a lower coupling, the ∧C2.request x composition expression must be removed
from the behavior specification of C1. Following such a strategy, components
gain autonomous capabilities. This component is a very flexible and useful com-
ponent that the system designer can configure for a component composition.
Now that composition it is externalized (out from the inners of the component)
the system designer configures the component to assume the defined business
rules of the system. The system designer materializes such business rules by ex-
pressions (state-based contract expressions) corresponding to a composition. In
this case ∧C2.request x is replaced by C2.exeTrans(request x) that it is ex-
ternally inserted by the designer and it is based on the availability of predefined
primitives which make up a fixed composition management interface (Fig.5).

So, more generally, state-based contracts correspond to an expression of a busi-
ness rule (or more simply a requirement of the global application to be built) us-
ing the primitives in the prefabricated Composition Management Interface. So for
each defined business rule in the system there will exist state-based expressions
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Fig. 5. C1 component realizes CMI interface services, but also uses this interface for the
realization of the requested internal actions for a component composition. C1 defines
its conventional interface for being used with CMI.

inside the components. And why? Because the components themselves do not
cover all the system requirements directly and it is necessary an operation among
components to cover those requirements. We are referring to composition.

The CMI just introduces behavior constraints into the component in order
to adapt its behavior to the required and defined global system behavior. The
component can run as expected. But due to the insertion of state based contract
expressions hypothetical malfunction of the component can occur. In this case
the responsible for the malfunctioning of the system is the system designer. From
a logical viewpoint, a state-based contract can be evaluated at runtime: it holds
or leads to a composition failure (see Section 3.2).

For such an intention, components may then be equipped with enhanced com-
position capabilities as depicted in Fig.5. In this figure, primitives are specified
and executed by the CMI that are used to formalize the composition between
components in state-base contract formalization.

The composition primitives are defined separately from the component im-
plementation but together with it. The composition primitive’s container has
deployment descriptors that capture requester intentions for composition that
are externally attached to the component. In our case we have created an XML
(Fig.6) schema with all the necessary information to establish composition.

Through this XML source, we want to demonstrate that the inside of C1 is
not again polluted by composition code (black box nature of the component)
but compositions rules exist and occur externally.

The component diagram in Fig.5 imposes for C1 an implementation of the
offered CMI. In this case C1 component uses the CMI to execute the business
rules by means of a state based contract expression. C2 uses the CMI to execute
inside the components the state based expressions from other components.

The way of working is the following: the system designer based on the state
machines design of the individual components defines in the XML file the
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Fig. 6. Composition specification XML schema

composition primitives that corresponds to a defined business rule. When an
event occurs inside a component Cx the XML file is looked up in order to find
some defined primitive for such event. In the case that primitives are defined
for such event a primitive launcher function executes the related action with the
necessary information. Once the primitive launcher executes the composition
requirement the requested component performs the requested action (Fig.7).

Fig. 7. CMI works for creating monitoring and composition facilities

Finally the prediction activity is defined. [19] Defines prediction as "the ability
to effectively predict properties from the system". Our composition mechanism
ensures that the design is analyzable, due to the state machine construction and
the CMI facilities) and the resulting system will therefore be predictable. In our
case we will execute all of the models and component coded using PauWare
(statecharts execution engine [16]). Activity into the components will be simu-
lated. And then for each activated business rule the states of all of the models
will be studied. The combination of all of the component states will be the
information used against the system requirements. If the result of the composi-
tion is not satisfactory the CMI can be used to define some failure actions (see
section 3.2).
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3.1 Composition Primitives

Next the composition primitives are described to define business rules among
components. These components will create an assembly through the CMI. For
the description of the composition primitives they are divided into two categories,
action coordination and action enforced.

Action Coordination. Here are presented a set of composition primitives to
establish some functional dependency among several components. These com-
position primitives enables the designer to, establish such as synchronization,
more generally orchestration or a coordination dependency among components.
This orchestration it is transferred to conditional actions-dependency used as
guards or it is transferred to the action-accomplishment. For such intention the
following primitives have been defined:

inState, notInState: These composition management functions are used to
create a composition rule to specify a guard expression in the execution of some
given action or a given event inside the component. To create coordinated ac-
tions, even synchronized actions between components, the specification of these
actions have to be grounded on inState and notInState. These two primitives act
as a Boolean guard (a pre-condition in fact) for the execution of some behavior
activity inside the component. This activity can be the execution of an action
related to a transition, or the entry/exit actions to be done when arriving in a
given state or do activity during the presence in a state.

These primitives can play different roles to define a composition rule. "If"-
sense expression or "While"-sense expression. With the first meaning the rule
created using the primitive is that if in a given Cx component an ex event causes
an internal transition, this will be completed if another Cy component resides in
the specified Sy state. With the second meaning a given component accomplishes
some actions while another component resides in an specified state (Fig.10).

exeTrans: This primitive controls the interaction of many components. It sends
a signal to another component to execute some desired action. The meaning
of the rule is related to an event sending action that a component sends to
another one or just a notification for an occurrence. This action, because of
the nature of the codification of the component, is the execution of a method.
The sending action by the petitioner will be served depending on the state of
the receiver component. When possible, the sending transition execution action
will be completed and the rule will be fulfilled otherwise the petition of the
rule-completion will be ignored.

transExecuted, transNotExecuted: These primitives are used for detecting
if some given transition has been occurred in a component. The utility of this
rule resides on the creation of an action dependency among components involved
in an assembly. It is used as the inState and notInState rules but in this case
transExecuted and transNotExecuted is related to a transition-dependency.
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Action enforced. This category amounts to a kind of duty-based composition.
These are a set of primitives for a designer to try to correct the behavior of
an undesired situation. The aim of these primitives is the initialization of the
component or the definition of a new stable situation. These primitives are used
for:

– The requirement for a component for being in a concrete state
– The requirement for a component to force the execution of a concrete method

(in this case a transition).

These two rules are defined to force a component to act in a desired way.
The toState and the exeMethod rules are proposed for this situation. These rules
should be under the strict control of the constructor of the component because
of the dangerousness of them.

toState: This primitive forces the component to change its current state to the
specified one. By the use of this primitive the designer can specify the obligation
for a component to be in a concrete and known state in order to ensure the
component collaboration. The meaning of this primitive is that "it is mandatory
for a component being in a known and concrete state or situation in order to
guarantee the safeness and correctness of the system".

In Fig.9 an example is defined that uses the toState primitive. In this case the
presence detector component uses the alarm component to activate the alarm,
if the detected and identified person it is a non trustworthy person.

exeMethod: This primitive almost forces the component to execute a method
(i.e. a transition) in any case although theoretically it is not possible to give a
response from its current state. In this case this method is related to an execution
of a transition that is not programmed. Like the previous mentioned primitive
(i.e. toState) it is focused on getting the component into shape.

A very important issue in these two primitives is that both of them should be
clearly specified by the constructor of the component, to guarantee the safeness
of the component and the extensibility of the safeness and the stability of the
system. It must also guarantee the controlled means of execution of the rules, to
avoid anarchical executions or security faults, where every state and every part
of the component is accessible. The use of these primitives can be secured by
the use of the invariant state contract.

3.2 Composition Exception Capture

Individual behavior differs from group behavior as has been stated above. In all
cases where composition primitives referred to business rules are used, a global
behavior is defined. Using the CMI, an exception capture mechanism is used in
parallel to govern these global behaviors. In a compound, due to the individual
evolution of the composed components, some coordination faults can occur. The
component can run correctly, as the vendor or the developer of the component
has promised. It can have the correct or expected behavior, but because of the
introduced composition primitives an error can be produced. The reason for using
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this exception capture is the possible non completion of a composition primitive.
In these cases, the non compliance of the business rule should be captured to give
the desired response to the abnormal situation. Formally speaking, this is not
an error, since it is an uncoordinated action or a bad global state combination
result of the composition primitive execution. In this case an unstable status of
the system can be produced. Therefore instructions/actions should be proposed
by the designer to act in consequence.

This abnormal situation must be captured by the system designer that has
introduced the composition primitives. This is the part of the contract that the
designer of the system establishes in order to guarantee the desired behavior of
the whole system. Similar to [10] if the component does not accomplish with the
defined global action the exception capture mechanism is where the composition
primitives can be corrected. So for every defined composition rule, a composition
exception capture mechanism must be defined to ensure the consistency of the
system. This does not guarantee that the anomaly that originated the error
is the last executed instruction. The latter is generated due to the occurrence
of a coordination fault or cooperation faults. So this can be located where a
composition rule has been used. In this case although something not desired has
occurred, it is captured and the system is analyzed by trying to predict where
the coordination fault has occurred.

3.3 Case Study

In order to put into practice the previous ideas, an ambient intelligence appli-
cation (domotics system) is proposed and developed in the field of embedded
systems. In this domotic system case study built on the top of PauWare [16],
the identified collaborating components are:

– presence detector: this component detects the presence of somebody and
tracks this presence in the house;

– preferences selector: a preferences manager in which the preferences of the
states of the rooms are described in order to control them (sensors and
actuators);

– illumination manager: direct actuator on the illumination of a room;
– alarm: this component detects an intrusion in the house and alerts the ex-

ternal security company.

A syntactical composition of all of these business components leads to the
UML2 Component Diagram in Fig.8.

As can be seen in Fig.8 no one of the component connectors (provided and
required interfaces assembly) have any name. This represents the specification
of the composition necessities of the components that later will be created using
the CMI. Here only the relations between the components are specified.

For each use case scenario (i.e. business rules) where there are several com-
ponents, compositions primitives are defined. For example when a person enters
the house, she/he is recognized by the Presence Detector (PD) as being a secure
or non secure person. Next, preferences for the identified person in the house
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Fig. 8. Component diagram for the domotics system

are loaded and executed. This is the specification of the relationship between
the two components in Fig.8. Then this business rule must be formalized in the
XML composition specification file to declare explicitly which are the primitives
for covering the business rule.

Once the preferences are loaded the illumination manager is the actuator that
places the desired illumination level for a room taking the control over the lights
and the blinds to graduate the amount of illumination desired.

In the next example (Fig.9) the utility of the CMI is demonstrated for the
exeTtrans and toState primitives.

Fig. 9. Use of the exeTrans and toState primitives for the presence detector (PD)
component

In Fig.9 the PD component functionality is explained. This component identi-
fies the person who has entered the house. If the identified person is a trustworthy
person (biometric information capture), the PD notifies preferences selector (PS)
to load the preferences of that person. The exeTrans primitive specified by the
signature PS.exeTrans(Load) it is used to send a signal to the PS component
trying to execute the load method.
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Fig. 10. Use of inState for the preferences selector (PS) component

If the detected person is a non trustworthy person, the PD component uses
the alarm composed component to activate the sound of the alarm whatever this
component is doing (Alarm.toState(Activate)).

In Fig.10 example the PS component and the inState primitive are shown.
In this case the preferences for the actuators, only can be programmed by an
identified and trustworthy person. By the use of Set Preferences [PD.inState
(Trustworthy)] an scenario can be specified and programmed by users if the
PD component resides in the trustworthy state (Fig.10).

It has been shown briefly the functioning of the CMI interface with the above
exposition. In an ambient intelligence environment many components collaborate
together in order to fulfill system requirements. Those components have been re-
configured in order to adapt their functionality to the desired one through the
CMI. Their reconfiguration has been done respecting the nature of the compo-
nents themselves as black box elements. Finally a prediction of the functionality
has been done and conclusions can be obtained.

4 Conclusions

Due to the increasing complexity of systems, which results from the deferred
necessary component adaptation to environmental constraints, composition has
to be carried out through the latter, even for the dynamic (not static like in
[17]) fixing of parameters of the involved components for a correct composition.
Composition based on wrappers or glue code is nowadays no longer sufficient.
SBC provides the system integrator with the necessary tools in order to introduce
a component into a system in a controlled way. The CMI provides flexibility
enough to create a component composition due to the common interface and
in a predictable way because the SBC externalizes the internal visibility of the
components.

The SBC’s aim is to tackle composition difficulties due to interface incompati-
bilities and composition predictability. SBC proposes a unique and common inter-
face that allows component composition based on defined composition primitive’s
actions. These primitives are also used to check properties of the components.
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If a composition among components is carried out the SBC has an advantage
over the mere component linkage technique. The SBC allows introducing norms
of behavior for the components aside from the individual component behavior.
This way the composition among components is more flexible. The component is
an autonomous element which behavior’s is refined to correspond to the desired
one. The SBC defines a desired global behavior strategy that each component
must comply in order to act together with other components trying to cover
system requirements. Like this, components choreography can be laid down for
a compound. It is important to notice that such approach does not use the
source code of the components for establishing composition. The composition
management functions offered by the CMI are used to adapt the component to
its close environment.

Two key aspects are related to the CMI. The first one corresponds to the
inclusion of the syntactic part of the component creation. However, the CMI
must be added to the components construction in order to be composed (in-
teroperability). The second one corresponds to the semantic part. The required
information from the COTS supplier or in-house component developer should be
based on the information of the components behavior, mainly the state attribute
that depicts behavior. Thus, by extension, state machine diagrams define the be-
havior of the whole component. This information neither reveals the essence for
example of the COTS (more problematic than in-house component), nor any
crucial information about the component. It only describes the functionality of
the component on a high level of abstraction to be used at design time. The
description of the component must at least make reference to the previously
mentioned information to avoid misinterpretations about the behavior of the
component. If this information is not provided, it is very difficult to select an
appropriate component for the specific necessities. The construction based on
State Machines depicts control over the behavior.

It is important to realize that the inclusion of these composition primitives
into the components depicts their nature of required services. The provided "ser-
vices" of the components must be configured in such a way that those "services"
are usable for the rest of the components involved into a composition. Because of
that, the meaning of this "service" configuration for possible component collabo-
ration and action coordination among components is understood as components
required "services" or action dependency. Obviously the components provided
"services" are the ones that are used to shape the behavior interface and its
composition primitives.

The CMI must be ready to use the afore mentioned information in order to
be used by the system integrator to define a global behavior with predictable
consequences. This allows the insertion of composition rules to the individual
components to preserve the global behavior. As a consequence the SBC has
the advantage of a predictable composition. This is because the provided rules
monitor the desired and undesired states in an effective way and they use this
information in early steps of the system creation.
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This interface also has monitoring capabilities so that the system constructor
may analyze the properties of the system (for COTS for example often the
documentation associated is not the most adequate). This feature reinforces the
prediction capabilities of the CMI for the system’s behavior.

From the CBSE viewpoint the proposal of this paper corresponds with the
reality of the component concerned from other mature engineering. In this paper
the component has been presented as an autonomous element which execution
is not related to other components avoiding high component coupling. This way
the component operating capacities are higher and can be used in many hetero-
geneous applications. It also has been presented the component as an executable
unit independent [18] from its close environment. Consequently for component
composition the system designer must use the CMI to adapt the component to
all requirements.
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Abstract. In Service-Oriented Architectures (SOA) composed services provide
functionalities with certain non-functional properties that depend on the proper-
ties of the basic services. Models that represent dependencies among these prop-
erties are necessary to analyze non-functional properties of composed services.
In this paper we focus on the reliability of a SOA. Most reliability models for
software that is assembled from basic elements (e.g. objects, components or ser-
vices) assume that the elements are independent, namely they do not take into
account the dependencies that may exist between basic elements. We relax this
assumption here and propose a reliability model for a SOA that embeds the “error
propagation” property. We present a path-based model that generates the possi-
ble execution paths within a SOA from a set of scenarios. The reliability of the
whole system is then obtained as a combination of the reliability of all generated
paths. On the basis of our model, we show on an example that the error propa-
gation analysis may be a key factor for a trustworthy prediction of the reliability
of a SOA. Such a reliability model for a SOA may support, during the system
development, the allocation of testing effort among services and, at run time, the
selection of functionally equivalent services offered by different providers.

1 Introduction

“Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of different ownership domains” [23].
A software system based on the SOA paradigm is developed by assembling software
services. Services are offered by providers that hide to users their internal implemen-
tation. The users are only aware of a certain behavior that is specified by the service
description. Given a set of services {s1; ...; sn}, the functional composition of services
can be expressed by the following three operators:
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C ::= (s1; ...; sn)|(s1|...|sn)|(s1 + ... + sn)

(s1; ...; sn) represents the sequential execution of the services, (s1|...|sn) represents
the parallel execution and (s1 + ... + sn) the possible execution of some services [12].
However, the composition of their non-functional properties, such as the reliability, is
not so easy to represent.

In order to keep as simple as possible the modeling aspects of our work, we only con-
sider here the sequential execution of services (1). The interactions within this type of
composition can be implemented in several ways [23], and we assume that the services
communicate by exchanging synchronous messages. In agreement with Parnas [17], se-
quentially executed services Si and Sj may undergo two different relations, that are the
Uses and the Invokes relations. The Uses relation (here represented as USES(Si; Sj))
means that the service Si uses Sj for providing its functionality, i.e. as soon as Si re-
ceives a request of service it provides a request of service to Sj . Then, after received an
answer from Sj , Si can elaborate the answer and provide its functionality. The Invokes
relation (here represented as INV (Si; Sj)) means that the service Si, at the end of its
execution, gives the execution control to Sj . These types of relations will be used in our
model for appropriately composing the reliability of services.

Most reliability models for software that is assembled from basic elements (e.g.
objects, components or services [9] [12]) assume that the elements are independent,
namely the models do not take into account the dependencies that may exist between
elements. They assume that the failure of a certain element provokes the failure of the
whole system. This assumption is not realistic, for example, in cases of distributed
systems where a service interacts with remote services that could run on different
operating systems. In this case the services are not independent each other, in fact
the middleware that connects them could propagate an error from a service to an-
other one. To some extent, applications that include service wrappers ensuring that
a failure is caught in time and close to its source make this assumption more
realistic [5].

The independence assumption implies a complete propagation between the services
along a path, in the sense that if a service returns an erroneous message then the latter is
certainly propagated along the path and the whole system always returns an erroneous
message. Goal of this paper is to relax this assumption and consider a wider “error
propagation” scenario. We introduce the probability that a service may not produce an
erroneous message (i.e. it may “mask” an error to the output, therefore no complete
propagation) whether it gets as input value an erroneous message [2].

Our model is based on the composition of scenarios that describe the dynamics of a
SOA. Assuming that, for each service provided by the system, we dispose of a scenario
represented by a collaboration diagram UML, we provide a technique to generate, for
each scenario, all possible execution paths. The reliability of a service is then obtained
as the composition of the reliability of all the paths based on the stochastic distribution
of the runtime execution of the system, also known as operational profile [16]. The latter
consists, on one hand, of the probability that the user executes a certain system service

1 Being, at the best of our knowledge, the first paper that embeds error propagation in a SOA
reliability model, we prefer to focus on this aspect rather than coping with all the above exe-
cution operators.



Path-Based Error Propagation Analysis in Composition of Software Services 99

and, on the other hand, of the probability that a service interacts with another one. From
the solution of our model, we show that the error propagation analysis may be a key
factor for a trustworthy prediction of the reliability of service-based systems.

Information on the SOA may be incomplete. However, if (some) scenarios are not
available, then the approach in [22] can be adopted to generate them. Besides, if the
operational profile of the system is not (fully) available, then the technique described in
[16] can be used to estimate it.

The paper is organized as follows: in section 2 we summarize the reliability esti-
mation models presented in literature and we outline the novelty of our approach; in
section 3.1 we introduce a model for SOA reliability that embeds the error propagation
factor; in section 4 we provide an example of application of our model, and finally in
section 5 we give concluding remarks.

2 Related Work and Novelty of Our Approach

In the last few years many reliability models for software that is assembled from ba-
sic elements (e.g. objects, components or services) have been introduced. They can be
partitioned in path-based models and state-based models [9]. The former ones repre-
sent the architecture of the system as a combination of the possible execution paths,
the latter ones as a combination of the possible states of the system. The formulation
of the path-based model presented in [21] for component-based systems is the clos-
est one to our approach. From the scenarios of the system, in [21] a Component De-
pendency Graph (CDG) that summarizes all possible execution paths of the system is
built.

Inspired by the Yacoub’s approach, we introduce in the service domain a model
that allows to generate, with a different methodology, the possible execution paths of
each scenario representing a service provided by the system. We obtain then the re-
liability of a service as a composition of the reliability of each generated path. In
[21], as in most models for software that is assembled from basic elements (e.g. ob-
jects, components or services), it is assumed that the elements are independent, namely
the model does not take into account the dependencies that may exist between ele-
ments. We relax this assumption here and consider the “error propagation” property
in the reliability model for SOA that we propose. This property expresses the prob-
ability that a service may propagate an erroneous message when it receives as input
an erroneous message. In all the current reliability model this probability is implic-
itly assumed to be 1, that is complete propagation of errors. In [1] this property has
been defined for component-based systems and a formula for its estimation has been
provided.

The following aspects characterize the novelty of our approach:

– Our model for SOAs could be adopted to estimate the reliability of software that is
assembled from other basic elements (e.g objects or components), but some modi-
fications should be made in order to adapt to other development paradigms. For ex-
ample, we estimate the reliability of a SOA by partitioning the input domain of the
services in equivalence classes. In order to adapt the model to a component-based
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system, it is necessary to take into account that a component could offer several
services within a scenario. Therefore it is necessary to introduce a new criterion to
partition its input domain.

– Our reliability model for SOA is not tied to any particular architectural style or
to any particular service-based development process. It can be adopted to obtain a
trustworthy prediction of the reliability whether a SOA is completely defined at the
design time or certain services are discovered at runtime.

– In our reliability model for SOA we take into account the dependencies that may
exist among services. In fact, in order to consider the failures that spread between
services, we have embedded the “error propagation” property in the model.

– We model the behavior at runtime of the system by combining the behavior of the
system (modelled by a SDG) with the operational profile and the probability of
interaction between services. In particular, we consider this probability at the level
of input equivalence classes of services.

– Our reliability model is independent from the methodology adopted to represent
the scenarios and from the strategy used to generate the possible execution paths.
In fact, we assume that each scenario of a service offered by the system is rep-
resented by an UML Collaboration Diagram. From the scenario of a service we
generate the possible execution paths of the system and we apply to each path the
reliability model. However, a scenario could be represented with whatever notation
that permits to describe the system scenarios (e.g. the Message Sequence Charts
(MSCs) [13] or the UML Sequence Diagrams).

3 Modeling the Reliability of a SOA

In this section we present our approach to build a reliability model of a SOA. We as-
sume that a scenario is available for each functionality that the SOA offers to the users.
Each scenario describes the internal dynamics of the functionality, in terms of paths of
invoked services. We generate all the possible execution paths, then we estimate the
reliability of each path and we obtain the SOA reliability as a composition of its path
reliabilities.

At a coarse grain, we can classify the failures that could occur during the execution
of a service-based system as follows:

– crash failures, that provoke the crash of the whole system, namely the system
straightforwardly stops its execution.

– no−crash failures, that do not provoke the immediate termination of the whole
system, but they manifest themselves by returning an erroneous message. This mes-
sage may either propagate to the system output (thus generating a failure) or it can
be masked along its path to the output (thus without actual effects on the system
reliability). A finer grain classification of no − crash failures can be made, but
it is out of the scope of this paper.

We focus our attention only on no − crash failures. Let us assume that, when a
service is executed in a path, if it receives as input a correct message then it can fail and
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introduce an error in the path with a certain probability (i.e. probability of failure on
demand, see section 3.2). Instead, if the service receives as input an erroneous message,
then we assume that it may correct the erroneous message that it has received thus
masking the internal error to the external outputs.

In the remainder of this section we first describe how to obtain all the execution
paths from scenarios, then we introduce our model for the reliability of a single path,
and finally we compose those reliabilities to model the whole SOA reliability.

3.1 Generating Execution Paths from Scenarios

Let S be a service oriented architecture composed by n elementary services. Let elsk

be the name of the k-th service (1 ≤ k ≤ n). Let us assume that the input domain
of elsk is partitioned in nclk disjoint equivalence classes, and that erroneous mes-
sages in input that are out of the service domain can be automatically detected and
discarded (e.g. with a service harness that filters them), therefore we deal only with er-
roneous messages that fall within the service domain. The input equivalence classes of
each service can be determined in various ways, e.g. using the outlines of the domain
testing [11].

Through the composition of its n elementary services, the SOA offers m external
services extsk (i.e. system functionalities) to users, as illustrated in Figure 1.
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Fig. 1. A schematic representation of elementary and external services in a SOA

Let us assume that for each offered service we dispose of a scenario describing its
dynamics (e.g. as an UML Collaboration Diagram) in terms of interactions that take
place between elementary services to achieve the goal of the external service (2).

Basing on the structure of the Component Dependency Graph (CDG) in [21], we as-
sociate a Service Dependency Graph (SDGk) for each external service extsk, starting
from its Collaboration Diagram. SDGk is a directed graph that describes the behaviour

2 Note that if the diagrams are incomplete or inconsistent, then the approach in [4] can be
adopted to define a reasonably complete and consistent set of diagrams.
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of the system (in terms of its possible execution paths) when the external service extsk

is executed.
Another strategy can be used to generate the possible execution paths from each

scenario. In [20] Uchitel et. al. synthesize the behaviour of the system from a set of
scenarios. This can be done without changing the structure of our reliability model
because it gets as input only the possible execution paths.

Definition 1: Service Dependency Graph “SDGk” - A Service Dependency Graph is
defined by SDGk = 〈N, E, s, t〉 , where:

– 〈N, E〉 is a directed graph,
– s is the start node, t the termination node,
– N is a set of nodes in the graph,
– E is a set of edges in the graph.

In Figure 2 we show an example of SDG, whose details are given in the following.

Fig. 2. An example of SDG

Definition 2: Nodes in a SDG - A node i in a SDG represents an elementary service
elsi. It is defined by the pair < elsi, faili > where faili is a vector of ncli elements.
Each element of faili, here defined as faili(c), 1 ≤ c ≤ ncli, represents the prob-
ability of failure on demand of the service elsi with respect to the c-th equivalence
class of its input domain. In other words, faili(c) represents the probability that elsi

produces an erroneous output given that it has received an input within the equivalence
class c.

Definition 3: Directed Edges in a SDG - For each pair of nodes i and j, a directed edge
represents the invocation of the service elsj from the service elsi. The invocation is
stochastically ruled by the matrix EXECij = [execcd], made of ncli · nclj elements,
where an element execcd (1 ≤ c ≤ ncli, 1 ≤ d ≤ nclj) represents the probability
that the service elsi maps an element of its c-th input equivalence class into an element
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of the d-th input class of elsj . In other words, the EXECij matrices represent the
operational profile of the SOA at the level of input equivalence classes(3)).

Each edge is also labeled with a pair < p.num, MODE >. p.num is a composed
label, where p identifies the p-th path of execution of the system, and num is a pro-
gressive number that determines the sequence of the messages along the p-th path (4).
MODE is a label that may assume the values “USES” or “INV” if, with respect to the
message p.num, the service elsi is tied to the service elsj through, respectively, the
Uses or the Invokes relation (see section 1).

3.2 Modeling the Reliability of an External Service

After built the SDGk for the external service extsk, its reliability on demand RODk

can be trivially formulated as a function of its probability of failure on demand
POFODk, as follows:

RODk = 1 − POFODk (1)

Let I be the event “the input of the service extsk is correct”, and O the event
“the output of the service extsk is erroneous (i.e. the returned result is not the ex-
pected one)”. Then the probability of failure on demand POFODk can be expressed as
follows:

POFODk = P (I ∩ O) = P (I)P (O|I) (2)

where P (I) is assumed to be equal to 1, because the reliability on demand of a system
is always modelled under the hypothesis that the input of the system is correct (namely
as defined by its specifications) [2].

Let nepk be the number of execution paths of the system generated from the ex-
ecution of the service extsk, 1 ≤ k ≤ n. Under our assumptions, the p-th path
(1 ≤ p ≤ nepk) will be made of a pipeline of np elementary services < s1, ..., snp >.
Following the previous notation, nclj represents the number of equivalence classes of
the j-th service in the p-th path (1 ≤ j ≤ np).

Then P (I ∩ O) for the k-th external service can be formulated as follows:

P (I ∩ O) = P (O|I) =
nepk
∑

p=1

(

ncl1
∑

c=1

P (O|Ic)

)

(3)

where Ic is the event “the input of the service extsk belongs to the c-th equivalence
class of the service s1 of the pipeline of services of the p-th path”. This formula holds
under the assumption that the equivalence classes are disjoint (see section 3.1).

3 Note that input classes have no meaning for the end point t, thus in Figure 2 scalar probabilities
ptit label the transitions from each elsi service to t. Analogous scalar probabilities could label
transitions from the start node s in case an SDG represents multiple paths with different initial
nodes.

4 Recall that we consider only the sequential composition of the services (see section 1).



104 V. Cortellessa and P. Potena

The probability P (O|Ic) that the output of the service extsk is erroneous, given
that the input of the service extsk belongs to the c-th equivalence class of the ser-
vice s1 of the pipeline of services of the p-th path, can be reformulated by summing
over 1 ≤ cn ≤ ncln the probabilities of the events “the last service of the pipeline
of services of the p-th path produces an error given that the input of the last service
of the pipeline of services of the p-th path belongs to its cn-th equivalence class and
that the input of the service extsk belongs to the its c-th equivalence class”. Then we
have:

P (O|Ic) =
ncln
∑

cn=1

P (En|Icn ∩ Ic) (4)

where Icn is the event “the input of the service snp belongs to its cn-th equivalence
class”, En is the event “the service snp produces an error”.

In general, for the j-th service of the pipeline of services in the path we can write the
following expression:

P (Ej) = P (CIj) ∗ P (Fj) + (1 − P (CIj)) ∗ P (NMj) (5)

where CIj is the event “the input of the service sj is correct”, Fj is the event “the
service sj fails and returns an erroneous result”, and NMj is the event “the service sj

does not mask an error”.
For two adjacent services i and j in a pipeline of services (where i precedes j) we

can write the following formula based on (5):

P (Ej |Icj) =
ncli
∑

ci=1

P (Tcicj) ∗ [(P (CIj |Icj ∩ Ici) ∗ P (Fj |Icj) + (6)

+(1 − (P (CIj |Icj ∩ Ici)) ∗ P (NMj |Icj)]

We can separately obtain each term of the right-side of (6) as follows:

– P (Tcicj) represents the probability of the event Tcicj “the service si maps an ele-
ment of its ci-th equivalence class to an element of the cj-th equivalence class of
sj”(see section 3.1).

– P (CIj |Icj ∩ Ici) = (1 − P (Ei|Ici)),
P (CIj |Icj ∩ Ici) can be recursively estimated. The probability that the service sj

receives a correct input depends on the probability that the services that precede it
in the pipeline (< s1, ..., sj−1 >) have not produced an error.

P (Ei|Ici) that represents the probability of the event “the service si produces
an error given that the input of si belongs to its ci-th equivalence class” should
be estimated by supposing that the input of the service sj belongs to a certain
equivalence class cj of its input domain. In order to keep our model as simple as
possible, we assume that the service si, given an input in one of its equivalence
classes ci, has the same probability to produce an error for each equivalence class
of sj .
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– P (Fj |Icj) = failj(cj),
where failj(cj) is the probability of failure on demand of service sj with respect to
the cj-th equivalence class of its input domain (see section 3.1). P (Fj |Icj) should
be estimated by supposing that the input of the service si belongs to a certain equiv-
alence class ci of its input domain. In order to keep our model as simple as possible,
we assume that the service sj , with respect to an its equivalence class cj, has the
same probability to produce an error for each equivalence class of si.

– P (NMj|Icj) = P (sj [x] �= sj [x
′
]|x �= x

′ ∩ x, x
′
belong to the

cj − th equivalence class),
P (NMj|Icj) should be estimated by supposing that the input of the service si

belongs to a certain equivalence class ci of its input domain. In order to keep our
model as simple as possible, we assume that the service sj , with respect to an
its equivalence class cj, has the same probability to not mask an error for each
equivalence class of si.

Upon estimating the formula (6) for each equivalence class of the last service of
the pipeline of services of a path, we substitute this estimation in formula (4). In turn,
by back substituting in formulas (3), (2) and (1), we obtain an expression for RODk.
Summarizing, the input parameters of RODk are:

– Transition Probability P (Tcicj);
– Probability of failure on demand failj(cj);
– Probability that the service does not mask an error with respect to one of its equiv-

alence classes P (NMj ∩ Icj).

These parameters may be characterized by a not negligible uncertainty. The propa-
gation of this uncertainty should be analyzed, but it is outside the scope of this paper.
Several methods to perform this type of analysis can be found, e.g. it has been done
in [8] for a reliability model. However, in Appendix we discuss how to estimate these
parameters.

In order to provide an operational support to the model that we have introduced here,
we have plugged the previous formulas into an algorithm that estimates the reliability
on demand ROD of the p-th path of execution of the service extsk using the SDGk

graph. The RelEval algorithm is illustrated below.
We assume that the first node of the path models the service els1 that is tied trough

the Invokes relation with the service elsk, 1 < k ≤ n. PEvetc1 is a global variable
that we use to store, for each service that we find in the graph and that belongs to
the pipeline of the path, the probability that it produces an error given that the input
of the system (i.e. that one of the service els1) belongs to its c1-th equivalence class.
For each equivalence class of the j-th service of the pipeline of services, we evaluate
the formula (6) (∀c1 = 1, ..., ncl1) and we store the results in PEvetc1. MODE is the
edge label that specifies Invokes or Uses relations (see section 1). For sake of simplicity,
and without loosing generality, we assume that in a path two adjacent edges with the
Uses relation cannot be found and that the last node of the path is tied to the path with
the Uses relation. POFODp is a structure that we use to store the probability of failure
on demand of the p-th path.
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RelEval Algorithm

Parameters

consumes the p − th path of SDGk

produces POFODp

Algorithm

push (< els1, fail1 >,

∀c1 = 1, ..., ncl1 determine PEvetc1 using (6))
while Stack not EMPTY do

pop (< elsi, faili >)
if elsi = t (terminating node)

∀c1 = 1, ..., ncl1 determine PEvetc1

POFODp =
ncl1
∑

c1=1

ncli
∑

ci=1

PEvetc1[ci]

else

push (< elsj, failj > |elsj is the service represented in

the successive node of the path)
if (MODE ≡ USES)

∀c1 = 1, ..., ncl1 determine PEvetc1

using (6) with respect to elsj

∀c1 = 1, ..., ncl1 determine PEvetc1

using (6) with respect to elsi

end while

On the loop problem. In the SGDk graph there can exist some loop. This is a frequent
problem of the path-based reliability models. The problem can be solved either by sim-
plifying the number of paths with the ones observed experimentally during the testing
[9], or by introducing the average time of execution of the system and of each service
[21]. In the latter case the termination of a path is determined if its average execution
time (obtained by summing up the average execution time of each component found
along the path) is larger than the average execution time of the system. The average
execution time of each service and the average execution time of the system can be es-
timated with monitoring techniques [3]. The RelEval algorithm can be easily modified
to embed this termination criterion.

3.3 Modeling the System Reliability

It is easy to understand that the reliability of the whole system ROD can be modeled
as follows:
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ROD =
m

∑

k=1

RODk (7)

where we recall that RODk represents the reliability of the k-th service offered by the
system

4 An Application Example

In order to show the practical usage of our reliability model, and the relevance of error
propagation, in this section we apply it to an example. We have considered the “bank
account example” used by McGovern et al. in [15], thus readers interested to the appli-
cation details, that we do not provide here, can refer to [15]. We have taken into account
two scenarios of the system, illustrated respectively in Figures 3 and 4. Each scenario
models the dynamics of an external service provided from the system. After estimated
the reliability of both services, the reliability of the whole system has been obtained as
their algebraic mean, under the hypothesis of uniform probability for their invocation.

Fig. 3. First scenario of the bank account example

We have conducted two experiments that differ for probabilities of failures and er-
ror propagation probabilities of services. We describe the experiments in the following
subsections.

4.1 First Configuration: Varying All Error Propagation Probabilities

We have observed the probability of failure on demand of the system while varying,
at the same rate, the probability that all services do not mask an erroneous message
P (NMj) (i.e. a measure of the error propagation property), for different values of the
probability of failure on demand failj of the service BankAccountService. So, we
have assumed that only one service can introduce an error. The error may or may not
be masked by the services in the pipeline of the path that follow the erroneous service,
and this depends on their probability of error propagation.

In Figure 5 we report the results obtained in this configuration. Each curve represents
the probability of failure on demand of the system while varying from 0.1 to 1 the error



108 V. Cortellessa and P. Potena

Fig. 4. Second scenario of the bank account example

propagation probability of all services. Curves differ because a different fixed value of
the probability of failure of the service BankAccountService has been assigned for
each curve. We have obtained the curves by varying this last value from 0.1 to 0.9.

Fig. 5. Model solutions

As expected, for a given value of the probability of failure on demand of the ser-
vice BankAccountService (i.e. for a given curve), the probability of failure on de-
mand of the system increases while increasing the error propagation of each service
of the path (i.e. the probability that an erroneous message produced by the service
BankAccountService is not masked by other services that follows it in the
pipeline).

This provides a first evidence of the relevance of the error propagation property in
a SOA reliability model. In fact, the assumption of independence between failures of
services, like in the model presented in [21], corresponds in Figure 5 to the points
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of the curves where the error propagation on the x-axis equals 1. They are, for each
curve, the maximum values of the system POFOD. This means, as expected, that the
independence between failures brings to an overpessimistic prediction of the probability
of failure on demand of the system. This result confirms that the error propagation
analysis is a key factor for a trustworthy prediction of the reliability of service-based
systems, and its estimation leads in our model a more precise (and less pessimistic)
estimation of the SOA reliability.

On the other hand, for the same value of error propagation probability of the ser-
vices, the probability of failure on demand of the system decreases while decreasing
the probability of failure of BankAccountService. This can be observed by fixing a
value on the x-axis and observing the values on the curves while growing POFOD of
els2.

4.2 Second Experiment: Varying One Error Propagation Probability

We have observed the probability of failure on demand of the system while vary-
ing the probability that the service HolderAdress does not mask an erroneous mes-
sage P (NMj), and varying the probability of failure on demand failj of the service
BankAccountService. So, we assume that only one service can introduce an error
in the path, and that only one service can correct the error. Furthermore, we have par-
titioned the domain of the HolderAdress service in two equivalence classes, and we
have assumed that the first class is more used than the second one and that the following
relation ties the two classes:

P (NMj |I2) = 1 − P (NMj|I1) (8)

In Figure 6 we report the results. Each curve represents the probability of failure on
demand of the system while varying the error propagation of the first equivalence class
of the domain of HolderAdress, and with the value of the probability of failure of the
BankAccountService service fixed. We have obtained the curves by varying this last

Fig. 6. Model solutions
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one from 0.1 to 0.9 and the error propagation of the first class of equivalence of the
service HolderAdress from 0.1 to 1.

The partition of the input domain of HolderAdress in two equivalence classes al-
lows to obtain a better estimation of the probability of failure on demand of the system.
In fact, basing on (8), for higher values of the error propagation probability of the first
class we have lower probability of the error propagation of the second class that it could
not be evidenced without domain partition.

A relevant observation is that, for corresponding values of curves in the two experi-
ments, the probability of system failure is higher in the second experiment than in the
first one. This is because in the first experiment we assume that all services in the path
have the ability to correct an error, whereas in the second experiment we consider an
error marking ability only for the service HolderAdress with all the other services
always propagating errors.

5 Concluding Remarks and Future Work

In this paper we have introduced a model for the estimation of the reliability of a SOA,
based on the reliability of each service and the operational profile, that embeds the
error propagation property. The first results that we have obtained supports our intuition
that the error propagation may be a key factor for a trustworthy estimation of a SOA
reliability.

Our approach can be used at development time to appropriately allocate testing ef-
fort. For example, if the SOA reliability is too low, then several alternatives can be easily
evaluated to study the sensitivity of the reliability to the SOA modifications, such as re-
placing a service with a more reliable one. Our approach can be also used at runtime,
for example, as a basis for Service Level Agreement negotiation process. Providers may
use this model to estimate the Quality of Service that they can provide, given the current
status of the system.

The problem of service selection on the basis of their reliability has been widely
investigated in the last few year, and it is not easy to solve. In fact, in [7] the authors
demonstrate that the problem of service allocation for a composite Web service (i.e. a
possible implementation of SOA [24]) is NP-complete.

As future work, we intend to develop the following major aspects of our approach:

– Widening the model experimentation on real world case studies.
– Embedding in our model other specific characteristics of the SOA domain, such as

service discovery and run-time service composition.
– Enhancing our reliability model (and the estimation algorithm) by considering the

other operators that express the composition of the services, such as parallel oper-
ators (see section 1).

– Introducing in our reliability model the probability of failure of a transition between
services, that is modelled by an arc in an SDG graph.

– Introducing in our reliability model the crash failures (see section 3).
– Embedding our reliability model into a decision support automated framework.



Path-Based Error Propagation Analysis in Composition of Software Services 111

References

1. Abdelmoez, W., et al.: Error Propagation in Software Architectures. In: Proc. of METRICS
(2004)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Computing 1(1)
(January-March 2004)

3. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In: Proc. of
the 2nd International Conference on Service Oriented Computing, pp. 193–202 (November
2004)

4. Bertolino, A., Marchetti, E., Muccini, H.: Introducing a Reasonably Complete and Coher-
ent Approach for Model-based Testing. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and
TACAS 2003. LNCS, vol. 2619, Springer, Heidelberg (2003)

5. Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment of UML based software
models. In: Proc. of WOSP 2002, Rome, Italy, July 24-26, 2002 (2002)

6. Diaconescu, A., Murphy, J.: Quality of Service in Wide Area Distributed Systems. In: Proc.
of Information Technology and Telecommunications, Waterford, Ireland, pp. 39–47 (October
2002)

7. Esmaeilsabzali, S., Larson, K.: Service Allocation for Composite Web Services Based on
Quality Attributes. In: SoS4CO. the First IEEE International Workshop on Service Ori-
ented Solutions for Cooperative Organizations, pp. 71–79. IEEE Computer Society Press,
Los Alamitos (2005)

8. Goseva-Popstojanova, K., Kamavaram, S.: Uncertainty Analysis of Software Reliability
Based on Method of Moments, FastAbstract ISSRE (2002)

9. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture based-approach to reliability assess-
ment of software systems. Performance Evaluation 45, 179–204 (2001)

10. Hamlet, D., Mason, D., Woit, D.: Theory of Software Reliability Based on Components. In:
ICSE 2001 (2001)

11. Kaner, C.: Teaching Domain Testing: A Status Report. In: CSEET 2004. Proc. of 17th Con-
ference on Software Engineering Education and Training (2004)

12. Kokash, N.: A Service Selection Model to Improve Composition Reliability. In: ECAI 2006.
Proc. of International Workshop on AI for Service Composition, in conjunction, Riva del
Garda, Italy (August 2006)

13. ITU. ITU-T Recommendation Z.120 Message Sequence Charts (MSC99). Technical report,
ITU Telecommunication Standardization Sector (1996)

14. Li, J., et al.: An Empirical Study of Variations in COTS-based Software Development Pro-
cesses in Norwegian IT Industry. In: Proc. of METRICS 2004 (2004)

15. McGovern, J., Tyagi, S., Stevens, M., Mathew, S.: Java Web Services Architecture. published
by Elsevier Science, Amsterdam, ch. 2 (July 2003)

16. Musa, J.D.: Operational profiles in software-reliability engineering. IEEE Software, 14–32
(1993)

17. Parnas, D.: On a ”Buzzword”: Hierarchical structure. In: Proc. of IFIP Congress (1974)
18. Rodrigues, G.N., Rosenblum, D.S., Uchitel, S.: Using Scenarios to Predict the Reliability of

Concurrent Component-Based Software Systems. In: Cerioli, M. (ed.) FASE 2005. LNCS,
vol. 3442, Springer, Heidelberg (2005)

19. Trivedi, K.: Probability and Statistics with Reliability, Queuing, and Computer Science Ap-
plications. J. Wiley and S., Chichester (2001)

20. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Transactions on Software Engineering 29(2) (2003)



112 V. Cortellessa and P. Potena

21. Yacoub, S., Cukic, B., Ammar, H.: Scenario-Based Reliability Analysis of Component-Based
Software. In: ISSRE 1999. Proc. of the 10th International Symposium on Software Reliabil-
ity Engineering, pp. 22–31 (1999)

22. Yue, K.: Generating interesting scenarios from system descriptions. In: Proc. the 1st inter-
national conference on Industrial and engineering applications of artificial intelligence and
expert systems, pp. 212 - 218 (1988)

23. http://www.oasis-open.org/
24. www.w3.org/2002/ws/

Appendix: Parameters Estimation

Transition Probability “P (Tcicj)” P (Tcicj) represents the probability that the service
si maps an element of its ci-th equivalence class to an element of the cj-th equivalence
class of sj (see section 3).

The literature reports formulas for the estimation of the probability of transition be-
tween basic elements (e.g. objects, components or services). For example, in [10] Ham-
let et al. have defined a formula for the probability of transition from a component to
another one, on the basis of the input domain partition of a component into a set of
functional subdomains (i.e. a subdomain for each functionality of the system). In [21]
the authors have defined this probability with respect to each pair of components, on
the basis of a CDG.

Probability of failure on demand “failj(cj)” failj(cj) represents the probability for
the service sj to fail in one execution [19] with respect to its cj-th equivalence class
(see section 3). We assume that it can be estimated by supposing that the operational
profile of the service with respect to its equivalence classes is uniform. The estimate of
failj(cj) is outside the scope of this paper, however a rough upper bound 1/Nnf can
be obtained by monitoring the service [3] and observing it being executed for a Nnf

number of times with no failures. Besides, several empirical methods to estimate COTS
failure rates [14] could be also used.

Probability that the service does not mask an error “P (NMj ∩Icj )” Since we assume
that a service could fail only if it does not receive an erroneous message (see section
3) P (NMj ∩ Icj ) can be easily estimated with the formula introduced by Abdelmoez
et al. in [1]. Their formula does not embed the probability of failure on demand of
a component. In fact, in [1] the error propagation probability from component A to
component B, that are tied trough the connector X , is defined by the function Prob
Prob([B](x) �= [B](x′)|x �= x′), where [B] denotes the function of component B, and
x is an element of the connector X from A to B.

http://www.oasis-open.org/
www.w3.org/2002/ws/
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Abstract. Traditional component models and frameworks simplified
software system development by enabling developers to break software
systems into independent pieces with well-defined interfaces. This ap-
proach led to looser coupling among the system pieces and enhanced
possibilities for reuse. While the component-based approach led to ad-
vancements in the software development process, it still has its limita-
tions. In particular, after a component-based application is developed
and deployed it typically is a monolithic and static configuration of com-
ponents. The advent of service-oriented component (SOC), the rise in
popularity of consumer devices, and the ubiquity of connectivity have
fostered a growing interest in applications that react dynamically to
changes in the availability of various services. To simplify the creation
of such dynamic software systems, it is possible to borrow concepts
from SOC and include them into a component model, resulting in a
service-oriented component model that specifically supports dynamically
adaptable applications. This paper presents iPOJO, a service-oriented
component framework to help developers implement dynamically adapt-
able software systems.

Keywords: Service Orientation, Component Orientation, Dynamic
Adaptable Software, Software Composition.

1 Introduction

Traditional component models and frameworks simplified software system devel-
opment by enabling developers to break software systems into independent pieces
with well-defined interfaces. This approach led to looser coupling among the sys-
tem pieces and enhanced possibilities for reuse. Component-based applications
are constructed by developing, selecting, and assembling the individual system
components. The components in the application are typically bound together
with standard connectors and/or custom glue code. While the component-based
approach led to advancements in the software development process, it still has its
limitations. In particular, after a component-based application is developed and
deployed it typically is a monolithic and static configuration of components. The
characteristics of the component-based approach (i.e., loose coupling, third-party
component selection, and reuse) only extend to the development portion of the
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software life cycle, not to the run-time portion. While there are some exceptions
to this characterization, such as the use of plugins, these exceptions tend to be
low scale and coarse grained. The advent of service-oriented computing (SOC),
the rise in popularity of devices such as cell phones, PDAs, and MP3 players, and
the ubiquity of both wired and wireless connectivity (e.g., WiFi, Bluetooth) have
fostered a growing interest in applications that react dynamically to changes in
the availability of various services. For example, software systems may dynam-
ically react to the presence of a Bluetooth-enabled mobile phone or printer in
order to offer related services to the end user. While such dynamic capabili-
ties are feasible in most component models and frameworks, there is no direct
support for dynamic component composition. As a result, the developer must
manage this non-functional aspect by hand. To simplify the creation of software
systems that react dynamically to the changing availability of services, it is pos-
sible to borrow concepts from SOC and include them into a component model,
resulting in a service-oriented component model that specifically supports dy-
namically adaptable applications. This paper presents iPOJO, a service-oriented
component framework to help developers implement dynamically adaptable soft-
ware systems. The rest of the paper is organized as follows. The next section
presents SOC concepts and how they are useful in supporting dynamic compo-
sition. Section 3 describes the general principles of a service-oriented component
model. Section 4 describes the approach of the iPOJO service-oriented compo-
nent framework. Section 5 describes the iPOJO framework and how to design
and implement dynamically adaptable applications, while section 6 describes
iPOJO implementation details and experimentation. Section 7 presents related
work, followed by a discussion of current and future work in section 8. Lastly,
section 9 presents the conclusions.

2 Service-Oriented Computing Concepts

Service-oriented computing (SOC) [9][17] is a paradigm that utilizes services as
fundamental elements for application design. The central objective of the service-
oriented approach is to reduce dependencies among software islands, where an
island is typically some remote piece of functionality accessed by clients. By
reducing such dependencies, each element can evolve separately, so the resulting
application is more flexible than monolithic applications. SOC is based on three
actors:

– A service provider offers a service.
– A service consumer uses a service.
– A service broker contains references to available services.

Another central concept to SOC is the service specification, which is a description
of the functionality provided by a service. Service providers implement a specific
service specification and service consumers know how to interact with services
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implementing the specifications they require. Among these three actors are three
kinds of interactions: service publication between the provider and the broker
to offer services for use, service discovery between the consumer and broker to
find desired services, and service invocation between the consumer and provider
to actually use the service. From these concepts, SOC applications can exhibit
interesting characteristics, such as:

– Loose coupling: a consumer does not need to know anything about the service
implementation.

– Late binding: a consumer uses a broker to find desired services at run time.
– Dynamic resilience: a service consumer cannot rely on the same service im-

plementation being returned by the broker between uses.
– Location transparent: providers and consumers are oblivious to the under-

lying communication infrastructure (e.g., local versus remote, specific pro-
tocols, etc.).

To design complex service-oriented applications, it is necessary to compose ser-
vices to provide higher-level services, which means that providers may require
other services to provide their own service. Current approaches to SOC, specif-
ically in web services, offer process-oriented solutions to this issue; however,
service-oriented applications can be difficult to develop since the mechanisms
tend to require a lot of developer effort. Indeed, developers need to manage ser-
vice publication/revocation, required service discovery, and run-time tracking
of services. The SOC paradigm facilitates the implementation of dynamically
adaptable software systems by supporting loose coupling and late binding, but
is not sufficient in itself. The next section describes how SOC concepts can be
merged into a component model to provide a more complete solution for dynam-
ically adaptable software systems.

3 Service-Oriented Component Model

In[6], the general principles of a service-oriented component model were intro-
duced, which are:

– A service is provided functionality.
– A service is characterized by a service specification, which describes some

combination of a service’s syntax, behavior, and semantics as well as depen-
dencies on other services.

– Components implement service specifications, which may exhibit implemen-
tation-specific dependencies on services.

– The service-oriented interaction pattern is used to resolve service dependen-
cies at run time.

– Compositions are described in terms of service specifications.
– Service specifications provide a basis for substitutability.

The model that results from these principles is rather flexible and powerful.
It promotes service substitutability since compositions are defined in terms of
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specifications, not specific implementations. This notion of service substitutabil-
ity is strengthen by recognizing two levels of dependencies, both specification and
implementation levels. Traditional component orientation only recognizes imple-
mentation dependencies, hindering substitutability. Service orientation does not
typically describe service dependencies as part of the service specification, which
eliminates forms of behavior parameterization and structural service composi-
tion. Dependency description also simplifies composition because explicit wiring
of constituent service specifications is not necessary since it can be inferred.
Lastly, the service-oriented architecture and interaction pattern make it possi-
ble to defer service implementation selection until run time, which enables the
creation of sophisticated adaptable applications. When using a service-oriented
component approach to build an application, the application is decomposed into
a collection of interacting services. The semantics and behavior of these services
are carefully described independently of any implementation. By doing so, it
is possible to develop the constituent services independently of each other as
well as to have variant implementations that are easily interchangeable. Vari-
ant implementations can be used, for example, to support different platforms or
different non-functional requirements. Once the application’s services have been
defined, it is possible to define a mapping to a set of components for imple-
mentation. A component may implement zero or more services and there is no
requirement on how the mapping from service specification to component im-
plementation occurs. For example, if certain services are related, then it might
make sense from a cohesion or performance point of view to implement them
using a single component; however, it is not required. Additionally, whether a
service represents local or remote functionality is largely irrelevant. If a service
does represent remote functionality, then the resulting component implementa-
tion is merely a proxy stub for the remote service, which can be treated like
any other component implementing a local service. As pointed out in [7], one
of the set of components that comprise a service-oriented component applica-
tion is typically a core component that contains the main service composition
or process that guides the application’s execution. Other component instances
provide the services used by the core component and these instances can them-
selves require services provided by other instances. This approach is similar to
the exogenous connector approach promoted in [13]. In traditional component-
oriented composition, the component selection process for a composition occurs
at design time. The selection process for a service-oriented composition occurs
at run time as component instances are created inside the execution environ-
ment. The execution of the application starts the moment the main component
instance’s dependencies are satisfied. The application composition is thus an ab-
stract descriptor that could be used, for example, by a deployment system to
deploy components that satisfy the service specifications required by the com-
position. The resulting application configuration depends on the specific set of
deployed components, which may vary per platform or even dynamically at run
time.
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4 iPOJO Approach

iPOJO is a service-oriented component framework supporting the service-orien-
ted component model concepts of section 3. One of the main goals of iPOJO is to
keep service-oriented component development as simple as possible, which means
keeping the component as close to a plain old Java object (POJO) as possible.
The code of a component should focus on business logic, not on SOC mecha-
nisms or non-functional requirements. To achieve this goal, iPOJO provides a
component container that manages all SOC aspects, such as service publica-
tion, service object creation, and required service discovery and selection. The
component developer only focuses on two tasks:

– Implementing the business logic.
– Configuring the component container.

The business logic is domain specific, but implementing it is simplified since it
need not contain code that is component model specific. The POJO component
is connected to iPOJO by configuring the component container, which consists
of declaring component metadata that will be used by the container for run-time
management. Component metadata declares information such as provided ser-
vices, required services, and configurable properties. Figure 1 illustrates how the
container automatically manages SOC activities, such as providing or requiring
services. The container of C2 publishes its provided service. C1 also provides a
service, but it has a dependency on the service that C2 provides. At run time
the container of C1 tries to select a service implementation to resolve the de-
pendency. If the dependency is not resolvable, the container will not publish
C1’s provided service. On other hand, if the dependency is resolvable, then the
container will publish the service and manage component instance creation, not
creating the component instance until its service is actually used.

The container for each component must be configured by declaring the meta-
data to provide and require the appropriate services. It should also be noted
that the container manages the ongoing dynamic availability of services, which

Fig. 1. Service component binding
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means that it automatically deals with publishing and revoking services as de-
pendencies are resolved and broken at run time if new component instances are
introduced or existing ones are removed.

5 iPOJO Framework and Component Composition

iPOJO’s approach to composition is very similar to traditional component com-
position, except that iPOJO compositions are in terms of service specifications
rather than component instances, which allows for late selection and binding
of component instances and substitutability. An iPOJO component declares its
required services in its metadata and the iPOJO component container uses this
information at runtime to automatically manage any necessary bindings between
the component instance and any required services. The following subsections
discuss how to implement iPOJO service components and the run-time support
available to them.

5.1 Service Component Implementation and Description

To design an application with service components, developers need to describe
which services a component requires (service dependency) and provides (pro-
vided service). With this information, iPOJO can create a composition at run-
time. iPOJO tracks required services at runtime and injects required services
into the component when they become available. The component in figure 2 il-
lustrates a service component. This component exposes a multimedia message
service (MMS) that allows clients to send an MMS message containing pictures
from any number of attached cameras. To achieve this, the component requires
two services: the first required service is MmsService, which allows a client to
send an MMS message, and the second service is Camera, which allows a client
to take a digital photograph. The metadata for the component’s camera service
dependency indicates that it is an aggregate dependency, meaning that it can
be bound to one or more camera services.

Fig. 2. Architecture of the Photo By MMS component

Service Component Implementation
The iPOJO approach is based on POJOs. Developers should only manage the
logic of the component, forgetting service discovery and service publication. The
code snippet in figure 3 shows a possible implementation of the above example
component.

The component implementation is very simple. Service dependencies are sim-
ply coded with the assumption that the services are available as member fields
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package fr.imag.adele.escoffier;
...
public class PhotoByMMS implement PhotoSender {

private MmsSender sender;
private Camera[] cameras;

public void send() {
MMS mms = new MMS();
synchronized (cameras) {
for (int i = 0; i < cameras.length; i++) {

mms.add(cameras[i].getPhoto());
}

}
sender.send("1234567890", mms);

}
}

Fig. 3. Photo By MMS implementation

(e.g., sender and cameras); the one caveat is for aggregate dependencies, which
require a synchronized block to avoid run-time list modification during the loop.
The component provides the PhotoSender service by simply implementing the
service interface.

Service Component Description
When a component is implemented, it needs metadata to describe which services
are required and provided. Figure 4 shows the description of the previous com-
ponent. The metadata declares two service dependencies and a provided service.
At a minimum, a service dependency must specify the needed service specifi-
cation name (the fully qualified Java type), but may also contain optionality,
cardinality, and filter information.

In the example, the first service dependency is for MmsService. The declared
dependency contains only the component’s member field name to which the de-
pendency will be associated; it is not necessary to specify the service specification

<iPOJO>
<component className="fr.imag.adele.escoffier.PhotoByMMS">

<dependency field="sender"/>
<dependency field="cameras"/>
<provides/>

</component>
<instance component="fr.imag.adele.escoffier.PhotoByMMS"
name=Sender/>
</iPOJO>

Fig. 4. iPOJO Metadata for the PhotoByMMS component
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type since it can be identified from the member field type using reflection. By
default, service dependencies are assumed to be mandatory. If a dependency is
declared as optional, then the nullable object pattern is used to avoid null-case
testing by the component developer. The second dependency is for Camera ser-
vices; it is an aggregate dependency. All Camera services will be tracked. The
metadata does not have to express the cardinality explicitly. Instead, reflection
can determine that the field type in the component class is an array, which
iPOJO interprets as an aggregate dependency. Aggregate dependencies can also
be optional. An empty array is returned if no consistent providers are available.
The component declares that it provides a service by explicitly declaring it in its
metadata. However, the service type need not be mentioned explicitly since it
can also be inferred using reflection. The metadata can also contain properties
to attach to a published service, which can then be used for service filtering; the
current example does not include any service properties.

Composition Binding Description
iPOJO components declare their dependencies on other service specifications. As
a result, composition bindings do not need to be explicitly declared since they
can be inferred from the individual component metadata. At runtime, iPOJO
injects the final bindings into the components and also manages the dynamic
availability of the services associated with the bindings and consequently the life
cycle of the component instances.

Fig. 5. Component initialization process
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5.2 Dynamic Run-Time Composition Management

Managing the dynamic availability of services is difficult to do manually and
it results in code that mixes business and non-functional logic. By separating
the component class and the component metadata, iPOJO is able to externally
manage service dynamics on behalf of the component; figures 5 and 6 depict this
process.

When a component starts, for each service dependency iPOJO discovers all
matching providers and injects one or more references to them as necessary
into the component instance (see figure 5). If the component provides a service,
iPOJO manages service publication according to the state of the component.
A service component is valid if all service dependencies are resolved (i.e., at
least one service provider exists for each mandatory dependency). In all other

Fig. 6. Service event processing
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Fig. 7. Run-time composition and dynamics management

cases, the service component is invalid. An invalid component cannot have its
service published, since its requirements are not met. As soon as the compo-
nent becomes valid, its services can be published. A a component is initialized
and enters the valid or invalid state, iPOJO continues to listen for service events
indicating service arrival or departure and updates the component’s state accord-
ingly (see figure 6).For aggregate dependencies, iPOJO looks for all matching
service providers and injects them as a list of service references. A mandatory
aggregate service dependency is resolved if it at least one service is available.

Figure 7 illustrates the impact of dynamic service availability on a service
component. The component in the figure requires a service and provides another.
The environment contains two providers matching with the required service. In
(a) the service component is bound to the first service provider. Consequently, its
provided service is published because all of its service dependencies are resolved.
In (b) the bound service provider goes away. The original component can no
longer use the departed service and must find another one. iPOJO looks for
and finds another provider and creates a binding to it (c). During this time the
instance is frozen. When the second provider goes away in (d), iPOJO is unable
to find a replacement. As a result, the original component becomes invalid and
iPOJO revokes its provided service.

Fig. 8. Bindings for the Photo By MMS component
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For aggregate dependencies, such as the example in the previous section,
iPOJO needs to track all matching services and inject this set into the com-
ponent instance. This set is automatically updated when a new service arrives
or an existing one disappears; figure 8 depicts this behavior. An aggregate de-
pendency is unresolved when no service implementation can be found at run
time.

6 Implementation and Experimentation

iPOJO is implemented for the OSGi Service Platform [15] and is available as a
subproject of the Apache Incubator Felix1 project. iPOJO has been used in an
industrial prototype for an European project named ANSO. This section briefly
describes how iPOJO is implemented and how it is used in the ANSO project.

6.1 iPOJO Implementation

iPOJO is implemented on top of the OSGi Service Platform, which defines a
framework to dynamically deploy services in a centralized (i.e., non-distributed)
environment. The core OSGi framework automatically manages aspects of lo-
cal service deployment, such as Java package dependency resolution, but leaves
service dependency management as a manual task for component developers.
iPOJO is built on top of the OSGi service platform for three main reasons:

– It is service-oriented platform,
– It is applicable to a large range of use cases (from mobile phones to applica-

tion servers), and
– It is a dynamic platform, which is particularly interesting from a research

perspective.

Although iPOJO is built on top of the OSGi Service Platform, the concepts it
embodies are applicable to any service-oriented platform. The name iPOJO is
derived from the phrase injected POJO, since the general approach of iPOJO is
to inject POJOs with byte code to perform the management of non-functional
behavior. Specifically, at component packaging time iPOJO instruments the com-
ponent byte code to intercept all member field accesses. With this simple mod-
ification, iPOJO is able to inject member field values inside of the component
when needed. At runtime, iPOJO uses the OSGi service registry to discover,
track, and publish services. iPOJO also manages component property configura-
tion, dynamic service properties, and publication of component factory services.

6.2 Experimentation

The ANSO project, supported by ITEA, is an European project attempting
to design a residential gateway. The gateway is intended to manage devices
1 http://incubator.apache.org/felix/
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available in the home and provide higher-level services like alarm management
and video-on-demand. A prototype of the ANSO gateway [1][2] was developed
using iPOJO to manage available services. The motivation for using iPOJO was
due to the fact that residential environments are very dynamic: devices (e.g.,
mobile phones, PDAs) appear and disappear dynamically and device state may
change often as well as the end user context. iPOJO is used to aide developers in
creating applications in such an environment; developers do not need to manage
service events, device discovery, and invocation protocols. Additionally, iPOJO is
used by EDF (French electricity company) to manage multi-modal interactions.
In this context, iPOJO is used to manage dynamic availability of interactive
devices (e.g., a mouse or joystick) in order to find the best configuration for
disabled people [18].

7 Related Work

Component models and frameworks are not new. Numerous well-known exam-
ples exist, such as Common Object Model (COM) [3], JavaBeans [19], Enter-
prise JavaBeans [20], Fractal [4], and CORBA Component Model [14]. These
component models and frameworks target various application domains. These
approaches typically have a significant developer cost associated with them, such
as the need to implement specific interfaces, extend specific base classes, and
use specific application programming interfaces. A newer trend for component
models is appearing that promotes the notion of POJOs, like EJB 3.0 [21] and
Spring [12]. In these approaches, like in iPOJO, developers program POJOs
and then configure a container that contains the POJO. Despite these similar-
ities, these component models do not tackle the issues of dynamic availability
and dynamic run-time composition. Using components to implement services is
becoming relatively popular [22][23]. Some service-oriented component models
exist, like Jini, Service Component Architecture (SCA) [10], Service Binder [5],
Declarative Services [16], and Spring-OSGi [11]. Jini is a Java-based distributed
middleware platform that supports the existence of multiple service registries.
Jini uses the concept of service leasing as a mechanism to limit the time a client
can access a service. However, Jini does not support a composition model and
is intimately tied to Java remote method invocation (RMI). SCA provides a
service-oriented component model mainly designed for web services. SCA de-
fines an assembly model for loosely coupled web services. SCA components
can support several kinds of implementation languages, e.g., Java, C++, and
BPEL [8] processes. The SCA programming model uses Java annotations and
is close to POJOs. SCA does not address dynamic availability and does not
manage dynamic composition. Declarative Services in the OSGi Service Plat-
form Release 4 specification was inspired by the work on Service Binder. Both
address building component-based applications from dynamically available ser-
vices. The approach taken by these component frameworks is somewhat complex
since it involves using stylized programming and specific application program-
ming interfaces. iPOJO is actually a continuation of the Service Binder work
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and attempts to rectify the shortcomings of that approach. Moreover, iPOJO
provides an extensibility mechanisms away from Declarative Service. Spring-
OSGi is the integration of the Spring framework with the OSGi framework.
As with iPOJO, this new service component model uses POJOs and tries to
address dynamic availability. Spring-OSGi uses an aspect framework to inject
service dependencies. However, the developer need to explicitly manage excep-
tions when an unavailable service is used. Spring-OSGi also does not manage
dynamic service properties and component factories.

8 Current and Future Work

This section explores current and future work that is being investigated as part
of the overall research strategy of iPOJO. These issues can be divided into two
main categories: service specification description and hierarchical composition.

8.1 Service Specification Description

Typically, service description is limited to the service interface definition and
a set of properties. In order to automatically compose services, it is necessary
to have a richer description of services. One simple example is the need for
service-level dependencies. iPOJO’s approach is to define compositions in terms
of services, but without service-level dependencies then all composition must oc-
cur in glue code or within component implementations, which limits reusability
and substitutability. The iPOJO approach allows developers to expose service-
level dependencies at design time (see figure 9). The benefit is that these de-
pendencies enable simple structural composition purely in terms of services so
that management and verification of these dependencies can be offloaded to the
component framework. This is different than web service composition, where
services merely provide functionality and do not exposes any structural informa-
tion. Additionally, service specifications become richer since it is now possible
to parameterize service behavior in a well-defined way and create service spec-
ifications that follow patterns like model-view-controller. The service consumer
is not impacted by this increased richness and continues to use the service as a
black box.

It is also necessary to investigate forms of semantic, behavioral, and contex-
tual description of services. Such additional richness will further improve the

Fig. 9. An example of structural service composition
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component framework’s ability to determine when a service is appropriate for a
given composition or which service to choose when many potential candidates
exist.

8.2 Hierarchical Service Composition

Generally, service compositions are created using orchestration, like BPEL. In
such a case, an orchestration engine manages the service invocation sequence
and the information exchange among services.

Fig. 10. Composite service

Another way to create service compositions is following a more component-
oriented approach using hierarchical compositions to create composite services.
Unlike traditional component-oriented approaches, these composite services are
expressed in term of services instead of component instances to enable late selec-
tion and binding, which enables dynamic adaptability through substitutability.
Figure 10 depicts an example of hierarchical service composition. As service-
oriented component applications grow in size and complexity, composite services
also provide a way to mitigate this complexity by further subdividing the ap-
plication. A composite service creates a scope that encapsulates the constituent
services from external services and vice versa. A composite service can import
and export services from/to its parent composite. The service bindings among
components inside a composite service are resolved only with services available
in the composite or those which are imported.

9 Conclusion

Traditional component models and frameworks simplified software system de-
velopment by enabling developers to break software systems into independent
pieces with well-defined interfaces. While the component-based approach led to
advancements in the software development process, it still has its limitations. In
particular, after a component-based application is developed and deployed it typ-
ically is a monolithic and static configuration of components. This contrasts the
growing interest in creating applications that react dynamically to changes in the
availability of various services. This paper presented iPOJO, a service-oriented
component framework that is trying to simplify creating dynamically adapt-
able software systems. The iPOJO approach is based on a model that combines
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concepts from service-oriented computing with component orientation. iPOJO
implements its component model using byte code instrumentation, enabling the
use of simple POJOs as components. From this foundation, iPOJO is able to
manage all service-oriented aspects of its model on behalf of the components
(e.g., service dependency resolution, service publication, dynamic service prop-
erties, and ongoing service availability tracking). The result is applications that
are dynamically adaptable to changing service availability. iPOJO has demon-
strated its usefulness in various prototypes and is available as part of the Apache
Incubator Felix project. Work continues on enriching iPOJO and evaluating its
usefulness after its initial successes.
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Abstract. This paper explores service composition in pervasive envi-
ronments with a focus on dynamic service selection. Service orientation
offers the dynamism and loose coupling needed in pervasive applications.
However, context-aware service composition is still a great challenge in
pervasive computing. Service selection has to deal with dynamic con-
textual information to enable context-aware behaviors to emerge from
the environment. This paper describes how to add dynamic contextual
service ranking mechanisms to the service-oriented OSGi framework and
further discusses service re-composition decisions.

1 Introduction

Pervasive environments emphasize the need for application dynamism and au-
tonomic behaviors. These environments are characterized by the variability and
mobility of acting entities on the network. Dynamically composing applications
and guaranteeing service continuity to the users is a grand challenge in pervasive
computing.

The home network is such an environment. Heterogeneous mobile and fixed
devices join and leave the network. Numerous protocols coexist and provided
interfaces need to be adapted. These devices offer various features to the users.
Home context dynamism comes on the one hand from device mobility and evolv-
ing capacities and on the other hand from user mobility and activity.

Our previous work answered pragmatic problems related to dynamic service
availability, distribution and interface heterogeneity [3]. In this work we also en-
countered other issues regarding dynamic adaptability. Context awareness is the
key aspect in pervasive computing on which our present work focuses. Context
awareness based on a context management system is a non-functional need that
can be automatically dealt with in pervasive software composition.

Device self-organization and feature composition fulfilling the needs of the
users are the ultimate goals for work in pervasive environments. Since service
orientation is at the basis of much work in pervasive computing, many attempts
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to reach "self-organization" focus on service composition. Available plug-n-play
middleware relies on protocols for service discovery, service description, service
control and address some other features from Quality of Service (QoS) to security
[19].

Service selection and ranking, which consist of selecting the most appropriate
service provider out of a list of discovered ones, is however not fully addressed
by available service-oriented protocols today. The mechanisms are complex due
to the complexity and dynamism of the home context. This task is often left to
manual configuration. Automatic service selection is a difficult task that a lot of
work tries to tackle. We propose a realistic approach in this domain and describe
the implementation of our ideas on top of the OSGi framework [15].

This work is carried out within the ANSO project, which brings together
major European actors interested in the development of pervasive home ser-
vices, including telecommunication operators (France Telecom), video companies
(Thomson) and home control solution providers (Schneider Electric). This work
is demonstrated on a home application jointly developed by France Telecom and
its ANSO partners [2].

The next section describes our vision of context management in service-
oriented applications. The service selection problem is defined in section 3. The
framework implementation on top of the OSGi platform [15] is detailed in sec-
tion 4. The realization of a context-aware application on top of this framework is
depicted in section 5. Comparisons with related work are found in section 6. The
last section concludes on the use of this framework and discusses the opportunity
to leverage this work to further design generic service rebinding mechanisms.

2 Vision

Application intelligence emerges from the behavior of its constituent compo-
nents. In order to let the intelligence emerge from software composition, we
strongly believe in a component-oriented vision where components are self-
descriptive and self-adaptive. Autonomic mechanisms are to be implemented
at the fine-grained level of the architecture. Our approach follows the grand
challenge vision of autonomic computing [13].

Autonomic elements in our system are software components that provide and
require services (see Figure 1). These services are distributed on the network
or only locally visible on service platforms. Many works show how to reify dis-
tributed components on service platforms [3]. So the composition issue here is
reduced to composition of local components on a unique service platform. Pro-
vided services and required services are declared at the component level in a
specific component description. We leverage a service-oriented component archi-
tecture where service dependencies are dynamically resolved on every component
thanks to a generic container dedicated to service publication, service discovery
and service binding [4].

The target environment of our prototype is the home network [2]. In this
environment, context-aware applications must adapt themselves according to
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Fig. 1. Autonomic elements represented on service platforms

dynamic variables. The home context consists of (i) the user context comprised
of location, preferences and activity, (ii) the device context comprised of loca-
tion and capacities (iii) and external physical context such as place properties
(weather parameters, physical location, etc.) [17].

This context is assessed by a context management system reasoning on infor-
mation coming from sensors distributed in the environment. This system is vis-
ible on our service platform in the form of services identified as context sources.
Based on reasoning techniques, context sources are able to identify, locate and as-
sess the activity of users and devices in the home. Some context sources directly
represent underlying sensors and some others provide treated and aggregated
information from one or several context sources.

Context sources are the entities responsible for the contextualization of service
trading. On the one hand, high-level context sources dynamically qualify pro-
vided services with contextual properties. On the other hand, they dynamically
refine service requirements with contextual information.

We consider that the service platform is the smart dynamic receptacle of
pervasive entities. This adaptable receptacle turns pervasive software composi-
tion into the composition of uniform contextualized service components. Service
components are running on an adaptable executive environment, which we call
a service platform. The main role of the platform is to adapt to the environment
in locally representing all the relevant external entities with their context on the
platform.

The contextualization of service trading in our platform-centric vision is dis-
cussed in the remainder of this paper.

3 Service Selection

3.1 Concepts

Service selection consists of selecting the most adequate service provider accord-
ing to service requester needs. A service is described by a type (a.k.a. an abstract
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interface) that determines a set of operations (a.k.a. methods or actions) and by
service metadata (e.g., properties) that qualifies the service. Service metadata is
linked to contextual properties like location, features quality, current available
capacities, etc.

Service metadata is often attribute-value pairs in various service architectures
(OSGi [15], SLP [11], UPnP [8], Web Services [10] with ws-metadata-exchange
and ws-policy). Services in the OSGi framework and in protocol middleware like
SLP and UPnP can have an arbitrary set of attribute-value pairs attached to
them. WS-Policy defines an extensible grammar to express capabilities for Web
Service Provider and requirements for Web Service requester. Multiple attribute-
value pairs with scoring functions are particularly common in e-commerce (see
[14] for a list of technologies).

Many concepts are defined in existing middleware and in scientific literature
to allow service selection:

– A scope defines the perimeter of a search request. Scopes are usually de-
termined by network topology, user role or application context [19]. For
instance, multicast communication methods naturally limit UPnP search
requests to topological networks. Contextual scopes in SLP are freely as-
signed by service providers to their services at registration time and service
requesters use scopes as a primary search filter. The use of hierarchical com-
position scopes is promoted in some component oriented architectures [4].

– A filter narrows the set of available services according to the service re-
quester needs. It defines an acceptance threshold. In service-oriented archi-
tecture, the main filter concerns the service type. A service requester usually
looks for precise service types. In models defining service properties as a set
of attribute-value pairs [4], the equality operator and threshold operators are
possible basic filter operators. We may distinguish mandatory and optional
filters. A mandatory filter is always evaluated before service binding and
eliminates the services that do not match from further evaluation. Optional
filters are evaluated if the remaining number of services after the manda-
tory filter evaluation is greater than the number of services expected to be
bound. They refine the first filter in order to narrow service selection (e.g.,
[9]).

– The objective of a scoring function (a.k.a. utility function, objective func-
tion, etc.) is to rank all the filtered services in a total order according to
the adequacy of their ability to meet the service requirements. Many ap-
proaches on service ranking are based on the utility theory [12]. The lat-
ter defines properties as a set of attribute-value pairs qualifying resources,
which may be services. A scoring function is a sum of weighted placeholders.
Place-holders are attached to subscores evaluating property values of the
potential services against the resource requester needs. The scoring function
enables the service requester to rank available service providers. The service
provider getting the best score is considered the one that optimizes service
composition.
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– Policies define ranking algorithms and may be implemented with scoring
functions [14]. A policy has a very generic meaning. Some definitions embrace
a more generic rule-based mechanism like Event-Condition-Action rules. For
instance, reactive adaptation policies are defined in [7].

3.2 Problem Definition in Context-Aware Applications

Most of the service middleware only provides simple means to select services.
Selection most often relies on scopes and filters due to the simplicity of these
mechanisms. Scopes and filters narrow the set of possible bindings, but they make
the service requester consider the remaining possibilities as identical. Service am-
biguity occurs when several service providers fulfill the same service requirement.
Therefore, these mechanisms do not avoid service ambiguity, which leads to com-
position unpredictability. This problem raises the need for the introduction of
ranking algorithms in service composition mechanisms.

In context-aware applications, algorithms target the ranking of service
providers against service contextual requirements at runtime. High-level mecha-
nisms are required to separate the definition of contextual behavior from the core
application. The problem can be decomposed into 4 subjects that are discussed
in the next section:

– Contextual service property management: Service provider context
may be acquired into the device itself or externally. This information has to
be dynamically added in the description of the provided services.

– Contextual service requirement management: Static preferences and
dynamic activity may be acquired through some internal inputs or external
ones to the service requester. This information has to be dynamically added
to the requirements of service requesters.

– Dynamic service ranking: Requirements can be designed into scopes, a
mandatory filter, optional filters, and a sorting algorithm in order to dynam-
ically rank the available services. A change in rankings generates rebinding
actions.

– (Re-)binding behaviors: The designer has to map (un, re-)binding ac-
tions on ranking change events. Rebinding actions are connected to service
continuity concerns, which lead to tasks that are difficult to automate and
are often left to developers. Ranking change events are categorized in the
next section.

4 Framework Implementation

Our contribution targets improving the OSGi Declarative Services model, which
is based on early work described in [4]. This model is a service-oriented com-
ponent model on top of the OSGi core framework. In this model, a component
declares service requirements and provided services in a static file. A service de-
pendency manager parses this declaration and manages the component life cycle
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with regard to service dependency resolution. The service dependency manager is
responsible for service filter evaluation, service tracking according to this evalua-
tion, service selection, service binding and service publication. On service arrival,
service departure and service property change, service events are generated by
the service registry. These events are received by the service dependency man-
agers that are looking for matching services. Re-composition is triggered by these
events at the component level.

Some features are missing in this model to fully adapt component life cycle
to internal and external context dynamism:

– Component description dynamism: The description of the components ser-
vice requirements and provided services is dynamically populated with con-
textual information in our architecture whereas Declarative Services only ad-
dresses static component description. Our contribution introduces writable
service properties and writable service requirements at runtime.

– Enhanced service selection mechanisms: Optional filters and a ranking policy
are added to the declaration of service requirements. Declarative Services
only supports a unique mandatory filter.

In our extended framework, the service dependency manager enables service
properties dynamic evolution, re-evaluates filters, adapts service tracking (active
and passive service discovery), and adapts service selection. The dependency
manager listens to service and contextual changes to dynamically bind the best
subset of services. Thus, a specific view of the service registry is maintained for
every service requester. Service requester bindings are dynamically changed by
the dependency manager whenever a filtered unbound service gets a higher rank-
ing than a bound one. Re-composition is then triggered by internal and external
contextual events and is enhanced with complete service selection mechanisms.

4.1 Contextual Service Properties Management

Entities attaching scores and entities evaluating the scoring function must share
the same context evaluation grid. It is possible to let every service provider
declare their own contextual metadata and to let service requesters evaluate
it. This is naturally done in most research work [14]. However, the fact that
these entities share the same context semantics implies strong coupling between
service providers and service requesters. This assumption goes against the loose
coupling predicate of our service-oriented architecture.

In order to maintain loose coupling, we advocate that contextual property
attachment be dealt with by the service context management layer itself. In
our architecture, high-level context sources are capable of identifying software
components and attaching the relevant contextual properties to the service spec-
ification at runtime.

Service providers are their own context sources for some contextual informa-
tion (service state, service features, estimated QoS, etc.) and rely on external
context sources for other contextual information (location, tested QoS, user rat-
ing, user immersion level, etc.).
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In our framework, service provider metadata is populated with contextual
properties by context source components. This feature makes use of the Con-
figuration Admin model of the OSGi specification. In this model, the service
provider has to additionally publish a Managed Service in the service registry.
This enables external components, with the appropriate permission, to add, mod-
ify, and delete the properties of the provided service. Whenever the properties
change, the service object (object representing the service provider) is directly
called to make it aware of the update. The service object may internally react
to this change.

Fig. 2. Context sources populate services with contextual properties

In a service-oriented model, it is natural to design context sources as service
providers. Some entities are responsible for aggregating context from context
sources and assigning contextual properties to the relevant managed services. For
instance, a location server may infer location information from context sources
and attach location properties to managed services representing UPnP devices
on the network. Another example could be a user preferences server that adds
user rating information to managed services.

Thanks to this model, application components need not adhere to context
management service interfaces. The only interface between application com-
ponents is the shared service registry, which enables service properties to be
writable (see Figure 2). The Managed Service interface is a neutral interface
enabling the components to be aware of contextual changes and to declare the
ability to accept property modification.

4.2 Contextual Service Requirements Management

Service requesters are also their own context sources for some contextual infor-
mation (application state, user input through graphic interfaces, etc.) and rely
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on external context sources for other contextual information (user location, user
activity, user preferences, desired QoS, etc.).

Service requesters follow the same pattern as service providers: High-level
context sources attach contextual information to service requirement descrip-
tions. Service requirements must then be accessible to components other than
the service requester. We propose to register them in the service registry in our
architecture with a simple interface which is defined below:
public interface ManagedRequester{

ComponentInstance getInstance();
void filterPartsUpdated(Filter f) throws ConfigurationException;
addOptionalFilter(Filter f) throws ConfigurationException;

}

Every time a new component declared to have a context-aware behavior is
instantiated, the service dependency manager associated with it registers a Man-
aged Requester service for it. The ComponentInstance object mentioned in the
interface provides the service requirements of the component. The method fil-
terPartsUpdated enables context sources identifying the component to add some
complementary contextual filters to the component filter. addOptionalFilter is
a method enabling the allowed configuring components to add an optional filter
to the managed service requester. The filters of the component are then writable
in our architecture.

In order to show the specific interests of the requester, it is appropriate to allow
placeholders to be added to the filter. These placeholders are interpreted by con-
text sources, the configuring components in our model. For instance, an applica-
tion looking for services in the room where a user called Maxandre is found would
have the following filter part expression: location=$location-room{Maxandre} fol-
lowing the context-sensitive syntax of [5]. Location information sources would
then be able to write the value of any property written this way.

Thanks to this model, the context management system is partly responsi-
ble for service binding decisions. In order to promote self-adaptability prior to
manageability, components are responsible for property propagation: In our ar-
chitecture, service providers and service requesters can ignore or modify the
parameters which are submitted to them.

4.3 Dynamic Service Ranking

Scoring functions may be described in a complex language. The following exam-
ples are ranked from the easiest to the most complex. The first two functions
are easily described with standard mathematical functions; the third one refers
to a function attached to a specific semantic data model. It is noticeable that
the last two also refer to a maximum value that is application-specific:

– Giving a score to a price, looking for a minimum, after having filtered the
service with mandatory filter (&(price < 100)(currency = dollar)):

(100 − price)/100 (1)
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– Giving a score to the distance between a user and devices defined with geo-
metrical parameters in a basic model, looking for a minimum:

Maxdistance −

√

((xdevice − xuser)2 + (ydevice − yuser)2 + (zdevice − zuser)2)
Maxdistance

(2)

– Giving a score to the distance between a user and devices defined in a se-
mantic data model, looking for a minimum:

distance(roomdevice, roomuser)/Maxdistance (3)

The examples show that scoring functions can be made of complex sub-
functions. Moreover, it shows that evaluating the adequacy of declared service
properties to service requirements is an application-specific task. We then con-
sider the scoring function as a method in object-oriented programming.

From a component’s perspective, service ranking may occur either internally
or externally depending on the circumstances. Service context management must
be able to support both. However, mixing complex ranking policies coming from
inside and outside of the component appears to be very complicated. Since com-
ponents are self-adaptable we define the ranking policy in the component itself
in the present architecture. In our framework, it is called by the service de-
pendency manager of the component. We are currently thinking about a more
generic ranking algorithm based on scores attached to service providers and cor-
respondent utility weights populating service requirements, but big issues are
raised with this approach. A generic utility function is also to be called on the
service dependency manager of the component.

Two selection mechanisms are added to the Declarative Services unique
mandatory filter:

– Optional filters are added to the first one. Optional filters enable further
selection when many service providers are fulfilling mandatory ones. DSCL
language [9] also defines mandatory and optional filters for better service
selection. Optional filters may be numerous and organized from the most
important to least important. This ordering enables progressive selection.

– A method name referring to a Java callback method in the component code
allows developers to program a complex ranking method in the component.
The ranking method is called with the remaining service references to be
ranked as input arguments in order to let the component sort them in a
total order. The component is then bound to the best available service (see
the mentioned sort-method in the XML description of the user control factory
of the application example in section 5).

The limitations of the Declarative Services model for service selection are
overcome in our model with writable filters, optional filters declaration, and the
addition of a method declaration in the XML component requirements descrip-
tion (see sort-method attribute in XML descriptions below). This way, filters
may be defined internally and externally at runtime and the sorting algorithm
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is expressed by the developer of the service requester with the expressiveness of
the Java programming language. A hook method is also given in order for the
component to warn the component manager to evaluate this ranking method
again on internal events.

4.4 (Re-)binding Behaviors

The component life cycle is affected by dynamic service ranking improvement
(see Figure 3). Optional filters and the ranking method are only processed on
components with a service requirement that is declared to be fulfilled with a
limited number of service providers (i.e., a binding cardinality of 0..x and 1..x
where x belongs to ]0, ∞[; in standard OSGi Declarative Services x may only take
the value 1). Otherwise, the component binds to all the available service providers
fulfilling the mandatory filter - narrowing service selection seems useless in the
case where x = ∞. Optional filters and the ranking method are called after
mandatory filter processing and before calling the binding method. It is called
in 3 types of situations:

– whenever a service is registered (or modified) and fulfills the service manda-
tory filter,

– whenever a current bound service is modified or unregistered,
– and whenever the component requirements change (mandatory filter, op-

tional filters, or service ranking method).

5 Realization: A Context-Aware Application

Building a context-aware instant messaging application consists of dynamically
binding to the adequate input/output services according to the user location and
the user activity and interacting with the other devices that have an impact on
this activity. When the user sits in front of the TV, the system may direct the
communications to a part of the TV screen using the Picture In Picture system. If
the user is having a nap on the couch, the state of the communications is viewed
through colors and brightness on a lamp emitting a low-level light. When the
user enters the kitchen to drink a soda, he may listen to the communications
through a text-to-speech system if no display is available. When he arrives at his
desk, the communications are set in an usual instant messaging user interface
on the computer. Moreover, as the instant messaging application is informed
about the user context, device context and physical context through the use of
a context management infrastructure, user state usually typed by the user are
inferred by the system and redirected on the current output interface.

The application is implemented as components in our extended model:

– A location server and a context server are simulated on a service platform
of the network. Both simulated components require and configure all the
Managed Services and the Managed Requesters, especially those which are
qualified with a property querying the location of known users and devices
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Fig. 3. Service component life cycle

(e.g., see user control component factory description below). High-level key
dynamic pieces of information are the willingness and the ability to commu-
nicate of every identified user [6].

– Some components represent physical devices (ambient lamp, computer, text-
to-speech system) and are registered as delivering input/output user inter-
faces. These are dynamically categorized with location and contextual prop-
erties by the location server and the context server. Contextual properties
are the user rating, the user willingness threshold and the necessary ability
threshold.

<!-- Ambient lamp -->
<component name="AmbientLamp">
<implementation class="device.AmbientLamp" />

<service>
<provide interface="api.InstantMessagingUI,

org.osgi.service.cm.ManagedService"/>
</service>
<property name="location" value="living-room" type="string"/>

</component>

– A proxy representing a server of the instant messaging application located
on the Internet.

– A user control component factory is responsible for instantiating as many
user control components as the number of identified users. Every user control
component is the instant messaging client for a particular user. This compo-
nent links the instant messaging application server on the Internet and the
input/output devices used by the user. It keeps control of the application
state, i.e., maintaining the user contextual state in the instant messaging
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application, maintaining the communication history and ensuring communi-
cation continuity at service re-composition time.

<!-- user control component factory -->
<component name="UserControlFactory">
<implementation class="pack.UserControlFactory" factory="true"/>

<provide interface="org.osgi.service.component.ComponentFactory,
configuration.ManagedRequester" />

<reference name="imServer"
interface="api.InstantMessengerServer"
cardinality="1..1" policy="dynamic"
bind="bindServer" unbind="unbindServer" />

<reference name="imUserInterface"
interface="api. InstantMessagingUI"
target="( & (location=$location-room{$user{unknown}} )

(willingness < willingness{$user{unknown}} )
(ability < ability{$user{unknown}} ))"

optionalfilters="(sound.system=5.1)"
cardinality="1..1" policy="dynamic"
bind="bindUI" unbind="unbindUI"
sort-method="sortUI"/>

</component>

The developer of the user control component factory defines three methods
(bindUI, unbindUI, sortUI ). bindUI and unbindUI are called respectively at
binding and unbinding time. sortUI is called if service ranking is necessary.
The service dependency manager is notified whenever new user interfaces are
registered, modified or unregistered. Any time such an event occurs, it automat-
ically updates the ranked list of filtered services. If the best available service has
changed, the binding method is called and then the unbinding method is called
to unbind the previous player.

As the user moves across rooms, the component instance attached to this user
is notified by the location server through the use of writable filters when the user
moves or begins a well-defined activity. Any time such an event occurs, service
dependency tracking is reconfigured. The service ranking list is then updated
and automatic re-binding behavior is triggered as mentioned before if the best
service changes.

These components are packaged into bundles running on top of any OSGi
platform implementation, e.g., Apache Felix. The implementation of the service
dependency container (Declarative Services implementation) extends the one
provided in the Apache Felix project.

6 Related Work

Our model on top of the OSGi framework fits a part of the architectural approach
described by Steve White et al [18]. Our autonomic elements are self-described
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components able to classify provided services thanks to high-level internal poli-
cies. It enables self-assembly without requiring central planning. However, we are
thinking of a more generic approach where internal policies can be mixed with
external policies, which can be added at runtime in order to externally refine
statically defined incomplete behaviors.

Among the described infrastructure elements described in [18], we make heavy
use of the registry provided by the OSGi framework. The service registry offers
the means to publish, find and bind services. It is the interface enabling the
contextualization of software composition in our architecture.

David et al. [7] describe the implementation of self-adaptive mechanisms
on top of the Fractal component model. The authors define reactive adapta-
tion policies with Event-Condition-Reaction rules that are externally attached
to the components. Internal and external events trigger the rule-based reac-
tions. Reaction code is weaved into the base component implementation at
runtime thanks to powerful aspect-oriented programming features. However,
the architecture description language is made at a high level in the architec-
ture whereas the components are self-descriptive in the model we chose. This
aspect and the generic service trading mechanisms at the basis of our frame-
work are more appropriate for representing the pervasive elements of the tar-
geted environments. It lets software composition spontaneously emerge at
runtime.

Chen et al. [5] introduce a context-sensitive model for resource discovery that
uses INS (Intentional Naming Service) [1]. The proposed architecture enables dis-
tributed entities to publish and discover context attributes expressed in a simple
syntax. This work could plug a complementary context management infrastruc-
ture into our design. Context sources could publish information through the use
of context-sensitive names. Service requirements may be described with place-
holders that the context management system could interpret as context-sensitive
name queries. Context streams of Chen’s architecture could then populate the
service registry with contextual information.

A rich language dedicated to contextual service composition is described in
[9]. It introduces a self-descriptive component model close to ours with service
selection mechanisms based on attribute-value properties including mandatory
and optional filters, contextual composition rules, and utility functions. Dynamic
service availability and contextual service selection are clearly addressed by the
work of Funk et al, nevertheless the definition of contextual behavior remains
static.

The architectural design of a context-aware service discovery is described by
participants in the European IST Amigo project [16]. The objective of the archi-
tecture is similar to ours: it links service discovery with a context management
system and targets dynamic service composition in pervasive environments. The
work carried out goes further in contextual information description in dealing
with context ontology. It appears complementary to our work that targets clear
component architecture in a software engineering study.
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7 Conclusion

In this paper, we described a service-oriented component framework to structure
the implementation of context-aware applications in pervasive environments.
This framework enables dynamic service composition of pervasive entities in
the network. The originality of the compositional approach relies on the con-
textualization made at the service registry level and on the automated decision-
making mechanisms at the component level. Smart behaviors of the applications
emerge from this autonomous composition of self-descriptive and self-adaptive
components.

We strongly believe in a platform-centric vision where the execution environ-
ment reflects the pervasive aspects of the environment: Dynamic service avail-
ability, protocol heterogeneity, interface fragmentation and context dynamism.
Every relevant entity on the network is reified on the platform and visible in
the service registry. The registered services are also dynamically populated with
contextual properties. In the described architecture, service requirements are
declared at the component level and are also refined by dynamic contextual in-
formation with a similar model. The framework makes heavy use of the local
dynamic service orientation of the component model.

Service selection mechanisms are needed in service-oriented architectures in
order to overcome service ambiguity, which leads to composition unpredictability.
Most service middleware defines scopes and filters to narrow unpredictability.
Service ranking is another mechanism to achieve service selection. Moreover,
service ranking is at the basis of self-optimization, which is one of the main
design patterns in autonomic computing architectures [18].

In order to insert dynamic service ranking algorithms into service composi-
tions, a compromise is made between the need to externally configure require-
ments and the need for powerful expressiveness in ranking algorithms. The algo-
rithm is expressed in the programming language of the component and is called
by an enveloping container.

In an attempt to further simplify the adoption of this architecture design, we
are investigating using a POJO (Plain Old Java Object) programming paradigm.
Existing implementations show that some non-functional needs are cleanly
masked from the developer thanks to these techniques. This new trend is gaining
momentum in the Java community, but it obviously raises other issues.
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Abstract. A persistent computing system is a reactive system that
functions continuously anytime without stopping its reactions even when
it needs to be maintained, upgraded, or reconfigured, it has some trou-
ble, or it is attacked. However, the requirement that a computing system
should run continuously and persistently is never taken into account as
an essential and/or general requirement by traditional system design and
development methodologies. As a result, there is no clearly defined stan-
dard to be used for measuring the reactability of a computing system.
This paper proposes the first method to measure the reactability of a
persistent computing system in a unified way. The paper introduces the
notion of reactive processing path among components and shows that
the reactive processing paths can be used to measure the reactability of
a persistent computing system.

1 Introduction

Motivated by needs to provide continuously available, reliable, and secure com-
puting systems, we have proposed a new type of advanced reactive systems,
named persistent computing systems [1,2]. A persistent computing system is a
reactive system that functions continuously anytime without stopping its reac-
tions even when it needs to be maintained, upgraded, or reconfigured, it has
some trouble, or it is attacked. From the viewpoint of reaction, all states of a
computing system can be classified into three classes: reactive state, partially re-
active state, and dead state. They mean, respectively, that the system can react
completely, it can react partially but not completely, and it cannot react at all.
Based on this definitions, a persistent computing system can be defined as a
reactive system which will never be in the dead state [2].

The most fundamental issue towards implementation of a persistent comput-
ing system is how to measure the reactability of the system. Here we use the
term “reactability”to represent the capability how many kinds of input data a
running reactive system can react to at a certain time. Obviously the reactability
of a persistent computing system is the most important property to character-
ize the system. However, the requirement that a computing system should run
continuously and persistently is never taken into account as an essential and/or
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general requirement by traditional system design and development methodolo-
gies. As a result, there is no clearly defined standard to be used for measuring
the reactability of a computing system.

This paper proposes the first method to measure the reactability of a per-
sistent computing system in a unified way. The paper introduces the notion of
reactive processing path among components and shows that the reactive pro-
cessing paths can be used to measure the reactability of a persistent computing
system.

2 System Model

A persistent computing system can be built as a component-based system con-
sisting of control components with self-measuring, self-monitoring, and self-con-
trolling facilities to preserve reactability of the system and functional components
to carry out special functionalities of the system [1,2]. In this context, almost all
traditional component-based systems can be regarded as being constructed only
by functional components.

We summarize some definitions about component-based systems as follows.
The definition of a component proposed by Szyperski is “A software component
is a unit of composition with contractually specified interfaces and explicit con-
text dependencies only” [3]. An interface is an abstraction of the behavior of
a component that consists of a subset of interactions that component together
with a set of constraints describing when they may occur. A component can
have one or more interfaces, and performs its operations via their interfaces. A
system is constructed by components and binding their interfaces appropriately
at the configuration level, and overall behavior of the system can be defined as
sets of operations with partial orderings.

3 The Notion of Reactive Processing Path

A natural and simple way to measure the reactability of a persistent computing
system may be to count the numbers of workable and unworkable components of
the system in the following sense: reactability is a ratio of the number of workable
components to the total of components in a system. The reactive state can be
defined as the state where all components are workable, a partially reactive state
can be defined as the state where there exists both workable components and
unworkable components, and the dead state can be defined as the state where
there is no workable components.

However, this method has two problems. First, it is too rough to a system
with some components which have several interfaces because such a component
may be partly workable even when it cannot perform some operations. Second,
in general, reactions of a system should be behavior concerning all components
of the system as the whole rather than individual components. Let us consider
a simple system where all components interact each other in the pipe-and-filter
style. The system must be in the dead state when one component is unworkable
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even if all other components are workable. This example shows that we cannot
regard a system as being in a partially reactive state only based on the fact that
there exist some workable components in the system. The two problems show
that for measuring the reactability of a system it is not satisfactory to count the
numbers of workable and unworkable components of the system.

Thus, we consider that operations and the order among them performed by
component interfaces of a persistent computing system are the most primitive
entities in the behavior of the system. Therefore, to measure the reactability
of the system, the operations and the order among them have to be taken into
account. Based on the fundamental consideration, we introduce the notion of
reactive processing path to specify a series of operations.

Conceptually, a reactive processing path, RPP for short, is simply a directed
acyclic graph which specifies operations and the processing order among them
performed by component interfaces of a persistent computing system. By using
this notion, a reaction of the system can be defined as an execution path from
its start-operation to its end-operation.

Definition 1 (RPP). A reactive processing path (RPP) is defined by a 7-tuple
RPP = (O, Ointernal, Oexternal, s, e, C, F):

– O is a finite set of operations of a reaction,
– Ointernal ⊆ O is a finite set of internal operations that do not interact with

the outside environment,
– Oexternal ⊆ O is a finite set of external operations that interact with the

outside environment,
– Ointernal ∩ Oexternal = ∅ and Ointernal ∪ Oexternal = O,
– s ∈ O is the start-operation (origin of the path),
– e ∈ O is the end-operation (terminal of the path),
– {s, e} ∩ Oexternal �= ∅ (One of or both of them are elements of Oexternal),
– O − {s, e} ⊆ Ointernal,
– C is a finite set of pre- and post- conditions to perform the operation.
– F : C → O.

Pre- and post- conditions in operations C stands for control flow relations be-
tween operations and is used to build forks, and synchronizers of the path. A
fork allows independent execution between concurrent paths within one RPP
and a synchronizer is applied to synchronize such concurrent paths.

These two types of modeling objects have already been provided in workflow
graph [4,5], and it can help to handle behavioral concurrency. On the other hand,
the clear separation between Ointernal and Oexternal, the restrictions of {s, e} ∩
Oexternal �= ∅ and O −{s, e} ⊆ Ointernal, and the pre- and post- conditions have
never been considered in their approach. We newly introduce these matters in
order to acquire the compatibility with reactive systems. In addition, a workflow
graph is not claim that nodes in the path must be operations performed by
components whereas an RPP claims it explicitly in order to assure compatibility
with component-based systems.
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Note that all RPPs can be decidable statically in the sense that they can be
uniquely decidable by giving the configuration from a certain specification.

Any RPP must provide reachability. To assure this constraint is possible be-
cause we can apply the two correctness criteria in a workflow graph [4,5] to an
RPP as follows: one is deadlock free, i.e., an RPP does not generate an RPP that
contains only a proper subset of the incoming operations of a synchronizer, and
the other is lack of synchronization free, i.e., the summation of all RPPs does
not generate an RPP that contains more than one incoming nodes of a merge
node.

The RPP map means the directed acyclic graph to represent all RPP in a
persistent computing system. The RPP map can be derived from all RPPs in
the system, and vice versa.

Definition 2 (Checking states of RPPs)

– An RPP is active if all operations that consist of the RPP are workable,
– An RPP is inactive if the RPP involves at least one unworkable operation.

An RPP of a reaction is active iff the reaction is alive. An RPP of a reaction is
inactive iff the reaction is dead. Therefore, we can know whether a reaction of a
system is dead or alive by checking whether interfaces of components in an RPP
of the reaction are workable or not.

Using the above-mentioned notions, we acquire ability to distinguish among
the reactive state, a partially reactive state, and the dead state according to the
following definition.

Definition 3 (States of a Persistent Computing System). The states of
a running persistent computing system at given time can be defined as follows:

– a system is in the reactive state if all RPPs are active in the system,
– a system is in a partially reactive state if both active RPPs and inactive

RPPs exists in the system,
– a system is in the dead state if all RPPs are inactive in the system.

If control component can grasp the number of active RPPs by measuring the
running system itself permanently and provide the way to make inactive RPPs
active before all active RPPs fall into inactive, the resulting system will keep
the reactive state or a partially reactive state eternally. On the other hand,
from the viewpoint of repairing, since control components can catch “what an
RPP is inactive” and “what an interface of a component consisting of the RPP
is problematic,” we can get a sound basis “what an interface of a component
should be repaired.”

4 A Design of Reactability Measurement Facilities

To grasp the number of active RPPs, control components must be able to check
conditions of every RPPs in such a way that the components can measure and
monitor the behavior of the system.
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We consider that targets to be measured (tracked) should be interactions
among participating components whose operations consist of an RPP, such that
control components can grasp the progress of operations on the relevant RPP and
reason about whether the every operations from the start-point to the end-point
can complete their executions or not, i.e., whether the RPP is active or inactive.
Note we propose the most primitive design of reactability measurement facilities
for persistent computing systems, in this paper, we do not consider reliability,
security, and real-time properties.

When the start-operation of an RPP starts its execution, the context informa-
tion can be informed to control components. Here context information contains a
4-tuple: (SC −ID, SP −ID, DC −ID, DP −ID). They mean respectively, the ID
of the source component, the operation ID performed by the source component,
the ID of the destination component, and the operation ID performed by the des-
tination component. Note that such context information never contain payload
(body) of the message. Similarly, when a component executes an operation to
interact with other components, only the tuple are sent to control components.
Control components receive such context information and check the conditions
of an RPP by analyzing them.

To decide whether the operation is workable or not, we use two context infor-
mation: one to be used in the output operation of the source component (below
S) and one to be used in the input operation of the destination component
(below D). Control component first check whether DP − ID in S is equal to
SP − ID in D or not, and then calculates the difference between compare time
of receipt of them. An operation can be defined as unworkable if the difference
differs vastly. As a result, control components can grasp the number of active
RPPs.

However, by using such “reactive sensing”, control components can not aware
that an operation in the RPP is in unworkable state till the start-operation
can be executed. Ideally, it is necessary for control components to awake soon
after an operation is unworkable for some reasons (e.g., failures or attacks). As a
practical scheme to solve this issue, we require “proactive sensing,” meaning that
control components send query to a component periodically and then receive the
ACK from the component in such a way the responsible component receives and
sends the messages via the contractually specified interfaces. Since the interfaces
correspond operations consisting of RPP(s), control components can awake that
the relevant operation is unworkable if the ACK can be sent to them in an
allowable time.

5 Discussion

The work presented in this paper is still in progress and as such there remains
many implementation issues to implement control components in a persistent
computing system. From our perspective, we discuss such issues and suggest
promising solutions.
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5.1 How to Sense RPPs States

Gao et al. presented three tracking mechanisms for component-based systems
[6]. One of them is automatic component wrapping that means adding tracking
code to monitor the external interface and behaviors of components by wrapping
them as black boxes. This must be more sound than others, because it does
not require source code, it gains code separation and low overhead, and both
in-house and COTS (commercial off-the-shelf) components can be applied to
our approach. Due to these advantages, we will be able to gain a reasonable
measuring and monitoring mechanism for all persistent computing systems in a
language-independent and platform-independent manner.

5.2 How to Generate the RPP Map

Control components never understand the RPP map of a system without a
specification defined by system developers. Therefore, it is a clearly issue to
decide what languages can be used to specify the RPP map.

There can be two prominent types of such specifications: global ones for the
whole system and local ones for individual components, both of which are basi-
cally application-dependent. A typical example of the former is one specified by
an architecture description language (ADL), whereas an example of the latter
specification is an interface definition of a component, which is usually specified
by a interface definition language (IDL). Since neither ADLs nor IDLs purpose
to describe an RPP map, an attractive way is to elicit the RPP map at run-time
from an architecture or component interfaces automatically. To elicit the RPP
map, we prefer component interfaces rather than an architecture description be-
cause of the following reasons. One is that up-front full precise description of the
architecture of a system (in particular, a dynamically reconfigurable system) is
somewhat restrictive and difficult for developers. The other reason is that ADLs
typically subsume a formal semantic theory (e.g., π-calculus in Darwin), but
developers may not be familiar with such theory.

If we select component interfaces to elicit the RPP map, we should mention
the well-recognized problem: prevalent IDLs provide just the syntactic descrip-
tions of the component’s signatures (names and signatures of operations) and
do not provide protocols (relative order between exchanged messages and block-
ing conditions) and semantics (“meaning” of operations). The lack of protocols
or semantics causes compositional errors [7,8]. To overcome this problem, there
are many well-established researches on extended interface definitions such as
[7,8]. The protocols in such extended interfaces are information we just desire
for control components to understand the RPP map. Hence, it is reasonable to
use component interfaces with such protocol contracts as the specifications of
the RPP map.

5.3 How to Repair Inactive RPPs

Some repairing (or recovering) mechanisms are indispensable for a persistent
computing system in the sense that the system must eventually be in the dead
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state without any repairing mechanism even if the system can accurately measure
reactability of itself.

The most simple way is a manual repair: control components report to an au-
thorized developer or maintainer about what interfaces of components should be
repaired, and he/she repairs the problematic interfaces. Although this is surely
necessary, unfortunately there is no guarantee that he/she can help for the sys-
tem to be recovered whenever the system have some troubles. Therefore, as
more sophisticated ways, some automatic repairing mechanisms must also be
necessary. To our knowledge, even though a number of researches on dynamic
reconfiguration can partly support the repair of a component-based system by
removing or upgrading some problematic interfaces, few researchers focus their
attention on run-time repairing (or recovering) of such a system explicitly. We
must closely investigate this issue and find a good solution. An attractive di-
rection is to integrate several research areas: autonomic computing systems [9],
recovery-oriented systems [10], or self-healing systems [11].

6 Concluding Remarks

In this paper, we have introduced the notion of reactive processing path for
reactability measurement of a persistent computing system. We also presented
how a persistent computing system with the facilities to measure the reactability
can be constructed by a group of control components and a group of functional
components, and discussed its implementation issues. Now we are developing
of the prototype of control components with essential features presented in this
paper.

We have not considered reliability, security, and real-time properties. There
are many interesting issues if we consider those properties. In order to improve
the reliability of persistent computing systems, it is natural that there are several
interfaces which can perform same operation in a persistent computing system.
In that case, we should discuss how to check whether an RPP which includes
the several interfaces is active or not. Moreover, we should investigate how to
measure whether an interface is workable or not if the interface behaves irregu-
larly because of its bugs. From the viewpoint of security, even if there are several
interfaces which can perform same operation in a persistent computing system,
it may have to use only a particular interface of them. In that case, how do
we measure and decide whether RPPs which include those interfaces are active
or not? On the other hand, when a reaction of a persistent computing system
must be finished until a certain time, how do we measure and decide the RPP
of the reaction is active or not? In such case, control components to measure
the reactability of the system may become a bottleneck of the performance of
the system such that we should put several or more control components on the
system. Thus, we should investigate how we keep the consistency of the RPP
map of the system among those control components.
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Abstract. In current composition languages for web services, there is
insufficient support to explicitly separate crosscutting concerns, which
leads to compositions that are hard to maintain or evolve. A similar
problem in object-oriented languages is being tackled by aspect-oriented
programming, and some work has been started to apply these techniques
to web service composition languages as well. We identified some prob-
lems with these approaches. This short paper lists these limitations and
offers a number of requirements to apply aspect-oriented techniques to
workflow languages.

1 Introduction

Web services [1] are a popular way of making existing software available as
external services over a network, through standardized protocols. In recent years,
workflow languages [2] are used to express these web service compositions. One
of the most popular languages today, is WS-BPEL [3].

Even though WS-BPEL, and other workflow languages, are very well suited
to express these kind of compositions, its abstraction model doesn’t explicitly
support a good separation of concerns [4]. WS-BPEL processes are coded ac-
cording to the requirements of the core functionality, which means that concerns
other from the main concern, do not fit the decomposition, and end up scattered
in the process.

A typical example of a non-core concern, is a business rule such as “billing” [5],
which keeps some data during the execution of the process, e.g. the duration of
invocations of external services, and charges the user proportionally. Without
explicit support for separation of concerns, the billing concern cannot be cleanly
separated from the base process, and is scattered in and tangled with the other
concerns.

The same problem was originally identified in object-oriented systems, and
aspect-oriented software development (AOSD) proves to be a valid solution [6].
The research community acknowledges this problem for workflow languages, and
understands AOSD has potential in this context too [7]. There already have
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been proposals to approach the problem with AOSD solutions. However, they
literally translate the existing AOSD approaches for object-oriented languages
to workflow languages, without much regards for the specific needs of these
workflow languages.

In this short paper the requirements for applying aspect-oriented techniques,
to separate crosscutting concerns in web service composition languages, are out-
lined. Section 2 details the problem with current workflow languages. Section 3
gives an overview of the current approaches and their limitations. In section 4
we layout the directions for our future research, and list the features and require-
ments that we deem necessary in an AOSD approach to the problem. Section 5
concludes the paper with a short summary of the problem and our envisioned
solution.

2 Crosscutting Concerns in Web Service Compositions

Web services are a relatively new standard that allow communication between
distributed processes, based on existing internet protocols (e.g. http), with the
addition of some required “middleware”-enabling protocols, e.g. WS-Security.
Web services are of use in two different settings. They can be used to offer
certain paid services on the internet, or they can realize the integration between
several business processes. A web service is an interface, describing a number
of operations that can be called by sending messages over a network. They
are the foundation of the service oriented architecture (SOA). In this approach,
applications use services that offer a certain function on the network. The clients
are unaware of the specific implementation of the service, and only rely on its
interface. This kind of loose coupling allows independent evolution of services,
while maintaining compatibility with client applications.

2.1 Web Service Compositions

Web service composition is a powerful mechanism to create new web services.
Imagine, for example, a travelling agent that offers separate services to book
airplane tickets and hotel reservations. By composing these two services, we
obtain a new service with which customers can book all-in trips. This kind of
reuse removes a lot of complexity in designing advanced web services, as large
parts of the service are handled by external services. They offer an added value
over regular web services.

We can distinct two large families of web service composition languages. On
one side, there are languages that define executable processes by means of web
service orchestrations. They do so by fixing a well-defined order of interaction
between web services. On the other side, web service choreographies only define
the publicly visible behavior of the messages that are exchanged between services.
They do not define the internal logic of a process, and as a result, they are not
executable.

Choreographies are useful to verify the communication protocol of services,
the specific order of messages that are to be exchanged. Consider for example a
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web service where a user has to log himself in and out with the service, before
and after further interaction. This protocol can be enforced with a choreography
specification, without detailing the internal logic of the services. A number of
high level composition languages exist that support web services standards. Most
notably, there are WSCL [8], YAWL [9], en WS-BPEL [3]. However, none of these
languages offers a way to separate crosscutting concerns.

2.2 Crosscutting Concerns

One important principle in programming languages, is that of separation of
concerns, which states that properties of software systems must be dealt with
separately. Doing so, those parts of the system can be more easily specified,
changed, removed or reused.

In object-oriented programming, programs are built by making a class hierar-
chy of the problem domain. Properties that do not fit this modularization, end
up scattered in the application, and entangled with each other. These properties,
are the so-called cross-cutting concerns, and are a direct result of the tyranny
of this dominant decomposition [10]. As noticed by Arsanjani et al. [7] and oth-
ers [11,12,13], this problem also applies to web service composition languages.

In our example of the travelling agent, this could be a “Billing” concern, that
measures the time it took to talk to the several web services, and charges the
user accordingly. Coding this in the web service composition using the traditional
mechanisms, leads to scattered and entangled code. An approach to this general
problem is proposed under the form of aspect-oriented programming, and while
most research is focused on its application to object-oriented programming, a
few approaches for web service composition languages have come forward as well.
The following section gives more details on these approaches.

3 Current Approaches

Current approaches to achieve better separation of concerns in web service com-
positions are designed to use aspect-oriented technology. This section starts with
an overview of this relatively new programming paradigm, and continues to de-
scribe the current approaches and their shortcomings.

3.1 Aspect-Oriented Software Development

To support a better separation of concerns, aspect-oriented software program-
ming (AOP) is proposed. Kiczales et al. note that with the existing methods,
certain properties of an application have to be implemented in multiple modules
of the system. The same logic is repeated over several modules, which means
there is an amount of code duplication. This gives the typical problems that it
is hard to add or remove these concerns, to change or even reuse them. AOP
wants to achieve a better separation of concerns by moving these crosscutting
concerns into separate modules, named aspects. Changing, adding or removing
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concerns that are specified in aspects, no longer require changes in the rest of
the system.

Several approaches to AOP exist. AspectJ is the first, and also the most well
known, approach. This language is an extension to Java and allows programming
of concerns in modules (aspects), separate from the classes of the base system.
AspectJ introduces a few new concepts to achieve this goal. An aspect describes
when it applies, by selecting a number of “join points”. These join points are
well-defined events during the execution of a program, e.g. the execution of a
method. The expression that selects these join points is called a “pointcut”.
The aspect specifies in the “advice” what should happen on those selected join
points. An “aspect weaver” activates the aspects on the places specified by the
pointcuts.

3.2 Current Approaches Using AOSD on Web Services

– AO4BPEL. In [11], Charfi presents AO4BPEL, an aspect-oriented extension
to WS-BPEL. It is a dynamic approach, meaning that aspects can be added
to or removed from a composition at runtime, while the process is being
executed. This approach requires a modified WS-BPEL engine, and is not
compatible with existing software. In AO4BPEL each activity is a possible
join point. Pointcuts capturing these join points are written in the low-level
XPath language.

– AdaptiveBPEL. Another dynamic approach is AdaptiveBPEL [14]. This is
a framework that allows managing dynamic aspects. In this approach it is
possible to plug in and remove aspects into a core service composition to
address quality-of-service concerns and adapt to changes in business rules.
AdaptiveBPEL also relies on a modified WS-BPEL engine which applies
aspects at runtime.

– Courbis and Finkelstein. An aspect-oriented extension resembling AO4BPEL
is proposed by Courbis and Finkelstein [15]. In their approach they use
XPath as a pointcut language and a modified WS-BPEL engine to allow
dynamic addition and removal of aspects. Their advice language is Java.

3.3 Limitations of the Current Approaches

A first observation we made in studying the current approaches, is that they are
all quite literal, direct translations of aspect-oriented solutions of object-oriented
systems to the web service composition context. A result of this, is that these
approaches suffer from a number of shortcomings. Some problems arise with the
application of AOSD to the web service composition domain (problems 1 and 2).
Others stem from the difficulties in object-oriented AOSD research (problems 3,
4 and 5). The issues there are also appearant in the web service composition do-
main, and it is worthwhile to investigate the application of the current techniques
in this new context.
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1. Confused layers of abstraction. It is important to stay on the same level
of abstraction as the base WS-BPEL process. In more recent versions of
AO4BPEL it is possible to alter SOAP messages on the engine level, which
allows expressing concerns that can not (easily) be written in a WS-BPEL
process. But doing so, this is no longer an approach to separate concerns on
workflow level. This extension is also specific to implementation details, by
being only applicable on WS-BPEL engines that uses SOAP as the transport
protocol. In the approach of Courbis and Finkelstein, the abstraction layers
also fade. Their advice code is written in Java, and, unfortunately, is not only
used to obtain a clean separation of concerns, but also to execute arbitrary
Java code in WS-BPEL processes. Code expressed in the Java language is
of a lower abstraction-level than WS-BPEL.

2. Missing workflow-specific concepts. The current approaches lack concepts
that are specific to web service composition languages. The advice model
should support workflow specific concepts, such as synchronization, skipping
activities, etc.

3. Limited pointcut language
(a) The pointcut language in AO4BPEL and the approach of Courbis and

Finkelstein is XPath, which is a language to navigate an XML structure.
The pointcuts in these approaches are no more than XPath expressions
that point to a direct path in a WS-BPEL XML document. Being tied
so closely to the structure of an XML file, limits the reusability of the
pointcuts. They are very fragile, and easily break when the process would
evolve.

(b) None of the approaches support quantification of the join points based
on protocol. If we for instance want to express that an aspect can only
activate on the third execution of a certain action, we should be able to
express this in the pointcut language.

4. Reusability. One of the most appealing advantages of aspects is that they
are reusable. A concern implemented in an aspect, should be applicable to
multiple compositions. However, current approaches require the aspect to be
changed to the specifics of the composition it is applied to. Some techniques
to solve this are proposed in current research in the AOSD field, but are not
considered in the approaches for composition languages.

5. Aspect interaction. When multiple aspects are applicable on a single join
point, the so called “feature interaction” problem occurs. Aspects are not
necessarily orthogonal, and as such, the order of execution matters. It is
furthermore desirable to express more advanced aspect compositions than
a simple ordering. Current approaches for composition languages either do
not consider this problem, or try to tackle it in a very limited way.

4 Towards Better Separation of Concerns in Web Service
Compositions

In this section we list the requirements for a better aspect-oriented approach to
separation of concerns in web service composition languages. The list is based on
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the limitations we identified in existing approaches and introduces some novel
ideas.

1. Workflow-specific advice. We extend the advice language with concepts that
are specific for workflow languages. Examples of these specific concepts are
listed here.
(a) Advice without order. In advising web service compositions it occurs that

a branch has to be added in a construction where the order is not of
importance. For example, an extra activity to be executed in a parallel
split, or an extra condition in a merge activity. This kind of advice is
named “in” advice [16]. Another kind of workflow specific advice is the
“while” advice, that specifies that a certain activity is to be executed
during the execution of the selected join point.

(b) Skipping advice. Aspects can specify that certain activities are no longer
to be executed. Consider for example an aspect that specifies that a
certain part of a web service composition is no longer of use, because
some decisions are made by the client beforehand.

(c) Synchronize activities. Aspects can alter workflows in such a way, that
new synchronization points are to be introduced in the composition. In
future research we plan to look into how this can be easily expressed,
and how this can be efficiently implemented.

2. Declarative pointcut language. Using a pointcut language based on logic pro-
gramming offers advantages over traditional pointcut languages. Pointcuts
are no more than logic rules that select join points. It is very easy to create
new pointcuts by reusing the old ones. Furthermore, it is possible to write
recursive pointcuts. Introducing an expressive pointcut language, addresses
problem 3a.

3. Protocol based quantification. Web service compositions express processes,
and precisely in such program specifications it is interesting to express the
applicability based on a sequence or a protocol of events (problem 3b). Con-
sider for instance a workflow where a user has three chances to complete
a password request before he is denied further access to the service. This
can be encoded in a separate aspect, if there is support for remembering
prior events in the execution of a workflow. This is also known as “statefull
aspects” [17,18].

4. Deployment constructs. Aspects are often applicable on more than a single
web service composition, and therefore we want them to be as reusable as
possible. As shown in problem 4, current approaches have little support for
this. In order to achieve this, we plan to use a dedicated layer between the
aspects and the compositions to which they apply. In this layer deployment
specifications are made. In the deployment constructions we also express
the aspect composition specifications that address the feature interaction
problem (as shown in problem 5). Lastly, the deployment construct is a good
place to specify how the aspects are to be deployed: e.g. one per workflow
instance, globally, etc.



158 M. Braem and N. Joncheere

5 Conclusion

Current web service composition languages lack support to explicitly separate
crosscutting concerns from each other and the base workflow. This problem was
already found in object-oriented programming language, and the solution that is
proposed for these languages can be applied to workflow languages as well. How-
ever, this approach can not be literally translated to this other paradigm, as work-
flow languages have their own specific needs. Current approaches approaches do
not take this into account, and as such suffer from some shortcomings.

In this short paper we identified these limitations of the current approaches.
We also listed a number of requirements for future work to tackle these prob-
lems. We already started the development of an aspect-oriented extension to WS-
BPEL, which we named Padus [16]. This approach strives to a better reusability
of aspects and uses several techniques to accomplish this. Padus uses a declara-
tive pointcut language, based on logic programming. In this pointcut language, it
is possible to select join points in a describing way, rather than explicitly listing
the points. Padus also supports explicit aspect deployments for further reuse.
In addition to the regular before-, after- and around advice, the advice model
of this language already supports “in” advice to allow including new branches
in orderless structures like parallel splits (flow activities). Padus, however does
not yet support some of the requirements listed in the previous section, e.g. the
“while” advice and support for protocol based quantification in the pointcut
language.
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Abstract. In component based software engineering, an application is
build by composing trusted and reusable units of execution, the compo-
nents. A composition is formed by connecting the components’ related
interfaces. The point of connection, namely the connector, is an abstract
representation of their interaction. Most component models’ implementa-
tions rely on extensive middleware, which handles component interaction
and hides matters of heterogeneity and distribution from the application
components. In resource constrained embedded systems this middleware
and its resource demands are a key factor for the acceptance and us-
ability of component based software. By addressing connectors as first
class architectural entities at model level, all application logic related to
interaction can be located within them. Therefore, the set of all explicit
connectors of a component architecture denotes the exact requirements of
that application’s communication and interaction needs. We contribute
by demonstrating how to use explicit connectors in model driven develop-
ment to synthesize a custom tailored, component based communication
middleware. This synthesis is achieved by model transformations and op-
timizations using prefabricated basic building blocks for communication
primitives.

1 Introduction

Driven by market demands, the application of embedded systems experienced a
significant upturn over the last years. A wide variety of new fields of application
as well as more demanding requirements in established ones lead to a tremendous
boost in complexity of embedded systems software. Today’s embedded applica-
tions are no longer simple programs executed on one single electronic control
unit (ECU). In fact, they are heterogeneous software systems in distributed and
often safety or mission critical environments and hence have to be small, efficient
but also extremely reliable.
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1.1 State of the Art

A well accepted approach in developing cost-efficient and sound embedded sys-
tems software is that of component based software engineering (CBSE): appli-
cations are built by assembling small, well defined and trusted building blocks,
so called components.

In accordance to the work of [1,2,3,4] a component is a (i) trusted architec-
tural element, an element of execution, representing (ii) software or hardware
functionality, with a (iii) well defined usage description. It conforms to a (iv)
component model and can be independently composed and deployed without
modification according to the model’s composition standard. At run-time com-
ponents interact through their provided and required interfaces conforming to
the component model’s interaction standard. Therefore, components are reusable
and exchangeable.

The process of interaction may become rather complex especially in dis-
tributed heterogeneous systems. As it is good practice to keep application com-
ponents simple and focused on their primary purpose, any program code related
to interaction handling has to be separated from the application component’s im-
plementation. This is typically done by introducing communication middleware
handling all types of interaction in a transparent way. Interacting application
components utilize that middleware and therefore face their distribution and
deployment scenario as configuration issue only.

1.2 Contribution

Using a general purpose communication middleware seems to be a great ad-
vantage at first glance, but turns out to be rather cumbersome in resource
constrained systems. As such middleware has to cope with all possible types
of interaction, implementations tend to be rather heavy-weight pieces of mono-
lithic software. Since resource consumption is a key factor in embedded sys-
tems software development, we provide an overview on how application specific
communication middleware can be synthesized from software models contain-
ing explicit connectors within a model driven development process. This custom
tailored middleware exactly covers the application’s communication needs and
therefore helps in building a light-weight component middleware for embedded
systems. In addition the proposed approach leads to component based middle-
ware, so available mechanisms and tools from the domain of CBSE (e.g. model
verification techniques) can be applied to the middleware itself.

1.3 Overview

Section 2 describes the types of connectors in component models. It gives a
detailed view on explicit connectors, as they are used to generate communication
middleware in our approach. The general structure of component middleware
feasible for embedded systems is described in Section 3. Section 4 finally gives
an overview on how communication middleware can be synthesized in model
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driven development by transforming and optimizing application models, utilizing
prefabricated basic communication primitives.

2 Implicit and Explicit Connectors

Two components may interact at runtime if their related provided- and required
interfaces are validly associated at composition time. This association, namely
the connector, is an abstract representation of any interaction occurring between
the connected components. As mentioned before, in most component models the
process of interaction is covered within middleware, therefore we consider these
connectors to be implicit.

An explicit connector is an architectural entity, that is used to represent com-
ponent composition and interaction and owns its own implementation of interac-
tion operators. Therefore an explicit connector encapsulates all communication
logic for one specific type of interaction. In addition, it specifies properties of the
connected components’ interaction and provides contracts regarding communi-
cation channels and resource requirements.

Modeling component based applications using explicit connectors in UML 2.0
requires the UML component syntax to be extended. UML 2.0 specifies two
types of connectors: (i) the assembly connector and (ii) the delegation con-
nector. When talking about connectors within this paper, we refer to assembly
connectors and their extensions.

To keep explicit connectors small in size, they have to be highly specialized
in type and target platform.

<< component >>

A

<< component >>

B

<< component >>

C

C1

C2

Fig. 1. Client-Server and Sender-Receiver Connector

Explicit connectors fall into two main classes:

Client-Server Connectors: A component providing a service is called server,
a component using that service is called client. The client-server connector
connects components of this type. Typical client-server connectors are those
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connecting procedural interfaces. Figure 1 shows a client-server connector
labeled C1 where component A is the client and component B is the server.

Sender-Receiver Connectors: These connectors provide means of non-
blocking, one-to-many and many-to-one data distribution. Sender-receiver
connectors typically implement a ”last-is-best” semantic—only the last re-
ceived data value is valid and accessible—and are used to connect compo-
nents emitting and collecting data. Figure 1 also shows a sender-receiver
connector labeled C2 where component A is the sender and component C is
the receiver.

A detailed classification of explicit connectors for the domain of automotive
embedded systems according to the AUTOSAR [5] standard was provided within
the project COMPASS [6], but is out of the scope of this paper.

Although explicit connectors have a great similarity to components, they differ
in many aspects: In contrary to components, a connector changes its appearance
during its life-cycle due to model transformations. (i) In platform independent
models the explicit connector is an abstract representation of component inter-
connection, specifying properties of the interaction type. (ii) In platform specific
models the explicit connector is transformed into a set of distributed fragments,
which in total implement the functionality of that specific explicit connector.
Connector fragments are deployed along with their associated components and
are themselves composed structures made up of basic components. Any connec-
tors that remain at the platform specific level after applying all transformations
are implicit connectors, typically local procedure calls. (iii) At deployment- and
finally at run-time the explicit connector is no longer visible. True components,
representing the explicit connectors functionality, are deployed and executed.

Figure 2 depicts a connector fragment of connector C2 from Figure 1
in a platform specific model. It consists of a (generated) interface adapter

<< component >>

A

<<contract>>

CA

<<contract>>

CIFR

Fragment CFA

<<contract>>

CIFP’ <<contract>>

CIA

IF

Physical Boundary

Explicit Connector

<< component >>

Interface Adapter

<< component >>

Connector 

Implementation

<<contract>>

CCI

Default

Interface

Fig. 2. Connector Fragment
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component and a generic sender component. The two client-server connectors
left over in this model are implicit local procedure calls and do not have to be
transformed any further. In addition, Figure 2 shows various contracts associ-
ated with components and interfaces. These contracts can be used for a more
detailed model verification of the constructed component architecture [7,8,9].

3 Middleware

As described in Section 1, the process of interaction in component architectures
is typically handled by middleware. Middleware is an additional software layer,
that is located between an application and the operating system and its com-
munication stack. Component middleware additionally manages the life-cycle
of components, handles their interaction, no matter if local or distributed, and
provides infrastructural services for the components.

Communication

Middleware

Application

Components

Infrastructural Services

Component Container

Fig. 3. Component Middleware

Figure 3 shows a simplified version of component middleware (encircled by
the dashed line) that meets the requirements of distributed embedded systems
applications. In safety critical applications of that domain, components have to
be bound statically, instantiation occurs only at initialization time and commu-
nication channels are statically predefined. The component middleware therefore
consists only of a (i) component container that hosts all components and man-
ages their life-cycle and instantiation and of (ii) infrastructural services that are
required by the container but may also be provided for the components. All
components residing within the container may interact locally. To enable remote
interaction with a distributed system, the component middleware finally includes
(iii) communication middleware.

As one can see, we located the communication middleware inside the com-
ponent container. This is because we synthesize communication middleware from
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the application model and basic building blocks, that are simple components
themselves. This process of synthesis is presented within the next section.

4 Middleware Synthesis

Explicit connectors as introduced in Section 2 encapsulate the implementation of
the specific interaction process of the connectors’ type. Application components
interact via their interfaces, that are linked by explicit connectors. No other
means of interaction are allowed within component models. This consequently
implies, that the set of all explicit connectors of a component architecture cov-
ers the architecture’s communication requirements. By transforming the applica-
tion’s models, explicit connectors are transformed into connector fragments, that
themselves are transformed into various components like senders, receivers, pro-
tocol handlers or interface adapters. By eliminating redundant building blocks
within the transformed architecture, the total set of required communication re-
lated components, the component middleware, can be calculated and deployed.

We are going to demonstrate the synthesis of communication middleware with
a simplified example. This is no real world application but it will show the basic
idea of our approach without exceeding this paper’s page limit.

4.1 Application Specification

As first step in creating an application with a model driven process we define
the component architecture in a platform independent model by assembling all
application components within a UML 2.0 component diagram. All required in-
terfaces are connected to the corresponding provided interfaces by specifying
explicit connectors.

Figure 1 depicts the platform independent model of our demonstrator applica-
tion. Component A requires services provided by component B by a procedural
interface and provides data to component C by a sender-receiver interface.

The second step in developing our application is to specify the deployment
scenario. For our example we deploy the application components on two distinct
ECUs. Component A will be deployed on the first ECU while components B and
C will be deployed on the second one. Note that explicit connectors at this stage
of development are considered to be abstract entities, consisting of fragments,
and therefore must not be included in the deployment specification.

4.2 Connector Transformation

By defining the component architecture and its deployment, all information re-
quired to transform the connectors into components becomes available. The so
called connector transformation selects the proper connector implementations
(e.g. a remote procedure call connector) from a connector library. It connects
identified connector fragments to the application components. To do so, it gen-
erates interface adapter components to match all interfaces and modifies the
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<< component >>

A

Explicit Connector Fragment of C1

<< component >>

Interface Adapter A’

<< component >>

FlexRay Sender

<< component >>

FlexRay Receiver

Explicit Connector Fragment of C2

<< component >>

Interface Adapter B’

<< component >>

FlexRay Sender

Communication Middleware for ECU 1

Fig. 4. Example Transformation for ECU 1

deployment specification to cover the inserted components, that in total repre-
sent the connectors’ functionality.

Figure 4 depicts the result of the connector transformation for the example ap-
plication part deployed on ECU 1. One can see, that the application component
A now is connected to two connector fragments, fragment C1 for a procedure call
connector to component B and fragment C2 for a data emitter connector to com-
ponent C. Generated interface adapters map the application component’s inter-
face to the generic building blocks from the connector library. The used procedure
call connector is a remote one, as the connected application components do not
reside within the same address space—remember that we deployed them on two
distinct ECUs)—and uses a receiver to get results back from component B.

All five components within the outer box are not application components and
deal with interaction related issues only. Together, they assemble the custom
tailored communication middleware for ECU 1.

4.3 Architectural Optimization

In a final step, the generated component architectures have to be optimized
to eliminate redundant elements and meet additional system constraints like
contractually specified uniqueness of specific components (e.g. singletons).

In our example, the sender components, both labeled with (* ), redundantly
exist within our middleware. To optimize the middleware’s size these redundancy
can be eliminated by sharing the sender between both connector fragments.
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4.4 Summary

Component based software engineering is a well established engineering
paradigm for distributed embedded systems. However, state-of-the-art compo-
nent models often rely on heavy-weight component- and communication mid-
dleware to keep application components small and simple. The middleware’s
resource usage is a crucial factor in resource constrained systems. We provided
an overview on how to synthesize the communication part of a component mid-
dleware from application models in order to keep it small. To enable this ap-
proach, we introduced explicit connectors as first class architectural entities at
model level. In addition, we described how their implementation is performed by
composing basic building blocks, stored within a connector library. By following
our approach, the set of all explicit connectors within the application’s plat-
form independent model will be transformed into a custom tailored, light-weight
communication middleware for each deployment node. Moreover, methods of ver-
ification for component architectures can be applied not only to the application
but also to parts of its middleware.
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Abstract. Software development for embedded systems gains momen-
tum but faces many challenges. Especially the constraints of deeply em-
bedded systems, i.e., extreme resource and performance constraints, seem
to prohibit the successful application of modern and approved program-
ming and modularization techniques. In this paper we indicate that this
objection is not necessarily justified. We propose to use refinement chain
optimization to tailor and streamline feature-oriented designs to satisfy
the resource constraints of (deeply) embedded systems. By means of a
quantitative analysis of a case study we show that our proposal leads
to a performance and footprint improvement significant for (deeply) em-
bedded systems.

1 Introduction

Software engineering for embedded systems is an emerging but challenging area.
Embedded systems are characterized by strict resource constraints and a high
demand for variability and customizability. Since it is reasonable to expect that
embedded systems will gain further momentum, it is crucial to adopt modern
programming techniques that suffice in other domains. In this paper we focus
on the level of code synthesis to deal with the strict resource constraints of
deeply embedded systems and to enforce modularity at the same time. Previous
attempts failed with respect to the specific resource constraints of deeply embed-
ded systems [1, 2], e.g., micro-controlers in ubiquitous computing or cars [3, 4, 5].
Hence, low-level languages as C or assembly languages are still used to develop
embedded software [6].

To overcome this handicap we propose to use feature-oriented programming
(FOP) [7] to build modular system product lines. FOP decomposes software
into features that are increments in program functionality. Features are applied
to a program in an incremental fashion representing development steps. This
way, a conceptually layered design is created. FOP has the potential to improve
modularity and thus reusability and customizability of product lines [7, 8, 9, 10]
– both are important for the domain of embedded systems.

Unfortunately, an FOP design imposes an overhead in execution time and code
size due to its layered structure. That is, the control flow is passed from layer to
layer, which causes performance penalties. The layered structure demands more
program code, which results in larger binaries. Both – performance and footprint
penalties – are not acceptable for deeply embedded systems.
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To be able to employ feature-oriented techniques without any penalties in per-
formance and footprint, we suggest to streamline feature-oriented designs, i.e.,
the layered structure to minimize runtime and footprint overhead. Specifically,
we show how refinement chain optimization of FOP designs (by super-imposing
refinements) leads in the best case to a performance improvement of 40% and
a footprint saving of 59%, compared to the unoptimized variants; the worst
case still results in 5% footprint reduction and acceptable performance char-
acteristics. Streamlining FOP designs makes them suitable for the specific con-
straints of embedded systems, without sacrifying their benefits in modularity and
structuring.

Compared to inlining techniques, that have been used for years, we argue
that streamlining of feature-oriented designs does not rely on heuristics but it
exploits the stepwise development methodology of FOP.

2 Feature-Oriented Programming

setHead()

hasNext()
begin()
next()

class Iterator

previous()
insert()

DoubleLinked

TraceList

Iteration

Base

setTail()

refines class PtrList

head()
class PtrList

refines class PtrList

refines class Iterator

head()
setHead()

Fig. 1. A stack of feature modules for
a linked list product line

FOP studies the modularity of features in
product lines, where a feature is an incre-
ment in program functionality [7]. Feature
modules realize features at design and im-
plementation levels. The idea of FOP is to
synthesize software (individual programs)
by composing feature modules developed
for a whole family of programs. Typically,
features modules refine the content of other
features modules in an incremental fashion.
Hence, the term refinement refers to the set
of changes a feature applies to others. Step-
wise refinement leads to conceptually lay-
ered software designs.

The key point of FOP is the observation that features are seldomly imple-
mented by single classes; often a whole set of collaborating classes defines and
contributes to a feature [7, 11, 12, 13, 14, 9, 10]. Classes play different roles in
different collaborations [14]. FOP aims at abstracting and explicitly representing
these collaborations.

A feature module is a static component encapsulating fragments (roles) of
multiple classes so that all related fragments are composed consistently. Fig-
ure 1 depicts a stack of four feature modules of a product line of linked lists
(Base, Iteration, TraceList, DoubleLinked) in top down order. Typically, a fea-
ture crosscuts multiple classes (e.g., PtrList, Iterator). White boxes represent
classes and their refinements; on the code level refinements are prefixed by
the refines keyword; gray boxes denote feature modules; filled arrows refer to
refinement.
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3 Synthesizing Programs

In this section we explain two ways to synthesize programs out of a given FOP
design, mixin layers and jampacks.

Mixin Layers. Mixin layers transform refinement chains inside an FOP design
one-to-one to class hierarchies [13]. Each refinement is implemented as sub-class
to a base-class. Thus, for n features there are potentially n sub-classes for a given
class. For our list example, the mixin layer approach results in three generated
classes for PtrList and in two classes for Iterator (Fig. 2) – all named based on
the features they belong to and on their base-class.

Methods are extended by overriding. An extended method is invoked by an
explicit super -call. For example, the method setHead of class PtrList Base is
overridden by the method setHead of class PtrList Trace. The latter calls the
former by using super. This way, the base method is extended (refined) instead
of being replaced (Fig. 3).

Client code is aware only of the most specialized refinement, that is the fi-
nal class, which appears due to inheritance as super-imposition of the overall
refinement chain (e.g., PtrList in Fig. 2). It embodies all methods defined in its
super-classes.

setTail()

class PtrList

head()
setHead()

class PtrList_Base
hasNext()
begin()
next()

class Iterator_Iteration

previous()
insert()

head() class Iterator

setHead()

class PtrList_Trace

Fig. 2. Mixin layer implementation of
the linked list product line

1 class PtrList_Base{
2 void setHead (ArgumentType& h){
3 TypeChecker:: check(h);
4 head_ = Copier ::copy(h); }
5 };
6
7 class PtrList_Trace : PtrList_Base{
8 void setHead (ArgumentType& h){
9 cout <<"setHead ("<<h.p()<<")"<<endl;

10 PtrList_Base:: setHead (h); }
11 };

Fig. 3. Method extension in mixin layers
through inheritance and overriding

It is reasonable to expect that the high number of generated classes as well as
the additional level of indirection for all extended methods impose a performance
and footprint overhead, significant for embedded systems. Therefore, it seems
that mixin layers confirm the objections against modern software engineering
practices (cf. Sec. 4).

Jampacks. Jampacks are a generative programming technique, which flattens
the refinement chains of FOP architectures [7]. Classes are merged with all their
refinements. That is, all fields and methods of a class and its associated refine-
ments are merged into one final class. Fields with the same names are considered
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errors; methods with the same name are merged preserving their overriding
semantics; the position of the super -call in the refining method defines how to
merge both method bodies.

Figure 4 shows the flattened refinement chains of our list example. The meth-
ods and fields of PtrList and Iterator and their refinements are merged into two
final classes. The body of the method setHead is a composition of the original
method of layer Base and a refining method of layer TraceList (Fig. 5).

begin()
next()
previous()
insert()

class Iterator
head()
setHead()
setTail()

class PtrList
hasNext()

Fig. 4. Jampack composition of a list

1 class PtrList {
2 void setHead (ArgumentType& h){
3 cout <<"setHead ("<<h.p()<<")"<<endl;
4 TypeChecker:: check(h);
5 head_ = Copier ::copy(h); }
6 };

Fig. 5. Method extension in jampacks

With respect to embedded systems it is reasonable to expect that jampacks
reduce the overhead of FOP’s layered designs. This conjecture has never been
examined since FOP was intended for large-scale program synthesis where the
assumed positive effects do not carry weight. Since jampacks decrease the number
of classes by factor n for n − 1 refinements (in our example, 2 instead of 5)
and avoid additional call indirections and virtual methods (since there is no
inheritance hierarchy and no method overriding), they may improve the runtime
and footprint characteristics significantly for deeply embedded systems.

4 Evaluation

4.1 Experimental Setup

We implemented and analyzed a product line of linked lists, borrowed from [15,
16]. The product line consists of 26 features (containing 12 classes and 27 refine-
ments), that can be combined in numerous ways.

For our experimental evaluation we used FeatureC++
1 (v.0.3), a C++

language extension and a compiler for FOP [17]. FeatureC++ supports mixin
layer and jampack composition.2

FeatureC++ transforms FOP code into native C++ code. As underlying
C++ compiler we used the MicrosoftTMC/C++ compiler (13.10.3077 for 80x86)
with different optimization levels: no optimization (/Od), minimal space (/O1)
and maximum optimization (/Ox). The footprint measurements were obtained
from the object files to minimize side effects of wrapper and loader code. We
used strip to cut the symbol tables and size to determine the footprint (GNU

1 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/
2 Merging method bodies automatically is under development.
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strip/size 2.17.50 20060817). As platform we used an AMD AthlonTM64x2 Dual
Core Processor 3800+. The performance measurements were obtained using as-
sembler instrumentation code3 and a small application that instantiated and
used the generated lists. For each experiment we warmed up the cache by sev-
eral dummy runs preceding the actual measurement. The results are given in
averaged and rounded numbers over 100 runs each.

4.2 Mixin Layers vs. Jampacks Table 1. Footprints (byte) of ten
configurations using different opti-
mization levels
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3 1400 1336 563 517 1096 1016
4 1592 1464 667 584 1032 888
5 1704 1528 717 586 1176 920

13 2024 1560 1073 599 1800 936
14 2136 1608 1114 606 1864 952
15 2440 1752 1141 637 2168 984
16 2524 1788 1186 659 2252 1004
17 2588 1788 1223 659 2348 1004
18 2732 1852 1277 676 2492 1052
19 2860 1916 1337 673 2636 1068

The footprint and performance measure-
ments were performed for ten distinct list
configurations with different sets of features:
3, 4, 5, and 13 to 19 features. These ten con-
figurations were synthesized by mixin layer
and jampack composition.

Footprint Measurements. The results of
the footprint measurements are shown in Ta-
ble 1. The footprint is proportional to the
number of included features. Figure 6 depicts
the footprints for the ten configurations (ten
pairs of bars), each implemented by jampack
(respective left bar) and mixin layers (respec-
tive right bar). Each bar shows the results for three optimization levels (super-
imposed bars).
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Fig. 6. Footprints (# features)

It is remarkable that the
maximally optimized jampack
configuration (/Ox) with 19 fea-
tures has a smaller footprint
than the mixin-based configu-
ration with 3 features. In the
best case (19 features), jam-
packs achieve a footprint reduc-
tion of up to 59%; in the worst
case (3 features) of about 5% af-
ter all.

Figure 7 reveals that jam-
pack composition performs best
at optimization level /O1. The
overhead of adding individual
features using jampacks is significantly smaller than for mixin layers.

A dummy implementation that includes 100 features all forwarding a request
to its super layer induces a footprint benefit of 96% by using jampacks (not
depicted).
3 Basically, we read out the rdtsc register.



Streamlining Feature-Oriented Designs 173

 500

 1000

 1500

 2000

 2500

 3000

Level /OxLevel /O1Level /Od

by
te

Optimization Level

19 Jampack
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5 Mixin
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3 Mixin

Fig. 7. Footprints (optimization level)

Performance Measurements.
Figure 8 depicts the results
of the performance measure-
ments for three composed meth-
ods (insert, setID, setTail). In
all but one case the mixin
layer variants are slower than
their jampack counterparts –
once they are equal. In the
ideal case jampacks reduce the
execution time by 40% (19
features, method insert). Fur-
thermore, the runtime overhead
increases as the number of fea-
tures increases. Figure 9 visualizes the data of Table 8. It bares the conjecture
that the difference between jampacks and mixin layers is proportional to the
number of features. The runtime overhead of mixin layers induced by additional
features is caused by indirections in the program control flow and newly intro-
duced members, such as constructors for every refined class. By using jampacks
we merged classes and their refinements and thus we removed several steps of
computation.

insert setID setTail
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4 495 448 118 111
5 495 463 145 119

13 664 487 140 122
14 703 536 139 119
15 809 590 187 149
16 827 570 97 91 185 148
17 859 571 102 91 185 146
18 925 571 144 126 185 146
19 945 561 165 139 189 146

Fig. 8. Average runtime mea-
surements (cpu-cycles) of three
methods
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Fig. 9. Average execution time (cpu-cycles) of 100
iterations for jampack and mixin variants

Our dummy implementation of 100 features performs with runtime benefits
of 95% by using jampacks (not depicted).

5 Related Work

Several studies have shown the penalties of advanced programming techniques
such as C++ [18, 19, 20]. Different approaches, e.g., Embedded C++, omit
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expensive language features to cope with the extreme resource constraints of
deeply embedded systems. But this limits the programmer structuring software
appropriately.

Reducing the cost of indirect or virtual function calls generated by a C++
compiler is addressed in [18, 21, 22]. In [23] a source code transformation based on
aspect-oriented programming is proposed that uses domain-specific information
for optimizing object-oriented design patterns, e.g., the replacement of dynamic
casts by static code. Class hierarchy analysis and optimization of object-oriented
programs aim in eliminating dynamically-dispatched message sends automati-
cally [20].

Our approach of streamlining FOP designs does not limit the programmer in
modularizing software in terms of OOP. It introduces a domain-independent, au-
tomatic optimization step. This way, the programmer profits from the advanced
capabilities of FOP (cf. [9, 10]) without scarifying performance or a minimal
footprint.

Martin et al. and others aim to use a mapping to model constraint resources
in UML [24, 6]. This is orthogonal to our approach of optimizing code since it
is possible to model FOP using UML. Thus, their proposals can be integrated
into FOP implementations as well.

Lee et al. analyzed the OSGi framework to manage different software com-
ponents [25]. They propose to use an architecture based on services to compose
different embedded devices, i.e., software components, but do not focus mainly
on the development of the single embedded system.

6 Conclusion

By means of a case study, we have shown how FOP can be tailored to the domain
of embedded systems. While FOP is known to improve modularity, reusability,
and customizability of product lines, we demonstrate how to streamline FOP’s
layered designs to minimize footprint and maximize performance.

We observed that jampack composition outperforms mixin layers with regard
to performance (40%) and footprint (59%). The worst case still results in 5%
footprint improvement and does not burden the execution time. We believe that
the reduction of footprint and runtime overhead opens the door to adopt FOP
to the domain of embedded systems.
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O., Spinczyk, U.: The PURE Family of Object-Oriented Operating Systems for
Deeply Embedded Systems. In: ISORC (1999)
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Abstract. The aspect-oriented paradigm aims to modularize concerns
that crosscut traditional abstraction boundaries. In the AOSD com-
munity, there is an increasing interest in the development of reusable
implementations of typical crosscutting concerns, such as security, syn-
chronization, profiling, etc. To employ a reusable aspect in a concrete
application, deployment logic has to be written that specifies where and
how to apply the new behavior, and how the interaction with the base
application and the other aspects in the system is organized. We have
analyzed the means for the specification of such deployment logic in cur-
rent aspect-oriented technologies and have identified a number of issues
regarding its reuse, its dynamic invocation and its integration with the
rest of the system. With the knowledge gained, we propose important
first steps towards better support for the specification of deployment
logic.

1 Introduction

Aspect-Oriented Software Development [1] is a recent software engineering
paradigm that aims at providing a better separation of concerns. One of the
most popular mechanisms offered by AOSD approaches is that of pointcuts that
define points in the execution of the program (called join points), and advices
that specify additional behavior to apply at these join points. As such the imple-
mentation of so-called crosscutting concerns can be specified in a modular way; a
weaver will automatically integrate the behavior with the rest of the application.

In the AOSD community there is an increasing interest in the development of
reusable aspect implementations. Some approaches such as Aspectual Compo-
nents [2] and JAsCo [3] explore the integration with Component-Based Software
Development (CBSD) [4], a paradigm that aims at constructing software by
combining highly-reusable components in a plug-and-play fashion. To develop
aspects according to this view, it must be possible to specify aspects as reusable
and independent entities. Additionally, aspect reuse is also gaining interest in the
context of more traditional AOP approaches, in order to provide aspect libraries
with reusable implementations of recurring crosscutting concerns, e.g. [5,6,7,8].

The usage of reusable aspects necessarily involves a separate deployment step
during which the aspects are configured for a concrete application at hand.
The deployment logic specified to this end can take various forms, e.g. explicit
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or implicit connector entities, or XML deployment descriptors. As aspects are
used more fundamentally in the development of an application, we observe that
the current means for the specification of deployment logic become insufficient.
Compared to the general programming language, they do not offer a comparable
level of reusability, flexibility and expressiveness, even though the deployment
might specify logic that is equally crucial to the application.

The main contribution of this paper is an in-depth analysis of the different
functions that constitute the deployment of a reusable aspect, and of the de-
ployment specification properties pressed for by the intensive usage of reusable
aspects throughout the implementation of a software application. In addition,
we present important first steps towards AOP language facilities that meet the
identified requirements.

We proceed as follows. Section 2 introduces a small case study and identifies
the different responsibilities of deployment logic in the context of this example.
The case is also used as a running example in section 3, where we analyze the
requirements for deployments in detail and demonstrate current shortcomings.
Section 4 outlines first steps towards a solution and section 5 compares with
related work in this area. Section 6 concludes the paper.

2 Representative Case Study

As a running example, we will use a small but representative case of functional-
ity that prints an execution trace of the program on a given output handle. To
present this example, we employ the AspectJ language [9], one of the first and
best-known AOSD approaches. (The discussion is similar for other approaches,
although a number of specific points are discussed in section 5.) An implementa-
tion of this tracing behavior as a reusable aspect in AspectJ is shown in listing 1.
This aspect declares a pointcut that selects join points that expose an object
as a context value (line 10), but no definition for this pointcut is given (i.e. the
pointcut is left abstract). An advice (lines 12–14) specifies that, before entering
these join points, a description of the exposed object has to be printed. The other
members of the aspect manage the output stream to which the tracing messages
can be sent. The aspect in listing 2 specifies a number of important pointcuts
of the application. We place them in a separate aspect because we have the
intention of sharing them between different aspects. The pointcut OrderManip
selects the execution of setter -methods that belong to the class Order. As the
parameter, it exposes the Order object on which the method is executed.

Listing 3 then provides an example of deployment logic for the AbstractTrace
aspect. In the AspectJ language, deployment does not occur through a dedicated
connector entity. Rather, a new aspect TraceDeploy is created that inherits from
the generic aspect and provides an implementation for the abstract pointcut(s)
from the parent to specify concrete program points. In our example, we employ
the predefined pointcut OrderManip (line 2 in listing 3). Additionally, the de-
ployment can control the creation and configuration of aspect instances. AspectJ
stipulates that aspect instances cannot be created directly by the developer; they
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1 import java.io.PrintStream;
2
3 public abstract aspect AbstractTrace {
4 protected PrintStream output;
5
6 public void setOutput(PrintStream p) {
7 this.output = p;
8 }
9

10 abstract pointcut TracePoint(Object o);
11
12 before(Object o): TracePoint(o) {
13 output.println("Entering " + o.toString());
14 }
15 }

Listing 1. AspectJ implementation of a generic tracing aspect

1 public aspect ProgramPoints {
2 pointcut OrderManip(Order o): execution(* Order.set*(..)) && this(o);
3

4 ...
5 }

Listing 2. Independent specification of program pointcuts

are created implicitly by the runtime system, according to a number of prede-
fined strategies. In this case, the declaration issingleton() (line 1) stipulates
the creation of a single aspect instance1. To configure this instance with an ap-
propriate output stream as it is created, we employ the argumentless constructor
of the aspect (lines 4–6). Finally, the deployment also specifies a combination
strategy that specifies how different aspects are to be combined when they advise
the same join point. We specify that tracing should be executed before security
checks (line 8), presumably deployed through the aspect SecurityDeploy. As-
pectJ only supports ordering of advices; other approaches allow to express more
advanced combinations of aspects such as exclusion or dependency.

In summary, the responsibilities of the deployment logic are: (i) it specifies the
concrete program points where the behavior of a generic aspect has to be applied,
(ii) it configures the (creation of) aspect instances and sets-up communication
with the rest of the program, and (iii) it specifies an appropriate strategy for
the combination with other aspects in the system, with whom the aspect might
share join points. All of this logic is usually specific to the application where the

1 Although singleton aspects are the default in AspectJ, we include the declaration
here for clarity.



Requirements for Reusable Aspect Deployment 179

1 public aspect TraceDeploy issingleton() extends AbstractTrace {
2 pointcut TracePoint(Object o): ProgramPoints.OrderManip(o);
3
4 TraceDeploy() {
5 setOutput(Application.getLog());
6 }
7

8 declare precedence: TraceDeploy, SecurityDeploy;
9 }

Listing 3. Logic for the deployment of tracing behavior

aspects are employed. It can therefore never be part of the specification of the
reusable aspect.

3 Requirements and Identified Problems

In this section, we analyze the requirements for deployment facilities and present
identified shortcomings in current approaches. We organize this discussion ac-
cording to the possibilities for reuse, dynamic invocation and integration.

Reuse of Deployment Logic. Consider the case where we also want to add pro-
filing behavior to the system in much the same way as we deployed the tracing
behavior. We assume that a reusable profiling aspect similar to the tracing as-
pect of listing 1 is available. We want to apply it to the same program points as
the tracing behavior, with the same instantiation, output stream and precedence
order as was configured for that behavior. Although we can reuse the definition
of the pointcut OrderManip from the aspect ProgramPoints, we have to du-
plicate the entire deployment logic from listing 3 in a new deployment aspect
(presumably named ProfilingDeploy). This code duplication is undesirable and
impedes the maintenance of the software application, especially when one takes
more complex deployments into account.

Dynamic Deployment. Most approaches only support the static deployment of
aspects. In AspectJ for example, the application of a reusable aspect to a new
set of program points requires the introduction of a (static) entity such as the
TraceDeploy aspect, in which a concrete pointcut definition that selects these
program points is provided. (This is the case even if we reuse an existing pointcut
definition without modification, as in listing 3.) The dynamic deployment of
aspectual behavior is prevented since the pointcut/advice pair must be provided
statically. Imagine we identify a number of important sections in our program,
for each of which we provide a pointcut in the ProgramPoints class to select
it. If we want to enable and disable both tracing and profiling for each of these
sections individually at runtime, we have to define an unwieldily large number
of entities: for each of the sections one aspect that deploys tracing and one that
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deploys profiling. Each of these deployments would contain a pointcut with a
dynamic condition that verifies whether that particular part is activated.

Although we imagine that it is possible to create a tool that assists the de-
veloper with the generation of these aspects, this remains a second-class solu-
tion. Furthermore, it still restricts some dynamic cases made possible by recent
aspect-oriented implementation tools such as runtime weavers [10] or aspect-
aware virtual machines [11,12]. For example, it remains impossible to refer to
parts of the application whose concrete implementation is not known at compile-
time, such as plugins that are dynamically loaded. Because the namespaces and
type names of such plugins are only known at runtime, their code can only be
influenced through very wide pointcuts that quantify over the entire application.

Base Program Integration. An aspect instance can store data between the differ-
ent advice invocations that are triggered as join points are encountered while the
program is executed. Within the context of one deployment, it is often desirable
to set-up different aspect instances with separate state information. In AspectJ,
aspect instances are always created automatically according to a number of pre-
defined strategies, such as perthis, pertarget and percflow. However, as we
argued in previous work [13], these predefined strategies cannot support even
simple variations. Imagine that we want to deploy two instances of the tracing
aspect instead of one: one that writes to the application log file and another
one that writes to a personal log file of the user. To realize the creation of
two aspect instances, we would have to write two singleton deployment aspects.
Although the deployment logic of these two aspects could be shared in a com-
mon superaspect that inherits from AbstractTrace, the requirement to create a
new entity for each instance is cumbersome and imposes static restrictions, as
explained in the previous paragraph.

Furthermore, we often want the creation of aspect instances to be triggered
by specific events in the execution. For example, writing tracing information to a
user’s personal log file is only relevant after a user has logged in. We would want
an instance of the tracing aspect to be created on every login (and destroyed on
logout), but predefined instantiation modes do not support this. In these cases
the implicit instantiation also renders it very difficult to configure the aspect
instances with appropriate program parameters. For example, in listing 3 we
can obtain a reference to the (global) application log file with relative ease by
accessing the static program members of the base program. However, in case of
local information, such as the user’s personal log file in a system where multiple
users can be logged in simultaneously, this becomes significantly harder.

4 Towards Improved Facilities for Reusable Aspect
Deployment

The deployment logic we have considered realizes aspectual behavior by em-
ploying reusable parts that specify different facets of the behavior. The main
kinds of ‘building blocks’ are pointcuts, advices and combination strategies. As
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a basis for improved language facilities for reusable aspect deployment, we pro-
pose to organize deployment logic as procedures that employ these entities (or
their instances) as first-class values. More concretely, this means that pointcuts,
advices and combinations strategies are passable and returnable as parameters
to and from pieces of deployment logic, and that the deployment logic can be
dynamically invoked with these entities as runtime values.

We revisit each of the previously identified issues below, and discuss the im-
plications of this solution in more detail.

Reuse of Deployment Logic. The ability to parametrize pieces of deployment
logic enables to build abstractions that allow reuse of this logic. For example,
when both tracing and profiling behavior have to be deployed in the same man-
ner, we can define this common logic as a general deployment strategy that
receives the aspect to deploy as a parameter. As such, it can be shared between
the deployment of both concerns and implementation details can be hidden from
their specifications. If pieces of deployment logic are also made extensible, in-
dividual variations can be specified in different deployment strategies that each
extend the common case.

Dynamic Deployment. The required support for the dynamic deployment of as-
pects is met through the ability to invoke pieces of deployment logic with point-
cuts, advices and combination strategies as runtime values. In case of our running
example, the selective tracing of application parts could be realized by dynam-
ically deploying combinations of predefined pointcuts and advices. Although a
large number of combinations is possible, we can create them on demand. To
further match the capabilities of recent weaver technology, it seems appropriate
to also make pointcuts constructible at runtime, during the execution of the
deployment logic. The reflective capabilities of the programming language could
be employed to refer to specific program parts during the execution. As such,
aspects can be deployed for program parts that are not known at compile-time.

Oneobviousdifficulty ofdynamicdeployment, besidesweaver technology, is that
the treatment of a deployment by the compiler might provide certain static guar-
antees that we wish to uphold. For example, the AspectJ compiler will verify the
compatibility between a pointcut and an advice in a deployment. We believe it is
possible to maintain these static guarantees even when the deployment logic is exe-
cuted dynamically, although this might require more advanced typing formalisms.

Base Program Integration. Because aspects often require a tight integration with
the base program to realize their functionality, we propose to make it possible to
link pieces of deployment logic to points in the execution of the main application.
As such this logic is executed each time the execution of the application reaches
one of these points. This makes it easier to accommodate for different variations in
the instantiation of aspects, because aspect instances can be created explicitly by
the developer, at the relevant events. It also greatly facilitates the configuration of
these instances, because the relevant parameters for communication with the base
program are often readily available at these points (e.g. a reference to the user and
his log file is likely to be around in the code section that handles a login event).
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5 Related Work

A number of existing approaches already address some of the issues regarding
deployment logic that are raised in this paper.

On the one hand, the Caesar [14] language aims to provide better modular-
ity on top of the pointcut/advice mechanism offered by AspectJ. It identifies
reusable aspect bindings as one of its design goals and realizes this by installing
a mixin-based inheritance mechanism between aspects. As such, reusable imple-
mentations and reusable bindings can be inherited independently by a deploy-
ment aspect. Furthermore, Caesar allows to instantiate aspects explicitly and the
developer can combine the creation and configuration of aspect instances with
the main program. The major drawback in comparison to our proposal however,
is that every combination of an implementation and a binding must still be in-
troduced statically; dynamic deployment (in the terminology of Caesar) refers
to the ability to merely activate these combinations for a certain control flow,
thread, etc. at runtime. Similarly, pointcuts are still static entities that cannot
refer to parts of the application that are unknown at the time of compilation.

On the other hand, a number of aspect frameworks have been proposed both
in an academic (e.g. Reflex [15], AspectS [16]) and industrial setting (e.g. JBoss
AOP [17], AspectWerkz [18]). These approaches do not employ a dedicated lan-
guage, and specify aspectual behavior through standard libraries (sometimes
complemented with XML configuration files). Specifying deployment logic as
regular code that employs a framework library has many potential advantages.
E.g. the runtime APIs of JBoss AOP and AspectS allow changing pointcut and
advice bindings, hence enabling dynamic deployment. By employing the already
present abstraction mechanisms of the base programming language, reuse of de-
ployment logic could be organized as well, however this possibility is seldom con-
sidered by most frameworks. Worse, pointcuts cannot always be separated from
the deployment logic, hindering independent reuse. Another important problem
is that frameworks do not offer the same static guarantees as the type systems
of regular aspect languages that can depend on a dedicated compiler.

6 Conclusions

In this paper, we have analyzed the means for the specification of deployment
logic for reusable aspects in current aspect-oriented approaches. When aspects
are used for the implementation of fundamental parts of the application, we ob-
serve a number of issues regarding the reuse of deployment logic, its dynamic
invocation and its integration with the rest of the system. We proposed a number
of important steps towards a solution which is based on the notion of organiz-
ing deployment logic as procedures that employ reusable pointcuts, advices and
combination strategies as first-class values. We are in the course of implement-
ing this solution concretely as a part of the EcoSys [19] AOP framework. This
framework specifically aims at providing the same static typing guarantees as
provided by language-based approaches.
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Abstract. Aspects require access to the join point context in order to select and 
adapt join points. For this purpose, current aspect-oriented systems offer a large 
number of pointcut constructs that provide access to join point information that 
is local to the join point context, like parameters in method call join points. 
However, these systems are quite miserly with non-local information that can-
not directly be derived from the local execution context. Recently, there have 
been some proposals that offer access to some kind of non-local information. 
One such proposal is the path expression pointcut that permits to abstract over 
non-local object information. Path pointcuts expose non-local objects that are 
specified in corresponding path expression patterns. In this paper, we show re-
current situations where developers need to access the whole object paths, and 
consequently, they add workarounds other than pointcut constructs to get the 
required accesses. Then, we present and study an extension to the path expres-
sion pointcuts to permit exposing the object paths and show how this extension 
overcomes the problem. 

1   Introduction 

Aspect-oriented programming aims to increase the modularity of software. This is 
achieved by features that are used to select points in the execution of the program and 
to adapt them. Pointcuts are the language constructs used for selecting these points, 
which are called join points [15]. The join point adaptation is achieved by the so-
called advice. The selection and the adaptation of a join point depend on the charac-
teristics of this join point. 

These characteristics are called join point properties [1, 12] and are divided into 
two categories: Local and non-local join point properties depending on whether they 
are accessible and derivable from the join point context or not, respectively. For ex-
ample, the current executing object at a method execution join point is considered a 
local join point property, which can be accessed with the this pointcut in AspectJ 
[15]. In general, current aspect-oriented systems offer several pointcut constructs that 
can be used to derive the local information of a join point. On the other hand, these 
systems provide only a small number of pointcut constructs that provide access to the 
non-local join points properties, like the call stack in languages such as Java and C++. 

One intention of aspect-oriented systems is to provide pointcut languages that per-
mit the developer to specify expressive pointcuts [26] where the join point selections 
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correspond to the developer’s mental model [31]. This also implies that the available 
join point properties provided by an aspect-oriented system must suffice the develop-
ers’ needs. In addition to that, the resulting aspects would be easier to maintain, more 
robust against changes, and contain no mixture between the pointcut and advice code. 
As a consequence, it has been pointed out by a number of researchers that there is a 
need for more pointcuts that offer abstractions over non-local properties [2, 22, 34]. 
However, none of these proposals provide abstractions over the non-local properties 
that are based on object information, for which we proposed the path expression 
pointcut [1] as an explicit construct. 

In this paper we take a step forward by extending the path expression pointcut that 
allows aspects to access the whole object information in the matching paths. We mo-
tivate our proposal using two examples from the object persistence concern. These 
examples illustrate why we need to get not only object references from the whole path 
but also field information that establishes the relationships between these objects. 
This is achieved by exposing the whole non-local part of the object graph that is re-
lated to the join point to the aspect. 
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Fig. 1. Class diagram for the problem domain 

The rest of the paper is organized as follows: In the rest of this section, we first de-
scribe the object model of an example that is used throughout the paper. Then for the 
purpose of self-containedness, we give a brief description on the current version of 
the path expression pointcut. In Sect. 2, we discuss two motivating examples and the 
problem statement. Section 3 presents the extension to the path expression pointcut. 
We talk about related works in Sect. 4. In Sect. 5 we discuss some issues regarding 
our proposal and its implementation. The paper is concluded in Sect. 6. 

1.1   Example 

Figure 1 shows a class hierarchy adopted from [16] for a company object model. The 
intention is to persist all company objects that are added to special containers called 
“persistent lists”: Instances of PersistedList class that persist all contained objects. 
These objects are not prepared to be persistent; rather they become persistent at the 
time they are added to the lists. This persistence service is an ad-hoc functionality 
provided by the persistent lists in a similar way to spontaneous containers [28].  
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As Fig. 1 elaborates, each company has a number of divisions, a president and a 
headquarter address. Each division in turn has a manager, a number of employees, a 
number of customers and a location address. Customer (which we added) and Em-
ployee are subtypes of Person. Each person object is associated with a collection of 
Vehicle objects. Finally, vehicle objects are associated with corresponding company 
objects by the relation manufacturedBy. 

1.2   Path Expression Pointcut 

The path pointcut traverses the current object graph in order to find paths that match a 
given path expression. A pointcut making use of a path pointcut picks out the join 
points where there exists at least one matching path. The general form is:  

path(PathExpressionPattern); 

For a detailed description of the syntax, please refer to Sect. 3.1 in [1]. Within path 
expression patterns may specify certain objects as source objects, target objects and 
intermediate objects of the paths. Moreover, the associations between objects can be 
specified by names. The path pointcut applies pattern matching mechanism by using 
the wildcards “*” and “/” to specify associations between objects along the path. The 
path pointcut is used to expose both local and non-local context from the join points 
and it can be used along with other pointcut designators by means of operators “&&”, 
“||” and “!”. For example, consider the following pointcut: 

pointcut pc(Company c, Person p, Object o):  
  path(c -*-> Employee p -/-> o) && set(* *) && target(o);  

This pointcut picks out every set join point whose target is the object o and where 
there is at least one path between the objects c and o via p. The wildcard “*” in the 
path expression indicates that there is a direct relationship between c and p, whereas 
“/” indicates that there may be many objects on the path between these objects.  

Like in AspectJ, the objects described in the path expression can be bound to the 
corresponding variables in the pointcut’s header. Then the bounded objects are ex-
posed from the join point context to the aspect context.  According to the semantics of 
the path pointcut, the result of a path expression is a set of distinct valid parameter 
bindings rather than a set of matched paths. 

For example, in Fig. 2, the path expression in the pointcut matches two paths: (com 
–headquarter-> addr) and (com –divisions-> div -location-> addr), how-
ever, the valid parameter bindings is only: (c=com, a=addr). Notice that there are 
two occurrences of the variable name a, once as a destination in the path expression 
and then it is used in the target pointcut. The path pointcut allows multiple occur-
rences of the same variable name in one or more path expressions and unifies these 
occurrences to be bound to the same value. 

location 

com:Company 

divisionsheadquarter 

div:Division addr:Address  
 
 

  pointcut pc(Company c, Address a):  
    path(c -/-> a) && target(a) …;  

Fig. 2. A Company instance has two references to the same Address instance 
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shipTocustomers 

div:Division 
c2:Customer 

balance=1000;

ad1:Address c1:Customer 

balance=750;

ad2:Address 
shipTo

 
 
 
 
  pointcut pc(Division d, Customer c, Address a):  
    path(d -/-> c -/-> a) …;  

Fig. 3. Two resulting paths between a division and an address are resolved to two bindings 

A consequence of multiple parameter bindings is that the advice execution mecha-
nism is modified to allow a single advice that is associated with the pointcut to be 
executed as many times as the size of the parameter bindings set. 

For example, according to the pointcut of Fig. 3, the resulting bindings are: 
(d=div, c=c1, a=ad1) and (d=div, c=c2, a=ad2). Hence, each single advice that 
is associated with this pointcut must be executed two times for each single binding. 
An important question is in which order these executions should be performed. For 
example, assume that there are two concurrent transactions, each updates one of the 
objects ad1 and ad2 and that the developer wants to run these concurrent changes in a 
descending order by customers balances. Since the balance of c2 is greater than that 
of c1, the advice must be executed first with the binding: (d=div, c=c2, a=ad2). 

public boolean addrChg(Object[] o1, Object[] o2) {        
  Customer cust1 = (Customer) o1[1];  
  Customer cust2 = (Customer) o2[1];    
  return cust1.getBalance() > cust2.getBalance(); 
} 
pointcut pc(Div d, Customer c, Address a):  
  set(* *)&& target(a)&& path(d -/-> c -/-> a) orderBy(this.addrChg);  

Fig. 4. Possible ordering method specification 

As a solution, we provide an extra construct, namely orderBy that is added to the 
path pointcut. It takes a name of the method containing the ordering code specified by 
the developer. The method is similar to the compare method of the Comparable inter-
face in the Java API. For example, in the pointcut pc of Fig. 4, the parameter of the 
orderBy is the name of the method addrChg whose signature has two array parame-
ters of type Object each representing a single binding. The method extracts the  
second element from both arrays, casts them to type Customer and returns the com-
parison result between their balance fields. When no orderBy clause is specified, 
then the order would be undefined. 

2   Motivation 

One of the important issues of object persistence is to ensure the isolation property of 
concurrently executing transactions by means of concurrency control approaches. The 
concept of locking data items is one of the main used techniques of the concurrency 
control. There are two main types of locks: Shared or exclusive, generally known as 
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read and write lock respectively. In what follows, we will consider two locking poli-
cies in our motivating examples: The field-based locking policy and the cascading-
version locking policy. 

2.1   Example 1: Field-Based Locking 

In the locking-based concurrency control of transactions literature, there is a large 
number of researchers discussing locking granularities [11], proposing techniques for 
fine-granularity locking [23, 27] and discussing the benefits and the effects of multi-
ple locking granularities [29]. The granule of the data that can be locked is either the 
whole database, an extension of objects, an object or a field of an object [14]. Here, 
we focus on locking the fields of the object that are being changed so that multiple 
transactions can be executed on this object. 

pcc:PostCodeConverter
p:PersistedList 

c:Company 

pres:Employee 

addr:Address

pm:PersonalMgr 

setPhone()

residence 

Thread2  

setPostCode() 
Thread1 

president 

 

Fig. 5. Two separate concurrent transactions attempt to change the pres state 

In Fig. 5, the Company instance c, which references the object pres, is added to the 
persistent list p. Hence, this company object and all objects in its closure are to be 
made persistent. Assume that we are interested in applying locking on the fields of the 
Employee object. Two separate concurrent threads attempt to update the state of the 
employee. Thread1 in pcc wants to change the postcode value of addr and Thread2 in 
pm attempts to change the phone field of the employee. In order to permit both threads 
to modify the employee object simultaneously, we should acquire separate write locks 
for the fields residence and phone rather than for the object pres. 

In aspect-oriented terms, each update is a join point that should be selected since 
the employee object belongs to the persistent list p. The needed information is: the 
objects p and pres. The aspect then should acquire a write-lock for each field that is 
to be changed. Here, the needed information is the fields residence and phone.  

The local relevant context at the join point in Thread1 is the object addr, and the 
local relevant context for Thread2 is the object pres. In Thread1, objects p and pres, 
in addition to the field name residence, are considered to be non-local, while in 
Thread2 the non-local relevant information is object p. 

Consider the pointcut pc1 in Fig. 6, it selects all set join points where the target ob-
ject e of type Employee is reachable from the persistent list pl. According to Fig. 5, 
pc1 selects the employee object pres due to the matching path: (p -> c -> pres), 
and the resulting bindings is: (pl=p, e=pres), which is exposed to the before advice. 
The advice gets the changed field by means of the reflective facilities in AspectJ and 
Java. Finally, the advice acquires the write-lock to the field phone of the object pres. 
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pointcut pc1(PersistedList pl, Employee e): 
set(* *) && target(e) && path(pl -/-> e); 

 

pointcut pc2(PersistedList pl, Employee e, Object o): 
set(* *) && target(o) && path(pl -/-> e -/-> o); 

 

before(PersistedList pl, Employee e): pc1(pl, e) { 
  String fname = thisJoinPoint.getSignature().getName(); 
  Field field = … // code to get the field by using its name and lock it 
} 
before(PersistedList pl, Employee e, Object o):  
  pc2(pl, e, o) { 
     // code for getting the field of e which is the beginning of the reference closure from e to o 
}  

Fig. 6. Using the path pointcut in the field locking example 

The pointcut pc2 selects all set operations targeted to any object o that is reachable 
from the persistent list pl via object e. From Fig. 5, there is one matching path to the 
path expression pattern in pc2, i.e. (p -> c -> pres -> addr). Hence, this resulting 
binding is (pl=p, e=pres, o=addr), which provides the advice with the access to 
the non-local objects p and e in addition to the local object addr. The advice must 
acquire a write-lock for the dirty field residence, however, this field is not available 
for the advice since this information is non-local to the join point. 

To get access to the non-local field information, developers implement work-
arounds since this information cannot be accessed by using the available pointcut 
constructs. These solutions are complex, difficult to maintain and error-prone though. 
Moreover, the code does not reflect the join point selection and adaptation semantics. 

2.2   Example 2: Cascading Version Locking 

To solve the concurrency control problem, researchers also proposed a number of 
version-based locking policies [17, 21, 24]. In these policies, all transactions can grant 
shared read access to the object, and whenever a transaction attempts to update the 
state of the object, the application should check whether this update is performed on 
the right version of the object. 

Version locking mechanisms use a so-called version (or write-lock) field that is 
added to every object and compare this field every time an update operation on the 
object is committed with the current value in the datastore. If they are equal, then the 
change is committed to the datastore, otherwise the change is disallowed and this 
indicates that the object must have been updated by another transaction. In the cascad-
ing version locking, the version field of all objects that reference the dirty object must 
be updated also. 

p:PersistedList 

com1:Company

com2:Company

addr:Address

headquarter

headquarter 
 
 
  

Fig. 7. A shared Address instance between two Company instances 
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As an example, consider the object graph in Fig. 7. Two Company instances, com1 
and com2, both referencing the same object addr. The Company instances are stored in 
the persistent list p. According to the version locking policy, any change to the addr 
will update the version field of addr as well as the version fields of its owner objects, 
i.e., com1 end com2. In our aspect, we want to be sure that the changed object is 
reachable from a persistent list. If so, the aspect should perform the dedicated version 
locking policy on the shared object. So, we use the following pointcut: 

pointcut pc(PersistedList pl, Object o): 

  set(* *) && target(o) && path(pl -/-> o); 

A corresponding advice gets access to the binding (pl=p, o=addr), despite the 
fact that there are two different paths from p to addr. The advice will consider the 
changes in the Address object and update its version field. However, the correspond-
ing version field of com1 and com2 are not modified yet. Such situations affect the data 
consistency. In order to overcome this problem, we must get access to all objects in 
each path from p to addr in order to modify their versions. 

As mentioned in the first example, the only way currently available for the devel-
oper in conventional aspect-oriented systems is to apply introspective facilities of the 
language to traverse the entire reference path to get the required accesses. These kind 
of solutions are not trivial, error-prone and mostly not reusable. 

In summary, both examples illustrate the need for more expressive path pointcuts. 
The first example motivates the need for exposing not only the non-local objects, but 
also the non-local field information. The second example motivates the need for ex-
posing all objects in the matching paths instead of the distinct parameter bindings. 

3   Extended Path Expression Pointcuts 

In this section, we present an extension to the path expression pointcuts that over-
comes the problems described above. We modified the syntax and the semantics of 
the pointcut construct so that the resulting paths are exposed to pointcuts and advice 
as a subgraph of the whole object graph. This subgraph is made local to the aspect and 
from its interface developers can extract the objects and their relationships. 

3.1   Syntax and Semantics of the Path Pointcut 

In order to get access to the resulting paths, we slightly modified the syntax of the 
path expression pointcut so that it has two parameters: The first parameter refers to an 
instance of type PEGraph (discussed in Sect. 3.2). The second parameter is the path 
expression pattern. The new syntax is: 

path(PEGraph identifier, PathExpressionPattern). 

The new model maintains the syntax specifications of the PathExpressionPattern 
discussed in [1]. The path pointcut calculates the path expression pattern against the 
current heap and adds all matching paths to a generated PEGraph object. When the 
evaluation process ends, the resulting PEGraph object is bound to the variable name 
identifier. The pointcut header must include this variable name as a parameter of 
type PEGraph. This parameter will be added to resulting parameter bindings being 
exposed to the pointcut and the associated advice. 
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(a) The object graph 
(b) The resulting PEGraph pg from
pointcut pc 

(c) The resulting bindings: pg, c=com, a=addr 

pr:Employee mg:Employee

addr:Address 

div:Division com1:Company 

headquarter 

divisions 

location

addr:Address

div:Division com1:Company

headquarter

divisions 

location 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pointcut pc(PEGraph pg, Company c, Address a):  
  path(pg, c -/-> a) …; 

president manager 

 
Fig. 8. Two paths between a Company and an Address 

As an example, consider the object graph in part (a) of Fig. 8. There are two match-
ing paths to the given expression in the path pointcut: (com -divisions-> div -
location-> addr) and (com -headquarter-> addr). The evaluation of this path 
expression creates an object of PEGraph that consists of the subgraph in Fig. 8-(b). 
This object is bound to the variable pg. Finally, as shown in part c), the pointcut pc 
resolves the parameter bindings (pg, c=com, a=addr). 

The created PEGraph at a given join point depends also on the resolved bindings. 
That means each distinct parameter binding has its own corresponding PEGraph ob-
ject, which ensures exposing only relevant information to the join point. The relevant 
information consists of the objects and their relationships that are included in the 
matching paths even if these paths contain cycles. Notice that in Fig. 8-(b), the two 
Employee objects along with their referencing field information, i.e. president and 
manager, are excluded from the result of the path pointcut since this information is not 
relevant to the given path expression. 

c2:Customer 

balance=1000;

ad1:Address 

car:Vehicle 

div:Division 

ad2:Address 

 

c1:Customer 

balance=750;

com:Company 
pr:Employee

 
 
 
 
 
 
 
 
 
 
 
 
  

pointcut pc(PEGraph pg, Division d, Customer c, Address a):  
  path(pg, d -/-> c -/-> a) …; 

president

residence
familyMembers

ownedVehicles 

residence

customers 

 

Fig. 9. Infinite number of paths between objects div and ad2 

The presence of cycles in object graphs raises an important question regarding the 
termination of our pointcut construct. If a cycle appears in a matching path then it 
must be included in the resulting path graph. To guarantee the termination feature of 
the path pointcut, cycles should not be traversed more than once except when it is 
needed to traverse them again to fulfill the required set of bindings. Notice that we 
have to detect the cycles during the traversal of the object graph and have to add them 
to the resulting PEGraph if they occur in a matching path. 
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ad1:Address div:Division c1:Customer 

balance=750;

c2:Customer 

balance=1000;

div:Division ad2:Address  

 

pr:Employee

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

residencecustomers 

(b) PEGraph t2 -  Bindings: pg=t2, d=div, c=c2, a=ad2

(a) PEGraph t1 -  Bindings: pg=t1, d=div, c=c1, a=ad1

residence

familyMembers

customers 

 

Fig. 10. Two PEGraph objects, each for a different bindings 

Consider the collaboration diagram in Fig. 9. According to the given path expres-
sion, there is one matching path from div to ad1 via c1, which constructs a temporary 
PEGraph object t1 that is bound to the variable pg. The resolved binding is: (pg=t1, 
d=div, c=c1, a=ad1) as shown in Fig. 10–(a). On the other hand, there is an infinite 
number of matching paths from div to ad2 via c2 due to the presence of the cycle 
between the objects pr and c2. Suppose that the traversal algorithm visits div then c2 
and finally reaches pr, if it selects to go through the edge labeled familyMembers then 
it will visit c2 again, detect the cycle, save all information (objects and relations) and 
finally will return back to pr and follow the other edge to the object ad2. At this point 
the traversal algorithm finds a matching path as well as a valid distinct bindings for d, 
c and a. The whole path along with the cycle will be put in a temporary PEGraph ob-
ject t2 as in Fig. 10–(b), and then the pointcut resolves the second binding: (pg=t2, 
d=div, c=c2, a=ad2). The pointcut evaluation stops afterwards since there are no 
more matching paths. 

Last but not least, the new extension maintains the semantics of the advice execu-
tion in the first version of the path pointcut. Since the number of distinct resulting 
bindings is two in the last example, any advice associates with the pointcut pc exe-
cutes two times. The ordering schema discussed in Sect. 1 also applies here. Hence, if 
the developer wants to run the advice first on the bindings that contains higher bal-
ance customers, then (s)he must define the same ordering method of Fig. 4 except that 
the index of the customer object in the binding is 2 instead of 1. 

3.2   Path Expression Graph 

As stated above, the result from the path pointcut is a subgraph of the whole object 
graph that contains only the information relevant to the selected join point. We said 
that this resulting graph will be assigned to an object of type PEGraph. The public 
interface of this data structure is illustrated in Fig. 11. 

Each node of the PEGraph is of type PENode and contains a reference to an object of 
a generic type, a list of outgoing edges and a list of incoming edges. The edge of the 
PEGraph is of type PEEdge, which has two methods: getRelatedNode to get the ge-
neric typed object that represents the related node to the owner node of this edge (i.e. 
the node at the other edge). The method getRelField returns the relation name. The 
graph object provides the ability to navigate from any given object either in a forward 
or in a backward manner. This is done by getting access to the current object of the 
PEGraph instance, and then accessing its related objects and referencing fields. 
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class PEGraph<Current, Next> {
  private Current current; 
  private Next next; 
  public Current getCurrent(); 
  public Next getNext(); 
  public List<PENode> getNextNodes(); 
  public List<PEEdge> getNextEdges(); 
  public boolean setCurrentObject(Current current); 
} 
 

class PENode<T> { 
  public T getObject(); 
  public List<PEEdge> getOutEdges(); 
  public List<PEEdge> getInEdges(); 
} 
 

class PEEdge<T> { 
  public PENode<T> getRelatedNode(); 
  public String getRelField(); 
} 

 

Fig. 11. The public interface of the PEGraph 

The PEGraph interface cannot be mutated other than setting the current object field 
of the PEGraph class by using the method setCurrentObject. It is possible to set the 
current node by passing a reference to a specific object or a given PENode. The meth-
ods getNextNodes, getNextEdges and getNext are used to traverse through the PE-
Graph. It should be mentioned that the object and field information returned from 
these methods is obtained from the resulting path expression graph. Other object in-
formation from the whole object graph that is not related to the selected join point 
could be accessed from the object that is associated with the PENode. The method 
getCurrent returns the current object as a PENode, which can be used to get the object 
being associated with this node directly with the help of method getObject. 

This representation is making use of generic types, which allow developers to use 
the type information they know, either directly or from the PEGraph object, without 
casting. For example, consider the following pointcut specification: 

pointcut pc(PEGraph<PENode<Division>, PEGraph<PENode<Customer>>> pg, 

            Division d, Customer c): path(pg, d -*-> c) …; 

Here, the source of any matching path is specified to be of type PE-

Node<Division>. Hence the following is type-safe: 

Division myDiv = pg.getCurrent().getObject(); 

We try to make it as easy as possible for the developer to query over the dynamic 
object information that is relevant to the join point. Of course, there is a complexity 
overhead in our representation of the PEGraph, however, this is significant from the 
developer’s point of view since it needs less effort to reason about type information 
(as compared to performing reflective operations and casting operations). 

3.3   Field-Based Locking Example Revisited 

We use the new path pointcut in the pointcuts pc1 and pc2 as shown in Fig. 12. 
According to the object graph in Fig. 5, the path expression in pointcut pc1 matches 
the path: (p -items-> c -president-> pres). The PEGraph object pg will  
contain this path and it will be exposed to the advice along with the bindings  
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pointcut pc1( 
   PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> pg,  
   PersistedList pl, Employee e): 

set(* *) && target(e) && path(pg, pl -/-> e); 
 

pointcut pc2( 
   PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> pg,   
   PersistedList pl, Employee e, Object o): 

set(* *) && target(o) && path(pg, pl -/-> e -/-> o); 
 

before( 
   PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> pg, 
   PersistedList pl, Employee e, Object o): 
  pc2(pg, pl, e, o) { 
  pg.setCurrentObject(e); 
  List<String> dirtyFields = pg.getNextFields(); 
  for(String dfn: dirtyFields) { 
         // get the field from the object e and  acquire a write-lock for it … 
  } 
} 

 

Fig. 12. The PEGraph object is used in the path pointcut in pc1 and pc2 

(pl=p, e=pres). The associated advice would adapt the join point as shown in the 
motivating example since the pres object and the field phone is local information to 
the join point. It must be noted that the aspect maintains the PersistedList objects 
from which the traversing process begins. 

When applying the pointcut pc2 to the collaboration diagram in Fig. 5, the only 
matching path is: (p -items-> c -president-> pres -residence-> addr) that 
represents the resulting PEGraph object pg. This object along with the objects p, pres 
and addr are exposed to the associated before advice in the figure. The first line of the 
advice sets the current object of the pg to e, which is the variable bound to the Em-
ployee object pres. The second line gets all fields of the current object pres that are 
available in the pg graph and puts the result in the array dirtyFields. The rest of the 
advice is the code responsible for iterating through the list elements and acquiring a 
write-lock for each. The only available field according to the resulting path graph in 
pg is the field residence of the object pres. 

3.4   Version-Based Locking Example Revisited 

As in the last section, the extended path pointcut provides us with access to the re-
quired non-local information in the example: First, the persistent list object that con-
tains the changed object, second, all objects in all reference paths from the persistent 
list to its contained changed object. 

The following pointcut is making use of the path pointcut construct: 

pointcut pc(PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> 
pg, PersistedList pl, Object o): 

  set(* *) && target(o) && path(pg, pl -/-> o); 

With respect to Fig. 7, the resulting paths from this pointcut are: (p -items-> 
com1 -headquarter-> addr) and (p -items-> com2 -headquarter-> addr). 
These paths construct the part of the object graph that will be exposed to the advice as 
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illustrated in Fig. 7. This subgraph contains the information relevant to the set join 
point on the address object, that is, all objects that are referencing the changed object 
addr. The pointcut pc resolves one parameter binding: (pl=p, o=addr), which is 
exposed to the advice,  which will be executed just once. 

Since the whole reference paths are exposed to the advice, performing the cascad-
ing version locking would be trivial. The only thing developers have to do inside the 
advice is backward traversing the nodes of the pg object after setting the current ob-
ject of the pg to point to addr. They can easily update the version fields of all trav-
ersed objects in order to apply the cascading version locking. Note that although the 
paths in this example are of length 2, this algorithm is useful for any length of the 
reference path where there is a guarantee to get access to all owner objects of the 
current object. 

4   Related Work 

Path expressions, first introduced in [5] to synchronize the operations on data objects, 
then became central ingredient of object-oriented query languages such as [10, 16, 
33]. The W3 Consortium introduced the XPath language [6] in order to address parts 
of an XML document [4]. In our work, we study the benefit of the application of path 
expressions in increasing the expressiveness of pointcut languages in addressing ob-
ject relationships at runtime and providing aspects with access to this information. 

Adaptive programming (AP) [19, 20] and strategic programming (SP) [18] provide 
interesting notions similar to the path expressions. They provide the developer with 
traversal control by the help of so-called traversal strategies and traversal schemes, 
respectively. The idea behind the aspect versions of AP and SP is that the advice is 
executed whenever the visitor component visits an object that belongs to a path that 
matches the given traversal. This is in contrast to the path pointcut that participates in 
the selection of the join point and exposes the matching object paths as well. 

A lot of research effort is done to provide access to the non-local join point proper-
ties. Some works cover the importance of selecting and adapting the join points based 
on execution trace matching. Stateful aspects [8, 34] define conditions based on finite 
state transitions to trigger advice executions on a protocol sequence of join points. 
Other trace-based solutions have been discussed in [2, 9, 35]. Data flow pointcuts [22] 
solve the problem of non-locality of data flow information at the join point. The con-
text-aware aspects [32] provide means to access information that is associated with 
certain contexts that are currently available or occur in the past. Another well-known 
example of accessing the non-local call stack at the join point is the cflow pointcut in 
AspectJ. However, all these proposals neither point to nor solve the problem of non-
local join point properties that are based on object information. 

Some works already discussed the need for expressive join point models that re-
flect the mental model of the developer [31]. Moreover, expressive pointcuts increase 
the modularity [26] and are robust to absorb any changes to the application features 
and compositions. The authors in [26] followed their previous remark about pointcuts 
that access dynamic properties of the program [3] by implementing the Alpha lan-
guage whose pointcuts are Prolog queries over a database consisting of different se-
mantic models of the program execution. In our proposal we have to keep small parts 
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of the current heap at a given join point. In contrast to logic-based pointcuts, the path 
pointcut relies on traversing the heap to get relevant object information in a form of 
paths. Alpha predicates can be used to compose pointcuts that represent the notion of 
path pointcuts, however, these compositions may result in complex pointcut defini-
tions that can be avoided by using the path pointcut. Moreover, one of the main goals 
of our proposal is to apply the path expressions technique to AOP as an explicit con-
struct and to discuss the effects of this integration and how to resolve them. 

In association aspects [30], a new pointcut designator is introduced to AspectJ, 
namely associate, which is used to associate extended per-object aspect instances to 
a group of objects. The authors point to the need for multiple executions of the advice 
in the associated aspect instances. This multiple advice execution corresponds to our 
approach, however, they do not give a clear specification of the order in which these 
executions run such as what we have proposed in this paper. 

5   Discussion 

Objects graphs are directed and may contain cycles, which is a source of complexity 
since there is a infinite number of matching paths to a given path expression in such 
structure. We can minimize this complexity by considering some restrictions, e.g., 
finding paths in the object graph that contain a cover to the needed bindings. This can 
be achieved using any of the efficient algorithms to detect cycles in directed object 
graphs and stop traversing through these cycles. For example, the time complexity of 
Floyd's cycle-finding algorithm [7] is O(V), where V is the number of nodes in the 
graph. Moreover, this guarantees the termination of the path evaluation process. 

Depending on the path expression, there are different situations of complexity. If 
the source and the target objects of the path expression are specified, then the problem 
is minimized to the single-pair shortest path, which is faster than the cases where one 
or both objects are not know. The running time is ranging from O(V lg V + E) to O(V2 
lg V + VE) or even to O(V3) in the worst case for finding all paths between any two 
objects [7], where V and E are the number of nodes and edges of the object graph 
respectively. In fact this complexity also depends on the algorithm being used and the 
type of the object graph. For example, in sparse graphs, where E is much less than V2, 
Johnson’s algorithm runs faster than the Floyd-Warshall algorithm. 

The here proposed extension for the path pointcut maintains the same ordering 
schema of the multiple advice executions at a given join point. I.e., the developers are 
asked to define their own ordering rules in a separate method. Following our argu-
ment about the rationale behind this design choice in [1], we still believe that it is not 
difficult to define reasonable ordering methods that ensure the termination. 

One important issue when dealing with the object graphs in persistence systems is 
how these systems manipulate the collection objects. Most persistence systems con-
sider these objects as second-class objects, e.g., [13]. When two objects are sharing a 
second class object then each will have its own copy of this shared object so the 
changes in one copy will not be observed by the other owner object. Consequently, 
there must be a clear definition of how to represent these objects in the resulting  
PEGraph from a path pointcut. For simplicity purposes, we ignore this issue in this 
paper and treat items of the collection individually. 
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6   Conclusion 

In this paper, we continue our argumentation about the need for abstractions in as-
pect-oriented systems that provide access to the non-local join point context. The 
motivating examples show the need to access non-local join point context that is not 
only based on objects but also on the relationships between these objects. Our exam-
ples cover some recurrent situations that occur when applying well-known locking 
policies in object persistence systems in an aspect-oriented manner. We have consid-
ered two such policies, field-based locking and cascading version locking mecha-
nisms. For the first policy, we illustrate the need for accessing the non-local field 
information to apply the desired locking. In the second case, we show the need for 
getting the whole resulting paths instead of getting access to some objects in the path. 

Then we describe our solution to such problems as an extension for the path ex-
pression pointcut [1]. The new extension provides access to the whole part of the 
object graph that is related to the join point and that is constructed from the matching 
paths. This subgraph is exposed then by the path pointcut to the aspect. Then we dis-
cuss some issues related to the extension. These include the public interface of the 
constructed subgraph that the developers can use to reason about objects and their 
relationships inside their aspects. We give our arguments about this representation. 
Then we discuss various aspect-oriented programming concepts and how the path 
pointcuts influence them with the help of some illustrative examples. 

In the last section we present a general discussion about our proposal and some of 
its weaknesses. We suggest some possible ideas how to minimize the effects of these 
problems. These points are the focus of our future work.  

Our experience with the path expression pointcuts shows a reasonable number of 
cases that require access to non-local object relationship information in persistence 
systems. However, we expect that path pointcuts have a large impact on increasing 
the expressiveness of pointcut languages. The reason for this is the flexibility of the 
path pointcut to express the mental model of the developers upon the role of object 
relationships in join point selection. 
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Abstract. The ability to debug programs composed using aspect-oriented pro-
gramming (AOP) techniques is critical to the adoption of AOP.  Nevertheless, 
many AOP systems lack adequate support for debugging, making it difficult to 
diagnose faults and understand the program’s composition and control flow.  
We present an AOP debug model that characterizes AOP-specific program 
composition techniques and AOP-specific program behaviors, and relates them 
to the AOP-specific faults they induce.  We specify debugging criteria that we 
feel all AOP systems should support and compare how several AOP systems 
measure up to this ideal. 

We explain why AOP composition techniques, particularly dynamic and bi-
nary weaving, hinder source-level debugging, and how results from related re-
search on debugging optimized code help solve the problem.  We also present 
Wicca, the first dynamic AOP system to support full source-level debugging.  
We demonstrate how Wicca’s powerful interactive debugging features allow  
a programmer to quickly diagnose faults in the base program behavior or  
AOP-specific behavior. 

1   Introduction 

We use the term debuggability to mean the ability to diagnose faults in a software 
system, and to improve comprehension of a system, by monitoring the execution of 
the system.  Many debugging techniques exist, including source-level debugging, 
printf-style debugging, assertions, tracing, logging, and runtime visualization. 

The ability to debug aspect-enabled programs is important for many reasons.  The 
interaction of aspects with a system introduces new fault types and complicates fault 
resolution [2].  Programmers rely on debugging to diagnose these faults and perform 
post-mortem analyses.  Debugging is also an important tool for program comprehen-
sion.  Aspect functionality can drastically change the behavior and control flow of the 
base program, leading to unexpected behavior [2] and resulting in the same complex-
ity that multi-threaded programs are notorious for. Debugging provides a way to de-
mystify these intricacies and better understand the composed program.  
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Aspect-oriented programming (AOP) [28] is still an emerging field with many dif-
ferent techniques for aspect specification, composition, and integration.  Along with 
tool support, debugging support serves as an indicator of AOP maturity [17, 32].  
Commercial software developers are hesitant to adopt aspect-oriented software devel-
opment practices or ship AOP-enabled products that are difficult to debug and service 
[2, 17, 24, 25]. 

Debugging is no substitute for aspect visualization [17] and testing.  Indeed they 
are complementary:  aspect visualization provides the ability to predict aspect behav-
ior; testing provides a process for automatically detecting anomalies; and debugging 
provides a way to manually detect, diagnose, and fix anomalies and to better under-
stand program behavior. 

The outline and contributions of this paper are as follows: 

• We argue that debugging aspect-enabled programs is more difficult and possibly 
more important, than debugging conventionally composed programs. 

• We present a general model for discussing debugging aspect-enabled programs.  
The model includes a classification of AOP-specific composition techniques and 
AOP-specific program behaviors, and a fault model.  We define the properties 
of an ideal AOP debugging solution, including support for debug obliviousness 
and debug intimacy. (§2) 

• We evaluate several current AOP systems as to how well they support AOP de-
bugging. (§3) 

• Since many AOP systems employ source or binary code transformations, we 
consider how this affects source-level debugging, and present solutions sug-
gested by related research on debugging optimized code. (§4) 

• We present Wicca, our dynamic AOP system that employs a novel weaving 
strategy to provide full source-level debugging, and is the first dynamic AOP 
system to do so (§5).  We present the results of a debugging experiment using 
Wicca that demonstrates its unique AOP debugging capabilities. (§6) 

2   A Debug Model for AOP 

Our AOP debug model has five components: a classification of AOP-specific compo-
sition techniques (weaving strategies), a classification of AOP-specific program be-
haviors (AOP activities), a fault model, a definition for debug obliviousness, and a set 
of debugging criteria. 

2.1   A Classification of Weaving Strategies  

The AOP-specific composition technique, i.e., weaving strategy, used by an AOP 
system has a strong impact on its debuggability.  Weaving is classified as either inva-
sive or noninvasive, depending upon whether or not it performs a transformation of 
the base program code to enable aspect functionality.  Invasive systems are further 
classified into source weavers and binary (byte-code or machine-code) weavers.  
Noninvasive systems are classified by whether they use a custom runtime environ-
ment or interception.  Figure 1 depicts how the different dimensions of the weaving 
strategies are related. 
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During source weaving (the solid line in Figure 1), aspects are woven into the pro-
gram by performing a source-to-source transformation, usually by transforming the 
abstract syntax tree representation of the program.  The woven source is then com-
piled to create the final program.  Because the aspect code is woven directly into the 
source code, it is possible to perform full source-level debugging on the aspect code 
using standard debuggers. 

A downside of binary weaving (the 
dashed line in Figure 1) is that debug in-
formation may be invalidated by the weav-
ing process or unavailable for injected 
code [2, 25]. Furthermore, companies like 
Microsoft have based their technical sup-
port on the assumption that an executable 
file and its associated attributes (date, size, 
checksum, and version) are fixed. Invasive 
weaving breaks that assumption. 

Extensions to the runtime environment 
(the dotted line in Figure 1), e.g., AOP-
enabled virtual machines and call intercep-
tion plug-ins, enable aspect functionality 
noninvasively, i.e., without modifying the 
base program. Unfortunately, aspect-
related behavior that is implemented in the 
extension may be difficult to debug. 

2.2   A Classification of AOP Activities 

An AOP activity is any program behavior 
that occurs either inside the base program 
or inside some AOP infrastructure in sup-
port of a concept from the AOP semantic 
model.  We use the AspectJ semantic 
model [27] as our reference.  Table 1 cate-
gorizes the AOP activities that we have 
gathered from studying a wide-variety of AOP systems.  Some activities, such as ad-
vice execution, map naturally to AspectJ-like language semantics, while others are 
common implementation approaches for supporting those semantics.  Different AOP 
systems may combine or omit some activities.  For the purposes of this paper, to qual-
ify as an AOP system the only required activity is advice execution, which corre-
sponds with the definition in [13]. 

We do not attempt to classify all AOP-related behavior.  The level of granularity 
chosen is designed to be widely applicable while at the same time able to differentiate 
AOP systems based on their varied debug capabilities.  The terminology is general 
enough to apply to other advanced techniques for the separation of concerns, includ-
ing multi-dimensional separation of concerns (Hyper/J), composition filters, adaptive 
programming, and subject-oriented programming. 

 

Fig. 1. The relationships between 
different AOP weaving strategies 
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Table 1. AOP activities that programmers would like to be able to debug 

Activity Purpose Examples 

Dynamic 
aspect 
selection 

Determines at runtime which 
aspects apply and when. 

Dynamic residue (if, instanceof, and cflow 
residue left over by dynamic cross- 
cuts) [4, 21]. Can involve runtime reflec-
tion or calls into the AOP system. Includes 
join point context reification [18]. 

Aspect  
instantiation 

Instantiates or selects aspect 
instances to fulfill deploy-
ment/scoping semantics [21]. 

“Per” deployment semantics [21], in-
stance-level advising, and aspect facto-
ries. 

Aspect  
activation 

Alters control flow to execute 
advice and provides access to 
join point context. 

Advice method call, inlined advice code, 
runtime interception [31], dynamic prox-
ies [7], and trampolines [29]. 

Advice  
execution 

Execution of the advice body. Inlined code, method call 

Bookkeeping Maintains additional AOP 
dynamic state. 

Thread-local stack for cflow pointcuts 
[21]. 

Static  
scaffolding 

Static modifications to the 
program’s code, type system, 
or metadata. 

Introductions needed to support intertype 
declarations, per-clause aspects, mixins, 
and closures. Code hoisting. [7, 21] 

2.3   Fault Model 

Each of the AOP activities in Table 1 introduces the possibility for new types of faults 
that were absent from the base program.  Alexander et al. [2] specified a fault model 
for AOP that classified the new types of faults that AOP introduces that are distinct 
from the fault models of object-oriented and procedural programming languages.  
These AOP fault types were later extended by Ceccato et al. [8].  We build upon their 
work by generalizing and consolidating some of these fault types, by adding two of 
our own (object identity errors and incorrect join point context), and by associating 
the fault types with the AOP activities that may exhibit them. 

Incorrect pointcut descriptor or advice declaration – A pointcut does not match a 
join point when expected, or the advice type (e.g., before, around), pointcut type (e.g., 
call, execution) or deployment type (e.g., “per” semantics) are incorrect.  Exhibited by 
activities: dynamic aspect selection, aspect instantiation, and aspect activation. 

Incorrect aspect composition – Multiple aspects that match the same join point are 
executed in the wrong order.  Exhibited by activities: dynamic aspect selection, aspect 
instantiation, and aspect activation. 

Failure to establish expected postconditions or preserve state invariants – Advice 
behavior or AOP activity causes a postcondition or state invariant of the base program  
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to be violated.  Exhibited by activities: advice execution.  However, this fault can be 
caused by a faulty implementation of any AOP activity. 

Incorrect focus of control flow – A pointcut that depends on dynamic context infor-
mation, e.g., the call stack, does not match a join point when expected.  The cflow and 
if pointcut types are examples.  Exhibited by activities: dynamic aspect selection, as-
pect activation, and bookkeeping. 

Incorrect changes in control dependencies – Advice changes the control flow in a 
way that causes the base program to malfunction.  For example, adding a method 
override changes the dynamic target of a virtual method call.  Exhibited by activities: 
aspect activation, advice execution, and static scaffolding. 

Incorrect changes in exceptional control flow – Exceptions that are thrown or han-
dled differently than they were in the base program may cause new unhandled excep-
tions to be thrown or prevent the original exception handlers from being called.  Ex-
hibited by activities: dynamic aspect selection, aspect activation, and bookkeeping. 

Object identity errors – Type modifications (intertype declarations) or proxies break 
functionality related to object identity such as reflection, serialization, persistence, 
object equality, runtime type identification, self-calls, etc.  Exhibited by activities: 
static scaffolding. 

Incorrect join point context – The join point context available to a piece of advice is 
incorrect due to faulty context binding or reification.  Exhibited by activities: dynamic 
aspect selection, aspect activation, and advice execution. 

This list can be extended to include more fault types.  The main idea is that AOP ac-
tivity can introduce new types of faults that need to be debugged.  We measure the 
debuggability of an AOP system by how easy it is to diagnose these faults.  However, 
we will see in the next section that debuggability is at odds with the programmer’s 
desire to remain oblivious of AOP activities. 

2.4   Debug Obliviousness and Intimacy 

When debugging an aspect-enabled program, the goal of debug obliviousness is to 
maintain a view of the program as if no weaving has taken place.  Obliviousness is 
the primary goal for debugging optimized programs [20] as well as programs that use 
software dynamic translation [29] because these transformations preserve the seman-
tics of the original program.  Despite the relative importance attached to this goal 
[15], we are aware of no AOP system that fully supports obliviousness during debug-
ging.  The only alternative is to debug the original (non-aspect-enabled) program.  
However, the original program may not be available, or may require some aspects to 
function correctly. 

Debug obliviousness is difficult to attain for invasive AOP systems because the 
debugger cannot distinguish between (untangle) the aspect and base program code 
[19]. Noninvasive systems, on the other hand, hide most aspect-related behavior by 
default. They still need to inform the debugging process, however, so that control 
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flow changes related to aspect execution are also hidden.  Otherwise, stepping 
through source code in the debugger results in unexpected jumps into aspect code.  
Complete obliviousness will not be possible in cases where the program’s join points 
are entirely bypassed, for example, when around advice does not invoke the original 
join point. 

Debug obliviousness becomes a liability when trying to diagnose a fault introduced 
by the AOP system.  In this situation, we desire debug intimacy, the converse of de-
bug obliviousness. 

2.5   Properties of an Ideal Debugging Solution 

An ideal AOP debugging solution will support debugging of all AOP activity when 
required or desired, and complete obliviousness otherwise.  The properties of an ideal 
debugging solution for AOP are 

(P1) Idempotence – Preservation of the base program’s debug information.  Idempo-
tence ensures that whatever debug information was available before aspects 
were added to the base program is also available after.  Noninvasive systems do 
not modify the original program at all.  AspectJ and our Wicca system are ex-
amples of invasive systems that use source and binary weaving and ensure the 
debug information is maintained. 

(P2) Debug obliviousness – The ability to hide AOP activity during debugging so 
programmers only see the base program’s behavior and code. 

(P3) Debug intimacy – The ability to debug all AOP activity including injected and 
synthesized code. 

(P4) Dynamism – The ability to enable/disable aspects at runtime.  When a fault oc-
curs, the process of elimination can be used to rule out specific aspects. 

(P5) Aspect introduction – The ability to introduce new aspects, e.g., debugging and 
testing aspects, in an unanticipated fashion.  An example of this is dynamic as-
pect introduction that allows aspects to be introduced without restarting. 

(P6) Runtime modification (also called edit-and-continue) – The ability to modify 
base or aspect code at runtime, e.g., to quickly add a printf statement, enable 
tracing, or try out a bug fix, without restarting.  This is useful for interactive de-
bugging and for diagnosing hard-to-reproduce bugs. 

(P7) Fault isolation – The ability for the debugger to automatically determine if a 
fault lies within the base code, advice code, or some other AOP activity code.  
Invasive weavers may invalidate the traditional assumption that library bounda-
ries establish ownership since AOP-related code or metadata, possibly written 
by a third party, is intermingled with the base program [19]. 

3   An Evaluation of the Debuggability of Existing AOP Systems 

In Table 2, we show the results of our evaluation of a representative sample of AOP 
systems based on our ideal debugging properties. 

 

Static AOP.  All the Java byte-code weavers satisfy the idempotence property, 
because they maintain the debug information of the original program when weaving.  
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Table 2. AOP debuggability comparison matrix. Our system, Wicca, is shown in bold 
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Java stores debug information inside the class file, alongside the class definition and 
byte code.  The debug information is co-located with the class file, and its format is 
well documented, improving the likelihood that byte-code rewriters will propagate it 
correctly. 

For Windows executables, debug information is stored in a separate program data-
base (PDB) file that becomes invalid when the executable is transformed.  Ideally, the 
transformation process would update the debug information but this is a very complex 
process.  Our Wicca system is the only .NET byte-code weaver (that we are aware of) 
that updates the debug information, which is made possible by the Microsoft Phoenix 
backend compiler framework1. 

Dynamic AOP. Invasive dynamic AOP systems transform the base program by using 
dynamic proxies [7] or by injecting join point stubs (also called hooks or trampolines) 
                                                           
1 http://research.microsoft.com/phoenix 
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at all potential join points [6, 9, 16].  These systems typically support debugging of 
advice execution.  Aspect selection, instantiation, or activation logic, however, may 
be implemented inside the dynamic AOP infrastructure [19] and may be difficult to 
debug.  This difficulty makes it hard to understand the woven program’s control flow 
and diagnose problems related to aspect ordering and selection (“Why didn’t my as-
pect run?”)  [2]. In addition, hook injection may invalidate the base program’s debug 
information (violating the idempotence property), which will result in a confusing or 
misleading debugging experience. 

Noninvasive dynamic AOP systems use a custom runtime environment (e.g., 
JRockit2, Steamloom [19], PROSE [31]) or take advantage of interception services (e.g., 
.NET Profiler API [16], Java debugger APIs [3, 31]), to provide AOP functionality 
without transforming the base program.  These systems have the benefit that the base 
program’s debug information is left intact (idempotence).  They suffer from the draw-
back that any AOP activities that are implemented as part of the runtime or native li-
brary are not debuggable.  Aspect-enabled programs can be confusing to debug at the 
source level because control flow appears to change mysteriously; e.g., stepping into a 
function in the debugger results in a different function being entered.  In addition, use of 
the Java debugger APIs to implement dynamic AOP currently prevents the application 
from being debugged inside a standard debugger. 

4   Source-Level Debugging 

Source-level debuggers strive to maintain the illusion of a source-level view of pro-
gram execution.  They commonly allow the programmer to set location and data 
breakpoints, step through code, inspect the stack, inspect and modify variables and 
memory, and even change the running code.  To enable this, the debugger requires a 
correspondence between the program’s compiled code and source code.  This debug 
information is generated during compilation and consists of file names, instruction-to-
line number mappings, and the names and memory locations of symbols.  The infor-
mation is usually stored inside the program executable, library, or class file, or in a 
separate debug information file.  It may be absent if the build process excluded it, to 
lower the memory footprint for example, or if it was stripped out for the purposes of 
compression or obfuscation. 

When compilation involves a straightforward syntax-directed translation [1], the 
compiler can provide a one-to-one correspondence from byte code (or machine code) 
and memory locations to source.  The correspondence becomes more complicated as 
transformations are applied at various stages of the pre-processing, compilation, link-
ing, loading, just-in-time compilation, and runtime pipeline.  This lack of correspon-
dence between the source and compiled code makes it difficult for the debugger to 
match the actual behavior of the executing code with the expected behavior from the 
source-code perspective [34], and leads to the code location and data-value problems 
that have been studied extensively in the context of debugging optimized code  

                                                           
2 http://dev2dev.bea.com/jrockit 



208 M. Eaddy et al. 

[14, 20, 29, 34]. In the context of debugging aspect-enabled programs these problems 
have been mentioned but briefly [2, 7, 24, 25]. 

In the AOP context, we define full source-level debugging as the ability to perform 
source-level debugging on all the AOP activities listed in Table 1. 

4.1   The Code Location Problem 

The code location problem arises when transformations are applied that prevent a 
one-to-one correspondence between compiled code and source code.  In the domain 
of optimizing compilers [1], the problem is caused by the removal, merging, duplica-
tion (in-lining), reordering, or interleaving of instructions.  In the domain of AOP 
weaving, the code location problem is usually caused by the removal (e.g., hoisting 
[4]), insertion (e.g., code synthesis, dynamic residue, aspect method calls, aspect in-
lining, closures), duplication (e.g., initialization in-lining), or reordering (e.g., due to 
around-advice) of instructions [21].  The problem causes the debugger to show the 
wrong source line or call stack, or show byte code (or machine code) instead of 
source code. 

4.2   The Data-Value Problem 

The data-value problem occurs when transformations obscure the correspondence 
between variables in the source code and locations in memory [20].  Optimizing com-
pilers commonly fold constants, eliminate common subexpressions, and represent 
variables in registers instead of memory (sometimes the same storage location will 
represent different variables at different times).  In the context of AOP, weavers may 
add fields to classes (introduction) and formal arguments and local variables to meth-
ods (e.g., for context exposure) [21].  This problem causes the debugger to show new 
variables or fields incorrectly, e.g., it may be missing or have the wrong name. 

4.3   Possible Approaches for Supporting Source-Level Debugging 

Below we have consolidated and generalized some common approaches to the 
problem of performing source-level debugging of aspect-enabled programs. 

Source weaving [33] – Wicca, AspectJ, and SourceWeave.NET [25] are example 
AOP systems that use source weaving and support full source-level debugging. 

Debugger-friendly weaving – Wicca, AspectJ, and AspectWerkz [7] are example 
AOP systems that use binary-level weaving but are able to preserve the original debug 
information, thus supporting the idempotence property (P1). 

Annotation [5] – Refers to the ability to annotate aspect code to provide rich debug 
information, to allow the debugger to hide the code in support of debug obliviousness, 
and to support fault isolation.  Although AspectJ and Steamloom [19] use byte code 
annotation, no AOP system that we are aware of currently uses annotation for debug-
ging purposes. 
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Reverse engineering [2, 23] – When the debugger encounters byte or machine code 
that has no matching source information, it can hide the code if debug obliviousness is 
desired or synthesize the source code on-the-fly if debug intimacy is desired. 

Static analysis [20] – Static analysis techniques can be used to detect injected aspect 
code, for example, and, similar to annotation, used to provide debug information or to 
support obliviousness. 

To allow the programmer to be truly oblivious of the aspects composed with the 
program, source-level debugging must hide all AOP-related code and behavior.  
However, we are aware of no AOP system that fully supports this.  In §6, we show 
how intimate source-level debugging is useful for debugging AOP-specific faults.  
This is akin to directing a C compiler to display preprocessed source files to diagnose 
problems with include files and macros.  Furthermore, when the transformation tech-
nology is immature, as is the case for AOP, a source-level representation of the trans-
formation helps implementers detect faults [29, 34]. 

Noninvasive AOP implementations may not weave code at all.  For these imple-
mentations, the ability to debug AOP-related code at the source level is nonsensical. 
However, these systems can still provide support for debug obliviousness and inti-
macy.  For example, intimacy can be supported by showing a runtime visualization of 
the base program and aspect behavior [17].  For obliviousness, only the base program 
behavior is shown. 

5   Wicca 

Most dynamic AOP solutions involve binary weaving, a custom runtime, dynamic 
proxies, or method call interception.  To support full source-level debugging, Wicca 
takes a new approach—it performs dynamic source weaving. 

5.1   Overview 

Wicca3 v1 is a prototype dynamic AOP system for C# applications that performs 
source weaving (the solid line in Figure 1) at runtime.  The woven source code is 
compiled in the background and the running executable is patched on-the-fly [12].  
The entire weave-compile-update process takes less than 2.5 seconds for a C# pro-
gram with 14,531 source lines on a Pentium IV 3.6 GHz processor.  Wicca v1 uses 
the .NET Profiler API to enable dynamic weaving and patching, which imposes a 5-
7% runtime overhead on application performance when compared to running the pro-
gram without aspects enabled.  Wicca also supports static byte-code weaving.  A 
more detailed description of Wicca including performance measurements can be 
found in the expanded version of this paper [11]. 

Because all AOP activities are represented in source code, the programmer can per-
form full source-level debugging on the woven program using wdbg, our custom de-
bugger.  In addition, several ancillary debugging activities are supported: 

 Full source-level debugging (idempotence and debug intimacy) 
 Aspects can be enabled/disabled at runtime (dynamism) 

                                                           
3 Derived from the Old Norse word vikja meaning to turn, bend and shape. 
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 Aspect rules, located in an XML file, can be changed at runtime (dynamism) 
 New aspects can be introduced at runtime (aspect introduction) 
 Advice code can be modified at runtime (runtime modification) 
 Base code can be modified at runtime (runtime modification) 

To our knowledge, Wicca is the first dynamic AOP system to support full source-
level debugging and modification of advice and base code at runtime.  Although 
Wicca uses a radical approach, i.e., dynamic source weaving, this approach offers 
unique interactive source-level debugging capabilities.  If the interactive capabilities 
are not needed, static source weaving [25] is a simple and sufficient alternative. 

5.2   The Wicca Debugger (wdbg) 

Wdbg is the first debugger we are aware of that supports source-level debugging of dy-
namically updated programs.  It is an extension to the Microsoft cordbg command-line 
debugger.  An extension was required because standard Windows debuggers do not 
support dynamically changing the debug information associated with the application 
being debugged.  Without this extension, the source code and variables displayed in the 
debugger may be incorrect.  Static weavers do not have to deal with this issue. 

5.3   Limitations 

Wicca v1 has limited AOP functionality.  Only before and after advice, and method 
execution and field access join points, are supported.  Introductions (inter-type decla-
rations) are not supported.  Wicca v1 also requires source code for both the base pro-
gram and the aspects.  While Wicca v1 does not support debug obliviousness, this 
could be achieved using our statement annotation technology [10]. 

Due to a limitation of the Profiler API, we are not able to update a function that is ac-
tive on the stack. The function is updated the next time it is called. Unfortunately, wdbg 
will incorrectly show the woven source code instead of the original source code, if the 
function has been updated yet. We expect the fix for this to be straightforward. 

6   Evaluation 

In this section we present the results of an experiment to demonstrate the interactive 
debugging capabilities of Wicca.   

6.1   Experimental Setup 

We are given a buggy C# class that is supposed to implement a stack (see Listing 1) and a 
test driver for exercising the stack class.  We will use Wicca to interactively diagnose and 
fix the bugs.  To help diagnose the bug, we create an aspect that embodies the design-by-
contract (DBC) [30] principle. DBC allows the programmer to make assertions [22] about 
the system, in the form of preconditions, postconditions, and class invariants.  For exam-
ple, the class invariant for the stack class is that the top element of a non-empty stack must 
not be null.  Its push method has a precondition that the object being pushed is non-null, 
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public class Stack { 
   ArrayList elements = new ArrayList(); 
   public void push(object arg1) { 
      elements.Add(arg1); 
      elements.Add(arg1); // <-- Bug! 
   } 
   public object pop() { 
      object popped = top(); 
      elements.RemoveAt(elements.Count-1); 
      return popped; 
   } 
   public object top() { 
      return elements[elements.Count-1]; 
   } 

Listing 1. A stack class written in C# that contains a bug 
in the push() method 

and a postcondition that the 
stack’s size has been incremented. 

Normally, the assertion 
checking and handling code is 
scattered throughout the system.  
By localizing the assertion code 
into a DBC aspect (Listing 2), 
we obtain many benefits includ-
ing improved code clarity, the 
ability to easily change the as-
sertion violation policy, to 
strengthen or weaken class in-
variants, to add assertions to a 
class after-the-fact, and to 
automate contract enforcement. 
[26] Moreover, unlike normal assertions which are only checked for debug builds, or 
which require continuous checking at runtime, Wicca can inject these test probes [22] 
on demand, thus completely eliminating checking overhead when assertions are  
disabled. 

6.2   Detecting Faults Using Test Probes 

To test the stack class we create a test driver that pushes several items onto the stack 
and then pops each one while writing its value to the console.  Shortly after launching 
the test driver, we notice a bug (see Listing 1) where every item in the stack is dupli-
cated.  While the driver is running, we enable the stack DBC aspect, which may al-
ready exist or which we may have introduced for this debugging task.  Wicca detects 
this change and rebuilds (reparses, reweaves, and recompiles) the driver, taking a total 
of 610 ms on a Pentium IV 3.6 GHz processor. 

 
 
 
 
 
 
 
 
 
 
 

 

public class StackDBCAspect { 
  static int __savedCount; 
 
  static void PostCond_push(Stack __this, object arg1) { 
    if (__this.isEmpty()) 
      throw new InvalidOperationException( 
        "Postcondition violated: Stack is empty after push"); 
    if (__this.top() != arg1) 
      throw new InvalidOperationException( 
        "Postcondition violated: Pushed item is not on top of stack"); 
    if (__this.count() != __savedCount + 1) 
      throw new InvalidOperationException( 
        "Postcondition violated: Stack size did not increase " + 
        "by one after push"); 
   } 
        ...pre and postconditions for pop, etc... 

Listing 2. A design-by-contract aspect for the stack class.  Variables that start with “__” are 
renamed during weaving. 
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 Listing 3. Aspect rule file with erroneous before and after advice  

Listing 3 shows the aspect rule file after we added the stack DBC aspect and en-
abled weaving. Immediately, the aspect code detects a postcondition violation and 
throws the exception: “Postcondition violated: Stack is empty after push.” The excep-
tion message provides the file name and line number where the exception occurred.   

6.3   Just-In-Time Debugging 

We launch the Wicca debugger, wdbg, to debug the exception.  After pointing wdbg 
to the debug information of the woven program, we can step into the push method and 
see the interwoven source code (see Figure 2).  What is significant about this figure is 
that the base program and all AOP activities are debuggable at the source level. 

Looking at the source code for the push method, it is obvious that there are actually 
two bugs: the precondition and postcondition are switched and the Add method is 
called twice. The first bug is a manifestation of an AOP-specific fault: incorrect  
 

 

Fig. 2. A wdbg debugging session showing aspect code interwoven with the stack class. The 
asterisk (*) indicates the current line. 
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pointcut descriptor.  This fault is difficult to diagnose without a source-level represen-
tation of the woven code.  From the woven code it appears that the postcondition and 
precondition are switched.  Looking closely at the aspect rules in Listing 3 reveals 
that the push precondition (PreCond_push) is erroneous because the advice type is 
“after” when it should actually be “before”, and similarly for the postcondition. 

A quick change to the aspect rules to fix this oversight causes Wicca to reparse, 
reweave, and recompile the driver.  As expected, an exception is thrown immediately 
but this time with the correct message: “Postcondition violated: Stack size did not 
increase by one after push.”  After removing the extraneous Add method call, Wicca 
rebuilds the driver, and we immediately see the correct behavior.  At no time during 
the debugging session did we have to restart the test driver. 

7   Related Work 

A few systems deserve further comment.  SourceWeave.NET [25] employs a very 
similar source weaving strategy that is designed to improve source-level debugging.  
However, it weaves statically whereas Wicca weaves dynamically, enabling aspects 
to be introduced and reconfigured at runtime. 

Few AOP systems support debug obliviousness or fault isolation, which requires a 
debugger to identify AOP activity code.  AspectJ and Steamloom support byte-code 
annotations for identifying aspects to prevent recursion during weaving [21] and to 
facilitate aspect removal [19].  As far as we know, no AOP system uses byte-code 
annotations to support obliviousness or fault isolation. 

8   Conclusion 

We described the problem of debugging aspect-enabled programs and why it has be-
come an important gating criterion for the adoption of AOP.  We provided a debug 
model for AOP that classified all AOP activities, related them to the new type of 
faults they can introduce, outlined the properties of an ideal debugging solution, and 
surveyed the state of the art of AOP debugging.  For source-level debugging, we ex-
plained how the nature of binary weavers gives rise to the code location problem, that 
originates from the field of optimizing compilers.  We showed how results from that 
community apply to debugging aspect-enabled programs. 

We demonstrated how our Wicca system offers a novel approach to debugging dy-
namically composed aspect-enabled programs.  Wicca is the first dynamic AOP sys-
tem to support full source-level debugging.  It does this by employing a novel  
dynamic source weaving strategy that combines source weaving with online byte-
code patching with relatively low overhead.  Our future work will be to explore using 
byte-code annotations [10] to fully support debug obliviousness and fault isolation. 
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Abstract. This paper discusses how evolution in software systems can be sup-
ported by a unified application of both static as well as dynamic aspect-oriented
technology. The support for evolution is required statically, where the applica-
tions could be taken offline and adapted, and dynamically where going offline is
not an available option. While this is straightforward in the static case by taking
the system offline and statically weaving the aspects, runtime evolution requires
an additional dynamic aspect weaving infrastructure.

Our current implementation of the family-based dynamic aspect weaving in-
frastructure supports most of the features known from the static aspect weaving
domain, offers a tailored dynamic aspect weaving support, and is able to target a
wide range of applications including embedded systems with very small memory
footprint. The availability of a single language both for static and dynamic as-
pects means that the decision whether an aspect is static or dynamic is postponed
to the later stages of the deployment of aspects into the sytem, and is decided
according to the requirements and available resources. As a case study, we will
present our experiences with the static and runtime evolution of the embedded
operating system eCos.

1 Introduction

Software evolution is the process of keeping the software up-to-date and bug-free by
continuous enhancement, corrections, extensions and customizations as per the emerg-
ing requirements. This process involves either adapting the core functional behavior, or
the insertion of new non-functional behavior. Lehman defined software evolution as the
collection of programming activities intended to generate a new version from an older
and operational version [9]. Currently, it is estimated that four out of seven software
engineers work on repair and enhancement of existing software [26].

Software evolution can be classified into static and runtime evolution. Static evolu-
tion corresponds to compile time changes, and involves modification of the code by
taking the system offline, reconfiguring, rapairing, and then recompiling as per the new
requirements. Runtime evolution means that the system is upgraded and maintained dy-
namically at runtime, and is vital for long running systems. Traditionally, runtime evo-
lution is handled with approaches like redundant systems, larger memories, increasing
processing power, and feature-rich software. Such approaches noticeably bloat applica-
tions, reduce reusability, and increase complexity, costs, and further hinder the evolution
of the system.

M. Lumpe and W. Vanderperren (Eds.): SC 2007, LNCS 4829, pp. 216–234, 2007.
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The evolution could be a continuous change, which happens with the maturity of the
technology and involves an incremental adoption approach, or it may be radical and
forces a system-wide change. When evolution requires changes to multiple modules,
it is difficult to localize resulting in crosscutting. This crosscutting limits the offered
levels of evolvability, variability, and granularity of the software. Some concerns like
security, profiling, tracing, synchronization, etc., are typically reflected in many points
of the code, and therefore difficult to implement as independent encapsulated entities.
Aspect-oriented programming (AOP) allows encapsulating crosscutting concerns into
completely isolated entities called aspects, and injection of the additional behavior,
encapsulated by aspects, into multiple modules statically or at runtime by advice. With
AOP, each and every crosscutting concern is well encapsulated in a separate module,
thus, allowing evolution in the system in complete isolation without major redesign of
the whole system.

This paper provides details and results about some radical improvements carried out
in our dynamic aspect weaver family, which have contributed significantly to further
bring down the dynamic weaving costs and making it viable even for embedded sys-
tems. We further propose the unification of static and dynamic AOP for the C++ domain,
by providing a single language, for achieving static and runtime evolution of software
systems. The availability of a single language means that the decision whether an aspect
is to be deployed statically or dynamically is delayed till the deployment stage.

The remaining paper is organized as follows. We start with the motivation by describ-
ing an application scenario. This is followed by a discussion of the related work. The
sections 4 and 5 describe the improved implementation of the family-based dynamic
weaver, and the materialization of the single language approach. Section 6 presents a
case study which was conducted with the embedded operating system eCos. Finally,
section 7 concludes the paper.

2 Motivation: Evolvable Software Systems

While the process of static evolution requires the running system to be taken offline and
adapted as per newly emerging requirements, runtime evolution requires that the system
could be adapted and maintained on the fly. Such a requirement is vital for highly avail-
able systems where downtime could be a catastophe in terms of data loss, performance,
revenue, etc. Examples of such highly available systems are mission critical space mis-
sions, air traffic control, telephone switching systems, business critical applications, etc.
The importance of runtime evolution was demonstrated when NASA’s Mars Pathfinder
robot, which was launched to relay high-resolution pictures and valuable metereolog-
ical data of the Martian surface back to Earth, experienced serious malfunctioning. A
low priority job held a system-wide important resource. This resulted in repeated resets
and thereby loss of important data. Fortunately, the limited runtime evolution capabil-
ity integrated into the system turned out to be vital for the rescue of the multimillion
dollar project which otherwise would had been a total failure. A detailed analysis of
the problem with the Mars Pathfinder along with the handling of such runtime evolu-
tion problems with our unified static and dynamic aspect-based solution is provided in
section 6.3.
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2.1 Aspects for Evolution

With AOP, the concerns that are prone to evolution, and are crosscutting in nature,
are neatly encapsulated in aspects. In static AOP, these aspects are woven at compile
time onto the primary functionality in an additive manner without altering the existing
architecture. The aspect code is inlined into classes, and therefore, does not induce any
significant overhead into the system. Once woven, the static aspects cannot be removed
or reconfigured later during runtime. For evolution, the system has to be taken offline to
change aspects as per requirements, and the system has to be recompiled for the changes
to be made available.

For long running systems, where going offline is not a choice, a runtime mechanism
is needed to enable the system to evolve dynamically. Dynamic AOP provides mech-
anisms to modularize and thereby apply crosscutting policies encapsulated as aspects
into the running system in complete isolation. With dynamic AOP, the runtime evolution
involves the addition or replacement of aspects or components.

2.2 Unification of Static and Runtime Evolution

Static evolution with static AOP is more efficient as it incurs low overhead, improves
start-up time, and reduces memory usage, but at the expense of flexibility. This option
is best suited for devices with resource constraints but is limited because of the lack
of the knowledge of execution environments. The solutions supporting exclusively dy-
namic evolution via dynamic weaving might not be acceptable for some domains due to
considerable runtime overhead, and low efficiency. We advocate the principle of static
processing where possible and dynamic processing where needed by a unified applica-
tion of static and dynamic AOP. Such a unification demands a homogenous support in
terms of the AOP features and a single description language for both static and dynamic
aspects. This approach would result in the coexistence of both static as well as dynamic
aspects in the system. An evolvable concern would be implemented as an aspect if it
has a crosscutting behaviour. The decision whether the aspect is static or dynamic could
be removed from the aspect implementation and decided purely as per the requirements
and available resources.

2.3 Low-Cost Dynamic Weaving Support

For runtime evolution via dynamic AOP, the system has to be equipped with a dynamic
aspect weaver. However, many of the available dynamic aspect weaving infrastruc-
tures provide fixed runtime support, are either architecture-specific (C-based weavers)
or quite expensive (Java-based weaver) to be deployed on the systems with few kilo-
bytes of memory. Another important motivation of our work is to provide a dynamic
aspect weaving infrastructure, which should be efficient, low-cost, portable, and could
be tailored down to become viable even for resource-constrained systems.

3 Related Work

Many different approaches have been proposed by the research community for runtime
evolution. Some advocate using patterns in several features [7,25]. Other approaches
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suggest the use of reflection and component frameworks [20,8]. We are more interested
in the approaches based on employing AOP for software evolution [21,19,17,11,13].
Most of the AOP-based evolution approaches proposed so far are restricted mainly to
applying static AOP for static evolution [17,25,11].

For runtime evolution, there are many dynamic weavers available, but all provide
fixed runtime support and suffer from various limitations like portability, memory and
runtime overhead, limited AOP feature support, etc. The weavers in Java are based on
bytecode manipulation via the JVM debugging interface, customized class loaders, or
virtual machine extensions [15,3,18,5,24]. The current memory requirements of Java-
based weavers are an order of magnitude too large for many embedded devices. Though
the presence of JVM promises a very portable solution, the mere presence of JVM and
core libraries require considerable memory. Furthermore, the Java based weavers typ-
ically offer slow execution speed as compared to their counterparts in the C or C++
language. This problem is further aggravated by the employment of the debugger in-
terface in some dynamic weavers, which requires the application to be executed in the
debug mode. To speed up applications, some weavers employ JIT compilers, but this
requires additional resources.

In the C domain, binary code manipulation is generally employed to support dynamic
aspect weaving. The availability of mechanisms to perform runtime hooking, precisely
at the required join points, means there is no extra overhead due to unnecessary hooks.
Arachne [14], TOSKANA [10] and TinyC2 [4] follow the binary code manipulation ap-
proach. The actual weaving positions in the binary code are determined with the help
of symbol tables and/or debug information, generated by the C compiler. Code inlin-
ing or stripping of symbol information has to be disabled. All weavers in C provide
fixed runtime supports, and their implementations are limited to specific processors and
compilers. The platform dependence means they are not appropriate, especially, in the
domain of embedded systems which employ a wide spectrum of CPU and hardware
platforms. The performance overhead of these weavers [10,14] is significantly lower
than the Java-based systems. The offered AOP features are, on the other hand, also
limited.

Disabling of code inlining or stripping of symbol information might be acceptable
for C, most C++ compilers implicitly perform such optimizations. Therefore, dynamic
aspect weaving via binary code manipulation is not a viable option in the C++ domain.
There is a very limited research in the C++ domain for supporting dynamic weaving.
We are aware of only one approach in the C++ domain, called DAO C++[16], which is
based on source code instrumentation. Since the instrumentation process does not de-
pend on binary code, DAO C++ is independent of any architecture or compiler-specific
restrictions, resulting in a portable solution. However, the absence of any filtration
mechanism means that all join points of the target application are hooked leading to
significant memory and runtime overhead.

4 A Family-Based Dynamic Weaving Infrastructure

None of the available weavers offer a tailorable dynamic weaving support. They follow
the traditional one-size-fits all approach. For the development of our dynamic weaver
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infrastructure, we had two objectives. First, to provide a feature-rich dynamic aspect
weaver that could be tailored according to specific requirements, and second, to bring
down the cost of dynamic weaving and thereby, make dynamic weaving viable even
for embedded devices. We applied the software product line (SPL) [2] approach to the
dynamic aspect weaving domain and come up with the family-based weaver [22]. The
tailored weavers are generated by selecting only the required set of AOP features from
the weaver family. Variant management tools simplify and reduce the complexities as-
sociated with the configuration and the generation of variants from the software fami-
lies. They provide graphical support to define application requirements in the form of
feature selection in order to generate application-specific variants. We have employed
a variant management tool called pure::variants to completely automate the generation
process [1]. Besides enabling to generate tailored weavers, the availability of a power-
ful join point filtration mechanism, and additional mechanisms to exploit the “a-priori-
knowledge” of the target application restricts the incurred dynamic weaving overhead
due to actually affected joinpoints, actually woven aspects, and used AOP features [22].
The optimizations performed by the exploitation of "a-priori-knowledge" about the tar-
get application are comparable to the ones offered by static weavers, which basically
exploit the same information for this purpose: actually affected joinpoints, aspects, and
used AOP features. The main difference is that this information is implicitly available
to static weavers, while it has to be explicitly provided for the generation of a tailored
dynamic weaver. Overall, the family-based dynamic weaver infrastructure allows a fine-
grained adjustment of the trade-off between flexibility and required resources. In con-
junction with the single language approach (Section 5), this perfectly fulfills the goal
of minimal overhead: For any kind of application, it is now possible to weave as much
as possible statically, while providing as much runtime flexibility as necessary. Static
versus dynamic weaving of aspects becomes a configurable and tailorable property.

4.1 Improvements in the Implementation

The architecture of the dynamic aspect weaver family consists of three main building
blocks, namely, the weaver binding, the runtime monitor, and the build environment
for dynamic aspects [22]. Due to significant improvements in the binding mode (As-
pectC++), and the general dynamic weaving infrastructure, we were able to further
bring down the memory and runtime costs of dynamic weaving. The following subsec-
tions describe the various improvements carried out in each of these building blocks.

4.2 Weaver Binding

AspectC++ [12] is employed as a binding mode in our family-based weaver as shown in
figure 1. Before describing the improvements, we would like to provide a brief overview
of how AspectC++ works as a hooking platform in the weaver family.

As shown in Figure 2, hooks are encapsulated in the advice code of the static prepa-
ration aspect. Since only before and after advice are defined in this variant, the weaving
of this aspect would result in a dynamic weaver variant, which supports only before
and after advice. If an around advice is to be supported, then the preparation aspect
is implemented accordingly. Furthermore, the required amount of context information
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Fig. 1. Architecture of the family-based dynamic aspect weaver

about the join points is extracted from the static weaver binding mode, and passed to
the dynamic advice code. AspectC++ provides static as well as dynamic context in-
formation about the affected join points. The static information includes the join point
signature, the argument types, a unique ID, etc., whereas the dynamic information in-
cludes current argument values, result value, object instance, etc. It can be noticed that
in this particular case, only the join point signature information (JoinPoint::signature())
is retrieved by the static advice code and parsed via the inserted hooks to the runtime
system. The aspect instrument defines a pure virtual pointcut named dynamicJPS. The
aspect beforeafterExe shown in the listing below derives from the instrument aspect,
and defines exact locations in the source code where hooks should be inserted. The
weaving of this aspect would result in the hooking of all execution join points, and all
call join points with the exclusion of the functions of the standard library which don’t
generally contribute to the application’s semantics.

pointcut std_function_calls() = call("% std::%(...)");
aspect beforeafterExe : public instrument {

pointcut virtual dynamicJPS() = execution("% ...::%(...)")|| call("% ...::%(...)"
&& !std_function_calls();

The poincut mechanism in AspectC++, therefore, enables comprehensive filtering of
join points for dynamically woven aspects at a fine-grained level, and allows to imple-
ment complex hooking policies with ease. During the hooking process, the AspectC++
weaver outputs a project repository, which provides extensive information about the



222 W. Gilani et al.

aspect instrument {
pointcut virtual dynamicJPS()=0;
public:

advice dynamicJPS():before(){
ArgsJnPnt <JoinPoint::ARGS > jp;
jp.jointpointName = JoinPoint::signature();
monitor <JoinPoint::JPID ,MONIT_ >::BeforeAdvice(&jp);

}
advice dynamicJPS():before(){

ArgsJnPnt <JoinPoint::ARGS > jp;
jp.jointpointName = JoinPoint::signature();
monitor <JoinPoint::JPID ,MONIT_ >::AfterAdvice(&jp);

}
};

Fig. 2. A static preparation aspect for inserting hooks into the target application

hooked join points, for example their signatures, types, ids, etc. The information is ex-
ploited to resolve the pointcuts described in the dynamic aspect code.

We did some significant improvements in the AspectC++ weaver implementation
since our last paper [22]. In the previous implementation, the cost of employing around
advice for hooking was substantially higher than that of before and after advice. This
was particularly problematic in the case of the generation of a variant, from the weaver
family, which was required to support both before and after advice. As can be seen
from Figure 2, the same context information had to be generated twice at both before
and after advice, for each join point. We calculated that in the case of extracting only the
signature of the join point, the extra overhead was 13 bytes of memory. In the case of
big projects with thousands of join points, this resulted in a significant overhead. In the
new version of the AspectC++ weaver, the generation of tjp->proceed() function,
which is provided in the around advice to invoke the original method, is reimplemented
so that proceed() can be inlined for small functions. This has resulted in around advice
being as efficient as before and after advice in the AspectC++ weaver. Since the cost
of the advice types in the weaver family is directly dependent on the cost of the cor-
responding advice types in AspectC++, this improvement resulted in reducing the cost
associated with the dynamic "around advice" in the weaver family. Furthermore, the
employment of static around advice helped to avoid extra overhead caused due to the
duplicate generation of context information, since the same context information could
be shared by different advice types as is shown in figure 3.

4.3 Runtime Monitor

All dynamic aspect weavers follow a centralized model where a single runtime moni-
tor takes care of all interaction between the join points and aspects. Our old version of
the dynamic weaver family followed the same design with a single centralized monitor
controlling all coordination among the aspects and joinpoints [22]. However, this ap-
proach introduces significant runtime overhead as each time when the thread of control
reaches a hooked join point, the list of join points registered with the runtime mon-
itor is traversed to find out the matching join point. The associated complexity with
this join point look-up operation is O(log N), where N is the number of join points
registered with the monitor. Once the right join point is located, the advice stored
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advice dynamicJPS():around(){
ArgsJnPnt <JoinPoint::ARGS > jp;
jp.jointpointName = JoinPoint::signature();
jp._that = tjp->that();
...
monitor <JoinPoint::JPID ,MONIT_ >::BeforeAdvice(&jp);
tjp->proceed();
monitor <JoinPoint::JPID ,MONIT_ >::AfterAdvice(&jp);

}

Fig. 3. Modified hooking mechanism employing around advice and templates

in the advice containers associated with the join point are executed. Even if there
are just empty hooks with no advice registered, this model causes significant runtime
overhead.

As a solution, we implemented a new version where each potential join point is pro-
vided with a unique runtime monitor. The allocation of unique monitor objects means
that the involved complexity for join point look-up is effectively reduced to O(1) in con-
trast to the O(log N) complexity of the centralized model. Figure 1 shows the architec-
ture of the weaver family with decentralized runtime monitors. It could have been quite
a cumbersome and expensive process to assign each join point with a unique runtime
monitor, but templates in C++ come to the rescue, as shown in Figure 3. AspectC++
weaver assigns unique numeric ids to all hooked join points, which are exploited to
generate a unique monitor for each join point. It can be seen that the template takes
an additional parameter (MONIT_), which is used for module identification. This pa-
rameter is necessary in the case of “Extensible Systems” to be able to weave dynamic
aspects even into the modules loaded later into the running system. The components
employed in the old implementation that had the sole responsibility of registering and
later identifying each of the module’s monitor objects for the weaving and unweaving
of aspects are no longer needed. This helped to save 5078 bytes of memory which was
consumed by the Extensible Systems feature in the old implementation.

Furthermore, the memory cost of different AOP features, and hooking is brought
down remarkably. This is due to significant optimizations and improvements carried
out in the implementation of our static and family-based dynamic weaver. A compari-
son between the cost of some of the variants of our dynamic aspect weaver family with
the old and new implementation are shown in figure 4. It can be seen that the variants
with the new implementation consume significantly less memory as compared to the
old implementation[22] while providing the same level of AOP feature support. In the
new implementation, the variant with minimal AOP feature support consumes exactly
5707 bytes of memory, which is almost half to what it costed in our old implementation
(12079 bytes). The variant with maximum AOP feature support (all types of advice,
ordering, context, etc.) consumes 10020 bytes of memory which is also significantly
lower as compared to previous implementation (23315 bytes). Additionally, the mem-
ory cost of each hook has been reduced to just 12 bytes as shown in figure 5. We cannot
imagine any further reduction in this cost except moving to binary code manipulation
approach which restricts our weaver to specific architectures.
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Without Instrumentation

void Foo::g( ) {
puts ("g( )\n");

}

With Instrumentation

aspect instrumentExe : public instrument {
pointcut virtual dynamicJPS() =

execution("void Foo1::g()");
};

0000003c <Foo::g()>:

3c: push %ebp
3d: mov %esp ,%ebp
3f: movl .rodata.str1.1,0x8(%ebp)
46: pop %ebp
47: jmp puts

00000098 <Foo1::g()>:

98: push %ebp
99: mov %esp ,%ebp
9b: pushl monitor <1,0>::advicebefore
a1: call Cont::trigAdvice(adviceCont_list*)
a6: pop %eax
a7: movl .rodata.str1.1,0x8(%ebp)
ae: leave
af: jmp puts

Fig. 5. Cost of hook = 12 bytes

4.4 Build Environment for Dynamic Aspects

In the old implementation, the static aspects were implemented in AspectC++, whereas
the dynamic aspects were implemented in C++. In the new implementation, the As-
pectC++ language has been adopted for the description of dynamic aspects as well (see
section 5). Before the dynamic aspects could be loaded into the target application, they
have to be transformed into the standard C++ code. A dynamic aspect compiler dac++
has been developed that transforms the dynamic aspects defined in AspectC++ to stan-
dard C++ code. Once transformed, a standard C++ compiler is employed to compile
the aspects into shared libraries. The dynamic aspect code itself can be linked either
statically with the component code, or loaded at runtime by means of a dynamic as-
pect loader (Loader). As soon as a dynamic aspect is loaded into the target application,
whenever a join point matched by the pointcut definition is reached, the unique monitor
for the join point activates the advice code, and returns the control to the application.
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5 The Single Language Approach

AspectC++ was designed primarily for the description of static aspects. The adoption of
AspectC++ for dynamic aspects required the same level of AOP feature by the weaver
family as is available in the static AspectC++ weaver. In our previous paper [23], we
analyzed the possibility of supporting a single language, and discussed reasons for the
absence of some of the AOP features in the dynamic aspect weavers in the C/C++
domain. We further suggested solutions that have been realized for the dynamic aspect
weaver family.

Table 1. Status of the availability of various AOP features in our static and dynamic aspect weav-
ing infrastructures

AOP Features Static Weaving Dynamic Weaving

before advice
√ √

after advice
√ √

around advice
√ √

exec join points
√ √

call join points
√ √

object construction
√ √

object destruction
√ √

get/set field − −
multiple aspects

√ √

context information
√ √

aspect ordering
√ √

introductions
√ √∗

* Introductions of base classes and virtual functions are not yet supported

Table 1 gives an overview of the various AOP features currently supported by both
our static weaver (AspectC++), and dynamic weaver family. Our dynamic weaver sup-
ports more AOP features than any of its counterpart in the C/C++ domain. The features
not supported in the current implementation are get/set fields. This can be considered
as challenging to impossible in languages that support C-style pointers1.

The transformation process of dynamic aspects from AspectC++ to C++ is straight-
forward. The following listing shows an aspect Hello written with AspectC++:

aspect Hello {
advice somePointCut() : before() {

std::cout << "hello from dynamic aspect! " << std::endl;
}
advice somePointCut() : before() {

std::cout << "hello from dynamic aspect! " << std::endl;
std::cout << "signature " << tjp->signature() << std::endl;

1 The support for get/set join points in existing weavers is quite limited, as it is restricted to
direct access of global variables.
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}
};

class Hello {
static void advice1_a0_before() {

std::cout << "hello from dynamic aspect! " << std::endl;
}

template<class ThisJoinPoint>
static void advice1_a1_before(ThisJoinPoint *tjp) {

std::cout << "hello from dynamic aspect! " << std::endl;
std::cout << "signature " << tjp->signature() << std::endl;

}
};

#include "monitor.h" / / r u n t i m e m o n i t o r

void invoke_a0_before() {
Hello::advice1_a0_before();

}
void invoke_a1_before(void *djp) {

typedef DynamicJoinPoint<0> DJP;
Hello::advice1_a1_before<DJP >((DJP*)djp);

}
/ ∗ m o d u l e i n i t i a l i s a t i o n c o d e ∗ /

__attribute__ ((constructor))
void __init_dynamic_aspects() {

monitor <invoke_a0_before,0,0>::registerBeforeAdvice();
monitor <invoke_a1_before,0,0>::registerBeforeAdvice();

}
__attribute__ ((destructor))
void __fini_dynamic_aspects() {

monitor <invoke_a0_before,0,0>::unregisterBeforeAdvice();
monitor <invoke_a1_before,0,0>::unregisterBeforeAdvice();

}

As seen from the above listing, dac++ extracts ids of the join points matched by the
pointcut from the project repository to translate pointcut descriptions into a sequence
of template-based C++ statements, which use join point ids as parameters, to register
the advice code. This template-based pointcut matching mechanism provides a very
efficient solution in comparison to any mechanism based on signature matching at run-
time.

The adoption of AspectC++ both for static and dynamic aspects has resulted in the
merger of the static and dynamic AOP for C++, where the decision whether an aspect
is static or dynamic is delayed till the deployment stages, and is purely driven by the
available resources and the requirements. This type of flexibility is particularly crucial
for resource-constrained systems, which follow the principle of static evolution where
possible and runtime evolution where necessary.

6 Static and Runtime Evolution in the eCos Operating System

eCos is a small and highly configurable operating system targeted for the market of
embedded systems. It is available for a broad variety of 16 and 32 bit microprocessor
architectures (PPC, x86, H8/300, ARM7, ARM9, . . . ) and used in many different appli-
cation domains (MP3 player, digital cameras, printers, routers, . . . ). The eCos system
itself is provided as a congregation of various components, which are configured stati-
cally with a configuration tool called eCosConfig. The components are implemented in
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Table 2. The left table shows the amount of CCCs in the source code of the kernel before and
after refactoring, the right table shows the distribution of the cross cutting code over the different
CCCs

original aspectized
LOC % LOC %

CCC Code 1069 20.54 % 290 6.41 %
Component Code 4136 79.46 % 4237 93.59 %
Total 5205 100 % 4527 100 %

original aspectized
Tracing 336 4
Assertions 384 286
Kernel Instrumentation 162 0
Interrupt Synchronization 187 0
Total 1069 290

a mixture of C++, C, C-preprocessor macros and assembly code. After the user selects
an appropriate eCos configuration within eCosConfig, a configuration-specific system
of headers and makefiles is generated, which is used to build the eCos-library. Against
this library the final applications will be linked.

6.1 Analysis

In the context of a case study, we analyzed several parts of the eCos system (kernel,
C library, POSIX subsystem, µITRON subsystem, Memory Management, Wallclock
Driver, and Watchdog Driver) with respect to their evolvability. For the following dis-
cussion we will exemplarily concentrate on the eCos kernel.

For system software clean encapsulation of the different features is crucial in or-
der to be evolvable. Therefore, our first goal was to figure out the positions and the
amount of code that implements highly crosscutting concerns and locally crosscutting
optional features. The analysis revealed that 20.54% of the kernel source code is needed
to implement four highly crosscutting concerns: Tracing, Assertion, and Kernel Instru-
mentation (profiling) for development support and Interrupt Synchronization. Table 2
(column “original”) presents the numbers for each of these concerns individually. Ac-
tually, these figures only reflect the number of call sites activating these CCCs, the
functional parts of their implementations were not taken into account here.

The results of the analysis show that eCos indeed is configurable to a great extent, but
certainly lacks evolvability. The high portion of crosscutting concerns and the amount
of scattered configuration options in the eCos kernel indicate that complex correlations
between different features exist on the level of the implementation. These correlations
make it very hard to omit certain features or add new ones, in other words, these corre-
lations hamper the evolution of the eCos kernel.

6.2 Static Evolution

During the case study, we enhanced the evolvability of eCos by “aspectizing” the highly
crosscutting concerns and crosscutting optional features mentioned in the previous sec-
tion. The necessary refactoring of the source code was straight forward, as the affected
code was easy to spot. Highly crosscutting concerns such as Tracing are realized as
macros to avoid code redundancy. Optional feature implementations are bracketed by
preprocessor directives for conditional compilation.
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The refactored code was also analyzed and the results are shown in the right columns
of Table 2. These results clearly illustrate, that most of the crosscutting concerns and
optional features could be modularized very well by aspects. However, we were not able
to modularize assertions, due to their individual semantic, and features implemented in
C, as our aspect weaver is not capable of weaving in pure C code.

6.3 Runtime Evolution

The Mars Pathfinder mission launched in 1996 is one of the most well-known space
missions of the foregoing decade. On the one side, because it was the first mission to
Mars that included a rover (robotic exploration vehicle). On the other side, because
of the problems experienced during this mission [27]. After a few days of successful
operation the spacecraft experienced total system resets and each of these resets caused
a loss of valuable metereological data.

The absence of the tracing facility on the spacecraft forced the engineers to spend
hours running the system on the exact spacecraft replica in their lab with tracing turned
on, in an attempt to replicate the precise conditions under which they believed that the
reset occurred. The traces finally revealed the priority inversion scenario. The problem
was that while a low and a high priority task were competing for the same mutex, a
middle priority task preempted the low priority task holding the mutex and, thus, pre-
vented it from unlocking the mutex. The high priority task, thereby, was delayed too
long and missed its deadline. This in turn, caused a watchdog to go off and reset the
whole system. While such a scenario does not cause too much trouble in normal com-
puting systems it is a serious problem in a real-time computing systems and known as
uncontrolled priority inversion. Mutexes in VXWorks (the operating system used for
this mission) could either be equipped with the priority inheritance protocol or not.
Initially the mutex entailing the priority inversion was configured not to use the prior-
ity inheritance protocol. A C-interpreter, embedded into the computing system on the
spacecraft, helped to fix the problem by uploading a C-program to the spacecraft with
the purpose to enable the priority inheritance protocol for the particular mutex. From
this point on, no priority inversion occurred any more. The problem was solved and the
mission could be finished successfully.

Motivation. Both the tracing facility and the C-interpreter were absolutely crucial to
solve the problem. However, the absence of the tracing facility in the actual system
made it extremely hard and time consuming to locate the problem. Additionally, the
support for the priority inheritance protocol was statically embedded in the computing
system of the spacecraft, but what would had happened if it was not? Or if the C-
interpreter was not a part of the computing system due to memory restrictions? The
problem would have been unsolvable, the mission would have failed!

Furthermore, one should keep in mind that the scenario described above can not only
be caused by design faults, but also in the context of runtime evolution. Consider you
want to extend the functionality of a running system. Therefore, it might be necessary
that additional threads have to be added which also have to lock a specific mutex. In
such a scenario the conditions that enable priority inversion can easily be fulfilled by
accident.
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Fig. 6. Execution sequence without and with priority inheritance protocol

An alternative solution for such problems is provided by dynamic aspect weaving.
Tracing and the priority inheritance protocol, both implemented as dynamic aspects,
could then be uploaded to the spacecraft and woven into the running system. There is
no need to embed the priority inheritance protocol from the very beginning, anymore,
it would be loadable on demand. It would not be necessary to have a fully developed C-
interpreter, only an infrastructure is needed that allows to weave aspects during runtime.
In a former case study [23] we have already shown that tracing could be implemented
by a dynamic aspect without suffering significant overhead in comparison to a static
tracing aspect. Here we demonstrate that the eCos’ priority inheritance protocol could
also be implemented as dynamic aspect without having to put up with in-acceptable
overhead in comparison to static aspects.

Implementation. We already re-factored eCos’ priority inheritance protocol into a
static aspect in previous work [6]. In the priority inheritance implementation of eCos
the owner of a mutex inherits the priority of a thread trying to lock the same mutex
and, thus, blocks. The owner’s priority is set back to its original priority when it has
unlocked all mutexes it owns, therefore, the count of mutexes locked by one thread
has to be tracked. This variant of the priority inheritance protocol induces slightly
longer blocking times when a thread holds more than one mutex, but simplifies the
implementation a lot. The implementation as static aspect gives advice on the con-
struction of a thread to initialize the number of mutexes locked and to the methods
mutex_lock(), mutex_unlock() and mutex_trylock() of the mutex class to update
the count of locked mutexes. Call advice on the activation site of the scheduler within
method mutex_lock() transfers the priority of the blocking thread to the owner of
the mutex while execution advice on the method mutex_unlock() checks whether all
mutexes are unlocked again and the owner’s original priority has to be restored.

The conversion from the static aspect to a dynamic version was very straight forward
and demanded virtually no manual intervention. The dynamic advice transferring the
blocking thread’s priority to the owner of the mutex is shown below:



230 W. Gilani et al.

1 advice call("% Cyg_Scheduler::reschedule(...)")
2 && within("% Cyg_Mutex:: lock_inner(...)")
3 : after() {
4 Cyg_Thread self = Cyg_Thread::self();
5 inherit_priority(tjp->that()->owner,self);
6 }

Evaluation Setup. In order to evaluate our implementation we implemented a small,
synthetic eCos test application leading to a priority inversion scenario. At first, this
scenario was executed with no priority inheritance protocol present. Then, the dynamic
priority inheritance protocol aspect was woven into the system and the same scenario
was executed again. The exact execution sequence of both scenarios is depicted in figure
6, the system calls used at each step of the execution sequence can be obtained from
table 3.

Table 3. System calls used in the test application

System Call Description
a mutex_lock(&mutex) lock mutex, as it has not been locked before it can be suc-

cessfully locked
b thread_resume(high_prio) activate thread high_prio, a context switch occurs
c thread_resume(mid_prio) activate thread mid_prio, no context switch occurs as

mid_prio’s priority is lower than high_prio’s priority
d mutex_lock(&mutex) try to lock the mutex, as it has already been locked by

low_prio, high_prio blocks
e thread_exit() the current thread finishes execution, a context switch occurs
f mutex_unlock(&mutex) thread low_prio unlocks the mutex, a context switch occurs

as a thread with a higher priority is already awaiting the al-
location of the mutex

g cyg_mutex_unlock(&mutex) thread high_prio unlocks the mutex

The test application was then linked against four different variants of eCos. Two
variants contained support for the weaving of dynamic aspects. In the first of those two
variants (variant dynamic (perfect)) only these join points needed to weave the dynamic
priority inheritance aspect are hooked. This variant illustrates the overhead of the dy-
namic aspect itself. The second variant (variant dynamic (flexible)) hooks all methods
of the classes Cyg_Thread and Cyg_Mutex for dynamic execution join points and all
call sites within these classes for dynamic call join points. This variant also would al-
low to implement other synchronization mechanisms that affect more join points and
illustrates the price one has to pay for dynamic evolution. The other variants use static
aspects (variant static), only, and either contain the priority inheritance protocol or not.

The test application and the eCos operating system were compiled and linked using
the GNU compiler collection and the GNU bintutils2. The testcase scenario was exe-
cuted on a Pentium III (1 GHz) with caches turned on. The binary was downloaded onto
the target machine using eCos Redboot3 and gdb via the serial line and the gdb remote

2 Gcc version 4.03, binutils version 2.16.1.
3 The boot loader provided along with eCos.
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protocol. The memory consumption of the eCos kernel was determined by analysing the
memory map file generated by the GNU linker. For run time measurements the test ap-
plication was executed for 4000 times and the average values of all these measurements
obtained by the pentium’s rdtsc instruction were computed.

Evaluation Results. The analysis of the memory consumption of the different variants
of the test application is mainly restricted to the eCos kernel, the priority inheritance
aspect and the dynamic weaver infrastructure. The results of the analysis are shown in
table 4. For a perfect hooking (variant dynamic (perfect)) the memory overhead within
the eCos kernel is very low, only 144 bytes of RAM and about 1.5 KB of ROM plus 52
bytes of ROM for the dynamic weaver infrastructure are additionally needed in com-
parison to the variant employing static aspects only (variant static (prio. inh.)). As soon
as more join points are hooked (variant dynamic (flexible)), the memory requirements
are noticeably increased by the dynamic weaver infrastructure, extra 628 Bytes of RAM
and about 8 KB of ROM are needed in comparison to variant static (prio. inh.). Keep-
ing in mind that the complete test application consumes about 26 KB of RAM and
between 18 KB and 27 KB of ROM, this is still a price that is affordable and should be
definitely cheaper than embedding a fully developed C-interpreter. There is no RAM
and only very little ROM consumption delcared for the dynamic weaver infrastruc-
ture, because a direct consequence of our dynamic weaver implementation is that the
memory overhead caused by join point monitors is spread over the whole system (see
section 4) and is already contained by the RAM and ROM demand of the kernel. The
memory demand of the dynamic priority inheritance aspect looks quite large in con-
trast to the static aspect. This is because the static aspect uses introductions a lot, thus,
this memory demand is assigned to the kernel itself, while the memory demand for the
introductions of a dynamic aspects are fulfilled by the aspect itself.

Table 4. Memory consumption of the different eCos variants measured in bytes. Kernel subsumes
the total memory consumption of the eCos kernel, Priority Inh. and Weaver refer to the memory
consumption of the dynamic or the static aspect and the dynamic weaver infrastructure and are
already contained in the kernel’s memory demand. Column Total shows the memory consumption
of the complete test application.

Kernel Priority Inh. Weaver Total
RAM ROM RAM ROM ROM RAM ROM

dynamic (flexible) 2834 13478 168 2562 52 27177 27738
dynamic (perfect) 2350 6800 136 1554 52 26721 21130
static (prio. inh.) 2206 5375 0 77 0 26495 18325
static (no. prio. inh.) 2194 4427 0 0 0 26445 17305

For the assessment of the runtime overhead imposed by the dynamic aspect and the
dynamic weaver infrastructure we measured the execution time of the methods that
are affected most by the priority inheritance protocol: these are mutex_lock() and
mutex_unlock(), each with and without a subsequent context switch (refer to a,d,f,g
in Table 3 and Figure 6). The results of these measurements are shown in Figure 4.
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These results confirm the results of the memory measurement. Variant dynamic (per-
fect) only shows minimal decline of runtime performance in contrast to variant static,
i.e. the runtime cost of one hook and the dynamic aspect is quite small in comparison
to the static aspect. As soon as more join points are hooked (variant dynamic (flexi-
ble)) the runtime overhead increases and reaches a factor up to about two (mutex_lock
(d), priority inheritance protocol enabled). The only figure not fostering this observa-
tion is the execution time of mutex_unlock() when no context switch follows and the
priority inheritance protocol is enabled. Here the variant hooking more join points (dy-
namic (flexible), 391 clock cycles) is faster than the variant that only hooks those join
points that are really needed (dynamic (perfect), 440 clock cycles). Actually, this sys-
tem call even executes faster with the dynamic aspect woven (with priority inheritance
protocol) than without the dynamic aspect (without priority inheritance protocol, 398
clock cylces). There are some explanations possible: caching effects, code alignment,
DRAM refresh cycles, etc., but it is nearly impossible to identify the one of them that
really causes the different execution times. The only thing that is almost sure is that
there should be no relation to the code of the dynamic weaver infrastructure. In vari-
ant dynamic (perfect) the dynamic weaver infrastructure is activated twice during this
system call, while it is activated for six times in variant dynamic (flexible). The rest of
this system call and the code of the dynamic weaver infrastructure are identical for both
versions.
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Fig. 7. Runtime performance comparison of different eCos variants. The left diagram shows the
execution of the analysed system calls with the priority inheritance protocol, the right diagram
the execution times without priority inheritance protocol.

6.4 Discussion

In general, this case study shows that for many concerns in embedded system software,
aspect-oriented implementations and especially dynamically woven aspects are afford-
able. After the refactoring and the integration of the dynamic weaver infrastructure into
eCos, the system now offers an even better static as well as runtime evolvability. Bet-
ter static evolvability because crosscutting concerns and crosscutting optional features
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are now cleanly modularized and encapsulated. Better runtime evolvability because it
is now possible to adapt to changing requirements at runtime. However, this case study
also illustrates, that dynamic evolution is not for free, especially when many join points
have to be instrumented the overhead increases sensibly.

7 Summary

In this paper, we have presented our improved version of the dynamic aspect weaver
family, which has significantly reduced the memory and runtime overhead associated
with the dynamic aspect weaving. Additionally, the availability of a single language
for both static and dynamic aspects allowed to provide a unified mechanism for both
static and runtime evolution. Such a unified mechanism results in an increased levels
of flexibility and evolvability of software systems as the decision whether an aspect
is a static or a dynamic one, is postponed to the later stages of deployement, and is
decided as per the requirements and available resources. By virtue of our family-based
dynamic weaver, even systems with very small memory footprint are able to afford
some degree of dynamism to deal gracefully with the runtime evolution requirements
they are subjected to.
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Abstract. Contemporary software systems are composed of many components,
which, in general, undergo phased and incremental development. In order to facil-
itate the corresponding construction process, it is important that the development
team in charge has a good understanding of how individual software components
typically evolve. Furthermore, software engineers need to be able to recognize
abnormal patterns of growth with respect to size, structure, and complexity of the
components and the resulting composite. Only if a development team understands
the processes that underpin the evolution of software systems, will they be able to
make better development choices. In this paper, we analyze recurring structural
and evolutionary patterns that we have observed in public-domain software sys-
tems built using object-oriented programming languages. Based on our analysis,
we discuss common growth patterns found in present-day component-based soft-
ware systems and illustrate simple means to aid developers in achieving a better
understanding of those patterns. As a consequence, we hope to raise the aware-
ness level in the community on how component-based software systems tend to
naturally evolve.

1 Introduction

The Laws of Software Evolution, as formulated by Lehman et al. [11], establish the
fact that regardless of domain, size, or complexity, software systems evolve, they be-
come more complex, and require more resources to preserve and simplify their struc-
ture. Software systems must be continually adapted, or else they become progressively
less useful in a real-world environment. Many well-known techniques exist to facilitate
system evolution in the presence of changing requirements. The key to a successful
software evolution approach lies, however, not only in anticipating new requirements
and adapting a system accordingly [7], but also in understanding of the nature and the
dynamics of change.

Evolution is at the heart of component-based software engineering, which has be-
come the major approach to develop modern, large-scale software systems [23, 22].
Component-based software technology has emerged from the object-oriented software
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development approach, which is the predominant engineering method to build software
systems today. Already a decade ago, Nierstrasz et al. [18] showed that objects pro-
vide a suitable organizational paradigm for both decomposing large applications into
cooperating software entities and composing applications from pre-packaged software
components. In addition, Dami [5] pointed out in his work that extensibility is another
crucial aspect of software composition, which one must not underestimate. The desire
to achieve substitutability and “plug-compatibility” of components imposes a certain
discipline to structure, use, and connect component plugs that also impacts the overall
design, architecture, and interaction patterns of an application.

Although we a have good grasp of the technological issues involving the evolution of
class-based systems (e.g., the modular refinement of classes [3, 2, 13] and the injection
of orthogonal behavior into classes [1, 3]), we have a less clear understanding of the
nature and dynamics underlying change. So, how do software systems really evolve?
How do components evolve? How does the interface of a component evolve? Can we
provide a sufficient answer to those questions, while the definitive description of the
term “component” is still elusive? In an attempt to offer some answers to these ques-
tions, the goal of this work is to provide a new perspective to the way software systems
change over time. In particular, in this paper we shall (i) study selected recurring struc-
tural and evolutionary growth patterns that we have observed in present-day software
systems and (ii) identify simple means that can help development teams improve the
overall component-based product and process quality.

Our study focuses on growth estimation, an approach that offers a powerful means
for proactive risk management [20]. In particular, we are interested in a normalized ratio
of change in terms of size and complexity of component-based systems. Component-
based software engineering emphasizes reuse rather than the creation of software ar-
tifacts. The evolution of a component-based system consequently involves the reuse
and adaptation of existing components off-the-shelf (COTS) and naturally all of their
embodied contextual relationships [23]. The size and complexity of these software arti-
facts is known and can be easily factored into the overall growth estimation of a system.
However, a refined version of a system may also require new components and partially-
developed software artifacts. The size and the complexity of these elements is largely
unknown and, as a result, their development involves a fair degree of risk. However, this
risk can be proactively assessed, as the growth value of these new elements is governed
by a predefined and system-specific growth factor that is unique for each system and
cultural environment within which the actual development is being carried out.

Precise assessment of the nature of how a software system evolves in the future is
both an art and science [20]. The underlying development approach and utilized asso-
ciated project metrics are invaluable assets that can provide a historical perspective to
generate quantitative estimates on how a given system may evolve in the future. Com-
mon project metrics are, for example, the number of lines of code (LOC), the number of
key classes, and the number of secondary classes. However, these metrics are based on
absolute values, which can be misleading, as they only capture the absolute growth of
a system. In order to achieve a better proactive risk management, we need to normalize
the quantitative data to obtain a relative growth value that should be constant over the
system’s lifetime.
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The rest of this paper is organized as follows: in Section 2, we introduce the concept
of software dependency graphs and define a number of metrics based on such graphs
used throughout our studies. In Section 3, we discuss our selection methodology and
illustrate what techniques were used to extract information out of the software systems
under investigation. Section 4 details our observations and presents the growth patterns
identified. We discuss related work in Section 5 and conclude this paper in Section 6
with a summary of the main insights as well as directions for further work.

2 Understanding Software Structure

2.1 Software Metrics

Software systems exhibit two broad quantitative aspects that we can measure using a
wide range of software metrics [6]: size and complexity. These measures provide an
objective view for both the process being used to create the software system and its
internal structure. By rigorously collecting and analyzing these measures over time, we
can distill a temporal dimension, which is capable of revealing new, yet invaluable infor-
mation like the rate of size growth [12,11] and evolutionary jumps in the complexity of
a software system [8], respectively. Moreover, recent results have shown that evolution
measures can be used to detect architectural shifts automatically [26].

Numerous approaches have been proposed and verified (e.g., purely size-oriented
measures like the number of lines of code (LOC) or function-oriented measures to ana-
lyze process aspects like costs and productivity) that can help us to understand the size
as well as the complexity of a software system. For object-oriented systems, common
size measures include, for example, the number of classes, the number of methods, and
the number of public methods. Size measures provide an indication of the volume of
functionality provided by a software system and can be used as a broad indicator of
effort required to build that system, as it takes usually more effort to create a larger-size
system than a smaller one.

Complexity is commonly captured by measuring structural attributes of a software
system [10]. An attractive approach to measure the complexity of class-based systems is
to analyze the fan-in and fan-out ratios for a given class [26]. Theses measures naturally
capture the number of classes a given class X depends upon and the number of classes
that depend on X . In combination, theses ratios provide a precise information about the
degree of coupling of X with other classes in the system. For example, a class X with
a high fan-in (relative to other classes in the system) is being considered “complex”,
since any changes made to X have the potential to significantly impact other classes
that depend on X . Similarly, a class X that has a very high fan-out is also considered
“complex”, since X makes use of a large number of different functional aspects of the
system in order to satisfy its responsibilities. As a consequence, developers cannot alter
X in a meaningful way before they understand all classes that X uses.

2.2 Type Dependency Graphs

In order to measure fan-in and fan-out, we need to construct a type dependency graph of
a software system [26]. For the purpose of this presentation, a type dependency graph
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GT is an ordered pair (V, E), where V is a finite, nonempty set of types (i.e., classes and
interfaces) and E is a finite, possibly empty, set of directed links between types (i.e.,
E ⊆ V ×V ). In addition, we shall use N to denote the number of nodes and L to denote
the number of directed types links of a given type dependency graph GT throughout the
rest of this paper.

In order to capture both fan-in and fan-out of a given type, represented by node
n ∈ V in GT , we use lin(n) to denote the in-degree and lout(n) to denote the out-degree
of node n. More precisely, lin(n) is the number of inbound links into n (i.e., lin(n) =
card({l | l = {ni, nj} ∧ ni, nj ∈ V ∧ n = nj ∧ i �= j})) and lout(n) is the number
of outbound links from the node n (i.e., lout(n) = card({l | l = {ni, nj} ∧ ni, nj ∈
V ∧ n = ni ∧ i �= j})). The in-degree is a measure of the “popularity” of node n in
the graph GT , whereas the out-degree is node n’s “usage” of other types in the graph
GT [19].

We can further refine the notions of in-degree and out-degree in the context of the
analysis of component-based applications. Each component in a given system may com-
prise several classes and interfaces. The most frequent techniques used to construct these
composites are aggregation, an approach based on inheritance and interface composi-
tion, respectively, and containment, a delegation-based approach to compose the often
orthogonal behavior.1 These techniques give rise to a refinement of the measures in-
degree and out-degree in which we also distinguish between intra- and inter-component
links. A given link to or from a node n may or may not cross the boundary of the con-
taining component, depending on some organizational, structural, and/or functional fea-
tures. For example, if an outbound link from node n ends in a node nj that occurs within
the boundary of the component in question, then we call this link an internal outbound
link and denote by liout(n) it’s corresponding internal out-degree. On the other hand,
if an outbound link ends in a node nj′ that lies outside of the component’s boundary,
then we call this link an external outbound link and denote by leout(n) it’s corresponding
external out-degree. Hence, the out-degree of node n is lout(n) = liout(i) + leout(n).

The refinement of in-degree is defined similarly. That is, we denote by liin(n) the
internal in-degree and by lein(n) the external in-degree of a type node n. The total in-
degree of a node n is lin(n) = liin(i) + lein(n).

Finally, for any given node n in a type dependency graph GT , we can measure a
number of additional, yet very meaningful, attributes related to its size, such as

• the total number of methods mn defined by n;
• the number of defined public methods pn;
• the number of branch instructions bn; and
• the digital measure of inheritance in indicating whether node n inherits from an-

other node nk (apart from the language default).

2.3 Layering

The measures in-degree and out-degree provide a powerful, size-oriented tool to dis-
cover, monitor, and analyze the architectural composition of a software system. In par-
ticular, we are able to observe the forming of application-specific boundaries or layers.

1 The notions aggregation and containment have been popularized by the COM/ActiveX com-
ponent model [21].
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These layers are constituted by types, whose in-degree and out-degree share similar
characteristics. Every software system (i.e., the whole application and its individual
components) exhibits the layer-building behavior. For the purpose of this study, we
classify each type to belong to one of four distinct layers. These layers are:

• Foundation: The types in the Foundation Layer F only provide their services to
other types occurring within a given component (or system). The types in the Foun-
dation Layer do not depend on any types except those defined in external libraries
and the runtime environment. For every type n ∈ F it holds that liin(n) > 0,
lein(n) ≥ 0, liout(n) = 0, and leout(n) ≥ 0.

• Central: The types in the Central Layer C both provide services to and require
services from other types occurring within a given component (or system). For
every type n ∈ C, we have liin(n) > 0, lein(n) ≥ 0, liout(n) > 0, and leout(n) ≥ 0.

• Top: The types in the Top Layer T do not provide any services to other types
occurring within a given component (or system). However, types in the Top Layer
depend on at least one other type occurring within a given component (or system).
As a result, for every n ∈ T , we have liin(n) = 0, lein(n) ≥ 0, liout(n) > 0, and
leout(n) ≥ 0.

• Free: The types in the Free Layer U neither provide any services to types occurring
within a given component (or system) nor require any services from the other three
layers. For every type n ∈ U it holds that liin(n) = 0, lein(n) ≥ 0, liout(n) = 0, and
leout(n) ≥ 0. Types of the Free Layer denote either dormant software artifacts that
do not contribute to the overall behavior of a component (or system) or their usage
cannot be detected statically.

The reader should note that all types can be assigned to exactly one of the four layers
given above, hence if V is the set of all types of a given component, then it holds that
V = T ∪C ∪F ∪U . It also holds that lein(n) ≥ 0 and leout(n) ≥ 0 for types in any of the
four layers. Hence, we can optimize our analysis and do not need to consider external
inbound links and external outbound links when assigning types to layers.

Once a software system has been represented as a dependency graph GT , we can
apply appropriate graph theoretical techniques to discover, monitor, analyze, and predict
how this given system will evolve in the future. By constructing a dependency graph
GT for each new version of a given software system and comparing the new graph with
the one built for previous versions, we can refine the analysis process and obtain early
indicators for potential risks.

3 Methodology

Both the version-specific type dependency graphs and the deduced structural layer-
based decomposition of live systems provide us with suitable means not only to unveil
the inherent nature of component-based software systems, but also to predict reliably
their anticipated growth patterns with respect to size and complexity.

To demonstrate our approach in greater detail, we have selected five representative
open-source projects and present our findings in the remainder of this work. For all
systems, we have catalogued their corresponding reoccurring size and growth patterns.
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Table 1. Components under analysis

Name Releases Initial Size N1 Current Size Nk Description

Acegi 17 135 368 Role-based security framework
Active MQ 26 205 2295 Message queue framework
Hibernate 44 120 1053 Object-relational mapping framework
Spring 39 386 1527 Light-weight container
Xalan 13 207 919 XML parsing/transformation library

Based on these patterns, we can create simple predictive models being able to capture
relevant aspects associated with the nature of how a given component-based software
system evolves.

3.1 Input Data Set Selection

Our primary focus in this work is on open-source Java-based systems. In order to iden-
tify suitable systems for our empirical study, we define a number of selection criteria
that are expected to yield the best results with respect to assessing the complexity, size,
and evolution history of a given system. Our selection criteria are as follows:

1. The system is a single component or application framework, that is, it cannot be
used as a stand-alone application and, as a consequence, has to be analyzed as a
part of a bigger, composite system.

2. At least 10 builds of the system are available. Only complete releases are considered
builds. Branches and releases not derived from the main system tree are ignored.

3. The system has been in active development and use for at least 24 months to in-
crease the likelihood of the existence of a significant development history.

4. The system should comprise of at least 200 types (i.e., classes and interfaces) at
some point in its lifetime and should consist of no less than 100 types when being
analyzed. This ensures the anaysis of components of a realistic complexity.

5. Availability of change logs that indicate defect fixes, addition of new features,
and highlight structural changes. This data aids us in understanding and attribut-
ing changes.

Using these selection criteria, we have identified five systems (cf. Table 1), which
provide a best match for our study with respect to time and resource constraints. The
reader should note that we have initially been able to identify over 100 systems that met
our selection criteria [26].

In addition, we use a Release Sequence Number (RSN) [4] as the pseudo-time mea-
sure for all systems under investigation. RSNs are universally applicable and indepen-
dent of any release numbering scheme and/or schedule. A RSN is a sequential number
allocated based on release dates, where the first version is 1 and then each subsequent
version increases by one.

3.2 Extracting Metrics

In order to perform the required data mining, we developed a metrics extraction tool
[26], especially designed to analyze Java programs and to extract growth-related data to
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capture the degree of change of a system with respect to its size and complexity. This
tool takes as input the core JAR files for each version of the system being investigated
and generates the desired metric data.

Our extraction tool uses ASM, a Java Bytecode manipulation framework,2 to collect
static dependency information from the classes contained within the core JARs. For
each type, the set of dependencies are extracted and recorded. However, the following
types are ignored, as they do not add any specific value to the analysis process [26]:

1. All primitive Java types like int,
2. The class java.lang.String,
3. The root class java.lang.Object, and
4. self-references (i.e., all occurrences of this).

The reader should note that all systems that we have analyzed require also some ad-
ditional Java-based third party libraries. However, these third party libraries as well as
all Java standard libraries do not impact the size and complexity of the analyzed soft-
ware system. For this reason, our metric extraction tool ignores dependencies associated
with types originating from those libraries, an approach that does not compromise the
overall quality and precision of the collected data in our study.

4 Observations and Analysis

In the previous sections, we have outlined the selection criteria required to identify five
suitable Java-based systems for analysis and briefly discussed the measures in which
we are particularly interested in. In this section, we illustrate how the notion of power-
scaling relationship [16] in software dependency graphs can be used as a means to
discover and analyze recurring structural and evolutionary patterns in the component-
based systems.

4.1 Power-Scaling Relationship

In our previous work on detecting structural changes in object-oriented software sys-
tems [26], we developed a growth estimation model for calculating the total number of
type links L in a software dependency graph GT given the total number of type nodes
N . This model is based on a power-scaling relationship [16] that can be established
between L and N . More specifically, if N denotes the total number of types (as defined
in Section 2) and L the total number of dependencies between types (i.e., associations,
inheritance, and interface refinements) [26], then it holds that

L = Nβ , where β ≈ 1.4 (1)

The reader should note, however, that β is not a constant! It changes marginally between
successive versions and usually stabilizes around the value 1.4 as a software system
matures [26].

2 ASM is available at http://asm.objectweb.org
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As we will outline in the following, power-scaling relationships are central to our
study as they are commonly found in software dependency graphs, most notably be-
tween the total number of types and methods, both public and private. Therefore, such
relationships will allow us to create estimation models for the corresponding dependen-
cies over a number of versions of a given software component.

4.2 Relationship Between Types and Methods

As the first item in our study, we analyze the relationship between the number of types
in a component with (i) the total number of methods (denoted by M ) and (ii) the to-
tal number of public methods (denoted by P ). The number of methods in a software
component3 can be considered as a measure that denotes the volume of functionality of
this component. The public methods of a component, on the other hand, can be seen to
be the potential external interface of that component, although in practice only a small
part of this interface may be used by external parties. However, analyzing the use of the
external interface of a component is beyond the scope of this study.

Analyzing the five selected systems, our data reveals that the total number of methods
M and the number of public methods P grow predictably along with the number of
types N . More significantly, there is a power-scaling relationship between the total
number of types and the total number of (public) methods. We observe that

M = NβM

, where βM ≈ 1.35 (2)

P = NβP

, where βP ≈ 1.30 (3)

The reader should note that a linear model (i.e., M = αN ) for the relationship
between types and (public) methods cannot be used, as it is not sensitive enough to pick
up slight slopes in data and, therefore, would be unsuitable to recognize medium-sized
architectural changes from one version of a system to another.

Our data also indicates that as the size of a component increases, the rate at which
the public methods are added starts to decrease. Additionally, we notice that public
methods are added at a faster rate early in the development life-cycle. Once a component
becomes more mature and has stabilized, our data shows that it will resist an increase
in its public interface. A similar observation can also be made for non-public methods.

Based on these two observations, we can estimate the total number of public methods
that a given system will have in the current version given the corresponding information
from the previous version. If Nv and βP

v denote the total number of types and the scaling
factor for version v of a given component, respectively, then it holds that the estimated
scaling factor for version v+1, denoted by ∗βP

v+1, is

∗βP
v+1 = βP

v + γP · sng(Nv − Nv+1) where γP ≈ 0.001 (4)

with sng being the signum function.4 γP in the formula above encodes the observation
that βP tends to slowly decrease as the size of a component increases. Furthermore, the

3 We use the term component as a synonym for both a whole software system and individual,
self-contained software artifacts.

4 The signum function returns +1, −1 or 0 if it is applied to a positive number, negative number,
or zero, respectively.
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Fig. 1. Evolution of scaling factor βP

Fig. 2. Estimation error for public methods P

more mature a component becomes, the rate at which βP changes decreases. The distri-
bution of the scaling factor βP for all five components under investigation is illustrated
in Figure 1. A similar relationship can be defined for methods M with a scaling factor
βM , and the estimation model holds with γ ≈ 0.002. The reader may note that γ is a
constant in our model, but further analysis may result in a revised model where γ is a
function.

We have derived this model based on our analysis of Acegi and ActiveMQ and then
applied it to the other three components to verify our growth estimation model. Our
data shows that this model is able to estimate the total number of public methods in a
component with no more than 3% error rate in 75% of the time (cf. Figure 2). If the
error rate is beyond a given, project-dependent threshold, then this is an indication that
substantial changes have been made between two versions, a situation that deserves
special documentation and analysis, in particular with respect to an emerging risk.
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Fig. 3. Percentage of public methods %P

4.3 Percentage of Public Methods

Accross all five analyzed systems, our data shows that between 74% and 86% of all
methods are public. This is unusually large and deserves special attention. We suspect
that there is a natural tendency in the Java Open Source development community to
create a larger number of public methods, indicating that the language makes it very
easy to define public methods and does not offer a set of features that would allow
the developers to choose a greater level of control over the “visibility” of the code
that they write. We feel that additional modifiers in the language, in combination with
appropriate training of developers, might yield better, more maintainable, outcomes.
Ideally, a component should only have a very small public interface that is available to
outside developers.

Our data also reveals that, with few exceptions, the proportion of public methods in
a given component tends to fluctuate in the 5% range. Hence, if in the initial version
75% of the methods are public, then our data indicates that we are likely to see a range
of in-between 70% and 80% over the duration of the project. However, the tendency
for this measure is to decrease rather than to increase. So, over time the percentage of
public methods will tend to go down from 80% to 75% rather than the other way.

Similar to the growth estimation model illustrated in Section 4.2, we are able to
define a model to estimate the number of public methods in the next version of a com-
ponent or systems, denoted by ∗P , as

∗Pv+1 = N
∗βP

v+1
v+1 (5)

This model allows us to estimate the total number of public methods in a system (i)
within 2% accuracy 70% of the time and (ii) within 5% accuracy 90% of the time. When
the estimated value is not within a small margin of error compared to the “real” value,
it provides a good indicator for the development team to reflect on what changes were
made to the component/framework in order to provide additional documentation. The
threshold should be determined by the development team based on observations from
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Fig. 4. Percentage of derived types

their product data over the recent past. Further, our data shows that as time progresses,
the estimation accuracy increases because less changes are made and, as a consequence,
the error threshold should be reduced accordingly. Figure 3 illustrates the evolution
of the percentages of public methods for all analyzed systems.

4.4 Growth Proportion in Inheritance

Our study also reveals a rather intriguing property, namely that the proportion of types
that extend (i.e., are derived from) another type is strongly bounded and does not change
significantly. We found that, in general, between 35% and 50% of the types are derived
from another type. On average, there is a 45% chance that a type is derived from another
type. The exception is Xalan, which has a much higher number of derived types (cf.
Figure 4). Further analysis showed that Xalan, being an XML parser, exhibits a strong
relationship to the underlying hierarchical structure of XML documents. This seems to
be an architectural choice made by the development team.

Our data also demonstrates that the variation in the proportion of types that are
derived from another type, although system dependent, is very low. Generally, the ob-
served variation is around 5%. There is no strong tendency over time for the compo-
nents/frameworks to either have more or less types that (i) are derived or (ii) derive
another type. This might indicate that there is a certain cultural bias and developer habit
at work and the overall size/maturity does not have a direct impact on the rate of change.
This, however, is something that needs further investigation. In the five systems that we
have analyzed, the probability of significant change in the number of types deriving
from another type (i.e., more than 2%) between two subsequent versions is very low
(on average, less than 0.15%). This is further illustrated in Figure 4.

4.5 Type Distribution in Layers

In all five systems, we consistently find that the Central Layer (c.f. Section 2.3) contains
the majority of the types. On average, the Central Layer C contains about 80% of the
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Fig. 5. Type distribution in layers

types in the component, the Top Layer T and the Foundation Layer F contain 9% each,
and the Free Layer U contains the remaining 2% of the types. Figure 5 illustrates the
type distribution of the last available release for each analyzed system.

Although the precise values change from component to component, it is interesting
to note that the Foundation Layer has a small number of types (i.e., around 9%). This
indicates that developers naturally tend to keep the number of the types in the layer that
has the highest ripple impact low.

The natural interface exposed by the components is most likely located in the Top
Layer since it contains types that are not directly used internally. Our study shows that
compared with the Central Layer, the Top Layer is also fairly small, indicating that
component designers tend to keep the interface of a component as small as possible.
Although the Top Layer contains the set of types that external users of this component
are most likely to access, it does not restrict types in other layers to be used. It would be
ideal, if languages like Java provide better language abstractions that allow developers
to explicitly tag the external interface to a component, allowing for further analysis.

To further illustrate the distribution of types between layers, consider Table 2, where
the layer distribution for the first 18 versions of Hibernate is recorded. Besides the
version number/name, Table 2 lists the number of classes for a given RSN, the number
of types (classes or interfaces) that are derived from another type (denoted by I), and
the percentage of classes in the Foundation, Central, Top, and Free layers (denoted by
%F , %C, %T , and %U , respectively). Table 2 also lists the total number of methods as
well as the number of public methods (denoted by M and P , respectively).

We would like to highlight that between RSN 3 and 4, an unusual amount of change
can be observed in type distribution across layers. An inspection of the available change
logs reveals that a major refactoring of the core code was performed. The reader may
note that this change could also be detected purely by observing the growth in size (i.e.,
N and P ). However, between RSN 14 and 15, another change in the distribution of
types between layers occurs. This change cannot be detected by observing size mea-
sures. N , P , and I all remain unchanged.

Further, as documented in the change logs and discussion groups, we would like
to note that the team changed the underlying structure between version 1.2.2 and 2.0.
This change can be observed in the distribution of types between layers (cf. Figure 6).
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Table 2. History of Hibernate

RSN Version N I %F %C %T %U M P βM βP

1 0.9.1 120 50 0.075 0.850 0.075 0.000 1065 873 1.456 1.415
2 0.9.2 126 50 0.087 0.841 0.071 0.000 1175 963 1.462 1.421
3 0.9.3 126 50 0.079 0.849 0.071 0.000 1174 962 1.461 1.420
4 0.9.5 144 60 0.049 0.833 0.104 0.014 1246 1044 1.434 1.399
5 0.9.6 163 69 0.049 0.834 0.104 0.012 1523 1229 1.439 1.397
6 0.9.9 185 74 0.065 0.827 0.092 0.016 1829 1473 1.439 1.397
7 0.9.10 201 79 0.060 0.821 0.104 0.015 1923 1553 1.426 1.386
8 0.9.14 222 88 0.068 0.815 0.104 0.014 2136 1789 1.419 1.386
9 1.0.0 242 100 0.062 0.822 0.103 0.012 2312 1920 1.411 1.377

10 1.1.0.b7 270 119 0.059 0.826 0.104 0.011 2762 2329 1.415 1.385
11 1.1.0 296 128 0.071 0.821 0.098 0.010 3102 2647 1.413 1.385
12 1.1.6 342 152 0.070 0.816 0.102 0.012 3690 3131 1.408 1.379
13 1.2.0 367 161 0.084 0.798 0.104 0.014 4047 3337 1.406 1.374
14 1.2.1 377 166 0.082 0.801 0.103 0.013 4198 3469 1.406 1.374
15 1.2.2 377 166 0.069 0.878 0.040 0.013 4260 3439 1.409 1.373
16 2.0b1 390 176 0.074 0.885 0.028 0.013 4489 3630 1.410 1.374
17 2.0.0 364 191 0.038 0.926 0.033 0.003 4083 3280 1.410 1.373
18 2.1.0 446 206 0.040 0.910 0.047 0.002 5301 4154 1.406 1.366

However, this level of change cannot be detected by purely looking at size growth –
the number of classes N only increases by 13 (cf. Table 2). It is interesting to note that
both, βM and βP , do not change significantly between version 1.2.2 and 2.0, either, yet
another indication that a range of measures is needed to truly understand evolution of
software.

4.6 Proportional Growth in Layers

Another result of our study is that components undergo phases of changes and that the
proportion of types in the various layers slightly changes over time. When a component
is not very mature (i.e., early in its development life span), the distribution of types in
the various layers changes much more frequently than in a component that has reached
a certain level of maturity. Hibernate, for example, underwent three distinct phases so
far. Early in its life span, the proportion of types in various layers has changed much
more than in later releases of Hibernate, as is illustrated in Figure 6.

But why is it interesting to study the evolution in the layers themselves? In soft-
ware development, there are two distinct development strategies, namely top-down and
bottom-up. In the top-down approach, we develop the interface of a component and then
slowly add the functionality to support this interface. Hence, as per our layer definition,
the Top Layer components are defined first, followed by the Central Layer and finally
the Foundation Layer components are added. In the bottom-up development approach,
however, this sequence is reversed and the Foundation Layer is developed first. In prac-
tice, one would expect a mixture of both approaches to be used by software developers,
with the tendency to favor one approach over the other, when we take a distinct time
interval.
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Fig. 6. Type evolution of the Spring framework (left) and Hibernate (right)

In order to identify a bottom-up development approach, we should be able to observe
the proportion of the number of classes in the Foundation Layer decreasing over time,
while the Central Layer and the Top Layer increase. This would indicate that the Foun-
dation layer types have matured and the developers are working on the code in other lay-
ers. However, only the Spring framework shows more of a bottom-up approach rather
than the top-down approach (cf. Figure 6). We hypothesize that this upwards trend in
the Central Layer will stabilize as the product matures. It does not seem to be practical,
however, to have a system where more than 95% of the types are in the Central Layer.
On the contrary, our study shows that there is a natural tendency to host around 80% of
the types in the Central Layer.

Developers working on the Hibernate project exhibit a tendency to add types equally
in all layers. This seems to be the case for all analyzed systems and we cannot identify
any periods where either a top-down or the bottom-up approach is clearly visible. Our
data reveals that evolution of components tends to happen in vertical slices, where the
types are distributed over all layers. A larger sample size may provide further informa-
tion and other trends, however this is beyond the scope of our current anaylsis.

5 Related Work

Modern software systems are built from of a large number of interacting and mutual-
dependent parts. One way to study these systems is to use complex systems theory [14],
which suggests that in order to understand a complex system, one should use a top-
down approach in which the system properties are inferred from its observable behavior
rather than focusing on the individual parts in the beginning. This position is also taken
by Newmann [17], who argues that complex systems exhibit a certain set of emergent
properties, which become only visible at the system level and may not have been in-
tentionally created by the system designers. Understanding and cataloguing emergent
properties can provide us with valuable insights and a new prospective to grasp the
complexity and evolutionary growth patterns of modern, complex component-based
software systems.

Much of the seminal work in the field of software evolution has been done over a
number of years by Lehman et al. [11]. Their work suggests that at the system level, the
evolutionary behavior of a software system is systemic and not completely under the
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control of the individual developers. Turski [25] made a similar observation. Based on
his analysis of the nature of software evolution, he presented an inverse-square model
[25] that suggests that the growth of a software system is inversely proportional to its
complexity, and as complexity increases, the rate of growth is constrained. However,
while analyzing the Linux operating system, Godfrey et al. [9, 8] discovered that some
systems have a hyper-linear growth curve. As a consequence, the models proposed
by Turski and Lehman et al. do not always hold. Godfrey et al. concluded that the
architecture of a system determines the evolutionary growth potential and a modular
architecture allows for a system to grow faster than otherwise possible.

Mockus et al. [15] studied the evolution of Mozilla and the Apache web server, both
open source software systems. They, like Godfrey et al., argue that the design struc-
ture of the software system has a direct impact on the development speed. A highly
modular, component-based architecture allows for fast evolution, whereas a highly in-
terdependent architecture generally requires a longer period of time between released
versions.

In our previous work on software evolution [26], we presented a growth estimation
model built on top of an observed power-scaling relationship between the total num-
ber of nodes and the total number of links in a software dependency graph GT . We
also showed that when the estimation model fails to predict the growth within a 7%
error margin, then this error is induced by significant architectural shifts in the analyzed
version of the software system. However, these architectural shifts may also signify
a potential risk that needs to be addressed in a proactive manner. This proactive risk
management is at the heart of our growth estimation model as it provides a powerful
feedback mechanism for both to improve the development process and to offer guidance
to a more controllable evolution practice of software systems. Furthermore, the results
of our work also lend renewed support to Turski’s hypothesis [24] that, as system com-
plexity increases, the rate of growth of the software systems tends to decrease.

6 Conclusions and Future Work

Developers constructing components in a software system can mitigate risks by better
understanding typical patterns of software evolution. Using an emperical investigation
of popular software components with a substantial development history, we presented
recurring structural and evolutionary patterns in this work. Supported by quantitative
analysis and the patterns identified, we have highlighted atypical evolution of com-
ponents and discussed the reasons that caused such changes. In this context, we have
observed that for certain types of changes, more than one measure may be needed to
highlight deviations from normal growth patterns. However, we have not yet been able
to identify which measure can detect what kind of atypical change; this is a topic for
future investigations.

Although our analysis shows that software grows over time, the structure and scope
of growth is in general not erratic. We have observed that the percentage of derived
types in a given component does not change significantly over time. Also, the naturally
exposed interface of a component does not change as much as commonly perceived.
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Our investigation into the nature of software evolution lead us to construct type de-
pendency graphs and classify the types within a component into four orthogonal layers.
We noticed that, in general, the distribution of the proportion of types in these lay-
ers is relatively stable. Where substantial changes in the proportional distribution were
observed, they could always be attributed to significant architectural changes. As a side-
effect of the layering, we were also able to detect the high-level construction methodol-
ogy (e.g, top-down, bottom-up) that was most likely used to build a given component.

The growth estimation models presented in this work rely on information of the pre-
vious version of a component and offer low error rates. It is likely that we can improve
the accuracy of our estimations by using information of more than one previous version.
This, however, is still the topic of ongoing work.
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Abstract. Pattern composition has been recognized as a key element
for the adoption of pattern languages and systems. This paper discusses
the challenges of structural pattern composition and proposes an ap-
proach for role-based pattern composition, with two alternative com-
position mechanisms. To demonstrate the applicability of the proposed
composition model, we have extended an existing pattern-driven archi-
tecting environment with an implementation of the approach.

1 Introduction

Different kinds of patterns (like analysis patterns [1], design patterns [2], archi-
tectural patterns [3], etc) have become a central part of contemporary software
engineering. Patterns are typically organized into pattern languages or systems,
which provide a framework for building solutions composed of elementary pat-
terns. Indeed, pattern composition has been considered as a key requirement for
the automation of software industry [4]. Even though tool support for patterns
has been improved considerably in recent IDE’s and CASE tools (e.g. [5,6]),
support for pattern composition is still relatively modest.

Requirements on the pattern composition mechanisms depend on the way the
patterns themselves are specified and applied in practice. For instance, depend-
ing on the used pattern specification technique, composition can be structural
where pattern structures are glued together or behavioral where objects play sev-
eral roles in different patterns [7]. Furthermore, pattern specification and usage
influence very much the kind of composition constraints needed [8] (e.g. whether
composition is mandatory, optional or forbidden) and the way these constraints
should be formulated.

In this work, we study the challenges and pragmatics of structural pattern
composition assuming a role-based specification of patterns. We mainly discuss
how composition manifests itself in the generative usage of patterns, where pat-
terns are instantiated to create the design of a software system. In this context,
there is still a number of influential decisions to be made concerning the defini-
tion of the composition operator and the implementation of tool support for the
composition. In particular, we will discuss the following issues:
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– Role specification. In role-based specification of patterns, roles have different
kinds of properties (e.g. constraints, relationships). An important question
is how the individual properties of two composed roles are reflected in the
resulting unified role.

– Role binding. In role-based specification of patterns, roles have multiplicities
specifying the number of instances of the roles (number of elements playing
the roles). Accordingly, we may have situations of role scattering: multiple
objects playing the same role and role tangling: the same element playing
different roles. This leads to new kinds of composition constraints such as
the number of allowed composition instances between two roles and the kind
of elements that may be involved in composition.

– Role dependencies. Roles may depend or relate to other roles. Composition
constraints should follow the implications of such dependencies. In addition,
we may want certain composition constraints to be validated only if certain
conditions are met. This suggests a need of a dependency model of compo-
sition constraints.

– Kind of composition. Pattern composition can be carried out at different
levels. In particular, two patterns can either be merged into a new pattern
(combinative composition), or the participating patterns may remain sepa-
rate, with additional information indicating the overlapping parts (conserva-
tive composition). The need for a certain kind of composition may depend,
for example, on whether the pattern (system) is being applied for generative
purposes [9] (conservative is preferred) or in a reverse engineering mode [10]
(combinative is more suitable).

– Effect on constraints. The constraints imposed on the composed pattern can
be either the conjunction or disjunction of the constraints on the participat-
ing patterns. That is, the participating patterns can either widen or limit
each other’s constraints.

In this paper, we discuss the various options and propose rules for the pattern
composition. In order to demonstrate the concrete usage of the concepts, we
have implemented pattern composition support for a pattern-driven development
environment known as INARI [11]. The tool assumes a role-based specification
of patterns and provides a task-based pattern instantiation mechanism.

The remaining of the paper is organized as follows. Section 2 presents a role-
based specification of patterns. Section 3 discusses in detail role-based pattern
composition and introduces an example composition algorithm. Concrete tool
support for the proposed pattern composition approach is presented in Section
4. In Section 5, we compare our work to other related approaches. Finally, Section
6 concludes the paper.

2 Role-Based Specification of Patterns

To be able to discuss pattern composition independently of any particular pat-
tern kind (e.g. design patterns [2], architectural patterns [3], etc), we use the
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Fig. 1. Conceptual model for generic patterns

concept of a generic pattern as depicted in Figure 1. A generic pattern (or sim-
ply a pattern) is an arrangement of software elements for solving a problem.
A pattern is defined in terms of element roles rather than concrete elements; a
pattern is instantiated in a particular context by creating instances for each role
and by binding the role instances to concrete elements.

A role has a type, which determines the kind of software elements that can
be bound to the instances of that role; the set of all the role types is called the
domain of the pattern. An example domain could be UML; that is, the roles are
played by UML model elements.

Each role may have a set of constraints. Constraints are structural conditions
that must be satisfied by the concrete element bound to an instance of a role.
Constraints may refer to the elements playing other roles, implying dependencies
between the roles. For example, in a pattern that covers UML class diagrams,
a constraint of an association role may require that the association bound to
an instance of this role must appear between the classes playing certain class
roles, thus implying a dependency from the association role to the two class
roles. Another example constraint is the containment relationship between roles
(e.g. operation roles are contained within class roles). In this case, a dependency
exists from an operation role to its parent class role.

A multiplicity (i.e. cardinality) is defined for each role. The multiplicity of a
role gives the lower and upper limits for the number of the instances of the role
in the pattern. In this work, we assume that the multiplicity is given using the
symbols ’1’ for exactly one, ’?’ for zero or one, ’*’ for zero or more, and ’+’ for
one or more. For example, if an operation role has multiplicity ’?’, the operation
is optional in the pattern, because the lower limit is zero.

The upper part of Figure 2 shows a role diagram of a simple pattern consisting
of three class roles (Client, Facade and Service). The purpose of the pattern is
to ensure that system services are accessed through a facade component. Role
Service has a child attribute role description and a child operation role getDe-
scription. Similarly, role Facade has a child operation role getServiceDesc. The
multiplicity of role Service is + (marked after the role name), stating that the
facade may encapsulate one or more services. There is a dependency from role
getServiceDesc on role getDescription: there should be a getServiceDesc instance
for each getDescription instance.
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<< class >>
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description
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<< operation >>
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<< class >>
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getMessagingDescription
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Fig. 2. Services pattern instance

The bottom part of Figure 2 gives an example binding of the Services pattern.
The concrete element SystemFacade plays the role of Facade, this is marked by
the double-arrowed line between Facade and SystemFacade. In addition, there
are two elements that play the role Service, this is allowed by the multiplicity
value of Service (’+’). Accordingly, there are two instances of roles description
and getDescription. Because of the dependency between getServiceDesc and get-
Description, there are two instances of getServiceDesc.

3 Role-Based Pattern Composition

The composition of two patterns results in a new pattern. The composition oper-
ator we define is a binary operator that takes two arbitrary patterns and returns
a possibly larger one. Given two arbitrary patterns patternX and patternY, if
roleX and roleY are roles in patternX and patternY respectively, we say that
roleX and roleY overlap if their instances are bound to the same concrete ele-
ments. It is important to note that roleX and roleY can overlap only if (i) they
are of the same role type and (ii) the parent roles of roleX and roleY (the roles
where roleX and roleY are contained), if any, are overlapping too.

Considering an overlapping relationship between roleX and roleY, our role-
based composition can be expressed as follows:
patternZ = Compose(patternX, patternY, {(roleX, roleY)}).
patternZ is said to be the composite pattern of patternX and patternY. The
composition formula specifies the two patterns to be composed followed by a set
of tuples defining the overlapping roles.
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Table 1. Role multiplicity in pattern composition

roleX roleY Allowed number of role instances

* * *

* ? ?

* 1 1

* + +

1 ? 1

1 1 1

1 + 1

+ ? 1

+ + +

? ? ?

In our work, we assume a restrictive pattern composition in the sense that the
rules of roleX should restrict the binding of instances of roleY and vice versa.
In contrast, an augmentive composition approach would relax the rules on both
sides, requiring that either the rules on roleX or the rules on roleY apply for the
bindings of both roleX and roleY. Given the above definition, the consequences
of the composition operator are as follows.

– Interpreting role multiplicities as sets of numbers, the overlapping relation-
ship between roleX and roleY implies that the number of elements that
can be bound to instances of both roles is given by the intersection of the
multiplicities of roleX and roleY. For example, if the multiplicity of roleX is
’+’ and the multiplicity of roleY is ’1’, then exactly one element could play
roleX and roleY in the composite pattern patternZ. The different cases are
shown in Table 1.

– If roleX and roleY are two overlapping roles, then binding an element to
instances of roleX and roleY should follow all the dependencies of roleX
and roleY. Thus if roleX has n dependencies and roleY has m dependencies,
then the bound element should follow at most n+m dependencies and at
least max(n, m) dependencies. This is because some of the dependencies
(dependencies having the same target role) of roleX and roleY can be the
same.

– Similarly, the bound element to instances of roleX and roleY should satisfy
the constraints of both roleX and roleY. Thus if roleX has n constraints
and roleY has m constraints, then the bound element should satisfy at most
n+m constraints and at least max(n, m) constraints. The constraints having
the same type and value are treated to be the same.

Patterns patternX and patternY are said to be disjoint if they have no over-
lapping roles. Patterns patternX and patternY are said to be fully composed if
there is a one-to-one overlapping relationship between all roles of patternX and
patternY.

In order to illustrate pattern composition in terms of role diagrams, let us
consider a second simple pattern called WatchDogs. The purpose of the pattern,
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WatchDog

<< class >>

<< operation >>

watch

Subject [+]

<< class >>watches

Fig. 3. WatchDogs pattern

in our example case, is to verify the availability of system services. Figure 3
depicts a role diagram of the pattern: A WatchDog class role has an opera-
tion role watch for watching an instance of role Subject. The pattern allows an
instance of WatchDog for every instance of Subject. The motivation for the com-
position here is that we want system services (playing role Service in the Services
pattern discussed earlier) to be watched for availability. In other words, system
services will play role Subject in the WatchDogs pattern.

Supposing that the composite pattern is named WatchedServices, the compo-
sition formula can be given as follows:

WatchedServices = Compose(Services, WatchDogs, {(Service, Subject)}).
As we discussed earlier, composition in role-based specification of patterns can
be combinative or conservative. This is discussed in more detail in the next two
subsections.

3.1 Combinative Composition

Combinative composition means that the two composed patterns are statically
merged into a single pattern forming a new role structure. Each pair of over-
lapping roles merges into a unified role in the new role structure. Assuming the
composition of patternX (consisting of n roles) and patternY (consisting of m
roles) and that there are k pairs of overlapping roles, the number of roles in the
composite role structure is n+m-k.

Figure 4 shows an example of a combinative composition of patterns Services
and WatchDogs. Roles Subject and Service are merged into a unified role named
WatchedService. The properties of the unified role are restricted to those of Sub-
ject and Service in their respective role structures. Instantiating the composite
pattern is trivial, it is carried out in the same way as discussed in Figure 2.

3.2 Conservative Composition

Conservative composition means that the two composed patterns keep their own
identities during composition; no new role strcuture is formed because of the
composition. This is illustrated in Figure 5 using the example of Services and
WatchDogs : An overlapping relationship is made between Subject and Service
without merging them. The composition is made by binding instances of Subject
to the same elements that are bound to instances of Service. As a result, there
are as many instances of Subject as there are for Service.
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Fig. 4. Combinative composition of Services and WatchDogs patterns
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Fig. 5. Conservative composition of Services and WatchDogs patterns

Compared to combinative composition, instantiating the composite structure
shown in Figure 5 is tricky. The reason is that because the multiplicity of the two
overlapping roles is ’+’, we have to maintain the right correspondence between
individual bindings of Subject and Service. If not maintained, there is the risk
that an instance of role WatchDog is watching a wrong instance of Subject,
or that two different instances of WatchDog are watching the same instance of
Subject. We need an algorithm for conservative composition that eliminates these
two problems.

In our approach, conservative composition is implemented using the following
algorithm. The algorithm assumes a stepwise instantiation process. Furthermore,
at any time, a role instance of a composed role is either in state ’doable’ (an
instance can be bound to a concrete element) or state ’not doable’ (an instance
cannot be bound to a concrete element).
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Compose(roleX, roleY)
While more instances of the pair (roleX, roleY) are allowed, do

1. Select roleX to instantiate
2. Create a ’not doable’ role instance of roleX
3. Create a ’not doable’ role instance of roleY
4. Associate ’not doable’ role instances of roleX and roleY
5. Change the state of ’not doable’ role instances to ’doable’

end while

Figure 6 shows a graphical illustration of an example execution of the the al-
gorithm. The algorithm creates an instance of roleX named X1 (Figure 6 A,
algorithm step 1 and 2). The role instance cannot be bound to a concrete ele-
ment since the corresponding instance of roleY has not been created yet. The
state of node X1 is set to ’not doable’. This is marked by the label on top of
the node.

The algorithm then creates a ’not doable’ node Y1 (Figure 6 B, algorithm
step 3). Because a ’not doable’ node of roleX exists, both states of X1 and Y1
change to ’doable’ and the association between X1 and Y1 is made (Figure 6
C, algorithm steps 4 and 5). The association is marked by a dashed line linking
the two nodes. It is now possible to bind the ’doable’ instances of roleX and
roleY to the same concrete element. In a similar fashion, a second ’not doable’
instance of roleX named X2 is created (Figure 6 C, algorithm steps 1 and 2)
and a second ’not doable’ instance of roleY named Y2 is added (Figure 6 D,
algorithm step 3). The structure grows as more instances are allowed.

It can be shown that the algorithm eliminates the risk of wrong correspon-
dences between instances of roleX and roleY. In other words, there is no risk that
both X1 and X2 be associated with Y1 for example. Also, there is no risk that
X1 is associated with Y2 or X2 is associated with Y1. A proof of the algorithm
correctness is presented in [12].

3.3 Composition Constraints

Composition constraints have been defined as binary relationships between roles
[8] stating whether an overlapping relationship between two roles is a ’must be’
(the roles must be played by the same elements), ’must not be’ (the roles must
not be played by the same elements), or ’may be’ (the roles may be played by
the same elements). In fact, the properties of the composition operator discussed
earlier represent other kinds of composition constraints as well, for example
how the multiplicity is calculated when two roles overlap. These constraints
highly depend on the interpretation of the composition, for example whether it is
restrictive or augmentive. In addition, we may suggest other kinds of constraints
including:

– Number of allowed composition instances: We may want to further restrict
the number instances of two overlapping roles. Considering the example of
Service and WatchDog, we may want for performance reasons to restrict the
number of instances WatchedService: we do not want to have a WatchDog
for every system service.
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Fig. 6. Example illustration of the algorithm

– Kinds of elements bound: We may want to restrict the kind of elements
to be bound to instances of the two overlapping roles. For example, for
performance or security reasons only certain kinds of services are allowed to
be watched

– Conditional composition constraints: a ’may be’ composition constraint in
a certain situation may change to a ’must be’ constraint in another situa-
tion. For instance, if our example system should be of high availability, then
the composition of Subject and Service becomes a ’must be’. However, we
may want the same constraint to become ’must not be’ if performance is
prioritized: the use of WatchDog degrades the performance of the system.

4 Tool Support for Pattern Composition - INARI

In order to implement our proposed approach to pattern composition, we use
a prototype tool environment known as INARI (Integrated Development Envi-
ronment) [11]. The INARI tool has been developed as a pattern-driven stepwise
modeling and architecting environment, it is currently integrated with Rational
Software Architect [5]. An INARI pattern is a role-based structure that is applied
by binding instances of its element roles to concrete model elements. Currently
the tool supports UML, Java and XML elements.

We have extended the tool with pattern composition capabilities for both
combinative and conservative compositions. For composition constraint evalu-
ation, INARI uses two levels of constraints: constraints applied to the pattern
model (checking constraints on role relationships, role bindings, etc) and con-
straints applied to the concrete elements bound to the patterns. Within the first
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Combinative composition

Conservative composition

Fig. 7. Composing patterns in INARI

level, composition constraints are specified as OCL expressions [13] evaluated on
an EMF-based representation [14] of the pattern model. This can, for example,
be used to monitor for mandatory or forbidden compositions. Within the second
level, INARI incorporates constraints that are evaluated on the concrete models
to be able, for example, to verify the kind of concrete elements that are involved
in a composition.

Figure 7 shows the specification of patterns Services and WatchDogs in the
INARI environment (under node Catalogue in the Architecture view). For the
combinative composition, a new pattern WatchedServices, under node Compos-
ite is formed. The detailed specification of the pattern shows that role Watched-
Service merges the two roles Service and Subject.

As an example of conservative composition, Figure 7 shows a composite struc-
ture named WatchedServices under the node Composite. In this case, the two
patterns Services and WatchDogs are not merged but rather connected with a
composition rule. The composition rule states that the overlapping relationship
is from Subject to Service. The reason is that INARI adopts a unidirectional
composition relationship. This is exploited to enforce a partial order of apply-
ing patterns. Role Subject is said to be ’outgoing’ and Service is said to be
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Task title

Task description

Composite pattern Elements

Fig. 8. Applying composite patterns in INARI

’incoming’. When the composition is applied, an instance of ’incoming’ role gets
bound before an instance of its ’outgoing’ counterpart is bound to the same
element.

Figure 8 depicts an example application of the WatchedServices composite
pattern, the conservative composition is used. The pattern instance is named
MyWatchedServices and is shown in the Architecture view of the tool (top left
corner) under the node Application. INARI transforms a role-based specification
of a pattern into a task list. This is done by generating a task for each unbound
role instance that can be bound in the current situation, taking into account the
dependencies and multiplicities of roles as well as the composition rules.

In Figure 8, the user has provided a Messaging service (by binding it to an
instance of role Service). As a result, Messaging gets automatically bound to
an instance of the Subject role of WatchDog. The bound elements of a pattern
instance are shown in the lower part of the figure (Elements). The user has then
provided a WatchDog for the service (MessagingWatchDog). The next task is
to provide a watch method for the WatchDog component. This is shown in the
task view in the bottom part of the figure. This task would not have appeared
if the composition between Subject and Service was not made. Adaptive text is
used in the task prompt (the use of term ’Messaging’ in the task description).

The INARI environment maintains the identity of the constituent patterns
as shown in the left bottom part of the figure. It is possible to show the effect
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of one pattern in the model by highlighting (coloring) the corresponding bound
elements or by generating separate view of the bound elements.

5 Related Work

The pattern composition presented in [7] is an example of structural pattern
composition. The authors base their composition approach on a class diagram
representation of patterns. We, however, use role modeling to study the composi-
tion mechanism. The POD [15] tool implements a design environment for visual
composition of design patterns, called constructional patterns. The advantage
of the approach is that it maintains a view of the design as a composition of
patterns and it provides traceability mechanism in both the top/down and bot-
tom/up directions. Similarly, we propose a conservative composition approach
that enable the constituent patterns to keep their identities. However, we do
also present a combinative version of the composition that allow the formation
of new patterns based on existing ones.

A formal approach to structural pattern composition has been introduced
in [16]: the two composed patterns are statically merged into a single pattern,
which is then added to the pattern system. The approach in [16] does not support
conservative composition.

In [8], the author uses role diagrams to document object collaboration based
patterns. The author further defines the notion of composite pattern to be a
pattern described as a composition of other patterns and suggests a technique
to cope with the complexity of the composition. Composition constraints on
any two roles can be of one of three values: ’must be’, ’must not be’, or ’don’t
care’. Compared to [8], we propose new kinds of composition constraints such
as the number of allowed composition instances and we discuss situations where
composition between two roles is conditional. We also propose an algorithm for
the composition and tool support.

Behavioral pattern composition techniques are generally based on assigning
runtime objects to roles [17,18]. In our work, we apply role modeling to struc-
tural pattern composition. However, if we assume that the structural elements
participating in a composition are eventually instantiated into objects at run-
time, then we can consider that these objects play the roles that are played by
their corresponding structural elements.

Tool support for pattern composition has been provided by various tools
[5,6,15]. Compared to these, the INARI tool allows a task-based pattern com-
position approach where the composition is carried out under the control of the
user. INARI also supports a larger set of composition constraints.

6 Conclusions

In this work, we have discussed a model for structural pattern composition by
making explicit the kind of decisions one should consider when defining and
implementing pattern composition. We have defined a composition operator for
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role-based patterns assuming a restrictive interpretation of composition. The
proposed approach distinguishes between combinative composition where the
constituent patterns are statically merged forming a new composite pattern and
a conservative composition where the the identity of the composed patterns
are kept.

Furthermore, we have proposed an algorithm for conservative composition.
The algorithm has been implemented for INARI [11], a pattern-oriented de-
velopment environment. The tool is capable to address both combinative and
conservative pattern composition and to model different kinds of composition
constraints. Our future work consists of applying the proposed composition ap-
proach to a large pattern catalogue and to provide support for behavioral com-
position using the same role-based mechanism.
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Abstract. In a component-based system, connectors are used to compose com-
ponents. Connectors should have a semantics that makes them simple to construct
and use. At the same time, their semantics should be rich enough to endow them
with desirable properties such as genericity, compositionality and reusability. For
connector construction, compositionality would be particularly useful, since it
would facilitate systematic construction. In this paper we describe a hierarchical
approach to connector definition and construction that allows connectors to be
defined and constructed from sub-connectors. These composite connectors are
indeed generic, compositional and reusable. They behave like design patterns,
and provide powerful composition connectors.

1 Introduction

A component-based system can be described as a software architecture [14] with com-
ponents (boxes) and connectors (lines). Components represent parts of the system,
while connectors represent interactions between components. Connectors are therefore
composition operators for the components.

Clearly, in a component model, the ease of building systems and reasoning about the
process depends directly on the varieties of connectors available and their semantics. A
crucial question therefore is how to define and construct suitable connectors.

Connectors should have a semantics that makes them simple to construct and use.
At the same time, their semantics should be rich enough to endow them with desirable
properties such as genericity, compositionality and reusability. For connector construc-
tion, compositionality would be particularly useful, since it would allow connectors to
be constructed a systematic manner.

In this paper we describe a hierarchical approach to connector definition and con-
struction. Using a set of basic exogenous composition connectors, we can define and
construct a composite connector as a composition of the basic connectors. The resulting
composite connectors are indeed generic, compositional and reusable.

Because our basic connectors define control structures, our composite connectors
represent composite control structures, or composite control flow patterns. As such, they
behave like certain design patterns [6], and provide powerful composition operators that
can be used to perform complicated compositions involving many components all in a
single step.
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The paper is organised as follows. In Section 2 we describe related work on the issue
of composite connectors. In Section 3 we briefly describe the concept of exogenous
composition connectors and present a basic set of these connectors. In Section 4 we
explain composite connectors in detail and how they are implemented. In Section 5 we
show how they can be used in practice. Finally, in Section 6 we discuss our approach
for creating composite connectors.

2 Related Work

As far as we know, our approach to composite connectors is new and unique. There are
two main related areas: software architectures [14] and coordination languages [13].

In software architectures, there is work on compositional approaches to connector
construction, but it does not construct connectors from sub-connectors. Rather it tries
to construct only a single connector. This construction consists in a composition of
elements with the desired properties, yielding a new connector; or a composition of
the necessary adaptations or transformations of an existing connector to achieve these
properties. In [15], an ADL (Architecture Description Language [11]) connector can
be adpated by composing a set of transformations. The transformations can modify the
connector’s properties, e.g. protocol, data policy. Typically they also change the code
of the components involved since connector code is embedded in component code.

In [4,5] a connector is composed from a set of connector elements. The elements
model certain non-functionalproperties of some basic connector types supported in mid-
dleware technologies. In [10], an existing connector’s aspects, e.g. security, monitoring,
etc., can be specified separately and then composed and integrated with the connector.

These approaches only deal with the construction of a single connector. Furthermore,
in these approaches either connectors are not distinct from components, e.g. [15], or
when they are, their implementations are customized solutions for a specific system [4,5].
Therefore in all these approaches, both components and connectors cannot be reused.

In coordination languages, composite connectors can be constructed. In these lan-
guages, connectors are used to coordinate component interactions. Compared to ADL
connectors, these connectors can represent much more sophisticated coordination poli-
cies for sets of components. In the coordination language Reo [2,1] connectors are com-
posed of channels. The channels are compositional, and therefore composite connectors
can be defined.

However, Reo composite connectors are very different in nature from our composite
connectors. In Reo, components only perform I/O operations, and connectors are data
channels. Consequently, a composite connector in Reo is not a control structure, and so
it differs form our composite connector. In particular, a Reo composite connector does
not behave like any design pattern.

3 Exogenous Composition Connectors

Our approach is based on exogenous connectors. In this section we briefly explain what
exogenous connectors are, and how they are used as composition operators for software
components.
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IC Invocation connector.
C  Composition connector

U  Computation unit.

(b)
Component

Atomic(a) Composite
Component

U

IC

U

IC

U

IC

U

IC

C

C

Fig. 1. Atomic and composite components

Exogenous connectors are defined within the context of our component model [8]. In
our component model, there are two kinds of basic entities: (i) exogenous connectors [7]
and (ii) computation units. Components are constructed from exogenous connectors and
computation units. A computation unit performs only computation (by providing a set
of methods) and does not invoke any computation outside itself. Exogenous connectors
coordinate all the computation performed by components.

There are two kinds of components: atomic and composite. An atomic component
(Fig.1 (a)), consists of a computation unit (U) and an exogenous connector for invoking
the methods in the computation unit.

This connector is called an invocation connector (IC). A composite component is
composed from (atomic or composite) components by using a composition connector
(C in Fig. 1 (b), which shows two composite components). This is an exogenous con-
nector that defines a piece of control that coordinates all the calls to the methods in
the sub-components. In a system, the set of all the composition connectors encapsulate
all the control in the system. For example, a Sequencer connector that composes two
atomic components A1 and A2 can call a method m1 in A1, and a method m2 in A2, in
that order. A Pipe connector composing A1 and A2 behaves similarly, but can also pass
the result of m1 to A2 and use it in calling m2. Components do not initiate any control,
and just provide services when invoked by the connectors.

Every component thus has a top-level connector: this is either an invocation connec-
tor (for an atomic component) or a composition connector (for a composite component).
This connector acts as an interface for the component, and is also used by other con-
nectors for composition.

In [7], we have introduced these basic exogenous composition connectors which
encapsulate different control structures that are necessary for building systems. The
control encapsulated in these connectors corresponds to the three standard control struc-
tures: sequencing, branching and looping; therefore this set of connectors is Turing
complete [12,3].

3.1 A Hierarchy of Composition Connectors

Exogenous composition connectors are defined in a hierarchical way (as can be seen in
Fig. 1). For example, a Sequencer connector, or a Pipe connector, that composes two
atomic components A1 and A2 is clearly defined in terms of the invocation connectors
in A1 and A2.

In general, exogenous composition connectors form a hierarchy built on top of in-
vocation connectors for atomic components. The lowest level (level 1) of composition
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connectors connect invocation connectors, and the second-level (level 2) composition
connectors are of variable arities and types. In general, composition connectors at any
level can be of variable arities; composition connectors at any level higher than 1 can
be of variable arities and types; and we can define any number of levels of connectors.
Connectors at level n for any n > 1 can be defined in terms of connectors at levels 1
to (n − 1). In particular, the types of the former are defined in terms of the types of
the latter. The connector type hierarchy can be defined in terms of dependent types and
polymorphism as follows (omitting methods and their parameters):

Basic types: Atomic Component, Result;
Connector types:

I ≡ Atomic Component −→ Result;
L1 ≡ I × . . . × I −→ Result;

For 1 < i ≤ n, Li ≡ L(j1) × . . . × L(jm) −→ Result, for some m
where jk ∈ {1, ...., (i − 1)} for 1 ≤ k ≤ m,

and L(i) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

L1 , i = 1
L2 , i = 2
...

Ln , i = n.

where I is the Invocation Connector type, and Li is the Level-i Composition Connector
type, for 1 ≤ i ≤ n.

Accordingly we have implemented composition connectors as a hierarchy of classes1

which extend a common superclass called Connector (Fig. 2).

# Vector parameter

# Object target
# Vector operation

# Vector condition

+ Object execute()
Vector op, Vector par)
Vector tget,

+ While (String cond,

WhileSequencer

+ Sequencer (Vector tget,
Vector op, Vector par)

+ Object execute()

...
+ Selector (Vector cnd,

Vector tget, Vector op,
Vector par)

+ Object execute()

Selector

...

# Object execute()
# Object executeConnector(Connector c, Object m, Object p);

Connector

Fig. 2. Hierarchy of composition connector classes with the superclass Connector

At any level of the hierarchy, a connector can be defined in a generic manner as a
class that extends and overrides selected methods of the superclass Connector. We have
implemented a set of five basic composition connectors: Sequencer and Pipe, Selector,

1 We have two implementations, one in Java and another in .NET C#.
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and While and Repeat, which correspond to sequencing, branching and looping control
respectively.

Each connector is made up of a signature and code. The signature, implemented
by the connector’s constructor, indicates how the connector can be used. The code
implements the connector’s functionality, and is defined as a method called execute.

As shown in Fig. 2, the constructors of all the connector receive a common set of
parameters, i.e. tget, op and par. For a connector, tget specifies the set of connectors
it is connected to; op is the set of operations to be executed via those connectors; and
par is the set of parameters required to support the executions. The implementations
of the constructors are all similar; the constructors only verify the type and number of
the arguments they receive, and store them into the corresponding superclass fields, i.e.
target, operation and parameter.

The execute method of a composition connector is inherited from the Connector
superclass and overridden by the connector class. The execute methods of all the
connectors are very similar and only differ in the specific code required for the control
scheme they encapsulate, e.g. a Selector connector requires some code for evaluating its
condition. All execute methods call the executeConnectormethod implemented in
the Connector superclass. This method contains the code for executing any connector
at any level of the hierarchy.

Fig. 3(a) shows an outline of the code for the executeConnector method. This il-
lustrates the hierarchical execution of connectors. First, the subtype of the connector is
identified via specific supporting functions arranged in an “if-then-else” control struc-
ture. Once the connector subtype is identified, it is stored in a variable of this subtype
by casting it. For example, if the connected sub-connector is of type Sequencer, it needs
to be cast to this type, which is a subtype of Connector as shown in Fig. 2. Finally, the
connected connector is executed by calling its corresponding execute method. This
process is repeated for all the connected connectors in a hierarchy until the invocation
connectors are encountered.

(a)

class Invocation extends Connector {
private Object cu; 
...
public Object execute(
Method operationToExecute, Object[] par){
r = operationToExecute.invoke(cu, par);
return r

}
}

...
r = ic.execute(oper, params);

else if (isSequencer(connToExecute)){
Sequencer seq = (Sequencer) connToExecute;
...
r = seq.execute();

else if (...){
...

} else if (isWhile(connToExecute)){

While whi = (While) connToExecute;
...
r = whi.execute();

}
return r;

}

Invocation ic = (Invocation) connToExecute;
if (isInvocation(connToExecute)){
...

Object executeConnector(Object connToExecute,...){
...

(b)

class Connector {

}

Fig. 3. Outline of the codes for (a) the executeConnector method in the Connector superclass and
(b) the execute method in the Invocation connector class
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Invocation connectors are not composition connectors, and so their execute

methods are different. Fig. 3 (b) shows an outline of the code for the executemethod of
a invocation connector. This method requires two arguments: operationToExecute
and par, which correspond to the name of the operation to invoke in the computation
unit, and its parameters, respectively. We use the invoke method provided by the class
Method in the java.lang.reflect package to dynamically execute the required operation
in a computation unit (cu).

The hierarchical nature of composition connectors means that every system has one,
and only one, top-level connector, which initiates control flow for the entire system
calling the execute methods of connected connectors following a top-down approach.
To illustrate this, consider the architecture with exogenous composition connectors in
Fig. 4. The architecture corresponds to a Coffee Machine system. For simplicity and
clarity, we have not explicitly distinguished between atomic and composite compo-
nents in the architecture. The Coffee Machine consists of a hierarchical structure of
composition connectors (Sequencers SQ2 and SQ1, Selector SEL and Pipe PIPE) rep-
resenting the system’s control flow, sitting on top of independent components (Card
Manager, Cash Manager, Coffee Maker, Cup Dispenser, Coffee Dispenser, Water Dis-
penser, Milk Dispenser and Sugar Dispenser) that provide the computation performed
by the system. The execution of the system starts with the composition operator at the
highest level, namely the Sequencer SQ2. The customers of the system can pay for a

Composition
connectors

Card CashComponents

Level 1

Level 3

Level 2

Water
Dispr
Coffee

Maker
Coffee

Dispr
Cup

Dispr
Milk
Dispr

Sugar
DisprMngerMnger

SQ1SEL

SQ2

PIPE

Fig. 4. An architecture with our basic composition operators

coffee either by cash or by card. Consider the use case of buying a coffee with cash.
The control flow path for this is shown by the dotted line in Fig. 4. The first action is
the execution of the level-3 connector SQ2, which firstly calls the level-1 Selector SEL.
The latter chooses the component Cash Manager, and invokes the required method in
it to process the transaction. Then, SQ2 calls the level-2 Pipe PIPE, which invokes one
of the operations in the component CoffeeMaker to get from a recipe the amount of
each ingredient for the selected product. The amounts are passed through PIPE to SQ1
which uses them as parameters for invoking methods in each one of the dispenser com-
ponents. Finally the control flow goes back across the composition hierarchy until it
reaches SQ2, whereupon the transaction is completed. If any data is generated by the
dispenser, e.g. an error or success code, it is also transmitted back across the hierarchy
with the control flow.
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4 Composite Composition Connectors

The hierarchical nature of composition connectors means that the connectors them-
selves can be composed into composite composition connectors. In this section, we
explain composite connectors in detail.

4.1 Composite Connectors are Patterns

It should be clear from the previous section that a set of connectors that are inter-
connected can be regarded as a single composite connector CC, which in turn can be
used in hierarchical composition subsequently. It should also be clear that CC is a pat-
tern, since it represents a composite control structure that composes a set of
components.

For example, in the Coffee Machine example (Fig. 4), the level-2 Pipe PIPE and
level-1 Sequencer SQ1 can be composed into a composite composition connector, as
shown in Fig. 5.

Observer

Dispr
Sugar
Dispr

SubscribersPublisher

Level 2

Level 1

Coffee
Dispr
Coffee

Maker Dispr
Cup

Dispr
Watter Milk

Dispr
Sugar
Dispr

Level 3

Level 2

Level 1

(a) (b)

Dispr
Coffee

Maker
Coffee

Dispr
Cup

Dispr
Water Milk

SQ1

SQ2SQ2

PIPE
COMP2

COMP1

COMP1

Fig. 5. Coffee Machine with (a) basic connectors and (b) composite connector Observer

This composite connector is equivalent to the object-oriented Observer design pat-
tern [6]. This is because it defines the publish-subscribe dependency between the Cof-
feeMaker component and the Dispenser components. In Fig. 5(a), when PIPE invokes
the CoffeeMaker, it gets the recipe data and then pipes it to SQ1. SQ1 then invokes all the
Dispenser components so that they dispense different amounts of ingredients according
to the piped-in recipe data.2 Thus the Pipe-Sequencer hierarchy is an Observer com-
posite connector (Fig. 5(b)). Of course here Observer is used to compose components
rather than objects.

As in its object-oriented counterpart, there are two main roles for components com-
posed by an Observer composite connector: Publisher and Subscriber. When the Pub-
lisher is called, the Subscribers must be notified and must behave accordingly. Like its
object-oriented counterpart, an Observer composite connector defines the one-to-many
dependencies between the Publisher and Subscribers.

In general, a composite composition connector CC can be composed from a set of
(basic or composite) composition connectors C1, . . . , Cn. CC can be used to perform a

2 In the Observer pattern, the order in which the subscribers are notified is not specified. Here
we have chosen a sequential order.
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composite composition involving all the components that are composed by C1, . . . , Cn,
but all in a single step. Therefore, composite connectors are patterns, and as such, are
much more powerful than their sub-connectors.

Using such connectors can make composition more efficient by reducing the number
of (levels of) composition. For example comparing Fig. 5(a), with only basic connec-
tors, and Fig. 5(b), with the Observer composite connector, the level of composition is
reduced by 1 in the latter.

Finally, composing connectors into composite ones is clearly one form of connector
reuse.

4.2 Constructing Composite Connectors

To construct a composite connector CC from a set of inter-connected sub-connectors
C1, . . . , Cn requires the generation of the correct signature for CC as a single connector.
CC connects different and more connectors (components) than its sub-connectors. In
particular its signature is not the same as those of its top-level sub-connector.

For example in Fig. 5, the top-level sub-connector of Observer is PIPE (Fig. 5(a)).
PIPE actually connects two components: CoffeeMaker and Comp1. Comp1 is a compos-
ite component constructed by the lower level connector SQ1. By contrast, the Observer
in Fig. 5(b) connects CoffeeMaker and all the Dispenser components.

Therefore, to construct a composite connector correctly, we have to take care of its
signature, by considering the signatures of its sub-connectors, and their composition
structure.

To express the composition structure of a composite constructor, we use the notation
C1[C2, C3] recursively to denote a composite connector whose top-level connector C1
is connected to C2 and C3 at the next level down, and so on. Fig. 6 shows a general
composite connector (denoted by the shaded box).

This connector can be written as C1[C2, C3[C4, C5, C6]].
Once the composition structure of a composite composition connector has been de-

termined, we can implement the connector by using the implementation of its sub-
connectors. For simplicity, we shall assume that all the sub-connectors in a composite
composition connector are the basic connectors that we described in Section 3.1. As
before, each connector is made up of a signature and code. We represent this as Con-
nector(Sig, Code). In general, the signature of a composite connector is generated from
the signatures of all the connectors involved in the composition. Specifically, the sig-
nature of a composite connector is the union of the signatures of those connectors,

Level  n

Level  n+1

Level  n+2

C7 C6C4 C5

C1

C2 C3

Fig. 6. A general composite connector
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including the top-level one, that connect to at least one connector (component) outside
of the boundary of the composition. For example, for the composite connector in Fig. 6,
its signature is generated from the union of the signatures Sig1, Sig2, Sig4, Sig5 and
Sig6 of the connectors C1, C2, C4, C5, and C6. Dependencies between these sig-
natures should be analysed and taken care of while constructing the signature of the
composite. In particular, any redundancies resulting from these dependencies should be
identified and removed.

The code of the composite connector is implemented by calling its sub-connectors’
implementation codes. For instance in Fig. 6, the codes Code1 . . . Code6 of the sub-
connectors C1 . . . C6 already exist, and are used to generate the code for the composite
connector, by implementing their dependencies (as specified in the composite connec-
tor) as method calls from higher level sub-connectors to the lower level ones. In C1’s
code Code1, C2 and C3 are specified in the sub-connector list. When C1’s execute
method is called, it invokes every connector in the sub-connector list, i.e. the execute
methods of C2 and C3. Since C3 is composed from C4, C5 and C6, it further invokes
Code4, Code5 and Code6 to implement the functionalities.

In this way, we construct a composite connector from its sub-connectors. We get
a new signature as well as new code for the new connector. The new signature pre-
scribes the usage of the new connector, and typically contains more parameters than
the signatures of the sub-connectors. The new connector’s code is a collaboration of
the sub-connectors’ codes performed according to the composition structure of the new
connector.

Clearly the composition structure of a composite connector of course determines the
nature of the connector. The same set of sub-connectors will result in different compos-
ite connectors when composed differently. This is particularly alarming when you con-
sider that composite connectors are patterns. For example, given a connector C, whereas
the composite Pipe[C,Sequencer] is the Observer pattern, as we have seen, by reversing
the order of the sub-connectors we get a totally different pattern: Pipe[Sequencer, C] is
the AND-join Pipe pattern (which we will describe below).

Another point worth noting is that in theory, it is possible to build arbitrary compos-
ite connectors of unlimited complexity. In practice, some of these connectors may be
useless or too hard to use. So there must be some intent when building any composite
connector. In other words, useful composite connectors must reflect commonly occur-
ring or recurring control flow patterns, such as the set of workflow control-flow patterns
identified in [16].

4.3 Example

Now we show how to construct a commonly occurring workflow control-flow pattern
[16], namely the AND-Join Pipe pattern, as a composite connector.

AND-Join Pipe. The intent of the AND-Join Pipe composite connector is to allow more
than one predecessors in a binary piping composition scheme. It is an “AND” relation-
ship between these predecessors, i.e. only after all the predecessors have been called that
the results are gathered and delivered to the successor. This pattern of control can be
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achieved by composing the Pipe and the Sequencer together. This composite connector
is equivalent to the Generalised AND-Join workflow control-flow pattern [16].

Fig. 7 (a) shows the composition structure of the AND-Join Pipe connector. The
Pipe connects to the Sequencer at the predecessor position. The Sequencer connects
to multiple predecessor connectors (components), i.e. pred1, ..., predN; and the suc-
cessor connector (component), i.e. succ, is connected to the Pipe directly. The dotted
line denotes the control-flow path of this connector. It first invokes the Sequencer and
then, and then the Sequencer invokes all the connecting predecessor connectors (com-
ponents) and returns all the resulting data (denoted with circled D). Finally, the Pipe
delivers all the results to the successor connector (component) which it takes for its
execution.

Fig. 7 (b) shows the signatures of the basic connectors Pipe and Sequencer and the
values they could take for the composition depicted in Fig. 7 (a). As shown in the figure,
the signatures require the parameters tget, op and par which correspond to the con-
nectors (components) they connect, the operations to execute through these connectors
(on this components), and the required parameters for these executions.

Fig. 7 (c) shows the signature generated for the AND-Join Pipe. As can be seen, it
differs from those of its sub-connectors, since it connects different and more connectors
(components) than its sub-connectors. Note how its signature is not the same as that of
its top-level sub-connector (Pipe). As we have explained, the signature of the AND-
Join Pipe is the union of the signatures of all sub-connectors that connect to at least one

AND−Join−Pipe

Vector targetSucc,Vector operSucc,Object paramSucc)
(Vector targetPred,Vector operPred,Vector paramPred,

sm1

Vector par)
Vector op,(Vector tget,Pipe

Sequencer

(b)

(c)

pred1 pred2 ... predN

pm2 ... pmNpm1

spar

ppar1 ppar2 ... pparN

targetPred

operPred

paramPred

targetSucc

operSucc

paramSucc

succ

par

op

tget

par

op

tget Sequencer succ

execute sm1

spar

pm2 ... pmNpm1

pred1 pred2 ... predN

ppar1 ppar2 ... pparN

... ... ...

(a)
Pipe
AND−Join

predNpred1 succ...
(Vector tget,
Vector op,
Vector par)

    Pipe 

Sequencer DD

DD

Fig. 7. (a) Composition structure of AND-Join Pipe connector, (b) Signatures of its sub-
connectors and (c) Signature of AND-Join Pipe connector.
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Object execute (){

result = seq.execute();

AND−Join−Pipe(Vector targetPred, ...){
Sequencer seq;

seq = new Sequencer(targetPred, ...);
...

...
}

...

...
result = executeConnector(targetSucc.elementAt(0), ...);
...
return result;
}

}

class AND−Join−Pipe extends Connector {

Fig. 8. Outline of the code for the AND-Join-Pipe composite connector’s class

connector (component) outside of the boundary of the composition. Thus, as shown in
Fig. 7 (c), the signature of a AND-Join Pipe includes those for Sequencer and Pipe.

In the signature of the AND-Join Pipe, we have removed redundancies arising from
the signatures of Sequencer and Pipe. Notice how the signature elements corresponding
to the Pipe connector (targetSucc, operSucc and paramSucc) do not include an
entry for referring to the Sequencer connector. The connection to Sequencer is defined
in the composition structure of the composite connector and so has been coded in.

The connectors’ code of the AND-Join Pipe connector is a collaboration of the sub-
connectors’ codes and, as in basic connectors, it is encapsulated in its executemethod.
Fig. 8 shows an outline of it.

When the connector is created, via its constructor, an instance of a Sequencer con-
nector is generated with the corresponding values in the signature, i.e. targetPred,
operPred and paramPred. Then, this instance (seq) is used in the execute method
to execute the Sequencer by calling its execute method. Later, and given that the type
of the successor connector is unknown at this point, the execution of the successor con-
nector is carried out by calling the executeConnector method.

The process of creating composite connectors can be partially automated by using a
graphical tool. We have implemented such a tool. The tool provides a visual way to drag
connectors into a composition environment, connect them and generate the skeleton for
the resulting connector’s class. The skeleton has to be filled in; this is done manually at
present. Then the completed connector can be deposited in the tool’s repository.

Fig. 9 shows an example of using this tool. On the left hand side, we can see a
Pipe and a Sequencer. These connectors are connected together using a line. The line
indicates to the tool that these connectors should be composed to make a composite con-
nector. The tool then generates a skeleton for the composite connector, and the user fills
in the skeleton. On the right hand side of Fig. 9, we can see the constructed connector,
AND-Join Pipe in the connector repository.

Analogously, a Pipe is composed with the Selector on the left hand side of Fig. 9.
The composition result is an Exclusive OR-Split Pipe connector. This composite con-
nector models the piping control that allows multiple successors but chooses only one
depending on the output value of the predecessor. This connector is constructed from
composing a Selector to the successor position of a Pipe. It behaves like the Exclusive
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Fig. 9. Building composite connectors by using a graphical tool

OR-Split workflow control-flow pattern [16]. In Fig. 9, the Exclusive OR-Split Pipe has
also been constructed and put in the connector repository.

An example using these two composite connectors will be shown in next section.

5 Using Composite Connectors in Practice

Having explained how composite connectors are constructed, in this section, we show
to use composite connectors to build a complete system. We will use the example of an
Automatic Train Protection (ATP) system.

To construct a system from our components and composition connectors, we use an
assembler-container tool [9] that we have built. The assembler-container hosts compo-
nents and connectors and manages their assembly. It takes three main inputs: (a) a set
of components; (b) a set of composition connectors; and (c) an XML description of the
connector hierarchy of the system. The three inputs are independent from each other.
The output of the assembler-container is a run-time system constructed in accordance
with the XML description, with the top level connector as an interface to the system.

The assembler-container does not distinguish between basic and composite com-
position connectors. So we can use our composite connectors to build systems in the
assembler-container. As an illustration we will show how the ATP system can be built
both with and without composite composition connectors.

The ATP system is located on board a train to ensure safety. The system consists
of the following components: Sensor 1, 2 and 3, SensorAggregator, ATPController,
Brakes, Alarm, Speedometer and CautionStateProcessor. The sensors are attached to
the side of the train and detect information on the track-side signals. Each sensor gen-
erates a signal in the range {DANGER, CAUTION, PROCEED}. The overall resulting
signal is then sent to the other components. The components must respond to the signal
accordingly, e.g. Alarm and Brakes must be enabled when the signal is DANGER.

Using only basic connectors, the ATP system can be built with the architecture shown
in Fig. 10.

This architecture consists of 9 components and 13 composition connectors on 6 levels.
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Fig. 10. Automated Train Protection System without composite connectors

Fig. 11. Automated Train Protection System with composite connectors

Looking at the connector hierarchy in Fig. 10, it is clear that we can compose some
basic connectors into composite connectors. The latter are indicated in the figure by two
groups of basic connectors encircled by a bold line. These two composite connectors
are in fact an AND-Join Pipe and an Exclusive OR-Split Pipe (Section 4.3).

The graphical tool for building composite connectors (Section 4.3) is integrated with
the assembler-container, so we can build the AND-Join Pipe and Exclusive OR-Split
Pipe connectors in the assembler-container, and then use them to build the ATP system.

Using these composite connectors, we can reduce the complexity of the ATP system,
and change its architecture to that in Fig. 11.

From the system architecture in Fig. 11 we can see that a composite connector is
used in the same manner as the basic ones in hierarchical composition. Also, comparing
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Fig. 10 and Fig. 11, we see that using composite connectors reduces the complexity of
ATP system by 2 connectors and 1 hierarchy level.

6 Discussion

As pointed out in [15], software systems are getting increasingly complex, and so
building them will require more powerful connectors than basic ones such as RPC (re-
mote procedure call). We believe our approach to composite connectors can be used to
build suitable connectors. By building composite connectors hierarchically from sub-
connectors, we can build composites of arbitrary complexity and functionality.

Our connectors are generic, compositional and reusable. Their genericity and com-
positionality are demonstrated by the fact that they are control flow patterns. They be-
have like object-oriented design patterns [6] that coordinate communications between
objects, e.g. the Observer pattern, as we saw in Section 4.1. Furthermore, because they
coordinate components that do not initiate communication with other components, they
correspond even more closely to workflow control-flow patterns [16].

However, in contrast to object-oriented design patterns and workflow control-flow
patterns, our composite connectors are reusable as real pieces of implementation. Object-
oriented design patterns are generic solutions. The idea behind such a pattern can be used
for many applications, but the pattern itself has no generic implementation and has to
be coded into every application. A workflow control-flow pattern also does not have any
generic implementation. This is because it represents a process, and it is only defined
when the workflow (with the activities involved) has been fixed.

Clearly there are object-oriented design patterns that cannot be represented by our
composite connectors, namely (i) patterns that do not coordinate communications, (ii)
patterns that are specific only to objects, e.g. creational patterns. Conversely, there are
object-oriented design patterns that can be represented as a basic connector in our
model. For example, the Mediator pattern can be implemented as a Sequencer that has
been enhanced with an iterator.

Equally, there are many workflow control-flow patterns that cannot be represented
by our composite connectors. In particular, those that involve concurrency. We have no
concurrency in our model as yet.

7 Conclusion

In this paper we have presented a set of composite composition connectors for compo-
nent composition, which are ready-to-use for building systems out of reusable compo-
nents encapsulating computation only. These operators are defined within the context
of our component model, and are based on the idea of exogenous connectors.

We have demonstrated that the hierarchical nature of our exogenous composition
connectors makes it not only possible, but also easy to generate composite composition
connectors. We have demonstrated the use of our connectors for constructing systems
by means of an example. Additionally, these composite composition connectors can
also be seen as patterns that can be used to perform complicated compositions involving
many components all in a single step.
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To further enhance its usefulness and efficiency, we plan to extend our set of basic
operators to concurrency, so that we get composites able to deal with multi-threading
issues, etc.
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