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    Abstract   Caspase-dependent apoptosis has an important role in controlling 
viruses, and as a result, viruses often encode proteins that target this pathway. 
Caspase-dependent apoptosis can be activated from within the infected cell as an 
intrinsic response to replication-associated stresses or through death-inducing sig-
nals produced extrinsically by immune cells. Cytomegaloviruses (CMVs) encode 
a mitochondria-localized inhibitor of apoptosis, vMIA, and a viral inhibitor of 
caspase activation, vICA, the functional homologs of Bcl-2 related and c-FLIP 
proteins, respectively. Evidence from viral mutants deleting either vMIA or vICA 
suggests that each is necessary and sufficient to promote survival of infected cells 
undergoing caspase-dependent apoptosis. Additional proteins, including pUL38, 
IE1 

491aa
 , and IE2 

579aa
 , can prevent apoptosis induced by various stimuli, while 

viruses with deletions of UL38, M45, or m41 undergo apoptosis. The viral RNA, 
β2.7, binds mitochondrial respiratory complex I, maintains ATP production late 
in infection, and prevents death induced by a mitochondrial poison. Thus, CMV 
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alters cell intrinsic defenses employing apoptosis, and multiple viral gene products 
together control death-inducing stimuli to promote survival.    

   Introduction 

 Apoptosis is an evolutionarily conserved process that removes cells during 
development and homeostasis and that can limit viral replication (Roulston et al. 
1999). Apoptosis results from the hierarchical activation of a family of cysteine 
proteases, the caspases, that follows extrinsic or intrinsic pro-death signaling 
(Festjens et al. 2006). Extrinsic signals engage death receptors, a subset of the 
TNF superfamily, promoting the recruitment of cytoplasmic proteins and activa-
tion of initiator caspase-8. This caspase is highly regulated, including by c-FLIP 
proteins that can prevent proteolytic activation (Barnhart et al. 2003). Intrinsic 
signals following DNA damage, ER stress, or other stresses alter mitochondria 
membrane permeability, promote release of cytochrome c and additional  pro-
death factors, and activate initiator caspase-9 (Festjens et al. 2006). Both extrin-
sic and intrinsic pathways converge on downstream executioner caspase-3, 
which targets specific proteins. For most types of cells, extrinsic signals are also 
amplified by way of mitochondrial alterations and caspase-9 activation (Barnhart 
et al. 2003). The cellular Bcl-2 family proteins tightly regulate the mitochondria 
membrane permeability transition (Kuwana and Newmeyer 2003; Green and 
Kroemer 2004; Sharpe et al. 2004; Antignani and Youle 2006). Proteins in this 
family include one of four distinct amino acid sequence domains, known as Bcl-
2 homology (BH) domains that are important to function (Petros et al. 2004). 
The balance of pro- and antiapoptotic Bcl-2 proteins determines whether a cell 
undergoes apoptosis (Kuwana and Newmeyer 2003; Green and Kroemer 2004; 
Sharpe et al. 2004; Antignani and Youle 2006). The proapoptotic proteins Bax 
and Bak are directly linked to the release of pro-death factors from mitochon-
dria. While still controversial, one suggested mechanism employs the inherent 
pore-forming properties of these proteins. The actions of the proapoptotic Bcl-
2-related proteins are balanced by antiapoptotic Bcl-2 and Bcl-x 

L
 . Likewise, 

pro-death signals can be balanced by more global pro-survival signals. Sensors 
located in various organelles, including the nucleus, endoplasmic reticulum, 
lysosomes, and the Golgi apparatus can promote death through apoptosis (Ferri 
and Kroemer 2001); thus, events leading to death can occur from multiple cellu-
lar sites. Many viral factors that counteract caspase-dependent apoptosis are 
homologs of key cellular regulatory proteins, including the Bcl-2 related pro-
teins and the c-FLIP proteins (Irusta et al. 2003; Polster et al. 2004). 

 CMV genes that impact apoptosis have been identified by three different strate-
gies. In the first, the antiapoptotic designation followed transient expression and 
increased cell survival in well-defined models of apoptosis. A random search employ-
ing this strategy uncovered the viral mitochondria-localized inhibitor of apoptosis 
(vMIA) encoded by UL37×1 and the viral inhibitor of caspase-8 activation (vICA), 



encoded by UL36 (Goldmacher et al. 1999; Skaletskaya et al. 2001). Both functions 
increase infected cell resistance to apoptosis (Skaletskaya et al. 2001; Menard et al. 
2003; Reboredo et al. 2004; McCormick et al. 2005). A direct assessment of IE1 

491aa
  

and IE2 
579aa

  lead to observed impacts on pro-survival signaling mediated by the kinase 
Akt (Lukac and Alwine; Yu and Alwine 2002). The mechanisms and direct impact of 
these pro-survival activities on viral growth remain unexplored. Viral genetics high-
lighted the contributions of UL38, M45, and m41 to survival from apoptosis induced 
by replication (Brune et al. 2001, 2003; Terhune et al. 2007). Although the antiapop-
totic mechanism remains unknown, pUL38 is sufficient to increase survival in apop-
tosis models (Terhune et al. 2007). Lastly, interaction studies revealed the RNA, β2.7, 
binds mitochondrial complex I and as a result, controls mitochondrial function and 
cell survival following death induced by respiration poisons. Thus, multiple CMV 
genes encode pro-survival or antiapoptotic factors. The phenotypes of viral mutants 
combined with results of exogenous expression analyses, suggest the UL36-38 
genomic region is a cell death suppression locus.  

  vMIA Controls Mitochondria-Dependent Death 

 The UL37×1 ORF encoding vMIA is included on multiple viral transcripts. (Tenney 
and Colberg-Poley 1990, 1991a, 1991b; Goldmacher et al. 1999) (Fig.  1 ). The 
predominant, unspliced transcript yields the 163 aa vMIA, while splicing to UL37×2 
and UL37×3 yields the larger antiapoptotic glycoprotein gpUL37 and pUL37 

M
  

(Goldmacher et al. 1999). Additional less abundant spliced transcripts are predicted to 
encode antiapoptotic proteins as well, but have not yet been tested for function (Adair 
et al. 2003). vMIA localizes to mitochondria and prevents the release of pro-death 

Control of Apoptosis by Human Cytomegalovirus 283

  Fig. 1  A map of the HCMV UL36-UL38 cell death suppression locus indicating the relative 
positions of open reading frames (ORFs) and major transcripts of the region.  Rectangles  represent 
the ORFs and include an  arrowhead  to denote the direction of transcription.  Arrows  represent the 
3′ nontranslated regions. A  raised line  connecting ORFs indicates splicing. Splicing events pro-
ducing minor transcripts of the UL37 gene (Adair et al. 2003) are not shown 

ORFS:
UL36x2

UL36x1
UL37x3

UL37x2
UL37x1UL38

pUL37x1

pUL38

gpUL37

pUL37M

pUL36



284 A.L. McCormick

factors similar to Bcl-2 or Bcl-x 
L
  (Goldmacher et al. 1999). To date, vMIA is the most 

broadly antiapoptotic CMV protein known and analogous to the cellular Bcl-2 
proteins, is highly effective against a myriad of stimuli including intrinsic stresses as 
well as extrinsic, immune-regulated signals (Goldmacher et al. 1999; Belzacq et al. 
2001; Vieira et al. 2001; Jan et al. 2002; Roumier et al. 2002; Boya et al. 2003; 
Andreau et al. 2004; Arnoult et al. 2004; Boya et al. 2005; McCormick et al. 2005). 
However, vMIA does not encode any BH-domains that characterize the cellular pro-
teins (Goldmacher et al. 1999). 

 vMIA function requires an amino terminal mitochondrial-targeting domain (aa 
2-34) and a carboxyl-terminal antiapoptotic domain (AAD, aa 118-147) (Hayajneh 
et al. 2001) that together are sufficient for function. The mitochondrial-targeting 
domain includes an amino-terminal hydrophobic signal followed by highly con-
served basic residues, and both are required for mitochondrial trafficking 
(Mavinakere and Colberg-Poley 2004). Evidence suggests a mitochondrial mem-
brane association with the targeting domain spanning the membrane and the 
AAD exposed to the cytoplasm (Mavinakere et al. 2006). The carboxyl-terminal 
AAD includes a predicted amphipathic α-helix motif (aa 126-140) critical to 
function (Smith and Mocarski 2005). Point mutations predicted to disrupt an 
α-helical structure alter amphipathicity or place charge on the hydrophobic face 
of the AAD α-helix, each completely abrogate vMIA function. In contrast, 
the hydrophilic face of the AAD α-helix tolerates significant substitutions with as 
many as five or six amino acid substitutions required to disrupt function (Smith 
and Mocarski 2005). 

 The growth arrest and DNA damage 45 alpha (GADD45α) protein interacts 
directly with vMIA in yeast and mammalian cells, fails to bind vMIA mutant pro-
teins, and is essential for vMIA-mediated antiapoptotic activity (Smith and 
Mocarski 2005). Targeted knockdown of GADD45α, GADD45β, and GADD45γ 
reduced vMIA activity, and each GADD45 family protein individually enhanced 
vMIA activity. GADD45α increased both the overall amount of vMIA and that 
associated with mitochondrial fractions. Thus, the DNA damage response pathway 
is directly linked to vMIA-mediated cell death suppression. Further, vMIA was 
shown to bind the antiapoptotic Bcl-2 family protein Bcl-x 

L
  in mammalian cells. 

Collectively, these data suggest that vMIA acts together with Bcl-x 
L
  and GADD45 

to regulate the mitochondrial release of proapoptotic factors (Fig.  2 ). 
 In addition to GADD45 proteins, vMIA also binds the proapoptotic Bcl-2 

family protein Bax (Arnoult et al. 2004), which has more recently been con-
nected to mitochondrial morphogenesis during life (Karbowski et al. 2006). 
In most instances, Bax is distributed in the cytoplasm, but Bax oligomerization 
and relocalization to mitochondria mediates the release of proapoptotic factors 
from the organelle (Antonsson et al. 2001). In the presence of vMIA, however, 
oligomerized Bax at mitochondria fails to promote apoptosis, suggesting 
sequestration as a component of the antiapoptotic mechanism (Arnoult et al. 
2004; Poncet et al. 2004). Thus, the vMIA-dependent antiapoptotic mechanism 
is distinct from that of cellular and viral Bcl-2 proteins that prevent Bax relo-
calization and oligomerization at mitochondria. Recruitment and sequestration 
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of Bax at mitochondria has also been suggested as the mechanism (Karbowski 
et al. 2006) for vMIA-dependent disruption of reticular mitochondrial networks 
(McCormick et al. 2003b); however, more recent evidence of vMIA mutants 
that disrupt networks but fail to bind Bax (Pauleau et al. 2007) suggests other 
factors may also be important. 

 vMIA prevents apoptosis during infection; however, vMIA is not required for 
replication, and replication in the absence of vMIA does not induce caspase-
dependent apoptosis (McCormick et al. 2005). A vMIA deletion mutant made in 
the laboratory-propagated strain, Towne var ATCC, produces yields nearly equiva-
lent to parental virus. In contrast, vMIA is more critical for efficient replication of 
the laboratory strain AD169 var ATCC (Reboredo et al. 2004). These strain-
dependent variations may suggest that the quantity or quality of intrinsic stresses 

  Fig. 2  A representation of the apoptosis pathway and CMV-mediated alterations preventing 
death, as described in the text.  Dashed arrows  indicate events prevented by the viral proteins, 
vICA or vMIA, as indicated. The  solid arrow  indicates vMIA-dependent relocalization of Bax to 
mitochondria. At mitochondria, a complex(s) of proteins including Bax as an oligomer, vMIA, 
GADD45, and Bcl-x 

L
  prevents the release of mitochondrial protein cytochrome c. vICA binds 

procaspase-8 and is depicted as a complex that prevents procaspase-8 activation following addi-
tion of extrinsic death signals. The mechanisms and/or direct physical interactions that promote 
survival in the presence of the remaining viral proteins, pUL38, IE1 

491aa
 , IE2 

579aa
 , M45, and m41 

are unclear, and these are placed according to the anticipated site of localization within the cell. 
For simplicity, many important regulatory components have not been included 
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produced by individual strains varies because evidence suggests vMIA is an 
important regulator of the viral response to stress (McCormick et al. 2005). The 
phenotype produced by disruption of vMIA in AD169 var ATCC is highly variable 
(Brune et al. 2003; Yu et al. 2003; Sharon-Friling et al. 2006), perhaps due to other 
factors that prevent vMIA-dependent release of calcium from the endoplasmic 
reticulum (Sharon-Friling et al. 2006) or increase ATP levels (Poncet et al. 2006), 
and further analyses are needed to resolve the role of vMIA in that strain. 

 Although of limited impact on replication in HFs, the Towne var ATCC mutant 
revealed a role for vMIA in regulating caspase-independent death. Caspase-3 
activation underlies caspase-dependent apoptosis; however, this protease is not 
required for other cell death pathways that are considered to be apoptosis-like 
(Leist and Jaattela 2001; Lockshin and Zakeri 2002; Jaattela 2004). Thus, 
UL37×1 deletion can promote CMV-induced caspase-3-dependent cell death in 
the case of AD169 var ATCC (Reboredo et al. 2004), or a caspase-3-independent 
cell death in the case of Towne var ATCC (McCormick et al. 2005), and vMIA 
regulates both forms of death during infection (McCormick et al. 2005). From 
studies so far, the context where caspase-3-independent cell death is a significant 
obstacle to the virus is unknown. 

 Chimpanzee CMV, rhesus macaque CMV, and African green monkey CMV 
each retain a vMIA homolog that could be identified through computer analysis 
(McCormick et al. 2003a). Each of these proteins share sequence similarity with 
the mitochondrial-targeting and AAD domains of vMIA. Rhesus macaque CMV 
vMIA retains similarity only to the amino- and carboxyl-terminal domains of 
human CMV (HCMV) vMIA and functions as an antiapoptotic protein. It is 
expected that all primate CMVs encode functional homologs. In contrast, the 
identification of rodent CMV functional homologs encoded by ORFs, m38.5 and 
r38.5, required more extensive analyses due to limited sequence homology 
(McCormick et al. 2003a, 2005; Brocchieri et al. 2005). Initial searches for 
murine CMV (MCMV) mitochondrial localized proteins with vMIA function 
were executed in HeLa cells utilizing methods that revealed vMIA (Goldmacher 
et al. 1999; McCormick et al. 2003a). Increasing the repertoire of stimuli 
revealed that m38.5 prevents proteasome inhibitor-induced, intrinsic apoptosis 
but not extrinsic, Fas-mediated apoptosis in HeLa cells (McCormick et al. 2005) 
or a telomerase-immortalized retinal epithelial cell line of human origin (Jurak 
and Brune 2006). Thus, MCMV m38.5 encodes an antiapoptotic protein that 
localizes to mitochondria (McCormick et al. 2005). The rodent CMV ORFs map 
to positions on the viral genomes analogous to UL37×1 (McCormick et al. 
2003a; Brocchieri et al. 2005), indicating that rodent and primate CMVs each 
encode vMIA and vICA homologs. 

 Limited sequence similarity and differences in protective function in human 
cells suggest the human and rodent vMIA homologs retain elements that are 
specific to function in the appropriate host (McCormick et al. 2005). Identification 
of additional MCMV proteins localized to mitochondria may also suggest the 
potential for synergism or even replacement of m38.5 function in specific cells 
(Tang et al. 2006). Interestingly, vMIA apparently protects from specific apoptotic 
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stimuli in a species-dependent fashion as well. Thus, vMIA fails to prevent 
mitochondrial damage induced by staurosporine in wild type murine fibroblasts, 
apparently due to the role of murine Bak in that setting (Arnoult et al. 2004) but 
prevents staurosporine-induced death in HeLa cells (Andreau et al. 2004). Thus, 
properties of the antiapoptotic proteins encoded by these viruses reflect the 
evolutionary divergence of the host. In fact, one aspect of the species barrier 
that restricts CMVs is reportedly due to functions that for MCMV can be pro-
vided by vMIA (Jurak and Brune 2006). Given the genomic organization and 
studies thus far, it is likely that m38.5 will retain vMIA functions relevant to 
survival in the host and that all CMVs rely on vMIA function.  

  vICA Controls Caspase-8 

 vICA, the UL36 gene product, interferes with caspase-8-dependent apoptosis by 
binding procaspase-8 and preventing proteolytic activation (Skaletskaya et al. 
2001) (Fig. 2). The role of caspase-8 as an initiator protease activated by extrinsic, 
immune-regulated signals implies vICA is important to survival in the host 
(Skaletskaya et al. 2001). vICA is highly conserved among mammalian betaherpes-
viruses both in sequence and function, suggesting a conserved biologic role 
(McCormick et al. 2003a; Menard et al. 2003). In contrast, passage in tissue culture 
has promoted adventitious mutations that impact antiapoptotic function (Skaletskaya 
et al. 2001). Although early work employed a recombinant virus made in 
AD169 var ATCC, a laboratory strain that had already acquired mutations in vICA 
(Patterson and Shenk 1999; Skaletskaya et al. 2001), deletion of the gene from 
Towne-BAC, a viral strain that retains vICA function, confirmed that both the 
UL36 gene and vICA function can be altered without impacting replication in cul-
tured fibroblasts (Dunn et al. 2003). MCMV mutants impacting M36 also grow in 
fibroblasts; however, this gene is required for growth in cultured macrophages 
(Menard et al. 2003) and in mice (Cicin-Sain et al. 2005). Importantly, infected 
macrophages elevated caspase-8 activity only in the absence of M36 (Menard et al. 
2003). These observations are consistent with the expectation that vICA prevents 
caspase-8 activation, thereby performing a critical role for survival in the host.  

  IE1 491aa , IE2 579aa , and Akt-Dependent Pro-survival Pathways 

 Pathways leading to death are balanced by pro-survival pathways, including those 
regulated by trophic factors that signal through phosphatidylinositide 3′-OH kinase 
(PI3K)/Akt kinase (Datta et al. 1999). Evidence suggests CMV requires the PI3K/
Akt pathway for replication (Johnson et al. 2001). The IE1 

491aa
  and IE2 

579aa
  are 

nuclear proteins that regulate transcription and have important roles in viral repli-
cation (see the chapter by M.F. Stinski and D.T. Petrik, this volume and Stinski and 
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Meier 2007; White and Spector 2007). Each has been connected to the PI3K/Akt 
pro-survival pathway through the following. Initially, antiapoptotic roles for 
IE1 

491aa
  and IE2 

579aa
  were suggested from results of transient and stable expression 

in HeLa cells (Zhu et al. 1995). Here, either protein protects from short exposure 
(8 h) to TNF or infection by E1B-19-kDa-deficient adenovirus, but not from UV 
irradiation. Mechanisms are suggested to differ because antiapoptotic activity 
maps to unique sequences. In comparison with vMIA, neither IE1 

491aa
  nor IE2 

579aa
  

protect HeLa cells undergoing TNF- or Fas-mediated apoptosis when evaluated in 
a more rigorous assay (24 h) (Goldmacher et al. 1999). Thus, these proteins present 
challenges for mechanistic studies. 

 One experimental approach that has suggested the mechanism of IE1 
491aa

  and 
IE2 

579aa
  antiapoptotic function employed the temperature-sensitive ( ts ) BHK-21 

cell line  ts 13 (Lukac et al. 1997; Lukac and Alwine 1999; Yu and Alwine 2002). 
At the nonpermissive temperature, a mutation in TAF 

II
 250 produces transcription 

alterations in specific genes that results in a block to cell cycle progression and the 
induction of apoptosis in these hamster cells (Talavera and Basilico 1977; Sekiguchi 
et al. 1988, 1995). When expressed from a genomic construct, IE1 

491aa
  and IE2 

579aa
  

prevent apoptosis and rescue promoter-specific transcription through independent 
mechanisms that do not rescue cell cycle defects (Lukac et al. 1997; Lukac and 
Alwine 1999). Further, IE rescue of transcription is primarily due to IE2 

579aa
  (Lukac 

et al. 1997), while either IE protein rescues apoptosis (Yu and Alwine 2002). Protein 
domains required for protective function remain unidentified. Although the protec-
tive mechanism in this setting relies on PI3K activation of Akt, how IE1 

491aa
  and 

IE2 
579aa

  promote this activation is unknown, as is the significance of these results to 
infection. Nevertheless, these studies suggest hypotheses that may elucidate IE1 

491aa
  

and IE2 
579aa

  contributions to survival of infected cells.  

  UL38 Decreases Intrinsic Stress 

 The UL38 ORF maps to an intron of the UL37 gene (Tenney and Colberg-Poley 
1990, 1991a, 1991b) (Fig. 1). The UL38 sequence is included on the unspliced 
vMIA transcript and on a unique transcript with early kinetics. During infection, 
pUL38 initially localizes to the nucleus but is well distributed between the nucleus 
and cytoplasm by 24 h (Terhune et al. 2007). Mutagenesis of the UL38 ORF in 
either Towne-BAC (Dunn et al. 2003) or pAD/Cre (Yu et al. 2002; Terhune et al. 
2007) reduces yield by approximately 100-fold during a single round of replication 
(Terhune et al. 2007). 

 The premature death induced by the UL38-null mutant virus and rescue by 
addition of the pan-caspase inhibitor zVAD-fmk prompted further analysis of 
pUL38 as an antiapoptotic factor (Terhune et al. 2007). Replication of the UL38 
deletion mutant is also largely restored by zVAD-fmk. Death initiates very early 
(24 h) and reaches more than 50% by 72 h, suggesting pUL38 is required very 
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early. Consistently, TUNEL labeling, expected to reflect caspase-3-mediated acti-
vation of nucleases, occurs by 48 h. In contrast, detection of active caspase-3 or 
cleaved substrate (PARP) is apparently variable and occurs consistently only by 
96 h. Thus, evaluation of specific steps along the apoptosis pathway may highlight 
important viral controls. Nevertheless, a deletion mutant of UL38 in pAD/Cre 
induces an apoptotic death that is repaired by growth on pUL38-expressing cells. 
pUL38 is sufficient to inhibit death induced by E1B-19-kDA-deficient adenovirus 
or thapsigargin, but is ineffective against Fas-mediated apoptosis. Thus, pUL38 
protects from intrinsic but not extrinsic death signals. Thus far, little is known of 
the pUL38-dependent antiapoptotic mechanism or protein domains required for 
function, but these studies will likely be included in future endeavors.  

  M45 Is a Cell Type-Specific Survival Factor 

 Betaherpesviruses, including HCMV, encode the UL45 genes that are related by 
sequence but not function to ribonucleotide reductase (Chee et al. 1990; Patrone 
et al. 2003; Lembo et al. 2004). Viral mutants that disrupt the MCMV M45 gene 
induce apoptosis and are growth-restricted in endothelial cells and macrophages 
but not fibroblasts, bone marrow stromal cells, or hepatocytes (Brune et al. 2001). 
Although early and late genes are expressed, infection induces apoptosis and 
infectious progeny are not produced. Assays predictive of apoptosis, including 
nuclease activity and phosphatidylserine exposure, implicate this pathway; how-
ever, a direct link between decreased apoptosis and rescued growth has not been 
established. Further, M45-dependent survival in apoptosis models or viral repli-
cation has not been demonstrated, and it is unclear how the phenotype of the 
mutant virus relates to apoptosis pathways and M45. However, disruption of M45 
produces a nonpathogenic virus (Lembo et al. 2004), and further studies will 
likely answer these important questions. 

 Neither replication in endothelial cells or resistance to induced intrinsic 
stress requires HCMV UL45 (Hahn et al. 2002). Thus, the intrinsic stresses 
revealed by deletion of MCMV M45 are apparently controlled by other viral 
factors in HCMV. In contrast, UL45 does increase viral production of the labo-
ratory strain AD169 var ATCC in fibroblasts following a low multiplicity infec-
tion (Patrone et al. 2003). However, decreased yield does not result from 
increased apoptosis. The resistance of HCMV to extrinsic but not intrinsic 
apoptosis is also halved, but the contribution of UL45 is unknown and UL45-
expressing fibroblasts remain sensitive to Fas-mediated apoptosis. Considerable 
effort has been required to evaluate the potential of UL45 as a ribonucleotide 
reductase (Patrone et al. 2003; Lembo et al. 2004). Future studies that define the UL45 
function that increases low multiplicity growth and the M45 function that 
permits replication in endothelial cells will likely clarify the role of this 
perplexing gene.  
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  m41, Late Infection, and the Golgi Apparatus 

 The CMV ORFs m41 and r41 are apparently unique to rodent CMVs and, as such, 
do not share sequence homology with HCMV ORFs (Chee et al. 1990; Rawlinson 
et al. 1996; Mocarski et al. 1997; Vink et al. 2000; Brocchieri et al. 2005). Expression 
constructs produce a single protein of 19 kDa while polypeptides of 19 and 21-kDa 
polypeptides are produced during infection, suggesting splicing to upstream or 
downstream ORFs (Brune et al. 2003). Recombinants that disrupt the m41 ORF 
induce apoptosis very late in infection, as suggested both by apoptosis-induced 
molecular changes, including phosphatidylserine exposure and nuclease-driven 
chromatin alterations, and increased survival in the presence of caspase inhibitors. 
A more dramatic impact on replication occurs in endothelial cells where viral yields 
are reduced 50-fold. Thus far, neither yield nor death has been directly related to 
pm41, but Golgi localization is likely important to pm41 function.  

  β2.7 and Mitochondrial Respiratory Complex I 

 The highly abundant early transcript β2.7 (McDonough and Spector 1983; 
McDonough et al. 1985) is polysome-associated (Wathen and Stinski 1982); how-
ever, sequence analyses suggest a noncoding RNA (McSharry et al. 2003). 
Although the gene is conserved in both laboratory-adapted viral strains and clinical 
isolates, the RL4 ORF is not. Northwestern screening suggested β2.7 binds proteins 
of the nicotinamide adenine dinucleotide-ubiquinone oxidoreductase (mitochon-
drial respiration complex I) (Reeves et al. 2007). β2.7 also increases survival from 
the mitochondrial poison rotenone and maintains ATP production late in infection. 
The importance of continued mitochondrial function during CMV infection has 
been suggested from several studies that have evaluated mitochondrial DNA 
 synthesis, mitochondrial protein expression profiles, and ATP production (Furukawa 
et al. 1976; Hertel and Mocarski 2004; Reeves et al. 2007). β2.7 contributes to viral 
production by maintaining ATP production (Reeves et al. 2007), and in addition, 
prevents death that follows intrinsic stresses associated with decreased ATP.  

  Summary and Perspectives 

 Several CMV gene products that impact apoptosis have already been identified. vMIA 
and vICA are the most extensively characterized with regard to proposed mechanism 
and antiapoptotic roles during infection. pUL38, M45, and m41 remain largely 
uncharacterized with regard to mechanism, and the contributions of IE1 

491aa
  and 

IE2 
579aa

  antiapoptotic functions during replication remain to be addressed. Additional 
genes like β2.7, which increase survival in response to stress, are likely to be identified 
through efforts that determine viral control of cellular stress responses (see the chapter 
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by A.L. Alwine, this volume) and these genes will also impact viral control of apop-
tosis. Three types of cell death- apoptosis, necrosis, and autophagy-have been well 
characterized by morphology, biochemical events, and host responses (Leist and 
Jaattela 2001; Jaattela 2004; Lockshin and Zakeri 2004; Vandenabeele et al. 2006; 
Golstein and Kroemer 2007). Given overlapping regulation and expectations from 
cellular homologs with cross-inhibitory properties, future efforts will undoubtedly 
reveal as yet unappreciated connections between CMV antiapoptotic proteins and 
other cell death pathways. In summary, the cell tropism of CMV (Mocarski et al. 
2006) likely means the virus must be armed against multiple forms of death and the 
combination of all suppressors encoded by the virus likely balances the apoptotic 
threshold in a direction supporting replication.   
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