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   Abstract   Human cytomegalovirus (HCMV) has evolved numerous strategies 
to commandeer the host cell for producing viral progeny. The virus manipulates 
host cell cycle pathways from the early stages of infection to stimulate viral DNA 
replication at the expense of cellular DNA synthesis. At the same time, cell cycle 
checkpoints are by-passed, preventing apoptosis and allowing sufficient time for 
the assembly of infectious virus.    

   The Host Cell Cycle 

 To understand the effects of HCMV on the host cell cycle, it is necessary to first 
present a brief overview of the phases of the cell cycle and the major regulatory 
proteins involved (see Fig.  1 ). The cell cycle is a finely orchestrated sequence of 
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events by which the cell prepares for division (for review see Sherr 1996, 2000). 
These events are regulated by heterodimeric kinases that consist of a regulatory 
cyclin subunit and a catalytic subunit, the cyclin dependent kinase (cdk). 
Multisubunit E3 ubiquitin ligases that target proteins for degradation by the protea-
some also regulate cell cycle progression. A resting cell (in G 

0
  phase) can be 

induced to enter the cell cycle by a number of proliferative signals including growth 
factors and serum stimulation. Initially, there is activation of the expression of the 
D-type cyclins, which form kinase complexes with cdk4 or 6. The phosphorylation 
of substrates by the cyclin D/cdk4 and cyclin D/cdk6 kinases releases the quiescent 
cell from its resting state and permits entry into the G 

1
  phase of the cell cycle. 

 The G 
1
  phase is the period during which multiple transcription factors and genes 

encoding proteins involved in nucleotide metabolism and DNA replication are 
induced. In G 

1
  phase, there is a commitment to DNA synthesis and cell division if 

  Fig. 1  Effects of HCMV on the cell cycle. The cell cycle is a tightly regulated process through 
which the cell replicates its DNA and divides into two daughter cells. G 

0
  is the resting state, and 

cells are stimulated through growth signals to express cyclin D and enter G 
1
  phase. During 

G 
1
  phase, the anaphase-promoting complex ( APC ), an E3 ubiquitin ligase, remains active, and 

proteins that are not needed by the cell until later in the cell cycle are ubiquitinated and targeted 
for degradation by the proteasome. A prereplication complex (licensing) is established at cellular 
origins of DNA replication and cyclin E is induced. Replication of the cellular DNA in S phase 
requires cyclin A. G 

2
  phase follows S phase and marks the transition prior to cell division in 

M phase. Both cyclin A and cyclin B are required during the G 
2
 /M period. The major guardians 

of the cell cycle are Rb and p53. Infection of cells during G 
0
 /G 

1
  phase induces progression through 

G 
1
 . However, the normal expression of the cyclin-dependent kinases is disrupted, and the cell 

cycle is blocked before the replication of cellular DNA. HCMV specifically inhibits the expres-
sion of cyclin D and cyclin A, but promotes expression of high levels of cyclin E and cyclin B. In 
infected cells, the activity of the APC is blocked and licensing of the cellular origins of DNA 
replication is inhibited. p53 is stabilized, but it cannot activate its target promoters, and the 
inhibitory activity of Rb on the E2F/DP transcription factors is relieved 



the necessary requirements are met. DNA is replicated completely and only once 
during a single cell cycle (Fujita 1999; Diffley 2001; Lei and Tye 2001). During G 

1
  

phase, prereplication complexes (pre-RC) assemble at the origins of DNA replica-
tion. The multisubunit origin recognition complex (ORC) is the first to bind to the 
DNA and serves as a nucleation point for the recruitment of other factors. Cdc6 and 
Cdt1 are recruited to the complex and facilitate the loading of the family of six 
MCM proteins (Maiorano et al. 2000; Nishitani et al. 2000, 2001; Rialland et al. 
2002). Cyclin E expression is induced, and the active cdk2/cyclin E kinase promotes 
the transition into S phase. Cyclin E also facilitates the formation of pre-RC in a 
kinase-independent fashion through physical interaction with Cdt1 and the MCM 
proteins (Geng et al. 2003; Ekholm-Reed et al. 2004; Geng et al. 2007). 

 At the beginning of S phase, cyclin A accumulates and forms an active kinase 
complex with cdk2. Regulation of cyclin A occurs at both the protein and mRNA 
levels (Glotzer et al. 1991; Henglein et al. 1994; Desdouets et al. 1995; Schulze 
et al. 1995; Zwicker et al. 1995; Zwicker and Muller 1997; Bottazzi et al. 2001; 
Tessari et al. 2003). In S phase, cdk2/cyclin A and cdc7/Dbf4 complexes mediate 
the firing of DNA origins of replication and promote DNA replication (for review 
see Nishitani and Lygerou 2002; Machida et al. 2005). At the same time, Cdt1 is 
released from the replication complex, and its binding to the ORC is prevented by 
geminin, a protein that accumulates during S, G 

2
 , and M phases. This ensures that 

DNA replication initiates at each origin only once and prevents polyploidy. 
 Following the complete replication of the parental chromosomes, cells enter G 

2
  and 

proteins involved in mitosis (M phase) begin to accumulate. Cdk1 and cyclin B play a 
major role at this point. Cyclin B first associates with cdk1 to form an inactive complex. 
At the G 

2
 /M transition, dephosphorylation of cdk1 by cdc25 phosphatase induces the 

activation of the kinase, which in turn promotes the onset of mitosis (Millar and Russell 
1992). Cdk1/cyclin B and cdk1/cyclin A complexes phosphorylate many substrates that 
facilitate condensation of the chromosomes, disassembly of the nuclear envelope, and 
modification of the cell’s architecture to ensure that there is an ordered and even segre-
gation of the chromosomes to the daughter cells. Inactivation of the cdk1 complexes 
occurs during mitosis by degradation of cyclins A and B through the ubiquitin-depend-
ent proteolytic pathway involving the anaphase-promoting complex (APC) E3 ubiquitin 
ligase and the proteasome (Glotzer et al. 1991). The APC also ubiquitinates geminin 
and targets it for proteasome degradation as the cells exit mitosis, thereby allowing 
loading of the pre-RCs onto the chromatin of daughter cells during G 

1
  phase (McGarry 

and Kirschner 1998). This degradation of the cyclins and geminin continues until the 
onset of S phase (Brandeis and Hunt 1996). 

 Several checkpoints throughout the cell cycle ensure that progression will halt 
if there is DNA damage or aberrant spindle formation (for review see Lukas et al. 
2004), thus protecting the integrity of the genome. The tumor suppressors p53 
and the Rb family of pocket proteins (Rb, p107, and p130) are the best studied of 
these checkpoint sentinels. The Rb proteins, in their hypophosphorylated forms, 
bind to the E2F family of transcription factors, which then function as transcrip-
tional repressors. Phosphorylation of the Rb proteins in late G 

1
  dissociates these 

complexes, allowing the E2F factors to activate transcription of multiple genes, 
many of which encode proteins required for DNA replication (Dyson 1998). p53 
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coordinates multiple cellular processes through its activity as a transcriptional 
activator and repressor in response to stress and growth factors (Vousden and Lu 
2002; Slee et al. 2004). Phosphorylation of p53 controls its association with 
MDM2, which targets p53 for degradation by the proteasome (for review see 
Lavin and Gueven 2006). In response to DNA damage, nutrient deprivation, and 
other insults to the cell, p53 levels are stabilized. This can lead to the expression 
of the cdk inhibitor p21 as well as induction of several pro-apoptotic genes.  

  The Effect of HCMV on the Cell Cycle 

  Cell Cycle Arrest and cdk Dysregulation 

 Cells infected with HCMV in the G 
0
 /G 

1
  phase of the cycle do not replicate their 

DNA and arrest in a pseudo-G 
1
  state that is distinguished by the expression of 

selected G 
1
 -phase, S-phase and M-phase gene products (Jault et al. 1995; 

Bresnahan et al. 1996b; Lu and Shenk 1996; Dittmer and Mocarski 1997; Salvant 
et al. 1998; Wiebusch and Hagemeier 1999; Wiebusch and Hagemeier 2001; 
Challacombe et al. 2004; Hertel and Mocarski 2004) (see Fig. 1). The G 

1
 /S- and 

G 
2
 /M-phase cyclins E and B1, respectively, accumulate in infected cells with a 

concomitant increase in associated kinase activity (Jault et al. 1995; Wiebusch 
and Hagemeier 2001; Sanchez et al. 2003). In contrast, the steady-state levels of 
the S-phase cyclin A and G 

1
 -phase cyclin D1 are reduced (Jault et al. 1995; 

Bresnahan et al. 1996b; Salvant et al. 1998; Wiebusch and Hagemeier 2001). The 
effects of the virus on cyclins E, A, and D1, are at the level of transcription, while 
accumulation of cyclin B1 is associated with increased stability of the protein 
(Salvant et al. 1998; Sanchez et al. 2003).  

  Checkpoint Control and DNA Damage 

 The observation that HCMV infection during S phase induces breaks in chromo-
some 1 has prompted investigations into the effects of infection on DNA damage 
pathways (Fortunato et al. 2000). Infection of cells with HCMV causes signifi-
cant changes in proteins involved in G 

1
  and S phase checkpoint control. For 

example, the tumor suppressors Rb, p130, and p107, which inhibit the expression 
of E2F-responsive genes and the activity of cdk2 kinase complexes, are main-
tained in an inactivate phosphorylated state in infected cells (Jault et al. 1995; 
McElroy et al. 2000). Interestingly, it has also been reported that HCMV-infected 
cells express high levels of the p16 Ink4  tumor suppressor (Noris et al. 2002; 
Zannetti et al. 2006). p16 Ink4  is a marker for senescence and activator of Rb 
through binding and inactivation of Cdk4 and Cdk6 kinases. 



 Early cell cycle studies demonstrated the stabilization of p53 in HCMV-infected 
cells; p53 was sequestered into viral replication centers, thus contributing to its 
inability to activate the expression of downstream cellular target genes such as p21 
(Muganda et al. 1994; Bresnahan et al. 1996a; Fortunato and Spector 1998; Chen 
and Fang 2001). Later work by Rosenke and co-workers described the binding of 
p53 to viral promoters and showed that the DNA binding activity of the protein was 
required for sequestration into the viral replication center (Rosenke et al. 2006). 

 HCMV infection also activates the ATM and ATR kinases that regulate the 
double-stranded break and S phase checkpoints, respectively (Shen et al. 2004; 
Castillo et al. 2005; Gaspar and Shenk 2006; Luo et al. 2007). However, the initia-
tion of a damage response does not appear to be necessary for the infection, as 
virus replicates normally in cells deficient in ATM (Luo et al. 2007). In addition, 
a fully functional damage response does not occur due to inefficient relocalization 
of all of the required proteins (Gaspar and Shenk 2006; Luo et al. 2007). For 
example, several proteins that are involved in nonhomologous end-joining (NHEJ) 
response appear to be completely excluded from the viral replication centers (Luo 
et al. 2007). This may be necessary to prevent the rejoining of ends that are gener-
ated during the replication of the virus.  

  Inhibition of Cellular DNA Replication 

 In addition to downregulation of cyclin A observed during infection, the replication 
of cellular DNA is inhibited by several mechanisms during the licensing of the ori-
gins. Most importantly, the loading of MCM 2 and 7 (Biswas et al. 2003), as well 
as MCM 3, 4, 5, and 6 (Wiebusch et al. 2003), onto chromatin is inhibited in 
infected cells. This appears to be due to the premature accumulation of geminin, 
which, as discussed above, normally accumulates in S phase to ensure that there is 
no refiring of origins as the cells proceed through S and G 

2
 /M.  

  Regulation of Cellular RNA Transcription and Protein Stability 

 The advent of DNA microarrays provided a means to examine the global effects of 
HCMV infection on the accumulation of cellular RNAs (Zhu et al. 1997; Browne 
et al. 2001; Challacombe et al. 2004; Hertel and Mocarski 2004). While increases in 
the levels of RNA do not necessarily correlate with changes in the steady-state levels 
of protein, these analyses provide a foundation for defining infection-associated 
changes in transcription. The general picture that has emerged is that changes in the 
mRNA levels of key cell cycle proteins is mirrored in the corresponding protein 
 levels, although there are several exceptions. 

 One example of an exception is where the accumulation of the protein is due to 
the effects of the infection on protein stability rather than transcript level. For example, 
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cyclin B1 accumulates in infected cells due to stabilization of the protein, with only 
minimal changes in RNA levels (Salvant et al. 1998; Sanchez et al. 2003). The 
degradation of cyclin B1 is mediated by the anaphase-promoting complex (APC), 
an E3 ubiquitin ligase. Interestingly, other substrates of the APC also accumulate 
in infected cells, including securin, geminin, Aurora B, and cdc6 (Biswas et al. 
2003; Wiebusch et al. 2005). The increase in the steady-state levels of these pro-
teins suggests that the APC is inactivated during infection. Data from our lab and 
others suggest that this dysregulation is due to the dismantling of the APC early in 
infection (Wiebusch et al. 2005; Tran et al. 2008).   

  Importance of Subversion of the Cell Cycle 
for the Viral Infection 

  Cell Cycle Arrest 

 A surprising observation regarding the kinetics of HCMV replication was that the 
initiation of the viral gene expression requires that the cells be in G 

0
  or G 

1
  at the 

time of infection. When cells are infected near or during S phase, many cells are 
able to pass through S phase and undergo mitosis prior to the synthesis of IE and 
early gene products (Salvant et al. 1998; Fortunato et al. 2002). The process of cell 
cycle arrest appears to be important for the early phase of infection, and proteins 
carried in the virus particle as well as those expressed at immediate early times 
contribute to this process (see Fig.  2 ). 

  Proteins in the Virus Particle 

 Two virion proteins, pUL69 and pp71 (pUL82), have been shown to modulate cell 
cycle progression (see the chapter by R. Kalejta, this volume). As components of 
the virion tegument, they can function as soon as the virus enters the cells. In the 
case of pUL69, overexpression of this protein stimulates accumulation of cells in 
G 

1
  phase of the cell cycle (Lu and Shenk 1999). In addition, cells infected with a 

virus lacking functional pUL69 do not efficiently undergo cell cycle arrest (Hayashi 
et al. 2000). This mutant does not replicate to wild type levels, but the growth defect 
may be attributed to other functions of pUL69. 

 The deletion of pp71 also creates a virus that is severely impaired for growth. 
The growth defect can be complemented by expression of the protein in trans 
(Bresnahan and Shenk 2000; Dunn et al. 2003). pp71 has been shown to interact 
with the cell growth suppressors Rb, p107, and p130 and to target hypophosphor-
ylated forms of these pocket proteins for degradation by the proteasome (Kalejta 
et al. 2003). Consistent with this activity, pp71 expression in uninfected cells accel-
erates their progression through G1 phase, but does not change the overall doubling 
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time (Kalejta and Shenk 2003) . These results suggest that pp71 delivered to cells 
as part of the incoming virus particles may stimulate the cell cycle at the beginning 
of the infection before IE gene expression. The finding that pp71 also interacts with 
ND10-associated transcription repressor Daxx and promotes its proteasome-
 mediated degradation suggests an additional function for pp71 in initiating viral 
transcription at ND10 sites (Hofmann et al. 2002; Ishov et al. 2002; Marshall et al. 
2002; Cantrell and Bresnahan 2005; Saffert and Kalejta 2006). 

   Immediate Early Protein 1 

 HCMV encodes two IE proteins, IE1-72 and IE2-86, that have been shown to inter-
fere with cell cycle progression in heterologous systems in the absence of infection. 
Transient expression of IE1-72 in asynchronously cycling cells stimulates their 
accumulation in the S and G 

2
 /M phases of the cell cycle (Castillo et al. 2000). One 

possible explanation for this result is that it is due to the interaction of IE1-72 with 

  Fig. 2  Modulation of the cell cycle by proteins in the virus particle and immediate early proteins. 
The tegument proteins pUL69 and pp71 can exert their effects on the cell cycle upon entry of the 
virus particle into the cell. pUL69 causes accumulation of cells in G 

1
  phase, while pp71 targets 

the hypophosphorylated forms of the Rb family of proteins (Rb, p107, p130) and the transcrip-
tional inhibitor Daxx for proteasome-mediated degradation. This degradation of the Rb proteins 
along with their viral-mediated hyperphosphorylation lead to the release of the E2F/DP transcrip-
tion factors, which activate many genes involved in DNA replication and promotes S phase. The 
IE1 protein blocks the activity of p130/p107, and IE2 interferes with at least some functions of Rb 
and p53. Both IE proteins can prevent cells from passage through S phase 
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the pocket protein p107 (Margolis et al. 1995; Poma et al. 1996; Woo et al. 1997; 
Castano et al. 1998; Hansen et al. 2001; Zhang et al. 2003). IE1-72 alleviates p107-
mediated repression of E2F-responsive promoters in transient transfection assays 
and thus may stimulate S-phase entry. Additionally, IE1-72 can reverse the 
 inhibitory effects of p107 on cdk2/cyclin E kinase activity, which may also facili-
tate the G 

1
 /S transition. It has been proposed that the formation of an IE1-72/p107 

complex mediates these effects (Poma et al. 1996; Johnson et al. 1999; Zhang et al. 
2003); however, the finding that IE1-72 can phosphorylate p107, p130, and E2F 
proteins (Pajovic et al. 1997) raises the possibility that some of the effects of IE1-72 
on transcription and the cell cycle result from its reported kinase activity. 

   Immediate Early Protein 2 

 Several studies have shown that transient expression of IE2-86 alters cell cycle 
progression, with a block at the G1/S boundary in a p53 +/+  cell or after entry into S 
phase in a p53 mutant cell (Murphy et al. 2000; Wiebusch and Hagemeier 2001; 
Noris et al. 2002; Wiebusch et al. 2003; Song and Stinski 2005) (see the chapter by 
M.F. Stinski and D.T. Petrik, this volume). In transient transfection assays, deletion 
of aa 451–579 abolished the ability of IE2-86 to induce G1 arrest in transient assays 
in U373 cells (Wiebusch and Hagemeier 1999). Perhaps the most convincing evi-
dence that IE2-86 plays a role in cell cycle arrest is a recent study showing that a 
mutation of aa 548 of IE2-86 from Q to R results in a growth-impaired virus that 
does not inhibit cellular DNA synthesis or the cell cycle (Petrik et al. 2006). The 
observation that this mutant IE2-86 could still autoregulate the MIE promoter and 
activate viral early genes provides further evidence that efficient viral replication 
also requires the inhibition of host cell DNA synthesis. 

 Early observations showing that IE2-86 interacts with several proteins regulat-
ing the cell cycle, including Rb and p53, made it reasonable to link some of its 
functions to cell cycle arrest (Hagemeier et al. 1994; Sommer et al. 1994; Speir 
et al. 1994; Bonin and McDougall 1997; Fortunato et al. 1997). p53 levels are 
stabilized in infected cells but the expression of its target gene p21 is repressed 
(Muganda et al. 1994; Bresnahan et al. 1996b; Fortunato and Spector 1998; Chen 
et al. 2001). In transient expression and in vitro systems ,  IE2-86 interacts with the 
C-terminus of p53, and the binding of p53 to target promoters is inhibited (Speir 
et al. 1994; Bonin and McDougall 1997; Hsu et al. 2004). IE2-86 expression also 
inhibits the acetylation of p53 and of histones in proximity to p53-dependent 
promoters (Hsu et al. 2004), and thus IE2-86 may regulate expression of p53 
 target genes by multiple mechanisms. These effects on protein acetylation may 
result from downregulation of p300/CBP histone acetyl transferase (HAT) activ-
ity, which was detected in a complex with p53 and IE2-86 (Hsu et al. 2004). It is 
possible that the inhibition of p300/CBP HAT activity is p53-promoter-specific, 
as IE2-86 did not suppress histone acetylation globally. The biological relevance 
of these experiments must be considered with caution, given that none were per-
formed in the context of the viral infection. 
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 In permissive cells, the early phase of the infection is associated with the 
stimulation of many genes encoding proteins that are required for host cell DNA 
synthesis and proliferation (Hirai and Watanabe 1976; Estes and Huang 1977; 
Isom 1979; Boldogh et al. 1991; Wade et al. 1992; Browne et al. 2001). Many 
of these genes are regulated by the E2F/DP transcription factors, which are 
inhibited by complex formation with the Rb family of proteins. A role for IE2-
86 has been suggested by work showing that there is an increase in the steady 
state levels of RNA from several E2F-responsive genes in human fibroblasts 
infected with an adenovirus expressing IE2-86 (Song and Stinski 2002). The key 
question, however, is what are the underlying mechanisms for the activation of 
these growth regulatory genes in the context of the infection? 

 Cyclin E expression is regulated by E2F, and the potential role of IE2-86 in its 
accumulation during the infection has been the focus of several studies (Bresnahan 
et al. 1998; McElroy et al. 2000; Wiebusch and Hagemeier 2001; Wiebusch et al. 
2003). The majority of the experiments have used transient expression assays to 
examine the regulation of the cyclin E promoter driving a reporter gene. In one 
study, it was shown that IE2-86 could bind to sequences in the cyclin E promoter 
in vitro and could activate expression of a cyclin E promoter-driven reporter con-
struct (Bresnahan et al. 1998). Work by Song and Stinski demonstrated that expres-
sion of IE2-86 induces synthesis of endogenous cyclin E mRNA, reinforcing the 
notion that IE2-86 expression upregulates cyclin E in infected cells (Song and 
Stinski 2002). In contrast, McElroy et al. reported that early viral gene expression, 
not IE2-86 expression, was necessary for accumulation of cyclin E protein 
(McElroy et al. 2000). These conflicting results suggest that cyclin E accumulation 
in infected cells is controlled by several pathways, and that the increase in cyclin E 
might be regulated at both the mRNA and protein level. 

 Besides E2F transcription factors, other proteins regulate the expression of 
cyclin genes. The finding that the architectural transcription factor HMGA2 (high 
mobility group AT-hook 2) regulates the transcription of cyclin A (Tessari et al. 
2003) prompted our lab to determine whether HCMV affects the expression of 
this protein. HMGA proteins are referred to as architectural transcription factors 
because of their ability to organize the assembly of nucleoprotein structures 
(enhanceosomes), resulting in enhancement or repression of transcription. In the 
case of cyclin A, HMGA2 activates its expression through derepression of the 
promoter. Our studies showed that the transcription of the HMGA2 gene is spe-
cifically inhibited at the RNA level during the infection (Shlapobersky et al. 
2006). To determine whether repression of HMGA2 was important for the HCMV 
infection, a recombinant virus expressing HMGA2 driven by the MIE promoter 
was constructed. High multiplicity infection with the HMGA2-expressing virus 
induced the synthesis of cyclin A mRNA and protein and inhibited virus replica-
tion. Furthermore, a role for IE2-86, but not IE1-72, in HMGA2 repression was 
suggested by additional experiments with HCMV recombinant viruses defective 
in either IE1-72 or IE2-86. We found that the IE1-72 deletion mutant virus CR208 
(Greaves and Mocarski 1998) inhibits HMGA2 transcription. In contrast, in cells 
infected with an IE2-86 mutant virus lacking aa 136–290 (referred to as delta SX) 
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(Sanchez et al. 2002), HMGA2 expression is not significantly reduced, suggesting 
that IE2 is involved in the regulation of the HMGA2 promoter. Cyclin A tran-
scription is also induced in cells infected with delta SX, although this effect is 
slightly delayed relative to HMGA2 expression. The mechanism involving the 
downregulation of HMGA2 RNA expression by IE2-86 has yet to be determined. 
An interesting possibility is that it is related to IE2 interaction with histone 
deacetylase (HDAC), as HMGA2 is an example of a gene that requires HDAC 
activity for its expression (Ferguson et al. 2003). Cyclin D1 expression also seems 
to require HDAC activity (Hu and Colburn 2005) and cyclin D1 and HMGA2 
exhibit a similar pattern of expression in the wt and delta SX infected cells 
(R. Sanders, M. Shlapobersky, and D.H. Spector, unpublished data). Since the 
levels of IE2-86 are significantly reduced in cells infected with delta SX, there may 
be less inhibition of HDAC activity in these cells.   

  Checkpoint Control 

 Recent studies have focused on the defining the roles of p53 and p16 Ink4  accumula-
tion during infection. As described above, work from Rosenke and colleagues 
determined that p53 is bound to viral promoters during infection (Rosenke et al. 
2006). This group has since shown that active p53 is required for the HCMV infec-
tion; p53-null cells infected with HCMV produced 10- to 20-fold less virus than 
controls (Casavant et al. 2006). The reduction in virus production was attributed to 
delays in viral DNA replication. Consistent with the binding of p53 to viral pro-
moters, they also observed delays in the expression of early and late proteins in p53 
null cells. Reintroduction of wild type but not mutant p53 partially rescued the 
phenotype, establishing a role for p53 in the viral lytic cycle. 

 A role for p16 Ink4  during infection was suggested by studies by Zannetti and co-
workers, showing that there was a reduction in viral early and late gene expression, 
DNA synthesis, and production of extracellular virus in cells lacking functional p16 
(Zannetti et al. 2006). In this case, p16 Ink4 -null cells and cells containing reduced 
levels of the protein as a result of treatment with siRNAs were used. The authors 
proposed that the ras-p16-Rb pathway is activated during the early phases of infec-
tion in order to establish an environment favorable for viral replication; however, the 
hyperphosphorylation of Rb in infected cells and the induction of E2F-responsive 
genes suggest that other proteins may be targets of p16 Ink4  activity.  

  Role of Cyclin-Dependent Kinases in Viral Replication 

 In order to establish the importance of cdk activity during infection, we and others 
have used cdk inhibitors such as the drug Roscovitine to treat infected cells 
(Bresnahan et al. 1997; Sanchez et al. 2004). This purine analog has been particularly 
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useful as it has high specificity for cdks 1, 2, 5, 7, and 9 and reversibly inhibits 
their activity by competing for binding of ATP (De Azevedo et al. 1997). While 
the inhibitor has provided several important insights, its broad effects on multiple 
cdks necessitates further experiments to determine the roles of individual cdk 
complexes during infection. Nevertheless, studies with such chemical inhibitors 
are a good starting place for understanding the impact of cellular kinase activity 
on virus replication. 

 Cdk activity appears to be required primarily at two distinct time intervals in the 
infection: one during the first 8 h and the second after the onset of viral DNA 
 replication (Bresnahan et al. 1997; Sanchez et al. 2004; Sanchez and Spector 2006). 
Studies from our lab showed a significant decrease in the expression of select early 
and late genes and a reduction in viral DNA replication when the drug was added 
at the time of infection. Notably, processing of IE transcripts was altered in the 
presence of the drug. However, these effects on IE transcript processing and the 
inhibition of gene expression and viral DNA replication were not detected if addi-
tion of the drug was delayed until 6–8 h postinfection (p.i.). In contrast, a reduction 
of virus titer was observed even if the drug was not added until 48 h p.i. 

 The effects on IE gene expression when Roscovitine is added at the beginning 
of the infection were particularly intriguing and provided the impetus for further 
studies. IE1-72 and IE2-86 are alternatively spliced transcripts that share their first 
three exons and differ in their 3′ terminal exon, with the 3′ exon of IE2-86 being 
most distal from the start site of transcription. At early phases of the infection, 
IE1-72 RNA accumulates preferentially compared to IE2-86 RNA; however, as the 
infection progresses, more IE2-86 transcripts accumulate, while there is only a 
slight increase in IE1-72 transcripts. If Roscovitine is added at the onset of infec-
tion, IE2-86 RNA accumulation is favored at early phases and there is little 
increase in the level of IE1-72 transcript (Sanchez et al. 2004). In fact, there is a 
decrease in IE1-72 RNA relative to untreated control samples. Given that the 
polyadenylation signals for IE1-72 and splicing signals for IE2-86 are juxtaposed, 
the most likely explanation for these results is that the differential splicing and 
polyadenylation of the UL122–123 transcript is altered by treatment with the drug. 
This results in enhanced utilization of the 3′ splice acceptor site that generates the 
IE2-86 transcript and a decrease in the cleavage/polyadenylation of the IE1-72 
transcript. Consistent with this hypothesis, the differential processing of the IE 
UL37 RNAs, which also have signals for polyadenylation and splicing in close 
proximity, is similarly affected by cdk inhibition. 

 The requirement for cdks at later times in the infection is directly related to 
formation of infectious viral particles. In a recent paper, we showed that addition 
of Roscovitine at 24 h p.i., after the onset of viral DNA synthesis, results in a 1- to 
2-log decrease in viral titer (Sanchez and Spector 2006). There is a corresponding 
decrease in the amount of viral DNA detected in the supernatant from drug-treated 
cells, indicating that there is a defect in the production or release of extracellular 
particles. Consistent with this result, we observed changes in the expression, post-
translational modification, and localization of virion structural proteins in 
Roscovitine-treated cells. The levels of the IE2-86 and pp150 (UL32) proteins 
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were significantly reduced, but there was not a corresponding decrease in the 
mRNAs. The pUL69 matrix protein accumulated in drug-treated cells and the pro-
tein was present in a hyperphosphorylated form. pUL69 localized to intranuclear 
aggregates that did not overlap with viral replication centers. The matrix protein 
pp65 was also retained in the nucleus (Sanchez et al. 2007). In contrast, the levels 
of capsid, envelope, and other tegument proteins were only moderately affected in 
that their expression was slightly delayed. Although preliminary, our recent data 
with the specific inhibitor of cdk1, RO-3306 (Vassilev et al. 2006), indicate that 
only some of these effects are due to inhibition of cdk1. We find that the titers are 
significantly reduced and pUL69 accumulates in a hyperphosphorylated form, 
but the expression of the IE2-86 and UL32 proteins is not significantly affected 
(V. Sanchez and D.H. Spector, unpublished data). Thus, there may be a later role 
for cdk2, cdk7, and cdk9. 

 Although limited, there have been some attempts to try to decipher the contribu-
tions of specific cdks during the infection by expressing dominant-negative forms of 
the catalytic subunits in infected cells. Work by Bresnahan and colleagues showed 
a decrease in the levels of some capsid proteins in infected cells transfected with a 
dominant-negative cdk2, suggesting that the activity of cdk2/cyclin E complexes is 
essential for viral replication (Bresnahan et al. 1997). In contrast, preliminary work 
by Hertel et al. suggests that cdk1 activity is dispensable for the infection, given that 
virus titer was not markedly reduced in cell cultures transduced with a retrovirus 
expressing a GFP-tagged dominant negative cdk1 (Hertel et al. 2007). The only 
effect that the dominant negative cdk1 had was to inhibit a pseudomitosis phenotype 
that they observed in some cells infected with a variant of the HCMV strain AD169 
(Hertel and Mocarski 2004). As noted above, however, our preliminary results with 
a specific inhibitor of cdk1 suggest that this kinase is required for production of 
infectious virus. Experiments involving expression of siRNAs directed against the 
individual cdks will likely provide more insight into their individual and combined 
roles in the infection.  

  Role of Cyclin-Dependent Kinases in Viral RNA Processing 

 Our hypothesis for the altered pattern of expression for the IE1-72/IE2-86 and 
UL37 IE RNAs in the presence of Roscovitine is based on the phosphorylation of 
the C-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAP 
II) by cdk7/cyclin H and cdk9/cyclin T. Cdk7/cyclin H is responsible for activating 
cdks1, 2, and 4 and is also a part of TFIIH, which phosphorylates the carboxyl ter-
minal domain (CTD) of the large subunit of RNA polymerase II within the 52 
repeats of the heptapeptide YSPTSPS. Cdk9/cyclin T (P-TEFb) also phosphor-
ylates the CTD. The current consensus is that transcription and RNA processing are 
integrated events whereby the differential phosphorylation of the CTD repeats at 
Ser 2 and Ser 5 defines its affinity for various transcription factors, kinases, and 
RNA processing factors. When the transcription initiation complex is formed on a 
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promoter, the CTD of RNAP II is unphosphorylated (the polymerase is designated 
RNAP IIa). Cdk7 with cyclin H and MAT1 primarily phosphorylates Ser 5 on the 
CTD (the polymerase is now designated RNAP IIo), which leads to the recruitment 
of the RNA capping enzymes. Further phosphorylation of the CTD Ser 2 residues 
by cdk9/cyclin T occurs upon entry to elongation and is associated with recruitment 
of the cleavage/polyadenylation and splicing machinery. 

 Previously, our lab showed that infected cells contain more cdk7, MAT-1, 
cdk9, and cyclin T1 at 24 h p.i. than the uninfected cells, and the abundance and 
activity of these proteins increase as the infection proceeds (Tamrakar et al. 
2005). All of MAT-1 is complexed with cdk7, although free cdk7 is also present, 
and most of cdk9 and cyclin T1 are in complex. In accord with the increase in 
the activity of the cdk9 and cdk7 kinases, an increase in the phosphorylation of 
the RNAP II CTD, particularly on the Ser 2 and Ser 5 residues of the heptad 
repeats, was also noted. By immunofluorescence analysis, it was observed that 
cdk7 and hypophosphorylated RNAP II localize to replication centers. In con-
trast, cdk9 and ser2-phosphorylated RNAP II are distributed in a punctate pattern 
throughout the nucleus with some concentration at the periphery of the viral 
replication centers. Similarly, ser5-phosphorylated RNAP II appears in clusters 
at the rim of the viral replication centers. These results suggest that at late times 
in the infection, HCMV may commandeer the RNA polymerase machinery, with 
viral RNA synthesis initiated within the replication center and active viral tran-
scription occurring at the periphery. 

 Our lab has also demonstrated that addition of the cdk inhibitor Roscovitine at 
the time of infection results in decreased CTD phosphorylation in the infected cells 
and a decrease in the level of the hypophosphorylated RNAP II in both infected and 
mock-infected cells (Tamrakar et al. 2005). Consistent with our previous results 
regarding the effect of the cdk inhibitors on the processing and accumulation of the 
HCMV IE1/IE2 and UL37 IE transcripts, the decrease in CTD phosphorylation 
does not occur if the drug is added after 8 h p.i. One clue to explain this restricted 
interval in which cdk activity is required may be found in the differential localiza-
tion of cdk9 and cdk7 at the beginning of the infection. Upon cell entry, incoming 
HCMV genomes localize near ND10, where viral IE transcription begins (Ishov 
and Maul 1996; Ishov et al. 1997) (see the chapter by G. Maul, this volume). 
Following translation, the IE1-72 and IE2-86 proteins return to nucleus and concen-
trate near the ND10. IE1-72 mediates the dispersal of ND10 associated proteins and 
it also disperses, while IE2-86 persists at the site (Kelly et al. 1995; Korioth et al. 
1996; Ahn and Hayward 1997; Ishov et al. 1997; Ahn et al. 1998). We find that as 
early as 4 h p.i., several proteins involved in RNA transcription, including cdk9, 
cdk7, and Ser2-phosphorylated RNA polymerase II, colocalize with IE2-86 in dis-
tinct aggregates (referred to as viral transcriptosomes) adjacent to the ND10 that are 
undergoing dispersal (Tamrakar et al. 2005) (see Fig.  3 ). However, if Roscovitine 
is added at the beginning of the infection, IE2-86 is found in the transcriptosome, 
but cdk7 and cdk9 are not recruited (Kapasi and Spector 2008). In contrast, both 
cdks colocalize with IE2-86 in the transcriptosome if Roscovitine is added after 8 h 
p.i. These results suggest that the formation of a distinct viral transcriptosome at the 
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beginning of the infection serves as a specialized site for recruitment of cellular and 
viral proteins necessary for viral transcription and replication. The correct phospho-
rylation of the RNAP II CTD at these sites is essential for accurate processing of 
the IE transcripts and for transcription of early genes, and it appears that the 
required level of phosphorylation is established within the first 8 h.   

  Perspectives 

 For more than a decade, we have known that HCMV dramatically alters cell cycle 
regulatory pathways, leading to cell cycle arrest. These alterations begin as soon 
as the viral particle enters the cell, but sustained effects require early viral gene 
expression. The molecular mechanisms underlying the viral-mediated effects 
operate at multiple levels, including altered RNA transcription, changes in the 
levels and activity of cyclin-dependent kinases as well as other cellular kinases 
involved in cell cycle control, modulation of protein stability through targeted 
effects on the ubiquitin-proteasome degradation pathway, and movement of 

  Fig. 3  Model of the viral transcriptosome formed at the beginning of the infection. The input 
genome that is deposited at the POD structure functions as the template for IE RNA synthesis. 
Cellular hypophosphorylated RNAP IIa is recruited to the site along with cdk9 and cdk7, which 
hyperphosphorylate RNAP IIa to the transcriptionally active RNAP IIo that serves as a platform 
for RNA processing enzymes. The IE transcripts are synthesized and translated into the IE1-72 
and IE2-86 proteins, which return to this nuclear body. IE1-72 causes POD dispersal and it also 
disperses, while IE2-86 remains at the established transcription site, referred to as the transcripto-
some. The inset is an infected cell nucleus at 8 h p.i. and shows the accumulation of both cdk9 and 
IE2 at several transcriptosomes 
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 proteins to different cellular locations. A key question regarding all of these 
effects is which ones are actually important for viral replication? For example, are 
high levels of cyclin B needed for productive infection or is this simply a side 
effect of altering the ubiquitin-proteasome pathway to allow accumulation of 
some other cellular or viral protein that is required? Future experiments involving 
knockdown of gene expression through the use of siRNAs or induced overexpres-
sion with lentiviral vectors should provide some insight into these questions. It is 
clear, however, that the virus depends on the host cell being in the G 

0
 /G 

1
  phase to 

initiate the infection and subverts some G2/M phase activities of the cell for later 
stages of replication. At this point, only a few viral genes, primarily input virion 
proteins and IE gene products, have been implicated in these changes. It is critical 
to identify the other genes, particularly those expressed during the early phase just 
prior to initiation of viral DNA replication. It also should be recognized that most 
of the studies to date have been done in fibroblasts, and it will be important to 
examine the effects of the viral infection on host cell regulatory pathways in other 
relevant target cells such as endothelial cells and monocytes.   
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