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    Abstract   An upregulation of cellular signaling pathways is observed in multiple 
cell types upon human cytomegalovirus (HCMV) infection, suggesting that a global 
feature of HCMV infection is the activation of the host cell. HCMV initiates and 
maintains cellular signaling through a multitiered process that is dependent on a 
series of events: (1) the viral glycoprotein ligand interacts with its cognate receptor, 
(2) cellular enzymes and viral tegument proteins present in the incoming virion are 
released and (3) a variety of viral gene products are expressed. Viral-mediated cel-
lular modification has differential outcomes depending on the cell type infected. In 
permissive cell types, such as diploid fibroblasts, the upregulation of cellular signal-
ing pathways following infection can initiate the viral gene cascade and promote 
the efficient transcription of multiple viral gene classes. In other cell types, such as 
endothelial cells and monocytes/macrophages, the upregulation of cellular pathways 
initiates functional host changes that allow viral spread to multiple organ systems. 
Together, the modification of signaling processes appears to be part of a thematic 
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strategy deployed by the virus to direct the required functional changes in target 
cells that ultimately promote viral survival and persistence in the host.    

   Introduction 

 HCMV is a species-specific β-herpesvirus found in more than 60% of the human 
population (Mocarski et al. 2007). HCMV causes severe disease in immunocom-
promised individuals, where it is a major opportunistic pathogen in AIDS and 
organ transplant patients, in congenitally infected neonates, and in cancer patients 
undergoing chemotherapy (see the chapter by W. Britt, this volume). In the immu-
nocompetent host, HCMV causes mononucleosis (see the chapter by W. Britt, this 
volume) and is associated with chronic human diseases such as atherosclerosis and 
restenosis (Melnick et al. 1993; Speir et al. 1994; Waldman et al. 1997; Streblow 
et al. 1999, 2001a) and some forms of cancer (Shen et al. 1993; Cobbs et al. 2002; 
Soderberg-Naucler 2006). 

 A hallmark of HCMV infection is a broad cellular tropism in vivo that results in 
the infection of most host organ tissues (Myerson et al. 1984; Sinzger and Jahn 1996; 
Mocarski et al. 2007; see the chapter by C. Sinzger et al., this volume). HCMV patho-
genesis is a direct result of the infection of host organs and the resulting overt organ 
disease (Sinzger and Jahn 1996; Mocarski et al. 2007). From an evolutionary stand-
point, the ability to infect multiple organs provides the virus access to multiple portals 
of viral exit and, consequently, allows viral shedding in most human body fluids 
(Mocarski et al. 2007). Broad cellular tropism necessitates that the virus possess a 
strategy to productively infect a diverse array of cell types that have unique biochemi-
cal features. Regardless of the diversity of cells found in the human host, all cell types 
utilize cellular signaling pathways as a means of cellular communication and appro-
priate response to their environment (Cooper and Hausman 2007). Thus, cellular sig-
naling from a general standpoint is a common thread among multiple cell types that, 
if exploited correctly, would allow HCMV to transcend the differences among cell 
types. Mechanistically, the exploitation of cellular signaling by the virus provides at 
least one biological explanation for HCMV’s broad tropism in vivo. Certainly viral 
attachment to an infected cell surface is also a determinant of tropism (see the chapter 
by C. Sinzger et al., this volume), but because this chapter focuses on the viral modu-
lation of cellular signaling, we will only discuss how cellular signaling can be 
exploited by the virus to promote persistence and survival in a variety of host cell 
types. Nevertheless, because we (Yurochko et al. 1995, 1997a; Yurochko and Huang 
1999; Bentz and Yurochko, unpublished data) and others (Keay et al. 1995; Boyle et 
al. 1999; Simmen et al. 2001; Compton et al. 2003; Wang et al. 2003; Boehme et al. 
2004; Feire et al. 2004; Wang et al. 2005; Boehme et al. 2006) have strong evidence 
that viral ligand-mediated signaling is stimulated by the same viral glycoproteins 
responsible for viral attachment, fusion, and entry (Britt and Mach 1996), it is likely 
that these two seemingly diverse mechanisms are intimately linked and together pro-
vide key control points for the infection of the host. We propose that cellular signal-
ing is a biological aspect exploited by HCMV during infection (from viral entry to 
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post-entry events) to manipulate a variety of cell types. It is the goal of this chapter 
to provide an overview of the diverse mechanisms HCMV employs to modulate cel-
lular signaling pathways, as well as a discussion of the likely biological rationale for 
why the virus may have evolved a strategy to dysregulate host cell signaling path-
ways following infection.  

  Signaling Overview 

 HCMV infection results in a wide range of cellular changes including changes in 
calcium flux and lipid metabolism, activation of kinase signaling cascades (such as 
calcium/calmodulin-dependent protein kinases, multiple cell cycle-regulated 
kinases, the epidermal growth factor receptor (EGFR), the IκB kinase (IKK) cas-
cade, the mammalian target of rapamycin pathway, various members of the mitogen 
activated protein kinase (MAPK) pathway, the phosphatidylinositol 3-kinase 
(PI(3)K) pathway, and the src family of kinases), cytoskeletal changes, activation 
of cellular transcription factors (such as AP-1, ATF/CREB, E2F, NFκ-B, Sp1), the 
induction of proto-oncogenes and other cellular immediate-early (IE) response 
genes (reviewed in Albrecht et al. 1990, 1993; Evers et al. 2004; DeMeritt and 
Yurochko 2006). Signaling-induced changes in infected cells can loosely be 
grouped into two tiers (Table  1 ): the first tier represents changes that occur prior to 
the initiation of viral gene expression and, thus, are mediated by the virion itself; 
and the second tier represents those changes that occur temporally after the produc-
tion of viral gene products and, thus, are mediated by proteins from the different 
temporal gene classes. The virion itself is a potent signaling player as the viral 
envelope glycoproteins initiate rapid cellular responses upon binding to cognate 
receptors (reviewed in Evers et al. 2004; DeMeritt and Yurochko 2006). 

  Table 1  Summary of viral-associated signaling a  

  Rapid  Delayed  
Modulator effects b  effects b  Function

Viral glycoproteins X  Receptor/ligand-mediated signaling 
Captured cellular enzymes X ? Activation of signaling pathways
Tegument proteins c  X ? Activation of signaling pathways/

    cell cycle regulation
Other viral gene products d  – X Activation of signaling pathways/
    cell cycle regulation 

  a  Individual gene products are discussed in the text
 b  Signaling induced upon HCMV infection can loosely be grouped into the products that regulate 
rapid responses (beginning within minutes of infection) and are caused by modulators associated 
with the virion vs those products that regulate effects later in infection (or delayed compared to 
the rapid effects) and are caused by viral gene products de novo synthesized following infection
 c  Tegument proteins or tegument-associated virion proteins are included together
 d  Other viral gene products in this table represent those gene products that are synthesized de novo 
in the infected cell and are not attributed to virion mediated signaling 
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Glycoprotein-mediated signaling is not the only tool in the virion arsenal, as the 
virion has evolved a mechanism to capture cellular signal modifying enzymes 
(Michelson et al. 1996; Gallina et al. 1999; Nogalski et al. 2007), which can be 
dumped directly into the cytosol following viral entry into host cells. In addition, 
like all herpesviruses, HCMV has a large number of tegument proteins that modu-
late cellular signaling (Mocarski et al. 2007). Lastly, viral gene products synthesized 
following infection can also manipulate host cellular responses (some examples 
include IE proteins that alter the cell cycle and regulate apoptosis (reviewed in 
Castillo and Kowalik 2004; Andoniou and Degli-Esposti 2006) or those viral gene 
products that mimic cellular cytokine/chemokine signaling receptors including 
US28 (reviewed in Streblow et al. 2001b; Stropes and Miller 2004; van Cleef et al. 
2006), a viral G protein-coupled receptor (GPCR), and UL144 (Benedict et al. 
1999; Poole et al. 2006), a tumor necrosis factor-like receptor. Together, it is evi-
dent that HCMV possesses an array of signal-modifying capabilities that are 
deployed over a temporal range during the infection process. The likely outcome of 
this viral-mediated signaling is currently under debate. We suggest the viral-mediated 
cellular modification is required for multiple critical steps in the viral infection 
cycle and that the viral-directed signaling can have different outcomes in different 
cell types. In fibroblasts, for example, the initial signaling seen following receptor/
ligand engagement is reported to promote viral entry (Wang et al. 2003; Feire et al. 
2004; Wang et al. 2005) and then productive infection by promoting efficient gene 
transcription (Caposio et al. 2004; DeMeritt et al. 2004, 2006; DeMeritt and 
Yurochko 2006). In other cell types such as endothelial cells (Bentz et al. 2006) and 
monocytes (Smith et al. 2004b, 2007), viral-mediated signaling can stimulate 
the functional changes in these cells required for hematogenous dissemination of 
the virus. Below we provide a more detailed overview of these different viral-
directed steps controlling signaling. 

  Receptor/Ligand-Mediated Signaling: Viral Glycoproteins 

 Envelope glycoproteins play an essential role in viral attachment and entry (Britt 
and Mach 1996; Mocarski et al. 2007; see the chapter by Μ.K. Isaacson et al., this 
volume). From a signaling standpoint, these molecules are logical players in the 
rapid manipulation of the host cell because they are the first viral molecules to 
contact a target cell. Although HCMV encodes a number of envelope glycoproteins 
(Britt and Mach 1996; Mocarski et al. 2007), glycoprotein B (gB/UL55; Britt and 
Mach 1996) and glycoprotein H (gH/UL75 and its associated partners gL/UL115, 
gO/UL74, and the UL131-UL128 loci; Britt and Mach 1996; Hahn et al. 2004; 
Wang and Shenk 2005a, b; Patrone et al. 2007) are the glycoproteins documented 
to be bona fide signaling molecules (Keay et al. 1995; Yurochko et al. 1997a; Boyle 
et al. 1999; Yurochko and Huang 1999; Simmen et al. 2001; Compton et al. 2003; 
Wang et al. 2003, 2005; Boehme et al. 2004, 2006; Feire et al. 2004). The gH com-
plex was originally shown to stimulate calcium flux (Keay et al. 1995), while we 
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have demonstrated that both gB and gH stimulate the activation of the cellular 
transcription factors, NFκ-B and Sp1 (Yurochko et al. 1997a; Yurochko and Huang 
1999). Other studies confirmed and expanded these results (Boyle et al. 1999; 
Simmen et al. 2001; Wang et al. 2003, 2005; Boehme et al. 2004, 2006) and 
together determined that HCMV fires cellular signal transduction pathways via the 
actions of the major viral glycoproteins, gB and gH. Viral glycoprotein-mediated 
signaling occurs in multiple cell types (fibroblasts, monocytes, endothelial cells, 
etc.), suggesting that the capacity to induce cellular signaling is part of a central 
theme in the viral infection strategy. 

 The recent identification of several cellular receptors for HCMV attachment/
entry that are found on multiple cell types supports this proposal: HCMV glycopro-
teins were recently shown to interact with the epidermal growth factor receptor 
(EGFR; Wang et al. 2003, 2005), integrins (α 
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 ; Feire et al. 2004; Wang 

et al. 2005), and toll-like receptor 2 (TLR2; Compton et al. 2003; Boehme et al. 
2006). From a signaling standpoint, the engagement of these receptors by the virus 
makes sense, as each receptor is biochemically integrated with the signaling 
machinery. EGFR dimerizes upon ligand binding and then directs downstream sig-
naling events via the action of its intrinsic tyrosine kinase (Wang et al. 2003, 2005). 
Integrins do not possess intrinsic kinase activity; however, upon their engagement 
they interact with members of the Src family of tyrosine kinases to modulate down-
stream signaling events (Wang et al. 2003, 2005). Finally, like all TLRs, TLR2 is 
part of a signaling network involving a cascade of players (Compton et al. 2003; 
Boehme et al. 2006). 

 Mechanistically, it has been documented that gB and gH are responsible for the 
engagement of the various cellular receptors (EGFR, the integrins, and TLR2) and 
that, through this receptor/ligand interaction, they rapidly activate signal transduc-
tion pathways (Wang et al. 2003, 2005; Boehme et al. 2006). Wang et al. have 
reported that gB interacts with EGFR and gH interacts with cellular integrins 
(Wang et al. 2003, 2005), demonstrating that individual receptor/ligand events are 
controlled by different viral gene products. gB and gH can also interact with TLR2 
(Boehme et al. 2006), while gB may additionally interact with cellular integrins 
(Feire et al. 2004). All three receptors appear to be present on most cell types, sug-
gesting an evolutionarily conserved mechanism may exist for viral binding and 
receptor engagement during infection of multiple cell types. This possibility is sup-
ported by work showing that EGFR and/or integrins are central determinants of 
signaling and/or attachment/entry in fibroblasts (Wang et al. 2003, 2005), cytotro-
phoblasts (Maidji E et al. 2007), endothelial cells (Bentz and Yurochko 2008) and 
monocytes (Yurochko et al. 1992; Chan et al., unpublished data). Nevertheless, the 
role these receptors play remains controversial, as it was recently reported that 
EGFR was not required for attachment and signaling on some fibroblast, epithelial 
and endothelial cell lines (Isaacson et al. 2007). Thus, it remains unclear if all three 
receptors are utilized on all cell types infected or if different combinations are uti-
lized depending on the cell type. Overall, these findings suggest the following 
general model (discussed in more detail below): gB and gH binding to cellular 
receptors initiates the activation of multiple downstream players including the focal 
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adhesion kinase (FAK), the IKK cascade, the MAPK pathway, and the PI(3)K 
pathway to promote both viral entry and cellular changes such as the activation of 
NFκ-B and other transcription factors required for the transactivation of key cellu-
lar and/or viral genes (Fig.  1 ).  

  Captured Cellular Enzymes 

 The virion has long been known to harbor enzymatic activity (Mar et al. 1981), 
although the nature of this signaling potential has been unresolved. The signaling 
potential present in the virion imparts the virus with another mechanism to rapidly 
mediate distinct cellular changes following infection. Two distinct signaling capa-
bilities are present in the virion: (1) HCMV captures cellular enzymes that directly 
modify the host cell signaling capabilities following viral fusion (discussed in this 
section) and (2) tegument proteins found in the mature virion can directly modulate 
host cell biochemical pathways (discussed in the next section). 

 The virion contains at least four distinct functional enzyme activities of host cell 
origin (Michelson et al. 1996; Gallina et al. 1999; Nogalski et al. 2007). A recent 
mass spectrometry analysis of the HCMV proteome revealed that additional cellular 

  Fig. 1  HCMV binding to cognate receptors initiates signaling cascades. Binding of the envelope 
glycoproteins, gB and gH, to the cellular receptors, EGFR, integrins and TLR2 begin the outside-
in signaling process observed in cells following infection. These known HCMV receptors are 
integrated with cellular signal transduction pathways; thus viral ligand engagement is the stimulus 
to fire downstream signaling processes. The initial receptor/ligand-directed signaling modulates a 
number of pathways, of which a few examples are shown in the drawing. The consequences of 
this outside-in signaling modulated by the viral glycoproteins include viral entry, cellular activa-
tion and transcriptional regulation of cellular and viral genes 
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modulators may exist in the virion (Varnum et al. 2004). Michelson et al. first 
showed that HCMV virions contain serine/threonine protein phosphatase activity 
due to the cellular protein phosphatases PP1 and PP2A (Michelson et al. 1996). 
This work provided key evidence that HCMV captures cellular enzymes capable of 
manipulating phosphorylation. Kinases are also present in the HCMV virion. 
Gallina et al. showed that HCMV possess serine/threonine kinase activity due to 
the cellular kinase, (polo-like kinase 1 (Plk1; Gallina et al. 1999)). Plk1 was shown 
to interact with the major tegument protein, UL83/pp65, identifying a mechanism 
in which cellular products could be captured by the virus during maturation through 
a specific interaction with viral tegument proteins. We identified a second serine/
threonine kinase, casein kinase II (CKII), that is also incorporated into the mature 
virion (Nogalski et al. 2007). The virion CKII possesses potent IκB kinase activity 
and promotes the efficient transactivation of the major IE promoter (MIEP). Why 
would the virus have evolved a mechanism to capture cellular enzymes? Reversible 
phosphorylation via the reciprocal action of kinases and phosphatases is an effec-
tive and rapid mechanism for modulating cellular function (Arena et al. 2005); thus 
this biochemical process is an attractive target for a virus that needs to rapidly 
modulate the host cell for viral infection, survival and persistence. The release of 
captured enzymes may allow an increase in the local concentration of those 
enzymes in the viral microenvironment (Nogalski et al. 2007). It is also possible the 
virion-associated enzymes have a different subcellular localization and thus poten-
tially different targets (Gallina et al. 1999). Additionally, because the virus infects 
multiple cell types with different biological characteristics, the evolution of multi-
ple mechanisms to drive the rapid activation of the cell may ensure sufficient and 
appropriate activation of each cell type following infection.  

  Tegument Protein-Mediated Signaling 

 HCMV possesses a number of tegument proteins that are able to modulate the host 
cell, although many tegument proteins do not have identified functions (Mocarski 
et al. 2007). Because another chapter will cover tegument proteins in detail (see the 
chapter by R. Kalejta, this volume), the signaling potential of select tegument pro-
teins will only briefly be summarized. UL83, the major tegument protein, has been 
shown to block the antiviral response through the inhibition of the cellular tran-
scription factors NFκ-B and interferon regulatory factor 1 (Browne and Shenk 
2003). Other tegument proteins including UL82 (Schierling et al. 2004; Cantrell 
and Bresnahan 2006a; Saffert and Kalejta 2006), UL35 (Schierling et al. 2004), 
US24 (Feng et al. 2006) and UL26 (Stamminger et al. 2002; Munger et al. 2006) 
can also influence the early events involved with MIEP transactivation and IE gene 
expression. Tegument proteins also alter the cell cycle (reviewed in Kalejta and 
Shenk 2002; Kalejta 2004; Mocarski et al. 2007). For example, UL82 promotes cell 
cycle progression through the degradation of Rb family members (Kalejta et al. 
2003; Kalejta and Shenk 2003a, 2003b), while UL69 blocks cell cycle progression 
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by arresting cells in the G 
1
  phase of the cell cycle (Lu and Shenk 1999). Functionally, 

UL82 has also been shown to interact with the cellular protein hDaxx resulting in 
IE gene transcription and viral replication (Cantrell and Bresnahan 2006a, 2006b; 
Saffert and Kalejta 2006; Hwang and Kalejta 2007; see the chapter by R. Kalejta, 
this volume).  

  Other Viral Gene Products That Modulate Signaling 

 Once viral gene transcription begins, HCMV increases its repertoire of signaling 
molecules. For example, the major IE genes (IE1-72/UL123 and IE2/UL122) have 
been shown to interact with a multitude of transcription factors to increase tran-
scription of required viral and cellular genes (reviewed in DeMeritt and Yurochko 
2006; Mocarski et al. 2007), as well as interact with cell cycle regulators such as 
p53, pRB, p107 and others to modulate the cell cycle (reviewed in Kalejta and 
Shenk 2002; Castillo and Kowalik 2004). IE1-72 has also been reported to contain 
intrinsic kinase activity and to activate cells through the targeted phosphorylation 
of members of the E2F family of transcription factors (Pajovic et al. 1997). In addi-
tion, IE1-72 and IE2-86 (Zhu et al. 1995) along with the other IE genes, UL36 
(viral inhibitor of caspase activation; Skaletskaya et al. 2001; McCormick et al. 
2003) and UL37×1 (viral mitochondrial inhibitor of apoptosis; Goldmacher et al. 
1999; McCormick et al. 2003; Reboredo et al. 2004), can modulate various survival 
pathways and provide protection from apoptosis (for additional information see 
Andoniou and Degli-Esposti 2006). HCMV also encodes other proteins with dis-
tinct signaling capabilities such as UL97, a viral kinase that plays a critical role 
during viral infection through its ability to phosphorylate cellular and viral sub-
strates (Prichard et al. 2005); four putative GPCRs (US27, US28, UL33 and UL78) 
that have been shown to bind chemokines, activate G proteins in a manner similar 
to traditional GPCRs, mediate calcium flux, activate various kinases (MAPKs, Src, 
and FAK) and modulate smooth muscle cell migration (reviewed in Streblow et al. 
2001b; Stropes and Miller 2004; van Cleef et al. 2006); and a TNF-like receptor, 
UL144 that activates NFκ-B through a TRAF6-dependent signaling cascade (Poole 
et al. 2006).   

  Biological Rationale for Modulation of Host Cell Signaling 

 There is little doubt that HCMV binding and/or infection of multiple cell types 
induces a sequence of signaling events (more detail provided in DeMeritt and 
Yurochko 2006), of which key points have been discussed briefly above. The 
question that remains is why the virus has evolved an elaborate strategy involving 
a multitiered approach to activate host target cells? The available evidence sug-
gests the viral-induced signaling serves to promote multiple steps required for an 
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efficient infection cycle. In human diploid fibroblasts, gB and gH stimulate signal 
transduction pathways required for viral entry (Wang et al. 2003, 2005; Feire et al. 
2004), demonstrating that rapid signaling serves initially to stimulate entry. The 
same pathways required for this essential first step in the infection process (the 
activation of the EGFR kinase and Src via binding to EGFR and the integrins, 
respectively) also rapidly induce transcription factors such as NFκ-B. In our model, 
this induction is required for efficient transactivation of the MIEP and the produc-
tion of viral IE gene products (DeMeritt et al. 2004), as well as the later viral gene 
classes (DeMeritt et al. 2006). It is likely that this facet of the viral biology, the 
activation of required host cell factors (transcription factors, cell cycle regulators, 
etc.) through the targeted specific activation of signal transduction pathways, is 
repeated for other specific pathways documented to be activated during infection 
of target cells. For example, additional transcription factors such as Sp1 are also 
induced following viral binding to promote the transactivation of the MIEP 
(Isomura et al. 2005; Yurochko et al. 1997a, 1997b). Because other signaling play-
ers such as the virion-associated CKII (Nogalski et al. 2007) and various tegument 
proteins (Romanowski et al. 1997; Stamminger et al. 2002; Schierling et al. 2004; 
Cantrell and Bresnahan 2006a; Feng et al. 2006; Munger et al. 2006; Saffert and 
Kalejta 2006) also promote the efficient expression of the IE gene products, it 
appears that multiple signaling pathways, although biochemically distinct, coordi-
nate their efforts to focus on a single goal for the virus such as the upregulation of 
the MIEP and the initiation of the viral gene cascade. Other steps in the viral infec-
tion cycle are also essential to the infection process; thus it is likely that additional 
viral-mediated signaling pathways converge on a common molecular outcome to 
benefit the virus. An example is the role various tegument proteins and IE gene  
products play in ensuring that the required cellular replicative enzymes are available 
for viral replication (Castillo and Kowalik 2004). 

 Different cell types have distinct signaling capabilities, and even the same signal 
transduction pathway can have divergent downstream consequences in different 
cell types. Thus, we hypothesize that the viral regulation of signaling pathways will 
have different outcomes in cells such as endothelial cells and monocytes, which are 
critical cells for in vivo infection. We recently provided evidence for a unique two-
pronged strategy for hematogenous dissemination involving endothelial cells and 
monocytes: (1) HCMV directly infects vascular endothelial cells (see references 
within Bentz et al. 2006; Mocarski et al. 2007; C. Sinzger et al., this volume), which 
in turn promotes naïve monocyte transendothelial migration and viral transfer to 
these migrating monocytes (Bentz et al. 2006), and (2) HCMV directly infects 
peripheral blood monocytes in order to promote their transendothelial migration 
(Smith et al. 2004a). Following transendothelial migration, both pools of infected 
monocytes differentiate into pro-inflammatory macrophages permissive for the 
replication of the original input virus, even though the original undifferentiated 
monocyte was not permissive for viral replication at the time of infection. The virus 
initiates these functional changes in endothelial cells and monocytes through the 
binding of viral glycoproteins to EGFR and cellular integrins and the resulting 
modulation of downstream signaling cascades such as the PI(3)K and NFκ-B 
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pathways (Smith et al. 2004b; Bentz et al. 2006; Bentz and Yurochko 2008; Chan 
et al., unpublished data; Smith et al. 2007). Thus, these signal transduction 
 pathways do not initially drive viral gene expression in these cell types, but instead 
induce cellular changes required for motility and firm adhesion to endothelial cells 
and transendothelial migration, suggesting that the biological rationale for the 
activation of these pathways is to modulate functional changes in cells of the 
 vasculature that favor viral spread to and persistence within host organs. The role 
EGFR and integrins play in entry and attachment of endothelial cells and mono-
cytes is not clear, although we have data that rapid signaling occurs through these 
receptors in both cell types (Bentz and Yurochko 2008;  Chan et al., unpublished 
data), similar to that seen in fibroblasts (Wang et al. 2003, 2005; Feire et al. 2004), 
suggesting that these receptors are globally relevant to infection of multiple cell 
types. Overall, we propose that viral-induced signaling creates distinct cell-type-
specific signaling signatures such that viral infection proceeds appropriately in 
each cell type (Fig.  2 ).  

  Fig. 2  Potential biological outcome of the viral-mediated signaling. Although unresolved, it is 
likely that the initially receptor/viral-ligand-mediated signaling promotes viral entry into target 
cells, regardless of cell type. This same receptor/ligand-mediated signaling also activates multiple 
biochemical pathways in target cells; both common pathways and cell-type-specific pathways are 
activated. The other potential mechanisms discussed in this review such as the cellular enzymes 
and tegument proteins that come in with the virion, as well as various synthesized viral gene 
products, also play a critical role in cellular modification. The net outcome of the viral-mediated 
signaling appears to vary depending on the cell type: for example, as represented in this drawing, 
productive infection is promoted in fibroblasts, while long-term persistence and survival of the 
virus is promoted in endothelial cells and monocytes/macrophages. Note: monocytes are not 
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  Role of Signaling in Pathogenesis 

 Aberrant signaling and transcription factor regulation is associated with a multitude 
of diseases that including birth defects, cancer, and chronic inflammatory diseases 
such as cardiovascular disease (Kim et al. 2006). Cell cycle abnormalities are 
equally associated with diseases such as cancer and cardiovascular disease (Castillo 
and Kowalik 2004; Bentz and Yurochko 2008). Because these same diseases are 
associated with or caused by HCMV infection, modulation of multiple signaling 
transduction pathways, although beneficial to the virus, may be a molecular mecha-
nism tying HCMV infection to the onset or severity of viral-mediated disease 
(reviewed in Evers et al. 2004; DeMeritt and Yurochko 2006; Soderberg-Naucler 
2006). Certainly more work is needed to understand the possible direct role that 
viral-mediated cellular activation has on the infected host. It is also likely that these 
viral-manipulated cellular pathways required for viral pathogenesis may serve as 
new therapeutic targets for antiviral agents.  

  Final Thoughts 

 Together, it appears that HCMV has evolved a strategy for viral infection, survival, 
and persistence within the host that involves a complex biochemical manipulation of 
the host. Because of the possibility of severe effects on the host of unchecked signal-
ing, HCMV as an evolutionarily ancient virus may also have evolved a strategy to 
mitigate the pathological consequences of this signaling strategy. For example, a 
recent report shows that HCMV through the UL83/pp65 tegument protein downreg-
ulates NFκ-B activity (Browne and Shenk 2003). Although this report runs counter 
to the data showing that NFκ-B activity is required for viral gene expression 
(Caposio et al. 2004, 2007; DeMeritt et al. 2004, 2006; Nogalski et al. 2007), if one 
considers that the virus must walk a fine line when activating a cell between those 
changes required for viral infection and the activation of cellular antiviral/host 
defense pathways and/or pathogenic consequences, these divergent results may rep-
resent two sides of the same coin. Perhaps this is why other reports have shown that 
NFκ-B activation negatively regulates or at least does not upregulate MIEP activity 
(Benedict et al. 2004; Isomura et al. 2004; Eickhoff and Cotten 2005; Gustems et al. 
2006) and that for example the viral gene product, IE2p86, can act as a negative 
regulator of some NFκ-B-dependent cellular promoters (Taylor and Bresnahan 
2006a, 2006b; Gealy et al. 2007). Using this example as a model, we argue that 

 Fig. 2  (continued) productive for viral replication following primary infection, but in response 
to the viral-mediated signaling, as represented in the drawing, they differentiate into macrophages 
that support viral replication (Smith et al. 2004a), thus both monocytes and their differentiated 
counterparts, macrophages, are critical for viral spread and persistence 
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HCMV needs to activate threshold levels of NFκ-B to initiate gene transcription 
(cellular and/or viral), but because high levels of this host factor are detrimental to 
the virus (generation of antiviral responses) and the host (pathogenic consequences), 
the virus has a mechanism to balance and moderate this transcription factor, or in a 
more general sense cellular signaling pathways; the virus thus walks a fine line by 
activating the factors necessary to allow productive infection and life-long persist-
ence within the host with only minimal pathological consequences.   
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