

Lecture Notes in Computer Science 3867
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Edmund K. Burke Hana Rudová (Eds.)

Practice and Theory of
Automated Timetabling VI

6th International Conference, PATAT 2006
Brno, Czech Republic,August 30–September 1, 2006
Revised Selected Papers

13

Volume Editors

Edmund K. Burke
University of Nottingham
School of Computer Science
Jubilee Campus, Nottingham NG8 2BB, UK
E-mail: ekb@cs.nott.ac.uk

Hana Rudová
Masaryk University
Faculty of Informatics
Botanická 68a, Brno 602 00, Czech Republic
E-mail: hanka@fi.muni.cz

Library of Congress Control Number: 2007941262

CR Subject Classification (1998): F.2.2, G.1.6, G.2, I.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77344-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77344-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12205875 06/3180 5 4 3 2 1 0

Preface

This volume contains a selection of the papers presented at the Sixth Inter-
national Conference on the Practice and Theory of Automated Timetabling
(PATAT) which was organized in Brno, Czech Republic, from August 30 to
September 1 of 2006.

The PATAT conferences, which are held every 2 years, bring together re-
searchers and practitioners from across the broad spectrum of inter-disciplinary
research activity in search methodologies for automated timetable generation.
This includes university timetabling, school timetabling, personnel rostering,
transportation timetabling, sports scheduling. The programme of the 2006 con-
ference featured 70 presentations which represented the state of the art in auto-
mated timetabling: there were four plenary papers, 17 full papers, 41 extended
abstracts, and eight system demonstrations. After the conference, all authors
were invited to submit their papers to a second round of rigorous refereeing for
this volume of selected revised papers. We are pleased to have accepted 25 pa-
pers for this volume. This figure represents the highest number of acceptances
in a PATAT post-proceedings volume and is a testament to the high standards
of the papers that were submitted.

The organization of the book is structured around particular problem areas.
Several papers are devoted to employee timetabling. It is not surprising to see
that most of these papers are concerned with health care personnel scheduling
which, historically, has always been an active application area at PATAT. The
last, more general, paper in this section studies the relationship with production
scheduling. The section on sports timetabling contains papers which are mostly
oriented towards various tournament timetabling problems. The last article on
referee assignment has a close relationship with employee timetabling. As usual,
the volume contains a wide range of papers on educational timetabling. During
the conference, various discussions were generated by Barry McCollum’s plenary
talk where questions on the applicability of the current academic research on
real-world university timetabling were posed. This is an important issue and it
is likely to impact significantly upon future timetabling research.

Of course, a very important aspect of the presented papers, across all ap-
plications, is represented by the search methodologies that are presented and
discussed. This volume presents a wide variety of new and innovative techniques
which represent an important contribution to the timetabling research literature.
We think that this work provides a strong platform for the future and we look
forward to the ongoing success of the conference series.

The meeting in Brno was the sixth in the PATAT series of international
conferences. The first five conferences were held in Edinburgh (1995), Toronto
(1997), Konstanz (2000), Gent (2002), and Pittsburgh (2004). Selected papers

VI Preface

from these conferences have all appeared in the Springer Lecture Notes in Com-
puter Science series. The full references are:

Edmund K. Burke and Peter Ross (Eds.): Practice and Theory of Auto-
mated Timetabling, 1st International Conference, Edinburgh, UK, Au-
gust/September 1995, Selected Papers, Lecture Notes in Computer Sci-
ence, Vol. 1153, Springer, 1996.

Edmund K. Burke and Michael Carter (Eds.): Practice and Theory of
Automated Timetabling, 2nd International Conference, Toronto, Canada,
September 1997, Selected Papers, Lecture Notes in Computer Science,
Vol. 1408, Springer, 1998.

Edmund K. Burke and Wilhelm Erben (Eds.): Practice and Theory of
Automated Timetabling, 3rd International Conference, Konstanz, Ger-
many, August 2000, Selected Papers, Lecture Notes in Computer Science,
Vol. 2079, Springer, 2001.

Edmund K. Burke and Patrick De Causmaecker (Eds.): Practice and
Theory of Automated Timetabling, 4th International Conference, Gent,
Belgium, August 2002, Selected Papers, Lecture Notes in Computer Sci-
ence, Vol. 2740, Springer, 2003.

Edmund K. Burke and Michael Trick (Eds.): Practice and Theory of Au-
tomated Timetabling, 5th International Conference, Pittsburgh, USA,
August 2004, Selected Papers, Lecture Notes in Computer Science, Vol.
3616, Springer, 2005.

Edmund K. Burke and Hana Rudová (Eds.): Practice and Theory of
Automated Timetabling, 6th International Conference, Brno, Czech Re-
public, August–September 2006, Selected Papers, Lecture Notes in Com-
puter Science, Vol. 3867, Springer,. (This volume.)

The seventh conference will be held in Montreal, Canada, August 2008. See
http://www.asap.cs.nott.ac.uk/patat/patat-index.shtml for information on the
conference series.

We would like to express our gratitude to the large number of people who
contributed to the excellent conference in Brno and who worked very hard to
prepare this volume. The Steering Committee ensures that the series goes from
strength to strength. The Programme Committee represents the pool of referees
for both rounds of the reviewing process. The papers for this volume were care-
fully refereed by four members of the Programme Committee. Their insight has
meant that many of the papers were significantly improved during the reviewing
process. We should also extend our thanks to all the authors who carried out a
significant amount of work to produce papers of the current high level of quality.
Our thanks also go to Piers Maddox, our copy editor, who, as usual, prepared
the volume to an extremely high standard of formatting and typesetting.

We would particularly like to thank the Faculty of Informatics at Masaryk
University for hosting the conference. We are also grateful to all the members

Preface VII

of the Organizing Committee, who helped so much to ensure that the confer-
ence was a success. A very special thank you should go to Adam Rambousek
for his support and for granting us the permission to use his conference man-
agement system. We would also like to express our gratitude to Jakub Mareček
for his assistance with the typesetting of the conference proceedings and Lenka
Bartošková for her assistance with the budget. Particular thanks should also go
to Emma-Jayne Dann for her administrative support. Last but not least, we
would like to thank the conference sponsors: ORTEC bv, eventMAP Ltd, CEL-
CAT, AVmedia, a.s., and the Ministry of Education, Youth and Sports of the
Czech Republic for their support under research intent No. 0021622419.

We are, of course, also very grateful to all the delegates. They helped to create
a wonderful atmosphere at the conference in Brno. We are looking forward to
seeing them together again at the next conference in Montreal in the Summer
of 2008.

July 2007 Edmund K. Burke
Hana Rudová

Organization

Programme Committee

Edmund Burke (Co-chair) University of Nottingham, UK
Hana Rudová (Co-chair) Masaryk University, The Czech Republic
Hesham Alfares King Fahd University, Saudi Arabia
Viktor Bardadym Noveon Inc., Belgium
James Bean University of Michigan, USA
Peter Brucker University of Osnabrück, Germany
Michael Carter University of Toronto, Canada
Peter Cowling University of Bradford, UK
Patrick De Causmaecker Katholieke Universiteit, Leuven, Belgium
Kathryn Dowsland Gower Optimal Algorithms Ltd., UK
Andreas Drexl University of Kiel, Germany
Wilhelm Erben University of Applied Sciences Konstanz,

Germany
Jacques A. Ferland University of Montreal, Canada
Michel Gendreau Centre de Recherche sur les Transports,

Montréal, Canada
Alain Hertz Ecole Polytechnique de Montréal, Canada
Jeffrey H. Kingston University of Sydney, Australia
Raymond Kwan University of Leeds, UK
Gilbert Laporte Université de Montréal, Canada
Vahid Lotfi University of Michigan-Flint, USA
Barry McCollum Queen’s University and eventMAP Ltd., UK
Amnon Meisels Ben-Gurion University, Beer-Sheva, Israel
Keith Murray Purdue University, USA
Thiruthlall Nepal Durban Institute of Technology, South Africa
Ender Özcan Yeditepe University, Turkey
Ben Paechter Napier University, Edinburgh, UK
Gilles Pesant Ecole Polytechnique de Montréal, Canada
Sanja Petrovic University of Nottingham, UK
Jean-Yves Potvin Université de Montréal, Canada
Celso Ribeiro Universidade Federal Fluminense, Brazil
Rong Qu University of Nottingham, UK
Andrea Schaerf Università di Udine, Italy
Jan Schreuder University of Twente, Enschede,

The Netherlands
Jonathan Thompson Cardiff University, UK
Paolo Toth University of Bologna, Italy
Michael Trick Carnegie Mellon University, USA

X Organization

Greet Vanden Berghe KaHo St-Lieven, Belgium
Stefan Voss University of Hamburg, Germany
Dominique de Werra EPF-Lausanne, Switzerland
George M. White University of Ottawa, Canada
Michael Wright Lancaster University, UK
Jay Yellen Rollins College, USA

Organizing Committee

Masaryk University, The Czech Republic

Hana Rudová Chair
Tomáš Černý Poster and Web Design
Dagmar Janoušková
Dalibor Klusáček
Iva Krejč́ı
Petra Křivánková
Jakub Mareček ISBN Proceedings
Adam Rambousek Conference Management System
Martin Šmérek

University of Nottingham, UK

Emma-Jayne Dann

Steering Committee

Edmund K. Burke (Chair) University of Nottingham, UK
Ben Paechter (Treasurer) Napier University, Edinburgh, UK
Patrick De Causmaecker Katholieke Universiteit, Leuven, Belgium
Wilhelm Erben University of Applied Sciences Konstanz,

Germany
Jeffrey H. Kingston University of Sydney, Australia
Amnon Meisels Ben-Gurion University, Beer-Sheva, Israel
Hana Rudová Masaryk University, The Czech Republic
Michael Trick Carnegie Mellon University, USA
George M. White University of Ottawa, Canada

Table of Contents

General Issues

A Perspective on Bridging the Gap Between Theory and Practice in
University Timetabling . 3

Barry McCollum

Very Large-Scale Neighborhood Search Techniques in Timetabling
Problems . 24

Carol Meyers and James B. Orlin

Measurability and Reproducibility in University Timetabling Research:
Discussion and Proposals . 40

Andrea Schaerf and Luca Di Gaspero

Employee Timetabling

Physician Scheduling in Emergency Rooms . 53
Michel Gendreau, Jacques Ferland, Bernard Gendron,
Noureddine Hail, Brigitte Jaumard, Sophie Lapierre,
Gilles Pesant, and Patrick Soriano

A Flexible Model and a Hybrid Exact Method for Integrated Employee
Timetabling and Production Scheduling . 67

Christian Artigues, Michel Gendreau, and Louis-Martin Rousseau

Memes, Self-generation and Nurse Rostering . 85
Ender Özcan

An Evaluation of Certain Heuristic Optimization Algorithms in
Scheduling Medical Doctors and Medical Students 105

Christine A. White, Emilina Nano, Diem-Hang Nguyen-Ngoc, and
George M. White

Timetabling of Meetings

Scheduling Research Grant Proposal Evaluation Meetings and the
Range Colouring Problem . 119

Patrick Healy

Sports Timetabling

Constructive Algorithms for the Constant Distance Traveling
Tournament Problem . 135

Nobutomo Fujiwara, Shinji Imahori, Tomomi Matsui, and
Ryuhei Miyashiro

XII Table of Contents

Scheduling the Brazilian Soccer Tournament with Fairness and
Broadcast Objectives . 147

Celso C. Ribeiro and Sebastián Urrutia

Referee Assignment in Sports Leagues . 158
Alexandre R. Duarte, Celso C. Ribeiro, Sebastián Urrutia, and
Edward H. Haeusler

A Branch-and-Cut Algorithm for Scheduling the Highly-Constrained
Chilean Soccer Tournament . 174

Thiago F. Noronha, Celso C. Ribeiro, Guillermo Duran,
Sebastian Souyris, and Andres Weintraub

Course Timetabling

Modeling and Solution of a Complex University Course Timetabling
Problem . 189

Keith Murray, Tomáš Müller, and Hana Rudová

Timetabling Problems at the TU Eindhoven . 210
John van den Broek, Cor Hurkens, and Gerhard Woeginger

The Teaching Space Allocation Problem with Splitting 228
Camille Beyrouthy, Edmund K. Burke, Dario Landa-Silva,
Barry McCollum, Paul McMullan, and Andrew J. Parkes

Solving the University Timetabling Problem with Optimized
Enrollment of Students by a Self-adaptive Genetic Algorithm 248

Radomı́r Perzina

School Timetabling

A Case Study for Timetabling in a Dutch Secondary School 267
Peter de Haan, Ronald Landman, Gerhard Post, and
Henri Ruizenaar

Scheduling School Meetings . 280
Franca Rinaldi and Paolo Serafini

Hierarchical Timetable Construction . 294
Jeffrey H. Kingston

The KTS High School Timetabling System . 308
Jeffrey H. Kingston

Examination Timetabling

A Novel Fuzzy Approach to Evaluate the Quality of Examination
Timetabling . 327

Hishammuddin Asmuni, Edmund K. Burke,
Jonathan M. Garibaldi, and Barry McCollum

Table of Contents XIII

Linear Linkage Encoding in Grouping Problems: Applications on Graph
Coloring and Timetabling . 347

Özgür Ülker, Ender Özcan, and Emin Erkan Korkmaz

Ant Algorithms for the Exam Timetabling Problem 364
Michael Eley

An Extensible Modelling Framework for Timetabling Problems 383
David Ranson and Samad Ahmadi

An Experimental Study on Hyper-heuristics and Exam Timetabling 394
Burak Bilgin, Ender Özcan, and Emin Erkan Korkmaz

Author Index . 413

General Issues

A Perspective on Bridging the Gap Between

Theory and Practice in University Timetabling

Barry McCollum

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University, University Road, Belfast BT7 1NNN, Ireland

b.mccollum@qub.ac.uk

Abstract. The study of the relationship and interaction between the
work carried out in the academic literature and the requirements of uni-
versity administrators is essential if ideas generated by research are to
benefit every-day users. Conversely, it is crucial that the needs of the
timetabling community influence the direction taken by research if high-
quality practical solutions are to be produced. A main objective of the
work presented here is to provide up-to-date information which will en-
able researchers to further investigate the area of timetabling research
in relation to the generation of robust and flexible techniques which
can cope with complexities experienced during implementation in ‘real
world’ scenarios. Furthermore, although not discussed here in detail, it
is essential, from a commercial perspective, that these developed lead-
ing edge techniques are incorporated and used within general applicable
timetabling tools. The aim of this paper is to motivate the discussion
required to bridge this timetabling gap by bringing timetabling research
and educational requirements closer together.

1 Introduction and Context

In the recent international review of Operational Research in the UK (com-
missioned by the Engineering and Physical Sciences Research Council), a major
identified weakness in the current approach to Operational Research is described
as follows [50]:

. . . a gap still remains between the output of a successful research project
and what is needed for direct use by industry.

In general, the area of educational timetabling is one such area. Our research-
based spin-out company, eventMAP Limited, has an important role to play with
respect to this ‘gap’ as it is in a unique position to integrate leading edge research
techniques with the requirements of the user base in the provision of timetabling
solutions. One of the primary overall aims of the company is to specify software
which acts as an enterprise resource planning tool as well as a management
information service, informing on strategic ways forward for the need for, use of
and allocation of resources within an institution. A major aspect of the adopted
strategy for achieving this is to highlight the important aspects of institutional

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 3–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 B. McCollum

requirements to researchers in the field while updating algorithmic techniques
within the software, thus enabling research solutions to be produced which are
both workable and of a high quality. The intention of this paper is to focus on the
initial part of the strategy by reporting on the needs of educational institutions
from a practical point of view in terms of two main areas where timetabling
is required, i.e. examination and course timetabling. In each area, a number of
challenges are detailed which are based on the author’s experience of working
in the area from both an academic and practical view point. It is stressed that
these challenges certainly do not represent all of the issues that require work
from researchers, rather they represent a selection of key themes which, in the
author’s view, will help bridge the identified gap and move the area of educational
timetabling to a new level both in research and practical terms.

2 Examination Timetabling

The examination timetabling problem, studied in numerous papers in the PATAT
conference series [15,16,22,40,61], is characterized by a set of students taking a set
of exams over a specified time period within the context of various constraints.
The quality of the timetable is normally measured as a function of best spread of
examinations per student though some notable exceptions do occur [8,70]. Vari-
ous algorithms have been used with their effectiveness being measured in relation
to a standard set of benchmark data. An up-to-date review is provided in [72].
In addition to the PATAT Conference series, many papers have been published
on specific techniques along with reporting of various surveys [37,76]. It is worth
noting that research in this area has been instrumental in the continued devel-
opment of the field of search methodologies and, in particular, metaheuristics.
Although it is not intended to provide a general commentary on the approaches
adopted to date it is possible to argue that the nature of the gap between re-
search and practice has not been aided by the simplicity of the current datasets,
e.g. the lack of substantial benchmark data with sufficient room, constraint and
solution modelling data. It is expected that the release of six new datasets [30]
along with a dedicated web service to the research community via the web site
at http://www.cs.nott.ac.uk/∼rxq/data.htm will go a long way to remedy-
ing this situation. This service will also act as a repository of information relating
to techniques and solutions generated and will enable researchers to easily and
accurately test and compare approaches.

EventMAP Limited released the latest version of its flagship examination
product, Optimexam, in January of 2006. An earlier version of the software was
presented at the PATAT conference in Konstanz, 2000 [61]. The additional func-
tionality made available through this new version will be discussed at the con-
ference during a software presentation [23]. In general, the aim of improving
Optimexam is to make the system as intelligent and intuitive as possible, provid-
ing maximum information to the institutional administrator, allowing informed
strategic and managerial decisions to be made. This has been achieved through
the inclusion of the user in all stages of the ‘examination modelling’ process. It

A Perspective on Bridging the Gap Between Theory and Practice 5

is important to note that although not described in detail here, the ‘gap’ be-
tween the needs of the user and the provision of software is also being tackled
within the company by the development of a close working relationship with
users. Feedback from this process which is relevant to researchers includes mod-
elling aspects of the information, algorithmic and solution development, all of
which represent significant challenges for the research community. The following
discussion is concentrated around this reported examination modelling process.

2.1 Building the Institutional Model

The development of examination timetables within institutions is a multi-phase
procedure that is dependent on varying criteria at each stage. Firstly, a structure
has to be decided on before exams and students are assigned, e.g. the length and
format of the time period together with the ‘diet’ of rooms which are to be made
available. Secondly, data on exams and associated constraints have to be added
before the student information is considered. The stage and degree of automation
is highly dependent on the procedures adopted within the institution. This multi-
stage process is referred to here as building the ‘institutional model’. This process
encompasses two main aspects: information and solution modelling.

Information Modelling. Information modelling can be divided into data and
constraint modelling. The base examination data from which a workable solution
is achieved are composed of student enrolment, exam and space data. In addi-
tion, the construction of an overall solution is phased due to the information
environment within which the examination process takes place. In practice, a
solution is often attained based on a percentage of the actual data due to incom-
plete and inaccurate data from the student administration systems. Ultimately
the algorithms applied must therefore construct solutions working with a degree
of uncertainty. The inadequacies of the data set-up therefore represent the first
challenge to the timetabling community. It is suggested that there are two pos-
sible approaches to solving this problem, i.e. either solutions are sought with
associated repair mechanisms or robust optimisation techniques are used which
produce solutions that are ‘good’ for an agreed range of input values. Under
this scenario, a solution would be sought that remains feasible for all potential
input data values. Although some work is evident in the literature in relation to
the first of these approaches in relation to educational timetabling [44,54], little
attention has been paid to the second.

Constraint modelling involves setting up a range of criteria which effectively
describes the boundaries within which a solution should be constructed. Con-
straints used in institutions have been reported in 1996 [21]. Since then, in the
UK in particular, there has been a steady increase in complexity regarding this
issue with the implementation of increasingly flexible modular course structures
by many universities. The central production and coordination of the associated
examination timetable has become increasingly difficult with more examination
offerings having to be timetabled in such a manner so as to offer students maxi-
mum spread throughout the session while ensuring space usage is maximised. In

6 B. McCollum

addition, many new constraints have been added to the overall problem to accom-
modate all types of special needs of students. An example of this was reported
in the Times Higher Educational Supplement in March of 2006 where students
from a Muslim background require Fridays free of examinations [79]. This and
other additional soft constraints further complicate the modelling process and
the scope of potential solutions. It is essential these are documented and incorpo-
rated into the modelling process as, for example, at our leading implementation
site, 9% of students in the 2004/05 academic year had special needs with regards
to their examination requirements. The second challenge is therefore to redefine
the problem in terms of recent identified changes. This can be achieved by get-
ting access and reporting on practical examples of constraints and the processes
involved. The PATAT conference series and the close link with eventMAP lim-
ited is of particular relevance here as practical issues as well as datasets can
be added to the research base on a continual basis. Another important aspect
of constraint modelling is the structure of the examination session, i.e. session
modelling. Two features of this are detailed below.

In establishing an institutional model for the examination process, one of the
major issues for many institutions is the potential relaxing of a constraint which
has hitherto been considered ‘hard’, i.e. the imposing of certain time periods
within the day structure. For example, a day may be split into two periods of
three hours in length, one beginning at 9am and the other beginning at 2pm.
Analysis of various solutions produced by eventMAP has shown that this is the
single biggest factor in relation to poor usage of time and space and hence a
major contributory factor to poor overall solutions. This is chosen here as it is
an excellent example of a hard constraint which needs to be changed to move the
examination timetabling forward from a practical point of view. Before leaving
the established ‘period based’ approach to one side, it is essential to understand
the required needs and the extent of ‘non-period’ based timetabling. The period
based nature of the problem needs to be investigated to establish a model where
examinations can be scheduled during any part of the defined day. This issue
is related to recent work with respect to a redefinition of the nurse scheduling
problem [18] where metaheuristic techniques which have been used to manage
this time interval coverage have produced the best results so far on the presented
data. Due to the similarity of the nurse rostering and examination timetabling
problems it is considered appropriate that these techniques are investigated. The
concept of ‘time interval’ was introduced, where instead of formulating the staff
requirements as the number of personnel needed per shift type for each day of
the planning period, time interval requirements allowed for the representation
of the personnel requirements per day in terms of start and end times of person-
nel attendance. As with the nurse scheduling example, an updated formulation
would enable the provision of a greater number of time slots and would reduce
the amount of unproductive time currently in existence.

It is clear that institutions involved in the process of carrying out the ini-
tial stage of the institutional modelling process often do so blindly. That is to
say, they base the timetable on new data but attempt to superimpose this on

A Perspective on Bridging the Gap Between Theory and Practice 7

existing models of how the examination sessions should progress. For example,
an existing model for a particular institution may be a certain number of pe-
riods over a designated time period with a certain number of rooms. This, in
part at least, is related to inadequate methods which allow users to understand
how solutions are being created. For example, space considerations are often an
afterthought with the primary aim being the actual creation of a timetable. No
help is afforded to the users in directing them towards a solution which is ‘right’
for the institution. Before going on to the important issue of solution modelling
in the next section it is important to note that the investigation of similarity of
data to previous datasets from the same or indeed other institutions is impor-
tant if efficient and effective models are to be found. Continuing on from recent
work [19,20] on similarity measurements between datasets, novel techniques need
to be investigated to establish how changes in individual datasets from year to
year affect the nature of the examination set up and ultimately the algorithmic
methods applied.

Solution Modelling. Solution modelling is concerned with the construction of
a solution in terms of what is deemed important to the institution. Currently,
the majority of the work in evaluating a solution is based on the production of
a single solution from each execution of the algorithm whose value is measured
by a single objective weighted sum of soft constraints. There are some excep-
tions though: for example, in paper [8], the quality of a constructed timetable is
considered in terms of the average penalty per student and the highest penalty
imposed on any one student. Although research has been carried out in mod-
elling the problem as a multi-criteria/objective problem [14,69] this work has
not yet been implemented into a generalised tool. The responsibility is currently
on the user to model the problem accurately at the constraint modelling phase
and subsequently ‘leave’ it to the algorithm to produce the ‘best solution’. This
has the effect of the user feeling ‘frozen’ out of the solution construction phase
and gives the impression that this is the best solution based on the constraint
set-up process. Of course, this is not the case with many solutions being possi-
ble which ‘best’ fit the constraints set-up. Paquete et al. [67] carried out work
in which individual constraints were given preference at various stages of the
process. This is similar to how the process of solution construction is carried
out in a number of institutions with, for example, the effectiveness of a solution
being measured as the ‘number of students with two examinations in a day’. It
is clear that the user requires a number of solutions to be presented with the dif-
ferences explained intuitively, thus allowing the user to decide on what solution
is the ‘best’ to meet the institutions needs. It is suggested here that this could be
achieved by a combination of techniques incorporating Pareto optimization and
fuzzy techniques: e.g., the user chooses the characteristics of the solutions they
would like to see from a number of fuzzy sets. This could possibly be translated
into a choice function for discriminating between the non-dominated Pareto so-
lutions generated by a multi-objective algorithmic technique. It is stressed that
this is only one possible approach which could be used to address this important
issue. More work is required on how the quality of solutions are measured. The

8 B. McCollum

challenge for researchers is the provision of a solution where the user understands
the trade-offs between the original objectives.

Once a solution is being generated, it is normal to have a construction phase
followed be an improvement phase. In both cases there have been many heuris-
tic techniques applied (see [37]). Recent work has shown promise in relation to
using a combination of heuristics in relation to the initial construction [7]. Re-
sults on the benchmark datasets have got increasingly better over the years as
more and more metaheuristic techniques have been applied and domain-specific
knowledge has been increasingly incorporated into the approaches [72,37]. One
criticism of this approach is that the developed techniques have become spe-
cialised in relation to the benchmark datasets at the possible cost of generality,
i.e. techniques which can produce ‘good’ results when applied across a wide
range of other real-world scenarios. Recently, in terms of metaheuristics, it has
been shown that changing the neighbourhood structure has been effective. It
is felt that the hyperheuristics approach (heuristics to choose heuristics) [31]
undoubtedly offers promise as this methodology is based on raising the level of
generality by aiming to automatically apply the correct heuristic or metaheuris-
tic at the correct stage of the problem, be that in the construction or indeed
the improvement phase. Currently, Optime enables the timetabling algorithm
to be varied depending on the user algorithmic modelling process. These obser-
vations are the result of a close working relationship with five principal users
in the UK and they currently represent the basis of further research [30]. Cur-
rently the combinations of algorithmic structures available are Saturation degree
(Heuristic Method) [36], Adaptive [34] and Great Deluge during an additional
improvement cycle [33]. The algorithm set-up thus enables the user to have con-
trol over the time spent on various aspects of its operation. This is a first step in
involving the user at a higher level of the algorithmic modelling of the problem
and is in response to the observation that various algorithmic set-ups perform
better on different datasets. It is important to understand why various meta-
heuristic and combination of metaheuristics work better in particular situations.
One challenge to the research community is therefore to explore how new search
methodologies [1,2,13,34] can underpin the development of more widely applica-
ble timetabling systems. Indeed this is one of the main motivating factors for
the current level of interest in hyperheuristic research [25,26,31].

3 Course Timetabling

The university course scheduling problem is concerned with groups or classes of
students following a particular defined pathway or course which has associated
events that require the allocation of time and resources. Recent definitions of the
course timetabling problem can be found in [74,76]. As with the university exam-
ination problem, a solution requires a number of hard and soft constraints to be
satisfied. Similarly, the central production and coordination of the course time-
table is essential as more modules and associated events have to be timetabled
in such a manner as to, firstly, offer students maximum flexibility of choice,

A Perspective on Bridging the Gap Between Theory and Practice 9

secondly, to provide flexibility for staff and, thirdly, to ensure that teaching
space is used effectively. Universities, struggling with rising student numbers,
have increasingly relied upon the automation of this task to produce efficient
timetables which satisfy these constraints [37]. Much of the software assistance
that is currently available is either a commercial product or has been designed
specifically for the institution in which it was developed [10,42,68]. In both cases
the timetabling process often involves significant human interaction which, in
practice, can turn the process into a room booking exercise [56,60]. Therefore,
the construction of a solution is often categorised by finding any timetable that
satisfies all of the constraints [76]. From a software point of view, any solution is
often seen as a good solution and, indeed, the notion of an ‘optimised solution’ is
usually not a main objective of incumbent university administrators. The reasons
for this are diverse and complicated. One issue is that as too much assumed and
incomplete knowledge surrounds the entire process and their exist many staff,
with differing viewpoints involved. The data required for the process are often dif-
ficult to obtain and, as with the examination process, are often ‘sketchy’ [65,75].
From a staff point of view, fixed views exist on when and where teaching should
take place within a predominantly ‘territorialist’ culture [56]. These issues will
be further explored in the remainder of the paper with challenges presented as to
how this area can be moved forward from a research point of view. It is important
to note that, within the majority of universities which use automated systems,
the process of the production of a workable timetable remains firmly with a
combination of lecturing and administrative staff rather than the sole use of
the automated component. Recent years have seen significant research efforts to
improve this situation. The following papers represent a small selection of these
contributions: [3,41,42,54,56,58,60,65,74]. Carter [41] stressed the importance of
taking into consideration and dealing with the human factors associated with
the process of constructing an institution-wide timetable. However, when dealing
with the issue of course timetabling, it is often the case that many of the papers
ignore the human factors all together, choosing to deal with ‘sculpted’ datasets
in order to evaluate particular techniques and approaches. Some real-world as-
pects have been discussed in the literature but these tend to be in conference
abstracts (as a small selection, see [45,46,51,66,75]) rather than full papers. If
one of the strategic goals of timetabling research over the next few years is to
close the gap between theory and practice then these issues have to gain more
prominence in the mainstream literature.

Although many advances have been made with respect to the development
of search techniques on benchmark datasets [3,4,64,74,77], there is not much
evidence that the work has been translated into actual implementations within
a significant number of institutions. Indeed Carter and Laporte [42] comment
that they were ‘somewhat surprised to discover that there are very few course
timetabling papers that actually report that the (research) methods have been
implemented and used in an institution’. Although this was reported almost a
decade ago, the situation largely remains unchanged. They go on to say that

10 B. McCollum

they expected to see a number of implementations in the near future. Once
again, unfortunately this has largely not been the case.

In relation to this area in general, it is suggested here that there has been
insufficient investigation of real-world issues and therefore understanding of the
methodologies used by expert timetablers. More work needs to be carried out
on the formulation and modelling of the problem. This latter issue is particu-
larly challenging because different institutions must satisfy a range of different
constraints in generating an institution-wide timetable [58,42] which means that
a generally applicable solution to this complex problem is extremely difficult.
Given the complexities of real-world course scheduling, many researchers have
developed approaches which rely on various simplifying assumptions in mod-
elling the problem. While it can be argued that this is valid as an initial research
test bed, which has resulted in useful and powerful search techniques, such an
approach needs to be supplemented by methods which address the true com-
plexities of the problem that must appear in real-world applications. By way of
illustrating this point, recent work carried out on practical course timetabling
by the Metahueuristic network [64] used generated datasets. It was stated that

The problem we are studying in the Metaheuristics project is one that is
closely based on real-world problems, but simplified. We are not entirely
happy about using a simplified problem, but the reasons are two-fold:
We want to be able to see more clearly what is going on in algorithms
designed to solve the problem. Real data is too complicated, and real
problems have too many soft and hard constraints to allow researchers
to properly study the processes...

The large number of soft and hard constraints in real data (and the
differences between them at different institutions) make it a long process
for researchers to write code to solve them, or to adapt existing programs
to be suitable.

Although this has been useful, from a practical point of view, the results
obtained do not seem relevant in practice. In addition, the impression is often
that benchmark course timetabling datasets [64,77] are seen as data which can
be used in addition to examination datasets to prove that certain search tech-
niques are of benefit. Although successful in this regard the gap between research
techniques and the software required for actual implementations is much wider
than that seen with examination timetabling. Whereas this paper has spent the
opening sections detailing challenges which will help narrow the gap in relation
to examination timetabling, the rest of the paper will concentrate on describing
course scheduling from a practical point of view with the hope of identifying
what is required if a relevant and comprehensive formulation of the problem is
to be reached. It is felt that this view of the course timetabling problem will
better serve the purpose of making timetabling research more relevant to real-
world practice. It is stressed that the contribution of timetabling research must
address more wide-ranging issues than the tuning of algorithms to work well
on particular datasets. Rather, the modelling issues related to the complexity
of real-world implementations must be recognised and dealt with. The most

A Perspective on Bridging the Gap Between Theory and Practice 11

realistic formulation of the problem which currently exists can be found at [48].
Further work is required to build on this to allow the full complexities of the
problem to be explored and to narrow the current gap. With this aim in mind,
it is essential that more comprehensive representative benchmark datasets are
made available along with information on the aims of the associated institution.

3.1 A Very Different Timetabling Problem

University course timetabling is often reported in the literature as a variant
of the related examination timetabling problem [76]. Indeed it is the author’s
impression that many pieces of research default to talking about examination
timetabling when they are talking about university timetabling in general. Al-
though some of these issues are further described in subsequent sections of the
paper it was felt worthwhile to draw out the major differences between the two
types of timetabling at this early stage in the discussion. The reported difference
is often the addition or removal of particular constraints: e.g., more than one
event cannot take place in the same room, and lectures should be avoided in the
last period of the day [3]. In addition, the term ‘best spread’ of events has an
entirely different meaning.

A major difference with the examination timetabling process is the environ-
ment in which the construction process is carried out. This is a dynamic, multi-
user distributed environment with various cohorts of schools and departments
who often operate quite autonomously. Although issues in relation to this have
been studied, for example [49,63,71,75], much more work is required on un-
derstanding the issues involved and the interplay between user interaction and
managing the information with the goal of producing a workable solution and
the extent to which techniques can be used in an automated process. These is-
sues will be discussed further at various places under the heading of ‘building
the institutional model’.

Another difference that is often overlooked is that, as with the examination
problem, course timetabling does not take place at the module or course level.
The following presents a discussion on the effects of this. Consider the module
‘Introduction to Computer Science’ with associated module number 110CSC101.
The associated examination for the module will normally take place at the end
of the semester in which the module is given and will be timetabled by the
rules employed by the institutional examination officer which are generally those
governing the body of research which has taken place over the last decade or so.
Therefore, in this case the ‘gap’ which exists between what is required by the
institution and the techniques researched from an academic sense, is small. The
course timetabling issues with the module 110CSC101 are more complicated.
The module can be broken into a series of events which require timetabling: e.g.,
lectures, seminars, tutorials, practical classes and laboratory classes. A subset or
indeed all of these ‘event types’ require timetabling in a manner which provide
the group of students associated with the module, firstly, a feasible solution
and secondly, a ‘good’ timetable. A feasible solution is achieved by ensuring
that individual students can attend all event types associated with each of the

12 B. McCollum

modules that constitute the overall pathway they are enrolled on: e.g., year one
of BSc in Computer Science. Secondly, a ‘good’ solution is one which satisfies
the soft constraints as defined by the institution: e.g., lectures should be in the
morning in a particular time or room. It is clear that these soft constraints require
a higher investigation as they can vary from one institution to another and indeed
from one event type to another belonging to the same module. Furthermore,
in setting up the problem, these events have different individual requirements,
ordering and constraints. The following section outlines some of the associated
issues.

The simplest example is that particular event types are usually associated
with certain types of space: e.g., a computer laboratory class must take place in
a computer laboratory. Also, lecture events represent the entire group of students
on the module whereas the other event types represent subgroups as students
are divided into smaller groups for different types of study. This issue of event
subdivision is further explored in the following section. From an ordering per-
spective, it is often the case that particular orders of events over a defined time
period, e.g. a week, are defined to achieve the desired combination of teaching
and learning skills. It is also often the case that particular events are related to
each other in relation to the time which separates them in this ordering: e.g.,
seminar classes should be timetabled in the afternoon following the lecture ac-
tivity. In addition there is an associated hierarchy with the event types: e.g.,
lectures are timetabled as a priority in the first instance to ensure that the en-
tire group can be brought together. It is often the case that this situation means
that lectures will be timetabled first with all other events timetabled after week
one of the semester. Of course, there are many variations of this related to when
the timetable is produced in relation to student enrolment: i.e., pre-enrolment or
indeed post-enrolment. Event types may also have a particular life span associ-
ated with them throughout the semester. Whereas the lecture event may run in
a particular format throughout the entire semester, other event types may begin
and end in particular weeks. In addition they may have an associated pattern
which is individual to the event type: e.g., lectures may run twice a week for
12 weeks whereas lab classes may begin in week three and run for a three hour
afternoon slot every two weeks for six weeks. Currently, research does not take
these considerations into account when either defining the problem or applying
techniques to help solve the problem. This has been detrimental to the overall
practical area and has meant researchers, in many cases, have been working on
oversimplified problems.

Course scheduling, much more than examination timetabling, must be seen
in the wider context of the use and availability of institutional space either
existing or in the planning stage. This linkage allows measured and improved
utilisation while identifying the needs for particular types of space across the
institution. The company eventMAP Limited aims to model how increases in
course delivery, through effective timetabling, can affect the overall nature and
structure of the campus. Ultimately, this would allow for strategic decisions to
be taken in relation to room types, sizes and quantities across all space types

A Perspective on Bridging the Gap Between Theory and Practice 13

within the Institution. The course timetabling system is therefore a fundamental
part of the strategic computing systems within the institution.

Another major difference with the examination timetabling problem is not
only related to differences in the nature of the information and constraints but
in the style in which the solution is constructed. Overwhelmingly in all consul-
tancy and implementation undertaken to date within eventMAP Limited, the
timetable is constructed prior to student enrolment and therefore optimised on
projected student numbers taking particular combinations of modules. In many
cases the goal of optimisation is sacrificed for the sake of getting a solution which
is workable. Student clashing is related to defined course structures as opposed
to the examination counterpart which is based purely on student enrolment to
assessment events. Regarding soft constraints, the emphasis is on the ability to
offer as many options as possible as opposed to best spread across a partic-
ular examination session. Administrators employ heuristics that suggest what
modules should be made available to particular courses and which ones should
not. Indeed, this information can often be inferred from the previous year’s data
or obtained directly from members of particular schools. Because the timetable
is constructed pre-enrolment, inefficiencies occur which are allowed to ripple
throughout the rest of the year. After the initial construction, potentially the
solution could be reshuffled or indeed amended based on a different measure of
optimisation. This option is not presently favoured by institutions due to the
disruption that would be caused. There are a number of reasons for timetabling
pre-enrolment; if it were left entirely to student choice there is no guarantee that
a feasible timetable could be constructed and, secondly, more and more emphasis
on opening access to universities dictates that students with busy lives need to
know timetables before choosing optional parts of the course. Many universities
use a phased approach which is a combination between pre- and post-enrolment.
More work is required to understand the issues involved, and where, what and
how search techniques and indeed what measures of optimisation can be used.

It is clear that the improvement of solutions will come about through the
combination of high-level heuristics and optimisation techniques. The research
challenge is therefore identified as the requirement for detailed studies of how the
aims, objectives and practicalities of timetabling within institutions interlink.

3.2 Building the Institutional Model

As with examination timetabling, the timetable construction process can be
broken down into a series of information and solution modelling steps. Even
more so than with the examination problem, this process is complicated. As
stated, this is related to the number of interested parties and diversity of the
data requirements. Attempts have been made to provide a general framework to
aid this situation. For example, work has been carried out proposing a generic
architecture for the production of a timetable by examining the full range of
procedures and the associated characteristics [75]. Also, in [53], a framework was
presented allowing the researcher to combine many different solution methods
in arbitrary ways in the solution of a single problem. Such contributions have

14 B. McCollum

provided an important platform upon which we can build. A more complete
description to enable understanding of the specific needs of the modelling process
is required. The following impacts on a number of key issues.

In the case of course timetabling, information modelling can be broken into
data, constraint and course structure modelling with solution modelling being
dominated by factors related to optimisation and evaluation. Although it is an
important issue, algorithmic modelling is not discussed here because the focus
of this discussion in concerned with highlighting the high level challenges that
need to be addressed if the gap between theory and practice is to be closed. In
many respects, the key to narrowing this gap in relation to course scheduling is
related to the modelling of the entire problem, thus identifying where and when
in the process search techniques may be of use.

Information Modelling. In terms of information modelling, the main dif-
ference from examination timetabling is the much more incomplete nature of
the data, with the requirements [65,75] being much more substantial. Data are
required on events, course structures, the estate and the lectures/instructors
availability and expertise. From the author’s experience, it is evident that a
combination of poorly implemented information strategies and reluctance of staff
within the sector has led to a position where this information is difficult to obtain.
This situation inevitably leads to significant changes in the timetable formula-
tion at the beginning of the period in which it is required. Work has been carried
out on ensuring that a changed solution is as close as possible to the initially
modelled solution after changes in the original definition. For example see [65].

In many instances, expert timetablers have dealt with the initial construc-
tion by adopting a series of high-level heuristics. For example some institutions
use a centralised approach initially, timetabling a percentage of the required
events in a percentage of the available centrally ‘owned’ rooms, thus allowing
individual schools/departments to ‘fill in the blanks’ in the remaining rooms or
indeed in departmentally ‘owned’ rooms [56]. Many such high-level heuristics are
used within institutions during the construction process, little of which (to the
author’s knowledge) have been reported in the literature. In general, these re-
late to space usage and decomposition within both the information and solution
modelling process. This emphasises the fact that an important challenge for the
research community is therefore to review real applications of course scheduling
techniques and software with the aim of identifying the major themes which will
facilitate the construction of robust initial solutions. High level heuristics need
to be identified, analysed and modelled in terms of constraints and evaluation.
In general these usually relate to student and staff preference and space usage.

Course Structure Modelling. Modelling the course structure is a difficult
and important aspect of the information modelling process. This aspect is com-
pletely unnecessary in the examination counterpart. Course timetabling raises
a variety of issues relating to when staff/rooms are available and what events
should be timetabled with which others. The latter of these issues becomes more
difficult when, as discussed earlier, it is dictated that a timetable must be ready
before student enrolment. The research challenge is therefore in identifying easy

A Perspective on Bridging the Gap Between Theory and Practice 15

intuitive ways of representing constraints. Attempts have been made to specify
a standard timetabling data format that is complete and universally applica-
ble [28,43,73]. This work needs to be extended and made more readily available
to enable users to identify and model constraints, thus allowing the interface
between users and researchers to become better defined.

Another important issue is the division of students attending a lecture into
sub-events such as tutorial classes. In examining this in detail a number of key
issues are explored. Consider the case involving the separation of students en-
rolled on a particular course into tutorial classes. Consider, also, a lecture event
which has x students. If the preferred size of tutorials is y, then it is trivial to
calculate that x/y tutorial slots are required. The interesting research issue con-
sidered here, however, is in what way to split the x students into groups while
ensuring that maximum flexibility is introduced into the timetable: i.e., what
are the best combinations of students to be timetabled in which slots. In addi-
tion this must be done in a manner to allow room usage to be maximised while
ensuring that students are allocated throughout the week with cognisance taken
of their existing commitments on events related to other courses. This is often
done manually by allowing students to self-select particular slots from a set of
pre-established time slots. In the course timetabling literature, the majority of
influential work on course sectioning (sometimes termed ‘splitting’) has concen-
trated on timetabling courses, where lectures, tutorials and laboratories, etc., are
not distinguished between each other [6,27,41,42,55]. Apart from a few notable
exceptions [45], courses or groups of students are subdivided into groupings for
the purpose of offering student choice as opposed to reflecting the structure of
events which constitute the structure of the course. The objective is normally
related to balancing the size of the groups while offering students maximum
choice, this enabling them to enrol on their choice of modules.

Within the UK in particular, universities subdivide students in line with
course structures. The main problem with this current definition of course split-
ting is that sub-events do not inherit parental clashing constraints [11], apart
from where a lecture event is subdivided. There is also some work dealing with
students sectioning problems dated back to the 1980s [9,55]. Once again, this
work is different from what we are considering here, where students are divided
into sub-groups as opposite to multi-groups. More recently, fuzzy algorithms
have been used [5] to cluster students in large classes into groups which may
later lead to the fewest possible conflicts in timetables. Beyrouthy et al. [11]
considered the problem of splitting in relation to space objectives by investigat-
ing splitting of courses of same type event into sub-events of that type for the
purpose of fitting into particular room profiles. During the years little has been
done on partitioning the students into actual sub-events as dictated by the course
structure. In [45], metaheuristics are proposed to address the availability-based
laboratory/tutorial timetabling problem (ALTP). This offers a very promising
platform for further exploration into the automatic constructing of timetables
while providing a solution which assigns students to the ‘best’ timeslot based on
a defined week range. In should be noted that in doing so, it is important that

16 B. McCollum

the needs of all parties are addressed. This raises the interesting concept of how
an attained solution should be measured. When producing a course timetable
within an institution, it is important that the timetable produced is seen to be
fair and equitable to all interested parties. The challenge to research is inves-
tigation of these and other information modelling issues. This will be further
discussed in the next section.

Another aspect of course structure modelling is related to the timetabling of
associated events together. It is important to provide the ability to link particular
events under the notion of course structure and schedule them as a ‘package’. This
concept is similar to Kemp chains in examination timetabling [78]. This macro-
event scheduling process will allow the basic building blocks of the course time-
tabling problem to be sustained throughout the process. This approach has the
advantage of reflecting organisational and course make-up. In addition it may be
possible to decide which events/courses have similarities and can be linked to-
gether when timetabling based on individual or indeed groups of characteristics.
For example, pathways within a particular school could be timetabled together
at the same time using the same departmental space. This mimics the construc-
tion process already in existence within an institution where the overall timetable
is broken into a number of sub-units which are timetabled at a particular time
by a particular person. This subdivision or decomposition of the timetabling is a
challenging research aspect which needs further investigation. Macro-events may
be based on a combination of course structure and clusters. Academic timetable
problems tend to show signs of clustering related to the organisational structure.
For instance modules from a School of Mathematics will clash with other modules
from that school. Further to that, those modules will tend to clash with other sci-
ence subjects such as physics and chemistry. What is required is a way of splitting
such problems into smaller sub-problems in such a way that any crossover between
events in different sub-problems is kept to a minimum.

3.3 Solution Modelling

Within the context of developing and delivering an institution-wide timetable, it
must be clear what the optimisation issues are and how they are to be measured.
The measurement of optimisation itself is quite different from the measure needed
for the examination problem. There is sometimes a view in the research commu-
nity that it is possible to define the course timetabling problem by simply altering
the optimisation function used within the examination timetabling problem. How-
ever, this formulation does not define how institutions view the quality measure of
a particular course timetabling solution. Institutions are interested in a combina-
tion of room usage, staff and student satisfaction. The first of these is measurable
by multiplying occupancy by frequency: e.g., how many students use a room how
often. The measurement of utilisation is an average of multiplication of occupancy
and frequency over a set 40 hour week. Staff satisfaction is measured by the ex-
tent to which teaching duties can be ‘bunched’ together leaving time for research
and other activities. In many cases, academic staff members insist on the concept
of a ‘research day’. As a further advantage, it is often considered advantageous

A Perspective on Bridging the Gap Between Theory and Practice 17

if undesirable hours can be identified and minimised per member of staff. This is
termed here as the ‘share bad hours’ heuristic and is an example of a new soft
constraint to be considered when optimising the construction and improvement
of an institutional course timetable. Student satisfaction can be measured by the
spread of events and the availability of choice within a particular course structure.
As already mentioned, ‘best spread’ has quite a different meaning in this context.
A number of other issues are relevant to the overall construction problem but not
the optimisation problem: e.g., staff satisfaction can further be measured by the
ease at which information is gathered from them.

As previously stated, in many cases optimisation is sacrificed for the sake of
getting a solution which is workable: e.g., the definition of a ‘good’ solution is
driven by the need to have any solution based on a subset of the actual event
types which are required [59]. This has the effect of meaning that a feasible
solution is judged at an early stage in the construction process as opposed to
answering the question as to whether or not the solution is actually workable:
e.g., can all additional events not timetabled be accommodated after student
enrolment. When students arrive and populate the skeleton structure of the
timetable, solutions to individual problems of over-subscription are obtained
through negotiation and compromise. The overriding factor which makes the
entire process workable is the fact that currently universities utilise on average
about 30 percent of their space effectively [51,52]. One explanation for this is that
space utilisation is low because of the inherent flexibility within the timetable
i.e. staff and students have a lot of choice. Unfortunately, this is not always the
case as timetabling concerns rate highly in both student and staff surveys [57].
Further evidence of the inflexible nature of the course timetable is the fact that
universities are not able to accommodate more students easily or indeed plan
new or change existing course delivery. The author’s view is very much like that
of Carter [41], namely that more work needs to be completed to understand
the relationship between space usage, staff flexibility and student choice. It is
therefore essential that metrics are produced to measure the effectiveness of
timetables from all perspectives.

It is suggested that the optimisation function used to measure the quality of
the problem solution must be constructed in such a manner as to take in the
multi-criteria associated with each area. Whereas optimisation is relatively eas-
ily defined for examination scheduling, it is difficult to define for course schedul-
ing. From the author’s experience, it can be defined as a balance between keeping
all the stakeholders happy: e.g., student choice, staff flexibility and room usage.
Therefore, to aid with the automation of the task, the construction and opti-
misation of the solution must take into consideration three distinct areas as an
absolute minimum. In addition, in evaluating a given solution to the course time-
tabling problem within an institution, the users need to understand the situation
in terms of the outcomes of individual constraints associated with all identified
areas. The multi-objective approach has received significant recent [29,18,47]
interest with respect to timetabling and, with respect to course timetabling, will
be able to better express and illustrate the features of a solution to a problem.

18 B. McCollum

4 Conclusion

This paper outlines the major challenges which face those researchers working
in the area of university exam and course timetabling. While not trying to ex-
haustively reference the literature, detail is provided of the relevant research in
both areas. The challenges are presented from the perspective of the author’s
experience and experience of working closely with the educational sector. The
intention is to stimulate debate in the literature by providing opinion based on
practical implementations. The aim is the improvement of techniques and hence
software tools available to the sector to help with this most difficult and time
consuming aspect of university administration.

In relation to examination scheduling the identified challenges to researchers
in the area include the following:

(i) New datasets becoming available on a regular basis encompassing more
real-world requirements.

(ii) The development of robust techniques which are able to deal with the
information poor environments within which examination timetables are
often developed.

(iii) Investigation of a reformulation of the problem, including new hard and
soft constraints which better reflect the real-world environment.

(iv) Identification and comparison of key dataset characteristics and potential
linkages with the likely best search approach to be taken.

(v) The investigation of all aspects of solution quality in the provision of the
‘best’ solution for the institution.

(vi) The exploration of new search technologies in establishing how developed
systems can be made more general.

(vii) Investigation of how to incorporate user interface design with the inherent
complexity of the problem.

(viii) Wide-ranging investigation of different neighbourhood structures and fit-
ness landscape within the context of real-world problem solving environ-
ments.

In relation to course timetabling, the following research themes are high-
lighted:

(i) Investigation of techniques to deal with the distributed, information poor
environment in which course timetables are produced.

(ii) Standardisation of datasets, constraints and modelling languages influ-
enced by real-world scenarios.

(iii) Investigation of the role in user interaction in the design of decision support
system for course timetabling.

(iv) Investigation of the need for the reformulation and modelling of the prob-
lem. It should be need that this represents a far greater challenge within
the context of course timetabling than it does for examination timetabling.

(v) Identification and adaptation of high-level policies and practices that are
employed by administrators within institution to construct initial solu-
tions.

A Perspective on Bridging the Gap Between Theory and Practice 19

(vi) Experimentation related to heuristic approaches to subdivision of events.
(vii) Investigation of the effect of pre- and post-enrolment production of the

timetable on the approaches taken to optimisation: e.g., penalty used.
(viii) Undertake an investigation into the delivery of more sophisticated mod-

els which capture the complexity and multi-objective nature of timetable
evaluation in the real world.

(ix) Investigation of the important linkage between space usage and flexibility
within the academic timetable.

(x) Investigation of approaches involving decomposition and ‘macro event’
timetabling.

In summary, this paper has outlined a number of significant research chal-
lenges which provide a rich area for research into automated search method-
ologies for educational timetabling. Moreover, by addressing these demanding
research issues, the scientific community will be taking a step towards closing
the gap between theory and practice which has existed for so long.

References

1. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M., McCollum, B.: A tabu based
large neighbourhood search methodology for the capacitated examination time-
tabling problem. Journal of Operational Research Society (accepted for pub-
lication), Advance online publication (September 13, 2006) (to appear, 2007),
doi:10.1057/palgrave.jors.2602258

2. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M.: Investigating Ahuja–Orlin’s large
neighbourhood search approach for examination timetabling. OR Spectrum 29,
351–372 (2007)

3. Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighbour-
hood search for the course timetabling problem. In: 2nd Multidisciplinary Inter-
national Conference on Scheduling: Theory and Applications, MISTA, New York,
July 2005, pp. 413–427 (2005)

4. Abdullah, S., Burke, E.K., McCollum, B.: Using a randomised iterative improve-
ment algorithm with composite neighbourhood structures for course timetabling.
In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W.J., Hartl, R.F.,
Reimann, M. (eds.) Springer Operations Research. Computer Science Interfaces
Book Series, Springer, Berlin (2006)

5. Amintoosi, M., Haddadina, J.: Feature selection in a fuzzy student sectioning al-
gorithm. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp.
147–160. Springer, Heidelberg (2005)

6. Amintoosi, M., Haddadnia, J.: Feature selection in a fuzzy student sectioning al-
gorithm. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp.
147–160. Springer, Heidelberg (2005)

7. Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B.: Fuzzy multiple ordering
criteria for examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT
2004. LNCS, vol. 3616, pp. 334–353. Springer, Heidelberg (2005)

8. Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B.: A novel fuzzy approach
to evaluate the quality of examination timetabling. In: Burke, E.K., Rudová, H.
(eds.) PATAT 2006. LNCS, vol. 3867, pp. 327–346. Springer, Heidelberg (2007)

20 B. McCollum

9. Aubin, J., Ferland, J.A.: A large scale timetabling problem. Computers and Oper-
ations Research 16, 67–77 (1989)

10. Bardadym, V.A.: Computer aided school and timetabling: the new wave. In: Burke,
E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS,
vol. 1153, pp. 22–45. Springer, Heidelberg (1996)

11. Beyrouthy, C., Burke, E.K., Landa-Silva, J., McCollum, B., McMullan, P., Parkes,
A.J.: The teaching space allocation problem with splitting. In: Burke, E.K.,
Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 228–247. Springer, Hei-
delberg (2007)

12. Beyrouthy, C., Burke, E.K., Landa-Silva, J., McCollum, B., McMullan, P., Parkes,
A.J.: Understanding the role of UFOs within space allocation (Abstract). In: Pro-
ceedings of the 6th International Conference on the Practice and Theory of Auto-
mated Timetabling, Brno, August 2006, pp. 359–364 (2006)

13. Burke, E.K., Bykov, Y., Newall, J.P., Petrovic, S.: A time-predefined local search
approach to exam timetabling problems. IIE Transactions 36, 509–528 (2004)

14. Burke, E.K., Bykov, Y., Petrovic, S.: A multi-criteria approach to examination
timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
118–131. Springer, Heidelberg (2001)

15. Burke, E.K., Carter, M. (eds.): PATAT 1997. LNCS, vol. 1408. Springer, Heidelberg
(1998)

16. Burke, E.K., De Causmaecker, P. (eds.): PATAT 2002. LNCS, vol. 2740. Springer,
Heidelberg (2003)

17. Burke, E.K., De Causmaecker, P., Petrovic, S., Vanden Berghe, G.: Metaheuris-
tics for handling time interval coverage constraints in nurse scheduling. Applied
Artificial Intelligence 20, 743–766

18. Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, G.: The
state of the art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

19. Burke, E.K., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Identifying poten-
tial similarity measures between exam timetabling problem for a case based reason-
ing system. In: The 1st Multidisciplinary International Conference on Scheduling:
Theory and Applications, MISTA, Nottingham, August 2003, pp. 120–136 (2003)

20. Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Using simulated
annealing to study behavior of various exam timetabling data sets. In: MIC 2003.
5th Meta-heuristics International Conference, Kyoto (August 2003)

21. Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in
British universities – a survey. In: Burke, E.K., Ross, P. (eds.) Practice and The-
ory of Automated Timetabling. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg
(1996)

22. Burke, E., Erben, W. (eds.): PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg
(2001)

23. Burke, E.K., Kendall, G., McCollum, B., McMullan, P., Newall, J.: Optime: in-
tegrating research expertise with institutional requirements (Software demonstra-
tion). In: Proceedings of the 6th International Conference on the Practice and
Theory of Automated Timetabling, Brno, August 2006, pp. 510–515 (2006)

24. Burke, E.K., Kendall, G., McCollum, B., McMullan, P., Newall, J.: A prefer-
ence based measurement of optimization. Internal eventMAP Technical Report
eMAP/2006/02a

25. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: an emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Meta-Heuristics, ch. 16, pp. 457–474. Kluwer,
Dordrecht (2003)

A Perspective on Bridging the Gap Between Theory and Practice 21

26. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for time-
tabling and rostering. Journal of Heuristics 9, 451–470 (2003)

27. Burke, E.K., Kingston, J.H., de Werra, D.: Applications to timetabling. In: Gross,
J., Yellen, J. (eds.) The Handbook of Graph Theory, pp. 445–474. Chapman and
Hall/CRC Press, Boca Raton, FL (2004)

28. Burke, E.K., Kingston, J., Pepper, P.: A standard data format for timetabling
instances. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp.
213–223. Springer, Heidelberg (1998)

29. Burke, E.K., Landa Silva, J.D.: The influence of the fitness evaluation method on
the performance of multiobjective optimisers. European Journal of Operational
Research 169, 875–897 (2006)

30. Burke, E.K., McCollum, B., McMullan, P.: Examination timetabling: a new for-
mulation (Abstract). In: Proceedings of the 6th International Conference on the
Practice and Theory of Automated Timetabling, Brno, pp. 373–375 (August 2006)

31. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper
heuristic for educational timetabling problems. European Journal of Operational
Research 176, 177–192 (2007)

32. Burke, E.K., Newall, J.P.: A multi-stage evolutionary algorithm for the timetable
problem. IEEE Transactions on Evolutionary Computation 3.1, 63–74 (1999)

33. Burke, E.K., Newall, J.: Enhancing timetable solutions with local search methods.
In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp.
195–206. Springer, Heidelberg (2003)

34. Burke, E.K., Newall, J.P.: Solving examination timetabling problems through
adaptation of heuristic orderings. Annals of Operations Research 129, 107–134
(2004)

35. Burke, E.K., Newall, J.P., Weare, R.F.: A memetic algorithm for university exam
timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

36. Burke, E.K., Newall, J., Weare, R.F.: A simple heuristically guided search for the
timetable problem. In: Alpaydin, E., Fyte, C. (eds.) EIS 1998. Proceedings of the
International ICSC Symposium on Engineering of Intelligent Systems, University
of La Laguna, Spain, pp. 574–579. Academic, New York (1998)

37. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operational Research 140, 266–280 (2002)

38. Burke, E.K., Petrovic, S., Qu, R.: Case based heuristic selection for timetabling
problems. Journal of Scheduling 9, 99–113 (2006)

39. Burke, E.K., Ross, P. (eds.): Practice and Theory of Automated Timetabling.
LNCS, vol. 1153. Springer, Heidelberg (1996)

40. Burke, E.K., Trick, M.A. (eds.): PATAT 2004. LNCS, vol. 3616. Springer, Heidel-
berg (2005)

41. Carter, M.W.: A comprehensive course timetabling and student scheduling system
at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS,
vol. 2079, pp. 64–84. Springer, Heidelberg (2001)

42. Carter, M.W., Laporte, G.: Recent developments in practical course timetabling.
In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19.
Springer, Heidelberg (1998)

43. Chand, A.: A constraint based generic model for representing complete univer-
sity timetabling data. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS,
vol. 3616, pp. 125–150. Springer, Heidelberg (2005)

44. Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for high school timetabling.
Computational Optimisation and Applications 9, 275–298 (1998)

22 B. McCollum

45. Corne, D.W., Kingston, J.: Addressing the availability-based laboratory/tutorial
timetabling problem with heuristics and metaheuristics. In: Burke, E.K., De Caus-
maecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 136–140. Springer, Heidelberg
(2003)

46. Cumming, A., Paechter, B., Rankin, R.C.: Post-publication timetabling. In: Burke,
E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 107–108. Springer, Hei-
delberg (2001)

47. Deb, K., Pratap, A., Agarwal, S., Meyrivan, T.: A fast and elitist multi-objective
genetic algorithm. IEEE Transactions on Evolutionary Computation 6, 182–197
(2002)

48. http://www.diegm.uniud.it/satt/projects/EduTT

49. Dimopoulou, M., Miliotis, P.: Implementing a university course and examination
timetabling system in a distributed environment. In: Burke, E., Erben, W. (eds.)
PATAT 2000. LNCS, vol. 2079, pp. 148–151. Springer, Heidelberg (2001)

50. EPSRC/ESRC Document Review of Research Status of Operational Research in
the UK (2004)

51. Geller, S.: Timetabling at the University of Sheffield, UK – hardening the incre-
mental approach to timetable development. In: Burke, E.K., Trick, M.A. (eds.)
PATAT 2004. LNCS, vol. 3616, pp. 499–500. Springer, Heidelberg (2005)

52. HEFCE: Estates management statistics project. Technical Report. Higher
Education Funding Council for England (March 1999), Report 99/18.
http://www.hefce.ac.uk/pubs/hefce/1999/99 18.htm

53. Kingston, J.H., Yin-Sun Kynn, B.: A software architecture for timetable construc-
tion. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 342–350.
Springer, Heidelberg (2001)

54. Konstantinow, G., Coakley, C.: Use of genetic algorithms in reactive scheduling for
course timetable adjustments. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004.
LNCS, vol. 3616, pp. 521–522. Springer, Heidelberg (2005)

55. Laporte, G., Desroches, S.: The problem of assigning students to course section in
a large engineering school. Computers and Operations Research 13, 387–394 (1986)

56. McCollum, B.: The implementation of a centrally computerised timetabling system
in a large British civic university. In: Burke, E.K., Carter, M. (eds.) PATAT 1997.
LNCS, vol. 1408, pp. 237–254. Springer, Heidelberg (1998)

57. McCollum, B.: 2003–2004 Academic timetabling: analysis of staff and student per-
ception. Internal eventMAP Report eMAP04/02/01

58. McCollum, B.: Bridging the gap between research and practice: university time-
tabling in the real world – KEYNOTE. In: Proceedings of the 47th Annual Oper-
ational Society Conference, OR47, Chester (September 2005)

59. McCollum, B., McKillop, M., McMullan, P.: Course scheduling: the division of
lecture events into tutorials. Internal eventMAP Technical Report eMAP/2006/02b

60. McCollum, B., McMullan, P., Newall, J., Lane, J.P.: A workable scheduling al-
gorithm. In: The 1st Multidisciplinary International Conference on Scheduling:
Theory and Applications, MISTA, Nottingham, pp. 570–572 (August 2003)

61. McCollum, B., Newall, J.: Introducing Optime: Examination Timetabling Soft-
ware. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 485–490.
Springer, Heidelberg (2001)

62. Merlot, L.T.G., Borland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for
the examination timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.)
PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

http://www.diegm.uniud.it/satt/projects/EduTT
http://www.hefce.ac.uk/pubs/hefce/1999/99_18.htm

A Perspective on Bridging the Gap Between Theory and Practice 23

63. Muller, T., Barak, R.: Interactive timetabling: concepts, techniques and practical
results. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740,
pp. 58–72. Springer, Heidelberg (2003)

64. http://www.metaheuristics.org
65. Muller, T., Rudova, H., Bartak, R.: Minimal perturbation problem in course time-

tabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp.
126–146. Springer, Heidelberg (2005)

66. Ozan, E., Alkan, A.: Timetabling using a steady state genetic algorithm. In: Burke,
E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 104–106.
Springer, Heidelberg (2003)

67. Paquete, L., Stützle, T.: Empirical analysis of tabu search for the lexicographic
optimisation of the examination timetabling problem. In: Burke, E.K., De Caus-
maecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 413–420. Springer, Heidelberg
(2003)

68. Petrovic, S., Burke, E.K.: Educational timetabling. In: Leung, J. (ed.) Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, pp. 45-1–45-23. Chap-
man and Hall/CRC Press, Boca Raton, FL (2004)

69. Petrovic, S., Bykov, Y.: A multiobjective optimisation technique for exam time-
tabling based on trajectories. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT
2002. LNCS, vol. 2740, pp. 179–192. Springer, Heidelberg (2003)

70. Petrovic, S., Patel, V., Yang, Y.: Examination timetabling with fuzzy constraints.
In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 313–333.
Springer, Heidelberg (2005)

71. Piechowiak, A., Ma, J., Mandiau, R.: An open interactive timetabling tool. In:
Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 34–50. Springer,
Heidelberg (2005)

72. Qu, R., Burke, E.K., McCollum, B., Merlot, L.G.T., Lee, S.Y.: The state of the
art of examination timetabling. Technical Report NOTTCS-TR-2006-4, School of
CSiT, University of Nottingham

73. Reis, L.P., Oliveira, E.: A language for specifying complete timetable problems.
In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp.
322–341. Springer, Heidelberg (2003)

74. Rossi-Doria, O., Samples, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardella, M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L.,
Stutzle, T.: A comparison of the performance of different metaheuristics on the
timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 329–351. Springer, Heidelberg (2003)

75. Rubio, R.G., Munoz, D.P.: A timetable production system architecture for course
and exams. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp.
567–570. Springer, Heidelberg (2005)

76. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

77. Socha, K., Knowles, J., Samples, M.: A max–min ant system for the university
course timetabling problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.)
Ant Algorithms. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)

78. Thompson, J., Dowsland, K.: A robust simulated annealing based examination
timetabling system. Computers Operations Research 25, 637–648 (1998)

79. The Times Higher Educational Supplement, 4 (March 10, 2006)

http://www.metaheuristics.org

Very Large-Scale Neighborhood Search

Techniques in Timetabling Problems

Carol Meyers1 and James B. Orlin2

1 Operations Research Center, Massachusetts Institute of Technology,
77 Massachusetts Avenue, E40-130, Cambridge, MA 02139, USA

2 Sloan School of Management, Massachusetts Institute of Technology,
77 Massachusetts Avenue, E53-363, Cambridge, MA 02139, USA

{carol,jorlin}@mit.edu

Abstract. We describe the use of very large-scale neighborhood search
(VLSN) techniques in examination timetabling problems. We detail three
applications of VLSN algorithms that illustrate the versatility and po-
tential of such algorithms in timetabling. The first of these uses cyclic
exchange neighborhoods, in which an ordered subset of exams in dis-
joint time slots are swapped cyclically such that each exam moves to the
time slot of the exam following it in the order. The neighborhood of all
such cyclic exchanges may be searched effectively for an improving set
of moves, making this technique computationally reasonable in practice.
We next describe the idea of optimized crossover in genetic algorithms,
where the parent solutions used in the genetic algorithm perform an op-
timization routine to produce the ‘most fit’ of their children under the
crossover operation. This technique can be viewed as a form of multi-
variate large-scale neighborhood search, and it has been applied success-
fully in several areas outside timetabling. The final topic we discuss is
functional annealing, which gives a method of incorporating neighbor-
hood search techniques into simulated annealing algorithms. Under this
technique, the objective function is perturbed slightly to avoid stopping
at local optima, while neighborhood search techniques help provide an
effective search of the feasible space.

1 Introduction

1.1 Timetabling Problems

The scheduling of classes and examinations is a key practical problem that is
faced by nearly all schools and universities. Substantial effort has been devoted
to developing effective timetabling procedures over the last thirty to forty years.
The problems tackled by such procedures include examination timetabling, in
which a set of exams is to be scheduled over a set of time periods, and course
timetabling, where a set of courses must be scheduled over the length of an entire
semester.

Timetabling problems are often complicated by numerous constraints; for in-
stance, in the examination timetabling problem, students should not be sched-
uled to take two exams at the same time. These constraints are typically divided

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 24–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Very Large-Scale Neighborhood Search Techniques 25

into hard constraints, which must not be violated (in the course timetabling
problem, a hard constraint might be that no teacher is scheduled to teach two
classes at once), and soft constraints, which possess a penalty for being violated
(in the examination timetabling problem, a soft constraint might be to minimize
the number of students who take two exams back-to-back). Because of the num-
ber and variety of constraints, such timetabling problems typically constitute
NP-hard problems that are quite difficult to solve manually. This in turn has led
to an increased emphasis on finding effective automated timetabling algorithms.

Recent surveys on automated timetabling (see [22,24,25,44]) illustrate the
wide array of methods that have been applied to timetabling problems. Tradi-
tional techniques tested in timetabling include direct heuristics [35], which fill
up the timetable one event at a time and resolve conflicts by swapping exams,
and a reduction to the graph coloring problem [39], where events are associated
with vertices of a graph and edges with potential conflicts. More modern heuris-
tics include memetic [21] and genetic algorithms [20,28,31], which use techniques
inspired by evolutionary biology; simulated annealing algorithms [19,48], where
nonimproving solutions are permitted with progressively decreasing probabil-
ity; tabu search heuristics [2,27,43], where a list of recently visited timetables
are forbidden to be visited; and constraint logic programming approaches [26],
which are based on applying declarative logic programming systems to constraint
satisfaction problems.

In this paper, we address the application of very large-scale neighborhood
search techniques (see Section 1.2) to timetable scheduling problems, includ-
ing one approach based on genetic algorithms (Section 3) and one that re-
sembles simulated annealing (Section 4). Neighborhood search has long been
used in timetable scheduling, from the swap (2-opt) techniques used in the
direct approaches to the variety of forms of neighborhood search used in ge-
netic algorithms. However, the area of very large-scale neighborhood search has
only recently been investigated with respect to timetable scheduling [1,14,34]
(see Section 2). We believe there are many untapped possibilities for useful
algorithms in this context.

1.2 Very Large-Scale Neighborhood Search

Neighborhood search algorithms (also known as local search algorithms) are a
class of algorithms that start with a feasible solution and attempt to find an
improving solution in the neighborhood of the current solution. The neighborhood
structure may be defined in a variety of ways, typically so that all solutions in
the neighborhood of the current solution satisfy a set of prescribed criteria. In
very large neighborhoods, the size of the neighborhood under consideration is
extremely large (typically, exponential) in the size of the problem data, making
it impractical to search such neighborhoods explicitly.

A very large-scale neighborhood search (VLSN) algorithm is one that searches
over a very large neighborhood, giving an improving solution in a relatively

26 C. Meyers and J.B. Orlin

efficient amount of time. Such algorithms tend to search implicitly over the
neighborhood rather than explicitly, since the quantity of solutions precludes
performing an exhaustive search.

There are three main categories of very large-scale neighborhood search al-
gorithms that are outlined in [6]. The first of these is variable depth methods,
which partially search an exponentially large neighborhood by using heuristics.
The second kind are network flow-based methods, which use network flow tech-
niques to search over the neighborhood and identify improving neighbors. The
third main category consists of neighborhoods based on restrictions of NP-hard
problems that are solvable in polynomial time. Ahuja et al. [6,7] provide a thor-
ough exposition of the algorithms in these categories in their surveys on the
topic.

Very large-scale neighborhood search techniques have been applied to a wide
range of problems in combinatorial optimization. These include the traveling
salesman problem [29,36,40], the quadratic assignment problem [8], vehicle rout-
ing problems [3,30], the capacitated minimum spanning tree problem [11], the
generalized assignment problem [51,52], and parallel machine scheduling prob-
lems [4]. In several of these problems, the VLSN search algorithms give the
strongest known computational results, making the development of such algo-
rithms desirable in practice.

The design of a successful VLSN search algorithm depends on the choice of an
appropriate neighborhood function and the development of an effective heuristic
method to search the neighborhood for improving solutions. VLSN search tech-
niques may also be combined within the framework of other heuristic methods,
such as tabu search [33,34] and scatter search [42], to provide further computa-
tional improvements. See [6,7] for a comprehensive discussion of techniques for
developing strong VLSN search algorithms.

1.3 Contributions of This Paper

We describe three applications of very large-scale neighborhood search tech-
niques to timetabling problems. For simplicity, we consider the examination
timetabling problem in each of these instances, but our approaches can be mod-
ified to apply to classroom timetabling problems as well.

In Section 2, we describe the cyclic exchange neighborhood and how it may
be applied to timetabling problems. In this neighborhood, an ordered subset of
exams in disjoint time slots are swapped in a cyclic fashion such that each exam
moves to the time slot of the exam following it in the order. We consider recent
applications of the cyclic exchange neighborhood in the timetabling literature,
and relations to other neighborhood search techniques in timetabling.

We discuss the idea of optimized crossover in genetic algorithms in Section 3.
In an optimized crossover, the parent solutions used in the genetic algorithm
perform an optimization routine to produce the ‘most fit’ of their children
under the crossover operation. This can be viewed as a form of very large-
scale neighborhood search, where the neighborhood is defined over both of the

Very Large-Scale Neighborhood Search Techniques 27

parent solutions. We discuss problems for which the optimized crossover has
been applied, and how a heuristic for optimized crossover could be incorporated
into genetic algorithms for timetabling problems.

In Section 4, we review a new metaheuristic algorithm known as functional an-
nealing that combines neighborhood search techniques with a type of simulated
annealing algorithm. This algorithm allows the application of very large-scale
neighborhood search techniques within an annealing framework, which was not
previously practical due to the random selection of solutions in simulated an-
nealing. We discuss how this algorithm has the potential to be very useful in
timetable scheduling problems, on which simulated annealing algorithms have
performed well in the past.

2 Cyclic Exchange Neighborhood

2.1 Definition

The cyclic exchange neighborhood is defined for partitioning problems. We pre-
sent the problem here in terms of scheduling a set of exams over a collection of time
periods, where potential conflicts between the exams are implicitly encoded in the
objective function. However, it should be noted that this neighborhood extends
to any problem that can be expressed in terms of partitioning the members of one
set, so long as the cost of a partition is the sum of the cost of its parts.

Let E = {e1, e2, . . . , en} be a set of n exams, and let P = {p1, p2, . . . , pm} be a
set of m time periods in which we wish to schedule the exams. Suppose that S =
{S1, S2, . . . , Sm} is a partitioning of the exams in E into m sets, such that each
exam belongs to exactly one set in S, and each set Si corresponds to the collection
of exams scheduled in period pi. Let c(S) denote the cost of solution S. We
assume that any conflicts between students and exams are implicitly encoded in
the objective function c(S), so that any valid partitioning of the exams represents
a feasible solution to the problem. This is similar to the approach taken by
Abdullah et al. [1, 2]. Consider a sequence ei1 , ei2 , . . . , eik

of exams in E such
that exam eij is contained in set Sj, for each j. Suppose we switch exam eij

from set Sj to set Sj+1, for all j = 1, . . . , k − 1, and we switch exam eik
into set

S1. We call such an operation a cyclic exchange. We can also think of the exams
as forming a cycle ei1 − ei2 − ei3 − · · · − eik

− ei1 , such that each exam switches
to having the time slot of the exam following it in the cycle. An illustration of a
cyclic exchange is given in Figure 1. In the figure, the sequence e1 −e4−e10−e13
of exams forms a cycle; exam e1 switches from S1 to S2, exam e4 switches from
S2 to S4, exam e10 switches from S4 to S5, and exam e13 switches from S5 to S1.
The set S3 is not included in the cyclic exchange, so its exams are not changed.

In the case where k = 2, this operation is equivalent to the 2-opt operation,
where a single pair of exams switch time slots. Neighborhoods defined over the
2-opt operation have been studied previously in the timetabling community by
Alvarez-Valdez et al. [13], Colorni et al. [27], and Schaerf [43], among others. If
instead we do not require exam eik

to move into set S1, then we call the operation a
path exchange, which can be described by the path of exams ei1−ei2−ei3−· · ·−eik

.

28 C. Meyers and J.B. Orlin

S3

e2

e1 e3

e4

e5

e9

e8

e7
e6

e10

e11
e13

e12

S1
S2

S4

S5

Fig. 1. The cyclic exchange neighborhood

We can show mathematically that path exchanges may be modeled as a special
case of cyclic exchanges, by adding dummy nodes as appropriate [11].

We define the cyclic exchange neighborhood of solution S as all partitions
T = {T1, T2, . . . , Tm} that can be obtained from the sets {S1, S2, . . . Sm} via a
cyclic exchange operation. The size of this neighborhood is exponential in m, the
number of periods; for a fixed value of m, the total number of cyclic neighbors
of a given solution is O(nm). Since the size of this neighborhood is enormously
large, the neighborhood structure will only be useful in practice if we have an
effective search method for finding improving solutions. Fortunately, Thompson
and Psaraftis [50] and Ahuja et al. [10,11] have identified several methods of
finding such solutions.

2.2 Searching the Cyclic Exchange Neighborhood

We use the concept of an improvement graph, introduced in Thompson and
Orlin [49] and further examined by Thompson and Psaraftis [50]. Rather than
explicitly searching over each possible solution in the neighborhood, the im-
provement graph allows us to implicitly search the neighborhood for improving
solutions. This helps reduce the amount of required computations.

For a feasible partition S = {S1, S2, . . . Sm} of the exams, the improvement
graph G(S) is a directed graph with n nodes, each corresponding to one of the
exams in e1, e2, . . . , en. The arc (ei, ej) represents the transferring of exam ei

from the subset S[i] ∈ S that contains it to the subset S[j] ∈ S containing exam
ej , with exam ej becoming unassigned. More formally, if we let S[i] denote the
subset in S containing exam ei, we can define the edge set as {(ei, ej) | S[i] �=
S[j]}, with the interpretation of each arc as previously described. The cost of
arc (ei, ej) is set to cij = c({ei} ∪ S[j]\{ej}) − c(S[j]). This is exactly equal to
the cost of adding exam ei to set S[j] and unassigning exam ej from S[j].

Very Large-Scale Neighborhood Search Techniques 29

We say a cycle W in G(S) is subset-disjoint if the exams in E that correspond
to the nodes in W are all scheduled in different time slots in S. (In other words,
for every pair of nodes ei and ej in W , we have S[i] �= S[j].) Thompson and
Orlin [49] showed that there exists a one-to-one correspondence between cyclic
exchanges in S and subset-disjoint directed cycles in G(S); most importantly,
they both have the same cost.

This result suggests that to effectively search the cyclic exchange neighbor-
hood, we need only to identify negative cost subset-disjoint cycles in the improve-
ment graph. Unfortunately, although the problem of finding a general negative
cost cycle is solvable in polynomial time [9], the problem of finding a negative
cost subset-disjoint cycle is NP-hard [47,49]. However, Thompson and Psaraftis
[50] and Ahuja et al. [11] have identified effective heuristic algorithms that pro-
duce negative cost subject-disjoint cycles quickly in practice. Thompson and
Psaraftis’s heuristic begins by initially searching for only small negative cost
subset-disjoint cycles (i.e., 2-cycles or 3-cycles), and uses a variable depth ap-
proach to increase cycle length and cost improvement. Although their algorithm
generates and searches only a portion of the graph G(S), it was found to be effec-
tive in practice. Ahuja et al. ’s heuristic is a modification of the label-correcting
algorithm for the shortest path problem, which restricts every path found by the
label-correcting algorithm to being a subset-disjoint path. They found that on
test instances, the time to identify a negative cost cycle was less than the time
needed to construct the improvement graph.

Hence, the idea of an improvement graph can be efficiently exploited to allow
searching of the cyclic exchange neighborhood. Using the algorithms of Thomp-
son and Psaraftis and Ahuja et al., improving solutions in the neighborhood can
be found successfully for many problem types. This suggests that the cyclic ex-
change neighborhood may be a valuable network structure to consider in solving
timetabling problems.

2.3 Cyclic Exchange in the Timetabling Literature

Cyclic exchange neighborhoods have been investigated only recently in the time-
tabling literature. For this reason, we believe this is a potentially fruitful area
for research in timetabling. We now outline a couple of the studies in which the
cyclic exchange neighborhood has been incorporated.

Abdullah et al. [1] initiated the first study of the cyclic exchange neighborhood
in examination timetabling problems. To identify negative cost subset-disjoint
cycles, they used the heuristic of Ahuja et al. [11]. They additionally introduced
an exponential Monte Carlo acceptance criterion (see [15]) for accepting nonim-
proving moves. In this way, their algorithm is less likely to become stuck at a
local optimum. Tests of the algorithm against other timetabling algorithms on
common benchmarks showed that the performance of their algorithm is compa-
rable to that of the best currently known timetabling algorithms. Most recently,
the authors have extended the algorithm by incorporating a tabu search heuris-
tic with the selection of improving moves [2], which has produced even more
promising results.

30 C. Meyers and J.B. Orlin

Jha [34] has also recently studied the usefulness of cyclic exchange neighbor-
hoods in timetabling problems. His algorithm uses a dynamic programming ap-
proach to identify negative cost subset-disjoint cycles. He also combines the cyclic
exchange heuristics with a tabu search framework, to avoid the problem of halting
at local optima. In terms of implementation, he found that the VLSN–tabu search
combination produced robust solutions in a reasonable amount of time. Compared
to approaches using integer programming or neighborhood search alone, he found
that the VLSN–tabu search algorithm performed better on larger test instances.

Together, these two studies suggest that the combination of cyclic exchange
techniques with other suitable timetabling heuristics can make for especially
strong algorithms. Whether the methods used are Monte Carlo acceptance tech-
niques or tabu search, the combination of the VLSN methodology with the ex-
isting algorithms can be used to produce a more effective algorithm overall.

2.4 Relation to Other Techniques in the Literature

As mentioned in Section 2.1, the 2-opt operation is a special case of the cyclic
exchange operation, where each cycle has length equal to 2. This is occasionally
referred to as the swap operation, since it consists of swapping the time slots of a
pair of exams. The 2-opt neighborhood is defined as the set of all possible solutions
that can be reached from a given solution by performing a single 2-opt move.

Many papers in the timetabling literature have used neighborhood search over
the 2-opt neighborhood to refine timetabling solutions, though not necessarily
using that name and most often in conjunction with other techniques. Alvarez-
Valdes et al. [13] used 2-opt moves combined with tabu search in finding solutions
for timetabling problems in the Spanish school system. Schaerf [43] combined
tabu search and the randomized nonascendent method with 2-opt neighborhood
search techniques in solving high school timetabling problems. Colorni et al. [27]
used 2-opt techniques along with simulated annealing, tabu search, and genetic
algorithms for problems from Italian high schools; they found the combination
of genetic algorithms with tabu search to be especially powerful. Carter [23]
addresses the scheduling of classes at the University of Waterloo by decomposing
the problem into several subproblems, which are then solved using a greedy
procedure including 2-opt moves.

It should be noted that while 2-opt moves can be done efficiently in the improve-
ment graph (since there are only O(n2) possible such moves), they are inherently
a lot weaker than cyclic exchange moves. For this reason, it would be interesting
to apply the cyclic exchange neighborhood to the same classes of problems. This
presents a fruitful, and largely unexamined, avenue for new research.

3 Optimized Crossover in Genetic Algorithms

3.1 Overview of Genetic Algorithms

Genetic algorithms are an optimization technique based on the mechanisms of
evolution and natural selection [38]. In applying genetic algorithms to

Very Large-Scale Neighborhood Search Techniques 31

time-tabling problems, we assume (as in Section 2) that any valid partition-
ing of exams into a timetable T represents a feasible solution, and that potential
conflicts between the exams are implicitly encoded in the objective function.
(It should be noted that it is also possible to extend the following definitions
to the constrained version of the problem.) There are a wide range of ways to
implement genetic algorithms. We describe a classic approach.

In each iteration of a genetic algorithm, a population of solutions is maintained,
which represent the current set of candidate solutions. At time t = 0, a population
of timetables {T 0

1 , T 0
2 , . . . , T 0

K} is generated randomly from the set of all possible
solutions. In further iterations, the population {T t+1

1 , T t+1
2 , . . . , T t+1

K } at time t+
1 is generated from the population at time t according to the fitness of each of
the candidate solutions T t

i (i = 1, . . . , K), along with crossover and mutation
operations.

The fitness function is a problem-specific measure of how good a timetable is.
One obvious candidate for the fitness of a solution is its objective function value.
(However, in problems for which calculating the objective is time-consuming,
alternative methods of fitness can be formulated.) In selecting a set of candidate
solutions at time t to produce the next generation at time t + 1, the algorithm
begins by assessing the fitness of all timetables at time t. Next, a number of
individuals from the population are randomly selected, based on a weighted
randomization scheme; the ‘fitter’ a solution is, the more likely it is to be selected.

The crossover operation functions by taking two of the selected timetables Ti

and Tj and combining them to form a new timetable. The selected timetables
are referred to as the parent timetables, and the new timetable is called the child
timetable. In what follows, we assume that the parent timetables are represented
in the form (pk

1 , pk
2 , . . . , p

k
n), where pk

� represents the time period in which exam
e� is scheduled in timetable Tk.

The crossover operation can take several forms, of which the fixed point
crossover is very common. In this situation, a given position � ∈ {1, . . . , n−1} is
selected; the child solution is created by concatenating the first � periods in the
timetable of the first parent with the last n − � periods in the timetable of the
second parent. Hence, if Ti and Tj are the first and second parents, their child
solution will have the form (pi

1, . . . , p
i
�, p

j
�+1, . . . , p

j
n).

Another frequently used crossover scheme is the two-point crossover, where
two random positions �1 and �2 (�1 < �2) are selected; in this case, the child
is formed by taking the periods of the first parent in the intervals (1, �1) and
(�2 +1, n) and the periods of the second parent in the interval (�1 +1, �2), giving
a solution of the form (pi

1, . . . , p
i
�1

, pj
�1+1, . . . , p

j
�2

, pi
�2+1, . . . , p

i
n). Similarly, we can

define multi-point crossovers by first generating a random number N , arbitrarily
determining N crossover positions, and then creating the child by taking each
odd interval from the first parent and each even interval from the second parent.

The mutation operation is used to ensure diversity of the timetables gener-
ated. In this operation, a given position � in timetable Tk is selected with some
(small) probability Pm, and exam e� is reassigned from period pk

� in which it
is currently scheduled to another randomly selected time period. This has the

32 C. Meyers and J.B. Orlin

effect of ‘mutating’ the �th exam period from its original value. In this way, time
periods that are not a part of the set of parent timetables can be present in the
successive generation, which occasionally leads to better solutions.

3.2 Optimized Crossover

In the previous section we discussed the crossover operation in genetic algo-
rithms. One striking feature of this method is that the crossover points are
determined randomly, and the resulting child is created without regard to the ob-
jective function. Hence occasionally the fitness of a child can deviate quite widely
from the fitness of its parents. Aggarwal et al. [5] suggested instead choosing the
best child from all possible children, building on an idea of Balas and Niehaus [16]
in the area of graph theory.

The set of all possible children Tij from two timetables Ti and Tj can be
written as {Tij | p�

ij = p�
i or p�

ij = p�
j , for all � = 1, . . . , n}. Thus, the period in

which any exam is scheduled in Tij will either be the same as the period in which
it is scheduled in Ti, or else the same as the period in which it is scheduled in
Tj. The problem of finding the best child is then the problem of choosing from
among the O(2n) possible children the one with the best objective function.

We can think of solving the optimized crossover problem as a type of very
large-scale neighborhood search. In this case, the neighborhood is defined over a
pair of parent solutions, instead of a single solution. This is a somewhat unusual
use of the term ‘neighborhood’, but we claim the concept is plausible since the
neighborhood is well-defined. For each pair of solutions Ti and Tj, the crossover
neighborhood is defined as the set of all possible children Tij that can be pro-
duced from Ti and Tj . The problem of finding the best child can be viewed as that
of finding the child with the best objective value in the crossover neighborhood.

The idea of optimized crossover has not been previously used in genetic algo-
rithms for timetabling problems, and we believe it is an excellent candidate for
study. In the next two sections, we detail a few of the areas in which optimized
crossover has proven to be useful, followed by comments on the feasibility of the
method on timetabling problems in particular.

3.3 Previous Applications of Optimized Crossover

Aggarwal et al. [5] were the first to apply the concept of optimized crossover to
genetic algorithms. They studied the independent set problem, for which they
gave an effective method of combining two independent sets to obtain the largest
independent set in their union. This was based on a related technique of Balas
and Niehaus [16]. Their resulting genetic algorithm incorporated this optimized
crossover scheme, and was shown to be superior to other genetic algorithms for
the independent set problem. This approach was further verified by Balas and
Niehaus [17].

Ahuja et al. [12] later extended the idea of optimized crossover to genetic algo-
rithms for the quadratic assignment problem. They presented a matching-based
optimized crossover heuristic that finds an optimized child quickly in practice.

Very Large-Scale Neighborhood Search Techniques 33

This technique can also be applied to other assignment-type problems, as it relies
on the structure of the problem rather than the objective function.

Most recently, Ribeiro and Vianna [41] have applied the idea of optimized
crossover to genetic algorithms for building phylogenetic trees, which are trees
showing evolutionary relationships among species with a common ancestor. Their
algorithm outperforms the best algorithms currently available. Lourenço et al. [37]
have also used a type of optimized crossover heuristic in their study of bus driver
scheduling. They solve a set-covering subproblem to determine the best child so-
lution; their algorithm outperforms other algorithms tested, albeit at a higher
computational cost.

3.4 Optimized Crossover in Timetabling Problems

As mentioned in Section 3.2, for an optimized crossover to be effective in practice,
it requires a method of quickly obtaining a best (or very good) child solution
from two parents. The problem of finding the optimized crossover explicitly in
timetable scheduling problems is unfortunately NP-hard, via a transformation
from the Minimum Set Cover problem (see [32]). Hence, the best we can hope
for is to find a strong heuristic for obtaining a good crossover. We now describe
how this can be accomplished in timetabling problems.

The algorithm we consider here is a greedy algorithm, which starts with the
two parent solutions Ti and Tj . First it randomly selects an order to consider the
exams in. The algorithm proceeds through the exams in order, where for each
exam ek it places the exam in either slot T k

i or T k
j according to which one gives

the smallest increase in the objective function. The result will be a scheduling
of exams that (hopefully) gives a low objective value. (Many other variations in
the greedy algorithm are possible.)

This algorithm will perform quickly in practice, as once the ordering is decided
upon there are only two choices for each of the exams. The quality of the solutions
produced by the algorithm may vary depending on the quality of the ordering.

Thus we have given a heuristic for solving the optimized crossover problem in
genetic algorithms for timetabling problems. Though this method has not been
tested in a timetabling context, the strong results obtained for the crossover
method in other problems (see [5,12]) make it an attractive avenue to pursue in
the area of timetabling.

4 Functional Annealing

4.1 The Functional Annealing Algorithm

The functional annealing method is a relatively new metaheuristic for combi-
natorial optimization problems. Proposed by Sharma and Sukhapesna [45,46],
it combines the attractive components of both a neighborhood search method
and a simulated annealing algorithm. As simulated annealing algorithms have
been extensively examined in the timetabling literature (see, for instance, [19]
and [48]), we believe this method should be greatly appealing to the timetabling

34 C. Meyers and J.B. Orlin

community. In this subsection and the next two, we outline the functional anneal-
ing algorithm and its properties, followed by a discussion of applying functional
annealing techniques to timetabling problems in particular.

The main idea of the functional annealing method is to introduce a stochastic
element into the objective function, while employing an efficient neighborhood
search strategy. The stochastic element is given in terms of an annealing function,
which tends to the original objective as the number of iterations increases. The
perturbed objective allows the algorithm to escape efficiently from local optima,
while the neighborhood search heuristic provides for a more effective search of
the feasible space.

We now describe the algorithm more formally, following the structure of
Sukhapesna [46]. Suppose we are given a 0–1 discrete optimization problem
(such as a timetabling problem), with a cost function c(x) and a neighborhood
N(x) for each element x in the set F ⊆ {0, 1}n of feasible solutions. We let
c(x, w) = c(x) + w′x be our annealing function, where w is a random vector
in R

n with independent and identically distributed elements. The volatility of
w is determined by a control parameter U , such that w approaches zero as U
approaches zero. We assume we are given a sequence {Uk} of such control pa-
rameters, such that Uk > 0 for all k ≥ 0 and limk→∞ Uk = 0. Thus, the longer
the algorithm runs, the less stochasticity there is in the objective function. The
functional annealing algorithm is described in Figure 2.

algorithm functional annealing
begin

choose an initial solution x0 in F ;
set k = 0;
while stopping criteria are not met, do

generate a vector wk such that wk(i) = ek(i) if xk(i) = 1
and wk(i) = −ek(i) if xk(i) = 0, where ek is distributed
exponentially with mean Uk;
using a neighborhood search algorithm, find a neighboring
solution y ∈ N(x) ∪ {x}, such that c(y, wk) ≤ c(x, wk);
set xk+1 = y;
set k = k + 1;

end;
end;

Fig. 2. The functional annealing algorithm

As can be seen from the algorithm, the random vector wk is always cho-
sen so that the perturbation attempts to make the current solution worse than
its neighbors, which has the effect of forcing the algorithm to move away from
its current solution. (Note that the algorithm is allowed to stay at the same
solution between iterations, but if there is a better solution, it can be shown
that this solution will be found with probability 1.) Moreover, the magnitude

Very Large-Scale Neighborhood Search Techniques 35

of the perturbation vector wk is such that the greater the number of iterations,
the smaller the influence of the perturbation. Hence for small values of k, the
algorithm behaves similarly to a search for a random neighbor, and for large
enough values of k, the algorithm behaves more like a deterministic neighborhood
search algorithm.

One of the appealing features of using a neighborhood search strategy in
tandem with the functional annealing approach is that the algorithm will not
spend multiple iterations at a solution that is not a local optimum, in contrast
to the standard simulated annealing algorithm. Another item of note is that in
the case of a linear objective, the algorithm is equivalent to a problem where the
data is perturbed to avoid lingering at local optimal solutions (see [18]).

4.2 Properties of the Algorithm

A natural question one might have about the functional annealing algorithm is
whether it is guaranteed to reach the set of optimal solutions. Indeed, Sharma
and Sukhapesna [45,46] have shown that the algorithm is guaranteed to attain
the set of optimal solutions with probability 1, provided that the neighborhood
search algorithm is such that at any given step each improving solution is chosen
with positive probability. Moreover, the expected number of iterations needed
to reach an optimal solution is finite.

With respect to the choice of improving neighbors, the authors consider a ran-
domized first improvement strategy, in which improving solutions in the neigh-
borhood are selected with equal probability. If no improving neighbor is found,
then the current solution is kept for the next iteration. They show that the
chance of exiting from the current solution under such a strategy is not worse
than that of simulated annealing, and for large numbers of iterations the exit-
ing probability is about |N(x)| times greater than that of simulated annealing.
Thus the functional annealing algorithm is better in theory than simulated an-
nealing in terms of becoming stuck at local optima. They also show that a best
improvement strategy is also guaranteed to reach the set of optimal solutions
with probability one, though the time to find a solution takes longer than with
the first improvement strategy.

Sharma and Sukhapesna [45,46] give a thorough computational study of func-
tional annealing algorithms applied to the quadratic assignment problem. They
show that the functional annealing algorithm performs significantly better than
both simulated annealing and neighborhood search algorithms on instances of
the problem, confirming the earlier theoretical results. This improvement holds
regardless of the size of the instance being considered. They also show that the
best improvement strategy tends to outperform the randomized first improve-
ment strategy on small instances, while on larger instances the difference is less
pronounced. They conclude by showing that incorporating a statistical learn-
ing technique along with the functional annealing algorithm gives the strongest
computational results overall.

36 C. Meyers and J.B. Orlin

4.3 Functional Annealing and VLSN Search

Functional annealing provides a way to integrate very large-scale neighborhood
search techniques within the framework of annealing methods. Since the only con-
dition on the neighborhood search algorithm is that it should be able to produce
an improving solution in the neighborhood in a reasonable amount of time, we can
easily apply existing VLSN techniques to the functional annealing algorithm.

For instance, the cyclic exchange neighborhood (see Section 2) can be incor-
porated into the functional annealing algorithm. This neighborhood is too large
to be of practical interest with the pure simulated annealing algorithm, since
the simulated annealing algorithm functions by comparing the performance of
random solutions in the neighborhood. The cyclic exchange neighborhood is so
large that there is no reason to believe that a random solution will perform well.
This problem is alleviated in the functional annealing approach, because it does
not rely on the generation of purely random solutions in the neighborhood.

Sharma and Sukhapesna [45,46] incorporated the cyclic exchange neighbor-
hood in their analysis of functional annealing algorithms for the quadratic assign-
ment problem. They found that in small problem instances, algorithms using the
cyclic exchange neighborhood consistently outperformed algorithms based on a
2-opt structure (see Section 2.4). The results for large problem instances were
less dramatic.

4.4 Functional Annealing and Timetabling Problems

Functional annealing techniques can be applied to timetabling problems in much
the same way that simulated annealing algorithms are currently used. (See [19]
and [48] for details on the implementation of simulated annealing algorithms in
timetabling problems.) Typically, the only restriction on the format of the solu-
tions is that they are represented in such a way that the neighborhood search
subroutine can be performed adequately. In the case of the cyclic exchange neigh-
borhood, for instance, we could use the problem structure previously outlined
in Section 2.

A main advantage of the functional annealing algorithm is that it allows us
to use very large-scale neighborhood search techniques along with annealing
algorithms, which have already been used successfully in timetabling problems
(see [44] for a survey). For this reason, we believe that this algorithm has a
potential to be very valuable to the timetabling community.

5 Concluding Remarks

In this paper, we have discussed one application and two potential applica-
tions of very large-scale neighborhood search techniques in examination time-
tabling problems. The applications range from one that has been used before in
timetabling problems (the cyclic exchange neighborhood), to one that has been
widely used in contexts other than timetabling (optimized crossover in genetic
algorithms), to a relatively new concept that we believe has a great potential for
timetabling problems (functional annealing algorithms).

Very Large-Scale Neighborhood Search Techniques 37

Although these applications are presented in the context of examination
timetabling, the techniques are general enough to apply to a wide range of
timetabling problems. It is our hope that the timetabling community will make
use of these techniques and incorporate them into further studies in the time-
tabling literature. Based on the existing work, we believe that very large-scale
neighborhood search techniques may be very useful in the design of new time-
tabling algorithms.

Acknowledgement. This work was supported in part through NSF Grant DMI-
0217123.

References

1. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M.: Investigating Ahuja–Orlin’s large
neighbourhood search approach for examination timetabling. OR Spectrum 29,
351–372 (2007)

2. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M., McCollum, B.: A tabu-based large
neighbourhood search methodology for the capacitated examination timetabling
problem. Journal of the Operational Research Society (to appear, 2007)

3. Agarwal, R., Ahuja, R., Laporte, G., Shen, Z.: A composite very large-scale
neighborhood search algorithm for the vehicle routing problem. In: Handbook of
Scheduling: Algorithms, Models and Performance Analysis, ch. 49, Chapman and
Hall/CRC, Boca Raton, FL (2003)

4. Agarwal, R., Ergun, Ö., Orlin, J., Potts, C.: Solving parallel machine scheduling
problems with variable depth local search. Working Paper, Operations Research
Center, MIT, Cambridge, MA (2004)

5. Aggarwal, C., Orlin, J., Tai, R.: Optimized crossover for the independent set prob-
lem. Operations Research 45, 226–234 (1997)

6. Ahuja, R., Ergun, Ö., Orlin, J., Punnen, A.: A survey of very large-scale neighbor-
hood search techniques. Discrete Applied Mathematics 123, 75–102 (2002)

7. Ahuja, R., Ergun, Ö., Orlin, J., Punnen, A.: Very large-scale neighborhood search:
theory, algorithms, and applications. Working Paper, Operations Research Center,
MIT, Cambridge, MA (2006)

8. Ahuja, R., Jha, K., Orlin, J., Sharma, D.: Very large-scale neighborhood search for
the quadratic assignment problem. Working Paper, Operations Research Center,
MIT, Cambridge, MA (2002)

9. Ahuja, R., Orlin, J., Magnanti, T.: Network Flows: Theory, Algorithms, and Ap-
plications. Prentice-Hall, Upper Saddle River, NJ (1993)

10. Ahuja, R., Orlin, J., Sharma, D.: Very large-scale neighborhood search. Interna-
tional Transactions in Operational Research 7, 301–317 (2000)

11. Ahuja, R., Orlin, J., Sharma, D.: Multi-exchange neighborhood structures for the
capacitated minimum spanning tree problem. Mathematical Programming 91, 71–
97 (2001)

12. Ahuja, R., Orlin, J., Tiwari, A.: A greedy genetic algorithm for the quadratic
assignment problem. Computers and Operations Research 27, 917–934 (2000)

13. Alvarez-Valdes, R., Martin, G., Tamarit, J.: Constructing good solutions for the
spanish school timetabling problem. Journal of the Operational Research Soci-
ety 47, 1203–1215 (1996)

38 C. Meyers and J.B. Orlin

14. Avella, P., D’Auria, B., Salerno, S., Vasil’ev, I.: Computational experience with
very large-scale neighborhood search for high-school timetabling. Working Paper,
Research Center on Software Technology, Università del Sannio, Italy (2006)

15. Ayob, M., Kendall, G.: A Monte Carlo hyper heuristic to optimise component
placement sequencing for multi-head placement machine. In: Proceedings of the
4th International Conference on Intelligent Technologies, Chiang Mai, Thailand,
pp. 132–141. Institute for Science and Technology Research and Development,
Chiang Mai University (2003)

16. Balas, E., Niehaus, W.: Finding large cliques in arbitrary graphs by bipartite
matching. In: Clique, Coloring, and Satisfiability: Second DIMACS Implementa-
tion Challenge, pp. 29–53. AMS (1996)

17. Balas, E., Niehaus, W.: Optimized crossover-based genetic algorithms for the max-
imum cardinality and maximum weight clique problems. Journal of Heuristics 4,
107–122 (1998)

18. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, Athena Scien-
tific, Belmont, MA (1997)

19. Bullnheimer, B.: An examination scheduling model to maximize students’ study
time. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 78–91.
Springer, Heidelberg (1998)

20. Burke, E.K., Elliman, D., Weare, R.: A hybrid genetic algorithm for highly con-
strained timetabling problems. In: Proceedings of the 6th International Conference
on Genetic Algorithms, Pittsburgh, PA, pp. 605–610. Morgan Kaufmann, San Ma-
teo, CA (1995)

21. Burke, E.K., Newall, J., Weare, R.: A memetic algorithm for university exam
timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

22. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operational Research 140, 266–280 (2002)

23. Carter, M.: A comprehensive course timetabling and student scheduling system at
the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS,
vol. 2079, pp. 64–82. Springer, Heidelberg (2001)

24. Carter, M., Laporte, G.: Recent developments in practical examination timetabling.
In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling.
LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)

25. Carter, M., Laporte, G.: Recent developments in practical course timetabling. In:
Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer,
Heidelberg (1998)

26. Cheng, C., Kang, L., Leung, N., White, G.: Investigations of a constraint logic
programming approach to university timetabling. In: Burke, E.K., Ross, P. (eds.)
Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 112–129.
Springer, Heidelberg (1996)

27. Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for high-school timetabling.
Computational Optimization and Applications 9, 275–298 (1998)

28. Corne, D., Ross, P., Fang, H.: Fast practical evolutionary timetabling. In: Foga-
rty, T.C. (ed.) Evolutionary Computing. LNCS, vol. 865, pp. 251–263. Springer,
Heidelberg (1994)

29. Deineko, V., Woeginger, G.: A study of exponential neighborhoods for the trav-
elling salesman problem and for the quadratic assignment problem. Mathematical
Programming 87, 255–279 (2000)

30. Ergun, Ö.: New neighborhood search algorithms based on exponentially large neigh-
borhoods. Ph.D. Dissertation, Massachusetts Institute of Technology (June 2001)

Very Large-Scale Neighborhood Search Techniques 39

31. Fang, H.: Genetic algorithms in timetabling and scheduling. Ph.D. Dissertation,
University of Edinburgh (September 1994)

32. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York (1979)

33. Glover, F.: Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Applied Mathematics 65, 223–253 (1996)

34. Jha, K.: Very large-scale neighborhood search heuristics for combinatorial opti-
mization problems. Ph.D. Dissertation, University of Florida (June 2004)

35. Junginger, W.: Timetabling in Germany – a survey. Interfaces 16, 66–74 (1986)
36. Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman

problem. Operations Research 21, 498–516 (1973)
37. Lourenço, H., Paixão, J., Portugal, R.: Multiobjective metaheuristics for the bus

driver scheduling problem. Transportation Science 35, 331–343 (2001)
38. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA

(1996)
39. Neufeld, G., Tartar, J.: Graph coloring conditions for the existence of solutions to

the timetable problem. Communications of the ACM 17, 450–453 (1974)
40. Punnen, A., Kabadi, S.: Domination analysis of some heuristics for the traveling

salesman problem. Discrete Applied Mathematics 119, 117–128 (2002)
41. Ribeiro, C., Vianna, D.: A genetic algorithm for the phylogeny problem using an

optimized crossover strategy based on path relinking. In: Proceedings of the 2nd
Brazilian Workshop on Bioinformatics, Macaé, Brazil, pp. 97–102. SBC (2003)

42. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Working Paper, Department of
Computer Science, University of Copenhagen, Denmark (2005)

43. Schaerf, A.: Local search techniques for large high school timetabling problems.
IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and
Humans 29, 368–377 (1999)

44. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

45. Sharma, D., Sukhapesna, S.: Functional annealing technique for very large-scale
neighborhood search. Department of Industrial and Operations Engineering, Uni-
versity of Michigan, Ann Arbor, MI (in preparation)

46. Sukhapesna, S.: Generalized annealing algorithms for discrete optimization prob-
lems. Ph.D. Dissertation, University of Michigan (September 2005)

47. Thompson, P.: Local search algorithms for vehicle routing and other combinatorial
problems. Ph.D. Dissertation, Massachusetts Institute of Technology (May 1988)

48. Thompson, J., Dowsland, K.: A robust simulated annealing based examination
timetabling system. Computers and Operations Research 25, 637–648 (1998)

49. Thompson, P., Orlin, J.: The theory of cyclic transfers. Working Paper OR 200-89,
Operations Research Center, MIT, Cambridge, MA (1989)

50. Thompson, P., Psaraftis, H.: Cyclic transfer algorithms for multivehicle routing
and scheduling problems. Operations Research 41, 935–946 (1993)

51. Yagiura, M., Ibaraki, T.: Recent metaheuristic algorithms for the generalized as-
signment problem. In: Proceedings of the 12th International Conference on In-
formatics Research for Development of Knowledge Society Infrastructure, Kyoto,
Japan, pp. 229–237. IEEE Computer Society Press, Los Alamitos, CA (2004)

52. Yagiura, M., Iwasaki, S., Ibaraki, T., Glover, F.: A very large-scale neighborhood
search algorithm for the multi-resource generalized assignment problem. Discrete
Optimization 1, 87–98 (2004)

Measurability and Reproducibility in University

Timetabling Research: Discussion and Proposals

Andrea Schaerf and Luca Di Gaspero

Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica
Università degli Studi di Udine

via delle Scienze 208, I-33100, Udine, Italy
{schaerf,l.digaspero}@uniud.it

Abstract. In this paper, we first discuss the level of compliance for
timetabling research to two important research qualities, namely mea-
surability and reproducibility, analyzing what we believe are the most
important contributions in the literature. Secondly, we discuss some prac-
tices that, in our opinion, could contribute to the improvement on the
two aforementioned qualities for future papers in timetabling research.

For the sake of brevity, we restrict our scope to university timetabl-
ing problems (exams, courses, or events), and thus we leave out other
equally important timetabling problems, such as high-school, employee,
and transportation timetabling.

1 Introduction

Thanks mainly to the PATAT conference series, researchers on timetabling prob-
lems have recently started to meet regularly to share experiences and results.
This situation has the positive effect of generating both a common language and
a common spirit that is the base ground for cross-fertilization of research groups
in the timetabling community.

However, according to what we have seen at the recent PATAT conferences,
the road for timetabling to become a well-established research community is
still long. The main issue, in our opinion, is that most timetabling papers tend
to describe the authors’ specific problem and ad hoc solution algorithm without
taking enough care of either the measurability or the reproducibility of the results.
The reader is thus ‘left alone’ to judge the quality of the paper, and to understand
what can be learned from it.

This issue is, to some extent, common to all the experimental areas of com-
puter science and operations research, as clearly explained by Johnson in his
seminal paper [17]. Nevertheless, we believe that this is particularly true in
timetabling research, probably because of its shorter standing as a scientific
community.

Regarding measurability (or comparability), we believe that several ‘research
infrastructures’ are necessary in order to create the ground for truly measurable
results. Specifically, they range from common formulations, to benchmark in-
stances, to instance generators, to solution validators, and others. Related to it,

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 40–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Measurability and Reproducibility in University Timetabling Research 41

but somewhat complementary, is the issue of reproducibility. To this aim, beside
the features just mentioned, it would be also necessary to create the conditions
for sharing code and/or executables among researchers.

In this paper, we try to describe the main contributions with respect to these
crucial qualities of experimental research in timetabling, and we also present
some personal opinions on how to proceed to improve on them. For the sake of
brevity, we restrict our scope to university timetabling problems (exams, courses,
or events), and we leave out other equally important timetabling problems, such
as high-school, employee and transportation timetabling. Nevertheless, to some
extent, the proposed guidelines can have a broader application to all timetabling
domains.

In detail, we first survey what, in our opinion, are the most important steps
that have been pursued so far in timetabling research in terms of either measura-
bility or reproducibility of results (Section 2). Secondly, we propose our personal
‘best practices’ for improving these two qualities in the timetabling research
(Section 3). Our aim is to encourage both the authors to write research papers
of high level in these important aspects and the reviewers to demand it when
judging a paper.

2 Significant Contributions

In this section, we review the most significant contributions to the aim of creating
the ground for the development of high quality measurable and reproducible
research in timetabling. We first discuss the ‘standard’ problem formulations,
the benchmark instances (datasets), and the related file formats adopted. Next,
we move to the comparison methods proposed, such as competitions between
algorithms and statistical tools. Finally, we discuss the issue of the objective
validation of the proposed results.

2.1 Problem Formulations and Benchmark Instances

It is well known that timetabling problems vary not only from country to country,
but also from university to university, and even in different departments of the
same university the problem is not quite the same (see, e.g., [27]).

Nevertheless, throughout the years it has been possible to define common
underlying formulations that could be used for the comparison of algorithms.
In fact, a few basic formulations have become standards de facto, as they have
been used by many researchers. Needless to say, standard formulations allow the
researchers to compare their results and to co-operate for the solution. Further-
more, in some cases algorithms developed for more complex ad hoc formulations
can be adapted to the basic standard ones so as to assess their objective quality.

For the Examination Timetabling problem (ETTP), Carter et al. [7] propose
a set of formulations which differ from each other based on some components
of the objective function. Carter also makes available a set of benchmark in-
stances [6] extracted from real data, which represent a large variety of different
situations. Formulations and benchmarks by Carter have stimulated a large body

42 A. Schaerf and L. Di Gaspero

of research, so that many researches (see, e.g., [4,8,15]) have adopted one of the
formulations of Carter (or a variant of them, creating a new standard as well),
tested on the benchmarks, and also added new instances. For more complex for-
mulations, additional data have been added by other researchers, in an arbitrary
but realistic way. At present, all available instances and the corresponding best
results (only up to 2003, unfortunately) are published on the Web [20].

We call as Lecture Timetabling problem (LTTP), the problem of weekly sched-
uling a set of single lectures (or events). This problem differs from course time-
tabling (discussed below) because the latter is based on courses composed by
multiple lectures, whereas lectures are independent. In fact, when a course is
given in multiple lectures per week, some cost components are related to the
way the lectures are placed in the week. In contrast, this concept is totally ab-
sent in LTTP. The LTTP differs also from ETTP because it has completely
different objectives (e.g., no isolated event vs. spreading exams).

The LTTP has been discussed in [26] and it was the subject of the Interna-
tional Timetabling Competition ITC-2002 [23]1. The formulation proposed for
ITC2002 has also become quite standard, and many researchers have used it for
their work (see, e.g., [9,19]). Twenty artificial instances were generated for the
competition, and they are available from the ITC-2002 web page. In addition, a
few others have been proposed (and made available via web) in [28].

Regarding the Course Timetabling problem (CTTP), which, as mentioned
above, consists of the weekly scheduling of the lectures of a set of university
courses, unfortunately no standard formulation has emerged from the community
so far. To our knowledge, the only formulation available on the Web [14] together
with a set of instances is the one proposed by ourselves in [16], along with four
instances coming from the real cases (suitably simplified and made anonymous)
in our university.

2.2 Data Format

For all the problems mentioned above, an important issue for the spreading
of a formulation in the community is the data format. For all the formulations
discussed above, the data format used is an ad hoc fixed-structure text-only one.
For example, for ITC-2002 the input data comes in a single file containing the
scalar values (number of events, rooms, room features, and students), followed
by the elements of the input arrays, one per line. The output format follows
the same idea. For the ETTP the input format is also rather ‘primitive’, with
a fixed grammar and no formatting tags. Unfortunately, for this problem no
output format has been specified in the original paper and the associated web
site.

The use of fixed-structure formats makes it easier to parse the input from any
computer language, and for any (naive) programmer, but may be more difficult
1 Such a problem has often been referred to as CTTP (or UCTP), where C stands

for course (and U for university); but we believe this is quite misleading, because it
deals with isolated lectures/events, rather than courses composed by many lectures.
Therefore we prefer for this problem the name LTTP.

Measurability and Reproducibility in University Timetabling Research 43

to be maintained and checked. For example, it happened that Carter’s ETTP
instances were replicated incorrectly on other web sites. This was due to the
presence of a few ‘newline’ characters added in the files, that led to different
(less constrained) instances. As documented in detail in [25], this unfortunate
episode has caused the publication of confusing results in some papers, and would
have been avoided if a structured format had been used.

On the other hand, a structured format, such as XML, would be more suit-
able in terms of flexibility, extensibility, and maintenance, but it might hin-
der the work of researchers who cannot use it because of limited programming
capabilities.

A few structured formats have been proposed in the literature, such as STTL
[5,18] and TTML [22]. In [12], the authors go even beyond the language, propos-
ing a multi-layer architecture for the specification and the management of time-
tabling problems. To our knowledge, however, these proposals have received
limited attention so far in the academic community (although they are used in
practical applications). This is probably due to the fact that researchers have
normally little interest in the advantages of a structured language, and they
prefer the quick-and-simple text-only version.

2.3 Comparison Methods and Competitions

The fair comparison of different algorithms and heuristics is well known to be a
complex problem, and it has no simple and straightforward solution. In fact, in
order to assess that an algorithm is ‘better’ than another it is necessary to specify
not only the instances used, but also on which features they are compared under
(e.g., quality of the objective function, success rate, speed, . . .). The question
gets even more complicated in presence of randomized/stochastic algorithms,
which add a degree on non-determinism in the solution process.

For ITC-2002, the solution algorithms (provided as executables) were granted
a maximum CPU time for their execution (based on a CPU benchmark, about
500 seconds on a recent computer) and they were evaluated only on the value of
the objective function upon the 20 proposed instances. Unfeasible solutions were
not considered, so that, in order to be admitted to the evaluation, participants
had to find a feasible solution for all instances.

For stochastic algorithms, the participant had to ensure that their solver could
produce the same solution when checked by the organization (by providing the
seed of the random generator). In this situation, it is not clear how to apply
the CPU time restriction and the choice of the organization was to grant the
maximum time for each single trial. This was done to ensure reproducibility,
although it had a drawback. The participants could take advantage of what we
call the Mongolian horde approach: ‘Run as many trials as you can and report
only the best of all of them’. It is worth mentioning that in order to provide
against the excessive use of the Mongolian horde approach, the competition
organizers tested the best few algorithms also on unseen instances, and indeed
the results were found to be broadly in line with the known instances.

44 A. Schaerf and L. Di Gaspero

To our knowledge, the ITC-2002 has been the sole attempt in this respect, and
a new timetabling competition is scheduled for the second half of the 2007. All
other comparison are based on results published in the literature, which however
often report only part of the necessary information (running times, number of
trials, . . .).

2.4 Result Validation

When some results are claimed in a research paper, the reader (or, more im-
portantly, the reviewer) generally has to trust the author without any actual
proof on the results. Although the possibility that the author is deliberately
claiming a fake result is rare, cases in which the claimed results turned out to
be wrong are relatively frequent. They are normally due to bugs in the code
or misunderstandings in the formulation of the problem, typically the objective
function.

For example, for the Graph Coloring problem, for the famous benchmark
instance DSJC125.5 a 12-coloring solution has been claimed in 2002 (see [10]),
whereas it has been successively proved that the minimum number of colors
is 17.

Therefore the validation of the results claimed is clearly an important step
toward the full reproducibility of the results. For the LTTP, in the ITC-2002, the
validation of the results was done directly by the organizers, who asked all the
participants to supply an executable that accepts a set of fixed command-line
arguments.

For ETTP no validation tool has been available until very recently, and there-
fore validation has been based only on voluntary peer-to-peer interaction based
on exchanges of solutions and values. Just before PATAT-2006, Rong Qu created
a new web site [24] that allows the visitors to download an executable that val-
idates ETTP solutions (using a raw fixed-structure output format). Up to now,
the executable validates only solutions for the basic version of ETTP.

For our formulation of the CTTP, we have developed a web page [14] that
allows other researchers to download the problem formulation, the data format,
and the benchmark instances. More importantly, everybody is allowed also to
upload and validate her/his own solutions, and to insert them among the results
obtained for the specific instance. All results are automatically published on the
web site along with the date and other information.

3 Proposals

In this section, we highlight some practices that, in our opinion, could contribute
to the improvement on measurability and reproducibility for future papers in
timetabling research. Part of what we propose here can be found also in [17],
although we try to extract the advice of Johnson that we believe is best suited
to the current state of timetabling research.

Measurability and Reproducibility in University Timetabling Research 45

3.1 Statistically Principled Comparison

One of the key issues of performance measurement (often underestimated) con-
cerns the methods to deal with the random nature of many techniques for ob-
taining a sound comparison of the different ones. In the practice, this issue is
often neglected and just some tendency indicators of the stochastic variables,
like mean values (and, more seldom, also standard deviations) in n runs (with
n ≈ 10), are provided. Furthermore, in a rather myopic view, these summary val-
ues are often advocated as the final word on the clear superiority of a technique
over its competitors.

However, as is common knowledge in other research areas, when dealing with
stochastic variables it is not correct to draw any conclusion only on the basis
of single estimates, but a principled statistical analysis on the behavior of the
algorithm is needed (see, e.g., [1,31]). Even in the simplest cases of comparison
of two means, the analysis should include some kind of hypothesis testing (e.g.,
the t-test or the Mann–Whitney test for the parametric and the non-parametric
case, respectively), that at least provides the reader with a probability measure
of ‘confidence’ in the result. For more complex settings further analyses could
be carried on and the statistical tool-case is plentiful of methods for correctly
coping with several situations that arise in practice (see, e.g., [21]).

As an example, Birattari [2] has proposed a principled methodology for the
comparison of stochastic optimization algorithms, called RACE, which comes
out also as a software package for the R statistical software [3]. The RACE
procedure, originally developed for the purpose of selecting the parameters of a
single meta-heuristic, could be employed also in the case of the comparison of
multiple algorithms by testing each of them on a set of trials. The algorithms
that perform poorly are discarded and not tested anymore as soon as sufficient
statistical evidence against them is collected. This way, only the statistically
proven ‘good’ algorithms continue the race, and the overall number of tests
needed to find the best one(s) is limited. Each trial is performed on the same
randomly chosen problem instance for all the remaining configurations and a
statistical test is used to assess which of them are discarded. The RACE procedure
has been applied in the context of timetabling in [13].

It is worth noting that the statistical comparison of algorithms outlined in this
section is based on the assumption of having full access to previous results (or,
better, to the code) of the different techniques involved in the comparison. This
is clearly related to the issue of reproducibility of results that, in our opinion,
can be achieved by observing the guidelines described in the following.

3.2 Formulation, Data Format, Instances, and Results on the Web

As already mentioned, many papers in timetabling describe the modeling and
the ad hoc solution of a new timetabling problem. For this kind of papers, in
general we cannot expect that the authors make all the steps for obtaining full
measurability and reproducibility such as, for example, publishing all the code. In
fact, this would be quite a big job that would probably be too time-consuming
for a researcher, beside possible employer’s concerns. Nevertheless, we believe

46 A. Schaerf and L. Di Gaspero

that there are a few actions that could contribute in these respects, which are
not too expensive in terms of human work.

First, the authors must state the problem clearly and exhaustively. If this is
not possible in the paper for space reasons, the full formulation should be posted
in an accompanying web site. Secondly, the authors should also post in the
web site all the instances considered in the study (hiding identities for privacy
reasons, if necessary), along with all the necessary information accompanying
them: data format, algorithms, results, and running times. Finally, the authors
should post also the files containing their best solutions, so that other researcher
can verify the actual results, and possibly use that solutions for further studies
and improvements.

These actions would ensure comparability with the results on future research
by other researchers or also by the same authors.2

3.3 Web-Based Problem Management System

Nowadays it is very common to see web sites that describe all aspects of either
a specific problem, see e.g. [11,29], or a research area [30]. These web sites nor-
mally exhibit references to papers, people, problem formulations, and benchmark
instances, and supply other information.

Web sites are surely very useful for the community, and their presence is cru-
cial for the quality of the research. Nevertheless, we believe that there is a further
step to be made to this regard. Inspired by the well-known concept of CMS (con-
tent management system), we envision the idea of developing what we would call
PMS (problem management system). A PMS is a web application (rather than a
web site) that should allow the users to interact with the application performing
all the following tasks:

Add results: New results are first validated, and then possibly inserted in the
database along with the time-stamp and other user-supplied information.

Add instances: Instances can be inserted at any moment. Researchers that
are interested in the problem can be automatically informed by email of this
kind of event.

Manage instance generation: Newly generated instances can be created au-
tomatically by users through interaction with an instance generator.

Analyze instances and results: Instances and results can be analyzed auto-
matically so as to produce important indicators: constrainedness, similarity
to other instances or other results, etc.

Add general information: People, references, links, code, and other informa-
tion can be added. Links would be validated periodically in an automatic
way, and broken ones can be removed. References can also be imported from
other sites.

Translate data: Input and output data can be translated so that coherent
data can be proposed in different formats to the community (including both
fixed-structure and XML-based ones).

2 Many researchers – including ourselves! – have experienced the frustration of losing
their solutions (or other data) for some of the problems they have worked on.

Measurability and Reproducibility in University Timetabling Research 47

Organize on-line competitions: Competitions on specific instances and with
registered participants and fixed deadlines can be organized semi-automat-
ically. Results can be reported immediately.

Visualize: Solutions can be visualized in graphical form to give an immediate
picture of the features and the violations.

Maintain a discussion forum: A simple discussion forum about the problem
can be maintained along with the site. Messages would be organized and
displayed as in usual on-line forums (threads, date, . . .).

The interesting point is that information posted through the PMS would get
on-line immediately in an automatic way. Obviously, a PMS needs to provide
against possible abuses and malicious behavior, and therefore some of the actions
mentioned above would need the approval of the administrator before becoming
effective. For most operations, this however would be just a Yes/No button, so
that the administrator will hopefully operate in short time.

The PMS would also maintain historical data (through versioning systems),
in such a way to be able to retrieve information eliminated by updates and
deletions.

Acknowledgements. We wish to thank Marco Chiarandini for fruitful discussions
about measurability and reproducibility of research results. We also thank the
anonymous referees for their comments that helped us to improve the paper.

References

1. Barr, R., Golden, B., Kelly, J., Resende, M., Stewart, W.: Designing and reporting
on computational experiments with heuristic methods. Journal of Heuristics 1,
9–32 (1995)

2. Birattari, M.: The problem of tuning metaheuristics as seen from a machine learn-
ing perspective. Ph.D. Thesis, Université Libre de Bruxelles, Belgium (2004)

3. Birattari, M.: The RACE Package (April 2005)
4. Burke, E.K., Newall, J.: A multi-stage evolutionary algorithm for the timetable

problem. IEEE Transactions on Evolutionary Computation 3, 63–74 (1999)
5. Burke, E.K., Pepper, P., Kingston, J.: A standard data format for timetabling

instances. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp.
213–222. Springer, Heidelberg (1998)

6. Carter, M.W.: Carter’s test data (2005) (viewed March 13, 2007) (updated June
7, 2005), ftp://ftp.mie.utoronto.ca/pub/carter/testprob/

7. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: algorithmic strate-
gies and applications. Journal of the Operational Research Society 74, 373–383
(1996)

8. Casey, S., Thompson, J.: Grasping the examination scheduling problem. In: Burke,
E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–244.
Springer, Heidelberg (2003)

9. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid
approach for the university course timetabling problem. Journal of Scheduling 9,
403–432 (2006)

ftp://ftp.mie.utoronto.ca/pub/carter/testprob/

48 A. Schaerf and L. Di Gaspero

10. The website of graph coloring and its generalization (2004) (viewed March 13,
2007), http://mat.gsia.cmu.edu/COLOR04

11. Culberson, J.: Graph coloring page (2006) (viewed March 13, 2007) (updated
March 31, 2004), http://www.cs.ualberta.ca/∼joe/Coloring/

12. De Causmaecker, P., Demeester, P., Lu, Y., Vanden Berghe, G.: Using Web stan-
dards for timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 238–257. Springer, Heidelberg (2003)

13. Di Gaspero, L., Chiarandini, M., Schaerf, A.: A study on the short-term prohibition
mechanisms in tabu search. In: ECAI-2006. Proceedings of the 17th European
Conference on Artificial Intelligence, Riva del Garda, Italy, pp. 83–87.

14. Di Gaspero, L., Fontanel, A., Schaerf, A.: Educational Timetabling @UniUd (2006)
(viewed March 13, 2007) (updated May 30, 2006),
http://www.diegm.uniud.it/satt/projects/EduTT/

15. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabl-
ing. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117.
Springer, Heidelberg (2001)

16. Di Gaspero, L., Schaerf, A.: Multi-neighbourhood local search with application
to course timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 262–275. Springer, Heidelberg (2003)

17. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms.
In: Goldwasser, M.H., Johnson, D.S., McGeoch, C.C. (eds.) Data Structures, Near
Neighbor Searches, and Methodology: 5th and 6th DIMACS Implementation Chal-
lenges, pp. 215–250. American Mathematical Society, Providence, RI (2002), avail-
able from http://www.research.att.com/∼dsj/papers.html

18. Kingston, J.H.: Modelling timetabling problems with STTL. In: Burke, E., Erben,
W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 309–321. Springer, Heidelberg (2001)

19. Kostuch, P.: The university course timetabling problem with a three-phase ap-
proach. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp.
109–125. Springer, Heidelberg (2005)

20. Merlot, L.: Public Exam Timetabling Data Sets (2005) (viewed March 13, 2007)
(updated October 13, 2003), http://www.or.ms.unimelb.edu.au/timetabling

21. Montgomery, D.C.: Design and Analysis of Experiments, 6th edn. Wiley, New York
(2005)

22. Özcan, E.: Towards an XML-based standard for timetabling problems: TTML. In:
Kendall, G., Burke, E.K., Petrovic, S., Gendreau, M. (eds.) MISTA 2003. Proceed-
ings of the 1st Multidisciplinary International Conference on Scheduling: Theory
and Applications, pp. 163–185. Springer, Berlin (2005)

23. Paechter, B., Gambardella, L.M., Rossi-Doria, O.: International Timetabling Com-
petition Webpage (2003) (viewed March 13, 2007) (updated July 10, 2003),
http://www.idsia.ch/Files/ttcomp2002/

24. Qu, R.: The exam timetabling site (2006) (viewed March 13, 2007) (updated July
8, 2006), http://www.cs.nott.ac.uk/∼rxq/ETTP.htm

25. Qu, R., Burke, E.K., McCollum, B., Merlot, L., Lee, S.Y.: The state of the art of
examination timetabling. Technical Report NOTTCS-TR-2006-4, School of CSiT,
University of Nottingham, UK (2006)

26. Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardello, L.M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquette,
L., Stützle, T.: A comparison of the performance of different metaheuristics on the
timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 329–351. Springer, Heidelberg (2003)

http://mat.gsia.cmu.edu/COLOR04
http://www.cs.ualberta.ca/~joe/Coloring/
http://www.diegm.uniud.it/satt/projects/EduTT/
http://www.research.att.com/~dsj/papers.html
http://www.or.ms.unimelb.edu.au/timetabling
http://www.idsia.ch/Files/ttcomp2002/
http://www.cs.nott.ac.uk/~rxq/ETTP.htm

Measurability and Reproducibility in University Timetabling Research 49

27. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

28. Socha, K., Knowles, J., Sampels, M.: A MAX-MIN Ant System for the Univer-
sity Timetabling Problem. In: Fieker, C., Kohel, D.R. (eds.) Algorithmic Num-
ber Theory. LNCS, vol. 2369, Springer, Heidelberg (2002), Data available from:
http://iridia.ulb.ac.be/∼msampels/tt.data/

29. Trick, M.: Challenge Traveling Tournament Instances, web page (2005) (viewed
March 13, 2007) (updated October 22, 2006), http://mat.gsia.cmu.edu/TOURN/

30. The web site of the EURO working group on automated timetabling (WATT)
(2002) (viewed March 13, 2007) (updated February 21, 2007),
http://www.asap.cs.nott.ac.uk/watt/

31. Xu, J., Chiu, S., Glover, F.: Fine-tuning a tabu search algorithm with statistical
tests. International Transactions on Operational Research 5, 233–244 (1998)

http://iridia.ulb.ac.be/~msampels/tt.data/
http://mat.gsia.cmu.edu/TOURN/
http://www.asap.cs.nott.ac.uk/watt/

Employee Timetabling

Physician Scheduling in Emergency Rooms

Michel Gendreau1,2, Jacques Ferland1,2, Bernard Gendron1,2,
Noureddine Hail1, Brigitte Jaumard1,3, Sophie Lapierre1,4, Gilles Pesant1,5,

and Patrick Soriano1,6

1 Interuniversity Centre for Research on Enterprise Networks,
Logistics and Transportation (CIRRELT), Université de Montréal,

C.P. 6128, succ. Centre-ville, Montréal, Canada, H3C 3J7
michel.gendreau@cirrelt.ca

2 Département d’informatique et de recherche opérationnelle, Université de Montréal,
C.P. 6128, succ. Centre-ville, Montréal, Canada, H3C 3J7

3 Concordia Institute for Information Systems Engineering, Concordia University,
1455 De Maisonneuve Blvd. W., Montréal, QC, Canada H3G 1M8

4 Département de mathématiques et génie industriel, École Polytechnique de
Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, Canada H3C 3A7
5 Département de génie informatique, École Polytechnique de Montréal,

C.P. 6079, succ. Centre-ville, Montréal, QC, Canada H3C 3A7
6 Service d’enseignement des méthodes quantitatives de gestion, HEC Montréal,

3000, chemin de la Côte-Sainte-Catherine, Montréal, QC, Canada H3T 2A7

Abstract. We discuss the problem of constructing physician schedules
in emergency rooms. Starting from practical instances encountered in
five different hospitals of the Montreal (Canada) area, we first propose
generic forms for the constraints encountered in this context. We then
review several possible solution techniques that can be applied to physi-
cian scheduling problems, namely tabu search, column generation, math-
ematical programming and constraint programming, and examine their
suitability for application depending on the specifics of the situation at
hand. We conclude by discussing the problems encountered when try-
ing to perform computational comparisons of solution techniques on the
basis of implementations in different practical settings.

1 Introduction

Constructing schedules (rosters) is not an easy task to accomplish in settings
where work must be performed 24 hours per day and 7 days a week, such as
in police and fire departments, or in emergency rooms of hospitals. The prob-
lem that one is faced with is to generate ‘good schedules’ that satisfy many
complicated rules, including ergonomic rules as defined by Knaunth [20,21]. As
mentioned by Carter and Lapierre [12], ergonomic constraints are very impor-
tant in order to manage the circadian rhythm of the staff and it is critical to
take them into account when building schedules.

In this paper, we focus on the problem of the scheduling of physicians in
emergency rooms (ER) in health care institutions where work is continuous. It

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 53–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

54 M. Gendreau et al.

is known that ER are a very stressful place for physicians, but it is also a great
challenge for them to work in such a place. According to Lloyd et al. [24], 24.5%
of physicians in Canadian ER are not satisfied with their jobs. Consequently,
making a ‘good’ schedule for physicians in ER is very important. A good schedule
for a physician is a schedule that satisfies a large number of the requests he or
she may have regarding different issues: total amount of work to be performed,
specific timing of shifts, sequencing of shifts, etc.

As already mentioned, building such schedules is quite difficult and it may take
up to several weeks for a human expert to generate an acceptable solution [3]. In
order to reduce time and effort, an automated approach is therefore imperative.

Besides the biological and psychological effects involved in the scheduling of
physicians, one must also pay careful attention to the fairness of the schedules
among physicians. This important aspect is unfortunately very difficult to ad-
dress because it involves balancing the distribution of different types of shifts
among physicians with respect to several criteria that often conflict.

In this paper, we give an overview of the typical constraints that may be en-
countered in physician scheduling by building on the lessons learned from five
practical cases encountered in hospitals of the Montreal (Canada) area: Jewish
General Hospital (JGH), Charles-Lemoyne Hospital (CLH), Santa-Cabrini Hospi-
tal (SCH), Sacré-Coeur Hospital (SaCH), and Côte-Des-Neiges Hospital (CNH).
An important purpose of the paper is to formalize the specific constraints of these
five settings into ‘generic constraints’ that could be used to describe problems in
other practical contexts. We also review major approaches for solving the problem:
mathematical programming, tabu search, constraint programming and column
generation.

The remainder of this paper is organized as follows. In Section 2, we define
more precisely the problem of scheduling physicians in ER and review the rel-
evant literature. In Section 3, we propose the generic constraints that capture
the essence of the various constraints encountered in the five physician schedul-
ing case studies. Section 4 is devoted to solution approaches. We briefly discuss
the similarities and differences between physician scheduling and nurse rostering
problems in Section 5. Finally, we conclude in Section 6.

2 Problem Definition and Literature Review

In the health care area, there are two important types of scheduling problems
that involve medical staff: nurse scheduling problems and physician schedul-
ing problems. In the first category of problems, nurses work under collective
agreements, while in the second category, there are no such rules for physicians.
Moreover, in the nurse staff problem, one has to maximize their individual satis-
faction and minimize the cost of salaries, whereas in the physician staff problem,
one only cares about the maximization of their individual satisfaction. Despite
these differences between nurse and physician problems, their formulations are
not very different. Indeed, according to Rousseau et al. [27], a pure mathematical

Physician Scheduling in Emergency Rooms 55

programming approach proposed by Berrada et al. [4,5,35] for the nurse schedul-
ing problem can successfully be applied to the physician scheduling problem.

The physician scheduling problem can be described as the preparation of a
rostering for physicians for a given planning period, such that every shift of every
day must be assigned to exactly one physician. To achieve this goal, we have to
deal with some rules that are divided into two categories : compulsory (or hard)
rules and flexible (or soft) ones. These rules are often in conflict with one another,
therefore some of them have to be violated in order to have a complete schedule
for all physicians. Carter and Lapierre [12] note in their investigation that some
flexible rules in some hospitals might be compulsory in others and vice versa.
This classification depends in general on the preferences of the hospital and on
the physicians’ flexibility.

The set of shifts that must be covered is specified for each day of the week.
In many situations, the weekend shifts are quite different from week days shifts.
In general, we have three kinds of shifts: days, evenings, and nights. A week
usually begins on Monday, by the first day shift and ends Sunday with the last
night shift. The planning period can be quite long (up to 6 months) or fairly
short (between 2 and 4 weeks). The physicians who work in emergency rooms
are divided into two categories: full-time doctors and part-time doctors. A full-
time doctor works an average of 28 hours per week, part-time physician works
on average between 8 and 16 hours.

The physician scheduling problem can be summarized as follows: given a set
of doctors, a set of shifts and a planning period, one seeks to find fair schedules
for all physicians in order to maximize their individual satisfaction.

As we have mentioned above, this problem has not received very much atten-
tion. There are, however, some software packages that have been used success-
fully in this context [12]:

– Tangier Emergency Physician Scheduling Software, by Peake Software labo-
ratories [31];

– Epsked, by ByteBloc Medical Software [10];
– Docs for Windows, by Acme Express [1];
– Physician Scheduler 4.0, by Sana-Med.

These software packages have been sold to emergency departments in thou-
sands of copies, but the research community did not benefit from the funda-
mental work that led to these products. The only academic works that we are
aware of are some works on cyclic rostering [9,22] and some on acyclic roster-
ing [2,3,9,11,12,15,27,32]. The solution methods developed in these references
will be examined more closely in Section 4.

3 Physician Scheduling Problem Constraints

In this section, we propose generic forms for the constraints encountered in the
five case studies mentioned in the Introduction. As we have already mentioned,

56 M. Gendreau et al.

in the physician scheduling problem, we have to find a roster for every physi-
cian such that a large number of constraints are satisfied. Some constraints
are applied for every physician and others only for some physicians. There
are two types of constraints: hard and soft. A constraint is called hard if it
must be satisfied; it is called soft if it can be violated. In this study, we have
classified the constraints of the physician scheduling problem into four cate-
gories:

1. Supply and demand constraints
2. Workload constraints
3. Fairness constraints
4. Ergonomic constraints.

The first category of constraints deals with the availabilities of the physicians
and the requirements of the emergency rooms that must be opened every day and
24 hours a day. The second category deals with the workload (number of hours
or number of shifts) that is assigned to physicians during a week, a given period
or the whole planning period. The third category controls the distribution of
different kinds of shifts during the whole planning period. The fourth category
of constraints covers various rules ensuring a certain level of quality for the
schedules produced.

3.1 Supply and Demand Constraints

Two kinds of constraints are encountered in all physician scheduling problems.
First, a sufficient number and variety of shifts must be staffed throughout the
scheduling horizon in order to guarantee minimum coverage. Second, a given
physician, according to his seniority, full/part time status, outside responsibili-
ties, and planned vacations, is not available at all times.

Constraint 1 (Demand). During the overall planning period, every shift must
be performed by exactly one physician.

Whereas in other contexts such as nurse scheduling, the number of staff members
covering a shift must lie in a certain interval, for physician scheduling this number
is almost always exactly one. This constraint is considered a hard constraint
and it is encountered in all the hospitals listed in the Introduction. Carter and
Lapierre [12] identify three variants of this situation, but we restrict our attention
here to the two main ones.

1. Uniform case: the required number of physicians is the same for every day
in a week, i.e., we have the same number of shifts for every weekday, even
for Saturday and Sunday.

2. Non-uniform case: the required number of physicians is the same for every
weekday expect for Saturday and Sunday. In this case, the number of physi-
cians required on Saturday is the same as on Sunday.

Physician Scheduling in Emergency Rooms 57

Constraint 2 (Availability). During the planning period, all the requests of
every physician should be satisfied. There are four types of requests:

1. Preassignments,
2. Forbidden assignments,
3. Vacations,
4. Preferences or aversions.

Each one of these types of requests is considered a hard constraint except for
the last one, which is a soft version of the first two. That last type occurs for
example in the context of religious practices at JGH: some physicians want to
be off for the evening and the night shifts on Friday [9].

3.2 Workload Constraints

This category of constraints deals with the workload (number of hours or number
of shifts) that is assigned to physicians during a week, a month or the whole
planning period.

Constraint 3 (Limits on workload). During a given period, a physician
should be assigned an amount of work that lies within a specified interval.

Example 1. In the SaCH case study, a physician who is supposed to work 28
hours a week could accept to work up to 32 hours.

Example 2. At JGH, at most four shifts are assigned to a physician on any given
week.

This constraint is common to all the hospitals we considered. It is often speci-
fied over disjoint subsets of the planning period, either because of the terms of
a contract or to encourage a uniform workload. Sometimes a target workload
with the interval may be given: it can be viewed as a soft constraint. Another
constraint encouraging uniform workloads is the following.

Constraint 4 (Limits on the number of shifts of the same type). During
a given period (e.g., a month), the number of shifts of the same type that are
assigned to a physician cannot exceed a certain value.

Example 3. At SacH, no physician should work more than three night shifts in
a four-week period.

3.3 Fairness Constraints

This category of constraints ensures the fair distribution of different types of
shifts among physicians with the same experience.

Constraint 5 (Distribution of types of shifts). During the planning period,
shifts of the same type (e.g., evening, night, weekend) should be distributed fairly
among physicians with the same level of experience.

58 M. Gendreau et al.

Example 4. At SaCH, all physicians with more than four years of experience
have to work the same number of night shifts during the planning period of six
months.

Example 5. Again at SaCH, physicians should not work more than five weekend
shifts in a four-week period. In this hospital, a working weekend can include up
to three shifts.

3.4 Ergonomic Constraints

This is the largest and the most heterogeneous category of constraints. Various
rules ensure a certain level of quality for the schedules produced and may be
specified either globally for the staff or only for certain individuals. In his work
on ergonomics, Knauth [20,21] has shown the impact of work schedules on the
circadian rhythm of workers. He proposed several rules, which we summarize
below:

– minimizing permanent night shifts;
– reducing the number of successive night shifts to a maximum of two or three;
– avoiding short intervals of time off (less than 11 hours) between two consec-

utive shifts;
– shift systems including work on weekends should provide some free weekends

with at least two consecutive days off;
– long work sequences followed by four to seven days of mini-vacations should

be avoided;
– forward rotations (day shifts followed by evening shifts followed by night

shifts) are preferred;
– individual schedules with few changes over time are preferred;
– shift lengths should be adjusted according to task intensity;
– shorter night shifts should be considered;
– a very early start time for the morning shift should be avoided;
– preference should be given to flexible working time arrangements among

workers.

The constraints below address some of these ergonomic concerns.

Constraint 6 (Length of work sequences). The number of identical shifts
(or of shifts of the same type) in a sequence of consecutive days must lie within
a given interval.

Example 6. In the work of Carter and Lapierre [12], there must be at least two
and at most four consecutive identical shifts.

Example 7. At SaCH, the interval is [1, 4] for shifts in general.

Physician Scheduling in Emergency Rooms 59

Example 8. In each of the hospitals studied, the number of consecutive night
shifts lies between one and three.

Example 9. At SaCH, a physician requires at least 14 days between two night
shifts belonging to different work sequences. This can be recast as a constraint
on the length of sequences of non-night shifts.

Constraint 7 (Patterns of shifts). Over a given number of consecutive days,
a set of patterns of shifts describes what a physician is allowed to do or not to
do.

Example 10. There must be a minimum number of hours of rest between two
consecutive shifts. Consequently, certain patterns of shifts over two consecutive
days are forbidden.

Example 11. At SaCH, a set of restrictive patterns govern weekend work. For
instance, a physician working the 8am regular shift on Saturday must also cover
the 10am trauma shift on Sunday; working the 4pm regular shift on Friday
requires working the 4pm trauma shift on Saturday and the 4pm regular shift
on Sunday as well.

Example 12. A physician should work at most one night shift in every sequence
of three consecutive work shifts.

Example 13. A physician should not work a non-homogeneous sequence of four
consecutive work shifts.

Constraint 8 (Patterns of sequences of shifts). This is similar to the pre-
vious constraint, except that patterns are expressed not over a fixed number of
consecutive days, but rather over a fixed number of sequences of consecutive work
shifts.

Example 14. At JGH, every two consecutive sequences of work shifts should
satisfy the forward rotation principle.

Constraint 9 (Patterns of sequences of a given length). Patterns are
expressed over both the type and the length of sequences.

This has the flavour of the previous constraint and of the first ergonomic con-
straint.

Example 15. After coming back from a vacation, no physician should work a
night shift for the first two days.

Example 16. At SaCH, there must at least three days off after a sequence of
three night shifts.

60 M. Gendreau et al.

Table 1 presents a summary of these generic constraints.

Table 1. Generic constraints in the five hospitals studied

Constraints CNH CLH JGH SaCH SCH

Demand X X X X X
Availability X X X X X
Limits on workload X X X X X
Limits on shifts of the same type X X X X
Distribution of types of shifts X X X X X
Length of work sequences X X X X X
Pattern of shifts X X X X X
Pattern of sequences of shifts X X
Pattern of sequences of given length X

4 Four Optimization Techniques for the Physician
Scheduling Problem

In this section, we present general descriptions of four solution techniques for
the physician scheduling problem. These methods are completely different from
one another, as we shall see later:

1. Mathematical programming
2. Column generation
3. Tabu search
4. Constraint programming.

4.1 Mathematical Programming

Beaulieu et al. [3] have proposed a mixed 0–1 programming formulation of the
physician scheduling problem where the objective function is the sum of penal-
ties associated to some constraints, called deviation constraints. This formulation
was also used by Forget [15] in the context of Santa-Cabrini Hospital (SCH). In
these case studies, constraints are classified in three categories: ergonomic con-
straints, distribution constraints and deviation constraints. After obtaining the
mathematical formulation of problem under study, Beaulieu et al. [3] first con-
sidered using branch-and-bound on this formulation to find a solution, but this
approach had to be dropped, unfortunately, due to the huge dimension (large
number of variables and constraints) of some instances. The solution technique
that was applied is a heuristic approach based on a partial branch-and-bound,
instead of a complete branch-and-bound, which requires more computational
time. Moreover, branch-and-bound was not applied to the original formulation,
but to a modified one. Indeed, as mentioned by Beaulieu et al., it was quickly

Physician Scheduling in Emergency Rooms 61

realized that there was no feasible solution to the original formulation. This was
due to the presence of some ergonomic constraints that were conflicting and led
to an infeasible problem. The solution technique proposed by the authors is to
solve the model with a subset of constraints which contains all hard constraints
and some soft constraints that are not in conflict with each other. Afterwards,
they modified some of the soft constraints and introduced them one by one in
an iterative process, which can be summarized as follows [3]:

– Identify the rules that are violated in the current schedule.
– Add the corresponding constraints to the model.
– Use the branch-and-bound method to identify a new schedule, which hope-

fully improves over the previous one (e.g., satisfies more rules).

This process is repeated until the branch-and-bound cannot find any feasible
schedule.

4.2 Column Generation

The column generation technique [13,26] is an exact method that relies on the de-
composition principles of mathematical programming; it is usually used to solve
large and complex problems, such as the cutting stock problem. This method was
successfully applied to solve the nurse scheduling problem and a software called
IRIS was produced [23]. In the column generation method, each new column is
generated by solving an auxiliary problem (or subproblem). For instance, in the
cutting stock problem, a knapsack problem is solved to find a new cutting pattern
for rolls. In the nurse scheduling problem, a new column is obtained by solving
a shortest path problem with resource constraints on a directed graph [33]. The
resources correspond to the following constraints:

– The constraint dealing with the workload of every nurse for a given period
(e.g., 2 weeks);

– The constraint that controls the vacation periods of every nurse;
– The constraint that deals with the succession of shifts of the same type;
– The constraint that is associated with the distribution of weekends.

The formulation of the master problem for the nurse scheduling problem in-
cludes the hard constraint that gives the required number of nurses for every shift
of every day. Moreover, the objective function is given by the sum of penalty
costs associated with the constraints not explicitly taken into account in either
the auxiliary problem or the master problem.

This solution technique can be applied to the physician scheduling problem
after some minor modifications. First, one can use the same auxiliary problem
as for the nurse scheduling problem. Indeed, the constraints that define the
resources are also present in the physician scheduling problem. Second, the con-
straint dealing with the requirements (number of nurses per shift), which is used
in the master problem for the nurse scheduling problem, is also present in the
physician scheduling problem (one physician for every shift). One then simply

62 M. Gendreau et al.

has to modify the formulation of the objective function and define in it penalty
costs for the remainder of the constraints that one wishes to consider.

4.3 Tabu Search

Tabu search is one of the most effective solution techniques for solving hard com-
binatorial problems. Originally proposed by Glover [19], it has been successfully
applied to a wide variety of application contexts, such as vehicle routing [17],
machine scheduling [29], the maximum clique problem [18], and the quadratic
assignment problem [28,30]. This method has also been applied to the nurse
scheduling problem [7,14], as well as the physician scheduling problem. In the
case of physician staff, the solution technique was used to generate two kinds of
schedules: cyclic schedules [22] and acyclic schedules [9].

Generally speaking, tabu search is a local search (LS) technique: i.e., an itera-
tive search procedure that, starting from an initial feasible solution, progressively
improves it by applying a series of local modifications. The key ingredient of any
LS technique is the set of modifications (or moves) that it considers: the richer
this set, the better the solutions that one can expect to obtain, but also the
slower the method. While classical LS methods stop when they encounter a lo-
cal optimum w.r.t. the modifications they allow, tabu search continues moving to
the best non-improving solution it can find. Cycling is prevented through the use
of short-term memory structures called tabu lists (see [16] for a comprehensive
introduction to the topic).

Buzon’s tabu search method for acyclic schedules [9] is in fact an extension and
a generalization of previous work by Labbé [22]. In this approach, a solution S
corresponds to a set of schedules: one for each physician. The solutions examined
by the search have the property that they satisfy the demand constraints, i.e.,
all shifts are covered, but other constraints may be violated. The cost c(S) of
solution S is the sum of the costs of all schedules in S. If there are n physicians,
then the cost of a solution S is

∑n
p=1 cost(Schedulep), where cost(Schedulep)

is the cost of the schedule for physician p. The cost of a physician schedule is
also the sum of all penalties that are associated with the unsatisfied constraints.
There is exactly one penalty for each constraint. For example, suppose that
physician p wants to work only two unbroken weekends. If the schedule associated
with this physician in the current solution contains three unbroken weekends and
one broken weekend, then the penalty associated with the weekend constraint
would be (3 − 2) · PNBW + 1 · PBW , where PNBW (respectively PBW) is a
certain value associated with one extra unbroken (respectively broken) weekend.
Proper values for these penalty weights are not easy to determine; unfortunately,
the quality of the solution that one can expect to find is quite sensitive to
them [9].

Buzon’s method considers several different types of modifications to solu-
tions (neighborhoods) of increasing complexity. The simplest one involves sim-
ply re-assigning a shift on one day to a physician currently off on that day.
More complex neighborhoods involve swapping portions of schedules between
two physicians. See [9] for further details.

Physician Scheduling in Emergency Rooms 63

4.4 Constraint Programming

Constraint programming is a solution technique that is more and more applied
to various optimization and combinatorial problems. Its application to complex
problems like work schedules [25] is possible for each problem in which the set of
values (domain) of every variable is finite. The domain of each variable is saved
and updated during the progression of calculations by using the constraints
that involve this variable and others whose domain has been modified. These
constraints take part in the elimination of all the inconsistent values of a variable
from its domain; this is done by using some techniques called filtering algorithms.
This means that all infeasible solutions are removed and only feasible solutions
are effectively considered.

This method was applied for the physician scheduling problem by Cangini [11],
Rousseau et al. [27], Trilling [32] and Bourdais et al. [6]. The work of Rousseau
et al. [27] is about using constraint programming to define a general algorithm
that takes into account two types of generic constraints: pattern and distribu-
tion constraints. We will not give more details about this general method, the
interested reader is referred to [27].

This algorithm was successfully applied to two hospitals: SCH and CNH. The
physician scheduling problem that is solved in [27] is formulated as follows:

Minimize f(W)

subject to Wds ∈ Ads

Distribution constraints
Pattern constraints.

The set Ads contains the physicians who can work shift s of day d. The variable
Wds represents the physician who will be on duty on shift s of day d. As for the
methods presented earlier in this section, the formulation of objective function
f is the most difficult part of the solution scheme. In this case, f(W) represents
the ‘cost’ associated to the schedules that are generated for all physicians (one
schedule for each physician). The cost of the schedule for a given physician p is
the sum of the penalties associated with each constraint.

5 Physician Scheduling and Nurse Rostering

As we mentioned earlier, there are several similarities between the physician
scheduling problem that we consider in this paper and the nurse scheduling (or
rostering) problem that is typically encountered in the wards of hospitals around
the world (see Burke et al. [8] for a comprehensive state of the art of nurse ros-
tering). In many ways, the constraints that one faces in both cases are of similar
nature: for instance, Burke et al. classify the constraints tackled in nurse ros-
tering into two broad categories, coverage constraints, which correspond to our
demand constraints, and time related constraints ; the various time related con-
straints that they list (capacity, personal preferences, consecutiveness, workload

64 M. Gendreau et al.

balance, and others) include all of our other constraint types (fairness, ergon-
omy and personal preferences are no less important for nurses than they are for
physicians). There is one area, however, where physician scheduling and nurse
rostering problems do differ significantly and this is in the specification of the
objective function to be optimized. As reported by Burke et al., minimization
of personnel costs or of cost-related criteria is common in nurse rostering, while
we never had to deal with cost issues in our case studies.

The nature of the solution techniques that have been applied for physician
scheduling and nurse rostering is also pretty similar, except for the fact that
Burke et al. report significant application of metaheuristic approaches other
than tabu search (in particular, simulated annealing and genetic algorithms), as
well as of expert and knowledge based systems (e.g., case-based reasoning ap-
proaches). Clearly, given the similarities between the two problems, there is ab-
solutely no reason to believe that any given approach that works for one of them
would not work for the other one. However, one should be careful about draw-
ing hasty conclusions about the performance of specific algorithms or software.
The main reason is that while the general structure of physician scheduling and
of nurse rostering problems might be similar, one can expect specific instances
to differ significantly. This is especially true with respect to demand/coverage
constraints: as we pointed out earlier, in most physician scheduling problems,
the demand for any given shift is usually one, while this value will typically
be significantly larger in nurse rostering problems. The inclusion of cost-related
criteria in the objective may also be expected to have a definite impact on the
performance of some solution methods.

6 Conclusion

The physician scheduling problem is a challenging one. While we have proposed
a series of generic constraints to describe it, it must be understood that the
specific constraints that are in force in any given case study may vary wildly.
This makes it difficult to come up with solution methods that can be used in a
wide range of practical settings. It also greatly complicates the task of coming up
with fair comparisons of different methods, since they may have been developed
for settings that are quite different in nature. Indeed, we have attempted to
compare the four approaches described in the previous section and found that
just creating a set of benchmark instances that would allow such a comparison
was in itself a very challenging task. We hope to be able to report on this
comparison at a later date.

References

1. Acme-Express: Medical staff and physician scheduling software (2000),
http://www.docs2000.net/productdetailsy2k.asp

2. Beaulieu, H.: Planification de l’horaire des médecins dans une salle d’urgence. Mas-
ter’s Thesis, Département d’informatique et de recherche opérationnelle, Université
de Montréal, Canada (1998)

http://www.docs2000.net/productdetailsy2k.asp

Physician Scheduling in Emergency Rooms 65

3. Beaulieu, H., Ferland, J.A., Gendron, B., Michelon, P.: A mathematical program-
ming approach for scheduling physicians in the emergency room. Health Care Man-
agement Science 3, 139–200 (2000)

4. Berrada, I.: Planification d’horaires du personnel infirmier dans un établissement
hospitalier. Ph.D. Dissertation, Département d’informatique et de recherche
opérationnelle, Université de Montréal, Canada (1993)

5. Berrada, I., Ferland, J.A., Michelon, P.: A multi-objective approach to nurse
scheduling with both hard and soft constraints. Socio-Economic Planning Sci-
ences 30, 183–193 (1996)

6. Bourdais, S., Galinier, P., Pesant, G.: HIBISCUS: A constraint programming ap-
plication to staff scheduling in health care. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 153–167. Springer, Heidelberg (2003)

7. Burke, E.K., De Causmaecker, P., Vanden Berghe, G.: A hybrid tabu search al-
gorithm for the nurse rostering problem. In: McKay, B., Yao, X., Newton, C.S.,
Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 187–194.
Springer, Heidelberg (1999)

8. Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The
state of the art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

9. Buzon, I.: La confection des horaires de travail des médecins dans une salle
d’urgence résolue à l’aide de la méthode tabou. Master’s Thesis, École Polytech-
nique, Montréal, Canada (2001)

10. ByteBloc Software: Epsked 3.0 bytebloc software (1995),
http://www.bytebloc.com

11. Cangini, G.: A constraint programming local search algorithm for physician
scheduling. Publication CRT-2000-26, Centre for Research on Transportation, Uni-
versité de Montréal, Canada (2000)

12. Carter, M.W., Lapierre, S.D.: Scheduling emergency room physicians. Health Care
Management Science 4, 347–360 (2001)

13. Chvàtal, V.: Linear Programming. Freeman, New York (1983)
14. Dowsland, K.A.: Nurse scheduling with tabu search and strategic oscillation. Eu-

ropean Journal of Operation Research 106, 393–407 (1998)
15. Forget, F.: Confection automatisée des horaires des médecins dans une

salle d’urgence. Master’s Thesis, Département d’informatique et de recherche
opérationnelle, Université de Montréal, Canada (2003)

16. Gendreau, M.: An introduction to tabu search. In: Glover, F., Kochenberger, G.
(eds.) Handbook of Metaheuristics, pp. 37–54. Kluwer Academic Publishers, Dor-
drecht (2003)

17. Gendreau, M., Hertz, A., Laporte, G.: A tabu search algorithm for the vehicle
routing problem. Management Science 40, 1276–1290 (1994)

18. Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique problem using
a tabu search approach. Annals of Operations Research 41, 385–403 (1993)

19. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research 13, 533–549 (1986)

20. Knaunth, P.: The design of shift systems. Ergonomics 36, 15–28 (1993)
21. Knaunth, P.: Design better shift systems. Applied Ergonomics 27, 39–44 (1996)
22. Labbé, S.: La confection automatisée d’horaires pour les médecins en salles

d’urgence. Master’s Thesis, École des Hautes Études Commerciales de Montréal,
Canada (1998)

23. Labit, P.: Amélioration d’une méthode de génération de colonnes pour la confection
d’horaire d’infirmières. Master’s Thesis. École Polytechnique, Montréal, Canada
(2000)

http://www.bytebloc.com

66 M. Gendreau et al.

24. Lloyd, S., Shannon, S., Steiner, D.: Burnout, depression, life and job satisfaction
among Canadian emergency physicians. Journal of Emergency Medicine 12, 559–
565 (1994)

25. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT
Press, Cambridge, MA (1998)

26. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, New York (1988)

27. Rousseau, L.M., Pesant, G., Gendreau, M.: A hybrid algorithm to solve a physician
rostering problem. In: Second Workshop on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems Paderborn,
Germany (2000)

28. Skorin-Kapov, J.: Tabu search applied to the quadratic assignment problem. ORSA
Journal on Computing 2, 33–45 (1990)

29. Taillard, É.: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47, 65–74 (1990)

30. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17, 443–455 (1991)

31. Peake Software Laboratories: Tangier emergency physician scheduling software.
http://peakesoftware.com/peake/

32. Trilling, G.: Génération automatique d’horaires de médecins de garde pour l’hôpital
Côte-des-Neiges de Montréal. Publication CRT-98-05. Centre for Research on
Transportation, Université de Montréal, Canada (1998)

33. Vovor, T.: Problème de chemins bicritère ou avec contraintes de ressources: algo-
rithmes et applications. Ph.D. Thesis, École Polytechnique, Montréal (1997)

34. Weil, G., Heus, K., Poujade, P., François, M.: Constraint Programming for nurse
scheduling. Engineering in Medicine and Biology 14, 417–422 (1995)

35. Warner, D.M.: Scheduling nursing personnel according to nursing preference: a
mathematical programming approach. Operations Research 24, 842–856 (1976)

http://peakesoftware.com/peake/

A Flexible Model and a Hybrid Exact Method

for Integrated Employee Timetabling and
Production Scheduling

Christian Artigues1, Michel Gendreau2, and Louis-Martin Rousseau2

1 Université de Toulouse, LAAS-CNRS, 7 avenue du Colonel Roche,
31077 Toulouse, Cedex 4, France

artigues@laas.fr
2 CRT, Université de Montréal, CP 6128, succ. Centre-ville,

Montreal, QC, Canada H3C 3J7
{michelg,louism}@crt.umontreal.ca

Abstract. We propose a flexible model and several integer linear
programming and constraint programming formulations for integrated
employee timetabling and production scheduling problems. A hybrid
constraint and linear programming exact method is designed to solve a
basic integrated employee timetabling and job-shop scheduling problem
for lexicographic minimization of makespan and labor costs. Preliminary
computational experiments show the potential of hybrid methods.

1 Introduction

In production systems, the decisions related to scheduling jobs on the machines
and the decisions related to employee timetabling are often made in a sequen-
tial process. The objective of job scheduling is to minimize the production costs
whereas the objective of employee timetabling is to maximize employee satis-
faction (or to minimize labor costs). Either the employee timetabling is first
established and then the scheduling of jobs must take employee availability con-
straints into account or the scheduling of jobs is done first and the employees
must then adapt to cover the machine loads. It is well known that optimiz-
ing efficiently an integrated process would both improve production costs and
employee satisfaction. However, the resulting problem has generally been consid-
ered as too complex to be used in practical situations. Some attempts have been
made [1,3,7,9,10,11,21] but mostly considering an oversimplified version of the
employee timetabling problem. Nevertheless the integration of task scheduling
and employee timetabling has been successfully developed in complex trans-
portation systems [6,8,13,17,19,22,23]. In this paper we propose a model of inte-
grated production and employee scheduling that takes account of the following
possible specific characteristics of the production context:

A) An employee that has started a task may be replaced at any moment by
another employee (of the same skill) with no notable effect nor interruption
of the processed task.

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 67–84, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 C. Artigues, M. Gendreau, and L.-M. Rousseau

B) An employee is not necessarily needed during all the processing time of a
task but only at some time periods that can occur before, during and after
the processed task (setups, removals, transportation).

C) Because of the automated production process, or the nature of the tasks
performed by the employee (e.g. supervision), an employee may perform
several tasks simultaneously during a shift.

D) The production process can be quasi-continuous (on a 24-hour basis) whereas
the employee timetabling has to be discretized in periods (on an 8-hour basis
for instance).

E) The duration of a task may change depending on the number or on the skill
of the assigned workers.

In Section 2, we review the related work dealing with the integration of task
and employee scheduling and we give the position of the considered problem
among the various production scheduling and employee timetabling problems.
In Section 3, we propose different ILP formulations of the considered problem.
A constraint programming formulation is proposed in Section 4. In Section 5, we
propose a hybrid framework to solve the lexicographic minimization of makespan
and labor costs. In Section 6, we provide the results of a preliminary computa-
tional experiment carried out on a set of employee timetabling and job-shop
scheduling instances. Concluding remarks are drawn in Section 7.

2 Literature Review and Position of the Considered
Problem

We review some of the integrated vehicle and crew scheduling methods in Section
2.1 and the previous work on integrated production scheduling and employee
timetabling in Section 2.2. We give the position of the considered problem in
Section 2.3.

2.1 Vehicle and Crew Scheduling

Integrated vehicle and crew scheduling is an active research area in transporta-
tion systems, see [6,8,13,17,19,22,23,28] among others.

We focus hereafter on some recent papers presenting different models and so-
lution methods. Cordeau et al. [8] propose a Benders decomposition scheme to
solve aircraft routing and crew scheduling problems. They use a set partition-
ing formulation for both the aircraft routing and the crew scheduling. In the
first scheme, the primal subproblem involves only crew scheduling variables and
the master problem involves only aircraft routing variables. Both the primal sub-
problem and master problem relaxation are solved by column generation. Integer
solutions are found by a three-phase method, adding progressively the integrity
constraints. More recently, Mercier et al. [23] have improved the robustness of
the proposed model. Their method reverses the Benders decomposition proposed
in [8] by considering the crew scheduling problem as the master problem.

A Flexible Model and a Hybrid Exact Method 69

Haase and Fridberg [19] propose a method to solve bus and driver scheduling
problems. The problem is formulated as a set partitioning problem with addi-
tional constraints in which a column represents either a schedule for a crew or
for a vehicle. The additional constraints are introduced to connect both schedule
types. A branch-and-price-and-cut algorithm is proposed in which column gen-
eration is performed to generate both vehicle and crew schedules. The method is
improved in [18] with a set partitioning formulation only for the driver schedul-
ing problem that incorporates side constraints for the bus itineraries. These side
constraints guarantee that a feasible vehicle schedule can be derived afterwards
in polynomial time. Furthermore, the inclusion of vehicle costs in this extended
crew scheduling formulation ensures the overall optimality of the proposed two-
phase crew-first, vehicle-second approach.

Freling et al. [17] propose a method to solve bus and driver scheduling prob-
lems on individual bus lines. They propose a formulation that mixes the set
partitioning formulation for crew scheduling and the assignment formulation
for the vehicle scheduling problem. They compute lower bound and feasible so-
lutions by combining Lagrangian relaxation and column generation. Columns
correspond to crew scheduling variables. The constraints involving the current
columns are relaxed in a Lagrangian way. The obtained Lagrangian dual problem
is a single-depot vehicle scheduling problem (SDVSP). Once the Lagrangian re-
laxation is solved a new set of columns with negative reduced costs is generated.
The method is iterated until the gap between the so-computed lower bound and
an estimated lower bound is small enough. Feasible solutions are generated from
the last feasible SDVSP and the current set of columns.

2.2 Production and Employee Scheduling

Specific employee scheduling problems involved in production scheduling are of-
ten tackled considering the job schedule is fixed. As a representative work in
this area, Valls et al. [27] consider a fixed schedule in a multi-machine environ-
ment and consider the problem of finding the minimal number of workers. The
problem is formulated as a restricted vertex coloring problem and a branch and
bound algorithm is presented.

A large part of work involving both job scheduling and employee timetabling
aims at keeping the number of required employees at each time period under a
threshold, without considering the regulation constraints of employee schedules
nor the individual preferences and skills of employees. Daniels and Mazzola [10]
consider a flow-shop problem in which the duration of an operation depends on
the selected mode to process an operation. Each mode defines a number of re-
sources (workers) needed during the processing of the operation. The scheduling
horizon is discretized in periods and at each time period, the number of workers
cannot exceed a fixed number. Optimal and heuristics approaches are proposed.
Daniels et al. [9] propose the same approach in a parallel machine context. Bailey
et al. [3] and Alfares and Bailey [1] propose an integrated model and a heuristic
for project task and manpower scheduling where the objective is to find a trade-
off between labor cost and daily overhead project cost. The labor cost depends

70 C. Artigues, M. Gendreau, and L.-M. Rousseau

on the number of employed workers at each time period. The daily overhead
cost depends on the project duration. There are no machine constraints and the
labor restrictions consist in setting a maximal number of workers per period.
In [21], the authors propose a MILP to minimize the makespan in a flow-shop
with multi-processor workstation as a primary objective and to determine the
optimal number of workers assigned to each machine as a secondary objective.
The sequence of jobs is fixed on each machine and the makespan is minimized
through lot-streaming.

Faaland and Schmitt [16] consider an assembly shop with multiple worksta-
tions. Each task must be performed on a given workstation by a worker. There
are production and late-delivery costs on one hand and labor cost linked to
the total number of employees on the other hand. The authors study the ben-
efits of cross-training which allows employees to have requisite skills for several
work-centers. A heuristic based on a priority rule and on the shifting bottleneck
procedure is proposed.

A more general problem (w.r.t. the timetabling problem) is studied by Daniels
et al. [11]. They extend the model proposed in [10] to an individual representa-
tion of employees in a flow-shop environment. Each employee has the requisite
skills for only a subset of machines and can be assigned to a single machine at
each time period. The duration of a job operation depends on the number of
employees assigned to its machine during its processing. The employees assigned
to an operation are required during all its processing time. No schedule regula-
tions are considered except unavailability periods. A branch and bound method
is developed and the benefits of the level of worker flexibility for makespan min-
imization is studied.

In [20], Häıt et al. propose a general model for integrating production schedul-
ing and employee timetabling, based on the concepts of load center, configura-
tion, employee assignment and sequence. A so-called load center is a subset of
machines that can be managed simultaneously by a single employee. A config-
uration is a set of load centers defining a partition of a subset of machines. At
each scheduling time period a single configuration is active. Hence, the number
of load centers in a configuration gives the number of active employees. An em-
ployee assignment is an assignment of each load center of a configuration to a
different employee. The authors define the configuration graph each node corre-
spond to a possible configuration and there is an arc between two configurations
that can be consecutive in time with a weight giving the cost of the configu-
ration changeover. This model allows one to represent the simultaneous work
of an employee on several machines. However, the computation method of the
job durations performed simultaneously by the same operator is not provided.
An example with two machines provided by the authors shows that the com-
putation of this duration of a job amounts to solving a scheduling problem of
the elementary tasks performed by the operator. Furthermore, it can happen in
practice that more than one operator is needed during the processing of a job
on a machine, which is not covered by the proposed model. In this model, a
schedule is defined by the start time of the jobs and by a path (with possible

A Flexible Model and a Hybrid Exact Method 71

loops and cycles) in the graph of configurations with the employee assignment for
each configuration of this path. The authors provide two examples of integrated
resolution in a flow-shop context. In the first example, they propose a dynamic
programming algorithm to find a feasible path in the configuration graph with
a fixed number of equivalent operators and a fixed sequence of jobs. In the sec-
ond example they propose a heuristic and a lower bound of the makespan in
a flow-shop where the timetabling problem is reduced to the assignment of an
employee to each machine, the duration of the jobs depending of the employee
performance.

Drezet and Billaut [14] consider a project scheduling problem with human
resources and time-dependent activities requirements. Furthermore, employees
have different skills and the main legal constraints dictated by the workforce
legislation have to be respected. The model is quite general. However, only hu-
man resources are considered since the considered context is not a production
scheduling problem where machines are critical resources. A tabu search method
is proposed as well as proactive scheduling techniques to deal with the uncer-
tainty of the problem.

This brief summary of the state of the art reveals that, compared to the
transportation domain, the integration of production scheduling and employee
timetabling is in its earliest phase. Almost no existing approach tackles the
complex regulation constraints of work nor the diversity of employee activities
in modern production systems. Recently, more sophisticated models have been
proposed but independently of the relevant literature in staff scheduling in other
areas and without proposing a general solution methodology.

2.3 Position of the Considered Problem

There are several variants of the employee timetabling problem, see for instance
the recent surveys [15,26]. In this paper we focus on only one of the problems
presented in [12] called individual shift scheduling where each employee (or team
of employees) is considered individually with its own skills and preferences. The
time horizon is discretized in elementary time periods (shifts). At each period, a
set of activities has to be performed and each activity requires a specific number
of workers. The objective of the employee timetabling problem is to assign a
single activity to each employee at each time period (‘rest’ activity included)
in order to cover the demand for all activities. Such an assignment is called
a schedule. There are restrictions on the possible schedules due to regulation
constraints and employee profiles. The objective of the timetabling problem is
to maximize the employee satisfaction.

There is also a large number of different production scheduling problems [25].
In this paper we consider a rather general problem where a set of jobs linked by
precedence constraints has to be scheduled on a set of machines. Each job has a
processing time, a release date, a due date and is assigned to a unique machine.
A job cannot be interrupted once started and each machine can process at most
one job simultaneously. The job scheduling problem lies in assigning a start time
to each job with the objective to minimize the production costs.

72 C. Artigues, M. Gendreau, and L.-M. Rousseau

We propose to integrate the two problems by associating to each job (processed
on a machine) a set of activities (performed by the employees) such that assigning
a start time to a job determines the period of each associated activity. From the
employee timetabling point of view, the demand profile is not known in advance
but is determined by the job schedule. From the job scheduling point of view, the
possibility to start a job is subject to the presence of the employees able to perform
the activities generated by this job. The employee profile is determined by the
selected employee schedules. We will give several mathematical formulations of
variants of this problem in Section 3.

3 ILP Models of Integrated Employee Timetabling and
Machine Scheduling Problems

The model of integration proposed by [20] is centered on the concept of configu-
ration which is a partition of the machines at a given time period such that each
subset is managed by a single operator. In this paper we propose to perform the
integration through the concept of activity which is widely used in the employee
timetabling literature. We first provide a model with a common time represen-
tation for timetabling and scheduling (Section 3.1). Then we extend this model
to the case where there is a time representation for employee timetabling and
another time representation for job scheduling (Section 3.2). We show how these
models can be extended to tackle the variability in job durations and machine
assignment through the concept of modes (Section 3.3). The three latter models
are based on time indexed and assignment variable formulations. In Section 3.4
we show how the set covering formulation usually used in efficient employee
scheduling methods can also be used in the production scheduling context.

3.1 Common Time Representation for Timetabling and Scheduling
and Single-Mode Jobs

We consider the following employee timetabling and machine scheduling prob-
lem.

Let T denote a time horizon, discretized in a set of elementary time periods
t = 0, . . . , T − 1. We consider an organization comprising a set of E employees
E = {1, . . . , E} and a set of m machines M = {1, . . . , m}. There is set of A
activities A = {1, . . . , A} where each activity may be required by a job and has
to be performed by one or several employees. Ae is the set of activities employee
e is able to perform.

The organization has to process a set of n jobs J = {1, . . . , n} during the time
horizon. Each job j has a known duration pj > 0 and requires for its execution
a precise machine mj . A binary matrix (bjk)1≤j≤n,1≤k≤m states if job j requires
machine k, i.e. bjmj = 1 and bjk = 0, ∀k �= mj . A matrix (Rja)1≤j≤n,1≤a≤A

is given where Rja is the number of employees that have to perform activity a
during the processing of job j. Each job j has a release date rj and a due date dj .

A Flexible Model and a Hybrid Exact Method 73

There are precedence constraints linking the jobs, represented by a directed
graph G = (V, U) where V is the set of nodes including one node per job plus a
dummy start node denoted 0 and a dummy end node denoted n+1. U is the set
of arcs representing the precedence constraints. Each arc (i, j) of U is valuated
by a (positive or negative) time lag dij .

There are also specific constraints on the activities that can be assigned to
a given employee over time which will be described below. The objective of the
considered employee timetabling and machine scheduling problem is to assign a
start time to each activity and to assign exactly one activity to each employee
at each time period.

We assume that there is a production cost Wjt if job j starts at time t and an
employee satisfaction cost Ceat if employee e is assigned to activity a at time t.

xjt is a binary decision variable where xjt = 1 if job j starts at time t and
xjt = 0 otherwise. yeat is a binary decision variable such that yeat = 1 if employee
e is assigned to activity a at time t and yeat = 0 otherwise. The problem can be
formulated as follows:

min
n∑

j=1

T−1∑

t=0

Wjtxjt +
E∑

e=1

A∑

a=1

T−1∑

t=0

Ceatyeat (1)

T−1∑

t=0

xjt = 1 ∀j ∈ J (2)

xjt = 0 ∀j ∈ J , ∀t �∈ {rj , . . . , dj − pj} (3)
n∑

j=1

t∑

τ=t−pj+1

bjkxjτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =, ∀k ∈ M (4)

T−1∑

t=0

txjt −
T−1∑

t=0

txit ≥ dij ∀(i, j) ∈ U (5)

E∑

e=1

yeat ≥
n∑

j=1

t∑

τ=t−pj+1

Rjaxjτ ∀a ∈ A, ∀t ∈ {0, . . . , T − 1} (6)

∑

a∈Ae

yeat = 1 ∀e ∈ E , ∀t ∈ {0, . . . , T − 1} (7)

Fy ≤ f (8)
xjt ∈ {0, 1} ∀j ∈ J , ∀t ∈ {0, . . . , T − 1} (9)

yeat ∈ {0, 1} ∀e ∈ E , ∀a ∈ A, ∀t ∈ {0, . . . , T − 1}. (10)

The objective of the problem is to minimize the total cost (1) subject to the fol-
lowing constraints. Each job has to be started exactly once: (2). Each job must be
started a way that it is started and finished within its time window: (3). At most
one job can be processed by a machine at each time period: (4). The precedence

74 C. Artigues, M. Gendreau, and L.-M. Rousseau

��
��
��
��

����
����
����
����

����
����
����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
�� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
������
������
������

������
������
������

��
��
��
��

��
��
��
��

����
����
����
����M1

E1

E2

J2J1

Fig. 1. A 1-machine and 2-employee example

constraint must be satisfied: (5). The number of employees assigned to each activ-
ity at each time period has to cover the total demand of all jobs in process: (6).
Each employee has to be assigned to exactly one activity (in set Ae) at each
time period: (7). We assume A contains also non working activities representing
employee inactivity (break, lunch, etc.) gathered in set P . Constraints (8) are
specific constraints for each employee e of the form

∑
a∈A

∑T−1
t=0 Fatqyeat ≤ fq,

with Fatq ∈ {−1, 0, 1}, which allow for instance the taking into account of min-
imum or maximum consecutive periods of work, and other complex regulation
constraints. For instance, if no employee can work more than two consecutive
shifts, the constraints of the form

∑
a∈A\P (yea(t−1) + yeat + yea(t+1)) ≤ 2 can be

defined for each time period t ∈ [1, T − 2] for each employee e. The main draw-
back of this formulation is that the number of these constraints can be huge in
practical situations and in general a set covering formulation is preferred (see
Section 3.4).

The main difference between the machines and the employee resource is that
employee timetables are more flexible, as illustrated in the example displayed in
Figure 1. In this example, the two jobs generate a single activity during their
processing. If we suppose that the first employee E1 allocated to this activity
has to take a break while J1 is in process, another employee can perform the
activity until the break of E1 is over which occurs in this example while J2 is in
process.

3.2 Different Time Representations for Timetabling and Scheduling
and Single-Mode Jobs

We assume that, for practical reasons, there may be a different time represen-
tation for the machine scheduling problem and for the employee timetabling
problem. Let T denote the time horizon for the scheduling problem and let Θ
denote the time horizon for the timetabling problem. Furthermore, we assume

A Flexible Model and a Hybrid Exact Method 75

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
������
������
������

������
������
������

��
��
��
��

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

M1 J1 J2

E1

E2

E3

Fig. 2. A 1-machine and 3-employee example

that if a job j starts at time t, 0 ≤ t < T then a number of employees Rjatθ ≥ 0
is required to perform activity a at each period θ, 0 ≤ θ < Θ.

It follows that demand covering constraints (6) can be generalized with con-
straints (16) below and the new model is

min
n∑

j=1

T−1∑

t=0

Wjtxjt +
E∑

e=1

A∑

a=1

Θ−1∑

θ=0

Ceaθyeaθ (11)

T−1∑

t=0

xjt = 1 ∀j ∈ J (12)

xjt = 0 ∀j ∈ J , ∀t �∈ {rj , . . . , dj − pj} (13)
n∑

j=1

t∑

τ=t−pj+1

bjkxjτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =, ∀k ∈ M (14)

T−1∑

t=0

txjt −
T−1∑

t=0

txit ≥ dij ∀(i, j) ∈ U (15)

E∑

e=1

yeaθ ≥
n∑

j=1

T−1∑

t=0

Rjatθxjt ∀a ∈ A, ∀θ ∈ {0, . . .Θ − 1} (16)

∑

a∈Ae

yeaθ = 1 ∀e ∈ E , ∀θ ∈ {0, . . . , Θ − 1} (17)

Fy ≤ f (18)
xjt ∈ {0, 1} ∀j ∈ J , ∀t ∈ {0, . . . , T − 1} (19)

yeaθ ∈ {0, 1} ∀e ∈ E , ∀a ∈ A, ∀θ ∈ {0, . . . , Θ − 1}. (20)

Such constraints allow one to consider the cases where the employees need
not be present during all the processing of a job on its machine, or when the
employee activity generated by the job is not simultaneous with the processing

76 C. Artigues, M. Gendreau, and L.-M. Rousseau

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

����
����
����
����

����
����
����
����

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

J1 J2M1

M2

M3

0 1 2 3 4 5 6 7 8 9 10

J4 J3

J5 J6

1
2
3

0 1 2

scheduling period

demand

timetabling period

Fig. 3. A three-machine example with associated staffing demand

of the jobs. This feature takes place when employees have to perform setup or
removal activities before and after the job processing, or when a control operation
has to be carried out during a limited time while the job is in process. In Figure 2,
a third employee is necessary only right before the start and right after the end
of jobs J1 and J2.

This type of model allows one also to take account of a different time scale
between the time horizon of the scheduling problem, with the time periods con-
sidered in the timetabling problem. Suppose the scheduling time period is one
hour and the timetabling period is four hours, then an aggregated information
of the activities to perform during each four-hour period has to be provided. For
this purpose, values Rjatθ need not be integers if the activity a generated by job
j in timetabling period θ occupies only a portion of an employee’s work capacity.
In Figure 3, each job is assumed to require 0.25 employees per time unit and
generate a single activity. Then, the demand for employees able to perform this
activity is displayed for each timetable period.

3.3 Multi-mode Jobs

We consider the case where for each job j there is a number Qj of different
processing modes corresponding to different ways (durations, machine and ac-
tivity requirements) to perform job j. Let pq

j denote the duration of job j in
mode q. Let bq

jk = 1 if job j uses machine k in mode q and bq
jk = 0 otherwise.

xq
jt is a binary decision variable such that xq

jt = 1 if job j is started at time t in
mode q and xq

jt = 0 otherwise. Rq
jatθ now denotes the number of employees that

must perform activity a at period θ if job j is started at time t in mode q. The
model can be adapted as follows:

A Flexible Model and a Hybrid Exact Method 77

min
n∑

j=1

Qj∑

q=1

T−1∑

t=0

Wjtx
q
jt +

E∑

e=1

A∑

a=1

Θ−1∑

θ=0

Ceaθyeaθ (21)

Qj∑

q=1

T−1∑

t=0

xq
jt = 1 ∀j ∈ J (22)

xq
jt = 0 ∀j ∈ J , ∀q ∈ {1, . . . , Qj}

∀t �∈ {rj , . . . , dj − pj} (23)
n∑

j=1

Qj∑

q=1

t∑

τ=t−pq
j+1

bq
jkxq

jτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =, ∀k ∈ M (24)

Qj∑

q=1

T−1∑

t=0

txq
jt −

Qi∑

s=1

T−1∑

t=0

txs
it ≥ dij ∀(i, j) ∈ U (25)

E∑

e=1

yeaθ ≥
n∑

j=1

Qj∑

q=1

T−1∑

t=0

Rjatθx
q
jt ∀a ∈ A, ∀θ ∈ {0, . . .Θ − 1} (26)

∑

a∈Ae

yeaθ = 1 ∀e ∈ E , ∀θ ∈ {0, . . . , Θ − 1} (27)

Fy ≤ f (28)

xq
jt ∈ {0, 1} ∀j ∈ J , ∀q ∈ {1, . . . , Qj},

∀t ∈ {0, . . . , T − 1} (29)
yeaθ ∈ {0, 1} ∀e ∈ E , ∀a ∈ A, ∀θ ∈ {0, . . . , Θ − 1}. (30)

3.4 Set Covering Formulations

Let Se denote the set of valid schedules for an employee e. For each schedule
s ∈ Se, each activity a and each timetabling period θ, binary value ysaθ is such
that ysaθ = 1 if the schedule performs activity a at time θ and ysaθ = 0 otherwise.
Cs denotes the cost of a schedule s ∈ Se. In addition, a binary decision variable
zs is defined such that zs = 1 if schedule s is selected and zs = 0 otherwise.

A new model can then be proposed by including the set covering formulation
of the timetabling constraints (we ignore the multi-mode characteristics):

min
n∑

j=1

T−1∑

t=0

Wjtxjt +
E∑

e=1

∑

s∈Se

Cszs (31)

T−1∑

t=0

xjt = 1 ∀j ∈ J (32)

78 C. Artigues, M. Gendreau, and L.-M. Rousseau

xjt = 0 ∀j ∈ J ,

∀t �∈ {rj , . . . , dj − pj} (33)
n∑

j=1

t∑

τ=t−pj+1

bjkxjτ ≤ 1 ∀t ∈ {0, . . . , T − 1} =, ∀k ∈ M (34)

T−1∑

t=0

txjt −
T−1∑

t=0

txit ≥ dij ∀(i, j) ∈ U (35)

E∑

e=1

∑

s∈Se

ysaθzs ≥
n∑

j=1

T−1∑

t=0

Rjatθxjt ∀a ∈ A, ∀θ ∈ {0, . . .Θ − 1} (36)

∑

s∈Se

zs = 1 ∀e ∈ E (37)

xjt ∈ {0, 1} ∀j ∈ J , ∀t ∈ {0, . . . , T − 1} (38)
zs ∈ {0, 1} ∀e ∈ E , ∀s ∈ Se. (39)

4 A Constraint Programming Model

Constraint programming formulations have been proposed for production schedul-
ing [4] and for employee timetabling [12]. We present hereafter an integrated for-
mulation which involves start time decision variables Sj ∈ [ri, di − pi] for all jobs,
an activity assignment variable aθe ∈ Ae giving the activity assigned to employee
e in period θ and a demand variable δθa ∈ IN giving the number of employees re-
quired for activity a during period θ. Consider the following constraint satisfaction
problem (CSP):

Sj − Si ≥ dij ∀(i, j) ∈ U (40)
Sj + pj ≤ Si ∨ Si + pi ≤ Sj ∀i, j ∈ J , mi = mj (41)

φ(δθa, S) ∀θ ∈ {0, . . . , Θ − 1}, ∀a ∈ A (42)
distribute((δθa)a∈A, A, (aθe)e∈E) ∀θ ∈ {0, . . . , Θ − 1} (43)

regular((aθe)θ∈{0,...,Θ−1}, Π) ∀e ∈ E . (44)

Constraints (40) are the precedence constraints. Constraints (41) are the ma-
chine disjunctive constraints. Constraints (42) establish the link between the job
start time variables S and the demand variable δ through generic constraint φ
that needs to be specified for each specific problem. Constraints (43) represent
demand satisfaction through the global cardinality constraint distribute which
states that for a given period θ, δθa variables must have value a in the activ-
ity assignment vector (aθe)e∈E of employees during period θ. Last, constraints
(44) express the employee specific and regulation constraints through the global
regular language membership constraints regular [24], restricting the sequence

A Flexible Model and a Hybrid Exact Method 79

of values taken by the assignment variables to belong to the regular language
associated to Π .

The advantage of constraint programming is its high flexibility to model com-
plex demand computations, as well as complex regulation constraints.

The above CSP can be transformed into an optimization problem by in-
troducing cost variables. This can be done through the element global con-
straints (see next Section). As an alternative, in [12], a new global constraint
cost− regular(X, Π, z, C) extends the regular constraint by computing the cost
z associated by an assignment of variables X given cost matrix C.

5 Solving a Lexicographic Makespan and Employee Cost
Optimization Problem by a Hybrid LP-CP Method

In this section, we propose a hybrid CP-LP exact method to solve a lexicographic
bicriteria optimization problem. The considered production cost is the makespan,
denoted Cmax. Let Cempl denote the total satisfaction cost of employees. The
considered problem can be denoted

min Lex(Cmax, Cempl) (45)

Cmax ≥ Sj + pj ∀j ∈ J (46)

Cempl =
∑

e∈E

Θ−1∑

θ=0

Ceθ (47)

element(Ceθ, (Ceaθ)a∈Ae , aθe) ∀e ∈ E , ∀θ ∈ {0, . . .Θ − 1} (48)
(40) . . . (44).

Constraints (46) enforce the makespan value. Constraint (47) defines the to-
tal cost Cempl as the sum of elementary employee/period costs represented by
decision variables Ceθ. element global constraints (48) simply enforce the impli-
cations aθe = v =⇒ Ceθ = Cevθ for all θ ∈ {0, . . .Θ−1}, e ∈ E and v ∈ Ae. The
problem can be solved by first finding the optimal makespan C∗

max (problem A)
and, second, by finding the minimal employee cost C∗

empl compatible with C∗
max

(problem B).
We propose to solve both problems A and B through implicit enumeration

in a constraint programming framework. Hence C∗
max is found by iteratively

searching the smallest V such that there is a feasible solution verifying Cmax ≤ V
(problem A). C∗

empl is found by searching the smallest V ′ such that there is a
feasible solution verifying Cmax = C∗

max and Cempl ≤ V ′ (problem B).
At each node of each above-defined search trees, constraint propagation algo-

rithms are performed to either reduce the domain of start time S and activity
variables a or to detect an inconsistency and prune the node. The branching
scheme first assigns values to start time variables and, once all start time vari-
ables are assigned, makes the remaining decisions on activity variables. Note
that constraints φ (42) have to ensure that once a complete assignment of the

80 C. Artigues, M. Gendreau, and L.-M. Rousseau

start time variables is computed, the demand variables δ are also completely
assigned.

For both problems A and B, the makespan constraints set due dates on the job
operations. Hence, standard scheduling constraint propagation algorithms can
be used to reduce the start time domains. In the present work, we use precedence
constraint propagation and edge-finding. We refer to [5] for a precise description
of those algorithms.

For domain reduction of the demand and activity variables δ and a, besides
the standard distribute and regular constraint propagation algorithm, we
propose to embed the linear programming relaxation of the ILP formulation
(21). . . (30), limited to constraints involving yeaθ assignment variables, into a
global constraint. Let δθa denote the smallest value in the domain of demand
variable δθa for activity a during period θ at a given node of the constraint pro-
gramming search tree. Then we consider the following LP relaxation, considering
only labor costs:

min
E∑

e=1

A∑

a=1

Θ−1∑

θ=0

Ceaθyeaθ (49)

E∑

e=1

yeaθ ≥ δθa ∀a ∈ A, ∀θ ∈ {0, . . .Θ − 1} (50)

∑

a∈Ae

yeaθ = 1 ∀e ∈ E , ∀θ ∈ {0, . . . , Θ − 1} (51)

Fy ≤ f (52)
0 ≤ yeaθ ≤ 1 ∀e ∈ E , ∀a ∈ A, ∀θ ∈ {0, . . . , Θ − 1}. (53)

At a given node, the relaxation is stronger if the lower bound δθa on the
demand is tight. This obviously depends on the definition and propagation of
constraint φ. Each time the LP relaxation is unfeasible, which can occur due
to both demand undercoverage or labor cost upper bound violation, the current
node is pruned.

Last, whenever an upper bound Z on the total labor cost Cempl is known,
the reduced cost based filtering technique can be applied. Let C̃eaθ denote the
reduced cost of an activity assignment variable yeaθ and let Cempl denote the
current optimal LP solution value. If, Cempl + C̃eaθ ≥ Z, a can be removed from
the domain of aθe.

6 Computational Results on a Basic Employee
Timetabling and Job-Shop Scheduling Problem

In this section, we show the potential of hybrid methods to solve integrated
employee timetabling and production scheduling problems, through the resolu-
tion of basic employee and job-shop scheduling instances. For constraint based
scheduling we use ILOG Solver 6.1 and Scheduler 6.1. For LP resolution we use

A Flexible Model and a Hybrid Exact Method 81

ILOG Cplex 9.1. All programs are coded in C++ under Linux on a AMD x86-64
architecture.

We consider the standard job-shop scheduling problem in which a job is made
of m operations which form a chain in the precedence graph. Each job has to
be processed by all the machines successively. Hence the operations of the same
jobs are all assigned to different machines.

We consider job-shop instances of six jobs and four machines, comprising 24
operations. We consider a set of 15 employees and a set of 4 + 1 activities. The
integer job operations processing times have been generated uniformly randomly
between 1 and 10. We assume one time unit corresponds to one hour. We define
a timetabling period as a eight-hour shift (i.e. T = 8Θ). Each employee has to be
assigned to one activity during each shift. We assume activity 5 corresponds to
employee inactivity during the shift. Each employee has skills for two production
activities out of four. Each break must be of at least two consecutive shifts
(16-hour break). There is an integer cost (uniformly randomly generated from
1 to 5) for assigning a production activity to an employee during each shift.
Furthermore, to ensure problem feasibility at minimal makespan, we consider
an additional set of 10 extra employees having a greater assignment cost (equal
to 9 for all extra employees and for all periods and all activities).

We now describe how constraint φ is implemented for the considered example.
We simply assume there is a mapping between activities and machines. Hence,
whenever a machine is in process during a shift, then an employee able to perform
the corresponding activity is needed. It follows that at most four employees can
be required simultaneously during a shift.

More precisely the link between the operation schedule S and the demand
(δθa) can be described by the following constraints. Let D = T/Θ and let Jk

denote the set of operations scheduled on machine k. Let ak denote the activity
corresponding to machine k:

Sj + pj > Dθ ∧ Sj < D(θ + 1) =⇒ δθamj
= 1

∀j ∈ J , ∀θ ∈ [0, Θ − 1]
(Sj + pj ≤ Dθ ∨ Sj ≥ D(θ + 1), ∀j ∈ Jk) =⇒ δθak

= 0
∀k ∈ M, ∀θ ∈ [0, Θ − 1].

We use the standard job-shop resolution method provided in the example li-
brary of ILOG scheduler for the scheduling constraint propagation parts. For the
search part on the start time and activity variables, we use a simple backtracking
on possible values (in a chronological way for the start times). All employee con-
straints have been coded by distribute constraints. The LP relaxation and the
reduced cost-based filtering algorithms are embedded into a global constraint.
These algorithms are called whenever the lower bound of an activity demand is
increased for any period or when the domain of a variable (aθe) is changed.

We have generated 10 instances having the above described characteristics.
The results, comparing the hybrid method with and without reduced cost-based
filtering, are displayed in Table 1. Column Inst gives the instance number.

82 C. Artigues, M. Gendreau, and L.-M. Rousseau

Table 1. Method comparison on 10 basic employee and job-shop scheduling instances

Inst Mks∗ cost(M) CPU(M) #fails(M) cost∗ CPU(H) #fails(H) CPU(H−) #fails(H−)

1 45 75 0.2s 3 29 0.8s 151 1.1s 438
2 56 69 0.2s 2 26 208s 27176 4099s 2459422
3 44 69 0.2s 2 26 2.2s 732 1.7s 1691
4 40 53 0.2s 3 23 0.5s 24 0.7s 183
5 40 63 0.2s 3 27 6.2s 4047 205s 117850
6 48 70 0.2s 7 28 0.9s 96 1.2s 371
7 43 67 0.2s 2 33 0.6s 83 0.8s 242
8 37 57 0.2s 3 22 28s 8185 400s 269799
9 49 69 0.2s 4 24(22) 3364s 340742 - -
10 48 68 0.2s 3 23 4.1s 1140 408s 267695

Column Mks∗ gives the optimal makespan obtained by pure CP without consid-
ering employee cost minimization. Column cost(M) gives the employee cost of
the obtained solution. Columns #fails(M) and CPU(M) give the total number of
fails and the CPU times of this search process. Column cost∗ gives the minimal
employee cost solution with a makespan equal to Mks∗. Columns #fails(H) and
CPU(H) give the total number of fails and the CPU times of the complete hy-
brid search method needed to find the optimal cost solution. Columns #fails(H−)
and CPU(H−) give the same values for the hybrid method used without reduced
cost-based filtering.

For the proposed instances, the makespan minimization problem is very easy
since CP always solves the problem in less than 0.2 s. Note that, in contrast, the
hybrid methods outperform the standard constraint programming approaches
for employee cost minimization since the latter is unable to find the optimal so-
lution in a reasonable amount of time. Furthermore, while keeping the makespan
optimal, the employee cost is significantly improved by the hybrid methods for
all instances. One instance remains unsolved by all methods and the obtained
lower and upper bounds are given as well as the total CPU time and number
of fails needed to obtain them. This underlines the difficulty of the problem
and shows the need for improvement of the proposed methods, considering also
that the considered instances are small ones. The reduced cost-based filtering
hybrid method outperforms the basic hybrid method on almost all instances
showing the potential of high interaction between CP and LP for this kind of
difficult integrated planning problem. In [2], enhanced hybrid methods and ex-
tended computational experiments are presented on the considered employee
timetabling and job-shop scheduling problem.

7 Concluding Remarks

We have proposed a flexible model and several ILP and CP formulations for inte-
grated employee timetabling and production scheduling. We have shown how the

A Flexible Model and a Hybrid Exact Method 83

flexibility of constraint programming modeling can be used to represent complex
relationships between schedules and activity demands. A hybrid exact method
involving standard constraint programming-based scheduling and timetabling
technique on the one hand, and a linear programming relaxation with reduced-
cost based filtering on the other hand, has been used to solve to optimality
instances of the problem which cannot be solved by standard constraint pro-
gramming. We are planning to generate several other instances to study the
behavior of the proposed method with different problem characteristics. The
search algorithm has also to be refined since we have used only standard back-
tracking schemes without any particular rule for activity selection. More realistic
employee timetabling constraints will have also to be considered. This may lead
to an improvement of the results of pure constraint programming techniques. The
search could also be guided by using the linear programming optimal solution.
Decomposition methods such as Benders decomposition or column generation
will have also to be tested.

References

1. Alfares, H., Bailey, J.: Integrated project task and manpower scheduling. IIE Trans-
actions 29, 711–717 (1997)

2. Artigues, C., Gendreau, M., Rousseau, L., Vergnaud, A.: Solving an integrated
employee timetabling and job-shop scheduling problem via hybrid branch-and-
bound. Technical Report 06700, Université de Toulouse, LAAS-CNRS, Toulouse,
France (2006)

3. Bailey, J., Alfares, H., Lin, W.: Optimization and heuristic models to integrate
project task and manpower scheduling. Computers and Industrial Engineering 29,
473–476 (1995)

4. Baptiste, P., Pape, C.L.: Disjunctive constraints for manufacturing scheduling:
Principles and extensions. International Journal of Computer Integrated Manu-
facturing 9, 306–310 (1996)

5. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling. Kluwer, Dor-
drecht (2001)

6. Bodin, L., Golden, B., Assad, A., Ball, M.: Routing and scheduling of vehicles and
crews the state of the art. Computers and Operations Research 10, 63–211 (1983)

7. Chen, Z.: Simulataneous job scheduling and resource allocation on parallel ma-
chines. Annals of Operations Research 129, 135–153 (2004)

8. Cordeau, J.F., Stojković, G., Soumis, F., Desrosiers, J.: Benders decomposition
for simultaneous aircraft routing and crew scheduling. Transportation Science 35,
375–388 (2001)

9. Daniels, R.L., Hoopes, B.J., Mazzolla, J.B.: Scheduling parallel manufacturing cells
with resource flexibility. Management Science 42, 1260–1276 (1996)

10. Daniels, R.L., Mazzolla, J.B.: Flow shop scheduling with resource flexibility. Op-
erations Research 42, 504–522 (1994)

11. Daniels, R.L., Mazzolla, J.B., Shi, D.: Flow shop scheduling with partial resource
flexibility. Management Science 50, 658–669 (2004)

12. Demassey, S., Pesant, G., Rousseau, L.M.: Constraint programming based column
generation for employee timetabling. In: Barták, R., Milano, M. (eds.) CPAIOR
2005. LNCS, vol. 3524, Springer, Heidelberg (2005)

84 C. Artigues, M. Gendreau, and L.-M. Rousseau

13. Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., Soumis, F., Villeneuve,
D.: A unified framework for deterministic time constrained vehicle routing and
crew scheduling problems. In: Crainic, T., Laporte, G. (eds.) Fleet management
and logistics, pp. 57–93. Kluwer, Dordrecht (1998)

14. Drezet, L.E., Billaut, J.C.: Tabu search algorithms for a predictive and a reac-
tive project scheduling problem. In: 6th Metaheuristics International Conference,
Vienna (2005)

15. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering:
A review of applications, methods and models. European Journal of Operational
Research 153, 3–27 (2004)

16. Faaland, B., Schmitt, T.: Cost-based scheduling of workers and equipment in a
fabrication and assembly shop. Operations Research 41, 253–268 (1993)

17. Freling, R., Huisman, D., Wagelmanss, A.: Models and algorithms for integration
of vehicle and crew scheduling. Journal of Scheduling 6(1), 63–85 (2003)

18. Haase, K., Desaulniers, G., Desrosiers, J.: Simultaneous vehicle and crew scheduling
in urban mass transit systems. Transportation Science 35, 286–303 (2001)

19. Haase, K., Friberg, C.: An exact algorithm for the vehicle and crew scheduling
problem. In: Wilson, N. (ed.) Computer-Aided Transit Scheduling. Lecture Notes
in Economics and Mathematical Systems, vol. 471, pp. 63–80. Springer, Berlin
(1999)

20. Häıt, A., Baptiste, P., Brauner, N., Finke, G.: Approches intégrées à court terme.
In: Baptiste, P., Giard, V., Häıt, A. (eds.) Gestion de production et resources
humaines, ch. 6, Presse Internationales Polytechnique (2005)

21. Huq, F., Cutright, K., Martin, C.: Employee scheduling and makespan minimiza-
tion in a flow shop with multi-processor work stations: a case study. Omega 32,
121–129 (2004)

22. Klabjan, D., Johnson, E., Nemhauser, G.: Airline crew scheduling with time win-
dows and plane count constraints. Transportation Science 36, 337–348 (2002)

23. Mercier, A., Cordeau, J.F., Soumis, F.: A computational study of benders decompo-
sition for the integrated aircraft routing and crew scheduling problem. Computers
and Operations Research 32, 1451–1476 (2005)

24. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

25. Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services. Springer
Series in Operations Research and Financial Engineering, Springer, Berlin (2005)

26. Soumis, F., Pesant, G., Rousseau, L.M.: Gestion des horaires et affectation du
personnel. In: Baptiste, P., Giard, V., Häıt, A. (eds.) Gestion de production et
resources humaines, ch. 4, Presse Internationales Polytechnique (2005)

27. Valls, V., Pérez, A., Quintanilla, S.: A graph colouring model for assigning a het-
erogeneous workforce to a given schedule. European Journal of Operational Re-
search 90, 285–302 (1996)

28. Voß, S., Daduna, J. (eds.): Computer Aided Scheduling of Public Transport. Lec-
ture Notes in Economics and Mathematical Systems, vol. 505. Springer, Berlin
(2001)

Memes, Self-generation and Nurse Rostering

Ender Özcan

Yeditepe University, Department of Computer Engineering,
34755 Kadıköy/Istanbul, Turkey
eozcan@cse.yeditepe.edu.tr

Abstract. This paper presents an empirical study on memetic algo-
rithms in two parts. In the first part, the details of the memetic algo-
rithm experiments with a set of well known benchmark functions are
described. In the second part, a heuristic template is introduced for
solving timetabling problems. Two adaptive heuristics that utilize a set
of constraint-based hill climbers in a co-operative manner are designed
based on this template. A hyper-heuristic is a mechanism used for man-
aging a set of low-level heuristics. At each step, an appropriate heuristic
is chosen and applied to a candidate solution. Both adaptive heuristics
can be considered as hyper-heuristics. Memetic algorithms employing
each hyper-heuristic separately as a single hill climber are experimented
on a set of randomly generated nurse rostering problem instances. More-
over, the standard genetic algorithm and two self-generating multimeme
memetic algorithms are compared to the proposed memetic algorithms
and a previous study.

1 Introduction

Genetic Algorithms (GAs), as presented by J. Holland in [28], are very promising
for tackling complex problems [24]. There are some shortcomings of generic ge-
netic algorithms, such as premature convergence. The effectiveness of the use of
appropriate operators and hybrid approaches is underlined by many researchers
to overcome such difficulties. Memetic Algorithms (MAs) embody a class of algo-
rithms that combine genetic algorithms and hill climbing methods [15, 38, 45, 46].
A meme represents a hill climbing method to be used within an MA as the local
refinement component. Ning et al. [39] concluded from their experiments that the
meme choice in an MA influences the performance significantly. Krasnogor [31]
extended his previous studies and suggested a self-generating multimeme MA
for solving problems in the existence of multiple choices for the operators. Each
meme encodes an operator and its parameters that a candidate solution will em-
ploy during the evolution. In this study, a meme denotes a hill climbing method
and its related parameters. Each meme is co-evolved with each candidate solu-
tion. The evolutionary process offers a learning mechanism to fully utilize the
provided hill climbers [32, 34].

In the first part of this study, the multimeme approach proposed by Krasno-
gor [33] is tested on a set of benchmark functions. The study aims to answer the
following questions:

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 85–104, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

86 E. Özcan

– Can the suggested learning mechanism discover useful hill climbers?
– Does a set of hill climbers generate a synergy to obtain the optimal solution?

In the second part of this study, MAs for solving a nurse rostering problem,
introduced by Özcan [41], are considered. Özcan extended the study by Alkan
and Özcan [5], and suggested templates designing a set of operators, includ-
ing a self-adjusting violation-directed and constraint-based heuristics, named as
VDHC, within MAs for solving timetabling problems. A new heuristic template
for managing a set of constraint-based hill climbers is introduced in this pa-
per. Two new instances based on this template are implemented and used as
a single hill climber within MAs. Furthermore, two multimeme memetic algo-
rithms (MMAs) are described. The performances of all the proposed algorithms,
including the traditional genetic algorithm and the MA provided in [41], are
compared. A hyper-heuristic is a mechanism used to decide which heuristic to
apply from a set of heuristics to a given candidate solution. It is an emerging
search and optimization tool [11, 14, 43]. A variety of approaches are used as
hyper-heuristics, including meta-heuristics. Several heuristics presented in this
study for nurse rostering can be considered as hyper-heuristics used during the
hill climbing process to manage a set of hill climbers within MAs.

In the following section, the nurse rostering problem and memetic algorithms,
including the multimeme approach are summarized. The relevant details of MAs
and the experiments for the benchmark function optimization are explained in
Section 3. MAs, including the hill climbers, are described for solving the nurse
rostering problem at a Turkish hospital in Section 4. The nurse rostering data
and the experimental results are provided in Section 5. Finally, the conclusions
are presented in Section 6.

2 Background

2.1 Nurse Rostering Problem

Timetabling problems are real-world constraint optimization problems. Due to
their NP complete nature [21], traditional approaches might fail to generate a
solution for an instance. Timetabling problems can be represented in terms of
a three-tuple 〈V, D, C〉, where V is a finite set of variables, D is a finite set of
domains of variables and C is a set of constraints to be satisfied:

V = {v1, v2, . . . , vM}, D = {d1, . . . , di, . . . , dM}, C = {c1, c2, . . . , cK}.

Solving a timetabling problem instance requires a search for finding the best
assignment for all variables that satisfy all the constraints. Thus, a candidate
solution is defined by an assignment of values from the domain to the variables:

V ′ = {v1 = v′1, . . . , vi = v′i, . . . , vM = v′M},

where v′i ∈ di and di ⊆ D1 × · · · × DP , where P ≥ 1.

Memes, Self-generation and Nurse Rostering 87

In all timetabling problems, the time domain is a trivial domain for the vari-
ables. A problem instance might require other resources to be scheduled as well.
For example, a university course timetabling problem instance might require the
arrangement of the classrooms for each course meeting, as well. Then the search
will be performed within a domain that will be a Cartesian product of time and
classroom sets.

A nurse roster is a timetable consisting of employee shift assignments and
the rest days of nurses in a health-care institution. Some health-care institutions
might be composed of several departments. A departmental roster is defined as a
collection of the nurse rosters of all nurses working within the same department.
Nurse Rostering Problems (NRPs) are timetabling problems that seek for satis-
factory schedules to be generated for the employees, employers and even for the
customers. In a common NRP, a nurse can be assigned to a day or a night shift,
or can stay off-duty. A variable represents the shift assignment of a nurse. In this
paper, event and daily shift will be used to refer to variable, interchangeably.
A group of events indicates a subset of events in V and their assignments in a
candidate solution.

In all timetabling problems, constraints are classified as hard or soft. Hard
constraints must be satisfied, while soft constraints represent preferences that
are highly preferred. Furthermore, there are six different constraint categories
for practical timetabling: edge constraints, exclusions, presets, ordering con-
straints, event-spread constraint and attribute constraints (includes capacity con-
straints) [22, 42]. Edge constraints are the most common constraints that rep-
resent pairs of variables to be scheduled without a clash. A timetabling problem
reduces to a graph colouring problem if the instance requires only edge con-
straints to be satisfied [35]. Exclusions determine the members to be excluded
from the domain of variables for each variable. Presets are used to fix the assign-
ment of a variable. Ordering constraints, as the name suggests, are used to define
an ordering between a pair of variables based on the timeline. Event-spread con-
straints define how the events will be spread out in time. Attribute constraints
deal with the restrictions that apply between the attributes of a variable and/or
the attributes of its assignment. Numerous researchers deal with NRPs based on
different types of constraints utilizing variety of approaches. A recent survey on
nurse rostering can be found in [10].

Burke et al. [8] applied variable neighbourhood search using a set of differ-
ent perturbation methods and local search algorithms on randomly generated
schedules. Chun et al. [13] modelled nurse rostering as a constraint satisfaction
problem and embedded it as a Rostering Engine into the Staff Rostering Sys-
tem for the Hong Kong Hospital Authority. Similarly, Li et al. [36] modelled
nurse rostering as a weighted constraint satisfaction problem. Their algorithm
consists of two phases. In the first phase, forward checking, variable ordering
and compulsory back-jumping are used, whereas in the second phase descend
local search and tabu search are used. Ahmad et al. [2] proposed a population-
less co-operative genetic algorithm and experimented on a three-shift problem.
Kawanaka et al. [30] attempted to meet absolute and desirable constraints for

88 E. Özcan

obtaining optimal nurse schedules. Aickelin et al. proposed a co-evolutionary
pyramidal GA and experimented an indirect representation using three differ-
ent decoders within GA for solving NRP in [3] and [4], respectively. Gendreau
et al. [23] used TS to generate shifts of nurses at the Jewish General Hospital of
Montreal. Berrada et al. [6] combined TS with multi-objective approach, priori-
tizing the objectives. A swap operator is used as a heuristic that swaps working
and rest days in a roster. Duenas et al. [19] applied an interactive sequential
multi-objective problem solving method in conjunction with a genetic algorithm
to produce a weekly schedule of eight nurses. Burke et al. [7] compared steepest
descent, traditional TS and its hybrid with two local search heuristics for solving
nurse rostering problem in Belgian Hospitals.

Recently, research on timetabling started to move towards finding a good
hyper-heuristic [11]; a heuristic for selecting a heuristic among a set of them to
solve an optimization problem. Cowling et al. [14] described hyper-heuristics as
an iterative search method which maintains a single candidate solution and a
set of heuristics. A hyper-heuristic is a heuristic utilized to choose a lower level
heuristics. Han et al. [29] compared different versions of hyper-heuristics based on
a GA they developed for solving a trainer scheduling problem utilizing fourteen
different lower level heuristics. Burke et al. [12] proposed a tabu-search based
hyper-heuristic, demonstrating its success for solving a set of nurse rostering
problems at a UK hospital.

2.2 Multimeme Algorithms

Memetic algorithms (MAs) are population-based hybrid algorithms that com-
bine Genetic Algorithms and hill climbing [15, 38, 45, 46]. In MAs, a chromosome
(individual) represents a candidate solution to a problem at hand. A gene is a
subsection of a chromosome that encodes the value of a single parameter (allele).
Generally, the search for an optimal solution starts with a randomly generated
set of individuals, called initial population. Then at each evolutionary step (gen-
eration) a set of operators are applied to each individual in the population. First,
mates are selected for performing crossover, an operator that exchanges genetic
material between mates. While selecting the mates, better ones are preferred.
For example, tournament selection returns the individual having the best fitness
value as a mate among a set of randomly selected individuals of size tour. After
the crossover, a set of new individuals, called offspring, is generated. Offspring
are then mutated. In MAs, a hill climbing operator is applied to the individuals,
right after the crossover, or the mutation or in both places. Even the initial gen-
eration can be hill climbed. Finally, the individuals in the current population are
replaced by the offspring forming the next generation using a trans-generational
strategy. Whenever the termination criteria are satisfied, the evolution stops.
The best individual in the last generation is the best candidate solution achieved.
In this paper, all MAs utilize a hill climber after the initialization and mutation.

Using a set of hill climbers, different MAs can be generated and compared
for solving a problem. As another possibility, all hill climbers can be combined
under a heuristic that selects one hill climber at a time and applies it. Such a

Memes, Self-generation and Nurse Rostering 89

hyper-heuristic schedules a hill climber in a deterministic or a non-deterministic
way. For example, a deterministic round-robin strategy schedules the next hill
climber in a queue. A non-deterministic strategy schedules the next hill climber
randomly. These approaches employ blind choices. More complex and smart
hyper-heuristics can be designed by making use of a learning mechanism that
gets a feedback from the previous choices to select the right hill climber at each
step. Different types of hyper-heuristic are presented in [11]. Özcan et al. discuss
four different hyper-heuristic frameworks in [43] for utilizing mutational and hill
climbing heuristics simultaneously.

Multimeme algorithms (MMAs) represent a subset of self-generating (co-
evolving) MAs [31–34]. An individual in a population carries memetic material
along with a genetic material. A meme within memetic material indicates an
operator and its relevant settings. The materials are co-evolved. In an evolu-
tionary cycle, the memes are inherited to the offspring from the parents using
the Simple Inheritance Mechanism (SIM) [33] during the crossover. SIM favours
the meme of a mate with a better fitness to be transmitted to the offspring.
In the case of an equal quality, a meme is randomly selected from the mates.
Furthermore, a meme is altered to a random value based on a probability, called
Innovation Rate (IR), during the mutation. MMAs, based on the SIM strategy
and the mutation, allow modification of the candidate solutions by learning in
order to obtain improved ones. This mechanism is referred to as the Lamarckian
learning mechanism [31, 40].

Using a similar notation as provided in [33], a meme, denoted by HhAbInRt,
represents the hill climbing method (H), its acceptance strategy (A), the max-
imum number of iterations (I), and which part of the configuration to apply
the selected method (R). An individual uses its meme to decide the hill climb-
ing method and the related components to use, after the mutation takes place.
Previously, Ong et al. [40] conducted tests on three benchmark functions using
two new methods that they proposed for selecting the appropriate meme within
MAs. In this study, MMAs are extensively tested on a set of well known bench-
mark functions. Furthermore, MMAs are used to determine where to apply a hill
climber and which hill climber to apply, self-adaptively, for solving a real-world
nurse rostering problem.

Success rate (s.r.) indicates the ratio of successful runs, achieving the expected
fitness to the total number of runs repeated. Comparisons of MAs are based on
the average number of evaluations and the success rate. Additionally, average
evolutionary activity is considered during the assessment of MMA experiments.
Evolutionary activity of a meme at a given generation is the total number of
appearance of itself within each population starting from the initial generation
until the given generation. Average evolutionary activity is obtained by taking an
average of the evolutionary activity of a meme at each generation over the runs.
The slope of the average evolutionary activity versus generation curve shows
how much a meme is favoured. The steeper the slope gets for a meme, the more
it is favoured.

90 E. Özcan

Table 1. Benchmark functions used during the experiments: lb and ub indicate the
lower and upper bound for each dimension, respectively, opt indicates the optimum

Label Function name lb ub opt Source

F1 Sphere −5.12 5.12 0 [17]
F2 Rosenbrock −2.048 2.048 0 [17]
F3 Step −5.12 5.12 0 [17]
F4 Quartic with noise −1.28 1.28 1 [53, 17]
F5 Foxhole −65.536 65.536 1 [17]
F6 Rastrigin −5.12 5.12 0 [47]
F7 Schwefel −500 500 0 [50]
F8 Griewangk −600 600 0 [27]
F9 Ackley −32.768 32.768 0 [1]
F10 Easom −100 100 −1 [20]
F11 Schwefel’s Double Sum −65.536 65.536 0 [51]
F12 Royal Road – – 0 [37]
F13 Goldberg – – 0 [25, 26]
F14 Whitley – – 0 [54]

3 Memetic Algorithms for Benchmarking

3.1 Benchmark Functions and Hill Climbing Methods

Benchmark functions with different features, well known among the evolutionary
algorithm researchers, are utilized during the experiments (Table 1). F1–F11 are
continuous, whereas F12–F14 are discrete benchmark functions. Detailed prop-
erties of each function can be found in the source references presented in Table 1.
Benchmark functions include De Jong’s test suite [17]. The only difference is that
the noise component of the Quartic function is modified as described in [53].

Eight hill climbers (memes) are used in the experiments:

– Steepest Descent Hill Climber. (MA0) [37] evaluates all states obtained by
flipping each bit in a binary string and accepts the one with the lowest
fitness.

– Next Descent Hill Climber. (MA1) [37] flips the bit in question and accepts the
change if there is a fitness improvement at each step. This process is repeated
starting from the least significant bit towards the most significant one.

– Random Mutation Hill Climbing. (MA2) [37] flips a randomly selected bit
and accepts the change if there is a fitness improvement at each step.

– Davis’s Bit Hill Climbing. (MA3) [16] employs the same improvement pro-
cess as in MA1 at each step to each bit in a random order.

The remaining four memes are derived from the first two memes. The bit flip
operation in MA0 and MA1 is replaced by an AND operation with 0, yielding
MA4 and MA6, respectively. Similarly, an OR operation with 1 is employed,
yielding MA5 and MA7, respectively. Gray and binary encodings are used to

Memes, Self-generation and Nurse Rostering 91

Table 2. Common parameter settings used during the benchmark function experiments

Label Dim. No. of bits Chrom. length Pop. size Max. hc steps

F1 10 30 300 60 600
F2 10 30 300 60 600
F3 10 30 300 60 600
F4 10 30 300 60 600
F5 2 30 60 20 120
F6 10 30 300 60 600
F7 10 30 300 60 600
F8 10 30 300 60 600
F9 10 30 300 60 600
F10 6 30 180 36 360
F11 10 30 300 60 600
F12 8 8 64 20 128
F13 30 3 90 20 180
F14 6 4 24 20 48

represent candidate solutions during benchmark experiments for continuous and
discrete functions, respectively. The Gray encoding is preferred, since a bit flip
generates a Hamming distance of one from the previous state and causes a small
change in the decoded value. Due to the Gray encoding, the memes MA4-MA7
represent poor hill climbers for almost all continuous benchmark functions.

3.2 Experimental Setup

All runs are repeated 50 times. Pentium IV 2 GHz machines with 256 MB RAM
are used during the experiments. The chromosome length, l, is the product of
dimensions and the number of bits used. All the related parameters are arbi-
trarily chosen with respect to l. The mutation rate is chosen as a factor of 1/l.
The rest of the common parameter settings used during the experiments are
presented in Table 2. Runs are terminated whenever the overall CPU time ex-
ceeds 600 s, or an expected fitness is achieved. All MAs use a tournament mate
selection strategy with a tour size two, one point crossover, bit-flip mutation and
a trans-generational MA with a replacement strategy that keeps only two best
individuals from the previous generation. The IR rate is fixed as 0.20 during all
multimeme experiments. A single acceptance strategy that approves only im-
proving moves and a single value for the maximum number of hill climbing steps
are used: b = {1} and n = {l}. A hill climber is applied to the whole individual:
t = {whole}.

During the initial set of experiments, the benchmark functions are tested
using each meme described in Section 2.1. Experiments are also performed using
a traditional Genetic Algorithm for comparison. The second set of experiments
is designed according to the results obtained from the initial one. The best
meme and two poor memes are fed into a multimeme algorithm. In the last

92 E. Özcan

set of MMA experiments, eight memes are used. Four hill climbing methods;
h = {MA0, MA1, MA2, MA3} are embedded. Hill climbing is applied depending
on the acceptance strategy, b = {0, 1}. 0 indicates a rejection, so hill climbing is
not applied. If the meme points to the acceptance strategy 1, then the related hill
climbing operator is applied. Hence, effectively there are five different memes.
For short notation, each meme is referred to as GA, MA0–MA3.

3.3 Empirical Results for the Benchmark Functions

The performance comparisons of the genetic algorithm and the memetic algo-
rithms using different memes are demonstrated in Figure 1 for selected bench-
mark functions. For each experiment, the related bar appears in the figure, only
if all the runs yield the expected result. If two algorithms have a matching suc-
cess, then the average number of evaluations that each algorithm requires is
compared. An algorithm is considered to deliver a better performance, if the
average number of evaluations is less than the other one. MA0 is the best meme
choice for F4, F13 and F14. MA1 is the best meme choice for F6–F8. MA3 is
the best meme choice for F2, F3, F5, F10, and F12. For functions F1, F9 and
F11 genetic algorithm performs slightly better than the memetic algorithm with
the meme MA1. MA2 and MA3 turn out to be the worst and the best meme,
respectively, among MA0–MA3.

The average evolutionary activity versus generation plots generated during
the second set of experiments show that the multimeme approach successfully
identifies useful memes. The MMA chooses the best meme and applies it more
than the rest of the memes for all benchmark function, as illustrated in Figure 2
for selected benchmark functions. The success rate for each benchmark function
is 1.00. Any hill climber seems to attain the optimum fast for F1, F3 and F11.

In the third and the last set of experiments, results similar to the previous one
are obtained. The MMA can still identify the best meme or a meme that does
not perform significantly better than the best meme for almost each benchmark
function, as shown in Figure 3 for selected benchmark functions. Furthermore,
in all runs full success is achieved for all cases. Unfortunately, a synergy between
hill climbers is not observed. Comparing the experimental results obtained using
the MMA and the MA with the best meme for each benchmark indicates that the
MA with the best meme is superior based on the average number of evaluations,
except for F1, F3 and F11 (Table 3).

4 Memetic Algorithms for Nurse Rostering

4.1 Nurse Rostering Problem at a Turkish Hospital (NRPmh)

An analysis is performed on the Nurse Rostering Problem at a Turkish hospital in
Istanbul, denoted as NRPmh. There are three types of daily shifts: day, night and
off-duty. The timetable size is known in advance. Although a biweekly schedule is
preferred, the hospital authorities produce a weekly schedule manually, in order

Memes, Self-generation and Nurse Rostering 93

F8

1,00

100,00

10.000,00

1.000.000,00

100.000.000,00

GA MA0 MA1 MA2 MA3 MA4 MA5 MA6 MA7

F12

1,00

100,00

10.000,00

1.000.000,00

100.000.000,00

10.000.000.000,00

GA MA0 MA1 MA2 MA3 MA4 MA5 MA6 MA7

F14

1,00

100,00

10.000,00

1.000.000,00

100.000.000,00

10.000.000.000,00

GA MA0 MA1 MA2 MA3 MA4 MA5 MA6 MA7

F5

1,00

100,00

10.000,00

1.000.000,00

GA MA0 MA1 MA2 MA3 MA4 MA5 MA6 MA7

Fig. 1. Mean and the standard deviation of the number of evaluations per run, gener-
ated by each MA for a selected subset of benchmark functions

F12

0

20

40

60

80

100

120

140

160

180

1 11 21 31 41

Number of Generations

A
v
er

ag
e

E
v
o
lu

ti
o
n
ar

y
 A

ct
iv

it
y

MA3

MA4

MA6

F14

0

1000

2000

3000

4000

5000

1 50 100 150 200 250 300 350 400 450 500

Number of Generations

A
v
er

ag
e

E
v
o
lu

ti
o
n
ar

y
 A

ct
iv

it
y

MA0

MA4

MA6

F8

0

200

400

600

800

1000

1200

1400

1600

1 50 100 150 200 250 300 350 400 450 500

Number of Generations

A
v
er

ag
e

E
v
o
lu

ti
o
n
ar

y
 A

ct
iv

it
y

MA1

MA4

MA7

F5

0

10

20

30

40

50

60

70

80

90

1 11 21

Number of Generations

A
v
er

ag
e

E
v
o
lu

ti
o
n
ar

y
 A

ct
iv

it
y

MA3

MA4

MA7

Fig. 2. Average evolutionary activity versus generation plots of each meme utilized
during the second set of experiments for a selected subset of benchmark functions

F5

0

50

100

150

200

250

300

350

1 50 100 150 200 250 300 350 400 450 500

Number of Generations

A
vr

. E
vo

l.
A

ct
iv

it
y

GA MA0 MA1 MA2 MA3 F8

0

500

1000

1500

2000

2500

3000

3500

1 50 100 150 200 250 300 350 400 450 500

Number of Generations

A
vr

. E
vo

l.
A

ct
iv

it
y

GA MA0 MA1 MA2 MA3

F12

0

20

40

60

80

100

120

140

1 11 21 31 41 51
Number of Generations

A
vr

. E
vo

l.
A

ct
iv

it
y

GA MA0 MA1 MA2 MA3 F14

0

500

1000

1500

2000

2500

1 50 100 150 200 250 300 350 400 450 500

Number of Generations

A
vr

. E
vo

l.
A

ct
iv

it
y

GA MA0 MA1 MA2 MA3

Fig. 3. Average evolutionary activity versus generation plots of each meme utilized
during the third set of experiments for a selected subset of benchmark functions

94 E. Özcan

Table 3. Average number of evaluations and standard deviations generated by a
memetic algorithm for each benchmark function: MA0-MA3 denotes the memetic algo-
rithm using only the corresponding meme and MMA denotes the multimeme algorithm
using all of them

Label Type Av. no evals SD Label Type Av. no evals SD

F1 MMA 17,580 2,226 F8 MMA 5,215,787 9,658,230
MA1 92,256 0 MA1 1,906,134 6,646,991

F2 MMA 23,605,004 24,364,979 F9 MMA 43,871 12,193
MA3 8,455,507 3,803,504 MA1 180,783 12,647

F3 MMA 72,252 11,772 F10 MMA 3,100,515 4,565,736
MA3 82,769 16,512 MA3 1,340,811 988,971

F4 MMA 12,926,879 11,435,876 F11 MMA 17,580 2,226
MA0 9,494,844 10,332,574 MA1 36,060 0

F5 MMA 46,975 79,394 F12 MMA 31,297 14,961
MA3 11,619 2,293 MA3 29,246 4,936

F6 MMA 553,306 231,124 F13 MMA 7,667,352 2,832,376
MA1 525,398 262,055 MA0 4,348,896 1,617,951

F7 MMA 349,250 324,544 F14 MMA 3,674,932 2,623,300
MA1 167,799 60,577 MA0 1,072,117 1,111,825

to simplify the timetabling process. Since the preferences of nurses are essential
and might change in time, schedules are acyclic.

The hospital consists of three departments. Cross duty between the depart-
ments does not occur frequently. Hence, each nurse can be considered to be in-
dependent belonging to a specific department. Nurses are categorized into three
ranks according to their experiences. Ranks {0, 1, 2} indicate the level of experi-
ence from lowest to highest. There are not many experienced nurses with rank 2,
but there is at least one such nurse at each department. The constraints of this
problem include the following.

Excludes:

– Exclude Night Shifts Constraint (ENC): Night shifts cannot be assigned to
an experienced nurse with rank 2.

Event-spread constraints:

– Off-duty constraint (RDC): Nurses can define at most 4 rest day preferences.
– Shift constraint (SHC): At a department, during each shift there must be at

least one nurse.
– Successive night shifts constraint (SNC): A nurse cannot be assigned to more

than two successive night shifts.
– Successive day shifts constraint (SDC): A nurse cannot be assigned to more

than three successive day shifts.
– Successive shifts constraint (SSC): A nurse cannot be assigned to two suc-

cessive shifts. A day shift in one day and a night shift in the following day
are considered as successive shifts.

Memes, Self-generation and Nurse Rostering 95

1. while (termination criteria are not
satisfied) do
a. Select a group (or groups) of events based on violations
b. Select a constraint type based on contribution of each
constraint type within the selected group (or groups)
c. Apply hill climbing for the selected constraint type
(without considering the other constraints) within the
selected group of events

2. end while

Fig. 4. Pseudo-code of VTDHC

– On-duty constraint (ODC): Each nurse cannot be assigned less than eight
shifts per two weeks.

RDC is considered as a soft constraint, while the rest are hard constraints.

4.2 Constraint-Based Violation-Directed Heuristics

Violation directed operators have been already used [5, 44, 48, 49] in timetabling.
Özcan [41] proposed a violation directed hierarchical hill climbing (VDHC)
heuristic template to be used within MAs for solving timetabling problems and
implemented an instance for solving a real-world nurse rostering problem. Ex-
perimental results show that it is a promising operator. In this study, a violation
type directed hill climbing (VTDHC) heuristic template is presented as illus-
trated in Figure 4. VTDHC supports adaptation and co-operation of operators
as a more general template than VDHC.

The VTDHC template is designed to organize a set of hill climbers where each
one improves a corresponding constraint type in a given timetabling problem.
A set of events among several ones is selected based on the violations. The
mechanism for selecting those events is up to the user. The number of violations
caused by each constraint type within the selected set is used as a guide to select
a hill climber. Finally, the selected hill climber is applied onto the selected events
to resolve the violations due to the related constraint type.

An event arrangement indicates a structured organization of events in a time-
tabling problem. An event arrangement will be referred to as arrangement in
short from this point forward. It is possible to identify more than one arrange-
ment of events for a given timetabling problem. Arrangements can be categorized
as static, dynamic and mixed. An arrangement is labeled as static if the members
in a group of variables do not change during the search process. Additionally,
variables can be hierarchically organized in the static arrangements. They are
logically grouped either as partitions or overlapping subsets at each hierarchy
level. Static arrangement(s) can be obtained by analyzing the timetabling prob-
lem instance at hand. For example, considering NRPmh, a static arrangement of
variables is derived as illustrated in Figure 5. There are four hierarchical levels
within the arrangement: Hospital, Department, Nurse and Variable. Hospital is

96 E. Özcan

 v2 vR

 Dept. P

(R=14)

v1

(D)ept.

(N)urse

(V)ariable

(H)ospital

Hierarchy

Levels

 vM

 Nurse Q Nurse 1

 Dept. 1

Fig. 5. Static arrangement of events (shifts) for NRPmh

a group including all variables, while a group in the Nurse level is a partition,
where each indicates the roster of a nurse for two weeks. In this study, the static
arrangement of daily nurse shifts (events) is used as shown in Figure 5. Dynamic
arrangements are based on the structure of the timetable and the assignment
of events. Hence, members of a group might change during the search for an
optimal solution, as the assignments of events might also change. For example,
all the events (nurse shifts) scheduled at each day in a timetable constitute a
dynamic arrangement of events. Mixed arrangements are a combination of both
static and dynamic arrangements: e.g., events scheduled at each day in a specific
department.

Combining the arrangements and VTDHC yields the design of useful hyper-
heuristics. For example, VDHC represents a subset of the VTDHC heuristics,
using a static arrangement of events. It is an iterative heuristic that applies a
selected hill climber to a selected group of daily shifts. The hill climber selection
is constraint violation-driven and based on a predetermined arrangement. First,
hierarchy levels of an arrangement to be used in VDHC are decided. The top level
is the starting level to operate on. As the candidate solution improves, it stays
at a level. A selected hill climbing method is applied to a selected group of nurse
shifts at a level, evaluating violations due to the each constraint type. VDHC
restricts the area of concern to the nurse shifts at one level down in the hierarchy
in the case of a relapse and the same steps are repeated. It terminates whenever
no improvement is provided in none of the levels or a maximum number of steps
is exceeded.

A hill climber is selected using an implicit feedback from the evolutionary
process, hence VDHC is self-adjusting. During the traversal of an arrangement
downwards in the hierarchy levels, VDHC switches from the individual level
adaptation to the component level adaptation [52]. In this study, two other
hyper-heuristics are proposed based on the VTDHC template and used within
MAs. The VTDHC template can be extended and used for solving other multi-
objective and/or constraint optimization problems. Moreover, heuristics based
on VTDHC can be hybridized with other hyper-heuristics. In the current im-
plementation, a single hill climber is designed for each objective. In the case
of multiple hill climbers for each objective, the VTDHC instance can act as a
decision mechanism for choosing the objective to improve. Then, for the im-
provement of a selected objective, a traditional hyper-heuristic can be utilized
to choose the hill climber to employ. This is a research direction beyond the
scope of this paper.

Memes, Self-generation and Nurse Rostering 97

4.3 MAs for Solving NRPmh

For solving the NRPmh described in Section 4.1, MAs are proposed. If there are
T nurses in a hospital, then the total number of biweekly shifts to be arranged
is l = T × 14, where l is chromosome length. The search space size for finding
the optimal schedule becomes immense: 3l. The traditional approaches, such as
branch and bound methods might even fail to obtain a solution in a reasonable
amount of time, making MAs an appropriate choice. In all MAs, an allele in a
chromosome represents a daily shift assignment of a nurse. Furthermore, each
chromosome in the population is structured as illustrated in Figure 5.

Seven hill climbing (HC) operators are designed to be used in MAs: ENC HC,
RDC HC, SHC HC, SNC HC, SDC HC, SSC HC, and ODC HC. Each con-
straint based HC operator attempts to resolve the conflicts due to the related
constraint for a given variable in an individual by random rescheduling. Details
of the hill climbing operators can be found in [41]. In this study, five sets of
experiments are performed. In each set, a different MA is used.

In the first set of experiments, a multimeme strategy for selecting which region
to apply a selected hill climber is tested. The strategy also decides how many hill
climbing steps should be used. Twelve different meme values are utilized. For all
problem instances used during the experiments a single acceptance strategy is
used; b = {1} and n changes from one problem instance to another. The values
in n are fixed during the start of a run as {2l/4, 3l/4, l, 2l}. The values of t are
{whole, department, nurse}. A meme acting as a scheduler determines whether
a hill climber will be applied to the whole individual, or to a departmental roster
or to a nurse roster. Then, a constrained type is determined to be improved for
the group of shifts pointed by the meme. Using a tournament selection method
with a tour size of two, the constraint causing more violations within the group of
shifts is favored among two randomly selected constraint types. Afterwards, the
appropriate hill climber based on the selected constraint is applied to the group
of shifts for a number of steps determined by the same meme. MMA experiments
using this operator are performed for three different IR values. This version of
MMA is labeled as MMA12. Each meme in MMA12 encodes the parameters
that a hill climber requires.

During the second set of experiments, hierarchical traversal of groups is re-
versed in VDHC. The new hill climbing scheduler will be referred as rVDHC.
Hill climbing starts from the bottom level; nurse level. As the candidate solution
improves, rVDHC stays at the nurse level. A selected hill climbing method is
applied in the same way as VDHC as described in Section 4.2. The rVDHC
algorithm broadens the area of concern to nurse shifts in a whole department,
which is one level up in the hierarchy, in the case of deterioration. Then the same
steps are repeated. The termination criteria are the same as the VDHC.

In the third set of experiments a new scheduler is used. The worst nurse roster
among a randomly selected two nurse rosters goes under a hill climbing process.
This new scheduler is labeled as NHC. Notice that VDHC, rVDHC and NHC

98 E. Özcan

Table 4. Experimental data set, where the number of departments and nurses are de-
noted as ndep and nnur, respectively. Percentage of nurses from each rank and average
number of off-duty preferences of each nurse are denoted as pnr and avrpr, respectively

Label ndep nnur pnr0 pnr1 pnr2 avrpr

rnd1 3 21 0.42 0.32 0.28 1.95
rnd2 3 21 0.18 0.51 0.32 0.67
rnd3 3 21 0.28 0.42 0.32 2.19
rnd4 4 21 0.14 0.47 0.42 1.67
rnd5 4 21 0.19 0.46 0.37 2.33
rnd6 4 21 0.13 0.47 0.42 0.95

can be considered as hyper-heuristics that are instances of VTDHC. In the fourth
set of experiments, a multimeme algorithm is implemented. MMA uses seven
memes:

h = {ENC HC, RDC HC, SHC HC, SNC HC, SDC HC, SSC HC, ODC HC}.

All the rest of the parameters are fixed: b = {1}, t = {whole}, and n = {2l}.
Co-evolution determines which hill climber to apply. This version of the MMA is
labeled as MMA7. Each meme in MMA7 encodes only the hill climbing method
to be employed. The traditional GA is used during the last set of experiments
in order to evaluate the role of hill climbers.

5 Nurse Rostering Experiments

5.1 Experimental Data and Common Settings

Runs are terminated whenever the overall CPU time exceeds 600 sec., or all
the constraints are satisfied. The maximum number of hill climbing steps is
fixed as 2l. All MAs for nurse rostering use ranking as a mate selection method,
giving four times higher chance to the best individual to be selected than the
worst one, one point crossover and a trans-generational memetic algorithm with
a replacement strategy that keeps only two best individuals from the previous
generation. The mutation operator is based on the traditional approach. A shift
of a nurse is randomly perturbed with a mutation probability of 1/l. Based on
the analysis of the NRPmh, six random problem instances are generated; rnd1-
rnd6 and they are used during the experiments [41]. The characteristics of the
problem instances are summarized in Table 4. The data set is publicly available
at http://cse.yeditepe.edu.tr/∼eozcan/research/TTML.

5.2 Empirical Results for the NRP Experiments

The detailed experimental results of the MA with VDHC are presented in [41].
The results obtained from the first set of experiments indicate the viability of

http://cse.yeditepe.edu.tr/~eozcan/research/TTML

Memes, Self-generation and Nurse Rostering 99

Table 5. MMA12 experiments using IR={0.15, 0.20, 0.25} with the random data set,
where the first row denotes the success rate, the second row denotes the average number
of generations per run for each IR value

IR rnd1 rnd2 rnd3 rnd4 rnd5 rnd6

0.15 0.90 0.98 1.00 0.96 0.92 1.00
1,145.96 217.74 77.54 697.28 667.58 234.08

0.20 0.94 0.98 1.00 0.94 0.94 1.00
889.70 316.10 83.78 651.76 722.48 271.52

0.25 0.96 0.98 1.00 0.96 0.98 0.96
921.12 317.62 92.20 750.18 371.34 422.90

0

5000

10000

15000

20000

25000

30000

35000

40000

rnd1 rnd2 rnd3 rnd4 rnd5 rnd6

av
r.
no
.o
f.
hi
ll
cl
im
bi
ng
st
ep
s

whole
department
nurse

Fig. 6. Average number of hill climbing steps that are executed to improve the whole
set of daily shifts, a departmental roster and a nurse roster for each problem instance
during the first set of experiments with MMA12, where IR = 0.20.

the MMA if used as a self-adaptive method for selecting the region where to
apply a hill climber. Yet, the MA with the VDHC performs better. Experiments
are repeated for different values of IR around 0.20. The results are summarized
in Table 5 for the experimental data. No IR value is significant. Considering
the average success rates, all IR values yield almost the same performance. An
interesting result of the first set of experiments is that MMA12 selects mostly a
nurse roster and then applies a hill climber to it, as illustrated in Figure 6 for
IR = 0.20. The rest of the experiments are performed on Pentium IV 3 GHz
machines with 2 GB RAM.

During the following experiments, MAs with rVDHC, NHC, simple GA and
MMA7 are tested. The success rate of each algorithm for each problem instance
is presented in Table 6. Obviously, hill climbing boosts the performance GAs.
The simple genetic algorithm turns out to be the worst algorithm for solving
the problem instances. In almost none of the runs is a violation-free schedule
obtained. The empirical results yield the success of MAs with the following
hyper-heuristics from the best towards the worst: VDHC, rVDHC and NHC.

100 E. Özcan

Table 6. The success rates of different algorithms for solving random problem instances

MMA7 MMA12
Label VDHC rVDHC NHC (IR = 0.20) (IR = 0.20) Simple GA

rnd1 0.96 0.94 0.68 0.86 0.94 0.00
rnd2 1.00 0.98 0.88 0.96 0.98 0.04
rnd3 1.00 1.00 0.98 1.00 1.00 0.00
rnd4 0.98 0.94 0.28 0.18 0.94 0.00
rnd5 1.00 0.86 0.26 0.30 0.94 0.00
rnd6 1.00 1.00 0.68 0.50 1.00 0.00
Avr. 0.99 0.95 0.63 0.63 0.97 0.01

The performances of MMA7 and MMA12 are comparable to the performances
of NHC and VDHC, respectively. Results show that letting the multimeme algo-
rithm choose the region where to apply a constraint-based hill climber based on a
static hierarchical arrangement of events (MMA12) performs better than letting
it choose the meme for solving nurse rostering problem instances (MMA7).

6 Conclusions

Memetic algorithms, including the self-generating multimeme memetic algo-
rithms proposed by Krasnogor [33] are investigated. Different MAs are experi-
mented using a set of benchmark functions and nurse rostering problem
instances, generated randomly by Özcan [41] based on a real-world nurse ros-
tering problem. Some common empirical results are obtained from both investi-
gations. As expected, the performance of a genetic algorithm improves if a hill
climbing operator is also utilized. The Lamarckian learning mechanism employed
by MMAs yields appealing results for selecting a meme among the set of memes
during the evolutionary process. Yet, MAs with a good meme choice perform
better. Different memes yield different performances. In the benchmark experi-
ments, MMAs identify the useful memes for all functions, but unfortunately, no
synergy between the hill climbers is noticed during the search.

The following observations are gathered from the benchmark function exper-
iments. The steepest descent hill climbing performs well in noisy and deceptive
search landscapes, while both Davis’s bit hill climber and the next descent hill
climber are successful in locating optima in multimodal search landscapes. If the
search landscape contains plateaus, then it seems that Davis’s bit hill climber
performs slightly better. Furthermore, the average performance of the Davis’s
bit hill climbing is the best over all benchmark functions.

MAs are very promising approaches for tackling nurse rostering problems.
The proposed heuristic template combined with a prior knowledge about a time-
tabling problem, such as a static arrangement, provides a promising guide for
designing adaptive heuristics. Hyper-heuristics enable the utilization of multi-
ple hill climbers under a single black box mechanism. Such a hyper-heuristic

Memes, Self-generation and Nurse Rostering 101

that always accepts an improving move can be embedded into an MA acting
as if a single hill climber without changing the framework of both approaches.
MAs, each containing such an instance are compared to the MMAs, each using
different hill climber settings. The empirical results indicate the success of the
MA with VDHC [41] over the rest of the MAs presented in this paper. MMA12
delivers a matching performance. VDHC using tournament selection provides a
better co-operation among constraint-based memes. The hierarchical traversal
over the groups based on a static arrangement during the hill climbing seems
to work as well. Applying a constraint-based meme to a larger group of events
first and then narrowing the area of concern generates better results than the
reverse traversal. Still, rVDHC shows potential. The experimental results on the
nurse rostering problems show that the choice of operator parameters that are
encoded into a meme affects the performance of MMA. Similarly, the choice of
hyper-heuristic for managing a set of hill climbers to be used within MA has an
influence on its performance.

Acknowledgement. This research is supported by TUBITAK (The Scientific and
Technological Research Council of Turkey) under the grant number 105E027.

References

1. Ackley, D.: An empirical study of bit vector function optimization. In: Davis, L.
(ed.) Genetic Algorithms and Simulated Annealing, pp. 170–215. Pitman, London
(1987)

2. Ahmad, J., Yamamoto, M., Ohuchi, A.: Evolutionary algorithms for nurse schedul-
ing problem. In: Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 196–203 (2000)

3. Aickelin, U., Bull, L.: On the application of hierarchical coevolutionary genetic
algorithms: recombination and evaluation partners. Journal of Applied Systems
Studies 4, 2–17 (2003)

4. Aickelin, U., Dowsland, K.: An indirect genetic algorithm for a nurse scheduling
problem. Computers and Operations Research 31, 761–778 (2003)

5. Alkan, A., Özcan, E.: Memetic algorithms for timetabling. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 1796–1802 (2003)

6. Berrada, I., Ferland, J., Michelon, P.: A multi-objective approach to nurse schedul-
ing with both hard and soft constraints. Socio-Economic Planning Science 30, 183–
193 (1996)

7. Burke, E.K., Cowling, P.I., De Causmaecker, P., Vanden Berghe, G.: A memetic
approach to the nurse rostering problem. Applied Intelligence 15, 199–214 (2001)

8. Burke, E.K., De Causmaecker, P., Petrovic, S., Vanden Berghe, G.: Variable neigh-
bourhood search for nurse rostering problems. In: Resende, M.G.C., de Sousa, J.P.
(eds.) Metaheuristics: Computer Decision-Making, ch. 7, pp. 153–172. Kluwer, Dor-
drecht (2003)

9. Burke, E.K., De Causmaecker, P., Vanden Berghe, G.: A hybrid tabu search al-
gorithm for the nurse rostering problem. In: McKay, B., Yao, X., Newton, C.S.,
Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998. LNCS (LNAI), vol. 1585, pp. 187–194.
Springer, Heidelberg (1999)

102 E. Özcan

10. Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The
state of the art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

11. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: an emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer, Dor-
drecht (2003)

12. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for time-
tabling and rostering. Journal of Heuristics 9, 451–470 (2003)

13. Chun, A.H.W., Chan, S.H.C., Lam, G.P.S., Tsang, F.M.F., Wong, J., Yeung,
D.W.M.: Nurse rostering at the Hospital Authority of Hong Kong. In: Proceed-
ings of the 17th National Conference on AAAI and 12th Conference on IAAI, pp.
951–956 (2000)

14. Cowling, P., Kendall, G., Soubeiga, E.: A hyper-heuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001)

15. Davis, L.: The Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York (1991)

16. Davis, L.: Bit climbing, representational bias, and test suite design. In: Proceedings
of the 4th International Conference on Genetic Algorithms, pp. 18–23 (1991)

17. De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems.
Ph.D. Thesis, University of Michigan, Ann Arbor, MI (1975)

18. Dowsland, K.: Nurse scheduling with tabu search and strategic oscillation. Euro-
pean Journal of Operations Research 106, 393–407 (1998)

19. Duenas, A., Mort, N., Reeves, C., Petrovic, D.: Handling preferences using ge-
netic algorithms for the nurse scheduling problem. In: MISTA 2003. Proceedings
of the 1st Multidisciplinary International Conference on Scheduling: Theory and
Applications, Nottingham, vol. 1, pp. 180–196 (August 2003)

20. Easom, E.E.: A survey of global optimization techniques. M.Eng. Thesis, University
of Louisville, KY (1990)

21. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal of Computing 5, 691–703 (1976)

22. Fang, H.L.: Genetic algorithms in timetabling and scheduling. Ph.D. Thesis, De-
partment of Artificial Intelligence, University of Edinburgh, Scotland (1994)

23. Gendreau, M., Buzon, I., Lapierre, S., Sadr, J., Soriano, P.: A tabu search heuristic
to generate shift schedules. In: MISTA 2003. Proceedings of the 1st Multidisci-
plinary International Conference on Scheduling: Theory and Applications, Not-
tingham, vol. 2, pp. 526–528 (August 2003)

24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

25. Goldberg, D.E.: Genetic algorithms and Walsh functions: part I, a gentle introduc-
tion. Complex Systems 3, 129–152 (1989)

26. Goldberg, D.E.: Genetic algorithms and Walsh functions: part II, deception and
its analysis. Complex Systems 3, 153–171 (1989)

27. Griewangk, A.O.: Generalized descent of global optimization. Journal of Optimiza-
tion Theory and Applications 34, 11–39 (1981)

28. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, MI (1975)

Memes, Self-generation and Nurse Rostering 103

29. Han, L., Kendall, G.: Application of genetic algorithm based hyper-heuristic to
personnel scheduling problems. In: Kendall, G., Burke, E.K., Petrovic, S., Gen-
dreau, M. (eds.) MISTA 2003. Proceedings of the 1st Multidisciplinary Interna-
tional Conference on Scheduling: Theory and Applications, Nottingham, August
2003, pp. 528–537. Springer, Berlin (2005)

30. Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shinogi, T., Tsuruoka, S.: Genetic
algorithms with the constraints for nurse scheduling problem. In: Proceedings of
IEEE Congress on Evolutionary Computation, CEC, Seoul, pp. 1123–1130 (2001)

31. Krasnogor, N.: Studies on the theory and design space of memetic algorithms.
Ph.D. Thesis, University of the West of England, Bristol, UK (2002)

32. Krasnogor, N., Smith, J.E.: Multimeme algorithms for the structure prediction and
structure comparison of proteins. In: GECCO 2002. Proceedings of the Bird of a
Feather Workshops, pp. 42–44 (2002)

33. Krasnogor, N., Smith, J.E.: Emergence of profitable search strategies based on a
simple inheritance mechanism. In: GECCO 2001. Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 432–439 (2001)

34. Krasnogor, N., Smith, J.E.: A memetic algorithm with self-adaptive local search:
TSP as a case study. In: GECCO 2000. Proceedings of the Genetic and Evolution-
ary Computation Conference, pp. 987–994 (2000)

35. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal
of Research of the National Bureau of Standards 84, 489 (1979)

36. Li, H., Lim, A., Rodrigues, B.: A hybrid AI approach for nurse rostering problem.
In: Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 730–735
(2003)

37. Mitchell, M., Forrest, S.: Fitness landscapes: royal road functions. In: Baeck, T.,
Fogel, D., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, Institute
of Physics Publishing, Bristol, and Oxford University Press, Oxford (1997)

38. Moscato, P., Norman, M.G.: A memetic approach for the traveling salesman prob-
lem implementation of a computational ecology for combinatorial optimization on
message-passing systems. In: Valero, M., Onate, E., Jane, M., Larriba, J.L., Suarez,
B. (eds.) Parallel Computing and Transputer Applications, pp. 177–186. IOS Press,
Amsterdam (1992)

39. Ning, Z., Ong, Y.S., Wong, K.W., Lim, M.H.: Choice of memes in memetic al-
gorithm. In: Proceedings of the 2nd International Conference on Computational
Intelligence, Robotics and Autonomous Systems (2003)

40. Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computation 8, 99–110 (2004)

41. Özcan, E.: Memetic Algorithms for Nurse Rostering. In: Yolum, p., Güngör, T.,
Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 482–492. Springer,
Heidelberg (2005)

42. Özcan, E.: Towards an XML based standard for timetabling problems: TTML. In:
Kendall, G., Burke, E.K., Petrovic, S., Gendreau, M. (eds.) MISTA 2003. Proceed-
ings of the 1st Multidisciplinary International Conference on Scheduling: Theory
and Applications, Nottingham, p. 163. Springer, Berlin (August 2005)

43. Özcan, E., Bilgin, B., Korkmaz, E.E.: Hill climbers and mutational heuristics in
hyperheuristics. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN
IX. LNCS, vol. 4193, pp. 202–211. Springer, Heidelberg (2006)

44. Özcan, E., Ersoy, E.: Final exam scheduler – FES. In: Proceedings of the 2005
IEEE Congress on Evolutionary Computation, vol. 2, pp. 1356–1363 (2005)

104 E. Özcan

45. Özcan, E., Onbasioglu, E.: Memetic algorithms for parallel code optimization. In-
ternational Journal of Parallel Programming 35, 33–61 (2007)

46. Radcliffe, N.J., Surry, P.D.: Formal memetic algorithms. In: Fogarty, T.C. (ed.)
Evolutionary Computing. LNCS, vol. 865, pp. 1–16. Springer, Heidelberg (1994)

47. Rastrigin, L.A.: Extremal Control Systems, Theoretical Foundations of Engineering
Cybernetics Series, Nauka, Moscow (1974)

48. Ross, P., Corne, D., Fang, H.-L.: Improving evolutionary timetabling with delta
evaluation and directed mutation. In: Davidor, Y., Männer, R., Schwefel, H.-P.
(eds.) Parallel Problem Solving from Nature - PPSN III. LNCS, vol. 866, pp. 556–
565. Springer, Heidelberg (1994)

49. Ross, P., Corne, D., Fang, H.-L.: Fast practical evolutionary timetabling. In: Pro-
ceedings of the AISB Workshop on Evolutionary Computation, pp. 250–263 (1994)

50. Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, Chichester
(1981)

51. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1995)
52. Smith, J., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms.

Soft Computing 1, 81–87 (1997)
53. Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Parallel differential evo-

lution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation,
pp. 2023–2029. IEEE Computer Society Press, Los Alamitos (2004)

54. Whitley, D.: Fundamental principles of deception in genetic search. In: Rawlins,
G.J.E. (ed.) Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo,
CA (1991)

An Evaluation of Certain Heuristic Optimization

Algorithms in Scheduling Medical Doctors and
Medical Students

Christine A. White1, Emilina Nano2, Diem-Hang Nguyen-Ngoc2,
and George M. White2

1 Department of Medicine, Division of Nephrology,
Queen’s University, Kingston, Canada K7L 2V6

cw38@post.queensu.ca
2 School of Information Technology and Engineering,

University of Ottawa, ON, Canada K1N 6N5
white@site.uottawa.ca

Abstract. Four heuristic algorithms based on or inspired by the well-
known Tabu Search method have been used to cast heuristically opti-
mized schedules for a clinical training unit of a hospital. It has been
found experimentally that the algorithm of choice for this problem de-
pends on the exact goal being sought where the execution time is one
of the components of the goal. If only one run is allowed, then classical
Tabu Search with a tenure of 5 gave the schedule with the lowest average
(and fixed) penalty. If time is not of concern and many runs are allowed
then the Great Deluge algorithm may generate the schedule with the
lowest penalty.

1 Introduction

The scheduling of personnel can often be accomplished in two phases, the phase
that deals with time-of-day or shift scheduling, and the phase that deals with
day-of-week scheduling. Baker [2] has named these types of labour scheduling
tour scheduling.

Glover and McMillan [7] have reviewed the problems of employee schedul-
ing while more specialized reviews of the tour scheduling literature have been
published by Alfares [1] and by Ernst et al. [5]. It is one thing to find feasible
schedules, i.e. schedules that satisfy all the staffing rules, but quite another to
find an optimal feasible schedule, i.e. one that not only satisfies the rules but
also minimizes (or maximizes) some objective function.

In work described in a previous PATAT conference [9] a stand-alone system
for casting schedules of medical staff in the Internal Medicine Clinical Teaching
Unit of the Ottawa Hospital was built using the Java programming language.
The algorithm constructed an initial feasible schedule and then heuristically
optimized it to reduce its perceived ‘badness’. The algorithm used was a simple
version of the tabu search (TS) algorithm introduced by Glover [6] and used
many times since.

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 105–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

106 C.A. White et al.

The requirement was to produce duty rosters (locally referred to as call sched-
ules) for medical trainees (residents and medical students) in the Clinical Teach-
ing Unit to man the overnight shift. The duties of a shift consist in rendering
medical assistance to patients in need of it during the night when the majority of
the medical trainees are no longer on duty. For each night in a 28-night cycle, a
shift of (ideally) 5 persons consisting of a senior resident, 2 junior residents and 2
medical students has to be scheduled. Because of chronic understaffing the shift
often consists of fewer than 5 persons. Sometimes 4 and sometimes 3 persons
are used if there is not enough staff available. The staff chosen for these shifts
have various ‘ranks’ and may belong to one of two teams. Since these evening
rounds are in addition to regular day shifts that the medical trainees must work,
there are very stringent requirements that prohibit the personnel from being
overworked beyond a certain point. These numerous requirements are formu-
lated as soft constraints and each violation of a constraint is associated with an
integer penalty whose magnitude is a measure of the undesirability of relaxing
that constraint. The sum of these integers is the measure of the ‘badness’ of the
schedule. The TS algorithm is used to minimize this badness. An example of a
call schedule is shown in Figure 1.

This schedule consists of a duty roster of exactly 28 days in length, each day
showing the assignment of 5 or fewer medical staff members. Ideally there will
be exactly 5 members but for financial reasons, only 4 or 3 may actually be
scheduled. Each schedule begins on a Tuesday and ends on a Monday. The first
line of Figure 1 shows that the senior resident is Dr Zaidi. He will be in charge
of the unit on the first Tuesday night. He is assisted by three other persons,
Shefrin, Carrier and Puglia. A fifth person is not available on that night. Some
of these assistants are junior doctors while others are medical students.

The senior resident is the doctor in charge. The two teams, A and B, consist
of a ‘First Call’, i.e. the first person to call if required, and a ‘Second Call’,
the next person to call (if there is one). The members of a team work closely
together.

Any call schedule has an associated penalty that quantifies how ‘bad’ it is.
The components of this penalty can be broadly classified as horizontal or ver-
tical penalties. Some nights, e.g. the third and fourth lines on the schedule,
corresponding to Thursday and Friday of the first week, are fully staffed with
appropriate members from each team. Other nights, e.g. the final Thursday are
very short staffed, with only three medical personnel on duty. The first of these
examples attracts a penalty of 0 while the second example attracts a penalty
of 300. These are examples of horizontal penalties. They can be evaluated sim-
ply by scanning each line separately. Table 1 lists the various defects that each
night’s shift might have and the corresponding penalties.

Vertical penalties are those that arise from consecutive nights. The first Thurs-
day and Friday of Figure 1 has one trainee, Oliveira, working for two consecutive
nights. This attracts a penalty of 100. The weekends, defined to consist of Fri-
day, Saturday and Sunday, are very sensitive. A pattern consisting of working
on Friday and Sunday (but not Saturday) or its converse are greatly desired.

An Evaluation of Certain Heuristic Optimization Algorithms 107

Team A Team B

Senior 1st Call 2nd Call 1st Call 2nd Call

Tue: Zaidi Shefrin Carrier Puglia ------

Wed: ElFirjani Mongiardi ------ Rajput Mufti

Thu: Jolicoeur Marwaha Payne Oliveira Cohn

Fri: Ellen Mongiardi Carrier Oliveira Bal

Sat: Zaidi Taylor Radke Rajput ------

Sun: Ellen Mongiardi Carrier Oliveira Bal

Mon: ElFirjani Taylor ------ Puglia Mufti

Tue: Treki Shefrin Payne Puglia ------

Wed: Stewart Taylor Carrier Bal ------

Thu: ElFirjani Mongiardi Radke Rajput Cohn

Fri: Jolicoeur Taylor ------ Puglia Mufti

Sat: Stewart Mongiardi Payne Oliveira Bal

Sun: Jolicoeur Taylor ------ Puglia Mufti

Mon: Treki Marwaha Radke Rajput Cohn

Tue: Stewart Taylor Payne Bal ------

Wed: Jolicoeur Shefrin Carrier Oliveira ------

Thu: Ellen Marwaha ------ Oliveira Mufti

Fri: Zaidi Shefrin Radke Rajput ------

Sat: Jolicoeur Marwaha Carrier Cohn ------

Sun: Zaidi Shefrin Radke Rajput ------

Mon: Ellen Mongiardi ------ Rajput Mufti

Tue: ElFirjani Marwaha Payne Puglia Cohn

Wed: Zaidi Shefrin Radke Oliveira ------

Thu: Treki Taylor ------ Bal ------

Fri: Stewart Marwaha Payne Cohn ------

Sat: Ellen Shefrin ------ Puglia Mufti

Sun: Stewart Marwaha Payne Cohn ------

Mon: ElFirjani Mongiardi Radke Bal ------

Fig. 1. An example of a call schedule

Failure to achieve this attracts a high penalty. The example of Table 1 manages
to achieve this goal at the expense of attracting horizontal penalties. As a rule,
horizontal and vertical penalties play against each other, reducing one usually
implies increasing the other. The one that ‘wins’ is the one having the lower
value.

In the quest to cast the best schedule in a reasonable time, four different
heuristic algorithms based on the local search strategy were implemented and
tested with real data obtained from the hospital. A number of different data sets
were used. This paper summarizes the four algorithms used and discusses the
results obtained from each one using a single representative data set.

108 C.A. White et al.

Table 1. Conditions and their penalties

Condition Penalty

One student missing 5
Student replaces missing junior - senior is on student’s team 10
Two students missing 20
Junior and student missing - student takes junior’s place – senior is on
student’s team

40

Student replaces missing junior – senior is not on student’s team 80
Junior and student missing – student takes junior’s place – senior is not
on student’s team

100

Two juniors missing - replaced by two students 300
Any other defect 500

2 Algorithms Investigated

The algorithms investigated were:

– Tabu Search with Fixed Tenure
– Tabu Search with Random Tenure
– Great Deluge
– IDWalk.

The first of these is deterministic. The algorithm always yields the same an-
swer when given the same data. Thus the Tabu Search with fixed tenure was
executed once for each tenure value. The other algorithms are not deterministic.
A pseudo-random generator is used and therefore each run may yield a different
result. For these cases, 20 runs were made and the values shown in the tables
are based on these 20 runs. For the Great Deluge algorithm, an additional 1800
runs were made and analysed more thoroughly.

The results were all obtained from code written in C# on the Microsoft Visual
Studio.Net IDE and executed on a PC under Windows XP with a Celeron chip
at 2.8 GHz. with 192 MBytes of RAM.

2.1 Tabu Search with Fixed Tenure

The classical Tabu Search algorithm whose entries in the single tabu list have a
fixed tenure was the original algorithm implemented in the project [9].

An initial solution is generated by a combination of constraint logic that sat-
isfies the weekend requirement followed by a simple bin packing procedure that
satisfies the requirements of the rest of the week and considers vacation and
rank factors. The weekend requirement specifies that a Friday and the follow-
ing Sunday plus a Saturday from a different weekend be assigned to staff where
possible. This would be very simple to do if it were not for holidays, vacations

An Evaluation of Certain Heuristic Optimization Algorithms 109

and days off which can occur any time. The weekend requirement is enforced by
a simple chronological backtracking algorithm. The weekday slots are then filled
in turn by finding a suitable staff member, not already working, who has not yet
completed the required number of calls.

Then a multiphase tabu search is performed that heuristically reduces a
penalty function by considering the seniors, juniors and students in sequence. A
neighbour of a given solution is another solution that can be obtained by a small
perturbation of that solution. A neighbourhood is the set of such neighbours.
The basic move that generates a new neighbourhood is a ‘swap’, exchanging the
places of two seniors, juniors or students as appropriate. As there are 5 persons
on duty during a call, there are 5 sequences generated, one for the seniors, one
for the juniors on team A, one for the juniors on team B, one for the students on
team A and one for the students on team B. The entire space was partitioned
into 5 sub-spaces to reduce the amount of time required to complete an eval-
uation of the neighbourhood. Since there are 28 days in a schedule, there are
28 × 27/2 = 378 possible swaps, each of which must be evaluated for each tabu
move. This is a quantity that is easily handled by the system used.

A tabu minimization is performed using each of the five neighbourhood sub-
spaces in turn. When this is completed, the schedule is examined to discover
whether the solution could be improved by removing one of the students. In this
environment, more is not always better. In spite of the chronic understaffing of
the hospital, if there are too many students on duty and too few seniors and
juniors to supervise their work, the situation is deemed worse than if there were
fewer students. Therefore, during this part of the algorithm, surplus students
are removed from the schedule if this would reduce the total schedule penalty.

At this point, the neighbourhood is redefined. The juniors and students from
team A and the juniors and students of team B are joined to produce a larger
neighbourhood created by redefining the move to be a rotation across two rows
of the schedule. This involves changing the ‘slots’ of four persons. This is done
for the A team followed by the B team.

Finally, the original moves and neighbourhoods are restored and the tabu
optimization is recycled through the five neighbourhoods until no further im-
provement can be found. In each case, the search is terminated after 150 failed
attempts to improve the best solution found so far. This value was chosen by
experimenting with different values. Values lower than this were found to give
worse results. Values higher than this tended to give the same or similar results
but took longer to get there.

This algorithm was run four times with the real hospital data keeping the
tenure fixed during a run but varying its value in different runs. This algorithm
is deterministic. A run always returns the same schedule having the same penalty
when given the same data. The aspiration function used by TS was set to return
a value equal to the best value found so far. The algorithm was run using fixed
tenures of 5, 10, 20 and 40. The values of the penalties and execution times of
the schedules obtained are shown in Table 2.

110 C.A. White et al.

Table 2. Values of penalties and execution times

Tenure (fixed) Penalty Execution time (s)

40 1520 27.6
20 1495 27.0
10 1415 25.8
5 1270 25.9

Table 3. Statistics obtained from runs of TS with random tenure

Penalty Execution time (s)

Min 1235 26.4
Max 1495 28.5
Mean 1342 27.2
SD 82.8 0.6

2.2 Tabu Search with Random Tenure

This variation of the classical TS differs only in that the tenure of an entry
in the tabu list is drawn from a series of pseudo-random integers whose value
is determined when the entry is inserted into the list. This procedure is the
same as that discussed by Di Gaspero and Schaerf in [3]. The distribution of
these tenures was uniform discrete on the interval [10,40]. The interval [5,40]
was initially selected since the fixed tenure algorithm yielded good results for a
tenure of length 5. However, with this interval, the results of the runs were very
nearly all the same, most of the values being the same as that found for the
fixed tenure case of length 5. Evidently for the data used, the random tenure
algorithm tended to degenerate to the fixed tenure case. For all further studies,
the interval [10,40] was used.

After examining a neighbourhood, the best of the solutions is taken as the
solution to start with in the next round and the previous solution is placed in
the tabu list with tenure calculated at the point of insertion. This algorithm is
not deterministic and successive runs with the same program and the same data
usually give different schedules having different penalties. Statistics obtained
from the 20 runs are summarized in Table 3.

2.3 Great Deluge

This method was introduced by Gunter Dueck in 1993 [4]. The name ‘Great
Deluge’ was chosen by Dueck to illustrate the progress of the algorithm in an
analogy where a person is trying to keep his feet dry by climbing in mountain-
ous terrain during a great deluge. The person moves by taking a step in some

An Evaluation of Certain Heuristic Optimization Algorithms 111

Table 4. Statistics obtained from runs of the Great Deluge algorithm

Penalty Execution time (s)

Min 1210 7.4
Max 2840 9.6
Mean 1720 7.8
SD 353.9 0.6

randomly chosen direction while the water level continues to rise. He stays in
the new position only if he can keep his feet dry. If this is not possible he moves
randomly again. Eventually all moves result in wet feet or the time has run
out and the algorithm stops. This algorithm has the desirable property that
there is only one adjustable parameter, the rate of rise of the water level. In the
implementation the water level is initialized to the value of the initial solution,
and decreases by a value of 2 with each iteration. The algorithm terminates when
no further moves are possible. As above, this method is not deterministic. The
results are summarized in Table 4.

2.4 IDWalk

This method, called Intensification/Diversification Walk (or IDWalk), was in-
troduced by Neveu et al. [8] and is related to the TS method. There are three
parameters, S, the number of moves, Max, the number of potential neighbours
studied in each move and SpareNeighbour, the diversification strategy.

This algorithm performs S moves and returns the best solution it found. In
choosing the next move to make, it examines at most Max candidate neigh-
bours, selecting them randomly. If the penalty of a candidate, x′, is less than
or equal to the penalty of the current solution, then the solution correspond-
ing to x′ is chosen for the move. If no neighbour has been selected from among
the Max examined, then one of the rejected candidates is chosen for the next
move. If SpareNeighbour was set equal to ‘best’, then the least bad of the re-
jected neighbours is chosen for the next move. If SpareNeighbour was set to
‘any’ then any one of the rejected neighbours is chosen randomly for the next
move.

In this investigation, S = 1000 and Max = 378. The two possible choices
for SpareNeighbour were tried and it was found that the value, ‘best’ gave the
superior results. No systematic study of various values of these parameters was
made at this time. Investigation of these factors is ongoing. The values selected
were tested and found to give good results but is as yet unknown whether a
different choice of the parameters S and Max would yield superior results. As
before a number of runs were made using the same input data. The results are
summarized in Table 5.

112 C.A. White et al.

Table 5. Statistics obtained from runs of the IDWalk algorithm

Penalty Execution time (s)

Min 1160 57.4
Max 1810 77.5
Mean 1391 68.1
SD 225.1 7.7

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

1270 1415 1495 1520

1342

1720

1391

TS (fixed)

TS (random)

Great Deluge

IDWalk

Fig. 2. Comparison of results

3 Comparison of Penalties Obtained by the Four
Methods

These results are shown graphically in Figure 2.
The scale of the entire figure is shown by the top line. The left end of the line

has the value 1100 and the right end has the value 2100. The second line of the
figure shows the penalties when TS is used with fixed tenures of 5, 10, 20 and
40. The best call schedule (with the smallest penalty) is found when the tenure
was fixed at 5. This schedule has a penalty of 1270.

When random tenures in the interval [10,40] are used, the schedules obtained
are generally better than those obtained with a fixed tenure set to any value
within this interval. Recall that about 66% of the values obtained are within one
standard deviation on either side of the mean (which means that about 33% are
not). The best value obtained was 1235 which is better than anything that was
obtained using fixed tenure. The worst value was 1495 which is about the same
value as that obtained using a fixed tenure of 20 and better than the results with
a value of 40. The mean value and the interval delineated by plus or minus one
standard deviation (containing about 66% of the values) is shown in Figure 2
immediately below the results for TS (fixed).

As expected, the values obtained with the Great Deluge algorithm were rather
poor. The average penalty value of 1720 was the worst of the four methods

An Evaluation of Certain Heuristic Optimization Algorithms 113

Fig. 3. Histogram of 1800 penalties obtained for the Great Deluge algorithm

and the standard deviation was the largest obtained. The spectrum of values
obtained was such that the worst was worse than any of the TS results but the
best was also better than anything found by TS. The algorithm executed rapidly
and its mean time to completion, at 7.8 seconds, was better than three times
faster than its fastest rival. The mean value and the one standard deviation
interval are shown in Figure 2.

The IDWalk method yielded a mean penalty of 1391, better than Great Deluge
but worse than TS with random tenure. The large standard deviation of about
225 illustrates the range of values obtained. Its lowest value of 1160 was the
best value obtained by any of the algorithms. Its highest value was higher than
any obtained by any of the TS methods but better than Great Deluge. Its mean
execution time of 68.1 s makes it the slowest algorithm to complete execution.
The lowest value was obtained by the run having the longest execution time. As
before, the mean value and the one standard deviation interval are shown in the
last line of the figure.

A t-test on pairwise comparison of the three distributions assuming unequal
variances shows that the TS (random) and IDWalk algorithms produce results
such that the difference between their mean values is not significant at the 95%
level. When TS (random) and Great Deluge are compared the means were found
to be significantly different. The same was true when the IDWalk and Great
Deluge distributions were compared.

Because of the wide range of penalty values found by the Great Deluge algo-
rithm, this case was studied further. Using the same input data, 1800 runs were
made. The histogram of the results obtained is shown in Figure 3.

It is evident that there is a large variation in the values obtained, the smallest
value being 1135 (obtained 3 times) and the largest value being 3620 (obtained
once). Therefore the worst schedule has an associated penalty that is more than
three times larger than the best one. The penalty of 1135 is the best obtained in
any run of any algorithm studied here. Although the mean value was the worst
obtained in this study, the minimum value was the best minimum value due to
the high variability of the results.

114 C.A. White et al.

4 Discussion

Using the experimental results obtained using data from this medical call sched-
ule problem, the ranking of the four methods tested based on their mean penalty
is:

1. TS – fixed tenure = 5
2. TS with random tenure [10,40]
3. IDWalk
4. Great Deluge.

For consistency of results, the method of choice is TS with random tenure for the
non-deterministic algorithms and TS with fixed tenure of 5 for the deterministic
ones.

If a good solution must be obtained within about a minute’s time, then TS
with fixed tenure = 5 is the best bet. However, if execution time is not critical,
the method of choice may be the Great Deluge which yields individual results
rapidly, even if most of them are not very good. One of them may be very good
indeed, although a long series of runs may be required to find it.

The same may be true of IDWalk although this was not investigated here. For
the time of one run of IDWalk, we could have about ten runs of Great Deluge.
This may be the method of choice in a setting where actual schedules have to be
produced and used in a real hospital. The system can be left running overnight
and the best of the schedules obtained can be retrieved in the morning. With 12
hours available for repeated automatic runs and with Great Deluge’s 8 second
run time, about 5400 schedules can be produced and the best one used. If desired,
the best schedule could be taken as the initial solution for another metaheuristic
to further improve.

It should be remembered that these results strongly reflect the specific re-
quirements and data taken from one institution. Discussions with other units
in the same hospital revealed that apart from having to use different data the
algorithms would have to use different weights and different criteria in forming
the corresponding penalties. This might lead to different conclusions. We are
investigating this further.

5 Conclusions

Depending on the desired goals and available execution time, the algorithm of
choice for this problem will vary. The lowest average penalty is obtained by TS
with fixed tenure of 5. The lowest individual penalty of all was obtained during
the additional Great Deluge runs. If time is of little concern, multiple runs of
Great Deluge may be the best strategy. It is ironic that the algorithm that
produces the distribution with the worst mean is the same one that produces
the best individual value.

An Evaluation of Certain Heuristic Optimization Algorithms 115

References

1. Alfares, K.: Survey, categorization, and comparison of recent tour scheduling liter-
ature. Annals of Operations Research 127, 145–175 (2004)

2. Baker, K.: Workforce allocation in cyclic scheduling problems. Operations Research
Quarterly 27, 155–167 (1976)

3. Di Gaspero, L., Schaerf, A.: Multi-neighbourhood local search with application to
course timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS,
vol. 2740, pp. 262–275. Springer, Heidelberg (2003)

4. Dueck, G.: New optimization algorithms. Journal of Computational Physics 104,
86–92 (1993)

5. Ernst, A., Jiang, H., Krishnamuoorty, M., Dier, D.: Staff scheduling and rostering:
a review of applications, methods and modelling. European Journal of Operational
Research 153, 3–27 (2004)

6. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
7. Glover, F., McMillan, C.: The general employee scheduling problem: an integra-

tion of management science and artificial intelligence. Computers and Operations
Research 13, 563–593 (1986)

8. Neveu, B., Trombettoni, G., Glover, F.: Idwalk: A Candidate List Strategy With a
Simple Diversification Device. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp.
423–437. Springer, Heidelberg (2004)

9. White, C.A., White, G.M.: Scheduling Doctors For Clinical Training Unit Rounds
Using Tabu Optimization. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 120–128. Springer, Heidelberg (2003)

Timetabling of Meetings

Scheduling Research Grant Proposal Evaluation

Meetings and the Range Colouring Problem

Patrick Healy

CS Department, University of Limerick, Limerick, Ireland
patrick.healy@ul.ie

Abstract. In many funding agencies a model is adopted whereby a fixed
panel of evaluators evaluate the set of applications. This is then followed
by a general meeting where each proposal is discussed by those evaluators
assigned to it with a view to agreeing on a consensus score for that
proposal. It is not uncommon for some evaluators to be unavailable for
the entire duration of the meeting; constraints of this nature, and others,
complicate the search for a solution and take it outside the realm of
the classical graph colouring problem. In this paper we (a) report on a
system developed to ensure the smooth running of such meetings and
(b) compare two different ILP formulations of a sub-problem at its core,
the list-colouring problem.

1 Background

The process of evaluating research grant proposals presents some interesting
opportunities for operations research practitioners and researchers. The model
we discuss in this paper assumes that a fixed pool of evaluators exists and a set
of grant proposals is distributed amongst them subject to the evaluators’ stated
abilities to evaluate each. Several constraints affect the allocation of proposals
to evaluators. For example, insofar as it is reasonable, all evaluators should be
allocated the same load, although some evaluators, such as vice-chairs, may
be expected to take a reduced load of evaluations due to other duties; upper
limits may be enforced on the number of evaluators employed; in the interests of
(particularly, novice) evaluators not being intimidated at the associated meetings
that occur later, no proposal should have a majority of vice-chairs evaluating
it; for each proposal, one evaluator should be appointed as proposal reporter
amongst the – usually 3, although requests for larger financial sums necessitate
more – evaluators assigned to it with this extra duty evenly allocated amongst
all evaluators.

These complications, and other side constraints, make the allocation prob-
lem an interesting study in its own right. Nonetheless, for present purposes, we
will assume that evaluations have been completed and the evaluators’ recom-
mendations must now be unified in to an ordered ranking list. From this list
grant applications will be offered funding subject to budget and other adminis-
trative considerations. Although other procedures for arriving at a ranking list
are possible [5] the most commonly used procedure appears to be that each

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 119–131, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 P. Healy

evaluator initially assigns a numerical mark to each proposal allocated to them.
At a follow-up meeting of the (usually three) evaluators associated with each
proposal a consensus mark is arrived at. The ranking list is then based on the
consensus marks for each proposal.

Our interest begins when a general panel meeting (a panel may be thought
of as a general research area, e.g. computer science) brings all of the evaluators
together. Each proposal is discussed face to face by the assigned evaluators for
the purpose of agreeing a consensus position and category scores, from which the
final evaluation report may be written; the consensus meeting runs for a fixed
length of time. Following the entry of all scores in a database, a ranking list is
generated which forms the basis for funding decisions by the grant agency. So
that the entire panel of evaluators may agree to the ranking list it is desirable
that all consensus meetings be completed as quickly as possible allowing time
for the inevitable clean-up before the final ranking list acceptance process.

In its most restricted form the problem may be expressed as, given an assign-
ment matrix of proposals to evaluators, where each proposal has been read by
some subset of evaluators, generate a schedule of consensus meetings that uses
the fewest number of time periods where the meetings can be held. A maximum
of T time periods exist.

The constraints that must be respected, then, are:

1. A consensus meeting can only take place during one time slot;
2. An evaluator can only be in one consensus meeting during a time slot;
3. If a consensus meeting for a proposal takes place then all of the evaluators

assigned to it must be present;
4. No more than T time slots may be used.

The goal is to minimize the number of time slots used. While the problem
in its purest form is similar to the exam timetabling problem, we will see some
additional constraints that impinge on it later.

In the following section we describe our first approach to solve the problem
exactly by modelling it as an ILP. This will act as a reference point for what will
follow later. We then describe a two-phase heuristic that combines tabu search
to find an initial colouring with a weighted bipartite graph matching problem
on the colouring, and the deficiencies of this model. Section 4 proposes a return
to the search for an exact solution to a fundamental sub-problem by comparing
two competing ILP formulations. Section 5 concludes the paper.

2 An ILP Model

Given E = eij , a binary assignment matrix that indicates what evaluators have
been assigned to read proposal j, we can view its transpose ET = P = pij as
the matrix that indicates what proposals have been assigned to evaluator j.

We introduce binary variables xij that indicate that the consensus meeting
for proposal i will take place in time slot j, and yij that indicate that evaluator
i is in some meeting during time slot j, 1 ≤ j ≤ T .

Scheduling Research Grant Proposal Evaluation Meetings 121

Constraint 1 above can be implemented by
∑

j

xij = 1 ∀i.

Constraint 2 says that if an evaluator is assigned to a time slot then s/he
must be evaluating exactly one proposal from their allocation and, conversely,
if an evaluator is not assigned to a time slot then none of their allocation are
being evaluated in this slot:

yij =
∑

k

eikxkj =
∑

k

pkixkj ∀i, j.

Constraint 3 can be interpreted as meaning ‘meeting for proposal i happens
at time j ⇒ all of the evaluators associated with this proposal are assigned to
this slot’. Note that this relation is not ‘⇔’ since the same three evaluators may
be involved in a different proposal. Also, by virtue of constraint 1 an evaluator
can only attend one meeting in a time slot. Its implementation is

wixij ≤
∑

k

pikykj =
∑

k

ekiykj ∀i, j

where wi =
∑

j pij is the number of evaluators assigned to proposal i.
The goal is to minimize the number of time slots used. To do this we seek

to minimize a new variable z ≥ maxj{j|xij = 1, ∀i}. That is, if a proposal is
assigned to slot j then z ≥ j and we wish to minimize z. Equation (5) implements
this constraint.

Thus the ILP model we solve is

minimize z (1)
subject to

∑

j

xij = 1 ∀i (2)

yij =
∑

k

eikxkj ∀i, j (3)

wixij ≤
∑

k

ekiykj ∀i, j (4)

jxij ≤ z ∀i, j (5)
xij , yij binary.

For a problem instance involving 58 evaluators and 383 proposals using
CPLEX 7.0 and running on Linux using an Intel Pentium with a clock speed
of 350 MHz and 128 Mb of RAM, the previous model had not terminated after
three days of running time.

Of equal concern was the inadequacy of the implemented model. It often arises
that an evaluator cannot be present for the entire duration or may arrive late, and

122 P. Healy

thus not all slots are equally suitable. Further, some evaluators (e.g. vice-chairs)
have other duties and it is desirable that their consensus meetings be scheduled
as early as possible. (One further constraint that the system was required to deal
with was that, on occasion, the entire panel meeting is actually a coalition of
smaller panels, with evaluators involved in some or all of these smaller panels. It
was desirable that smaller panels were completed as soon as possible, allowing
the data entry and ranking list generation to take place for these smaller panels.)

An alternative solution strategy is described below.

3 A Refined Model

In addition to constraints 1–4, the following refinements are now also considered
to address the deficiencies described above.

R1 No consensus meeting may be scheduled at a time when not all assigned
evaluators are present;

R2 Evaluators with other duties should be scheduled to finish their consensus
meeting duties as early as possible;

R3 Some proposals (for example, those associated with a smaller sub-panel)
should be scheduled as early as possible.

Given a set of proposals P and a set of evaluators E with a slight abuse of
notation we define functions P : E → P∗, E : P → E∗ and A : E → {1, . . . , T}∗
which, respectively, identify the set of proposals an evaluator ei ∈ E has been
allocated, the set of evaluators assigned to a proposal and the set of time slots
for which evaluator ei can be available.

Graph colouring has long been associated with timetabling [4,3,6,13] and we
adopt this approach here. For the model presented in Section 2 we construct a
graph G = (VP , EP), where the vertices represent proposals and an edge exists
between two vertices if the corresponding proposals have one or more evaluators
in common. In any legal vertex colouring, vertices of the same colour may be
scheduled together since they are guaranteed to be non-adjacent. In the absence
of limits on evaluators availabilities Pi, the proposals of colour i = 1, . . . , C, may
be scheduled, respectively, in time slots ti, i = 1, . . . , C.

Using a tabu-search-based vertex colouring algorithm gives quite satisfactory
results on problem instances commensurate with that described earlier. While it
is difficult to find good lower bounding strategies for the graph colouring problem
in general, the special structure of G provides us with a good bound in this case:
the number of colours that is necessary to colour the graph will be at least the
number of slots required by the busiest evaluator. For the cases we have solved
it was quite common to find a colouring that required no more slots than the
busiest evaluator.

3.1 Restricted Evaluator Availabilities

Restricted availability of one or more evaluators can be accommodated by solv-
ing a maximum cardinality bipartite matching instance [2]. We construct the

Scheduling Research Grant Proposal Evaluation Meetings 123

bipartite graph B = (U, W, E), where U = {i|1 ≤ i ≤ C} is the set of colour
classes and W = {j|1 ≤ j ≤ T }. Vertices u and w are connected by an edge if
and only if every evaluator involved with proposals Pu is available during time
period w. The neighbourhood of u is the set of time slots in which all proposals
Pu may be feasibly scheduled.

However, since the colouring phase is unaware of sequencing effects of vertex
colourings, problems can arise. For example, two proposals assigned to the same
colour class may require evaluators who cannot be present at the panel meeting
simultaneously. Accordingly this will result in vertex u ∈ U having 0 neighbours,
and thus not schedulable. More generally, if two evaluators e1 and e2 will be
present simultaneously for no more than τ = |A(e1) ∩ A(e2)| periods, then we
must ensure that the set of vertices are partitioned into colour classes in such
a way that no more than τ colour classes will contain vertices v1
= v2 where
v1 ∈ P(e1) and v2 ∈ P(e2). (Of course the problem is infeasible and without
solution if e1 and e2 have been allocated more than τ of the same proposals;
when reading the availabilities of evaluators initially it is easy to check for this
occurrence.)

Feasible colourings can still be found that adhere to availability restrictions
by augmenting the graph. We impose additional edges in EP so that all but τ
edges (u, v) are connected, where u ∈ P(e1) \ P(e2) and v ∈ P(e2) \ P(e1). If e1
and e2 are both assigned to c = |P(e1)∩P(e2)| proposals then all but τ ′ = τ − c
must be forced apart at the colouring stage. Note that due to constraints on
other evaluators, some of these edges may already be present. By selecting up
to τ ′ ≤ min(|P(e1) \ P(e2)|, |P(e2) \ P(e1)|) vertices from each set we connect
all other pairings with an edge and thus force them apart.

Figure 1 illustrates an example. Evaluator e1 has been assigned proposals
p1, p2, p3, p4 and p5, while evaluator e2 has been assigned proposals p1, p2, p6
and p7. Suppose they are only available simultaneously for four time slots. Since
they co-evaluate proposals p1 and p2, we must ensure that no more than two
more of their shared proposals are scheduled together. Therefore we need to
ensure that there are no more than two edges missing from the bipartite graph
comprising vertex sets {p3, p4, p5} and {p6, p7}. The edge (p5, p7) already exists
due to both proposals being evaluated by a common evaluator and, therefore,
we impose 3 · 2 − 1 − 2 = 3 additional (thick) edges.

The introduction of edges assists in facilitating evaluators when they are
highly restricted. However, in the case of evaluators with, for example, no re-
strictions on their availabilities the above procedure requires insertion of edges
unnecessarily. Further, it is not clear how the choice of the imposed edges af-
fects the performance of the tabu-based colouring algorithm either in terms of
its run-time or quality of solution; a small number of evaluators with restricted
availabilities has been observed to have an effect on the time taken to find a
solution and this may be due to the choice of edges introduced. While this may
turn out to be an interesting area of research it was also the motivation for
us to find an exact algorithm that enforced evaluator availabilities without this
indeterminacy. This is discussed further in Section 4.

124 P. Healy

p2

p1
P(e2)P(e1)

p3

p4

p5
p7

p6

Fig. 1. Imposing additional edges on the workload of two evaluators

3.2 Soft Constraints

Constraints R2 and R3 are treated differently and with less urgency since they
do not affect feasibility. A family of partial solutions is found by colouring the
proposals subject to the further restrictions generated by the overlap of evalu-
ators’ availabilities. In a second phase of the algorithm a solution is created by
assigning each colour to a time slot and it is in this second phase that secondary
constraints, such as biasing a small set of evaluators with other duties to finish
early or a set of proposals to be completed early, are introduced.

We build the bipartite graph as described at the start of the previous section
but we now add weights to edges. Initially every edge (u, v) has weight 1 but
under certain circumstances these weights may be augmented by the following
process: for a colour class u and its neighbourhood, N(u)={vi1 , vi2 , . . . , vim}, 1 ≤
ij ≤ T, |N(u)| = m, a weight or bias bij , 0 < b < 1 is added to each such edge.
Different biases may be used for R2 and R3.

On this weighted bipartite graph we call a maximum weighted bipartite match-
ing algorithm, which has the effect of choosing earlier time slots for a coloured
set of proposals.

In the case of constraint R2 each vice-chair is considered in turn, and the
previous process is applied to the colourings in which their proposals appear.
Likewise, in order to accommodate constraint R3, if a proposal is marked as
requiring early completion then it can be thus biased. Funding agency officials
have the ability to specify different weightings depending on their priorities.

Scheduling Research Grant Proposal Evaluation Meetings 125

The system is implemented in Perl and, when run on Linux using an Intel Pen-
tium IV with a clock speed of 2.8 GHz and 512 Mb of memory and using problem
instance data of the magnitude discussed earlier, returns a schedule (or indicates
that there is an infeasibility) in a few seconds. We have also solved problems along
the scale of 110 evaluators and 1,000 proposals in approximately 30 seconds.

It is possible that an evaluation function could be constructed that would
bias the colouring phase towards solutions that are more favourable according
to the soft criteria. However, separating the problem into two phases allows use of
‘off the shelf’ implementations of tabu search and maximum-weighted bipartite
matching algorithms.

4 The Range-Colouring Problem

We have seen that the consensus meeting scheduling problem reduces to a graph
colouring problem where (due to evaluators’ availabilities) vertices may only
be coloured from a prescribed set. This is known in the research literature as
the list colouring problem. While some theoretical results exist for the problem
[1,9,12,11] few practical algorithms are known to this author, although for special
cases such as if the graph is an interval graph some efficient algorithms exist [14].

Due to the unique circumstances of the problem with evaluators usually trav-
elling long distances the set of available time slots for any evaluator, ei, is al-
ways contiguous, A(ei) = [ts, . . . , te]. Thus, instead of an arbitrary set of colour
restrictions being imposed on a vertex p, the restrictions form an interval of
colours [ci, . . . , cj] defined by the intersection of the evaluators’ availabilities,⋂

e∈E(p) A(p). For this reason we call this special case of the list colouring prob-
lem the range colouring problem.

While it is almost certain that heuristic approaches will prove most viable for
large-scale problems, the relative absence of any algorithms for the list-colouring
problem suggested that we begin with evaluating exact algorithms for the prob-
lem. We present later an ILP formulation of the range colouring problem that,
we believe, will be the basis of a successful branch-and-cut attack on the prob-
lem. It is perhaps testament to the difficulty of the graph colouring problem
that so few branch-and-cut papers appear in the literature. Méndez Dı́az and
Zabala (MDZ) present what they claim to be a successful formulation of the
graph colouring problem [10] and we use this in order to compare our algorithm.

They base their ILP on the classical formulation of the graph colouring prob-
lem as follows:

minimize
n∑

j=1

wj (6)

subject to
∑

j

xij = 1 ∀i (7)

xij + xkj ≤ wj ∀{i, k} ∈ E, 1 ≤ j ≤ n (8)

126 P. Healy

wj ≤
∑

i∈V

xij 1 ≤ j ≤ n (9)

wj ≥ wj+1 1 ≤ j ≤ n − 1 (10)
xij ∀i ∈ V, 1 ≤ j ≤ n binary
wj 1 ≤ j ≤ n binary.

Binary variable xij indicates the assignment of colour j to vertex i. Binary
variable wj indicates the use of colour j. Equality (7) assigns exactly one colour
to every vertex and inequality (8) ensures that adjacent vertices are coloured
differently. To avoid many identical, symmetric solutions inequalities (9) and
(10) help to eliminate such symmetrical solutions. The upper bound of n on the
number of colours used can be replaced by a tighter upper bound, if known.

4.1 An Exact Algorithm for Range Colouring

The motivation for our formulation for graph colouring comes from the DAG
layering problem [7,8]. The classical DAG layering problem seeks to assign ver-
tices of a DAG to discrete layers such that all edges point downwards where
each ‘layer’ is a set of non-adjacent vertices and can thus be coloured similarly.
Our MILP formulation searches for an assignment of vertices to horizontal lay-
ers, with the vertices on each layer comprising an independent set, without the
requirement of edge orientations. The variable y[p] indicates the horizontal layer
(colour) that proposal p is assigned to. For all edges, (p, q) ∈ EP , we require
that |y[p] − y[q]| ≥ 1:

minimize z (11)
subject to

1 ≤ y[p] ≤ C∗ ∀p ∈ P (12)
y[p] ≤ z ∀p ∈ P (13)

y[p] − y[q] − C∗δpq ≥ 1 − C∗ ∀(p, q) ∈ EP (14)
y[p] − y[q] − C∗δpq ≤ −1 ∀(p, q) ∈ EP (15)

δpq binary.

The parameter C∗ is an upper bound on the number of colours required.
Minimizing the number of colours used is achieved by requiring that the ‘colour’
assigned to each proposal is less than z and minimizing z. Enforcing a colour
separation of at least 1 between adjacent proposals is achieved by inequalities
(14) and (15). For this binary indicator variables δpq are required that indicate
whether proposal p is assigned a higher or lower colour than q. Note that vari-
able z is a real value and the variables y[p] are integral. With an appropriate
modification of the objective function they may be relaxed also to real-valued
variables.

This formulation is more compact than the MDZ one requiring fewer binary
variables (|EP |) versus (|VP | + 1) · C∗, which may deteriorate to (|VP | + 1) · VP ,

Scheduling Research Grant Proposal Evaluation Meetings 127

Table 1. Comparison of formulations with no evaluator availability restrictions

|P| MDZ Range

45 0.12 0.94
60 0.13 1.66
75 0.36 4.02
90 1.27 7.41

105 5.31 –

and, asymptotically, the same number of constraints. We conducted a pilot study
to compare the two formulations using the generic CPLEX MIP solver on both.

In order to solve the range colouring problem small modifications are required
in each formulation. In the MDZ formulation we need to replace equality (7) with

ti,e∑

j=ti,s

xij = 1

where ti,s is the start time for proposal i and ti,e is the end time. In our formu-
lation we must replace Equation (12) with

tp,s ≤ y[p] ≤ tp,e ∀p ∈ P

where tp,s indicates the start time of proposal p and tp,e its end time.

4.2 Experimental Evaluation

The two models described in the previous section were implemented using AMPL
and compared. Based on a large allocation of over 650 proposals to over 80
evaluators smaller problems of size 45, 60, 75, 90 and 105 proposals and their
associated number of evaluators were created by randomly choosing from the
pool of 650 proposals.

Firstly, for each problem size the two model formulations were run with no
restrictions on evaluators’ availabilities. The number of CPU seconds of running
times are reported in Table 1. The optimum number, o, of slots found was
recorded and used for a second set of experiments (to be described below). In
many instances completion of the run was sped up by using the known lower
bound of the largest allocation to an evaluator as a constraint on the optimum;
once this lower bound was reached the solver could exit immediately. On the
largest problem the Range Colouring formulation failed to complete in 60 seconds
and was terminated, although at the point of termination it had discovered a
solution within 1 of the optimal number of slots.

Using the problem sets generated previously we then set to investigate the
effectiveness of the two formulations in the presence of restrictions on some
evaluators. The MDZ and Range Colouring AMPL formulations were adjusted

128 P. Healy

Table 2. Comparisons of formulations with reduced availabilities

|P| |P ′| S (%) MDZ Range

45 18 88.6 0.39 0.85
36 66.7 0.16 6.33

60 20 91.7 4.92 14.74
43 65.2 3.64 54.50

75 23 89.8 14.49 5.66
53 74.9 12.57 –

90 19 93.7 23.34 2.19
50 77.3 16.48 8.06
60 71.3 15.28 19.06

as discussed at the end of Section 4.1. Although it is evaluators who cause the
restriction it is on proposals and when they may be evaluated that their impact is
felt. Through selecting a random set of evaluators and reducing their availability
we sought to create at least two different scenarios for each problem as described
below.

Table 2 below details the results of our second round of experiments. (Intro-
ducing restrictions on the 105-proposal problem resulted in problems that did
not complete within our 60-second cutoff limit.) The column labelled |P|, as with
its full availability counterpart, denotes the number of proposals under consider-
ation. The second column, labelled |P ′|, indicates the number of proposals that
can no longer be scheduled in all slots as a result of imposing reductions in avail-
abilities on a set of evaluators. The column labelled S indicates the percentage
of slots which are usable in this scenario. Using o, the optimum number of slots
required in the unconstrained version, it is calculated as

S =
|P \ P ′| × o +

∑
p′∈P′(e(p′) − s(p′) + 1)
|P| × o

× 100.

That is, assuming an optimum solution of o again, any proposal that is not
affected by missing evaluators may be scheduled in any of the o slots while each
affected proposal p′ may be scheduled in e(p′) − s(p′) + 1 slots. This is then
represented as a percentage of the full |P| × o.

An approximate goal of constructing the alternative scenarios was to constrain
the first scenario by removing approximately 10% of the total slots available and
to remove approximately 33% in the second scenario. Due to unevenness in the
distribution of proposals to evaluators in the 90-proposal case this was difficult
to achieve; a third scenario was introduced in this case. The fourth and fifth
columns indicate the running times of the two formulations as before.

Discussion. For the case of full availabilities of evaluators, as described in
Table 1, it is clear that the MDZ formulation is the superior one, with the

Scheduling Research Grant Proposal Evaluation Meetings 129

Range Colouring formulation not even terminating within the given 60-second
time bound on the last problem. This is in spite of it having a better problem
formulation profile in terms of number of constraints and variables used – though
more complex to understand possibly. It is not known if the cleaner formulation
of MDZ makes itself to amenable to some problem reduction strategy within
AMPL/CPLEX.

For the case of reduced availabilities the situation is less clear. Although MDZ
has the upper hand for both constructed scenarios of the 45- and 60-proposal
problems, things become more complicated when the two larger problem sizes
are considered. When the number of usable slots (S) is reduced by approximately
10% (and more for the 90-proposal case) the Range Colouring completes before
MDZ. This is somewhat counter-intuitive since MDZ is the winner for both
problem sizes in both the more constrained and the less constrained scenarios (see
Tables 2 and 1, respectively). This is an aspect that requires further investigation.

Good lower and upper bounds are well known to assist in the speedy running
of ILPs. We have remarked previously on how the largest number of proposals
allocated to any evaluator provides a very good lower bound on solution quality.
We did not spend any effort in devising upper bound heuristics but nonetheless
we have observed particular sensitivity of both models to the upper bound used.
Both models explicitly use the upper bound though a balance appears to be
necessary between using a small upper bound that tightens inequalities and a
larger bound that gives the ILP solver its all-important first feasible solution.

It should be pointed out that a further advantage of the MDZ formulation
lies in its ability to be modified to forbid any set of slots for the scheduling of a
proposal. For our purposes this was not necessary; however, in the most general
form of restricted colouring this will be the case. Thus, if the modifications of
the MDZ model do not seriously hamper its performance this would appear to
be a more general and robust model.

Nonetheless, our experiments suggest that the new formulation has a role to
play. It appears to be particularly suited to scenarios where there is some – but
not a large – impact on the availabilities of evaluators. In view of its similarities
to the DAG layering problem an analysis of its polyhedral structure may be
worthwhile. We have already identified some basic clique-like inequalities and
identifying others may make a branch-and-cut solution practicable.

5 Conclusions

In this paper we have described an effective two-phase heuristic procedure for
scheduling a set of interrelated meetings that has similarities to the exam time-
tabling problem. We have also proposed and discussed two ILP formulations that
provide exact solutions to the problem. The ILPs can be used to solve the special
case of the list colouring problem that we call the range colouring problem.

Many aspects of both topics investigated here are worthy of further consider-
ation. When imposing additional edges in order to force separate colourings of
proposals the method of choosing amongst those proposals that could be forcibly

130 P. Healy

separated is worthy of further investigation, we believe. Also, clearly there is an
interaction between the two constraints and the choice of b for each type of soft
constraint and this is an area which can be investigated further.

The problem has been decomposed into a graph colouring subproblem and
a matching problem. While the latter is an exact solution, the former finds
a heuristically generated colouring. Further, by separating the problem in this
manner and ignoring the soft constraints initially we may loose opportunities for
finding solutions that are more satisfactory with respect to the soft constraints.

We have compared two formulations of a special case of the list colouring
problem that we call the range colouring problem. Although there are some
anomalies that should be investigated further the MDZ formulation would ap-
pear to be the one to recommended overall. In view of its similarities to the
DAG layering formulation it may be worthwhile, nonetheless, to investigate the
structure of the Range Colouring polytope.

Prior to the introduction of this system consensus meetings took place in a
haphazard, ad hoc fashion, with evaluators wasting much effort searching out
their associates in order to discuss a proposal. According to one official, for the
scale of problem instance we have discussed in Section 2 the system has resulted
in panel meetings being completed a day sooner in the week than heretofore.

Acknowledgements. The author acknowledges gratefully the comments of the
anonymous referees.

References

1. Akbari, S., Fana, H.-R.: Some relations among term rank, clique number and list
chromatic number of a graph. Discrete Mathematics 306, 3078–3082 (2006)

2. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality
matching in a bipartite graph in time o(n1.5

�
m/ log n). Information Processing

Letters 37, 237–240 (1991)
3. Burke, E.K., de Werra, D., Kingston, J.: Applications to timetabling. In: Handbook

of Graph Theory, ch. 5.6, Chapman and Hall/CRC Press, London (2004)
4. Burke, E.K., Jackson, K.S., Kingston, J.H., Weare, R.F.: Automated timetabling:

The state of the art. The Computer Journal 40, 565–571 (1997)
5. Cook, W.D., Golany, B., Penn, M., Raviv, T.: Creating a consensus ranking of

proposals from reviewers’ partial ordinal rankings. Computers and Operations Re-
search 34, 954–965 (2007)

6. Friden, C., Hertz, A., de Werra, D.: STABULUS: A technique for finding stable
sets in large graphs with tabu search. Computing 42, 35–44 (1989)

7. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. IEEE Transactions on Software Engineering 19, 214–230 (1993)

8. Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: Mutzel, P.,
Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 16–30. Springer,
Heidelberg (2002)

9. Kratochv́ıl, J., Tuza, Z.: Algorithmic complexity of list colorings. Discrete Applied
Mathematics 50, 297–302 (1994)

Scheduling Research Grant Proposal Evaluation Meetings 131

10. Méndez-Dı́az, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Dis-
crete Applied Mathematics 154, 826–847 (2006)

11. Tuza, Z.: Graph colorings with local constraints. Discussiones Mathematicae,
Graph Theory 17, 161–228 (1997)

12. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors (in Russian).
Metody Diskretnogo Analiza v Teorii Kodov i Schem 29, 3–10 (1976)

13. Wood, D.C.: A technique for coloring a graph applicable to large-scale timetabling
problems. The Computer Journal 12, 317–322 (1969)

14. Zeitlhofer, T., Wess, B.: List-coloring of interval graphs with application to register
assignment for heterogeneous register-set architectures. Signal Processing 83, 1411–
1425 (2003)

Sports Timetabling

Constructive Algorithms for the Constant

Distance Traveling Tournament Problem

Nobutomo Fujiwara1, Shinji Imahori1, Tomomi Matsui2,
and Ryuhei Miyashiro3

1 Graduate School of Information Science and Technology,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

nobutomo@simplex.t.u-tokyo.ac.jp
imahori@mist.i.u-tokyo.ac.jp

2 Faculty of Science and Engineering, Chuo University,
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

matsui@ise.chuo-u.ac.jp
3 Institute of Symbiotic Science and Technology,
Tokyo University of Agriculture and Technology,

Naka-cho, Koganei, Tokyo 184-8588, Japan
r-miya@cc.tuat.ac.jp

Abstract. The traveling tournament problem considers scheduling
round-robin tournaments that minimize traveling distance, which is an
important issue in sports scheduling. Various studies on the traveling
tournament problem have appeared in recent years, and there are some
variants of this problem. In this paper, we deal with the constant distance
traveling tournament problem, which is a special class of the traveling
tournament problem. This variant is essentially equivalent to the problem
of ‘maximizing breaks’ and that of ‘minimizing breaks’, which is another
significant objective in sports scheduling. We propose a lower bound of
the optimal value of the constant distance traveling tournament problem,
and two constructive algorithms that produce feasible solutions whose
objective values are close to the proposed lower bound. For some size of
instances, one of our algorithms yields optimal solutions.

1 Introduction

In scheduling of round-robin tournaments, there are two major objectives [9],
‘minimizing breaks’ and ‘minimizing traveling distance’. The former is to im-
prove quality of a tournament by decreasing the number of breaks (consecutive
games both held at away or both held at home); the latter aims to reduce
traveling costs of teams by minimizing traveling distance. Many papers that
concern minimizing traveling distance have been published so far. The traveling
tournament problem (TTP), established by Easton et al. [3], is a well-known
benchmark problem that abstracts the concept of minimizing traveling distance.
The constant distance traveling tournament problem (CDTTP), introduced by
Urrutia and Ribeiro [13], is a variant of TTP, in which all distance between

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 135–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 N. Fujiwara et al.

pairs of teams are one. It is known that maximizing breaks gives an approxi-
mate solution for minimizing traveling distance [11]. In particular, in CDTTP
maximizing breaks is not approximation but direct transformation of minimiz-
ing distance [13]. Moreover, it was also shown that the problem of maximizing
breaks is essentially equivalent to that of minimizing breaks [6], which is another
significant subject in sports scheduling.

Most of the best upper bounds of CDTTP (and TTP) are obtained by meta-
heuristic algorithms [1,12,14]. In contrast, it is difficult to obtain good lower
bounds for CDTTP; a logic based Benders decomposition approach [7] was used
to obtain lower bounds of instances of up to 16 teams, and lower bounds of larger
instances are not known so far. In this paper, we propose a new lower bound
for CDTTP, and two algorithms that produce feasible solutions whose objective
values are close to the proposed lower bound. For some size of instances, one of
our algorithms yields optimal solutions.

2 Problem

In this section, we introduce some terminology and definitions, and then de-
scribe the constant distance traveling tournament problem (CDTTP). For more
discussions on CDTTP and its variations, see [7,13].

We are given a set of teams T = {1, 2, . . . , n} where n is an even number, and
each team has its home venue. A game is specified by an ordered pair of teams.
A double round-robin tournament is a set of games in which every team plays
every other team once at its home venue and once at away (i.e., at the venue of
the opponent); hence, exactly 2(n − 1) slots are required to complete a double
round-robin tournament.

Each team stays its home venue before a tournament, and then travels to
play games at the chosen venues. After a tournament, each team goes back to
its home venue. In a tournament, the number of trips of a team is defined by the
number of moves of the team between venues. We note that, when a team plays
two consecutive away games, the team goes directly from the venue of the first
opponent to the other, without returning to its home. Consecutive away games
for a team constitute a road trip; consecutive home games are a home stand. The
length of a road trip/home stand is the number of opponents playing against in
the road trip/home stand, respectively. The constant distance traveling tourna-
ment problem is defined as follows.

Constant Distance Traveling Tournament Problem
Input: the number of teams, n;
Output: a double round-robin tournament of n teams such that

1. the length of any home stand and that of any road trip are at most three;
2. no repeaters (A at B immediately followed by B at A is prohibited);
3. the total number of trips taken by teams is minimized.

In the rest of this paper, a double round-robin tournament satisfying the above
conditions 1 and 2 is called a feasible tournament.

Constructive Algorithms for the Constant Distance TTP 137

We note that CDTTP is a special class of the original traveling tournament
problem [3] such that the distance between any pair of home venues is equal
to one.

Given a feasible tournament, it is said that a team has a break at slot s if it
has two consecutive home games or two consecutive away games in slots s − 1
and s. We also say that a team has a home break (resp., away break) at a game if
both of the game and the previous game are at home (resp., away). In a feasible
tournament S, the total number of breaks B(S) is defined as the sum of the
number of breaks of all the teams. As for the number of trips and the number
of breaks, the following lemma is known.

Lemma 1 (Urrutia and Ribeiro [13]). Let S be a feasible tournament for
CDTTP. The total number of trips D(S) and the total number of breaks B(S)
have the following relationship:

D(S) = 2n(n − 1) − B(S)/2.

Thus, maximizing the total number of breaks B(S) is essentially equivalent to
minimizing the total number of trips D(S). Moreover, maximizing the number
of breaks is essentially equivalent to minimizing the number of breaks [6] if the
constraint on the length of a road trip/home stand is not supposed.

3 Lower Bound

In this section, we propose a new lower bound for CDTTP. In previous researches
on CDTTP, the logic-based Benders decomposition approach [7] was used to
obtain lower bounds of instances of up to 16 teams, and lower bounds of larger
instances are not known so far. Our analysis produces a lower bound for every
size of the CDTTP instance. We note that Urrutia and Ribeiro proposed a lower
bound for every instance of the mirrored CDTTP [13].

A home–away pattern of a team is a vector of 2(n−1) elements in which each
element is ‘H’ or ‘A’, where H means ‘at home’ and A ‘away’. For example, a
home–away pattern HHAAAH of a team means that the team plays games at
its home venue in slots 1, 2 and 6, while it plays games at venues of opponents
in slots 3, 4 and 5.

Theorem 1. For every feasible tournament of n teams, the number of trips is
greater than or equal to LB(n) defined by

LB(n) def.=

⎧
⎨

⎩

(4/3)n2 − n (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n − 1 (n ≡ 1 mod 3),
(4/3)n2 − (2/3)n (n ≡ 2 mod 3).

Proof. First, consider the case that n ≡ 0 mod 3. The number of slots satisfies
2(n − 1) ≡ 1 mod 3. Since no team can have three breaks in any consecutive
three slots, each team can have at most two breaks in each consecutive three
slots of slots 2, 3, 4, slots 5, 6, 7, . . . , slots 2n − 4, 2n − 3, 2n − 2. In addition, no

138 N. Fujiwara et al.

team can have a break at slot 1. Thus, the number of breaks for each team is less
than or equal to (2/3)(2(n − 1) − 1) = (4/3)n − 2. The total number of breaks
of every feasible tournament is at most

n((4/3)n − 2) = (4/3)n2 − 2n.

Hence, the total number of trips of every feasible tournament is greater than or
equal to

2n(n − 1) − (1/2)((4/3)n2 − 2n) = (4/3)n2 − n.

Next, consider the case that n ≡ 1 mod 3. The number of slots satisfies
2(n − 1) ≡ 0 mod 3. No team can have three breaks in consecutive three slots,
and hence each team has at most (2/3)(2(n−1)) = (4/3)(n−1) breaks. Moreover,
there are only two home–away patterns including (4/3)(n − 1) breaks; that is,
HHHAAAHHH · · · HHHAAA and AAAHHHAAA · · · AAAHHH. Since no pairs
of teams have the same home–away pattern [2], at most two teams are possible to
have (4/3)(n− 1) breaks, and the other teams can have at most (4/3)(n− 1)− 1
breaks. Thus, the total number of breaks of every feasible tournament is less
than or equal to

2((4/3)(n − 1)) + (n − 2)((4/3)(n − 1) − 1) = (4/3)n2 − (7/3)n + 2.

Consequently, the total number of trips of every feasible tournament is greater
than or equal to

2n(n − 1) − (1/2)((4/3)n2 − (7/3)n + 2) = (4/3)n2 − (5/6)n − 1.

Finally, consider the case that n ≡ 2 mod 3. The number of home games
and that of away games for each team satisfy n − 1 ≡ 1 mod 3. Each team has
breaks neither at its first home game nor at its first away game. In addition,
no teams have three breaks in consecutive three games. Thus, each team has at
most 2(2/3)((n − 1) − 1) = (4/3)(n − 2) breaks. The total number of breaks of
every feasible tournament is less than or equal to

n((4/3)(n − 2)) = (4/3)n2 − (8/3)n.

Hence, the total number of trips of every feasible tournament is greater than or
equal to

2n(n − 1) − (1/2)((4/3)n2 − (8/3)n) = (4/3)n2 − (2/3)n.

��
4 Algorithms

In this section, for constructing good feasible tournaments we propose two algo-
rithms named the Modified Circle Method and the Minimum Break Method.
The proposed algorithms are constructive ones, whereas most of the previ-
ous upper bounds of CDTTP (and TTP) are obtained by metaheuristic al-
gorithms [1,12,14]. Some constructive algorithms for TTP were proposed in
papers [8,10]. Both of our algorithms work similarly: construct specific sin-
gle round-robin tournaments, and then modify them into double round-robin
tournaments.

Constructive Algorithms for the Constant Distance TTP 139

4.1 Modified Circle Method

In this section, we propose an algorithm named Modified Circle Method (MCM
for short). First, we describe the procedure of MCM, and then show: in Lemma 2
feasibility of the tournament obtained by MCM; in Lemma 3 the number of
breaks of the tournament; in Theorem 2 the number of trips of the tournament.

Denote the set of teams by T = {1, 2, . . . , n}. We introduce a directed graph
Ge = (T, Ae) with a vertex set T and a set of mutually disjoint directed edges

Ae def.= {(j, n + 1 − j) : �j/3� is even, 1 ≤ j ≤ n/2}
∪ {(n + 1 − j, j) : �j/3� is odd, 1 ≤ j ≤ n/2}.

Let Go = (T, Ao) be a directed graph obtained from Ge by reversing the direction
of the edge between 1 and n. For each s ∈ {1, 2, . . . , n − 1}, we define a per-
mutation πs by (πs(1), πs(2), . . . , πs(n)) = (s, s + 1, . . . , n − 1, 1, 2, . . . , s − 1, n).
For any permutation π on T , Ge(π) (resp., Go(π)) denotes the set of n/2 games
satisfying that every directed edge (u, v) ∈ Ae (resp., Ao) corresponds to a game
between π(u) and π(v) held at the home venue of π(v).

Consider the case that n ≡ 0 mod 3. Let X be a single round-robin tour-
nament satisfying that games in slot s are defined by Go(πs) if s ∈ {1, 2, 3}
mod 6, and by Ge(πs) if s ∈ {4, 5, 0} mod 6. Figure 1 shows the games of the
first four slots in X when n = 18. For each i ∈ {1, 2, . . . , n/3 − 1}, we denote a
partial schedule of X consisting of a sequence of three slots (3i − 2, 3i − 1, 3i)
by Xi. In addition, we denote the partial schedule of X consisting of two slots
(n−2, n−1) by Xn/3. Now we construct a double round-robin tournament Y by
concatenating these partial schedules as follows: Y=(X1, X1, X2, X2, X3, X3, X4,
X4, X5, . . . , Xn

3 −1, Xn
3
, Xn

3
), where Xi is the partial schedule obtained from Xi

by reversing all venues.
Consider the case that n ≡ 1 mod 3. We construct a single round-robin tour-

nament X with the same method as above. For each i ∈ {1, 2, . . . , (n−1)/3}, we
denote a partial schedule of X consisting of a sequence of three slots (3i−2, 3i−
1, 3i) by Xi. We construct a double round-robin tournament Y by concatenating
the partial schedules as follows: Y = (X1, X1, X2, X2, X3, . . . , Xn−1

3
, Xn−1

3
).

Consider the case that n ≡ 2 mod 3. Let G̃e (resp., G̃o) be a directed graph
obtained from Ge (resp., Go) by reversing the direction of the edge between n/2−
1 and n/2 + 2. We construct a single round-robin tournament X as well as the
above cases using directed graphs G̃e and G̃o. For each i ∈ {2, 3, . . . , (n − 2)/3},
we denote a partial schedule of X consisting of a sequence of three slots (3i −
3, 3i − 2, 3i − 1) by Xi. We denote the partial schedules of X consisting of two
slots (1, 2) by X1 and two slots (n − 2, n − 1) by X(n+1)/3. We construct a double
round-robin tournament Y by concatenating these partial schedules as follows:
Y = (X1, X1, X2, X2, X3, . . . , Xn+1

3
, Xn+1

3
).

For all the cases, the single round-robin tournament X has neither partial
home–away patterns HHHH, AAAA, HAH nor AHA; that is, each team has at

140 N. Fujiwara et al.

3

12

13

8

4

10 9

7

5

2
16

14

15

6

1

11

18

17 3

13 8

4

10
9

7

5

2

16

14

15 6

1

11

18

17

12

3

8

4

10
9

7

5
2

16

14

15

6

1

11

18

17

12
13

3

8

4

10

9

7

5
2

16

15

6

1

11

1817

1213
14

(a) s = 1 (b) s = 2

(c) s = 3 (d) s = 4

Fig. 1. Games of the first four slots in X, where n = 18

most three consecutive home/away games in a single round-robin tournament X .
The time complexity to construct X and Y is O(n2): i.e., MCM runs in linear
time in the output.

Lemma 2. The tournament Y is a feasible double round-robin tournament.

Proof. It is clear that Y is a double round-robin tournament. In addition, there
are no repeaters in the tournament Y ; when the game A at B appears in slot s,
the game B at A appears in slot s − 3, s + 3, s − 2 or s + 2.

We show that the length of any home stand and that of any road trip in Y
is at most three. First, consider partial schedules (Xi, Xi) and (Xi, Xi). Four
consecutive games in these partial schedules must have both of home and away
games since they include two games of the same pair of teams. Thus, the maxi-
mum length of home stand/road trip in these partial schedules is at most three.
Next, we consider partial schedules (Xi, Xi+1) and (Xi, Xi+1). Each team has at
most three consecutive home/away games in single round-robin tournaments X
and X, where X is the single round-robin tournament obtained from X by re-
versing all venues. Thus, the maximum length of home stand/road trip in these
partial schedules is also at most three. Hence, the length of any home stand and
that of any road trip in Y are at most three. ��

Constructive Algorithms for the Constant Distance TTP 141

Lemma 3. The number of breaks of the double round-robin tournament Y ob-
tained by MCM satisfies that

B(Y) =

⎧
⎨

⎩

(4/3)n2 − (8/3)n + 2 (n ≡ 0 mod 3),
(4/3)n2 − 3n + (8/3) (n ≡ 1 mod 3),
(4/3)n2 − (13/3)n + (10/3) (n ≡ 2 mod 3).

Proof. We first consider the second slot of a partial schedule Xi consisting of
three slots. If a team has a break at the second slot of Xi in X , this team has
breaks both at the second slots of Xi and at Xi in Y ; conversely, if a team has
no break at the second slot of Xi in X , this team has no breaks both at the
second slots of Xi and at Xi in Y . These properties also hold both at the third
slot of Xi consisting of three slots and at the second slot of Xi consisting of two
slots.

We then consider the first slot of a partial schedule Xi. To count the number
of breaks at the first slots of Xi and Xi in Y , we check the following: (1) a team
has a break or not at the first slot of Xi in X , and (2) a team has different type
games (i.e., home game/away game) at the first and last slots of Xi or not. The
number of positive answers for these questions is equal to the number of breaks
at the first slots of Xi and Xi in Y .

Now, we sum up the number of breaks in Y . We first consider the case that
n ≡ 0 mod 3. Teams 1, u (u ≡ 0 mod 3) and n − 1 have (4/3)n − 2 breaks each;
the other teams have (4/3)n−3 breaks each. In total, we have (4/3)n2−(8/3)n+2
breaks in the double round-robin tournament Y .

We then consider the case that n ≡ 1 mod 3. Team n has (4/3)n − (4/3)
breaks. Teams u (u ≡ 0 mod 3, u < n/2), n/2 and v (v ≡ 1 mod 3, n/2 < v < n)
have (4/3)n − (7/3) breaks each. The other teams have (4/3)n − (10/3) breaks
each. Thus, the total number of breaks in Y is (4/3)n2 − 3n + (8/3).

We finally consider the case that n ≡ 2 mod 3. Team n has (4/3)n − (8/3)
breaks. Teams 1, u (u ≡ 0 mod 3, u < n/2−2), n/2−2, n/2, n/2+2 and v (v ≡ 2
mod 3, n/2 + 2 < v < n) have (4/3)n − (11/3) breaks each. The other teams
have (4/3)n − (14/3) breaks each. Hence, the total number of breaks in Y is
(4/3)n2 − (13/3)n + (10/3). ��
Let the total number of trips of Y be D(Y). Using Theorem 1 and Lemmas 1, 2
and 3, we have the following theorem for the Modified Circle Method.

Theorem 2. The Modified Circle Method produces the feasible double round-
robin tournament Y such that

D(Y) =

⎧
⎨

⎩

(4/3)n2 − (2/3)n − 1 = LB(n) + (1/3)n − 1 (n ≡ 0 mod 3),
(4/3)n2 − (1/2)n − 4/3 = LB(n) + (1/3)n − 1/3 (n ≡ 1 mod 3),
(4/3)n2 + (1/6)n − 5/3 = LB(n) + (5/6)n − 5/3 (n ≡ 2 mod 3).

4.2 Minimum Break Method

In this section, we propose an algorithm named Minimum Break Method (MBM
for short). Before the explanation of MBM, see the following lemmas as for the
number of breaks in a single round-robin tournament.

142 N. Fujiwara et al.

Lemma 4 (de Werra [2]). For any single round-robin tournament of n teams,
the number of breaks is at least n − 2. There exists a single round-robin tourna-
ment that has n − 2 breaks for any even n.

Lemma 5 (Miyashiro and Matsui [6]). For any single round-robin tourna-
ment of n teams, the number of breaks is at most n2 − 3n + 2. There exists a
single round-robin tournament that has n2 − 3n + 2 breaks for any even n.

As is the case with MCM proposed in Section 4.1, we first construct specific
single round-robin tournaments, and modify them into double round-robin tour-
naments. Let X be a single round-robin tournament satisfying the following
conditions:

(C1) the number of breaks B(X) is equal to n − 2;
(C2) if n ∈ {0, 1} mod 3, no teams have breaks at each slot s ∈ {1, 4} mod 6;

if n ≡ 2 mod 3, no teams have breaks at each slot s ∈ {0, 3} mod 6.

As denoted in Lemma 4, any single round-robin tournament must have at
least n − 2 breaks; hence, X is a tournament with the minimum number of
breaks. Here, we have two open problems: (1) such single round-robin tourna-
ment X exists or not, and (2) if X exists, an efficient algorithm to construct X
exists or not. We conjecture that for every even n there is a single round-robin
tournament X that satisfies Conditions (C1) and (C2).

In order to obtain a single round-robin tournament satisfying Conditions (C1)
and (C2), we adopt the following strategy. We first replace Condition (C2) by a
stronger condition:

(C2′) if n ∈ {0, 1} mod 3, then no teams have breaks at each slot s ∈ {1, 2, 4}
mod 6, and exactly two teams have breaks at each slot s ∈ {0, 3, 5} mod 6;
if n ≡ 2 mod 3, then no teams have breaks at each slot s ∈ {0, 1, 3} mod 6,
and exactly two teams have breaks at each slot s ∈ {2, 4, 5} mod 6.

If a tournament satisfies Conditions (C1) and (C2′), it also satisfies Conditions
(C1) and (C2). (Here we note that (C1) is implied by (C2′) and thus (C1) may
be deleted.) For any even number n ≤ 50, we have obtained single round-robin
tournaments satisfying Conditions (C1) and (C2′) by solving integer program-
ming problems using ILOG CPLEX 9.0 [4]. (We also conjecture that for any
even n there exists single round-robin tournaments satisfying Conditions (C2′).
This conjecture corresponds to the conjecture proposed in [5].)

Now we construct another single round-robin tournament, say X ′, from X
by reversing venues for each even slot. The tournament X ′ satisfies that exactly
two teams have n − 2 breaks and other teams have n − 3 breaks; hence, as de-
noted in Lemma 5, X ′ is a single round-robin tournament with the maximum
number of breaks. Moreover, every team in X ′ has a break at each slot s such
that: if n ∈ {0, 1} mod 3, s ≡ 1 mod 3 except for s = 1; if n ≡ 2 mod 3, s ≡
0 mod 3.

We then explain how to construct a double round-robin tournament using X ′.

Constructive Algorithms for the Constant Distance TTP 143

If n ≡ 0 mod 3, we denote a partial schedule of X ′ consisting of a sequence of
three slots (3i− 2, 3i− 1, 3i) by X ′

i for each i ∈ {1, 2, . . . , (n/3)− 1}, and denote
the partial schedule of X ′ consisting of two slots (n − 2, n − 1) by X ′

n/3.
If n ≡ 1 mod 3, for each i ∈ {1, 2, . . . , (n−1)/3}, we denote a partial schedule

of X ′ consisting of a sequence of three slots (3i − 2, 3i − 1, 3i) by X ′
i.

If n ≡ 2 mod 3, we denote a partial schedule of X ′ consisting of a sequence
of three slots (3i − 3, 3i − 2, 3i − 1) by X ′

i for each i ∈ {2, 3, . . . , (n − 2)/3}, and
denote the partial schedules of X ′ consisting of two slots (1, 2) by X ′

1 and two
slots (n − 2, n − 1) by X ′

(n+1)/3.
Now we construct a double round-robin tournament Y ′ by concatenating these

partial schedules as follows: Y ′ = (X ′
1, X

′
1, X

′
2, X

′
2, X

′
3, X

′
3, . . .), where X ′

i is a
partial schedule obtained from X ′

i by reversing all venues.

Lemma 6. The tournament Y ′ is a feasible double round-robin tournament.

Proof. It is clear that Y ′ is a double round-robin tournament. No repeaters
appear in the tournament Y ′; when the game A at B appears in slot s, the game
B at A appears in slot s − 3, s + 3, s − 2 or s + 2.

We then show that the length of any home stand and that of any road trip
is at most three. Consider a partial schedule (X ′

i, X
′
i) of six or four slots: four

consecutive games in this partial schedule must have both of home and away
games since they include two games of the same pair of teams. Next, consider a
partial schedule of six or five slots (X ′

i, X
′
i+1): no teams have breaks at the first

slot of X ′
i+1 in the tournament Y ′, thus four or more consecutive home/away

games do not appear. Consequently, the length of any home stand and that of
any road trip is at most three. ��

Lemma 7. The number of breaks of the double round-robin tournament Y ′ is

B(Y ′) =

⎧
⎨

⎩

(4/3)n2 − 3n + 2 (n ≡ 0 mod 3),
(4/3)n2 − (7/3)n + 2 (n ≡ 1 mod 3),
(4/3)n2 − (11/3)n + 2 (n ≡ 2 mod 3).

Proof. To prove this lemma, we use the following four properties on X ′
i:

1. all teams have breaks at the first slot of each X ′
i in X ′ except for X ′

1;
2. no teams have breaks at the first slot of each X ′

i in Y ′;
3. each team has one or two breaks in the second and third slots of each X ′

i

consisting of three slots;
4. each team has zero or one break at the second slot of each X ′

i consisting of
two slots.

Consider a partial schedule X ′
i of three slots. If a team has two breaks at the

second and third slots of X ′
i (i.e., HHH or AAA), this team has four breaks in a

partial schedule (X ′
i, X

′
i) in Y ′ (i.e., HHHAAA or AAAHHH). If a team has just

one break in the second and third slots of X ′
i (i.e., HHA, HAA, AAH or AHH),

144 N. Fujiwara et al.

this team has three breaks in a partial schedule (X ′
i, X

′
i) in Y ′ (i.e., HHAAAH,

HAAAHH, AAHHHA or AHHHAA).
Consider a partial schedule X ′

i of two slots. If a team has a break at the second
slot of X ′

i (i.e., HH or AA), this team has two breaks in a partial schedule (X ′
i, X

′
i)

in Y ′ (i.e., HHAA or AAHH). If a team has no break at the second slot of X ′
i

(i.e., HA or AH), this team has one break in a partial schedule (X ′
i, X

′
i) in Y ′

(i.e., HAAH or AHHA).
Based on the above observation, we have the following relationship:

(number of breaks in Y ′) = (number of partial schedules of three slots in X ′)
+ (number of breaks in X ′) + 1.

Using this formula, we obtain B(Y ′), i.e., the total number of breaks of Y ′. ��

From Theorem 1 and Lemmas 1, 6 and 7, we have the following theorem for the
Minimum Break Method.

Theorem 3. If there is a single round-robin tournament satisfying Conditions
(C1) and (C2), the Minimum Break Method produces a feasible double round-
robin tournament Y ′ such that

D(Y ′) =

⎧
⎨

⎩

(4/3)n2 − (1/2)n − 1 = LB(n) + (1/2)n − 1 (n ≡ 0 mod 3),
(4/3)n2 − (5/6)n − 1 = LB(n) (n ≡ 1 mod 3),
(4/3)n2 − (1/6)n − 1 = LB(n) + (1/2)n − 1 (n ≡ 2 mod 3).

Note that, as mentioned before, we found single round-robin tournaments sat-
isfying Conditions (C1) and (C2) for n ≤ 50. Thus, using MBM with those
single round-robin tournaments, we obtained feasible double round-robin tour-
naments Y ′ up to 50 teams.

5 Results

In this section, we summarize our results on CDTTP. For instances of n ≡ 0
mod 3, MCM gives better solutions compared to MBM. In contrast, for instances
of n ∈ {1, 2} mod 3, MBM performs better though it needs single round-robin
tournaments satisfying Conditions (C1) and (C2). Moreover, when n ≡ 1 mod 3,
MBM yields a solution that attains the proposed lower bound LB(n). We ob-
tained single round-robin tournaments satisfying Conditions (C1) and (C2) up to
50 teams. Table 1 shows the results for 16 ≤ n ≤ 50: for n = 16, 22, 28, 34, 40, 46,
MBM gave optimal solutions; for n = 20, our lower bound showed that the best
solution previously known is optimal.

Note that MCM works for every even n, and its time complexity is O(n2).
Hence, from Theorems 1 and 2, MCM is a polynomial time algorithm that gen-
erates asymptotic optimal solutions for CDTTP.

Constructive Algorithms for the Constant Distance TTP 145

Table 1. Results for 16 ≤ n ≤ 50

n LB(n) MCM MBM Old

16 327 332 *327 327†

18 414 419 422 417
20 520 535 529 520
22 626 633 *626 628
24 744 751 755 750
26 884 904 896 —
28 1021 1030 *1021 —
30 1170 1179 1184 —
32 1344 1369 1359 —
34 1512 1523 *1512 —
36 1692 1703 1709 —
38 1900 1930 1918 —
40 2099 2112 *2099 —
42 2310 2323 2330 —
44 2552 2587 2573 —
46 2782 2797 *2782 —
48 3024 3039 3047 —
50 3300 3340 3324 —

Old: the known best solutions in [12] as of August 2006
* our solutions that were shown to be optimal
† already proved to be optimal in [7]

6 Conclusions

In this paper, we considered the constant distance traveling tournament prob-
lem (CDTTP), a simple variant of the traveling tournament problem (TTP).
We proposed a lower bound of the optimal value of CDTTP. Using the lower
bound, we showed that some existing and double round-robin tournaments we
generated are optimal. We also proposed two algorithms to construct feasible
tournaments. Our algorithms construct single round-robin tournaments, divide
them into partial schedules with two or three slots, and then concatenate them to
make double round-robin tournaments. The Modified Circle Method is a simple
heuristic algorithm that runs in linear time in the size of output, and this algo-
rithm produces asymptotic optimal solutions for CDTTP. The Minimum Break
Method produced feasible solutions up to n ≤ 50. In addition, for all instances of
n ≡ 1 mod 3 teams, the Minimum Break Method generates an optimal solution
if we can obtain single round-robin tournaments satisfying some conditions.

Our future work is to improve algorithms to construct feasible tournaments
for CDTTP and to tackle other variants of TTP.

Acknowledgement. This work was partially supported by Grants-in-Aid for Sci-
entific Research, by the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

146 N. Fujiwara et al.

References

1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated
annealing approach to the traveling tournament problem. Journal of Scheduling 9,
177–193 (2006)

2. de Werra, D.: Geography, games and graphs. Discrete Applied Mathematics 2,
327–337 (1980)

3. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem: descrip-
tion and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–585.
Springer, Heidelberg (2001)

4. ILOG: ILOG CPLEX 9.0 (2003)
5. Miyashiro, R., Iwasaki, H., Matsui, T.: Characterizing feasible pattern sets with a

minimum number of breaks. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT
2002. LNCS, vol. 2740, pp. 78–99. Springer, Heidelberg (2003)

6. Miyashiro, R., Matsui, T.: A polynomial-time algorithm to find an equitable home–
away assignment. Operations Research Letters 33, 235–241 (2005)

7. Rasmussen, R.V., Trick, M.A.: A Benders approach for the constrained minimum
break problem. European Journal of Operational Research 177, 198–213 (2007)

8. Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization
problem. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp.
167–181. Springer, Heidelberg (2006)

9. Rasmussen, R.V., Trick, M.A.: Round robin scheduling – a survey. Working Paper
2006/2, Department of Operations Research, University of Aarhus (2006)

10. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament prob-
lem. European Journal of Operational Research 179, 775–787 (2007)

11. Russell, R.A., Leung, J.M.Y.: Devising a cost effective schedule for a baseball
league. Operations Research 42, 614–625 (1994)

12. Trick, M.: Challenge traveling tournament problem (2006),
http://mat.gsia.cmu.edu/TOURN/

13. Urrutia, S., Ribeiro, C.C.: Maximizing breaks and bounding solutions to the mir-
rored traveling tournament problem. Discrete Applied Mathematics 154, 1932–1938
(2006)

14. Van Hentenryck, P., Vergados, Y.: Traveling tournament scheduling: a systematic
evaluation of simulated annealing. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR
2006. LNCS, vol. 3990, pp. 228–243. Springer, Heidelberg (2006)

http://mat.gsia.cmu.edu/TOURN/

Scheduling the Brazilian Soccer Tournament

with Fairness and Broadcast Objectives

Celso C. Ribeiro1 and Sebastián Urrutia2

1 Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil

celso@inf.puc-rio.br
2 Department of Computer Science, Universidade Federal de Minas Gerais,

Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil
surrutia@dcc.ufmg.br

Abstract. The Brazilian soccer tournament is organized every year by
the Brazilian Soccer Confederation. Its major sponsor is TV Globo, the
largest media group and television network in Brazil, which imposes con-
straints on the games to be broadcast. Scheduling the games of this
tournament is a very constrained problem, with two objectives: breaks
minimization (fairness) and the maximization of the revenues from TV
broadcasting. We propose an integer programming decomposition strat-
egy to solve this problem to optimality. Numerical results obtained for
the 2005 and 2006 editions of the tournament are reported and compared.

1 Introduction

Soccer is the most widely practiced sport in Brazil. The yearly Brazilian soccer
tournament is the most important sport event in the country. It is organized by
the Brazilian Soccer Confederation (CBF). Its major sponsor is TV Globo, the
largest media group and television network in Brazil, which imposes constraints
on the games to be broadcast.

The most attractive games are those involving a subset of elite teams with
more fans and, consequently, with larger broadcast shares. Games involving
teams from São Paulo and Rio de Janeiro (the two largest cities in Brazil) are
of special interest to TV Globo, due to larger revenues from advertising.

The competition lasts seven months and is structured as a compact mirrored
double round robin (MDRR) tournament [3]. It is played by n teams, where n
is an even number (n = 24 in 2004, n = 22 in 2005, and n = 20 in 2006). There
are 2n − 2 rounds and each team plays exactly once in each round. There are at
most two rounds of games per week. Each team faces every other twice: once at
home and the other away. If team a plays against team b at home (resp. away)
in round k, with k < n, then team a plays against team b away (resp. at home)
in round k + n − 1. See [3] for a recent survey on the sport scheduling literature.

The revenues and the attractiveness of the tournament strongly depend on
the schedule of the games. The organizers and the sponsors search for a sched-
ule optimizing two different objectives. CBF attempts to maximize fairness, by

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 147–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

148 C.C. Ribeiro and S. Urrutia

minimizing the number of breaks during the tournament (breaks minimization
objective). A break occurs whenever a team plays two consecutive home games
or two consecutive away games, see e.g. [8]. TV Globo aims to maximize its
revenues, by maximizing the number of relevant games it is able to broadcast
(broadcast objective). The schedule must also satisfy a number of hard con-
straints.

We propose an integer programming solution approach for solving this schedul-
ing problem, based on the generation of feasible home–awaypatterns. The detailed
problem formulation is presented in Section 2. The solution strategy is described
in Section 3. Numerical results obtained for real-life instances corresponding to
the 2005 and 2006 editions of the tournament are reported and compared in Sec-
tion 4. Concluding remarks are drawn in the last section.

2 Problem Statement

We consider both the 2005 and 2006 editions of the competition, with respec-
tively n = 22 and n = 20 participating teams. Every team has a home city and
some cities host more than one team. Some teams are considered and handled as
elite teams, due to their number of fans, to the records of their previous partici-
pations in the tournament, and to the value of their players. There are weekend
rounds and mid-week rounds.

São Paulo and Rio de Janeiro are the two largest cities in Brazil (with more
fans and, consequently, generating larger revenues from advertising) and both of
them have four elite teams. Games cannot be broadcast to the same city where
they take place and only one game per round can be broadcast to each city.
Consequently, TV Globo wants to broadcast to São Paulo (resp. Rio de Janeiro)
games in which an elite team from São Paulo (resp. Rio de Janeiro) plays away
against another elite team from another city. Such games will be referred to as
TV games.

Belém is a city very far away from São Paulo and Rio de Janeiro. TV Globo is
not willing to broadcast games taking place at Belém, due to the high logistical
costs. As well as following the structure of a MDRR tournament, the schedule
should also satisfy other hard constraints:
1. Every team playing at home (resp. away) in the first round plays away (resp.

at home) in the last round.
2. Every team plays once at home and once away in the two first rounds and

in the two last rounds.
3. After any number of rounds during the first half of the tournament, the

difference between the number of home games and away games played by
any team is either zero or one (i.e., the number of home and away games is
always balanced in the first n − 1 rounds).

4. Some pairs of teams with the same home city have complementary patterns
(i.e., whenever one of them plays at home, the other plays away).

5. Flamengo and Fluminense (two elite teams from Rio de Janeiro that share
the same stadium for their home games) have complementary patterns in
the last four rounds.

Scheduling the Brazilian Soccer Tournament 149

6. Games between teams from the same city are not to be played in mid-week
rounds or in the last six rounds (since they are among the most attractive
games).

7. There is at least one elite team from Rio de Janeiro playing outside Rio
de Janeiro and one elite team from São Paulo playing outside São Paulo in
every round.

8. If in some round there is only one elite team from Rio de Janeiro (resp.
São Paulo) playing outside Rio de Janeiro (resp. São Paulo), then this game
should not be held in Belém.

The two objectives that must be optimized are the minimization of the number
of breaks and the maximization of the number of rounds in which there is at least
one TV game to be broadcast to São Paulo plus the number of rounds in which
there is at least one TV game to be broadcast to Rio de Janeiro. Therefore, while
the broadcast objective regards the number of relevant games that TV Globo is
able to broadcast, the breaks minimization objective establishes the home–away
equilibrium in the sequence of games played by each team.

The requirements described above in terms of constraints and objectives re-
sulted from several meetings and discussions with the organizers of the tourna-
ment and, in particular, with officials of TV Globo.

3 Solution Strategy

We propose the following approach to tackle this bi-objective problem. First, we
add to the problem an extra constraint stating that the number of breaks is fixed
at its minimum. Then, the broadcast objective is maximized with this additional
constraint. If the maximum objective value of this restricted problem is equal
to the unconstrained maximum, then this solution is what in multi-criteria opti-
mization [4] is called an ideal point (all objectives are at their individual optimal
values simultaneously). If the maximum solution value of the restricted problem
is smaller than the unconstrained maximum, then the solution of the first is not
an ideal point but still is a non-dominated solution (no other solution is better
with respect to one of the objectives without being worse with respect to the
other). Figure 1 illustrates this approach.

We assume that there exists at least one feasible solution with a minimum
number of breaks: i.e., we assume that the restricted search space illustrated in
Figure 1 is not empty. This fact was experimentally verified for all test instances
and their variations.

3.1 Bounds

Given a round robin schedule with r rounds, a home–away pattern (HAP) is a
vector of r positions filled with ‘A’ and ‘H’. An ‘A’ (resp. ‘H’) in position s of a
HAP indicates that every team associated with this HAP plays away (resp. at
home) at round s. Since each team has to play against every other team, each

150 C.C. Ribeiro and S. Urrutia

Fig. 1. Solution space and restricted solution space

team must be associated with a different HAP. Figure 2 shows a HAP set for
six teams in a single round robin schedule.

We first show that constraints (1) and the mirrored structure impose that
4(n − 2) is a lower bound to the number of breaks.

Since the tournament is mirrored, if the number of breaks in the first half of a
HAP is even, then the total number of breaks is also even and equal to twice the
number of breaks in the first half. On the other hand, if the number of breaks
in the first half is odd, then the total number of breaks is also odd and equal to
twice the number of breaks in the first half plus one (there is an extra break in
the first round of the second half).

There are only two HAPs without breaks for single round robin schedules,
one starting with a home game and the other starting with an away game.
Therefore, the other n − 2 teams must have at least one break in the first half
of the schedule, yielding at least three breaks in the whole schedule. We notice
that in double round robin schedules a team with an odd number of breaks
plays its last game in the same playing condition of its first game (home–home
or away–away). Therefore, to satisfy constraints (1), we shall consider schedules
in which every team has an even number of breaks. In consequence, the n − 2
teams having three breaks must have an extra break and the number of breaks
cannot be smaller than 4(n − 2).

The broadcast objective can also be bounded. Since at most one TV game
can be broadcast to São Paulo and another to Rio de Janeiro in every round,
the broadcast objective cannot be greater than twice the number of rounds.
Furthermore, the broadcast objective is also bounded by the number of exist-
ing TV games. The later is equal to the number of elite teams from São Paulo
multiplied by the number of elite teams outside São Paulo, plus the number of
elite teams from Rio the Janeiro multiplied by the number of elite teams outside
Rio de Janeiro. The second bound is stronger (i.e., smaller) for the instances
solved in this work. As an example, the first bound is equal to 84 for n = 22,

Scheduling the Brazilian Soccer Tournament 151

Team 1: A H A H A
Team 2: H A H A H
Team 3: A H H H A
Team 4: H A A H H
Team 5: H A A A H
Team 6: A H H A A

Fig. 2. HAP set for a tournament with six teams

while the second is equal to 56 (four elite teams from Rio de Janeiro, four from
São Paulo, and three from other cities).

3.2 Solution Algorithm

A straightforward integer programming formulation of the problem could not be
solved by a commercial solver such as CPLEX after an entire day of computation.

Decomposition methods have been previously proposed for problems where
the distances between the venues were not relevant. Nemhauser and Trick [6]
proposed a three-phase scheme to exactly solve the problem of scheduling a
basketball league. Feasible home–away patterns are created in the first phase. In
the second phase, a different feasible HAP is assigned to each team (two different
teams must have different HAPs in every feasible round robin schedule). Finally,
in the last phase, the schedule is created respecting the previously determined
HAP assignments.

Some recent papers dealt with scheduling problems in soccer tournaments.
Della Croce and Oliveri [2] tackled the Italian soccer league. Bartsch et al. [1]
worked on the schedule of the soccer leagues of Austria and Germany. Goossens
and Spieksma [5] considered the scheduling of the Belgian soccer league. Noronha
et al. [7] proposed a branch-and-cut algorithm to schedule the Chilean soccer
tournament. The algorithms proposed in [1,2] follow a decomposition scheme
similar to that of [6].

We propose an algorithm following an approach similar to the above described
multi-phase decomposition scheme. Figure 3 illustrates this approach, whose four
phases are described in the next sections.

3.3 Phase 1: HAP Generation

HAPs of mirrored schedules are divided into two symmetric halves. The second
half is completely determined by the first. Therefore, we may determine which
properties the first half of a HAP must obey so as that the entire HAP be
feasible. As noticed in Section 3.1, if the number of breaks in the first half of a
HAP is even, then the total number of breaks is also even and equal to twice the
number of breaks in the first half. On the other hand, if the number of breaks
in the first half is odd, then the total number of breaks is also odd and equal to
twice the number of breaks in the first half plus one.

152 C.C. Ribeiro and S. Urrutia

Fig. 3. Solution approach

Scheduling the Brazilian Soccer Tournament 153

HAPs satisfying constraints (1) are those with an even number of breaks.
Therefore, we consider only HAPs with an even number of breaks in the first
half. Since we are interested in schedules with a minimum number of breaks,
we only consider HAPs with either zero (there are only two such HAPs) or two
breaks in the first half.

HAPs satisfying constraints (2) are those without breaks in the second and
last rounds. Since the schedule is mirrored, they must have no breaks in the last
round of the first half (round n − 1).

The difference between the number of home and away games in a HAP without
breaks is equal to one after odd rounds and equal to zero after even rounds. If a
HAP has a break in an even round, this difference increases to two. Therefore,
HAPs satisfying constraints (3) are those without breaks in even rounds of the
first half. Even (resp. odd) rounds of the second half are globally odd (resp.
even) in mirrored schedules. In consequence, teams with breaks have at least
one break in an even round and the difference between the number of home
and away games will be necessarily greater than one after some round. For this
reason, constraints (3) are limited to the first half of the schedule. If they were
imposed to the whole schedule, the problem would be infeasible.

Consequently, feasible HAPs for the first half are those without breaks or with
exactly two breaks in odd rounds (but not in the last, since constraints (2) forbid
breaks in the last round of the second half). There are n/2 − 2 rounds (all odd
rounds but the first and the last) in which teams may have their two breaks,
yielding a total of

(
n/2−2

2

)
= (n/2−2) ·(n/2−3)/2 possible break configurations.

Since there are two HAPs for every possible break configuration (one starting by
a home game and the other by an away game), the number of feasible HAPs with
two breaks is equal to (n/2 − 2) · (n/2 − 3). Considering the two HAPs without
breaks, the total number of feasible HAPs is equal to (n/2 − 2) · (n/2 − 3) + 2.

The number of feasible HAPs is equal to 58 for n = 20 and to 74 for n = 22.
This small number of feasible home–away patterns with at most two breaks each
allows their complete enumeration in this phase.

3.4 Phase 2: Assignment of Partial HAPs to Elite Teams

In this phase, we use an explicit exhaustive enumeration to assign a HAP to each
elite team satisfying constraints (4) and (5). The use of the two HAPs with no
breaks is enforced, to keep the number of breaks at its minimum value 4(n − 2).

Constraint (4) is satisfied by assigning complementary HAPs to every pair of
teams to which this constraint is imposed. Since half of the teams play at home
and half away in every round of a feasible HAP assignment, in this phase and
the next we first enumerate HAP assignments in which if one pattern is used,
the complementary pattern is used as well. In this way, we improve the chance
of a HAP assignment to be feasible.

Since Flamengo and Fluminense have their own complementary teams, they
cannot have complementary patterns themselves. Therefore, to satisfy constraint
(5) we assign patterns in such a way that (i) if Flamengo starts at home
(resp. away), then Fluminense starts away (resp. at home), and (ii) either both

154 C.C. Ribeiro and S. Urrutia

or none of them have a break in round n − 3. This ensures that Flamengo and
Fluminense will have complementary patterns in the last four rounds, therefore
satisfying constraint (5).

After assigning a HAP to each elite team, we build and solve a linear program-
ming model considering the partial HAP assignments already made (recall that
they satisfy constraints (1) to (5)), maximizing the broadcast objective subject
to constraints (6) to (8). This linear programming model enforces that each elite
team will play either at home or away in each round, depending on the HAP
assigned to it.

The optimal value of the above linear program is an upper bound to the
broadcast objective, associated to the current partial HAP assignment. This
current partial assignment can be discarded if the bound it provides is smaller
than the value of the broadcast objective for the current best known feasible
solution. In this case, a new partial HAP assignment is enumerated and this
phase is repeated for the new assignment. Otherwise, the algorithm proceeds to
the third phase.

If all partial HAP assignments have been enumerated, the algorithm stops
and returns the best feasible solution it obtained. The latter is non-dominated,
but not an ideal solution.

3.5 Phase 3: Assignment of HAPs to Non-elite Teams

In this phase, once again we use an explicit exhaustive enumeration to assign
one of the still available HAPs to each non-elite team, satisfying constraint (4)
and completing the partial assignment constructed in the previous phase. Once
the HAP assignment is complete, the algorithm proceeds to the last phase.

Whenever all possible alternatives to complete the partial assignment of HAPs
to elite teams have been tested, the algorithm goes back to the second phase to
enumerate a new partial assignment.

3.6 Phase 4: Schedule Creation

At this point, there is a HAP assigned to each team. In this phase, we build and
solve an integer programming problem considering the current HAP assignments,
maximizing the broadcast objective subject to constraints (6) to (8). This integer
program defines the games to be played in each round, according to the home–
away patterns assigned to each team.

In this straightforward problem formulation, we use binary variables xijk that
are equal to one if and only if team i plays with team j at home in round k.
Since at this phase we already know which teams play at home and which play
away in each round, half of the variables are trivially equal to zero and can
be eliminated. We also know that, due to the home–away pattern assigned to
each team, the number of breaks is minimum and equal to 4(n − 2). Therefore,
the number of variables is relatively small, since there is no need to use further
variables to model the breaks. In consequence, this model can be quickly solved
by a commercial solver.

Scheduling the Brazilian Soccer Tournament 155

Table 1. 2005 edition of the Brazilian tournament (22 teams)

Official schedule HAP-ILP schedule

Constraints (1) yes yes
Constraints (2) yes yes
Constraints (3) no yes
Constraints (4) yes yes
Constraint (5) no yes
Constraints (6) no yes
Constraints (7) yes yes
Constraints (8) yes yes
Breaks 156 80 (optimal)
Broadcast 43 56 (optimal)

We first assume that the above integer program is feasible. If its optimal
value is equal to the broadcast bound, then the algorithm terminates with an
ideal solution. Otherwise, if the optimal value of the integer program is equal to
the linear programming bound obtained in the second phase, then the algorithm
returns to the second phase to enumerate a new partial HAP assignment, because
no better solution can be obtained with the current partial assignment.

If the integer program is infeasible or if its optimal value is smaller than the
linear programming bound, then the algorithm returns to the third phase to
enumerate another complete HAP assignment.

In any case, if the integer program is feasible and its optimal value is smaller
than that of the current best known feasible solution, then the latter is updated.

4 Application to Real-Life Instances

The algorithm was applied to two instances corresponding to the 2005 and 2006
editions of the Brazilian tournament, with 22 and 20 teams respectively. There
were 11 elite teams in each instance: four from São Paulo, four from Rio de
Janeiro, and three from other cities.

CPLEX 9.0 was used as the linear and integer programming solver in the
computational experiments. The algorithm was coded in C++, compiled with
gcc and executed on a standard Pentium IV processor with 256 Mbytes of RAM
memory.

The approach proposed in this work was able to compute optimal schedules
providing ideal solutions (i.e., simultaneously optimizing both the broadcast and
the breaks objectives) for the 2005 and 2006 editions of the tournament, always
in less than ten minutes of execution time.

Tables 1 and 2 compare the schedules produced by the new algorithm (HAP-
ILP) with those elaborated by the tournament organizers using ad hoc pro-
cedures based on their own expertise, acquired after many years creating the
tournament schedule. The schedules are compared in terms of the satisfaction
of the problem constraints and of the values of the two objective functions.

156 C.C. Ribeiro and S. Urrutia

Table 2. 2006 edition of the Brazilian tournament (20 teams)

Official schedule HAP-ILP schedule

Constraints (1) yes yes
Constraints (2) yes yes
Constraints (3) no yes
Constraints (4) yes yes
Constraint (5) no yes
Constraints (6) no yes
Constraints (7) yes yes
Constraints (8) yes yes
Breaks 172 72 (optimal)
Broadcast 47 56 (optimal)

The solutions produced by our four-phase approach are clearly better than
those produced by the current scheduler. Three types of constraints were not
fully satisfied in the official schedules of the 2005 and 2006 editions of the tour-
nament, while in both cases our algorithm provided optimal solutions satisfying
all constraints. Regarding the 2005 edition, the ad hoc rules lead to schedules
with 152 breaks and 43 TV games to be broadcast. The four-phase integer pro-
gramming approach proposed in this work found a schedule with only 80 breaks
(which is optimal), in which all 56 TV games could be broadcast (which is once
again optimal). A similar comparison can be done for the 2006 edition of the
tournament.

5 Conclusions

In this paper, we proposed a four-phase integer programming approach for
scheduling the yearly Brazilian soccer tournament. This is a bi-criteria highly
constrained mirrored round robin tournament, combining a fairness objective
established by the organizers with an economical objective imposed by the TV
sponsors.

The proposed algorithm was able to obtain optimal solutions maximizing
both objectives and satisfying all constraints in a few minutes of computation
time on a standard desktop computer. The schedules provided by the four-phase
approach are clearly better than those currently used by the tournament orga-
nizers, which are obtained by simple ad hoc rules that are not even able to find
feasible solutions satisfying all constraints.

A software system implementing a simple decision support system based on
the proposed algorithm is able to generate a collection of same cost solutions to
be evaluated and compared by the user. The use of this decision support system
and the schedules created with the approach proposed in this work are currently
under consideration by the tournament organizers.

Scheduling the Brazilian Soccer Tournament 157

References

1. Bartsch, T., Drexl, A., Kröger, S.: Scheduling the professional soccer leagues of
Austria and Germany. Computers and Operations Research 33, 1907–1937 (2006)

2. Della Croce, F., Oliveri, D.: Scheduling the Italian football league: An ILP-based
approach. Computers and Operations Research 33, 1963–1974 (2006)

3. Easton, K., Nemhauser, G.L., Trick, M.: Sports scheduling. In: Leung, J.T. (ed.)
Handbook of Scheduling: Algorithms, Models and Performance Analysis, pp. 52.1–
52.19. CRC Press, Boca Raton, FL (2004)

4. Ehrgott, M.: Multiple Criteria Optimization: Classification and Methodology.
Shaker, Aachen (1997)

5. Goossens, D., Spieksma, F.: Scheduling the Belgian soccer league. In: Proceed-
ings of the 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, pp. 420–422 (August 2006)

6. Nemhauser, G.L., Trick, M.A.: Scheduling a major college basketball conference.
Operations Research 46, 1–8 (1998)

7. Noronha, T.F., Ribeiro, C.C., Duran, G., Souyris, S., Weintraub, A.: A branch-
and-cut algorithm for scheduling the highly constrained Chilean soccer tournament.
In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 174–186.
Springer, Heidelberg (2007)

8. Urrutia, S., Ribeiro, C.C.: Maximizing breaks and bounding solutions to the mir-
rored traveling tournament problem. Discrete Applied Mathematics 154, 1932–1938
(2006)

Referee Assignment in Sports Leagues

Alexandre R. Duarte1, Celso C. Ribeiro2,
Sebastián Urrutia3, and Edward H. Haeusler1

1 Department of Computer Science, Catholic University of Rio de Janeiro,
Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil

{aduarte,hermann}@inf.puc-rio.br
2 Department of Computer Science, Universidade Federal Fluminense,

Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil
celso@inf.puc-rio.br

3 Department of Computer Science, Universidade Federal de Minas Gerais,
Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil

surrutia@dcc.ufmg.br

Abstract. Optimization in sports is a field of increasing interest. Com-
binatorial optimization techniques have been applied, for example, to
game scheduling and playoff elimination. A common problem usually
found in sports management is the assignment of referees to games al-
ready scheduled. There are a number of rules and objectives that should
be taken into account when referees are assigned to games. We address
a simplified version of a referee assignment problem common to many
amateur leagues of sports such as soccer, baseball, and basketball. The
problem is formulated by integer programming and its decision version
is proved to be NP-complete. To tackle real-life large instances of the ref-
eree assignment problem, we propose a three-phase heuristic approach
based on a constructive procedure, a repair heuristic to make solutions
feasible, and a local search heuristic to improve feasible solutions. Nu-
merical results on realistic instances are presented and discussed.

1 Introduction

Optimization in sports is a field of increasing interest. Some applications have
been reviewed by Ribeiro and Urrutia [16]. Combinatorial optimization tech-
niques have been applied, for example, to the traveling tournament problem
[1,6,15,18], to playoff elimination [17], and to the scheduling of a college basket-
ball conference [14]. Easton et al. [7] reviewed scheduling problems in sports.

A common problem usually found in amateur sports management is the as-
signment of referees to games already scheduled. Sport games are regulated by
rules that depend on the sport and tournament. The officiating crew is a group
of referees that is responsible to ensure that all rules are respected in a game.
The number of referees compounding a crew may vary, depending on the sport,
league, and tournament: soccer games usually require three referees, while bas-
ketball games require two. Each member of an officiating crew is said to occupy
a refereeing position in a game. For example, in a regular soccer game, there

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 158–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Referee Assignment in Sports Leagues 159

are one head umpire and two side judges, totaling three refereeing positions to
be filled with referees. In some applications, managers make pre-assignments to
satisfy some specific requirements. The referee assignment problem consists in
assigning referees to the empty refereeing positions (not yet assigned) for all
games of a league or tournament.

There are a number of rules and objectives that should be taken into account
when referees are assigned to games. Games in higher divisions may require
higher-skilled referees. Since referees may officiate several games during the day,
travel feasibility and travel times between the facilities where the games take
place have to be considered. Additionally, and especially in some amateur chil-
dren leagues, some of the referees are players or their relatives. In this case, a
natural constraint is that a referee cannot officiate a game in which he/she or a
relative is scheduled to play.

Real-life versions of this problem appear in regional amateur leagues in the
United States. Amateur leagues of several sports, such as baseball, basketball
and soccer, have hundreds of games every weekend in different divisions. In a
single league in California there might be up to 500 soccer games in a weekend,
to be refereed by hundreds of certified referees. In the MOSA (Monmouth &
Ocean Counties Soccer Association) league, New Jersey, boys and girls of ages 8
to 18 make up six divisions per age and gender group with six teams per division,
totaling 396 games every Sunday.

Referee assignment problems in other contexts have been addressed in [8,9,19].
Dinitz and Stinson [4] considered a problem involving referee assignment to tour-
nament schedules, connecting room squares and balanced tournament designs.
We address a basic version of a referee assignment problem common to many
amateur leagues of sports such as soccer, basketball, and baseball, among oth-
ers. In the next section, we state the problem considered in this work. Section 3
presents an integer programming formulation to this referee assignment problem.
The decision version of the problem is proved to be NP-complete in Section 4.
The proposed solution strategy is described in Section 5. In Section 6, compu-
tational results illustrating the application of the proposed approach to solve
real-size randomly generated instances are shown. Concluding remarks and fur-
ther extensions of this work are reported in the last section.

2 Problem Statement

We consider the general problem, in which each game has a number of refereeing
positions to be assigned to referees. The games are previously scheduled and the
facilities and the time in which each game takes place are known beforehand. In
our approach, referees are assigned to empty (i.e., not pre-assigned) refereeing
positions, not to games. This allows us not only to handle referee assignment
problems in sports requiring different numbers of referees, but also in tourna-
ments where games of the same sport may need different numbers of referees
due to the game division or importance. Games with pre-assigned referees to
some refereeing positions can also be handled by this approach. Each refereeing
position to be filled by a referee is called an empty refereeing slot.

160 A.R. Duarte et al.

Let S = {1, . . . , n} be the set of refereeing slots. Each refereeing slot j ∈ S
has to be filled by a referee with a previously determined minimum skill level
qj . Let R = {1, . . . , m} be the set of referees, represented by their indices. Each
referee i ∈ R has a certain skill level, denoted by pi, defining the refereeing
slots in which he/she can officiate. Referees may declare their unavailability to
officiate at certain time slots. Furthermore, each referee i ∈ R establishes Mi as
the maximum number of games he/she is able to officiate and Ti as the target
number of games he/she is willing to officiate. Travels are not allowed, i.e. referees
that officiate more than one game in the same day must be assigned to games
that take place at the same facility. Moreover, referees that are also players have
a hard facility assignment constraint: they must officiate at the same facility
where they play.

The Referee Assignment Problem (RAP) consists in assigning referees to all
refereeing slots associated to games scheduled in a given time interval (typically,
a day or a weekend), minimizing the sum over all referees of the absolute value
of the difference between the target and the actual number of games assigned to
each referee and satisfying a set of hard constraints listed below:

(a) all refereeing slots must be filled for all games;
(b) referees cannot officiate more than one game in overlapping time slots;
(c) referees cannot officiate games in time slots where they declared to be un-

available;
(d) referees must meet the minimum skill level established for each refereeing

slot;
(e) referees cannot officiate more than a given maximum number of games; and
(f) each referee can officiate in only one facility.

3 Integer Programming Model

The problem described in the previous section can be formulated by integer
programming. We denote by di the absolute value of the difference between the
target and the actual numbers of games assigned to referee i ∈ R. The following
variables are used in the formulation:

xij =
{

1, if referee i ∈ R is assigned to slot j ∈ S
0, otherwise.

Furthermore, C(j) ⊆ S denotes the set of refereeing slots conflicting with slot
j ∈ S, i.e. refereeing slots that take place at different facilities than or overlapping
with j. Also, U(i) ⊆ S represents the set of refereeing slots to which referee i ∈ R
cannot be assigned due to a lower skill level or to his/her unavailability. The RAP
integer programming model can be formulated as

minimize
m∑

i=1

di (1)

subject to:

Referee Assignment in Sports Leagues 161

di = |Ti −
n∑

j=1

xij | ∀i = 1, . . . , m (2)

m∑

i=1

xij = 1 ∀j = 1, . . . , n (3)

n∑

j=1

xij ≤ Mi ∀i = 1, . . . , m (4)

xij + xij′ ≤ 1 ∀i = 1, . . . , m, ∀j = 1, . . . , n, ∀j′ ∈ C(j) (5)
∑

j∈U(i)

xij = 0 ∀i = 1, . . . , m (6)

xij ∈ {0, 1} ∀i = 1, . . . , m, ∀j = 1, . . . , n. (7)

The objective function (1) states that the sum over all referees of the slack
between their target and actual numbers of scheduled games is minimized. Con-
straints (2) enforce that di is equal to the absolute value of the difference between
the target and actual numbers of games assigned to referee i ∈ R. Constraints
(3) ensure that every refereeing slot must be assigned to exactly one referee.
Constraints (4) establish the upper bound to the number of refereeing slots that
can be assigned to each referee. Constraints (5) ensure that refereeing slots with
timetabling conflicts or taking place at different facilities cannot be assigned to
the same referee. Constraints (6) prevent assignments that violate minimum skill
level and unavailability restrictions (alternatively, all variables xij with j ∈ U(i)
may simply be removed from the model). Constraints (7) establish the integral-
ity of the decision variables. We notice that constraints (3) and (4) are those
characterizing a generalized assignment problem [10].

4 NP-Completeness

We consider the following feasibility decision problem (DRAP):

Problem: REFEREE ASSIGNMENT
Input: Set S of refereeing slots, set R of referees, and the maximum number of
games to be officiated by each referee.
Question: Is there an assignment of referees in R to refereeing slots in S satisfying
constraints (a) to (f)?

Theorem 1. DRAP is NP-complete.

Proof. DRAP is clearly in NP, since the feasibility of any assignment can be
checked in time polynomial in |R| and |S|. To prove its NP-completeness, we
use a transformation from the problem of Partition into Bounded Independent
Sets on interval graphs (PBIS). Given an undirected graph G = (V, E) and

162 A.R. Duarte et al.

integer numbers k and k′, this problem consists in deciding whether there exists
a partition of V into k independent sets I1, . . . , Ik, with |Ii| ≤ k′ for 1 ≤ i ≤ k.
PBIS is NP-complete even if G is an interval graph, see [2].

We build an instance of DRAP where the set S = {1, . . . , |V |} has exactly
|V | refereeing slots, each of them associated with a different game. All games
take place at the same date and facility. The minimum skill level associated to
each refereeing slot j ∈ S is set as qj = 1. Let R = {1, . . . , k} be the set of
available referees and set Mi = k′, pi = 1, and U(i) = ∅ for every i ∈ R. The
linear time recognition algorithm of Corneil et al. [3] is used to build an interval
representation of G. Each interval of the latter is mapped to one refereeing slot,
whose starting and ending times coincide with the starting and ending points of
the corresponding interval.

We now prove that given the interval graph G and the integer numbers k, k′ ∈
N , there is a partition of V into independent sets I1, ..., Ik with |Ii| ≤ k′ for
1 ≤ i ≤ k if, and only if, there is a feasible assignment of the referees in R to
the set of refereeing slots S built as above, subject to constraints (a) to (f), with
qj = 1 for all j ∈ S, Mi = k′ and pi = 1 for all i ∈ R.

First, suppose we have a partition of G = (V, E) into independent sets
I1, . . . , Ik, with |Ii| ≤ k′ for 1 ≤ i ≤ k. The slots assigned to referee i ∈ R
are exactly those corresponding to the vertices in Ii. This association guarantees
that constraints (a) and (b) are satisfied. Constraints (c) and (f) are trivially
satisfied, since U(i) = ∅, for all i ∈ R, and all games take place at the same
facility. Since pi = 1, for all i ∈ R, and qj = 1, for all j ∈ S, constraint (d) is
also trivially satisfied. Finally, constraint (e) is satisfied since |Ii| ≤ k′ = Mi for
all i ∈ R.

We now consider a feasible solution to an instance of DRAP. We construct
the interval graph G = (V, E) by assigning each refereeing slot j ∈ S to a vertex
j ∈ V . There is an edge (j, j′) ∈ E for each pair j and j′ of overlapping refereeing
slots. The partition of V into the independent sets I1, . . . , Ik is such that vertex
j belongs to the independent set Ii if referee i is assigned to refereeing slot j.
As the number of slots assigned to each referee is bounded by k′, this partition
into bounded independent sets is feasible. ��

5 Solution Approach

We propose a three-phase heuristic approach to tackle real-life large instances
of the referee assignment problem. The first phase consists in applying a greedy
heuristic to find an initial solution, possibly violating some constraints. The sec-
ond phase is a repair heuristic, which is applied whenever necessary to make
the initial solution feasible. Finally, another heuristic is used in the third phase
to improve the feasible solution. The algorithms used in the second and third
phases are based on principles similar to the Iterated Local Search (ILS) meta-
heuristic [11,12,13]. Algorithm 1 shows the general scheme of this approach.

The next section presents the constructive algorithm used to build initial so-
lutions to the subsequent phases (repair and improvement). Section 5.2 describes

Referee Assignment in Sports Leagues 163

the ILS scheme which is the basis for both the repair and improvement phases.
Details of the local search procedure used within the ILS scheme are given in
Section 5.3. Sections 5.4 and 5.5 discuss some issues of the ILS scheme that are
particular to each of the repair or improvement heuristics.

Algorithm1

RefereeAssignmentHeuristic(MaxIterations1, MaxIterations2)
Solution ← BuildGreedySolution();2

if not isFeasible(Solution) then3

Solution ← RepairHeuristic(Solution, MaxIterations1);4

end5

if isFeasible(Solution) then6

Solution ←7

ImprovementHeuristic(Solution, MaxIterations2);
return Solution;8

else9

return no feasible solution was found ;10

end11

Algorithm 1. Referee assignment heuristic

5.1 Greedy Constructive Heuristic

The first phase of our approach attempts to build a feasible solution. Its main
principle consists in assigning first the referees that are also players to the facil-
ities where they have a game. Next, while there are unassigned refereeing slots
and unassigned referees, the heuristic greedily selects a facility with unassigned
refereeing slots, obtains an unassigned referee and assigns refereeing slots to this
referee without violating any constraint. Finally, if any refereeing slot remains
unassigned, the solution is completed with infeasible assignments.

The pseudo-code of this heuristic is presented in Algorithm 2. We denote by Su

the set of all unassigned refereeing slots, by RHF the set of referees associated with
a hard facility constraint, and by RNHF the set of referees with no hard facility
constraint, i.e. R = RHF ∪ RNHF . These sets are initialized respectively in lines
2, 3, and 4. The loop in lines 5 to 15 is performed until all referees associated with
hard facility constraints have been examined and assigned to as many refereeing
slots as possible. Next, the loop in lines 16 to 27 attempts to fill the remaining
unassigned refereeing slots with referees without hard facility constraints.

A greedy criterion is applied in line 18 to select a facility f with the strongest
need for referees with a certain skill level p computed in line 17. The computation
of the greedy criterion is based on two measures: (a) an estimate of the minimum
number of referees with skill level p needed to officiate at facility f and (b) the
number of unassigned refereeing slots in facility f with minimum skill level less
than or equal to p. Finally, if unassigned refereeing slots still remain at line 28, then
the loop in lines 29 to 34 makes infeasible assignments to complete the solution.

164 A.R. Duarte et al.

Algorithm BuildGreedySolution()1

Su ← {j = 1, . . . , n :
∑m

i=1 xij = 0};2

RHF ← {i = 1, . . . , m : referee i plays at least one game};3

RNHF ← R − RHF ;4

while RHF �= ∅ do5

Randomly select a referee i ∈ RHF ;6

RHF ← RHF − {i};7

Let f be the facility where referee i plays a game;8

forall j ∈ Su : refereeing slot j takes place at facility f9

do
if referee i can be assigned to refereeing slot j then10

xij ← 1;11

Su ← Su − {j};12

end13

end14

end15

while Su �= ∅ and RNHF �= ∅ do16

p ← maxi∈RNHF {pi};17

Let f be the facility with the strongest need for referees18

with skill level equal to p;
Randomly select a referee i ∈ RNHF with pi = p;19

RNHF ← RNHF − {i};20

forall j ∈ Su : refereeing slot j takes place at facility f21

do
if referee i can be assigned to refereeing slot j then22

xij ← 1;23

Su ← Su − {j};24

end25

end26

end27

if Su �= ∅ then28

forall sj ∈ Su do29

Let f be the facility where sj takes place;30

Randomly select a referee i ∈ R officiating at facility31

f ;
xij ← 1;32

Su ← Su − {j};33

end34

end35

return Solution : referee i ∈36

R is assigned to refereeing slot j ∈ S if and only if xij = 1;
37

Algorithm 2. Greedy randomized constructive heuristic

Referee Assignment in Sports Leagues 165

Algorithm ILS Scheme(Solution, MaxIterations)1

foreach facility f do2

Solution ← LocalSearch(f, Solution);3

end4

for i = 1, . . . , MaxIterations do5

NewSolution ← Perturbation(Solution);6

Let f1 and f2 be the facilities involved in the7

perturbation;
NewSolution ← LocalSearch(f1, NewSolution);8

NewSolution ← LocalSearch(f2, NewSolution);9

Solution ←10

AcceptanceCriterion(Solution, NewSolution);
end11

return Solution;12

Algorithm 3. ILS-based scheme

5.2 ILS-Based Scheme

Both the repair and the improvement heuristics use similar ILS schemes. They
start by applying a first improving local search to the initial solution. Since the
local search involves moves that change referee assignments for only one facility
at a time, it should be applied to every facility.

Then, for a given number of iterations, a perturbation involving one pair of
facilities is applied to the current solution. Each perturbation is followed by
two applications of the local search procedure, once to each of the facilities of
the pair involved in the perturbation. The solution obtained by local search is
accepted if it satisfies a given acceptance criterion. This scheme is illustrated by
the pseudo-code of Algorithm 3.

We describe next the local search procedure and its associated neighborhoods,
followed by the repair and improvement heuristics.

5.3 Local Search and Neighborhoods

Solutions built by the constructive heuristic are not necessarily optimal or even
feasible. A local search algorithm successively replaces the current solution by
a better one in a neighborhood of the first, terminating at a local optimum. In
a first improving strategy, the current solution is replaced by the first neighbor
whose cost function value improves that of the current solution. We consider two
neighborhoods for local search:

– swap moves: referees assigned to two refereeing slots are swapped (such
moves do not change the number of games assigned to each referee) and

– replace moves: the referee assigned to a refereeing slot is replaced by another
referee (such moves increase by one the number of games assigned to one
referee and decrease by one the number of games assigned to the other).

166 A.R. Duarte et al.

As referees cannot be assigned to games at different facilities (hard constraint),
only moves involving referees that officiate at the same facility (or do not officiate
at all) are allowed (otherwise, and unless two referees were assigned to exactly
one game each, a move involving referees that officiate at different facilities
would imply at least one constraint violation). Such restricted neighborhoods
considering only moves involving the same facility allow the acceleration of the
local search.

The local search procedure performed within the ILS scheme is divided into
two phases, both of them using a first improving strategy. In the first phase, only
improving moves are accepted. The second phase also accepts moves leading to
solutions at least as good as the current one, using a list of forbidden moves to
prevent cycles. Each phase is separated in two parts: first, only swap moves are
considered; next, only replace moves.

5.4 Repair Heuristic

The repair heuristic follows the ILS scheme in Algorithm 3, based on local search
and perturbations. It attempts to make feasible the initial solution obtained by
the greedy randomized constructive heuristic. Constraint violations in the initial
solution may concern time conflicts, referee unavailabilities, inadequate skill lev-
els, or maximum numbers of games. The repair heuristic minimizes the number
of constraint violations of an infeasible initial solution. A modified solution is
feasible if and only if it has no constraint violations.

Solutions built by the constructive heuristic have the property that all ref-
erees officiate in at most one facility. Therefore, the local search considers only
moves involving referees that officiate at the same facility (or do not officiate
at all) and attempts to find a feasible solution by minimizing the number of
constraint violations. Ties with respect to the number of constraint violations
are broken in favor of the solution with the smaller objective function value (i.e.,
the absolute value of the difference between the target and the actual number
of games assigned to each referee involved in a move).

The perturbation procedure within the repair heuristic changes the facility
where one of the referees officiates, according to the following steps:
1. select a facility f with infeasible referee assignments;
2. select the highest minimum skill level �∗ over all refereeing slots in facility f

assigned to referees with at least one violation;
3. determine a referee r that officiates at another facility f ′ (or does not officiate

at all) whose skill level is greater than or equal to �∗;
4. randomly select referees other than r that officiate at facility f ′ and assign

them to the refereeing slots currently assigned to r;
5. assign referee r to any refereeing slot at facility f currently assigned to a

referee with at least one violation.

The solution NewSolution obtained after a perturbation followed by local
search is accepted by procedure AcceptanceCriterion if and only if it has fewer
constraint violations or the same number of violations and a smaller objective
function value than the current solution.

Referee Assignment in Sports Leagues 167

5.5 Improvement Heuristic

Once a feasible solution is known, the improvement heuristic is performed as an
attempt to reduce the current value of the objective function, i.e. to minimize the
sum over all referees of the absolute value of the difference between the target
and the actual number of games assigned to each of them. The improvement
heuristic is also based on the ILS scheme presented in Section 5.2.

The local search used in the improvement heuristic differs slightly from that
used in the repair heuristic: swap moves are not performed (because they cannot
improve the objective function) and only moves and perturbations that preserve
feasibility are considered.

The perturbations applied to the current solution within the improvement
heuristic select two referees that officiate at different facilities and swap all their
assignments, according to the following steps:

1. Choose a possible perturbation: select two referees officiating at different
facilities. If the swap of all their assignments does not preserve feasibility,
then go to the final step. Otherwise, temporarily perform the swap of all
assignments of the two selected referees.

2. Look ahead: for each of the two selected referees whose target number of
games is greater than the new (after the swap) number of games he/she
will officiate, check if there are other refereeing slots in which he/she could
officiate at the new facility. This look-ahead procedure only checks referee-
ing slots that are currently assigned to referees officiating more games than
their targets and only until the referee under investigation does not officiate
more games than his/her target. Whenever possible, temporarily replace the
previously assigned referee by the new referee involved in the perturbation.

3. Accept the perturbation: if the perturbation applied to the two referees (swap
of all their assignments), followed by all possible replace moves in the desti-
nation facility for each referee, decreases the objective function value, then
the perturbation is accepted and all temporary changes are made final. Oth-
erwise, go to step 4.

4. Return: if all pairs of referees have already been considered, then perform
the swap of all assignments of the pair of referees that increases the least
the objective function, while preserving feasibility. Otherwise, return to the
first step to select a new pair of referees.

Solution NewSolution obtained after a perturbation followed by local search is
always accepted, because the heuristic chooses either an improving perturbation
or the one that deteriorates the least the current solution.

6 Computational Results

Only very small instances with up to 40 games and 60 referees could be exactly
solved by a commercial solver such as CPLEX 9.0, applied directly to the integer
programming model presented in Section 3. In this section, we report computa-
tional results obtained on realistic, real-size randomly generated instances.

168 A.R. Duarte et al.

Table 1. Instance dimension combinations

Games Referees Facilities Patterns

300 450, 525, 600 40, 50 P0, P1

400 600, 700, 800 55, 65 P0, P1

500 750, 875, 1000 65, 85 P0, P1

6.1 Test Problems

Since the RAP is a new problem, no benchmark instances are available. Test
instances have been randomly generated, following patterns similar to those
observed in real-life soccer instances. They have up to 500 games and up to
1000 referees, with different numbers of referees, different numbers of facilities,
and different patterns of the target number of games each referee is willing to
officiate.

Each game lasts for two hours and is scheduled to start at any hour from
8 am to 7 pm. A facility and a starting time are randomly assigned to each
game. There are three refereeing slots to be assigned to referees in each game:
one of them requires a higher skill level (the head umpire), while the two other
require less skilled referees (the two side judges).

The skill level pi and the maximum number of games Mi for each referee i ∈ R
are randomly generated in {1, . . . , 8} and {2, . . . , 8}, respectively. Two different
patterns were used to generate the target number of games Ti for each referee
i ∈ R. According to pattern P0, Ti is randomly selected from {0, . . . , Mi}. In the
case of pattern P1, Ti is proportional to 1/pi: the higher the referee skill level is,
the lower his/her target number of games is. This reasoning allows the creation
of some challenging instances in which the more qualified a referee is, the lower
is the number of games he/she wants to officiate.

Table 1 presents the parameter values used to generate the test problems. Five
different instances were generated for each of the 36 parameter combinations, in
a total of 180 test problems. All test problems are available from [5].

6.2 Numerical Results

The experimental results reported in this section were obtained on a 2.0 GHz
Pentium IV processor with 512 Mbytes of RAM memory running Windows
2000TM. All codes were implemented in C. The maximum number of iterations
performed by the repair and the improvement heuristics was set at 1000 and
200, respectively.

Tables 2–7 summarize the results obtained for some classes of test problems by
the heuristic approach. We only report results for the hardest problems, in which
the number of games (500) is large and the number of referees is limited (prob-
lems with 1,000 referees have been discarded). Initial solutions are computed
by the greedy heuristic. Computation times (in seconds) and objective function
values are average results over ten runs for each instance. For each phase of the

Referee Assignment in Sports Leagues 169

Table 2. 500 games, 750 referees, 65 facilities, and pattern P0

Construction Repair Improvement

Instance Time (s) Value Feas. Time (s) Value Feas. Time (s) Value

I1 0.02 1286.20 10 — — — 32.34 619.60
I2 0.02 1360.00 5 0.47 1338.00 10 31.81 623.40
I3 0.02 1269.00 2 0.60 1247.00 10 33.87 621.60
I4 0.03 — — 1.14 1303.20 10 30.28 627.20
I5 0.03 1302.67 3 1.40 1259.14 10 33.73 654.00

Table 3. 500 games, 750 referees, 65 facilities, and pattern P1

Construction Repair Improvement

Instance Time (s) Value Feas. Time (s) Value Feas. Time (s) Value

I1 0.02 1752.75 8 0.66 1709.00 10 31.59 1022.60
I2 0.02 1669.57 7 0.02 1675.67 10 30.34 888.60
I3 0.02 — — 5.91 1569.80 10 29.55 942.00
I4 0.03 1777.00 1 1.53 1725.00 10 31.81 1033.80
I5 0.02 1704.80 5 0.49 1704.80 10 28.17 952.00

heuristic (construction, repair, improvement), we present its computation time
(in seconds) and the objective function value of the solutions found. For the con-
struction and repair phases, we also report the number of runs where a feasible
solution was found.

The constructive heuristic ran in less than 0.1 second for all instances and
found feasible solutions for most of them. The repair heuristic found a feasible
solution in less than 20 seconds in almost all cases when the constructive heuristic
failed. This is due to the effectiveness of the constructive algorithm. Table 8
depicts some illustrative results on instances with 500 games, 750 referees, and
85 facilities to support this claim. For each instance, we show that the total
times to build feasible solutions starting from randomly generated assignments
are much larger than those observed when the initial solution is computed by
the greedy constructive algorithm. We also observed that the repair phase failed
to build feasible solutions from randomly generated initial solutions for some
instances, even after 10,000 iterations, but always succeeded when starting from
a solution built by the constructive heuristic. We stress the importance of quick
procedures for finding initial solutions for hard combinatorial problems in sports,
as already noticed by Ribeiro and Urrutia [18].

The improvement phase improved the objective function value of feasible ini-
tial solutions by up to 63%. Instances with more facilities or fewer referees were
harder in terms of computation times and building feasible solutions.

In another experiment, we compared the results obtained by the heuristic with
those found by CPLEX 9.0 when applied to formulation (1)–(7) for some small
instances that could be exactly solved within reasonable computation time. The
heuristic always received the same computation time that CPLEX took to find
the optimal solution. Some numerical results are summarized in Table 9. For each

170 A.R. Duarte et al.

Table 4. 500 games, 750 referees, 85 facilities, and pattern P0

Construction Repair Improvement

Instance Time (s) Value Feas. Time (s) Value Feas. Time (s) Value

I1 0.03 — — 11.27 1111.60 10 22.74 612.60
I2 0.03 — — 6.69 1231.60 10 24.18 715.20
I3 0.03 — — 11.33 1182.40 10 22.29 672.60
I4 0.03 — — 4.61 1229.00 10 23.45 692.80
I5 0.03 — — 3.39 1234.60 10 19.50 646.00

Table 5. 500 games, 750 referees, 85 facilities, and pattern P1

Construction Repair Improvement

Instance Time (s) Value Feas. Time (s) Value Feas. Time (s) Value

I1 0.03 — — 2.75 1670.60 10 25.85 1043.80
I2 0.02 — — 19.29 1649.50 8 26.15 1147.00
I3 0.03 — — 14.77 1586.60 10 24.65 1107.60
I4 0.03 — — 1.22 1602.80 10 25.59 1007.40
I5 0.03 — — 2.69 1611.20 10 24.60 1002.80

instance, we first give its identification and the pattern used for its generation.
The two next columns display the optimal solution value and the computation
time in seconds taken by CPLEX (and, consequently, given to the heuristic).
Next, the table shows the average and the best solution values found by the
heuristic over ten runs. The last column gives the time taken to find the best
solution in the corresponding run. These results show that the heuristic was able
to find the optimal solution for three out of the five test instances considered in
this table. Furthermore, the times taken by the heuristic are significantly smaller
than those observed with CPLEX, even for the small instances that the latter
was able to solve to optimality.

In the last computational experiment, we replaced the linear objective func-
tion by a quadratic penalization. Table 10 details the differences between the
target and the actual numbers of games assigned to each referee in the solutions
obtained with the linear and quadratic cost functions for instance I3 with 500
games, 750 referees, 85 facilities, and pattern P1. It shows that more balanced
solutions can be obtained when the quadratic cost function is used, in which the
occurrences of larger differences are replaced by those of smaller differences con-
centrated at only one unit. The computation times of the constructive, repair,
and improvement heuristics were not affected by the change of the objective
function. We observe that 76 extremely privileged referees (i.e., those officiating
exactly their target number of games) in the solution obtained with the linear
cost function lose their privileges in the solution obtained with the quadratic cost
function. Also, 23 referees that were far from their targets are now very close to
them (i.e., their differences are now equal to one). The new solution obtained
with the quadratic cost function is certainly more fair than that associated with
the linear costs.

Referee Assignment in Sports Leagues 171

Table 6. 500 games, 875 referees, 65 facilities, and pattern P0

Construction Repair Improvement

Instance Time (s) Value Feas. Time (s) Value Feas. Time (s) Value

I1 0.03 1582.80 10 — — — 45.07 574.40
I2 0.02 1627.40 10 — — — 42.92 609.20
I3 0.03 1535.40 10 — — — 44.62 558.20
I4 0.03 1655.60 10 — — — 43.28 576.60
I5 0.02 1626.00 10 — — — 43.31 619.20

Table 7. 500 games, 875 referees, 65 facilities, and pattern P1

Construction Repair Improvement

Instance Time (s) Value Feas. Time (s) Value Feas. Time (s) Value

I1 0.03 2195.20 10 — — — 39.64 1091.80
I2 0.03 2040.20 10 — — — 42.33 955.40
I3 0.02 2153.40 10 — — — 41.34 1032.20
I4 0.03 2173.40 10 — — — 42.54 1069.00
I5 0.03 2137.60 10 — — — 39.73 1035.00

Table 8. Greedy versus randomly generated initial solutions

Greedy Random

Instance Pattern Const. (s) Repair (s) Feas. Repair (s) Feas.

I1 P0 0.03 11.27 10 79.8 9
I2 P0 0.03 6.69 10 80.8 10
I3 P0 0.03 11.33 10 86.2 8
I4 P0 0.03 4.61 10 30.6 10
I5 P0 0.03 3.39 10 29.1 10

I1 P1 0.03 2.75 10 33.5 10
I2 P1 0.02 19.29 10 134.6 2
I3 P1 0.03 14.77 10 135.1 8
I4 P1 0.03 1.22 10 38.0 10
I5 P1 0.03 2.69 10 32.9 10

Table 9. 33 games, 57 referees, 5 facilities, patterns P0 and P1

CPLEX Heuristic

Instance Pattern Optimum Time (s) Average Best Time (s)

I2 P0 43 164.00 47.00 44 18.99
I3 P0 18 200.00 20.80 18 3.05
I5 P0 44 137.00 45.20 44 11.45
I2 P1 65 128.00 67.20 65 15.32
I5 P1 72 47.00 82.40 75 8.83

172 A.R. Duarte et al.

Table 10. Linear versus quadratic objective functions

Number of referees

Difference from target Linear penalties Quadratic penalties

0 255 179
1 182 281
2 156 149
3 67 66
4 50 43
5 23 18
6 13 10
7 3 3

7 Concluding Remarks

We introduced in this paper the referee assignment problem, a new optimization
problem in sports. The problem was formulated as an integer model and the
NP-completeness of its decision version was proved.

A three-phase heuristic was proposed and implemented. Computational re-
sults on realistic instances showed the effectiveness of the greedy constructive
heuristic combined with the repair heuristic to build feasible solutions. The im-
provement procedure used in the third phase was able to substantially improve
solution quality. We also illustrated the importance of a quick construction pro-
cedure to build initial solutions.

We also compared the solutions obtained by the heuristic with those produced
by CPLEX for some small instances that could be solved to optimality in rea-
sonable computation times. The heuristic not only was able to find the optimal
solutions for several instances, but also the computation times to find the best
solution were significantly smaller than those observed with CPLEX.

Finally, we investigated and compared the behavior of an alternative quadratic
objective function, which was able to find more fair solutions than the formula-
tion with a linear cost function.

We are currently working on some extensions addressing further constraints
of real-life applications, such as the existence of hard and soft links between
some referees. In these situations, some referees may want to work with the
same referees as partners in every game they officiate. This is the case when
they are more confident to officiate together, but also when they want to travel
in car pools or to officiate with relatives. Decision makers may also want referee
assignments matching preferences regarding the facilities, divisions, and time
slots where the referees officiate.

Another extension occurs when referees are able to officiate games in different
facilities. In this case, travel times between facilities should also be considered
for feasibility matters. They can also be incorporated to the objective function,
so as that the minimization of the total traveling time turns out to be another
objective. The minimization of the waiting times between consecutive games
assigned to the same referee is also relevant.

Referee Assignment in Sports Leagues 173

The referee assignment problem has clearly the flavor of a multi-criteria opti-
mization application. We are also investigating the use of multi-criteria methods
coupled with a decision support system for its solution in practice.

References

1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated
annealing approach to the traveling tournament problem. Journal of Scheduling 9,
177–193 (2006)

2. Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems – Part I.
Theoretical Computer Science 148, 93–109 (1995)

3. Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition
algorithm? In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 175–180. SIAM, Philadelphia (1998)

4. Dinitz, J.H., Stinson, D.R.: On assigning referees to tournament schedules. Bulletin
of the Institute of Combinatorics and its Applications 44, 22–28 (2005)

5. Duarte, A.R.: Challenge referee assignment problem instances (last visited on
March 23, 2007), Online document at http://www.esportemax.org/rapopt

6. Easton, K., Nemhauser, G.L., Trick, M.: The traveling tournament problem: De-
scription and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp.
580–584. Springer, Heidelberg (2001)

7. Easton, K., Nemhauser, G.L., Trick, M.: Sports scheduling. In: Leung, J.T. (ed.)
Handbook of Scheduling: Algorithms, Models and Performance Analysis, pp. 52.1–
52.19. CRC Press, Boca Raton, FL (2004)

8. Evans, J.R.: A microcomputer-based decision support system for scheduling um-
pires in the American baseball league. Interfaces 18, 42–51 (1988)

9. Evans, J.R., Hebert, J.E., Deckro, R.F.: Play ball – The scheduling of sports offi-
cials. Perspectives in Computing 4, 18–29 (1984)

10. Fisher, M.L., Jaikumar, R., Van Wassenhove, L.N.: A multiplier adjustment method
for the generalized assignment problem. Management Science 32, 1095–1103 (1986)

11. Lourenço, H.P., Martin, O., Stützle, T.: Iterated Local Search. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer, Dor-
drecht (2003)

12. Martin, O., Otto, S.W.: Combining simulated annealing with local search heuris-
tics. Annals of Operations Research 63, 57–75 (1996)

13. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling
salesman problem. Complex Systems 5, 299–326 (1991)

14. Nemhauser, G.L., Trick, M.A.: Scheduling a major college basketball conference.
Operations Research 46, 1–8 (1997)

15. Rasmussen, R.V., Trick, M.A.: Round robin scheduling – A survey. Technical Re-
port, Department of Operations Research, University of Aarhus (2006)

16. Ribeiro, C.C., Urrutia, S.: OR on the ball: Applications in sports scheduling and
management. OR/MS Today 31, 50–54 (2004)

17. Ribeiro, C.C., Urrutia, S.: An application of integer programming to playoff elim-
ination in football championships. International Transactions in Operational Re-
search 12, 375–386 (2005)

18. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament prob-
lem. European Journal of Operational Research 179, 775–787 (2007)

19. Wright, M.B.: Scheduling English cricket umpires. Journal of the Operational Re-
search Society 42, 447–452 (1991)

http://www.esportemax.org/rapopt

A Branch-and-Cut Algorithm for Scheduling the

Highly-Constrained Chilean Soccer Tournament

Thiago F. Noronha1, Celso C. Ribeiro2, Guillermo Duran3, Sebastian Souyris3,
and Andres Weintraub3

1 Department of Computer Science, Catholic University of Rio de Janeiro,
Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil

tfn@inf.puc-rio.br
2 Department of Computer Science, Universidade Federal Fluminense,

Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil
celso@inf.puc-rio.br

3 Department of Industrial Engineering, University of Chile,
Republica 701, Santiago, Chile

{gduran,ssouyris,aweintra}@dii.uchile.cl

Abstract. The qualifying phase of the Chilean soccer championship fol-
lows the structure of a compact single round robin tournament. Good
schedules are of major importance for the success of the tournament,
making them more balanced, profitable, and attractive. The schedules
were prepared by ad hoc procedures until 2004, when a rough integer
programming strategy was proposed. In this work, we improve the orig-
inal integer programming formulation. We derive valid inequalities for
improving the linear relaxation bound and we propose a new branch-
and-cut strategy for the problem. Computational results on a real-life
instance illustrate the effectiveness of the approach and the improvement
in solution quality.

1 Introduction

There are 20 teams in the first division of the Chilean national soccer champi-
onship, organized by the National Association of Professional Soccer (ANFP). It
is organized in two phases: qualifying and playoffs. The qualifying phase follows
the structure of a compact single round robin tournament, in which each team
plays against every other exactly once and all teams play exactly one game in
every round. The teams are evenly distributed over four groups with five teams
each. The groups are formed according to the performance of each team in the
last tournament. Each of the first four teams is placed in one of the four groups.
The teams from the 5th to the 8th places are randomly distributed in different
groups. The same happens with the teams from the 9th to the 12th places. This
procedure is repeated until all teams are assigned to a group. At the end of the
qualifying phase, the teams that end up in the two first positions of each group
qualify for the playoffs. The qualified teams play four quarter-final matches,
whose winners play the two semi-final matches. The winners of the semi-final

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 174–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Branch-and-Cut Algorithm 175

matches play the final match. Playoff matches consist of two games each, each
of them played at the home of one of the opponents.

The schedules of the Chilean soccer championship were prepared by ad hoc
procedures until 2004. As for most European and South American soccer cham-
pionships, the games were randomly assigned to slots in a predefined round sheet.
Then, team representatives voted whether the schedule should be accepted or
not. If the proposed schedule was not accepted, then the representatives pro-
posed modifications and the voting process was repeated until a schedule was
accepted by more then 50% of the representatives. There were several drawbacks
with these schedules that made them less attractive for fans and less profitable
for teams: (a) classical games at inconvenient rounds, (b) weak teams playing
away all their games against strong teams, (c) teams playing too many con-
secutive home games or too many consecutive away games, and (d) no games
between traditional teams and teams from tourist cities during summer rounds,
when many people are visiting the tourist regions. Duran et al. [6] tackled the
problem of scheduling the Chilean soccer championship by integer programming
in 2005, handling the above issues. The model was solved by a standard branch-
and-cut procedure of the CPLEX solver. However, this procedure would take
up to two hours of computation time to find a feasible solution. The procedure
would be interrupted at this time, the set of possible home–away patterns fixed,
and the resulting simplified model solved to optimality using a limited set of
decision variables. In consequence, the model becomes easy and solvable in a
few seconds. Although the resulting schedules were better than those obtained
by the ad hoc procedures, the duality gaps could be very large and solutions
lacked of quality.

Good schedules have a major importance in the success of sports tourna-
ments, making them more balanced, profitable, and attractive. Many authors
tackled the problem of tournament scheduling optimization in different leagues
and sports. Bean and Birge [2] focused on the scheduling problem for the Na-
tional Basketball Association, in which the most limiting constraints concerned
rest days and stadium availability. Costa [4] considered the scheduling of the
National Hockey League, for which one of the objectives consisted in the min-
imization of the total distance traveled by all teams. Henz [8] used constraint
programming to improve the processing times of the enumerative approach pro-
posed in [10] to compute schedules for a college basketball conference. These
results were later improved by Zhang [15], once again using constraint program-
ming. We refer to Henz [9] for recent advances in constraint programming for
scheduling problems in sports, as well as to Trick [13,14] for the combination
of integer and constraint programming. Bartsch et al. [1] developed a branch-
and-bound procedure for scheduling the professional soccer leagues of Austria
and Germany. Goossens and Spieksma [7] proposed an integer programming
formulation for scheduling the Belgian soccer league, whose objective function
consisted in the minimization of the violations of soft constraints. Ribeiro and
Urrutia [12] solved the problem of scheduling the Brazilian soccer tournament
by an approach combining backtracking and integer programming, which found

176 T.F. Noronha et al.

optimal solutions very quickly. Croce and Oliveri [5] used a three-phase strategy
based on integer programming for scheduling the Italian major soccer league,
involving round robin and television constraints and minimizing the number of
violations of home–away pattern constraints.

In this work, we tackle the problem of scheduling the highly-constrained
Chilean soccer tournament. The original integer programming formulation of
Duran et al. [6] is improved and valid inequalities are derived to strengthen the
linear relaxation bound. We also developed a new branch-and-cut strategy that
finds much better results than the previous approach.

The integer programming formulation is presented in Section 2. The solution
approach and the branching strategy are described in Section 3. Computational
results are reported in Section 4. Concluding remarks are made in the last section.

2 Problem Formulation

In this section, the problem of scheduling the Chilean soccer tournament is
stated. We present the constants, variables, and constraints of the mathematical
formulation, as well as its objective function. We first recall some widely used
terminology in sports scheduling. A single round robin tournament is one in
which each team plays against every other exactly once. A round robin tourna-
ment is compact if every team plays exactly once in each round. A home–away
pattern (HAP) is a sequence of home and away games for a given team. A break
is a subsequence of two consecutive home games or two away games.

The following subsets of teams are defined:

– POP : popular teams, which are those with more fans;
– STR: strong teams, better qualified in the last tournaments;
– TRD : traditional teams (Universidad Católica, Colo-Colo, and Universidad

de Chile);
– STG : teams whose home city is Santiago; and
– TUR: teams from tourist cities, visited in summer and holidays.

Some constraints involve games and relationships between specific pairs of
teams:

– CMP : pairs of teams with complementary HAPs (whenever one of them
plays at home the other plays away, and vice versa);

– EXC : pairs of excluding teams (whenever a third team plays against one of
them at home, then it should play away against the other, and vice versa);
and

– GRP : pairs of teams in a same group.

Since some constraints involve some specific rounds, we also define

– SUM : summer rounds; and
– WED : Wednesday rounds.

A Branch-and-Cut Algorithm 177

Chile is geographically divided into thirteen regions (numbered from 1 to 13)
and three zones (North, South, and Central):

– TRG = {4, 5}: tourist regions;
– ZNS = {North, South, Central}: zones;
– FRG(r): teams whose home cities are in region r; and
– FZN (z): teams whose home cities are in zone z.

We first define the following decision variables:

xijk =
{

1, if team i plays at home against team j in round k,
0, otherwise;

yik =
{

1, if team i has an away break in round k + 1,
0, otherwise.

Round robin constraints are those defining a timetable in which (i) each team
plays against every other team exactly once (constraint (1)) and (ii) every team
plays exactly once in each round (constraint (2)):

19∑

k=1

(xijk + xjik) = 1 ∀i, j = 1, . . . , 20, with i < j (1)

20∑

j=1
j<i

(xijk + xjik) = 1 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19. (2)

HAP constraints restrict the home–away patterns, imposing a fair balance
between home and away matches: (i) each team must play at least nine (and at
most ten) games at home and the others away (constraint (3)), (ii) a team may
never have two consecutive breaks (constraints (4) and (5)), (iii) a team may
play at most three games at home in any five consecutive rounds (constraint (6)),
(iv) there may be no breaks in rounds 2, 17, and 19 (beginning and end of the
tournament, constraint (7)):

9 ≤
20∑

j=1
j �=i

19∑

k=1

xijk ≤ 10 ∀i = 1, . . . , 20 (3)

20∑

j=1
j �=i

(xij(k−1) + xijk + xij(k+1)) ≤ 2 ∀i = 1, . . . , 20, ∀k = 2, . . . , 18 (4)

20∑

j=1
j �=i

(xji(k−1) + xjik + xji(k+1)) ≤ 2 ∀i = 1, . . . , 20, ∀k = 2, . . . , 18 (5)

178 T.F. Noronha et al.

20∑

j=1
j �=i

(xij(k−2) + xij(k−1) + xijk + xij(k+1) + xij(k+2)) ≤ 3

∀i = 1, . . . , 20, ∀k = 3, . . . , 17 (6)

20∑

j=1
j �=i

(xij(k−1) + xijk) = 1 ∀i = 1, . . . , 20, ∀k = 2, 17, 19. (7)

Consecutive away games are very inconvenient and should be avoided. Con-
straints (8) and (9) impose that every team should have at most one away break:

20∑

j=1
j �=i

(xjik + xji(k+1)) ≤ 1 + yik ∀i = 1, . . . , 20, ∀k = 1, . . . , 18 (8)

18∑

k=1

yik ≤ 1 ∀i = 1, . . . , 20. (9)

The last two HAP constraints guarantee that (i) some pairs of teams must
have complementary HAPs (constraint (10)), for security reasons to avoid more
than one game in the same city at the same time, to ensure that there will
ever be one game in this city or because they share the same stadium, and (ii)
there may be at most four teams from Santiago playing at home in any round
(constraint (11)):

20∑

h=1
h�=i,h�=j

(xihk + xjhk) =
20∑

h=1
h�=i,h�=j

(xhik + xhjk)

∀(i, j) ∈ CMP , ∀k = 1, . . . , 19 (10)

∑

i∈STG

20∑

j=1
j �=i

xijk ≤ 4 ∀k = 1, . . . , 19. (11)

Team constraints restrict the rounds in which games between special pairs
of teams can be played: (i) each team should play at least one game between
two consecutive games against popular teams (constraint (12)), (ii) each team
may have at most two consecutive games against strong teams (constraint (13)),
(iii) each traditional team plays exactly one classical game (i.e., a game against
another traditional team) at home (constraint (14)), and (iv) classical games
must be played between rounds 8 and 17 (constraint (15)):

∑

j∈POP\{i}
(xijk + xjik + xij(k+1) + xji(k+1)) ≤ 1

∀i = 1, . . . , 20, ∀k = 1, . . . , 18 (12)

A Branch-and-Cut Algorithm 179

∑

j∈STR\{i}
(xijk + xjik + xij(k+1) + xji(k+1) + xij(k+2) + xji(k+2)) ≤ 2

∀i = 1, . . . , 20, ∀k = 1, . . . , 17 (13)

19∑

k=1

(xhik + xjik) =
19∑

k=1

(xhjk + xijk) ∀i, j, h ∈ TRD (14)

∑

i∈TRD

∑

j∈TRD
j �=i

(
7∑

k=1

xijk +
19∑

k=18

xijk

)

= 0. (15)

The strong teams are grouped into pairs to balance the hardness of home and
away games. Whenever a team plays at home against one of the teams of a pair
of excluding teams, then it will play away against the other (and vice-versa), as
stated by constraints (16):

19∑

k=1

(xhik + xhjk) = 1 ∀(i, j) ∈ EXC, ∀h = 1, . . . , 20, h �= i, h �= j. (16)

Geographic constraints tackle Chile’s particular geography of a very long and
narrow country: a team from the Central zone cannot play away in the same
week against a team from the South and another from the North, and vice
versa (constraints (17) and (18)). Whenever a team from the Central zone plays
against a team from the North (resp. South) on a Wednesday, then it cannot
play against a team from the South (resp. North) in the previous or forthcoming
weekend. Furthermore, we point out that the first and last rounds are always
scheduled on weekends:

∑

j∈FZN(South)

(xji(k−1) + xji(k+1)) +
∑

j∈FZN(North)

2 · xjik ≤ 2

∀i ∈ FZN(Central), ∀k ∈ WED (17)

∑

j∈FZN(North)

(xji(k−1) + xji(k+1)) +
∑

j∈FZN(South)

2 · xjik ≤ 2

∀i ∈ FZN(Central), ∀k ∈ WED . (18)

There are also constraints on tourist teams and regions: (i) each tourist team
should play at least once at home against a traditional team during the summer
rounds (constraint (19)) and (ii) each traditional team should not play twice in
the same week in the same tourist region (constraint (20)):

∑

k∈SUM

∑

j∈TRD\{i}
xijk ≥ 1 ∀i ∈ TUR (19)

180 T.F. Noronha et al.

∑

i∈FRG(r)\{j}
(xij(k−1) + 2 · xijk + xij(k+1)) ≤ 2

∀j ∈ TRD , ∀r ∈ TRG , ∀k ∈ WED . (20)

Since only the teams in the two first positions of each group qualify for the
playoffs, games between teams in the same group are more attractive. Therefore,
these games should as much as possible take place at the end of the tournament.
The objective function (21) consists in maximizing the number of games between
teams in the same group in the last rounds of the tournament:

maximize
∑

(i,j)∈GRP

19∑

k=1

k · xijk . (21)

Duran et al. [6] attempted to apply a standard CPLEX branch-and-cut algo-
rithm directly to the above formulation. However, the lower bounds provided by
its linear relaxation were poor because of the flow spread among the originally
binary x variables, which end up assuming fractional values. CPLEX heuristics
were not able to find primal solutions. The computation times were very high,
because the formulation is degenerate for the simplex method and can only be
solved by perturbation techniques.

3 Solution Approach

The original integer programming formulation described in the previous section
can be significantly improved. Valid inequalities are derived in Section 3.1 to
improve the lower bounds and a new branch-and-cut strategy is proposed in
Section 3.2 to speed up convergence.

3.1 Improved Formulation

We first introduce the following additional binary variables:

zik =
{

1, if team i plays at home in round k;
0, otherwise.

They can be related to the other variables by constraints (22) and (23):

zik =
20∑

j=1
j �=i

xijk ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (22)

zik + zi(k+1) ≥ 1 − yik ∀i = 1, . . . , 20, ∀k = 1, . . . , 18. (23)

All HAP constraints may be rewritten in terms of the new variables by sub-
stituting zik =

∑20
j �=i,j=1 xijk: constraint (3) is rewritten as (24), constraints (4)

and (5) as (25), constraint (6) as (26), constraint (7) as (27), constraint (8) as
(23), constraint (10) as (28), and constraint (11) as (29):

A Branch-and-Cut Algorithm 181

9 ≤
19∑

k=1

zik ≤ 10 ∀i = 1, . . . , 19 (24)

1 ≤ zi(k−1) + zik + zi(k+1) ≤ 2 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (25)

zi(k−2) + zi(k−1) + zik + zi(k+1) + zi(k+2) ≤ 3
∀i = 1, . . . , 20, ∀k = 2, . . . , 19 (26)

zi(k−1) + zik = 1 ∀i = 1, . . . , 20, ∀k = 2, 17, 19 (27)

zik + zjk = 1 ∀(i, j) ∈ CMP, ∀k = 1, . . . , 19 (28)

∑

i∈STG

zik ≤ 4 ∀k = 1, . . . , 19. (29)

To reduce the number of fractional variables, we use an approach similar to
that proposed by Trick [13], with the exception that the rounds in which the
games will be played are not fixed. Additional variables are added as follows:

si =
{

1, if team i plays at home in the first round,
0, otherwise;

hik =
{

1, if team i plays away in round k and at home in round k + 1,
0, otherwise;

wik =
{

1, if team i plays at home in round k and away in round k + 1,
0, otherwise.

Variables z, s, h, and w are related by Equations (30) and (31) in the same
way as in [13]:

zik = si +
k−1∑

t=1

(hit − wit) ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (30)

hik + wik ≤ 1 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19. (31)

Now, the following valid inequalities can be added:

zik + hik ≤ 1 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19 (32)

zik − wik ≥ 0 ∀i = 1, . . . , 20, ∀k = 1, . . . , 19. (33)

182 T.F. Noronha et al.

Constraints (32) and (33) do not improve the linear relaxation bound, but
empirical observations showed that they diminish the number of non-integral
z variables in the linear relaxation, speeding up the integer programming al-
gorithm. The new formulation ((1),(2),(9),(12)–(33)) is still degenerate, but its
coefficient matrix is more sparse and can be rapidly solved by an interior point
algorithm [3]. Furthermore, the variables z play a major role in the branching
strategy.

3.2 Branch-and-Cut

We developed a cutting plane procedure based on odd-set cuts to improve the
linear relaxation bound, as suggested by Trick [14]. Padberg and Rao [11] showed
that these cuts can be separated in polynomial time. They come from the fact
that each round can be seen as a perfect matching in the complete graph whose
node set is formed by the teams taking part in the tournament. The odd-set
constraints can be described as follows. For each particular round k = 1, . . . , 19,
let S be any subset of teams such that |S| is odd:

∑

i∈S,j /∈S

(xijk + xjik) ≥ 1 ∀k = 1, . . . , 19, ∀S ⊆ {1, . . . , 20}, |S| odd.

Cuts associated with odd-set constraints violated by the solution of the linear
relaxation are progressively added to the enumeration tree. The number of times
the linear relaxation is solved in each node is limited, because solving the linear
relaxation is computationally demanding. After the linear relaxation is solved,
all odd-set cuts such that

∑

i∈S,j /∈S

(x∗
ijk + x∗

jik) ≤ Δ

are determined by a separation procedure and appended to the model (x∗
ijk

denotes the value of variable xijk in the optimal solution of the linear relaxation),
with Δ fixed at 0.1. This procedure is repeated while the linear relaxation bound
can be improved.

The experimental results showed that this procedure strongly improved the
linear relaxation bound, which was already equal to the optimal value at the root
of the enumeration tree for the 2005 edition of the Chilean soccer tournament.

The branching strategy plays a major role in the success of a branch-and-cut
algorithm. Branching on the x variables is not efficient, since most of them are
null in integral solutions. Our branching strategy is based on the z variables.
Branching on the x variables starts only after all the z variables are integral.
This strategy implicitly decomposes the solution in two phases. The HAPs are
computed in the first phase, while the dates of the games are established in
the second. Once the z variables are fixed, the branch-and-cut algorithm needs
just a few branches on the x variables to find a feasible solution or to prove
infeasibility.

A Branch-and-Cut Algorithm 183

Table 1. Teams in the 2005 edition of the Chilean soccer championship

Group 1 Group 2 Group 3 Group 4

Colo-Colo Cobreloa U. de Concepción U. de Chile
(1) (2) (3) (0)

Audax Italiano Wanderers Unión Española U. Católica
(5) (6) (8) (4)

Huachipato Coquimbo Temuco Eeverton
(7) (9) (10) (11)

San Felipe Puerto Montt Palestino Cobresal
(13) (12) (16) (17)

Melipilla La Serena Desportes Concepción Rangers
(19) (14) (18) (15)

4 Computational Experiments

The branch-and-cut strategy described in the previous section was implemented
using Visual C++ 6.0 and CPLEX 8.0. The same algorithm without the odd-
set cuts was also implemented to evaluate the effectiveness of the cutting plane
procedure. We refer to the first algorithm as B&C-ANFP and to the second as
B&B-ANFP. The computational experiments were performed on a 3 GHz Pentium
IV machine with 1 Gbyte of RAM memory. We illustrate the results obtained
for the 2005 edition of the Chilean soccer championship, comparing them with
those reported in [6]. Table 1 shows the name of each team and its respective
group, as well as the identification used to represent each team in Tables 5 and 6.

Computation times for solving the linear programming relaxation by different
algorithms available with CPLEX 8.0 are given in Table 2. Since the problem
is degenerate for both the primal and dual simplex methods, their computation
times were very high. Therefore, the interior point algorithm presented the best
computation times for solving the linear relaxation. Table 2 shows that the new
formulation considerably reduced the computation time of the interior points
algorithm, leading to an efficient implementation of the cutting plane strategy.

Detailed results obtained with algorithms B&B-ANFP and B&C-ANFP are given
in Table 3. For each algorithm, we report the value of the objective function,
the number of nodes in the enumeration tree, and the integrality gap after some
elapsed times (ranging from ten minutes to four hours). We notice that algorithm
B&B-ANFP finds good solutions faster than B&C-ANFP in the beginning. However,
the former was not able to find the optimal solution within a four-hour time limit.
On the contrary, the cuts used by algorithm B&C-ANFP were able to improve
the linear relaxation bound, which was already equal to the optimal value at
the root of the enumeration tree. The number of nodes is much smaller for
algorithm B&C-ANFP, that found the exact optimal solution in less than two
hours of computation time.

184 T.F. Noronha et al.

Table 2. Computation times in seconds for solving the linear relaxation

Strategy Time (s)

Primal simplex 27
Dual simplex 21
Interior points (original formulation) 12
Interior points (with the additional z variables) 4

Table 3. Comparison between algorithms B&B-ANFP and B&C-ANFP

Elapsed B&B-ANFP B&C-ANFP
time Objective Nodes Gap (%) Objective Nodes Gap (%)

10 min 617 140 3.6 474 120 25.9
30 min 622 600 2.9 615 330 3.9

1 h 631 1120 1.4 633 570 1.1
2 h 633 2190 1.1 640 1560 0.0
4 h 639 4860 0.2 — — —

Table 4. Comparison of algorithms B&C-ANFP and Duran et al. [6]

Algorithm 30 min 2 h

B&C-ANFP 3.9% 0.0%
Duran et al [6] – 9.2 %

Table 5. Schedule provided by [6]

T\R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 @11 13 @9 16 @12 18 @2 6 @7 5 @8 @1 14 @19 4 10 @3 15 @17
1 12 @6 17 @5 3 @14 11 @10 2 @4 9 0 @16 8 @15 @18 7 @13 19
2 @8 16 @7 @3 10 @19 0 15 @1 18 @5 13 @11 9 17 @4 14 @6 12
3 5 @14 @11 2 @1 13 @9 7 @15 8 18 @17 10 @4 12 @6 0 @18 16
4 19 @12 @10 8 @18 6 @13 5 @14 1 @16 7 @9 3 @0 2 @17 11 @15
5 @3 11 @8 1 @9 16 @15 @4 10 @0 2 @18 17 @14 19 @12 6 @7 13
6 @13 1 @15 11 17 @4 10 @0 19 @12 @14 16 @15 7 @8 3 @5 2 @9
7 14 @18 2 @10 @16 15 17 @3 0 @11 12 @4 19 @6 13 9 @1 5 @8
8 2 @15 5 @4 11 @14 14 @19 9 @3 0 @10 12 @1 6 @13 18 @16 7
9 18 @17 0 @19 5 @10 3 @11 @8 13 @1 15 4 @2 16 @7 12 @14 6
10 17 @19 4 7 @2 9 @6 1 @5 15 @11 8 @3 @13 14 @0 16 @12 18
11 0 @5 3 @6 @8 12 @1 9 @13 7 10 @19 2 @17 18 @16 15 @4 14
12 @1 4 19 @17 0 @11 @16 13 @18 6 @7 14 @8 15 @3 5 @9 10 @2
13 6 @0 @16 15 14 @3 4 @12 11 @9 17 @2 18 10 @7 8 @19 1 @5
14 @7 3 @15 18 @13 1 @8 16 4 @17 6 @12 @0 5 @10 19 @2 9 @11
15 @16 8 14 @13 19 @7 5 @12 3 @10 18 @9 6 @12 1 17 @11 @0 4
16 15 @2 13 @0 7 @5 12 @14 17 @19 4 @16 1 @18 @9 11 @10 8 @3
17 @10 2 @1 12 @6 8 @7 18 @16 14 @13 3 @5 11 @2 @15 4 @19 0
18 @9 7 6 @14 4 @0 19 @17 12 @2 @15 5 @13 16 @11 1 @8 3 @10
19 @4 10 @12 9 @15 2 @18 8 @6 16 @3 11 @7 0 @5 @14 13 17 @1

A Branch-and-Cut Algorithm 185

Table 6. Schedule provided by B&C-ANFP

T\R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 16 @9 14 @3 10 @6 13 @5 @18 1 @19 12 @7 8 @17 11 @4 2 @15
1 @14 15 @2 18 @11 9 @12 17 3 @0 4 @10 6 @16 19 @13 5 @8 7
2 @5 13 1 @4 3 @15 10 16 @19 8 @18 7 @11 17 @14 @12 6 @0 9
3 @7 14 @19 0 @2 11 @17 12 @1 @13 5 @15 4 @9 6 @8 10 18 @16
4 @10 5 @16 2 @13 19 @8 18 @7 12 @1 14 @3 @6 15 @9 0 @17 11
5 2 @4 6 @10 15 16 @9 0 @12 18 @3 8 @17 14 @11 19 @1 @7 13
6 @15 10 @5 13 @16 0 @19 8 @17 11 @7 18 @1 4 @3 14 @2 @9 12
7 3 @8 17 11 @9 12 @18 @14 4 @15 6 @2 0 @10 13 16 @19 5 @1
8 @11 7 @9 19 @12 @17 4 @6 14 @2 15 @5 13 @0 10 3 @16 1 @18
9 @13 0 8 @17 7 @1 5 @10 15 @16 @11 19 @18 3 @12 4 @14 6 @2
10 4 @6 @15 5 @0 13 @2 9 @11 19 @17 1 @12 7 @8 18 @3 16 @14
11 8 @18 12 @7 1 @3 14 @13 10 @6 9 @16 2 @19 5 @0 17 15 @4
12 @17 19 @11 @15 8 @7 1 @3 5 @4 16 @0 10 @13 9 2 @18 14 @6
13 9 @2 18 @6 4 @10 @0 11 @16 3 @14 17 @8 12 @7 1 @15 19 @5
14 1 @3 @0 16 @19 18 @11 7 @8 17 13 @4 15 @5 2 @6 9 @12 10
15 6 @1 10 12 @5 2 @16 19 @9 7 @8 3 @14 18 @4 @17 13 @11 0
16 @0 17 4 @14 6 @5 15 @2 13 9 @12 11 @19 1 @18 @7 8 @10 3
17 12 @16 @7 9 @18 8 3 @1 6 @14 10 @13 5 @2 0 15 @11 4 @19
18 @19 11 @13 @1 17 @14 7 @4 0 @5 2 @6 9 @15 16 @10 12 @3 8
19 18 @12 3 @8 14 @4 6 @15 2 @10 0 @9 16 11 @1 @5 7 @13 17

In Table 4, we compare the results obtained by algorithm B&C-ANFPwith those
obtained by the strategy proposed in [6]. We give the relative integrality gap from
the optimal solution after 30 minutes and after two hours of computation time
(on a 2.4 GHz Pentium IV computer for [6]) for both algorithms. Algorithm
B&C-ANFP not only found a better solution quickly, but also found a much better
– and optimal – solution after the same time the approach in [6] took to find a
solution 9.2% away from the optimal value.

The schedules provided by [6] and B&C-ANFP are presented in Tables 5 and 6,
respectively. The lines correspond to teams and the columns to rounds. Games
between teams from the same group are underlined. Table 5 shows that the
schedule obtained by [6] has games between teams from the same group spread
along all rounds, while the schedule provided by the new algorithm has all games
between teams from the same group in the last five rounds of the tournament.

5 Concluding Remarks

We proposed a new formulation for the highly constrained Chilean soccer tour-
nament scheduling problem. Valid inequalities were derived and appended to the
formulation to improve its linear relaxation bound. A branching strategy based
on the new variables was used to speedup convergence.

The new formulation considerably reduced the computation times needed
to solve the linear relaxation. The odd-set cuts improved the linear relaxation
bound, which was already equal to the optimal value at the root of the enumer-
ation tree. The new algorithm B&C-ANFP significantly outperformed the previous
approach and found the optimal solution in less than two hours. Future work
will deal with new constraints and objective functions imposed by TV sponsors,
as well as with heuristics for providing integer feasible solutions for the model.

186 T.F. Noronha et al.

References

1. Bartsch, T., Drexl, A., Kroger, S.: Scheduling the professional soccer leagues of
Austria and Germany. Computers and Operations Research 33, 1907–1937 (2006)

2. Bean, J.C., Birge, J.R.: Reducing traveling costs and player fatigue in the National
Basketball Association. Interfaces 10, 98–102 (1980)

3. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Sci-
entific, Nashua, NH (1997)

4. Costa, D.: An evolutionary tabu search algorithm and the NHL scheduling problem.
Information Systems and Operational Research 33, 161–178 (1995)

5. Della Croce, F., Oliveri, D.: Scheduling the Italian football league: An ILP-based
approach. Computers and Operations Research 33, 1963–1974 (2006)

6. Duran, G., Guajardo, M., Miranda, J., Sauré, D., Souyris, S., Weintraub, A., Car-
mash, A., Chaineu, F.: Programación matemática aplicada al fixture de la primera
divisón del fútbol Chileno. Revista Ingenieŕıa de Sistemas 5, 29–46 (2005)

7. Goossens, D., Spieksma, F.C.R.: Scheduling the Belgian soccer league. In: Proceed-
ings of the 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, pp. 420–422 (August 2006)

8. Henz, M.: Scheduling a major college basketball conference revisited. Operations
Research 49, 163–168 (2001)

9. Henz, M., Müller, T., Thiel, S.: Global constraints for round robin tournament
scheduling. European Journal of Operational Research 153, 92–101 (2004)

10. Nemhauser, G.L., Trick, M.A.: Scheduling a major college basketball conference.
Operations Research 46, 1–8 (1998)

11. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Mathematics
of Operation Research 7, 67–80 (1982)

12. Ribeiro, C.C., Urrutia, S.: Scheduling the Brazilian soccer tournament with fairness
and broadcast objectives. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS,
vol. 3867, pp. 149–159. Springer, Heidelberg (2007)

13. Trick, M.A.: A schedule-and-break approach to sports scheduling. In: Burke, E.,
Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 242–253. Springer, Heidelberg
(2001)

14. Trick, M.A.: Integer and constraint programming approaches for round robin tour-
nament scheduling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 63–77. Springer, Heidelberg (2003)

15. Zhang, H.: Generating college conference basketball schedules by a SAT solver. In:
Proceedings of the 5th International Symposium on the Theory and Applications
of Satisfiability Testing, Cincinnati, pp. 281–291 (2002)

Course Timetabling

Modeling and Solution of a Complex University

Course Timetabling Problem

Keith Murray1, Tomáš Müller1, and Hana Rudová2

1 Space Management and Academic Scheduling, Purdue University
400 Centennial Mall Drive, West Lafayette, IN 47907-2016, USA

{kmurray,muller}@purdue.edu
2 Faculty of Informatics, Masaryk University, Botanická 68a,

Brno 602 00, Czech Republic
hanka@fi.muni.cz

Abstract. The modeling and solution approaches being used to au-
tomate construction of course timetables at a large university are dis-
cussed. A course structure model is presented that allows this complex
real-world problem to be described using a classical formulation. The
problem is then tackled utilizing a course timetabling solver model that
transforms it into a constraint satisfaction and optimization problem.
The tiered structure of this approach provides flexibility that is help-
ful in solving the multiple subproblems that arise from decomposition of
the university-wide problem. A production system has been partially im-
plemented and results of early use are presented. Practical issues raised
during the implementation of the automated timetabling system are also
discussed.

1 Introduction

Timetabling is a widely studied area and many potentially useful algorithms have
been offered for solving the university course timetabling problem, as evidenced
by several recent surveys [7,16,19]. Unfortunately, much of the work in this area
has been conducted using artificial data sets or based on actual problems that
have been greatly simplified. Methods developed have also rarely been extended
to the solution of actual university problems of any large scale. McCollum offers
a good review of this situation in [11].

The major differences between many of the problems studied and their real-
life counterparts are the additional complexity imposed by course structures, the
variety of constraints imposed, and the distributed responsibility for information
needed to solve such problems at a university-wide level. University timetabling
problems may also involve the solution of multiple subproblems with very dif-
ferent characteristics. In practice, therefore, the solution process should not be
specifically tailored to a single problem type.

The work described here has been motivated by the need to create and modify
course timetables at Purdue University that better meet student course demand
and allow students to be assigned to the constituent course sections in a way

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 189–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 K. Murray, T. Müller, and H. Rudová

that minimizes conflicts. Purdue is a large (39,000 students) public university
with a broad spectrum of programs at the undergraduate and graduate levels. In
a typical term there are 9,000 classes offered using 570 teaching spaces. Approxi-
mately 259,000 individual student class requests must be satisfied. The complete
university timetabling problem is decomposed into a series of subproblems to be
solved at the academic department level, where the resources required to provide
instruction are controlled. Several other special problems, where shared resources
or student interactions are of critical importance, are solved institution wide. A
major consideration in designing the system has been supporting distributed
construction of departmental timetables while providing central coordination of
the overall problem. This reflects the distributed management of instructional
resources across multiple departments at the University. The general definition of
the university-wide timetabling problem described in this paper is similar to the
problem studied by Carter [6] at the University of Waterloo, and the influence of
that work can be seen here, though the solution methods used differ significantly.
It is hoped that the results of the present work will, likewise, be beneficial to
other institutions seeking to improve their ability to construct course timetables
for their students.

This paper discusses the approach used for modeling and solving the addi-
tional complexities involved in developing automated solution techniques for a
real-life course timetabling problem on the scale of a large university. Although
a specific example is discussed, many of the methods used should be applicable
to modeling and solving other complex problems.

The complexity of the university course timetabling problem studied here
has been broken down by developing a logical data model allowing all courses
to be represented as hierarchical groupings of classes with additional parent–
child relationships and constraints governing their placement. This allows use of
one standard class-oriented problem formulation rather than having to develop
different models and solution methods to work with the wide variety of ways
that departments organize the instruction given in their courses.

A flexible and general solution technique has been developed for solving course
timetabling problems and applied to all of the departmental and special subprob-
lem. Rather than applying multiple solution methods, each optimized around the
characteristics of a specific problem, a single solution approach allows the outcomes
of all of these subproblems to be easily combined into a complete solution and fa-
cilitates optimization of the sectioning of students across the complete timetable.

Each of these topics will be explored in greater depth in the next three sec-
tions of this paper, followed by observations on creating a general framework
that is very useful in developing a practical solver. Several practical issues faced
while implementing a real-world system are then discussed, including compet-
itive behavior among users, making changes to solutions, and managing data
consistency. Some results from actual use of the system to solve departmental
and campus problems are also presented. In addition, links are provided to the
problem data used in this work to promote further study by other researchers
using real data instances.

Solution of a Complex University Timetabling Problem 191

2 Problem Decomposition

Timetabling is a resource allocation problem; therefore, at most universities re-
sponsibility for constructing the timetable is distributed among the academic
units with the faculty, physical facilities, and other resources required for offer-
ing instruction. Providing support for this distributed responsibility is important
because departmental timetablers have a much more intimate knowledge of the
needs of the courses offered, the faculty who might be able to teach a particular
class, and the spaces available for specialized instruction than any database that
might be maintained centrally. Maintaining each department’s sense of owner-
ship in the timetables that are produced is also an important factor in their
acceptance of the solutions produced by an automated timetabling process. The
process needs to be one that assists them rather than replaces them.

Student degree programs may or may not consist of courses offered primar-
ily within a single academic unit. If they do, the larger university timetabling
problem may be decomposed into a series of departmental problems with little
likelihood of creating class time assignment conflicts for students. A number of
individual departmental or school level problems have been studied in the liter-
ature [1,5,9,17]. The problem becomes more complex, however, when students
attend courses from multiple academic units and the solutions are dependent
upon the availability of students for the classes across multiple problems. Here
the overall problem can not be easily decomposed along the lines of academic
units and additional coordination is required.

In the case of Purdue University, there are many large introductory courses
that serve students in almost all degree programs. Since there are substantial
numbers of students enrolled in more than one of these courses, they create a
large dependency between the timetables of individual departments offering in-
struction. To deal with this, the cluster of large courses with students from many
disciplines is split off as a separate problem that is solved by a central scheduling
office with input from departmental timetablers. This problem is solved first, as-
signing times in a set of centrally managed lecture facilities, so that the results
are available to all of the departmental timetablers as they solve the remainder of
their problems. Most of the courses in the departmental problems primarily serve
students in programs offered by that department. There are other groupings that
occur however. There are several colleges where four or five departments create
their timetable together because all of the departments provide courses that
serve the same degree program. There are also several special problems, such as
assigning classes that require shared campus computer laboratories. The ability
to solve all of these different types of problems is one of the major challenges in
automating the timetabling process at a large university.

To better understand the effect on solution quality of decomposing the prob-
lem into multiple parts, some post-timetabling experiments were run solving all
of the parts together as a single problem. Although data for all departmental and
other special problems at the University is not yet available, comparison of sev-
eral parts addressed separately and combined as a whole gives some indication
of what is lost in solution quality as a result of the decomposition. Table 1 shows

192 K. Murray, T. Müller, and H. Rudová

Table 1. Combined solution properties of four problems (Spring 2007)

Test case Final Run separately Run combined

Assigned variables 1756.0 1756.0 ± 0.0 1756.0 ± 0.0
Time [min] – 31.8 ± 5.9 44.1 ± 9.7
Student conflicts 1258 907.7 ± 25.1 849.9 ± 27.4
Preferred time [%] 86.2 90.6 ± 0.7 91.2 ± 1.1
Preferred room [%] 82.8 83.7 ± 0.5 83.9 ± 0.4
Preferred distribution [%] 61.0 66.4 ± 3.7 71.6 ± 3.4

a summary of several measures of solution quality for the large lecture problem,
the central computing labs, and two different departmental problems when run
separately and when combined. (Average values and RMS (root-mean-square)
variances between the best solutions found for 10 different runs are presented.
Run time is 30 minutes for individual problems and 120 minutes for the com-
bined problem using 2.13 GHz Pentium M, Java 1.5.0, 2GB RAM.) The same
room resources were used for the separate and combined runs. As expected,
there is a decrease in the number of student conflicts when all of the problems
are considered together. There is also a slight improvement in the overall satis-
faction of time, room, and distribution preferences. These improvements must
be considered as theoretical, however, since the combined solution has not been
reviewed and accepted by all of the schedule managers who have the real final
say on solution quality.

The column labeled final summarizes these same measures of solution qual-
ity for the actual final timetables produced by University schedule managers
using this application for Spring 2007. These solutions were initially computed
individually using the automated solver (see Section 4); however, some addi-
tional changes were applied manually later in the process using the solver in its
interactive mode (see Section 6.2).

2.1 Interactions Between Problems

As described in the previous section, the Purdue University timetabling problem
is naturally decomposed into

– a centrally timetabled large lecture room problem (about 800 classes time-
tabled into 55 rooms with sizes up to 474 seats),

– individually timetabled departmental problems (about 70 problems with 10
to 500 classes using departmental laboratory spaces and centrally managed
classrooms allocated to departments based on expected class hours),

– and a centrally timetabled computer laboratory problem (about 450 classes
timetabled into 36 rooms with 20 to 45 seats).

The large lecture room problem consists of the largest classes on campus that
are attended by students from multiple departments. This problem is also very
dense. On average, rooms are utilized over 70% of the available time, and this

Solution of a Complex University Timetabling Problem 193

rate increases with room size (utilization is over 85% for all rooms above 100
seats and about 97% for the four largest rooms having over 400 seats). Since there
are many interactions between this problem and the departmental problems, the
large lecture problem is solved first and the departmental problems are solved
on top of this solution.

On the opposite end of the spectrum, the computer laboratory problem is
solved at the very end of the process, on top of the large lecture room and
departmental problem solutions. It contains only small classes, most of which
have many sections (laboratories are normally the smallest subparts of a course).
A typical example is a course having one large lecture class for 100 students, two
departmental recitations with 50 students each, and four computer laboratories
of 25 students.

The departmental problems are solved more or less concurrently. These prob-
lems are usually quite independent of one another, occurring in mostly different
sets of rooms, with separate instructors and students. However, there are some
cases with higher levels of interaction, particularly among students. In order to
address these situations, a concept referred to as ‘committing’ solutions has been
introduced. Each user of the timetabling system (e.g., a departmental schedule
manager) can create and store multiple solutions. At the end of the process a
single solution must be selected and committed. During the commit, all conflicts
between the current solution and all other solutions that have already been com-
mitted are checked and the commit is successful only when there are no hard
conflicts between these solutions. Each problem being solved also automatically
considers all of the previously committed solutions. This means that a room, an
instructor, or a student is available at a particular time only if that time is not
already occupied in a committed solution for a different problem. This approach
can be beneficial, for instance, in a case where there are two or more depart-
ments with many common students. Here, the problems can be solved in an
agreed upon order (the second department will solve its problem after the first
department commits its solution). Moreover, if a room must be shared by two
departments, a room-sharing matrix can be defined, stating the times during the
week that a room is available for each department to use. Finally, there is also
an option to combine two or more individual problems and solve as one larger
problem, considering all of the relations between the problems in real time.

2.2 Problem Characteristics

Each of the problems that the overall university timetabling problem has been de-
composed into has characteristics that are different from many of the other prob-
lems. Some of the different attributes of the large lecture room problem (LLR),
computer laboratory problem (LAB) and two selected departmental problems
(D1, D2) are listed in Table 2.

If solved independently, the large lecture room problem is the most difficult. In
addition to being the largest problem in terms of number of classes, it must con-
sider more students requesting multiple classes within the problem, rooms with
a greater variation in size, very high utilization in the larger rooms, and large

194 K. Murray, T. Müller, and H. Rudová

Table 2. Characteristics of selected problems (Spring 2007)

Problem LLR D1 D2 LAB

Number of classes 804 440 69 442

Avg. number of classes per type of instruction 1.25 3.52 1.50 4.8

Avg. number of hours per class 2.40 2.43 2.30 1.97

Avg. number of meetings per class 2.09 2.32 1.67 1.25

Avg. number distribution constraints per class 0.68 2.94 0.78 1.82

Number of rooms 55 25 6 36

Room sizes 40–474 24–51 14–48 20–45

Avg. room utilization [hours/week] 35.0 42.8 26.5 24.2

Average distance between rooms [m] 223.9 83.9 21.5 159.7

Number of students 27881 11992 1312 8408

Avg. number of classes per student 3.15 1.11 1.40 1.14

Classes with an instructor assigned [%] 69.8 33.9 60.9 13.35

Avg. number of classes per instructor 1.25 1.49 1.68 2.11

distances between some rooms. There are also fewer alternatives for sectioning
student enrollments. The average number of classes per type of instruction of-
fered as part the course (e.g., lecture, laboratory) is only 1.25. For departmental
problems, besides the properties listed in Table 2, it is also necessary to consider
that they are being built on top of the large lecture problem and that there are
many teachers and students in common between them and the LLR problem.
This can be an even greater complication for the computer laboratory problem,
since it is being built on top of all of the other problems.

3 Modeling the University Course Timetabling Problem

Arguably, the biggest obstacle to solving actual university course timetabling
problems is that the complexity can increase considerably beyond that repre-
sented in standard formulations of the problem [7,16,19]. As the complexity
increases, it is easy to be caught in the dual bind that the problem is both more
challenging to develop an effective solution approach for, and this approach is
less likely to be usable on other university timetabling problems, or even on
all problems that may exist at a single institution. This complexity arises from
many aspects of real-life problems. Among the most important are the structure
of course offerings and the wide range of constraints that arise. As noted above,
student enrollments across disciplines and shared use of resources between au-
tonomous departments are also of concern. Other factors include the number and
uniformity of the meeting times, dates, and locations over which classes need to
be assigned.

Solution of a Complex University Timetabling Problem 195

Instructional Offering Configuration Subpart Class
Alternate listing Parent multiple

Child offerings. . .

MA 100 – Calculus Traditional Lecture Lec 1 Lec2
ENGR 101 Recitation Rec1 Rec4

Rec2 Rec5
Rec3 Rec6

Computer-aided Lecture Lec3
Recitation Rec7

Rec8
Laboratory Lab1

Lab2

Fig. 1. Model of course structure. Example shows representation of an instructional
offering with two catalog listings, two alternate configurations, and two subparts linked
by a parent–child relationship.

3.1 Course Structure

The structure of course offerings may be the most problematic. Although the
problem is generally labeled ‘course timetabling’, in actuality it is the individual
classes that make up a course which must be timetabled. In this paper, a class is
defined to be a series of similar meetings for a subset of students enrolled in the
course. Courses are usually composed of multiple classes that may be known as
lectures, tutorials, laboratories, etc. Students normally enroll to various course
offerings that are required to meet the requirements of their degree program,
and most university information systems are organized around courses (known
as modules in some regions) as the unit of instruction.

The modeling problem becomes one of creating a logical data structure that
can be used to translate all parts of the course structure, and the relationships
between these parts, into a set of classes and an extended set of constraints
between them. The complex real-life problem can then be solved at the class
level using a standard formulation of the course timetabling problem.

To incorporate all of the course structures found in the Purdue problem, a
four-level model was developed that breaks down each course into as many as
four tiers to reflect the relationships among all of the classes that constitute
it. While in a simple lecture course the class and the instructional offering are
one and the same, for a large course there may be tens or hundreds of classes
associated with a single instructional offering. A diagrammatic representation of
the course structure model and an example showing the parts of a more complex
course is shown in Figure 1. A more detailed description of each layer in this
model is given in the paragraphs below.

For the sake of clarity, the term instructional offering has been used in this
model to distinguish the highest level of the structure from course, which is
the more usual term for a series of lessons containing the subject matter to be

196 K. Murray, T. Müller, and H. Rudová

taught. This was necessary since many universities have adopted the habit of
listing the same subject matter in their course catalogs under more than one
subject and course number. This boutique naming system can create quite a
complication when attempting to automate timetabling since it results in many
courses requiring the same times in the same rooms with the same instructors.
It is also difficult under this system to know how many students are actually
being taught together. The model addresses such cases by treating all course
identifiers as pseudonyms and linking the courses together to form a single in-
structional offering. Naturally, all courses that are linked together must have
the same structure. The alternate listing below instructional offering in Figure 1
indicates this linkage with other courses that actually meet together as part of
a single instructional offering. The instructional offering is the basic organizing
unit in this model. The offering is then divided into its constituent classes, which
are the unique entities to be timetabled.

Many courses (or instructional offerings in the model’s terminology) have
multiple subparts, such as tutorials or laboratories, that are associated with
a parent lecture. In some cases, the course may even be offered with different
configurations of these subparts. One instructor, for example, may wish to teach
the course material entirely in a lecture format whereas another may wish to
devote one day per week to small discussion groups. The configuration level is
included in this model to account for these types of situations.

At the subpart level, the type of instruction usually takes on different char-
acteristics. The students in the course may be divided into smaller groups for
different activities and other types of facilities may be required. It may or may
not be important for one group of students to be together in two or more dif-
ferent subparts of a course, such as wanting all students sectioned into a discus-
sion group to also be in a laboratory together. To accommodate such needs, a
parent–child relationship has been included in the model at the subpart level. If
a parent–child relationship is established between two subparts, all students in
a class belonging to the child subpart must also be sectioned to the appropriate
parent class. Constraints are generated prohibiting an overlap in time between
parent and child classes. In the GUI built for entering data, these parent–child
relationships are set up much like file folders in a directory tree as indicated by
the indented subparts in Figure 1. Any attributes or preferences that apply to
all classes within a subpart can be set at the subpart level. An illustration of
how the structure is displayed by the interface is shown in Figure 2.

Timetabling takes place at the class level. There will typically be multiple
classes associated with each subpart, especially when tutorial or laboratory sec-
tions are involved. Each class inherits attributes and preferences set on the sub-
part level, or these may be set for an individual class. Attributes or preferences
set at the class level will override those set at higher levels. Each class must
indicate the amount of time it meets, desired meeting pattern, weeks the class
should meet during the term, and facility needs. Specific time, room, and room
feature preferences or requirements may also be set. If an instructor is entered,
preferences may also be inherited from those set on the instructor.

Solution of a Complex University Timetabling Problem 197

Fig. 2. Structure of classes as displayed in user interface. The configuration is displayed
in the gray shaded area. Individual classes to be timetabled are listed below.

3.2 Constraints

The large number and variety of constraints that arise, both from the class struc-
ture and special requirements, also adds to the difficulty in finding a solution to
real problems. In addition to the usual constraints specifying that an instructor
can only teach one class at a time, there can only be one class per room, and
the room must accommodate class requirements, each of the departmental and
special problem instances has additional hard and soft constraints that differ
according to the concerns of the individual unit. This imposes a demand that
the solution method must be very robust so that it can accommodate each of
these different problem formulations.

Each schedule manager is able to set whatever hard or soft constraints are
considered necessary on the problem he/she is responsible for. These fall into
the categories listed in Table 3. A consistent scale (required, strongly preferred,
preferred, neutral, discouraged, strongly discouraged, prohibited) is established
for setting all of these constraints. Required and prohibited indicate hard con-
straints. Distribution constraints may be set between individual classes or be-
tween all classes associated with an instructional offering or subpart. Managers
may also override the normal hard constraint requiring one class per room by
setting the number of rooms an individual class should be timetabled to.

198 K. Murray, T. Müller, and H. Rudová

Table 3. User set constraints

Time: Meeting Time Pattern
Individual Times

Rooms: Specify Individual Buildings/Rooms
Specify User Defined Room Group

Room Features: Select Based on User Defined Set of Features
Class Distribution: Time Between

Time Order of Classes
Place Classes in Time Groups
Use Same Meeting Dates/Times
Spread in Time
Restrict Classes Meeting at Same Time
Room Sharing

As noted in the section on course modeling above, a number of additional
constraints are automatically set on each problem due to the structure of the
course. These require a student to be sectioned into one class for each subpart
and prohibit conflicts between parent and child classes. Time assignments for all
classes within a subpart are also automatically spread across all non-prohibited
times. In addition, an automatic calculation of distances between rooms is per-
formed to penalize class placements that require students or instructors to travel
large distances between consecutive classes. There is also a set of constraints that
seek to ensure efficient use of resources by discouraging use of larger rooms than
required or time placements that leave gaps in the schedule that are inconsistent
with the standard time patterns used by most classes.

4 Solution Methods

The solver applied to this problem is based on constraint satisfaction tech-
niques [8] which are frequently applied to solve timetabling problems [9,18,5].
A constraint satisfaction and optimization problem (CSOP) consists of a set of
variables having finite domains, a set of (hard) constraints restricting the values
that these variables can be assigned at the same time, and an objective func-
tion. In a complete solution to a CSOP, a value is assigned to every variable such
that every hard constraint is satisfied. The objective can be expressed by the
soft constraints and the aim is to find a complete solution that violates the least
number of these soft constraints (or a weighted sum of violated soft constraints).

Since a large majority of classes meet in a regular fashion, it is normally
possible to represent all meetings of a class using a single variable. Although not
required by the solver, tying meetings together into standard time patterns in
this way considerably simplifies the problem constraints. As a result of modeling
classes as a homogeneous series of events, most classes have all meetings in
the same room, taught by the same instructor, and at the same time of day.
Meetings are also separated by a uniform number of days. A typical standard
time pattern for a class meeting 3 hours per week is to meet 3 days per week

Solution of a Complex University Timetabling Problem 199

for 1 hour. Moreover, in the time patterns used by Purdue, these three meetings
can only be on Monday, Wednesday, and Friday starting at half past each hour.

All valid placements of a course in the timetable have a one-to-one correspon-
dence with values in the variable’s domain. This means that each value encodes
the selected date pattern (weeks when the class is to be taught), time pattern,
and starting time. Each value also encodes the instructor and the given number of
meeting rooms. Additionally, each such placement also encodes preferences (soft
constraints), combined from the preferences for time, room, and room features,
inherited from various levels of the input data. Only placements with valid times
and rooms are present in a class’s domain. For example, if an instructor computer
(room feature) is required, only placements in a room containing a computer are
present. Also, only rooms large enough to accommodate all the enrolled students
can be present in valid class placements. Similarly, if a time interval is prohibited,
no placement containing this time interval is in the class’s domain.

The variable and value encodings described above leave only two types of
hard constraints to be implemented: hard resource constraints (e.g., only one
class can be taught by an instructor, or in a room, at any time, and only when
that resource is available), and hard distribution constraints (expressing required
or prohibited relations between several classes: e.g., that two sections of the same
lecture can not be taught at the same time, or that a classes must be taught
after another). There are three types of soft constraints. The first category of soft
constraints are those on times and rooms. The second group of soft constraints
is formed by student requirements. Each student can enroll in several classes,
so the aim is to minimize the total number of student conflicts among these
classes. Finally, there are soft distribution constraints that express preferred or
discouraged relations between groups of classes.

4.1 Timetabling Solver

The solver is based on an iterative forward search algorithm [13,15]. This algo-
rithm is similar to local search methods; however, in contrast to classical local
search techniques, it operates over feasible, though not necessarily complete,
solutions. In these solutions some classes may be left unassigned. All hard con-
straints on assigned classes must be satisfied however. Such solutions are easier
to visualize and more meaningful to human users than complete but infeasible
solutions. Because of the iterative character of the algorithm, the solver can
also easily start, stop, or continue from any feasible solution, either complete
or incomplete. Moreover, the algorithm is able to support dynamic aspects of
the minimal perturbation problem [4,15], allowing the number of changes to the
solution (perturbations) to be kept as small as possible.

The search is processed iteratively (see Figure 3 for the algorithm). During
each step, a variable is selected. Typically an unassigned variable is chosen.
An assigned variable may be selected when all variables are assigned but the
solution is not good enough: e.g., when there are still many violations of soft
constraints. Once a variable is selected, a value from its domain is chosen for
assignment. Even if the ‘best’ value is selected, its assignment to the selected

200 K. Murray, T. Müller, and H. Rudová

procedure solve(initial) // initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution
while canContinue (current, iteration) do

iteration = iteration + 1;
variable = selectVariable (current);
value = selectValue (current, variable);
unassign(current, conflicting variables(current, variable, value));
assign(current, variable, value);
if better (current, best) then best = current

end while
return best

end procedure

Fig. 3. Pseudo-code of the search algorithm

variable may cause some hard conflicts with already assigned variables. Such
conflicting variables are removed from the solution and become unassigned. Fi-
nally, the selected value is assigned to the variable. The algorithm attempts to
move from one (partial) feasible solution to another via repetitive assignment
of a selected value to a selected variable. During this search, the feasibility of
all hard constraints in each iteration step is enforced by removing conflicting
variables. The search is terminated when the desired solution is found or when
there is a timeout. The best solution found is then returned.

Application of this algorithm to the course timetabling problem has been de-
scribed previously [15] in greater detail; however, its use is not limited to course
timetabling. The algorithm can be easily applied to various constraint satisfaction
and optimization problems and has been extended in severalways [13]. An example
is the use of a learning technique called conflict-based statistics that has been de-
veloped to improve the quality of the final solution [14]. In this approach, conflicts
during the search are memorized in order to minimize their potential repetition.

4.2 Sectioning

Many course offerings consist of multiple classes, with students enrolled in the
course divided among them. These classes are often linked by a set of constraints,
namely:

– Each class has a limit stating the maximum number of students who can be
enrolled in it.

– A student must be enrolled in exactly one class for each subpart of a course.
– If two subparts of a course have a parent–child relationship, a student en-

rolled in the parent class must also be enrolled in one of the child classes.

Moreover, some of the classes of an offering may be required or prohibited for
certain students, based on reservations that can be set on an offering, a config-
uration, or a class.

Solution of a Complex University Timetabling Problem 201

Before implementing the solver, an initial sectioning of students into classes is
processed. This sectioning is based on Carter’s [6] homogeneous sectioning and
is intended to minimize future student conflicts. However, it is still possible to
improve on the number of student conflicts in the solution. This can be accom-
plished by moving students between alternative classes of the same course during
or after the search. Several approaches have been discussed in the literature on
the sectioning subproblem [2,3,10], usually incorporating some iteration between
sectioning and timetabling during the solution process.

In the current implementation, students are not re-sectioned during the search,
but a student re-sectioning algorithm is called after the solver is finished or upon
the user’s request. The re-sectioning is based on a local search algorithm where
the neighboring assignment is obtained from the current assignment by applying
one of the following moves:

– Two students enrolled in the same course swap all of their class assignments.
– A student is re-enrolled into classes associated with a course such that the

number of conflicts involving that student is minimized.

The solver maintains a queue, initially containing all courses with multiple
classes. During each iteration, an improving move (i.e., a move decreasing the
overall number of student conflicts) is applied once discovered. Re-sectioning is
complete once no more improving moves are possible. Only consistent moves
(i.e., moves that respect class limits and other constraints) are considered. Any
additional courses having student conflicts after a move is accepted are added
to the queue.

Since students are not re-sectioned during the timetabling search, the com-
puted number of student conflicts is really an upper bound on the actual number
that may exist afterward. To compensate for this during the search, student con-
flicts between subparts with multiple classes are weighted lower than conflicts
between classes that meet at a single time (i.e., having student conflicts that
cannot be avoided by re-sectioning).

5 General Framework for Modeling and Solving Problem

One observation that can be made as a result of the work modeling the uni-
versity course timetabling problem and developing a solution method capable
of addressing the level of complexity involved, is that the overall approach to
structuring the problem is a critical factor in achieving a successful outcome.
Solving this problem has required multiple iterations, each expanding the course
data structure and the constraints needed to accurately represent the problem.
Without having separate components to the solution process, each able to ad-
dress specific aspects of the overall problem without requiring extensive rework
of other components, it would have been much more difficult to accommodate all
of the necessary changes. The structure that has been developed in the course of
solving the problem described here can be modeled using the following three-tier
architecture:

202 K. Murray, T. Müller, and H. Rudová

Presentation (persistent/user interface) layer
Timetabling (solver implementation) layer

Constraint satisfaction (solver abstract) layer.

The presentation layer consists of data persistency, business logic and a user
interface for data entry and operation of the timetabling solver. It contains the
structure of courses, classes, rooms, instructors, constraints, preferences, and
requirements as entered by users. All data on this level are persistent, stored in
the database in a similar structure as it is presented to the users. This layer also
contains timetable solutions in the structure that they are stored in the database
and presented to the users.

The timetabling layer contains the data model being used by the timetabling
solver. There are no persistent data in this layer and there is no direct communi-
cation between this layer and the database or the user interface. Communication
between (the business logic of) the presentation layer and the timetabling layer
consists of two parts. The first intermediates the interaction between the data
model of the presentation layer and the timetabling layer: i.e., loading the data
into the solver and saving the resulting solution from the solver. There are var-
ious transformations present in this interface. For instance, the entire course
structure is transformed into classes and all preferences are inherited to the
class level. The second interface allows the user interface from the presentation
layer to operate the solver as well as to present the solution from the timetabling
layer to the user. The data model of this structure contains classes, room and
time assignments, room, instructor, distribution, and other constraints as well
as the problem-specific heuristics that are used to guide the solver.

The constraint satisfaction layer consists of an implementation of the con-
straint satisfaction and optimization solver, working with variables, values and
(hard and soft) constraints. The solver is guided by a general set of heuristics
(e.g., variable and value selection criteria) without knowledge of any classes,
rooms or other timetabling specific primitives. The interface between the con-
straint satisfaction and timetabling layers is implemented through general ab-
stract objects like variables, values, and constraints by the corresponding
timetabling problem specific objects like classes, time/room assignments, and
resource or distribution constraints. Similarly, some of the general heuristics are
extended by the problem specific ones of the timetabling layer.

The aim of this architecture is to be able to alter one of the layers without
having to change the others. In this way the solver can be modified, or even
completely changed, without any changes being made to the upper layers. Sim-
ilarly, most changes to the user interface or the database structure can end at
the interface that is transforming data models between the presentation and the
timetabling layers.

6 Practical Issues Arising During Implementation

In the course of developing a system that is usable in practice, it was necessary to
confront a number of issues that are not typically addressed in the literature on

Solution of a Complex University Timetabling Problem 203

timetabling, but which are critical to successful implementation. These included
issues of the ‘fairness’ of a solution across all departments with classes being
timetabled, the ease of introducing changes after a solution has been generated,
and the ability to check and resolve inconsistencies in input data.

6.1 Competitive Behavior

A complicating aspect of real timetabling problems is that there is competition
for preferred times and rooms. Hard and soft constraints placed on the problem
are often reflective of this competitive behavior (e.g., limited instructor time
availability, restrictive room requirements).

Hard constraints limit the solution space of the problem to reflect the needs
or desires of those who place them. Soft constraints introduce costs into the
objective function when violated. In either case, the more constraints placed on
the problem by a particular class, instructor, or class offering department, the
greater influence they will have on the solution. The general effect is to weight the
solution in the favor of those who most heavily constrain the problem. This can
create both harder problems to solve and solutions that are perceived as unfair
by other affected groups or individuals. Inequity in the quality of time and room
assignments received by different departments and faculty members doomed a
previous attempt at automating the timetabling process at Purdue [12].

To counteract the tendency of the solution to favor those who place the most
restrictions, a number of market leveling techniques were employed while model-
ing and solving the problem. The first was to weight the value of time preferences
inversely proportional to the amount of time affected. A class with few restric-
tions on the times it may be taught has those restrictions more heavily weighted
than a class with many restrictions. The intent is to make the total weight of
all time restrictions on any class roughly equal. A second technique used in the
solver was to introduce a balancing constraint. This is a semi-hard constraint
in that it initially requires the classes offered by each department to be spread
equitably across all times available for the class, but is automatically relaxed to
become a cost penalty for poorly distributing time assignments if the desired dis-
tribution is overly constraining. Addressing this aspect of the real-world problem
was a key component of gaining user acceptance.

6.2 Interactive Changes

While it was known early that it would be necessary to deal with changes after
an initial solution was found, it became clear the first time the system was used
in practice that an interactive mode for exploring the possibility of changes, and
easily making them, would be necessary. Following the philosophy of wanting
to minimize the number of changes needed to a solution [4,15], an approach
was developed to present all feasible solutions (and their costs) that can be
reached via a backtracking process of limited depth. The user is allowed to make
the determination of the best tradeoff between accommodating a desired change
and the costs imposed on the rest of the solution with a knowledge of what those

204 K. Murray, T. Müller, and H. Rudová

Fig. 4. User interface showing a list of suggestions provided to the user for a class

costs will be. A further refinement was to allow some of the hard constraints to
be relaxed in this mode. This means, for instance, that the user can put a class
into a room different from the ones that were initially required.

Figure 4 displays a list of suggestions (nearby feasible solutions) for reassigning
a selected class. The user may either pick one of these alternative solutions,
ask the solver to provide additional suggestions by increasing the search depth
(changes in up to two class placements are allowed by default), or assign the
class manually by selecting one of the possible placements. In this last case, a
list of conflicting classes is shown together with a list of suggestions for resolving
these conflicts. The user may either apply the selected assignment (which will
cause all the conflicting classes to be unassigned), pick one of the suggestions,
or start resolving the conflicts manually by selecting a new placement for one of
the conflicting classes. This process can continue until all conflicts are resolved
manually or a suggestion resolving all the remaining conflicts is found.

6.3 Data Consistency

Often during the early stages of the timetabling process, the input data provided
by schedule managers are inconsistent. This means that the problem is over-
constrained, without any complete feasible solution. A very important aspect
of the timetabling system is therefore an ability to provide enough information
back to the timetablers describing why the solver is not able to find a complete
solution.

Solution of a Complex University Timetabling Problem 205

In prior work on this problem [15], a learning technique, called conflict-based
statistics, was developed that helps the solver to escape from a local optimum.
This helps to avoid repetitive, unsuitable assignments to a class. In particular,
conflicts caused by a past assignment, along with the assignment that caused
them, are stored in memory. This learned information gathered during the search
is also highly useful in providing the user with relevant data about inconsistencies
and for highlighting difficult situations occurring in the problem.

7 Implemented System

The system being implemented at Purdue University has been designed as a
multi-user application with a completely web-based interface. The primary tech-
nologies used are the Enterprise Edition of Java 2 (J2EE), Hibernate, and an
Oracle database.

From the initial planning stages, it was recognized that there were a wide vari-
ety of timetabling needs in different University departments and a wide range in
departmental schedule manager’s comfort level with automating the timetabling
process. The application has, therefore, been conceived of as a flexible tool to
help departmental timetablers with the process rather than a completely auto-
matic system without human interaction.

At the time of this writing, the automated timetabling system has been used
to create the large lecture timetable for the past three terms. It has also been
used by the computing lab manager and seven departmental or college schedule
managers to solve a range of different problems for the past term. The system
is planned to be implemented campus-wide in January 2007 for developing the
Fall timetable. Prior to full-scale use, considerable training is planned for sched-
ule managers. Individuals with experience manually creating timetables are not
necessarily used to formulating the rules they use as a set of constraints. Some
schedule managers seem apprehensive about spelling out, even for themselves,
the actual decision rules and priorities they apply when constructing a timetable.
This may be because many decisions are based on political rather than objec-
tive criteria. For the initial campus-wide implementation, therefore, users who
are more comfortable with their manually developed timetables will only be re-
quired to use the system for entry of class data and checking for inconsistencies
in their solution. Departments that want to use all or most of the features of
the system will be trained to use the solver on the constraints they enter. It is
anticipated that the departmental schedule managers will want to use more and
more capabilities as they become comfortable with the system and experienced
with using the solver to help place additional classes.

7.1 Spring 2007 Timetables

Table 4 shows a summary of solutions for the individual problems that were
discussed in Section 2.2: i.e., the large lecture problem (LLR), the centrally
timetabled computer laboratory problem (LAB), and two different departmen-
tal problems (D1, D2). The column titled Final contains the results that were

206 K. Murray, T. Müller, and H. Rudová

Table 4. Individual solution properties of four problems

LLR (804 variables) Final Run separately Run combined

Time [min] – 5.2 ± 4.9 –
Student conflicts 1207 756.8 ± 25.1 723.6 ± 28.0
Preferred time [%] 84.7 89.9 ± 0.7 89.7 ± 1.7
Preferred room [%] 88.9 91.9 ± 0.9 92.0 ± 0.8
Preferred distribution [%] 66.7 87.5 ± 5.9 70.0 ± 6.0

D1 (440 variables) Final Run separately Run combined

Time [min] – 20.8 ± 3.6 –
Student conflicts 11 12.3 ± 2.3 13.2 ± 4.1
Preferred time [%] 67.4 78.8 ± 2.0 81.1 ± 1.4
Preferred room [%] 76.2 78.2 ± 2.2 77.1 ± 1.6
Preferred distribution [%] 57.1 61.9 ± 4.1 67.4 ± 4.5

D2 (69 variables) Final Run separately Run combined

Time [min] – 0.08 ± 0.07 –
Student conflicts 3 0.6 ± 1.0 3.4 ± 1.7
Preferred time [%] 81.6 95.9 ± 1.0 95.9 ± 1.7
Preferred room [%] 100.0 100.0 ± 0.0 100.0 ± 0.0
Preferred distribution [%] 100.0 100.0 ± 0.0 100.0 ± 0.0

LAB (443 variables) Final Run separately Run combined

Time [min] – 5.3 ± 3.4 –
Student conflicts 14 14.0 ± 0.0 14.2 ± 0.4
Preferred time [%] 87.6 94.5 ± 1.4 96.6 ± 0.8
Preferred room [%] 75.8 78.8 ± 0.5 78.6 ± 0.8
Preferred distribution [%] 68.0 75.5 ± 4.2 78.0 ± 3.4

produced by schedule deputies using the timetabling application for Spring 2007.
These solutions were initially computed individually using the automated solver;
however, changes were also made using the interactive solver. The column Run
separately contains results from 10 individual test runs. The LLR problem was
solved first. Problems D1 and D2 were solved on top of the LLR solution. The
LAB problem was solved at the end, on top of the LLR, D1 and D2 solutions that
were produced in the same test run. In each row, the average and RMS (root-
mean-square) variances of the best solutions found within a 30 minute time limit
are displayed. The column Run combined contains average results from 10 com-
bined test runs. In these tests, all four problems were solved together within a
120 minute long time frame.

During work on the Spring 2007 data set, the solver was able to provide con-
sistent solutions of high quality. The difference in properties between solutions
to individual problems are caused primarily by differences in the characteristics
of these problems. For example, there are 27,881 students involved in the LLR
problem, with each student taking 3.15 LLR classes on average, but there are

Solution of a Complex University Timetabling Problem 207

only 8,408 students in LAB problem, with each students taking only 1.14 LAB
classes. Section 2.2 discusses these differences in more detail. The input data for
each department has also been entered by a different schedule manager for each
problem and there are sizable differences in the number and quality of prefer-
ences/requirements entered by each manager. This leaves the solver with a much
different capacity for optimization in each problem. In many cases, the managers
seem to be trying to convince the solver to mimic the properties of the manu-
ally made solutions they were accustomed to. In particular, the large increase
in student conflicts between the computed best solution and the final solution
committed by the schedule manager in the large lecture problem is largely at-
tributable to adjustments to accommodate faculty time preferences. These had
been the primary criteria in manually building timetables since data on student
conflicts were not available to be considered in the past.

7.2 Data Sets

Input data sets for the timetabling problems discussed above are available in
an easily readable XML format at http://www.smas.purdue.edu/research.
In order to comply with data security policies, these data sets have been purged
of all private information; however, they do retain all of the complexity of the
Purdue University timetabling problem that has been encountered so far. Fu-
ture expansion of these pages will include new timetabling input data sets as
well as additional information about ongoing research. A verification mechanism
may also be developed for solutions to the timetabling problems that have been
included, as well as an open-source version of the timetabling solver and/or the
entire timetabling application. It is hoped that the format in which the data are
presented on this page will create a foundation for a widely acceptable format
for interchange of complex university course timetabling benchmarks.

8 Conclusions

Based on the results of this project, it is clear that complex university course
timetabling problems can be solved at a level where these solutions are of prac-
tical use in the real world. Creating systems to do so is still not an easy process,
but it is possible to develop effective solutions using methods that are readily
available. The biggest challenges at this point appear to be understanding the
structures in the problem being considered and addressing the concerns that
users have with timetabling beyond the basic solution method.

Considering the problem in a layered framework (constraint satisfaction,
course timetabling, presentation) was of significant help in developing a flexible
enough approach to solving the problem that it could withstand the numerous
adaptations necessary to extend the solution capabilities to cover the university-
wide problem. This type of framework may also be useful for considering other
types of problems. The examination timetabling problem, for example, would fit
nicely on top of the solver used here with a new data model in the presentation
layer and some adaptation to the timetabling model.

http://www.smas.purdue.edu/research

208 K. Murray, T. Müller, and H. Rudová

Creating a data model that can simplify the complex course structures en-
countered into a more manageable series of classes is also very important. While
it is still likely that institutions with significantly different structures for their
courses will require different data models, and possibly some difference in their
timetabling models, it is clear from the work that has been done here that with
sufficient effort it is possible to develop models comprehensive enough to be used
on a wide set of problems. Aside from some interfaces for importing data from
other systems, the timetabling application developed as a result of this project
should be usable at a large number of other universities with similar complexity
in course structures.

Acknowledgements. Hana Rudová’s work is supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic, research intent No. 0021622419.

References

1. Abdennadher, S., Marte, M.: University course timetabling using constraint han-
dling rules. Journal of Applied Artificial Intelligence 14, 311–326 (2000)

2. Amintoosi, M., Haddadnia, J.: Feature selection in a fuzzy student sectioning al-
gorithm. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp.
147–160. Springer, Heidelberg (2005)

3. Aubin, J., Ferland, J.A.: A large scale timetabling problem. Computers and Oper-
ations Research 16, 67–77 (1989)

4. Barták, R., Müller, T., Hana Rudová, H.: A new approach to modeling and solving
minimal perturbation problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P.,
Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 233–249. Springer,
Heidelberg (2004)

5. Cambazard, H., Demazeau, F., Jussien, N., David, P.: Interactively solving school
timetabling problems using extensions of constraint programming. In: Burke, E.K.,
Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 190–207. Springer, Heidel-
berg (2005)

6. Carter, M.W.: A comprehensive course timetabling and student scheduling system
at the University of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS,
vol. 2079, pp. 64–82. Springer, Heidelberg (2001)

7. Carter, M.W., Gilbert Laporte, G.: Recent developments in practical course
timetabling. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408,
pp. 3–19. Springer, Heidelberg (1998)

8. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Mateo, CA (2003)
9. Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building university timetables

using constraint logic programming. In: Burke, E.K., Ross, P. (eds.) Practice and
Theory of Automated Timetabling. LNCS, vol. 1153, pp. 130–145. Springer, Hei-
delberg (1996)

10. Hertz, A.: Tabu search for large scale timetabling problems. European Journal of
Operational Research 54, 39–47 (1991)

11. McCollum, B.: A perspective on bridging the gap in university timetabling. In:
Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer,
Heidelberg (2007)

12. Mooney, E.L., Rardin, R.L., Parmenter, W.J.: Large scale classroom scheduling.
IIE Transactions 28, 369–378 (1996)

Solution of a Complex University Timetabling Problem 209

13. Müller, T.: Constraint-based Timetabling. Ph.D. Thesis, Charles University in
Prague, Faculty of Mathematics and Physics (2005)

14. Müller, T., Barták, R., Rudová, H.: Conflict-based statistics. In: Gottlieb, J., Landa
Silva, D., Musliu, N., Soubeiga, E. (eds.): EU/ME Workshop on Design and Eval-
uation of Advanced Hybrid Meta-Heuristics, University of Nottingham (2004)

15. Müller, T., Barták, R., Rudová, H.: Minimal perturbation problem in course
timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616,
pp. 126–146. Springer, Heidelberg (2005)

16. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J.Y.-T. (ed.) The
Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 45,
CRC Press, Boca Raton, FL (2004)

17. Qualizza, A., Serafini, P.: A column generation scheme for faculty timetabling.
In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 161–173.
Springer, Heidelberg (2005)

18. Rudová, H., Murray, K.: University course timetabling with soft constraints. In:
Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 310–
328. Springer, Heidelberg (2003)

19. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

Timetabling Problems at the TU Eindhoven

John van den Broek, Cor Hurkens, and Gerhard Woeginger

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

Den Dolech 2, 5600 MB Eindhoven, The Netherlands
j.j.j.v.d.broek@tue.nl, {wscor,gwoegi}@win.tue.nl

Abstract. The students of the Industrial Design department at the TU
Eindhoven are allowed to design part of their curriculum by selecting
courses from a huge course pool. They do this by handing in ordered pref-
erence lists with their favorite courses for the forthcoming time period.
Based on this information (and on many other constraints), the depart-
ment then assigns courses to students. Until recently, the assignment
was computed by human schedulers who used a quite straightforward
greedy approach. In 2005, however, the number of students increased sub-
stantially, and as a consequence the greedy approach no longer yielded
acceptable results.

This paper discusses the solution of this real-world timetabling prob-
lem. We present a complete mathematical formulation of it, and we ex-
plain all the constraints resulting from the situation in Eindhoven. We
solve the problem using lexicographical optimization with four subprob-
lems. For all four subproblems, an elegant integer linear programming
model is given which easily can be put into CPLEX. Finally, we report
on our computational experiments and results around the Eindhoven
real-world data.

1 Introduction

In February 2005, outraged students of the Industrial Design department were
protesting at the TU Eindhoven (The Netherlands). Uproar and revolt were
in the air. What had happened? Here is the story. The academic year of the
roughly 350 students of Industrial Design is split into a number of periods. In
every period, every student must do a number of small courses. There is a pool
of roughly 55 courses to choose from, and every student submits an ordered
preference list with his/her 10 favorite courses to the department. Based on all
the ordered preference lists, a scheduler at the department then assigns roughly
four courses to every student. Until recently, the scheduler was a human decision-
maker who essentially applied a hand-woven greedy assignment procedure.

In February 2005, the students were absolutely dissatisfied with the work of
the human scheduler: many of them did not get the courses which they would
have liked to get; many of them were assigned to courses which they really did
not want to do; and more than 150 out of the 350 students received courses that
were not listed on their preference list!

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 210–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Timetabling Problems at the TU Eindhoven 211

The department of Industrial Design realized that they had a problem. They
also realized that they did not know how to solve this problem. The number of
students had increased substantially, and the timetabling problem had become
much larger, much harder, and much more complex. Hence, the department
contacted the local experts on the campus: us. They were hoping to find a
somewhat better assignment through computer programs. They explained their
problem to us (in a certain problem formulation No. 1), and we happily told
them that we would be able to solve it: the problem (in formulation No. 1) could
be modeled as a network flow problem, and hence is solvable in polynomial
time. Unfortunately, it turned out that formulation No. 1 was not a complete
formulation of the problem: they had forgotten to inform us about a number of
additional restrictions that lead to a new, more difficult assignment problem (in
formulation No. 2), which eventually turned out to be NP-hard.

This paper is a report on the course assignment problem of the Industrial De-
sign department. We describe the assignment problem in its (incomplete) formu-
lation No. 1 and in its (complete) formulation No. 2. We show that formulation
No. 1 yields a tractable problem, whereas formulation No. 2 yields an intractable
problem. Our main contribution is a careful case study of the complete problem
formulation. We design an elegant integer linear programming model for it, with
roughly 9000 variables and roughly 7000 constraints. Putting this ILP model into
CPLEX yields excellent results within moderate computation times. We describe
the ILP model in detail, and we report on our computational experiments with
the real-world data of the Industrial Design department.

Structure of the paper. The rest of the paper is structured in the following way.
In Section 2 we give a literature review of university and school timetabling.
Section 3 contains a detailed description of the problem we solved for the de-
partment of Industrial Design. The problem is formulated as an integer linear
program which is described in Section 4. Section 5 contains the computational
results. Some conclusions are given in Section 6.

2 Literature Review

The literature contains a large number of variants of the timetabling problem.
These variants differ from each other by the type of institution involved (univer-
sity or high school) and by the type of constraints. The annotated bibliography
of timetable construction by Schmidt and Ströhlein [22] lists many papers that
appeared before 1980. Schaerf [21] gives a survey of the various formulations
of timetabling problems and classifies the timetabling problem into the follow-
ing three main classes: school timetabling, examination timetabling and course
timetabling. Of course this classification is crude, and there are many real-world
timetabling problems that fall in between two of these classes. For surveys of
timetabling methods and applications see de Werra [11], Burke et al. [3], Carter
and Laporte [8] and Burke and Petrovic [5].

212 J. van den Broek, C. Hurkens, and G. Woeginger

The basic school timetabling problem is also known as the class–teacher model.
The simplest problem consists in assigning lectures to periods in such a way that
no teacher or class is involved in more than one lecture at a time. Even et al. [13]
proved that there always exists a solution of this simplest version of the school
timetabling problem, unless a teacher or class is involved in more lectures than
there are time slots. Alternative formulations of the school timetabling problem
with more constraints can be found for example in Even et al. [13], Garey and
Johnson [15] and de Werra [11]. Daskalaki and Birbas [10] provide an integer
programming formulation of the class–teacher problem and solve it with a two-
stage relaxation procedure. The problem is formulated as a set packing problem
with side constraints by Avella and Vasilev [2]. They tighten the formulation by
adding the valid inequalities of the Set Packing polytope and introduce some
new valid inequalities.

University timetabling can be classified into two categories: course and ex-
amination timetabling. Petrovic and Burke [19] discuss problem statements and
give an overview on recent research results on university timetabling. The main
differences between course timetabling and examination timetabling are that
examination timetabling has only one exam for each course, that the time con-
flict condition is strict, and that several exams can be done simultaneously
in one room. Examples for additional soft constraints are: students can do
at most one exam per day, and students may not have too many consecu-
tive exams. Schaerf [21] gives an integer linear programming formulation of
the examination timetabling problem and describes some alternative variants
of the problem. Carter and Laporte [7] provide an overview on examination
timetabling.

The course timetabling problem consists in scheduling a set of lectures for
each course within a given number of rooms and time period. The main difference
from the school timetabling problem is that university courses can have common
students, whereas school classes are disjoint sets of students. De Werra [11] gives
a binary integer programming formulation. An overview on course timetabling
problems is given by Carter and Laporte [8] and Schaerf [21] discusses some
of the most common variants of the basic formulation. The design and imple-
mentation of a decision support system for constructing a combined university
course-examination timetable is reported by Dimopoulou and Miliotis [12]. They
also take into account the increased flexibility of students’ preferences for specific
classes.

One variant is called the grouping subproblem or student scheduling problem.
If the number of students is too large for one room, courses are split into groups
of students and there are conditions on the minimum and maximum number
of students that can be assigned to each group. A student is required to take a
certain number of courses, which they have to select themselves after a timetable
is made available. The problem consists of assigning a student to a specific group
of a course for a given fixed timetable such that students are satisfied and there
are no time conflicts, see Busam [6], Feldman and Golumbic [14] and Laporte
and Desrochers [16].

Timetabling Problems at the TU Eindhoven 213

Cheng et al. [9] discuss the Student Scheduling Problem (SSP) as it generally
applies to high schools in North America. They define the problem as the assig-
nation of courses and a specific section to each student. The objective is to fulfill
student requests, providing a conflict-free schedule. They show that the problem
is NP-hard and discuss various multi-commodity flow formulations with frac-
tional capacities and integral gains. The main difference between the SSP and
our timetabling problem is that for the SSP all courses on the preference list of
the students have to be assigned to students. This results with most practical
cases in an empty feasible solution set.

Laporte and Desrochers [16] give a mathematical formulation of the student
scheduling problem. They formulate the problem as an optimization problem
splitting the requirements into hard and soft ones. The only hard constraint in
their model is that student course selections must be respected. Time conflicts
for students are soft constraints. When time conflicts occur students are advised
to make a different course selection. The problem is then solved in three phases:
in the first one the algorithm searches for an admissible solution, in the second
section enrollments are balanced and in the third the room capacities have to
be respected. Tripathy [23] formulated the student scheduling problem as an
integer linear programming problem and uses Lagrangian Relaxation to solve it.
Sabin and Winter [20] use a greedy approach that is moderated by an intelligent
ordering of the students. Miyaji et al. [18] apply goal programming.

McCollum [17] explains that for university timetabling there is still a gap be-
tween a successful research project and what is needed in practice. He tries to
bridge this gap between research and practice by providing up-to-date informa-
tion from practice which is needed by researchers. Burke et al. [4] and Zampieri
and Schaerf [24] note that many of the search methodologies described in the
literature are not applicable in most educational institutions, because they are
simplified too much.

Carter and Laporte [8] note that they were ‘somewhat surprised to discover
that there are very few course timetabling papers that actually report that the
(research) methods have been implemented and used in institution’. McCol-
lum [17] explains that the situation has hardly changed in the last decade. Our
paper is an example of a successful implementation of a mathematical program-
ming model for a specific course timetabling problem.

3 Problem Description

At our first meeting, the Industrial Design department explained the problem to
us in a certain problem formulation No. 1; see Section 3.1. This problem can be
modeled as a network flow problem, and hence is solvable in polynomial time;
see Ahuja et al. [1].

Unfortunately, we learnt after some time that formulation No. 1 was not a
complete formulation of the problem. They actually had forgotten to tell us
about a number of additional restrictions that lead us to a new, more difficult
assignment problem formulation No. 2. Section 3.2 describes formulation No. 2.

214 J. van den Broek, C. Hurkens, and G. Woeginger

Table 1. Example of preference lists

Student rs P1 P2 P3 . . . P10

s040202 4 DAC03 DA247 DA125 . . . DA405
s040203 4 DA619 DA125 DA201 . . . DA616
s040204 4 DA418 DA242 DA402 . . . DA621

3.1 Problem Formulation No. 1

At the first meeting with the Industrial Design department, we were told that
every student hands in a preference list of at most 10 courses and requests a
certain number of courses. The only constraints are that a student cannot do
two courses at the same time and there is a maximum number of students that
can be assigned to a course. This section contains a more detailed description of
problem formulation No. 1.

A set C of courses and for each course c an upper bound Cmax
c on the number

of students is given. This number depends on the preference of the teacher and
the room capacity in which the course is given. Each course has one weekly
meeting time which is already fixed. This weekly meeting time always consists
of two consecutive hours. Two such consecutive hours are defined as one time
slot. The weekly meeting time of a course is chosen from a set T of disjoint time
slots. T (c) is defined as the time slot which is the weekly meeting time of course
c. Hence, one of the constraints in the model is that courses ci and cj cannot be
assigned to one student if T (ci) = T (cj).

We define S as the set of students. For each student s the requested number rs

of courses is given. Ps is defined as the set of positions on the preference list for
which student s filled in a course. Most students have Ps = {1, . . . , 10}. There
are also students that hand in a smaller preference list. For instance, a student
almost finishing his bachelor degree and with only one course left to do, which
has to be a math course, hands in a preference list with only math courses. For
a student s with only six courses on its preference list we have Ps = {1, . . . , 6}.
Table 1 gives a few examples of preference lists. Column Pi gives the encoded
course name of the course on position i of the preference list. The parameter csp

is introduced and is equal to c if course c is on position p of the preference list
of student s.

In summary, the input of problem formulation No. 1 consists of

– a set T of time slots;
– a set C of courses; for every course c ∈ C a time slot T (c) and a maximum

number Cmax
c of participating students is given;

– a set S of students; for every student s ∈ S a set Ps of filled positions of the
preference list, a course csp for each position p ∈ Ps and a requested number
rs of courses is given.

The goal is to assign as many courses to students as possible, while

Timetabling Problems at the TU Eindhoven 215

– the number of courses assigned to student s does not exceed the requested
number rs,

– courses assigned to a student are on his preference list,
– courses assigned to a student do not conflict in time,
– no course exceeds its maximum number of assigned students.

This problem can be modeled as a network flow problem. A description of this
network flow model is given in Appendix A.

3.2 Problem Formulation No. 2

When we received the first data set from the Industrial Design department, we
were very surprised: there suddenly were also lower bounds Cmin

c on the num-
ber of students participating in course c. This yields the new constraint that
a course either will not be given at all, or otherwise has at least Cmin

c partic-
ipating students. This new constraint cannot be modeled as a flow-constraint,
and hence the maximum flow model in Appendix A becomes obsolete. In fact,
the new constraint makes the problem NP-hard; see Appendix B. After looking
at the data more carefully and after conversations with the Industrial Design
department we noticed there were a lot more restrictions. This section explains
these extra restrictions and defines the problem in more detail.

An academic year is divided into a certain number of teaching periods. For in-
stance, the academic year 2005–06 is divided into six teaching periods. We define
such a teaching period as a block. The Industrial Design department wants us to
schedule two consecutive blocks simultaneously. Therefore, set B is introduced
as the set of blocks that have to be scheduled simultaneously.

In problem formulation No. 1 we assumed the workload of all courses was
equal. However, there are courses with a workload of 40 hours and courses with a
workload of 80 hours. In the remainder of this paper a workload of 1 corresponds
with a workload of 40 hours. In Appendix B we prove that having courses with a
workload 1 and courses with a workload 2 makes the problem NP-hard. For each
course c ∈ C and block b ∈ B the parameter w(c, b) is defined as the workload
of course c in block b. Hence for a course c with a workload of 80 hours in block
b we have w(c, b) = 2.

In problem formulation No. 2 the definition of rs is adjusted into the requested
workload of student s for |B| blocks together. For every student s, a maximum
requested workload rsb for each block b ∈ B is given separately, because the
requested workload of a student is not always equally divided over all blocks
b ∈ B. For instance, if student s has to do a practical training in block b2 he has
rs = 2, rsb1 = 2 and rsb2 = 0.

It was assumed in problem formulation No. 1 that a course has one meeting
every week, hence it has one time slot. But there are also courses which have
two weekly meetings, and hence two time slots. If courses with two time slots
are introduced into problem formulation No. 1, the problem cannot be modeled
as a network flow problem.

216 J. van den Broek, C. Hurkens, and G. Woeginger

Table 2. Examples of courses

Course Section Time slots of meetings wlb1 wlb2 Min Max

DA242 DAG242-1 B1TM2, B1TA1 1 0 0 30
DAG242-2 B1TM2, B1TA2 1 0 0 30
DAG242-3 B1TM2, B1WA1 1 0 0 30
DAG242-4 B1TM2, B1WA1 1 0 0 30
DAG242-5 B1TM2, B1WA2 1 0 0 30

DA247 DAG247-1 B1WA2, B2WA2 1 1 5 15
DAG247-2 B1WA2, B2WA2 1 1 5 15

The set C of courses contains courses with multiple sections, meaning that
the course is repeated during the week. Table 2 contains course DA242 as an
example. For example, time slot B1TM2 stands for the second part of Tuesday
morning in block 1. The workloads of a course in block 1 and 2 are denoted by
wlb1 and wlb2. The course DA242 has five sections which all have two time slots.

We define I as the set of sections offered to the students. For every section
i ∈ I its course c(i) ∈ C is given, a minimum number Cmin

i and a maximum
number Cmax

i of students. The meeting times for each section i ∈ I are given as
the set of time slots T (i) ⊆ T . There are a few courses, for example literature
studies, which are not assigned to a time slot and thus T (i) = ∅.

Another constraint arises if students have specific needs, for instance when
they almost finish their studies and only have one course left to pass. Then a
course on the preference list of the student can be set to urgent. As long as the
maximum number of students (all with an urgency) is not assigned to this course,
the course has to be assigned to the student. A course which is urgent for one
student has to be given. In this case, it doesn’t matter whether the minimum
number of students is reached or not. We define U as the set containing all
combinations (s, p) for which course csp is urgent for student s.

A few courses have meeting times which are spread over two blocks. See for
example course DA247 in Table 2. This course has two sections and a total
workload of two which is equally spread over the two blocks. If a student is
assigned to a section of this course in one block he needs to be assigned to the
same section of this course in the next block. Hence, it is also possible that courses
are given in two blocks which are not scheduled simultaneously. If this occurs,
this implies there are students already preassigned to sections if the schedule of
the second block is made. Therefore, we introduce the set F of fixations which
contains combinations (s, p, i) for which section i of course csp is already assigned
to student s. This results in hard constraints that do not lead to an infeasible
solution, because these students are assigned in the scheduling period before.

In summary, the input of problem formulation No. 2 consists of

– a set B of blocks that have to be scheduled simultaneously;
– a set T of time slots;
– a set C of courses; for every course c its workload w(c, b) for each block b is

given;

Timetabling Problems at the TU Eindhoven 217

– a set S of students; for every student s a total requested workload rs, a
requested workload rsb for each block separately, a set Ps of filled positions
on the preference list and for each position p ∈ Ps a course csp is given;

– a set I of sections; for every section i its course c(i), a minimum Cmin
i and

maximum Cmax
i number of students and a set of time slots T (i) ⊆ T is given;

– a set U of combinations (s, p) for which course csp is urgent for student s;
– a set F of combinations (s, p, i) for which section i of course csp is already

preassigned to student s.

Our main goal is to assign workload to students as much as possible, while

– maintaining the number of students in a section below a maximum size
prescribed,

– the total workload assigned to student s is less than or equal to rs,
– the workload assigned to student s in block b is less than or equal to rsb,
– sections assigned to a student do not conflict in time,
– students are only assigned to a section of a course on their preference list,
– students are only assigned to one section of a course,
– student s is assigned to section i if (s, p, i) ∈ F .

Soft constraints are, for example, spreading students over sections, a section
needing to be assigned to at least a certain minimum number of students and
student s having to be assigned to course csp if (s, p) ∈ U .

4 The Integer Linear Programming Model

The problem is formulated and solved as a lexicographic optimization problem.
Lexicographic optimization is a form of multi-criteria optimization in which the
various objectives fi, i = 1, . . . , m cannot be quantitatively traded off between
each other. If a solution x minimizes f1, then a solution x′ minimizes f2 if
the condition f1(x) = f1(x′) is satisfied. In general, x∗ minimizes fi under the
constraining conditions that f1(x∗) = f1(x1), . . . , fi−1(x∗) = fi−1(xi−1) where
xj minimizes f1, . . . , fj for 1 ≤ j ≤ i − 1.

The timetabling problem is split into four subproblems which are formulated
as an integer linear programming problem. The goals of the four subproblems
are:

1. Maximize the number of assigned courses with an urgency.
2. Minimize the shortage of students to reach the minimum number of students

of a section. Because of urgencies, some sections must be taught, but do not
have enough students with this course on their preference list. We assign as
many students as possible to those sections.

3. Maximize the total assigned workload. We try to assign a workload rs to
every student s.

4. ‘Optimize’ the timetable. For example by assigning courses to students which
rank high on their preference list.

218 J. van den Broek, C. Hurkens, and G. Woeginger

All parameters are already introduced in Section 3. Left to define are the de-
cision variables. These are defined as follows:

xsp :=
{

1 if course csp is assigned to student s
0 otherwise

yi :=
{

1 if section i is assigned to one or more students
0 otherwise

zspi :=
{

1 if section i of course csp is assigned to student s
0 otherwise.

The following constraints have to be fulfilled in all four subproblems:

∑

i∈I|csp=c(i)

zspi = xsp ∀s ∈ S, ∀p ∈ Ps (1)

∑

p∈Ps

∑

i∈I|csp=c(i)

w(csp, b)zspi ≤ rsb ∀s ∈ S, ∀b ∈ B (2)

∑

p∈Ps

∑

i∈I|csp=c(i)

∑

b∈B

w(csp, b)zspi ≤ rs ∀s ∈ S (3)

∑

s∈S

∑

p∈Ps,csp=c(i)

zspi ≤ Cmax
i yi ∀i ∈ I (4)

∑

p∈Ps

∑

i∈I|csp=c(i),t∈T (i)

zspi ≤ 1 ∀s ∈ S, ∀t ∈ T (5)

zspi = 1 ∀s ∈ S, ∀p ∈ Ps,

∀i ∈ I|(s, p, i) ∈ F (6)
xsp ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps (7)
yi ∈ {0, 1} ∀i ∈ I (8)

zspi ∈ {0, 1} ∀s ∈ S, ∀p ∈ Ps, ∀i ∈ I. (9)

Constraint (1) ensures that at most one section of a course is assigned to a
student. The workload assigned to a student has to be less than or equal to
the requested workload of each block separately and all blocks together. This is
fulfilled by constraints (2) and (3). Constraint (4) enforces that the maximum
number of students for a section is not exceeded and constraint (5) ensures that
at each time slot only one section is assigned to each student. If (s, p, i) ∈ F
then section i of course csp has to be assigned to student s, which is fulfilled by
constraint (6).

The goal of the first subproblem is to maximize the number of assigned courses
with an urgency. The constraint that a section needs to have more than a min-
imum number of students is not a restriction in this subproblem, because at least

Timetabling Problems at the TU Eindhoven 219

one section of a course must be given if there is a student with an urgency for this
course. This first subproblem can be solved with the following ILP formulation:

Umax = max
∑

(s,p)∈U xsp

(x, y, z) satisfy (1)–(9).

The next step is to minimize the shortage of students to reach the mini-
mum number of students of a section, keeping the maximum number of assigned
courses with an urgency equal to Umax. There are sections that have to be given
because they are assigned to students with an urgency for the corresponding
course. Those sections are assigned to other students such that the minimum
number of students for those sections is reached. The decision variable si is de-
fined as the shortage of students for section i. This variable gets a value larger
than zero if it is not possible to assign section i to the minimum number Cmin

i of
students. The second subproblem minimizes the total shortage Smin of students.
This results into the following ILP formulation:

min
∑

i∈I

si = Smin

∑

(s,p)∈U

xsp = Umax

∑

s∈S

∑

p∈Ps,csp=c(i)

zspi + si ≥ Cmin
i yi ∀i ∈ I

si ∈ Z+, ∀i ∈ I

(x, y, z) satisfy (1)–(9).

The third subproblem maximizes the total workload assigned to students with
the restrictions that Umax and Smin keep their optimal values. This maximum
workload is denoted by Wmax and is determined by the following model:

max
∑

s∈S

∑

p∈Ps

∑

b∈B

w(csp, b)xsp = Wmax

∑

i∈I

si = Smin

∑

(s,p)∈U

xsp = Umax

∑

s∈S

∑

p∈Ps,csp=c(i)

zspi + si ≥ Cmin
i yi, ∀i ∈ I

si ∈ Z+, ∀i ∈ I

220 J. van den Broek, C. Hurkens, and G. Woeginger

(x, y, z) satisfy (1)–(9).

To ‘optimize’ the final timetable we assign courses as high as possible on the pref-
erence lists, spread the students as equally as possible over the sections of a course
and discourage the possibility that one student gets a lot of courses which are on
the bottom of his preference list. Therefore, the fourth subproblem is solved. The
objective function is separated into three terms and has to be minimized under
the restrictions that Umax, Smin and Wmax keep their optimal values.

The term in the objective function to assign courses as high as possible on the
preference lists is Wp

∑
s∈S

∑
p∈Ps

∑
b∈B w(csp, b)(82 − (10 − p)2)xsp. Assigning

a course on top of a preference list, p = 1 for this course, adds a lot less to the
objective function than assigning a course on the bottom of the list, p = 10 for
this course. Wp is a weighting factor and also the workload is taken into account.

If a course has multiple sections, students have to be spread as equally as pos-
sible over the sections. Therefore, Imax

c is introduced as the number of students
assigned to the section of course c with the most students assigned. Also the
spread Sc of course c is introduced and is equal to the sum over all sections of
the difference between Imax

c and the assigned number of students in each section.
Sc is added to the objective function with a weighting factor Ws.

We also discourage the possibility that one student gets a lot of courses from
the 7th to 10th position of his preference list. A constraint is added to the
model that checks whether a student gets more than one course from these
positions. If so, then a penalty We is paid for each ‘extra’ course from these
positions. Therefore, the decision variable Es is introduced for every student s.
This variable is equal to the ‘extra’ number of courses assigned to student s
which are from the 7th to 10th position of his preference list.

This results in the final ILP formulation:

min Wp

∑

s∈S

∑

p∈Ps

∑

b∈B

w(csp, b)(82 − (10 − p)2)xsp + Ws

∑

c∈C

Sc +We

∑

s∈S

Es

∑

s∈S

∑

p∈Ps,csp=c(i)

zspi ≤ Imax
c(i) ∀i ∈ I

∑

i∈I|c=c(i)

(
Imax
c −

∑

s∈S

∑

p∈Ps,csp=c

zspi

)
= Sc ∀c ∈ C

10∑

p=7

xsp ≤ 1 + Es ∀s ∈ S

∑

s∈S

∑

p∈Ps

∑

b∈B

w(csp, b)xsp = Wmax

∑

i∈I

si = Smin

Timetabling Problems at the TU Eindhoven 221

Table 3. Input information for academic year 2005–06

Blocks |S| |C| |I | |U | Offered wl Requested wl

1 & 2 356 51 79 590 1504 1416
3 & 4 328 64 88 279 1545 1288
5 & 6 302 58 89 151 1544 1333

∑

(s,p)∈U

xsp = Umax

∑

s∈S

∑

p∈Ps,csp=c(i)

zspi + si ≥ Cmin
i yi, ∀i ∈ I

Es ∈ Z+ ∀s ∈ S

Imax
c , Sc ∈ Z+ ∀c ∈ C

si ∈ Z+ ∀i ∈ I

(x, y, z) satisfy (1)–(9).

5 The Computational Results

The computational results for the academic year 2005-2006 are given in this
section. This academic year was divided into six blocks. Blocks 1 & 2, blocks 3
& 4 and blocks 5 & 6 were scheduled simultaneously.

In all blocks the meetings were on Tuesday morning, Tuesday afternoon,
Wednesday morning and Wednesday afternoon. Every morning and afternoon
was split into two parts. So both blocks contained eight time slots. More details
about the input are given in Table 3. The abbreviation wl stands for workload.

The number of students that requested workload in blocks 1 & 2 was 356 and
the total workload they requested was 1416. Hence, for each block, an average of
two courses of the preference list of 10 courses have to be assigned. The number
of students requesting workload decreased during the academic year, because of
students who are doing a practical training and students who are finishing their
studies. In blocks 5 & 6 the average requested workload per student is larger
than in blocks 3 & 4, which is caused by students who still hope to reach the
required workload for the academic year by doing some ‘extra’ courses.

Note that the large number of urgencies in blocks 1 & 2 can be explained by
the fact that first year students are preassigned to courses, because they are not
able to make a choice themselves. All first year students have six compulsory
courses, which they have to do in the first year. These six courses are set as
urgent and only four out of these six courses can be done in each block. The
urgencies in blocks 5 & 6 can be explained by students who are finishing their
education and only have some specific courses left to do.

The models introduced in Section 4 are solved by the standard IP solver
CPLEX 10.0. The computations are done on an Intel Pentium M, 2.0 GHz

222 J. van den Broek, C. Hurkens, and G. Woeginger

Table 4. Results for the academic year 2005–06

Block 1 & 2 Block 3 & 4 Block 5 & 6

Runtime CPLEX (s) 1.38 1.53 1.67
Umax 439 273 134
Smin 0 0 0
W max 1369 1261 1300
Average position 3.30 3.64 3.87
Bad positions 8 16 39

processor with 1.0 GB internal memory. The values of the weighting factors were
Wp = 10, Ws = 1 and We = 100. The results for the academic year 2005–06 are
given in Table 4.

The computation time of CPLEX given in Table 4 is the computation time
of CPLEX for solving the fourth subproblem. The computation time of the first
three subproblems is even less. What can be concluded is that the computation
time of CPLEX is negligible.

In blocks 1 & 2 a requested workload of 47, in blocks 3 & 4 a requested
workload of 27 and in blocks 5 & 6 a requested workload of 33 could not be
assigned. Especially in blocks 1 & 2 this is caused by the small difference between
the requested and offered workload. However, the main causes are preference lists
for which it was impossible to assign the requested workload. Some examples of
such wrongly chosen preference lists are:

– an empty preference list, because students didn’t hand it in on time;
– a preference list with less than ten courses;
– a preference list with not enough different time slots in one of the two blocks;
– a preference list with the same course in multiple positions; there was even

a student with the same course ten times on his preference list.

If all students were to hand in a preference list with ten courses and enough
different time slots, then in blocks 1 & 2 only five students would not be assigned
to their requested number of courses, and in blocks 3 & 4 and blocks 5 & 6 only
three students.

Table 4 also shows that in blocks 1 & 2 only 439 out of 590 urgency requests
could be assigned. This can be explained by the fact that in these blocks all
courses on the preference list of first year students are set as urgent. Most of
those preference lists contain six suitable urgent courses of which at most four
are assigned. This means at least two not assigned courses with an urgency for
each first year student.

The average position denotes the average of the positions of all courses as-
signed to a student. On average students request a workload of 4, which mostly
corresponds with four courses. For example, if courses on the positions 1, 3, 5
and 7 are assigned, then the average position for this student is 4. Hence, it
can be concluded that students get a lot of courses which are on top of their
preference list.

Timetabling Problems at the TU Eindhoven 223

During the academic year, the average position increases. This can be ex-
plained by the fact that in blocks 5 & 6 the first year students are allowed to
choose four courses from the same course pool as the other students. In blocks
3 & 4 they were mostly assigned to two out of the six obligatory courses and
to two courses chosen by themselves. In blocks 1 & 2 they were preassigned to
obligatory courses.

If a student is assigned to i ≥ 1 courses from the 7th to 10th position on
his preference list he has i − 1 bad positions. From the number of bad positions
it can be concluded that students are assigned to courses at the top of their
preference lists. That the number of bad positions increases during the year is
explained by the first year students.

6 Conclusions

We have formulated, analyzed and solved a real-world timetabling problem that
showed up at the department of Industrial Design of the TU Eindhoven. Our
successful approach was based on an Integer Linear Programming formulation.
The running time that CPLEX needs for solving the resulting instances is negli-
gible. An advantage of an Integer Linear Programming approach is its flexibility.
Our experience is that the constraints of the timetabling problem change every
academic year and even during the academic year.

The administration and the students of the department of Industrial Design
were highly satisfied with the timetables generated by our program. Most stu-
dents now receive courses that are on top of their preference lists. There still
are a few students who are not satisfied, but in most cases this turned out to
be solely their own fault: they failed to specify correct preferences in the correct
format.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and
Applications. Prentice-Hall, Englewood Cliffs, NJ (1993)

2. Avella, P., Vasilev, I.: A computational study of a cutting plane algorithm for
university course timetabling. Journal of Scheduling 8, 497–514 (2005)

3. Burke, E.K., Kingston, J., Jackson, K., Weare, R.: Automated university
timetabling: the state of the art. The Computer Journal 40, 565–571 (1997)

4. Burke, E.K., McCollum, B., McMullan, J.P., Qu, R.: Examination timetabling:
A new formulation. In: Proceedings of the 6th International Conference on the
Practice and Theory of Automated Timetabling, Brno, pp. 373–375 (August 2006)

5. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operations Research 140, 266–280 (2002)

6. Busam, V.A.: An algorithm for class scheduling with section preference. Commu-
nications of the ACM 10, 567–569 (1967)

7. Carter, M.W., Laporte, G.: Recent developments in practical examination
timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)

224 J. van den Broek, C. Hurkens, and G. Woeginger

8. Carter, M.W., Laporte, G.: Recent developments in practical course timetabling.
In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19.
Springer, Heidelberg (1998)

9. Cheng, E., Kruk, S., Lipman, M.: Flow formulations for the student scheduling
problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740,
pp. 299–309. Springer, Heidelberg (2003)

10. Daskalaki, S., Birbas, T.: Efficient solutions for a university timetabling problem
through integer programming. European Journal of Operations Research 160, 106–
120 (2005)

11. de Werra, D.: An introduction to timetabling. European Journal of Operations
Research 19, 151–162 (1985)

12. Dimopoulou, M., Miliotis, P.: Implementation of a university course and examina-
tion timetabling system. European Journal of Operations Research 130, 202–213
(2001)

13. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal of Computing 5, 691–703 (1976)

14. Feldman, R., Golumbic, M.C.: Constraint satisfiability algorithms for interactive
student scheduling. In: IJCAI 1989. Proceedings of the 11th International Joint
Conference on Artificial Intelligence, pp. 1010–1016 (1989)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability – a Guide to NP-
Completeness. Freeman, San Francisco (1979)

16. Laporte, G., Desrochers, S.: The problem of assigning students to course sections in
a large engineering school. Computational Operations Research 13, 387–394 (1986)

17. McCollum, B.: A perspective on bridging the gap in university timetabling. In:
Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer,
Heidelberg (2007)

18. Miyaji, I., Ohno, K., Mine, H.: Solution method for partitioning students into
groups. European Journal of Operations Research 33, 82–90 (1981)

19. Petrovic, S., Burke, E.K.: University timetabling. In: Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, ch. 45, CRC Press, Boca Raton,
FL (2004)

20. Sabin, G.C.W., Winter, G.K.: The impact of automated timetabling on universities
– a case study. Journal of Operations Research Society 37, 689–693 (1986)

21. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

22. Schmidt, G., Ströhlein, T.: Timetable construction – an annotated bibliography.
The Computer Journal 23, 307–316 (1980)

23. Tripathy, A.: Computerised decision aid for timetabling – a case analysis. Discrete
Applied Mathematics 35, 313–323 (1992)

24. Zampieri, A., Schaerf, A.: Modelling and solving the Italian examination
timetabling problem using tabu search. In: Proceedings of the 6th International
Conference on the Practice and Theory of Automated Timetabling, Brno, pp. 487–
491 (August 2006)

A Max-Flow Model of Problem Formulation No. 1

Problem formulation No. 1 can be modeled as a network flow problem. An il-
lustration of the network with its arc capacities can be found in Figure 1. The
layered network has a source node connected to the first layer of nodes of which

Timetabling Problems at the TU Eindhoven 225

each node corresponds to a student. The capacity of the arcs between a student
node and the source node is equal to the requested number of courses of the
student. For each student and each time slot, a node is defined in the second
layer. Each student node has |T | outgoing arcs with capacity one.

The third layer of the graph contains a node for every course. If a course is on
the preference list of a student, this course node is connected with the node of
its time slot of the student. For example, in Figure 1 course number 1 is given in
time slot 1. Because course 1 is chosen by student 1 and student |S|, there are
arcs from nodes t11 and t|S|1 to course node C1. Each course node is connected
to the sink with its maximum number of students as its capacity.

s

s1

s|S|

r1

r|S|

t1|T|

t|S|1

t|S||T|

1

1

1

1

c1

c2
1

1

1

1

t

C1
max

C2
max

C|C|
max

t11

1

1

C|C|

VT

VS

VC

Fig. 1. The network flow model

Note that maximizing the flow through this network maximizes the number
of assigned courses and does not deal with the positions of the courses on the
preference lists.

B Some NP-Hardness Results

The timetabling problem defined in Section 3.2 is an NP-hard problem. We prove
this by identifying two independent NP-hard subproblems. Both subproblems
result from adding one additional constraint to the problem formulation No. 1.

In the first subproblem, the additional constraint are lower bounds on the
number of students in the courses. There are no time slots, there is only one
section for each course c with a minimum and a maximum number of partici-
pating students. The workload of all courses is one, and only one block has to
be scheduled. Formally, problem Pmin is defined as follows:

Instance: A set C of courses; for every course c ∈ C a minimum capacity
Cmin

c and a maximum capacity Cmax
c of participating students. A set S

226 J. van den Broek, C. Hurkens, and G. Woeginger

of students; for every student s ∈ S a preference list of some courses in
C, and a number rs of requested courses.

Question: Does there exist an assignment such that (i) every student s
gets exactly rs courses from its preference list, and such that (ii) for every
course c the number of assigned students is either zero (if the course does
not take place) or falls between the bounds Cmin

c and Cmax
c ?

Theorem 1. Problem Pmin is NP-hard.

Proof. The proof is done by reduction from the exact cover by 3-sets problem:
Given a ground set X = {x1, . . . , xn} and a set T = {t1, . . . , tm} of 3-element
subsets of X , can one select T ′ ⊆ T such that every element of X occurs in
exactly one member of T ′?

From an instance of the exact cover by 3-sets problem, we construct a cor-
responding instance of problem Pmin with n students x1, . . . , xn and with m
courses t1, . . . , tm. Every student s has a demand of one course (rs = 1), and
every course c has minimum and maximum capacity three (Cmin

c = Cmax
c = 3).

Assume X possesses an exact cover T ′. Assign student xs to course tc if and
only if xs ∈ tc and tc ∈ T ′. Since T ′ is an exact cover of X , every student
xs will be assigned to exactly one course tc. The course tc is assigned to three
students if it is in T ′, and to zero students if it is not in T ′. This shows that the
constructed instance of Pmin is a yes-instance. The converse statement can be
seen in a similar way. �	

In the second subproblem, we take problem formulation No. 1 and additionally
allow courses with a workload of 2. We consider a situation with only one section
for each course c, only a single block, and without any time slots. (And there is
no minimum capacity of courses.) Problem Pwl is defined as follows:

Instance: A set C of courses; for every course c ∈ C a workload wlc ∈
{1, 2} and a maximum capacity Cmax

c of participating students. A set S
of students; for every student s ∈ S a preference list of some courses in
C, and a desired workload rs.

Question: Does there exist an assignment such that (i) every student
s gets courses with a total workload rs from Ps, and such that (ii) for
every course c the number of assigned students is at most Cmax

c ?

Theorem 2. Problem Pwl is NP-hard.

Proof. The proof is done by reduction from the 3-SAT variant where every vari-
able occurs exactly twice in negated and exactly twice in unnegated form. Con-
sider an arbitrary instance of this 3-SAT variant:

– For every variable xi, we introduce two corresponding students st(xi) and
st(xi) which both request a workload of two.

– For every variable xi, we also introduce a corresponding variable-course
C(xi) which has a workload of two and a capacity of one. C(xi) is in the
preference list of st(xi) and st(xi).

Timetabling Problems at the TU Eindhoven 227

– For every clause cj , we introduce a clause-course C(cj) with a workload of
one and a capacity of two. Clause-course C(cj) is in the preference list of a
student st(xi) (respectively st(xi)) if and only if xi (respectively xi) occurs
as a literal in clause cj .

Note that in any feasible assignment, student st(xi) (respectively student
st(xi)) will either do course C(xi) or the two courses C(cj1) and C(cj2) for
which literal xi (respectively literal xi) occurs in clauses cj1 and cj2.

Assume that the 3-SAT instance is a yes-instance, and consider a correspond-
ing satisfying truth-assignment. If xi is set to TRUE, then we assign student
st(xi) to the variable-course C(xi), and student st(xi) to the two clause-courses
that correspond to the clauses containing xi. If xi is set to FALSE, we assign
st(xi) to the clause-courses that correspond to the clauses containing xi, and
student st(xi) to C(xi). Then each student receives his requested workload, and
every course C(xi) gets only a single student. Since every clause has at most
two FALSE literals, the corresponding clause-course will get at most two stu-
dents. So every yes-instance of the 3-SAT problem leads to a yes-instance of the
timetabling problem.

Now assume that the constructed instance of problem Pwl is a yes-instance.
Then every student st(xi) receives a workload of 2, which implies that the student
must either be assigned to one course C(xi), or to two clause-courses C(cj1)
and C(cj2). If student st(xi) is assigned to the variable-course C(xi), we set
xi to TRUE. If student xi is assigned to some clause-courses, then we set xi

to FALSE. Since each clause-course C(cj) is assigned to at most two students,
every clause contains at most two FALSE literals. Hence, every yes-instance of
Pwl corresponds to a yes-instance of 3-SAT. �	

The Teaching Space Allocation Problem with

Splitting

Camille Beyrouthy1, Edmund K. Burke1, Dario Landa-Silva1,
Barry McCollum2,3, Paul McMullan2, and Andrew J. Parkes1

1 School of Computer Science and IT,
University of Nottingham, Nottingham NG8 1BB, UK

{cbb,ekb,jds,ajp}@cs.nott.ac.uk
2 Queen’s University of Belfast, Belfast, BT7 1NN, UK

{b.mccollum,p.p.mcmullan}@qub.ac.uk
3 Realtime Solutions Ltd, 21 Stranmillis Road, Belfast, BT9 5AF

b.mccollum@realtimesolutions-uk.com

Abstract. A standard problem within universities is that of teaching
space allocation which can be thought of as the assignment of rooms
and times to various teaching activities. The focus is usually on courses
that are expected to fit into one room. However, it can also happen that
the course will need to be broken up, or ‘split’, into multiple sections.
A lecture might be too large to fit into any one room. Another common
example is that of seminars or tutorials. Although hundreds of students
may be enrolled on a course, it is often subdivided into particular types
and sizes of events dependent on the pedagogic requirements of that
particular course.

Typically, decisions as to how to split courses need to be made within
the context of limited space requirements. Institutions do not have an
unlimited number of teaching rooms, and need to effectively use those
that they do have. The efficiency of space usage is usually measured by
the overall ‘utilisation’ which is basically the fraction of the available
seat-hours that are actually used. A multi-objective optimisation prob-
lem naturally arises; with a trade-off between satisfying preferences on
splitting, a desire to increase utilisation, and also to satisfy other con-
straints such as those based on event location and timetabling conflicts.
In this paper, we explore such trade-offs. The explorations themselves
are based on a local search method that attempts to optimise the space
utilisation by means of a ‘dynamic splitting’ strategy. The local moves
are designed to improve utilisation and satisfy the other constraints, but
are also allowed to split, and un-split, courses so as to simultaneously
meet the splitting objectives.

1 Introduction

An important issue in the management of university teaching space is that of
planning for future needs. Support for such decision-making is generally divided
into two broad, and sometimes overlapping, areas:

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 228–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Teaching Space Allocation Problem with Splitting 229

– space management: near-term planning,

– space planning: long-term planning, including capacity planning.

A fundamental stage of capacity planning aims to estimate the projected
student enrollments, and multiply by the expected weekly student contact hours
to obtain the total demand for ‘seat-hours’. Similarly, for the rooms we could
just sum up the room capacities and multiply by the number of hours they are
available in order to determine the ‘seat-hours supply’. A naive way to perform
capacity planning, based on such seat-hours estimates, would be simply to ensure
that the supply exceeds the demand. However, it is very rare that it is possible
to use all of the seats. The efficiency of space usage is usually measured by
giving a figure for the ‘utilisation’: i.e., the fraction (or percentage) of available
seat-hours that actually end up being used. In real institutions, the utilisation
can be surprisingly low, perhaps only 20–50%. To compensate for this, when
planning the amount of teaching space to supply, we need to build in excess
capacity [13,14].

Naturally, such excess capacity is expensive, because it entails planning for
seats to be underused. Good planning should reduce the excess capacity without
increasing the risks that expected activities will not find a space. However, this
is difficult because there is little fundamental understanding of why the utilisa-
tion is so low in the first place, or of the interaction of various constraints and
objectives with the utilisation.

A study of this issue was initiated in [5,6]. However, that work, like the major-
ity of work on (university) course timetabling research was concerned with un-
splittable ‘events’ (or ‘courses’ or ‘classes’). Such courses are ‘atomic’: i.e. they
are not to be subdivided but need to be assigned to a single room and timeslot.
However, in some circumstances, courses cannot be taken to be atomic, but must
instead be subdivided, or ‘split’, before allocating them to rooms and timeslots.
In this paper, we extend the work of [5,6] to the case of courses that require
considerable splitting.

Our ongoing investigation into space management and space planning is
closely related to research into automated timetabling but we emphasise that
there is a crucial difference between the two. In automated timetabling, the
set of events that should be accommodated into timeslots and rooms is usually
fixed. This means that the space utilisation, in terms of seat-hours demand and
offer, is also fixed from the outset. However, in this paper we want to study
those factors that have an impact upon space utilisation (even before construct-
ing the timetable). For this, we investigate a scenario in which the seat-hours
demand (events to accommodate) is much larger that the seat-hours offer (avail-
able rooms). This allows us to vary the utilisation by selecting those events
that will be accommodated and those that will be not. We note that although
the algorithms presented here allocate events into rooms and timeslots, we are
not proposing a timetabling approach. We are presenting a study that helps
us to understand the interactions between space utilisation and aspects such as
timetabling constraints and others.

230 C. Beyrouthy et al.

Course splitting tends to be driven by one (or both) of the following
requirements:

1. Small-group splitting: Courses that are intrinsically designed to be taught in
small groups, such as seminars or tutorials.

2. Constraint-driven splitting: Courses that could, in principle, be held without
splitting, but for which splitting is forced because of the following constraints:
(a) capacity constraints: the course is simply too large to fit into one room.
(b) timetable constraints: the enrollment is large and across such a wide

spectrum of students that it will conflict with many other courses. This
greatly reduces the chances of obtaining a conflict-free timetable. Split-
ting such a course into multiple sections can ease timetabling pressures,
as students are more likely to be able to find a section that is conflict-free
for them.

Standarduniversity course timetablingmethodologies (see [4,7,8,9,10,15,16,18])
assign events to rooms and timeslots, satisfying capacity constraints, so that stu-
dents donothave to take two events at the same time (andpossibly some sequencing
or adjacency constraints) and aiming to improve the satisfaction of soft constraints
such as the avoidance of unpopular times. The best-known problem that consid-
ers ‘timetabling with splitting’ is the ‘student sectioning problem’, e.g. [2,3]. This
problem considers the enrollment of students into courses, but each course consists
of multiple sections and students need to be assigned to sections in such a way as
to avoid timetable clashes whilst respecting room capacities. This means that the
student sectioning problem is most relevant to the short period between students
enrolling into courses and students needing to know which section they should at-
tend.

However, in this paper, we are not studying such ‘immediate’ space manage-
ment problems as the student sectioning problem. Instead, we are concerned with
decision support for space capacity planning over a longer time frame. For space
planning, we need to understand which utilisations are achievable and how they
depend on the decision criteria such as section sizes and the constraints arising
from location and timetabling. Our goals are:

– Devise algorithms to carry out splitting together with event allocation;
– Explore and understand the trade-offs between the various objectives;
– Understand the impact of such trade-offs on the use of expected utilisation

as a safety margin within space planning.

It should be stressed that the splitting algorithms proposed here are used to
investigate long-term space planning and not to address near-term space man-
agement which is associated to timetabling.

To achieve the above goals, our general approach can be outlined as follows:

1. Formulate or model the problem: This includes obtaining a model of splitting
that contains the main aspects – although it does not need to contain all the
details. For example, we will cover the small group requirements by simply
introducing objectives related to the section size or number.

The Teaching Space Allocation Problem with Splitting 231

2. Use local search and simulated annealing to explore the solution space and
deal with the splitting problem.

3. Carry out experiments in order to visualise the trade-off surfaces.

The specific contributions made in this paper are:

– Dynamic splitting: A local search based on exchanges of events, but in which
we also make decisions on how to do the splitting. Moves can split courses,
and can also rejoin them in order to suit the available rooms.

– Preliminary trade-off surfaces: We present results on the interaction of ob-
jectives such as location and timetabling, with preferences on section sizes.

Outline of the paper. Section 2 gives a basic description of the problem con-
straints and objective functions and a brief description of the data sets. In Sec-
tion 3, we outline a form of local search that does not include splitting, but
which forms a good basis for the algorithms for splitting presented in Section 4.
In Section 5, we compare the performances of the various algorithms. In Sec-
tion 6, we move to the exploration of the solution space itself, presenting results
for the trade-offs between the various objectives.

2 Problem Description

Teaching space allocation is concerned with allocating events (courses/course
offerings, tutorials, seminars) to rooms and times. In this section, we will cover
the basic language of the problem; the constraints and objectives, and the dataset
that we will use.

2.1 Courses, Events and Rooms

For each course we have

1. Size: the number of students in the course.
2. Timeslots: the number of timeslots the course uses during the week.
3. Spacetype: Lecture, Seminar, Tutorial, etc.
4. Department: the department that owns or administers the course.

One can consider other aspects. For example, special features that are imposed
by some constraints. However, we shall not consider these here. Also note that
the word ‘course’ can mean many different things; ranging from the entire set of
classes constituting a degree down to a single class. However, in this paper, we
use ‘course’ in the sense of a set of activities of a single type such as a lecture or
tutorial, and associated with a single subject. In the case of lectures, the course
would be taught by a single faculty member. In general, a ‘course’ might have
multiple associated types. For example, lectures in French grammar might always
be accompanied by seminars on French literature. However, for the purposes of
this paper, we will disregard such cross-spacetype dependencies and regard the
lectures and tutorials as separate courses.

232 C. Beyrouthy et al.

Courses will generally be split into sections, though we generally use the term
event to denote courses/sections that are ‘atomic’: that is, to be assigned to a
single room and timeslot. Events have the same information as courses except
that each takes only a single timeslot. For events we have

1. Size: Number of students
2. Spacetype: Lecture, Seminar, Tutorial, etc.
3. Department: Department offering/managing the event.

For every room we have

1. Capacity: Maximum number of students in the room.
2. Timeslots: The number of timeslots per week.
3. Spacetype: Space for Lecture, Seminar, Tutorial, etc.
4. Department: The one that owns/administers the room.

The basic hard constraints (i.e. those that we always enforce) are

1. Capacity constraint : Size of an event cannot exceed the room capacity.
2. No-sharing constraint : At most one event is allowed per ‘room-slot’, where

by room-slot we refer to a (room,timeslot) pair.

In this paper, we also apply the condition that the spacetype of the event
must be the same as that of the room. In general, this hard constraint can be
softened, and the resulting spacetype mixing is an important issue, but will be
left for future work. So, henceforth, in descriptions of the algorithms we will
ignore spacetypes.

2.2 Penalty and Objective Functions

Merely allocating events to room-slots so as to satisfy the capacity constraints
and no-sharing constraints on its own is not useful; we also need to take into
account space utilisation objectives for additional soft constraints. Based on the
work in [5,6], and also from considerations of what a good allocation is likely to
mean in the presence of splitting, we use the following:

Utilisation (U). [5,6] The primary objective is that we want to make good use
of the rooms, and have a good number of student contact hours. We will measure
this by the ‘Seat-Hours’ – which is just the sum over all rooms and timeslots
of the number of students allocated to that room-slot. The utilisation U is then
defined as just the Seat-Hours achieved as a fraction of the total Seat-Hours
available (the sum over all rooms and times of the room capacity):

U =
Seat-Hours used

total Seat-Hours available
. (1)

This is usually expressed as a percentage: U = 100% if and only if every seat is
filled at every available timeslot.

The Teaching Space Allocation Problem with Splitting 233

Timetabling (TT). [5,6] Teaching space allocation is also constrained by
timetabling needs, and we take this aspect into account. Hence, we use here a
timetabling penalty (TT) that is just a standard conflict matrix between events
which represents pairs of events that should not be placed in the same timeslot.
For this paper, we will simply use randomly generated conflict graphs. We use
TT (p) to denote that each potential conflict is taken independently with prob-
ability percentage, p. For example, TT(70) means that the conflict density is
(about) 70%.

Conflict Inheritance Problem. Course conflicts are used to represent the case
that students are enrolled for both of the courses in the conflict. In standard
university timetabling, the conflict graph will be fixed, but with sectioning. Part
of the point is that students can be assigned to sections with the intention of
resolving conflicts. The problem of assigning students to sections is treated, for
example, in [2,3,12]. In [3] a relaxed conflict matrix is created and, in particular,
it is less dense than the matrix between courses. Hence, if a course has multiple
sections, then not every section ought to have the same conflicts as the parent
course. That is, there is a ‘conflict inheritance problem’: when a course is split,
how should we decide upon the timetable conflicts given to the resulting events
(also see [17])? This problem is not studied here, but it represents a promising
direction for future work. In this initial study of splitting, we will look at the
simpler case in which the inheritance is full; that is, on splitting, each event
inherits all the conflicts of the course.

Location (L). [5,6] A common objective in timetabling is the goal of reducing
the physical travel distances for students between events. It also seems likely that
students and faculty would prefer that the events they attend will be close to
their own department. We do not attempt to model this exactly but instead use a
simple model in which there is a penalty if the department of the event is different
from that of the room-slot. Specifically, if an event i has department D(i), and
is allocated to a room r with department D(r), then there is a penalty matrix
derived from the department, Y (D(i), D(r)). Events in their own department are
not penalised, Y (d, d) = 0, and the off-diagonal elements were selected arbitrarily
(as we did not have physical data). The total Location penalty is just the sum
of this penalty over all allocated events.

Section Size (SZ). For courses such as tutorials or seminars it is standard that
they are intended to be in small groups. Hence, when splitting we need to be
able to control the sizes of the sections. In this paper, we use a simple model in
which we take a target size for the sections, and simply penalise the deviation
from that target. Given an allocated event i, let the number of students be ci,
the total number of allocated events be I, and the target section size T . The
section size penalty SZ that we use is

SZ =
I∑

i=1

|ci − T |. (2)

234 C. Beyrouthy et al.

Section number (SN). Every section will need a teacher, and so the total
number of sections allocated will have a cost in terms of teaching hours, and
should not be allowed to become out of control. The penalty SN is simply the
total number of allocated events. Pressure to minimise SN will tend to discourage
courses from splitting into more events than are needed.

No Partial Allocation (NPA). The context in which we undertake the search
is that we have a large pool of courses available and are investigating the best
subset that can be allocated. However, if a course is broken into sections, then
the course as a whole ought to be allocated or not. The NPA penalises those cases
in which some of the sections of a course are allocated, but other events from
the same course remain unallocated. Enforcing NPA as a hard constraint would
disallow partial allocation: for every course, either all sections are allocated, or
none are allocated.

2.3 Overall Objective Function

The overall problem is a multi-objective optimisation problem because there is
conflict between improving utilisation and satisfying the constraints. However,
we use a linearisation into a single overall objective or fitness F, which can be
represented as follows:

F = W (U) · U + W (L) · (−L) + W (TT) · (−TT)
+W (SZ) · (−SZ) + W (SN) · (−SN) + W (NPA) · (−NPA) (3)

where the W(*) are simply weights associated with each objective or penalty. The
minus signs merely change penalties into objectives and make all the ‘dimensions’
or objectives into maximisation problems.

The aim is to maximise F and consequently maximise utilisation (U) while
reducing the penalties for L, TT, etc. In practice, we will consider a wide variety
of relative weights. Of course, if a weight is large enough then it effectively turns
the penalty into a hard constraint. The use of weights is also intended to allow
modelling of the way that administrators will relax some penalties and tighten
others.

2.4 Datasets

Table 1 gives an overview of the four datasets we use to test our splitting al-
gorithms. All datasets are collected from a building of a university in Sydney,
Australia. (We omitted the ‘lectures only’ dataset used for [5,6] as it is not rele-
vant to splitting). Note that we use datasets in which the demand of seat-hours
is much larger then their supply because this is the case that is relevant to our
study. Improvements or detriments on space utilisation can only occur when the
subset of events that are allocated changes.

The workshops dataset, Wksp, is mainly characterized by the non-uniform
capacity of rooms ranging from 21 to 80, making it possible for some small

The Teaching Space Allocation Problem with Splitting 235

Table 1. The four datasets that we use, and some of their properties, including numbers
of rooms and courses, the total Seat-Hours demanded by all the courses, and the Seat-
Hours available in all the rooms

Data-set Wksp Tut Sem Tut-trim

Spacetype Workshop Tutorial Seminar Tutorial
No. of courses 1077 2088 3711 620
No. of rooms 16 184 88 47
Timeslots no. 48 46 46 50
Seat-Hours, courses 86,140 290,839 440,131 87,678
Seat-Hours, rooms 39,408 163,500 176,318 41,350

courses to fit without splitting. For Tut, the main characteristic of this dataset
is the small capacity of rooms and their uniformity, e.g. most rooms have sizes in
the range 8–20; enforcing a section size is therefore trivial in this case. The full
dataset, Tut, is quite large and so, in order to be able to plot trade-off surfaces
in a reasonable amount of time, we also created the set Tut-trim by randomly
selecting a fraction of the rooms and courses. The seminar dataset, Sem, is similar
in structure to Tut. It exhibits the same characteristics as Tut, and has room
capacities ranging from 30 to 86 students. Both seminars and tutorials have
relatively large courses and therefore splitting is essential for them.

3 Algorithms Without Splitting

In this section, we present the methods we use for cases when splitting is neither
needed nor performed. Although, the focus of the paper is on splitting we think
that describing the non-splitting local operators first helps the presentation of
the paper.

3.1 Local Search Operators Without Splitting

The neighbourhood moves used to explore the search space are given below.
Note that, by construction, all operators (implicitly) maintain feasibility of the
solution. Figure 1 illustrates these local search operators.
1-swap-rand: Randomly select 2 different rooms and, in each room, randomly
select an allocated event. The selected events are swapped between rooms. If the
given events violate any of the hard constraints, we randomly search again for 2
other events to swap.
2-swap-rand: Similar to 1-swap but it randomly selects 4 (2 from each room)
rather than 2 events and swaps them. Special consideration is given to checking
that the 4 events are all different and that one swap would not cancel the other.
Move-exterior: Randomly selects an allocated and an unallocated event and
tries to swap them; assigning the unallocated event to the timeslot of the allo-
cated one.

236 C. Beyrouthy et al.

Rooms

event S435

event 448

event 3296

event 298

event 345

event 3298

event 6127

cap:50

C132

C131

t3

t2

t1

t3

t2

t1

Timeslots

Allocated

event 1

event 2

event 3

event 4

event 5

event 6

event 7

student # 25

setudent # 50

student#:30

total unallocated

Timeslot #: 48

Timeslot #: 48

Events

cap: 25
move−inner

move−exterior

push−rand

pop−rand

Unallocated pool

1−swap−rand

Fig. 1. Schematic of the local search operators (except 2-swap-rand) for the local
search without splitting

Push-rand: Randomly selects one course from the unallocated set of events
and tries to allocate it to a randomly selected room, also picking the timeslot at
random.
Push-rand-p: This move is another version of push-rand but which gives pri-
ority to early timeslots in the rooms timetable, favouring them over late ones.
The local search is allowed to switch probabilistically between the 2 different
versions of push-rand.
Pop-rand: Randomly selects one event from a randomly selected room and
deallocates it.
Move-inner: Swap 2 randomly selected events in a given room between 2 ran-
domly selected timeslots.

3.2 Meta-heuristics

We only use hill-climbing and simulated annealing [1,11] implementations in this
paper.

The hill climbing algorithm (HC) variant uses most of the moves given above
to perform a search of the neighbourhoods. On each iteration, it selects an
operator from the list above according to a given move probability and ap-
plies it to generate a candidate solution. If the candidate solution has better
(or equal) fitness than the incumbent, we commit to the move, but otherwise
disregard it.

The Teaching Space Allocation Problem with Splitting 237

Simulated Annealing (SA) was used as the main component for overcoming
local optima. A geometric cooling schedule was used, specifically temperature
T → αT every 650 iterations with α = 0.998. We generally used 6 million
iterations and initial temperature Ti = 0.6. Such a slow cooling and such a large
number of iterations were chosen to err on the side of safety.

4 Algorithms with Splitting

In this section, we describe the splitting heuristics that are incorporated into the
HC and the SA approaches. Two strategies are implemented: (a) construction-
based splitting, and (b) dynamic local search-based splitting. In the first case,
the section size is calculated during the construction of an initial solution and
remains fixed for all events throughout the local search. In dynamic splitting,
the section size is calculated as the local search progresses according to the size
of the event (and room capacity) that is being allocated. Hence, we will have

– SS-HC: Construction-based static splitting and hill-climbing
– SS-SA: Construction-based static splitting and simulated annealing
– DS-HC: Dynamic splitting and hill-climbing
– DS-SA: Dynamic splitting and simulated annealing.

4.1 Static Splitting

In static splitting we select a target section size (generally based on room pro-
files) and then split all the courses of size larger than that target size, into as
many sections as needed during the process of constructing an initial solution.
We use the term static, because once a split is enforced it cannot be changed.
We afterwards run a local search algorithm (HC or SA) to improve the initial
solution. So, in this strategy, splitting happens within the construction and this
provides no flexibility in changing section size during the local search.

There can be many ways to calculate and fix the target section size. Here we
compare three variants which are based on the notion of a ‘target room capacity’.
This means that the target section size is calculated based on the capacity of
the rooms that are available for allocating course sections. Specifically, the target
section size is fixed to one of three different values:

1. MAXCAP – the largest room capacity
2. AVGCAP – the average room capacity
3. MINCAP – the smallest room capacity.

We recognise that more elaborate ways to calculate the target section size
are possible based on information from the room profiles. However, our interest
here is to explore how splitting during the construction phase affects the search
process in general, and to compare it to the case in which splitting is carried out
during the local search (dynamic) which is described in the next section.

238 C. Beyrouthy et al.

4.2 Dynamic Splitting Operators

In dynamic splitting, we calculate the section sizes during the local search itself.
The dynamic splitting heuristic is also capable of un-splitting/rejoining sections
and this gives more flexibility to determine an adequate target section size by
changing, adding, deleting and merging sections as needed.

Dynamic splitting is embedded in the local search in such a way that there is
freedom and diversity in the choices of section sizes. Thus, the dynamic splitting
operators consider not only the room capacities (as in the case of static splitting)
but also the location (L), timetabling (TT), section number (SN), section size
(SZ), and no partial allocation (NPA) constraints. Note that, at the current
stage, the operators themselves do not directly respond to penalties that are
considered by the local search. Presumably, this leads to inefficiencies because
good moves will need to be discovered via multiple iterations of the SA/HC
rather than directly and heuristically with the operators; we intend to investigate
this in future work.

In the search, it is important to note that the ‘pool of unallocated courses’
is a pool of the portions of courses that are not yet allocated. The unallocated
portions contain no information about how they are going to be split. That is,
it is not a pool of sections waiting to be allocated, but instead the sections are
created during the process of allocation. That is, the main characteristic of the
splitting operators lies in the fact that when a split occurs, we actually select a
fraction of a course and allocate it. When a section is unallocated, we merge it
back with the associated course without keeping track of previous section splits.

Below, we detail the neighbourhood operators used in the dynamic splitting
(ordered roughly by their degree of elaboration):

1-swap-rand-sec: This operator works in a similar way to 1-swap-rand de-
scribed in section 3.1 but the move is carried out between 2 sections (not neces-
sarily of the same course).
Move-inner-sec: This operator works in a similar way to move-inner de-
scribed in section 3.1 but the move is carried out between 2 sections (not neces-
sarily of the same course).
Push-rand : This operator works in a similar way to push-rand described in
Section 3.1 but note that the events being ‘pushed’ to the allocation are sections
of a course that are smaller than the chosen room, and so no splitting was needed.
Pop-unsplit : This operator is used to remove sections from their allocated room
and unsplit/rejoin sections with their unallocated parent course. Note that this
move can be seen as the reverse operation to splitting but not exactly, because
we do not keep track of the splits made during the search by split-push and
split-max that we describe next. First, the
pop-unsplit operator chooses (at random) an allocated event from a randomly
selected room. In the case that the chosen event is a section, the operator unal-
locates the section and merges it with its unallocated parent event. If the event
is not a section it is simply added to the unallocated pool.

The Teaching Space Allocation Problem with Splitting 239

Split-push : This operator is used to handle courses whose unallocated portion
is larger than the chosen room. This is the main operator that is used to create
new sections. It is at the heart of the dynamic splitting:

Proc: split-push
1 Randomly select a room Rj with available timeslots.

Let its capacity be Cj .
2 Randomly select a course Pi from the unallocated pool.

Let the size of Pi be Ni.
3 Set size s = floor(Cj ∗ rand(δ, 1))

though if s > Ni then s=Ni

4 Randomly select empty room-slot tj
5 Create section Si with size s

and resize the remainder Pi

6 Set that Si inherits all conflicts from course Pi (see section 2.2)
7 Generate candidate move by allocating Si to room Rj in timeslot tj

Note that rand(δ, 1) means a number randomly selected from the interval [δ, 1]
and the parameter δ is described below. After randomly selecting a room-slot
and unallocated course, the main step in this operator comes in its decision as to
how to split the course to create a new section. Assuming that the capacity of the
room is smaller than the size of the remainder of the course, the new section size,
s, is calculated by multiplying the capacity of the room by a randomly selected
factor. The factor depends on a ‘section re-sizing parameter’, δ, that we give a
value between 0.4 and 0.6. Suppose that we take δ = 0.4 then this effectively
means that the generated section size, s, will be between 40% and 100% of the
selected room’s capacity. The intention of this randomised selection of section
size is that it enables the search to discover section sizes that match the penalties
such as section size and section number. The new section inherits all of the
conflict information from its parent course – see the discussion of the ‘Conflict
Inheritance Problem’ in Section 2.2. The new section is then allocated to the
chosen room. The remaining part of the parent course is left in the unallocated
list of courses with its size reduced appropriately.
Split-max : This operator is a version of split-push with δ=1 and is designed
so that courses with size larger then the chosen room are split so that sections
are of the maximum size allowed within the chosen room.

4.3 Example of the Operator Application

An example of the search process, and the differences that can arise during
search, are illustrated in the simple example of Figure 2. Two courses C1 and C2,
of sizes 120 and 40 respectively, are to be allocated to the four rooms available.
We have selected capacities so that total size of courses precisely equals the
total capacity of the rooms. In the first case, it happens that the smaller event
C2 is allocated first via a push-rand because it can be allocated to that room
without a split. However, this inevitably means that 20 spaces within room R2

240 C. Beyrouthy et al.

Tslot 1
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

C=20 C=20ROOMS C=60 C=60

R1 R2 R3 R4
Case 1

COURSES C2C1

S=120 S=40

2060

C=20 C=20ROOMS C=60 C=60

R1 R2 R3 R4
Case 2

COURSES C1 C2

S=40S=120

4020
60 60 20 20

Tslot 1

Fig. 2. Example in which applying operators to split courses has different effects. In
case 1, course C2 first receives a push-rand into room R2, and then applications of
split-push to C1 are able to allocate only 60 + 20 + 20 = 100 students rather than
the needed 120. However, in case 2 we see that reversing the order allows all of both
courses to be allocated.

are wasted, and so it becomes impossible to allocate all of course C1. In the
second case, the larger course, C1, is first split using split-max and then we
end up with a perfect fit. The operator split-max with its implicit ‘maximum
size sections first’ is often better at maximising the utilisation, although there
are other cases in which push-rand is necessary. For this reason, and also from
experimental evidence, we tend to give the operator split-max more probability
of being selected than the operator push-rand .

4.4 Controlling the Search

We have observed, in an informal manner, that the effectiveness of each operator
varies during the search. As an example, suppose we are just carrying out non-
splitting local search from Section 3. We start with an empty allocation, and
then the Push-rand operator is the most important and successful in the early
stages as events/courses need to be allocated, but for capacity reasons it remains
stalled during the rest of the search, during which the other moves provide the
bulk of the successful search efforts. This led to us taking a simple, though
adequate, compromise with probabilities of around 10–20% for each operator.

5 Experimental Comparison of the Algorithms

In this section, we first investigate the ‘static splitting’ method in which only
the construction does any splitting and is followed by simulated annealing. Note
that ‘construction followed by hill climbing’ is not presented as, unsurprisingly,
it performs no better than the simulated annealing version. We find that it is
far inferior to the dynamic splitting. Moving to the dynamic splitting itself we
then compare the HC and SA variants, and we see that the DS-SA variant is
the better.

Although it seems evident from the datasets in Table 1, we illustrate the
importance of splitting in our scenario. The following table compares some

The Teaching Space Allocation Problem with Splitting 241

examples of the utilisation percentages obtained (and the number of events al-
located) without any splitting (not even static splitting from the construction)
and compares them with those obtained by DS-SA:

Wksp Tut Sem

SA, no splitting 36% (264 ev) 0.015% 0.013%
DS-SA 70% (720 ev) 26% (1747 ev) 44% (3000 ev)

We clearly see that splitting is essential for the tutorials and seminars as, oth-
erwise, virtually nothing is allocated. For the workshops, some courses can be
allocated, but we still lose a lot compared to when splitting is allowed. So from
now on we always permit splitting (we refer the reader back to Section 2.4 where
the datasets are presented and the difference between the Wksp data set and the
others was also noted). While, in the results above, utilisation figures seem a
little higher than in real-world cases (30–40%) we show, in later sections, how
the different actual constraints drive the utilisation down to more practical lev-
els; the introduction of section size penalty along with the No-Partial-Allocation
penalty can also generate a realistic level of utilisation figures.

Our results are generically presenting trade-off curves which are approxima-
tions to Pareto fronts. These are generally representing the trade-off between
two of the objective functions. We select a wide range of relative values for the
weights associated with the two chosen objectives, and then call the local search
with those weights. For example, we often plot the trade-off between utilisation,
U , and location, L. In this case, we pick a non-zero value for W (U), and then
just search at each of many values for W (L). This leaves some gaps in the curves
due to the presence of unsupported solutions. However, generally the gaps are
small and we do not expect that filling them would significantly change the over-
all messages from the results. Note that since L is a penalty, then the objective
is essentially −L, and we use this for the y-axis, so that ‘better’ is towards the
top-right corner (and similarly for all others of our trade-off graphs).

5.1 Dynamic vs. Static Splitting

Figure 3 shows the trade-off curves between utilisation and location for the three
different methods from the static splitting (see Section 4.1), and compares them
to the results from the dynamic splitting method, DS-HC.

We see that for the construction, splitting based on the average room capac-
ity (AVGCAP) outperforms the other two (MINCAP and MAXCAP). This is
reasonable, as when splitting by the smallest room capacity there is capacity
wastage in larger rooms and when splitting is based on the larger room size
there is a wastage caused by violating room capacities, since we cannot allocate
a section to a room with smaller capacity.

However, it is also clear that all our construction-based splitting methods
are easily outperformed by the dynamic splitting. This is unsurprising, as it is

242 C. Beyrouthy et al.

-40000

-35000

-30000

-25000

-20000

-15000

-10000

-5000

 0

 0 10 20 30 40 50 60 70 80 90 100

-
L

Utilisation (%)

MAXCAP
MINCAP

AVGCAP
DS-HC

Fig. 3. Comparison of dynamic and static (construction-based) splitting for the Wksp
data set. Plots give the trade-offs obtained between Utilisation and Location, all the
other objectives being disregarded (WTT =WSZ=WSN=WNPA=0). The first three sets
of points are from the three constructive methods of Section 4.1; the last ‘DS-HC’ from
the dynamic splitting with hill-climbing.

entirely reasonable that it is best to do splits based upon the availability of room
capacities rather than on a uniform target capacity. It is possible that a more
sophisticated constructive method would perform much better. However, for the
purposes of this paper we will henceforth consider only dynamic splitting.

5.2 Dynamic Splitting: HC vs. SA

Figure 4 illustrates the different performances of DS-HC and DS-SA on the
workshop problems in the presence of timetabling. Figure 5 is the same except
that it is for a tutorials dataset. As is well known, the conflict graph of the
timetabling penalty moves the problem to a variant of graph colouring. So it
is not surprising that the SA is likely to outperform the HC, as SA can escape
local minima but HC cannot. Perhaps more surprising is the observation that
the performances in the absence of TT are often very similar.

In any case, it is clear that DS-SA is the best of the algorithms that we
have considered, and so will be assumed from now on whenever we have a TT
penalty (and in the absence of a TT penalty it seemed to matter little which one
is used).

6 Trade-Offs Between the Various Objectives

Having selected dynamic splitting as our algorithm of choice, we now change
focus: we no longer pursue the solution algorithm itself, but instead focus on the
solution space. In particular, we present some preliminary results on how the
various objectives interact and, in particular, the magnitude of their effect on
the utilisation.

The Teaching Space Allocation Problem with Splitting 243

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0

 0 20 40 60 80 100

 -
 L

Utilisation (%)

SA TT(70)
HC TT(70)

Fig. 4. Trade-off of utilisation and location as obtained with dynamic splitting, and
using the HC and SA algorithms. For the Wksp data, and in the presence of TT(70),
and no other constraints beside U, L, and TT.

’

-80000

-70000

-60000

-50000

-40000

-30000

-20000

-10000

 0

 0 20 40 60 80 100

-
L

Utilisation (%)

TUT-SA TT(75)
TUT-HC TT(75)

Fig. 5. As Figure 4 but instead using the tutorials dataset, Tut-trim, and with TT(75)

6.1 Interaction of Section Size Penalty (SZ), Location Penalty (L),
and Utilisation (U)

Figure 6 gives plots of the trade-off between utilisation (U) and location (L),
in the presence of various weights, W (SZ), for the section size penalty (SZ),
with a target section size of 25, but with no other penalties. Note that the case
W (SZ) = 0 was seen previously as the best line in Figure 3, and illustrates that
(even without section size constraints) demanding a low location penalty has the
potential to significantly reduce the utilisation (from about 98% down to 50%).
The non-zero values for W (SZ) drastically reduce the utilisation: dropping to
the range 10–50%. This corresponds to a policy of a fixed size, but with such an
excessively-strict adherence to that policy that the overall room usage suffers.

244 C. Beyrouthy et al.

-25000

-20000

-15000

-10000

-5000

 0

 0 20 40 60 80 100

-
L

Utilisation (%)

w(SZ)
0

50
100
500

Fig. 6. Trade-off surfaces for the given values of the weight W (SZ) for the section size
policy. On the Wksp dataset, with a target section size of 25, and aiming to optimise
only utilisation U, location L, and section size SZ.

6.2 Trade-Offs Arising from Section Size Penalty and Utilisation

So far, we have only looked at trade-offs between Utilisation and Location. How-
ever, now, in Figure 7 we show the trade-off between utilisation, U, and section size
penalty (SZ). This happens to be with a small weight given to the section number
penalty, SN; however, with no other penalties: W (L) = W (TT) = W (NPA) = 0,
so in this case location penalties are ignored. Each curve illustrates the drastic
drop in utilisation as we move towards the section size becoming a hard constraint.
We also see that reducing the target for the section size reduces utilisations though
by a lesser amount. Part of this effect is possibly because our current section size
penalty does not allow a range of values for the section size and because it penalises
under-filling a section just as much as overfilling.

6.3 Effects of Timetabling Constraints

Figure 8 is a plot of the usual trade-off between utilisation and location objec-
tives, but comparing the presence and absence of a timetabling constraint. The
case with timetabling is with conflict matrix of density 70%, and with an as-
sociated weight W (TT) that is large enough that the timetabling is effectively
enforced as a hard constraint. This illustrates that timetabling issues have the
potential to significantly reduce the utilisation, and so again could be part of
the explanation for the low values of utilisation observed in real problems.

6.4 Inclusion of the No-Partial-Allocation Penalty

So far, we have presented results for cases in which the ‘No Partial Allocation’
(NPA) objective is ignored: that is, W (NPA) = 0. This means that some sections
from a course can be allocated even though others are unallocated. This gives the
search extra freedom, and so it is reasonable that enforcing NPA will only further

The Teaching Space Allocation Problem with Splitting 245

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0

 0 20 40 60 80 100

-
S

Z

Utilisation (%)

secsize target
20
15

Fig. 7. Utilisation vs. section size penalty, SZ, for the Wksp data set, and for two values
(15 and 20) of the target section size

-25000

-20000

-15000

-10000

-5000

 0

 0 20 40 60 80 100

-
L

Utilisation (%)

SA TT(70)
NO TT

Fig. 8. Trade-offs between Utilisation and Location for the Wksp dataset. ‘No TT’
means that no objectives besides L and U are weighted, in particular W(TT) = 0.
In contrast, ‘TT(70)’ means that a timetabling constraint with a density of 70% is
enforced as a hard constraint.

reduce the utilisations obtained. The magnitude of this effect is seen in Figure 9.
We see that giving NPA high weights can further reduce the utilisation by about
10–20%. This is a significant effect, although it is somewhat smaller than the
effects seen in the trade-offs with the timetabling and section size objectives. It
is also interesting that the effect of the NPA becomes very small when selecting
solutions with small location penalty.

7 Summary and Future Work

We have devised methods, and performed preliminary studies, to support long-
term teaching space planning in the presence of courses that will need to be split
down into multiple sections.

246 C. Beyrouthy et al.

-25000

-20000

-15000

-10000

-5000

 0

 0 10 20 30 40 50 60 70 80 90 100

-
L

U (%)

W(NPA)
0

450
650

Fig. 9. Trade-offs between Utilisation and Location, in the presence of various strengths
of the ‘No Partial Allocation’ (NPA) penalty, but with no TT or other penalties

The work has two broad aspects. Firstly, we provided algorithms to perform
splitting and optimisation in the presence of multiple objective functions, in-
cluding overall space usage, constraints inspired from timetabling, and also ob-
jectives relating to desirable properties of the splits themselves. In particular,
we devised a splitting algorithm in which the decisions as to course splitting are
incorporated within a local search.

Secondly, we used an implementation of the dynamic splitting in order to ex-
plore the trade-offs between various objectives. We found that the incorporation
of objectives other than solely employing utilisation can result in the utilisation
dropping from over 90% down to much lower figures such as 30–50%. This is
significant because such low utilisations are consistent with the real world; and
so our model ultimately has the potential to explain real-world utilisation fig-
ures. The intended longer term consequences of such better understanding will
enable an improved ability to engineer the safety margins that need to be built
into capacity planning. We acknowledge that other factors apart from those con-
sidered in this study might also have an impact on the utilisation inefficiency
that occurs in real-world problems. The evidence presented here is a first step
towards a wider investigation of this issue.

In future work, we intend to improve the speed and scope of the methods.
This will have multiple aspects, of which perhaps the most important is to model
the conflict inheritance issues that we discussed in Section 2.2. At the moment,
we do not answer, or indeed model this problem. In the absence of a good model
for this inheritance, we do not answer here the questions as to how the degree of
inheritance affects results. Our inheritance is either total or nonexistent. That is,
all sections inherit either all conflicts of the associated course, or else they inherit
none (equivalent to simply turning off the timetable penalty). Although a defi-
ciency, this does at least allow us to put bounds on the effect of the timetabling.
The effect of partial inheritance must lie between the two extremes of total and
no inheritance. Building a model for the partial inheritance, and exploring its
effects is a high priority for future work.

The Teaching Space Allocation Problem with Splitting 247

References

1. Aarts, E., Korst, J.: Simulated Annealing and Boltzman Machines. Wiley, New
York (1990)

2. Alvarez-Valdes, R., Crespo, E., Tamarit, J.: Assigning students to course sections
using tabu search. Annals of Operations Research 96, 1–16 (2000)

3. AminToosi, M., Yazdi, H.S., Haddadnia, J.: Feature selection in a fuzzy student
sectioning algorithm. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS,
vol. 3616, pp. 147–160. Springer, Heidelberg (2005)

4. Bardadym, V.: Computer-aided school and university timetabling: The new wave.
In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling.
LNCS, vol. 1153, pp. 22–45. Springer, Heidelberg (1996)

5. Beyrouthy, C., Burke, E.K., McCollum, B., McMullan, P., Landa-Silva, D., Parkes,
A.: Towards improving the utilisation of university teaching space. Technical Re-
port NOTTCS-TR-2006-5, School of Computer Science & IT, University of Not-
tingham (2006)

6. Beyrouthy, C., Burke, E.K., McCollum, B., McMullan, P., Landa-Silva, D., Parkes,
A.: Understanding the role of UFOs within space exploitation. In: Proceedings
of the 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, pp. 359–362 (August 2006)

7. Burke, E.K., Jackson, K., Kingston, J., Weare, R.: Automated timetabling: The
state of the art. The Computer Journal 40, 565–571 (1997)

8. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operational Research 140, 266–280 (2002)

9. Carter, M.: Timetabling. In: Gass, S., Harris, C. (eds.) Encyclopedia of Operations
Research and Management Science, pp. 833–836. Kluwer, Dordrecht (2001)

10. Carter, M., Laporte, G.: Recent developments in practical course timetabling. In:
Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19. Springer,
Heidelberg (1998)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

12. Laporte, G., Desroches, S.: The problem of assigning students to course sections in
a large engineering school. Computers and Operations Research 13, 387–394 (1986)

13. McCollum, B., McMullan, P.: The cornerstone of effective management and plan-
ning of space. Technical Report, Realtime Solutions Ltd (2004)

14. McCollum, B., Roche, T.: Scenarios for allocation of space. Technical Report, Re-
altime Solutions Ltd (2004)

15. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J. (ed.) Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, pp. 1–23. Chapman
and Hall/CRC Press, London (2004)

16. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
18–27 (1999)

17. Selim, S.: Split vertices in vertex colouring and their application in developing a
solution to the faculty timetable problem. The Computer Journal 31, 76–82 (1988)

18. de Werra, D.: An introduction to timetabling. European Journal of Operational
Research 19, 151–162 (1985)

Solving the University Timetabling Problem

with Optimized Enrollment of Students by a
Self-adaptive Genetic Algorithm

Radomı́r Perzina

Department of Mathematical Methods in Economics,
School of Business Administration, Silesian University,
University Sq. 1934/3, 733 40 Karviná, Czech Republic

perzina@opf.slu.cz

Abstract. The timetabling problem is well known to be an NP-complete
combinatorial problem. The problem becomes even more complex when
addressed to individual timetables of students. The core of dealing with
the problem in this application is a timetable builder based on mixed
direct–indirect encoding evolved by a genetic algorithm with a self-
adaptation paradigm, where the parameters of the genetic algorithm
are optimized during the same evolution cycle as the problem itself. The
aim of this paper is to present an encoding for self-adaptation of ge-
netic algorithms that is suitable for timetabling problems. Compared
to previous approaches we designed the encoding for self-adaptation of
not only one parameter or several ones but for all possible parameters
of genetic algorithms at the same time. The proposed self-adaptive ge-
netic algorithm is then applied for solving the real university timetabling
problem and compared with a standard genetic algorithm. The main ad-
vantage of this approach is that it makes it possible to solve a wide range
of timetabling and scheduling problems without setting parameters for
each kind of problem in advance. Unlike common timetabling problems,
the algorithm was applied to the problem in which each student has an
individual timetable, so we also present and discuss the algorithm for
optimized enrollment of students that minimizes the number of clashing
constraints for students.

1 Introduction

Genetic algorithms are search algorithms based on the idea of natural selection
and natural genetics. It is well known that the efficiency of genetic algorithms
strongly depends on their parameters. These parameters are usually set up ac-
cording to vaguely formulated recommendations of experts or by the so-called
two-level genetic algorithm, where at the first level the genetic algorithm opti-
mizes parameters of the second level. Self-adaptation seems to be a promising
feature of genetic algorithms, whereby the parameters of the genetic algorithm
are optimized during the same evolution cycle as the problem itself. The aim of
this paper is to present an encoding and genetic operators for self-adaptation of

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 248–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The University Timetabling Problem with Optimized Enrollment 249

genetic algorithms that is suitable for solving the university timetabling prob-
lem. Compared to previous approaches (e.g. [5, 17, 25]) we designed the encoding
for self-adaptation for not only one parameter but for all or nearly all possible
parameters of genetic algorithms at the same time. Moreover, the parameters
are encoded separately for each element of a chromosome.

The proposed self-adaptive genetic algorithm is then applied for solving the
real university timetabling problem at Silesian University. The problem is known
to be NP-complete and hence there is no known algorithm for solving it in
polynomial time [12]. The requirements for timetabling differs from university
to university, but in general the timetabling problem consists of assigning each
lecture from a set of lectures to a suitable room and a time slot subject to a
number of hard and soft constraints, such as no teacher can teach more lectures
at the same time, at no room can be taught more than one lecture at the same
time, teachers time and room preferences, etc.

At some universities, including Silesian University, each student has an in-
dividual timetable, i.e. there are no groups of students which have the same
timetable, and it is even difficult to find two students with the same timetable;
thus solving the problem becomes very complex. In order to be able to deal with
individual timetables of students we designed an algorithm for optimization of
enrollment of students that effectively decreases the number of constraints for
student clashes.

A large number of diverse methods have been already proposed in the liter-
ature for solving timetabling problems. These methods come from a number of
scientific disciplines like Operations Research, Artificial Intelligence, and Com-
putational Intelligence and can be divided into four categories:

1. Sequential methods that treat timetabling problems as graph problems. Gen-
erally, they order the events using domain-specific heuristics and then assign
the events sequentially into valid time–room slots [24].

2. Cluster methods, in which the problem is divided into a number of event sets.
Each set is defined so that it satisfies all hard constraints. Then, the sets are
assigned to real time–room slots to satisfy the soft constraints too [28].

3. Constraint-based methods, according to which a timetabling problem is
modeled as a set of variables (events) to which values (resources such as
teachers and rooms) have to be assigned in order to satisfy a number of
constraints [9, 16].

4. Meta-heuristic methods, such as genetic algorithms, simulated annealing,
tabu search, and other heuristic approaches, that are mostly inspired from
nature, and apply nature-like processes to solutions or populations of solu-
tions, in order to evolve them towards optimality [2, 11, 19, 23, 26, 27].

When applying genetic algorithms to some optimization or scheduling prob-
lem, the crucial element is encoding. For a timetabling problem there are two
main types of encoding: direct [23] and indirect [19]. The advantage of direct
encoding is that the whole search space can be encoded, but it usually leads to
violation of many hard constraints. Indirect encoding is based on some rules or
instructions for building the resulting timetable and so there is less probability

250 R. Perzina

of hard constraint violation, but it can reach only a limited portion of the search
space and thus it can be more easily trapped in a local optimum. In our appli-
cation a combination of both encoding types was used, because we want to let
the algorithm decide itself whether to use the direct or indirect representation,
and the ratio of using both of them. The timetable builder is based on the order
of lectures and time–room slots encoded in the chromosome. By this approach
all the feasible timetables can be addressed and the probability of generating an
infeasible timetable is strongly reduced. Finally the proposed self-adaptive ge-
netic algorithm is compared to standard genetic algorithms on this timetabling
problem. Also the role of enrollment optimization algorithm is discussed.

2 The Timetabling Problem

In this section we describe the input data for the university timetabling prob-
lem and formalize the optimization model. In the model we use the following
notation:

nR number of available rooms R1, R2, . . . , RnR

nU number of subjects U1, U2, . . . , UnU

nL number of lectures (events) L1, L2, . . . , LnL

nS number of students S1, S2, . . . , SnS

nT number of teachers T1, T2, . . . , TnT

nM number of time slots M1, M2, . . . , MnM

nG number of time–room slots G1, G2, . . . , GnG

C clash matrix with elements cij ; i = 1, 2, . . . , nL; j = 1, 2, . . . , nL

P preference matrix with elements pij ; i = 1, 2, . . . , nL; j = 1, 2, . . . , nG.

The purpose of the clash matrix C is to determine which lectures should not
be scheduled at the same time. Each element of the clash matrix cij is equal
to the number of students which are enrolled to both lectures Li and Lj . The
number of students that attend more lectures at the same time is only a soft
constraint, because each student has an individual timetable and so it is nearly
impossible to build a timetable with no clashes for students. The clash matrix
C is also used for handling teachers clashes, i.e. the high penalty coefficient is
set to the matrix element cij = 106 for all lectures Li and Lj which are taught
by the same teacher.

The purpose of the preference matrix P is to set preference pij to particular
time–room slot Gj for each lecture Li. Note that the preferences are taken as
negative preferences, i.e. the higher the element of the preference matrix pij ,
the less suitable is the time–room slot Gj for the lecture Li. The matrix P is
also used for handling the suitable rooms for each lecture. By the matrix P we
can handle both the teacher time preferences and the suitable rooms for each
lecture. The teacher time preferences are usually taken as soft constraints, i.e.
only a small penalty coefficient is set to pij for all time–room slots Gj that
correspond to less preferred timeslots for the lectures Li that are taught by the
teacher. The requirement for suitable room is handled as a hard constraint, so

The University Timetabling Problem with Optimized Enrollment 251

the high penalty coefficient pij = 106 is set for all time–room slots Gj that
correspond to unsuitable rooms for particular lecture Li.

The core of the timetabling problem is to assign suitable timeslot Gj to each
lecture Li such that all hard constraints are satisfied and the number of soft con-
straint violations was minimal. This problem can be mathematically formulated
as an optimization model minimizing error of the timetable defined as

z =
nL∑

i=1

⎡

⎣
nG∑

j=1

xijpij +
nL∑

k=1

cik sametime(i, k)

⎤

⎦ + wp · penalty(xij) → min (1)

s.t.
nL∑

i=1

xij ≤ 1 for j = 1, 2, . . . , nG

nG∑

j=1

xij = 1 for i = 1, 2, . . . , nL,

where xij is a binary optimized variable determining whether the lecture Li is
taught in the time–room slot Gj . The expression sametime(i,k) is the function
that is equal to 1 if the lecture Li is taught at the same time as the lecture
Lk, otherwise it is equal to zero. The expression penalty(xij) is the function
determining the penalty of the timetable that it is not possible to express by clash
matrix C or preference matrix P . The coefficient wp is the weight of penalty(xij)
by which it contributes to the error of the timetable.

3 Teacher Preferences

To express teacher preferences we define the following criteria. For each criterion
the teacher sets its preference t∗ by ‘mark’ from 1 to 5; mark 1 means that it is
the best and mark 5 means that it is the worst. Because the preferences t∗ are
used for calculation of total error of the timetable, and t∗ = 1 means the best
possibility for the teacher and actually no error of timetable, we transform t∗

to t∗
′

by decreasing by 1, i.e. t∗
′
= t∗ − 1. If the preference t∗ = 5 it is a hard

constraint, so t∗
′
= 106.

3.1 Time Preferences

For each timeslot Mk the teacher must set its preference tMk , for which we cal-
culate tM

′

k = tMk − 1. After that we assign pij = wM · tM ′

k for all lectures Li that
are taught by this teacher and for all timeroom slots Gj that corresponds to
timeslot Mk. The parameter wM is a weight by which it contributes to the error
of the timetable. For example if the teacher cannot teach on Wednesdays, on
Mondays and Tuesdays he prefers to teach in the afternoon and on Thursdays
and Fridays he prefers to teach in the morning, then the preferences tMk are as
follows:

252 R. Perzina

08:00– 08:50– 09:40– 10:30– 11:20– 12:10– 13:00– 13:50– 14:40– 15:30–
08:45 09:35 10:25 11:15 12:05 12:55 13:45 14:35 15:25 16:15

Mon 4 3 3 3 2 2 1 1 1 1
Tue 4 3 3 3 2 2 1 1 1 1
Wed 5 5 5 5 5 5 5 5 5 5
Thu 1 1 1 1 1 2 2 3 3 3
Fri 1 1 1 1 1 2 2 3 3 3

3.2 Number of Teaching Days per Week

For each number of days the teacher must set tNk , for which we calculate tN
′

k =
tNk − 1. We calculate the number of days d in which the teacher teaches at least
one lecture and then increase the value of penalty(xij) by the value of wN · tN ′

d ,
where wN is the weight by which it contributes to the penalty of timetable. For
example, if the teacher would like to teach 2 or 3 days a week, 4 days it is not
convenient for him, 5 days is not acceptable for him and in 1 day it is not possible
to teach all lectures, then the preferences tNk look like

Number of teaching days 1 2 3 4 5

Preferences tN
k 5 1 1 3 5

3.3 Length of Teaching Block Without Break

By this criterion the teacher sets whether he prefers to concentrate lectures in one
long teaching block or to disperse them to several short teaching blocks. For each
length of the teaching block (in hours) the teacher must set its preference tBk , for
which we calculate tB

′

k = tBk −1. We calculate for each continuous teaching block
its length l and then increase the value of penalty(xij) by the value of wB · tB′

l ,
where wB is the weight by which it contributes to the penalty of timetable.
For example, if the teacher does not like to have too dispersed lectures, i.e. he
wants to teach at least 2 hours without break, preferably he would like to teach
3–4 continuous hours, 5 continuous hours is very exhausting and more than 5
continuous hours is not possible to teach, then the preferences tBk look like

Length of block 1 2 3 4 5 6 7 8 9 10
Preferences tB

k 5 3 1 1 3 5 5 5 5 5

3.4 Number of Teaching Hours per Day

For each number of the teaching hours the teacher must set its preference tHk ,
for which we calculate tH

′

k = tHk − 1. We calculate for each day the number
of teaching hours h and then increase the value of penalty(xij) by the value
of wH · tH

′

h , where wH is the weight by which it contributes to the penalty of

The University Timetabling Problem with Optimized Enrollment 253

timetable. For example,if it is very inconvenient for the teacher to go to school
to teach only 1 or 2 hours, optimal number is 3–5 hours per day, 6–7 hours is
exhausting and above 7 hours per day is impossible, then the preferences tHk look
like

Number of hours 1 2 3 4 5 6 7 8 9 10
Preferences tH

k 5 4 2 1 1 3 4 5 5 5

3.5 Span of Teaching Day

This criterion means the difference between beginning of the first lecture and the
end of last lecture in a day, i.e. the sum of teaching hours and breaks between
them. For each length of span the teacher must set its preference tSk , for which
we calculate tS

′

k = tSk − 1. We calculate for each teaching day the length of span
s and then increase the value of penalty(xij) by the value of wS · tS′

s , where wS

is the weight by which it contributes to the penalty of timetable.

3.6 Length of Continuous Break

By this criterion the teacher sets how many hours he needs to relax. For each
number of relax hours the teacher must set its preference tRk , for which we cal-
culate tR

′

k = tRk − 1. We calculate for each break between two teaching blocks
its length r and then increase the value of penalty(xij) by the value of wR · tR′

r ,
where wR is the weight by which it contributes to the penalty of timetable.
Of course if necessary it is possible to incorporate other teacher preferences in
similar way as previous ones.

4 Enrollment of Students

At most universities there are some groups of students which share the same
timetable. But at some universities including Silesian University each student
has an individual timetable, i.e. there are no groups of students which have the
same timetable, and it is even hard to find any two students that have the same
timetable. Thus solving the problem becomes very complex.

At Silesian University each student can choose subjects that he wants to
study. If the subject consists of only one lecture there is usually no problem as
the student is automatically enrolled to that lecture. But most subjects con-
sist of two kinds of meetings: classical lectures and seminars. There are usually
more seminars of the same subject, but the student can be enrolled only to one
of them. The question is how to set an appropriate seminar for each student.
One possibility is to do it randomly, but by this way it will be very difficult or

254 R. Perzina

nearly impossible to build a timetable in which each student has an unclashing
timetable or the number of clashing lectures for students is acceptably small. So
we propose an algorithm for optimized enrollment of students that minimizes
the number of clashing constraints for students.

In the model we use the following notation:

SU
ij binary variable defining whether student Si is enrolled to subject Uj

SL
ij binary variable defining whether student Si is enrolled to lecture Lj

UL
ij binary variable defining whether subject Ui contains the lecture Lj

LS
i maximal number of students that can be enrolled to lecture Li.

Without loss of generality suppose that each kind of lecture of the same sub-
ject will be labeled as a different subject. First we set the elements cT

ij of clash
matrix C for teacher clashes as described in Section 2. After that, students are
enrolled to the lectures corresponding to the subjects which have only one lec-
ture of the same type, i.e. there is no possibility of choice of lecture to which a
student should be enrolled. The core of the enrollment problem is then to enroll
all students to all lectures such that all constraints are satisfied and the number
of nonzero elements cij of the clash matrix C is minimal. The problem can be
mathematically formulated as an optimization model minimizing the number of
nonzero elements cij defined as

c =
nL∑

i=1

nL∑

j=1

nonzero(cij) → min (2)

s.t.
nS∑

i=1

SL
ij ≤ LS

j for j = 1, 2, . . . , nL

nU∑

j=1

SU
ij =

nL∑

k=1

SL
ik for i = 1, 2, . . . , nS

nL∑

j=1

SL
ij · UL

kj · SU
ik = 1 for i = 1, 2, . . . , nS , k = 1, 2, . . . , nU

where cij = cT
ij +

nS∑

k=1
SL

ki · SL
kj for i, j = 1, 2, . . . , nL and nonzero(cij) is a function

which is equal to 0 when cij is zero and 1 otherwise.

5 Self-adaptive Genetic Algorithm

As the proposed timetabling problem is very complex, a genetic algorithm with
self-adaptation is used for its solving. In this section the basic characteristic of
the algorithm will be described.

Encoding is a crucial element of every genetic algorithm. The structure of
our self-adaptive genetic algorithm’s encoding is depicted in Figure 1. The idea

The University Timetabling Problem with Optimized Enrollment 255

…

…

…

Population

Individual 1 Individual 2 Individual Np

Gene 1 Gene 2 Gene Ng

Gene elem 2Gene elem 1 Gene elem Ne

Fig. 1. The structure of a population

behind the proposed encoding consists in redundancy of information through
hierarchical the evaluation of individuals.

As we can see, in the population each individual is composed of Ng genes,
where each gene corresponds to exactly one optimized variable. Each gene is
composed of Ne gene elements. The number of gene element is different for
each gene and it varies through evolution. Each gene element contains low-level
parameters, which encode optimized variables and parameters of evolution. All
parameters are listed in Table 1.

The upper index ‘E’ denotes that it is a gene element value of the parameter.
As the encoding is hierarchical, there are several levels of the parameters, so
gene values of parameters are marked by the upper index ‘G’, individual values
by ‘I’ and population values by ‘P ’.

Since genetic operators are applied only to the low level values of parameters
(gene element), the upper level values of parameters cannot be altered directly
through the evolution process, but only indirectly by an evaluation mechanism
from low-level values.

5.1 Mechanism of Gene Evaluation

The proposed encoding is polyploiditial, so each gene is composed of Ne gene
elements. The number of gene elements is variable and undergoes evolution.
For evaluation of gene values of gene elements we use the simple arithmetical
average, i.e.

XG =
1

Ne

Ne∑

i=1

XE
i , (3)

where X stands for parameters that must be evaluated, i.e. x, sm, sw, rr, rt, rp,
cd, Np, it.

256 R. Perzina

Table 1. The structure of a gene element

Name Description Range

xE Optimized variable 〈0; 1〉
qE

m Parameter of mutation 〈−1; 1〉
qE

p Parameter of protected mutation 〈−1; 1〉
rE

m Radius of mutation 〈0; 0.5〉
pE

c Probability of crossover 〈0; 1〉
rE

c Ratio of crossover 〈0; 1〉
qE

d Parameter of deletion 〈−0.1; 0.1〉
qE

u Parameter of duplication 〈−0.1; 0.1〉
qE

t Parameter of translocation 〈−0.1; 0.1〉
sE

m Identifier of myself for mating 〈0; 1〉
sE

w Wanted partner for mating 〈0; 1〉
rE

r Ratio of replacement 〈0; 1〉
rE

t Ratio of population for selection 〈0; 1〉
rE

p Ratio of population for 2nd partner selection 〈0; 1〉
cE
d Coefficient of death 〈0; 1〉

NE
p Wanted size of population 〈0; 1〉

iEt Identifier of translocation 〈0; 1〉

5.2 Mechanism of Individual Evaluation

Parameters concerning the whole individual, such as sI
m, sI

w, rI
r , rI

t , rI
p, cI

d, N I
p

are evaluated as simple arithmetical average, i.e.

XI =
1

Ng

Ng∑

i=1

XG
i . (4)

The number of genes Ng is not variable, because one gene contains exactly one
optimized variable.

5.3 Mechanism of Population Evaluation

Parameters concerning the whole population, such as rP
r , rP

t , cP
d , NP

p , are eval-
uated as weighted average with weights according to their relative fitness wf ,
defined as

wf =
NP

p − i + 1
(1+NP

p)NP
p

2

(5)

where i is index of ith individual in population sorted by fitness in descending
order, i.e. the individual with the highest value of the fitness function has the
value of i equal to 1, the individual with the second highest value of the fitness
function has the value of i equal to 2, etc.

The University Timetabling Problem with Optimized Enrollment 257

6 Genetic Operators

As the proposed encoding is specific, the genetic operators must be adjusted to
fit the encoding. There are used not only common genetic operators as selection,
crossover or mutation, but also some specific ones, as described in the following
paragraphs. Of course the genetic algorithms are powerful enough to work only
with the basic genetic operators, but the idea is to use as many operators as
possible and let the genetic algorithm decide which ones to use through self-
adaptation.

6.1 Selection

In genetic algorithms the selection of both parents for mating is usually based on
their fitness, but this is not true in nature. In nature a winner of a tournament
selects his partner according to his individual preferences. Importantly, he cannot
take into account his genotype directly, i.e. the values of his genes or his fitness,
but only his phenotype, i.e. only the expression of the genes to the outside.
In a similar way we try to imitate nature by using parameters sI

m and sI
w.

The parameter sI
w represents an individual’s preferences for mating and the

parameter sI
m represents an individual’s phenotype for mating. So the first parent

is selected by a tournament selection method with variable ratio of population
rP
t from which the fittest individual is selected. The second parent is selected

according to the individual’s preferences represented by the parameter sI
w, i.e. the

first parent selects an individual with the minimal value of expression
∣
∣sI

w − sI
m

∣
∣,

but this selection is made from only a limited ratio of population rI
p.

6.2 Crossover

The crossover operator is applied to every gene element of the first parent with
the probability pE

c . The crossover itself proceeds only between gene elements of
mating parents according to

XE
3 = XE

1 +
(
XE

2 − XE
1

)
· rE

c (6)

where X stands for all parameters of a gene element (see Table 1), rE
c is a ratio

of crossover of the first parent defined in this gene element, the lower index ‘1’
denotes the gene element of the first parent, the index ‘2’ the second parent and
the index ‘3’ denotes the child of both parents. The gene element of the second
parent is selected randomly, but it is of the same gene as the gene element of
the first parent.

6.3 Mutation

The mutation operator is applied to every gene element with probability pE
m =∣

∣qE
m

∣
∣. Notice that probability of mutation is calculated as the absolute value of

the parameter of mutation qE
m ∈ 〈−1; 1〉, because the mean value of pE

m should

258 R. Perzina

be zero. Moreover, every gene element has its own probability of mutation. The
mutation formula is defined as

XE
new = XE

old +
(
XE

max − XE
min

)
· U

(
−rE

m, rE
m

)
(7)

where X stands for all parameters of the gene element, U(a, b) is a random
variable with uniform probability distribution in the interval 〈a; b〉, XE

new is the
value of the parameter after mutation, XE

old is the original value of the parameter,
and XE

max (XE
min) is the maximal (minimal) allowed bit element value of the

parameter as defined in Table 1.

6.4 Duplication

The duplication operator is applied to every gene element with probability
pE

u =
∣
∣qE

u

∣
∣. The gene element is duplicated (copied) with the same value of

all parameters with the only exception being that the values of parameterqE
u of

both gene elements are divided by 2, in order to inhibit exponential growth of
the number of bit elements.

6.5 Deletion

The deletion operator is applied to every gene element with probability pE
d =∣

∣qE
d

∣
∣. This means that the gene element is simply removed from the particu-

lar gene. The degree of polyploidity is controlled by deletion and duplication
operators.

6.6 Translocation

Translocation means that a gene element is moved from its original gene to one
of neighboring genes with probability pE

t =
∣
∣qE

t

∣
∣. However, the neighboring gene

may decide whether to accept the gene element: that is, the real probability of
translocation is defined as

p = pE
t ·

(
1 −

∣
∣
∣i

G(new)
t − i

G(old)
t

∣
∣
∣
)

(8)

where i
G(new)
t is the identifier of translocation of the gene to which the gene

element is going to move, and index ‘(old)’ denotes the original gene. The values
of the gene element’s parameters are left unchanged with the only exception that
qE
t is multiplied by coefficient −0.5, in order to decrease further translocations.

The gene element decides whether to translocate to the left or right neighboring
gene according to the sign of qE

t .

6.7 Protected Mutation

Protected mutation is an analogy of local optimization and it is applied only to
the fittest individual in the population after application of all previous operators
and after values of fitness function of all individuals in the population have been
calculated. The protected mutation operator is applied to every gene element

The University Timetabling Problem with Optimized Enrollment 259

with probability pE
p =

∣
∣qE

p

∣
∣ and after that the new value of fitness function is

calculated and compared to the value of fitness function before applying the
protected mutation operator. If the new value of fitness function is greater than
previously, then the mutated chromosome is used, otherwise the old chromosome
is used for the following evolution cycle.

6.8 Replacement of Individuals

For every individual the parameter of life strength, L, is defined. When the
individual is created its life strength L is set to one and in every generation it is
multiplied by the coefficient cL defined as

cL = 1 − cP
d (1 − wf) . (9)

Evidently, through evolution, a less fitter individual causes a greater decrease
in L.

In every generation all XP parameters are evaluated and by using the above
listed genetic operators NP

p · rP
r new individuals are created. Then a randomly

selected individual is killed with probability (1 − L). This process of killing in-
dividuals is repeated until only NP

p individuals survive in the population.

7 Mapping the Timetabling Problem to the Chromosome

The timetabling problem actually consists of two tasks. In the first one students
must be enrolled to lectures and in the second one there must be lectures assigned
to time–room slots. In this section the process of decoding from the chromosome
will be described.

7.1 The Enrollment Builder

First we enroll students to lectures according their preferences for subjects they
want to attend by the process described in Section 4. For optimization of enroll-
ment of students the proposed self-adaptive genetic algorithm was used. As was
mentioned in Section 5, each gene of a chromosome represents one real variable
within the interval 〈0; 1〉. In order to apply this chromosome encoding for the
enrollment problem, the chromosome is divided into two parts. The first part A
consisting of (nS · nU) genes represents the parameters for all subjects selected
by students and the second part B consisting of nL genes represents parameters
for lectures. The main idea behind the encoding of the lecture enrollment is that
the subjects selected by students are sorted in ascending order according to val-
ues of parameters in the part A of the chromosome and then in this order the
lecture enrollment builder assigns the first free suitable lecture with the least dif-
ference of |Ai − Bj |, where Ai is the ith parameter of part A of the chromosome
and Bj is the jth parameter of part B of the chromosome. The fitness function
f for the genetic algorithm is the negative value of c in (2), i.e. c = −z.

260 R. Perzina

7.2 The Timetable Builder

For solving the university timetabling problem the self-adaptive genetic algo-
rithm was used, too. The process of encoding is similar to encoding of the en-
rollment problem above. The chromosome is divided into three parts. The first
part A, consisting of nL genes, represents the parameters for lectures; the second
part B, consisting of nG genes, represents parameters for time–room slots; and
the last part contains control parameters for the timetable builder. Lectures are
sorted in ascending order according to the values of parameters in part A of the
chromosome and then in this order the timetable builder assigns the first suitable
unused time–room slot with the least difference of |Ai − Bj |, where Ai is the ith
parameter of part A of the chromosome and Bj is the jth parameter of part B
of the chromosome. Whether the time–room slot Gj is suitable for the lecture
Li is determined by the control parameter D in the last part of the chromosome.
The parameter D contains the maximal accepted penalty of assigning lecture Li

to time–room slot Gj , which is calculated by formula (1). If there is no suitable
time–room slot for the lecture Li, the best suited still unused time–room slot is
selected for the lecture. The fitness function f for the genetic algorithm is the
negative value of z in (1), i.e. f = −z.

To make the idea behind decoding the chromosome clearer, a simple example
will be provided. Let us suppose we have three lectures: L1, L2, L3 and four
time–room slots: G1, G2, G3, G4. So the chromosome for such simple timetable
will have eight genes. Let us suppose that after evaluation, the gene values of
variables xG are

Part A B D

Description L1 L2 L3 G1 G2 G3 G4

Value 0.45 0.91 0.39 0.82 0.36 0.49 0.56 0.8

First lectures must be sorted according values of xG, so the order will be L3,
L1, L2. For all lectures we now must calculate difference between the lecture and
particular time–room slot |Ai − Bj|:

G1 G2 G3 G4

L3 0.43 0.03 0.10 0.17
L1 0.37 0.09 0.04 0.11
L2 0.09 0.55 0.42 0.35

The selected time–room slot with least difference of |Ai − Bj | for each lecture
is marked by bold font and time–room slots used for previous lectures are in
italic. So the resulting timetable according chromosome provided in the example
will be L1→G3, L2→G1, L3→G2.

The University Timetabling Problem with Optimized Enrollment 261

8 Numerical Experiments

This model was then applied for solving the real timetabling problem in the
School of Business Administration at Silesian University. The problem size and
its structure can be characterized by the values of parameters: number of rooms
nR = 43, number of subjects nU = 340, number of lectures nL = 705, number
of students nS = 1807, number of teachers nT = 112, number of time slots
nM = 60, number of time–room slots nG = 2400. When evaluating the error
of timetable z defined in (1), we must set up weights of the criteria: wM = 3,
wN = 5, wB = 3, wH = 3, wS = 2, wR = 2, wP = 0.5. The number of computers
that were used was Na = 30.

The best solution found by the self-adaptive genetic algorithm was the time-
table with the minimal value of error function z = 7184. The resulting timetable
satisfied all hard constraints and there were 83 students that had any clashing
lecture. The previously used approach for constructing the timetable produced
a timetable in which there were on average 2.8 clashing lectures for each stu-
dent, moreover it was a very boring and time-consuming process, because the
timetable was made manually, with the computer used only as a graphical user
interface.

In order to also test the performance of the proposed self-adaptive genetic al-
gorithm (SAGA) we have compared it with the simple genetic algorithm (SGA)
on this timetabling problem. The simple genetic algorithm used a binary encod-
ing, the size of population was 30 individuals, probability of mutation 0.003 and
elitism was used. Maximal number of generations for both algorithms was 104.
We ran both algorithms 10 times and measured the average penalty function z
of the best timetable found in each run of both genetic algorithms. The average
best value of error function for SAGA was 7331 and for SGA the average value
of z was 7687. As can be seen, SAGA was slightly better, but the main advan-
tage of SAGA is that there is no need for finding values of the parameters, as
there are no parameters set in advance. The average CPU time on the processor
Pentium 1.7GHz was about 8 hours for the SAGA and about 7 hours for the
SGA for single run of 10 000 generations.

We also tested the role of the enrollment optimization algorithm. The enroll-
ment optimization algorithm as described in Section 4 was substituted by random
enrollment of students to lectures and the best solution found by the SAGA was
the timetable with the minimal value of error function z = 12553. As can be seen,
it is much worse than with applying the enrollment optimization algorithm.

9 Conclusions

In this paper we have designed an optimization model for solving the university
timetabling problem that is capable of dealing with individual timetables of every
student. For solving the timetabling problem we have proposed a self-adaptive
genetic algorithm with self-adaptation of all its parameters. This algorithm was
applied for solving the real university timetabling problem at Silesian University.

262 R. Perzina

It was shown that the self-adaptive genetic algorithm is able to effectively solve
the timetabling problem. It was also shown how to significantly decrease the
number of student clash constraints by the proposed enrollment optimization
algorithm when dealing with individual timetables of students.

A great problem appeared when it was applied to the real timetabling prob-
lem with changed preferences and requirements for timetable, because the new
timetable is completely different to the original one. So further study will be
concerned to deal with the problem of minimization of the number of changes
between the new and original timetable. For the self-adaptive genetic algorithm
it would be beneficial to test the importance of every genetic operator and also
to test the effectiveness of the algorithm on other combinatorial problems.

References

1. Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighbor-
hood search for university course timetabling. In: MISTA. Proceedings of the 2nd
Multidisciplinary International Conference on Scheduling: Theory and Applica-
tions, New York, pp. 413–427 (July 2005)

2. Abramson, D.: Constructing school timetables using simulated annealing: sequen-
tial and parallel algorithms. Management Science 37, 98–113 (1991)

3. Aickelin, B.E.K., Li, J.: Improved squeaky wheel optimisation for driver scheduling.
In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. LNCS, vol. 4193,
pp. 182–191. Springer, Heidelberg (2006)

4. Bacardit, J., Krasnogor, N.: Smart crossover operator with multiple parents for
a Pittsburgh learning classifier system. In: GECCO 2006. Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, pp. 1441–1448.
ACM Press, New York (2006)

5. Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of the 1st European
Conference on Artificial Life, MIT Press, Cambridge, MA (1992)

6. Beyrouthy, C., Burke, E.K., Landa-Silva, D., McCullom, B., McMullan, P., Parkes,
A.J.: The teaching space allocation problem with splitting. In: Burke, E.K.,
Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 232–252. Springer, Hei-
delberg (2007)

7. Bufé, M., Fischer, T., Gubbels, H., Häcker, C., Hasprich, O., Scheibel, C., Karsten
Weicker, K., Weicker, N., Wenig, M., Wolfangel, C.: Automated solution of a highly
constrained school timetabling problem – preliminary results. In: Proceedings of
the Evo Workshops, Como, Italy, Springer, Berlin (2001)

8. Burke, E.K., Newall, J.: Enhancing timetable solutions with local search methods.
In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp.
195–206. Springer, Heidelberg (2003)

9. Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: algo-
rithms and applications. European Journal of Operational Research 119, 557–581
(1999)

10. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. Thesis, University of Michigan (1975)

11. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling.
In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117.
Springer, Heidelberg (2001)

The University Timetabling Problem with Optimized Enrollment 263

12. Even, S., Iati, A., Shamir, A.: On the complexity of timetabling and multicom-
modity flow problems. SIAM Journal of Computation 5, 691–703 (1976)

13. Fernandes, C., Caldeira, J.P., Melicio, F., Rosa, A.: High school weekly timetabling
by evolutionary algorithms. In: Proceedings of the 14th Annual ACM Symposium
on Applied Computing, San Antonio, TX (1999)

14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

15. Kendall, G., Mohd, H.N.: Tabu search hyper-heuristic approach to the examination
timetabling problem at University Technology MARA. In: Burke, E.K., Trick, M.A.
(eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–217. Springer, Heidelberg (2005)

16. Legierski, W.: Search strategy for constraint-based class–teacher timetabling. In:
Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 247–
261. Springer, Heidelberg (2003)

17. Marsili, S.L., Alba, P.A.: Adaptive mutation in genetic algorithms. Soft Comput-
ing 4, 76–80 (2000)

18. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, New York (1996)

19. Paechter, B., Rankin, R.C., Cumming, A., Fogarty, T.C.: Timetabling the classes
of an entire university with an evolutionary algorithm. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature -
PPSN V. LNCS, vol. 1498, pp. 865–874. Springer, Heidelberg (1998)

20. Perzina, R.: Self-adaptation in genetic algorithms. In: SCI 2003. Proceedings of
the 7th World Multiconference on Systemics, Cybernetics and Informatics, IIIS,
Orlando, FL, pp. 234–238 (2003)

21. Perzina, R.: A self-adapting genetic algorithm for solving the university timetabling
problem. In: SCI 2004. Proceedings of the 8th World Multiconference on Systemics,
Cybernetics and Informatics, IIIS, Orlando, FL, pp. 284–288 (2004)

22. Perzina, R., Ramı́k, J.: A new portfolio selection model solved by genetic algo-
rithms. In: Proceedings of the 20th International Conference of MME, VŠB TU,
Ostrava, pp. 201–207 (2002)

23. Ross, P., Hart, E., Corne, D.: Some observations about ga-based exam timetabling.
In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 115–129.
Springer, Heidelberg (1998)

24. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

25. Stefano, C.D., Tettamanazi, A.G.B.: An evolutionary algorithm for solving the
school timetabling problem. In: Proceedings of the Evo Workshops 2001, Como,
Italy, pp. 452–462. Springer, Berlin (2001)

26. Terashima-Marin, H., Ross, P., Valenzuela-Rendon, M.: Evolution of constraint
satisfaction strategies in examination timetabling. In: GECCO 1999. Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 635–642. Morgan
Kaufmann, San Mateo, CA (1999)

27. Thompson, J.M., Dowsland, K.A.: A robust simulated annealing based exami-
nation timetabling system. In: Computers and Operations Research, vol. 25, pp.
637–648. Elsevier, Oxford (1998)

28. White, G.M., Chan, P.W.: Towards the construction of optimal examination
timetables. INFOR 17, 219–229 (1979)

29. Yang, J.M., Kao, C.Y.: Integrating adaptive mutations and family competition into
genetic algorithms as function optimizer. Soft Computing 4, 89–102 (2000)

School Timetabling

A Case Study for Timetabling in a Dutch

Secondary School

Peter de Haan1, Ronald Landman2, Gerhard Post1,3, and Henri Ruizenaar3,4

1 ORTEC, Groningenweg 6k, 2803 PV Gouda, The Netherlands
2 KLM Royal Dutch Airlines, Amsterdamseweg 55,

1182 GP Amstelveen, The Netherlands
3 Department of Applied Mathematics, University Twente,

PO Box 217, 7500 AE Enschede, The Netherlands
4 Stedelijk Lyceum, Locatie Kottenpark, Lyceumlaan 30,

7522 GK Enschede, The Netherlands

Abstract. This paper describes a case study for constructing the yearly
schedule of a secondary school in the Netherlands. This construction is
divided in three steps. In the first step we create cluster schemes contain-
ing the optional subjects. A cluster scheme consists of cluster lines, and
a cluster line contains classes which will be taught simultaneously. Part
of the problem is that the students are not yet assigned to the classes.
Once the cluster schemes are fixed, it remains to schedule the lessons to
time slots and rooms. We first schedule the lessons to day-parts, and once
this is completed we schedule the lessons to time slots within the day-
parts. Thanks to consistency checks in the day-part phase, going from
day-parts to time slots is possible. Finally, in the third step, we improve
the previously found schedule by a tabu search using ejection chains.
Compared to hand-made schedules, the results are very promising.

1 Introduction

In the past 25 years a lot of research has been done on automated High School
Timetabling. This research can be divided in two groups:

1. Theoretical oriented research and surveys, see for example, in chronological
order [5,7,9,18,21,23,24]. These papers either define some concepts and/or
methods, but do not describe real-life implementations.

2. Research based on several cases (usually high schools from the region). These
papers (hopefully) define the problem they study, and explain that their
methods perform quite well on the real-life cases considered. Examples of
these papers are found below.

What is apparent from the studies in the second class, is that the problems
differ widely among the countries. Of course, there are certain aspects that they
all have in common. This could be named the basic high school timetabling
feasibility problem replacing ‘lesson’ by ‘event’, this is the basic timetabling
problem):

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 267–279, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

268 P. de Haan et al.

Given a set of lessons with needed resources, and time slots,

Assign resources and a time slot to each lesson, such that the resources
are not over-used.

We assume the situation that we need to construct a schedule for a week, which
is repeated for a certain period like a year or semester. A lesson has usually the
following resources with restrictions:

1. Class: the (virtual) group; can be used once per time slot. There are two
principally different situations:
– The classes are mutually disjoint: every student is in exactly one class.

This is called the ‘Class–Teacher model’.
– The classes are not disjoint: the class depends on the subject (students

have optional subjects). This occurs for example in Germany [4,11,25],
the Netherlands [12,26], and New Zealand [27].

In the first case, some intermediate cases can exist, where several classes are
combined and reshuffled based on level (easy math vs. difficult math), or
religion, or sex (physical education lessons).

2. Subject: the subject of the lesson; the (subject, class) combination can be
used once per day.

3. Students: the students that constitute the class of the lesson; a student can
be used once per time slot. In most countries the students are preassigned
to the class. However in case of optional subjects, these students might have
to be divided over different classes (the Netherlands: [12,20,26]).

4. Teacher(s): the teachers of the lesson; a teacher can be used once per time-
slot, if the teacher is available at that time. Usually a lesson has just one
teacher, which in most countries seems to be preassigned, while in some it
has to be assigned, for example in Australia [1], Greece [6], and the UK [28].

5. Room(s): the rooms needed for the lesson; a room can be used once per
time slot. Usually the lesson needs only one room, and this room has to be
assigned; some papers mention that a class has its own room (Greece [22],
Italy [19]). (Another possibility is that only room types – like music-room,
gymnasium, etc. – are assigned.)

From this we see that already the basic feasibility problem has several variants:
assign students or not, assign teachers or not, assign rooms or not.

As far as the objective function is concerned, the variants are even more
diverse. Here we mention two cases, which sometimes appear as hard constraints:

1. Compact schedules for classes, which means schedules for classes without
idle times. Here an idle time (for a class or teacher) is defined as a free
time slot between the first and last lesson of the day. In several cases this
is automatic, as a class has as many lessons as timeslots available, as in
Brazil [16,17], Italy [8,19], Spain [3], Switzerland [10], and the UK [28]. In
cases with optional subjects it is usual impossible to have compact sched-
ules. These schedules, on the student level now, are not often considered for
quality.

A Case Study for Timetabling in a Dutch Secondary School 269

2. Compact schedules for teachers. This is mentioned in most of the papers
above. Sometimes, as with classes, this is almost automatic (this assumes
that all, or at least almost all, teachers work full-time).

Considering all cases above, it is difficult to judge which problems are harder
than others. Probably most cases have aspects that are difficult to handle; either
feasibility is hard to attain, or it can be hard to obtain high quality schedules.
Similarly it is difficult to judge the capabilities of different methods; how well
would a method do on cases outside the studied ones? The lack of exchangeable
benchmarks is obvious here.

As for the Netherlands, we think that the high school timetabling problem
is quite difficult; we will try to explain that in the next section. Since De Gans
[12] in 1981 no study seems to be published internationally on real-life data from
the Netherlands. (Willemen [26] focuses on complexity issues.) Clearly a lot has
changed since 1981, and it is worth studying the situation as it stands now. The
process is still very dynamic, see Section 6.

2 Problem Description

The impetus for this research was a request in 2003 from the Kottenpark (a
location of ‘Het Stedelijk Lyceum’ in Enschede) to assist with creating the year
schedule. In the Kottenpark the timetable is still mainly made by hand, and
checked by computer. The reason for not using the commercial engine is mainly
quality: the engine is not able to generate any complete solution, and the part
that is generated is of poor quality.

In 2004, the Kottenpark had around 1000 students, 36 school classes, 71 teach-
ers, and 40 rooms. There were 1049 lessons to be scheduled. As such it is a school
of average size in the Netherlands. There are 38 time slots available for lessons.
The occupation of time slots by the students ranges from 76% (29 lessons per
week) up to 92% (35 lessons per week). In timetabling this school the following
difficulties are encountered.

– In the upper years, up to two-thirds of the lessons of the students are in
optional subjects. To handle these subjects, a cluster scheme (see below) is
constructed, which requires a certain number of time slots (the length of the
cluster scheme). It is sometimes difficult to reduce this length to get an a
priori schedulable situation.

– Around 75% of the teachers work part-time at the Kottenpark. Consequently
(by collective labor agreement) they are entitled to have 1, 2 or 3 days
without lessons; usually teachers have preferences for these days.

– Teachers have up to 26 lessons, most of them less. Hence avoiding idle time is
not automatic. The hand-made schedule contains 128 idle times for teachers,
an average of 1.9 per teacher.

– The lower years (without optional subjects) should have no idle times.
– The two gymnasiums are used for 100% of the time, often as a block (two

consecutive time slots), and always two classes (of the same age) combined.

270 P. de Haan et al.

All these circumstances are quite common in the Netherlands. It seems that
scheduling the students, and the high amount of part-time teachers are quite
exceptional compared to other countries. Our approach consists of three phases,
devised to handle these problems:

1. Construct cluster schemes: the students are assigned to classes for the op-
tional subjects, and the classes to cluster lines.

2. Create a feasible schedule: assign all lessons to time slots, such that there are
no clashes.

3. Improve the schedule: improve the feasible schedule.

In the next sections, we will describe the three phases of our algorithm in more
detail.

3 Constructing the Cluster Schemes

3.1 Motivation

As one can easily imagine, scheduling the optional subjects constitutes a major
bottleneck in constructing (good) timetables. To get this process under con-
trol, cluster schemes are constructed first. In the Netherlands it seems that all
schools first construct cluster schemes. This is a way to avoid using individ-
ual students, essential when the schedule is constructed by hand. The system
with optional subjects was introduced in 1968 (Mammoetwet), while the revi-
sion of 1995 (‘Second Phase’) made things even more complicated. The report
of Simons [20] concerns the construction of cluster schemes, while De Gans [12]
assumes that the cluster schemes are already created.

We have to construct a cluster scheme for years with optional subjects. Each
cluster scheme consists of cluster lines. Each cluster line contains a number of
classes with different optional subjects, that will be scheduled at the same time
slots. The arrangement of classes in the cluster lines, and the assignment of
students to classes of their optional subjects must be such that each student
can attend the optional subjects he has chosen. So for each student it should
be possible to make an assignment to classes of his optional subjects, such that
these classes are in different cluster lines. Unfortunately, not all optional subjects
have the same number of lessons, neither have all students the same number of
optional subjects. Homogeneous tiling structures, as in [14], seem difficult to
attain. (The high percentage of part-timers also breaks homogeneity.)

The classes in a cluster line have a number of lessons. The maximal number
of lessons in a cluster line is called the cluster line length. The cluster scheme
length is the sum of the lengths of the cluster lines it contains; it represents the
number of time slots we have to reserve for the cluster scheme.

The main goal is to minimize the cluster scheme lengths. (Commercial soft-
ware prescribes the maximal number of cluster lines, which is less informative.)
For this there are the following reasons.

A Case Study for Timetabling in a Dutch Secondary School 271

– If the cluster scheme length is too high, it might be that there are not
enough time slots left for the obligatory subjects. In some years this causes
a problem. It can even happen that the school management decides to add
an extra class to decrease the cluster scheme length.

– A lower cluster scheme length increases the freedom in scheduling the re-
maining obligatory subjects.

– A lower cluster scheme length decreases the number of potential idle times.
Here it is important to remember that not all students might be present in
a cluster line. For the time slots of this cluster line these students are free. If
these students have a lesson earlier and later on the day, it is an idle time.

The secondary goal in a cluster scheme is to balance the classes of a subject. If,
for instance, there are three classes for the subject mathematics, and 79 students,
then the best balance is that the classes contain 26, 26 and 27 students. The
combination 23, 23 and 33 is forbidden, as this violates the maximum size (32 in
our case) of a class, while the combination 32, 32, 15 is not desirable. Balancing
is done for educational reasons, and for fairness towards the teachers.

3.2 Branch and Bound

The sizes of problem instances (up to 20 or 25 classes) make it worthwhile to
attempt careful enumeration. If we have 20 classes and 8 cluster lines, then a
priori there are 820 possibilities for classes in lines, which is clearly out of range.
However there are several ways to reduce the number of possibilities considerably.
In the enumeration there are two possible approaches.

1. Decide per step in which classes a student takes his optional subjects. In
this case we have to put the classes in lines, such that classes in a line have
no students in common. This can be viewed as a graph coloring problem
(classes are vertices, with edges between non-disjoint classes, and cluster
lines are colors).

2. Decide per step in which lines the classes are put. In each step we have to
solve a matching problem for each student, namely to decide in which lines
a student takes his optional subjects.

Both approaches will try to extend partial assignments, and step to the next pos-
sibility in case the configuration gives no solution. We chose the second approach
for two reasons:

– It seems easier to solve at each step a matching problem than a graph coloring
one.

– It seems easier to estimate our objectives, the cluster scheme length and the
balance of classes.

Hence our approach takes the following steps. We store, for instance, the best
100 solutions:

1. Place one student in a group for his k subjects, and place these groups in
the first k cluster lines. These groups are fixed, and will never be moved.

272 P. de Haan et al.

2. Take the first not yet placed group G.
3. For cluster line 1 to the last cluster line, place G, and estimate the cluster

scheme length. If too high skip the case, and move G to the next cluster line.
4. Assign all students to the placed groups (increment for G). If not all students

can be assigned, stop the case and move G to the next line.
5. If there are non-placed groups left, return to 2.
6. Balance the groups, and calculate the objectives, the cluster scheme length

and the penalty for not-balanced groups. We compare solutions lexicograph-
ically, first by cluster scheme length, and then by balance. If necessary store
the solution. Continue with placing G in the next cluster line.

We give an overview of the methods we applied to speed up the search process.
For more details we refer to the technical report [15].

3.3 Using Statistics

Calculating the matchings at each step is very time consuming. A first simpli-
fication is to group students that have the same optional subjects. Apart from
this, we accumulate some statistics at the start. We will call an optional subject
with k classes a ‘k-grouper’.

– For any two 1-groupers, check if they have a student in common. If this is
the case, the corresponding classes have to be placed in different lines.

– For any two 1-groupers, and a 2-grouper, check if there is a student with
this combination of subjects. If this is the case, the corresponding 4 classes
have to occupy at least 3 lines.

To use these statistics in an efficient way, we decided to order the classes ac-
cording to the number of classes of the subject; the 1-groupers first, then the
2-groupers, then the 3-groupers, and so on. Note that placing the 1-groupers is
a graph coloring problem: the classes are the vertices of the graph, while two
vertices are connected if the corresponding classes have a student in common
(this is part of the statistics above).

When placing a 2-grouper, we similarly use the statistics. At the moment we
try to place the second class of this subject, we collect all 1-groupers in the
two corresponding lines. If two 1-groupers with the 2-grouper is chosen by a
student (this is in the statistics), the combination is forbidden, and does not
need consideration.

3.4 Symmetry

All lines are equivalent. Hence in case of eight lines, we gain a factor 8! by
removing equivalent solutions. We remove symmetric solutions by:

– Fixing one (difficult) student to classes, and fixing these classes in different
lines.

– Only place a class in a cluster line, when all previous lines are non-empty.

A Case Study for Timetabling in a Dutch Secondary School 273

– For two classes of the same subject we assume that the line number of the
first class is lower than the line number of the second class. This holds if
these classes that are not fixed by the difficult student (as described above).

Even this does not remove all symmetry. The situation that can occur is that a
subject S3 with (say) two classes is fixed in line 1. The subjects S1 and S2 are
placed before the non-fixed class of S3 is. Then the following can happen:

line 1: S3 S1

line 2: S2 S3
and

line 1: S3 S2

line 2: S1 S3

If the fixed class of S3 is not there, the second solution is forbidden; line 1 would
still be empty at the moment we start to place subject S1. It seems hard to
avoid this kind of symmetry.

3.5 Bounding

The next part we have to take care of is bounding. In our problem we have
two things to bound on: first the length of the cluster scheme, and second the
balancing of the classes.

The length of the cluster scheme can be estimated by the classes that were
placed in lines. In the case that not all classes are placed yet, we have a lower
bound for the cluster scheme length, which can be used for bounding: as soon
as the partial cluster scheme has a length exceeding the best obtained cluster
scheme, we prune the search tree.

At the moment we start to place the classes of a new subject j, we place it
in line i, and calculate (by matching) the maximum number of students Mij

that can be assigned. In the partial cluster scheme this is an exact calculation;
this number however, can decrease when new subjects are placed. As soon as all
classes of a subject are placed in cluster lines, we can estimate how far the classes
necessarily will deviate from the average size; again we prune if the deviation is
higher than the best found.

3.6 Balancing Heuristic

Once a complete cluster scheme has been found, and all classes have been put
in cluster lines, the assignments of students to classes have to be reconsidered.
The assignment were made by the Hungarian method, and hence by first fit; no
attention was paid to the number of students in the classes. In particular we
prefer that classes of the same subject contain approximately the same number
of students. Our heuristic for balancing is a greedy algorithm; here Mij is as
above, and Aj denotes the average size for classes of subject j.

1. Find the line i and subject j where Mij − Aj is negative and minimal. We
assign as many as possible students to this class, and discard the combination
(i, j) in the sequel. We continue until all (i, j) with Mij < Aj are treated.

274 P. de Haan et al.

2. If for remaining combinations (i, j) we have that Mij − Aj is non-negative,
we turn our attention to classes which are still below average, and proceed
in the same way, with Mij replaced by the number of currently assigned
students.

We could continue with balancing of the classes above average, but we do not
do so. In practice there seems to be no need for it.

3.7 Pruning Based on Computation Time

The program we developed contains an option to prune parts of the search tree,
based on the time spent in the subtree: one can prescribe that for search depth
d only s seconds are allowed. Here d is usually between 1 and 4, while s is taken
as a few seconds. In this way we can do a quick scan of the search space within
one or two minutes. Especially for the harder cases, it turns out that solutions
are found much quicker this way.

3.8 Results

The methods above have been used at the Kottenpark during the last three
years. When running the program an upper bound for the cluster scheme length
must be given. For most years good solutions are found within a few seconds,
if at least one feasible solution exists. If no solutions exist, the search can take
several minutes or hours, as the complete search tree has to be checked.

4 Creating a Feasible Schedule

4.1 Motivation

Schools consider the creation of the cluster schemes as a preliminary phase;
usually a different application is provided for it, without interaction with the
timetabling itself. Once the cluster schemes are found, the next phase starts to
assign the lessons to time slots. Instead of assigning the lessons directly to time
slots, we will first assign them to day-parts. For this the days at Kottenpark are
divided in two day-parts: mornings of five time slots, and afternoons with three
time slots, except for the Thursday afternoon, which consists of one time slot.
There are several reasons to do this intermediate step.

– Several constraints are on daily, or on day-part level. These are the con-
straints that lessons of a class must be on different days, teachers are not
available on certain days or day-parts, and the number of teaching days for
teachers should be limited for part-time teachers. Such constraints can be
handled very well in this phase.

– It is unclear to which time slot we should assign a certain lesson, if we do
not know about all lessons to be assigned. Hence we will do a lot of useless
reshuffling.

A Case Study for Timetabling in a Dutch Secondary School 275

– Assigning lessons to 40 time slots in a week is much harder than assigning
lessons to the 5 or 3 time slots in a day-part for 10 times.

Of course there are certain drawbacks. The most important one is that a
feasible day-part schedule does not imply a feasible time slot schedule. This
problem we address in Section 4.3. Moreover we restrict the search space; while
mentioned above as an advantage, it could prevent us from improving certain
aspects in the solution.

4.2 Direct Heuristic

We proceed to schedule the lessons to day-parts. To do this, the lessons are
grouped by the class, or for the optional subjects, by the cluster line. For uni-
formity we create an artificial cluster line (with one class) for the compulsory
subjects. Hence in a stage of the direct heuristic we consider a cluster line, and
try to assign the lessons of the cluster lines to day-parts.

The method we use is a dynamic priority rule. At each stage we estimate
the difficulty of the cluster lines to be scheduled. The difficulty is based on the
weight of the cluster line (originally all weights are 0), and the availabilities
of the resources of the cluster line. We will schedule the most difficult cluster
line first. If this scheduling process breaks down, because a particular cluster
line cannot be assigned any more, we raise the weight of this cluster line, and
restart.

4.3 Compatibility Checking

If we assign cluster lines to day-parts, some conditions have to be checked. The
obvious necessary conditions are that a resource is scheduled for at most the
number of time slots that it is available. This, however, is not enough to guar-
antee schedulability on time slot level. We can take certain measures which in
practice are sufficient. These measures consist of creating time slot schedules
for day-parts and resources that get tight. More specifically, if for a resource
the slack in time slots is 1 or 0, we decide to do this check. In that case, all
lessons of this resource are taken, as well as the neighbors, and the neighbors’
neighbor (the compatibility graph). Here a neighbor is defined to be a lesson
with a common teacher, class, or student. We try to color this graph where
the colors are the available time slots. If we do not succeed within a certain
time limit, we assume that no coloring exists, and reject the day-part for this
lesson.

Here some special attention has to be taken towards the resource ‘room type’.
(We do not really schedule the rooms, but only make sure that we have enough
rooms of the required room type available.) The lessons with the required room
types are not necessarily neighbors in the compatibility graph. Hence, when
constructing the subgraph, we take all lessons with the required room type, and
add all neighbors and neighbors’ neighbors.

276 P. de Haan et al.

4.4 Assigning the Time Slots

Once all lessons have been assigned to day-parts, we try to assign them to time
slots. For this we use a graph coloring heuristic, which colors the nodes one by
one (first fit). To sort the nodes, we use the weight of the nodes, where the
weight is originally the degree of the node. Each time a node cannot be colored
any more, we increase the weight of this node, and backtrack.

4.5 Results

Thanks to the checks described in Section 4.3 all lessons are scheduled after a
few restarts (see Section 4.2), which takes a few minutes. The quite extensive
compatibility tests turn out to be beneficial on the running time. We tried to
influence the coloring with regard to idle times for teachers. For this we also
started off with random orderings of the nodes (see Section 4.4), instead of
ordering by degree. Allowing 30 seconds per day-part for this random search
reduced the total number of idle times for teachers from 142 to 114. Repeating
the random searches 20 times, the total number of idle times dropped to 95.
Hence on this aspect we beat the hand-made schedule. Unfortunately there are
still idle times for the classes of the lower years, which we did not take into
account.

5 Improving the Schedule

5.1 Motivation

The previous phase aimed at assigning all lessons to time slots. Not much at-
tention was paid to quality yet; the emphasis was on finding a feasible schedule.
In the current phase, we try to improve the feasible schedule we found. Ejection
chains [2] combined with tabu search [13] seem to be very appropriate for im-
proving schedules. The quality of a schedule is determined per resource by the
idle times, and the division of lessons over the days for the resource. Hence we
can find a resource, with a low quality schedule, improve this schedule by shift-
ing some lessons, and prevent shifting back by placing this shift on a tabu list.
An improvement for one resource (teacher/class) automatically implies that for
other resources (class/teacher) some repairs have to be done; the shifted lessons
can have clashes, due to other resources. Such lessons, ‘conflict-lessons’, again
have their own conflicts, etc. Hence we run quite naturally into an ejection chain
of improvements.

5.2 Selecting the Shifts

We perform a tabu search, in which each step by itself is a chain of shifts. Here
a shift means that a lesson is moved from one time slot to another. We explain
how we find the shifts that we execute.

A Case Study for Timetabling in a Dutch Secondary School 277

1. First we select the resource A (teacher or class) with the worst schedule,
which is not tabu.

2. For resource A we consider all lessons and all free time slots. For each com-
bination (lesson, free time slot) we calculate the cost change for resource A
for moving a lesson to a free time slot. With respect to other resources of the
lesson, we only make sure that there is not more than one conflict lesson.

3. We select the C = 20 best candidates. The selected shifts we call the first
shift candidates.

4. Executing the first shift candidates, two things can happen:

– The other resources have no clashes; in this case the chain of shifts is
ended.

– There is one conflict-lesson (we did not allow more than one!), due to
resource B. We shift the conflict-lesson to a free time slot of resource B,
and calculate what is the best for resource B. Again we only consider
time slots with at most one conflict-lesson; time slots without conflict-
lesson are preferred.

If in the second case no new conflict arises, then the chain of shifts is ended.
Otherwise we proceed until a maximum of D = 10 shifts.

5. The chain with the highest cost reduction is executed; the reverse move of
first shift is made tabu for L = 10 moves. If no chain is found at all, resource
A itself is made tabu also for L moves.

5.3 Results

We let the algorithm run for 2500 iterations. Usually the best schedule is found
within 1500 iterations. With the parameters as above the algorithm runs for less
than one minute. Experiments were executed with different sets of constraints.
In case of the default Kottenpark set, the cost is reduced by more than 70%. The
total number of idle times of the teachers reduced to 48, while the idle times of
the lower years disappeared. Moreover the spreading of lessons for the teachers
was improved considerably.

6 Conclusion

The presented study is performed with data from a specific Dutch school, but we
believe that these data are representative for many schools in the Netherlands.
Unfortunately not all constraints are incorporated yet, which makes comparison
to the real timetable not completely fair. Comparing what is included we see a
huge improvement in quality; for instance the number of free periods for teachers
drops from 128 (hand-made) to 48, maintaining compact schedules for the lower
years.

After constructing the cluster schemes, we used a two-phase approach to ob-
tain feasible schedules; the first phase (Section 4) was designed to handle several
constraints related to part-time teachers. Viewing the result in the second phase

278 P. de Haan et al.

(Section 5), one can wonder at the effectiveness of this approach; many lessons
were moved from one day to another, improving the spreading of lessons for part-
time teachers. Nevertheless the two-phase method is quite effective in obtaining
a feasible schedule.

In 2005, the Kottenpark introduced a new educational system in the two lower
years. In this system classes of 60 students are constructed. Most subjects are
taught with two teachers: the first teacher belongs to the subject (preassigned
as before), while the second teacher is one of the two preassigned to the class.
The 24 lessons of one class have to be divided between these two teachers, where
there is some preference for subjects, but split assignments are allowed. Because
of this, the program as described here is used operationally only for constructing
the cluster schemes.

Acknowledgements. This research has been supported by the Netherlands Orga-
nization for Scientific Research, grant 636.000.000.02N18 (Leraar in Onderzoek),
and by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Creating
the Knowledge Society).

References

1. Abramson, D.: Constructing school timetables using simulated annealing: sequen-
tial and parallel algorithms. Management Science 37, 98–113 (1991)

2. Ahuja, R.K., Ergu, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete and Applied Mathematics 123, 75–102
(2002)

3. Alvarez-Valdes, R., Martin, G., Tamarit, J.M.: Constructing good solutions for the
Spanish school timetabling problem. Journal of Operational Research Society 47,
1203–1215 (1996)

4. Bufé, M., Fischer, T., Gubbels, H., Häcker, C., Hasprich, O., Scheibel, C., Karsten
Weicker, K., Weicker, N., Wenig, M., Wolfangel, C.: Automated solution of a highly
constrained school timetabling problem – preliminary results. In: Boers, E.J.W.,
Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H.
(eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, Evo-
COP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 431–440. Springer, Heidelberg
(2001)

5. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operational Research 140, 266–280 (2002)

6. Birbis, T., Daskalali, S., Housos, E.: Timetabling for Greek high schools. Journal
of the Operational Research Society 48, 1191–1200 (1997)

7. Carter, M.W., Laporte, G.: Recent developments in practical course timetabling.
In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19.
Springer, Heidelberg (1998)

8. Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for high school timetabling.
Computational Optimization and Applications 9, 275–298 (1998)

9. Cooper, T.B., Kingston, J.: The solution of real instances of the timetabling prob-
lem. The Computer Journal 36, 645–653 (1993)

10. Costa, D.: A tabu search algorithm for computing an operational timetable. Euro-
pean Journal of Operational Research 76, 98–110 (1994)

A Case Study for Timetabling in a Dutch Secondary School 279

11. Drexl, A., Salewski, F.: Distribution requirements and compactness constraints in
school timetabling. European Journal of Operational Research 102, 193–214 (1997)

12. de Gans, O.B.: A computer timetabling system for secondary schools in the Nether-
lands. European Journal of Operational Research 7, 175–182 (1981)

13. Glover, F.W., Laguna, M.: Tabu Search. Kluwer, Norwell, MA (1997)
14. Kingston, J.H.: A tiling algorithm for high school timetabling. In: Burke, E.K.,

Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 208–225. Springer, Heidel-
berg (2005)

15. Post, G.F.H., Ruizenaar, W.A.: Clusterschemes in Dutch secondary schools. Mem-
orandum 1707, University of Twente (2004),
http://www.math.utwente.nl/publications/2004/1707abs.html

16. Ribeiro Filho, G., Lorena, L.A.N.: A constructive approach to school timetabling.
In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E.,
Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001,
EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 130–139.
Springer, Heidelberg (2001)

17. Santos, H.G., Ochi, L.S., Souza, M.J.F.: An efficient tabu search heuristic for the
school timetabling problem. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004.
LNCS, vol. 3059, pp. 468–481. Springer, Heidelberg (2004)

18. Schaerf, A.: A survey of automated timetabling. CWI Report CS-R9567, CWI,
The Netherlands (1995)

19. Schaerf, A.: Local search techniques for large high school timetabling problems.
IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and
Humans 29, 368–377 (1999)

20. Simons, J.L.: ABC: Een programma dat automatisch blokken construeert bij de
vakdifferentiatie binnen het algemeen voortgezet onderwijs. Technical Report NLR
TR 74107 U, NLR, The Netherlands (1974)

21. Smith, K.A., Abramson, D., Duke, D.: Hopfield neural networks for timetabling:
formulations, methods and comparative results. Computers and Industrial Engi-
neering 44, 283–305 (2003)

22. Valouxis, C., Housos, E.: Constraint programming approach for school timetabling.
Computers and Operations Research 30, 1555–1572 (2003)

23. de Werra, D.: An introduction to timetabling. European Journal of Operational
Research 19, 151–162 (1985)

24. de Werra, D.: On a multiconstrained model for chromatic scheduling. Discrete
Applied Mathematics 94, 171–180 (1999)

25. Wilke, P., Gröbner, M., Oster, N.: A hybrid algorithm for school timetabling. In:
McKay, B., Slaney, J.K. (eds.) AI 2002: Advances in Artificial Intelligence. LNCS
(LNAI), vol. 2557, pp. 455–464. Springer, Heidelberg (2002)

26. Willemen, R.J.: School timetable construction; algorithms and complexity, Ph.D.
Thesis, Technical University Eindhoven, The Netherlands (2002)

27. Wood, J., Whitaker, D.: Student centred school timetabling. Journal of Operational
Research Society 49, 1146–1152 (1998)

28. Wright, M.: School timetabling using heuristic search. Journal of Operational Re-
search Society 47, 347–357 (1996)

http://www.math.utwente.nl/publications/2004/1707abs.html

Scheduling School Meetings

Franca Rinaldi and Paolo Serafini

Department of Mathematics and Computer Science, University of Udine,
Via delle Scienze 206, 33100 Udine, Italy

{rinaldi,serafini}@dimi.uniud.it

Abstract. Prespecified meetings between teachers and parents have to
be scheduled. All meetings have the same duration. The goal is in finding
a schedule minimizing the total time and the parents’ idle times. This
NP-hard problem is addressed by solving first a sequence of weighted
assignment problems and then performing a large scale neighborhood
search based on finding negative cost cycles and shortest paths in directed
graphs. This approach provides good computational results. Finally a
variant of the problem with two different durations for the meetings is
considered.

1 Introduction

We address the following problem arising in Italian high schools: on certain days
of the school year, parents can meet teachers to discuss their children. Each
parent tries to meet some teachers and the meetings are individual. There is
no advance planning for the event and therefore parents wait in lines for a long
time (one line for each teacher), not only wasting time but also preventing the
possibility of meeting several teachers.

In this paper we propose a planning method in order to guarantee that each
parent meets all required teachers and the global wasted time of the parents is
minimized. A prerequisite for the method to work is that all meetings last the
same amount of time.

The problem we study is NP-hard. We suggest a two-phase heuristic approach
for its solution. The first phase computes a schedule of minimum time to allo-
cate all meetings by solving a sequence of weighted assignment problems. The
second phase minimizes the parents’ idle times through a large-scale neighbor-
hood search based on negative cycle detection and shortest path computations
in directed graphs. It turns out that this search is quite effective and strongly
reduces the wasted time of the final solutions.

We also briefly consider an extension of the model by allowing double duration
to certain specified meetings that require more discussion.

To the best of our knowledge, this specific timetable problem has not been
addressed in the literature. Nevertheless, a similar problem was considered in [3]
to schedule job interviews for law firms and students at the Southeastern Pub-
lic Interest Job Fair, a law fair which is held each year in the USA. In [3] the
timetable problem is modeled as an edge-coloring problem on bipartite graphs

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 280–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scheduling School Meetings 281

and the minimization of the idle times (considered both for law firms and stu-
dents) is partially carried out by maximizing the cumulative number of meetings
assigned to each period. Our problem has also some resemblance with the no-
wait open shop problem [8], where it is required that all the operations of a
same job are executed contiguously, i.e. no idle time for the jobs is allowed. The
particular case of unit processing times has been studied in [6] and, under the
additional condition of no idle time for the machines, in [5].

As pointed out above, the local search procedure we adopt is based on neigh-
borhoods of exponential size in which an improving neighbor can be found in
polynomial time by dynamic programming. The potential of using optimization
methods, and in particular network flow techniques and dynamic programming,
to search neighborhoods of very large size, has been remarked on in [1]. In
the particular field of timetabling, large-scale neighborhood metaheuristics have
been applied, for instance, in [4] to solve a nurse scheduling problem and in [9]
to solve the examination timetabling problem.

The paper is organized as follows. In Section 2 we define the problem. In Sec-
tion 3 an algorithm to find a schedule of minimum makespan is presented. In
Sections 4 and 5 two local search procedures based on finding sequences of meet-
ing exchanges are described. The first one considers meetings of a fixed teacher,
whereas the second one considers meetings of a fixed parent. The techniques are
illustrated with an example in Section 6. In Section 7 we extend the problem to
the case with two different durations of meetings. Finally some computational
results are given in Section 8.

2 Problem Definition

In the problem we consider, a set J of parents and a set I of teachers are given
and each parent j wants to meet a specified subset Ij of teachers. The subsets
Ij are the input data. Let Ji := {j : i ∈ Ij} be the subset of parents that want
to meet the teacher i.

Assuming that all meetings last the same amount of time, called time slot,
the output is a schedule t(i, j) assigning the time slot t(i, j) to the meeting of
parent j with teacher i, with the obvious requirement that t(i, j) �= t(i, j′) for
all j′ �= j and all i and also t(i, j) �= t(i′, j) for all i′ �= i and all j. We define
as makespan of the schedule the maximum time in which a meeting occurs: i.e.,
maxi∈I t(i, j) = maxj∈J t(i, j). Moreover, for any given schedule, we define idle
time for parent j any time slot k such that mini t(i, j) < k < maxi t(i, j) and
k �= t(i, j) for any i. In other words, an idle time is a waiting time slot in between
meetings and therefore counts as a wasted time.

We define as school meeting problem the problem of determining a schedule
of minimum makespan that minimizes the total number of idle times over all
parents. In this way the two objectives of minimizing the makespan and the
wasted time of the parents are treated in a lexicographic order. The problem
of minimizing the number of idle times within a fixed time is NP-hard, as can
be seen by transforming the no-wait open shop problem with 0–1 processing

282 F. Rinaldi and P. Serafini

times O|no-wait, pij ∈ {0, 1} |Cmax, shown to be NP-hard in [6]. Then the school
meeting problem is NP-hard. We approach its solution heuristically.

3 Minimizing the Maximum Time for the Meetings

The problem of minimizing the maximum time needed for the meetings is equiv-
alent to a minimum makespan open-shop problem by identifying teachers with
machines and parents with jobs. Since the processing times are equal to one, this
particular instance of the open shop problem is polynomial and can be easily
solved by means of the algorithm by Gonzalez and Sahni [7] for the open-shop
problem with pre-emption.

The minimum makespan T is given by T = max {maxj |Ij |, maxi |Ji|}, and an
optimal schedule can be computed by solving a sequence of T bipartite matching
problems, one for each time slot. In more detail, let J0

i := Ji and I0
j := Ij . Then

recursively the kth matching problem (k = 1, . . . , T) assigns a teacher i to a
parent j only if i ∈ Ik−1

j . Furthermore, teachers i such that |Jk−1
i | = T − k + 1

must be assigned to some parent and parents j such that |Ik−1
j | = T −k+1 must

be assigned to some teacher. These teachers and parents are called critical for
time k (and remain critical for any subsequent time). Let Mk ⊂ I ×J be the set
of pairs assigned by the kth matching. Then for all (i, j) ∈ Mk, set t(i, j) := k,
Ik
j := Ik−1

j \ {i} and Jk
i := Jk−1

i \ {j}.
The structure of the above algorithm leaves some room to take into account

the lexicographically second objective function of the school meeting problem,
that is minimizing the total number of idle times of the parents. Our first strategy
consists in solving, at each step, a max weight matching problem instead of a
feasible matching problem. To this aim let sk(j) ∈ {0, 1, 2} be the state of parent
j at time k, where the meaning is that sk(j) = 0 if no meeting has been assigned
to parent j up to time slot (k − 1) (included), sk(j) = 1 if some, but not all,
meetings have been assigned, and sk(j) = 2 if all meetings have been assigned.
Then each pair (i, j) receives the weight

wij :=
{

0 if sk(j) = 0
1 if sk(j) = 1 (1)

in the kth matching problem (note that if sk(j) = 2 parent j is not considered in
the matching problem). Hence, until a parent has been assigned, his/her meetings
receive a zero weight. As soon as a meeting for the parent is assigned, the weight
rises to one.

With the cost function (1) the procedure tends to schedule the major part
of the meetings in the last slots, when all parents and teachers become critical.
This introduces inevitable idle times. In order to overcome this behavior, we have
observed that it is useful to modify the cost function by randomly generating
the meeting costs so that parents still to be assigned might be encouraged to be
assigned a meeting. So we redefine (1) as

Scheduling School Meetings 283

wij :=

⎧
⎪⎪⎨

⎪⎪⎩

−1 with probability p1

0 with probability p2

1 with probability 1 − p1 − p2

⎫
⎬

⎭
if sk(j) = 0

K (1 + Wk(j))2 if sk(j) = 1

(2)

with Wk(j) the number of idle times assigned to parent j during time slots
{1, . . . , k − 1}. The probabilities p1 and p2 and the coefficient K must be properly
tuned. Hence, until a parent has been assigned, his/her meetings receive a low
weight, not greater than one. As soon as a meeting for the parent is assigned, the
weight rises to K and then increases quadratically with the number of assigned
idle times.

4 Minimizing the Idle Times – Local Search LST

The solution found by the procedure described in the previous section may have
many idle times. In order to reduce their number, we adopt a large-scale neigh-
borhood search approach based on two different types of neighborhood. The
first procedure, denoted LST, modifies the schedule by exchanging meetings of
a single teacher, while the second procedure, denoted LSP, moves meetings of a
single parent. In this section we present the local search LST.

This local search is based on the idea of moving a given meeting to a time
slot in which the parent is free. If in the new time slot the teacher is busy with
another meeting, this meeting must be moved as well, creating recursively a
chain of moves. For feasibility, this chain of moves must either be cyclic or end
in a free time slot for the teacher. We associate to this chain a cost given by
the number of introduced idle times. Although the number of possible moves is
exponential, an improving solution in the neighborhood, if any exists, can be
found in polynomial time as follows.

Given a schedule with makespan T and a particular teacher i, we define a di-
rected graph Gi = (N, Ei) having T nodes identified with the time slots 1, . . . , T .

Let Bi be the set of nodes corresponding to the time slots when teacher i is busy
with some meeting, i.e. Bi := ∪j∈Jit(i, j) and Fi := N \ Bi be the complement
set of nodes when teacher i is free from meetings. Moreover, for each parent j, let
Hj be the set of nodes corresponding to the time slots when j is not assigned a
meeting, i.e. Hj := N \ ∪i∈Ij t(i, j). Note that Hj does not depend on i.

The arcs Ei of the graph Gi are defined as follows. For each k ∈ Bi, let j(k)
be the parent meeting i at time k, i.e. t(i, j(k)) = k. There is an arc (k, h)
for each h ∈ Hj(k). This arc corresponds to moving the meeting of teacher i
and parent j(k) from time k = t(i, j(k)) to time h. There is no conflict for the
parent because the parent is free at time h. There is a conflict for the teacher
if h ∈ Bi. But this conflict can be resolved by a subsequent change induced
by another arc. Therefore any simple cycle in Gi corresponds to a sequence of
changes which eventually lead to a new feasible schedule. Similarly, any simple
path terminating in a node h ∈ Fi corresponds to a feasible sequence of changes.
We may extend paths to cycles by adding arcs (h, k) for each h ∈ Fi and k ∈ Bi.

284 F. Rinaldi and P. Serafini

We assign the following costs to the arcs: the arcs (h, k), h ∈ Fi, k ∈ Bi receive
cost 0; the arcs (k, h), k ∈ Bi, h ∈ Hj(k) receive a cost given by the difference
between the idle time number for parent j(k) in the current schedule and in the
schedule obtained by moving the meeting from k = t(i, j(k)) to time h. Then
simple cycles with negative cost correspond to a sequence of changes leading to
a schedule with fewer idle times. Detecting negative cost simple cycles is easy
and can be carried out for instance by the Floyd–Warshall algorithm (see [2]).
We point out the similarity of this type of search with the one proposed in [4].

The above considerations suggest the following scheme for a large-scale neigh-
borhood search: given a schedule, for each teacher i build the graph Gi and detect
a negative simple cycle Ci. If there is no such cycle output a shortest directed cycle.
Then select the i with the most negative cycles and among them randomly select
a particular i′. If there are no negative cycles, select randomly any i′ with zero cy-
cle cost if any exists. If there are only positive cost cycles stop the procedure, else
perform the meeting exchanges indicated by the cycle and continue. Stop the pro-
cedure if the number of consecutive zero cost exchanges exceeds a fixed parameter.

5 Minimizing the Idle Times – Local Search LSP

In the local search LSP we exchange the roles of teachers and parents. Therefore
we move a given meeting to a time slot in which the teacher is free. If in the new
time slot the parent is busy with another meeting, this meeting must be moved
as well. However, since we count idle times for parents and not for teachers, there
is not full symmetry between the two approaches. In order to count the number
of idle times introduced or removed by a chain of moves, note that the number
of idle times of a single parent changes if and only if his/her total time in the
school changes.

The procedure works as follows. Let Gj a graph having nodes corresponding
to time slots 1, . . . , T and arcs (k, h) whenever j meets a teacher, let us say i,
at time k and i is free at time h. Let t′ := mini t(i, j) and t′′ := maxi t(i, j). By
the above comment, a sequence of switching in the meetings of j changes the
number of idle times for j if and only if t′′ − t′ changes.

In order to find a sequence that reduces the number of idle times of parent
j, we solve two shortest path problems in Gj , one from t′ and one from t′′ to
the set Hj of nodes at which parent j is free. The instance with source t′ is
defined as follows. Let r ≥ 0 be the number of idle time slots adjacent to t′ and
Bj = ∪it(i, j). We assign to the arcs of Gj the following costs:

w(k, h) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(h − t′) if k = t′, h ≤ t′ + r
−(r + 1) if k = t′, h ∈ Hj , t′ + r < h < t′′

−r + s − 1 if k = t′, h = t′′ + s > t′′

−r if k = t′, h ∈ Bj

r − (h − t′) if k ∈ Bj \ {t′}, h ≤ t′ + r
s − 1 if k ∈ Bj \ {t′}, h = t′′ + s > t′′

−1 if k ∈ Bj \ {t′}, h ∈ Hj , t′ + r < h < t′′

0 if k, h ∈ Bj \ {t′}.

(3)

Scheduling School Meetings 285

Then the cost of a directed path from t′ to any node in Hj measures the change
in the number of idle times produced by the corresponding sequence of moves.
This is clearly the case if the path has only one arc (t′, h) (first three cases in
(3)). If the path has more than one arc, then all arcs different from the first and
the last ones correspond to exchanges in between meetings on the same time
slots and do not modify the number of idle times. Consistently, they have a null
cost (last case) and the change in the idle time number depends only on the
first and last arc. The first arc always eliminates r idle times (fourth case). The
last arc (k, h) eliminates one more idle time if h is an idle time, while it may
introduce idle times if either h ≤ t′ + r or h ≥ t′′ + 1 (remaining cases). Note
that there are no negative cycles and so a shortest path problem is well defined.
The instance of the shortest path problem with source t′′ can be defined in a
similar way.

We define a large-scale neighborhood search scheme for LSP as for LST: given
a schedule, for each parent j build the graph Gj and compute a shortest path Pj .
Then select the j with the most negative paths and among them randomly select
a particular j′. If there are no negative paths, select randomly any j′ with zero
path cost if any exists. If there are only positive cost paths stop the procedure,
else perform the meeting exchanges indicated by the path and continue. Stop
the procedure if the number of consecutive zero cost exchanges exceeds a fixed
parameter.

In order to extend the neighborhood size, we have also implemented a mixed
local search, denoted LSTP, in which we build at each stage both Gj , for all
parents j, and Gi for all teachers i and select the best chain of moves among all
possibilities.

6 An Example

Let J = {1, 2, 3, 4, 5, 6, 7, 8, 9} and I = {A, B, C, D, E, F} with meeting requests

I1 = {A, F} , I2 = {B, E} , I3 = {A, B, F} , I4 = {A, D, E, F} , I5 = {A, B} ,

I6 = {C, E, F} , I7 = {B, D} , I8 = {C, E, F} , I9 = {C, D, E, F} .

Then we derive

JA = {1, 3, 4, 5} , JB = {2, 3, 5, 7} , JC = {6, 8, 9} ,

JD = {4, 7, 9} , JE = {2, 4, 6, 8, 9} , JF = {1, 3, 4, 6, 8, 9} .

The minimum makespan of the instance is T = 6, with time slots labeled
t1, . . . , t6. By solving the six matching problems with a null objective function
we obtain schedule 1 in Figure 1 (rows refer to parents and columns to time slots,
the table entries are the teachers and the − are the idle times), while schedule
2 has been obtained by introducing the objective function (2).

286 F. Rinaldi and P. Serafini

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

�
�������������

A F
B E
F B A
D A − − F E

B A
E C − F

D − B
E C − F

C − F D E

�
�������������

schedule 1

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

�
�������������

F A
E B
F A B

E F D A
A B

F C E
B D

E C F
C D F E

�
�������������

schedule 2

Fig. 1.

As can be seen, the six idle times introduced in the first case are eliminated by
taking care of them in the objective function. However, idle times do occur with
larger instances even if we use (2) and so we need the local search procedures of
Sections 4 and 5. We describe in detail the graph GE for schedule 1 and teacher
E, whose meeting sequence is (6, 2, 8, −, 9, 4). Let us denote the six nodes of GE

as t1, . . . , t6. Then BE = {t1, t2, t3, t5, t6} and FE = {t4}. At time t1 teacher E
meets parent 6. This meeting can be moved to time t3 with the effect of reducing
by one idle time, therefore the graph GE has the arc (t1, t3) with cost −1. The
meeting can be also moved to t5 at cost 0 or to t6 at cost 1. At time t2 teacher
E meets parent 2. The meeting can be moved to t3, t4, t5 or t6 at cost 1, 2, 3, 4,
respectively. Continuing this way, we build the arcs of graph GE whose costs are
reported in the following table.

t1 t2 t3 t4 t5 t6

t1 − − −1 − 0 1

t2 − − 1 2 3 4

t3 2 1 − − −1 −
t4 0 0 0 − 0 0

t5 − −1 − − − 1

t6 − − −1 −1 − −

There are some negative cycles in this graph, for instance t1 → t3 → t5 →
t6 → t4 → t1 with cost −2. Performing the corresponding exchanges leads to
schedule 3 in Figure 2. Continuing with teacher F , we find the cycle t3 → t5 → t3
of cost −1 and reduce by one more idle time. Then we consider teacher C and
by moving the meeting at t1 to t3 we reduce by two more idle times. Finally, we
consider teacher D and move the meeting at t2 to t3, obtaining schedule 4 with
no idle times.

As an example of LSP reconsider schedule 1 in Figure 1. The graph G9 related
to parent 9 contains two paths of cost −1, precisely t1 → t6 and t1 → t5 → t4

Scheduling School Meetings 287

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

�
�������������

A F
B E
F B A
D A − E F

B A
C E F
D − B

C E F
C − F D − E

�
�������������

schedule 3

t1 t2 t3 t4 t5 t6

1
2
3
4
5
6
7
8
9

�
�������������

A F
B E
F B A
D A F E

B A
C E F

D B
C E F

C D F E

�
�������������

schedule 4

Fig. 2.

→ t6. The corresponding sequences of exchanges produce respectively the sched-
ules (−, −, F, D, E, C) and (−, −, F, E, C, D), both having no idle time.

7 A Variant of the Problem

In this section we explain how the previous procedure can be adapted to solve an
extension of the school meeting problem in which we allow longer meetings for
some previously defined parent–teacher pairs. More precisely, we assume that
these meetings last twice as long as the normal ones. We do not allow pre-
emption of the meetings: i.e., a meeting of double length cannot be interrupted
and resumed later.

Under the above conditions, even the problem of finding a schedule of mini-
mum makespan becomes NP-hard. Therefore we do not pursue the objective of
finding the minimum makespan, rather we consider it more important to obtain
an initial schedule with no pre-emption so that the local search procedure can
be designed without worrying about the pre-emption.

Denote by pij ∈ {1, 2} the length of the meeting of teacher i with par-
ent j and by ai :=

∑
j pij , i ∈ I, and bj :=

∑
i pij , j ∈ J , the total time

required by the meetings of teacher i and parent j, respectively. Moreover, set
Tmax := 2 max {maxi |Ji|, maxj |Ij |} and Tmin := max {maxi ai, maxj bj}. As
one can easily verify, the minimum makespan T ∗ of a schedule that assigns all
the required meetings without pre-emption is bounded by

Tmin ≤ T ∗ ≤ Tmax ,

and a schedule with makespan bounded the same way can be easily obtained
(just put pij = 2 for all meetings to obtain a schedule with makespan Tmax).

In order to solve this variant of the school meeting problem, we modify some
aspects of the procedures of Sections 3, 4 and 5. Let us first consider the algo-
rithm of Section 3, which solves a weighted matching problem for each time slot.
Since now the makespan T of a feasible solution is not known in advance, even
T has to be treated as an output of the solution.

288 F. Rinaldi and P. Serafini

Using the same notation as in Section 3, at the beginning of each step k, three
sets Jk−1

i , Ik−1
j and Rk−1 are given, where the set Rk−1 contains all the pairs

(i, j) with pij = 2 whose meeting has started at time k − 1. Let ak−1
i and bk−1

j

be the residual times of teacher i and parent j at the end of step k − 1 and
define T k−1 := k − 1 + max

{
maxi |ak−1

i |, maxj |bk−1
j |

}
. Apparently, T k−1 is a

lower bound on the makespan of any solution coincident with the current partial
schedule on the first k−1 time slots. We still call critical any parent and teacher
having a residual time equal to T k−1 − (k − 1).

Since pre-emption is not allowed, all the pairs in Rk−1 have to be contained
in the matching Mk to be determined at the current stage. In order to guarantee
that the matching problem admits a feasible solution, no other rigid constraint
on the assignment of selected parents and teachers can be imposed. As a conse-
quence, we have to relax the constraints on the critical teachers and/or parents
and take care of them in the objective function. Therefore we assign to each pair
(i, j) a weight of the form

wij :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K1 if i or j critical
K2 else and if sk(j) = 1

− 1 with probability p1

0 with probability p2

1 with probability 1 − p1 − p2

⎫
⎬

⎭
else

(4)

where K1 	 K2 to take into account in lexicographic order the two objectives
of minimizing the makespan and the number of idle times. At the end of the
iteration, the sets Jk

i , Ik
j and Rk and the values ak

i , bk
j and T k have to be suitably

updated. Note that if at least one critical teacher or parent is not assigned then
T k = T k−1+1. The procedure stops when ak

i = 0 for all i (or equivalently bk
j = 0

for all j). The final makespan is given by the last value T k.
Also the local search procedures described in Sections 4 and 5 have to be

slightly modified to avoid the introduction of any pre-emption in the meetings
requiring two time slots. To this aim, it is sufficient to change the definition of
the arc set of the graph Gi related to each teacher i and the graph Gj related to
each parent j described in those sections. In the case of Gi, assume that teacher
i meets parent j at time t. If the meeting lasts one time slot, then the set of
arcs exiting from node t is defined as before. Otherwise, if the meeting takes
two time slots, let say t and t + 1, we add at most two arcs: the arc (t, t + 2) if
parent j is free at time t + 2 and the arc (t + 1, t − 1) if parent j is free at time
t − 1. The construction of the arc set of graph Gj is the same, once the roles of
teacher i and parent j are exchanged. The cost of the arcs of the two graphs are
defined as the number of idle times of the parents that the corresponding move
either adds or eliminates from the schedule. We point out that such a move does
not introduce any pre-emption in the meeting. Obviously, the number of paths
in the graph, and consequently the number of moves, is reduced with respect to
the case of meetings of equal duration.

Scheduling School Meetings 289

8 Computational Results

Let us first consider the main problem with equal time slots. We have tested our
procedure on a particular instance given by a local school and also on real-size
randomly generated data.

Real data to test our procedure are not actually available, because the pro-
posed advance planning of the meetings has never been thought of. However,
we have asked some teachers of a local school to provide reasonable data con-
sistent with their past experience. Today each parent cannot meet more than
three or four teachers during a meeting session. It is perceived that asking par-
ents to provide a list of prospected teachers to meet would likely produce long
lists requiring too much time to carry out all meetings. Therefore it seems more
sensible, in a real implementation, to assign an upper bound on the number of
teachers a parent can ask to meet.

With this proviso, we have set up the following data, with 29 teachers and
60 parents and a number of required meetings for each parent between 3 and 6.
The instance thus obtained has a makespan of 25 time slots. We have run the
assignment phase five times with parameters K = 1, p1 = 0.04, p2 = 0.94,
obtaining solutions with 162, 146, 109, 177 and 122 idle times, respectively. Then
for each of these solutions we have separately started LST, LSP and LSTP with
20 as the maximum number of consecutive zero improvement cycles. The local
search computations are shown in Figures 3, 4 and 5, where the current idle
time number is displayed as a function of the iteration number. We recall that
in each iteration a minimum cycle for each teacher has to be computed for LST, a
shortest path for each parent for LSP, and both computations have to be carried
out for LSTP. The five runs for LST, the five runs for LSP and the five runs
for LSTP are shown in Figures 3, 4 and 5, respectively. The ending idle time
numbers for the five LST runs are: 4, 0, 3, 3, 2; for the five LSP runs are: 22, 15,
10, 21, 23 and for the five LSTP runs are: 1, 4, 2, 1, 1. The last of these solutions
is shown in Figure 6.

As expected, the LST performs much better than the LSP, due to the smaller
search space of LSP. In contrast, the increased neighborhood size offered by the
two searches in LSTP does not seem to outperform LST. It is only slightly better
on average.

An interesting feature is that the improvement per iteration is almost constant
in all cases, so that we may roughly say that the number of iterations is almost
equal to the initial value of the idle times provided by the assignment phase. In
this sense the local search performs well independently of the starting solution.
However, the number of iterations is affected by the initial solution and therefore
it makes sense to tune the parameters of the assignment procedure in order to
start with a good solution.

In the random instances we have fixed the number of teachers and parents
to 30 and 80 respectively. For each parent the number of required meetings is
a random number r ∈ [r1, r2]. Then r teachers are randomly selected to meet

290 F. Rinaldi and P. Serafini

25 50 75 100 125 150 175

25

50

75

100

125

150

175

Fig. 3. LST runs

25 50 75 100 125 150

25

50

75

100

125

150

175

Fig. 4. LSP runs

25 50 75 100 125 150

25

50

75

100

125

150

175

Fig. 5. LSTP runs

that parent. We have generated six instances. For the instances 1 and 2 we have
used r ∈ [2, 4] (sparse instances); for the instances 3 and 4 we have used r ∈ [4, 6]
(normal instances) and for the instances 5 and 6 we have used r ∈ [4, 8] (dense
instances). For each instance we have run the assignment phase four times (with
parameters as before) and for each solution of the assignment problem we have
separately started LST, LSP and LSTP. The computational results are shown in
Tables 1, 2 and 3, where columns (1) report the instance number (in boldface)
and its makespan, columns (2) report the idle time number at the end of the
assignment phase, and, for each local search, columns (3) and (4) report the
final idle time numbers and the iteration numbers respectively. The four rows
for each instance refer to the four computations.

As in the previous case the tests show that LST performs much better than
LSP. Again, there is no clear winner between LST and LSTP. As a strategy to
obtain good solutions, we suggest running both procedures several times. We
have no explanation as to why LSTP is not definitely better than LST.

We have also tested the variant of Section 7 on instances with 15 teachers
and 60 parents and a random number of meetings for each parent in [3, 6]. The
only difference is that each meeting is randomly assigned duration 1 or 2 with
probability 0.8 and 0.2, respectively. The matching phase has been carried out
with weights given by (4) (K1 = 104, K2 = 10, p1 = 0.04, p2 = 0.94). The
makespan, the number of idle times at the end of the matching phase and at the
end of the modified local search procedure are for the 5 runs 30, 71 and 11; 29,

Scheduling School Meetings 291

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

�
���

16 26 11 1 21 28
11 21 1

28 21 16 11 26
16 21 28 26

11 1 28 16 21 26
28 21 11 1

21 16 11 26 28
20 22 11 27 29

22 20 27 29 2
27 20 22

11 20 22 2 27 29
2 20 27 22

22 2 27 29
12 26 17

12 17 3 24 28 26
26 28 17 3 12 24

24 12 17
3 17 12 26 28 24

3 17 24 28 12
13 4 19

27 13 19 28
4 27 13 23 28 19

4 28 27 23
4 13 19 23 28 27

14 26 29
23 14 18

29 5 23 14
5 14 26 18 23 29

29 5 18 26 23 14
18 5 26 29

14 18 5 23 26 29
6 29 26

29 24 13 6 19 26
13 19 29

19 13 26 29 6 24
19 29 24 6

6 13 29 19 24
24 6 13 29
22 7 16 27 29

27 7 14 16 22
16 22 7 29 14 27

27 7 14
14 22 29 27

27 16 29 22 14
15 21 20 8 26

21 20 15 26 8 28
20 8 28 15

15 8 20 21
21 20 15 26 8 28

9 − 12 27 28 25
17 25 27 28

9 12 25 17 28 27
12 17 25

25 17 9 28 12 27
17 25 9 12 28 27

10 18 25 15 29 27
18 10 29

15 25 18 10 29
25 15 10

18 15 29 27

�
���

Fig. 6. Solution with one idle time

292 F. Rinaldi and P. Serafini

Table 1. Sparse instances

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

25 1 39 3 102 2 37
1 13 2 32 5 29 2 31
14 25 2 55 6 67 0 40

16 2 69 6 59 0 41

18 1 58 2 50 1 37
2 18 2 46 7 40 0 25
12 27 1 57 7 65 0 29

25 3 39 9 34 6 35

Table 2. Normal instances

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

71 6 71 9 114 8 69
3 58 1 75 23 71 3 63
18 51 8 73 26 58 9 81

41 1 78 9 101 2 66

68 3 118 12 95 2 111
4 54 2 95 10 99 3 98
21 70 1 116 15 130 2 86

63 1 95 15 86 2 89

Table 3. Dense instances

LST LSP LSTP

(1) (2) (3) (4) (3) (4) (3) (4)

112 8 136 40 133 5 158
5 131 8 166 38 186 13 110
27 75 7 116 29 89 7 101

133 8 141 25 186 7 163

73 6 140 16 172 12 92
6 110 6 170 14 251 6 167
22 93 10 88 14 184 5 175

164 14 143 23 254 5 213

Scheduling School Meetings 293

73 and 21; 30, 76 and 16; 30, 73 and 20; 30, 71 and 11. As anticipated, the local
search is not as effective as in the normal case.

References

1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics 123, 75–102 (2002)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs, NJ (1993)

3. Bartholdi, J.J, McCroan, K.L.: Scheduling interviews for a job fair. Operations
Research 38, 951–960 (1990)

4. Dowsland, K.A.: Nurse scheduling with tabu search and strategic oscillation. Euro-
pean Journal of Operational Research 106, 393–407 (1998)

5. Giaro, K., Kubale, M.: Compact scheduling of zero-one time operations in multi-
stage system. Discrete and Applied Mathematics 145, 95–103 (2004)

6. Gonzalez, T.: Unit execution time shop problems. Mathematics of Operations Re-
search 7, 57–66 (1982)

7. Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. Journal of
the ACM 23, 665–679 (1976)

8. Hall, N.G., Sriskandarajah, C.: A survey of machine scheduling problems with block-
ing and no-wait in process. Operations Research 44, 510–525 (1996)

9. Meyers, C., Orlin, J.B.: Very large-scale neighborhood search techniques in
timetabling problems. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS,
vol. 3867, pp. 24–39. Springer, Heidelberg (2007)

Hierarchical Timetable Construction

Jeffrey H. Kingston

School of Information Technologies,
The University of Sydney, NSW 2006, Australia

jeff@it.usyd.edu.au
http://www.it.usyd.edu.au/∼jeff

Abstract. A hierarchical timetable is one made by recursively joining
smaller timetables together into larger ones. Hierarchical timetables ex-
hibit a desirable regularity of structure, at the cost of some limitation
of choice in construction. This paper describes a method of specifying
hierarchical timetables using mathematical operators, and introduces a
data structure which supports the efficient and flexible construction of
timetables specified in this way. The approach has been implemented in
KTS, a web-based high school timetabling system created by the author.

1 Introduction

The basic timetable construction problem is to assign times and resources (stu-
dents, teachers, rooms, etc.) to a set of meetings so that the resources have as
few timetable clashes as possible. To this basic problem many other constraints
are typically added, such as that the times allocated to a meeting be spread
evenly through the week, that workload limits placed on some resources not be
exceeded, and so on. Timetable construction is an NP-complete problem with
an extensive literature [4,5,6,7,8].

Informally, a regular timetable is one in which a pattern may be discerned
which makes the timetable easy to understand and remember. Regularity may
take many forms, but this paper will be chiefly concerned with regularity in the
choice of times. For example, North American universities commonly require all
courses to occupy three hours per week, offered in one of the sets of time slots
Mon–Wed–Fri 9–10am, or Mon–Wed–Fri 10–11am, and so on, producing a very
regular timetable.

Even when such a strict rule as this is not possible, still some regularity
might be achievable, perhaps by attempting to minimize the number of pairs of
meetings that share at least one time, in addition to the usual objectives.

Regular timetables are easy to assign resources to. For example, in the North
American university system, each meeting can meet in the same room for all
three of its times. This point is particularly significant in high school timetabling,
the area of timetabling which has inspired this paper, since teachers are assigned
as well as rooms. Teacher assignment is the main area where the author’s previ-
ous work in high school timetabling [10,13] is deficient. Thus, regularity is more
than just an aesthetic consideration.

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 294–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hierarchical Timetable Construction 295

This paper introduces a method of specifying regular timetables hierarchically,
using timetable expressions analogous to algebraic expressions. This seems to be
the first paper to find a use for arbitrarily deep hierarchies, although two-level
hierarchies have been used occasionally. For example, Fizzano and Swanson [11]
group together pairs of meetings, where one occurs on Mon–Wed–Fri and the
other on Tue–Thu, and Adriaen et al. [1] aggregate sets of university meetings
that occur in disjoint weeks of the semester.

As will be seen, the particular kind of hierarchical specification introduced
in this paper imposes significant hard constraints on the times assigned to the
meetings of the hierarchy. This is appropriate for a method used in high school
timetabling, where the constraints tend to be relatively hard because entire
classes of students suffer under any deficiencies, rather than individual students
as in, for example, examination timetabling.

One way to handle these constraints would be to express them in a general-
purpose constraint programming language. A number of papers have taken this
approach [9,16]. However, this paper takes the special-purpose route, introduc-
ing a data structure, the layer tree, which represents timetable expressions and
efficiently supports a particular set of constraints relevant to timetabling. The
special-purpose route, while costly in development time, has some advantages.
In particular, some of the algorithms used here, for example weighted bipartite
matching, do not seem to be available in any existing constraint programming
system [3,17], although some recent research into the all different constraint [12],
which implements unweighted bipartite matching, is a step in that direction.

Our focus is on the efficient implementation of some basic assignment and
deassignment operations (and the resulting constraint propagation), rather than
their use with any particular timetable construction algorithm. If these op-
erations are efficient, many algorithms, including construction heuristics, tree
searches, and local searches, become available. Although efficiency is a key goal,
it has not been considered useful to report running times, since the operations
to be presented are all polynomial time, and running times say more about the
algorithms built on these operations than the operations themselves.

Layer trees are particularly effective when sets of meetings can be identified
that must be disjoint in time. In high school timetabling, each set of meetings
attended by a given student group satisfies this condition. This author’s KTS
timetabling system [14], a free, public web site for high school timetabling, uses
layer trees. KTS typically produces a good timetable in about ten seconds [15],
showing that layer trees can support practical timetabling.

The algorithms used here have appeared in previous timetabling work by the
author and others [10,13,18]. This paper’s contribution is to show how these
algorithms can be incorporated into a flexible, efficient, hierarchical constraint
framework. Section 2 introduces timetable expressions, and Section 3 introduces
the layer tree data structure. Section 4 analyses the problem of efficiently prop-
agating constraints related to time through this data structure as assignments
and deassignments occur, and Section 5 does the same for resource constraints.
Section 6 surveys some other, less fundamental features implemented in KTS.

296 J.H. Kingston

2 Timetable Expressions

The idea of using an expression to specify a problem is well known in logic.
Consider a Boolean expression such as

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3).

The expression defines an instance of the satisfiability problem, for which a so-
lution consists of an assignment of values to the variables which satisfies the
expression. In the same way, timetable expressions will be used to specify time-
table construction problems.

The simplest kind of timetable expression is the time variable, a variable v
whose domain is some subset of the set of available times T . This domain may
change as solving proceeds; its value at some moment will be denoted tdom(v),
and its initial value, specified when the variable is created, will be denoted
tdom0(v). For example, if v may be assigned any time, then tdom0(v) = T ;
if v is preassigned to a specific time t, tdom0(v) = {t}. Other initial domains
may constrain times to be during the mornings, or on Mondays, and so on.

The ultimate aim is to assign an element of T to every time variable, just as
the aim is to assign a Boolean value to every variable when solving satisfiability
problems. However, it turns out that in hierarchical timetabling a more useful
basic operation is the assignment of one time variable, v, to another, w, with the
meaning that v’s value is constrained to be equal to w’s. Assigning one variable
to another expresses the idea that two meetings are to occur simultaneously,
without having to say when.

Thus, our system offers two basic operations: assigning one variable v to an-
other variable w, and removing the assignment of v to w. A variable may be
assigned to at most one other variable at any moment; but that other variable
is free to be assigned to a third variable (or not), and many variables may be
assigned simultaneously to one variable.

Two timetable expressions e1 and e2 may be joined using the concatenation
operator, written e1e2, meaning that the times assigned to the variables of e1
must be disjoint from the times assigned to the variables of e2. For example,
a meeting requesting four times may be expressed by the timetable expression
v1v2v3v4, where v1, v2, v3, and v4 are time variables. Concatenation specifies
that the times assigned to these four variables must be distinct, as required, in
addition to any constraints on their domains.

If two meetings request the same resource, and it is a hard constraint that
that resource may have no clashes in its timetable, then the expressions rep-
resenting those two meetings may be concatenated. This is fundamental in the
high school timetabling work which motivates this paper: each student group is
such a resource, and the meetings it appears in must be disjoint in time.

Two timetable expressions e1 and e2 may be joined using the alternation
operator, written e1 + e2, meaning that e1 and e2 are to appear in the same
timetable, but there are no time constraints between their variables. In the
high school timetabling application, e1 might represent the meetings attended

Hierarchical Timetable Construction 297

by one student group, and e2 might represent the meetings attended by some
other student group. These two sets of meetings have no time interdependen-
cies, so joining them with + is appropriate. If there is a meeting that both
student groups attend, then its expression (v1v2v3v4 or whatever) will appear
in both subexpressions, and its variables must be assigned times disjoint from
those assigned to the variables its expression is concatenated with in both
subexpressions.

These operations are named by analogy with the corresponding operators of
regular expressions: e1+e2 signifies that e1 and e2 are alternative activities, while
e1e2 signifies that one activity must follow after the other. In timetable expres-
sions, however, both operators are associative and commutative. A distributive
law, (a + b)c = (ac + bc), also holds.

Finally, there is the restriction operator, written

w1w2 . . . wk : e

where w1w2 . . . wk is a concatenation of time variables called restriction variables,
and e is a timetable expression. This specifies that each variable in e must not
appear outside e, and must be assigned to one of the wi (which themselves must
be assigned disjoint times), restricting e to a timetable using at most k times.

Restriction introduces abstraction into timetable expressions. The expression
e may be timetabled into w1w2 . . . wk independently of the rest of the problem,
after which these variables are indistinguishable from an ordinary concatenation
of variables describing a meeting.

Typically, the outermost level of a timetable expression is a restriction expres-
sion which limits the timetable to the available times. Letting T = {t1, t2, . . . , tn}
be the set of available times, this expression would have the form

w1w2 . . . wn : e

where tdom0(wi) = {ti} for all i. The operation of assigning a particular time ti
to a variable v is not offered, but assigning v to wi is effectively the same thing.

To solve a timetable expression is to assign each variable v to one of the
restriction variables wi in its nearest enclosing restriction expression, without
violating the constraints given above; variables not so enclosed remain unas-
signed. An example of a small timetable expression and its solution appears in
Figure 1.

Variants of the timetabling problem exist in which the exact number of avail-
able times is not given; instead, a timetable with as few times as possible is
sought, consistent with other requirements. The restriction notation could easily
be extended to cover such problems. However, the algorithms appearing later in
this paper assume a fixed number of variables, so any such ‘extensible restriction’
would have to be solved (or at least, its number of variables determined) before
incorporation into a larger timetable, forcing a bottom-up solution order.

298 J.H. Kingston

t1 t2 t3 t4 t5

7A 7A-Hist 7A-English

7B

7AB-Mathematics

7B-English 7B-Hist

(a) A small timetable, or tile, occupying two student groups (7A and 7B) for five times
t1, t2, t3, t4, and t5.

w1w2w3w4w5 : m1m2ha1ea1ea2 + m1m2eb1eb2hb1

(b) A timetable expression for which (a) is a solution. Here w1w2w3w4w5 represent the
five available times, ha1 represents 7A-Hist, ea1ea2 represents 7A-English, and so on;
m1m2, representing 7AB-Mathematics, lies in two subexpressions.

w1 w2 w3 w4 w5

× ×
ha1 ea1 ea2 m1 m2 eb1 eb2 hb1

(c) A layer tree corresponding to (b). Variables are shown as labelled boxes; + nodes
are shown as concatenations of their variables.

w1 w2 w3 w4 w5

ha1 ea1 ea2 m1 m2 eb1 eb2 hb1

(d) The layer tree of (c), showing assignments representing the timetable of (a). The
× nodes have been omitted for clarity.

Fig. 1. Timetables, timetable expressions, layer trees, and assignment

3 The Layer Tree Data Structure

A timetable expression such as

(e1 + e2)(e3 + e4)

is difficult to handle, since it is not clear how many of the available times should
be allocated to e1 +e2, and how many to e3 +e4. While cases of this kind cannot
be ruled out entirely, they seem not to occur in high school timetabling, and
they are not supported by KTS; so we proceed now to exclude them.

A simple timetable expression is one in which each alternation expression
e1 + · · ·+ em is immediately enclosed in a restriction expression. In such expres-
sions it is easy to determine how many times to allocate to each subexpression.

Hierarchical Timetable Construction 299

Furthermore, a simple timetable expression can be analysed into a tree (or forest
if the root is a concatenation expression) of expressions of the form

w1w2 . . . wn : (e11e12 . . . e1k1 + · · · + em1em2 . . . emkm)

called a restricted sum of products. Here m may be 0, in which case the expression
just denotes a sequence of variables w1w2 . . . wn. Each eij is a restricted sum of
products. Some of the eij may be shared, i.e. some epq and ers may be the same
subexpression. To solve a restricted sum of products is to assign each of the
restriction variables in each eij to one of the wi.

One way to solve a timetabling problem represented by a simple timetable
expression is to solve its restricted sums of products in bottom-up order. This
paper aims for more flexibility, however, in allowing assignments and deassign-
ments within each restricted sum of products at any moment. For example, this
would permit the timetable of a small component to be adjusted (by local search,
perhaps) after that component is incorporated into a larger timetable. To achieve
this we need a data structure which represents the entire tree of restricted sums
of products, with the current state of the assignments of each.

The data structure we will use, which we call a layer tree, is essentially just
the expression tree corresponding to a simple timetable expression. A layer tree
has two types of nodes: + nodes representing restricted sums of products and
containing their restriction variables, and × nodes representing concatenations.
Nodes of both types may have any number of children. Figure 1 gives an example
of converting a restricted sum of products into a layer tree.

Without loss of generality, we may assume that in every layer tree the root is
a + node, its children are × nodes, their children are + nodes, and so on, with
the node type alternating between + and × at each level. To bring an arbitrary
layer tree into this form, first use the associativity of concatenation to replace
every × node whose parent is a × node by its children. Then insert a × node
immediately above every + node whose parent is a + node. Finally, if the root
is a × node, remove it and solve each of its children independently.

Each variable v within each + node other than the root node requires assign-
ment to a variable w in the + node two levels above it. Each such assignment is
represented by a pointer in v to w (Figure 1(d)). Eventually, when all these vari-
ables are assigned in this way, every variable may be said to have been assigned a
time, obtainable by following the chain of pointers to its end. This arrangement
is essentially that used when unifying variables in logic programming.

Any set of variables requiring distinct times is called a layer. The variables
lying in any + node form a layer; the variables lying in all the children of any
× node also form a layer.

For example, the author’s KTS system builds a layer tree with several levels.
Each meeting may contain submeetings which have to be timetabled into the
times of the meeting; each such meeting becomes a restricted sum of products.
Then small groups of compatible meetings are timetabled together, producing
tiles such as the one in Figure 1(a); each tile is the solution of a restricted sum
of products whose child layers contain meetings. Finally, the times of the week
form a restricted sum of products whose child layers contain tiles.

300 J.H. Kingston

4 Time Constraints

This section explains how constraints on time assignment are propagated through
the layer tree, so that at any moment it is clear for each variable exactly which
variables it may be assigned to without violating any time constraints.

Since each variable is assigned to at most one other variable at any moment,
the assignments form a directed forest with edges pointing towards the roots.
The current assignment of a variable v will be denoted p(v) (‘parent of v’) when
present, and the variable at the root of the tree of assignments containing v
(possibly v itself) will be denoted r(v). A root variable is a variable w such that
r(w) = w. Every variable in the root node of a layer tree must be a root variable,
but other variables may also be root variables: root variables are just variables
that are currently not assigned to other variables.

Recall that each time variable v has its initial domain tdom0(v) of times that
it may be assigned initially, and its current domain tdom(v) of times that it may
be assigned to at the current moment. We require

tdom(v) ⊆ tdom0(v)

since otherwise the original constraint has been lost.
Each time variable v has a second kind of domain, its variable domain vdom(v),

which is the set of variables that v may be assigned to. Again, vdom0(v) will de-
note the initial value of vdom(v), and we require vdom(v) ⊆ vdom0(v). For each
variable vij in the restricted sum of products

w1w2 . . . wm : (v11v12 . . . v1k1 + · · · + vm1vm2 . . . vmkm)

we have vdom0(vij) ⊆ {w1, w2, . . . , wm}.
The two domains are related by the condition

w ∈ vdom(v) ⇒ tdom(w) ⊆ tdom(v)

(⇒ is implication). For example, this prohibits a preassigned variable from being
assigned to an unpreassigned one; in general, it prevents w from being assigned
a time not acceptable to v.

The following formulas show how tdom(v) and vdom(v) may be kept up to
date as variables are assigned and deassigned:

tdom(v) = tdom0(r(v))

and
vdom(v) = {w ∈ vdom0(v) | tdom(w) ⊆ tdom(v)}.

These follow easily from the discussion so far. Note that vdom(v) is only needed
at moments when v is not assigned.

When a variable v is assigned to a variable w, the variable domains of all
variables concatenated with v need to be reduced by removing w, since assigning
any of them to w would violate the constraint that concatenated variables must
be assigned distinct times. An efficient method of doing this is as follows.

Hierarchical Timetable Construction 301

p(L)
w1 w2 w3 w4 w5

L
v1 v2 v3 v4

Fig. 2. An example of an unweighted bipartite matching graph between the variables
of a child layer L and its parent layer p(L), shown as dashed edges. One assignment is
already present, from v4 to w5, ensuring that L ∈ pl(w5) and thus excluding w5 from
vdom(v) for all other v ∈ L. This particular matching could arise when v3 and w4 are
preassigned to the same time (tdom0(v3) = tdom0(w4) = {ti} for some ti ∈ T), and
the other variables are free to be assigned any time. Note that w4 ∈ vdom(v1) but no
maximal matching would assign v1 to w4.

Let the set of variables lying in the children of one × node be v1, . . . , vm; these
variables form a layer which we call L. The variables w1, . . . , wn in the parent
of that × node form another layer, which we call p(L). The variables of L must
be assigned to the variables of p(L).

For each vj , define the child layer set, cl(vj), to be the set of × nodes which
are the parents of the + node containing vj . (As explained earlier, a + node may
have several parents, typically because the meeting it represents contains several
preassigned resources.) For each wi, define the parent layer set, pl(wi), to be the
union of the child layer sets of all variables assigned directly to wi. Parent layer
sets must be maintained dynamically as assignments are done and undone.

Now modify the definition of vdom(v) given above to

vdom(v) = {w ∈ vdom0(v) | (tdom(w) ⊆ tdom(v)) ∧ (cl(v) ∩ pl(w) = ∅)}.

This excludes w from vdom(v) when some other variable that shares a layer with
v is currently assigned to w. The set operations may be implemented efficiently
using bit vectors.

Given current values of vdom(v) for all variables v in some layer L, the next
question is whether it is possible to assign all the currently unassigned variables
of L to variables in p(L). Since the assignments must be to distinct variables, this
is an unweighted bipartite matching problem between the currently unassigned
variables of L and the variables of p(L), with edges defined by the domains
vdom(v) of the currently unassigned variables of L (Figure 2). We will see in the
next section that there are reasons for preferring some assignments to others,
converting the unweighted bipartite matching into a weighted one.

5 Resource Constraints

In addition to requests for times, meetings contain requests for resources. These
may be for particular resources, called preassigned resources, or for any resource
of a certain type, such as a Science laboratory.

302 J.H. Kingston

A typical high school meeting would request one preassigned student group
resource, one teacher resource which may or may not be preassigned, and one
room, usually not preassigned. However, it is very common for a whole collection
of meetings to be required to run simultaneously, to give the students a choice
of activities. Such a collection would be modelled as a single large meeting with
many resource requests.

A basic question which can be asked of any set of meetings is whether the
institution has sufficient resources to allow those meetings to run simultaneously.
For example, if a school has only two Music teachers and two Music rooms, then
at most two Music meetings may run simultaneously. As is well known, this
question can be answered using an unweighted bipartite matching model, called
a resource sufficiency matching [10], as follows.

For each request for a resource in each of the meetings involved, create one
node called a demand node. For each resource in the instance of the timetabling
problem being solved, create one node called a supply node. Connect each de-
mand node to those supply nodes capable of satisfying that demand. For exam-
ple, a demand node for a particular student group resource would be connected
to just the supply node representing that resource; a demand node for a Sci-
ence laboratory would be connected to every supply node representing a Science
laboratory. The meetings may run simultaneously if a maximum matching in
this graph touches every demand node. The matching defines an assignment of
resources to requests which satisfies as many requests as possible.

This model allows supply nodes which are capable of satisfying several kinds
of demands: teachers who teach both English and History, rooms which are Sci-
ence laboratories but are usable as ordinary classrooms, and so on. The obvious
simpler method, of comparing the total number of demands of each type with
the total supply of resources of that type, fails to handle such cases.

We turn now to the implementation of these ideas within the layer tree. Asso-
ciated with each time variable is a set of demand nodes, which we call a demand
chunk. For example, a Music meeting might request student group 7C, one Mu-
sic teacher, and one Music room for four times, and then there will be four
variables, each with an associated chunk containing three demand nodes. These
chunks happen to be identical, but they are copies, not shared.

Any time variable may have a demand chunk, whether or not it derives from a
meeting. Inhigh school timetabling, for example, thevariables of the root layer have
chunks that express resource unavailability: if a resource r is unavailable at time ti,
then the chunk associated with root layer variable wi will contain a demand for r.

The layer tree treats time constraints as hard constraints, in that it is not
designed to track the number of violations of these constraints, merely to prohibit
them. For resource constraints however we have a free choice of whether to treat
them as hard or soft constraints, and we will follow the KTS implementation in
treating them as soft constraints. The aim is therefore not to fail when resources
are insufficient, but rather to report the number of unmatchable demand nodes.
This is calculated by having one bipartite graph for each root variable, in which
all the demand chunks of all the variables assigned to that root variable directly

Hierarchical Timetable Construction 303

or indirectly are accumulated (since the assignments have caused these demands
to be simultaneous), and supply nodes for all the resources of the instance as
usual, and finding a maximum matching in each of these graphs.

The standard algorithm for unweighted bipartite matching has some useful
properties which permit matchings to be calculated in an incremental manner.
Briefly, one can push and pop demand chunks onto and off a matching graph in
stack order (last-in-first-out) without recalculating the matching from scratch.
The supply nodes remain constant throughout. Thus, when an assignment of v
to w is made, one can simply push the demand chunks from v’s subtree (that
is, the chunks associated with v and every variable currently assigned to v,
directly or indirectly) onto r(w)’s matching graph; when a deassignment of v to
w is made, one must pop chunks off r(w)’s graph until all v’s subtree’s chunks
are popped, then push back onto r(w)’s graph all chunks that were popped off
during this process that were not from v’s subtree. The KTS implementation
uses lazy evaluation, merely recording requests for pushes and pops, and not
doing anything until a request for the number of unmatchable nodes is received,
at which point one sequence of pops followed by one sequence of pushes brings
the matching up to date.

We return now to the unweighted bipartite matching problem mentioned at
the end of the preceding section, between the unassigned variables of a layer L
and the variables of its parent layer p(L). For each unassigned variable v of L,
we saw that the current domain vdom(v) determines which edges to place in the
bipartite graph. Now with each such edge, from v to w say, we can associate
a cost: the number of additional unmatched nodes that would occur if v was
assigned to w, calculated by matching the chunks of v’s subtree and r(w)’s
subtree together without actually making the assignment. A maximum matching
between the unassigned variables of L and p(L) of minimum total cost will give
a lower bound on the number of additional unmatched demand nodes that will
occur when the unassigned variables of L are assigned to variables of p(L).
This model has been called weighted meta-matching in [13], where it provides a
valuable forward check.

The KTS implementation recalculates edge costs only when changes to the
demands at either end make that necessary. It calculates weighted matchings
lazily on demand, but not incrementally. Although a well-known algorithm exists
which can do this, by finding negative-cost cycles in the residual graph, it is slow
since it requires the use of the Bellman–Ford shortest path algorithm rather than
Dijkstra’s algorithm [2]. Fortunately the graphs are small, since the number of
nodes per layer is at most the number of times in the cycle (typically about 40
for a one-week cycle, or 60 for a two-week cycle), so calculating these weighted
matchings from scratch is not time consuming.

6 Other Features

In this section we briefly survey some other features of the KTS layer tree. They
serve as examples of how the basic ideas can be extended.

304 J.H. Kingston

Time blocks. A sequence of times that follow each other chronologically with-
out a break is called a time block. For example, the first four times on Monday
might form a time block. Then after a lunch break there might be four more
times followed by an end-of-day break. In KTS, meetings may request that their
times have a particular block structure. For example, a meeting with 6 times
might request two doubles (blocks of two times) and two singles.

The KTS layer tree allows time variables to be grouped into blocks. The time
variables of a layer of meetings are grouped into blocks defined by the meetings’
block structure requests; the time variables of the root layer (representing the
times of the week) are grouped into blocks representing the sets of times between
the naturally occurring breaks.

An initial problem is to determine whether the time blocks of some layer
can be packed into the time blocks of the week, allowing for the fact that (for
example) a block of four times on Monday morning can be split into two doubles,
or one double and two singles, or whatever is required. This is an NP-complete
bin packing problem, but real instances are small and easily solved.

Once such a packing has been found, and the large blocks of the week bro-
ken down into smaller blocks that exactly match the meetings’ block structure
requests, the layer tree implements a weighted meta-matching between blocks
rather than individual variables. Two blocks are connected by an edge if they
have the same number of variables and corresponding variables within the blocks
would be connected by an edge in the unblocked matching. The cost of a block-
to-block edge is the sum of the costs of the variable-to-variable edges it replaces.

The layer tree offers a heuristic algorithm which simultaneously carries out the
bin packing and builds the blocked matching. Initially the variables are all in sep-
arate blocks, producing the unblocked matching described earlier. This matching
must touch every child block, otherwise the algorithm would have already failed.
One by one in decreasing width order, the child blocks are introduced by merg-
ing their unblocked variables into a block. If this causes the matching to fail to
touch every child block (as it will whenever the child block has width greater
than one), an attempt is made to remedy this by merging unblocked parent
variables into blocks of the appropriate size. All possible mergings are tried, and
the best of these as measured by the cost of the resulting matching is kept; or
if no merging exists, then as a last resort, one child block (usually the one just
introduced) is split up again; the solution will have a defective block structure
at that point.

The decisions about how to split parent blocks made by this algorithm depend
on the state of resource sufficiency in those blocks’ variables. Consequently it is
not useful to build a blocked matching for every child layer of a restricted sum
initially. Rather, the usual unblocked matchings are built for each child layer,
then a child layer’s unblocked matching is replaced by a blocked matching as the
first step in assigning that layer. The blocked matching is a temporary structure,
only in existence while its layer is being assigned.

Blocked matchings suffer from an awkward problem. Suppose a meeting re-
quires one double and one single block. The matching assigns the double to the

Hierarchical Timetable Construction 305

first two times on Monday; it assigns the single to the third time on Monday. The
result is a triple, not a double plus a single. Finding a minimum-cost matching
which avoids this problem appears to be NP-complete. KTS’s weighted meta-
matching algorithm discourages such assignments by artificially increasing the
cost of augmenting paths that would produce them. The implementation has
been done with care, and runs in time which is often a small constant, and at
worst is proportional to the length of the augmenting path being considered.
The idea is purely heuristic, to be sure, but it seems to work well.

Many other conditions besides time blocks may be imposed on sets of times.
A meeting’s times may be required to be spread evenly through the week, the
times of the meetings attended by a student group may be required to be compact
(contain no gaps within any day), and so on. The author has not yet attempted
to support such conditions within the layer tree.

Regularity. The layer tree supports regularity by supporting hierarchical time-
table construction, but this does not of itself encourage regularity between the
child layers of each + node. We mentioned earlier a straightforward way to do
this, by partitioning the variables of the parent layer into sets, called columns,
whose size is a typical meeting size, and assigning meetings to entire columns
wherever possible. This was the North American universities’ approach.

Columns are supported by the layer tree by allowing temporary reductions in
vdom(v). An algorithm might restrict the domains of the variables of a meeting
to one column, then check the total resource sufficiency badness of the entire
layer tree; if it has not increased, assigning that meeting to that column may be
good. The layer tree also maintains, for each set of variables representing one
meeting, a count of the number of distinct columns that that meeting’s variables
are assigned to. The total of all these counts measures the current irregularity.

Evenness. It is desirable for demand for a particular type of resource to be
spread evenly across the week, not concentrated at particular times. This is be-
cause resource assignment struggles at times when every resource of a particular
type is required: there are enough resources, perhaps, but there is little freedom
of choice. This property we call evenness.

Evenness, like resource sufficiency, depends on the resource demands made
at each time, so the layer tree’s support for it is very similar to its support for
resource sufficiency. (There does not seem to be any efficient way to extract
evenness information from the resource sufficiency matchings themselves.) The
total demand for each type of resource is maintained in root variables. The sum
of the squares of these totals is an effective and easily updated overall measure
of unevenness. For example, two root variables each demanding a quantity a
of some type of resource contribute 2a2 to total unevenness. If the timetable is
changed so that one demands quantity a− 1 and the other demands a+1, these
less even demands contribute 2a2 + 2 to unevenness. Demands from the same
faculty (e.g. Junior English and Senior English) are considered to be the same
type of demand, since they typically have many resources in common.

306 J.H. Kingston

Overall badness. For the convenience of algorithms that use the layer tree, the
KTS implementation offers access to an object holding the current total badness
of the tree, as a triple whose first component is the number of resource sufficiency
defects implied by the current state (the total number of unmatched nodes in
resource sufficiency matchings, plus the total cost of all meta-matchings), and
whose second and third components are the irregularity and unevenness, mea-
sured as just described. Each data structure responsible for calculating any bad-
ness value at any point in the tree also takes responsibility for reporting any
change to this global badness object, or at least reporting itself as out of date
and needing recalculation the next time a badness value is requested.

7 Conclusion

This paper has defined a form of hierarchical timetable specification and shown
how support for it can be implemented efficiently using the layer tree data struc-
ture. Time assignments and deassignments may be carried out at any point in
the tree, and an efficient constraint propagation algorithm updates the domains
of the variables and reports the consequences for resource sufficiency at each
time. Extensions to the basic framework, supporting block structure, regularity,
and evenness, have been implemented in the author’s KTS system.

Despite these successes we must acknowledge that the methods used here are
very specific, limiting their wider application. For example, one constraint type,
familiar from university timetabling, requires that one meeting occur earlier in
the cycle than another. Although one could incorporate such constraints easily
enough (including the requisite updates of variable domains), if there are many
of them the value of the lower bounds provided by the minimum matchings
would be compromised.

Future work will try to add more features to the layer tree without degrading
its efficiency. It may be possible to incorporate information about workload limits
into the resource sufficiency matchings, for example. A second goal is to design
new timetabling algorithms that fully exploit the flexibility of this innovative
data structure.

References

1. Adriaen, M., De Causmaecker, P., Demeester, P., Vanden Berghe, G.: Tackling the
university course timetabling problem with an aggregation approach. In: Proceed-
ings of the 6th International Conference on the Practice and Theory of Automated
Timetabling, Brno, pp. 330–335 (August 2006)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs, NJ (1993)

3. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press,
Cambridge (2003)

4. Burke, E.K., Carter, M. (eds.): PATAT 1997. LNCS, vol. 1408. Springer, Heidelberg
(1998)

Hierarchical Timetable Construction 307

5. Burke, E.K., De Causmaecker, P. (eds.): PATAT 2002. LNCS, vol. 2740. Springer,
Heidelberg (2003)

6. Burke, E., Erben, W. (eds.): PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg
(2001)

7. Burke, E.K., Ross, P. (eds.): Practice and Theory of Automated Timetabling.
LNCS, vol. 1153. Springer, Heidelberg (1996)

8. Burke, E.K., Trick, M.A. (eds.): PATAT 2004. LNCS, vol. 3616. Springer, Heidel-
berg (2005)

9. Carter, M.W., Laporte, G.: Recent developments in practical course timetabling.
In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19.
Springer, Heidelberg (1998)

10. Cooper, T.B., Kingston, J.H.: The solution of real instances of the timetabling
problem. The Computer Journal 36, 645–653 (1993)

11. Fizzano, P., Swanson, S.: Scheduling classes on a college campus. Computational
Optimization and Applications 16, 279–294 (2000)

12. van Hoeve, W.J.: A hyper-arc consistency algorithm for the soft alldifferent con-
straint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 679–689. Springer,
Heidelberg (2004)

13. Kingston, J.H.: A tiling algorithm for high school timetabling. In: Burke, E.K.,
Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 233–249. Springer, Heidel-
berg (2005)

14. Kingston, J.H.: The KTS high school timetabling web site (Version 1.3) (October
2005), http://www.it.usyd.edu.au/∼jeff

15. Kingston, J.H.: The KTS high school timetabling system. In: Burke, E.K., Rudová,
H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 308–323. Springer, Heidelberg (2007)

16. Marte, M.: Towards constraint-based school timetabling. In: Proceedings of the
Workshop on Modelling and Solving Problems with Constraints (at ICAI 2004),
pp. 140–154 (2004)

17. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge, MA (1999)

18. de Werra, D.: An introduction to timetabling. European Journal of Operational
Research 19, 151–162 (1985)

http://www.it.usyd.edu.au/~jeff

The KTS High School Timetabling System

Jeffrey H. Kingston

School of Information Technologies,
The University of Sydney, NSW 2006, Australia

jeff@it.usyd.edu.au
http://www.it.usyd.edu.au/∼jeff

Abstract. KTS is a web-based high school timetabling system, freely
accessible on the Internet. This paper is a general survey of KTS, includ-
ing its data model, user interface, and solver. The solver uses operations
research models in a polynomial-time heuristic framework to produce
high quality solutions in a few seconds. Results are presented for six
instances taken from Australian high schools.

1 Introduction

The problem of automatically constructing high school timetables has drawn
the attention of researchers for many years. In the early days, class-teacher
timetabling was the main focus [14], but it was never a realistic model of real-
world problems. Progress on these has been slow. About ten years ago, a standard
survey could find only a handful of papers reporting solvers for similar problems
(including university course timetabling) in use in institutions [5]; and although
firm data are hard to come by, the situation does not seem to have changed
much since then.

Indeed, since that time the field seems to have been in decline; for example,
the PATAT conferences of this period [1,2,3] contain only a few high school
timetabling papers, and there are still no standard data sets on which researchers
can compare results. Several recent papers, however, point to a renaissance; they
attempt to solve real-world instances with such diverse methods as constraint
programming [12], tabu search [8], and a hybrid approach [7]. These papers all
relate to European high schools, which seem quite similar to the Australian high
schools of this paper, the main differences being that European teachers are
more likely to be preassigned to their classes, and are utilized less (around 50%
of the time) than Australian teachers (around 75%), giving rise to compactness
requirements not present in Australian problems.

This paper and the work it reports are motivated by a belief that, even if
the technical problems can be overcome, software solvers will be widely used in
high schools only if they are inexpensive and able to respond quickly to changing
requirements. Such solvers would need to be available on-site under the control
of the school’s timetable planner, rather than off-site under the control of an
expert (and hence expensive and busy) consultant.

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 308–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The KTS High School Timetabling System 309

KTS is a web server for high school timetabling created by the author. Its
web interface puts the system on the desk of the school’s timetable planner,
and its polynomial time heuristic solver delivers a very good timetable in a few
seconds. Together these features support non-traditional requirements such as
rapid evaluation of alternative scenarios and incorporation of late changes, as
well as the traditional one of solving a fixed instance to near-optimality. The
system is fully operational and available continuously on the Internet [10], but
at the time of writing the process of gathering a user community has only just
begun (60 accounts have been created, but only a few are active).

This paper is a general overview of the KTS system. Section 2 presents a
detailed specification of the high school timetabling problem as defined by KTS.
Section 3 describes the user interface. Section 4 describes the solver, and Sec-
tion 5 presents results for six instances taken from Australian high schools.

2 Data Model

The KTS data model is object-oriented. It is described in this section, with a
few minor omissions.

An account object, or just account, represents one user’s account with the
KTS system. Each account contains any number of institutions, representing
educational institutions for which the user wishes to construct timetables. Each
institution contains any number of instances, each representing that institution’s
timetabling problem for a particular year, or semester, etc.

Each instance contains a time group object, holding all information about
time. KTS has a simple time model in which time is divided into individual times
of equal duration, ordered chronologically, with each time optionally separated
from the next by a break, which could be a meal break or the end of a day, etc.
The full sequence of times is called the cycle.

A sequence of one or more times that follow each other chronologically and
do not span a break is called a time block. Any set of times may be viewed
as a set of time blocks, by grouping the times into blocks of maximal size. The
sizes of these blocks, written as a sequence of integers, form the block structure of
the set of times. For example, the set of times {Mon1, Mon2, Tue5, Tue6, Thu3}
presumably has block structure 2 2 1. The order in which the elements of a block
structure are written does not matter; non-increasing order is used by convention.
Meetings may specify that their times should have a particular block structure.

In addition to the instance’s set of available times, the time group contains
any number of time subgroups, which are subsets of the times, used when defining
workload limits and time conditions. These latter place requirements on the sets
of times assigned to meetings, and are either limit conditions, which limit the
number of times from a given subgroup that a meeting may contain, for example
limiting to 1 the number of undesirable times, or spread conditions, which require
the time blocks assigned to a meeting to be spread evenly over a sequence of
time subgroups, such as the days of the week.

310 J.H. Kingston

An instance also contains any number of resource group objects, represent-
ing collections of resources (participants in meetings). Although not mandatory,
there would typically be three resource groups, called Student Groups, Teach-
ers, and Rooms. KTS is intended for high school timetabling problems, in which
groups of students are timetabled, not individual students.

A resource group may contain divisions, representing administrative units
such as faculties or departments (for teachers) and forms or years (for students).
If a resource group has divisions, then each of its resources lies in exactly one of
those divisions.

A resource group may also have capabilities, which are subsets of its set of
resources. For example, an English capability would be the subset of teachers
qualified to teach English; a ScienceLab capability would be the subset of rooms
in which Science classes may be held. A resource may lie in any number of
capabilities, and a capability may contain any number of resources. A division
is usable as a capability, as is the resource group as a whole.

Each resource may have a set of times when it is unavailable to attend classes.
It may also have workload limits, which might specify, for example, that the
resource may attend meetings for at most 30 times over the cycle, and at most
7 times on each day. A limit may be placed on the number of occupied times in
any subset of the times of the cycle, defined by a time subgroup. Each limit may
have a hard component, a number of times which must not be exceeded, and a
soft component, for which violations are penalized but not prohibited.

One resource may follow another. For example, a room may follow a particular
teacher, meaning that it is to be preferred when assigning room selections in
meetings to which that teacher is assigned. Such a room is often called the home
room of a teacher.

An instance also contains meetings, which specify that certain resources are
to meet together at certain times.

A meeting’s times are specified by a single time selection, which requests that
a particular number of times be assigned. It may request that the times conform
to a given block structure, and include preassigned times. All time conditions
defined in the time group apply to all time selections, as far as the time selection’s
block structure and preassigned times allow.

A meeting’s resources are specified by any number of resource selections. For
example, a meeting in which class 7A studies Science might contain a Student
Groups resource selection requesting student group 7A, a Teachers resource
selection requesting one teacher with the Science capability, and a Rooms se-
lection requesting one ScienceLab. These selections may include preassigned
resources.

An instance may contain any number of solve profiles, which are named col-
lections of options for controlling the solver. The solver may be invoked with this
set of options by a single click on the appropriate link. An instance may also
contain any number of display profiles, which are named collections of options de-
scribing a timetable display or print: whether to use HTML, PDF, or PostScript;

The KTS High School Timetabling System 311

Fig. 1. Screen shot of the user interface to one small meeting. A page header and
navigation links precede this box and are not shown here. After the header line, the
first inner box holds the time selection, here requesting 5 times including block struc-
ture 2 1. The next box holds a Student Groups resource selection, requesting student
group resource 07A. This box accepts preassignments only, in accordance with an op-
tion set on the Student Groups resource group page. The following boxes request one
ScienceYr7–10 teacher and one ScienceLab room. Split assignments are usually allowed;
the Splittable boxes let the user disallow them for individual resource selections. Teach-
ers have workload limits, so the Teachers selection offers a Special Workload box which
allows the workload associated with this selection to be reduced (e.g., to 0 for staff
meetings).

Fig. 2. Screen shot of the summary table from the evaluation page. Each underlined
number is a link leading to a detailed list of defects. Below this table are other tables
giving an intermediate level of detail, such as the number of time conditions defects
affecting each student form, the number of soft workload overloads per teacher, etc.

whether to display large planning timetables or individual resources’ timetables;
whether to display the whole timetable, or just one division or resource; and so
on. Again, one click produces a display using these options.

312 J.H. Kingston

An instance may also contain a current solution. This consists of assignments
of particular times and resources to some (hopefully all) of its time and resource
selections. A resource assignment may be a split assignment, in which one quali-
fied resource is assigned for some of the times of the meeting and a different one
to the remaining times; or it may be a partial assignment, in which a particular
resource is assigned for some of the times of a meeting but there is no assignment
for the remaining times.

KTS objects are persistent: they exist permanently on disk, but can be up-
dated in memory while the system is running. They are stored externally in
UTF-8 text files, updated by a two-phase algorithm which protects against acci-
dental corruption. Each account and its institutions occupies one file, and each
instance occupies one file, including all the instance’s objects (typically 10 to
20 kilobytes of data). Most operations concern a single instance, and they be-
gin by reading this file and end by writing it. Instances are represented using
a simple specification language, also called KTS, which is a descendant of the
well-known TTL language [6]. The user may upload and download KTS instance
files, although there is no strong motive for doing so.

3 User Interface

The KTS system is not distributed to users for installation on their own systems.
Instead, there is a unique copy running at the author’s institution, publicly
accessible via the web, using HTML and CGI for its user interface. This has
several advantages: it makes KTS available instantly on any computer connected
to the Internet; the software may be upgraded centrally; and the data is held on
the server where it may be captured for research purposes, in accordance with
an agreement that users enter into when they create their accounts.

The user interface has one page for each object, beginning with a header and
some navigation links, and continuing with updatable displays of the object’s
attributes. Most pages contain paragraphs of text describing their fields, so are
self-documenting. The exception is the page which displays a meeting (Figure 1),
where there is too much detail to document on the spot. Instead, a set of ex-
amples of meetings of increasing complexity is offered, which shows step-by-step
how each meeting is built up. There is also an overview document explaining
the capabilities of the system, and a glossary.

When there is a solution, KTS offers an evaluation page summarizing its
defects (Figure 2), with links to more detailed evaluations. The most interesting
of these detects sets of resource slots that cannot all be assigned to, owing to a
shortage of resources (Figure 3).

Entry of a complete instance takes some hours. Short-cut operations for creat-
ing a time group and the usual resource groups help somewhat, as do operations
for copying resources and meetings. There is also an operation for copying a
complete instance, which saves time when moving to a new year or semester.

The KTS High School Timetabling System 313

Fig. 3. Screen shot of a detailed evaluation, showing that a set of three simultaneous
Art classes cannot all be assigned teachers, because there are only two Art teachers.
The analysis is based on finding the Hall sets of a bipartite matching between all the
tixels demanded by the instance and all the tixels supplied (a tixel is one resource at
one time). Two versions of this analysis are carried out, one before time assignment
and one after. Hall sets can be much more complex than this very simple example;
they might reveal that the supply of English and History teachers, taken together, is
insufficient to cover all the English and History classes even before time assignment,
and so on. KTS merely prints the Hall sets; the user must find the explanations.

4 The Solver

The KTS solver aims to produce a very good and comprehensible timetable in
ten seconds or less. It has five stages: column layout, tile construction, time as-
signment, time adjustment, and resource assignment. This approach appeared in
an earlier paper by the author [9], but the algorithms presented there had many
defects, as that paper acknowledged. With one exception (teacher assignment),
the algorithms presented here are completely new; the defects are all removed,
and more and better results are reported.

The following five subsections describe the five stages. Some details have been
omitted, since a full description would be too lengthy for this paper, which aims
to present a balanced view of the whole system.

4.1 Column Layout

As far as possible, the meetings in a high school timetable should overlap exactly
in time, or not at all. This makes the timetable comprehensible, and simplifies
resource assignment.

KTS’s method of achieving such regularity begins by dividing the cycle into
columns: sets of times which make good choices for assigning to meetings, and
which meetings are encouraged to use wherever possible. The reader may be

314 J.H. Kingston

Day 1 Day 2 Day 3 Day 4 Day 5

Time 1 Column 1 Column 6 Column 2 Column 2 Column 5

Time 2 Column 1 Column 6 Column 2 Column 2 Column 5

Time 3 Column 6 Column 3 Column 4 Column 3 Column 3

Time 4 Column 6 Column 3 Column 4 Column 3 Column 6

Time 5 Column 5 Column 2 Column 1 Column 4 Column 4

Time 6 Column 5 Column 5 Column 1 Column 4 Column 7

Time 7 Column 4 Column 1 Column 5 Column 6 Column 7

Time 8 Column 2 Column 7 Column 3 Column 1 Column 7

Fig. 4. A typical layout of a week of 40 times into six columns of width 6 plus one of
width 4. Breaks are not shown, but occur after the fourth and sixth times each day
except Friday, when they occur after the third and fifth. This diagram was generated
in PostScript by KTS.

familiar with this approach from its use in North American universities, where
the columns Mon–Wed–Fri 9–10am, Mon–Wed–Fri 10–11am, and so on, are
frequently used. A traditional column plan in Australian high schools divides
a cycle of 40 times into six columns each with six times, and one column with
four times preassigned those times when the whole school attends Sport and
optional religious instruction.

There is no requirement that meetings fit exactly into columns. In the se-
nior years they usually do, but in the junior years the school offers many small
subjects, often with little resemblance to any column plan.

Although a column plan could easily be inferred from the time selections of
the meetings, it is such a basic part of the timetable planner’s thinking that
it seems better to have the user enter it, including a number of times, block
structure, and optional preassigned times for each column. Given this plan, the
solver’s first task is to assign specific times to each column, aiming to ensure that
each column satisfies the time conditions, so that meetings assigned to them will
do so. An example of such a column layout appears in Figure 4. Producing it is
quite easy in practice. The solver does it in two steps.

First, the time blocks naturally present in the cycle (between one break and
the next) are partitioned into smaller blocks whose sizes exactly match the com-
plete set of block sizes of the columns. KTS does this heuristically, checking
after each break that the columns’ block sizes can be packed into the current
cycle breakdown, and with an eye to the time conditions defined by the user: if
meetings should be spread evenly over five days, then the solver aims to have
the same number of time blocks on each day, and so on. Blocks of preassigned
times already present in meetings are used wherever possible.

Second, the time blocks created by breaking down the cycle’s blocks are as-
signed to columns. After an initial round-robin assignment, a simple hill climber
swaps pairs of equal-width time blocks between columns until no swap exists that
reduces the badness of the columns as measured against the time conditions.

The KTS High School Timetabling System 315

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

8CKOAS-Maths 8C-History

8K-History

8O-History

8A-History

8S-History

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

8C-English

8K-English 8K-English

8O-English 8O-English

8A-English 8A-English

8S-English 8S-English

8C-Music

8K-Music

8O-Music

8A-Music

8S-Music

Fig. 5. Two examples of tiles from the bghs98 instance. Each row is the timetable of one
student group resource; each column is one time. The wedges indicate block structure.

4.2 Tile Construction

KTS continues its efforts to build a regular timetable by first timetabling small
sets of meetings together into larger entities called tiles.

Figure 5 contains two examples of tiles. The students are grouped by abil-
ity for Mathematics, so the five Mathematics classes must run simultaneously
and are combined into one large meeting in the input data. The adjacent His-
tory meetings do not have to run simultaneously, but fitting them neatly along-
side Mathematics forces them to. The second tile illustrates a construction, well
known to manual timetablers, called the runaround. There are only two Music
teachers and two Music rooms, so the five Music classes cannot run simultane-
ously. By interleaving them among other meetings as shown, the tile demands
only one of each at any one time.

Tiles are built in three steps. First, the meetings of each student form are
grouped into buckets. Any meeting containing all the form’s student group re-
sources goes into a bucket by itself; meetings which are identical except for their
student group resources share a bucket; any meetings which cannot be analysed
in a similar manner go into a leftovers bucket.

Second, a series of decisions is taken to merge certain sets of buckets. These
decisions are made by a sequential heuristic which produces one merged bucket
per iteration. Buckets that cannot be timetabled effectively because of a lack of
resources are merged with other buckets. For example, the bucket holding the
Music classes from Figure 5 is not viable alone and must be merged. Other rel-
evant factors include preassigned times, the presence of student group resources
from several forms, and a preference for tiles whose width (number of times) is
a multiple of the usual column width, for regularity.

Finally, the meetings within each bucket are timetabled with respect to each
other, producing tiles. This is a general time assignment problem, on a small
scale, and the time assignment algorithm described in the next subsection is
used to solve it. This step is interleaved with the previous one: if the bucket’s

316 J.H. Kingston

M1 M2 W5 W6 T7 R8 W1 W2 R1 R2 M8 T5 T3 T4 R3 R4 W8 F3 W3 W4 R5 R6 M7 F5 M5 M6 F1 F2 T6 W7 M3 M4 T1 T2 R7 F4 F6 F7 F8 T8

07A 7A-HPP-Sport 7A-Sci 7A-La 7AS-D&T123 7A-Ma 7A-Mu 7A-Sci 7AS-A 7AS-D&T12-A 7A-Ge 7A-Mu 7A-Ge 7A-La 7A-History 7A-HPP-Sport 7A-Ge 7A-His 7A-English 7A-Maths 7A-Sci 7A-Ma 7A-Science 7AS-A 7-Opti
07S 7S-HPP-Sport 7S-Languages 7S-Sci 7S-His 7S-Science 7S-Mu 7S-His 7S-Mu 7S-Ge 7S-His 7S-HPP-Sport 7S-Ge 7S-Ma 7S-English 7S-Maths 7S-Ge 7S-Science
07C 7C-English 7C-Ge 7C-En 7C-HPP-Sport 7C-Sci 7C-En 7C-Maths 7CKO-D&T12- 7CKO-Art12-D 7C-Science 7C-Geography 7C-La 7C-HP 7CKO-D&T12- 7C-His 7C-Mu 7C-Ma 7C-La 7C-Sci 7C-Mu 7C-History 7C-Sci 7C-HP 7C-Maths
07K 7K-HPP-Sport 7K-English 7K-Science 7K-HPP-Sport 7K-Sci 7K-Ge 7K-HPP-Sport 7K-Maths 7K-Science 7K-Ma 7K-Ge 7K-La 7K-Mu 7K-History 7K-English 7K-La 7K-Mu 7K-His 7K-Ge 7K-Maths
07O 7O-English 7O-Science 7O-HPP-Sport 7O-Sci 7O-Ge 7O-HPP-Sport 7O-HPP-Sport 7O-Maths 7O-Ge 7O-Mu 7O-La 7O-History 7O-Science 7O-His 7O-La 7O-Mu 7O-Ge 7O-Maths
08A 8A-English 8A-His 8A-En 8CKOAS-Math 8A-Science 8CKO 8A-Sci 8-LPD-1234 8A-Mu 8A-Ge 8AS-Art12-D& 8A-Sport 8CKOAS-Math 8-LPD-5678 8AS-D&T12-A 8A-Ge 8A-His 8-LPD-5678 8A-Science 8A-Ge 8A-Mu 8AS-D&T123 8A-His 8-Opti
08S 8S-English 8S-Mu 8S-En 8S-Science 8S-Sci 8S-Mu 8S-Ge 8S-Sport 8S-History 8S-Science 8S-Geography 8S-His
08C 8C-Science 8C-En 8C-Sci 8C-English 8C-Mu 8C-His 8C-Mu 8C-English 8CKO-D&T12- 8C-Sport 8C-Geography 8CKO-D&T12- 8C-History 8CKO-Art12-D 8C-Ge
08K 8K-Science 8K-En 8K-Sci 8K-English 8K-Mu 8K-His 8K-Mu 8K-English 8K-Sport 8K-Geography 8K-History 8K-Ge
08O 8O-Science 8O-Music 8O-English 8O-Sci 8O-His 8O-English 8O-Sport 8O-Geography 8O-History 8O-Ge
09-1 E9-7 9-PD-1 E9-4 E9-6 E9-4 E9-6 9-English-1 E9-5 E9-7 E9-5 9-Science-1 9-Musi 9-Scie 9-Maths 9-Sport 9-Opti
09-2 9-PD-2 9-English-2 9-Science-2 9-Musi 9-Scie
09-3 9-Science-3 9-English-3 9-PD-3 9-Science-3 9-Musi
09-4 9-PD-4 9-English-4 9-Science-4 9-Musi
09-5 9-PD-5 9-English-5 9-Musi 9-Science-5
10-1 E10-6 E10-7 E10-4 E10-5 E10-4 E10-5 10-Science 10-English 10-Maths E10-7 10-PD E10-5 E10-4 10-Sport 10-Opt
10-2
10-3
10-4
10-5
Year11 11-3-Maths/12-3 11-1 11-4/12-4-Maths 11-5/12-5 11-2/12-1 11-6 11-Sport 11-Opt
Year11-2-OAS
Year11-3-OAS 11-3/1 11-3/12-3-OAS
Year11-4-OAS 11-3-Maths/12-3 11-4/1 11-4/12-4-OAS-B 11-4/12-4-OAS
Year11-5-OAS 11-4/12-4-Maths 11-5/1 11-5/12-5-OAS-A 11-5/12-5-OAS
Year12 12-2 11-5/12-5 12-6 12-7 12-Opt
Year12-2-OAS 12-2-O 12-2-OAS-B 12-2-OAS-A
Year12-3-OAS 11-3/1 11-3/12-3-OAS-A 11-3/12-3-OAS 12-2
Year12-4-OAS 11-3-Maths/12-3 11-4/1 11-4/12-4-OAS-B 11-4/12-4-OAS
Year12-5-OAS 11-4/12-4-Maths 11-5/1 11-5/12-5-OAS-A 11-5/12-5-OAS
Other Mathe Studen Histor Englis PDFac Sport StaffM
Other ExecutiveMeeting

Fig. 6. A planning timetable for the bghs98 instance. Each row except the last two
represents the timetable of one student group resource. The columns represent times,
permuted to bring the times of the columns (in the column layout sense: six of width 6
and one of width 4) together, making them and the tiles within them clearly visible. An
example of a time adjustment, swapping Science with Personal Development, appears
in the row of student group 09-3. This diagram was generated in PostScript by KTS.

timetable turns out to be more defective than its meetings individually, the
bucket merging heuristic tries alternative bucket mergings.

4.3 Time Assignment

After tiles are built, the next stage is to timetable them into the times of the
cycle, producing a complete time assignment for all meetings.

The time assignment software module is called from three places within the
KTS solver: to timetable submeetings into their meetings, meetings into their
tiles, and tiles into the cycle. These problems are all essentially the same, differing
only in scale. This description will speak of timetabling meetings into the cycle,
rather than introducing unilluminating general terminology.

The meetings to be timetabled are first grouped into layers: sets of meetings
required to be disjoint in time, typically because they contain the same preas-
signed student resources. The layers are sorted so that the most difficult ones
(those requiring the most resources) come first, and timetabled one by one with
no backtracking. A meeting may lie in more than one layer, in which case it is
timetabled along with its first layer. In the time assignment stage of the solver
there is one layer per student form, plus one layer for each staff meeting.

The KTS High School Timetabling System 317

Within each layer, each meeting is timetabled in turn, widest first, if possible
into a single column. A few assignments are tried for each meeting, but without
backtracking; instead, forward checks, involving two kinds of bipartite matchings
that monitor the availability of resources, keep the solver on track. These checks
are described in detail in a companion paper [11]. A timetable created by this
algorithm, plus time adjustment, appears in Figure 6.

4.4 Time Adjustment

After a complete time assignment is obtained, time adjustment attempts to im-
prove it by hill climbing: swapping time blocks around while this produces an
improvement. Hill climbing is very effective here, since it corrects simple prob-
lems resulting from the lack of backtracking during time assignment, in time
proportional to the number of improvements it makes (multiplied by the neigh-
bourhood size).

Although no resources have yet been assigned to meetings, there are neverthe-
less two useful evaluations that can be made at this point: checking the sets of
times assigned to meetings for their conformance to time conditions, and check-
ing that resources are sufficient at each time to cover the resource demands made
by meetings assigned that time (using a bipartite matching at each time between
resource demands and resources). A neighbour is accepted if it reduces problems
with resources, or improves time conditions without increasing problems with
resources.

There are several promising neighbourhoods that could be tried. The current
implementation explores two, repeating until neither gives any improvement.
Both swap the members of a set of equal-width non-overlapping time blocks, so
the neighbourhood size is bounded by the square of the number of times in the
cycle, and is often much less.

The first neighbourhood takes each pair of time blocks of equal size assigned
to columns, such that none of the times involved is preassigned to any meeting
or column, and tries swapping these time blocks globally through every meeting.
This might reduce resource problems as well as time condition problems, because
resources’ unavailable times stay fixed, and a swap might move resource demands
away from the unavailable times of the resources they need.

The second neighbourhood takes pairs of meetings that contain the same
preassigned resources (typically student group resources) and swaps blocks of
their times of equal width. Since this can disrupt the regularity of a timetable,
these swaps are only accepted if they reduce problems with resources, and indeed
are only tried at times where there are such problems.

4.5 Resource Assignment

Resource assignment is the assignment of particular resources to the resource
slots of meetings. The solver does this after times are all assigned.

Each resource group may be assigned independently of the others, apart from
a slight connection caused by ‘follows’ requirements. For each resource group in

318 J.H. Kingston

Avail M1 M2 W5 W6 T7 R8 W1 W2 R1 R2 M8 T5 T3 T4 R3 R4 W8 F3 W3 W4 R5 R6 M7 F5

Gibbons 0 8C-Science 7A-Scie 8C-Scie 7K-Science 8A-Science 7A-Scie 8A-Scie Student 12-5-Chemistry

Kassab 0 7O-Science 8S-Science 7O-Scie 8S-Scie 10-Science2 11-5-Biology

Kidd 0 12-3-Physics 7C-Scie 10-Science1 7C-Science

Prasad 0 8K-Science 8K-Scie 12-2-GeneralScience-1 10-Science3

Saule 0 8O-Science 12-2-Biology 10-Science5 12-5-Biology

Smith 1 9-Science-3 7S-Scie 7S-Science 8O-Scie 10-Science4 11-5-Physics

Unassigned 7K-Scie 7K-Science

M5 M6 F1 F2 T6 W7 M3 M4 T1 T2 R7 F4 F6 F7 F8 T8

Gibbons 9-Science-1 9-Scienc 8A-Science 7A-Scie Sport StaffMe

Kassab 11-2-GeneralScience 7O-Science 8S-Science

Kidd 9-Science-5 7C-Scie 7C-Scie ExecutiveMeeting

Prasad 9-Science-4 11-6-Chemistry-1 Sport

Saule 11-6-Chemistry-2

Smith 9-Science-3 11-6-Biology 7S-Science

Unassigned

Fig. 7. Planning timetable showing the teacher assignment for the Science faculty of
the bghs98 instance. (The resource assignment algorithm assigns all faculties simultane-
ously, but it is convenient to analyse its results faculty by faculty.) The second column
gives the remaining unused workload of each teacher. Split and partial assignments are
shown in italic font. There are three unassigned tixels. This diagram was generated in
PostScript by KTS.

turn, in an order influenced by the presence of ‘follows’ requirements, preassign-
ments are first converted to assignments, then assignments arising from ‘follows’
requirements are made, then all remaining unassigned slots are assigned. Some
preassignments may fail to convert owing to resource unavailabilities and work-
load limits; their slots remain unassigned and become defects in the solution.

The resource assignment problem comes in two versions, depending on how
acceptable split assignments are. Typically, split assignments are undesirable
when assigning teachers, but acceptable when assigning rooms, provided classes
do not have to change rooms part-way through a time block.

The room assignment algorithm is quite simple. It assigns each time block of
each meeting sequentially, largest blocks first, choosing a qualified resource whose
use does not increase the number of resource problems at any of the block’s times
(the usual bipartite matching checks this condition), and preferring a resource
which has already been assigned to another block of the meeting. If a block of
two or more times is encountered for which this is not possible, it is split into
blocks of width 1; if a block of width 1 cannot be assigned, it is passed over and
becomes a defect in the solution.

The teacher assignment algorithm tries much harder to avoid split assignments
(Figure 7). It is based on the alternating path method familiar from bipartite
matching and similar problems, used as a heuristic, since the optimality guar-
antees that usually accompany it are absent.

The KTS High School Timetabling System 319

Table 1. The six instances tested, showing the number of times, resources, and meet-
ings in each

Instance Times Student groups Teachers Rooms Meetings

bghs93 40 23 53 46 155
bghs95 40 27 52 48 147
bghs98 40 30 56 45 152
tes98 30 11 33 20 95
tes99 30 13 37 26 86
sahs96 60 20 43 36 131

Choose a currently unassigned teacher slot of maximum width. If there is a
qualified teacher able to fill this slot (i.e. without causing clashes or exceeding
workload limits), assign that teacher and move to the next widest slot. Oth-
erwise, see if there is a teacher who could fill the slot if only some one of the
assignments currently given to that teacher were deassigned and given to some
other teacher able to fill it. If so, make the indicated chain of two assignments
and one deassignment, and move on. If not, look for a longer chain, and so on.
At each moment when there are no workload overloads or clashes, compare the
whole set of assignments with the best so far, and replace it if it is better.

Two methods of controlling the size of the search are used. One is the tradi-
tional one of marking each possible assignment and deassignment visited when
it is first considered, and refusing to reconsider it during the course of the search
(it becomes available again when we move to the next slot). The other method is
to allow revisiting but to strictly limit the depth of the search, to the empirically
determined value of 5 (three assignments and two deassignments). The searches
are repeated until there is no improvement.

At each slot, in addition to searching for ordinary assignments, the solver
finds a qualified resource which is available for as many times as possible, and
generates all split assignments which have that resource and those times as the
first branch, and one other qualified resource with the remaining times as the
second branch. The alternating path search continues down the second branch.
A single partial assignment is also generated, holding the first branch as before
but omitting the second.

5 Results

At the time of writing, KTS has only recently been released to the Internet,
and no freshly created instances are available. In default of those, this section
analyses the performance of the solver on six real instances from the author’s
archives, taken from three high schools in Sydney, Australia. These have been
solved without any of the interactive exploration of alternative scenarios that
KTS makes possible. The results are offered as evidence that the approach taken
by the solver is promising; the small number of instances and the unavailability

320 J.H. Kingston

Table 2. Run times in seconds for the major stages and in total. The tests used a
3.2GHz Pentium machine running Linux. Run times are as reported by the Linux time
command, which is accurate to one second. Column layout time was always 0 seconds so
has been omitted. Time assignment includes time adjustment by hill climbing, never
more than one second. The times given for resource assignment essentially measure
teacher assignment only, since room assignment is very fast. Total times were checked
against wristwatch time.

Instance Tile construction Time assignment Resource assignment Total

bghs93 0 3 3 6
bghs95 0 1 7 8
bghs98 0 1 6 7
tes98 1 1 0 2
tes99 0 1 0 1
sahs96 1 31 0 32

Table 3. Evaluation of time assignments, showing the absolute number of meetings
with defective block structure, uneven spread through the cycle, and more than one
undesirable time, plus this number as a percentage of the total number of meetings

Instance Block structure Spread Undesirable times

bghs93 48 (31.0%) 51 (31.2%) -
bghs95 20 (13.6%) 44 (29.9%) 7 (4.8%)
bghs98 5 (3.3%) 31 (21.1%) 0 (0.0%)
tes98 36 (37.9%) 22 (23.2%) 2 (2.1%)
tes99 37 (43.0%) 27 (31.4%) -
sahs96 2 (1.5%) 74 (56.5%) 18 (13.7%)

of comparisons with other solutions (especially hand-generated ones) rule out
larger claims.

Statistical descriptions of the six instances appear in Table 1, run times are
given in Table 2, and the quality of the solutions is summarized in Tables 3, 4,
and 5. The solver always assigns the correct number of times to each meeting,
never introduces student group clashes, and prefers to leave teacher and room
slots unassigned rather than introducing teacher and room clashes and workload
overloads. So the possible defects are time assignment problems (wrong block
structure, meeting spread over too few days, etc.) and unsatisfactory room and
teacher assignments (split, partial, and missing).

The sahs96 instance has a two-week cycle, and all its teacher slots are pre-
assigned. These two factors make time assignment very slow. It is encouraging
that only 3.1% of these preassigned teacher tixels could not be assigned (Ta-
ble 5), given that the solver is not optimized to handle instances that are highly
constrained in this way. However, the solver’s desperate attempt to satisfy all
these preassignments leads to a quite irregular timetable.

The KTS High School Timetabling System 321

Table 4. Evaluation of room assignments, showing the absolute number of split assign-
ments, partial and missing assignments, unassignable tixels after time assignment (1),
and unassigned tixels after resource assignment (2), plus this number as a percentage
of the number of room assignments or tixels demanded. In this table, a split assignment
is one in which a class has to change rooms part-way through a time block.

Instance Split Partial/missing Tixels (1) Tixels (2)

bghs93 0 (0.0%) 7 (3.1%) 15 (1.2%) 15 (1.2%)
bghs95 0 (0.0%) 6 (2.9%) 9 (0.7%) 9 (0.7%)
bghs98 0 (0.0%) 5 (2.1%) 7 (0.5%) 7 (0.5%)
tes98 2 (2.2%) 5 (5.5%) 7 (1.5%) 7 (1.5%)
tes99 0 (0.0%) 5 (3.7%) 7 (1.3%) 7 (1.3%)
sahs96 0 (0.0%) 27 (11.2%) 15 (1.0%) 15 (1.0%)

Table 5. Evaluation of teacher assignments, showing the absolute number of split as-
signments, partial and missing assignments, unassignable tixels after time assignment
(1), and unassigned tixels after resource assignment (2), plus this number as a percent-
age of the number of teacher assignments or tixels demanded, as appropriate. In this
table, a split assignment is one in which a class is taught by two teachers.

Instance Split Partial/missing Tixels (1) Tixels (2)

bghs93 3 (0.7%) 7 (1.5%) 5 (0.3%) 9 (0.6%)
bghs95 17 (3.7%) 15 (3.3%) 7 (0.5%) 27 (2.0%)
bghs98 24 (5.4%) 10 (2.3%) 8 (0.5%) 17 (1.2%)
tes98 7 (3.8%) 13 (7.1%) 14 (3.0%) 14 (3.0%)
tes99 2 (1.1%) 9 (5.1%) 9 (1.7%) 9 (1.7%)
sahs96 0 (0.0%) 27 (11.2%) 47 (3.1%) 47 (3.1%)

The other instances are more typical of the solver’s intended domain of appli-
cation. Run times are under ten seconds. Block structure defects are somewhat
high (Table 3). This problem awaits analysis but should be correctable. Time
conditions defects are probably acceptable now, given their relative unimpor-
tance, although there is room for improvement.

Resource assignment can be evaluated either in terms of the number of defec-
tive assignments (split, partial, or missing), or the number of unassigned indi-
vidual tixels (a tixel is one resource at one time, either supplied or demanded).
Some tixels are inevitably unassignable given a particular time assignment – for
example, if the time assignment requires five Science laboratories to be avail-
able at some time, but the school has only four. These are shown in the fourth
column of Tables 4 and 5, while the number of unassigned tixels after resource
assignment is shown in the fifth column.

Room assignment (Table 4) is virtually perfect. The room assignment algo-
rithm always assigns every room tixel that time assignment permits, because it
breaks time blocks up into individual times if necessary, and, using a bipartite

322 J.H. Kingston

matching between room demands and rooms at each time, it never allows the
number of unassignable rooms at any time to increase. This is why the fourth
and fifth columns of Table 4 are equal. The fact that only two split assignments
were ever introduced shows how easy this problem is in practice, despite being
formally NP-complete [4].

Unassigned room tixels typically request specialized laboratories whose de-
mand is very tight. This problem is quite common in high schools and is not of
major concern, since, given its low relative frequency, it is not difficult to ensure
that no class meets in an inappropriate room for more than one of its times,
and the teacher would organize the classroom material accordingly. An option
to assign inappropriate rooms where necessary, spreading them fairly among the
classes affected, could easily be added.

Split teacher assignments and unassigned teacher tixels (Table 5) are the
main areas of concern. How acceptable these results are it is hard to say. Hand-
generated timetables also have these problems. Split assignments are quite rou-
tine. Unassigned tixels are handled in various ways: by excusing a teacher from
a faculty meeting, having an available but unqualified teacher supervise a class,
and so on. Unlike other defects, every unassigned teacher tixel is a real problem
requiring the attention of the timetable planner.

One unassignable tixel in a teacher slot spoils the assignment of the entire
slot. This suggests that finding time assignments with fewer unassignable teacher
tixels would be more helpful than improving the teacher assignment algorithm.

6 Conclusions

This paper has presented KTS, a freely accessible web-based system for high
school timetabling. It has demonstrated a new and better way to deliver fast,
effective, and inexpensive high school timetabling.

The fast response time makes KTS well suited to exploring alternative sce-
narios and incorporating late changes to requirements. However, KTS does not
yet address the problem of making minimal changes to a published solution in
response to changes in requirements [13].

The data model is mature, except perhaps in its treatment of time, and the
overall structure of the solver is quite successful. It seems likely that future work
will focus on improving the existing solver components, rather than radically
redesigning the solver. The time assignment stage is the obvious next target
for improvement. In fact, since this paper was written, the author has designed
and implemented a more flexible approach to time assignment and adjustment
which should allow the algorithms described here to be varied and generalized
in several interesting ways [11].

In parallel with these efforts, the KTS system will be promoted to Australian
high schools. More users will bring a larger and more diverse set of test instances,
which should lead to further progress.

The KTS High School Timetabling System 323

References

1. Burke, E., Erben, W. (eds.): PATAT 2000. LNCS, vol. 2079. Springer, Heidelberg
(2001)

2. Burke, E.K., De Causmaecker, P. (eds.): PATAT 2002. LNCS, vol. 2740. Springer,
Heidelberg (2003)

3. Burke, E.K., Trick, M.A. (eds.): PATAT 2004. LNCS, vol. 3616. Springer, Heidel-
berg (2005)

4. Carter, M.W., Tovey, C.A.: When is the classroom assignment problem hard? Op-
erations Research 40, S28–S39 (1992)

5. Carter, M.W., Laporte, G.: Recent developments in practical course timetabling.
In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 3–19.
Springer, Heidelberg (1998)

6. Cooper, T.B., Kingston, J.H.: The solution of real instances of the timetabling
problem. The Computer Journal 36, 645–653 (1993)

7. de Haan, P., Landman, R., Post, G., Ruizenaar, H.: A four-phase approach to a
timetabling problem in secondary schools. In: Proceedings of the 6th International
Conference on the Practice and Theory of Automated Timetabling, Brno, pp. 423–
425 (August 2006)

8. Jacobsen, F., Bortfeldt, A., Gehring, H.: Timetabling at German secondary schools:
tabu search versus constraint programming. In: Proceedings of the 6th Interna-
tional Conference on the Practice and Theory of Automated Timetabling, Brno,
pp. 439–442 (August 2006)

9. Kingston, J.H.: A tiling algorithm for high school timetabling. In: Burke, E.K.,
Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 208–225. Springer, Heidel-
berg (2005)

10. Kingston, J.H.: The KTS high school timetabling web site (Version 1.3) (October
2005), http://www.it.usyd.edu.au/∼jeff

11. Kingston, J.H.: Hierarchical Timetable Construction. In: Burke, E.K., Rudová, H.
(eds.) PATAT 2006. LNCS, vol. 3867, pp. 294–307. Springer, Heidelberg (2007)

12. Marte, M.: Towards constraint-based school timetabling. In: Proceedings of the
Workshop on Modelling and Solving Problems with Constraints (at ECAI 2004),
pp. 140–154 (2004)

13. Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course
timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616,
pp. 126–146. Springer, Heidelberg (2005)

14. Schmidt, G., Ströhlein, T.: Timetable construction – an annotated bibliography.
The Computer Journal 23, 307–316 (1980)

http://www.it.usyd.edu.au/~jeff

Examination Timetabling

A Novel Fuzzy Approach to Evaluate the

Quality of Examination Timetabling

Hishammuddin Asmuni1, Edmund K. Burke1, Jonathan M. Garibaldi1,
and Barry McCollum2

1 School of Computer Science and Information Technology,
University of Nottingham, Jubilee Campus,
Wollaton Road, Nottingham, NG8 1BB, UK

{hba,ekb,jmg}@cs.nott.ac.uk
2 School of Computer Science, Queen’s University Belfast,

Belfast BT7 1NN, UK
b.mccollum@qub.ac.uk

Abstract. In this paper we introduce a new fuzzy evaluation function
for examination timetabling. We describe how we employed fuzzy reason-
ing to evaluate the quality of a constructed timetable by considering two
criteria: the average penalty per student and the highest penalty imposed
on any of the students. A fuzzy system was created based on a series of
easy to understand rules to combine the two criteria. A significant prob-
lem encountered was how to determine the lower and upper bounds of
the decision criteria for any given problem instance, in order to allow the
fuzzy system to be fixed and, hence, applicable to new problems without
alteration. In this work, two different methods for determining bound-
ary settings are proposed. Experimental results are presented and the
implications analysed. These results demonstrate that fuzzy reasoning
can be successfully applied to evaluate the quality of timetable solutions
in which multiple decision criteria are involved.

1 Introduction

Timetabling refers to the process of allocating limited resources to a number
of events subject to many constraints. Constraints are divided into two types:
hard and soft. Hard constraints cannot be violated under any circumstances.
Any timetable solution that satisfies all the specified hard constraints is con-
sidered to be a feasible solution, provided that all the events are assigned to a
time slot. Soft constraints are highly desirable to satisfy, but it is acceptable to
breach these types of constraint. However, it is very important to minimise the
violation of the soft constraints, because, in many cases, the quality of the con-
structed timetable is evaluated by measuring the fulfillment of these constraints.
In practice, the variety of constraints which are imposed by academic institu-
tions are very different [6]. Such variations make the timetabling problem more
challenging. Algorithms or approaches that have been successfully applied to one
problem may not perform well when applied to different timetabling instances.

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 327–346, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

328 H. Asmuni et al.

Researchers have employed many different approaches over the years in an
attempt to generate ‘optimal’ timetabling solutions subject to a list of con-
straints. Approaches such as Evolutionary Algorithms, e.g. [8, 16, 28], Tabu
Search, e.g. [7, 17, 19, 29], Simulated Annealing, e.g. [27], Constraint Program-
ming, e.g. [1, 4, 18], Case-Based Reasoning, e.g. [11, 30], and Fuzzy Methodolo-
gies, e.g. [2, 3, 23, 30] have been successfully applied to timetabling problems.
Overviews of timetabling approaches are presented in [10, 12, 22, 24, 26].

In 1996, Carter et al. [13] introduced a set of examination timetabling bench-
mark data. The original benchmark data set consists of 13 problem instances.
Since then certain difficulties have come to light with these benchmarks because
different versions circulated under the same name (the situation is discussed and
clarified in [24]. However, these benchmarks remain an important testbed. They
consider the following constraints:

Hard constraint. The constructed timetable must be conflict free. The re-
quirement is to avoid any student being scheduled for two different exams
at the same time.

Soft constraint. The solution should attempt to minimise the number of ex-
ams assigned in adjacent time slots in such a way as to reduce the number
of students sitting exams in close proximity.

In the context of these benchmark data sets, several different objective func-
tions have been introduced in order to measure the quality of the timetable
solution. In addition to the commonly used objective function that evaluates
only the proximity cost (see next section for details), other objective functions
have been derived based on the satisfaction of other soft constraints, such as
minimising consecutive exams in one day or overnight, assigning large exams to
early time slots, and others. This is discussed in more detail in the following
section.

Previous studies such as [3] and [23], demonstrated that fuzzy reasoning is a
promising technique that can be used both for modelling timetabling problems
and for constructing solutions. These studies indicated that the utilisation of
fuzzy methodologies in university timetabling is an encouraging research topic.
In this paper, we introduce a new evaluation function that is based on fuzzy
methodologies. The research presented in this paper will focus on evaluating the
constructed timetable solutions by considering two decision criteria. Although
the constructed timetable solutions were developed based on objectives speci-
fied earlier, the method is general in the sense that a user could, in principle,
define additional criteria to be taken into account in evaluating any constructed
timetables. This paper is motivated by the fact that, in practice, the quality of
the timetable solution is usually assessed by a timetabling officer who considers
several criteria/objectives.

In the next section, we present a brief description of existing evaluation meth-
ods, their drawbacks, and a detailed explanation of the proposed novel approach.
Section 3 presents descriptions of the experiments carried out and the results ob-
tained, followed by discussions in Section 4. Finally, some concluding comments
and future research directions are given in Section 5.

A Novel Fuzzy Approach to Evaluate the Quality 329

2 Assessing Timetable Quality

2.1 Existing Evaluation Functions

This section presents several evaluation functions that have been developed for
Carter et al.’s benchmark data sets. The proximity cost function was the first
evaluation function used to measure the quality of timetables [13]. It is moti-
vated by the goal of spreading out each student’s examination schedule. In the
implementation of the proximity cost, it is assumed that the timetable solution
satisfies the defined hard constraint i.e. no student can attend more than one
exam at the same time. In addition, the solution must be developed in such a
way that it will promote the spreading out of each student’s exams so that stu-
dents have as much time as possible between exams. If two exams scheduled for
a particular student are t time slots apart, a penalty weight is set to wt = 25−t

where t ∈ {1, 2, 3, 4, 5} (as implemented in [13] and widely adopted by most
subsequent research in this area). The weight is multiplied by the number of
students that sit both the scheduled exams. The average penalty per student is
calculated by dividing the total penalty by the total number of students. The
maximum number of time slots for each data set is predefined and fixed, but no
limitation in terms of capacity per time slot is set. Consecutive exams, either in
the same day or overnight, are treated the same, and there is no consideration
of weekends or other actual gaps between logically consecutive days. Hence, the
following formulation is used to measure this proximity cost (see, for example,
Burke et al. [5]):

∑N−1
i=1

∑N
j=i+1 sijw|pj−pi|

S
,

where N is the number of exams, sij is the number of students enrolled in both
exam i and j, pi is the time slot where exam i is scheduled, and S is the total
number of students; subject to 1 ≤ |pj − pi| ≤ 5.

Burke et al. [8] devised a new evaluation function in which the goal is to
minimise the number of students who have to sit two exams in the same day.
Besides the need to construct a conflict-free timetable, it also aimed to schedule
the exams within the maximum number of time slots given. There are three time
slots per weekday and one morning slot on Saturday. A maximum capacity per
time slot is also specified. Burke and Newall [9] extended the previous evaluation
function by defining different weights for two consecutive exams in the same day
and two exams in overnight consecutive time slots.

More recently, Petrovic et al. [23] employed fuzzy methodologies to measure
the satisfaction of various soft constraints. The authors described how they mod-
eled two soft constraints, namely constraint on large exam and constraint on
proximity of exams, in the form of fuzzy linguistic terms and defined the related
rule set. They used these two criteria to evaluate the timetable quality.

330 H. Asmuni et al.

2.2 Disadvantages/Drawbacks of Current Evaluation Functions

As can be seen, the final value of the proximity cost penalty function is a measure
only of the average penalty per student. Although this penalty function has been
widely used by many researchers in the context of the benchmark data set, in
practice, considering only the average penalty per student is not sufficient to
evaluate the quality of the constructed timetable. For instance, the final value
does not necessarily represent the relative fairness of spreading out each student’s
schedule. For example, when examining the resultant timetable, it may be the
case that a few students have an examination timetable in which many of their
exams are scheduled in adjacent time slots. These students will not be happy
with their timetable as they will not have enough time to do their preparation.
On the other hand, the remaining students enjoy a ‘good’ examination timetable.

Example. Consider two cases. Case 1: there are 100 students with each stu-
dent given 1 penalty cost; Case 2: there are 100 students, but now 10 students
are given 10 penalty cost respectively; the rest zero. In both cases the average
penalty per student is equal to 1, but obviously the solution in Case 2 is ‘worse’
than the solution in Case 1.

One of the authors (McCollum) has extensive experience of real-world time-
tabling, having spent 12 years as a timetabling officer and with continuing links
with the timetabling industry. He has expressed (via private communication) the
view that ‘proximity cost’ is not the only factor considered by timetabling offi-
cers when evaluating the quality of a timetable. Usually, a timetable evaluation
is based on several factors and some of the factors are subjective and/or based
on ambiguous information. Furthermore, to the best of our knowledge, all the
evaluation functions mentioned in Section 2.1 are integrated into the timetabling
construction process. These objective functions are used to measure the satis-
faction of specific soft constraints. This means that the constructed timetable is
generated around satisfying certain soft constraints. In practice, the user may
consider other criteria in evaluating the constructed timetable.

One way to handle multiple criteria decision making is by using simple linear
combinations. This works by multiplying the value of each criterion by a constant
weighting factor and summing to form an overall result. Each weight represents
the relative important of each criterion compared to the other criteria. In reality,
there is no simple way to determine the precise values for these weights, espe-
cially weights that can be used across several problem instances with different
complexity. Fuzzy systems are a generalisation of a linear system. The nature
of fuzzy systems allows the use of linguistic terms to express the systems’ be-
haviours. Fuzzy systems apply ‘if–then’ rules and logical operators to map the
relationships between input and output variables in the system. Fuzzy rules may
be elicited from ‘experts’. This term, for the problem under consideration, refers
to timetabling officers or timetabling consultants. As mentioned earlier, we have
access to such experts who could provide us with enough knowledge to develop
a fuzzy system.

A Novel Fuzzy Approach to Evaluate the Quality 331

Therefore, in this paper a new evaluation function utilising fuzzy methodolo-
gies is introduced. Basically, the idea is to develop an independent evaluation
function that can be used to measure the quality of any constructed examina-
tion timetable. The timetable can be generated using any approach with specific
objectives to achieve. Subsequently, the timetable solution with the problem de-
scription and the list of factors that need to be evaluated are submitted to the
evaluation function.

2.3 Overview of Fuzzy Systems

This section is largely reproduced from our paper [3] for the purpose of com-
pleteness. In many decision making environments, it is often the case that sev-
eral factors are simultaneously taken into account. Often, it is not known which
factor(s) need to be emphasised more in order to generate a better decision.
Somehow a trade-off between the various (potentially conflicting) factors must
be made. The general framework of fuzzy reasoning facilitates the handling of
such uncertainty.

Fuzzy systems are used for representing and employing knowledge that is im-
precise, uncertain, or unreliable. A fuzzification component computes the mem-
bership grade for each crisp input variable based on the membership functions
defined. An inference engine then conducts the fuzzy reasoning process by ap-
plying the appropriate fuzzy operators in order to obtain the fuzzy set to be
accumulated in the output variable. A defuzzifier transforms the output fuzzy
set to crisp output by applying specific defuzzification method.

More formally, a fuzzy set A of a universe of discourse X (the range over which
the variable spans) is characterised by a membership function μA : X → [0, 1]
which associates with each element x of X a number μA(x) in the interval [0, 1],
with μA(x) representing the grade of membership of x in A [31]. The precise
meaning of the membership grade is not rigidly defined, but is supposed to
capture the ‘compatibility’ of an element to the notion of the set. Rules which
connect input variables to output variables in ‘IF ... THEN ...’ form are used
to describe the desired system response in terms of linguistic variables (words)
rather than mathematical formulae. The ‘IF’ part of the rule is referred to as the
‘antecedent’, the ‘THEN’ part is referred to as the ‘consequent’. The number of
rules depends on the number of inputs and outputs, and the desired behaviour of
the system. Once the rules have been established, such a system can be viewed
as a non-linear mapping from inputs to outputs.

There are many alternative ways in which this general fuzzy methodology
can be implemented in any given problem. In our implementation, the standard
Mamdani style fuzzy inference was used with standard Zadeh (min-max) oper-
ators. In Mamdani inference [20], rules are of the following form:

Ri : if (x1 is Ai1) and ... and (xr is Air) then (y is Ci) for i = 1, 2, . . . , L

where L is the number of rules, xj (j = 1, 2, 3, . . . , r) are input variables, y
is output variable, and Aij and Ci are fuzzy sets that are characterised by

332 H. Asmuni et al.

membership functions Aij(xj) and Ci(y), respectively. The final output of a
Mamdani system is one or more arbitrarily complex fuzzy sets which (usually)
need to be defuzzified. It is not appropriate to present a full description of the
functioning of fuzzy systems here; the interested reader is referred to [21] and [15]
for a simple treatment or Zimmerman [32] for a more complete treatment.

2.4 The Proposed Fuzzy Evaluation Function

As an initial investigation, this proposed approach was implemented on solu-
tions which were generated based on the proximity cost requirements (average
penalty), with one additional factor/objective. In addition to the average penalty
per student, the highest penalty that occurred amongst the students (highest
penalty) was also taken into account. However, the latter factor was only evalu-
ated after the timetable was constructed. That is to say, there was no attempt
to include this factor in the process of constructing the timetable.

A fuzzy system with these two input variables (average penalty and highest
penalty) and one output variable (quality) was constructed. Each of the input
variables were associated with three linguistic terms: fuzzy sets corresponding to
a meaning of low, medium and high. In addition to these three linguistic terms,
the output variable (quality) has two extra terms that correspond to meanings
of very low and very high. These terms were selected as they were deemed to be
the simplest possible to adequately represent the problem. Gaussian functions of
the form e−(x−c)2/σ2

, where c and σ are constants, are used to define the fuzzy
set for each linguistic term. This is on the basis that they are the simplest and
most common choice, given that smooth, continuously varying functions were
desired. The membership functions defined for the two inputs, average penalty
and highest penalty, and the output quality are depicted in Figures 1(a)–(c),
respectively.

In the case of such a system having two inputs with three linguistic terms,
there are nine possible fuzzy rules that can be defined in which each input
variable has one linguistic term. As we already know, from the definition of
proximity cost, the objective is to minimise the penalty cost, meaning that, the
lower the penalty cost, the better the timetable quality. Also, based on everyday
experience, we would prefer the highest penalty for any one student to be as low
as possible, as this will create a fairer timetable for all students. Based upon this
knowledge we defined a fuzzy rule set consisting of all nine possible combinations.
Each rule set connects the input variables to a single output variable, quality. The
fuzzy rule set is presented in Figure 2. As stated above, standard Mamdani-style
fuzzy inference was used to obtain the fuzzy output for a given set of inputs. The
most common form of defuzzification, ‘centre of gravity defuzzification’, was then
used to obtain a single crisp (real) value for the output variable. This process is
based upon the notion of finding the centroid of a planar figure, as given by

∑

i

μ(xi) · xi

μ(xi)
.

This single crisp output was then taken as the quality of the timetable.

A Novel Fuzzy Approach to Evaluate the Quality 333

mediumlow high

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average penalty

fu
zz

ifi
ed

va
lu

e

low medium high

average penalty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest penalty

fu
zz

ifi
ed

va
lu

e

low medium high

mediumlow high

highest penalty

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quality

fu
zz

ifi
ed

va
lu

e

verylow low medium high veryhigh

quality

mediumverylow highlow veryhigh

(c)

Fig. 1. Membership functions for input and output variables

2.5 Input Normalisation

With this proposed fuzzy evaluation function, we carried out experiments to
determine whether the fuzzy evaluation system was able to distinguish a range
of timetable solutions based on the average penalty per student and the highest
penalty imposed on any of the students. All the constructed timetables for the
given problem instance were evaluated using the same fuzzy system, and their
quality determined based on the output of the fuzzy system. The constructed
timetable with the biggest output value was selected to be the ‘best’ timetable.

Based on our previous experience [2,3], the average penalty values for different
data sets result in widely different scales due to the different complexity of the
problem instances. For example, in the STA-F-83I data set (see below for full
details of the data sets used) an average penalty of 160.42 was obtained, whereas
for UTA-S-92I, the average penalty was 3.57.

As can be seen in Figure 1(a) and Figure 1(b), the input variables have their
universe of discourse defined between 0.0 and 1.0. Therefore, in order to use this
fuzzy model, both of the original input variables must be normalised within the
range [0.0, 1.0]. The transformation used is as follows:

334 H. Asmuni et al.

v′ =
(v − lowerBound)

(upperBound − lowerBound)

where v is the actual value in the initial range [lowerBound, upperBound]. In ef-
fect, the range [lowerBound, upperBound] represents the actual lower and upper
boundaries for the fuzzy linguistic terms.

By applying the normalisation technique, the same fuzzy model can be used
for any problem instance, either for the benchmark data sets as used here, or
for a new real-world problem. This would provide flexibility when problems of
various complexity are presented to the fuzzy system. In such a scheme, the
membership functions do not need to be changed from their initial shapes and
positions. In addition, rather than recalculate the parameters for each input
variable’s membership functions, it is much easier to transform the crisp input
values into normalised values in the range of [0.0, 1.0]. The problem thus becomes
one of finding suitable lower and upper bounds for each problem instance.

3 Experiments on Benchmark Problems

3.1 Experiments Setup

In order to test the fuzzy evaluation system, the benchmark data sets of Carter et
al. [13] were used. The 12 instances that we studied, with different characteristics
and various level of complexity, are shown in Table 1. Note that we are using
the notation introduced in [24].

Rule 1: IF (average penalty is low) AND (highest penalty is low)
THEN (quality is very high)

Rule 2: IF (average penalty is low) AND (highest penalty is medium)
THEN (quality is high)

Rule 3: IF (average penalty is low) AND (highest penalty is high)
THEN (quality is medium)

Rule 4: IF (average penalty is medium) AND (highest penalty is low)
THEN (quality is high)

Rule 5: IF (average penalty is medium) AND (highest penalty is medium)
THEN (quality is medium)

Rule 6: IF (average penalty is medium) AND (highest penalty is high)
THEN (quality is low)

Rule 7: IF (average penalty is high) AND (highest penalty is low)
THEN (quality is medium)

Rule 8: IF (average penalty is high) AND (highest penalty is medium)
THEN (quality is low)

Rule 9: IF (average penalty is high) AND (highest penalty is high)
THEN (quality is very low)

Fig. 2. Fuzzy rules for Fuzzy Evaluation System

A Novel Fuzzy Approach to Evaluate the Quality 335

Table 1. Examination timetabling problem characteristics

Data set Number of Number of Number of
slots (T) exams (N) students (S)

CAR-F-92I 32 543 18419
CAR-S-91I 35 682 16925
EAR-F-83I 24 190 1125
HEC-S-92I 18 81 2823
KFU-S-93 20 461 5349
LSE-F-91 18 381 2726
RYE-F-92 23 486 11483
STA-F-83I 13 139 611
TRE-S-92 23 261 4360
UTA-S-92I 35 622 21266
UTE-S-92 10 184 2750
YOR-F-83I 21 181 941

For each instance of the 12 data sets, 40 timetable solutions were constructed
using a simple sequential constructive algorithm with backtracking, as previously
implemented in [3]. We used eight different heuristics to construct the timetable
solutions, for each of which the algorithm was run five times to obtain a range
of solutions. However, due to the nature of the heuristics used, in some cases, a
few of the constructed timetable solutions have the same proximity cost value.
Therefore, for the purpose of standardisation, 35 different timetable solutions
were selected out of the 40 constructed timetable solutions, by firstly removing
any repeated solution instances and then just removing at random any excess.
The idea is to obtain a set of timetable solutions with variations of timetable
solution quality, in which none of the solutions have the same quality in terms of
proximity cost (i.e average penalty per student). The timetable solutions were
constructed by implementing the following heuristics:

– Three different single heuristic orderings:
• Least Saturation Degree First (SD),
• Largest Degree First (LD), and
• Largest Enrollment First (LE),

– Three different fuzzy multiple heuristic orderings:
• a Fixed Fuzzy LD+LE Model,
• a Tuned Fuzzy LD+LE Model, and
• a Tuned Fuzzy SD+LE Model (see [3] for details of these), and

– random ordering, and
– deliberately ‘poor’ ordering (see below).

A specific ‘poor’ heuristic was utilised in an attempt to purposely construct bad
solutions. The idea was to attempt to determine the upper bound of solution

336 H. Asmuni et al.

quality (in effect, though not formally, the ‘worst’ timetable for the given prob-
lem instance). Basically the method was to deliberately assign student exams
in adjacent time slots. In order to construct bad solutions, LD was initially
employed to order the exams. Next, the exams were sequentially selected from
this ordered exams list, and assigned to the time slot that caused the highest
proximity cost; this process continued until all the exams were scheduled.

The 35 timetable solutions were analysed in order to determine the mini-
mum and the maximum values for both the input variables, average penalty
and highest penalty. These values were then used for the normalisation process
(see Section 2.5). However, because the 12 data sets have various levels of com-
plexity (see Table 1), the determination of the initial range for each data set
is not a straightforward process. Thus, two alternative boundary settings were
implemented in order to identify the appropriate set of lowerBound and upper-
Bound for each data set. The first boundary setting used lowerBound = 0.0
and the upperBound = maxValue, where maxValue is the largest value ob-
tained from the set of 35 solutions. However, from the literature, the lowest
value yet obtained for the STA-F-83I data set is around 130 [14]. Thus, it did
not seem sensible to use zero as the lower bound in this case. In order to at-
tempt to address this, we investigated the use of a non-zero lower bound. Of
course, a formal method for determining the lower bound for any given time-
tabling instance is not currently known. Hence, the second boundary setting
used lowerBound = minValue and upperBound = maxValue, where minValue
is the smallest value obtained from the set of 35 constructed solutions for the
respective data set.

In this implementation, both input variables, average penalty and highest
penalty, were independently normalised based on their respective minValue and
maxValue. The fuzzy evaluation system described earlier (see Section 2.4) was
then employed to evaluate the timetable solutions. The same processes were ap-
plied to all of the data sets listed in Table 1. The fuzzy evaluation system was
implemented using the ‘R’ language (The R Foundation for Statistical Comput-
ing Version 2.2.0) [25].

3.2 Experimental Results

In this section the experiment results are presented. Table 2 shows the minimum
and maximum values obtained for both criteria. Figures 3(a) and 3(b) show the
evaluation results obtained by the fuzzy evaluation system for the LSE-F-91 and
TRE-S-92 data sets. These two data sets are shown as representative examples
chosen at random. Both graphs show the results obtained when the boundary
setting [minV alue, maxV alue] was implemented. In the graph, the x-axis (So-
lution Rankings) represents the ranking of the timetable solution quality evalu-
ated by using the fuzzy evaluation function; in the order of the best solution to
the worst solution. The y-axis represents the normalised input values (average
penalty and highest penalty) and the output values (quality) obtained for the
particular timetable solution. These two graphs show that the fuzzy evaluation

A Novel Fuzzy Approach to Evaluate the Quality 337

LSE-F-91 : Timetable Quality

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40

Solution Rankings

In
p

u
t/

O
u

tp
u

t
V

al
u

e

Average Penalty

Highest Penalty

Quality

(a)

TRE-S-92 : Timetable Quality

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40

Solution Rankings

In
p

u
t/

O
u

tp
u

t
V

al
u

e

Average Penalty

Highest Penalty

Quality

(b)

Fig. 3. Indicative illustrations of the range of normalised inputs and associated output
obtained for the LSE-F-91 and TRE-S-92 data sets

function has performed as desired, in that the overall (fuzzy) quality of the
solutions varies from close to zero to close to one.

Tables 3 and 4 show a comparison of the results obtained using the two
alternative forms of the normalisation process. The Solution Number is used
to identify a particular solution within the 35 timetable solutions used in the
experiments for each data set. In both tables, the fifth and sixth columns
(labeled as ‘Range [minValue,maxValue]’) indicate the fuzzy evaluation value
and the rank of the solution relative to the other solutions, when the boundary
range [minValue,maxValue] was used. The last two columns in the tables show
the evaluation values and solution ranking obtained when the boundary range
[0,maxValue] was used. Only the first 10 ‘best’ timetable solutions for each of

338 H. Asmuni et al.

Table 2. Minimum and maximum values for Average Penalty and Highest Penalty
obtained from the 35 timetable solutions for each data set

Average penalty Highest penalty

Data set Minimum
value

Maximum
value

Minimum
value

Maximum
value

CAR-F-92I 4.54 11.42 65.0 132.0
CAR-S-91I 5.29 13.33 68.0 164.0
EAR-F-83I 37.02 71.28 105.0 198.0
HEC-S-92I 11.78 31.88 75.0 136.0
KFU-S-93 15.81 43.40 98.0 191.0
LSE-F-91 12.09 32.38 78.0 191.0
RYE-F-92 10.38 36.71 87.0 191.0
STA-F-83I 160.75 194.53 227.0 284.0
TRE-S-92 8.67 17.25 68.0 129.0
UTA-S-92I 3.57 8.79 63.0 129.0
UTE-S-92 28.07 56.34 83.0 129.0
YOR-F-83I 39.80 64.48 228.0 331.0

the data sets are presented, based on the ranking produced when the boundary
range [minValue,maxValue] was used.

4 Discussion

The fuzzy system presented here provides a mechanism to allow an overall de-
cision in evaluating the quality of a timetable solution to be made based on
common-sense rules that encapsulate the notion that the timetable solution qual-
ity increases as both the average penalty and the highest penalty decrease. The
rules are in a form that is easily understandable by any timetabling officer.

Looking at Figure 3(a) and Figure 3(b) it can be seen that, in many cases, it is
not guaranteed that timetable solutions with low average penalty will also have
low highest penalty. This observation confirmed the assumption that considering
only the proximity cost to measure timetable solution quality is not sufficient.
As an example, if the detailed results obtained for the [0,maxValue] boundary
range for LSE-F-91 in Table 3 are analysed, it can be seen that solution 13 (with
the lowest average penalty) is not ranked as the ‘best’ solution. The same effect
can be observed in solution 21 for the TRE-S-92 data set and solution 21 for the
UTE-S-92 data set in Table 4.

In these three data sets (LSE-F-91, TRE-S-92 and UTE-S-92), the timetable
solutions with the lowest average penalty were not selected as the ‘best’ timetable
solution, because the decision made by the fuzzy evaluation system also takes
into account another criterion, the highest penalty. This finding can also be seen
in the other data sets, but it is not too obvious especially if we only focus on the
first 3 ‘best’ solutions. Regardless, in terms of functionality, these results indicate

A Novel Fuzzy Approach to Evaluate the Quality 339

Table 3. A comparison of the results obtained using the two alternative forms of the
normalisation process for six of the data sets

Timetable criteria Range[minValue, maxValue] Range[0, maxValue]

Data set Solution
number

Average
penalty

Highest
penalty

Evaluation
value

Solution
ranking

Evaluation
value

Solution
ranking

CAR-F-92I 19 4.544 65 0.888503 1 0.534427 1
17 4.624 71 0.876804 2 0.517946 2
18 4.639 71 0.876791 3 0.517485 3
16 4.643 71 0.876788 4 0.517366 4
7 5.148 68 0.876583 5 0.510084 5

10 5.192 69 0.873279 6 0.506692 6
13 5.508 68 0.858276 7 0.500729 7
12 5.532 68 0.856617 8 0.500120 8
11 5.595 68 0.851966 9 0.498538 9
2 5.609 68 0.850863 10 0.498184 10

CAR-S-91I 17 5.292 68 0.888524 1 0.557585 1
13* 5.573 75 0.880205 2 0.537593 3
11* 5.911 68 0.879621 3 0.542750 2
15 5.654 75 0.879244 4 0.535472 4
14 5.842 75 0.875877 5 0.530812 5
6* 6.079 76 0.868161 6 0.523516 8
2* 6.393 71 0.860211 7 0.526116 6

21* 6.509 71 0.853145 8 0.523572 7
12 5.688 83 0.850233 9 0.520297 9
16 5.690 83 0.850227 10 0.520255 10

EAR-F-83I 21 37.018 116 0.868135 1 0.467867 1
4* 41.860 118 0.834883 2 0.444700 3
5* 43.637 105 0.827016 3 0.454672 2
18 44.147 118 0.798099 4 0.432416 4
1 41.324 131 0.748303 5 0.415267 5

3* 43.628 129 0.733864 6 0.411292 7
20* 44.968 127 0.718542 7 0.411481 6
12 49.662 114 0.710776 8 0.392966 8
2* 41.178 144 0.699109 9 0.370814 11

16* 44.980 135 0.674252 10 0.385906 9

HEC-S-92I 21 11.785 83 0.863057 1 0.506506 1
14 14.774 75 0.854699 2 0.495547 2
13 13.236 84 0.853706 3 0.489407 3
7* 14.162 83 0.847966 4 0.482514 5

16* 14.635 83 0.838633 5 0.477754 7
15* 14.217 85 0.832653 6 0.476641 8
1* 15.594 78 0.828916 7 0.481021 6
6* 15.911 75 0.817611 8 0.485117 4
27 15.763 84 0.801080 9 0.463727 9
8* 14.124 94 0.727535 10 0.446459 11

KFU-S-93 17 15.813 98 0.888529 1 0.541211 1
15 16.904 101 0.884358 2 0.526210 2
14 17.336 100 0.883340 3 0.524294 3
16 17.920 104 0.876034 4 0.513226 4
3* 20.022 102 0.852341 5 0.501383 11
9* 16.463 113 0.847871 6 0.509402 5
7* 16.471 113 0.847868 7 0.509339 6
6* 16.500 113 0.847858 8 0.509119 7
8* 16.500 113 0.847858 9 0.509119 8

10* 16.500 113 0.847858 10 0.509119 9

LSE-F-91 11* 13.458 78 0.881499 1 0.552817 2
13* 12.094 87 0.879126 2 0.555747 1
6* 14.720 89 0.855424 3 0.523229 4

12* 12.349 102 0.812127 4 0.527563 3
10* 16.408 91 0.804048 5 0.504874 5
32* 17.942 98 0.722929 6 0.480142 7
5* 18.564 93 0.720053 7 0.481747 6
9* 16.486 109 0.707889 8 0.476028 9

16* 18.979 95 0.707212 9 0.474395 11
7* 17.174 105 0.704871 10 0.476479 8

340 H. Asmuni et al.

Table 4. A comparison of the results obtained using the two alternative forms of the
normalisation process for the remaining six data sets

Timetable criteria Range[minValue, maxValue] Range[0, maxValue]

Data set Solution
number

Average
penalty

Highest
penalty

Evaluation
value

Solution
ranking

Evaluation
value

Solution
ranking

RYE-F-92 21 10.384 87 0.888528 1 0.610225 1
8 12.180 97 0.871582 2 0.558378 2

10 12.337 97 0.870489 3 0.556102 3
20 12.264 98 0.868672 4 0.555205 4
6 12.976 97 0.864830 5 0.547756 5
9 12.417 102 0.854386 6 0.545595 6
7 12.094 105 0.839576 7 0.544225 7

3* 13.678 104 0.831331 8 0.527428 12
2* 14.441 104 0.817334 9 0.519821 14
4* 14.581 104 0.814229 10 0.518513 15

STA-F-83I 21 160.746 227 0.888536 1 0.215426 1
20 161.151 227 0.887829 2 0.214107 2
15 164.375 228 0.871792 3 0.202156 3
3 167.394 227 0.824391 4 0.196779 4

31 168.195 227 0.805614 5 0.194967 5
18 168.863 227 0.788882 6 0.193535 6

11* 168.781 232 0.788385 7 0.182500 17
16* 169.100 227 0.782864 8 0.193043 7
29* 171.249 227 0.733062 9 0.188900 8
9* 171.391 227 0.730410 10 0.188645 9

TRE-S-92 19* 9.311 69 0.880078 1 0.478231 2
8* 9.389 68 0.878204 2 0.479078 1
20 9.598 68 0.871588 3 0.475325 3
7* 9.039 75 0.868946 4 0.468005 6
6* 9.757 71 0.864316 5 0.465758 8

17* 9.885 68 0.858365 6 0.469941 4
21* 8.671 77 0.855435 7 0.469016 5
1* 10.003 68 0.851293 8 0.467596 7
10 9.856 75 0.846708 9 0.454514 9

16* 9.981 77 0.826007 10 0.446743 11

UTA-S-92I 17 3.567 63 0.888536 1 0.532771 1
11 3.833 68 0.878185 2 0.511100 2
14 3.911 68 0.876019 3 0.508369 3
13 3.927 68 0.875482 4 0.507798 4
16 3.977 68 0.873738 5 0.506065 5
12 4.143 68 0.866816 6 0.500466 6
24 4.531 73 0.807693 7 0.475697 7
23 4.573 73 0.802872 8 0.474319 8
27 4.581 73 0.801938 9 0.474053 9
8 4.976 68 0.762605 10 0.472232 10

UTE-S-92 19 30.323 83 0.879116 1 0.438284 1
18 29.718 86 0.878651 2 0.429775 2
21 28.069 90 0.853031 3 0.420748 3
20 32.804 88 0.835146 4 0.400981 4
26 31.522 91 0.826953 5 0.392480 5
15 33.935 91 0.780095 6 0.378000 6
27 34.928 90 0.767341 7 0.377994 7

12* 32.996 94 0.758297 8 0.367082 9
17* 29.695 98 0.723270 9 0.369027 8

8 30.555 98 0.721926 10 0.362837 10

YOR-F-83I 21 39.801 234 0.883004 1 0.372139 1
8* 44.158 233 0.837983 2 0.363036 3

20* 44.412 231 0.831362 3 0.365581 2
9 45.645 228 0.791749 4 0.359602 4

14 45.736 238 0.785008 5 0.345675 5
1 46.810 234 0.751639 6 0.341781 6
2 46.862 235 0.749650 7 0.340088 7

17 47.142 240 0.736830 8 0.330597 8
32* 46.947 244 0.731929 9 0.324728 10
31* 47.396 242 0.726141 10 0.324908 9

A Novel Fuzzy Approach to Evaluate the Quality 341

Table 5. Range of timetable quality

Range [0, maxV alue] Range [minV alue, maxV alue]

Data set Worst
solution

Best
solution

Worst
solution

Best
solution

CAR-F-92I 0.111464 0.534427 0.111464 0.888503
CAR-S-91I 0.111464 0.557585 0.111464 0.888524
EAR-F-83I 0.111465 0.467867 0.111465 0.868135
HEC-S-92I 0.127502 0.506506 0.155374 0.863057
KFU-S-93 0.111466 0.541211 0.111466 0.888529
LSE-F-91 0.111895 0.555747 0.112182 0.881499
RYE-F-92 0.115999 0.610225 0.119240 0.888528
STA-F-83I 0.111464 0.215426 0.111464 0.888536
TRE-S-92 0.111476 0.479078 0.111488 0.880078
UTA-S-92I 0.111464 0.532771 0.111464 0.888536
UTE-S-92 0.111464 0.438284 0.111464 0.879116
YOR-F-83I 0.120046 0.372139 0.213388 0.883004

that the fuzzy evaluation system has performed as intended in measuring the
timetable’s quality by considering two criteria simultaneously.

Analysing Tables 3 and 4 further, it can also be observed that the decision
made by the fuzzy evaluation function is affected slightly when the different
boundary settings are used to normalise the input values. The consequence of
this is that the same timetable solution might be ranked in a different order, de-
pendent on the boundary conditions. In both tables, the solutions with different
ranking position are marked with ∗. For the CAR-F-92I (in Table 3) and UTA-
S-92I data sets (in Table 4), the solution rankings are unchanged by altering
the boundary settings. In several cases, the solution rankings are only changed
slightly. It is also interesting to note that, in a few cases, for example solution
3 for KFU-S-93 (in Table 3) and solution 11 for STA-F-83I (in Table 4), the
ranking change is quite marked.

Overall, the performance of the fuzzy evaluation system utilising the bound-
ary range [0.0,maxValue] did not seem as satisfactory as when the boundary
range [minValue,maxValue] was used. This observation is highlighted by Ta-
ble 5, which presents the fuzzy quality measure obtained for the ‘worst’ and
‘best’ solutions as evaluated under the two different boundary settings. When
the boundary range [0.0,maxValue] was used, it can be seen that the fuzzy eval-
uation system evaluated the quality of the timetable solutions for the 12 data
sets in the overall range of 0.111464 to 0.610225. In the case of STA-F-83I, the
‘best’ solution was only rated as 0.215426 in quality. The quality of timetable
solutions falls only in the regions of linguistic terms that correspond to meanings
of very low, low and medium in the timetable quality fuzzy set (see Figure 1(c)).
This is because the lower bound value used here (i.e. lowerBound = 0.0) is far
smaller than the actual smallest values. Consequently, the input values for even
the lowest values (i.e. the ‘best’ solution qualities) are transformed to normalised

342 H. Asmuni et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quality

fu
zz

ifi
ed

va
lu

e

verylow low medium high veryhigh

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest penalty

fu
zz

ifi
ed

va
lu

e

low medium high

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average penalty

fu
zz

ifi
ed

va
lu

e
low medium high

min

Average penalty = 0.4 Highest penalty = 0.6

mediumlow high mediumlow high mediumverylow high

0.13

Rule 1

0.13

low veryhigh

average penalty highest penalty quality

0.38

(a) Normalised value falls in the middle regions of the universe of discourse

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

highest penalty

fu
zz

ifi
ed

va
lu

e

low medium high

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average penalty

fu
zz

ifi
ed

va
lu

e

low medium high

min

Average penalty = 0.1 Highest penalty = 0.15

mediumlow high mediumlow high

0.93

Rule 1

0.85

veryhigh

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quality

fu
zz

ifi
ed

va
lu

e

verylow low medium high veryhigh

mediumverylow high

0.85

low

average penalty highest penalty quality

(b) Normalised value falls in the left regions of the universe of discourse

Fig. 4. Firing level for Rule 1 with different normalised input values

values that always fall within the regions of the medium and high linguistic terms
in the input variables. As a result, the normalised input values will not cause
any rule to be fired, or the firing level for any rule is relatively very low. This is
illustrated in Figure 4(a), in which the activation level of the consequent part for
Rule 1 is equal to 0.13. Although the possibility exists for any input to fall into
more than one fuzzy set, so that more than one rule can be fired, the aggregation
of fuzzy output for all rules will obtain a final shape that will only produce a
low defuzzification value.

In contrast, Figure 4(b) illustrates the situation when the normalised input
values fall in the regions of the linguistic terms that correspond to the mean-
ing of low. In this situation, a high defuzzification value will be obtained due
to the fact that most of the rules will have a high firing level. Thus, all of the
solutions being ranked first had quality values more than 0.8, when the initial
range [minValue,maxValue] was used. In this case, the quality of timetable so-
lutions falls in the regions of the linguistic terms that correspond to meanings
of high and very high for the timetable quality fuzzy set (see Figure 1(c)). As

A Novel Fuzzy Approach to Evaluate the Quality 343

UTA-S-92 : Timetable Quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40

Solution Rankings

E
va

lu
at

io
n

 V
al

u
e

Range [0, maxValue]

Range [minValue, maxValue]

(a)

UTA-S-92 : Average Penalty

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 10 20 30 40

Solution Rankings

N
o

rm
al

is
ed

 V
al

u
e

Range [0, maxValue]

Range [minValue, max Value]

(b)

UTA-S-92 : Highest Penalty

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 10 20 30 40

Solution Rankings

N
o

rm
al

is
ed

 V
al

u
e

Range [0, maxValue]

Range [minValue, max Value]

(c)

Fig. 5. A graphical comparison of the effect of the two boundary settings for UTA-S-92I

344 H. Asmuni et al.

might be expected, from the fact that the actual minimum and maximum val-
ues from the 35 constructed timetable solutions were used, the fuzzy evaluation
results were nicely distributed along the universe of discourse of the timetable
quality fuzzy set. For a clearer comparison of the effect of the two boundary
settings, the distribution of input and output values for the UTA-S-92I data set
are presented in Figure 5. As can be seen, the input values (Figure 5(b) and
Figure 5(c)) are concentrated in the middle regions (0.4–0.7) of the graphs when
the boundary range [0.0,maxValue] was used. In contrast, when the boundary
range [minValue,maxValue] was used, the input values were concentrated in the
bottom regions of the graphs. Based upon the defined fuzzy rules, we know that
the timetable quality increases with a decrease in both input values. Indeed,
this behaviour of the output can be observed for both boundary settings (see
Figure 5(a)). Using either of the boundary settings, the fuzzy evaluation system
is capable of ranking the timetable solutions. It is purely a matter of choosing
the appropriate boundary settings of the fuzzy sets for the input variables. One
of the deficiencies of this fuzzy evaluation, at present, appears to be that there
is no simple way of selecting the boundary settings of the input variables. The
drawback is that both boundary settings implemented so far can only be ap-
plied after a number of timetable solutions are generated. Therefore, significant
amounts of times are required to construct and analyse the solutions. Further-
more, if boundary setting is based on the actual minimum and maximum values
from the existing timetable solutions, the fuzzy evaluation system might not be
able to evaluate a newly constructed timetable solution if the input values for
the decision criteria for the new solution lie outside the range of the fuzzy sets.
(Actually, output values can always be calculated – the real problem is that
the resultant solution quality will always be the same once both criteria reach
the left-hand boundary of their variables.) Thus it would be highly beneficial if
we could determine approximate boundary settings, particularly some form of
estimate of the lower bound of the assessment criteria, based upon the problem
structure itself.

5 Conclusions

In conclusion, the experimental results presented here demonstrate the capa-
bility of a fuzzy approach of combining multiple decision criteria in evaluating
the overall quality of a constructed timetable solution. However, in the fuzzy
system implementation the selection of the lowerBound and upperBound for
the normalisation process is extremely important because it has a significant
effect on the overall quality obtained. The initial results presented here only use
two decision criteria to evaluate the timetable quality. Possible directions for
future research include extending the application of the fuzzy evaluation sys-
tem by considering more criteria, and devising a more sophisticated approach
to determine approximate boundary settings for the normalisation process. An-
other aspect to be investigated further is in comparing the quality assessments

A Novel Fuzzy Approach to Evaluate the Quality 345

produced by such fuzzy approaches with the subjective assessments of quality
that timetabling officers make in real-world timetabling problems.

Acknowledgments. This research was supported by the Universiti Teknologi Malay-
sia (UTM) and the Ministry of Science, Technology and Innovation (MOSTI)
Malaysia.

References

1. Abdennadher, S., Marte, M.: University course timetabling using constraint han-
dling rules. Journal of Applied Artificial Intelligence 14, 311–326 (2000)

2. Asmuni, H., Burke, E.K., Garibaldi, J.M.: A comparison of fuzzy and non-fuzzy
ordering heuristics for examination timetabling. In: Lotfi, A. (ed.) Proceedings of
5th International Conference on Recent Advances in Soft Computing, pp. 288–293
(2004)

3. Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B.: Fuzzy multiple heuristic
orderings for examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT
2004. LNCS, vol. 3616, pp. 334–353. Springer, Heidelberg (2005)

4. Boizumault, P., Delon, Y., Peridy, L.: Constraint logic programming for examina-
tion timetabling. The Journal of Logic Programming 26, 217–233 (1996)

5. Burke, E.K., Bykov, Y., Newall, J., Petrovic, S.: A time-predefined local search
approach to exam timetabling problems. IIE Transactions 36, 509–528 (2004)

6. Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in
British universities – a survey. In: Burke, E.K., Ross, P. (eds.) Practice and Theory
of Automated Timetabling. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg (1996)

7. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for time-
tabling and rostering. Journal of Heuristics 9, 451–470 (2003)

8. Burke, E.K., Newall, J.P., Weare, R.F.: A memetic algorithm for university exam
timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

9. Burke, E.K., Newall, J.P.: A multistage evolutionary algorithm for the timetable
problem. IEEE Transactions on Evolutionary Computation 3, 63–74 (1999)

10. Burke, E.K., Petrovic, S.: Recent research trends in automated timetabling. Euro-
pean Journal of Operational Research 140, 266–280 (2002)

11. Burke, E.K., Petrovic, S., Qu, R.: Case based heuristic selection for timetabling
problems. Journal of Scheduling 9, 115–132 (2006)

12. Carter, M.W., Laporte, G.: Recent developments in practical exam timetabling.
In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling.
LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)

13. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: algorithmic strate-
gies and applications. Journal of the Operational Research Society 47, 373–383
(1996)

14. Casey, S., Thompson, J.: GRASPing the examination scheduling problem. In:
Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–
244. Springer, Heidelberg (2003)

15. Cox, E., O’Hagen, M.: The Fuzzy Systems Handbook: A Practitioner’s Guide to
Building, Using and Maintaining Fuzzy Systems. AP Professional, Cambridge, MA
(1998)

346 H. Asmuni et al.

16. Deris, S., Omatu, S., Ohta, H., Saad, P.: Incorporating constraint propagation in
a genetic algorithm for university timetabling planning. Engineering Applications
of Artificial Intelligence 12, 241–253 (1999)

17. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling.
In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117.
Springer, Heidelberg (2001)

18. Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building university timetables
using constraint logic programming. In: Burke, E.K., Ross, P. (eds.) Practice and
Theory of Automated Timetabling. LNCS, vol. 1153, pp. 130–145. Springer, Hei-
delberg (1996)

19. Kendall, G., Mohd Hussin, N.: A tabu search hyper-heuristic approach to the ex-
amination timetabling problem at the MARA University of Technology. In: Burke,
E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 270–293. Springer,
Heidelberg (2005)

20. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies 7, 1–13 (1975)

21. Pappis, C., Siettos, C.: Fuzzy reasoning. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques, ch. 15, pp. 437–474. Springer, Berlin (2005)

22. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J. (ed.) The Handbook
of Scheduling: Algorithms, Models and Performance Analysis, ch. 45, CRC Press,
Boca Raton, FL (2004)

23. Petrovic, S., Patel, V., Yang, Y.: University timetabling with fuzzy constraints.
In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 313–333.
Springer, Heidelberg (2005)

24. Qu, R., Burke, E.K., McCullom, B., Merlot, L.T.G., Lee, S.Y.: A survey of search
methodologies and automated approaches for examination timetabling. Computer
Science Technical Report NOTTCS-TR-2006-4, School of Computer Science and
Information Technology, University of Nottingham (2006)

25. R Development Core Team: R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2005), ISBN
3-900051-07-0

26. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

27. Thompson, J.M., Dowsland, K.A.: A robust simulated annealing based examina-
tion timetabling system. Computers and Operations Research 25, 637–648 (1998)

28. Ueda, H., Ouchi, D., Takahashi, K., Miyahara, T.: Comparisons of genetic algo-
rithms for timetabling problems. Systems and Computers in Japan 35, 1–12 (2004)
[Translated from Denshi Joho Tsushin Gakkai Ronbunshi, J86-D-I, 691–701 (2003)]

29. White, G.M., Xie, B.S., Zonjic, S.: Using tabu search with longer-term memory
and relaxation to create examination timetables. European Journal of Operational
Research 153, 80–91 (2004)

30. Yang, Y., Petrovic, S.: A novel similarity measure for heuristic selection in ex-
amination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS,
vol. 3616, pp. 247–269. Springer, Heidelberg (2005)

31. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
32. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications, 3rd edn. Kluwer, Dor-

drecht (1996)

Linear Linkage Encoding in Grouping Problems:

Applications on Graph Coloring and
Timetabling

Özgür Ülker, Ender Özcan, and Emin Erkan Korkmaz

Department of Computer Engineering, Yeditepe University,
Istanbul, Turkey

{oulker,eozcan,ekorkmaz}@cse.yeditepe.edu.tr
http://cse.yeditepe.edu.tr/ARTI

Abstract. Linear Linkage Encoding (LLE) is a recently proposed rep-
resentation scheme for evolutionary algorithms. This representation has
been used only in data clustering. However, it is also suitable for grouping
problems. In this paper, we investigate LLE on two grouping problems;
graph coloring and exam timetabling. Two crossover operators suitable
for LLE are proposed and compared to the existing ones. Initial results
show that LLE is a viable candidate for grouping problems whenever
appropriate genetic operators are used.

1 Introduction

In spite of the satisfactory performance of Evolutionary Algorithms (EA) on
many NP optimization problems, the same achievement is not usually observed
on grouping problems where the task is to partition a set of objects into disjoint
sets. This is because the commonly used representations usually suffer from
redundancies due to the ordering of groups. Moreover the genetic material might
easily be disrupted by the genetic operators and/or by the rectification process
after the operators are applied.

Timetabling problems are real-world NP-hard [7] problems. Discarding the
rest of the constraints, attempting to minimize the timetabling slots while satis-
fying the clashing constraints turns out to be a graph coloring problem [19]. For
this reason, new representation schemes and operators used in graph coloring
are also of interest to the researchers in the timetabling community.

In the paper, we are investigating a recently proposed encoding scheme for
grouping problems, Linear Linkage Encoding (LLE) [6]. LLE has only been tested
on small clustering problem instances, and authors claim that the LLE perfor-
mance is superior to Number Encoding (NE), the most common encoding scheme
used in grouping problems. Unlike NE, LLE does not require an explicit bound
on the number of groups that can be represented in a fixed-length chromosome.
The greatest strength of LLE is that the search space is reduced considerably.
There is a one-to-one correspondence between the chromosomes and the solu-
tions when LLE is used. Consequently the aim of this paper is to present the

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 347–363, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 Ö. Ülker, E. Özcan, and E.E. Korkmaz

potential of the LLE representation on grouping problems. Previous studies de-
note that traditional crossover operators do not perform well. Therefore, a set
of new crossover operators suitable for LLE are also tested on a set of problem
instances including Carter’s Benchmark [5] and DIMACS Challenge Suite [17].

This paper is organized as follows. We first define the grouping problems and
common representations for them. The fundamentals of LLE is followed by the
definition of the graph coloring problem. Then the operators of the algorithm
with special crossovers are presented. Computational experiments and conclu-
sions are given at the end of the paper.

2 Grouping Problems

Grouping problems [8] are generally concerned with partitioning a set V of items
into a collection of mutually disjoint subsets Vi of V such that

V = V1 ∪ V2 ∪ V3 ∪ . . . ∪ VN and Vi ∩ Vj = Ø where i �= j.

Obviously, the aim of these problems is to partition the members of set V
into N different groups where (1 ≤ N ≤ |V |) each item is in exactly one group.
In most of the grouping problems, not all possible groupings are permitted; a
valid solution usually has to comply a set of constraints. For example in graph
coloring, the vertices in the same group must not be adjacent in the graph. In the
bin packing problem, the sum of the sizes of items of any group should not exceed
the capacity of the bin, etc. Hence, the objective of grouping is to optimize a
cost function defined over a set of valid groupings. In both graph coloring and
bin packing the objective is to minimize the number of groups (independent sets
and bins respectively) subjected to the mentioned constraints.

Grouping problems are characterized by the cost function based on the com-
position of the groups. An item in isolation has little or no meaning during the
search process. Therefore, the building blocks that should be preserved in an
evolutionary search should be the groups or the group segments.

2.1 Representations in Grouping Problems

The most predominant representation in grouping problems in both evolutionary
and local search methods is Number Encoding (NE). In NE, each object is
encoded with a group id indicating which group it belongs to. For example the
individual 2342123 encodes the solution where first object is in group 2, second
in 3, third in 4, and so on. However, it is easy to see that the encoding 1231412
represents exactly the same solution, since the naming or the ordering of the
partition sets is irrelevant. The drawbacks of this representation are presented
in [8] and it is pointed out that this encoding is against the minimal redundancy
principles for encoding scheme [23].

Another representation for grouping problems is Group Encoding (GE). The
objects which are in the same group are placed into the same partition set.

Linear Linkage Encoding in Grouping Problems 349

For instance, the above sequence can be represented as (1, 4, 6)(2, 7)(3)(5). The
ordering within each partition set is unimportant, since search operators work
on groups rather than objects unlike in NE. However, the ordering redundancy
among groups still holds. For instance, (2, 7)(3)(5)(1, 4, 6) would again represent
the same solution.

2.2 Linear Linkage Encoding

LLE can be implemented using an array. Let the entries in the chromosome
be indexed with values from 1 to n. Each entry in the array then holds one
integer value which is a link from one object to another object of the same
partition set. With n objects, any partition set on them can be represented as
an array of length n. Two objects are in the same partition set if either one can
be reached from another through the links. If an entry is equal to its own index,
then it is considered as an ending node. The links in LLE are unidirectional,
thus; backward links are not allowed. In short, in order to be considered as a
valid LLE array, the chromosome should follow the following two rules:

– The integer value in each entry is greater than or equal to its index but less
than or equal to n.

– No two entries in the array can have the same value; the index of an ending
node is the only exception to this rule.

In LLE, the items in a group construct a linear path ending with a self ref-
erencing last item. It can be represented by the labeled oriented pseudo (LOP)
graph. A LOP Graph is a labeled directed graph G(V, E), where V is the vertex
set and E is the edge set. A composition of G is a grouping of V (G) into disjointed
oriented pseudo-path graphs G1, G2, . . . , Gm with the following properties:

– Disjoint paths:
⋃m

i=1 V (Gi) = V (G) and for i �= j, V (Gi)
⋂

V (Gj) = Ø
– Non-backward oriented edges: If there is an edge e directed from vertex vi

to vk then i ≤ k.
– Balanced connectivity

• |E(G)| = |V (G)|
• each Gi has only one ending node whose in-degree= 2 and out-degree=1
• each Gi has only one starting node whose in-degree=0 and out degree=1

– All other |V (Gi)| − 2 vertices in Gi have in-degree = out-degree = 1.

Fig. 1. LLE array and LOP graphs

350 Ö. Ülker, E. Özcan, and E.E. Korkmaz

There are three clear observations regarding LOP graphs:

1. Given a set of items S, there is one and only one composition of LOP graphs
G(V, E) for each grouping of S, where |V | = |S|.

2. The number of LOP graphs is given by the nth Bell number [6].
3. LLE in array form is a unique implementation of the LOP graph.

2.3 Exam Timetabling as a Grouping Problem

Exam timetabling requires satisfactory assignment of timetable slots (periods)
to a set of exams. Each exam is taken by a number of students, based on a set of
constraints. In most of the studies, NE-like representations are used. In [3], a ran-
domly selected light or a heavy mutation followed by a hill climbing method was
applied. Various combinations of constraint satisfaction techniques with genetic
algorithms can be found in [25]. Paquete et al. [22] applied a multi-objective evo-
lutionary algorithm based on Pareto ranking with two objectives: minimize the
number of conflicts within the same group and between groups. Wong et al. [26]
applied a GA with a non-elitist replacement strategy. After genetic operators
are applied, violations are repaired with a hill climbing fixing process. In their
experiments a single problem instance was used. Ozcan et al. [21] proposed a
memetic algorithm (MA) for solving exam timetabling at Yeditepe University.
MA utilizes a violation directed adaptive hill climber.

Considering the task of minimizing the number of exam periods and removing
the clashes, exam timetabling reduces to the graph coloring problem [19].

2.4 Graph Coloring Problem as a Grouping Problem

The Graph Coloring Problem (GCP) is a well known combinatorial optimiza-
tion problem which is proved to be NP-complete [11]. Informally stated, graph
coloring is assigning colors to each vertex of an undirected graph such that no
adjacent vertices should receive the same color. The minimal number of colors
that can be used for a valid coloring is called the chromatic number. A more
formal definition is as follows.

Given a graph G = (V, E) with vertex set V and edge set E, and given an
integer k, a k-coloring of G is a function c : V → 1, . . . , k. The value c(x) of a
vertex x is called the color of x. The vertices with color r (1 ≤ r ≤ k) define a
color class, denoted Vr. If two adjacent vertices x and y have the same color r, x
and y are conflicting vertices, and the edge (x, y) is called a conflicting edge. If
there is no conflicting edge, then the color classes are all independent sets and
the k-coloring is valid. The GCP is to determine the minimum integer k (the
chromatic number of G−χ(G)) such that there exists a legal k-coloring of G [1].

In the literature there are many heuristics devised for finding chromatic num-
ber and solving k-coloring problems. Early applications of GCP solvers are sim-
ple constructive methods [2,19] which color each vertex of the graph one after
another based on dynamic ordering of the vertices according to its saturation

Linear Linkage Encoding in Grouping Problems 351

degree. Local search methods such as tabu search [14] and simulated anneal-
ing [16] have been followed with hybridizations of these techniques with genetic
algorithms [9,10] which resulted in the state of the art graph coloring algorithms.

Graph coloring is generally considered as a difficult problem for pure genetic
algorithms [13]. Currently, the most successful algorithms are memetic algo-
rithms [9,10] which hybridize the evolutionary techniques with a local search
method. In this approach, the role of genetic operators is limited to finding
promising points in the search landscape from which the local search can initi-
ate. Hence, the exploration of the search space is carried out by the local search
operator. For instance in Galinier and Hao’s hybrid algorithm [10], a crossover
operation is proceeded by a tabu search procedure which may last thousands of
tabu iterations.

There are mainly two reasons for the unsuccessful attempts of using pure
genetic implementations on graph coloring: the redundancies inherent in the
representations used for the encoding of the chromosome, and lack of a suitable
crossover operator which would transmit the building blocks efficiently, prefer-
ably with some domain knowledge. In this paper, we are mainly interested in
the representational issues, but we also propose suitable crossover operators for
the proposed multi-objective genetic algorithm.

3 A Multi-objective Genetic Algorithm for Graph
Coloring and Timetabling

Note that our main intention in this study is to propose a multi-objective so-
lution foundation to multi-constraint timetabling problems. To our knowledge,
none of the efficient graph coloring algorithms in the literature empowers genetic
operators as their main search mechanism. These methods usually rely on local
search operators. We are more interested in the applicability of linear linkage
encoding on grouping problems by using suitable crossover and mutation opera-
tors. We present a multi-objective genetic algorithm employing weak elitism and
the main search operator of this approach is mutation aided by crossover.

3.1 Initialization

Since we are dealing with a minimal coloring problem (where the objectives
are to minimize the number of colors and number of conflicting edges), it is
desirable to initialize the population with individuals having different number of
colors. Setting the range of number of colors too wide will unnecessarily increase
the search space and thus the execution time. It is also undesirable to set the
range too narrow either. Such a scheme will prevent promising individuals with
different number of colors from co-operating through crossover and mutation.
Tight lower and upper bounds can be found based on the maximal clique and
maximal degree of the graph. Fast heuristics or approximation algorithms such
as RLF [19] or DSATUR [2] can be used to find these bounds as well. Since exact
or approximate chromatic numbers in the test instances are already known, these
bounds are set manually in this study.

352 Ö. Ülker, E. Özcan, and E.E. Korkmaz

In our experiments, we have used a population with individuals having differ-
ent number of colors and an external population which holds the best individuals
with the minimal conflicts for a specific number of colors within a search range
(lowerBound ≤ k ≤ upperBound). In order to create an individual, first k is
determined, then a k-colored individual is randomly created. An external smart
initialization method was not used to reduce the edge conflicts in order not to
give any bias to our crossover operators and let the multi-objective evolutionary
method do the search.

3.2 Selection

A k-coloring problem is solved when the number of conflicting edges is zero.
If a k-coloring solution is obtained, k + 1 colorings can also be generated by
dividing independent sets into two. It might be possible to unite two sets in a
k + 1 coloring to obtain a k-coloring. The Pareto front will almost be a straight
line along the color axis with zero conflict if the lower bound is set close to the
chromatic number. A restricted multi-objective method might work efficiently
on a search range within specified bounds around the chromatic number.

As a multi-objective genetic algorithm a modified version of Niched Pareto
Genetic Algorithm (NPGA) described in [15] was used. In NPGA, two candi-
date individuals are selected at random from the population to be one of the
parents. A comparison set is formed from randomly selected individuals within
the population. Each candidate is then compared against each individual in the
comparison set. If one candidate is dominated by the comparison set (which
means it is worse for every part of the objective function than any individual in
the comparison set) and the other is not, then the latter is selected for repro-
duction. If neither or both are dominated by the comparison set, then niching is
used to select a winner mate. The size of comparison set (tdom) allows a control
over the selection pressure. The comparison set size was preset to around ten
percent of the population size as suggested by [15].

When neither or both candidates are dominated by the comparison set, the
candidate with a smaller niche count is selected for reproduction. We calculate
the niche value mi of the ith individual by

mi =
∑

j∈pop

sh(d[i, j]) (1)

where d[i, j] is the distance between two individuals according to their objective
function values and sh(d) is the sharing function which is

sh(d) =

⎧
⎪⎨

⎪⎩

1 if d = 0
1 − d/μshare if d < μshare

0 if d ≥ μshare

(2)

and the distance measure is the Manhattan distance in terms of color and con-
flict values in the individuals. The objective functions cix and cjx represent the
number of colors and edge conflicts respectively for parents i, j where x = {1, 2}:

d[i, j] = |ci1 − cj1| + |ci2 − cj2|. (3)

Linear Linkage Encoding in Grouping Problems 353

3.3 Redundancy and Genetic Operators

Although LLE in theory is a non-redundant representation for grouping prob-
lems, practically this advantage disappears if the search operators do not adhere
to this principle. Therefore a more desirable option is to make the search non-
redundant additional to the representation. For example consider a basic hill
climbing mutation which sends one vertex from one set to another. This is anal-
ogous of changing a gene value in the number encoding. If the majority of the
group ids of the items can be maintained for a long period of time, then it is
quite possible to make a low-redundant search even on a highly redundant en-
coding such as NE. This is one of the reasons local search based methods are
quite successful on grouping problems. Because of the small perturbations on
the search space, these methods not only preserve the building blocks on the
candidate solution but also are able to operate on a low-redundant small region
of the large search landscape.

The same advantage, unfortunately, does not hold for crossover which makes
huge jumps on the search space. It is possible to keep the majority of the group
ids of the items fixed by using traditional crossovers like one-point or uniform
crossover. Such methods, however, do not preserve the groups which are the
building blocks themselves. Therefore, a crossover operator should preserve the
order of the colors as long as possible. Two ordering mechanism which assigns
group ids to the groups after crossover and mutation are investigated within the
context of LLE. These two redundancy elimination mechanisms are based on the
cardinality of the groups and the lowest index number at each group. In [24],
the authors investigated the effect of these two methods on Graph Coloring by
using 0/1 ILP SAT solvers.

Cardinality-Based Ordering. In cardinality-based ordering, each group re-
ceives a group id according to its cardinality (set size). Groups are sorted ac-
cording to their cardinality and the group with the highest cardinality will be
assigned group id 1, the second highest will be identified as group 2, and so on.
For example groups (1, 3)(5)(2, 4, 6) are indexed as V1 = (2, 4, 6), V2 = (1, 3),
and V3 = (5). Since more than one group can have the same cardinality, the
ordering might not be unique.

Lowest Index Ordering. In lowest index ordering, the smallest index in each
group is found first, then the group with the smallest index number is assigned
group id 1, the group with the second smallest index number is assigned group
id 2, and so on. For example, groups (1, 3)(5)(2, 4, 6) are indexed as V1 = (1, 3),
V2 = (2, 4, 6), and V3 = (5). Since each group has one unique lowest index, the
ordering is always unique.

3.4 Crossover

LLE can be implemented using one dimensional arrays, allowing applicability
of the traditional crossover methods such as, one point or uniform crossover.
However, it is observed that these crossovers can be too destructive especially

354 Ö. Ülker, E. Özcan, and E.E. Korkmaz

for graph coloring due to the danger of introducing new links in the LOP graph
absent in both parents. Also, since the building blocks [12] in graph coloring are
strictly large independent sets (not even independent set segments), there is a
risk of destroying these building blocks. However, for small problem instances,
one-point crossover in LLE is reported to generate satisfactory results for the
clustering problem [6]. (This might be due to the fact that building blocks may
be a segment of clusters rather than the whole cluster.)

Unfortunately we have observed a very poor performance from one-point
crossover in our experiments. It was not even able to generate solutions in the
color search range we specified.

Three types of crossover operators are compared using LLE representation.

Greedy Partition Crossover. The GCP can be considered as partitioning
the graph into independent sets. Therefore by preserving the large independent
sets, the vertices in non-independent sets can be forced to form independent sets
as well.

Algorithm 1. Greedy Partition Crossover
Require: Two Parents – parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: currentParent = Random(parent1, parent2).
2: repeat
3: largestSet = Find largest set in currentParent.
4: transmit unassigned the vertices (links) in the largestSet to offspring.
5: mark transmitted vertices as assigned.
6: if currentParent = parent1 then
7: currentParent = parent2.
8: else
9: currentParent = parent1.

10: end if
11: until all vertices are assigned
12: if Lowest Index Ordering is Used then
13: sort group ids according to the lowest index number (GPX-LI).
14: else
15: sort group ids according to the cardinality (GPX-CB).
16: end if

Greedy Partition Crossover (GPX) was proposed by Galinier and Hao [10] in
their Hybrid Graph Coloring Algorithm. The idea is to transmit the largest set
(group) from one parent, then to delete the vertices in this largest set from the
other parent. This transmission and deletion process is repeated on both parents
successively until all of the vertices are assigned to the child.

Two forms of GPX by following the rules of Cardinality and Lowest Index
Ordering are implemented. The difference is just assigning the color ids to the
groups after the crossover. In GPX Lowest Index Crossover (GPX-LI), the groups
with lower index numbers are given lower color ids, whereas in GPX Cardinality

Linear Linkage Encoding in Grouping Problems 355

Based Crossover (GPX-CB), the lower color ids are assigned to the groups with
higher cardinality. A general pseudocode of GPX is represented in Algorithm 1.

Consider two parents in Figure 2. We can obtain the child as follows: Largest
Set in parent 1 is (3, 4, 5, 6). This set is transmitted to the child and 3, 4, 5 and
6 are deleted from parent 2. After this deletion the largest set in parent 2 (1) is
transmitted to the child. Finally (2) is assigned as the last group. After sorting
according to the lowest index ordering (GPX-LI), the coloring then becomes
C1 = (1), C2 = (2), C3 = (3, 4, 5, 6). If the groups are sorted according to their
cardinality (GPX-CB), the coloring is C1 = (3, 4, 5, 6), C2 = (1), C3 = (2).

Both GPX-LI and GPX-CB are applicable to other representations such as
number or group encodings. Our intention of using these crossovers is to create
crossover operators applicable only to LLE. The following two crossovers are
inspired from GPX.

Lowest Index First Crossover. In Lowest Index First Crossover (LIFX), the
goal is to transmit the groups beginning with lowest index numbers. LIFX works
as follows.

Algorithm 2. Lowest Index First Crossover
Require: Two Parents - parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: i = 1
2: currentParent = Random(parent1, parent2).
3: repeat
4: lengthOfParent = Calculate the path length of currentParent starting from

i.
5: transmit unassigned vertices (links) in the parentToSelect to offspring.
6: mark transmitted vertices as assigned.
7: i = next unassigned vertex.
8: if currentParent = parent1 then
9: currentParent = parent2.

10: else
11: currentParent = parent1.
12: end if
13: until all vertices are assigned

A parent is randomly selected. Beginning with the lowest index (vertex) which
has not been assigned yet, the vertices are transmitted to the child by following
the links. If the vertices along the path are assigned before, they are skipped.
The process is repeated by successively changing the parents for transmission
until all of the vertices are assigned to the child. A general pseudocode of LIFX
is represented in Algorithm 2.

The application of LIFX on the parents in Figure 2 would be as follows:
Assuming we begin with the first parent, current lowest index number is 1.
Therefore, (1, 2) is transmitted to the child. The current lowest index number is
now 3. Switching to parent 2, we copy (3, 6) as the next group. Switching back

356 Ö. Ülker, E. Özcan, and E.E. Korkmaz

to parent 1, current lowest index is 4, therefore (4, 5) is copied to the child. Final
coloring then becomes: C1 = (1, 2), C2 = (3, 6), C3 = (4, 5).

Note that this crossover prioritizes groups beginning with the lowest index
number, therefore it reduces the sizes of the groups beginning with higher index
numbers. This is in concordance with the nature of LLE, because the number of
possible values for the higher index locations is lower.

Lowest Index Max Crossover. In Lowest Index Max Crossover (LIMX),
the child is generated with two objectives: Transmit large groups to preserve
Cardinality Based Ordering, and to transmit groups beginning with lowest index
number (to preserve Lowest Index Ordering). Therefore this method can be
considered as an amalgamation of LIFX and GPX.

Algorithm 3. Lowest Index Max Crossover
Require: Two Parents – parent1 and parent2 in LLE form.
Ensure: One offspring in LLE form.
1: i = 1
2: repeat
3: lengthOfParent1 = Calculate the path length of parent1 starting from i.
4: lengthOfParent2 = Calculate the path length of Parent1 starting from i.
5: if LengthOfParent1 < LengthOfParent2 then
6: parentToSelect = parent1.
7: else
8: parentToSelect = parent2.
9: end if

10: transmit unassigned vertices (links) in the parentToSelect to offspring.
11: mark transmitted vertices as assigned.
12: i = next unassigned vertex.
13: until all vertices are assigned

LIMX works as follows. Beginning with the lowest index number (vertex)
which has not been assigned first we calculate the length of the links (path
length) in both parents. Already assigned vertices are not counted in this link
length calculation. This allows finding the largest set in parents beginning with
the lowest index number. Then the links (and thus vertices) are transmitted to
the child from the parent with the greater link-length. After that next unassigned
lowest index number is found and the process is repeated until all vertices are
assigned. A general pseudocode of LIMX is represented in Algorithm 3.

Application of LIMX to parents in Figure 2 is as follows: Current lowest index
is 1. (1, 3, 6) is longer than (1, 2) so (1, 3, 6) is copied to the child. Current lowest
index is now 2. (2, 4) is larger than (2) so it is transmitted to the child. Finally
(5) is copied to the child as the last group. At the end of LIMX the coloring
then becomes: C1 = (1, 3, 6), C2 = (2, 4), C3 = (5).

Linear Linkage Encoding in Grouping Problems 357

Fig. 2. (a) Two Parents in LLE Array and LOP Graph form. (b) Resulting offspring
from Greedy Partition Crossover – Lowest Index Ordering. (c) Resulting offspring
from Greedy Partition Crossover – Cardinality-Based Ordering. (d) Resulting offspring
from Lowest Index First Crossover. (e) Resulting offspring from Lowest Index Max
Crossover.

3.5 Mutation

We have used a mutation scheme that sends a selected conflicting vertex x from
its color set to the best possible other one. A tournament method is used to
select a vertex for transfer. A percentage of conflicting vertices are taken into a
tournament and the vertex with the highest conflict in this set is transferred to
a best color available.

358 Ö. Ülker, E. Özcan, and E.E. Korkmaz

Table 1. Test setup

Test machine Pentium 4 2Ghz with 256MB Ram
Compiler GCC C++ 3.2 with -O2 flags
No of generations 10000
Population size 25 percent of the number of vertices in graph
Comparison set size 10 percent of the population size
Niche size 5.0
Crossover rate 0.25
Mutation rate a single mutation is enforced
Number of runs 50 for each instance

As aforementioned, assigning group ids after crossover is essential for low
redundancy and the success of the mutation. In GPX-LI, LIMX and LIFX, the
ids are assigned according to Lowest Index Ordering whereas in GPX-CB the
ids are assigned according to Cardinality-Based Ordering.

3.6 Replacement

In our simulations we have employed a trans-generational replacement with weak
elitism. At each generation, λ (non elitist) + μ (elitist individuals, one for each
number of colors within the searching range) individuals produce λ children. If
new best individuals for each color are found in the new children, they are moved
to the population with elitist individuals. The remaining children form the next
generation.

4 Experiments

In our tests, we use several graphs from the DIMACS Challenge Suite [17]. The
general test setup is summarized in Table 1.

In Table 2, we represent the characteristics of the test instances sampled from
the DIMACS test suite. Table shows the name, number of vertices (|V |), number
of edges (|E|), edge density (%) and chromatic number (χ(G)) of the instances.

In all our tests, the mutation count is set to 1, and crossover rate is fixed at
0.25. In this setup, the algorithm is more like a genetic hill climbing method.
Since the chromatic number of these graphs are already known, we have set the
range by hand according to the chromatic number χ(G).

Note that our primary intention is to compare the crossover operators in the
context of LLE. As a result, we did not run our experiments for a long time. (The
longest time required for one run is around 5 minutes for cars91 graph instance).
This might have resulted in performance hit for large problem instances which
may need an exponential increase rather than a linear increase in the maximum
number of generation.

In Table 3, we present the best solutions obtained after 50 runs by using the
four crossover operators mentioned. Figure 3 represents the average color num-
ber of 50 runs for some of the instances in DIMACS suite. The results show

Linear Linkage Encoding in Grouping Problems 359

Table 2. Data characteristics about the problem instances from the DIMACS Suite

Instance |V | |E| % χ(G)

DSJC125.5 125 3891 0,50 ?
DSJC125.9 125 6961 0,90 ?
zeroin.1.col 211 4100 0,19 49
zeroin.2.col 211 3541 0,16 30
zeroin.3.col 206 3540 0,17 30
DSJC250.1 250 3218 0,10 ?
DSJC250.5 250 15668 0,50 ?
DSJC250.9 250 27897 0,90 ?
flat300 20 300 21375 0,48 20
flat300 26 300 21633 0,48 26
flat300 28 300 21695 0,48 28
school1 nsh 352 14612 0,24 14
le450 15a 450 8168 0,08 15
le450 15b 450 8169 0,08 15
le450 15c 450 16680 0,17 15
le450 15d 450 16750 0,17 15
le450 25a 450 8260 0,08 25
le450 25b 450 8263 0,08 25
le450 25c 450 16680 0,17 25
le450 25d 450 16750 0,17 25
DSJC500.1 500 12458 0,10 ?
DSJC500.5 500 62624 0,50 ?

no significant statistical differences between crossover operators except for a few
instances. For example for flat300 20 graph, LIMX was able to find a best 20
coloring while the other crossovers were very far from the optimal. However,
for this graph, average colorings found with all crossovers and standard devia-
tion are quite high. This is possibly due to the natural difficulty of flat graphs.
Another slight difference appeared in register allocation graphs (zeroin.X.col
graphs) where LIFX performed worst while GPX crossovers performed best.

We have also presented the graph coloring algorithm results of Kirovski and
Potkonjak [18] for two set of parameters (Kirovski B and Kirovski C). Kirovski
and Potkonjak’s algorithm is based on divide-and-conquer paradigms, global
search for constrained independent sets, assignment of most-constrained ver-
tices to least constraining colors, reuse and locality exploration of intermediate
solutions, and post-processing lottery-scheduling iterative improvement. With
respect to Kirovski and Potkonjak’s solutions, our crossovers gave similar, and
for some instances better, results; however, when the instance becomes larger
and more difficult, Kirovski and Potkonjak’s algorithm performs better. How-
ever, our primary intention was not to compare LLE representation with state
of the art algorithms but to compare the crossover operators as stated before.

360 Ö. Ülker, E. Özcan, and E.E. Korkmaz

Table 3. Best colorings obtained for the instances in the DIMACS Benchmark Suite

Instance χ(G) LIMX LIFX GPX-LI GPX-CB Kirovski-B Kirovski-C

DSJC125.5 ? 18 18 18 18 19 18
DSJC125.9 ? 44 44 44 44 45 45
zeroin.1.col 49 49 50 49 49 49 49
zeroin.2.col 30 31 35 31 31 30 30
zeroin.3.col 30 31 35 30 31 30 30
DSJC250.1 ? 9 9 9 9 9 9
DSJC250.5 ? 31 31 31 31 30 30
DSJC250.9 ? 75 75 75 74 77 77
flat300 20 20 20 31 27 32 20 20
flat300 26 26 34 34 34 34 32 28
flat300 28 28 34 34 34 34 33 32
school1 nsh 14 14 14 14 14 16 14
le450 15a 15 16 16 16 16 17 17
le450 15b 15 16 16 16 16 17 17
le450 15c 15 23 23 23 23 22 21
le450 15d 15 23 23 23 23 22 21
le450 25a 25 25 25 25 25 25 25
le450 25b 25 25 25 25 25 25 25
le450 25c 25 28 29 28 28 28 28
le450 25d 25 28 28 28 28 ? ?
DSJC500.1 ? 14 14 14 14 14 14
DSJC500.5 ? 55 55 55 55 51 50

Fig. 3. Average number of colors (groups) for some instances in DIMACS and Carter’s
Benchmark

Linear Linkage Encoding in Grouping Problems 361

Table 4. Data characteristics of the problem instances from the Carter Benchmark
Suite

Instance |V | |E| %

Hecs92 81 1363 0.42
Staf83 139 1381 0.14
Yorf83 181 4691 0.29
Utes92 184 1430 0.08
Earf83 190 4793 0.27
Tres92 261 6131 0.18
Lsef91 381 4531 0.06
Kfus93 461 5893 0.06
Ryes93 486 8872 0.08
Carf92 543 20305 0.14
Utas92 622 24249 0.13
Cars91 682 29814 0.13

Table 5. Best colorings obtained for the instances in the Carter Benchmark Suite

Instance LIMX LIFX GPX-LI GPX-CB Carter Caramia Merlot

Hecs92 17 17 17 17 17 17 18
Staf83 13 14 14 14 13 13 13
Yorf83 20 20 20 20 19 19 23
Utes92 10 10 10 10 10 10 11
Earf83 23 24 24 23 22 22 24
Tres92 21 21 21 21 20 20 21
Lsef91 17 18 18 18 17 17 18
Kfus93 20 20 20 20 19 19 21
Ryes93 23 23 23 23 21 21 22
Carf92 36 36 36 36 28 28 31
Utas92 38 39 38 38 32 30 32
Cars91 36 36 37 35 28 28 30

Table 4 represents some instances taken from the Carter’s Benchmark [5].
We again represent the number of vertices, edges and edge density of these
graphs in this table. Table 5 represents the best colorings obtained after 50
runs. In Figure 3, the average colorings of 50 runs for some instances in Carter’s
benchmark are represented.

For the instances in the Carter’s timetabling benchmark, again, a significant
difference among crossover operators is not observed. However, LIMX has a
slightly better performance in terms of best and average color (group) number.
LIMX gave the best colorings in staf83 and lsef91 instances while others were
one color behind it. Yet, the difference between average colorings and standard
deviation is not statistically significant for almost all instances.

362 Ö. Ülker, E. Özcan, and E.E. Korkmaz

We have also compared the best colorings after 10000 generations with some
of the results from the literature (Carter et al. [5], Caramia et al. [4] and Merlot
et al. [20]). Like DIMACS instances, the performance of the graphs with vertices
above 500 suffered due to the limit on the maximum number of generations. For
these instances, our crossovers gave similar results in terms of best grouping ob-
tained. Generally they obtained colorings equal or one color behind the colorings
of Carter et al. and Caramia et al., and better than those of Merlot et al.

5 Conclusion

In this paper, we have investigated the performance of LLE on well known group-
ing problems, exam timetabling and graph coloring. Several crossover operators
that can be used with LLE are represented. The results obtained are promising
since LIMX and LIFX perform approximately similar to the two variants of GPX,
which is an integral part of the most successful graph coloring algorithm [10].
Also our crossover operators gave satisfactory results for instances in Carter’s
and DIMACS benchmark suites. In the future, the stochasticity of crossovers
which are currently deterministic will be enhanced. LLE will be used on other
grouping problems together with the crossover operators aforementioned and
their stochastic versions. The multi-objective LLE framework will be used for
timetabling problems with additional constraints.

Acknowledgments. This research is funded by TUBITAK (The Scientific and
Technological Research Council of Turkey) under grant number 105E027.

References

1. Avanthay, C., Hertz, A., Zufferey, N.: Variable neighborhood search for graph col-
oring. European Journal of Operational Research 151, 379–388 (2003)

2. Brelaz, D.: New methods to color vertices of a graph. Communications of the
ACM 22, 251–256 (1979)

3. Burke, E.K., Newall, J., Weare, R.F.: A memetic algorithm for university exam
timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

4. Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination
timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp.
230–241. Springer, Heidelberg (2001)

5. Carter, M.W., Laporte, G., Lee, S.T.: Examination timetabling: algorithmic strate-
gies and applications. Journal of the Operational Research Society 47, 373–383
(1996)

6. Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that em-
ploys genetic algorithm with new representation scheme and multiple objectives. In:
Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181,
pp. 219–233. Springer, Heidelberg (2004)

7. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal of Computing 5, 691–703 (1976)

Linear Linkage Encoding in Grouping Problems 363

8. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York
(1998)

9. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. An-
nals of Operations Research 63, 437–461 (1996)

10. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3, 379–397 (1999)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

13. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

14. Hertz, A., De Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39, 345–351 (1987)

15. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for mul-
tiobjective optimization. In: Proceedings of the First IEEE Conference on Evolu-
tionary Computation. IEEE World Congress on Computational Intelligence, vol. 1,
pp. 82–87. IEEE, Piscataway, NJ (1994)

16. Johnson, D.S., Aragon, C.R, McGeoch, L.A, Schevon, C.: Optimization by simu-
lated annealing: an experimental evaluation: Part II, graph coloring and number
partitioning. Operations Research 39, 378–406 (1991)

17. Johnson, D.S., Trick, M.A.: Cliques, Coloring and Satisfiability, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 26. American
Mathematical Society, Providence, RI (1996)

18. Kirovski, D., Potkonjak, M.: Efficient coloring of a large spectrum of graphs. In:
35th Design Automation Conference Proceedings, pp. 427–432 (1998)

19. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal
of Research of the National Bureau of Standards 84, 79–100 (1979)

20. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for
the examination timetabling problem. In: Proceedings of the 4th International
Conference on the Practice and Theory of Automated Timetabling, Gent, pp. 348–
371 (August 2002)

21. Ozcan, E., Ersoy, E.: Final exam scheduler – FES. In: Proceedings of the 2005
IEEE Congress on Evolutionary Computation, vol. 2, pp. 1356–1363 (2005)

22. Paquete, L.F., Fonseca, C.M.: A study of examination timetabling with multiob-
jective evolutionary algorithms. In: Proceedings of the 4th Metaheuristics Interna-
tional Conference, MIC, Porto, pp. 149–154 (2001)

23. Radcliffe, N.J.: Formal analysis and random respectful recombination. In: Pro-
ceedings of the 4th International Conference on Genetic Algorithms, pp. 222–229
(1991)

24. Ramani, A., Aloul, F.A., Markov, I., Sakallah, K.A.: Breaking instance-
independent symmetries in exact graph coloring. In: Design Automation and Test
Conference in Europe, pp. 324–329 (2004)

25. Terashima-Maŕın, H., Ross, P., Valenzuela-Rendón, M.: Clique-based crossover for
solving the timetabling problem with gas. In: Proceedings of the Congress on Evo-
lutionary Computation, pp. 1200–1206 (1999)

26. Wong, T., Cote, P., Gely, P.: Final exam timetabling: a practical approach. In:
Canadian Conference on Electrical and Computer Engineering, Winnipeg, vol. 2,
pp. 726–731 (2002)

Ant Algorithms for the Exam Timetabling

Problem

Michael Eley

Aschaffenburg University of Applied Science,
Logistics Laboratory (LlAb), Aschaffenburg, Germany

michael.eley@fh-aschaffenburg.de

Abstract. Scheduling exams at universities can be formulated as a com-
binatorial optimization problem. Basically one has to schedule a certain
number of exams in a given number of time periods so that a prede-
termined objective function is minimized. In particular, the objective
function penalizes schedules where students have to write exams in con-
secutive periods or even in the same period. Ant colony approaches
have been demonstrated to be a powerful solution approach for vari-
ous combinatorial optimization problems. This paper presents two ant
colony approaches for the exam timetabling problem, a Max–Min and an
ANTCOL approach. Using the Toronto benchmark test cases from the
literature, both algorithms arc compared to other timetabling heuristics.
Finally, the Max–Min and ANTCOL algorithms are compared using the
same set of test cases. In spite of some shortcomings, the ANTCOL
approach turned out to be a worthwhile algorithm, among the best cur-
rently in use for examination timetabling.

1 Introduction

The exam timetabling problem faces the problem of scheduling exams within
a limited number of available periods. Setting up a conflict-free timetable is
not a trivial task due to limited resources like periods, examination rooms and
teacher availability. The main objective is to balance out student workload and to
distribute the exams evenly within the planning horizon. In particular, it should
be avoided that a student has to write two exams in the same period. Such
situations will be referred to as conflicts of order 0 in the sequel. Additionally,
as few students as possible have to attend r exams within y consecutive periods.
Such conflicts can either be totally forbidden by constraints or penalized in the
objective function. For example, Carter et al. proposed in [14] a cost function
that imposes penalties Pω for a conflict of order ω, i.e. whenever one student has
to write two exams scheduled within ω +1 consecutive periods. In the literature
ω normally runs from 1 to 5 with P1 = 16, P2 = 8, P3 = 4, P4 = 2, P5 = 1.

Solving practical exam timetabling problems requires that additional con-
straints have to be considered, e.g. some exams have to be written before other
exams or some exams cannot be written within specific periods. References [8]
and [13] give comprehensive lists of possible hard and soft constraints.

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 364–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ant Algorithms for the Exam Timetabling Problem 365

The exam timetabling problem can be formulated as a graph coloring problem.
Each node represents one exam. Undirected arcs connect two nodes if at least one
student is enrolled in both corresponding exams. Weights on the arcs represent
the number of student enrolled in both exams. The objective is to find a coloring
where no adjacent nodes are marked with the same color or to minimize the
weighted sum of the arcs that connect two nodes marked with the same color.
The exam timetabling problem is a generalization of the graph coloring problem,
as in the objective function also conflicts of higher orders are penalized.

A large number of papers presenting heuristic solution approaches to the
exam timetabling problem have been published in recent years. Most of the
approaches on exam timetabling are modified heuristics derived from graph col-
oring approaches or use local search methods. Additionally, hyper-heuristics, i.e.
heuristics that choose heuristics, have been applied to the exam timetabling
problem.

Carter et al. applied in [14] some well known graph coloring heuristics, i.e. sat-
uration degree, largest degree, largest weighted degree, largest enrolment and
color degree, which they combined with backtracking. These graph coloring
heuristics have been integrated into various other approaches. Asmuni et al. [2]
used fuzzy functions to find exams that arc difficult to schedule and those should
be scheduled early when using graph coloring heuristics.

Di Gaspero aud Schearf [20] tested different variants of tabu search based tech-
niques whose neighborhoods concerned those which contributed to the violations
of hard or soft constraints. Di Gaspero [19] improved the approach by employ-
ing multiple neighborhoods. The first one considers only exams that contribute
to the objective function and changes the period of a single exam. The second
neighborhood exchanges the periods of two groups of exams at once. White and
Xie [39] developed a tabu search approach. This approach was extended in [40]
by employing long-term memory. Paquete and Stuetzle [30] developed a tabu
search methodology for exam timetabling where ordered priorities were given
for the constraints. The length of the tabu list was adaptively set by considering
the number of violations in the solutions.

Merlot et al. [27] and Burke et al. [6] developed variants of simulated annealing
approaches. While the first paper also uses simulated annealing in combination
with constraint programming to generate the initial solution, the latter presents a
great deluge algorithm. This approach was further studied in [10] and in [5]. Cote
et al. [18] investigated a bi-objective evolutionary algorithm with the objectives
of minimizing timetable length and spacing out conflicting exams.

As well as evolutionary algorithms, simulated annealing and tabu search, other
local search techniques have been tested to solve exam timetabling problems. Ab-
dullah et al. [1] developed a large neighborhood search based on the methodology
of improvement graph construction. Ayob et al. [3] as well as Burke et al. [7]
investigated variants of variable neighborhood search. The results of the lat-
ter approach were further improved by using a standard genetic algorithm to

366 M. Eley

intelligently select subset of neighborhoods. Caramia et al. [12] developed a local
search method where a greedy scheduler assigned exams into the least possible
number of periods, and a penalty decreaser improved the timetable without
increasing the number of periods. Finally, Casey and Thompson [15] investigated
a greedy randomized adaptive search procedures approach.

The solution quality of many meta-heuristics strongly depends on how well
several parameters are chosen. This problem of parameter adjustment led a
number of researchers to develop new technologies aimed at operating at a higher
level of generality. Kendall and Hussin [24] investigated a tabu search based
hyper-heuristic where both moving strategies and constructive graph heuristics
were employed as low level heuristics. Yang and Petrovic [41] employed case-
based reasoning to choose graph heuristics to construct initial solutions for the
Great Deluge algorithm. Burke et al. [9] investigated using tabu search to search
permutations of graph heuristics to construct solutions for timetabling problems.

Comprehensive surveys on the literature on exam timetabling problems can
be found in [13,37]. In particular, the latter paper lists more than 150 references
from journal articles and books published since the mid-1990s.

The aim of this paper is twofold. Originally, this research was motivated by the
need for a software tool to practically solving an exam timetabling problem. As
ant colony approaches have been demonstrated to be a powerful tool for various
combinatorial optimization problems (see the survey in [21]), it is apparent that
one can adapt this solution approach to the exam timetabling problem. In the
literature different variants of ant colony approaches have been suggested. A
comparison of some of these strategies with respect to their suitability for the
exam timetabling problem will be made.

This paper is organized as follows. In Section 2 a detailed problem formula-
tion will be presented. Section 3 will give an introduction to ant colony systems.
The following sections will present a solution approach and test results for some
benchmark problems that are taken from the literature. Finally, Section 6 sum-
marizes the results and discusses suggestions for future work.

2 Problem Formulation

Before stating the problem formally, some notation will be introduced.

R index set of rooms
I index set of exams
T index set of periods
Ω index set of order of conflicts
Krt capacity of room r in period t
cij number of students enrolled in exam i as well as in exam j
E total number of students
Ei number of students enrolled in exam i
Pω penalty imposed if one student has to write two exams

within ω + 1 periods

Ant Algorithms for the Exam Timetabling Problem 367

yit binary decision variable equal to 1 if exam i is scheduled in
period t and 0 otherwise

pirt decision variable indicating the number of students of exam i
assigned to room r in period t.

Using this notation, the exam timetabling problem can be formulated as follows:

min
1
E

∑

ω∈Ω

∑

i,j∈I,i�=j

∑

t∈T,t>ω

Pωcijyityj(t−ω) (1)

s.t.
∑

t∈T

yit = 1 ∀i ∈ I (2)

pirt ≤ yitKrt ∀i ∈ I, ∀r ∈ R, ∀t ∈ T (3)

∑

r∈R

∑

t∈T

pirt = Ei ∀i ∈ I (4)

∑

i∈I

pirt ≤ Krt ∀r ∈ R, ∀t ∈ T (5)

∑

t∈T

cijyityjt = 0 ∀i, j ∈ I, i �= j (6)

yit ∈ {0, 1} ∀i ∈ I, ∀t ∈ T (7)

pirt ∈ N0 ∀i ∈ I, ∀r ∈ R, ∀t ∈ T. (8)

The objective function (1) balances out students’ workload by minimizing
the weighted sum of all conflicts which is divided by the number of students.
Constraint (2) states that each exam is assigned to exactly one period. If an
exam is not assigned within a period, then no seats should be reserved for that
period in any room. This is imposed by constraint (3). Constraints (4) and (5)
ensure that the number of seats reserved for an exam will be equal to the number
of students who are enrolled in that exam and that the room capacities are not
exceeded. Finally, constraint (6) avoids conflicts of order 0, i.e. that a student
has to write two exams in the same period.

The exam timetabling problem is a generalization of the graph coloring prob-
lem, which is known to be NP-hard [23]. Therefore, to solve large real-world
problems within a reasonable amount of time, heuristics are used. In the follow-
ing sections a solution approach will be presented. But instead of considering
capacity constraints for the single rooms, only the total capacity of all available
exam rooms within a period will be considered. In the IP formulation stated
above this can be accomplished by replacing the set of rooms by an artificial
single room.

368 M. Eley

3 Ant Algorithms

Ant colony optimization algorithms represent special solution approaches for
combinatorial optimization problems derived from the field of swarm intelligence.
They were first introduced by Colorni et al. in the early 1990s [16]. See [21] for
an in-depth introduction to ant systems.

Ant algorithms were inspired by the observation of how real ant colonies find
shortest paths between food sources and their nest. This observation was first
implemented in algorithms for solving the traveling salesperson problem (TSP).
This type of ant colony optimization algorithm is known in the literature as ant
system (AS) algorithms. The basic principle of AS algorithms will be described
briefly by means of the TSP. This solution approach to the TSP will then be
adopted to solving the exam timetabling problem in the next section.

The solution approach consists of n cycles. In each of these cycles first each
of the m ants constructs a feasible solution. In AS each ant builds a complete
tour that visits all nodes. Obviously, this solution neither has to be optimal nor
must it be even close to the (unknown) optimal value. Improved solutions can
be obtained if knowledge gathered by other ants in the past on how high quality
solutions can be obtained, is incorporated into the ants’ decision. Assume that
an ant is located in a node i. To choose the next node j that has not yet been
visited by that ant one may apply one of the following two randomized strategies:

Strategy I: Constructive heuristic. Apply one priority rule like randomized
nearest neighbor. Decision values for all nodes j are determined by the in-
verse of the distance from node i to that node j. The next node the ant
moves to is then randomly chosen according to the probabilities determined
by those decision values. Consequently, if node j1 is closer to i than node j2
it is more likely to choose node j1. The decision values of the constructive
heuristic will be referred to as ηij .

Strategy II: Pheromone trails. This strategy is mainly inspired by the way real
ants find shortest paths. While commuting between two places on different
possible paths ants deposit a chemical substance called pheromone. The
shorter the path is the more often the ant will use this path within a limited
period of time and, consequently, the larger the amount of pheromone will
be on that path. Thus, whenever an ant has to choose between different
available paths it will prefer the one with higher amount of pheromone.

To adapt these observations to the TSP, the amount of pheromone is
stored in a matrix τ . Each cell τij of the matrix is associated with an arc (ij)
and the matrix is initialized with 0 for all cells. After an ant has completed
a tour, the values of the cells that belong to the arcs the ant has chosen
are updated by the inverse of the obtained objective function value, i.e. the
length of the tour. The amount of pheromone trail τij associated to arc (i, j)
is intended to represent the learned desirability of choosing node j when
in node i. Consequently, arcs that belong to good solutions receive a high
amount of pheromone.

Ant Algorithms for the Exam Timetabling Problem 369

AS algorithms combine these two strategies. The probability that an ant ν lo-
cated in node i chooses the next node j is determined by the following formula:

pν
ij =

{
(τij)α(ηij)β

�
k∈Nν

i
(τik)α(ηik)β if j ∈ Nν

i

0 otherwise.
(9)

α and β are a given weighting factors and Nν
i is the set of nodes that have not

yet been visited by ant ν currently located in node i (see [21]).
Excepting the TSP, AS algorithms have been implemented for various com-

binatorial optimization problems, such as the quadratic assignment problem or
the sequential ordering problem. Different variants of AS algorithms have been
suggested in the literature, for example ant colony systems (ACS) and Max–Min
ant systems (MMAS). Both produced much better results than AS (see [21]). In
particular, MMAS, which was first proposed by Stuetzle and Hoos [33], generated
significantly better solutions for the TSP than AS. Socha et al. [32] compared
the MMAS variant with ACS and found that MMAS outperformed the ACS
approach for the considered timetabling problem.

The main modifications of MMAS are related to the way that the matrix τ is
initialized and how the pheromone values are updated. Additionally, MMAS uses
local search to improve the solutions found by the ants. Details are discussed in
the next section.

Ant colony algorithms have been used recently to solve different types of
scheduling problems, see for example Blum [4]. Socha et al. [31,32] developed al-
gorithms for the timetabling problem for university classes, which is slightly dif-
ferent from the exam timetabling problem considered here. Costa and Hertz [17]
used an ant colony approach to solve assignment type problems, in particular
graph coloring problems. They pursued the objective of minimizing the number
of periods required for a clash-free timetable. Recently, Vesel and Zerovuik [38]
as well as Dowsland and Thompson modified and improved [22] this graph color-
ing algorithm. Whilst the first article puts the focus on graph coloring problems,
the latter improves the approach of Costa and Hertz [17] with respect to the ex-
amination scheduling problem, by introducing new initialization methods, trial
calculations and fitness functions.

Finally, Naji Azimi [28] implemented an ACS algorithm and compared it to
simulated annealing, a genetic algorithm and tabu search. These results with
randomly generated test problems indicated that the ant-based approach out-
performed the other approaches. Additionally, the author tested some hybrid
versions where ACS was combined with tabu search. These hybrid versions out-
performed all meta-heuristics [29].

4 An Ant Algorithm for the Exam Timetabling Problem

4.1 General Modifications for the Exam Timetabling Problem

In this section a description will be given on how the AS algorithm must be
modified in order to solve exam timetabling problems. The solution approach

370 M. Eley

consists of n cycles. Firstly, in each of these cycles each of the m ants constructs
a feasible solution therefore using the constructive heuristic and the pheromone
trails. These exam schedules are then evaluated according to the given objective
function and the experience accumulated during the cycle is used to update the
pheromone trails.

Depending on the choice of a constructive heuristic and the way the pheromone
values are used, there are different ways in which this basic solution approach can
be adapted to the exam timetabling problem.

– In Socha et al. [32] a pre-ordered list of events is given. Each ant chooses
the color for a given node probabilistically similar to the formula (9). The
pheromone trail τIj contains information on how good the solution was,
when node i was colored by color t. The constructive heuristic employed in
their approach is not described.

– Socha et al. [31] suggested two variants of how the basic solution approach
presented in the last section can be adapted to the (course) timetabling
problem:

• A list of periods is given. Starting with the first period in the list, each
ant assigns courses to this period.

• A list of courses is given and the ants chooses a period for each course
of the list while starting with the first course from the list. The period
is then chosen probabilistically according to a formula similar to (9).

The authors preferred the second variant as it seemed to be a more natural
approach, in particular when the number of events is larger than the number
of periods. Additionally, the authors tested two different representations for
the pheromone values in the matrix τ :

• Direct representation. A cell τit of the matrix represents the amount of
pheromone if course i is assigned to a period t.

• Indirect representation. A cell τij of the matrix indicates if courses i and
j should be assigned to the same period.

Experiments indicted that the indirect representation produced better re-
sults, in particular when an additional hill climber was used.

– In the ACS approach of Naji Azimi [29] each ant follows a list of exams and
chooses a period as in [31]. The period is chosen randomly with probabilities
depending on the pheromone matrix and heuristic information. The paper
gives no information on how a time list of exams is sorted.

– At each stage of the construction process in the AS approach of Costa and
Hertz [17] called ANTCOL the ant chooses first a node i according to a prob-
ability distribution equivalent to (9) and then a feasible color. Experiments
showed that also choosing the color probabilistically did not improve the
solutions. As in [31] an indirect representation was employed. The matrix
τ provides information on the objective function value, i.e. the number of
colors required to color the graph, which was obtained when nodes i and j
are colored with the same color.

Ant Algorithms for the Exam Timetabling Problem 371

In contrast to elite strategies where only the ant that found the best
tour from the beginning of the trial deposits pheromone, all ants deposit
pheromone on the paths they have chosen. According to [21] this strategy is
called ant cycle strategy.

Different priority rules were tested as constructive heuristic. Among those
chosen in each step, the node with the highest degree of saturation, i.e. the
number of different colors already assigned to adjacent nodes, achieved the
best results with respect to solution quality and computation times.

For the exam timetabling problem the way that the information in matrix τ is
used in both approaches seems not to be meaningful. Due to the conflicts of
higher orders the quality of a solution does not depend on how a pair of exams
is scheduled, nor does it depend on the specific period an exam is assigned to.
For example, assigning two exams i and j with cij = 0 to the same period can
either result in a high or in a low objective function value as the quality of the
solution strongly depends on when the remaining exams are scheduled. In the
following a two-step approach was implemented.

Step I: Determine the sequence according to the exams are scheduled. As for
the TSP we assume that an ant located in a node, corresponding to an
exam, has to visit all other nodes, i.e. it has to construct a complete tour.
The sequence according to which this ant constructs the tour corresponds
to the sequence in which the exams are scheduled. Thus, τij indicates how
advantageous it is to choose exam j as the ith exam in the sequence.

The rationale behind this idea is that the ants should learn which exams
should be scheduled early, in order to avoid high penalties in the objective
function in later iterations. Asmnuni et al. [2] as well as Merlot et al. [27]
pursued similar concepts. Whilst in the first paper fuzzy functions were em-
ployed when ordering the exams on how difficult they were, the latter ordered
the exams by the size of their domains (available periods) and scheduled
them into the earliest period one by one.

Step II: Find the most suitable period for an exam which should be scheduled.
As recommended by Costa and Hertz [17] the period is not chosen probabilis-
tically. Instead, all admissible periods are evaluated according to the given
penalty function and the exam is scheduled in the period that achieved the
best evaluation. Thus, as recommended by Dowsland and Thompson [22] the
construction approach is not restricted to filling one period before starting
another.

If exam j has a high τij value for a small value of i, this exam should be scheduled
early in the sequence. Assume that this exam is by chance not chosen as number i
in the sequence. Then values τk,j for k = i+1, i+2, . . . should also be high in order
to make sure that the ant will choose j soon. Therefore, Merkle and Middendorf
modified (9) by the following so-called pheromone summation rule [26]:

pν
ij =

{
(
�i

h=1[τhj])
α(ηij)β

�
k∈Nν

i
(
�i

h=1[τhk])α(ηik)β if j ∈ Nν
i

0 otherwise.
(10)

372 M. Eley

Pheromone values τij along the ants’ paths are updated by the inverse of the
objective function value. For the heuristic value ηij the following simple priority
rule for graph coloring was implemented. The exam with the smallest number
of available periods is selected. A period would not be available for an exam if it
caused a conflict of order 0 with another exam that has already been scheduled.
This priority rule corresponds to the saturation degree rule (SD) which was
tested in [14]. The value ηij is chosen to be the inverse of the saturation degree.

4.2 MMAS Specifications

MMAS approaches mainly differ from AS algorithms in the way they use the
existing information (see [33]):

– Pheromone trails are only updated by the ant that generated the best solu-
tion in a cycle. The corresponding values τij are updated by ρτij + 1/f best

where f best is equal to the best objective function value found so far. For
all other arcs (i, j) that are not chosen by the best ant τij is updated by
(1 − ρ)τij , where ρ ∈ [0, 1] represents the pheromone evaporation factor, i.e.
the percentage of pheromone that decays within a cycle.

– Pheromone trail values are restricted to the interval [τmin, τmax], i.e. when-
ever after a trail update τij < τmin or τij > τmax then τij is set to τmin

or τmax, respectively. The rationale behind this is that if the differences be-
tween some pheromone values were too large, all ants would almost always
generate the same solutions. Thus, stagnation is avoided.

– Pheromone trails are initialized to their maximum values τmax. This type of
pheromone trail initialization increases the exploration of solutions during
the first cycle.

The solution quality of ant colony algorithms can be considerably improved
when it is combined with additional local search. In hybrid MMAS only the best
solution within one cycle is improved by local search. For the exam timetabling
problem a hill climber procedure has been implemented. Within an iteration of
the hill climber two sub-procedures are carried out in succession. The hill climber
is stopped if no improvement can be found within an iteration.

Within the first sub-procedure of the hill climber for all exams the most
suitable period is examined. Beginning with the exam that causes the biggest
contribution to the objective function value, all feasible periods are checked and
the exam is assigned to its best period. The first sub-procedure is stopped if
all exams have been checked without finding an improvement. Otherwise the
contributions to the objective function value are recalculated and the process is
repeated.

The second sub-procedure tries to decrease the objective function value by
swapping all exams within two periods, i.e. all exams assigned to period t′ are
moved to period t′′ and the exams of that period are moved to period t′. There-
fore all pairs of periods are examined and the first exchange that leads to an
improvement is carried out. Again, the process is repeated as long as the objec-
tive function value is decreased.

Ant Algorithms for the Exam Timetabling Problem 373

Finally, the use of a so-called candidate can reduce required computational
times as well as improve solution quality at the same time (see [21]). Such a
list provides additional local heuristic information as it contains preferred nodes
to be visited from a given node. Instead of scanning all other exams, only the
exams in the candidate list are examined, and only when all exams in this list
have been scheduled, are the remaining exams considered.

5 Computational Experiments

The proposed Max–Min algorithm was implemented in Borland Delphi 7.0. It
will be referred to as MMAS-ET in the sequel. Test runs were carried out on a
computer with 3.2 GHz clock under Windows XP.

5.1 Test Cases

To benchmark algorithms test cases of thirteen practical examination problems
can be found on the site of Carter (see [34]). Table 1 summarizes some charac-
teristics of these problems. These test problems are also known in the literature
as the Toronto data set version I (see [37]).

To make a comparison meaningful all algorithms must use the same objective
function. Therefore, Carter proposed weighting conflicts according to the follow-
ing penalty function: P1 = 16, P2 = 8, P3 = 4, P4 = 2, P5 = 1, where Pω is the
penalty for the constraint violation of order ω. The cost of each conflict is multi-
plied by the number of students involved in both exams. The objective function
value represents the costs per student. As the proposed MMAS-ET algorithm
does not guarantee that no conflicts of order 0 occur, additionally, the penalty
P0 was imposed and set to 10 000.

5.2 Adjustment of the Parameters

The required parameters were specified as follows. The number of cycles was
set to 50. Within each cycle 50 ants were employed to construct solutions. The
candidate list contained the 20% of exams with the lowest number of available
periods. Several test runs were carried out in order to determine the required
parameters appropriately:

– The evaporation rate ρ was set to 0.3. As in [33] it turned out that this
parameter is quite robust, i.e. the parameter ρ does not clearly influence the
performance.

– For the restrictions of the pheromone interval values to strategies were tested.
Setting τmax = 1/ρ obtained slightly better results than in the case of vari-
able τmax and τmin as proposed in [33].

– Different values for the weighting factors α and β were tested. It turned out
that the approach performed best when α was set to one and β was chosen
high. Best results were obtained for β equal to 10. But the difference was on
average less than one percent when β was bigger than eight. A high β forces

374 M. Eley

Table 1. Toronto data set version I from Carter et al. [14,34,35]

Test Number of Number of Number of Problem Number of
case exams students student exams density periods

car92I 543 18419 55522 13.8% 32
car91I 682 16925 56877 12.8% 35
ear83I 190 1125 8109 26.7% 24
hec92I 81 2823 10632 42.0% 18
kfu93I 461 5349 25113 5.6% 20
lse91I 381 2726 10918 6.3% 18
rye92I 486 11483 45051 7.5% 23
sta83I 139 611 5751 14.4% 13
tre92I 261 4360 14901 5.8% 23
uta92I 622 21267 58979 12.6% 35
ute92I 184 2750 11793 8.5% 10
yor83I 181 941 6034 28.9% 21
pur93I 2419 30032 120681 2.9 % 43

that exams which can be scheduled, due to zero-order conflicts, only in a
few remaining periods are scheduled first, as they are given a much higher
probability in (9). Remember that ηij is the inverse of the saturation degree
as explained in Section 4.1. Thus, a high β value has the same effect like a
candidate list. This could be a reason why the use of the candidate list did
not improve the solutions. For small values of β, i.e. values lower than 5,
solutions with zero-order conflicts could not always be avoided.

– As the approach is non-deterministic each test case was solved 20 times.

After determining the parameters in such a way, it turned out that less than 2%
of the solutions were generated more than once. Thus, stagnation, that is caused
by the fact that many ants generate almost the same solutions, could not be
observed.

5.3 Test Results for the MMAS-ET Approach

Table 2 displays the results for different approaches. The solutions are also avail-
able on the Internet [36]. For each approach the minimal objective function value
and the average result after 20 test runs are given in Table 2. Results of the pro-
posed MMAS-ET approach are given in the second column.

In order to find out how much the hill climber contributes to the solution,
the MMAS-ET approach was also tested without making use of the hill climber.
Comparing the results in the second and in the third column it is obvious that
the hill climber considerably improves the solutions.

Increasing the number of ants and the number of cycles to 100 in the MMAS-
ET approach did not result in achieving better solutions. Neither the average
value of all 20 iterations was improved nor were better solutions found during
the 20 iterations.

Ant Algorithms for the Exam Timetabling Problem 375

Table 2. Results (objective function values) for two variants of the MMAS-ET ap-
proach for 20 test runs

MMAS-ET MMAS-ET
without hill climber

Test case Best Avg. Best Avg.

car92I 4.7 4.8 7.7 7.9
car91I 5.7 5.8 9.4 9.6
ear83I 36.8 38.3 50.4 53.8
hec92I 11.2 11.4 15.0 15.5
kfu93I 15.0 15.4 24.0 24.8
lse91I 12.2 12.6 18.9 19.6
rye93I 10.1 10.3 17.9 18.5
sta83I 157.4 157.6 162.1 163.6
tre92I 8.9 9.2 12.2 12.7
uta92I 3.8 3.8 6.0 6.2
ute92I 27.7 28.4 32.9 34.4
yor83I 39.3 40.2 50.2 51.4
pur93I 5.5 5.6 12.2 12.5

5.4 Comparison with the Approach of Costa and Hertz

The results of MMAS-ET were compared with a modified version of the
ANTCOL algorithm of Costa and Hertz [17], which was originally developed
for solving graph coloring problems. This approach will be called ANTCOL-ET
in the sequel. Within that approach the ANT DSATUR(1) procedure was used
as a constructive method as described in [17]. Also the objective function was
modified in order to consider conflicts of higher order. Test runs were carried
out to adjust the parameters appropriately. The parameter α was set to 1, β to
30. ρ was set equal to 0.3. Again, each test case was solved 20 times.

Table 3 shows the results for the 13 test cases and compares them with the
MMAS-ET approach. Surprisingly, the simple AS-like approach ANTCOL-ET
outperformed the MMAS-ET for some test cases. In particular, this result is
contrary to other results presented in the literature where MMAS algorithms ob-
tained better results for various combinatorial optimization problems by avoiding
stagnation (see [21,33]).

Thus, ANTCOL-ET was modified by implementing additionally the hill climb-
er already incorporated in the MMAS-ET approach. This modified version of
the Costa and Hertz approach provided, on average, better solutions than the
MMAS-ET approach. Obviously, the combination of an indirect representation
plus a hill climber is capable of generating good solutions. Socha et al. [31] made
a similar observation for the course timetabling problem.

Computing times for the MMAS-ET approach lay in the range of 10 seconds
for the smallest test cases, i.e. hec-s-92, to 2.5 hours for the pur-s-93 problem.
Compared to the MMAS-ET approach the computing time of the ANTCOL-
ET combined with the hill climber was on the average 80% higher. Thus, one

376 M. Eley

Table 3. Comparison of the objective function values of different ant colony approaches

MMAS-ET ANTCOL-ET ANTCOL-ET ANTCOL-ET
without hill climber with hill climber with hill climber

Stopping 2500 2500 2500 Same running
criterion solutions solutions solutions time as MMAS-ET

car92I best 4.7 4.5 4.3 4.3
avg. 4.8 4.6 4.4 4.4

car91I best 5.7 5.3 5.2 5.2
avg. 5.8 5.4 5.2 5.3

ear83I best 36.8 40.3 36.8 38.1
avg. 38.3 41.4 38.3 38.5

hec92I best 11.2 12.2 11.1 11.2
avg. 11.4 12.6 11.4 11.4

kfu93I best 15.0 15.4 14.5 14.6
avg. 15.4 15.8 14.9 14.9

lse91I best 12.2 11.9 11.3 11.4
avg. 12.6 12.2 11.7 11.7

rye93I best 10.1 10.2 9.8 9.8
avg. 10.3 10.7 10.0 10.0

sta83I best 157.4 158.2 157.3 157.3
avg. 157.6 159.3 157.5 157.5

tre92I best 8.9 8.8 8.6 8.6
avg. 9.2 9.0 8.7 8.7

uta92I best 3.8 3.6 3.5 3.5
avg. 3.8 3.7 3.5 3.5

ute92I best 27.7 28.9 26.4 26,7
avg. 28.4 29.4 27.0 27.5

yor83I best 39.3 42.2 39.4 40.1
avg. 40.2 43.7 40.4 40.7

pur93I best 5.5 4.8 4.6 4.6
avg. 5.6 4.9 4.6 4.6

can conclude that ANTCOL-ET takes more time but gets a better solution
quality than MMAS-ET. Note that the same stopping criterion was used for
both algorithms, namely 2500 solutions.

Additionally, test runs for the ANTCOL-ET approach were carried out where
the running time was limited to the time that the MMAS-ET approach required
to generate 2500 solutions. The results are displayed in the last column of Table 3.
Thus, comparing both algorithms with the same running time the ANTCOL-ET
approach outperformed the MMAS-ET approach in ten out of the thirteen test
cases.

Finally, a second variant of the ANTCOL-ET approach was implemented. As
in the approach of Costa and Hertz an indirect representation was employed in
this variant. But instead of using the AS framework, the pheromone trails were
initialized and updated as in the MMAS approach described in Section 4.2. Also

Ant Algorithms for the Exam Timetabling Problem 377

Table 4. Best (b.) and average (a.) objective function value for the Toronto data set
version I (best solutions printed in bold)

Test Cal96 Cal01 DGS01 DG02 PS02 BN03 Mal03 Wal04 BN04 Bal04 Aal05
case [14] [12] [20] [19] [30] [10] [27] [40] [11] [6] [2]

car91I b. 7.1 6.6 6.2 5.7 - 4.6 5.1 5.7 5.0 4.8 5.3
a. 7.1 6.6 6.5 5.8 4.7 5.2 5.8 - 6.1 -

car92I b. 6.2 6.0 5.2 - - 4.0 4.3 4.6 4.3 4.2 4.6
a. 6.2 6.0 5.6 - - 4.1 4.4 4.7 - 4.3 -

ear83I b. 36.4 29.3 45.7 39.4 40.5 36.1 35.1 45.8 36.2 35.4 37.0
a. 36.4 29.3 46.7 43.9 45.8 37.1 35.4 46.4 - 36.7 -

hec92I b. 10.8 9.2 12.4 10.9 11.7 11.3 10.6 12.9 11.6 10.8 11.8
a. 10.8 9.2 12.6 11.4 12.4 11.5 10.7 13.4 - 11.5 -

kfu93I b. 14.0 13.8 18.0 - 16.5 13.7 13.5 17.1 15.0 13.7 15.8
a. 14.0 13.8 19.5 - 18.3 13.9 14.0 17.8 - 14.4 -

lse91I b. 10.5 9.6 15.5 12.6 13.2 10.6 10.5 14.7 11.0 10.4 12.1
a. 10.5 9.6 15.9 13.0 15.5 10.8 11.0 14.8 - 11.0 -

rye92I b. 7.3 6.8 - - - - 8.4 11.6 - 8.9 10.4
a. 7.3 6.8 - - - 8.7 11.7 - 9.3 -

sta83I b. 161.5 158.2 160.8 157.4 161.2 168.3 157.3 158.0 161.9 159.1 160.4
a. 161.5 158.2 167.0 157.7 168.7 168.7 157.4 158.0 - 159.4 -

tre92I b. 9.6 9.4 10.0 - 9.3 8.2 8.4 8.9 8.4 8.3 8.7
a. 9.6 9.4 10.5 - 10.2 8.4 8.6 9.2 - 8.4 -

uta92I b. 3.5 3.5 4.2 4.1 - 3.2 3.5 4.4 3.4 3.4 3.6
a. 3.5 3.5 4.5 4.3 - 3.2 3.6 4.5 - 3.5 -

ute92I b. 25.8 24.4 27.8 - 28.7 25.5 25.1 29.0 27.4 25.7 27.8
a. 25.8 24.4 31.3 - 30.5 25.8 25.2 29.1 - 26.2 -

yor83I b. 41.7 36.2 41.0 39.7 38.9 36.8 37.4 42.3 40.8 36.7 40.7
a. 41.7 36.2 42.1 40.6 41.7 37.3 37.9 42.5 - 37.2 -

≥MMAS 5 4 11 6 7 2 0 11 4 1 7

≥ANTCOL 6 5 11 6 7 2 3 12 6 1 12

Cal96: Carter et al.; Cal01: Caramia et al.; DGS01: Di Gaspero and Schaerf;
DG02: Di Gaspero; PS02: Paquete and Stuetzle (Lex-seq approach);
BN03: Burke and Newall; Mal03: Merlot et al.; Wal04: White et al.;
BN04: Burke and Newall; Bal04: Burke et al.; Aal05: Asmuni et al.

the trail values were restricted and the hill climber was used. This MMAS vari-
ant of the approach of Costa and Hertz generated solutions comparable to the
MMAS-ET approach. Only for the sta83I test case was the objective function
value of 157.3 for the best solution better than the best solution generated by
the MMAS-ET approach. And for the yor83I test case both other approaches
were outperformed with an objective function value of 39.2. Thus, the test re-
sults indicate that, irrespective of the representation, the ANTCOL approach
outperforms the MMAS approach.

378 M. Eley

Table 5. Best (b.) and average (a.) objective function value for the Toronto data set
version I (best solutions printed in bold)

Test Cal05 KH05 YP05 Aal06 Bal06a Bal06b ABK BB06 MMAS ANTCOL
case [18] [24] [41] [1] [9] [7] [3] [5] -ET -ET

car91I b. 5.4 5.4 4.5 5.2 5.4 4.6 4.5 4.4 5.7 5.2
a. 5.5 - 4.5 - - - - - 5.8 5.2

car92I b. 4.2 4.7 3.9 4.4 4.5 4.0 4.9 3.7 4.7 4.3
a. 4.3 - 4.0 - - - - - 4.8 4.4

ear83I b. 34.2 40.2 33.7 34.9 37.9 32.8 36.3 32.8 36.8 36.8
a. 35.6 - 34.9 - - - - - 38.3 38.3

hec92I b. 10.4 11.9 10.8 10.3 12.3 10.0 11.1 10.2 11.2 11.1
a. 10.5 - 11.4 - - - - - 11.4 11.4

kfu93I b. 14.3 15.8 13.8 13.5 15.2 13.0 14.7 13.0 15.0 14.5
a. 14.4 - 14.4 - - - - - 15.4 14.9

lse91I b. 11.3 - 10.4 10.2 11.3 10.0 12.1 9.8 12.2 11.3
a. 11.5 - 10.8 - - - - - 12.6 11.7

rye92I b. 8.8 - 8.5 8.7 - - 10.7 - 10.1 9.8
a. 9.1 - 8.8 - - - - - 10.3 10.0

sta83I b. 157.0 157.4 158.4 159.2 158.2 159.9 157.3 157.0 157.4 157.3
a. 157.1 - - - - - - - 157.6 157.5

tre92I b. 8.6 8.4 7.9 8.4 8.9 7.9 8.9 7.8 8.9 8.6
a. 8.8 - 8.1 - - - - - 9.2 8.7

uta92I b. 3.5 - 3.1 3.6 3.9 3.2 3.6 3.1 3.8 3.5
a. 3.6 - 3.2 - - - - - 3.8 3.5

ute92I b. 25.3 27.6 25.4 26.0 28.0 24.8 26.4 24.8 27.7 26.4
a. 25.5 - 26.1 - - - - - 28.4 27.0

yor83I b. 36.4 - 36.5 36.2 41.4 37.3 39.0 34.8 39.3 39.4
a. 37.6 - 36.9 - - - - - 40.2 40.4

≥MMAS-ET 0 3 1 1 8 1 3 0

≥ANTCOL 4 7 1 4 11 1 7 0

Cal05: Cote et al.; KH05: Kendall and Hissan; YP05: Yang and Petrovic;
Aal06: Abdullah et al.; Bal06a: Burke et al.; Bal06b: Burke et al.;
ABK06: Ayob et al.; BB06: Burke and Bykov .

5.5 Comparison with Other Exam Timetabling Approaches

The MMAS-ET as well as the ANTCOL-ET approach were compared with ap-
proaches from the literature. These benchmark approaches minimize the objec-
tive function of Carter et al. presented in Section 5.1. The approaches have been
tested using the Toronto data set version I. Results of the benchmarks are taken
from the literature [37,40] and from the internet (see the timetabling database
at the University of Melbourne [35]).

Tables 4 and 5 display the best solution and the average solution achieved. The
results can be summarized as follows. Although neither the MMAS-ET nor the
ANTCOL-ET approach can improve the best solution for any of the 12 test cases,

Ant Algorithms for the Exam Timetabling Problem 379

their performance is comparable with most of the 19 benchmark algorithms. It
is striking that no approach outperforms all other approaches for all test cases.
Therefore, the last two lines in Tables 4 and 5 indicate how often the MMAS-ET
approach and the ANTCOL-ET approach, respectively, obtained solutions that
were not worse than the benchmark approach corresponding to the column in
the table.

The ANTCOL-ET approach is capable of finding better solutions for at least
some test cases compared to almost all benchmark approaches. For example,
the highly competitive Bal04 approach of Burke et al. was outperformed for one
test case, namely sta83I. Good results were obtained in particular for the test
cases sta83I, car92I, uta92I and car91I. Only the recently published algorithm
of Burke and Bykov [5] clearly dominates both ant algorithms for all test cases.
But, for this flex-deluge approach, running times between five and ten hours
were reported which are considerably higher than for ANTCOL-ET.

There are also some test cases where MMAS-ET outperforms the approaches.
For example, MMAS-ET generates better solutions than the Cal01 approach of
Caramia et al. (that holds the best results in five out of the twelve test cases)
in four out of the twelve test cases, i.e. for the test cases car91I, car92I, sta83I
and tre92I. White et al. argued in [40] that these test cases seem to be in a way
easier than the other test cases.

6 Conclusion

In this paper different strategies for solving exam timetabling problems by ant al-
gorithms have been implemented. In ant colony optimization the search for good
solutions is incorporated in the learning process controlled by the definition of
the pheromone trail and the constructive heuristic. Different representations for
the pheromone values have been tested as well as different strategies for updating
the pheromone, i.e. ant systems (AS) and Max–Min ant systems (MMAS).

The most effective ant algorithm turned out to be a modified version of the
AS approach of Costa and Hertz [17]. In particular, a hill climber was added
to this approach that improves the solutions and has a strong impact on the
solution quality. Unlike other combinatorial optimization problems, for example
the TSP or the QAP, the exam timetabling problem using the MMAS approach
did not outperform the simpler AS strategy.

Of course, it goes without saying that proper adjusting parameters can im-
prove the performance of an algorithm considerably. In particular the values of
α and β have a strong impact on the solution quality.

The implemented algorithms have been compared with the existing literature
on the problem. Unfortunately, the experimental analysis shows that the results
of our algorithms are not satisfactory on all benchmark instances. Nevertheless,
we consider these results quite encouraging, and they provide a good basis for
future improvements. One promising direction could be the parallelization of
the ANTCOL-ET or the MMAS-ET approach. Recently, Manfrin et al. [25]
tested different interconnection topologies for a Max–Min approach to the TSP.

380 M. Eley

They showed that the parallel models outperformed the equivalent sequential
algorithms.

Another self-evident extension of the approach would be to incorporate addi-
tional constraints and requirements, like for example scarce room resources or
precedence constraints between exams.

References

1. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M.: Investigating Ahuja–Orlins large
neighbourhood search for examination timetabling. OR Spectrum 29, 331–372
(2007)

2. Asmuni, H., Burke, E.K., Garibaldi, J., McCollum, B.: Fuzzy multiple ordering
criteria for examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT
2004. LNCS, vol. 3616, pp. 334–353. Springer, Heidelberg (2005)

3. Ayob, M., Burke, E.K., Kendall, G.: An iterative re-start variable neighbourhood
search for the examination timetabling problem. In: Proceedings of the 6th In-
ternational Conference on the Practice and Theory of Automated Timetabling,
Brno, pp. 336–344 (August 2006)

4. Blum, C.: Theoretical and Practical Aspects of Ant Colony Optimization.
Akademische Verlagsgesellschaft, Berlin (2004)

5. Burke, E.K., Bykov, Y.: Solving exam timetabling problems with the flex-deluge
algorithm. In: Proceedings of the 6th International Conference on the Practice
and Theory of Automated Timetabling, Brno, pp. 370–372 (August 2006)

6. Burke, E.K., Bykov, Y., Newall, J.P., Petrovic, S.: A time-predefined local search
approach to exam timetabling problems. IIE Transactions 36, 509–528 (2004)

7. Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Hybrid vari-
able neighbourhood approaches to university exam timetabling. Technical Report
NOTTCS-TR-2006-2, University of Nottingham (2006)

8. Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in
British universities: A survey. In: Burke, E.K., Ross, P. (eds.) Practice and Theory
of Automated Timetabling. LNCS, vol. 1153, pp. 76–92. Springer, Heidelberg
(1996)

9. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph based
hyper-heuristic for exam timetabling problems. European Journal of Operational
Research 176, 177–192 (2007)

10. Burke, E.K., Newall, J.P.: Enhancing timetable solutions with local search meth-
ods. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740,
pp. 195–206. Springer, Heidelberg (2003)

11. Burke, E.K., Newall, J.P.: Solving examination timetabling problems through
adaptation of heuristic orderings. Annals of Operational Research 129, 107–134
(2004)

12. Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination time-
tabling. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 230–241.
Springer, Heidelberg (1995)

13. Carter, M.W., Laporte, G.: Recent developments in practical examination time-
tabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Time-
tabling. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)

14. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling algorithmic
strategies and applications. Journal of the Operational Research Society 47, 373–
383 (1996)

Ant Algorithms for the Exam Timetabling Problem 381

15. Casey, S., Thompson, J.: Grasping the examination scheduling problem. In: Burke,
E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 233–244.
Springer, Heidelberg (2003)

16. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies.
In: Proceedings of the 1st European Conference on Artificial Life, pp. 134–142.
Elsevier, Amsterdam (1992)

17. Costa, D., Hertz, A.: Ants can color graphs. Journal of the Operational Research
Society 48, 295–305 (1997)

18. Cote, P., Wong, T., Sabouri, R.: Application of a hybrid multi-objective evolu-
tionary algorithm to the uncapacitated exam proximity problem. In: Burke, E.K.,
Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 151–168. Springer, Heidel-
berg (2005)

19. Di Gaspero, L.: Recolour, shake and kick: A recipe for the examination time-
tabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS,
vol. 2740, Springer, Heidelberg (2003)

20. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling.
In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117.
Springer, Heidelberg (2001)

21. Dorigo, M., Di Caro, G., Gambarella, L.M.: Ant algorithms for discrete optimiza-
tion. Artificial Life 5, 137–172 (1999)

22. Dowsland, K., Thompson, J.: Ant colony optimisation for the examination
scheduling problem. Journal of the Operational Research Society 56, 426–439
(2005)

23. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

24. Kendall, G., Hussin, N.M.: A tabu search hyper-heuristic approach to the ex-
amination timetabling problem at the Mara University of Technology. In: Burke,
E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–218. Springer,
Heidelberg (2005)

25. Manfrin, M., Birattari, M., Stuetzle, T., Dorigo, M.: Parallel ant colony optimiza-
tion for the traveling salesman problem. In: Dorigo, M., Gambardella, L.M., Birat-
tari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150,
pp. 224–234. Springer, Heidelberg (2006)

26. Merkle, M., Middendorf, M.: An ant algorithm with a new pheromone evaluation
rule for total tardiness problems. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S.,
Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWork-
shops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000,
and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 287–296. Springer, Heidel-
berg (2000)

27. Merlot, L.T.G., Boland, N., Hughes, P.J., Stuckey, B.D.: A hybrid algorithm for
the examination timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.)
PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

28. Naji Azimi, Z.: Comparison of metaheuristic algorithms for examination time-
tabling problem. Applied Mathematics and Computation 16, 337–354 (2004)

29. Naji Azimi, Z.: Hybrid heuristics for examination timetabling problem. Applied
Mathematics and Computation 163, 705–733 (2005)

30. Paquete, L., Stuetzle, T.: Empirical analysis of tabu search for the lexicographic
optimization of the examination timetabling problem. In: Burke, E.K., De Caus-
maecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 413–420. Springer, Heidel-
berg (2003)

382 M. Eley

31. Socha, K., Knowles, J., Samples, M.: A max–min ant system for the university
course timetabling problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.)
Ant Algorithms. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)

32. Socha, K., Sampels, M., Manfrin, M.: Ant algorithms for the university course
timetabling problem with regard to state-of-the-art. In: Raidl, G.R., Cagnoni,
S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson,
C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoCOP 2003. LNCS,
vol. 2611, pp. 334–345. Springer, Heidelberg (2003)

33. Stuetzle, T., Hoos, H.H.: Max–min ant systems. Future Generation Computer
Systems 16, 889–914 (2000)

34. http://www.cs.nott.ac.uk/∼rxq/data.htm
35. http://www.or.ms.unimelb.edu.au/timetabling
36. http://www.fh-aschaffenburg.de/index.php?idlogdown
37. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search

methodologies and automated approaches for examination timetabling. Computer
Science Technical Report No. NOTTCS-TR-2006-4, University of Nottingham
(2006)

38. Vesel, A., Zerovni, J.: How well can ants color graphs? Journal of Computing and
Information Technology (CIT) 8, 131–136 (2000)

39. White, G.M., Xie, B.S.: Examination timetabling and tabu search with longer-
term memory. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
85–103. Springer, Heidelberg (2001)

40. White, G.M., Xie, B.S., Zonjic, S.: Using tabu search with long-term memeory
and relaxation to create examination timetables. European Journal of Operational
Research 153, 80–91 (2004)

41. Yang, Y., Petrovic, S.: A novel similarity measure for heuristic selection in ex-
amination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS,
vol. 3616, pp. 377–396. Springer, Heidelberg (2005)

http://www.cs.nott.ac.uk/~rxq/data.htm
http://www.or.ms.unimelb.edu.au/timetabling
http://www.fh-aschaffenburg.de/index.php?idlog down

An Extensible Modelling Framework for

Timetabling Problems

David Ranson1 and Samad Ahmadi2

1 Representational Systems Lab, Department of Informatics,
University of Sussex, Falmer, BN1 9RH, UK

d.j.ranson@sussex.ac.uk
2 School of Computing, De Montfort University,

The Gateway, Leicester, LE1 9BH, UK
sahmadi@dmu.ac.uk

Abstract. Several modelling languages have been proposed to stan-
dardize the specification, solution and data format for timetabling prob-
lems. As of now these languages have not been adopted as standards
and are seen as not simplifying the modelling process, lacking features
and offering little advantage over traditional programming languages. In
contrast to this approach we propose a new language-independent mod-
elling framework for general timetabling problems based on past experi-
ence of modelling the examination timetabling problem. This framework
is a work in progress but demonstrates the possibilities and convenience
such a model would afford.

1 Introduction

Timetabling is the process of assigning events, and resources, to timeslots sub-
ject to constraints [4,21]. The feasibility of a solution for a timetabling problem
is determined by the violation of constraints that are specified for each prob-
lem. One of the most significant application areas of timetabling is educational
timetabling which is a very practical challenge faced by almost all academic
institutions several times every year [8,13,18,19]. Unlike many other combinato-
rial optimization problems, models for educational timetabling problems change
from one institution to another due to changing constraints and restrictions on
resources. For this reason efforts have been made to create standard modelling
languages and data formats to simplify this process.

This paper discusses the rationale for proposing a modelling framework for
timetabling problems in relation to existing languages designed for timetabling.
Rather than proposing a new timetabling language the idea of a standard
modelling framework for timetabling problems builds on the ideas found in the
existing timetabling languages and also makes use of the functionality, standard-
ization and ease of use provided by modern object-oriented modelling frame-
works. The Examination Timetabling Problem (ETP) is chosen as a significant
special case of timetabling to demonstrate the practical difficulties with the ex-
isting languages and also to demonstrate the abilities of our framework.

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 383–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 D. Ranson and S. Ahmadi

2 Examination Timetabling Problem

Examination Timetabling is the problem of assigning Exams to Timeslots during
a exam period respecting the given constraints [2,6,7,14]. The most important
constraint for the ETP is the clash (or first degree student conflict) constraint
which states that a student cannot be timetabled to sit more than one exam
at the same time. This is an example of a hard constraint as a single violation
renders a solution infeasible. Other examples of hard constraints are duration
and room capacity constraints; i.e. exams cannot be assigned to timeslots where
the duration is shorter than that of the exam.

The consecutive exams constraint is an example of a soft constraint. A con-
secutive constraint is violated only when a student is timetabled to sit more than
one exam in immediate succession. This constraint exists in most instances of
the ETP, but may not be universal. Institutions may also add their own unique
constraints, such as not mixing different language exams on the same day [2].
As different institutions use very different constraints it is hard to generalize the
problem in such a way that it is applicable to all cases. Any universal model
for the ETP must therefore allow some flexibility in what constraints are spec-
ified. The goal in exam timetabling is to minimize the number of constraint
violations over a solution. Typically a penalty is assigned to violations of soft
constraints and the total cost for any solution is the sum of penalties for all the
violations found.

There are many varying approaches to solving the exam timetabling problem
in use at institutions and by researchers. For a comprehensive recent survey of
these approaches see [14]. Some publicly available ETP data exists, such as that
published by the University of Melbourne1, and has been used for benchmark-
ing. However, these can relate to instances of the problem over a decade old,
since when many universities have seen expansion in their numbers of students
and courses, especially modular courses where students take exams from many
different departments. There has also been some confusion over different versions
of these data sets that have appeared and been used at various times [14] and
issues like this need to be avoided with any future standards.

3 Progress Towards a Standard Format

The need for a modelling standard and standard data format has been recog-
nized for some time and the requirements of such a standard have been discussed
in detail [5]. These properties include generality, completeness, and easy trans-
lation with existing formats. It is the authors’ belief that other research areas
where standard formats have become the norm have benefited from increased
cooperation between researchers and better benchmarking resources which have
led to advances in research. Examples of this in practice include the Travelling
Salesman Problem (TSPLIB) [1,5] and the MPL (Mathematical Programming
Language [9]).
1 http://www.or.ms.unimelb.edu.au/timetabling

http://www.or.ms.unimelb.edu.au/timetabling

An Extensible Modelling Framework for Timetabling Problems 385

A number of modelling languages have been proposed to standardize the spec-
ification, solution and data format for Timetabling Problems. In this section we
briefly introduce the existing languages and provide examples of usage for one
of these languages showing insight into the problems encountered.

The Standard Timetabling Language (STTL) [10,11] is a complete object-
oriented functional language designed for modelling timetabling problems using
set theory. STTL specifies the problem being modelled including the evaluation
function, instance data and solutions.

TimeTabling Markup Language (TTML) is based on MathML which is an
XML application for modelling maths formulae [12]. The goal was to create a
language with the functionality of STTL but using the fashionable XML. The
learning curve is steeper than that for STTL and seems overly complicated,
especially for specifying the complex logic involved in these problems.

UniLang [17] is another language which has similar aims to STTL. It attempts
to be a simple language easily understandable by humans as well as machines,
modelling the problem by identifying subclasses of the problem and using this
to guide the design. In the first aim it has largely been superseded by widely
used languages such as XML. Whilst demonstrated to be capable for its purpose,
UniLang does not seem as expressive as STTL or TTML.

We are unaware of any of these data formats, or any other format, being used
to share timetabling data. The only known exception to this are the, previously
mentioned, publicly available datasets published by Carter at the University of
Melbourne. Perhaps the main reason these languages have not been adopted as
standards is that they offer no advantages to the user over traditional program-
ming languages. These somewhat idealistic languages do not simplify the mod-
elling process, and can be restrictive in that they do not have all the features of a
modern programming language, are overly complicated or appear cumbersome.

The wide variety of algorithms and software applications that use different
models and data formats for timetabling problems increase the cost and diffi-
culties of implementing new approaches. In the next section, a model for the
examination timetabling problem in STTL is presented as a case study, examin-
ing some of the underlying problems with the existing approaches. A standard
model for timetabling is then presented which addresses some of these issues.

4 Modelling the Exam Timetabling Problem in STTL

STTL [10] is a refinement of the ideas and specification previously described
in [5]. As a serious attempt at creating a standard for specifying and repre-
senting timetabling problems it has the benefits of being both a standard data
format and a language that can be interpreted, using Kingston’s publicly avail-
able interpreter (can be downloaded from [15]), to evaluate solutions. Unlike
most previous approaches STTL mixes an Object-Oriented and Functional ap-
proach to representing the resources and relationships in the problem. The result
is an expressive language more than capable of modelling timetabling problems
and data.

386 D. Ranson and S. Ahmadi

In our previous research STTL was used to model the ETP and instance data
in our VAST application [16], demonstrating the functionality of the language;
the model used is described in Appendix A. This ETP model was based on that
Kingston [10,11] created for the High School Timetabling problem and has been
made available online [15].

Our experience of STTL did make apparent some limitations of the model, due
to both our design approach and issues with STTL itself. The STTL language
has a learning curve and, probably because of its nature as a Functional Object
Oriented language, appears quite complicated. Although set theory is one good
way of specifying this kind of problem it might not be the best way from a purely
modelling point of view. The sample of STTL below shows a function for finding
clashes and illustrates some of the idiosyncrasies of the language:

clashExist(e:SET[Exam]): BOOLEAN = (
if e = {} then false
else

if (((head e) /= this)and ((head e).time = time) and
((head e).students * students))

then true else clashExist(tail e) end
end

)

In this model both timeslots and rooms are represented by corresponding
classes which inherit directly from an Entity super class. However timeslots and
rooms are structurally very similar, they are both containers that events are
assigned to. In fact both Rooms and Timeslots can be modelled as container
objects; such a model would reduce the amount of code required as both rooms
and timeslots could be evaluated using the same code.

Also, in this STTL model, there are inconsistencies in the way that constraints
are modelled. In some cases constraints are modelled as classes, containing all the
functions for finding violations. However in other cases constraints are modelled as
functions inside arbitrary classes, for example the clash constraint is implemented
as a function of the Exam class (this is the reason this constraint is missing from
the class diagram in Figure 2). It would be ideal if all the constraints were imple-
mented in the same way as this would allow the existing constraints to be extended
and handled in the same way by a single evaluation function.

Due to its design the STTL interpreter can be quite slow compared to other
languages; the application being creating was highly interactive and needed to be
very responsive. Evaluating the solution with the STTL interpreter after every
change proved to be too slow for our purposes and so the evaluation function
was reimplemented in Java using STTL simply as the format for data exchange.

From this experience we concluded that STTL was of most use to us as a
data format for precisely specifying instances and solutions, whilst the evaluation
functions and problem specifications were largely extraneous. These limitations
are typical of those found with the existing approaches to modelling timetabling
problems. It was found to be a relatively simple task to translate data from

An Extensible Modelling Framework for Timetabling Problems 387

Fig. 1. A class diagram of the classes found in the Problem model. These are the
superclasses of all the other classes in the framework.

different formats into this STTL model; we created utilities to do this from
the format used by Carter, and an existing Database containing the published
Nottingham Data set2.

5 Designing a Flexible Model

The experience of using STTL and modelling timetabling problems suggested
that a new, maybe simpler, approach to modelling these problems should be
examined. Rather than proposing a new timetabling language we propose the
idea of a standard modelling framework for timetabling problems building on the
ideas found in STTL but also making use of the functionality, standardization
and ease of use provided by modern Object Oriented modelling frameworks.

Our goal in this paper is to present a small and simple subset of classes,
together with the relations between these classes, which are required to model the
ETP, but that can be extended to model other timetabling problems. The model
will be based on the structure of the problem domain rather than considering
any particular approach to solving the problem or any particular implementation
language. We intend to exploit the features of object-oriented programming and
the UML modelling language to achieve this. Such a model would still need to
conform to the requirements set out in [5] summarized as

– Generality
– Completeness of problem
– Ease of translation.

We augment these with the additional requirement, ‘ease of modelling’. This
means our framework should actually make it easier to model timetabling prob-
lems, providing an incentive for adopting this flexible model over other existing
formats. This is achieved in two ways:

1. Defined hierarchical framework
2. Reusable components.

It may be that this will not be the most suitable framework for every timetabling
problem but our aim is to make it suitable for the vast majority of applications.

We choose an object oriented approach as this allows us use the standard
inheritance mechanism to create the flexible hierarchical structure required. In
2 Available from http://www.cs.nott.ac.uk/∼rxq/data

388 D. Ranson and S. Ahmadi

the following examples Java terminology is used but without loss of generality.
The aim of the final system is to allow code, for a visually specified timetabling
model, to be generated in any programming language.

An ontology for constructing scheduling systems is proposed in [20]. The on-
tology proposed is structured around a constraint satisfaction model where ac-
tivities are assigned resources subject to constraints. This is a good basis for
modelling the timetabling problems and a similar approach is also taken in our
modelling framework. Based on all these ideas we propose an extensible model
built up in four layers:

1. A general abstract problem model
2. Optimization Problem model
3. General Timetabling Problem model
4. University Examination Timetabling Problem model.

Each layer builds upon the previous layer by adding problem specific resources
and constraints. Once the lower layers have been implemented they can be re-
used for different problems with a minimal amount of work. The functionality
available at each of the lower layers is always available at the highest abstraction
level, for example a constraint specified in the general timetabling problem, can
also be applied to the ETP.

6 The Abstract General Problem Layer

The lowest level of the model that we will consider is an entirely abstract general
problem defining the superclasses that the other layers in the modelling frame-
work will extend. This layer defines classes for Resources, Constraints that need
to be satisfied, Solutions and Evaluation.

Constraints are modelled as functional classes; each Constraint implements
methods for evaluating a problem and its solution. The Evaluator class is responsi-
ble for aggregating the results of the constraint evaluations over the entire problem.

7 The Abstract General Timetabling Problem Layer

For the timetabling problem we extend our existing model, as shown in
Table 1, to define the resources and constraints that are found in this domain.
Event resources are assigned to Timeslot resources in order to solve the prob-
lem, Events themselves can be assigned resources. Another abstract layer actu-
ally exists between the Problem and Timetabling Problem, tentatively titled the
‘Optimization Problem’ model this provides concrete classes for the Evaluator
and Constraint interfaces that allow them to return numerical values rather than
abstract Objects.

The representation of time is one of the most difficult design decisions to
make in a model such as this. Time is modelled as a sequence of Timeslots, with
specified durations and orders, to which Events can be assigned. The Capaci-
tyTimeslot class extends this functionality to include a resource capacity that

An Extensible Modelling Framework for Timetabling Problems 389

Table 1. The problem, resource, solution, evaluation and constraint Classes that have
been added to the Optimization and Timetabling layers of the model

Abstract Layer Optimization Layer Timetabling Layer

Problem Optimization Problem Timetabling Problem

Resource Event
Timeslot
Capacity Timeslot

Solution Timetabling Solution

Evaluator Optimization Evaluator Timetabling Evaluator

Constraint Optimization Constraint Timetabling Constraint
Clash Constraint
Consecutive Constraint
Capacity Constraint
Mixed Duration Constraint
Missing Event Constraint

Table 2. The public interface for the TimetablingSolution class

Method Description

assign (Event, Timeslot) Assigns an Event to a Timeslot
unassign (Event) Un-assigns an Event from a Timeslot
getEvents (Timeslot) Returns list of Events assigned to Timeslot
getTimeslot(Event) Returns Timeslot an Event is assigned to

cannot be exceeded. The timetabling solution is represented by the Timetabling-
Solution class which contains a list of Event, Timeslot assignments.

The TimetablingConstraint class adds functionality to find if a constraint is
hard or soft; a hard constraint will render a solution infeasible if it is violated. An
isFeasible() method is added to the TimetablingEvaluator which simply returns
true as long as no hard constraints have been violated. If a TimetablingCon-
straint is violated the class needs to provide information on the specific location
of the problem, for example the name and location of exams which conflict in
the solution. Applications using this model could make use of this information
to suggest ways to resolve such violations.

8 The Exam Timetabling Problem Layer

To complete our Exam Timetabling model the Classes required to implement
the ETP layer are added to the model by extending the existing classes. The
new resources added to the framework here are shown in Table 3. Note that
the Solution Class does not need to be changed to implement this layer. The
only classes needed are those that map the abstract Timetabling problem to the

390 D. Ranson and S. Ahmadi

Table 3. The Classes required to implement the Exam Timetabling layer of the model.
Classes on the same row extend the same superclass, shown in the first column.

Abstract Layer Timetabling Layer Exam Timetabling Layer

Problem Timetabling Problem ETP Problem

Resource Event Exam
CapacityTimeslot RoomTimeslot

Student

Solution Timetabling Solution

Evaluator Timetable Evaluator ETP Evaluator

concrete Exam Timetabling problem. It is envisioned that further timetabling
problems could be modelled using this framework with similar ease. Our work
modelling other problems, including the High School Timetabling problem, has
already begun as well as the implementation of Solver Classes which can be
used with the framework. The complete API documentation describing all the
Classes in the complete ETP model has been published online [15] and we expect
to make our Java implementation available in the near future.

9 Exchange and Persistence of Timetabling Data

Whilst the primary aim of this paper was not to supply a new data format for
timetabling problems, our framework does provide us with such a format. The
structure presented in our model can be maintained in an XML document using
tags formed from the classes in our model.

Using this XML representation as a format for timetabling data exchange and
persistence has certain advantages. Firstly, for most modern object-oriented lan-
guages, it can be created very easily using XML serialization and deserialization
of the Problem object. Unlike some other formats the resulting documents are
both human readable and completely self-documenting. Although any problem
modelled within our framework can be represented in this way a lot of the com-
plexity that exists in other formats is reduced because only the data is stored,
not any of the logic. This does mean that the problem is only completely speci-
fied when combined with the modelling framework; however as long as there is
agreement on how the Constraints are implemented this is not a serious issue.

The published Carter timetabling data, previously referred to, has been con-
verted into this new format and an example application that demonstrates the
use of our modelling framework to load and evaluate this data is available on-
line [15]. In most cases it is a relatively trivial task to convert existing data
into this format and it is our intention to set up a repository where data in
this format can be shared. This repository, in conjunction with other similar
efforts [3], could be used to bring ease in using real-world timetabling data for
use by different researchers as well as maintaining the integrity and consistency
of the data.

An Extensible Modelling Framework for Timetabling Problems 391

10 Future Work

In this paper an attempt to design an extensible modelling framework, with the
aim of simplifying the modelling process for timetabling problems, is reported
and the applicability of this approach is demonstrated to model the ETP. How-
ever, to demonstrate the extensibility, it will be necessary to show that the
model works for other timetabling applications, as has started with High School
Timetabling, and that the same design consistency can be applied across differ-
ent problems in this domain.

One future goal is the implementation of a graphical tool which can be used
to assemble the reusable components of our framework, making use of an online
repository, in order to further simplify the modelling process of new problems.
Such an application would allow non programmers to easily model timetabling
problems, making use of the reusable Resources and Constraints or adding new
ones to the central repository as required.

11 Concluding Remarks

The aim of this paper has partly been to reignite discussion on the issue of
‘Standard Timetabling Languages’ but mainly to promote our ideas on a different
approach to this topic and how these problems could be modelled in line with
modern programming paradigms.

Unlike other approaches we have deliberately shied away from advocating a
particular programming language (apart from for the purposes of demonstrating
our own implementation) as we believe this is best decided by the capabilities
of the user. All mainstream languages are capable of modelling problems in this
domain. Trying to form consensus around a standardized language is always
difficult but focusing on this when such a language is not required can cause
discussion to stagnate and limit progress.

References

1. Bixby, B., Reinelt, G.: TSPLIB a library of travelling salesman and related problem
instances (1995), http://softlib.rice.edu/tsplib.html

2. Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in
British universities – a survey. In: Burke, E.K., Ross, P. (eds.) Practice and The-
ory of Automated Timetabling. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg
(1996)

3. Burke, E. K., McCollum, B.: Examination timetabling: a new formulation (Ab-
stract). In: Proceedings of the 6th International Conference on the Practice and
Theory of Automated Timetabling, Brno, August (2006) 373–375

4. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operational Research 140, 266–280 (2002)

5. Burke, E.K., Kingston, J.H., Pepper, P.A.: A standard data format for timetabling
instances. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp.
213–222. Springer, Heidelberg (1998)

http://softlib.rice.edu/tsplib.html

392 D. Ranson and S. Ahmadi

6. Burke, E.K., de Werra, D., Kingston, J.: Applications to timetabling. In: Gross, J.,
Yellen, J. (eds.) The Handbook of Graph Theory, pp. 445–474. Chapman Hall/CRC
Press, London (1997)

7. Carter, M.W.: A survey of practical applications of examination timetabling algo-
rithms. Operations Research 34, 193–202 (1986)

8. Carter, M.W.: Timetabling. In: Gass, S., Harris, C.M. (eds.) Encyclopedia of Oper-
ations Research and Management Science, pp. 833–836. Kluwer, Dordrecht (2001)

9. Dantzig, G.B., Eisenstat, S.C., Magnanti, T.L., Maier, S.F., McGrath, M.B.: The
mathematical programming language (MPL). In: Proceedings of the 1971 26th
Annual Conference, pp. 278–283. ACM Press, New York (1971)

10. Kingston, J.H.: Modelling timetabling problems with STTL. In: Burke, E., Erben,
W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 309–321. Springer, Heidelberg (2001)

11. Kingston, J.H.: A user’s guide to the STTL timetabling language version 1.0.
http://www.it.usyd.edu.au/∼jeff/ttsttl1.ps

12. Ozcan, E.: Towards an XML based standard for timetabling problems: TTML. In:
MISTA 2003. Proceedings of the 1st Multidisciplinary International Conference on
Scheduling: Theory and Applications, Nottingham, pp. 566–569 (August 2003)

13. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J. (ed.) Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, CRC Press, Boca
Raton, FL (2004)

14. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.: A survey of search
methodologies and automated approaches for examination timetabling. Univer-
sity of Nottingham, Computer Science Technical Report No. NOTTCS-TR-2006-4
(2006)

15. Ranson, D.: Extensible modelling framework for timetabling optimisation problem
website. http://www.informatics.sussex.ac.uk/users/djr23/emfop/

16. Ranson, D., Cheng, P.C.H.: Graphical tools for heursitic visualization. In: MISTA.
The 2nd Multidisciplinary International Conference on Scheduling: Theory and
Applications, New York, pp. 658–668 (July 2005)

17. Reis, L.P., Oliveira, E.: A language for specifying complete timetabling problems.
In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 322–341.
Springer, Heidelberg (2001)

18. Rudova, H., Murray, K.: University course timetabling with soft constraints. In:
Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 310–
328. Springer, Heidelberg (2003)

19. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13,
87–127 (1999)

20. Smith, S., Becker, M.: An ontology for constructing scheduling systems. In: Work-
ing Notes from 1997 AAAI Spring Symposium on Ontological Engineering, Stan-
ford, CA, AAAI Press, Menlo Park, CA (March 1997)

21. Wren, A.: Scheduling, timetabling and rostering – a special relationship? In: Burke,
E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS,
vol. 1153, pp. 46–75. Springer, Heidelberg (1996)

A The Exam Timetabling Model in STTL

Each STTL model is made up of three components, normally split into sepa-
rate files. The problem file contains the STTL code for modelling the problem,
constraints, and the evaluation function. An instance file contains concrete data

http://www.it.usyd.edu.au/~jeff/ttsttl1.ps
http://www.informatics.sussex.ac.uk/users/djr23/emfop/

An Extensible Modelling Framework for Timetabling Problems 393

Fig. 2. Class Diagram of STTL ETP model. Arrows represent an ‘is a’ inheritance
relationship between two classes whilst diamonds represent a ‘1-many’ relationship.
Not all the Constraint classes are illustrated.

for an instance of the problem and solution files contains values for the solution
variables found in the problem file.

All the Classes needed to model the ETP in an STTL Problem file are illus-
trated in Figure 2. The Entity class is a superclass for all the resources found in
the problem, whilst the Constraint classes are used by the evaluation function.
The Before and After constraints are order precedence relations whilst InRoom
and InTime constrain which times and rooms an exam can be assigned.

An Experimental Study on Hyper-heuristics and

Exam Timetabling

Burak Bilgin, Ender Özcan, and Emin Erkan Korkmaz

Artificial Intelligence Laboratory (ARTI), Yeditepe University,
Department of Computer Engineering, 34755 Kadıköy/Istanbul, Turkey

{bbilgin,eozcan,ekorkmaz}@cse.yeditepe.edu.tr

Abstract. Hyper-heuristics are proposed as a higher level of abstrac-
tion as compared to the metaheuristics. Hyper-heuristic methods deploy
a set of simple heuristics and use only non-problem-specific data, such
as fitness change or heuristic execution time. A typical iteration of a
hyper-heuristic algorithm consists of two phases: the heuristic selection
method and move acceptance. In this paper, heuristic selection mecha-
nisms and move acceptance criteria in hyper-heuristics are analyzed in
depth. Seven heuristic selection methods and five acceptance criteria are
implemented. The performance of each selection and acceptance mech-
anism pair is evaluated on 14 well-known benchmark functions and 21
exam timetabling problem instances.

1 Introduction

The term hyper-heuristic refers to a recent approach used as a search method-
ology [2, 3, 5, 11, 20]. It represents a higher level of abstraction than most of
the uses of metaheuristic methods in the literature. Hyper-heuristics involve an
iterative strategy that chooses a heuristic to apply to a candidate solution of
the problem at hand, at each step. The properties of hyper-heuristics are dis-
cussed in [3]. An iteration of a hyper-heuristic can be subdivided into two parts:
heuristic selection and move acceptance. In the hyper-heuristic literature, sev-
eral heuristic selection and acceptance mechanisms are used [2, 3, 5, 11, 20].
However, no comprehensive study exists that compares the performance of these
different mechanisms in depth.

Timetabling problems are real-world constraint optimization problems. Due
to their NP-complete nature [16], the traditional approaches might fail to gen-
erate a solution to a timetabling problem instance. The timetabling problems
require assignment of time-slots (periods) and possibly some other resources to
a set of events, subject to a set of constraints. Numerous researchers deal with
different types of timetabling problems based on different types of constraints
utilizing a variety of approaches. Employee timetabling, course timetabling and
examination timetabling are the research fields that attract the most attention.
In this paper, seven heuristic selection methods and five different acceptance
criteria are analyzed in depth. Their performance is measured on well-known

E.K. Burke and H. Rudová (Eds.): PATAT 2006, LNCS 3867, pp. 394–412, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Experimental Study on Hyper-heuristics and Exam Timetabling 395

benchmark functions. Moreover, 35 hyper-heuristics, generated by coupling all
heuristic selection methods and all acceptance criteria with each other, are eval-
uated on a set of 21 exam timetabling benchmark problem instances, including
the Carter’s [10] and Ozcan’s [25] benchmarks.

The remainder of this paper is organized as follows. In Section 2 background
is provided including the hyper-heuristics, benchmark functions and exam time-
tabling. Experimental settings and results for benchmarks are given in Section 3.
The hyper-heuristic experiments on exam timetabling are presented in Section 4.
Finally, the conclusions are discussed in Section 5.

2 Preliminaries

2.1 Hyper-heuristics

Hyper-heuristic methods are described in [3] as an alternative method to tech-
niques that work directly on solution spaces. Most applications of Metaheuristics
are ‘problem-specific’ solution methods, which require knowledge and experience
about the problem domain and properties. Metaheuristics are mostly developed
for a particular problem and require fine tuning of parameters. Therefore, they
can be developed and deployed only by experts who have the sufficient knowledge
and experience on the problem domain and the meta-heuristic search method.
Hyper-heuristics, on the other hand, are developed to be more general opti-
mization methods, which can be applied to more optimization problems easily.
Hyper-heuristics can be considered as black box systems, which take the problem
instance and several low-level heuristics as input and which can produce the re-
sult independent of the problem characteristics. In this concept, hyper-heuristics
use only non-problem-specific data provided by each low-level heuristic in order
to select and apply them to the candidate solution [3, 5, 11].

The selection mechanisms in the hyper-heuristic methods were emphasized
in the initial phases of the research period. Cowling et al. [11] proposed three
types of low-level heuristic selection mechanisms to be used in hyper-heuristics;
which are Simple, Greedy and Choice Function. There are four types of Simple
heuristic selection mechanisms. Simple Random mechanism chooses a low-level
heuristic at a time randomly. Random Descent mechanism chooses a low-level
heuristic randomly and applies it repeatedly as long as it produces improving
results. Random Permutation mechanism creates an initial permutation of the
low-level heuristics and at each iteration applies the next low-level heuristic in the
permutation. Random Permutation Descent mechanism is the same as Random
Permutation mechanism, except that it applies the low-level heuristic in turn
repeatedly as long as it produces improving results. Greedy method calls each
low-level heuristic at each iteration and chooses the one that produces the most
improving solution. Choice Function is the most complex one. It analyzes both
the performance of each low-level heuristic and each pair of low-level heuristics.
This analysis is based on the improvement and execution time. This mechanism
also considers the overall performance. It attempts to focus the search as long
as the improvement rate is high and broadens the search if the improvement

396 B. Bilgin, E. Özcan, and E.E. Korkmaz

rate is low. For each of these low-level heuristic selection mechanisms two simple
acceptance criteria are defined. These are AM, where all moves are accepted and
OI where only improving moves are accepted [11].

Burke et al. [5] proposed a Tabu-Search heuristic selection method. This mech-
anism ranks low-level heuristics. At the beginning of the run each heuristic starts
the execution with the minimum ranking. Every time a heuristic produces an
improving movement its rank is increased by a positive reinforcement rate. The
rank of the heuristics cannot exceed a predetermined maximum value. Whenever
a heuristic cannot make an improving move; its rank is decreased by a negative
reinforcement learning rate. Similarly the rank of a heuristic cannot be decreased
to a value less than a predetermined minimum value. In the case of worsening
moves, the heuristic is also added to the tabu list. Another parameter is the tabu
duration which sets the maximum number of iterations a low-level heuristic can
stay in the tabu list.

Burke et al. [8] introduce a simple generic hyper-heuristic which utilizes con-
structive heuristics (graph coloring heuristics) to tackle timetabling problems.
A tabu-search algorithm chooses among permutations of constructive heuristics
according to their ability to construct complete, feasible and low-cost timeta-
bles. At each iteration of the algorithm, if the selected permutation produces a
feasible timetable, a deepest descent algorithm is applied to the obtained time-
table. Burke et al. used this hyper-heuristic method in exam and university
course timetabling problem instances. The proposed method worked well on the
related benchmark problem instances [8].

Burke et al. [9] proposed a case-based heuristic selection approach. A knowl-
edge discovery method is employed to find the problem instances and situations
where a specific heuristic has a good performance. The proposed method also
explores the similarities between the problem instance and the source cases, in
order to predict the heuristic that will perform best. Burke et al. applied the
Case-Based Heuristic Selection Approach to exam and university course time-
tabling [9].

Ayob and Kendall [2] emphasized the role of the acceptance criterion in the
hyper-heuristic. They introduced the Monte Carlo Hyper-heuristic which has a
more complex acceptance criterion than AM or OI criteria. In this criterion,
all of the improving moves are accepted and the non-improving moves can be
accepted based on a probabilistic framework. Ayob and Kendall defined three
probabilistic approaches to accept the non-improving moves. The first approach,
named Linear Monte Carlo (LMC), uses a negative linear ratio of the probability
of acceptance to the fitness worsening. The second approach, named Exponential
Monte Carlo (EMC), uses a negative exponential ratio of the probability of
acceptance to the fitness worsening. The third approach, named Exponential
Monte Carlo with Counter (EMCQ), is an improvement over EMC. Again, the
probability of accepting worsening moves decreases as the time passes. However
if no improvement can be achieved over a series of consecutive iterations then
this probability starts increasing again. As the heuristic selection mechanism,
they all use a simple random mechanism [2].

An Experimental Study on Hyper-heuristics and Exam Timetabling 397

Kendall and Mohamad [20] introduced another hyper-heuristic method which
also focuses on acceptance criterion rather than selection method. They used the
Great Deluge Algorithm as the acceptance criterion and Simple Random as the
heuristic selection method. In the Great Deluge Algorithm initial fitness is set as
the initial level. At each step, the moves which produce fitness values less than
the level are accepted. At each step the level is also decreased by a factor [20].

Rattadilok et al. [29] presented a research on the choice function hyper-
heuristics, generalized low-level heuristics, and utilization of parallel comput-
ing environments for hyper-heuristics. An abstract low-level heuristic model is
proposed which can be easily implemented to be a functional low-level heuristic
tackling a specific problem type. The choice function hyper-heuristic and the low-
level heuristics are improved to evaluate a broader range of the data. Two types
of distributed hyper-heuristic approaches are introduced. The first approach is
a single hyper-heuristic, multiple low-level heuristics which are executed on dif-
ferent nodes and focus on different areas of the timetable. The second approach
utilizes multiple hyper-heuristics each of which work on a different node. In this
approach, hyper-heuristics collaborate during the execution [29].

According to this survey it is concluded that several heuristic selection meth-
ods and acceptance criteria are introduced for the hyper-heuristic framework.
Each pair of heuristic selection and acceptance mechanism can be used as a
different hyper-heuristic method. Despite this fact, such combinations have not
been studied in the literature. In this study, seven heuristic selection mechanisms,
which are Simple Random, Random Descent, Random Permutation, Random
Permutation Descent, Choice-Function, Tabu-Search and Greedy heuristic se-
lection mechanisms, are implemented. For each heuristic selection method five
acceptance criteria: AM, OI, IE, a Great Deluge and a Monte Carlo are used. As
a result a broad range of hyper-heuristic variants are obtained. These variants
are tested on mathematical objective functions and exam timetabling problems.

2.2 Benchmark Functions

Well-defined problem sets are useful to measure the performance of optimization
methods such as genetic algorithms, memetic algorithms and hyper-heuristics.
Benchmark functions which are based on mathematical functions or bit strings
can be used as objective functions to carry out such tests. The characteristics of
these benchmark functions are explicit. The difficulty levels of most benchmark
functions are adjustable by setting their parameters. In this study, 14 different
benchmark functions are chosen to evaluate the hyper-heuristics.

The benchmark functions presented in Table 1 are continuous functions, and
Royal Road Function, Goldberg’s 3 bit Deceptive Function [17, 18] and Whitley’s
4 bit Deceptive Function [31] are discrete functions. Their deceptive nature is
due to the large Hamming distance between the global optimum and the local
optima. To increase the difficulty of the problem n dimensions of these functions
can be combined by a summation operator.

The candidate solutions to all the continuous functions are encoded as
bit strings using Gray code. The properties of the benchmark functions are

398 B. Bilgin, E. Özcan, and E.E. Korkmaz

Table 1. Properties of benchmark functions, lb indicates the lower bound, ub indicates
the upper bound of the search space, opt indicates the global optimum in the search
space

Function [Source] lb ub opt Continuity Modality

Sphere [13] −5.12 5.12 0 Continuous Unimodal
Rosenbrock [13] −2.048 2.048 0 Continuous Unimodal
Step [13] −5.12 5.12 0 Continuous Unimodal
Quartic [13] −1.28 1.28 1 Continuous Multimodal
Foxhole [13] −65.536 65.536 1 Continuous Multimodal
Rastrigin [28] −5.12 5.12 0 Continuous Multimodal
Schwefel [30] −500 500 0 Continuous Multimodal
Griewangk [19] −600 600 0 Continuous Multimodal
Ackley [1] −32.768 32.768 0 Continuous Multimodal
Easom, [15] −100 100 −1 Continuous Unimodal
Rotated Hyperellipsoid[13] −65.536 65.536 0 Continuous Unimodal
Royal Road [23] – – 0 Discrete –
Goldberg [17, 18] – – 0 Discrete –
Whitley [31] – – 0 Discrete –

presented in Table 1. The modality property indicates the number of optima in
the search space (i.e. between bounds). Unimodal benchmark functions have a
single optimum. Multimodal benchmark functions contain more than one opti-
mum in their search space. Such functions contain at least one additional local
optimum in which a search method can get stuck.

2.3 Exam Timetabling

Burke et al. [4] applied a light or a heavy mutation, randomly selecting one,
followed by a hill climbing method in a memetic algorithm framework for solving
exam timetabling problems. Burke et al. [6] provided a survey of timetabling
problems at UK universities. Investigation of various combinations of Constraint
Satisfaction Strategies with GAs for solving exam timetabling problems can
be found in [21]. Paquete et al. [26] employed a multi-objective evolutionary
algorithm (MOEA) based on Pareto ranking for solving the exam timetabling
problem in the Unit of Exact and Human Sciences at the University of Algarve.
Two objectives were determined: to minimize the number of conflicts within the
same group and the conflicts between different groups. Wong et al. [32] used a
GA utilizing a non-elitist replacement strategy to solve a single exam timetabling
problem at an École de Technologie Supérieure. After genetic operators were
applied, violations were fixed in a hill climbing procedure.

Carter et al. [10] applied different heuristic orderings based on graph coloring.
Their experimental data became one of the commonly used exam timetabling
benchmarks. Gaspero and Schaerf [14] analyzed the tabu search approach using
graph coloring based heuristics. Merlot et al. [22] explored a hybrid approach for

An Experimental Study on Hyper-heuristics and Exam Timetabling 399

solving the exam timetabling problem that produces an initial feasible timetable
via constraint programming. The method then applies simulated annealing with
hill climbing to improve the solution. Petrovic et al. [27] introduced a case-based
reasoning system to create initial solutions to be used by the Great Deluge
algorithm. Burke et al. [7] proposed a general and fast adaptive method that
arranges the heuristic to be used for ordering exams to be scheduled next. Their
algorithm produced comparable results on a set of benchmark problems with
the current state of the art. This study is useful as a guide for formulating the
constraints and objective function to be used in a timetabling problem. Ozcan
and Ersoy [25] used a violation-directed adaptive hill climber within a memetic
algorithm to solve the exam timetabling problem. A Java tool named FES is
introduced by Ozcan in [24] which utilizes XML as input/output format.

The exam timetabling problem can be formulated as a constraint optimiza-
tion problem by a 3-tuple (V, D, C). V is a finite set of examinations, D is a
finite set of domains of variables, and C is a finite set of constraints to be sat-
isfied. In this representation a variable stands for an exam schedule of a course.
Exam timetabling involves a search for a solution, where values from domains
(timeslots) are assigned to all variables while satisfying all the constraints.

The set of constraints for the exam timetabling problem differs from insti-
tution to institution. In this study, three constraints are defined and used as
described in [25]:

1. A student cannot be scheduled to two exams at the same time slot.
2. If a student is scheduled to two exams in the same day, these should not be

assigned to consecutive timeslots.
3. The total capacity for a timeslot cannot be exceeded.

3 Hyper-heuristics for Benchmark Functions

3.1 Benchmark Function Heuristics

Six heuristics were implemented to be used with hyper-heuristics on benchmark
functions. Half of these are hill-climbing methods and the remaining half are
mutational operators combined with a hill climber.

Next Ascent Hill Climber produces number of bits times iterations at each
heuristic call. Starting from the most significant bit, at each iteration it inverts
the next bit in the bit string. If there is a fitness improvement, the modified
candidate solution is accepted as the current candidate solution [23]. Davis’ Bit
Hill Climber is the same as Next Ascent Hill Climber but it does not modify the
bit sequentially but in the sequence of a randomly determined permutation [12].
Random Mutation Hill Climber chooses a bit randomly and inverts it. Again,
the modified candidate solution becomes the current candidate solution, if the
fitness is improved. This step is repeated for total number of bits in the candidate
solution times iterations at each heuristic call [23].

Mutational heuristics are Swap Dimension, Dimensional Mutation and Hy-
permutation. Swap Dimension heuristic randomly chooses two different dimen-
sions in the candidate solution and swaps them. Dimensional Mutation heuristic

400 B. Bilgin, E. Özcan, and E.E. Korkmaz

Table 2. Average ranking of each selection method on each problem: CF, Choice
Function; SR, Simple Random; RD, Random Descent; RP, Random Permutation; RPD,
Random Permutation Descent; Tabu, Tabu Search; GR, Greedy

Name CF SR RD RP RPD TABU GR

Sphere 7.0 7.0 24.5 14.0 24.5 24.5 24.5
Rosenbrock 20.2 22.0 16.0 23.8 16.0 16.0 12.0
Step 17.7 17.7 17.7 18.9 17.7 17.7 18.6
Quartic w/ noise 17.9 17.9 17.9 17.9 17.9 17.9 18.6
Foxhole 15.7 15.7 15.7 19.3 15.7 15.7 28.2
Rastrigin 17.9 17.5 18.5 17.3 18.5 17.7 18.6
Schwefel 17.0 17.0 18.8 17.0 18.8 18.8 18.6
Griewangk 11.8 17.2 17.2 17.2 17.2 17.2 28.2
Ackley 16.5 16.5 16.5 23.5 16.5 16.5 20.0
Easom 16.0 16.0 21.7 16.0 21.7 21.7 12.9
Rotated Hyperellipsoid 20.4 21.2 13.4 21.6 14.8 19.8 15.6
Royal Road 16.8 17.6 17.1 17.4 17.1 17.8 22.2
Goldberg 18.6 19.3 16.6 19.4 17.4 16.1 18.6
Whitley 17.9 17.9 17.9 17.9 17.9 17.9 18.6

randomly chooses a dimension and inverts each bit in this dimension with the
probability 0.5. Hypermutation randomly inverts each bit in the candidate so-
lution with the probability 0.5. To improve the quality of candidate solutions
obtained from these mutational heuristics, Davis’s Bit Hill Climbing is applied.

3.2 Experimental Settings

The experiments are performed on Pentium IV, 2 GHz Linux machines with
256 Mb memory. Fifty runs are performed for each hyper-heuristic and problem
instance pair. For each problem instance, a set of fifty random initial configura-
tions are created. Each run in an experiment is performed starting from the same
initial configuration. The experiments are allowed to run for 600 CPU seconds.
If the global optimum of the objective function is found before the time limit is
exhausted, then the experiment is terminated.

The candidate solutions are encoded as bit strings. The continuous functions
in benchmark set are encoded in Gray code. The discrete functions have their own
direct encoding. The Foxhole function has default dimension of 2. The default
number of bits per dimension parameter is set to 8, 3, and 4 for the Royal Road,
Goldberg, and Whitley functions respectively. The rest of the functions have 10
dimensions and 30 bits are used to encode the range of a variable.

3.3 Experimental Results

The experimental results of performance comparison of 35 heuristic selection–
acceptance criteria combinations on 14 different benchmark functions are sta-
tistically evaluated. For each benchmark function the combinations are sorted

An Experimental Study on Hyper-heuristics and Exam Timetabling 401

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

CF SR RD RP RPD TABU GR

Fig. 1. Average ranking of each selection method on all problem instances

0

5

10

15

20

25

AM OI IE MC GD

Fig. 2. Average ranking of each acceptance criterion on all problem instances

according to their performance. The average number of fitness evaluations needed
to converge to global optimum is used as the performance criterion for the exper-
iments with 100% success rate. The average best fitness reached is used for the
experiments with success rates lower than 100%. The performances are evaluated
statistically using a t-test. Each combination has been given a ranking. Confi-
dence interval is set to 95% in the t-test to determine significant performance
variance. The combinations that do not have significant performance variances
are grouped together and have been given the same ranking. The average rank-
ings of heuristic selection methods and move acceptance criteria are calculated
to reflect their performance. In Table 2, average rankings for the heuristic se-
lection methods are provided on each problem. The averages are obtained by
testing the selection methods on each acceptance criterion. In Table 3, average
rankings of acceptance criteria are given where the averages are obtained by
testing acceptance criteria on each selection method this time. Lower numbers
in these tables denote a higher placement in the ranking and indicate better per-
formance. The average ranking of each selection method on all of the functions
is shown in Figure 1, and the average ranking of each acceptance criterion on all
of the functions is shown in Figure 2.

No heuristic selection and acceptance criterion couple came out to be a win-
ner on all of the benchmark functions. Choice Function performs well on Sphere
and Griewangk functions. Simple Random performs well on Sphere Function.
Random Descent and Random Permutation Descent perform well on Rotated

402 B. Bilgin, E. Özcan, and E.E. Korkmaz

Table 3. Average ranking of each acceptance criterion on each problem: AM, All Moves
Accepted; OI, Only Improving Moves Accepted; IE, Improving and Equal Moves Ac-
cepted; MC, Monte Carlo Acceptance Criterion; GD, Great Deluge Acceptance Crite-
rion

Name AM OI IE MC GD

Sphere 19.5 17.0 17.0 17.0 19.5
Rosenbrock 23.8 12.0 16.0 23.8 16.0
Step 29.1 18.6 17.7 18.9 17.7
Quartic w/noise 29.1 17.4 14.5 14.5 14.5
Foxhole 12.4 27.7 26.5 11.1 12.4
Rastrigin 29.1 10.6 7.6 23.9 18.8
Schwefel 29.1 10.6 7.6 22.6 20.1
Griewangk 11.9 27.7 26.5 11.9 11.9
Ackley 19.0 19.0 16.5 16.5 19.0
Easom 23.3 11.6 8.5 23.3 23.3
Rotated Hyperellipsoid 25.1 11.7 8.8 22.4 22.6
Royal Road 28.1 10.6 7.6 23.0 20.7
Goldberg 29.1 10.6 7.6 22.4 20.4
Whitley 23.9 10.6 7.6 23.9 23.9

Hyperellipsoid Function. Greedy performs well on Rosenbrock Function. The per-
formance variances of heuristic selection methods on remaining functions were
not as significant as these cases. Choice Function performs slightly better than
remaining selection methods on average. IE acceptance criterion performs well
on Rastrigin, Schwefel, Easom, Rotated Hyperellipsoid, and discrete deceptive
functions. OI acceptance criterion performs well on Rosenbrock Function. The
MC acceptance criterion performs well on Foxhole Function. The IE accept-
ance criterion indicates a significantly better performance than the remaining
acceptance criteria on average.

In Figure 3 average number of evaluations to converge to global optimum by
a selected subset of hyper-heuristics is depicted on a subset of benchmark func-
tions, which are Sphere, Ackley and Goldberg Functions. Figures 3(a), (c), and (e)
show the performance comparison of the heuristic selection methods using IE
acceptance criterion for Sphere, Ackley and Goldberg Functions respectively and
Figures 3(b), (d), and (f) the performance comparison of the acceptance crite-
ria using the Choice Function heuristic selection method for Sphere, Ackley and
Goldberg Functions respectively. Lower average number of evaluations means
faster convergence to the global optimum and indicates better performance.

For Sphere Model, distinct performance variances are observed between heuris-
tic selection methods in Figure 3(a). On the other hand, the difference is not
so prominent between acceptance criteria in Figure 3(b). Figure 3(a) shows
that the Random Permutation and Choice Function heuristic selection meth-
ods achieved faster convergence than the remaining selection methods. In Fig-
ures 3(c) and (d) it can be observed that the Choice Function heuristic selection
method and IE acceptance criterion accomplished a faster convergence to global

An Experimental Study on Hyper-heuristics and Exam Timetabling 403

1.00E+03

1.00E+04

CFIE
SRIE

RDIE
RPIE

RPDIE

TABUIE
GRIE 1.00E+03

1.00E+04

CFAM CFOI CFIE CFMC CFGD

 (a) (b)

1.00E+03

1.00E+04

1.00E+05

CFIE
SRIE

RDIE
RPIE

RPDIE

TABUIE
GRIE 1.00E+03

1.00E+04

CFAM CFOI CFIE CFMC CFGD

(c) (d)

1.00E+05

1.00E+06

CFIE
SRIE

RDIE
RPIE

RPDIE

TABUIE
GRIE 1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

CFAM CFOI CFIE CFMC CFGD

Fig. 3. Average number of evaluations to converge to global optimum of hyper-
heuristics consisting of all heuristic selection methods using IE acceptance criterion
on (a) Sphere Model function, (c) Ackley Function, (e) Goldberg Function, and average
number of evaluations to converge to global optimum of hyper-heuristics consisting of
Choice Function heuristic selection method and all acceptance criteria on (b) Sphere
Model function, (d) Ackley Function, (f) Goldberg Function.

optimum on Ackley Function. Figures 3(e) and (f) show that the Choice Func-
tion heuristic selection method and IE acceptance criterion performed best on
Goldberg’s Function. Figure 3(f) shows that the performance variances between
different acceptance criteria are enormous on the same function. Also, the AM

404 B. Bilgin, E. Özcan, and E.E. Korkmaz

Table 4. Parameters and properties of the exam timetabling problem instances

Instance Exams Students Enrollment Density Days Capacity

Carf92 543 18419 54062 0.14 12 2000
Cars91 682 16925 59022 0.13 17 1550
Earf83 181 941 6029 0.27 8 350
Hecs92 81 2823 10634 0.20 6 650
Kfus93 486 5349 25118 0.06 7 1955
Lsef91 381 2726 10919 0.06 6 635
Purs93 2419 30032 120690 0.03 10 5000
Ryes93 486 11483 45051 0.07 8 2055
Staf83 139 611 5539 0.14 4 3024
Tres92 261 4360 14901 0.18 10 655
Utas92 622 21267 58981 0.13 12 2800
Utes92 184 2749 11796 0.08 3 1240
Yorf83 190 1125 8108 0.29 7 300
Yue20011 140 559 3488 0.14 6 450
Yue20012 158 591 3706 0.14 6 450
Yue20013 30 234 447 0.19 2 150
Yue20021 168 826 5757 0.16 7 550
Yue20022 187 896 5860 0.16 7 550
Yue20023 40 420 790 0.19 2 150
Yue20031 177 1125 6716 0.15 6 550
Yue20032 210 1185 6837 0.14 6 550

acceptance criterion cannot reach the global optimum on Goldberg’s Function
and no average number of evaluations to converge to global optimum value is
shown for this criterion in the same figure.

4 Hyper-heuristics for Solving Exam Timetabling
Problems

4.1 Exam Timetabling Problem Instances and Settings

Carter’s Benchmark [10] and Yeditepe University Faculty of Architecture and
Engineering [25] data sets are used for the performance comparison of the hyper-
heuristics. The characteristics of the experimental data are illustrated in Table 4.

Hyper-heuristics consisting of Simple Random, Random Descent, Tabu Search,
Choice Function, and Greedy heuristic selection mechanisms and all the accept-
ance criteria, described in Section 2.1, are tested with each benchmark exam
timetabling problem instance. The fitness function used for solving the exam
timetabling problem takes a weighted average of the number of constraint viola-
tions. The fitness function is multiplied by −1 to make the problem a minimizing
problem:

An Experimental Study on Hyper-heuristics and Exam Timetabling 405

F (T) =
−1

1 +
∑

∀i

wigi(T)
. (1)

In Equation (1), wi indicates the weight associated to the ith constraint,gi

indicates the number of violations of ith constraint for a given schedule T . The
value 0.4 is used as the weight for the first and the third constraint and 0.2 for
the second constraint, as explained in Section 2.3.

4.2 Heuristics for Exam Timetabling

Candidate solutions are encoded as an array of timeslots where each locus repre-
sents an exam to be scheduled. Four heuristics are implemented to be used with
the hyper-heuristics for solving an exam timetabling problem. Three of these
heuristics utilize a tournament strategy for choosing a timeslot to reschedule a
given exam to improve a candidate solution based on a constraint type, while
the last one is a mutation operator. Heuristics for the constraints (i) and (ii)
work similarly. Each improving heuristic targets a different conflict. Both heuris-
tics randomly choose a predetermined number of exams and select the exam
with the highest number of targeted conflicts among these. Also a predeter-
mined number of timeslots are randomly chosen and the number of targeted
conflicts are checked when the exam is assigned to that timeslot. The times-
lot with the minimum number of targeted conflicts is then assigned to the
selected exam.

The heuristic which targets the capacity conflicts (iii) randomly chooses a
predetermined number of timeslots and selects the timeslot with the maximum
capacity conflict among these. A predetermined number of exams that are sched-
uled to this timeslot are chosen randomly and the exam that has the most atten-
dants is selected among them. Again a group of timeslots are chosen randomly
and the timeslot with the minimum number of attendants is assigned to the
selected exam. The mutational heuristic passes over each exam in the array
and assigns a random timeslot to the exam with a predetermined probability
(1/number of courses).

0

1

2

3

4

5

6

7

8

CF_M
C

SR_G
D

GR_M
C

RD_M
C

RP_M
C

RPD_M
C

TABU_M
C

Fig. 4. Top seven heuristic selection method and acceptance criterion combinations
considering the average ranking over all exam timetabling problem instances

406 B. Bilgin, E. Özcan, and E.E. Korkmaz

Table 5. Average best fitness values for best performing heuristic selection–acceptance
criterion combinations on each problem instance: AM, All Moves Accepted; OI, Only
Improving Moves Accepted; IE, Improving and Equal Moves Accepted; MC, Monte
Carlo acceptance criterion; GD, Great Deluge acceptance criterion

Instance (Av. B. Fit., SD) H. Heuristic Alg.

Carf92 (-1.02E-02, 1.18E-03) TABU IE *
Cars91 (-1.93E-01, 1.20E-01) TABU IE *
Earf83 (-7.27E-03, 4.94E-04) CF MC
Hecs92 (-2.19E-02, 2.43E-03) CF MC *
Kfus93 (-3.40E-02, 4.30E-03) SR GD
Lsef91 (-1.42E-02, 1.38E-03) CF MC
Purs93 (-1.41E-03, 6.98E-05) SR IE
Ryes93 (-1.08E-02, 1.37E-03) CF MC
Staf83 (-2.68E-03, 1.04E-05) SR MC *
Tres92 (-6.79E-02, 1.08E-02) SR GD
Utas92 (-1.87E-02, 1.79E-03) TABU IE *
Utes92 (-2.27E-03, 8.64E-05) CF MC
Yorf83 (-8.32E-03, 4.57E-04) CF MC
Yue20011 (-9.02E-02, 1.07E-02) SR GD
Yue20012 (-7.54E-02, 9.38E-03) SR GD
Yue20013 (-2.50E-01, 0.00E+00) SR MC *
Yue20021 (-3.45E-02, 4.55E-03) SR GD
Yue20022 (-1.26E-02, 9.08E-04) CF MC
Yue20023 (-1.52E-02, 2.69E-04) CF MC *
Yue20031 (-1.59E-02, 1.65E-03) CF MC
Yue20032 (-5.42E-03, 3.68E-04) CF MC

4.3 Experimental Results

The experimental results of performance comparison of Simple Random, Ran-
dom Descent, Tabu Search, Choice Function, and Greedy heuristic selection
method and all acceptance criteria combinations on 21 different exam time-
tabling problem in-stances are statistically evaluated. Each pair has been as-
signed a ranking. The confidence interval is set to 95% in the t-test to determine
the significant performance variance. Similar to the previous experiments, the
combinations that do not have significant performance variances are assigned to
the same ranking.

Table 5 gives the average best fitness values for the best performing heuristic
selection–acceptance criterion combinations. If several hyper-heuristics share the
same ranking, then only one of them appears in the table, marked with *. Seven
combinations that have the top average rankings are presented in Figure 4.
According to the results, the Choice Function heuristic selection combined with
Monte Carlo acceptance criterion has the best average performance on exam
timetabling problems. The hyper-heuristic combinations with acceptance criteria
AM and OI do not perform well on any of the problem instances.

An Experimental Study on Hyper-heuristics and Exam Timetabling 407

Table 6. The performance rankings of each heuristic selection–acceptance criterion
combination on all problem instances; lower rankings indicate better performance

(a)

H.-h. Carf92 Cars91 Earf83 Hecs92 Kfus93 Lsef91 Purs93

SR AM 30.5 26.5 26 26 26 26 26
SR OI 19.5 19 12.5 16 19 16 8
SR IE 7.5 7.5 12.5 16 9 11.5 1
SR MC 15 15 7 7.5 15 11.5 23
SR GD 7.5 6 8 7.5 1 4.5 9
RD AM 30.5 31.5 30 31 31 29.5 31.5
RD OI 19.5 19 20 16 19 20 12.5
RD IE 7.5 3 12.5 16 9 11.5 4
RD MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RD GD 30.5 31.5 30 31 31 29.5 31.5
RP AM 30.5 31.5 34.5 31 31 34.5 34.5
RP OI 19.5 19 20 16 19 20 12.5
RP IE 7.5 3 12.5 16 9 11.5 4
RP MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RP GD 30.5 31.5 34.5 31 31 34.5 34.5
RPD AM 30.5 31.5 30 31 31 29.5 31.5
RPD OI 19.5 19 20 16 19 20 12.5
RPD IE 7.5 3 12.5 16 9 11.5 4
RPD MC 7.5 11.5 3.5 4.5 9 4.5 20.5
RPD GD 30.5 31.5 30 31 31 29.5 31.5
CF AM 30.5 26.5 30 31 31 33.5 27
CF OI 19.5 19 20 16 19 20 12.5
CF IE 7.5 3 12.5 16 9 11.5 4
CF MC 7.5 9 1 1.5 3 1 16.5
CF GD 19.5 19 20 16 19 20 12.5
TABU AM 30.5 31.5 30 31 31 29.5 28.5
TABU OI 19.5 19 20 16 19 20 12.5
TABU IE 7.5 3 12.5 16 9 11.5 4
TABU MC 7.5 11.5 3.5 4.5 9 4.5 20.5
TABU GD 30.5 31.5 30 31 31 29.5 28.5
GR AM 24.5 24.5 24 24.5 24.5 24.5 24.5
GR OI 19.5 23 20 16 23 20 16.5
GR IE 7.5 7.5 12.5 16 9 11.5 7
GR MC 7.5 14 6 1.5 2 4.5 18
GR GD 24.5 24.5 25 24.5 24.5 24.5 24.5

408 B. Bilgin, E. Özcan, and E.E. Korkmaz

Table 6 continued (b)

H.-h. Ryes93 Staf83 Tres92 Utas92 Utes92 Yorf83

SR AM 26 31 26 26 26 26
SR OI 19.5 16 19.5 15 16 19.5
SR IE 8 16 8.5 3.5 16 12
SR MC 15 4.5 15 19 7 7
SR GD 8 4.5 1 9 8 8
RD AM 31 31 31 32.5 31 29.5
RD OI 19.5 16 19.5 19 16 19.5
RD IE 8 16 8.5 3.5 16 12
RD MC 8 4.5 8.5 11.5 4 3.5
RD GD 31 31 31 32.5 31 29.5
RP AM 31 31 31 32.5 31 34.5
RP OI 19.5 16 19.5 19 16 19.5
RP IE 8 16 8.5 3.5 16 12
RP MC 8 4.5 8.5 11.5 4 3.5
RP GD 31 31 31 32.5 31 34.5
RPD AM 31 31 31 32.5 31 29.5
RPD OI 19.5 16 19.5 19 16 19.5
RPD IE 8 16 8.5 3.5 16 12
RPD MC 8 4.5 8.5 11.5 4 3.5
RPD GD 31 31 31 32.5 31 29.5
CF AM 31 26 31 27 31 33
CF OI 19.5 16 19.5 19 16 19.5
CF IE 8 16 8.5 3.5 16 12
CF MC 1 4.5 2 8 1 1
CF GD 19.5 16 19.5 19 16 19.5
TABU AM 31 31 31 28.5 31 29.5
TABU OI 19.5 16 19.5 19 16 19.5
TABU IE 8 16 8.5 3.5 16 12
TABU MC 8 4.5 8.5 11.5 4 3.5
TABU GD 31 31 31 28.5 31 29.5
GR AM 24.5 24.5 24.5 24.5 24.5 24.5
GR OI 19.5 16 19.5 23 16 19.5
GR IE 8 16 8.5 7 16 12
GR MC 8 4.5 8.5 14 4 6
GR GD 24.5 24.5 24.5 24.5 24.5 24.5

An Experimental Study on Hyper-heuristics and Exam Timetabling 409

Table 6 continued (c)

H.-h. Y011 Y012 Y013 Y021 Y022 Y023 Y031 Y032

SR AM 26 26 22.5 26 26 9.5 26 28.5
SR OI 19.5 19.5 31.5 19.5 16 17.5 16 17.5
SR IE 12 11.5 14 12 12 17.5 16 9
SR MC 6 11.5 4 8 7.5 3.5 7.5 6.5
SR GD 1 1 8 1 7.5 7 7.5 8
RD AM 31 31 22.5 03 29.5 9.5 30 28.5
RD OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
RD IE 12 11.5 14 12 12 17.5 16 17.5
RD MC 6 5 4 4.5 4 1.5 4 3.5
RD GD 31 31 22.5 30 29.5 9.5 30 28.5
RP AM 31 31 22.5 34.5 34.5 34.5 34.5 34.5
RP OI 19.5 19.5 31.5 19.5 20 28 16 17.5
RP IE 12 11.5 14 12 12 17.5 16 17.5
RP MC 6 5 4 4.5 4 25 4 3.5
RP GD 31 31 22.5 34.5 34.5 34.5 34.5 34.5
RPD AM 31 31 22.5 30 29.5 31.5 30 28.5
RPD OI 19.5 19.5 31.5 19.5 20 28 16 17.5
RPD IE 12 11.5 14 12 12 17.5 16 17.5
RPD MC 6 5 4 4.5 4 25 4 3.5
RPD GD 31 31 22.5 30 29.5 31.5 30 32.5
CF AM 31 31 22.5 30 33 9.5 30 32.5
CF OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
CF IE 12 11.5 14 12 12 17.5 16 17.5
CF MC 3 5 4 4.5 1 1.5 1 1
CF GD 19.5 19.5 31.5 19.5 20 17.5 16 17.5
TABU AM 31 31 22.5 30 29.5 31.5 30 28.5
TABU OI 19.5 19.5 31.5 19.5 20 28 16 17.5
TABU IE 12 11.5 14 12 12 17.5 16 17.5
TABU MC 6 5 4 4.5 4 25 4 3.5
TABU GD 31 31 22.5 30 29.5 31.5 30 28.5
GR AM 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5
GR OI 19.5 19.5 31.5 19.5 20 17.5 16 17.5
GR IE 12 11.5 14 12 12 17.5 16 17.5
GR MC 2 2 4 4.5 4 3.5 4 6.5
GR GD 24.5 24.5 9.5 24.5 24.5 5.5 24.5 17.5

5 Conclusion

An empirical study on hyper-heuristics is provided in this paper. As an iterative
search strategy, a hyper-heuristic is combined with a move acceptance strategy.

410 B. Bilgin, E. Özcan, and E.E. Korkmaz

Different such pairs are experimented on a set of benchmark functions. According
to the outcome, experiments are extended to cover a set of exam timetabling
benchmark problem instances.

The experimental results denote that no combination of heuristic selection and
move acceptance strategy can dominate over the others on all of the benchmark
functions used. Different combinations might perform better on different objec-
tive functions. Despite this fact, IE heuristic acceptance criterion yielded better
average performance. Considering heuristic selection methods, Choice Function
yielded a slightly better average performance, but the difference between the
performance of Choice Function and the other heuristic selection methods were
not as significant as it was between acceptance criteria. The experimental results
on the exam timetabling benchmark indicated that Choice Function heuristic
selection method combined with MC acceptance criterion performs superior to
the rest of the hyper-heuristic combinations.

Acknowledgement. This research is funded by TUBITAK (The Scientific and
Technological Research Council of Turkey) under grant number 105E027.

References

1. Ackley, D.: An empirical study of bit vector function optimization. In: Davis, L.
(ed.) Genetic Algorithms and Simulated Annealing, pp. 170–215. Pitman, London
(1987)

2. Ayob, M., Kendall, G.: A Monte Carlo hyper-heuristic to optimise component
placement sequencing for multi head placement machine. In: InTech 2003. Pro-
ceedings of the International Conference on Intelligent Technologies, Chiang Mai,
Thailand, pp. 132–141 (December 2003)

3. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: an emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in
Operations Research and Management Science, vol. 57, pp. 457–474. Kluwer, Dor-
drecht (2003)

4. Burke, E., Newall, J.P., Weare, R.F.: A memetic algorithm for university exam
timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

5. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for time-
tabling and rostering. Journal of Heuristics 9, 451–470 (2003)

6. Burke, E., Elliman, D., Ford, P., Weare, B.: Examination timetabling in British
universities – a survey. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of
Automated Timetabling. LNCS, vol. 1153, pp. 76–90. Springer, Heidelberg (1996)

7. Burke, E.K., Newall, J.P.: Solving examination timetabling problems through adap-
tion of heuristic orderings: models and algorithms for planning and scheduling
problems. Annals of Operations Research 129, 107–134 (2004)

8. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper
heuristic for timetabling problems. European Journal of Operational Research 176,
177–192 (2007)

9. Burke, E.K., Petrovic, S., Qu, R.: Case based heuristic selection for timetabling
problems. Journal of Scheduling 9, 115–132 (2006)

An Experimental Study on Hyper-heuristics and Exam Timetabling 411

10. Carter, M.W, Laporte, G., Lee, S.T.: Examination timetabling: algorithmic strate-
gies and applications. Journal of the Operational Research Society 47, 373–383
(1996)

11. Cowling, P., Kendall, G., Soubeiga, E.: A hyper-heuristic approach to scheduling a
sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp.
176–190. Springer, Heidelberg (2001)

12. Davis, L.: Bit climbing, representational bias, and test suite design. In: Proceedings
of the 4th International Conference on Genetic Algorithms, pp. 18–23 (1991)

13. De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems.
Ph.D. Thesis, University of Michigan (1975)

14. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling.
In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117.
Springer, Heidelberg (2001)

15. Easom, E.E.: A survey of global optimization techniques. M.Eng. Thesis, University
of Louisville, KY (1990)

16. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal of Computing 5, 691–703 (1976)

17. Goldberg, D.E.: Genetic algorithms and Walsh functions: Part I, A gentle intro-
duction. Complex Systems 3, 129–152 (1989)

18. Goldberg, D.E.: Genetic algorithms and Walsh functions: Part II, Deception and
its analysis. Complex Systems 3, 153–171 (1989)

19. Griewangk, A.O.: Generalized descent of global optimization. Journal of Optimiza-
tion Theory and Applications 34, 11–39 (1981)

20. Kendall, G., Mohamad, M.: Channel assignment in cellular communication using
a great deluge hyper-heuristic. In: Proceedings of the 2004 IEEE International
Conference on Networks, pp. 769–773. IEEE Computer Society Press, Los Alamitos
(2004)

21. Marin, H.T.: Combinations of GAs and CSP strategies for solving examination
timetabling problems. Ph.D. Thesis, Instituto Tecnologico y de Estudios Superiores
de Monterrey (1998)

22. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for
the examination timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.)
PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

23. Mitchell, M., Forrest, S.: Fitness landscapes: Royal Road functions. In: Baeck, T.,
Fogel, D., Michalewiz, Z. (eds.) Handbook of Evolutionary Computation, Institute
of Physics Publishing, Bristol and Oxford University Press, Oxford (1997)

24. Özcan, E.: Towards an XML based standard for timetabling problems: TTML.
In: Multidisciplinary Scheduling: Theory and Applications, vol. 163 (24), Springer,
Berlin (2005)

25. Özcan, E., Ersoy, E.: Final exam scheduler – FES. In: Proceedings of the 2005
IEEE Congress on Evolutionary Computation, vol. 2, pp. 1356–1363 (2005)

26. Paquete, L.F., Fonseca, C.M.: A study of examination timetabling with multiobjec-
tive evolutionary algorithms. In: MIC 2001. Proceedings of the 4th Metaheuristics
International Conference, pp. 149–154.

27. Petrovic, S., Yang, Y., Dror, M.: Case-based initialisation for examination time-
tabling. In: MISTA 2003. Proceedings of the 1st Multidisciplinary International
Conference on Scheduling: Theory and Applications, Nottingham, pp. 137–154
(August 2003)

28. Rastrigin, L.A.: Extremal Control Systems. Theoretical Foundations of Engineering
Cybernetics Series. Nauka, Moscow (1974)

412 B. Bilgin, E. Özcan, and E.E. Korkmaz

29. Rattadilok, P., Gaw, A., Kwan, R.S.K.: Distributed choice function hyperheuristics
for timetabling and scheduling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004.
LNCS, vol. 3616, pp. 51–67. Springer, Heidelberg (2005)

30. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, New York
(1981) [translation of Numerische Optimierung von Computer-Modellen mittels
der Evolutionsstrategie (1977)]

31. Whitley, D.: Fundamental principles of deception in genetic search. In: Rawlins,
G.J.E. (ed.) Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo,
CA (1991)

32. Wong, T., Côté, P., Gely, P.: Final exam timetabling: a practical approach. In:
Proceedings of the IEEE Canadian Conference on Electrical and Computer Engi-
neering, Winnipeg, vol. 2, pp. 726–731 (May 2002)

Author Index

Ahmadi, Samad 383
Artigues, Christian 67
Asmuni, Hishammuddin 327

Beyrouthy, Camille 228
Bilgin, Burak 394
Burke, Edmund K. 228, 327

de Haan, Peter 267
Di Gaspero, Luca 40
Duarte, Alexandre R. 158
Duran, Guillermo 174

Eley, Michael 364

Ferland, Jacques 53
Fujiwara, Nobutomo 135

Garibaldi, Jonathan M. 327
Gendreau, Michel 53, 67
Gendron, Bernard 53

Haeusler, Edward H. 158
Hail, Noureddine 53
Healy, Patrick 119
Hurkens, Cor 210

Imahori, Shinji 135

Jaumard, Brigitte 53

Kingston, Jeffrey H. 294, 308
Korkmaz, Emin Erkan 347, 394

Landa-Silva, Dario 228
Landman, Ronald 267
Lapierre, Sophie 53

Matsui, Tomomi 135
McCollum, Barry 3, 228, 327

McMullan, Paul 228
Meyers, Carol 24
Miyashiro, Ryuhei 135
Müller, Tomáš 189
Murray, Keith 189

Nano, Emilina 105
Nguyen-Ngoc, Diem-Hang 105
Noronha, Thiago F. 174

Orlin, James B. 24
Özcan, Ender 85, 347, 394

Parkes, Andrew J. 228
Perzina, Radomı́r 248
Pesant, Gilles 53
Post, Gerhard 267

Ranson, David 383
Ribeiro, Celso C. 147, 158, 174
Rinaldi, Franca 280
Rousseau, Louis-Martin 67
Rudová, Hana 189
Ruizenaar, Henri 267

Schaerf, Andrea 40
Serafini, Paolo 280
Soriano, Patrick 53
Souyris, Sebastian 174

Ülker, Özgür 347
Urrutia, Sebastián 147, 158

van den Broek, John 210

Weintraub, Andres 174
White, Christine A. 105
White, George M. 105
Woeginger, Gerhard 210

	Title Page
	Preface
	Organization
	Table of Contents
	General Issues
	A Perspective on Bridging the Gap Between Theory and Practice in University Timetabling
	Introduction and Context
	Examination Timetabling
	Building the Institutional Model

	Course Timetabling
	A Very Different Timetabling Problem
	Building the Institutional Model
	Solution Modelling

	Conclusion

	Very Large-Scale Neighborhood Search Techniques in Timetabling Problems
	Introduction
	Timetabling Problems
	 Very Large-Scale Neighborhood Search
	Contributions of This Paper

	Cyclic Exchange Neighborhood
	Definition
	Searching the Cyclic Exchange Neighborhood
	Cyclic Exchange in the Timetabling Literature
	Relation to Other Techniques in the Literature

	Optimized Crossover in Genetic Algorithms
	Overview of Genetic Algorithms
	Optimized Crossover
	Previous Applications of Optimized Crossover
	Optimized Crossover in Timetabling Problems

	Functional Annealing
	The Functional Annealing Algorithm
	Properties of the Algorithm
	Functional Annealing and VLSN Search
	Functional Annealing and Timetabling Problems

	Concluding Remarks

	Measurability and Reproducibility in University Timetabling Research: Discussion and Proposals
	Introduction
	Significant Contributions
	Problem Formulations and Benchmark Instances
	Data Format
	Comparison Methods and Competitions
	Result Validation

	Proposals
	Statistically Principled Comparison
	Formulation, Data Format, Instances, and Results on the Web
	Web-Based Problem Management System

	Employee Timetabling
	Physician Scheduling in Emergency Rooms
	Introduction
	Problem Definition and Literature Review
	Physician Scheduling Problem Constraints
	Supply and Demand Constraints
	Workload Constraints
	Fairness Constraints
	Ergonomic Constraints

	Four Optimization Techniques for the Physician Scheduling Problem
	Mathematical Programming
	Column Generation
	Tabu Search
	Constraint Programming

	Physician Scheduling and Nurse Rostering
	Conclusion

	A Flexible Model and a Hybrid Exact Method for Integrated Employee Timetabling and Production Scheduling
	Introduction
	Literature Review and Position of the Considered Problem
	Vehicle and Crew Scheduling
	Production and Employee Scheduling
	Position of the Considered Problem

	ILP Models of Integrated Employee Timetabling and Machine Scheduling Problems
	Common Time Representation for Timetabling and Scheduling and Single-Mode Jobs
	Different Time Representations for Timetabling and Scheduling and Single-Mode Jobs
	Multi-mode Jobs
	Set Covering Formulations

	A Constraint Programming Model
	Solving a Lexicographic Makespan and Employee Cost Optimization Problem by a Hybrid LP-CP Method
	Computational Results on a Basic Employee Timetabling and Job-Shop Scheduling Problem
	Concluding Remarks

	Memes, Self-generation and Nurse Rostering
	Introduction
	Background
	Nurse Rostering Problem
	Multimeme Algorithms

	Memetic Algorithms for Benchmarking
	Benchmark Functions and Hill Climbing Methods
	Experimental Setup
	Empirical Results for the Benchmark Functions

	Memetic Algorithms for Nurse Rostering
	Nurse Rostering Problem at a Turkish Hospital (NRPmh)
	Constraint-Based Violation-Directed Heuristics
	MAs for Solving NRPmh

	Nurse Rostering Experiments
	Experimental Data and Common Settings
	Empirical Results for the NRP Experiments

	Conclusions

	An Evaluation of Certain Heuristic Optimization Algorithms in Scheduling Medical Doctors and Medical Students
	Introduction
	Algorithms Investigated
	Tabu Search with Fixed Tenure
	Tabu Search with Random Tenure
	Great Deluge
	IDWalk

	Comparison of Penalties Obtained by the Four Methods
	Discussion
	Conclusions

	Timetabling of Meetings
	Scheduling Research Grant Proposal Evaluation Meetings and the Range Colouring Problem
	Background
	An ILP Model
	A Refined Model
	Restricted Evaluator Availabilities
	Soft Constraints

	The Range-Colouring Problem
	An Exact Algorithm for Range Colouring
	Experimental Evaluation

	Conclusions

	Sports Timetabling
	Constructive Algorithms for the Constant Distance Traveling Tournament Problem
	Introduction
	Problem
	Lower Bound
	Algorithms
	Modified Circle Method
	Minimum Break Method

	Results
	Conclusions

	Scheduling the Brazilian Soccer Tournament with Fairness and Broadcast Objectives
	Introduction
	Problem Statement
	Solution Strategy
	Bounds
	Solution Algorithm
	Phase 1: HAP Generation
	Phase 2: Assignment of Partial HAPs to Elite Teams
	Phase 3: Assignment of HAPs to Non-elite Teams
	Phase 4: Schedule Creation

	Application to Real-Life Instances
	Conclusions

	Referee Assignment in Sports Leagues
	Introduction
	Problem Statement
	Integer Programming Model
	NP-Completeness
	Solution Approach
	Greedy Constructive Heuristic
	ILS-Based Scheme
	Local Search and Neighborhoods
	Repair Heuristic
	Improvement Heuristic

	Computational Results
	Test Problems
	Numerical Results

	Concluding Remarks

	A Branch-and-Cut Algorithm for Scheduling the Highly-Constrained Chilean Soccer Tournament
	Introduction
	Problem Formulation
	Solution Approach
	Improved Formulation
	Branch-and-Cut

	Computational Experiments
	Concluding Remarks

	Course Timetabling
	Modeling and Solution of a Complex University Course Timetabling Problem
	Introduction
	Problem Decomposition
	Interactions Between Problems
	Problem Characteristics

	Modeling the University Course Timetabling Problem
	Course Structure
	Constraints

	Solution Methods
	Timetabling Solver
	Sectioning

	General Framework for Modeling and Solving Problem
	Practical Issues Arising During Implementation
	Competitive Behavior
	Interactive Changes
	Data Consistency

	Implemented System
	Spring 2007 Timetables
	Data Sets

	Conclusions

	Timetabling Problems at the TU Eindhoven
	Introduction
	Literature Review
	Problem Description
	Problem Formulation No. 1
	Problem Formulation No. 2

	The Integer Linear Programming Model
	The Computational Results
	Conclusions
	Max-Flow Model of Problem Formulation No. 1
	Some NP-Hardness Results

	The Teaching Space Allocation Problem with Splitting
	Introduction
	Problem Description
	Courses, Events and Rooms
	Penalty and Objective Functions
	Overall Objective Function
	Datasets

	Algorithms Without Splitting
	Local Search Operators Without Splitting
	Meta-heuristics

	Algorithms with Splitting
	Static Splitting
	Dynamic Splitting Operators
	Example of the Operator Application
	Controlling the Search

	Experimental Comparison of the Algorithms
	Dynamic vs. Static Splitting
	Dynamic Splitting: HC vs. SA

	Trade-Offs Between the Various Objectives
	Interaction of Section Size Penalty (SZ), Location Penalty (L), and Utilisation (U)
	Trade-Offs Arising from Section Size Penalty and Utilisation
	Effects of Timetabling Constraints
	Inclusion of the No-Partial-Allocation Penalty

	Summary and Future Work

	Solving the University Timetabling Problem with Optimized Enrollment of Students by a Self-adaptive Genetic Algorithm
	Introduction
	The Timetabling Problem
	Teacher Preferences
	Time Preferences
	Number of Teaching Days per Week
	Length of Teaching Block Without Break
	Number of Teaching Hours per Day
	Span of Teaching Day
	Length of Continuous Break

	Enrollment of Students
	Self-adaptive Genetic Algorithm
	Mechanism of Gene Evaluation
	Mechanism of Individual Evaluation
	Mechanism of Population Evaluation

	Genetic Operators
	Selection
	Crossover
	Mutation
	Duplication
	Deletion
	Translocation
	Protected Mutation
	Replacement of Individuals

	Mapping the Timetabling Problem to the Chromosome
	The Enrollment Builder
	The Timetable Builder

	Numerical Experiments
	Conclusions

	School Timetabling
	A Case Study for Timetabling in a Dutch Secondary School
	Introduction
	Problem Description
	Constructing the Cluster Schemes
	Motivation
	Branch and Bound
	Using Statistics
	Symmetry
	Bounding
	Balancing Heuristic
	Pruning Based on Computation Time
	Results

	Creating a Feasible Schedule
	Motivation
	Direct Heuristic
	Compatibility Checking
	Assigning the Time Slots
	Results

	Improving the Schedule
	Motivation
	Selecting the Shifts
	Results

	Conclusion

	Scheduling School Meetings
	Introduction
	Problem Definition
	Minimizing the Maximum Time for the Meetings
	Minimizing the Idle Times -- Local Search LST
	Minimizing the Idle Times -- Local Search LSP
	An Example
	A Variant of the Problem
	Computational Results

	Hierarchical Timetable Construction
	Introduction
	Timetable Expressions
	The Layer Tree Data Structure
	Time Constraints
	Resource Constraints
	Other Features
	Conclusion

	The KTS High School Timetabling System
	Introduction
	Data Model
	User Interface
	The Solver
	Column Layout
	Tile Construction
	Time Assignment
	Time Adjustment
	Resource Assignment

	Results
	Conclusions

	Examination Timetabling
	A Novel Fuzzy Approach to Evaluate the Quality of Examination Timetabling
	Introduction
	Assessing Timetable Quality
	Existing Evaluation Functions
	Disadvantages/Drawbacks of Current Evaluation Functions
	Overview of Fuzzy Systems
	The Proposed Fuzzy Evaluation Function
	Input Normalisation

	Experiments on Benchmark Problems
	Experiments Setup
	Experimental Results

	Discussion
	Conclusions

	Linear Linkage Encoding in Grouping Problems: Applications on Graph Coloring and Timetabling
	Introduction
	Grouping Problems
	Representations in Grouping Problems
	Linear Linkage Encoding
	Exam Timetabling as a Grouping Problem
	Graph Coloring Problem as a Grouping Problem

	A Multi-objective Genetic Algorithm for Graph Coloring and Timetabling
	Initialization
	Selection
	Redundancy and Genetic Operators
	Crossover
	Mutation
	Replacement

	Experiments
	Conclusion

	Ant Algorithms for the Exam Timetabling Problem
	Introduction
	Problem Formulation
	Ant Algorithms
	An Ant Algorithm for the Exam Timetabling Problem
	General Modifications for the Exam Timetabling Problem
	MMAS Specifications

	Computational Experiments
	Test Cases
	Adjustment of the Parameters
	Test Results for the MMAS-ET Approach
	Comparison with the Approach of Costa and Hertz
	Comparison with Other Exam Timetabling Approaches

	Conclusion

	An Extensible Modelling Framework for Timetabling Problems
	Introduction
	Examination Timetabling Problem
	Progress Towards a Standard Format
	Modelling the Exam Timetabling Problem in STTL
	Designing a Flexible Model
	The Abstract General Problem Layer
	The Abstract General Timetabling Problem Layer
	The Exam Timetabling Problem Layer
	Exchange and Persistence of Timetabling Data
	Future Work
	Concluding Remarks
	The Exam Timetabling Model in STTL

	An Experimental Study on Hyper-heuristics and Exam Timetabling
	Introduction
	Preliminaries
	Hyper-heuristics
	Benchmark Functions
	Exam Timetabling

	Hyper-heuristics for Benchmark Functions
	Benchmark Function Heuristics
	Experimental Settings
	Experimental Results

	Hyper-heuristics for Solving Exam Timetabling Problems
	Exam Timetabling Problem Instances and Settings
	Heuristics for Exam Timetabling
	Experimental Results

	Conclusion

	Author Index

