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Abstract. Modeling and simulation of biological reaction networks is an
essential task in systems biology aiming at formalization, understanding,
and prediction of processes in living organisms. Currently, a variety of
modeling approaches for specific purposes coexists. P systems form such
an approach which owing to its algebraic nature opens growing fields of
application. Here, emulating the dynamical system behavior based on
reaction kinetics is of particular interest to explore network functions.
We demonstrate a transformation of Hill kinetics for gene regulatory
networks (GRNs) into the P systems framework. Examples address the
switching dynamics of GRNs acting as NAND gate and RS flip-flop.
An adapted study in vivo experimentally verifies both practicability for
computational units and validity of the system model.

1 Introduction

Along with the development of systems biology, a variety of modeling techniques
for biological reaction networks have been established during the last years [1].
Inspired by different methodologies, three fundamental concepts emerged mostly
independent of each other: analytic, stochastic, and algebraic approaches. Each
paradigm specifically emphasizes certain modeling aspects. Analytic approaches,
primarily adopted from chemical reaction kinetics, enable a macroscopic view on
species concentrations in many-body systems. Based on differential equations
considering generation and consumption rates of species, deterministic moni-
toring and prediction of temporal or spatial system behavior is efficiently ex-
pressed by continuous average concentration gradients. In contrast, stochastic
approaches reflect aspects of uncertainty in biological reaction networks by in-
corporating randomness and probabilities. So, ranges of possible scenarios and
their statistical distribution can be studied facilitating a direct comparison with
wetlab experimental data. Statistical tools help in discovering correlations be-
tween network components. Furthermore, algebraic approaches appear as flexi-
ble instruments regarding the level of abstraction for system description. Due to
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Fig. 1. Modeling approaches for biological reaction networks and bridges between
them. Algorithmic strategies behind these bridges allow model transformations. Sto-
chastic, analytic, and algebraic approaches form fundamental paradigms, classified into
subclasses (white highlighted) and transformational concepts (black highlighted).

their discrete principle of operation, they work by embedding as well as evaluat-
ing structural information, modularization, molecular tracing, and hierarchical
graduation of provided system information.

Combining advantages of several paradigms comes more and more into the fo-
cus of research. On the one hand, heterogeneous models subsume elements from
different approaches into an extended framework. On the other hand, transfor-
mation strategies aim to model shifting between approaches, see Figure 1. Thus,
specific analysis tools as well as advanced techniques for classification, simplifi-
cation, comparison, and unification can become applicable more easily. This is
additionally motivated by the fact that all three paradigms are independently
known to be capable of constructing Turing complete models for computation.

In general, P systems represent term rewriting mechanisms, hence algebraic
constructs [15,16]. Substantiated by the progress in proteomics, investigating
the dynamical behavior of biological reaction networks is essential to under-
stand their function. Although P systems containing appropriate kinetics are
useful, reaction kinetics is mostly defined for analytic models. In this paper, we
contribute to bridging this gap for GRNs.

Related work addresses corresponding P systems for phenotypic representa-
tions of some biological network classes. While metabolic P systems [11] and P
systems for cell signalling [9,14] have already been equipped with mass-action
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kinetics derived from underlying reaction mechanism [5], P systems for GRNs
[2,4] and for quorum sensing [3] are restricted to formulate inhibiting or activat-
ing effects qualitatively. In order to introduce a homogeneous quantitative model,
we decided to incorporate Hill kinetics [12] to the P systems framework by de-
scribing the cooperativity in GRNs dynamically using sigmoid-shaped transfer
functions that are more precise than two-stage on/off switching.

The paper is organized as follows: Based on the definition of Hill kinetics,
we present a method for discretization that leads to P systems ΠHill whose
properties are discussed briefly. A case study includes GRNs acting as NAND
gate and RS flip-flop. For each logic gate, its GRN in concert with ODEs derived
from Hill kinetics, corresponding P system, and simulation results are shown.
Finally, we verify that a reporter gene encoding the green fluorescent protein
(gfp) with transcription factors N-acyl homoserine lactone (AHL) and isopropyl-
βD-thiogalactopyranoside (IPTG) can mimic the aforementioned RS flip-flop in
vivo. Here, gfp expression is quantified using flow cytometry.

2 Transforming Hill Kinetics to P Systems

2.1 Hill Kinetics

Hill kinetics [12] represents a homogeneous analytic approach to model coop-
erative and competitive aspects of interacting biochemical reaction networks
dynamically. It formulates the relative intensity of gene regulations by sigmoid-
shaped threshold functions h of degree m ∈ N+ and threshold Θ > 0 such that
x ≥ 0 specifies the concentration level of a transcription factor that activates
resp. inhibits gene expression. Function value h then returns the normalized
change in concentration level of the corresponding gene product:

activation (upregulation) →: h+(x, Θ, m) = xm

xm+Θm

inhibition (downregulation) ⊥: h−(x, Θ, m) = 1 − h+(x, Θ, m)

Functions h+ and h− together with a proportional factor c1 quantify the pro-
duction rate of a certain gene product GeneProduct. Here we assume a linear
spontaneous decay with rate c2[GeneProduct] such that the differential equation
takes the form d [GeneProduct]

d t = ProductionRate−c2[GeneProduct]. Different ac-
tivation and inhibition rates are simply multiplied as in the following example
illustrated in Figure 2.1 (c1, c2 ∈ R+):

d [GeneProduct]
d t

= c1 · h+(A1, ΘA1 , m) · . . . · h+(An, ΘAn , m) ·
(
1−h+(I1, ΘI1 , m) · . . . · h+(Ip, ΘIp , m)

)
−c2[GeneProduct]

For simplicity, each differential coefficient d y
d t is subsequently denoted as ẏ.

By coupling gene regulatory units we obtain GRNs. Here, gene products
can act as transcription factors for other genes within the network. Additional
complex formation among gene products allows conjunctive composition of
transcription factors and the introduction of further nonlinearities. Thus, an
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Fig. 2. Gene regulatory unit. Repetitive expression of a Gene leads to generation of
a specific GeneProduct, a protein whose amino acid sequence is encoded by the DNA
sequence of the Gene. Transcription factors (specific single proteins or complexes)
quantitatively control the expression rate by their present concentration. Two types
of transcription factors can be distinguished: Inhibitors, here symbolized by I1, . . . , Ip,
repress Gene expression by downregulation while activators A1, . . . , An cause the op-
posite amplifying effect by upregulation.

effective signal transduction and combination between different network elements
becomes feasible.

2.2 Discretization

The analytic nature of Hill kinetics based on continuous concentrations requires
a discretization with respect to value and time in order to derive a homologous
term rewriting mechanism. Following the intention to approximate continuous
concentrations by absolute particle numbers, we assume a large but finite pool
of molecules. The application of a reaction rule in terms of a rewriting process
removes a number of reactant particles from this pool and simultaneously adds
all products. Therefore, selection and priorization of reaction rules to apply are
controlled by an underlying iteration scheme with temporally stepwise operation.

Since Hill kinetics is characterized by variable reaction rates due to the
sigmoid-shaped functions h, this variability should also be reflected in the term
rewriting mechanism. For this reason, we introduce dynamic stoichiometric fac-
tors resulting in time dependent reaction rules. Let Δτ > 0 be the constant time
discretization interval (step length), the gene regulatory unit depicted in Figure
2.1 consists of two reaction rules with variable stoichiometric factors s and u:

s Gene −→ s GeneProduct + s Gene
∣∣
A1,...,An,¬I1,...,¬Ip

where

s = �Δτ · c1 · [Gene]·
h+(A1, ΘA1 , m) · . . . · h+(An, ΘAn , m)·(
1 − h+(I1, ΘI1 , m) · . . . · h+(Ip, ΘIp , m)

)
�

u GeneProduct −→ ∅ where u = �Δτ · c2 · [GeneProduct]�

Here, the upper reaction formulates the generation of GeneProduct particles with
regard to the limiting resource of available Gene objects. Reaction conditions
coming from the presence of activators A1, . . . , An and absence (¬) of inhibitors
I1, . . . , Ip affect the stoichiometric factor s. The notation of indexes after the
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vertical bar declares the elements which occur in the h-components (h+, h−)
of the function regulating the rule. In order to map normalized concentrations
from Hill kinetics into absolute particle numbers, we introduce the factor term
[Gene] which represents the total number of Gene objects present in the reaction
system. Accordingly, the decay (consumption) of GeneProduct is expressed by
the lower transition rule.

The rounding regulation (� �) provides for integer numbers as stoichiometric
factors. This is necessary for handling the discrete manner of term rewriting.
Nevertheless, a discretization error can occur and propagate over the time course.
The higher the total number of particles in the reaction system is initially set,
the more this inaccuracy can be reduced.

Now, we incorporate the reaction system obtained by discretization into the
P systems framework. Therefore, we firstly define some syntactical conventions
with respect to formal languages and multisets.

2.3 Formal Language and Multiset Prerequisites

We denote the empty word by ε. Let A be an arbitrary set and N the set of natural
numbers including zero. A multiset over A is a mapping F : A −→ N∪{∞}. F (a),
also denoted as [a]F , specifies the multiplicity of a ∈ A in F . Multisets can be
written as an elementwise enumeration of the form {(a1, F (a1)), (a2, F (a2)), . . .}
since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support supp(F ) ⊆ A of F is defined
by supp(F ) = {a ∈ A | F (a) > 0}. A multiset F over A is said to be empty iff
∀a ∈ A : F (a) = 0. The cardinality |F | of F over A is |F | =

∑
a∈A F (a). Let

F1 and F2 be multisets over A. F1 is a subset of F2, denoted as F1 ⊆ F2, iff
∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and F2 are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1.
The intersection F1 ∩ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = min(F1(a), F2(a))}, the
multiset sum F1 � F2 = {(a, F (a)) | a ∈ A ∧ F (a) = F1(a) + F2(a)}, and the
multiset difference F1 �F2 = {(a, F (a)) | a ∈ A∧F (a) = max(F1(a)−F2(a), 0)}
form multiset operations. The term 〈A〉 = {F : A −→ N ∪ {∞}} describes the
set of all multisets over A while P(A) denotes the power set of A.

2.4 Transformation: Definition of the Corresponding P System

The general form of a P system ΠHill emulating the dynamical behavior of GRNs
using Hill kinetics is a construct

ΠHill = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , rk, f1, . . . , fk, Δτ, m)

where VGenes denotes the alphabet of genes, VGeneProducts the alphabet of gene
products (without loss of generality VGenes ∩ VGeneProducts = ∅), and Σ ⊆
VGeneProducts represents the output alphabet. ΠHill does not incorporate inner
membranes, so the only membrane is the skin membrane [1]1. The single mem-
brane property results from the spatial globality of GRNs within an organism:
Gene expression is located in the cell nuclei flanked by a receptor-controlled inter-
cellular transduction and combination of transcription factors. Resulting GRNs
form independent network structures of high stability within living organisms.
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Let V = VGenes ∪VGeneProducts. The multiset L0 ∈ 〈V 〉 over V holds the initial
configuration of the system.

Initial reaction rules1 ri ∈ 〈Ei,0〉× 〈Pi,0〉× P(TF i) with multiset of reactants
Ei,0 ⊆ V ×N, multiset of products Pi,0 ⊆ V ×N and set of involved transcription
factors TF i ∈ VGeneProducts, i = 1, . . . , k, define the potential system activity at
time point 0. A function fi : R+ × 〈V 〉 × N+ → N is associated with each initial
reaction rule ri. This function adapts the stoichiometric factors according to the
discretized Hill kinetics as described above.

Furthermore, we introduce two global parameters. The time discretization
interval Δτ ∈ R+ corresponds to the length of a time step between discrete time
points t and t + 1. The degree m ∈ N+ is used for all embedded sigmoid-shaped
functions.

Finally, the dynamical behavior of the P system is specified by an iteration
scheme updating both the system configuration Lt and the stoichiometric factors
of reaction rules ri starting from L0 where i = 1, . . . , k:

Lt+1 = Lt � Reactantst � Productst with

Reactantst =
k⊎

i=1
(Ei,t+1 ∩ Lt)

Productst =

⎧
⎨

⎩

k⊎

i=1
Pi,t+1 iff Reactantst =

k⊎

i=1
Ei,t+1

∅ else

Ei,t+1 = {(e, a′) | (e, a) ∈ Ei,t ∧ a′ = fi(Δτ, Lt, m)} (1)
Pi,t+1 = {(q, b′) | (q, b) ∈ Pi,t ∧ b′ = fi(Δτ, Lt, m)} (2)

Informally, the specification of Ei,t+1 and Pi,t+1 means that all reactants e and
products q remain unchanged over the time course. Just their stoichiometric
factors are updated from value a to a′ (reactants) and from b to b′ (products)
according to functions fi. These functions may utilize the numbers of copies
for all |V | types of particles recently present in the system. The cardinality
|Lt ∩ {(wj , ∞)}| then identifies this amount for any wj ∈ V .

In terms of computational devices, P systems ΠHill carry an output providing
the outcome of a calculation. For this purpose, the multiplicity of those gene
products listed in the output alphabet is suitable. We define an output function
output : N → N by

output(t) = |Lt ∩ {(w, ∞) | w ∈ Σ}|.

For better readability, we subsequently write a reaction rule ri =({
(e1, a1), . . . , (eh, ah)

}
,
{
(q1, b1), . . . , (qv, bv)

}
,
{
tf1, . . . , tfc

})
with supp(Ei,t) =

{e1, . . . , eh} and supp(Pi,t) = {q1, . . . , qv} as well as TF i = {tf1, . . . , tfc} by using
the chemical denotation ri : a1 e1 + . . . + ah eh −→ b1 q1 + . . . + bv qv

∣
∣
tf1,...,tfc

.

1 Note that in our case the stoichiometry of reaction rules changes over time which is
used to implement time-varying reaction rates.
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As a first example, ΠHill of the gene regulatory unit shown in Figure 2.1 reads:

ΠHill,GRNunit = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, r2, f1, f2, Δτ, m)
VGenes = {Gene}

VGeneProducts = {A1, . . . , An, ¬I1, . . . , ¬Ip,GeneProduct}
Σ = {GeneProduct}
L0 = {(Gene, g), (A1, a1), . . . , (An, an), (¬I1, i1), . . . , (¬Ip, ip)}
r1 : s1 Gene −→ s1 GeneProduct + s1 Gene

∣
∣
A1,...,An,¬I1,...,¬Ip

r2 : s2 GeneProduct −→ ∅
f1(Δτ, Lt, m) = �Δτ · |Lt ∩ {(Gene, ∞)}| ·

|Lt ∩ {(A1, ∞)}|m
|Lt ∩ {(A1, ∞)}|m + Θm

A1

· . . . · |Lt ∩ {(An, ∞)}|m
|Lt ∩ {(An, ∞)}|m + Θm

An

·
(

1− |Lt ∩ {(¬I1, ∞)}|m
|Lt ∩ {(¬I1, ∞)}|m + Θm

¬I1

·...· |Lt ∩ {(¬Ip, ∞)}|m
|Lt ∩ {(¬Ip, ∞)}|m + Θm

¬Ip

)

�

f2(Δτ, Lt, m) = �Δτ · |Lt ∩ {(GeneProduct,∞)}|�
Δτ ∈ R+

m ∈ N+

Note that s1 at time point t+1 is equal to f1(Δτ, Lt, m) at time point t or holds
its initialization value at time point 0. Respectively, s2 at time point t + 1 is
equal to f2(Δτ, Lt, m) at time point t or holds its initialization value at time
point 0, see equations (1) and (2).

At low molecular concentrations, deterministic application of Hill functions
can conflict between different functions which want to update the system con-
figuration. This is the case if the amount of reactants is too small to satisfy the
needs of all functions. Since the number of multiset elements always remains
nonnegative (see definition of �), the system can violate mass conservation by
satisfying these needs. A system extension based on stochastic rewriting mech-
anisms and/or priorization of reaction rules can overcome this insufficiency.

2.5 System Classification, Properties and Universality

ΠHill belongs to P systems with symbol objects and time varying transition
rules whose evolution is based on conditional rewriting by quantitative usage
of promoters and inhibitors. Thus, the dynamical behavior formulated in Hill
kinetics is time- and value-discretely approximated by a stepwise adaptation.
This leads to a deterministic principle of operation.

From the view on computational completeness, there are several indicators
for Turing universality. On the one hand, we will demonstrate within the next
section how NAND gates and compositions of NAND gates can be emulated by
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P systems of the form ΠHill. Arbitrarily extendable circuits consisting of cou-
pled NAND gates can be seen as computational complete. On the other hand,
the multiplicity of each symbol object within the system may range through the
whole recursively enumerable set of natural numbers. So, copies of a gene product
expressed by a dedicated gene are able to represent the register value of a ran-
dom access machine. Autoactivation loops keep a register at a certain value while
external activation increases the amount of gene product (increment operation)
and external inhibition decreases respectively (decrement operation). Increment-
ing and decrementing transcription factors always form complexes with program
counter objects. The interplay of those specific transcription factors manages the
program control.

3 Case Study: Computational Units and Circuits

Synthetic GRNs have been instrumental in elucidating basic principles that gov-
ern the dynamics and consequences of stochasticity in the gene expression of nat-
urally occurring GRNs. The realization as computational circuits infers inherent
evolutionary fault tolerance and robustness to these modular units.

In a case study, we introduce two synthetic GRNs for logic gates (NAND
gate, RS flip-flop) and describe their dynamical behavior quantitatively by an
ordinary differential equation model using Hill kinetics and by corresponding P
systems ΠHill.

A variety of distinguishable transcription factors given by their concentra-
tion over the time course enables communication between as well as coupling of
computational units. Thus, circuit engineering becomes feasible.

3.1 NAND Gate

input: concentration levels of transcription factors x (input1), y (input2)
output: concentration level of gene product z.

z

y

x yx z
x

y
z

a b

NAND gate

0

1

0

0
10

1 1

1
1
1
0

&EffGeneRegGeneYRegGeneX

complex formation

Ordinary Differential Equations

ȧ = h+(x, Θx, m) − a

ḃ = h+(y, Θy, m) − b
ż = 1 − h+(a, Θa, m) · h+(b, Θb, m) − z

Simulation Result (Copasi [10], ODE solver)

dynamical behavior depicted for m = 2, Θj = 0.1, j ∈ {x, y, a, b}
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Output

Corresponding P System

ΠHill,GRNnand = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , r6, f1, . . . , f6, Δτ, m)
VGenes = {RegGeneX,RegGeneY,EffGene}

VGeneProducts = {x, y, z, ¬a, ¬b}
Σ = {z}
L0 = {(RegGeneX, rgx), (RegGeneY, rgy), (EffGene, eg),

(x, x0), (y, y0), (z, z0), (¬a, a0), (¬b, b0)}
r1 : s1 RegGeneX −→ s1 ¬a + s1 RegGeneX

∣
∣
x

r2 : s2 ¬a −→ ∅
r3 : s3 RegGeneY −→ s3 ¬b + s3 RegGeneY

∣
∣
y

r4 : s4 ¬b −→ ∅
r5 : s5 EffGene −→ s5 z + s5 EffGene

∣
∣
¬a,¬b

r6 : s6 z −→ ∅
f1(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(RegGeneX, ∞)}| · |Lt∩{(x,∞)}|m

|Lt∩{(x,∞)}|m+Θm
x

⌋

f2(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬a, ∞)}|�
f3(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(RegGeneY, ∞)}| · |Lt∩{(y,∞)}|m

|Lt∩{(y,∞)}|m+Θm
y

⌋

f4(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬b, ∞)}|�
f5(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(EffGene, ∞)}| ·

(
1 − |Lt∩{(¬a,∞)}|m

|Lt∩{(¬a,∞)}|m+Θm
¬a

· |Lt∩{(¬b,∞)}|m
|Lt∩{(¬b,∞)}|m+Θm

¬b

)⌋

f6(Δτ, Lt, m) = �Δτ · |Lt ∩ {(z, ∞)}|�
Δτ ∈ R+
m ∈ N+

Simulation Result (MATLAB, P system iteration scheme)

dynamical behavior depicted for m = 2, Δτ = 0.1, Θj = 500, j ∈ {x, y, ¬a, ¬b}
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3.2 RS Flip-Flop

input: concentration levels of transcription factors S, R
output: concentration level of gene product Q

Q

R

S

S

R
Qb

a

RS Q

low active RS flip−flop

&

&

0

0
1

1

1
0

0
0
1
1

hold

−

EffGeneRegGeneSetStateRegGeneResetState

Ordinary Differential Equations

ȧ = 1 − h+(b, Θb, m) · h−(S, ΘS , m) − a

ḃ = 1 − h+(a, Θa, m) · h−(R, ΘR, m) − b

Q̇ = h+(b, Θb, m) · h−(S, ΘS , m) − Q

Simulation Result (Copasi, ODE solver)

dynamical behavior depicted for m = 2, Θj = 0.1, j ∈ {a, b, R, S}
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Set
-S: 0, -R: 1

Store
-S: 0, -R: 0

Reset
-S: 1, -R: 0

Store
-S: 0, -R: 0

Output

Corresponding P System

ΠHill,GRNrsff = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , r6, f1, . . . , f6, Δτ, m)
VGenes = {RegGeneResetState,RegGeneSetState,EffGene}

VGeneProducts = {Q, ¬S, ¬R, ¬a, ¬b}
Σ = {Q}
L0 = {(RegGeneResetState, rgr), (RegGeneSetState, rgs),

(EffGene, eg), (Q, q0), (¬S, ss0), (¬R, rs0), (¬a, a0), (¬b, b0)}
r1 : s1 RegGeneResetState−→s1 ¬a + s1 RegGeneResetState

∣∣
¬S,¬b

r2 : s2 ¬a −→ ∅
r3 : s3 RegGeneSetState −→ s3 ¬b + s3 RegGeneSetState

∣
∣
¬R,¬a

r4 : s4 ¬b −→ ∅
r5 : s5 EffGene −→ s5 Q + s5 EffGene

∣
∣
¬S,¬b

r6 : s6 Q −→ ∅
f1(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(RegGeneResetState, ∞)}| ·

(
1 − |Lt∩{(¬b,∞)}|m

|Lt∩{(¬b,∞)}|m+Θm
¬b

·
(

1 − |Lt∩{(¬S,∞)}|m
|Lt∩{(¬S,∞)}|m+Θm

¬S

))⌋

f2(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬a, ∞)}|�
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f3(Δτ, Lt, m) =
⌊
Δτ · |Lt ∩ {(RegGeneSetState, ∞)}| ·

(
1 − |Lt∩{(¬a,∞)}|m

|Lt∩{(¬a,∞)}|m+Θm
¬a

·
(

1 − |Lt∩{(¬R,∞)}|m
|Lt∩{(¬R,∞)}|m+Θm

¬R

))⌋

f4(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬b, ∞)}|�
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Simulation Result (MATLAB, P system iteration scheme)

dynamical behavior depicted for m = 2, Δτ = 0.1, Θj = 500, j ∈ {¬a, ¬b, ¬R, ¬S}
rgr = 10, 000, rgs = 10, 000, eg = 10, 000, q0 = 0, ss0 = 0, rs0 = 0, a0 = 0, b0 = 0
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A homologous analytic model of a bistable toggle switch was introduced in [6].
In case of the forbidden input signalling S = 1, R = 1, the normalized concen-
trations of both inhibitors ¬a and ¬b converge to 0.5. By setting or resetting
input signalling, the flip-flop restores.

4 RS Flip-Flop Validation in vivo

In addition to prediction and simulation of GRNs acting as logic gates, we
demonstrate the practicability of the RS flip-flop by an experimental study in
vivo. Resulting output protein data measured over the time course can validate
the system model. Following the pioneering implementation of a bistable toggle
switch [6], we could confirm its function in a previous study [8]. Two exten-
sions were investigated: Firstly, the effects of IPTG and AHL as appropriate
intercellular inducers for flip-flop setting were shown. Secondly, flow cytometry
was used to quantitatively measure protein concentrations within the flip-flop
implementation. We give a brief overview of experimental setup and results.

4.1 Biological Principles and Prerequisites

Quorum Sensing and Autoinduction via AHL
In quorum sensing, bacterial species regulate gene expression based on cell-
population density [13]. An alteration in gene expression occurs when an
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intercellular signalling molecule termed autoinducer, produced and released by
the bacterial cells reaches a critical concentration. Termed as quorum sensing
or autoinduction, this fluctuation in autoinducer concentration is a function
of bacterial cell-population density. Vibrio fischeri, a well studied bacterium,
colonizes the light organs of a variety of marine fishes and squids, where it
occurs at very high densities (1010 cells

ml ) and produces light. The two genes es-
sential for cell density regulation of luminescence are: luxI, which codes for an
autoinducer synthase; and luxR, which codes for an autoinducer-dependent ac-
tivator of the luminescence genes. The luxR and luxI genes are adjacent and
divergently transcribed, and luxI is the first of seven genes in the luminescence
or lux operon. LuxI-type proteins direct AHL synthesis while LuxR-type pro-
teins function as transcriptional regulators that are capable of binding AHL
signal molecules. Once formed, LuxR-AHL complexes bind to target promot-
ers of quorum-regulated genes. Quorum sensing is now known to be widespread
among both Gram-positive and Gram-negative bacteria.

Bioluminescence in Vibrio fischeri
Bioluminescence in general is defined as an enzyme catalyzed chemical reac-
tion in which the energy released is used to produce an intermediate or product
in an electronically excited state, which then emits a photon. It differs from
fluorescence or phosphorescence as it is not depended on light absorbed. The
mechanism for gene expression and the structure of the polycistronic message
of the lux structural genes in Vibrio fischeri have been thoroughly characterized
[7]. Briefly, there are two substrates, luciferin, which is a reduced flavin mononu-
cleotide (FMNH2), and a long chain (7−16 carbons) fatty aldehyde (RCHO). An
external reductant acts via flavin mono-oxygenase oxidoreductase to catalyze the
reduction of FMN to FMNH2, which binds to the enzyme and reacts with O2 to
form a 4a-peroxy-flavin intermediate. This complex oxidizes the aldehyde to form
the corresponding acid (RCOOH) and a highly stable luciferase-hydroxyflavin
intermediate in its excited state, which decays slowly to its ground state emitting
blue-green light hν with a maximum intensity at about 490nm:
FMNH2 + RCHO + O2

lucif.−→ FMN + H2O + RCOOH + hν

Transcription Control by LacR and λCI Repressor Proteins
Escherichia coli cells repress the expression of the lac operon when glucose is
abundant in the growth medium. Only when the glucose level is low and the
lactose level is high, the operon is fully expressed. The Lac repressor LacR is
a 360 residue long protein that associates into a homotetramer. It contains a
helix-turn-helix (HTH) motif through which it interacts with DNA. This inter-
action represses transcription by hindering association with RNA polymerase
and represents an example of combinatorial control widely seen in prokaryotes
and eukaryotes. The CI repressor of bacteriophage lambda is the key regulator
in lambda’s genetic switch, a bistable switch that underlies the phage’s ability
to efficiently use its two modes of development.



332 T. Hinze et al.

Fig. 3. A schematic diagram of an AHL biosensor module interfaced with the genetic
toggle switch adapted from [8]. The transgenic artificial GRN consists of a bistable
genetic toggle switch [6] which is interfaced with genes from the lux operon of the
quorum sensing signalling pathway of Vibrio fischeri.

Flow Cytometry
Flow cytometry refers to the technique where microscopic particles are counted
and examined as they pass in a hydro-dynamically focused fluid stream through
a measuring point surrounded by an array of detectors. Previously, flow cytom-
etry analyzes were performed by us using a BD LSRII flow cytometer equipped
with 405nm, 488nm and 633nm lasers. 488nm laser was used for gfp and yellow
fluorescent protein (yfp) quantification.

4.2 Experimental Setup and Implementation

We have shown that an in vivo system [8] can potentially be used to mimic a RS
flip-flop and have quantified its performance using flow cytometry. The presence
or absence of the inducers IPTG or AHL in combination with temperature shift
acts as an input signal, see Figure 3. The toggle switch comprising of structural
genes for reporter/output proteins fused to promoter regions that are regulated
by input signals is visualized as a RS flip-flop. This design endows cells with two
distinct phenotypic states: where the λCI activity is high and the expression of
lacI is low (referred to as high or 1 state), or where the activity of LacR is high
and the expression of λCI is low (referred to as low or 0 state). gfp is expressed
only in the high λCI/low LacR state.

4.3 Results and Discussion

For co-relational purposes, all experiments were conducted with both BL21 and
Top10 strains of Escherichia coli. The concentration of IPTG used in all the
experiments was 2mM and that of AHL was 1μM. Experiments conducted with-
out the use of inducers, lead to an unreliable shifting of the states, signifying
the use if inducers in a tightly, mutually regulated circuit. Further experiments
conducted to understand the switching dynamics of the circuit revealed that in
the current scenario, it was easier to switch from a high to a low state than
vice versa. This discrepancy in switching behavior is attributed to the differing
modes of elimination of LacR and λCI repressor proteins. While switching from
low to high state, the repression due to IPTG-bound Lac repressor needs to be
overcome by cell growth. Switching from high to low state is effected by imme-
diate thermal degradation of the temperature-sensitive λCI. Experiments were
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Fig. 4. Inducer-dependent switching. Repeated activation and deactivation of the tog-
gle switch based on inducers and temperature. Temperature was switched every 24
hours. Cells were incubated with inducers for 12 hours, followed by growth for 12
hours without inducers, initially kept at 30◦C (A) and 42◦C (B). The cells successfully
switched states thrice.

also conducted to test the sustainability of states. The plug and play property of
the circuit was examined by employing yfp as the reporter gene instead of gfp. As
shown in Figure 4, the circuit could mimic a RS flip-flop. A massive parallelism
permissible by the use of large quantities of cells can compensate for the slow
speed of switching. Further tests are to be performed to confirm this hypothesis.

5 Conclusions

The dynamical behavior of GRNs is able to emulate information processing in
terms of performing computations. In order to formalize this capability, we have
introduced P systems of the form ΠHill incorporating cooperativity and compet-
itivity between transcription factors based on Hill kinetics. Its transformation
to a dedicated iteration scheme for a discrete term rewriting mechanism with
variable stoichiometric factors in ΠHill provides a homogeneous approach that
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allows to compose GRNs towards functional units like computing agents. Ex-
amples address computational units (NAND gate, RS flip-flop), each defined by
GRN, its ODE model, and the corresponding P system. Simulations of the dy-
namical behavior quantitatively show the switching characteristics as well as the
expected quality of binary output signals. Along with the prediction of GRNs
acting as computational units, an experimental study in vivo demonstrates their
practicability. Although the measurement of the dynamic switching behaviour
was condensed to 12 points in time, they approximate the expected course.
At the crossroad of modelling, simulation, and verification of biological reac-
tion networks, the potential of amalgamating analytic, stochastic, and algebraic
approaches into the P systems framework seems promising for applications in
systems biology to explore network functions.
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quences; to W. Pompe, G. Rödel, K. Ostermann, and L. Brusch from Dresden
University of Technology for their scientific support and V. Helms from Saarland
University for administrative support.

References

1. Alon, U.: An Introduction to Systems Biology. Chapman & Hall, Sydney, Australia
(2006)

2. Barbacari, N., et al.: Gene Regulatory Network Modelling by Membrane Systems.
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