
Optimizing Evolution Rules Application and
Communication Times in Membrane Systems

Implementation

Jorge A. Tejedor, Abraham Gutiérrez, Luis Fernández, Fernando Arroyo,
Ginés Bravo, and Sandra Gómez

Natural Computing Group
Escuela Universitaria de Informática, Universidad Politécnica de Madrid

Crta. de Valencia Km. 7, 28031 Madrid, Spain
{jtejedor,abraham,setillo,farroyo,gines,sgomez}@eui.upm.es

http://www.eui.upm.es

Abstract. Several published time analyses in P systems implementation
have proved that there is a very strong relationship between communi-
cation and evolution rules application time in membranes of the system.
This work shows how to optimize the evolution rule application and com-
munication times using two complementary techniques: the improvement
of evolution rules algorithms and the usage of compression schema.

On the one hand, this work uses the concepts of competitiveness rela-
tionship among active rules and competitiveness graph. For this, it takes
into account the fact that some active rules in a membrane can consume
disjoint object sets. Based on these concepts, we present a new evolu-
tion rules application algorithm that improves throughput of active rules
elimination algorithms (sequential and parallel).

On the other hand, this work presents an algorithm for compressing
information related to multisets and evolution rules, based on the as-
sumption that algorithmic complexity of the operations performed over
multisets, in evolution rules application algorithms, is determined by the
representation of multiset information of these rules. This representation
also affects the communication phase among membranes phase.

1 Introduction

Computation with membranes was introduced by Gheorghe Păun in 1998 [14]
through a definition of transition P systems. This new computational paradigm
is based on the observation of biochemical processes. The region defined by a
membrane contains chemical elements (multisets) which are subject to chemical
reactions (evolution rules) to produce other elements. Transition P systems are
hierarchical, as the region defined by a membrane may contain other membranes.
Multisets generated by evolution rules can be moved to adjacent membranes
(parent and children). This multiset transfer feeds back into the system so that
new products are consumed by further chemical reactions in the membranes.

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 298–319, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimizing Evolution Rules Application and Communication Times 299

These systems perform computations through transition between two consec-
utive configurations. Each transition or evolution step goes through two steps:
rules application and objects communication. First, the evolution rules are ap-
plied simultaneously to the multiset in each membrane. This process is performed
by all membranes at the same time. Then, also simultaneously, all membranes
communicate with their destinations.

Nowadays, membrane systems have been sufficiently characterized from a the-
oretical point of view. Their computational power has been settled – many vari-
ants are computationally complete. Among their most relevant characteristics
appears the fact that they can solve non polynomial time problems in polyno-
mial time, but this is achieved by the consumption of an exponential number of
resources, in particular, the number of membranes that evolve in parallel.

There are available several membrane systems simulators, [?]. An overview of
membrane computing software can be found in [2]. However, the way in which
these models can be implemented is a persistent problem today, because “the
next generation of simulators may be oriented to solve (at least partially) the
problems of information storage and massive parallelism by using parallel lan-
guage programming or by using multiprocessor computers” [2]. In this sense,
information storage in membrane computation implementation is an example of
Parkinson’s First Law [13]: “storage and transmission requirements grow double
than storage and transmission improvements”.

The objectives of this paper are: first to present an improvement of the al-
gorithm of active rules elimination [20] used in the rules application step, and
second to present a compression algorithm that allows us to compress informa-
tion without penalizing evolution time in P systems implementation.

To achieve this, the paper is structured as follows: first, related works are
presented; then, the basic ideas of the active rules elimination algorithm are
summarized, which is followed by a definition of the concept of competition
between rules and the optimization of the algorithm is specified. Next sections
present requirements for information compression in membrane systems and the
proposed compression schema; then we analyze the obtained results for a set of
tests for a well known P system. Finally, some conclusions are presented.

2 Related Works

The first works over massively parallel implementation for P systems started
with Syropoulos [18] and Ciobanu [3] who in their distributed implementations
of P systems use Java Remote Method Invocation (RMI) and the Message Pass-
ing Interface (MPI) respectively, on a cluster of PC connected by Ethernet.
These authors do not carry out a detailed analysis about the importance of the
time used during communication phase in the total time of P system evolution;
although Ciobanu stated that “the response time of the program has been ac-
ceptable. There are however executions that could take a rather long time due
to unexpected network congestion”.

300 J.A. Tejedor et al.

Recently, in [19] and [1] one presents analyses for distributed architectures that
are technology independent, based on: the allocation of several membranes in
the same processor; the use of proxies for communication among processors; and,
token passing in the communication. These solutions avoid communication colli-
sions, and reduce the number and length for communication among membranes.
All these allow to obtain a better step evolution time than in others suggested
architectures congested quickly by the network collisions when the number of
membranes grows. Table 1 summarizes minimum times (Tmin), optimal amount
of processors and membranes located in each processor (Popt and Kopt) to reach
those minimum times, and the throughput obtained with corresponding proces-
sors and communications (Thproc and Thcom) for the architecture. This analysis
considers the P system number of membranes (M) that would evolve, the max-
imum time used by the slowest membrane in applying its rules (Tapl), and the
maximum time used by the slowest membrane for communication (Tcom).

Table 1. Distributed architecture parameters depending on application rules time
(Tapl), communication time (Tcom) and number of membranes (M)

Distributed Architecture [19] Distributed Architecture [1]

Tmin = 2
�

2 M Tapl Tcom − 2 Tcom Tmin = 2
�

M Tapl Tcom + Tcom

Popt =
�

M Tapl

2 Tcom
Popt =

�
M Tapl

Tcom

Kopt =
�

2 M Tcom
Tapl

Kopt =
�

M Tcom
Tapl

Thproc∼ 50% Thproc∼ 50%
Thcom∼ 50% Thcom∼ 100%

From all these, we may conclude that to reach minimum times over distributed
architectures, there should be a balance between the time dedicated to evolution
rules application and the time used for communication among membranes. So,
depending on the existing relation between both times, and on the number of
membranes in the P system, it is possible to determine the number of processors
and the number of membranes that will be located at each of them to obtain
the evolution minimum time.

The difference between these architectures lies on the different topology for the
processors net and the policy for token passing. Thus, [1] reaches a throughput
near to a 100% of the communication line, an increment in the parallelism level
by the increment of a 40% in the processors amount involved in the architecture
and a reduction to reach the 70% of the evolution time. Both works conclude
that, for a specific number of membranes M , if it is possible that:

1. For Tapl to be N times faster, the number of membranes that would be hosted
in a processor would be multiplied by

√
N , the number of required processors

would be divided by the same factor and the time required to perform an
evolution step would improve approximately with the same factor

√
N .

Optimizing Evolution Rules Application and Communication Times 301

2. For Tcom to be N times faster, the number of required processors would
be multiplied by

√
N , the number of membranes that would be hosted in

a processor would be divided by the same factor and the time required to
perform an evolution step would improve approximately by the same factor√

N .

Table 2 summarizes the importance of reducing Tapl and Tcom over the dis-
tributed architectures parameters (minimum evolution time, optimum number
of processors and optimum number of membranes per processor).

Table 2. Repercussion on distributed architecture parameters depending on Tapl and
Tcom

Conditions Tmin Popt Kopt

Tapl be N faster and Tcom be equal Tmin√
N

Popt√
N

Kopt ·
√

N

Tapl be equal and Tcom be N’ faster Tmin√
N′ Popt ·

√
N ′ Kopt√

N′

Tapl be N faster and Tcom be N’ faster Tmin√
N′·

√
N

Popt·
√

N′
√

N

Popt·
√

N√
N′

These architectures need to know the time required to perform rules applica-
tion to be able to optimally distribute membranes among processors. Analysis
of the rules application algorithms published to date shows that only the execu-
tion time of active rules elimination algorithm [20](and its parallel version [8])
can be known beforehand. These two algorithms enable prior determination of
the maximum execution time, since this value depends on the number of rules
rather than on the cardinality of the multiset to which they are applied, as it
is reported in other algorithms [3], [6], [7]. In addition, these algorithms are the
fastest in their category (sequential and parallel).

This paper describes how to optimize evolution rule application and com-
munication times by means of two strategies. On one hand, the active rules
elimination algorithm modification taking into account the fact that some active
rules in a membrane can consume disjoint object sets will improve the evolution
rule application time. On the other hand, the use of a compression schema for
multisets and evolution rules presented in membranes will improve both times.

3 Optimization of Active Rules Elimination Algorithm

This section first presents the main ideas about active rules elimination algo-
rithm, second it introduces the concepts of competitive rules and competitive-
ness graph and finally, three optimizations of the algorithm are carried out taking
into account the competitiveness among rules and the features of the algorithm
itself.

302 J.A. Tejedor et al.

3.1 Active Rules Elimination Algorithm

The general idea of this algorithm is to eliminate, one by one, the rules from
the set of active rules. Each step of rule elimination performs two consecutive
actions:

1. Iteratively, any rule other than that which is to be eliminated is applied for
a randomly selected number of times in an interval from 0 to the maximum
applicability threshold. This action ensures the non-determinism inherent to
P systems.

2. The rule to be eliminated is applied a number of times which is equal to its
maximum applicability threshold, thus making it no longer applicable and
resulting in its disappearance from the set of active rules.

We assume that:

1. The object multiset to which active rules are applied is ω.
2. The active rules set is transformed to an indexed sequence R in which the

order of rules is not relevant.
3. The object multiset resulting from application of active rules is ω′.
4. The multiset of applied rules that constitute the algorithm output is ωR.
5. Operation |R| determines the number of rules in the indexed sequence R.
6. Operation ΔR[Ind] �ω′� calculates the maximum applicability threshold of

the rule R [Ind] over ω′.
7. The operation input (R [Ind]) · K performs the scalar product of the an-

tecedent of rules by a natural number.

The algorithm is as follows:

(1) ω′ ← ω
(2) ωR ← ∅MR(O,T)

(3) FOR Last = |R| DOWNTO 1
(4) BEGIN
(5) FOR Ind = 1 TO Last − 1 DO
(6) BEGIN
(7) Max ← ΔR[Ind] �ω′�
(8) K ← random(0, Max)
(9) ωR ← ωR +

{
R [Ind]K

}

(10) ω′ ← ω′ − input (R [Ind]) · K
(11) END
(12) Max ← ΔR[Last] �ω′�
(13) ωR ← ωR +

{
R [Last]Max

}

(14) ω′ ← ω′ − input (R [Last]) · Max
(15) END

Optimizing Evolution Rules Application and Communication Times 303

Remember that if rule R [i] is no longer applicable in the elimination step for
R [j], it is no longer necessary to perform the elimination step for R [i], and thus
the algorithm is greatly improved, as shown in [20].

In each iteration of the algorithm of actives rules elimination, the maximum
applicability threshold of a rule is calculated and then the rule is applied. The
number of iterations executed at worst is:

#iterations =
q∑

i=1

i =
q · (q + 1)

2

Let q be the cardinality of the indexed sequence of active rules. Thus, this
algorithm allows one to know how long it takes to be executed in the worst case,
with knowledge of the rules set of a membrane.

It is important to note that, in general, it is essential to perform the first
action in each elimination step of a rule. This action is necessary to ensure that
any possible result of the rules application to the multiset is produced by the
algorithm. In case the action is not performed, the eliminated rule (applied as
many times as the value of its maximum applicability threshold) may consume
the objects necessary so that any other rule can be applied. However, the latter
does not always occur and the first action in each elimination step can be sim-
plified. For the sake of illustration, let us assume that the antecedents of a set
of active rules are shown in Figure 1.

Fig. 1. Antecedent of the Active Rules Set

In this case, in the elimination step of the rule r1 only the first action with
the rule r2 has to be taken, as r1 and r2 are the only rules with the object
a in its antecedents. The same is the case with rules r3 and r4, as these two
compete for the object d. Thus, taking into account the competition between
rule antecedents, one can adjust the rule elimination algorithm to perform only
6 iterations in the worst case, rather than 10 (2 to eliminate r1, 1 to eliminate
r2, 2 to eliminate r3, 1 to eliminate r4) as shown in Figure 2.

3.2 Definition of Competitiveness Between Rules

Let R be a set of active rules, R = {r1, r2, ..., rq} with q > 0, and let C be a
binary relation defined over the set R such that

∀x, y ∈ R, x 	= y x C y ⇔ input(x) ∩ input(y) 	= ∅

This binary relation can be represented by a non-directed graph CG = (R, C)
called a competitiveness graph, where the rules are related to each other if and

304 J.A. Tejedor et al.

Fig. 2. Execution trace of Rules Elimination and Rules Elimination with competitive-
ness algorithms

only if their antecedents have an object in common. For example, given the rules
inputs shown in Figure 3, the competitiveness graph generated by these rules
taking into account the relation C will be as shown in Figure 4.

Fig. 3. Antecedents of an active rules set

Consider a competitiveness graph CG = (R, C), a rule x ∈ R, and a set
R′ ⊆ R. The subgraph resulting from elimination of rule x is defined as

CSG = (R − {x} , C ∩ R − {x} × R − {x})

and the competitiveness subgraph induced by the subset R′ is the graph

CSG = (R′, C ∩ R′ × R′) .

For a competitiveness graph CG = (R, C), a competitiveness chain is defined
as an ordered sequence of rules pertaining to R

Optimizing Evolution Rules Application and Communication Times 305

Fig. 4. Competitiveness graph

s1, s2, ... , sn si ∈ R,

satisfying:

si C si+1 ∀i ∈ {1, ..., n − 1}
By definition, there is always a competitiveness chain composed of a single

rule.
For a competitiveness graph CG = (R, C), the accessible rule relation (A) is

defined as:

x, y ∈ R x Ay ⇔ ∃ a competitiveness chain s1, ..., sn|s1 = x ∧ sn = y

This is an equivalence relation which divides the rule set R into equivalence
classes.

Let E be an equivalence class produced by A. The connected component of
CG is defined as the graph induced by the nodes pertaining to the equivalence
class E. Then CG is called connected if and only if it has a connected component.

For a competitiveness graph CG = (R, C) and a rule x ∈ R, it is said that x is
an articulation of CG if and only if the subgraph resulting from the elimination
of rule x has more connected components than CG.

3.3 The Algorithm Based on Rules Competitiveness

Based on the rules competitiveness relation, one can improve the algorithm of
elimination of active rules. To do this, an analysis must be made of the evolution
rules of each membrane prior to P system evolution. The analysis will determine
the order of active rules elimination and what rules set are used in the first
action of each elimination step of a given rule. The following optimizations can
be made of the algorithm of rule elimination:

First optimization. The idea of this optimization is based on the fact that in
the elimination step of a rule, the first action of the algorithm must be applied to
the rules in the same connected component of the competitiveness graph. This

306 J.A. Tejedor et al.

can be done because the antecedents of rules in different connected components
do not compete for common objects of the multiset.

The analysis prior to the execution of each P system calculates the competi-
tiveness graph of each membrane. Then the connected components of the graph
are calculated. The algorithm of active rule elimination will be applied indepen-
dently to the rules of each of the connected components, with no need for any
change in its codification.

In the worse case of the example in Figure 4, the sequential version of this al-
gorithm will need to perform 3 iterations in the connected component consisting
of the rules {r1, r2} and 36 iterations in the connected component consisting of
the rules {r3, r4, r5, r6, r7, r8, r9, r10}. Therefore, this example has gone from
55 iterations in the worst case of the algorithm of active rules elimination to 39
iterations (Figure 5), that is, it has been reduced by 71% compared to the active
rules elimination algorithm.

Making a parallel version of the algorithm is quite simple. One needs only
to apply the algorithm of active rules elimination in parallel to the rules of
each connected component on the competitiveness graph. The parallel version
would require only 36 iterations (maximum(36, 3)) in the worst case, as shown
in Figure 6), therefore it has been reduced by 65% compared to the active rules
elimination algorithm.

Second optimization. This optimization is applied in each connected compo-
nent of the competitiveness graph. If the competitiveness graph of a membrane
has articulations, the algorithm can be used to eliminate these rules first and

Fig. 5. Execution trace of 1st sequential optimization

Optimizing Evolution Rules Application and Communication Times 307

Fig. 6. Execution trace of 1st parallel optimization

cause the appearance of new connected components. Thus, if rule r6 is elimi-
nated in our example (Figure 4) the connected component splits in two: the one
composed of {r3, r4, r5} and the one composed of {r7, r8, r9, r10}.

When a connected component has no articulations, elimination of more than
one rule can break it into more than one connected component. Continuing with
the example we have proposed, if we first remove from connected component
{r7, r8, r9, r10} rules r7 and r10 in two elimination steps, it then splits into two
connected components consisting of the rules r8 and r9, respectively.

To perform this optimization, a slight change must be made in the sequential
algorithm of active rules elimination. Now, each step of elimination of a rule
must eliminate a specific rule. Moreover, there is a certain partial order in the
elimination steps of a rule. Whereas order is irrelevant in previous versions of
the active rules elimination algorithm, it is decisive in this version. The set of
rules used and the rule being eliminated in each elimination step is calculated
for each membrane in the analysis prior to the evolution of the P system; as a
result, the calculation does not penalize the execution time of the algorithm.

Figure 7 shows the order in which evolution rules are eliminated and the set
of rules used in each elimination step for the example in Figure 4. The number
of iterations of this algorithm in the worst case is 25, so it has been reduced by
45% compared to the active rules elimination algorithm.

The parallel version of the algorithm involves applying the sequential version
to each of the connected components that are either in the original competitive-
ness graph or that are generated as a result of the elimination of a rule.

The execution trace of the parallel algorithm used with the set of rules of the
example in Figure 4 is shown in Figure 8. It may be noted that the number
of iterations in the worst case is 16 (maximum(8, 2) + maximum(3, 4, 1) +
maximum(1, 1, 3) + maximum(1, 1)) using 5 processes. Hence, the number of
iterations is reduced by 29% compared to the active rules elimination algorithm.

308 J.A. Tejedor et al.

Fig. 7. Execution trace of 2nd sequential optimization

Third optimization. This last optimization is based on an analysis of the
execution trace of the 2nd optimization. It can occasionally be observed that the
elimination step of one rule rj also eliminates one or more additional rules ri.
This can occur either because ri is applied a number of times that coincides with
the maximum applicability threshold, or the rules applied prior to ri consume
the objects needed to continue being active. This can be used in three ways to
improve the execution time of the algorithm:

1. There is no need to execute the elimination step of the rule ri eliminated
in a previous step. Bearing in mind the execution trace in Figure 7, if the
elimination step of rule r6 also eliminates rule r4, then it would no longer
be necessary to execute the elimination step of r4, thus allowing execution
of the algorithm to save 3 iterations.

2. The rule ri is not to be applied in the elimination steps of subsequent rules.
Bearing in mind the execution trace in Figure 7, if the elimination step of
the rule r6 also eliminates rule r8, it is therefore unnecessary in elimination
steps of the rules r7 and r10 to try to apply r8, thus allowing execution of
the algorithm to save 2 iterations.

3. Elimination of the rule ri causes a change in the composition and order of
the subsequent elimination steps. Keeping in mind the execution trace in
Figure 7, if the elimination step of rule r6 also eliminates rule r8, then it is
beneficial for the execution of the algorithm that r9 be the next rule to be
eliminated. This is the case because once r6, r8 and r9 have been eliminated,
r7 and r10 can be eliminated in a single iteration in their elimination step
since they do not share objects. Here, 3 iterations would be saved.

Optimizing Evolution Rules Application and Communication Times 309

Fig. 8. Execution trace of 2nd parallel optimization

To implement this optimization, a determination is necessary of what rules
continue to be active whenever an elimination step is performed, and this in-
formation is used to calculate the next optimal elimination step to be taken.
Logically, calculation of the next optimal elimination step would severely pe-
nalize the execution time of the algorithm. Hence, a different solution must be
sought. This solution involves making an analysis prior to the execution of each
P system, in which we can calculate all the possible active rule sets and assign
them the next optimal step of rule elimination. All this information would be
reflected in a director graph of the algorithm, the definition of which is as follows.

Let R be a set of active rules. The director graph of the algorithm of rule
application is composed of a triple DG = (Q, A, T) where:

1. Q is the node set of the graph, composed of a subset of parts of R, that is:
∀q ∈ Q, , q ∈ P (R)

2. A is a correspondence whose initial set is Q and whose final set is a set of
sequences of rules composed of rules from the origin element of Q. Thus,
each set of active rules has one or more sequences of rules. Each sequence of
rules indicates the order in which elimination step rules are applied. So, a
state can have several elimination steps associated in the analysis prior the
evolution of each P system.
A : Q → E where E is the set of possible sequences with elements in Q

3. T is a set of transitions. Each transition is composed of a triad 〈qi, A (qi) , qf 〉
where qi, qf ∈ Q are the initial and final state, respectively, of the transition
and A (qi) are the elimination step (s) of rules associated to state qi, which,
after being executed, means that active rules are those of state qf .

The execution of the sequential algorithm of application of competitive rules
will involve making a loop that ends when it reaches a state with no active rules.
In each iteration, there are three steps:

1. The elimination steps associated to the state are executed.
2. Active rules are calculated.
3. The state represented by active rules is transited.

Execution of the parallel algorithm of application of competitive rules will
be similar to the sequential one. The difference is that execution of several

310 J.A. Tejedor et al.

elimination steps associated to a state is performed in a parallel way. At worst,
the third optimization performs the same iterations as the second optimization.

4 Multisets and Rules Compression

Algorithmic complexity of the operations over multisets used in the evolution
rules application algorithms is determined by the representation of multiset in-
formation of these rules. This representation also affects the communication
between membranes. So the use of a suitable compression schema can have a
positive influence over the reduction of evolution rule application and commu-
nication times.

4.1 Compression Requirements

First, unlike other environments, where it is admissible a non lossless information
system (i.e., multimedia contents transmission), in our environment it is essential
that our compression system has no information loss.

Almost all the compression methods require two phases: the first one for analy-
sis followed by a second one for conversion. First, an initial analysis of the infor-
mation is done to identify repeated strings. From this analysis, an equivalences
table is created to assign short codes to those strings. In a second phase, infor-
mation is transformed using equivalent codes for repeated strings. Besides, this
table is required with the information for its future compression/decompression.
On the other hand, we must realize that a higher compression without any in-
formation loss will take more processing time. Bitrate is always variable and it is
used mainly in text compression [17]. Because all of this, in spite of the fact that
there are compression systems that are able to reach entropy limit - highest limit
for data compression (e.g., Huffman codes) - they are not the ideal candidates
for our system because of the following reasons:

1. Table storage will increase the needs for memory resources and would de-
crease compression goal.

2. Time for the phase of evolution rules application is penalized with com-
pression/decompression processes when accessing compressed information
on the P system. This reduces parallelism level from distributed systems
and increases evolution time.

3. And also, despite of the fact that communication phase time will be re-
duced because a lowest amount of information is transmitted, this will be
counteracted by the time needed for decompression in the destination.

In this way compression schema for information from P system should accom-
plish the following requirements:

1. there should be no information loss;
2. it should use the lowest amount of space for storage and transmission;
3. it should not penalize time for rules application phase and communica-

tion among membranes while processing compressed information. Thus, this
means that the system should:

Optimizing Evolution Rules Application and Communication Times 311

(a) encode information for a direct manipulation in both phases without
having to use coding/decoding processes,

(b) do the compression in a previous stage to the P system evolution,
(c) therefore, abandon entropy limit to be able to maintain parallelism level

and evolution time reached in previous research works.

4.2 Compression Schema

The second goal of this work pretends to compress the information from multisets
that are present in regions and rules antecedents and consequents from each
rule of a P system. But it does not address the compression of another kind
of information, such as priorities, membrane targets in rule consequents nor
dissolving rule capability.

Representation for multisets information in related literature is Parikh’s vec-
tor [4]. Data compression is directly associated with its representation. A com-
pression schema is presented here in three consecutive steps beginning with
Parikh’s vector codification over the P system alphabet.

Parikh’s vector over P system alphabet. Each region of a membrane can
potentially host an unlimited number of objects, represented by the symbols
from a given alphabet V. We use V* to denote the set of all strings over the
alphabet V (we consider only finite alphabets). For a ∈ V and x ∈ V* we
denote by |x|a the number of occurrences of a in x. Then, for V = {a1, ..., an},
the Parikh vector associated with V is the mapping on V* denoted by ψV (x) =
(|x|ai

, · · · , |x|an
) for each x ∈ V *. The byte’s order reflects the order of the

objects within the alphabet and consequently, the position directly indicates
which symbol’s multiplicity is being stored.

Parikh’s vector for each membrane’s alphabet. First step in compression
considers only the alphabet subset that may exist in each of the regions for the
membrane system, whatever are the possible configurations for the P system
evolution. This subset may be calculated by a static analysis, previous to P
system evolution time. Rules to consider when determining each membrane’s
alphabet in a given P system are:

1. Every object present at the region for the P system initial configuration
belongs to its membrane’s alphabet.

2. Every object present at the consequent for a membrane’s evolution rule with
target “here” belongs to its membrane’s alphabet.

3. Every object present at the consequent for a membrane’s evolution rule
with target “in” to another membrane, belongs to the target membrane’s
alphabet.

4. Every object present at the consequent for a membrane’s evolution rule with
target “out”, belongs to its father alphabet.

5. Every object present at any membrane alphabet with an evolution rule with
dissolution capability belongs to its father alphabet.

312 J.A. Tejedor et al.

Parikh’s vector without null values. Next compression step is an alteration
over the Run Length Encoding (RLE) algorithm [11], used mainly to compress
FAX transmissions. In this lossless codification, data sequences with same value
(usually zeros) are stored as a unique value plus its count. RLE compression
factor is, approximately:

E (X)
E {log2 x}

where X is a discrete random variable that represents the number of successive
zeros between two ones and E(X) is its expected value (average). Compression
value stands between 20% and 30%.

In our case, what we pretend is to eliminate all the null values in Parikh’s
vector, that is, to eliminate all the references to the alphabet elements in a mem-
brane that do not appear in its multiset. This information may be
considered as redundant because it may be obtained from the new coded in-
formation. In a formal way, let V = {a1, a2, . . . , an} be an ordered finite al-
phabet, for x ∈ V ∗ the encoded Parikh vector associated with V is defined by
ΨE

V (x) = {(|x|ai , i) | |x|ai 	= 0}.
At this point we should remark an important factor that is the variable or

constant character for the multiset multiplicities. For the cases with multisets
present at a membrane region, independently from the initial configuration, its
multiplicities values are variable depending on the evolution that takes the mem-
brane system in a non deterministic way. On the other hand, for the cases with
multisets present at the evolution rules antecedents and consequents, its multi-
plicities values are constant and known previously to the P system evolution.

According to this situation, the compression second step encodes without
null values just the information that belongs to constant multisets present at
evolution rules. Thus, we get a more compressed (and lossless) representation.
The reason that does this representation possible is the fact that the absence of
these null values multiplicities does not affect none of the multisets operations
(addition, subtraction, applicability, scalar product, . . .).

Storage unit compression. Last compression step concerns storage unit size
for each of the P system information values. Depending on the storage unit size
(measured in bits), we will be able to codify a greater or smaller range of values.
In membrane computing, that does not allow negative values, given t bits for
the storage unit, the range for possible values will vary from 0 to 2t − 1.

In this section, we will have to take into account multisets present in the
regions separately from the ones present in evolution rules. For the first case,
storage unit size depends on the value range we want to reach during evolution
without having an overflow. Instead of this, for the second case, we have to
take into account, as it was shown in previous sections, that each membrane’s
ordered alphabet and their multiplicities are constant. Thus, an analysis previous
to the P system evolution allows calculating the value ranges that are present
in constant multisets for evolution rules and, so, the size that is needed to get
their codification:

Optimizing Evolution Rules Application and Communication Times 313

1. value range for multiplicities present at the antecedents and consequents for
each membrane,

2. value range for Parikh’s vector positions over the ordered alphabet for each
membrane.

5 Analysis of Results

In this section we present the analysis of results obtained from the improvement
of evolution rules algorithms and the usage of compression schema. First we
analyze the impact that algorithms and compression have over the time required
for evolution rules application. Second, we analyze the impact that compression
has over the time needed for communication among membranes. Afterward, we
analyze the global impact over distributed architectures parameters: evolution
minimum time, optimum number of processors and membranes in each processor.
Finally, we analyze the schema compression itself and its benefits over viable
architectures for P systems implementations.

For the analysis of the following sections, we examine some P systems consid-
ered in [14] and [15]. Table 3 describes these P Systems.

Table 3. P System used for testing

P System Task Reference

A. First example [14]
B. Decidability: n mod k = 0 [14]
C. Generating: n2, n ≥ 1(1st version) [14]
D. Generating: n2, n ≥ 1 (2nd version) [15]

5.1 Impact Analysis for Evolution Rules Application Time

The algorithms for evolution rules application that have been referred to in this
paper, are based upon a limited set of primitive operations over multisets. These
are computation of: applicability, maximum applicability, antecedent/consequent
addition and subtraction over its region multiset and the scalar product of an
antecedent/consequent.

Table 4 shows the number of operations over multisets performed at worst by
the algorithms:

– Actives rules elimination (ARE) [20]
– Sequential version of competitive rules with 2nd optimization (SCR)
– Delimited massively parallel (DMP) [8]
– Parallel version of competitive rules with 2nd optimization (PCR)

applied to P systems mentioned in Table 3.

314 J.A. Tejedor et al.

Table 4. Number of operations over multisets performed at worst

Sequential Parallel
P System ARE SCR SCR/ARE DMP PCR PCR/DMP

A. 18 12 66,6% 18 9 50%
B. 9 9 100% 10 9 100%
C. 18 12 66,6% 18 9 50%
D. 18 12 66,6% 18 9 50%

Average 15.75 11.25 75% 16 9 60%

According to these empirical values, SCR algorithm decreases its execution
time 75% against ARE. Consequently, evolution rules application time will be
approximately 1.33 times faster. With the parallel algorithms we have that PCR
algorithm decreases its execution time 60% against DMP. Consequently, evolu-
tion rules application time will be approximately 1.67 times faster.

The algorithmic complexity of the operations over multisets used in the evolu-
tion rules application algorithms is determined by the representation of multiset
information of these rules. At worst, using representation through Parikh’s vector
over the P system alphabet, complexity will be equal to the alphabet cardinal-
ity. On the other hand, using representation through the proposed compression
schema, complexity at worst will be equal to the multiset support that is present
at the evolution rule antecedent/consequent. Table 5 presents, for each of the P
systems in table 3, its alphabet support, the average support for multisets present
in its evolution rules and a percentage based relation among both cardinalities.
Last row presents these cardinalities average values and their relation.

Table 5. Alphabet cardinality and support average from P systems of Table 3

P System | V | | support(w) | %

A. 4 1.05 26.3%
B. 4 1.50 37.5%
C. 5 1.13 22.6%
D. 5 1.13 22.6%

Average 4.5 1.20 27.25%

According to these empirical values, each of the primitive operations previ-
ously mentioned will decrease its execution time approximately until a 27.25%.
Consequently, evolution rules application time will be approximately 3.67 times
faster.

Taking into account both factors (decrease number of operations and decrease
time per operation) we can affirm that the evolution rules application time with
SRC algorithm will be approximately 4.88 times faster than ARE algorithm and
PRC algorithm will be approximately 6.09 times faster than DMP algorithm.

Optimizing Evolution Rules Application and Communication Times 315

5.2 Impact Analysis for Communication Time Among Membranes

Communication among membranes addresses submission of multisets present at
the applied application rules consequents and, in case of dissolution, the region
multiset itself. Depending on information representation, the data packet size to
transmit will be smaller or bigger. Table 6 shows, for each of the P systems shown
in Table 3, information compression rate for its communication for different
storage units sizes. Last row presents compression rates average.

Table 6. Compression degree for communication units from P systems of Table 3

Storage unit size
P System 8 bits 16 bits 32 bits 64 bits

A. 55.0% 45.0% 40.0% 37.5%
B. 60.0% 50.0% 45.0% 42.5%
C. 54.0% 44.0% 39.0% 36.5%
D. 53.3% 44.4% 40.0% 37.8%

Average 55.6% 45.9% 41.0% 38.6%

According to these empirical values, a reduction until a 55.6% of the infor-
mation to transmit among membranes may be reached in the worst case. Con-
sidering that communication is a linear process that depends upon the amount
of information to transmit, communication time among membranes will be ap-
proximately 1.8 times faster.

5.3 Global Impact Analysis

At this point, we present an impact analysis of the optimization of the evolution
rule application and communication times over distributed architecture para-
meters. In particular, we examine, following the criteria shown in Table 2, the
implication in optimum number of processors and membranes per processor and
minimum evolution time.

On one hand, time reduction for evolution rules application increases the
number of membranes per processor. It also decreases the number of processors
and evolution time.

Using the compression schema with SCR algorithm the following results are
obtained: the evolution rules application time will be approximately 4,88 times
faster so we get an increment of a 120.9% for membranes per processor and a
reduction until a 45.26% for number of processors and for evolution time.

Using the compression schema with PCR algorithm the following results are
obtained: the evolution rules application time will be approximately 6.09 times
faster so we get an increment of a 146.78% for membranes per processor and a
reduction until a 40.52% for number of processors and for evolution time.

On the other hand, time reduction for communication among membranes
increases the number of processors. It also decreases the number of membranes

316 J.A. Tejedor et al.

per processor and evolution time. According to the previous empirical data,
from a communication time 1.80 times faster, we get, for the worst case, a 34.2%
increment for number of processors and a reduction until a 74.5% for the number
of membranes per processor and for evolution time.

Taking into account both factors, reduction for application and communica-
tion time, counteract their effects over the number of processors and the number
of membranes per processor.

Using the compression schema with SCR algorithm the following results are
obtained: we get a reduction of a 60.7% for the number of processors, an incre-
ment of a 64.65% for the number of membranes per processor and a reduction
until a 33,74% for evolution time.

Using the compression schema with PCR algorithm the following results are
obtained: we get a reduction of a 54.36% for the number of processors, an incre-
ment of a 83.93% for the number of membranes per processor and a reduction
until a 30.2% for evolution time.

5.4 Compression Schema Analysis

Table 7 shows compression rates reached for each P system from Table 4, con-
sidering different storage unit sizes. Last row presents average compression rates
for each storage size.

Table 7. Compression degree for P System from Table 3

Storage unit size
P System 8 bits 16 bits 32 bits 64 bits

A. 59.8% 37.8% 26.8% 21.3%
B. 75.0% 47.7% 34.1% 27.3%
C. 51.1% 32.1% 22.8% 18.1%
D. 52.2% 33.3% 23.9% 19.2%

Average compression degree 59.5% 37.7% 26.9% 21.5%

Considering the worst case for this compression schema (8 bits for all the
storage units), at least, we reach a compression rate of 75,0%, which implies
an increase of a 33,3% for memory availability to store information. For average
compression rate (59,5%), it is reached an increase of 68,0% of memory availabil-
ity. So we attenuate the storage problem for information in distributed architec-
tures implemented with low storage capacity microcontrollers based technologies.
Using this compression schema, it will be possible to allocate more membranes
in each microcontroller and so, it will be possible to reach minimum times at
the same time that we are maximizing resources.

On the other hand, it has to be underlined that the compression process is
done by an analysis previous to the P system evolution. Thus, evolution is not

Optimizing Evolution Rules Application and Communication Times 317

penalized with compression/decompression processes while phases for evolution
rules application or communication among membranes.

6 Conclusions

Several published time analyses have proved that there is a very strong rela-
tionship between communication and evolution rules application times during
membranes evolution in P systems implementation. This relation determines
the number of membranes that can be allocated per processor in order to obtain
the minimum evolution time for the P system. This work shows how to optimize
the evolution rule application and communication times using two complemen-
tary techniques: the improvement of evolution rules algorithms and the usage of
compression schema.

On the one hand, this paper introduces the concept of a competitiveness rela-
tionship among active rules. Based on this concept, a new way of parallelism has
been opened toward the massively parallel character needed in rules application
in P systems. Moreover, the sequential version of this algorithm performs a lower
number of operations in execution than in other sequential algorithms published
to date. Both the sequential and the parallel versions of the algorithm carry out
a limited number of operations, thus allowing for prior knowledge of the exe-
cution time. This characteristic makes both versions of the proposed algorithm
appropriate for being used in viable distributed architectures for P systems im-
plementations. This is very important because architectures require determining
the distribution of the number of membranes to be located in each processor of
the architecture in order to obtain minimal evolution step times with minimal
resources.

On the other hand, this work has presented a schema for compressing
multisets and evolution rules for P system. The schema gets the possible highest
compression level for the information without penalizing compression and de-
compression time with cost-consuming operations.The whole compression
process is performed by mean of a previous static analysis to the P system exe-
cution. These facts, thanks to the chosen representation of information, improve
the system performance reducing evolution rule application and communication
times, what is very important because it implies a direct reduction of the evolu-
tion time in system execution.

An additional advantage obtained by the new algorithm and compression
scheme is applied to hardware solutions and architectures based on microproces-
sors nets. In these cases the amount of information that has to be stored and
transmitted is very important. In the first case, the main problem is due to the
low storage capacity of microcontrollers. So, reducing this amount of informa-
tion needed to represent a membrane, means to be able to extend the variety
of problems that can be solved with this technology. In the second case, reduc-
ing the amount of information to transmit means to minimize the bottleneck in
processor communication and so, increase the parallelism level.

318 J.A. Tejedor et al.

References

1. Bravo, G., Fernández, L., Arroyo, F., Tejedor, J.: Master-Slave Parallel Architec-
ture for Implementing P Systems. In: MCBE 2007. The 8th WSEAS International
Conference on Mathematics and Computers in Business and Economics, Vancouver
(Canada) (June 2007)

2. Ciobanu, G., Păun, G., Pérez-Jiménez, M. (eds.): Applications of Membrane Com-
puting. Natural Computing Series. Springer, Heidelberg (2006)

3. Ciobanu, G., Wenyuan, G.: A P System running on a Cluster of Computers. In:
Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing. LNCS, vol. 2933, pp. 123–150. Springer, Heidelberg (2004)

4. Dassow, J.: Parikh Mapping and Iteration. In: Calude, C.S., Pun, G., Rozenberg,
G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 85–102. Springer,
Heidelberg (2001)

5. Fernández, L., Mart́ınez, V.J., Arroyo, F., Mingo, L.F.: A Hardware Circuit for
Selecting Active Rules in Transition P Systems. In: Workshop on Theory and
Applications of P Systems, Timisoara (Romania) (September 2005)

6. Fernández, L., Arroyo, F., Castellanos, J., Tejedor, J.A., Garćıa, I.: New Algo-
rithms for Application of Evolution Rules based on Applicability Benckmarks. In:
BIOCOMP 2006. International Conference on Bioinformatics and Computational
Biology, Las Vegas (EEUU) (July 2006)

7. Fernández, L., Arroyo, F., Tejedor, J.A., Castellanos, J.: Massively Parallel Algo-
rithm for Evolution Rules Application in Transition P Systems. In: WMC 2006,
pp. 337–343 (July 2006)

8. Gil, F.J., Fernández, L., Arroyo, F., Tejedor, J.A.: Delimited Massively Parallel
Algorithm based on Rules Elimination for Application of Active Rules in Transition
P Systems. In: i.TECH-2007. Fifth International Conference Information Research
and Applications, Varna (Bulgary) (June 2007)

9. Gutiérrez, A., Fernández, L., Arroyo, F., Mart́ınez, V.: Design of a Hardware Archi-
tecture based on Microcontrollers for the Implementation of Membrane Systems.
In: SYNASC 2006. 8th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, (September 26-29, 2006), Timisoara, Romania
(2006)

10. Gutiérrez, A., Fernández, L., Arroyo, F., Alonso, S.: Hardware and Software Ar-
chitecture for Implementing Membrane Systems: A case of study to Transition P
Systems. In: DNA13 2007. 13th International Meeting on DNA Computing Mem-
phis, EEUU (June 4-8, 2007)

11. Lelewer, D.A., Hirschberg, D.S.: Data Compression. ACM Computing, 8902-0069
(1987)

12. Mart́ınez, V., Fernández, L., Arroyo, F., Gutiérrez, A.: A Hardware Circuit for the
Application of Active Rules in a Transition P Systems Region. In: Fourth Inter.
Conference Information Research and Applications, (June 20-25, 2006), Bulgaria,
Varna (2006)

13. Parkinson, C.N.: Parkinson’s Law, or the Pursuit of Progress. John Murray (1957)
14. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences

61 (2000), Turku Center of Computer Science-TUCS Report 208 (1998)
15. Păun, G., Rozenberg, G.: A Guide to Membrane Computing. Theoretical Computer

Science 287, 73–100 (2000)
16. Petreska, B., Teuscher, C.: A Reconfigurable Hardware Membrane System. In:

Alhazov, A., Mart́ın-Vide, C., Paun, G. (eds.) Preproceedings of the Workshop on
Membrane Computing, Tarragona, July 17-22 2003, pp. 343–355 (2003)

Optimizing Evolution Rules Application and Communication Times 319

17. Salomon, D.: Data Compression: The Complete Reference. Springer, Heidelberg
(2004)

18. Syropoulos, A., Mamatas, E.G., Allilomes, P.C., Sotiriades, K.T.: A Distributed
Simulation of P Systems. In: Preproceedings of the Workshop on Membrane Com-
puting, Tarragona, pp. 455–460 (2003)

19. Tejedor, J.A., Fernández, L., Arroyo, F., Bravo, G.: An Architecture for Attacking
the Bottleneck Communication in P System. In: AROB 2007. XII International
Symposium on Artificial Life and Robotics, Oita, JAPAN (January 25-27, 2007)

20. Tejedor, J.A., Fernández, L., Arroyo, F., Gutiérrez, A.: Algorithm of Active Rule
Elimination for Application of Evolution Rules. In: MCBE 2007. The 8th WSEAS
International Conference on Mathematics and Computers in Business and Eco-
nomics, Vancouver (Canada) (June 2007)

	Optimizing Evolution Rules Application and Communication Times in Membrane Systems Implementation
	Introduction
	Related Works
	Optimization of Active Rules Elimination Algorithm
	Active Rules Elimination Algorithm
	Definition of Competitiveness Between Rules
	The Algorithm Based on Rules Competitiveness

	Multisets and Rules Compression
	Compression Requirements
	Compression Schema

	Analysis of Results
	Impact Analysis for Evolution Rules Application Time
	Impact Analysis for Communication Time Among Membranes
	Global Impact Analysis
	Compression Schema Analysis

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

