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{ludek.cienciala,lucie.ciencialova,alica.kelemenova}@fpf.slu.cz

Abstract. We continue the investigation of P colonies introduced in [8],
a class of abstract computing devices composed of independent mem-
brane agents, acting and evolving in a shared environment.

We decrease the number of agents sufficient to guarantee computa-
tional completeness of P colonies with one and with two objects inside
each agent, respectively, owing some special restrictions to the type of
programs. We characterize the generative power of the partially blind
machine by the generative power of special P colonies.

1 Introduction

P colonies were introduced in [8] as formal models of a computing device inspired
by membrane systems ([10]) and by grammar systems called colonies ([6]). This
model intends to structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents. Each agent is
given by a collection of objects embedded in a membrane. The number of objects
inside the agent is the same for each one of them. The environment contains
several copies of a basic environmental object denoted by e. The number of the
copies of e is unlimited.

A set of programs is associated with each agent. The program determines the
activity of the agent by rules. In every moment of computation all the objects
inside of the agent are being either evolved (by an evolution rule) or transported
(by a communication rule). Two such rules can also be combined into checking
rule which specifies two possible actions: if the first rule is not applicable then
the second one should be applied. So it sets the priority between two rules.

The computation starts in the initial configuration. Using their programs the
agents can change their objects and possibly objects in the environment. This
gives possibility to affect the behavior of the other agents in next steps of compu-
tation. In each step of the computation, each agent with at least one applicable
program nondeterministically chooses one of them and executes it. The com-
putation halts when no agent can apply any of its programs. The result of the
computation is given by the number of some specific objects present at the en-
vironment at the end of the computation.

There are several different ways used how to define the beginning of the com-
putation. (1) At the beginning of computation the environment and all agents
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contain only copies of object e. (2) All the agents can contain various objects at
the beginning of computation - the agents are in different initial states. The envi-
ronment contains only copies of object e. (3) The initial state of the environment
is nonempty (there are some object different from the object e) - the environment
contains initial “parameters” for future computation, while the agents start with
e-s.

In [4,7,8] the authors study P colonies with two objects inside the agents.
In this case programs consist of two rules, one for each object. If the former
of these rules is an evolution and the latter is a communication or checking, we
speak about restricted P colonies. If also another combination of the types of the
rules is used, we obtain non-restricted P colonies. The restricted P colonies with
checking rules are computationally complete [3,4].

In the present paper we study properties of restricted P colonies without
checking rules and computational power of P colonies with one object and the
minimal number of agents.

We start with definitions in Section 2.
In Section 3 we will deal with P colonies with one object inside each agent.

In [1] there was shown that at most seven programs for each agent as well as
five agents guarantee the computational completeness of these P colonies. In
the preset paper we look for the generative power of P colonies with less than
five agents. Two results are achieved in this direction. First, we show, that four
agents are enough for computational completeness of P colonies. The second
result gives a lower bound for the generative power the P colonies with two
agents. Even a restricted variant of these P colonies is at least as powerful as
the partially blind register machines.

Restricted P colonies are studied in Section 4. It is known that one agent
is sufficient to obtain computational completeness of restricted P systems with
checking rules ([4]). For the restricted P colonies that do not use checking rules
we will prove that two agents are sufficient to obtain the universal computational
power.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory. For more information on membrane computing, we rec-
ommend [11]. We briefly summarize the notation used in the present paper.

We use NRE to denote the family of the recursively enumerable sets of non-
negative integers and N to denote the set of non-negative integers.

Let Σ be an alphabet. Let Σ∗ be the set of all words over Σ (including the
empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all finite multisets over the finite set V
is denoted by V ◦. The support of M is the set supp(M) = {a ∈ V | fM (a) �= 0}.
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The cardinality of M , denoted by |M |, is defined by |M | =
∑

a∈V fM (a). Any
finite multiset M over V can be represented as a string w over alphabet V with
|w|a = fM (a) for all a ∈ V . Obviously, all words obtained from w by permuting
the letters can also represent the same M , and ε represents the empty multiset.
For multiset M represented by word w we use the notation �w.

2.1 P Colonies

We briefly recall the notion of P colonies introduced in [8]. A P colony consists of
agents and environment. Both the agents and the environment contain objects.
With every agent a set of programs is associated. There are two types of rules
in the programs. The first type, called evolution rules, are of the form a → b.
It means that object a inside of the agent is rewritten (evolved) to the object
b. The second type of rules, called communication rules, are of the form c ↔ d.
When this rule is performed, the object c inside the agent and the object d
outside of the agent change their positions, so, after execution of the rule object
d appears inside the agent and c is placed outside in the environment.

In [7] the ability of agents was extended by checking rule. Such a rule gives to
the agents an opportunity to choose between two possibilities. It has the form
r1/r2. If the checking rule is performed, the rule r1 has higher priority to be
executed than the rule r2. It means that the agent checks the possibility to use
rule r1. If it can be executed, the agent has to use it. If the rule r1 cannot be
applied, the agent uses the rule r2.

Definition 1. A P colony of the capacity c is a construct
Π = (A, e, f, �vE , B1, . . . , Bn), where:

– A is an alphabet whose elements are called objects,
– e is the basic object of the colony, e ∈ A,
– f is the final object of the colony, f ∈ A,
– �vE is a multiset over A − {e},
– Bi, 1 ≤ i ≤ n, are agents; each agent is a construct Bi = (�oi, Pi), where

• �oi is a multiset over A which determines the initial state (content) of
agent Bi and |�oi| = c,

• Pi = {pi,1, . . . , pi,ki} is a finite set of programs, where each program
contains exactly c rules, which are in one of the following forms each:
� a → b, called an evolution rule,
� c ↔ d, called a communication rule,
� r1/r2, called a checking rule; r1, r2 are evolution or communication

rules.

The initial configuration of the P colony is the (n + 1)-tuple of multisets
of objects present in the P colony at the beginning of the computation,
i.e., (�o1, . . . , �on, �vE). Formally, a configuration of P colony Π is given by
(�w1, . . . , �wn, �wE), where |�wi| = c, 1 ≤ i ≤ n, �wi represents all the objects
placed inside the i-th agent and �wE ∈ (A − {e})◦ represents all the objects in
the environment different from the object e.
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In this paper, the parallel model of P colonies will be studied. At each step
of a parallel computation, each agent which can use one of its programs should
use one. If the number of applicable programs is higher than one, the agent
nondeterministically chooses one of them.

Let the programs of each Pi be labeled in a one-to-one manner by labels in a
set lab (Pi) and lab (Pi) ∩ lab (Pj) = ∅ for i �= j, 1 ≤ i, j ≤ n.

To express derivation step formally we introduce the following four functions.
For a rule r being a → b, c ↔ d, and c ↔ d/c′ ↔ d′, respectively, and for multiset
�w ∈ A◦ we define:

left (a → b, �w) = �a
right (a → b, �w) = �b
export (a → b, �w) = �ε
import (a → b, �w) = �ε

left (c ↔ d, �w) = �ε
right (c ↔ d, �w) = �ε
export (c ↔ d, �w) = �c
import (c ↔ d, �w) = �d

left (c ↔ d/c′ ↔ d′, �w) = �ε
right (c ↔ d/c′ ↔ d′, �w) = �ε
export (c ↔ d/c′ ↔ d′, �w) = �c
import (c ↔ d/c′ ↔ d′, �w) = �d

}

for |�w|d ≥ 1

export (c ↔ d/c′ ↔ d′, �w) = �c
′

import (c ↔ d/c′ ↔ d′, �w) = �d
′

}

for |�w|d = 0 and |�w|d′ ≥ 1

For a program p and any α ∈ {left, right, export, import}, let
α (p, �w) = ∪r∈pα (r, �w).

A transition from a configuration to another one is denoted as
(�w1, . . . , �wn, �wE) ⇒ (�w

′
1, . . . , �w

′
n, �w

′
E) , where the following

conditions are satisfied:

– There is a set of program labels P with |P | ≤ n such that
• p, p′ ∈ P , p �= p′, p ∈ lab (Pj), p′ ∈ lab (Pi) , i �= j,
• for each p ∈ P , p ∈ lab (Pj), left (p, �wE) ∪ export (p, �wE) = �wj , and⋃

p∈P

import (p, �wE) ⊆ �wE .

– Furthermore, the chosen set P is maximal, that is, if any other program
r ∈

⋃
1≤i≤n lab (Pi), r /∈ P , is added to P , then the conditions above are not

satisfied.

Finally, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab (Pj),
let w′

j = right (p, �wE) ∪ import (p, �wE) . If there is no p ∈ P with p ∈ lab (Pj)
for some j, 1 ≤ j ≤ n, then let �w

′
j = �wj and moreover, let

�w
′
E = �wE −

⋃

p∈P

import (p, �wE) ∪
⋃

p∈P

export (p, �wE) .

Union and “–” here are multiset operations.
A configuration is halting if the set of program labels P satisfying the con-

ditions above cannot be chosen to be other than the empty set. A set of all
possible halting configurations is denoted by H . With a halting computation we
can associate a result of the computation, given by the number of copies of the
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special symbol f present in the environment. The set of numbers computed by
a P colony Π is defined as

N (Π) =
{
|�wE |f | (�o1, . . . , �on, �vE) ⇒∗ (�w1, . . . , �wn, �wE) ∈ H

}
,

where (�o1, . . . , �on, �vE) is the initial configuration, (�w1, . . . , �wn, �wE) is a
halting configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Given a P colony Π = (A, e, f, �vE , B1, . . . , Bn) the maximal number
of programs associated with the agents in P colony Π is called the height of
P colony Π . The degree of P colony Π is the number of agents in P colony Π .
The third parameter characterizing a P colony is the capacity of P colony Π ,
describing the number of the objects inside each of the agents.

Let us use the following notations: NPCOLpar(c, n, h) is the family of all sets
of numbers computed by P colonies working in parallel, using no checking rules,
and with the capacity at most c, the degree at most n, and the height at most
h. If the checking rules are allowed, the family of all sets of numbers computed
by P colonies is denoted by NPCOLparK. If the P colonies are restricted, we
use notation NPCOLparR and NPCOLparKR, respectively.

2.2 Register Machines

In this paper we characterize the size of the families NPCOLpar(c, n, h) com-
paring them with the recursively enumerable sets of numbers. To achieve this
aim we use the notion of a register machine.

Definition 2. [9] A register machine is a construct M = (m, H, l0, lh, P ) where
m is the number of registers, H is the set of instruction labels, l0 is the start
label, lh is the final label, P is a finite set of instructions injectively labeled with
the elements from the set H.

The instructions of the register machine are of the following forms:

l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the
instruction (labeled with) l2 or l3.

l1 : (SUB(r), l2, l3) If the register r stores a value different from zero, then sub-
tract 1 from its content and go to instruction l2, otherwise
proceed to instruction l3.

lh : HALT Halt the machine. The final label lh is only assigned to this
instruction.

Without loss of generality, one can assume that in each ADD-instruction
l1 : (ADD(r), l2, l3) and in each SUB-instruction l1 : (SUB(r), l2, l3) the labels
l1, l2, l3 are mutually distinct.

The register machine M computes a set N(M) of numbers in the following
way: it starts with all registers empty (hence storing the number zero) with the
instruction labeled l0 and it proceeds to apply the instructions as indicated by
the labels (and made possible by the contents of registers). If it reaches the
halt instruction, then the number stored at that time in the register 1 is said
to be computed by M and hence it is introduced in N(M). (Because of the
nondeterminism in choosing the continuation of the computation in the case of
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ADD-instructions, N(M) can be an infinite set.) It is known (see, e.g., [9]) that
in this way we compute all Turing computable sets.

Moreover, we call a register machine partially blind [5], if we interpret a sub-
tract instruction l1 : (SUB(r); l2; l3) in the following way: if the value of register
r is different from zero, then subtract one from its contents and go to instruc-
tion l2 or to instruction l3; if in register r is stored zero, then the program ends
without yielding a result.

When the partially blind register machine reaches the final state, the result
obtained in the first register is taken into account if the remaining registers
store value zero. The family of sets of non-negative integers generated by par-
tially blind register machines is denoted by NRMpb. The partially blind register
machines accept a proper subset of NRE.

3 P Colonies with One Object Inside the Agent

In this section we analyze the behavior of P colonies with only one object inside
each agent. Each program in this case is formed by only one rule, either an
evolution or a communication.

If all the agents have their programs with evolution rules, the agents “live
only for themselves” and do not communicate with the environment.

In [1] the following results were proved:
NPCOLparK(1, ∗, 7) = NRE,
NPCOLparK(1, 5, ∗) = NRE.
The number of agents in the second result can be decreased. This is demon-

strated by the following theorem.

Theorem 1. NPCOLparK(1, 4, ∗) = NRE.

Proof. We construct a P colony simulating the computation of a register ma-
chine. Because there are only copies of e in the environment and inside the agents
in the initial configuration, we will initialize a computation by generating the
initial label l0. After generating the symbol l0 this agent stops and it can start
its activity only by using a program with a communicating rule.

Two agents will cooperate in order to simulate the ADD and SUB instructions.
Let us consider a register machine M = (m, H, l0, lh, P ). We can represent

the content mi of the register i by mi copies of the specific object ai in the
environment. We construct the P colony Π = (A, e, f, �ε, B1, . . . , B4) with:

– alphabet A = {l, l′|l ∈ H}
∪ {Ei, E

′
i, Fi, F

′
i , F

′′
i | for each li ∈ H}

∪ {ai | 1 ≤ i ≤ m} ∪ {e, d, m, C},
– f = a1,
– Bi = (�e, Pi), 1 ≤ i ≤ 4, where Pi will be specified in the next steps of the

proof.

The programs in P1 serve for the initialization of the computation and in the
simulation of SUB instructions, programs in P2 have an auxiliary character. The
programs in P3 and in P4 realize ADD and SUB instructions.



On the Number of Agents in P Colonies 199

(1) To initialize the simulation of a computation of M we take an agent B1 =
(�e, P1) with the set of programs:

P1 :
1 : 〈e → l0〉 , 2 : 〈l0 ↔ d〉 ;

(2) We need one more agent to generate a special object d. While object C is not
in the environment the agent B2 places a further copy of d to the environment.

P2 :
3 : 〈e → d〉 , 4 : 〈d ↔ C/d ↔ e〉 ;

The P colony Π starts its computation in the initial configuration (�e, �e, �e,

�e, �ε). In the first subsequence of steps of P colony Π only agents B1 and B2
can apply their programs.

configuration of Π labels of applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �e �e �e �e 1 3
2. �l0 �d �e �e 4
3. �l0 �e �e �e �d 2 3
4. �d �d �e �e �l0

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3) two agents B3 and B4
are used in Π . These agents help each other to add one copy of object ar and
object l2 or l3 to the environment using the following programs:

P3 P3 P4 P4

5 : 〈e ↔ l1〉 , 11 : 〈E′
1 → l′2〉 , 15 : 〈e ↔ E1〉 , 21 : 〈e ↔ l′2〉 ,

6 : 〈l1 → E1〉 , 12 : 〈E′
1 → l′3〉 , 16 : 〈E1 → E′

1〉 , 22 : 〈e ↔ l′3〉 ,
7 : 〈E1 ↔ d〉 , 13 : 〈l′2 ↔ e〉 , 17 : 〈E′

1 ↔ e〉 , 23 : 〈l′2 → l2〉 ,
8 : 〈d → L1〉 , 14 : 〈l′3 ↔ e〉 , 18 : 〈e ↔ L1〉 , 24 : 〈l′3 → l3〉 ,
9 : 〈L1 ↔ E′

1/L1 → m〉 , 19 : 〈L1 → ar〉 , 25 : 〈l2 ↔ e〉 ,
10 : 〈m → d〉 , 20 : 〈ar ↔ e〉 , 26 : 〈l3 ↔ e〉 .

The agent B3 consumes the object l1, changes it to E1 and places it to the
environment. The agent B4 borrows E1 from the environment and returns E′

1. B3
rewrites the object d to some Li. If this Li has the same index as E′

i placed in the
environment, the computation can go to the next phase. If indices of Li and Ei

are different, the agent B3 tries to generate another Li. If the computation gets
over this checking step, agent B4 generates one copy of object ar and places
it into the environment (adding 1 to the content of register r). Then agent B3
generates the helpful object l′2 or l′3 and places it into the environment. The
agent B4 exchanges it for the “valid label” l2 or l3.

An instruction li : (ADD(r), lj , lk) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.
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configuration of Π labels of applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lia
u
r dv 4 5

2. �d �e �li �e �a
u
r dv+1 3 6

3. �d �d �Ei �e �a
u
r dv+1d 4 7

4. �d �e �d �e �Eia
u
r dv+1 3 8 15

5. �d �d �Li �Ei �a
u
r dv+1 4 16

6. �d �e �Li �E
′
i �a

u
r dv+2 3 17

7. �d �d �Li �e �E
′
ia

u
r dv+2 4 9

8. �d �e �E
′
i �e �Lia

u
r dv+3 3 11 or 12 18

9. �d �d �l
′
j �Li �a

u
r dv+3 4 13 19

10. �d �e �e �ar �l
′
ja

u
r dv+4 3 20

11. �d �d �e �e �l
′
ja

u+1
r dv+4 4 21

12. �d �e �e �l
′
j �a

u+1
r dv+5 3 23

13. �d �d �e �lj �a
u+1
r dv+5 4 25

14. �d �e �e �e �lja
u+1
r dv+6

(4) For each SUB-instruction l1 : (SUB(r), l2, l3), the next programs are intro-
duced in the sets P1, P3, and in the set P4:

P3 P3 P1 P4

27 : 〈e ↔ l1〉 , 33 : 〈F ′′
1 → l′3〉 , 36 : 〈d ↔ F1〉 , 41 : 〈e ↔ l′2〉 ,

28 : 〈l1 → F1〉 , 34 : 〈l′2 ↔ e〉 , 37 : 〈F1 → F ′
1〉 , 42 : 〈e ↔ l′3〉 ,

29 : 〈F1 ↔ d〉 , 35 : 〈l′3 ↔ e〉 ; 38 : 〈F ′
1 ↔ ar/F ′

1 → F ′′
1 〉 , 43 : 〈l′2 → l2〉 ,

30 : 〈d ↔ F ′
1〉 , 39 : 〈ar → d〉 , 44 : 〈l′3 → l3〉 ,

31 : 〈F ′
1 → l′2〉 , 40 : 〈F ′′

1 ↔ d〉 , 45 : 〈l2 ↔ e〉 ,
32 : 〈d ↔ F ′′

1 〉 , 46 : 〈l3 ↔ e〉 .

Agent B3 starts the simulation of executing SUB-instruction l1, the agent B1
checks whether there is a copy of the object ar in the environment or not and
gives this information (F ′

1 – if there is some ar; F ′′
1 – if there is no object ar

in the environment) to the environment.
An instruction li : (SUB(r), lj , lk) is simulated by the following sequence of

steps. The computation for 0 in the register r is given below.

configuration of Π labels of applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lid
v 4 27

2. �d �e �li �e �d
v+1 3 28

3. �d �d �Fi �e �d
v+1d 4 29

4. �d �e �d �e �Fid
v+1 36 3

5. �Fi �d �d �e �d
v+2 37 4

6. �F
′
i �e �d �e �d

v+3 38 3
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configuration of Π labels of applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

7. �F
′′
i �d �d �e �d

v+3 40 4
8. �d �e �d �e �F

′′
i dv+3 3 32

9. �d �d �F
′′
i �e �d

v+4 4 33
10. �d �e �l

′
k �e �d

v+5 3 35
11. �d �d �e �e �l

′
kdv+5 4 42

12. �d �e �e �l
′
k �d

v+6 3 44
13. �d �d �e �lk �d

v+6 4 46
14. �d �e �e �e �lkdv+7

The computation for a value different from 0 in the register r:
configuration of Π labels of applicable programs

step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lia
u
r dv 4 27

2. �d �e �li �e �a
u
r dv+1 3 28

3. �d �d �Fi �e �a
u
r dv+1d 4 29

4. �d �e �d �e �Fia
u
r dv+1 36 3

5. �Fi �d �d �e �a
u
r dv+2 37 4

6. �F
′
i �e �d �e �a

u
r dv+3 38 3

7. �ar �d �d �e �Fia
u−1
r dv+3 39 4 30

8. �d �e �F
′
i �e �a

u−1
r dv+5 3 31

9. �d �d �l
′
j �e �a

u−1
r dv+5 4 34

10. �d �e �e �e �l
′
ja

u−1
r dv+6 3 41

11. �d �d �e �l
′
j �a

u−1
r dv+6 4 43

12. �d �e �e �lj �a
u−1
r dv+7 3 45

13. �d �d �e �e �lja
u−1
r dv+7

(5) The halting instruction lh is simulated by agent B3 with subset of programs:

P3

47 : 〈e ↔ lh〉 , 48 : 〈lh → C〉 , 49 : 〈C ↔ e〉 .

The agent consumes the object lh and in the environment there is no other
object lm. This agent places one copy of the object C to the environment and
stops working. In the next step the object C is consumed by the agent B3. No
agent can start its work and the computation halts. The execution of the halting
instruction lh stops all agents in colony Π :

configuration of Π labels of applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lhdv 4 47
2. �d �e �lh �e �d

v+1 3 48
3. �d �d �C �e �d

v+1d 4 49
4. �d �e �e �e �Cdv+1 3
5. �d �d �e �e �Cdv+2 4
6. �d �C �e �e �d

v+3 - - - - - - - - - - - - - - -
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The P colony Π correctly simulates the computation in the register machine
M . The computation of Π starts with no object ar placed in the environment
in the same way as the computation in M starts with zeros in all registers. The
computation of Π stops if the symbol lh and consequently object C is placed
inside the corresponding agent in the same way as M stops by executing the
halting instruction labeled lh. Consequently, N(M) = N(Π) and because the
number of agents equals four, the proof is complete. ��

Theorem 2. NRMpb ⊆ NPCOLpar(1, 2, ∗).

Proof. Let us consider a partially blind register machine M with m registers. We
construct a P colony Π = (A, e, f, �vE , B1, B2) simulating a computation of the
register machine M with:

– A = {J, J ′, V, Q} ∪ {li, l
′
i, l

′′
i , Li, L

′
i, L

′′
i , Ei | li ∈ H} ∪ {ar | 1 ≤ r ≤ m},

– f = a1,
– Bi = (�e, Pi), i = 1, 2.

The sets of programs are as follows:

(1) For initializing the simulation:

P1 : P1 : P2 :
1 : 〈e → J〉 , 3 : 〈J → l0〉 , 5 : 〈e ↔ J〉 ,
2 : 〈J ↔ e〉 , 4 : 〈Q → Q〉 , 6 : 〈J → J ′〉 ,

7 : 〈J ′ ↔ e〉 .

At the beginning of the computation the first agent generates the object l0
(the label of the starting instruction of M). It generates some copies of object
J . The agent B2 exchange them by J ′.

configuration of Π labels of applicable programs
B1 B2 Env P1 P2

1. �e �e 1 −
2. �J �e 2 or 3 −
3. �e �e �J 1 5
4. �J �J 2 or 3 6
5. �l0 �J

′ 8 or 24 or 34 7
6. ? �e �J

′

(2) For every ADD-instruction l1 : (ADD(r), l2, l3), P1 and P2 contain:

P1 : P1 : P2 :
8 : 〈l1 → l′1〉 , 14 : 〈L1 ↔ E1〉 , 18 : 〈e ↔ l′1〉 ,
9 : 〈l′1 ↔ J ′〉 , 15 : 〈L1 → Q〉 , 19 : 〈l′1 → E1〉 ,
10 : 〈l′1 → Q〉 , 16 : 〈E1 → l2〉 , 20 : 〈E1 ↔ e〉 ,
11 : 〈J ′ → L′′

1〉 , 17 : 〈E1 → l3〉 , 21 : 〈e ↔ L1〉 ,
12 : 〈L′′

1 → L′
1〉 , 22 : 〈L1 → ar〉 ,

13 : 〈L′
1 → L1〉 , 23 : 〈ar ↔ e〉 .
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When there is an object l1 inside agent B1, the agent rewrites it to a copy
of l′1 and the agent sends it to the environment. The agent B2 borrows E1 from
the environment and returns E′

1 back.
The agent B1 rewrites the object J ′ to some Li. The first agent has to gener-

ate it in three steps to wait until the second agent generates the symbol E′
i and

places it into the environment. If this Li has the same index as E′
i placed in the

environment, the computation can go to the next phase. If the indices of Li and
Ei are different, the agent B1 generates Q and the computation never stops. If
the computation gets over this checking step, B1 generates object l2 or object l3.

configuration of Π labels of applicable programs
B1 B2 Env P1 P2

1. �l1 �e �J
′ 8 −

2. �l
′
1 �e �J

′ 9 or 10 −
3. �J

′
�e �l

′
1 11 18

4. �L
′′
1 �l

′
1 12 19

5. �L
′
1 �E1 13 20

6. �L1 �e �E1 14 or 15 −
7. �E1 �e �L1 16 or 17 21
8. �l2 �L1 8 or 24 or 34 22
9. ? �ar 9 or 25 or 35 23
10. ? �e �ar

(3) For every SUB-instruction l1 : (SUB(r), l2, l3) the following subsets of pro-
grams are in P1 and P2:

P1 : P1 : P2 :
24 : 〈l1 → l′′1 〉 , 28 : 〈V ↔ l′′′1 〉 , 31 : 〈e ↔ l′′1 〉 ,
25 : 〈l′′1 ↔ ar〉 , 29 : 〈l′′′1 → l2〉 , 32 : 〈l′′1 → l′′′1 〉 ,
26 : 〈l′′1 → Q〉 , 30 : 〈l′′′1 → l3〉 33 : 〈l′′′1 ↔ e〉 ,
27 : 〈ar → V 〉 .

In the first step the agent checks if there is any copy of ar in the environment
(for zero in register r). Because of the nondeterminism of the computation in

configuration of Π

B1 B2 Env P1 P2

1. �l1 �e �ar 24 −
2. �l

′′
1 �e �ar 25 or 26 −

3. �ar �e �l
′′
1 27 31

4. �V �l
′′
1 − 32

5. �V �l
′′′
1 − 33

6. �V �e �l
′′′
1 28 −

7. �l
′′′
1 �e 29 or 30 −

8. �l2 �e

configuration of Π

B1 B2 Env P1 P2

1. �l1 �e 24 −
2. �l

′′
1 �e 26 −

3. �Q �e 4
4. �Q �e
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the positive case it can rewrite ar to V , in the other case l′′1 is rewritten to Q
and the computation will never halt. At the end of this simulation the agent B1
generates one of the objects l2, l3.

(4) For the halting instruction lh the following programs are in sets P1 and P2:
P1 : P2 : P2 :
34 : 〈lh ↔ J ′〉 , 39 : 〈e ↔ lh〉 , 43 : 〈Lh ↔ ar〉 , 1 < r ≤ m

35 : 〈J ′ → Lh〉 , 40 :
〈
lh → lh

〉
, 44 : 〈ar ↔ e〉 .

36 : 〈lh → Q〉 , 41 :
〈
lh ↔ e

〉
,

37 : 〈Lh → Lh〉 , 42 : 〈e ↔ Lh〉 ,

38 :
〈
Lh ↔ lh

〉
,

By using these programs, the P colony finishes the computation in the same
way as the partially blind register machine halts its computation. Programs with
labels 43 and 44 in P2 check value zero stored in all except the first register. If
there is some copy of object ar, programs 43 and 44 are applied in a cycle and
the computation never ends. Some copies of object J ′ (for the the program with
label 34) are present in the environment from the initialization of computation.

all counters r, 1 < r ≤ m store zero
configuration of Π labels of applicable programs
B1 B2 Env P1 P2

1. �lh �e �J
′ 34 or 36 −

2. �J
′

�e �lh 35 39
3. �Lh �lh 37 40
4. �Lh �lh 37 41
5. �LH �e �lh 38 −
6. �lh �e �Lh − 42
7. �lh �Lh − −

content of some counter r, 1 < r ≤ m is
different from zero

configuration of Π labels of applicable programs
B1 B2 Env P1 P2

1. �lh �e �J
′ar 34 or 36 −

2. �J
′

�e �lhar 35 39
3. �Lh �lh �ar 37 40
4. �Lh �lh �ar 37 41
5. �LH �e �lhar 38 −
6. �lh �e �Lhar − 42
7. �lh �Lh �ar − 43
8. �lh �ar �Lh − 44
9. �lh �Lh �ar − 43

The P colony Π correctly simulates any computation of the partially blind
register machine M . ��
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4 On the Computational Power of Restricted P Colonies
Without Checking

For restricted P colonies the following results are known:

– NPCOLparKR(2, ∗, 5) = NRE in [2,8],
– NPCOLparR(2, ∗, 5) = NPCOLparKR(2, 1, ∗) = NRE in [4].

The next theorem determines the computational power of restricted P colonies
working without checking rules.

Theorem 3. NPCOLparR(2, 2, ∗) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
a P colony Π = (A, e, f, �vE , B1, B2) simulating the computations of register
machine M with:

- A = {G} ∪ {li, l
′
i, l

′′
i , l′′′i , l′′′′i , li, li, li, li, Li, L

′
i, L

′′
i , Fi | li ∈ H}∪

∪ {ar | 1 ≤ r ≤ m},
- f = a1,
- Bj = (�ee, Pj), j = 1, 2.

At the beginning of the computation the first agent generates the object l0 (the
label of starting instruction of M). Then it starts to simulate the instruction
labeled l0 and it generates the label of the next instruction. The set of programs
is as follows:

(1) For initializing the simulation there is one program in P1:
P1

1 : 〈e → l0; e ↔ e〉
The initial configuration of Π is (�ee, �ee, �ε). After the first step of the

computation (only program 1 is applicable) the system enters configuration
(�l0e, �ee, �ε).

(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P1 the programs:

P1

2 : 〈e → ar; l1 ↔ e〉 , 3 : 〈e → G; ar ↔ l1〉 ,
4 : 〈l1 → l2; G ↔ e〉 , 5 : 〈l1 → l3; G ↔ e〉 .

When there is an object l1 inside the agent, it generates one copy of ar,
puts it into the environment and generates the label of the next instruction (it
nondeterministically chooses one of the last two programs 4 and 5).

configuration of Π labels of applicable programs
B1 B2 Env P1 P2

1. �l1e �ee �a
x
r 2 −

2. �are �ee �l1a
x
r 3 −

3. �Gl1 �ee �a
x+1
r 4 or 5 −

4. �l2e �ee �a
x+1
r G
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(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added
to sets P1 and P2:

P1 P1

6 : 〈l1 → l′1; e ↔ e〉 , 12 :
〈
l1 → l2; e ↔ L′′

1

〉
,

7 : 〈e → l′′1 ; l′1 ↔ e〉 , 13 :
〈
l1 → l3; e ↔ L1

〉
,

8 : 〈e → l′′′1 ; l′′1 ↔ e〉 , 14 :
〈
L′′

1 → l2; l2 ↔ e
〉
,

9 : 〈l′′′1 → l′′′′1 ; e ↔ e〉 , 15 :
〈
L1 → F3; l3 ↔ e

〉
,

10 :
〈
l′′′′1 → l1; e ↔ e

〉
, 16 :

〈
e → l3;F3 ↔ l3

〉
,

11 :
〈
l1 → l1; e ↔ e

〉
, 17 :

〈
l3 → l3; l3 ↔ e

〉
,

P2

18 : 〈e → L1; e ↔ l′1〉 ,

19 : 〈l′1 → L′
1; L1 ↔ l′′1 〉 ,

20 : 〈l′′1 → L′′
1 ; L′

1 ↔ ar〉 ,

21 : 〈ar → e; L′′
1 ↔ L1〉 ,

22 : 〈L1 → e; e ↔ e〉 ,

23 : 〈l′′1 → e;L′
1 ↔ F3〉 ,

24 : 〈F3 → e; e ↔ e〉 .

At the first phase of the simulation of the SUB instruction the first agent
generates object l′1, which is consumed by the second agent. The agent B2 gen-
erates symbol L1 and tries to consume one copy of symbol ar. If there is any ar,
the agent sends to the environment object L′′

1 and consumes L1. After this step
the first agent consumes L′′

1 or L1 and rewrites it to l2 or l3. The objects x, x
and x are used for a synchronization of the computation in both agents and for
storing information about the state of the computation.

Instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of steps.

If the register r stores a nonzero value:
configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �l1e �ee �a
x
r 6 −

2. �l
′
1e �ee �a

x
r 7 −

3. �l
′′
1e �ee �l

′
1a

x
r 8 18

4. �l
′′′
1 e �L1l

′
1 �l

′′
1ax

r 9 19
5. �l

′′′′
1 e �L

′
1l

′′
1 �L1a

x
r 10 20

6. �l1e �L
′′
1ar �L1L

′
1a

x−1
r 11 21

7. �l1e �eL1 �L
′′
1ax−1

r 12 22
8. �l2L

′′
1 �ee �a

x−1
r 14 −

9. �l2e �ee �a
x−1
r l2

If the register r stores value zero :
configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �l1e �ee 6 −
2. �l

′
1e �ee 7 −

3. �l
′′
1e �ee �l

′
1 8 18

4. �l
′′′
1 e �L1l

′
1 �l

′′
1 9 19

5. �l
′′′′
1 e �L

′
1l

′′
1 �L1 10
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configuration of Π labels of applicable programs
B1 B2 Env P1 P2

6. �l1e �L
′
1l

′′
1 �L1 11

7. �l1e �L
′
1l

′′
1 �L1 13

8. �l3L1 �L
′
1l

′′
1 15 −

9. �F3e �L
′
1l

′′
1 �l3 16 −

10. �l3l3 �L
′
1l

′′
1 �F3 17 23

11. �l3e �F3e �l3L
′
1 2 or 6

or none
24

12. ? �ee �l3L
′
1

(4) For halting instruction lh no program is added to the sets P1 and P2.
The P colony Π correctly simulates all computations of the register machine

M and the number contained in the first register of M corresponds to the number
of copies of the object a1 present in the environment of Π . ��

5 Conclusions

We have shown that the P colonies with capacity c = 2 and without checking
programs, with height at most 2, are computationally complete. In Section 3 we
have shown that the P colonies with capacity c = 1 and with checking/evolution
programs and 4 agents are computationally complete.

We have verified also that partially blind register machines can be simulated
by P colonies with capacity c = 1 without checking programs with two agents.
The generative power of NPCOLparK(1, n, ∗) for n = 2, 3 remains open.

In Section 4 we have studied P colonies with capacity c = 2 without checking
programs. Two agents guarantee the computational completeness in this case.

For more information on membrane computing, see [11], for more on com-
putational machines and colonies in particular, see [9] and [6,7,8], respectively.
Activities carried out in the field of membrane computing are currently numerous
and they are available also at [12].
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