

Lecture Notes in Computer Science 4860
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

George Eleftherakis Petros Kefalas
Gheorghe Păun Grzegorz Rozenberg
Arto Salomaa (Eds.)

Membrane
Computing

8th International Workshop, WMC 2007
Thessaloniki, Greece, June 25-28, 2007
Revised Selected and Invited Papers

13

Volume Editors

George Eleftherakis
Petros Kefalas
CITY College
Affiliated Institution of the University of Sheffield
Computer Science Department
13 Tsimiski St., 54624 Thessaloniki, Greece
E-mail: {eleftherakis, kefalas}@city.academic.gr

Gheorghe Păun
Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania
E-mail: george.paun@imar.ro

Grzegorz Rozenberg
Leiden University
Leiden Institute of Advanced Computer Science (LIACS)
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rozenber@liacs.nl

Arto Salomaa
Turku Centre for Computer Science (TUCS)
Leminkäisenkatu 14, 20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi

Library of Congress Control Number: 2007941083

CR Subject Classification (1998): F.1, F.4, I.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77311-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77311-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12205752 06/3180 5 4 3 2 1 0

In Memory of Nadia Busi

Preface

This volume contains a selection of papers presented at the Eighth Workshop
on Membrane Computing, WMC8, which took place in Thessaloniki, Greece,
during June 25–28, 2008. The first three workshops on membrane computing
were organized in Curtea de Argeş, Romania – they took place in August 2000
(with the proceedings published in Lecture Notes in Computer Science, volume
2235), in August 2001 (with a selection of papers published as a special issue
of Fundamenta Informaticae, volume 49, numbers 1–3, 2002), and in August
2002 (with the proceedings published in Lecture Notes in Computer Science,
volume 2597). The next four workshops were organized in Tarragona, Spain, in
July 2003, in Milan, Italy, in June 2004, in Vienna, Austria, in July 2005, and
in Leiden, The Netherlands, in July 2006, with the proceedings published as
volumes 2933, 3365, 3850, and 4361, respectively, of Lecture Notes in Computer
Science.

The 2007 edition of WMC was organized by the South-East European Re-
search Centre in Thessaloniki, under the auspices of the European Molecular
Computing Consortium (EMCC). Special attention was paid to the interaction
of membrane computing with biology and computer science, focusing on the bi-
ological roots of membrane computing, on applications of membrane computing
in biology and medicine, and on possible electronically based implementations.

The pre-proceedings of WMC8 were published by the South-East European
Research Centre, Thessaloniki, and they were available during the workshop.
Each paper was refereed by two members of the Program Committee. Most of
the papers selected for the present volume were significantly modified according
to the discussions that took place during the workshop.

The volume includes all five invited talks as well as 22 regular papers, and so
it presents a representative snapshot of current research in membrane computing
(a comprehensive source of information about this fast-emerging area of natural
computing is http://psystems.disco.unimib.it).

The Program Committee consisted of Gabriel Ciobanu (Iaşi, Romania),
Erzsébeth Csuhaj-Varjú (Budapest, Hungary), Rudolf Freund (Vienna, Austria),
Pierluigi Frisco (Edinburgh, UK), Marian Gheorghe (Sheffield, UK), Oscar H.
Ibarra (Santa Barbara, USA), Petros Kefalas (Thessaloniki, Greece) – Co-chair,
Vincenzo Manca (Verona, Italy), Giancarlo Mauri (Milan, Italy), Linqiang Pan
(Wuhan, China), Gheorghe Păun (Bucharest, Romania) – Co-chair,
Mario J. Pérez-Jiménez (Seville, Spain), and Athina Vakali (Thessaloniki, Greece).

The workshop was sponsored by City College, Thessaloniki, and the South-
East European Research Centre (SEERC).

The editors are indebted to the members of the Program Committee, to all
participants of WMC8, and in particular to the contributors to this volume.

VIII Preface

Special thanks go to the organizers for their efficiency, and to Springer for the
pleasant cooperation in the timely production of this volume.

At the beginning of September 2007, Nadia Busi passed away, after a short
and severe illness. She was one of the most active researchers in membrane
computing and the present volume includes the paper she presented at WMC8,
one of the last conferences Nadia attended. Nadia will be remembered as a
passionate researcher as well as a very nice person. As a token of respect and
friendship that she enjoyed in our community, we devote this volume to her
memory.

Rest in peace, Nadia. We all miss you.

October 2007 George Eleftherakis
Petros Kefalas

Gheorghe Păun
Grzegorz Rozenberg

Arto Salomaa

Table of Contents

Invited Lectures

Psim: A Computational Platform for Metabolic P Systems 1
Luca Bianco and Alberto Castellini

Modeling the Dynamics of HIV Infection with Conformon-P Systems
and Cellular Automata . 21

Pierluigi Frisco and David Wolfe Corne

(UREM) P Systems with a Quantum-Like Behavior: Background,
Definition, and Computational Power . 32

Alberto Leporati

The Calculus of Looping Sequences for Modeling Biological
Membranes . 54

Roberto Barbuti, Andrea Maggiolo–Schettini, Paolo Milazzo, and
Angelo Troina

Membrane Computing in Connex Environment . 77
Mihaela Maliţa and Gheorghe Ştefan

Regular Papers

Skin Output in P Systems with Minimal Symport/Antiport and Two
Membranes . 97

Artiom Alhazov and Yurii Rogozhin

On the Reachability Problem in P Systems with Mobile Membranes 113
Bogdan Aman and Gabriel Ciobanu

Modeling Symport/Antiport P Systems with a Class of Hierarchical
Petri Nets . 124

Luca Bernardinello, Nicola Bonzanni, Marco Mascheroni, and
Lucia Pomello

A Hybrid Approach to Modeling Biological Systems 138
Francesco Bernardini, Marian Gheorghe,
Francisco José Romero-Campero, and Neil Walkinshaw

Causality in Membrane Systems . 160
Nadia Busi

X Table of Contents

Simulating the Bitonic Sort Using P Systems . 172
Rodica Ceterchi, Mario J. Pérez-Jiménez, and
Alexandru Ioan Tomescu

On the Number of Agents in P Colonies . 193
Luděk Cienciala, Lucie Ciencialová, and Alica Kelemenová

Events, Causality, and Concurrency in Membrane Systems 209
Gabriel Ciobanu and Dorel Lucanu

P Systems with String Objects and with Communication by Request . . . 228
Erzsébet Csuhaj-Varjú and György Vaszil

On the Dynamics of PB Systems with Volatile Membranes 240
Giorgio Delzanno and Laurent Van Begin

A Logarithmic Bound for Solving Subset Sum with P Systems 257
Daniel Dı́az-Pernil, Miguel A. Gutiérrez-Naranjo,
Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

A Formal Framework for Static (Tissue) P Systems 271
Rudolf Freund and Sergey Verlan

Conformon-P Systems with Negative Values . 285
Pierluigi Frisco

Optimizing Evolution Rules Application and Communication Times in
Membrane Systems Implementation . 298

Jorge A. Tejedor, Abraham Gutiérrez, Luis Fernández,
Fernando Arroyo, Ginés Bravo, and Sandra Gómez

Hill Kinetics Meets P Systems: A Case Study on Gene Regulatory
Networks as Computing Agents in silico and in vivo 320

Thomas Hinze, Sikander Hayat, Thorsten Lenser,
Naoki Matsumaru, and Peter Dittrich

Solving Numerical NP-Complete Problems with Spiking Neural
P Systems . 336

Alberto Leporati, Claudio Zandron, Claudio Ferretti, and
Giancarlo Mauri

Towards a Complete Covering of SBML Functionalities 353
Tommaso Mazza

Active Membrane Systems Without Charges and Using Only Symmetric
Elementary Division Characterise P . 367

Niall Murphy and Damien Woods

Balancing Performance, Flexibility, and Scalability in a Parallel
Computing Platform for Membrane Computing Applications 385

Van Nguyen, David Kearney, and Gianpaolo Gioiosa

Table of Contents XI

On Flip-Flop Membrane Systems with Proteins . 414
Andrei Păun and Alfonso Rodŕıguez-Patón

Characterizing Membrane Structures Through Multiset Tree
Automata . 428

José M. Sempere and Damián López

OPERASCC : An Instance of a Formal Framework for MAS Modeling
Based on Population P Systems . 438

Ioanna Stamatopoulou, Petros Kefalas, and Marian Gheorghe

Author Index . 453

Psim: A Computational Platform for Metabolic

P Systems

Luca Bianco1 and Alberto Castellini2

1 Cranfield University, Cranfield Health
Silsoe, Bedfordshire, MK45 4DT, UK

L.Bianco@cranfield.ac.uk
2 Verona University, Computer Science Department

Strada Le Grazie 35, 37134 Verona, Italy
castellini@sci.univr.it

Abstract. Although born as unconventional models of computation, P
systems can be conveniently adopted as modeling frameworks for bio-
logical systems simulations. This choice brings with it the advantage of
producing easier to be devised and understood models than with other
formalisms. Nevertheless, the employment of P systems for modeling
purposes demands biologically meaningful evolution strategies as well
as complete computational tools to run simulations on. In previous pa-
pers a strategy of evolution known as the metabolic algorithm has been
presented; here a simulation tool called Psim (current version 2.4) is
discussed and a case study of its application is also given.

1 Introduction

Membranes play a prominent role in living cells [1,20]. In fact, membranes not
only act as a separation barrier indispensable to create different environments
within cells boundaries, but they can also physically constitute a kind of “work-
ing board” whereby enzymes can activate and perform their duties on substrates.
Other examples of the crucial role of membranes within cells are their ability to
perform selective uptakes and expulsion of chemicals as well as being the inter-
face of the cell with the surrounding environment allowing communication with
neighboring cells.

P systems originate from the recognition of this important role of membranes
and, by abstracting from the functioning and structure of living cells, they pro-
vide a novel computation model rooted in the context of formal language theory
[34,36].

P systems investigations are nowadays focused on several research lines that
make the field “a fast Emerging Research Front” in computer science (as stated
by the Institute for Scientific Information). In particular, theoretical investiga-
tions on the power of the computational model have been carried on and impor-
tant results have been achieved so far in order to characterize the computational
power of many elements of P systems (such as objects and membranes) and,

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 1–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 L. Bianco and A. Castellini

from a complexity viewpoint, P systems have been employed as well in the solu-
tion of NP hard problems. For a constant up to date bibliography of P systems
we refer the reader to [39].

Parallel to these lines some more practical investigations are under way too.
These studies exploit the resemblance of P systems to biological membranes in
order to develop computational models of interesting biological systems. P sys-
tems seem to be particularly suitable to model biological systems, due to their
direct correspondence of many elements (namely membranes, objects-chemicals
and rules-reactions), even in their basic formulation, with real biological enti-
ties building the system to be modeled. Moreover, many extensions have been
proposed to the standard formulation of P systems, such as some biologically
relevant communication mechanisms [28,33,11], energy account [37] and active
membranes [35] among others, which show the flexibility of the model. In this
way, discrete mathematical tools can be used to represent interesting biologi-
cal realities to be investigated. A further step is that of simulating all systems
described in this way to get more information about their internal regulatory
mechanisms and deeper insights into their underlying elements.

Although born as a non-conventional model of computation inspired by na-
ture, P systems can therefore be employed as a simulation framework in which to
embed the in silico simulation of interesting biological systems. The strength of
this choice is, as said, the advantage that P systems share with biological systems
many of their features and this leads to easy-to-devise and easy-to-understand
descriptions of the studied realities. In fact, the membrane construct in P sys-
tems has a direct counterpart into biological membranes: objects correspond to
all chemicals, proteins and macromolecules swimming in the aqueous solution
within the cell and, eventually, rewriting rules represent biochemical reactions
taking place in the controlled cellular environment. Other formalisms have been
employed as modeling and simulation frameworks too, such as Π calculus [29],
Petri nets [38] and Ambient calculus [10], but in their case the very same notions
of membranes, chemicals and reactions need to be reinterpreted and immersed
in the particular representation formalism in a less immediate way.

Nevertheless, the employment of P systems as a modeling framework for bio-
logical systems posed, from a purely computational viewpoint, some new chal-
lenges to cope with, such as the identification of suitable, biologically meaningful,
strategies for system evolution and the development of new automatic tools to
describe, simulate and analyze the investigated system.

In previous works a novel strategy for systems evolution, called metabolic algo-
rithm has been introduced [6,27,8], an hybrid (deterministic-stochastic) variant
of which has been proposed as well [5]. Other strategies of evolution are known,
such as Dynamical Probabilistic P systems [32,31] and Multi-compartmental
Gillespie’s algorithm [30,2].

Here we will focus on the metabolic algorithm in its deterministic version
which has been confronted with the dynamics of several systems (a collection
of case studies can also be found in [4]). Some examples of investigated systems
by means of the metabolic algorithm are the Belousov-Zhabotinsky reaction

Psim: A Computational Platform for MP Systems 3

(in the Brusselator formulation) [6,8], the Lotka-Volterra dynamics [6,27,7,14],
the SIR (Susceptible-Infected-Recovered) epidemic [6], the leukocyte selective
recruitment in the immune response [16,6], the Protein Kinase C activation [8],
circadian rhythms [12] and mitotic cycles in early amphibian embryos [26]. In
order to cope with the demand of computational tools to simulate the dynamics
of P systems, we developed a first simulator called Psim [6], which has now been
extended with several new features as will be explained later on. The new version
of the simulator is freely available for download at [15].

The remaining of the discussionwill firstly introduce (section 2) some theoretical
aspects of the simulation frameworkwedeveloped and some recent advanceswill be
mentioned too. Section 3 will then be devoted to the newer version of the simulator
itself and a practical case study will be given as well in such a way to show to the
reader how to set up a simulation with the interface of Psim.

2 MP Systems

MP systems (Metabolic P systems) [21,26,24,23] are a special class of P systems
[34,36], introduced for expressing the dynamics of metabolic (or, more generally
speaking, biological) systems. Their dynamics is computed by means of a deter-
ministic algorithm called metabolic algorithm which transforms populations of
objects according to a mass partition principle, based on suitable generalizations
of chemical laws.

A definition of MP systems follows, as given in [4].

Definition 1 (MP system). An MP system of level n − 1 (i.e., with n ∈ N

membranes) is a construct

Π = (T, μ, Q, R, F, q0)

in which:

– T is a finite set of symbols (or objects) called the alphabet;
– μ is the hierarchical membrane structure, constituted by n membranes, labeled

uniquely from 0 to n− 1, or equivalently, associated in a one-to-one manner
to labels from a set L of n − 1 distinct labels;

– Q is the set of the possible states reachable by the MP system. Each element
q ∈ Q is a function q : T × L −→ R, from couples objects-membranes to real
values. A value q(X, l), with X ∈ T and l ∈ L gives the amount of objects
X inside a membrane labeled l, with respect to a conventional unit measure
(grams, moles, individuals, ...);

– R is the finite set of rewriting rules. Each r ∈ R is specified according to the
boundary notation [3]. In other words, each rule r has the form αr −→ βr,
where αr, βr are strings defined over the alphabet T enhanced with indexed
parenthesis representing membranes. As an example, an hypothetical rule can
have the form: α[1β −→ γ[1δ, with α, β, γ, δ ∈ T ∗, meaning that α and β
are respectively changed in γ and δ, where all objects within α and γ are
outside membrane labeled 1, whereas elements of β and δ are placed inside
membrane 1;

4 L. Bianco and A. Castellini

– F is the set of reaction maps, each fr ∈ F is a function uniquely associated
to a rule r ∈ R, defined as fr : Q −→ R and, given a certain state q,
it produces fr(q) that is a real number specifying the strength of rule r in
acquiring objects;

– q0 ∈ Q is the initial state of the system. It specifies the initial amount of all
the species throughout the various compartments of the system.

Since encodings like that in [9] show that the membrane structure can be flat-
tened by augmenting the alphabet size, the definition of the membrane structure
μ is not very important in this context and the choice to employ 0-level MP sys-
tems in the remaining of the discussion is not limiting from a theoretical point of
view. Moreover, dealing with 0-level MP systems ends up in a easier discussion,
in fact all states q ∈ Q do not need the specification of a membrane label and in
this way they have the simpler form q : T −→ R. For this reason, in the following
whenever the term MP system will be used, the more correct term 0-level MP
system has to be implicitly assumed.

The dynamics of MP systems has been calculated, starting from the initial
state q0 by means of an evolution strategy called metabolic algorithm [6,27,8],
which is substantially different from the well known non-deterministic and
maximally parallel paradigm followed by standard P systems. More precisely,
the perspective of MP systems is to model systems at a population level rather
than at an objects level. In this way, nothing can be precisely said about in-
dividuals but the investigation is focused on the macroscopic dynamics which
assumes a deterministic flow in spite of individual behaviors.

2.1 The Metabolic Algorithm: Hints

Without entering into many details (which can be found in [6,27,8,25]), the
metabolic algorithm is a deterministic strategy for MP systems evolution based
on mass partition among rules of all elements in the alphabet T .

In very general terms, the metabolic algorithm can be summarized in the
following main points [26]:

– Reactants are distributed among all the rules, as the system evolves, accord-
ing to a “competition” strategy.

– If some rules compete for the same reactant, then each of them obtains a
portion of the available substance that is proportional to its reaction strength
(reactivity) in that state.

– The reactivity of a rule in a certain state measures the capability of the rule
to acquire its reactants. It is calculated by the evaluation of the reaction
map corresponding to the rule due and it depends on the state of the system,
that is defined as the concentration and localization of all substances in the
considered instant.

– The evolution strategy determines the reaction unit of all rules, that is, the
unitary amount of substance which is dealt by the rule. The stoichiometry
is used then to obtain the consumed and/or produced amount of substances
for each rule.

Psim: A Computational Platform for MP Systems 5

A

r
r

r
r 2

1

5

4

Fig. 1. Competition for object A between rules r1, r2, r4 and r5

An example may be useful to clarify the concepts yet introduced. Let us
suppose that in a given instant, four rules, namely r1, r2, r3, and r4 ∈ R, need
molecules of a species A (with A belonging to the alphabet T) as reactant (see
Figure 1), then a partition strategy for A is necessary.

A real number called reactivity represents the strength of the rule (i.e., the
rule’s capability of obtaining matter to work on), given by the value assumed by
a function uniquely associated to the rule called reaction map, in the considered
state. For example, with respect to Figure 1, if we denote with a, b and c the
concentrations of species A, B, C respectively (in a state q not specified for the
sake of simplicity), then the reactivities of rules r1, r2, r4 and r5, which ask for
A molecules, can be:

f1 = 200 · a, f2 = 0.5 · a1.25 · b−1, f4 = a1.25 · (b + c)−1, and f5 = 10,

where the choice of reaction maps fi, i = {1, 2, 4, 5} is completely arbitrary in
this example.

We define the quantity

KA,q =
∑

i=1,2,4,5

fi(q)

as the total pressure on A in the state q (the intuitive idea is that all reaction
maps of rules competing for a certain species give the force that pushes that
species to react).

Then, for each of the competing rules rj we consider the partial pressure (or
weight) of rj on type A as

wA,q(rj) =
fj(q)
KA,q

(again the idea behind this is that the strongest the force pushing an element to
follow a particular reaction channel, compared to other reaction channels, the
more matter will follow that path).

6 L. Bianco and A. Castellini

Note that, in general, the quantity KX,q is defined for each couple (X, q) where
X ∈ T and q is a possible state of the system, moreover a weight wX,q(r) has to
be calculated for each triple (X, q, r) where X and q are respectively, an element
of the biological alphabet and a state of the system, while r ∈ R is a rule in
which the element X appears as a reactant (i.e., according to the terminology
adopted above, X ∈ αr).

Getting back to the example discussed above, it should be easy to see that
the partial pressure of r1 on A is

wA,q(r1) =
200a

200a + 0.5a1.25b−1 + a1.25(b + c)−1 + 10

while the same pressure due to r2 results to be equal to

wA,q(r2) =
0.5a1.25b−1

200a + 0.5a1.25b−1 + a1.25(b + c)−1 + 10

and the other weights can be calculated analogously. The weights calculated so
far determine the partition factors of the amount of species A, available in the
state q, among the rules which need objects A as reactants.

Now to calculate the reaction unit of a particular rule (i.e., the amount of
reactant that can be dealt by the rule) we simply need to multiply the partial
pressure of the rule on the reactant by the real amount of reactant present into
the system at the considered state. For example, the reaction unit of rule r1 (or
equivalently, the amount of A that that can be assigned to rule r1) turns out to
be wA,q(r1) · a = 0.5a2.25b−1

200a+0.5a1.25b−1+a1.25(b+c)−1+10 .
In this way, if r1 is a rule of the form A → X , no matter what element

is represented by X ∈ T , then the amount of A associated to r1 is exactly
u1 = wA,q(r1) · a and the effect of r1’s application is the loss of u1 units of A
and the acquisition of the same number of units of X .

In the case of cooperative rules (i.e., rules with more than just one reactant)
things are a little bit more complicated since we need to take into account the
real availability of all reactants taking part to the reaction. That is, for each
X belonging to the reactants of a certain rule r we need firstly to compute
the quantities wX,q(r) · x and, since we have to respect species availability, the
reaction unit associated to the rule is then computed as the minimum of those
quantities. If we suppose that a rule r1 has the form AAB → X , then the
reaction unit

u1 = min(
1
2
wA,q(r1) · a , wB,q(r1) · b)

where the term 1
2 in the first element of the minimum is due to the fact that A

appears twice in the stoichiometry of the rule.
In general terms, the metabolic algorithm is an effective procedure for calcu-

lating in each state of the system a reaction unit ui for all rules ri ∈ R by using a
partition strategy that employs particular functions fi associated in a 1-1 man-
ner to rules. After this calculation, the evolution of the system can be obtained

Psim: A Computational Platform for MP Systems 7

in a straightforward way by consuming and producing species in a quantity given
by rules’ reaction units and by following the stoichiometry of the system.

Assuming a sorting on objects and on rules, let us denote with M the m × n
stoichiometric matrix associated to an MP system having m symbols and n rules
(in which the ci,j element of M denotes the gain or the loss of the ith object due
to rule j (it is the difference between the number of occurrences of the ith symbol
among products and among reactants of jth rule) and with Uq the [u1 · · · un]T

vector of the reaction units in a state of the system q, calculated as mentioned
above.

Then, as pointed out in [25] the transition from one state q to the following
one is done by means of the delta operator (Δx(q)) which is a m-sized vector
giving the variation of each species in the transition from state q to the next
state q′. In particular

Δx(q) = M × Uq

stating that the delta operator can be obtained as the product of the stoichio-
metric matrix M by the reaction units vector of state q, Uq.

Since each row i of Δx(q) gives the variation on the ith object, then if we
think of a state q as a vector containing the concentration of all the m species
at the corresponding instant, then the next state can easily be calculated as

q′ = q + Δx(q) = q + M × Uq.

Just to exemplify the last concepts discussed, we can think about an alphabet
T = {A, B, C} and focus on a rule set comprising the following four rewriting
rules:

r1 : A B −→ C
r2 : B B −→ A
r3 : C −→ A
r4 : C −→ B

then, assuming the lexicographic order on elements of the alphabet, we can
obtain the following stoichiometric matrix:

M =

⎡

⎣
−1 1 1 0
−1 −2 0 1

1 0 −1 −1

⎤

⎦

in which, the first row corresponds to the object A and states that we lose one
conventional unit of A due to rule r1, we get one A both from rule r2 and r3
and finally r4 does not affect A concentration at all.

Then, let us suppose to be in a state q, described by the vector of concentra-
tions q = [10 32 20]T (i.e., we have 10 units of A, 32 of B and 20 of C) and that
the corresponding reaction units vector Uq = [7 12 5 9]T (i.e., reaction r1 moves
7 mass units, r2 12, r3 5 and finally r4 9). In this way it is possible to calculate
the next state q′ which turns out to be described by the following vector:

8 L. Bianco and A. Castellini

q′ = q + M × Uq =

⎡

⎣
10
32
20

⎤

⎦ +

⎡

⎣
−1 1 1 0
−1 −2 0 1

1 0 −1 −1

⎤

⎦ ×

⎡

⎢⎢⎣

7
12
5
9

⎤

⎥⎥⎦ =

⎡

⎣
20
10
13

⎤

⎦

describing the amount of all species at that particular instant.
In previous papers [26] a convenient and intuitive formalism for representing

MP systems called MP graphs has been proposed. In particular, MP graphs are
bipartite graphs describing both the stoichiometry (i.e., the shape of the rules)
and the regulative part of MP systems that need to be effectively calculated in
order to obtain the dynamics of the system (i.e., the reaction maps). According
to what said above, MP graphs represent all the information needed to simulate
MP systems by means of the metabolic algorithm. An example of MP graphs,
as produced by the simulator we developed, will be shown later on.

2.2 Generalizing the Metabolic Algorithm

According to the formulation of the dynamics given in the previous section,
the metabolic algorithm is a strategy that given a particular state q provides
the system with the corresponding reaction units vector Uq which is used to
calculate the transition to the state q + 1. As discussed in [25], other strategies
can be considered whose aim is to produce a reasonable mass partition among
all rules of an MP system, or in other words that give a different Uq for each
state q of the system.

This view leads to the definition of several metabolic algorithms instead of a
single one and the definition of MP systems can be generalized accordingly.

Based on the definition given in [22], Definition 1 can be easily generalized,
in very general terms, in the following way:

Definition 2 (Generalized MP systems). A 0-level (generalized) MP system
is a 6-tuple

Π = (T, Q, R, V, q0, φ)

in which:

– T is a finite set of symbols (or objects) called the alphabet;
– V is a finite set of variables;
– Q is the set of the possible states reachable by the MP system. Each element

q ∈ Q is a function q : T ∪ V −→ R;
– R is the finite set of rewriting rules;
– q0 ∈ Q is the initial state of the system;
– φ is the strategy of evolution, φ : Q −→ R

n with |R| = n.

Note that nothing is said about the cardinality of the set of variables V and they
are not necessarily associated in a one-one manner to rules of R. Moreover, the
strategy of evolution φ, given a state q has to be defined in such a way that it
outputs the n-tuple providing the reaction unit vector of the system, or following
the terminology used above, φ(q) = Uq.

Psim: A Computational Platform for MP Systems 9

Complete freedom is left in the implementation of the strategy of evolution,
whose only constraints are that given a state it has to provide the reaction unit
vector corresponding to that state, which will be used to calculate the evolution
of the system by means of the matrix product recalled in the previous section.
As will be mentioned in the following, the specification of a fully customizable
strategy of evolution will be one of the prominent features of the new version of
the simulator Psim that has been implemented within the MNC Group of the
University of Verona.

3 Psim

Based on the theoretical framework expressed in previous sections, a simulator
called Psim (P systems simulator) has been developed to cope with the problem
of calculating the dynamics of biological systems. An early version of Psim has
been developed previously [6], with which the newer version shares the same
philosophy, though extending some of its concepts and enhancing the simulation
environment with many features.

The present release of Psim (version 2.4) has been developed in response to
the need of an effective and easy to use tool to calculate the dynamics of MP
systems by means of the metabolic algorithm. Its implementation has moreover
followed some flexibility and extensibility principles which led to a tool that can
be easily extended and integrated with other tools. In this way Psim, thanks to
its immediate setup (nothing needs actually to be done provided a Java virtual
machine is installed on the computer that is meant to run Psim) and to the easy
user interface, can be used by people without a strong background in program-
ming and a deep knowledge in the field of computer science. On the other hand,
the extendability provided, by means of the plugin mechanism, allows people
with stronger expertise in programming to build their own tools to complement
and integrate the main core of Psim.

Some features of this tool, which is implemented by using the Java program-
ming language, are listed below:

– Friendly user interface which is born to be easy-to-use and to interact with
people not necessarily having a strong computer science background. Its
immediacy can be found in the input side, which can be specified by means
of a transposition of the concept of MP graphs into a point and click graphical
interface. Moreover, the same simplicity principle holds for the output side
as well, which is basically constituted by a graph containing the temporal
evolution of all the species constituting the system (both on a temporal scale
and on the phase plan space).

– Plugin architecture: the interaction with the system can either be done man-
ually or by means of some specifically designed plugin which, thanks to
the plugin support offered by the simulation engine, can interact with the
simulation engine itself. More specifically, three different kinds of
plugin can be devised and implemented in Java as well. Input plugin can
be used to implement various sources for the data to run the simulation on

10 L. Bianco and A. Castellini

(let us think to some specific pathways databases like KEGG for instance);
output plugin conversely, can be used to observe and analyze in various ways
the results obtained from a simulation and can therefore give some mean-
ingful insights into the simulated dynamics. Moreover, they can be used to
export simulation data into particular formats. Finally, experiment plugin
can directly control and intimately interact with the simulation engine, by
controlling the execution flow, checking some properties and changing some
experimental conditions. This kind of plugin can be very useful in tasks like
model optimizations and stability analysis.

– Extreme flexibility. The simulation tool we propose is based on a simulation
engine which is designed to accept the definition of new evolution strategies
for the calculation of the systems dynamics. At the only price of the imple-
mentation of some specific interfaces, the developer has the chance to define
his own simulation strategies and to design a customized library of metabolic
algorithms to calculate the systems evolution.

– Models portability has been implemented by using the standard XML lan-
guage and some extensions towards the SBML language are being considered
too.

– Cross platform applicability, thanks to the choice of Java, Psim can be run
on all platforms supporting the Java virtual machine architecture.

An aspect deserving a special emphasis here is the possibility offered by the
simulation engine, to specify custom evolution strategies. Getting back to the
definition of generalized MP systems, the architecture of the simulator allows
the specification of a fully customized φ function. A set of evolution strategies
can be devised by developing in Java a specific class implementing a particular
interface provided by the main engine. Several different strategies can be handled
simultaneously by the simulator that gives the chance to decide which simulation
strategy employ in the simulation process. This gives the tool a very high level
of flexibility and power as well as the plugin mechanism does. Since plugin can
interact with the simulation engine at a different levels, such as input, output
but also at the simulation level too, they can be used for various reasons within
the simulator and this again gives users plenty of ways to improve the system
and to extend its functionalities.

3.1 A Case Study

In this section we show an application of the Psim computational tool for the
simulation of the well known mitotic oscillator as found in early amphibian
embryos [18,19,26].

Mitotic oscillations are a mechanism exploited by nature to regulate the onset
of mitosis, that is the process of cell division aimed at producing two identical
daughter cells from a single parent. More precisely, mitotic oscillations concern
the fluctuation in the activation state of a protein produced by cdc2 gene in
fission yeasts or by homolog genes in other eukaryotes. The model here considered
focuses on the simplest form of this mechanism, as it is found in early amphibian
embryos. Here, the progressive accumulation of the cyclin protein leads to the

Psim: A Computational Platform for MP Systems 11

activation of cdc2 kinase. This activation is achieved by a bound between cyclin
and cdc2 kinase forming a complex known as M-phase promoting factor (or
MPF). The complex triggers mitosis and degrades cyclin as well; the degradation
of cyclin leads to the inactivation of the cdc2 kinase that brings the cell back to
the initial conditions in which a new division cycle can take place.

Goldbeter [18,19] proposed a minimal structure for the mitotic oscillator in
early amphibian embryos in which the two main entities are cyclin and cdc2
kinase. According to this model, depicted in Figure 2, the signalling protein
cyclin is produced at a constant rate vi and it triggers the activation (by means
of a dephosphorylation) of cdc2 kinase, passing from the inactive form labeled
M+ to the active one, denoted by M . This modification is reversible and the
other way round is performed by the action of another kinase (not taken into
account in the model) that brings M back to its inactive form M+. Moreover,
active cdc2 kinase (M) elicits the activation of a protease X+ that, when in the
active (phosphorylated) form (X), is able to degrade the cyclin. This activation,
as the previous one, is reversible as stated by the arrow connecting X to X+.

Fig. 2. The mitotic oscillator model by A. Goldbeter, from [18]

The set of differential equations devised by Goldbeter produces an oscillatory
behavior in the activation of the three elements M , C, X that repeatedly go
through a state in which cells enter in a mitotic cycle (see Figure 3).

The goal of the case study showed here is to obtain a description and a simu-
lation of the very same model of mitotic oscillations by means of the simulator
Psim.

In general, there is no unique way to translate a differential equation system in
terms of a metabolic P system, therefore we choose to obtain it by the application
of the MP-ODE transformation [13]. The resulting MP system is reported here:

Π = (T, μ, R, F, q0), where:

12 L. Bianco and A. Castellini

Fig. 3. Dynamics of the mitotic oscillator from [18]

– The alphabet: T = {A, C, X, X+, M, M+}
– The membrane structure: μ = [0]0;
– The set of rules is R = {r1, r2, ..., r10}, where:

r1 : A → A C r6 : M+ → λ
r2 : C → X r7 : M → M+

r3 : X → λ r8 : X+ → X M
r4 : C → λ r9 : M → λ
r5 : C → M C r10 : X → X+

in which all symbols have the meaning described before (and A is a kind
of well to draw substance C out from). Moreover, for every symbol in the
system, we have introduced an inertia rule (i.e., a rule having the form
Y → Y , for each Y ∈ T to model the inertia of the system), omitted in this
set of rules.

– The set of reaction maps is F = {Fr1, F r2, ..., F r10}, where:

Fr1 = k1

Fr2 = k2
x

k3 + c

Fr3 = k2
c

k3 + c
Fr4 = k3

Fr5 = k5
m+

(k6 + c)(k7 + m+)

Fr6 = k5
c

(k6 + c)(k7 + m+)

Fr7 = k8
1

(k9 + m)

Psim: A Computational Platform for MP Systems 13

Fr8 = k10
m

(k11 + x+)

Fr9 = k10
x+

(k11 + x+)

Fr10 = k12
1

(k13 + x)

– The initial state q0 of the single membrane system is defined by:
q0(A) = 1.3;
q0(C) = 0.01;
q0(X) = 0.01;
q0(X+) = 0.99;
q0(M) = 0.01;
q0(M+) = 0.99;

in which we deal with concentrations of species, rather than with objects,
and in this way the initial amounts are real numbers.

For each element of T the reaction map of inertia rules is set to 1600.
We start the modeling session by opening the Psim’s main interface showed

in Figure 4. This window allows the user to manage all the experiment’s stages.
In particular the main possible choices involve:

1. modeling the system, setting substances, initial conditions, reaction maps
and rules;

2. starting the simulation;
3. displaying output charts.

The first step to consider while setting up a system’s simulation is the specifi-
cation of the corresponding MP graph. In what follows, some steps towards the
creation of an MP graph modeling the mitotic oscillator are presented.

After clicking on the New Experiment label of the File menu, a window like the
one depicted in the Figure 5 appears. This is the main window of the graphical
interface allowing the user to input in a easy way the MP graph components by
simply dragging them from the upper toolbar to the bottom white panel. This
task is performed by using the following toolbar icons:

– The blue circle: adds a new type node that stores the name of a substance, its
initial number of molar units and its inertia value (as explained in previous
papers, inertias are a way to represent the fact that not all reactants need
to react at a certain instant, they are a sort of resistance opposed to species
to performing reactions).

– The black circle: adds a new metabolic reaction node that represents a reac-
tion channel between interacting substances and stores the name of a reaction
rule.

– The red rectangle: adds a new reactivity node building the regulatory part
of MP graphs. In the simulator, reactivity nodes store the reactivity map
function corresponding to the connected rule and, if necessary, a boolean
guard function for the rule activation.

14 L. Bianco and A. Castellini

Fig. 4. The Psim’s main interface

Fig. 5. Psim’s input interface

– The green triangles : add input gates and output gates nodes that identify
rules which respectively introduce new matter in the membrane or expel part
of it from the system.

After the insertion of the nodes in the white panel the user can specify their in-
ternal parameters and connect the nodes by drawing arcs among them. The best
way to accomplish this task is to start by defining the type node parameters and
the metabolic reaction node parameters by double clicking on the corresponding
nodes and filling in the window’s field that automatically appears (Figure 6).
Importantly enough, a parser has been implemented to check the consistency of
inserted parameters and to alert the user if any irregularity arose.

At this point, one can connect the type nodes and the metabolic reaction nodes
with each other by drawing arcs among them with the simple use of the mouse.
This is a very important step because it allows to represent the stoichiometric
part of the system by means of the MP graph topology (Figure 7).

Psim: A Computational Platform for MP Systems 15

Fig. 6. Insertion of the type node parameters

As an example, let us consider the reaction r2 : C → X . Within the input
graphical interface it is represented by the R2 black circle that is connected by
means of black arcs to the C and the X blue circles, representing the corre-
sponding substances; the direction of the arrow represents the substance flow of
the reaction.

A further modeling step is needed to add the reactivity nodes describing the
regulatory part of the system. This can be done by first linking every type node,
that affects a reaction map, with the corresponding reactivity nodes (as showed
in Figure 8). Finally the reactivity map function of every reactivity node is
specified by using the linked type nodes and the environmental measures as
variables or constants (as reported in Figure 9). Figure 8 represents the final
mitotic oscillator MP graph as produced by the Psim GUI.

This completes the modeling stage and the next logical step is to start the
simulation of the specified system. This is done by clicking on the rightmost icon
of the upper toolbar (the rightward arrow). The click causes a small window to
pop out, in which it is possible to set the number of steps the simulation will
span (Figure 10). A possible choice for this system is to run 150000 steps. By
click on the Start button the dynamics computation begins.

Fig. 7. Adding type nodes, metabolic reaction nodes and drawing arches among them

16 L. Bianco and A. Castellini

Fig. 8. An MP graph that models the mitotic oscillator

Fig. 9. Reactivity node input parameter window

Fig. 10. Set the number of steps for the simulation to 150000

When the simulation is finished the system prompts that results are available
and ready to be visualized by the Psim chart visualization form (Figure 11).
Using the bottom panel check boxes it is possible to decide elements to be
displayed. In the considered case oscillations of cyclin C (red line), active cdc2
kinase M (blue line) and active protease M (green line) are displayed but the
phase space plot can be drawn as well.

We finally highlight an important mechanism of the Psim platform: plugin ex-
tensibility. As already mentioned, plugin allow the user to enhance the main Psim
computing core with powerful functionalities for the data import, export, con-
trol and analysis. An example under development is the experiment plugin that
stores the experiment state (concentration of the substances and environmental

Psim: A Computational Platform for MP Systems 17

Fig. 11. Oscillations of the mitotic systems as calculated by Psim

measures) every x steps, where x is a parameter set by the user before the com-
putation starts. This plugin could save, for instance, an XML file for every state,
allowing the user to export the experiment samples in an standard way.

A software developer generates the plugin code (basically some Java classes)
relying on the Psim’s JavaDoc documentation obtainable at [15] which lists
the experiment plugin methods to be mandatorily implemented. Plugin classes
are meant to be archived in a Jar file and placed in a proper plugin directory.
Provided this, at the following start up Psim will automatically find and load
all the plugin contained in the plugin directory. The user can find all available
experiment plugin statements in the main interface Experiment Plugin menu
(Figure 4) in the form of a list. By clicking on the relative label is possible to
activate the plugin that will be run at each step of the subsequent simulation
and will save the state every x steps chosen by the user filling in a plugin popup
window.

The plugin just described yields a set of XML files but the same principles can
be extended also to the other kinds of plugin (input, output, engine plugin).

A particular mention is deserved by engine plugin that allow to implement
new simulation strategies which can be different from the metabolic algorithm
described above. This gives the simulation tool a very high flexibility as well as
extendability as discussed previously.

4 Conclusion and Further Work

P systems can be useful frameworks to embed biological systems models in.
This demands for some modifications to the classical definition of P systems and
particularly a biologically meaningful evolution strategy is needed. In previous
papers an essentially deterministic strategy, called metabolic algorithm, for the
calculation of biological systems dynamics has been provided as well as an ex-
tension of the classic model of P systems, known as MP systems, focused on the

18 L. Bianco and A. Castellini

dynamics of bio-systems. Moreover, all data needed for the simulation of MP
systems dynamics can be provided by means of a graphical formalism known as
MP graphs.

The basics of MP systems have been briefly revisited in this paper and based
on them a simulation tool called Psim has been highlighted, together with a
case study of a well known and previously investigated model of mitotic cycles
in early amphibians. Psim v. 2.4 is the latest release of the MP systems simulator
developed within the MNC Group of the University of Verona and it has very in-
teresting features such as the plugin mechanism and the meta-engine architecture
which give the tool an high level of extendability and personalization. In partic-
ular, plugin can be useful to perform several tasks such as data import/export,
control of the simulation flow, output of dynamics obtained and analysis of the
results among others. Moreover, the meta-engine architecture of the simulator
allows users to define their own evolution strategies by implementing some fixed
interfaces of the simulator.

In the future we plan to enrich the core of this simulation tool by implementing
a series of plugin such as the one described above to have a snapshot of the state
of the system in particular instants. Other plugin under investigation involve
some automatic procedures for parameter estimation given suitable observations
of the reality to be modeled. Finally, we plan to employ this simulation tool
for the calculation of the dynamics of systems not already modeled and in this
respect the possibility to devise ad-hoc evolution strategies can be very important
to tackle some specific issues related with the particular reality to be modeled.

Acknowledgements

Authors would like to gratefully acknowledge the whole MNC Group of the
University of Verona for the support in this work. Special thanks deserve the
team leader, Prof. Vincenzo Manca, as well as Luca Marchetti and Michele
Petterlini for their hard work while implementing the simulator Psim.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Biology of
the Cell, 4th edn. Garland Science, New York (2002)

2. Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Pérez-Jiménez,
M.J., Romero-Campero, F.J.: On P systems as a modelling tool for biological
systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 193–213. Springer, Heidelberg (2006)

3. Bernardini, F., Manca, V.: Dynamical aspects of P systems. BioSystems 70, 85–93
(2002)

4. Bianco, L.: Membrane Models of Biological Systems. PhD thesis, Verona University
(2007)

5. Bianco, L., Fontana, F.: Towards a hybrid metabolic algorithm. In: Hoogeboom,
H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361,
pp. 183–196. Springer, Heidelberg (2006)

Psim: A Computational Platform for MP Systems 19

6. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics.
In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane
Computing, Springer, Heidelberg (2006)

7. Bianco, L., Fontana, F., Manca, V.: Reaction-driven membrane systems. In: Wang,
L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1155–1158.
Springer, Heidelberg (2005)

8. Bianco, L., Fontana, F., Manca, V.: P systems with reation maps. International
Journal of Fondations of Computer Science 16(1) (2006)

9. Bianco, L., Manca, V.: Encoding-decoding transitional systems for classes of P
systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 135–144. Springer, Heidelberg (2006)

10. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

11. Cavaliere, M.: Evolution-communication P systems. In: Păun, G., Rozenberg, G.,
Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 134–
145. Springer, Heidelberg (2003)

12. Fontana, F., Bianco, L., Manca, V.: P systems and the modeling of biochemical
oscillations. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 199–208. Springer, Heidelberg (2006)

13. Fontana, F., Manca, V.: Discrete solution of differential equations by metabolic P
systems. TCS (submitted)

14. Fontana, F., Manca, V.: Predator-prey dynamics in P dystems ruled by metabolic
algorithm. BioSystems (accepted)

15. The Center for BioMedical Computing Web Site. Url: http://www.cbmc.it
16. Franco, G., Manca, V.: A membrane system for the leukocyte selective recruit-

ment. In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
Membrane Computing. LNCS, vol. 2933, pp. 180–189. Springer, Heidelberg (2004)

17. Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.): WMC 2005. LNCS,
vol. 3850, pp. 18–21. Springer, Heidelberg (2006)

18. Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin
and cdc2 kinase. PNAS 88(20), 9107–9111 (1991)

19. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. The Molecular
Bases of Periodic and Chaotic Behaviour. Cambridge University Press, New York
(2004)

20. Lodish, H.F., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., Zipursky,
L., Darnell, J.E.: Molecular Cell Biology, 5th edn. Scientific American Press, New
York (2004)

21. Manca, V.: Topics and problems in metabolic P systems. In: BWMC4. Proc. of
the Fourth Brainstorming Week on Membrane Computing (2006)

22. Manca, V.: Discrete simulations of biochemical dynamics. In: Garzon, M., Yan, H.
(eds.) Preliminary proceedings of the 13th International Meeting on DNA Com-
puting, June 4-8, 2007, University of Memphis, Memphis, USA (2007)

23. Manca, V.: Metabolic dynamics by MP systems. In: InterLink ERCIM Workshop,
Eze, France (May 10-12, 2007)

24. Manca, V.: Metabolic P systems for biochemical dynamics. Progress in Natural
Sciences, Invited Paper (2007)

25. Manca, V.: The metabolic algorithm for P systems principles and applications.
Theoretical Computer Science (to appear, 2007)

26. Manca, V., Bianco, L.: Biological networks in metabolic P systems. BioSystems
(to appear, 2007)

http://www.cbmc.it

20 L. Bianco and A. Castellini

27. Manca, V., Bianco, L., Fontana, F.: Evolutions and oscillations of P systems: The-
oretical considerations and applications to biochemical phenomena. In: Mauri, G.,
Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004.
LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

28. Martin-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with carriers. The-
oretical Computer Science 270, 779–796 (2002)

29. Milner, R.: Communicating and Mobile Systems: The π Calculus. Cambridge Uni-
versity Press, Cambridge, England (1999)

30. Pérez-Jiménez, M.J., Romero-Campero, F.J.: P systems: a new computational
modelling tool for systems biology. In: Priami, C., Plotkin, G. (eds.) Transactions
on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197.
Springer, Heidelberg (2006)

31. Pescini, D., Besozzi, D., Mauri, G.: Investigating local evolutions in dynamical
probabilistic p systems. In: Ciobanu, G., Păun, G. (eds.) Pre-Proc. of First Inter-
national Workshop on Theory and Application of P Systems, Timisoara, Romania,
pp. 83–90 (September 26-27, 2005)

32. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-
tems. Inter. Journal of Foundations of Computer Science 17(1), 183 (2006)

33. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3), 295–306 (2002)

34. Păun, G.: Computing with membranes. J. Comput. System Sci. 61(1), 108–143
(2000)

35. Păun, G.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 1(6), 75–90 (2001)

36. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
37. Păun, G., Suzuki, Y., Tanaka, H.: P systems with energy accounting. Int. J. Com-

puter Math. 78(3), 343–364 (2001)
38. Reisig, W.: Petri Nets, An Introduction. EATCS, Monographs on Theoretical Com-

puter Science (1985)
39. The P Systems Web Site. Url: http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

Modeling the Dynamics of HIV Infection with

Conformon-P Systems and Cellular Automata

Pierluigi Frisco and David Wolfe Corne

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, EH14 4AS, UK

{pier,dwcorne}@macs.hw.ac.uk

Abstract. Further results on the study of the dynamics of HIV infec-
tion with grids of conformon-P systems are reported. This study clearly
shows a subdivision in two phases of the mechanism at the base of the
considered dynamics.

1 Introduction

The infection by the human immune-deficiency virus (HIV), the cause of ac-
quired immunodeficiency syndrome (AIDS), has been widely studied both in
the laboratory and with computer models in order to understand the different
aspects that regulate the virus-host interaction.

Several mathematical models have been proposed (see, for example, [14,18,11])
but all of them fail to describe some aspects of the infection. The recent model
reported by Dos Santos & Coutinho in [4], based on cellular automata (CA),
clearly shows the different time scales of the infection and has a broad quali-
tative agreement to the density of healthy and infected cells observed in vivo.
However, in [15] it is noted that this qualitative agreement is reached only if
some parameters are chosen in a small interval. If some of the parameters are
chosen outside this interval, then the cellular automata model of [4] does not
follow the dynamics of what is observed in vivo.

In the present paper we continue our study on the modeling of the dynamics of
HIV infection with grids of conformon-P systems started in [2]. There our model
proved to be more robust than the CA model to a wide range of conditions
and parameters, with more reproducible qualitative agreement to the overall
dynamics and to the densities of healthy and infected cells observed in vivo.

2 The Modeling Platforms

2.1 Cellular Automata

Cellular automata are a regularly used platform for modeling, and are increas-
ingly explored as modeling tools in the context of natural phenomena that exhibit
characteristic spatiotemporal dynamics [16,3]. Of interest here, for example, are
their use in modeling the spread of infection [1,12,4,11,17].

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 21–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

22 P. Frisco and D.W. Corne

A CA consists of a finite number of cells (invariably arranged in a regular
spatial grid), each of which can be in one of a finite (typically small) number of
specific states. In the usual approach, at each time step t the status of the CA
is characterized by its state vector; that is, the state of each of the cells. In the
simplest type of CA, the state vector at time t+1 is obtained from that at time t
by the operation of a single rule applied in parallel (synchronously) to each cell.
The rule specifies how the state of a cell will change as a function of its current
state and the states of the cells in its neighborhood (see Figure 4).

In many applications, including that addressed here, it is appropriate for the
rule to be probabilistic.

The straightforward nature of the time evolution of a CA, combined with its
emphasis on local interactions, has made it an accessible and attractive tool for
modeling many biological processes.

2.2 Conformon-P Systems

Conformon-P systems (cP systems) [6] have been introduced as a novel compu-
tational device (P systems are the chief systems arising in the emerging research
area of Membrane Computing [13]) whose early inspiration comes from a theo-
retical model of the living cell.

CP systems are defined in an extremely simple way that does not limit either
their computational power, or their modeling capabilities. As a variant of P
systems, they capture the dynamics of interacting processes in a novel way,
using constructs that characterize the flow of information between regions in a
range of cell-like topological structures. Moreover, their definition allows them
to model different kinds of process (a compartment defines locality in general,
it is not necessarily a membrane compartment in a cell) and to integrate several
degrees of abstraction in the same system.

P systems are well-defined models of parallel computational systems that have
a rich and growing base [19] of theoretical understanding of their properties.

A cP system has conformons, a name-value pair, as objects. If V is an alphabet
(a finite set of letters) and N0 is the set of natural numbers (with 0 included),
then we can define a conformon as [γ, a], where γ ∈ V and a ∈ N0, we will say
that γ is the name and a is the value of the conformon [γ, a]. If, for instance, V =
A, B, C, . . . , Z, then [A, 5], [C, 0], [Z, 14] are conformons, while [AB, 21], [C, −15],
and [D, 0.5] are not.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form γ

n→ β, where γ, β ∈ V and n ∈ N0, and it says that a
conformon with name γ can give n from its value to the value of a conformon
having name β. A rule can be applied only if the value of the conformon with
name γ is greater or equal to n. If, for instance, there are conformons [G, 5] and
[R, 9] and the rule G

3→ R, the application of r leads to [G, 2] and [R, 12].
The (membrane) compartments present in a cP system have a label (it is

a name which makes it easier to refer to a compartment), every label being
different. Compartments can be unidirectionally connected to each other and
for each connection there is a predicate. A predicate is an element of the set

Modeling the Dynamics of HIV Infection 23

[X, 3] [C, 0]
[C, 0]

X 2→C C 2→X

conformons

≥ 1

≥ 3

≥ 3

interaction rules

m2

m3

labels
predicates

m1

Fig. 1. A cP system

{≥ n, ≤ n | n ∈ N0}. Examples of predicates are: ≥ 5, ≤ 2, etc. A connection
and its predicate are referred as passage rules. If, for instance, there are two
compartments (with labels) m1 and m2 and there is a passage rule from m1 to
m2 having predicate ≥ 4, then conformons having values greater than or equal
to 4 can pass from m1 to m2. In a time unit any number of conformons can
move between two connected membranes as long as the predicate of the passage
rule is satisfied. Notice that we have unidirectional passage rules that is: m1
connected to m2 does not imply that m2 is connected to m1. Moreover, each
passage rule has its own predicate. If, for instance, m1 is connected to m2 and
m2 is connected to m1, the two connections can have different predicates.

A simple cP system is illustrated in Figure 1.
CP systems do not work under the requirement of maximal parallelism, typical

to the majority of the models of P systems. When used as modeling platform cP
systems can be classified as stochastic descriptive dynamic discrete models based
on a discrete spatial heterogeneity. CP systems have been successfully used to
model biological processes [8,2].

≥ 3 ≥ 3

≥ 3 ≥ 3

[X, 3]

[X, 3][X, 3]

≥ 3
≥ 3≥ 3

≥ 3

≥ 3 ≥ 3

≥ 3 [X, 3]

X 2→C C 2→X X 2→C C 2→X

X 2→C C 2→X X 2→C C 2→X

≥ 3

≥ 1
≥ 3

≥ 1

≥ 3

≥ 3

≥ 1

≥ 3

≥ 1

≥ 3

≥ 3

[C, 0]
[C, 0]

[C, 0]
[C, 0]

[C, 0]
[C, 0]

[C, 0]
[C, 0]

Fig. 2. A grid of cP systems

24 P. Frisco and D.W. Corne

A grid of cP systems (Figure 2) is composed by cells, each cell being a simple
conformon-P system connected to some other cells, the neighborhood of the cell.

Ongoing research is establishing the computational properties of (models of)
cP systems [9,10,6,7,5].

CP systems can contain modules: groups of membranes with conformons and
interaction rules able to perform a specific task. The task performed by a module
can be considered atomic (i.e., completed in one time unit) in the context of the
cP system containing it. Modules allow cP systems to be scalable.

Some modules are: Splitter, Separator, Decreaser/Increaser [6]. The combina-
tion of Separators and Decreaser/Increaser allows us to define strict interaction
rule: γ(a) c→ β(b) where γ, β ∈ V, a, b, c ∈ N0, meaning that a conformon with
name γ can interact with β passing just c only if the value of γ and β before
the interaction is a and b respectively. Notice that in a strict interaction just c is
passed even if the value of γ could be decreased by any multiple of c. Interactions
of the kind γ

c→ β(b) (before the interaction γ can have any value while β has b

as value) and γ(a) c→ β (before the interaction γ has a as value while β can have
any value) can be defined, too.

3 The Process and the Models

We went on investigating the dynamics of HIV infection starting from the de-
scription of this process as present in [4,15].

The basic model of cP system we used is similar in the operation to the one
reported in [2]. The differences are in the used probabilities and in the analysis
we made.

The dynamics observed in HIV infections can be divided into three phases.
Initially the amount of virus in the host grows in an exponential way, then the
viral load drops to what is known as the “set point”. Finally the amount of virus
in the host increases slowly, accelerating near the onset of AIDS. The first two
phases occur in the first weeks following the infection; the third phase can last
years. This is plotted in Figure 3 where each unit in the x axes represent a week
in time.

In [4] this process was modeled with a CA in which each cell could be in any of
four possible states: healthy, A-infected, AA-infected, and dead. In the (random)
initial configuration a cell had probability pHIV to be A-infected, otherwise it is
healthy.

The rules used in [4] are:

1. if an healthy cell has at least one A1-infected neighbor, then it becomes
A1-infected;

2. if an healthy cell has not A1-infected neighbors but it has at least 2 < R < 8
A2-infected neighbors, then it becomes A1-infected;

3. an A1-infected cell becomes A2-infected after τ time steps;
4. A2-infected cells become dead cells;
5. dead cells can become (are replaced by) healthy cells with probability prepl;

Modeling the Dynamics of HIV Infection 25

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 2 4 6 8 10 12 14

first weeks

"healty"
"infected"

"dead"

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 100 200 300 400 500 600

later years

healty

infected
dead

Fig. 3. Typical dynamics of HIV infection

6. newly introduced healthy cells can become A1-infected with probability
pinfec.

The biological reasoning behind these rules is explained in [4]. Essentially,
rules I and II model the basic spread of viral infection from cells to neighboring
cells; rules III–VII model the short life of an infected cell, and the last rule
models the body’s continual replenishment of new healthy cells but maintaining
a small probability of infection.

In [4] the following parameters were chosen: pHIV = 0.05, prepl = 0.99,
pinfec = 10−5, R = 5, and τ = 4. They experimented with grids of size rang-
ing from 300 × 300 to 1000 × 1000, and the averaged results of 500 simulations
reported in [4] on toroidal grids ranging from 700×700 show a qualitative agree-
ment to the density of healthy and infected cells observed in vivo.

In [15] it is shown that this qualitative agreement is reached only for values of
the parameters close to the ones just indicated. If either pHIV < 10−2 or pinfec

is chosen in the range 10−2 to 10−4, then the CA model of [4] does not follow
the dynamics of what is observed in vivo.

3.1 The CA Model

Our CA model followed the implementation of [4] with some minor differences.
The main difference was that the state A-infected was represented by four sepa-
rate states, A-infected1, A-infected2, A-infected3, and A-infected4. This enabled
us to control the transition from A-infected to AA-infected over τ = 4 time steps
within a ‘pure’ CA framework.

The CA rules were as follows, in which we use A-infected as shorthand for the
union of the four aforementioned states.

1. if a healthy cell has at least one A-infected neighbor, then it becomes A-
infected1 at the next time step;

2. if a healthy cell has no A-infected neighbors but at least R AA-infected neigh-
bors, then it becomes A-infected1 at the next time step;

26 P. Frisco and D.W. Corne

3. an A-infected1 cell becomes A-infected2 at the next time step;
4. an A-infected2 cell becomes A-infected3 at the next time step;
5. an A-infected3 cell becomes A-infected4 at the next time step;
6. an A-infected4 cell becomes AA-infected at the next time step;
7. an AA-infected cell becomes dead at the next time step;
8. a dead cell becomes, at the next time step, either healthy (with probability

prepl × (1− pinfec)), or A-infected1 (with probability prepl × pinfec), or stays
dead (with probability 1 − prepl).

As in [4], the first two model the basic spread of viral infection from cells to
neighbouring cells, while most of the remainder model the short life of an infected
cell, and the last rule models the continual replenishment of new healthy cells,
but maintaining a small probability of infection.

In [4] a parameter τ is used for indicating the number of time-steps after which
an A-infected cell became AA-infected, and maintained τ = 4 throughout their
work. This parameter setting is reflected in our use of four separate A-infected
states.

3.2 The Grid of cP System Model

The main difference that our model has in respect to the one reported in [4]
is that the interaction rules are divided in two subsets: part 1 and part 2 (see
Appendix A). The rules in the two subsets differ in the probabilities associated
to them.

Other differences as, for instance, the presence of pre-dead cells, were consid-
ered in order to simulate in terms of operations in a cP system some instructions
of the CA presented in [4].

Each cell can be in one of five states: 1-healthy, A-infected, AA-infected, pre-
dead, and dead (in respect to the rules in part 1) identified by the presence
of the conformons: [H, 1], [A, 1], [AA, 1], [PD, 1], and [D, 1] respectively. If, for
instance, a cell is in an healthy state, then it will contain [H, 1], [A, 0], [AA, 0],
[PD, 0], and [D, 0] (similarly for the other cases). In the initial configuration,
each cell contains the conformons ([R, 1], +∞), ([V, 10], +∞), ([E, 0], +∞), and
([W, 0], +∞).

In the following we consider and describe the rules in part 1.
If a cell is A-infected, then it can generate [V, 11] (meaning: if a cell is A-

infected it can generate a virus). This is performed by the rules:

1: R
1→ A(1) 2: A(2) 1→ V(10)

Notice that [V, 10] does not represent a virus, but [V, 11] does.
[V, 11] conformons can pass from a cell to any other in its neighborhood (mean-

ing: viruses can spread between cells).
An 1-healthy cell can become A-infected if it contains a virus. This is performed

by the rules:

3: V
11→ H(1) 4: H(12) 12→ A(0) 5: A(12) 11→ W(0)

Modeling the Dynamics of HIV Infection 27

An AA-infected cell can generate [E, 1] conformons. These conformons can
pass to other cells and interact such that [E, 4] conformons are created. When a
[E, 4] conformon is present in an healthy cell, then it can become A-infected.

This process mimics rule II in Section 3 and it is performed by:

6: R
1→ AA(1) 7: AA(2) 1→ E(0) 8: E(1) 1→ E(1) 9: E(2) 2→ E(2)

10: E
4→ H(1) 11: H(5) 5→ A(0) 12: A(5) 4→ W(0)

and by the fact that [E, 1] can pass from one cell to any other in its neighborhood.
From rules 7, 8, and 9 it should be clear that only [E, 1], [E, 2], and [E, 4] can be
present in the system. Because of rule 6 an AA-infected cell can generate [E, 1].
When two [E, 1] are present in the same cell they can interact to create [E, 2]
(rule 8) and two [E, 2] present in the same cell can interact to create [E, 4] (rule
9). If the creation of [E, 4] took place in an healthy cell, then this cell can become
A-infected (rules 10, 11 and 12).

An A-infected cell can become AA-infected by the application of the rule:

13: A(1) 1→ AA(0)

An AA-infected cell can become dead. Before doing so it goes into the pre-dead
state in which the [V, 11], [E, 1], [E, 2], and [E, 4] conformons present in it are
removed. This is performed by the rules:

14: AA(11) 1→ PD(0) 15: V (11) 1→ PD(1) 16: E
1→ PD(1) 17: E

2→ PD(1)

18: E
4→ PD(1) 19: PD(1) 1→ D(0) 20: PD(2) 1→ W(0) 21: PD(3) 2→ W(0)

22: PD(5) 4→ W(0)
A dead cell can become 2-healthy cell by the application of the rule

23: D(1) 1→ H2(0)

The R and W conformons do not have a direct relationship with any aspect
of HIV infection. In broad terms, the R conformons can be regarded as ‘food’
molecules needed by a cell in a certain state to perform an action (for instance,
if A-infected to generate a virus). The W conformons can be regarded as ‘waste’
molecules, to which some conformons can pass part of their value. As W confor-
mons only receive values from other conformons, their initial value is not relevant
for the simulation.

The state 2-healthy, together with A2-infected, AA2-infected, 2-pre-dead, and
2-dead are managed by the rules in part 2. The rules in part 2 are similar to the
ones in part 1 but they have H2 instead of H , A2 instead of A, AA2 instead of
AA, PD2 instead of PD, and D2 instead of D.

In the diagrams related to the grid of cP systems the curve of healthy cells is
obtained adding up the number of H and H2 cells; the curve of infected cells is
obtained adding up the number of A, AA, A2, and AA2 cells; the curve of dead
cells is obtained adding up the number of D, PD, D2, and PD2 cells.

The interaction rules indicated in Appendix A can be logically divided in two
sets: state-change and internal dynamics. The state-change rules allow the cells
to pass from a state to another. For instance, rule 4 is a state change rule as when

28 P. Frisco and D.W. Corne

it is applied in a cell the state of the cell passed from 1-healthy to A-infected.
The state-change rules are: 4, 11, 13, 14, 19, 23, 27, 32, 34, 35, 40, and 44.

The remaining rules belong to internal dynamics as they do not directly effect
the state of a cell.

Differently from what was done in [2], in the present study the probabilities
associated to the internal dynamics rules in phase 1 are equal to the ones in
phase 2. The probabilities of the state-change rules in phase 1 are higher than
the ones in phase 2.

Considering what we said in Section 3, rules in part 1 model the behavior of
the first two phases of the dynamics of HIV infection, while rules in part 2 model
the behavior of the third phase.

4 Experiments and Results

The simulations performed with the cP system were based on a toroidal 50×50
grid, using a Moor neighborhood (considering Figure 4 a black cell can pass
conformons to any other of the grey cells) and with pHIV = 0.05.

Fig. 4. The Moore neighborhood

All the 10 simulations (with different random number sequences) run for 16000
iterations and they all show a dynamics very similar to the one observed in vivo.
A typical outcome is depicted in Figure 5.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500

first weeks

healty
infected

dead

 0

 500

 1000

 1500

 2000

 2500

 2000 4000 6000 8000 10000 12000 14000 16000

later years

healty

infected

dead

Fig. 5. Typical outcome for grids of cP systems

This outcome (even if run for a few configurations) fits the dynamics observed
in vivo better than the outcomes reported in [2]:

Modeling the Dynamics of HIV Infection 29

The tempo of the dynamics is constant during the simulation. In [2] the dynam-
ics was ‘too fast’ in the later years (or ‘too slow’ in the first weeks). In the
present study 1 year corresponds to 1560 iterations. This means that phase
I and phase II (both taking place in at most 10 weeks) should correspond to
300 iterations. In this way the 16000 iterations of out tests correspond to a
bit more than 10 years.

The percentage of healthy and infected cells in phase III is closer to what ob-
served in vivo than what reported in [2].

The dynamics of healthy and infected cells in phase III is not flat as in [2] but
shows a concavity similar to the one observed in vivo.

There are two major differences between the dynamics obtained by us and
the one observed in vivo:

In phase III the number of healthy cells should become equal to the one of dead
cells;

The curves followed by the number of healthy and infected cells in phase III do
not change concavity.

5 Final Remarks

We consider the reported study still in its initial phases. In the future we will try
to fit better the dynamics obtained with grids of cP systems to that observed in
vivo and we will run the tests on different neighborhoods and different percentage
of initially infected cells (as done in [2]).

Some results obtained by us indicates that the E conformons do not play an
important role in the whole dynamics, their effect is negligible. On this basis we
will try to simplify our model in the number of interaction rules and conformons
present in it.

References

1. Ahmed, E., Agiza, H.N., Hassan, S.Z.: On modelling hepatitis B transmission using
cellular automata. J. Stat. Phys. 92(3/4) (1998)

2. Corne, D.W., Frisco, P.: Dynamics of HIV infection studied with cellular automata
and conformon-P systems. BioSystems (to appear)

3. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern
Formation: Characterization, Applications, and Analysis, Birkäusen, Boston (2004)

4. Dos Santos, R.M., Coutinho, S.: Dynamics of HIV infection: a cellular automata
approach. Physical Review Letters 87(16), 168102 (2001)

5. Frisco, P.: Conformon-p systems with negative values. In: Eleftherakis, G., Kefalas,
P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860,
Springer, Heidelberg (this volume, 2007)

6. Frisco, P.: The conformon-P system: A molecular and cell biology-inspired com-
putability model. Theoretical Computer Science 312(2-3), 295–319 (2004)

7. Frisco, P.: Infinite hierarchies of conformon-P systems. In: Hoogeboom, H.J., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 395–408.
Springer, Heidelberg (2006)

30 P. Frisco and D.W. Corne

8. Frisco, P., Gibson, R.T.: A simulator and an evolution program for conformon-P
systems. In: SYNASC 2005. 7th International Symposium on Simbolic and Numeric
Algorithms for Scientific Computing, Workshop on Theory and Applications of P
Systems, TAPS, Timisoara (Romania), September 26-27, 2005, pp. 427–430. IEEE
Computer Society, Los Alamitos (2005)

9. Frisco, P., Ji, S.: Conformons-P systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA
Computing. LNCS, vol. 2568, pp. 291–301. Springer, Heidelberg (2003)

10. Frisco, P., Ji, S.: Towards a hierarchy of info-energy P systems. In: Păun, G.,
Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS,
vol. 2597, pp. 302–318. Springer, Heidelberg (2003)

11. Kamp, C., Bornholdt, S.: From HIV infection to AIDS: a dynamically in-
duced percolation transition? Proceedings of the Royal Society B: Biological Sci-
ences 269(1504), 2035–2040 (2002)

12. Martins, M.L., Ceotto, G., Alves, S.G., Bufon, C.C.B., Silva, J.M., Laranjeira,
F.F.: Cellular automata model for citrus variegated chlorosis. Phys. Rev. E 62(5),
7024–7030 (2000)

13. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
14. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo.

SIAM Review 41(1), 3–44 (1999)
15. Strain, M.C., Levine, H.: Comment on Dynamics of HIV infection: a cellular au-

tomata approach. Physical review letters 89(21), 219805 (2002)
16. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for

Modeling. MIT press, Cambridge (1987)
17. Venkatachalam, S., Mikler, A.: Towards computational epidemiology: Using sto-

chastic cellular automata in modeling spread of diseases. In: Proceedings of the
4th Annual International Conference on Statistics, Mathematics and Related Fields
(2005)

18. Wodarz, D., Nowak, M.A.: Mathematical models of HIV pathogenesis and treat-
ment. Bioessays 24(12), 1178–1187 (2002)

19. Zandron, C.: P-systems web page: http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

Modeling the Dynamics of HIV Infection 31

A Rules, Links, and Probabilities

part 1 part 2
label rule prob. label rule prob.

1 R
1→ A(1) 0.7071 24 R

1→ A2(1) 0.7071
2 A(2) 1→ V(10) 0.7071 25 A2(2) 1→ V(10) 0.7071
3 V

11→ H(1) 0.79 26 V
11→ H2(1) 0.79

4 H(12) 12→ A(0) 0.79 27 H2(12) 12→ A2(0) 0.0001
5 A(12) 11→ W(0) 0.79 28 A2(12) 11→ W(0) 0.79
6 R

1→ AA(1) 0.7071 29 R
1→ AA2(1) 0.7071

7 AA(2) 1→ E(0) 0.7071 30 AA2(2) 1→ E(0) 0.7071
8 E(1) 1→ E(1) 0.07071
9 E(2) 2→ E(2) 0.07071
10 E

4→ H(1) 0.79 31 E
4→ H2(1) 0.79

11 H(5) 5→ A(0) 0.79 32 H2(5) 5→ A2(0) 0.0001
12 A(5) 4→ W(0) 0.79 33 A2(5) 4→ W(0) 0.79
13 A(1) 1→ AA(0) 0.04 34 A2(1) 1→ AA2(0) 0.0001
14 AA(11) 1→ PD(0) 0.1 35 AA2(11) 1→ PD2(0) 0.00075
15 V (11) 1→ PD(1) 0.7071 36 V (11) 1→ PD2(1) 0.7071
16 E

1→ PD(1) 0.7071 37 E
1→ PD2(1) 0.7071

17 E
2→ PD(1) 0.7071 38 E

2→ PD2(1) 0.7071
18 E

4→ PD(1) 0.7071 39 E
4→ PD2(1) 0.7071

19 PD(1) 1→ D(0) 0.2 40 PD2(1) 1→ D2(0) 0.001
20 PD(2) 1→ W(0) 0.7071 41 PD2(2) 1→ W(0) 0.7071
21 PD(3) 2→ W(0) 0.7071 42 PD2(3) 2→ W(0) 0.7071
22 PD(5) 4→ W(0) 0.7071 43 PD2(5) 4→ W(0) 0.7071
23 D(1) 1→ H2(0) 0.1 44 D2(1) 1→ H2(0) 0.001

Links:
[V, 11] can pass with probability 1 from any cell to any of its neighbors; [E, 1]
can pass with probability 0.01 from any cell to any of its neighbors.

(UREM) P Systems with a Quantum-Like

Behavior: Background, Definition, and
Computational Power

Alberto Leporati

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
alberto.leporati@unimib.it

Abstract. Q-UREM P systems constitute an attempt to introduce and
exploit in Membrane Computing notions and techniques deriving from
quantum mechanics. As we will see, the approach we have adopted is
different from what is usually done in Quantum Computing; in fact,
we have been inspired by the functioning of creation and annihilation
operators, that are sometimes used in quantum mechanics to exchange
quanta of energy among physical systems. In this paper we will provide
the background which has led to the current definition of Q-UREM P
systems, and we will recall some results concerning their computational
power.

1 The Quest for Quantum P Systems

Membrane systems (also known as P systems) have been introduced by Gheorghe
Păun in 1998 [24] as a new class of distributed and parallel computing devices,
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a
main membrane called the skin. Membranes divide the Euclidean space into
regions, that contain some objects (represented by symbols of an alphabet) and
evolution rules. Using these rules, the objects may evolve and/or move from a
region to a neighboring one. A computation starts from an initial configuration
of the system and terminates when no evolution rule can be applied. Usually,
the result of a computation is the multiset of objects contained into an output
membrane or emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For a layman–oriented introduction
to P systems see [26], whereas for a systematic introduction we refer the reader
to [25]. The latest information about P systems can be found in [29].

At the beginning of 2004, the Membrane Computing community started to
query about the possibility to define a quantum version of P systems, and hence
I started to work on the subject with some colleagues. A first paper [18] was
presented in Palma de Mallorca in November 2004. There, we proposed two

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 32–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

(UREM) P Systems with a Quantum-Like Behavior 33

options: either to follow the steps usually performed in Quantum Computing
to define the quantum version of a given computation device, or to propose a
completely new computation device which is based on the most elementary op-
eration which can be conceived in physics: the exchange of a quantum of energy
among two quantum systems. In the former case we would have obtained yet
another quantum computation device whose computation steps are defined as
the action of unitary operators, whose computations are logically reversible, and
in which there are severe constraints on the amount of information which can be
extracted from the system by measuring its state. In the latter case, instead, we
felt that a new and interesting computation device could be introduced. Indeed,
after a long and careful investigation, we decided to adopt creation and annihi-
lation operators as the most elementary operations which can be performed by
our computation device.

It was since 2001 that several authors introduced the notion of energy in P
systems [1,7,28,12,19,20]. Hence, we looked at the literature to find a model of P
systems that could be easily transformed to a quantum computation device. Our
first choice, explored in [18], was to focus on energy–based P systems, in which
a given amount of energy is associated to each object of the system. Moreover,
instances of a special symbol e are used to denote free energy units occurring
into the regions of the system. These energy units can be used to transform
objects, using appropriate rules. The rules are defined according to conserv-
ativeness considerations. Indeed, in [18] we proposed two different versions of
quantum P systems based on this classical model. Both versions were defined
just like classical energy–based P systems, but for objects and rules. Objects
were represented as pure states in the Hilbert space C

d, for appropriate inte-
gers d ≥ 2, whereas the definition of rules differs between the two models. In
the former, rules are defined as bijective functions that operate on the objects
of the alphabet; these functions are then implemented as unitary operators. In
the latter, rules are defined as generic functions which map the alphabet into
itself. Such functions are implemented using a generalization of the Conditional
Quantum Control technique [2], and may yield to non unitary operators (a fact
which is usually seen with suspicion in traditional Quantum Computing).

Several problems were also pointed out in [18], the most serious being that it
is difficult to avoid undesired exchanges of energy among the objects, that yield
the system to unintended states. Another difficulty was tied to the assignment of
the amount of energy to every object of the system. In the original definition of
energy–based P systems, every object incorporated a different amount of energy;
in other words, the amount of energy uniquely determined the kind of object
and, by acquiring or releasing energy from the environment, one object was
transformed to another kind of object. Under this definition, we were able in
[19] to simulate a single Fredkin gate. However, in order to simulate an entire
Fredkin circuit [20,21] we were forced to relax the definition, and allow different
kinds of objects to have the same amount of energy, otherwise the number of
different kinds of objects would have become unmanageable.

34 A. Leporati

Looking for some alternatives, we considered the model of P systems introduced
in [8], in which a non–negative integer value is assigned to each membrane. Such
a value can be conveniently interpreted as the energy of the membrane. In these
P systems, rules are assigned to the membranes rather than to the regions of the
system. Every rule has the form (ini : α, Δe, β) or (outi : α, Δe, β), where i is the
number of the membrane in a one-to-one labeling, α and β are symbols of the al-
phabet and Δe is a (possibly negative) integer number. The rule (ini : α, Δe, β) is
interpreted as follows: if a copy of α is in the region immediately surrounding mem-
brane i, then this object crosses membrane i, is transformed to β, and modifies the
energy of membrane i from the current value ei to the new value ei+Δe. Similarly,
the rule (outi : α, Δe, β) is interpreted as follows: if a copy of α is in the region
surrounded by membrane i, then this object crosses membrane i, is transformed
to β, and modifies the energy of membrane i from the current value ei to the new
value ei + Δe. Both kinds of rules can be applied only if ei + Δe is non–negative.
Since these rules transform one copy of an object to (one copy of) another object,
in [8] they are referred to as unit rules. Hence, for conciseness, this model of P
systems with unit rules and energy assigned to membranes has been abbreviated
as UREM P systems. An important observation is that in [8] the rules of UREM
P systems are applied in a sequential way: at each computation step, one rule is
selected from the pool of currently active rules, and is applied. In [8] it has been
proved that if we assign some local (that is, affecting only the membrane in which
they are defined) priorities to the rules then UREM P systems are Turing com-
plete, whereas if we omit the priorities then we do not get systems with universal
computational power: indeed, we obtain a characterization of PsMAT λ, the fam-
ily of Parikh sets generated by context-free matrix grammars (without occurrence
checking and with λ-rules).

Finally, in [17] a quantum-like version of UREM P systems (here referred to as
Q-UREM P systems, for short) has been introduced, and it has been shown that
such a model of computation is able to compute every partial recursive function
(that is, it reaches the computational power of Turing machines) without the
need to assign any priority between the rules of the system. In Q-UREM P
systems, the rules (ini : α, Δe, β) and (outi : α, Δe, β) are realized through (not
necessarily unitary) linear operators, which can be expressed as an appropriate
composition of a truncated version of creation and annihilation operators. The
operators which correspond to the rules have the form |β〉 〈α| ⊗ O, where O
is a linear operator which modifies the energy associated with the membrane
(implemented as the state of a truncated quantum harmonic oscillator).

In [17] we also introduced a quantum-like version of register machines (QRMs,
for short). It is our opinion that they could play the same role in proofs con-
cerning the computational power of quantum computation devices as played by
classical register machines for classical computing devices. Indeed, it has been
shown in [17] that they are able to simulate any classical (deterministic) register
machine, and hence they are (at least) Turing complete.

Subsequently, in [16] we have shown that, under the assumption that an ex-
ternal observer is able to discriminate a null vector from a non–null vector, the

(UREM) P Systems with a Quantum-Like Behavior 35

NP–complete problem 3-SAT can be solved using quantum (Fredkin) circuits
(built using the non–unitary creation and annihilation operators), QRMs and
Q-UREM P systems. Precisely, for each type of computation device we have pro-
posed a brute force technique that exploits quantum parallelism (as well as the
ability to alter quantum states by using creation and annihilation operators) to
explore the whole space of assignments to the boolean variables of any given in-
stance φ of 3-SAT, in order to determine whether at least one of such assignments
satisfies φ. The solutions are presented in the so-called semi–uniform setting,
which means that for every instance φ of 3-SAT a specific computation device
(circuit, register machine or UREM P system) that solves it is built. Even if it is
not formally proved, it is apparent that the proposed constructions can be per-
formed in polynomial time by a classical deterministic Turing machine (whose
output is a “reasonable” encoding of the machine, in the sense given in [13]).

In the rest of the paper we overview the basic notions of quantum mechanics
which have led to the definition of Q-UREM P systems, and the results obtained
so far about their computational power. Precisely, in section 2 we recall some
basic notions on quantum computers, and we extend them to quantum systems
which are able to assume a generic number d ≥ 2 of base states. We also introduce
creation and annihilation operators, by first giving a mathematical description
and then illustrating two possible physical interpretations. In sections 3 and 4 we
give the precise definitions of both classical and quantum-like register machines
and UREM P systems, respectively. In section 5 we prove that Q-UREM P
systems are able to compute any partial recursive function, and hence they are
(at least) as powerful as Turing machines. In section 6 we show how to build two
families of QRMs and Q-UREM P systems, respectively, that solve (in the semi–
uniform setting) the NP–complete decision problem 3-SAT. Finally, section 7
contains some directions for future research.

2 Quantum Computers

From an abstract point of view, a quantum computer can be considered as
made up of interacting parts. The elementary units (memory cells) that compose
these parts are two–level quantum systems called qubits. A qubit is typically
implemented using the energy levels of a two–level atom, or the two spin states of
a spin– 1

2 atomic nucleus, or a polarization photon. The mathematical description
— independent of the practical realization — of a single qubit is based on the
two–dimensional complex Hilbert space C

2. The boolean truth values 0 and 1 are
represented in this framework by the unit vectors of the canonical orthonormal
basis, called the computational basis of C

2:

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]

Qubits are thus the quantum extension of the classical notion of bit, but whereas
bits can only take two different values, 0 and 1, qubits are not confined to
their two basis (pure) states, |0〉 and |1〉, but can also exist in states which are

36 A. Leporati

coherent superpositions such as ψ = c0 |0〉 + c1 |1〉, where c0 and c1 are complex
numbers satisfying the condition |c0|2 + |c1|2 = 1. Performing a measurement of
the state alters it. Indeed, performing a measurement on a qubit in the above
superposition will return 0 with probability |c0|2 and 1 with probability |c1|2;
the state of the qubit after the measurement (post–measurement state) will be
|0〉 or |1〉, depending on the outcome.

A quantum register of size n (also called an n–register) is mathematically
described by the Hilbert space ⊗n

C
2 = C

2 ⊗ . . . ⊗ C
2

︸ ︷︷ ︸
n times

, representing a set of n

qubits labeled by the index i ∈ {1, . . . , n}. An n–configuration (also pattern) is
a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗n

C
2, usually written as |x1, . . . , xn〉, considered as

a quantum realization of the boolean tuple (x1, . . . , xn). Let us recall that the
dimension of ⊗n

C
2 is 2n and that {|x1, . . . , xn〉 : xi ∈ {0, 1}} is an orthonormal

basis of this space called the n–register computational basis.
Computations are performed as follows. Each qubit of a given n–register is

prepared in some particular pure state (|0〉 or |1〉) in order to realize the required
n–configuration |x1, . . . , xn〉, quantum realization of an input boolean tuple of
length n. Then, a linear operator G : ⊗n

C
2 → ⊗n

C
2 is applied to the n–

register. The application of G has the effect of transforming the n–configuration
|x1, . . . , xn〉 into a new n–configuration G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which
is the quantum realization of the output tuple of the computer. We interpret
such modification as a computation step performed by the quantum computer.
The action of the operator G on a superposition Φ =

∑
ci1...in |xi1 , . . . , xin〉,

expressed as a linear combination of the elements of the n–register basis, is
obtained by linearity: G(Φ) =

∑
ci1...inG(|xi1 , . . . , xin〉). We recall that linear

operators which act on n–registers can be represented as order 2n square matrices
of complex entries. Usually (but not in this paper) such operators, as well as the
corresponding matrices, are required to be unitary. In particular, this implies
that the implemented operations are logically reversible (an operation is logically
reversible if its inputs can always be deduced from its outputs).

All these notions can be easily extended to quantum systems which have
d > 2 pure states. In this setting, the d–valued versions of qubits are usu-
ally called qudits [14]. As it happens with qubits, a qudit is typically imple-
mented using the energy levels of an atom or a nuclear spin. The mathematical
description — independent of the practical realization — of a single qudit is
based on the d–dimensional complex Hilbert space C

d. In particular, the pure
states |0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉 are represented by the unit vectors of

the canonical orthonormal basis, called the computational basis of C
d:

|0〉 =

⎡

⎢⎢⎢⎢⎢⎣

1
0
...
0
0

⎤

⎥⎥⎥⎥⎥⎦
,

∣∣∣∣
1

d − 1

〉
=

⎡

⎢⎢⎢⎢⎢⎣

0
1
...
0
0

⎤

⎥⎥⎥⎥⎥⎦
, · · · ,

∣∣∣∣
d − 2
d − 1

〉
=

⎡

⎢⎢⎢⎢⎢⎣

0
0
...
1
0

⎤

⎥⎥⎥⎥⎥⎦
, |1〉 =

⎡

⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤

⎥⎥⎥⎥⎥⎦

(UREM) P Systems with a Quantum-Like Behavior 37

As before, a quantum register of size n can be defined as a collection of
n qudits. It is mathematically described by the Hilbert space ⊗n

C
d. An n–

configuration is now a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗n
C

d, simply written as
|x1, . . . , xn〉, for xi running on Ld =

{
0, 1

d−1 , 2
d−1 , . . . , d−2

d−1 , 1
}
. An n–configu-

ration can be viewed as the quantum realization of the “classical” tuple
(x1, . . . , xn) ∈ Ln

d . The dimension of ⊗n
C

d is dn and the set {|x1, . . . , xn〉 :
xi ∈ Ld} of all n–configurations is an orthonormal basis of this space, called the
n–register computational basis. Notice that the set Ld can also be interpreted
as a set of truth values, where 0 denotes falsity, 1 denotes truth and the other
elements indicate different degrees of indefiniteness.

Let us now consider the set Ed =
{

ε0, ε 1
d−1

, ε 2
d−1

, . . . , ε d−2
d−1

, ε1

}
⊆ R of real

values; we can think to such quantities as energy values. To each element v ∈ Ld

we associate the energy level εv; moreover, let us assume that the values of Ed

are all positive, equispaced, and ordered according to the corresponding objects:
0 < ε0 < ε 1

d−1
< · · · < ε d−2

d−1
< ε1. If we denote by Δε the gap between two

adjacent energy levels then the following linear relation holds:

εk = ε0 + Δε (d − 1) k ∀ k ∈ Ld (1)

Notice that it is not required that ε0 = Δε. As explained in [18,16], the values εk

can be thought of as the energy eigenvalues of the infinite dimensional quantum
harmonic oscillator truncated at the (d− 1)-th excited level, whose Hamiltonian
on C

d is:

H =

⎡

⎢⎢⎢⎣

ε0 0 . . . 0
0 ε0 + Δε . . . 0
...

...
. . .

...
0 0 . . . ε0 + (d − 1)Δε

⎤

⎥⎥⎥⎦ (2)

The unit vector |H = εk〉 =
∣∣∣ k
d−1

〉
, for k ∈ {0, 1, . . . , d − 1}, is the eigenvector

of the state of energy ε0 + kΔε. To modify the state of a qudit we can use
creation and annihilation operators on the Hilbert space C

d, which are defined
respectively as:

a† =

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0

√
2 · · · 0 0

...
...

. . .
...

...
0 0 · · ·

√
d − 1 0

⎤

⎥⎥⎥⎥⎥⎦
a =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0

√
2 · · · 0

...
...

...
. . .

...
0 0 0 · · ·

√
d − 1

0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦

It is easily verified that the action of a† on the vectors of the canonical ortho-
normal basis of C

d is the following:

a†
∣∣∣∣

k

d − 1

〉
=

√
k + 1

∣∣∣∣
k + 1
d − 1

〉
for k ∈ {0, 1, . . . , d − 2}

a† |1〉 = 0

38 A. Leporati

whereas the action of a is:

a

∣∣∣∣
k

d − 1

〉
=

√
k

∣∣∣∣
k − 1
d − 1

〉
for k ∈ {1, 2, . . . , d − 1}

a |0〉 = 0

Using a† and a we can also introduce the following operators:

N = a†a =

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · d − 1

⎤

⎥⎥⎥⎥⎥⎦
aa† =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · d − 1 0
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦

The eigenvalues of the self–adjoint operator N are 0, 1, 2, . . . , d − 1, and the
eigenvector corresponding to the generic eigenvalue k is |N = k〉 =

∣∣∣ k
d−1

〉
.

One possible physical interpretation of N is that it describes the number of
particles of physical systems consisting of a maximum number of d−1 particles.
In order to add a particle to the k particles state |N = k〉 (thus making it switch
to the “next” state |N = k + 1〉) we apply the creation operator a†, while to
remove a particle from this system (thus making it switch to the “previous” state
|N = k − 1〉) we apply the annihilation operator a. Since the maximum number
of particles that can be simultaneously in the system is d − 1, the application of
the creation operator to a full d − 1 particles system does not have any effect on
the system, and returns as a result the null vector. Analogously, the application
of the annihilation operator to an empty particle system does not affect the
system and returns the null vector as a result.

Another physical interpretation of operators a† and a, by operator N , follows
from the possibility of expressing the Hamiltonian (2) as follows:

H = ε0 I + Δε N = ε0 I + Δε a†a

In this case a† (resp., a) realizes the transition from the eigenstate of energy
εk = ε0 + k Δε to the “next” (resp., “previous”) eigenstate of energy εk+1 =
ε0 + (k + 1)Δε (resp., εk−1 = ε0 + (k − 1)Δε) for any 0 ≤ k < d − 1 (resp.,
0 < k ≤ d − 1), while it collapses the last excited (resp., ground) state of energy
ε0 + (d − 1)Δε (resp., ε0) to the null vector.

The collection of all linear operators on C
d is a d2–dimensional linear space

whose canonical basis is:

{Ex,y = |y〉 〈x| : x, y ∈ Ld}

Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z �= x, this
operator transforms the unit vector |x〉 into the unit vector |y〉, collapsing all
the other vectors of the canonical orthonormal basis of C

d to the null vector.
Each of the operators Ex,y can be expressed, using the whole algebraic structure

(UREM) P Systems with a Quantum-Like Behavior 39

of the associative algebra of operators, as a suitable composition of creation and
annihilation operators, as follows:

E i
d−1 , j

d−1
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
j!

(d−1)!A
d−2,d−1−j,0
a†,a† if i = 0√

j!
(d−1)!A

d−1,d−1−j,0
a,a† if i = 1 and j ≥ 1√

i!
(d−1)!

√
j!A

d−2−i,d−1,j
a†,a† if (i = 1, j = 0 and d ≥ 3) or

(1 < i < d − 2 and j ≤ i)√
j!

(d−1)!
√

i!
Ai−1,d−1,d−1−j

a,a if (i = d − 2, j = d − 1 and d ≥ 3)
or (1 < i < d − 2 and j > i)

1√
(d−1)!j!(d−1)

Ad−1,j,0
a†,a

if i = d − 2 and j ≤ d − 2
1√

(d−1)!j!
Ad−2,j,0

a,a if i = d − 1

Here we just recall, in order to keep the length of the paper under a reason-
able size, that an alternative interpretation of qudits is possible, based on the
values which can be assumed by the z component of the angular momentum
of semi–integer spin quantum systems. Also with this interpretation every lin-
ear operator, and in particular operators Ex,y, can be realized as appropriate
compositions of spin–rising (J+) and spin–lowering (J−) operators, similarly to
what we have done with creation and annihilation operators. For the details, we
refer the reader to [18,16].

3 Classical and Quantum-Like Register Machines

A (classical, deterministic) n–register machine is a construct M = (n, P, l0, lh),
where n is the number of registers, P is a finite set of instructions injectively
labeled with a given set lab(M), l0 is the label of the first instruction to be
executed, and lh is the label of the last instruction of P . Registers contain non–
negative integer values. Without loss of generality, we can assume lab(M) =
{1, 2, . . . , m}, l0 = 1, and lh = m. The instructions of P have the following
forms:

– j : (INC(r), k), with j, k ∈ lab(M)
Increment the value contained in register r, and then jump to instruction k.

– j : (DEC(r), k, l), with j, k, l ∈ lab(M)
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

– m : Halt
Stop the machine. Note that this instruction can only be assigned to the
final label m.

Register machines provide a simple universal computational model. Indeed,
the results proved in [9] (based on the results established in [22]) as well as in
[10] and [11] immediately lead to the following proposition.

40 A. Leporati

Proposition 1. For any partial recursive function f : N
α → N

β there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
that, when starting with (n1, . . . , nα) ∈ N

α in registers 1 to α, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label lh with registers 1 to β
containing r1 to rβ, and all other registers being empty; if the final label cannot
be reached, then f(n1, . . . , nα) remains undefined.

A quantum-like n–register machine is defined exactly as in the classical case, as
a four–tuple M = (n, P, l0, lh). Each register of the machine can be associated
to an infinite dimensional quantum harmonic oscillator which is capable to as-
sume the base states |ε0〉 , |ε1〉 , |ε2〉 , . . ., corresponding to its energy levels, as
described in section 2. The program counter of the machine is instead realized
through a quantum system capable to assume m different base states, from the
set {|x〉 : x ∈ Lm}. For simplicity, the instructions of P are denoted in the usual
way:

j : (INC(i), k) and j : (DEC(i), k, l)

This time, however, these instructions are appropriate linear operators acting on
the Hilbert space whose vectors describe the (global) state of M . Precisely, the
instruction j : (INC(r), k) is defined as the operator

OINC
j,r,k = |pk〉 〈pj | ⊗

(
⊗r−1

I
)

⊗ a† ⊗
(
⊗n−r

I
)

with I the identity operator on H (the Hilbert space in which the state vec-
tors of the infinite dimensional quantum harmonic oscillators associated with
the registers exist), whereas the instruction j : (DEC(r), k, l) is defined as the
operator

ODEC
j,r,k,l = |pl〉 〈pj | ⊗

(
⊗r−1

I
)

⊗ |ε0〉 〈ε0| ⊗
(
⊗n−r

I
)
+

|pk〉 〈pj| ⊗
(
⊗r−1

I
)

⊗ a ⊗
(
⊗n−r

I
)

Hence the program P can be formally defined as the sum OP of all these
operators:

OP =
∑

j,r,k

OINC
j,r,k +

∑

j,r,k,l

ODEC
j,r,k,l

Thus OP is the global operator which describes a computation step of M . When
the program counter assumes the value |pm〉, the application of OP would pro-
duce the null vector as a result. This would stop the execution of the machine,
but it would also destroy the result of the computation. For this reason, in what
follows we will add a term to OP that will allow us to extract the solution of the
problem from a prefixed register when the program counter assumes the value
|pm〉.

A configuration of M is given by the value of the program counter and the
values contained in the registers. From a mathematical point of view, a configu-
ration of M is a vector of the Hilbert space C

m ⊗ (⊗nH). A transition between
two configurations is obtained by executing one instruction of P (the one pointed

(UREM) P Systems with a Quantum-Like Behavior 41

at by the program counter), that is, by applying the operator OP to the current
configuration of M .

As shown in [17], QRMs can simulate any (classical, deterministic) register
machine, and thus they are (at least) computationally complete.

4 Classical and Quantum-Like UREM P Systems

We are now ready to focus our attention to P systems. As stated in the intro-
duction, Q-UREM P systems have been introduced in [17] as a quantum-like
version of UREM P systems. Hence, let us start by recalling the definition of the
classical model of computation.

A UREM P system [8] of degree d + 1 is a construct Π of the form:

Π = (A, μ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd)

where:

– A is an alphabet of objects ;
– μ is a membrane structure, with the membranes labeled by numbers 0, . . . , d

in a one-to-one manner;
– e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d.

In what follows we assume that e0, . . . , ed are non–negative integers;
– w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of μ;
– R0, . . . , Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule has the form (α : a, Δe, b), where α ∈ {in, out}, a, b ∈ A, and |Δe|
is the amount of energy that — for Δe ≥ 0 — is added to or — for Δe < 0 —
is subtracted from ei (the energy assigned to membrane i) by the application
of the rule.

By writing (αi : a, Δe, b) instead of (α : a, Δe, b) ∈ Ri, we can specify only
one set of rules R with

R = {(αi : a, Δe, b) : (α : a, Δe, b) ∈ Ri, 0 ≤ i ≤ d}

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The tran-
sition from a configuration to another one is performed by nondeterministically
choosing one rule from some Ri and applying it (observe that here we consider a
sequential model of applying the rules instead of choosing rules in a maximally
parallel way, as it is often required in P systems). Applying (ini : a, Δe, b) means
that an object a (being in the membrane immediately outside of i) is changed
into b while entering membrane i, thereby changing the energy value ei of mem-
brane i by Δe. On the other hand, the application of a rule (outi : a, Δe, b)
changes object a into b while leaving membrane i, and changes the energy value
ei by Δe. The rules can be applied only if the amount ei of energy assigned to
membrane i fulfills the requirement ei + Δe ≥ 0. Moreover, we use some sort
of local priorities: if there are two or more applicable rules in membrane i, then
one of the rules with max |Δe| has to be used.

42 A. Leporati

A sequence of transitions is called a computation; it is successful if and only
if it halts. The result of a successful computation is considered to be the dis-
tribution of energies among the membranes (a non–halting computation does
not produce a result). If we consider the energy distribution of the membrane
structure as the input to be analyzed, we obtain a model for accepting sets of
(vectors of) non–negative integers.

The following result, proved in [8], establishes computational completeness for
this model of P systems.

Proposition 2. Every partial recursive function f : N
α → N

β can be computed
by a UREM P system with (at most) max{α, β} + 3 membranes.

It is interesting to note that the proof of this proposition is obtained by simu-
lating register machines. In the simulation, a P system is defined which contains
one subsystem for each register of the simulated machine. The contents of the
register are expressed as the energy value ei assigned to the i-th subsystem. A
single object is present in the system at every computation step, which stores
the label of the instruction of the program P currently simulated. Increment
instructions are simulated in two steps by using the rules (ini : pj , 1, p̃j) and
(outi : p̃j , 0, pk). Decrement instructions are also simulated in two steps, by
using the rules (ini : pj, 0, p̃j) and (outi : p̃j, −1, pk) or (outi : p̃j , 0, pl). The
use of priorities associated to these last rules is crucial to correctly simulate a
decrement instruction. For the details of the proof we refer the reader to [8].

On the other hand, by omitting the priority feature we do not get systems
with universal computational power. Precisely, in [8] it is proved that P systems
with unit rules and energy assigned to membranes without priorities and with
an arbitrary number of membranes characterize the family PsMAT λ of Parikh
sets generated by context–free matrix grammars (without occurrence checking
and with λ-rules).

In Q-UREM P systems, all the elements of the model (multisets, the mem-
brane hierarchy, configurations, and computations) are defined just like the cor-
responding elements of the classical P systems, but for objects and rules. The
objects of A are represented as pure states of a quantum system. If the alphabet
contains d ≥ 2 elements then, recalling the notation introduced in section 2,
without loss of generality we can put A =

{
|0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

}
,

that is, A = {|a〉 : a ∈ Ld}. As stated above, the quantum system will also be
able to assume as a state any superposition of the kind:

c0 |0〉 + c 1
d−1

∣∣∣∣
1

d − 1

〉
+ . . . + c d−2

d−1

∣∣∣∣
d − 2
d − 1

〉
+ c1 |1〉

with c0, c 1
d−1

, . . . , c d−2
d−1

, c1 ∈ C such that
∑d−1

i=0

∣∣c i
d−1

∣∣2 = 1. A multiset is simply
a collection of quantum systems, each in its own state.

In order to represent the energy values assigned to membranes we must use
quantum systems which can exist in an infinite (countable) number of states.
Hence we assume that every membrane of the quantum-like P system has an

(UREM) P Systems with a Quantum-Like Behavior 43

associated infinite dimensional quantum harmonic oscillator whose state repre-
sents the energy value assigned to the membrane. To modify the state of such
harmonic oscillator we can use the infinite dimensional version of creation (a†)
and annihilation (a) operators1 described in section 2, which are commonly used
in quantum mechanics. The actions of a† and a on the state of an infinite dimen-
sional harmonic oscillator are analogous to the actions on the states of truncated
harmonic oscillators; the only difference is that in the former case there is no
state with maximum energy, and hence the creation operator never produces the
null vector. Also in this case it is possible to express operators Ex,y = |y〉 〈x| as
appropriate compositions of a† and a.

As in the classical case, rules are associated to the membranes rather than to
the regions enclosed by them. Each rule of Ri is an operator of the form

|y〉 〈x| ⊗ O, with x, y ∈ Ld (3)

where O is a linear operator which can be expressed by an appropriate compo-
sition of operators a† and a. The part |y〉 〈x| is the guard of the rule: it makes
the rule “active” (that is, the rule produces an effect) if and only if a quantum
system in the basis state |x〉 is present. The semantics of rule (3) is the following:
If an object in state |x〉 is present in the region immediately outside membrane
i, then the state of the object is changed to |y〉 and the operator O is applied to
the state of the harmonic oscillator associated with the membrane. Notice that
the application of O can result in the null vector, so that the rule has no effect
even if its guard is satisfied; this fact is equivalent to the condition ei + Δe ≥ 0
on the energy of membrane i required in the classical case. Differently from the
classical case, no local priorities are assigned to the rules. If two or more rules are
associated to membrane i, then they are summed. This means that, indeed, we
can think to each membrane as having only one rule with many guards. When
an object is present, the inactive parts of the rule (those for which the guard
is not satisfied) produce the null vector as a result. If the region in which the
object occurs contains two or more membranes, then all their rules are applied
to the object. Observe that the object which activates the rules never crosses
the membranes. This means that the objects specified in the initial configuration
can change their state but never move to a different region. Notwithstanding,
transmission of information between different membranes is possible, since dif-
ferent objects may modify in different ways the energy state of the harmonic
oscillators associated with the membranes.

The application of one or more rules determines a transition between two
configurations. A halting configuration is a configuration in which no rule can be
applied. A sequence of transitions is a computation. A computation is successful
if and only if it halts, that is, reaches a halting configuration. The result of a
successful computation is considered to be the distribution of energies among
the membranes in the halting configuration. A non–halting computation does
not produce a result. Just like in the classical case, if we consider the energy
1 We recall that an alternative formulation that uses spin–rising (J+) and spin–

lowering (J−) operators instead of creation and annihilation is also possible.

44 A. Leporati

distribution of the membrane structure as the input to be analyzed, we obtain
a model for accepting sets of (vectors of) non–negative integers.

In [17] it has been proved that Q-UREM P systems are computationally com-
plete. Precisely, we can state the following theorem, whose proof is once again
obtained by simulating register machines.

Theorem 1. Every partial recursive function f : N
α → N

β can be computed by
a Q-UREM P system with (at most) max{α, β} + 3 membranes.

Proof. Let M = (n, P, 1, m) be a deterministic n–register machine that computes
f . Let m be the number of instructions of P . The initial instruction of P has
the label 1, and the halting instruction has the label m. Observe that, according
to Proposition 1, n = max{α, β} + 2 is enough.

The input values x1, . . . , xα are expected to be in the first α registers, and the
output values are expected to be in registers 1 to β at the end of a successful
computation. Moreover, without loss of generality, we may assume that at the
beginning of a computation all the registers except (eventually) the registers
from 1 to α contain zero.

We construct the quantum P system

Π = (A, μ, e0, . . . , en, w0, . . . , wn, R0, . . . , Rn)

where:

– A = {|j〉 | j ∈ Lm}
– μ = [0[1]1 · · · [α]α · · · [n]n]0

– ei =

⎧
⎪⎨

⎪⎩

|εxi〉 for 1 ≤ i ≤ α

|ε0〉 for α + 1 ≤ i ≤ n

0 (the null vector) for i = 0
– w0 = |0〉
– wi = ∅ for 1 ≤ i ≤ n
– R0 = ∅
– Ri =

∑m
j=1 Oij for 1 ≤ i ≤ n

where the Oij ’s are local operators which simulate instructions of the kind
j : (INC(i), k) and j : (DEC(i), k, l) (one local operator for each increment
or decrement operation which affects register i). The details on how the Oij ’s
are defined are given below.

The value contained into register i, 1 ≤ i ≤ n, is represented by the en-
ergy value ei = |εxi〉 of the infinite dimensional quantum harmonic oscillator
associated with membrane i. Figure 1 depicts a typical configuration of Π . The
skin contains one object of the kind |j〉, j ∈ Lm, which mimics the program
counter of machine M . Precisely, if the program counter of M has the value
k ∈ {1, 2, . . . , m} then the object present in region 0 is

∣∣∣ k−1
m−1

〉
. In order to avoid

cumbersome notation, in what follows we denote by |pk〉 the state
∣∣∣ k−1
m−1

〉
of the

quantum system which mimics the program counter.
The sets of rules Ri depend upon the instructions of P . Precisely, the simu-

lation works as follows.

(UREM) P Systems with a Quantum-Like Behavior 45

Fig. 1. A configuration of the simulating P system

1. Increment instructions j : (INC(i), k) are simulated by a guarded rule of
the kind |pk〉 〈pj | ⊗ a† ∈ Ri.
If the object |pj〉 is present in region 0, then the rule transforms it into object
|pk〉 and increments the energy level of the harmonic oscillator contained into
membrane i.

2. Decrement instructions j : (DEC(i), k, l) are simulated by a guarded rule of
the kind:

|pl〉 〈pj | ⊗ |ε0〉 〈ε0| + |pk〉 〈pj| ⊗ a ∈ Ri

In fact, let us assume that the object |pj〉 is present in region 0 (if |pj〉 is not
present then the above rule produces the null operator), and let us denote
by O the above rule. The harmonic oscillator may be in the base state |ε0〉
or in a base state |εx〉 with x a positive integer.

If the state of the harmonic oscillator is |ε0〉 then the rule produces:

O(|pj〉 ⊗ |ε0〉) =
= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |ε0〉) + (|pk〉 〈pj| ⊗ a)(|pj〉 ⊗ |ε0〉) =
= |pl〉 ⊗ |ε0〉 + |pk〉 ⊗ 0 = |pl〉 ⊗ |ε0〉

that is, the state of the oscillator is unaltered and the program counter is
set to |pl〉.

If the state of the harmonic oscillator is |εx〉, for a positive integer x, then
the rule produces:

O(|pj〉 ⊗ |εx〉) =
= (|pl〉 〈pj| ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |εx〉) + (|pk〉 〈pj| ⊗ a)(|pj〉 ⊗ |εx〉) =
= |pl〉 ⊗ 0 + |pk〉 ⊗ a |εx〉 = |pk〉 ⊗ |εx−1〉

that is, the energy level of the harmonic oscillator is decremented and the
program counter is set to |pk〉.

The set Ri of rules is obtained by summing all the operators which affect (in-
crement or decrement) register i. The Halt instruction is simply simulated by
doing nothing when the object |pm〉 appears in region 0.

46 A. Leporati

It is apparent from the description given above that after the simulation of
each instruction each energy value ei equals the value contained into register i,
with 1 ≤ i ≤ m. Hence, when the halting symbol |pm〉 appears in region 0, the
energy values e1, . . . , eβ equal the output of program P .

Let us conclude this section by observing that, in order to obtain computational
completeness, it is not necessary that the objects cross the membranes. This fact
avoids one of the problems raised in [18]: the existence of a “magic” quantum
transportation mechanism which is able to move objects according to the tar-
get contained into the rule. In quantum P systems with unit rules and energy
assigned to membranes, the only problem is to keep the object |pj〉 localized
in region 0, so that it never enters into the other regions. In other words, the
major problem of this kind of quantum P systems is to oppose the tunnel effect.
Let us also note that with Q-UREM P systems we do not need to exploit the
membrane hierarchy to obtain computational completeness: all the subsystems
contained into the region enclosed by the skin are at the same hierarchy level.

5 Solving 3-SAT with QRMs and with Q-UREM P
Systems

Q-UREM P systems are not only able to compute all partial recursive functions,
like Turing machines, but they can also be very efficient computation devices.
Indeed, in this section we show how we can solve in polynomial time the NP–
complete decision problem 3-SAT by using QRMs and Q-UREM P systems. As
we will see, the solution provided by Q-UREM P systems will be even more
efficient that the one obtained with QRMs.

It is important to stress that our solutions assume that a specific non–unitary
operator, built using the truncated version of creation and annihilation opera-
tors, can be realized as an instruction of QRMs and as a rule of Q-UREM P
systems, respectively. The construction relies also upon the assumption that an
external observer is able to discriminate, as the result of a measurement, a null
vector from a non–null vector.

5.1 The 3-SAT Problem

A boolean variable is a variable which can assume one of two possible truth values:
true and false. As usually done in the literature, we will denote true by 1 and
false by 0. A literal is either a directed or a negated boolean variable. A clause
is a disjunction of literals, whereas a 3-clause is a disjunction of exactly three
literals. Given a set X = {x1, x2, . . . , xn} of boolean variables, an assignment is
a mapping a : X → {0, 1} that associates to each variable a truth value. The
number of all possible assignments to the variables of X is 2n. We say that an
assignment satisfies the clause C if, assigned the truth values to all the variables
which occur in C, the evaluation of C (considered as a boolean formula) gives 1
as a result.

(UREM) P Systems with a Quantum-Like Behavior 47

The 3-SAT decision problem is defined as follows.

Problem 1. Name: 3-SAT.

– Instance: a set C = {C1, C2, . . . , Cm} of 3-clauses, built on a finite set
{x1, x2, . . . , xn} of boolean variables.

– Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

Notice that the number m of possible 3-clauses is polynomially bounded with
respect to n: in fact, since each clause contains exactly three literals, we can
have at most (2n)3 = 8n3 clauses.

In what follows we will equivalently say that an instance of 3-SAT is a boolean
formula φn, built on n free variables and expressed in conjunctive normal form,
with each clause containing exactly three literals. The formula φn is thus the
conjunction of the above clauses.

It is well known [13] that 3-SAT is an NP–complete problem.

5.2 Solving 3-SAT with QRMs

Let φn be an instance of 3-SAT containing n free variables. We will first show
how to evaluate φn with a classical register machine; then, we will initialize the
input registers with a superposition of all possible assignments, we will compute
the corresponding superposition of output values into an output register, and
finally we will apply the linear operator 2n |1〉 〈1| to the output register to check
whether φn is a positive instance of 3-SAT.

The register machine that we use to evaluate φn is composed by n+1 registers.
The first n registers correspond (in a one-to-one manner) to the free variables
of φn, while the last register is used to compute the output value. The structure
of the program used to evaluate φn is the following:

φ = 0
if C1 = 0 then goto end
if C2 = 0 then goto end

...
if Cm = 0 then goto end
φ = 1

end:

where φ denotes the output register, and C1, C2, . . . , Cm are the clauses of φn.
Let Xi,j , with j ∈ {1, 2, 3}, be the literals (directed or negated variables) which
occur in the clause Ci (hence Ci = Xi,1 ∨ Xi,2 ∨ Xi,3). We can thus write the
above structure of the program, at a finer grain, as follows:

φ = 0
if X1,1 = 1 then goto end1
if X1,2 = 1 then goto end1

48 A. Leporati

if X1,3 = 1 then goto end1
goto end

end1: if X2,1 = 1 then goto end2
if X2,2 = 1 then goto end2 (4)if X2,3 = 1 then goto end2
goto end

end2: · · · · · ·
...

endm−1: if Xm,1 = 1 then goto end
if Xm,2 = 1 then goto end
if Xm,3 = 1 then goto end
φ = 1

end:

In the above structure it is assumed that each literal Xi,j , with 1 ≤ i ≤ m
and j ∈ {1, 2, 3}, is substituted with the corresponding variable which occurs in
it; moreover, if the variable occurs negated into the literal then the comparison
must be done with 0 instead of 1:

if Xi,j = 0 then goto endi

Since the free variables of φn are bijectively associated with the first n registers
of the machine, in order to evaluate φn we need a method to check whether a
given register contains 0 (or 1) without destroying its value. Let us assume that,
when the program counter of the machine reaches the value k, we have to execute
the following instruction:

k: if Xi,j = 1 then goto endi

We translate such instruction as follows (where, instead of Xi,j , we specify the
register which corresponds to the variable indicated in Xi,j):

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

The instruction:

k: if Xi,j = 0 then goto endi

is instead translated as follows:

k: DEC(Xi,j), k + 1, endi

k + 1: INC(Xi,j), k + 2

Notice that the only difference with the previous sequence of instructions is in the
position of “endi” and “k+2”. Moreover, the structure of the program is always
the same. As a consequence, given an instance φn of 3-SAT, the program P of a

(UREM) P Systems with a Quantum-Like Behavior 49

register machine which evaluates φn can be obtained in a very straightforward
(mechanical) way.

On a classical register machine, this program computes the value of φn for a
given assignment to its variables x1, x2, . . . , xn. On a QRM we can initialize the
registers with the following state (where H1 is the Hadamard operator, applied
to a single qubit):

⊗nH1 |0〉 ⊗ |0〉

which sets the output register φ to 0 and the registers corresponding to x1, x2, . . .,
xn to a superposition of all possible assignments. Then, we apply the global
operator OP which corresponds to the program P until the program counter
reaches the value |pend〉, thus computing in the output register a superposition
of all classical results. The operator OP is built as described in section 3, with
the only difference that now it contains also the term:

|pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1| =
|pend〉 〈pend| ⊗ idn ⊗

[
(|1〉 〈1| + |1〉 〈1|) ◦ . . . ◦ (|1〉 〈1| + |1〉 〈1|)︸ ︷︷ ︸

n times

]

which extracts the result from the output register when the program counter
assumes the value |pend〉. The number of times we have to apply OP is equal to
the length of P , that is, 2 · 3m + 2 = 6m + 2: two instructions for each literal in
every clause, plus two final instructions.

Now, if φn is not satisfiable then the contents of the output register are |0〉, and
when the program counter reaches the value |pend〉 the operator OP transforms
it to the null vector. On the other hand, if φn is satisfiable then the contents
of the output register will be a superposition α0 |0〉 + α1 |1〉, with α1 �= 0. By
applying the operator OP we obtain (here |ψn〉 denotes the state of the n input
registers):

OP

(
|pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉 + α1 |1〉)

)
=

=
(
|pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1|

)
·

·
(
|pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉 + α1 |1〉)

)
=

= |pend〉 〈pend|pend〉 ⊗ idn |ψn〉 ⊗ 2n |1〉 〈1| (α0 |0〉 + α1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (2nα0 |1〉 〈1|0〉 + 2nα1 |1〉 〈1|1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (0 + 2nα1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ 2nα1 |1〉

that is, a non–null vector.
We can thus conclude that if an external observer is able to discriminate

between a null vector and a non–null vector, and it is possible to build and
apply the operator 2n |1〉 〈1| to the output register of a QRM, then we have a
family of QRMs that solve 3-SAT in polynomial time. This solution is given
in a semi–uniform setting: in particular, the program P executed by the QRM
depends upon the instance φn of 3-SAT we want to solve.

50 A. Leporati

5.3 Solving 3-SAT with Q-UREM P Systems

In this section we finally show how to build a (semi–uniform) family of Q-UREM
P systems that solves 3-SAT. Let φn be an instance of 3-SAT containing n
free variables. The structure and the initial configuration of the P system that
determines whether φn is satisfiable is similar to what shown in Figure 1, the
only difference being that there are n + 1 subsystems instead of n.

As we have done with QRMs, let us start by showing how to evaluate φn

for a given assignment of truth values to its variables x1, . . . , xn. The input
values are set as the energies |εxi〉 of the harmonic oscillators associated with
the membranes from 1 to n. The energy (eventually) associated with the skin
membrane is not used. The (n + 1)-th membrane, whose harmonic oscillator
will contain the output at the end of the computation, is initialized with |ε0〉.
The alphabet A consists of all the possible values which can be assumed by the
program counter of the QRM that evaluates φn. In the initial configuration the
P system contains only one copy of the object |p1〉, corresponding to the initial
value of the program counter, in the region enclosed by the skin membrane.

The evaluation of φn could be performed by simulating the QRM obtained
from φn as explained in the previous section. However, we can obtain a slightly
more efficient P system as follows. We start from the program structure (4),
which can be obtained from φn in a straightforward way. Now, let us suppose
we must execute the following instruction:

k: if Xi,j = 1 then goto endi

As told above, this instruction is performed as follows in a register machine:

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

If we had to simulate these two instructions using a Q-UREM P system, we
should use the following sum of rules:

(
|pendi〉 〈pk+1| ⊗ a†

)
︸ ︷︷ ︸

k + 1: INC(Xi,j), endi

+
(
|pk+2〉 〈pk| ⊗ |ε0〉 〈ε0| + |pk+1〉 〈pk| ⊗ a

)
︸ ︷︷ ︸

k: DEC(Xi,j), k + 1, k + 2

∈ R�

where � = 〈i, j〉 is the index of the variable (in the set {x1, x2, . . . , xn}) which
occurs in literal Xi,j . As we can see, this operator produces the vector |pk+2〉⊗|ε0〉
if the harmonic oscillator of membrane � is in state |ε0〉; otherwise, it produces
the vector |pendi〉 ⊗ |ε1〉. Hence we can simplify the above expression as follows:

|pendi〉 〈pk| ⊗ |ε1〉 〈ε1| + |pk+2〉 〈pk| ⊗ |ε0〉 〈ε0| =
= |pendi〉 〈pk| ⊗ a†a + |pk+2〉 〈pk| ⊗ aa†

We denote this operator by O
(1)
i,j,k. Similarly, if the instruction to be executed is:

k: if Xi,j = 0 then goto endi

(UREM) P Systems with a Quantum-Like Behavior 51

then we use the operator

O
(0)
i,j,k = |pendi〉 〈pk| ⊗ aa† + |pk+2〉 〈pk| ⊗ a†a ∈ R�

which produces the vector |pk+2〉 ⊗ |ε1〉 if the harmonic oscillator of membrane
� is in state |ε1〉, otherwise it produces the vector |pendi〉 ⊗ |ε0〉.

Since the value |pk+1〉 is no longer used, we can “compact” the program by
redefining the operators O

(0)
i,j,k and O

(1)
i,j,k respectively as:

O
(0)
i,j,k = |pendi〉 〈pk| ⊗ aa† + |pk+1〉 〈pk| ⊗ a†a

O
(1)
i,j,k = |pendi〉 〈pk| ⊗ a†a + |pk+1〉 〈pk| ⊗ aa†

The “goto end” instructions in (4) can be executed as if they were if state-
ments whose condition is the negation of the condition given in the previous if.
Hence the two instructions:

7: if X2,3 = 1 then goto end2
8: goto end

can be translated to:

7: if X2,3 = 1 then goto end2
8: if X2,3 = 0 then goto end

which are realized by the operators O
(1)
2,3,7 and O

(0)
2,3,8 (to be added to membrane

〈2, 3〉). The last instruction (φ = 1) of the program can be implemented as:

|pend〉 〈pend−1| ⊗ a†

to be added to membrane n + 1.
For each membrane i ∈ {1, 2, . . . , n}, the set of rules Ri is obtained by sum-

ming all the operators which concern variable xi.
Note that the formulation given in terms of Q-UREM P systems is simpler

than the one obtained with QRMs. As usual, if we consider a single assignment
to the variables of φn then at the end of the computation we will obtain the
result of the evaluation of φn as the energy of the output membrane. Instead, if
we initialize the harmonic oscillators of the n input membranes with a uniform
superposition of all possible classical assignments to x1, x2, . . . , xn, then at the
end of the computation the harmonic oscillator of membrane n+1 will be in one
of the following states:
– |0〉, if φn is not satisfiable;
– a superposition α0 |0〉 + α1 |1〉, with α1 �= 0, if φn is satisfiable.

Once again, we add the rule:

|pend〉 〈pend| ⊗ 2n |1〉 〈1| ∈ Rn+1

to membrane n + 1 to extract the result.
We have thus obtained a family of Q-UREM P systems which solves 3-SAT

in polynomial time. Also this scheme works in the semi–uniform setting: in fact,
it is immediately verified that the rules of the system depend upon the instance
φn of 3-SAT to be solved.

52 A. Leporati

6 Directions for Future Research

In this paper we have overviewed the state of the art concerning Q-UREM P sys-
tems. As we have seen, Q-UREM P systems seem to be a very powerful model of
computation. Hence, one possible direction for future research is to further study
their computational properties, for example assuming the presence of entangled
objects. Another line of research is to study the limits of the computational
power of Q-UREM P systems by attacking harder than NP-complete problems.
On this front, we conjecture that Q-UREM P systems could be able to solve (in
semi–uniform way) EXP-complete problems, such as Succint Circuit Value.

Acknowledgments

This research was partially funded by Università degli Studi di Milano–Bicocca
— FIAR 2006.

References

1. Alford, G.: Membrane systems with heat control. In: Păun, G., Rozenberg, G.,
Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, Springer,
Heidelberg (2003)

2. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum control and
logic gates. Physical Review Letters 74, 4083–4086 (1995)

3. Benioff, P.: Quantum mechanical Hamiltonian models of computers. Annals of the
New York Academy of Science 480, 475–486 (1986)

4. Deutsch, D.: Quantum theory, the Church–Turing principle, and the universal
quantum computer. Proceedings of the Royal Society of London A 400, 97–117
(1985)

5. Feynman, R.P.: Simulating physics with computers. International Journal of The-
oretical Physics 21(6-7), 467–488 (1982)

6. Feynman, R.P.: Quantum mechanical computers. Optics News 11, 11–20 (1985)
7. Freund, R.: Energy-controlled P systems. In: Păun, G., Rozenberg, G., Salomaa, A.,

Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 247–260. Springer,
Heidelberg (2003)

8. Freund, R., Leporati, A., Oswald, M., Zandron, C.: Sequential P systems with unit
rules and energy assigned to membranes. In: Margenstern, M. (ed.) MCU 2004.
LNCS, vol. 3354, pp. 200–210. Springer, Heidelberg (2005)

9. Freund, R., Oswald, M.: GP systems with forbidding context. Fundamenta Infor-
maticae 49(1-3), 81–102 (2002)

10. Freund, R., Păun, G.: On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars. In: Margenstern, M., Rogozhin, Y. (eds.) MCU
2001. LNCS, vol. 2055, pp. 214–225. Springer, Heidelberg (2001)

11. Freund, R., Păun, G.: From regulated rewriting to computing with membranes:
Collapsing hierarchies. Theoretical Computer Science 312, 143–188 (2004)

12. Frisco, P.: The conformon–P system: a molecular and cell biology–inspired com-
putability model. Theoretical Computer Science 312, 295–319 (2004)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
on NP–Completeness. W.H. Freeman and Company (1979)

(UREM) P Systems with a Quantum-Like Behavior 53

14. Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional sys-
tems. Chaos, Solitons, and Fractals 10, 1749–1758 (1999)

15. Gruska, J.: Quantum Computing. McGraw-Hill, New York (1999)
16. Leporati, A., Felloni, S.: Three “quantum” algorithms to solve 3-SAT. Theoretical

Computer Science 372, 218–241 (2007)
17. Leporati, A., Mauri, G., Zandron, C.: Quantum sequential P systems with unit

rules and energy assigned to membranes. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 310–325. Springer, Heidelberg
(2006)

18. Leporati, A., Pescini, D., Zandron, C.: Quantum energy–based P systems. In: Pro-
ceedings of the First Brainstorming Workshop on Uncertainty in Membrane Com-
puting, Palma de Mallorca, Spain, November 8–10, 2004, pp. 145–167 (2004)

19. Leporati, A., Zandron, C., Mauri, G.: Simulating the Fredkin gate with energy–
based P systems. Journal of Universal Computer Science 10(5), 600–619 (2004)

20. Leporati, A., Zandron, C., Mauri, G.: Universal families of reversible P systems.
In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 257–268. Springer,
Heidelberg (2005)

21. Leporati, A., Zandron, C., Mauri, G.: Reversible P systems to simulate Fredkin
circuits. Fundamenta Informaticae 74, 529–548 (2006)

22. Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967)

23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

24. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 1(61), 108–143 (2000), see also Turku Centre for Computer Science – TUCS
Report No. 208 (1998)

25. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
26. Păun, G., Pérez-Jiménez, M.J.: Recent computing models inspired from biology:

DNA and membrane computing. Theoria 18, 72–84 (2003)
27. Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer

Science 287(1), 73–100 (2002)
28. Păun, G., Suzuki, Y., Tanaka, H.: P systems with energy accounting. International

Journal Computer Math. 78(3), 343–364 (2001)
29. The P systems Web page: http://psystems.disco.unimib.it/

http://psystems.disco.unimib.it/

The Calculus of Looping Sequences

for Modeling Biological Membranes

Roberto Barbuti1, Andrea Maggiolo–Schettini1,
Paolo Milazzo1, and Angelo Troina2,3

1 Dip. di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 - Pisa, Italy
2 LIX - École Polytechnique Rue de Saclay, 91128 - Palaiseau, France

3 LSV - ENS Cachan 61 Avenue du Président Wilson, 94235 - Cachan, France
{barbuti,maggiolo,milazzo,troina}@di.unipi.it

Abstract. We survey the formalism Calculus of Looping Sequences
(CLS) and a number of its variants from the point of view of their use for
describing biological membranes. The CLS formalism is based on term
rewriting and allows describing biomolecular systems. A first variant of
CLS, called Stochastic CLS, extends the formalism with stochastic time,
another variant, called LCLS (CLS with links), allows describing proteins
interaction at the domain level. A third variant is introduced for easier
description of biological membranes. This extension can be encoded into
CLS as well as other formalisms capable of membrane description such as
Brane Calculi and P Systems. Such encodings allow verifying and simu-
lating descriptions in Brane Calculi and P Systems by means of verifiers
and simulators developed for CLS.

1 Introduction

Cell biology, the study of the morphological and functional organization of cells,
is now an established field in biochemical research. Computer Science can help
the research in cell biology in several ways. For instance, it can provide biolo-
gists with models and formalisms capable of describing and analyzing complex
systems such as cells. In the last few years many formalisms originally developed
by computer scientists to model systems of interacting components have been
applied to Biology. Among these, there are Petri Nets [16], Hybrid Systems [1],
and the π-calculus [9,25]. Moreover, new formalisms have been defined for de-
scribing biomolecular and membrane interactions [2,7,8,11,21,23]. Others, such
as P Systems [17,18], have been proposed as biologically inspired computational
models and have been later applied to the description of biological systems.

The π–calculus and new calculi based on it [21,23] have been particularly suc-
cessful in the description of biological systems, as they allow describing systems
in a compositional manner. Interactions of biological components are modeled
as communications on channels whose names can be passed; sharing names of
private channels allows describing biological compartments. However, these cal-
culi offer very low–level interaction primitives, and this causes models to become

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 54–76, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The CLS for Modeling Biological Membranes 55

very large and difficult to read. Calculi such as those proposed in [7,8,11] give
a more abstract description of systems and offer special biologically motivated
operators. However, they are often specialized to the description of some partic-
ular kinds of phenomena such as membrane interactions or protein interactions.
Finally, P Systems have a simple notation and are not specialized to the descrip-
tion of a particular class of systems, but they are still not completely general.
For instance, it is possible to describe biological membranes and the movement
of molecules across membranes, and there are some variants able to describe also
more complex membrane activities. However, the formalism is not so flexible to
allow describing easily new activities observed on membranes without extending
the formalism to model such activities.

Therefore, we conclude that there is a need for a formalism having a simple
notation, having the ability of describing biological systems at different levels of
abstraction, having some notions of compositionality and being flexible enough
to allow describing new kinds of phenomena as they are discovered, without
being specialized to the description of a particular class of systems. For this
reason in [3] we have introduced the Calculus of Looping Sequences (CLS).

CLS is a formalism based on term rewriting with some features, such as a
commutative parallel composition operator, and some semantic means, such as
bisimulations, which are common in process calculi. This permits to combine the
simplicity of notation of rewriting systems with the advantage of a form of com-
positionality. Actually, in [4] we have defined bisimilarity relations on CLS terms
which are congruences with respect to the operators. The bisimilarity relation
may be used to verify a property of a system by assessing its bisimilarity with a
system one knows to enjoy that property. The fact that bisimilarity is a congru-
ence is very important for a compositional account of behavioral equivalence. In
[5,6], we have defined two extensions of CLS. The first, Stochastic CLS, allows
describing quantitative aspects of the modeled systems such as the time spent by
occurrences of chemical reactions. The second, CLS with links, allows describing
protein interaction more precisely at a lower level of abstraction, namely at the
domain level.

In this paper, after recalling CLS and the two mentioned extensions, we focus
on the modeling of biological membranes by means of CLS. Now, CLS does
not offer an easy representation for membranes whose nature is fluid and for

(i)

b

ca

b

ca

d e(ii)

b

ca

d e

f g

(iii)

Fig. 1. (i) represents
�
a · b · c

�L
; (ii) represents

�
a · b · c

�L �
�
d · e

�L
; (iii) represents�

a · b · c
�L � (

�
d · e

�L | f · g).

56 R. Barbuti et al.

proteins which consequently move freely on membrane surfaces. For this reason,
in [15] we have defined a CLS variant, called CLS+, which introduces a new
operator allowing commutativity on membrane surfaces. We show how CLS+
can be encoded into CLS. In [3,15] we have shown how Brane Calculi [7] and P
Systems [18] can be translated into CLS. Here we recall the ideas on which the
translations are based.

CLS appears to allow description and manipulation of biological membranes
and, moreover, offers, via translations, verification and simulation tools to other
formalisms for membrane description.

2 The Calculus of Looping Sequences (CLS)

In this section we recall the Calculus of Looping Sequences (CLS) and we give
some guidelines for the modeling of biological systems. CLS is essentially based
on term rewriting, hence a CLS model consists of a term and a set of rewrite
rules. The term is intended to represent the structure of the modeled system, and
the rewrite rules to represent the events that may cause the system to evolve.

2.1 Formal Definition

We start with defining the syntax of terms. We assume a possibly infinite alpha-
bet E of symbols ranged over by a, b, c,

Definition 1 (Terms). Terms T and sequences S of CLS are given by the
following grammar:

T ::= S
�� �

S
�L � T

�� T | T

S ::= ε
�� a

�� S · S

where a is a generic element of E, and ε represents the empty sequence. We
denote with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator
()L, a parallel

composition operator | and a containment operator � . Sequencing can be
used to concatenate elements of the alphabet E . The empty sequence ε denotes
the concatenation of zero symbols. A term can be either a sequence or a looping
sequence (that is the application of the looping operator to a sequence) contain-
ing another term, or the parallel composition of two terms. By definition, looping
and containment are always applied together, hence we can consider them as a
single binary operator

()L � which applies to one sequence and one term.
Brackets can be used to indicate the order of application of the operators,

and we assume
()L � to have precedence over | . In Figure 1 we show some

examples of CLS terms and their visual representation.
In CLS we may have syntactically different terms representing the same struc-

ture. We introduce a structural congruence relation to identify such terms.

The CLS for Modeling Biological Membranes 57

Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on sequences and on terms, re-
spectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and
�
S1

�L � T ≡T

�
S2

�L � T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ε ≡T T
�
ε
�L � ε ≡T ε

�
S1 · S2

�L � T ≡T

�
S2 · S1

�L � T

Rules of the structural congruence state the associativity of · and | , the commu-
tativity of the latter and the neutral role of ε. Moreover, axiom

(
S1 ·S2

)L � T ≡T(
S2 · S1

)L � T says that looping sequences can rotate. In the following, for sim-
plicity, we will use ≡ in place of ≡T .

Rewrite rules will be defined essentially as pairs of terms, with the first term
describing the portion of the system in which the event modeled by the rule may
occur, and the second term describing how that portion of the system changes
when the event occurs. In the terms of a rewrite rule we allow the use of variables.
As a consequence, a rule will be applicable to all terms which can be obtained by
properly instantiating its variables. Variables can be of three kinds: two of these
are associated with the two different syntactic categories of terms and sequences,
and one is associated with single alphabet elements. We assume a set of term
variables TV ranged over by X, Y, Z, . . ., a set of sequence variables SV ranged
over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by x, y, z,
All these sets are possibly infinite and pairwise disjoint. We denote by V the set
of all variables, V = TV ∪ SV ∪ X , and with ρ a generic variable of V . Hence, a
pattern is a term that may include variables.

Definition 3 (Patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
�� �

SP
�L � P

�� P | P
�� X

SP ::= ε
�� a

�� SP · SP
�� �x �� x

where a is a generic element of E, and X, x̃ and x are generic elements of TV, SV
and X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-
terns. An instantiation is a partial function σ : V → T . An instantiation must
preserve the type of variables, thus for X ∈ TV, x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P , with Pσ we
denote the term obtained by replacing each occurrence of each variable ρ ∈ V
appearing in P with the corresponding term σ(ρ). With Σ we denote the set of
all the possible instantiations and, given P ∈ P , with V ar(P) we denote the set
of variables appearing in P . Now we define rewrite rules.

Definition 4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 �→ P2, where P1, P2 ∈ P, P1 �≡ ε and such that V ar(P2) ⊆
V ar(P1). We denote with
 the infinite set of all the possible rewrite rules.

58 R. Barbuti et al.

Table 1. Guidelines for the abstraction of biomolecular entities into CLS

Biomolecular Entity CLS Term
Elementary object Alphabet symbol
(genes, domains,
other molecules, etc...)

DNA strand Sequence of elements repr. genes

RNA strand Sequence of elements repr. transcribed genes

Protein Sequence of elements repr. domains
or single alphabet symbol

Molecular population Parallel composition of molecules

Membrane Looping sequence

A rewrite rule P1 �→P2 states that a term P1σ, obtained by instantiating variables
in P1 by some instantiation function σ, can be transformed into the term P2σ. We
define the semantics of CLS as a transition system, in which states correspond
to terms, and transitions correspond to rule applications.

Definition 5 (Semantics). Given a set of rewrite rules R ⊆
, the semantics
of CLS is the least transition relation → on terms closed under ≡, and satisfying
the following inference rules:

P1 �→P2 ∈ R P1σ �≡ ε σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2�
S
�L � T1 →

�
S
�L � T2

where the symmetric rule for the parallel composition is omitted.

A model in CLS is given by a term describing the initial state of the system and
by a set of rewrite rules describing all the events that may occur.

2.2 Modeling Guidelines

We describe how CLS can be used to model biomolecular systems analogously to
what done by Regev and Shapiro in [24] for the π–calculus. An abstraction is a
mapping from a real–world domain to a mathematical domain, which may allow
highlighting some essential properties of a system while ignoring other, com-
plicating, ones. In [24], Regev and Shapiro show how to abstract biomolecular
systems as concurrent computations by identifying the biomolecular entities and
events of interest and by associating them with concepts of concurrent computa-
tions such as concurrent processes and communications. In particular, they give
some guidelines for the abstraction of biomolecular systems to the π–calculus,
and give some simple examples.

The use of rewrite systems, such as CLS, to describe biological systems is
founded on a different abstraction. Usually, entities (and their structures) are
abstracted by terms of the rewrite system, and events by rewriting rules. We
have already introduced the biological interpretation of CLS operators in the
previous section. Here we want to give more general guidelines.

The CLS for Modeling Biological Membranes 59

Table 2. Guidelines for the abstraction of biomolecular events into CLS

Biomolecular Event Examples of CLS Rewrite Rule
State change a �→ b

�x · a · �y �→ �x · b · �y
Complexation a | b �→ c

�x · a · �y | b �→ �x · c · �y
Decomplexation c �→ a | b

�x · c · �y �→ �x · a · �y | b

Catalysis c | P1 �→ c | P2

where P1 �→ P2 is the catalyzed event

State change
�
a · �x�L � X �→

�
b · �x�L � X

on membrane

Complexation
�
a · �x · b · �y�L � X �→

�
c · �x · �y�L � X

on membrane a |
�
b · �x�L � X �→

�
c · �x�L � X�

b · �x�L � (a | X) �→
�
c · �x�L � X

Decomplexation
�
c · �x�L � X �→

�
a · b · �x�L � X

on membrane
�
c · �x�L � X �→ a |

�
b · �x�L � X�

c · �x�L � X �→
�
b · �x�L � (a | X)

Catalysis
�
c · �x · SP1 · �y�L � X �→

�
c · �x · SP2 · �y�L � X

on membrane where SP1 �→ SP2 is the catalyzed event

Membrane crossing a |
��x�L � X �→

��x�L � (a | X)��x�L � (a | X) �→ a |
��x�L � X

�x · a · �y |
��z�L � X �→

��z�L � (�x · a · �y | X)��z�L � (�x · a · �y | X) �→ �x · a · �y |
��z�L � X

Catalyzed a |
�
b · �x�L � X �→

�
b · �x�L � (a | X)

membrane crossing
�
b · �x�L � (a | X) �→ a |

�
b · �x�L � X

�x · a · �y |
�
b · �z�L � X �→

�
b · �z�L � (�x · a · �y | X)�

b · �z�L � (�x · a · �y | X) �→ �x · a · �y |
�
b · �z�L � X

Membrane joining
��x�L � (a | X) �→

�
a · �x�L � X��x�L � (�y · a · �z | X) �→

��y · a · �z · �x�L � X

Catalyzed
�
b · �x�L � (a | X) �→

�
a · b · �x�L � X

membrane joining
��x�L � (a | b | X) �→

�
a · �x�L � (b | X)�

b · �x�L � (�y · a · �z | X) �→
��y · a · �z · �x�L � X��x�L � (�y · a · �z | b | X) �→
��y · a · �z · �x�L � (b | X)

Membrane fusion
��x�L � (X) |

��y�L � (Y) �→
��x · �y�L � (X | Y)

Catalyzed
�
a · �x�L � (X) |

�
b · �y�L � (Y) �→

membrane fusion
�
a · �x · b · �y�L � (X | Y)

Membrane division
��x · �y�L � (X | Y) �→

��x�L � (X) |
��y�L � (Y)

Catalyzed
�
a · �x · b · �y�L � (X | Y) �→

membrane division
�
a · �x�L � (X) |

�
b · �y�L � (Y)

60 R. Barbuti et al.

First of all, we select the biomolecular entities of interest. Since we want
to describe cells, we consider molecular populations and membranes. Molecular
populations are groups of molecules that are in the same compartment of the
cell. Molecules can be of many types: we classify them as DNA and RNA strands,
proteins, and other molecules. DNA and RNA strands and proteins can be seen as
non–elementary objects. DNA strands are composed by genes, RNA strands are
composed by parts corresponding to the transcription of individual genes, and
proteins are composed by parts having the role of interaction sites (or domains).
Other molecules are considered as elementary objects, even if they are complexes.
Membranes are considered as elementary objects, in the sense that we do not
describe them at the level of the lipids they are made of. The only interesting
properties of a membrane are that it may contain something (hence, create a
compartment) and that it may have molecules on its surface.

Now, we select the biomolecular events of interest. The simplest kind of event
is the change of state of an elementary object. Then, we may have interactions
between molecules: in particular complexation, decomplexation and catalysis.
These interactions may involve single elements of non–elementary molecules
(DNA and RNA strands, and proteins). Moreover, we may have interactions
between membranes and molecules: in particular a molecule may cross or join a
membrane. Finally, we may have interactions between membranes: in this case
there may be many kinds of interactions (fusion, division, etc. . .).

The guidelines for the abstraction of biomolecular entities and events into CLS
are given in Table 1 and Table 2, respectively. Entities are associated with CLS
terms: elementary objects are modeled as alphabet symbols, non–elementary
objects as CLS sequences and membranes as looping sequences. Biomolecu-
lar events are associated with CLS rewrite rules. In the figure we give some
examples of rewrite rules for each type of event. The list of examples is not
complete: one could imagine also rewrite rules for the description of complex-
ation/decomplexation events involving more than two molecules, or catalysis
events in which the catalyzing molecule is on a membrane and the catalyzed
event occurs in its content, or more complex interactions between membranes.
We remark that in the second example of rewrite rule associated with the com-
plexation event we have that one of the two molecules which are involved should
be either an elementary object or a protein modeled as a single alphabet symbol.
As before, this is caused by the problem of modeling protein interaction at the
domain level. This problem is solved by the extension of CLS with links, called
LCLS, we shall describe in the following.

2.3 Examples

A well–known example of biomolecular system is the epidermal growth factor
(EGF) signal transduction pathway[26,19]. If EGF proteins are present in the
environment of a cell, they should be interpreted as a proliferation signal from
the environment, and hence the cell should react by synthesizing proteins which
stimulate its proliferation. A cell recognizes the EGF signal because it has on
its membrane some EGF receptor proteins (EGFR), which are transmembrane

The CLS for Modeling Biological Membranes 61

proteins (they have some intra–cellular and some extra–cellular domains). One of
the extra–cellular domains binds to one EGF protein in the environment, form-
ing a signal–receptor complex on the membrane. This causes a conformational
change on the receptor protein that enables it to bind to another one signal–
receptor complex. The formation of the binding of the two signal–receptor com-
plexes (called dimerization) causes the phosphorylation of some intra–cellular
domains of the dimer. This, in turn, causes the internal domains of the dimer to
be recognized by a protein that is inside the cell (in the cytoplasm), called SHC.
The protein SHC binds to the dimer, enabling a long chain of protein–protein
interactions, which finally activate some proteins, such as one called ERK, which
bind to the DNA and stimulate synthesis of proteins for cell proliferation.

Now, we use CLS to build a model of the first steps of the EGF signaling
pathway up to the binding of the signal-receptor dimer to the SHC protein. In
the following we shall refine the model by using the LCLS extension to describe
interactions at the domain level.

We model the EGFR, EGF, and SHC proteins as the alphabet symbols
EGFR, EGF and SHC, respectively. The cell is modeled as a looping sequence
(representing its external membrane), initially composed only by EGFR sym-
bols, containing SHC symbols and surrounded by EGF symbols. The rewrite
rules modeling the first steps of the pathway are the following:

EGF |
(
EGFR · x̃

)L � X �→
(
CMPLX · x̃

)L � X (R1)
(
CMPLX · x̃ · CMPLX · ỹ

)L � X �→
(
DIM · x̃ · ỹ

)L � X (R2)
(
DIM · x̃

)L � X �→
(
DIMp · x̃

)L � X (R3)
(
DIMp · x̃

)L � (SHC | X) �→
(
DIMpSHC · x̃

)L � X (R4)

Rule R1 describes the binding of a EGF protein to a EGFR receptor protein
on the membrane surface. The result of the binding is a signal-receptor complex
denoted CMPLX . Rule R2 describes the dimerization of two signal-receptor
complex, the result is denoted DIM . Rule R3 describes the phosphorylation
(and activation) of a signal-receptor dimer, that is the replacement of a DIM
symbol with a DIMp symbol. Finally, rule R4 describes the binding of an active
dimer DIMp with a SHC protein contained in the cytoplasm. The result is a
DIMpSHC symbol placed on the membrane surface.

A possible initial term for the model in this example is given by a looping
sequence composed by some EGFR symbols, containing some SHC symbols
and with some EGF symbols outside. A possible evolution of such a term by
means of application of the given rewrite rules is the following (we write on each
transition the name of the rewrite rule applied):

EGF | EGF |
(
EGFR · EGFR · EGFR · EGFR

)L � (SHC | SHC)
(R1)−−−→ EGF |

(
EGFR · CMPLX · EGFR · EGFR

)L � (SHC | SHC)
(R1)−−−→

(
EGFR · CMPLX · EGFR · CMPLX

)L � (SHC | SHC)

62 R. Barbuti et al.

(R2)−−−→
(
EGFR · DIM · EGFR

)L � (SHC | SHC)
(R3)−−−→

(
EGFR · DIMp · EGFR

)L � (SHC | SHC)
(R4)−−−→

(
EGFR · DIMpSHC · EGFR

)L � SHC

We show another example of modeling of a biomolecular system with CLS,
that is the modeling of a simple gene regulation process. This kind of processes
are essential for cell life as they allow a cell to regulate the production of proteins
that may have important roles for instance in metabolism, growth, proliferation
and differentiation.

The example we consider is as follows: we have a simple DNA fragment con-
sisting of a sequence of three genes. The first, denoted p, is called promoter
and is the place where a RNA polymerase enzyme (responsible for translation
of DNA into RNA) binds to the DNA. The second, denoted o, is called opera-
tor and it is the place where a repressor protein (responsible for regulating the
activity of the RNA polymerase) binds to the DNA. The third, denoted as g,
is the gene that encodes for the protein whose production is regulated by this
process.

When the repressor is not bound to the DNA, the RNA polymerase can scan
the sequence of genes and transcribe gene g into a piece of RNA that will be
later translated into the protein encoded by g. When the repressor is bound to
the DNA, it becomes an obstacle for the RNA polymerase that cannot scan any
more the sequence of genes.

The CLS model of this simple regulation process is a follows. The sequence of
genes is represented as the CLS sequence p · o · g, the RNA polymerase enzyme
as polym, the repressor protein as repr, and the piece of RNA obtained by the
translation of gene g as rna. The rewrite rules describing the process are the
following:

polym | p · x̃ �→ pp · x̃ (R1)
repr | x̃ · o · ỹ �→ x̃ · ro · ỹ (R2)

pp · o · x̃ �→ p · po · x̃ (R3)
x̃ · po · g �→ x̃ · o · pg (R4)

x̃ · pg �→ polym | rna | x̃ · g (R5)

Rules R1 and R2 describe the binding of the RNA polymerase and of the
repressor to the corresponding genes in the DNA sequences. The results of these
bindings are that the symbols representing the two genes are replaced by pp
and ro, respectively. Rules R3, R4 and R5 describe the activity of the RNA
polymerase enzyme in the absence of the repressor: it moves from gene p to gene
o in rule R3, then it moves from gene o to gene g in rule R4, and finally it
produces the RNA fragment and leaves the DNA in rule R5. Note that, in order
to apply rule R3, the repressor must be not bound to the DNA.

The CLS for Modeling Biological Membranes 63

The only possible evolution of a term representing an initial situation in which
no repressors are present is

polym | p · o · g
(R1)−−−→ pp · o · g

(R3)−−−→ p · po · g
(R4)−−−→ p · o · pg

(R5)−−−→ polym | rna | p · o · g

that represent the case in which the RNA polymerase enzyme can scan the
DNA sequence and transcribe gene g into a piece of RNA. When the repressor
is present, instead, a possible evolution is

repr | polym | p · o · g
(R1)−−−→ repr | pp · o · g

(R2)−−−→ pp · ro · g

and it corresponds to a situation in which the repressor stops the transcription
of the gene by hampering the activity of the RNA polymerase.

3 Two Extensions of CLS

In this section we describe two extensions of CLS. The first, Stochastic CLS,
allows describing quantitative aspects of the modeled systems, such as the time
spent by occurrences of chemical reactions. The second, CLS with links, allows
describing protein interaction more precisely at a lower level of abstraction,
namely at the domain level.

3.1 Stochastic CLS

In CLS only qualitative aspects of biological systems are considered, such as
their structure and the presence (or the absence) of certain molecules. As a
consequence, on CLS models it is only possible to verify properties such as
the reachability of particular states or causality relationships between events.
It would be interesting to verify also properties such as the time spent to
reach a particular state, or the probability of reaching it. To face this prob-
lem, in [6] we have developed a stochastic extension of CLS, called Stochastic
CLS, in which quantitative aspects, such as time and probability are taken into
account.

The standard way of extending a formalism to model quantitative aspects of
biological systems is by incorporating the stochastic framework developed by
Gillespie with its simulation algorithm for chemical reactions [12] in the seman-
tics of the formalism. This has been done, for instance, for the π–calculus [20,22].
The idea of Gillespie’s algorithm is that a rate constant is associated with each
chemical reaction that may occur in the system. Such a constant is obtained by
multiplying the kinetic constant of the reaction by the number of possible com-
binations of reactants that may occur in the system. The resulting rate constant
is then used as the parameter of an exponential distribution modeling the time
spent between two occurrences of the considered chemical reaction.

The use of exponential distributions to represent the (stochastic) time spent
between two occurrences of chemical reactions allows describing the system as a

64 R. Barbuti et al.

Continuous Time Markov Chain (CTMC), and consequently it allows verifying
properties of the described system by means of analytic means and by means of
stochastic model checkers.

In Stochastic CLS, incorporating Gillespie’s stochastic framework is not a
simple exercise. The main difficulty is counting the number of possible reactant
combinations of the chemical reaction described by a rewrite rule. This means
counting the number of different positions where the rewrite rule can be applied,
by taking into account that rules may contain variables. We have defined the
Stochastic CLS in [6], and showed how to derive a CTMC from the semantics of
a system modeled in Stochastic CLS. This allows performing simulation and ver-
ification of properties of the described systems, for instance by using stochastic
model checkers, such as PRISM [13].

Let us consider the simple regulation process we modeled with CLS in Sec-
tion 2.3. We now extend the CLS model by including a kinetic constant in each
rewrite rule. The result is a Stochastic CLS model. In order to make the model
a little more realistic we add two rewrite rules describing the unbinding of the
RNA polymerase and of the repressor from the DNA. Hence, the rewrite rules
of the Stochastic CLS model are the following:

polym | p · x̃
0.1�−→ pp · x̃ (R1)

pp · x̃ 2�−→ polym | p · x̃ (R1’)

repr | x̃ · o · ỹ
1�−→ x̃ · ro · ỹ (R2)

x̃ · ro · ỹ 10�−→ repr | x̃ · o · ỹ (R2’)

pp · o · x̃ 100�−→ p · po · x̃ (R3)

x̃ · po · g 100�−→ x̃ · o · pg (R4)

x̃ · pg
30�−→ polym | rna | x̃ · g (R5)

We developed a simulator based on Stochastic CLS, and we used it to study
the behaviour of the regulation process. In particular, we performed simulations
by varying the quantity of repressors and we observed the production of RNA
fragments in each case. The initial configuration of the system is given by the
following term

repr | . . . | repr︸ ︷︷ ︸
n

| polym | . . . | polym︸ ︷︷ ︸
100

| p · o · g

and we performed simulations with n = 0, 10, 25 and 50. The results of the
simulations are shown in Figure 2. By varying the number of repressors from 0
to 50 the rate of transcription of the DNA into RNA molecules decreases.

3.2 CLS with Links (LCLS)

A formalism for modeling proteins interactions at the domain level was developed
in the seminal paper by Danos and Laneve [11], and extended in [14]. This

The CLS for Modeling Biological Membranes 65

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90 100

M
ol

ec
ul

es

Seconds

no repressors
10 repressors
25 repressors
50 repressors

Fig. 2. Simulation result of the regulation process: number of RNA molecules over time

formalism allows expressing proteins by a node with a fixed number of domains;
binding between domains allow complexating proteins. In this section we extend
CLS to represent proteins interaction at the domain level. Such an extension,
called Calculus of Linked Looping Sequences (LCLS), is obtained by labelling
elementary components of sequences. Two elements with the same label are
considered to be linked.

To model a protein at the domain level in CLS it would be natural to use
a sequence with one symbol for each domain. However, the binding between
two domains of two different proteins, that is the linking between two elements
of two different sequences, cannot be expressed in CLS. To represent this, we
extend CLS by labels on basic symbols. If in a term two symbols appear having
the same label, we intend that they represent domains which are bound to each
other. If in a term there is a symbol with a label and no other symbol with the
same label, we intend that the term represents only a part of a system we model,
and that the symbol will be linked to some other symbol in another part of the
term representing the full model.

As membranes create compartments, elements inside a looping sequence can-
not be linked to elements outside. Elements inside a membrane can be linked
either to other elements inside the membrane or to elements of the membrane
itself. An element can be linked at most to another element.

As an example, we model in LCLS the first steps of the EGF pathway de-
scribed before. We model the EGFR protein as the sequence RE1 · RE2 · RI1 ·
RI2 where RE1 and RE2 are two extra–cellular domains and RI1 and RI2 are
two intra–cellular domains. The membrane of the cell is modeled as a looping

66 R. Barbuti et al.

sequence which could contain EGFR proteins. Outside the looping sequence
(i.e. in the environment) there could be EGF proteins, and inside (i.e. in the
cytoplasm) there could be SHC proteins. Rewrite rules modeling the pathway
are the following:

EGF |
(
RE1 · x̃

)L � X �→
(
sRE1 · x̃

)L � X (R1)

(
sRE1 · RE2 · x · y · x̃ · sRE1 · RE2 · z · w · ỹ

)L � X �→
(
sRE1 · R1

E2 · x · y · sRE1 · R1
E2 · z · w · x̃ · ỹ

)L � X (R2)

(
R1

E2 · RI1 · x̃ · R1
E2 · RI1 · ỹ

)L � X �→
(
R1

E2 · PRI1 · x̃ · R1
E2 · RI1 · ỹ

)L � X (R3)

(
R1

E2 · PRI1 · x̃ · R1
E2 · RI1 · ỹ

)L � X �→
(
R1

E2 · PRI1 · x̃ · R1
E2 · PRI1 · ỹ

)L � X (R4)

(
R1

E2 · PRI1 · RI2 · x̃ · R1
E2 · PRI1 · RI2 · ỹ

)L � (SHC | X) �→
(
R1

E2 · PRI1 · R2
I2 · x̃ · R1

E2 · PRI1 · RI2 · ỹ
)L � (SHC2 | X) (R5)

Rule R1 represents the binding of the EGF protein to the receptor domain
RE1 with sRE1 as a result. Rule R2 represents that when two EGFR proteins
activated by proteins EGF occur on the membrane, they may bind to each other
to form a dimer (shown by the link 1). Rule R3 represents the phosphorylation
of one of the internal domains RI1 of the dimer, and rule R4 represents the
phosphorylation of the other internal domain RI1 of the dimer. The result of
each phosphorylation is pRI1. Rule R5 represents the binding of the protein
SHC in the cytoplasm to an internal domain RI2 of the dimer. Remark that the
binding of SHC to the dimer is represented by the link 2, allowing the protein
SHC to continue the interactions to stimulate cell proliferation.

Let us denote the sequence RE1 ·RE2 ·RI1 ·RI2 by EGFR. By starting from
a cell with some EGFR proteins on its membrane, some SHC proteins in the
cytoplasm and some EGF proteins in the environment, a possible evolution is
the following:

EGF | EGF |
(
EGFR·EGFR·EGFR

)L � (SHC | SHC)
(R1)−−−→ EGF |

(
sRE1 ·RE2 ·RI1 ·RI2 ·EGFR·EGFR

)L � (SHC | SHC)
(R1)−−−→

(
sRE1 ·RE2 ·RI1 ·RI2 ·EGFR·sRE1 ·RE2 ·RI1 ·RI2

)L � (SHC | SHC)
(R2)−−−→

(
sRE1 ·R1

E2 ·RI1 ·RI2 ·sRE1 ·R1
E2 ·RI1 ·RI2 ·EGFR

)L � (SHC | SHC)

The CLS for Modeling Biological Membranes 67

(R3)−−−→
(
sRE1 ·R1

E2 ·pRI1 ·RI2 ·sRE1 ·R1
E2 ·RI1 ·RI2 ·EGFR

)L � (SHC | SHC)
(R4)−−−→

(
sRE1 ·R1

E2 ·pRI1 ·RI2 ·sRE1 ·R1
E2 ·pRI1 ·RI2 ·EGFR

)L � (SHC | SHC)
(R5)−−−→

(
sRE1 ·R1

E2 ·pRI1 ·R2
I2 ·sRE1 ·R1

E2 ·pRI1 ·RI2 ·EGFR
)L � (SHC2 | SHC)

4 CLS and Membranes

What could seem strange in CLS is the use of looping sequences for the de-
scription of membranes, as sequencing is not a commutative operation and this
do not correspond to the usual fluid representation of membranes in which ob-
jects can move freely. What one would expect is to have a multiset or a parallel
composition of objects on a membrane. In the case of CLS, what could be used
is a parallel composition of sequences. To address this problem, we define an
extension of CLS, called CLS+, in which the looping operator can be applied
to a parallel composition of sequences, and we show that we can translate quite
easily CLS+ models into CLS ones.

4.1 Definition of CLS+

Terms in CLS+ are defined as follows.

Definition 6 (Terms). Terms T , branes B, and sequences S of CLS+ are
given by the following grammar:

T ::= S
∣∣ (

B
)L � T

∣∣ T | T

B ::= S
∣∣ B | B

S ::= ε
∣∣ a

∣∣ S · S

where a is a generic element of E. We denote with T the infinite set of terms,
with B the infinite set of branes, and with S the infinite set of sequences.

The structural congruence relation of CLS+ is a trivial extension of the one of
CLS. The only difference is that commutativity of branes replaces rotation of
looping sequences.

Definition 7 (Structural Congruence). The structural congruence relations
≡S, ≡B and ≡T are the least congruence relations on sequences, on branes and
on terms, respectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

S1 ≡S S2 implies S1 ≡B S2

B1 | B2 ≡B B2 | B1 B1 | (B2 | B3) ≡B (B1 | B2) | B3 B | ε ≡B B

68 R. Barbuti et al.

S1 ≡S S2 implies S1 ≡T S2

B1 ≡B B2 implies
(
B1

)L � T ≡T

(
B2

)L � T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ε ≡T T
(
ε
)L � ε ≡ ε

Now, to define patterns in CLS+ we consider an additional type of variables
with respect of CLS, namely brane variables. We assume a set of brane variables
BV ranged over by x, y, z,

Definition 8 (Patterns). Patterns P , brane patterns BP and sequence pat-
terns SP of CLS+ are given by the following grammar:

P ::= SP
∣∣ (

BP
)L � P

∣∣ P | P
∣∣ X

BP ::= SP
∣∣ BP | BP

∣∣ x

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E, and X, x, x̃ and x are generic elements of
TV, BV, SV and X , respectively. We denote with P the infinite set of patterns.

Definition 9 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 �→ P2, where P1, P2 ∈ PP , P1 �≡ ε and such that V ar(P2) ⊆
V ar(P1). We denote with
 the infinite set of all the possible rewrite rules.

Now, differently from CLS, we have that a rule such as a | b �→ c could be
applied to elements of a looping sequence. For instance, a | b �→ c can be applied
to the term

(
a | b

)L � d so to obtain the term
(
c
)L � d. However, a rule such

as
(
a
)L � b �→ c still cannot be applied to elements of a looping sequences, as

((
a
)L � b

)L � c is not a CLS+ term.
The rules that can be applied to elements of a looping sequence are those

having the form (B1, B2) with B1, B2 ∈ B. We call these rules brane rules and
we denote as
B ⊂
 their infinite set. Now, in the semantics of CLS+ we have
to take into account brane rules and allow them to be applied also to elements
of looping sequences. Hence, we define the semantics as follows.

Definition 10 (Semantics). Given a set of rewrite rules R ⊆
, and a set of
brane rules RB ⊆ R, such that (R \ RB) ∩
B = ∅, the semantics of CLS is the
least transition relation → on terms closed under ≡, and satisfying the following
inference rules:

(P1, P2) ∈ R P1σ �≡ ε σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2(
B

)L � T1 →
(
B

)L � T2

(BP1, BP2) ∈ RB BP1σ �≡ ε σ ∈ Σ

BP1σ →B BP2σ

B1 →B B2

B | B1 →B B | B2

B1 →B B2(
B1

)L � T →
(
B2

)L � T

The CLS for Modeling Biological Membranes 69

where →B is a transition relation on branes, and where the symmetric rules for
the parallel composition of terms and of branes are omitted.

In the definition of the semantics of CLS+ we use an additional transition rela-
tion →B on branes. This relation is used to describe the application of a brane
rule to elements of a looping sequence. As usual, a CLS+ model is composed by
a term, representing the initial state of the modeled system, and a set of rewrite
rules.
In the following section we show that CLS+ models can be translated into CLS
models. The translation into CLS is compositional and preserves the semantics
of the model.

4.2 Translating CLS+ into CLS

The first step of the translation of a CLS+ model into CLS is a preprocessing
procedure. For each brane rule (BP1, BP2) in the CLS+ model, we add to the
set of rules of the model a new rule, namely (

(
BP1 | x

)L � X,
(
BP2 | x

)L � X).
This new rule is redundant in the model, as every time it can be applied to a
CLS+ term, also the original one can be applied with the same result. However,
the translation we are going to define will translate the original rule into a CLS
rule that will be applicable only inside looping sequences, or at the top level
of the term, and will translate the new rule into a CLS rule applicable only to
elements that compose a looping sequence.

Now, the translation of CLS+ into CLS consists mainly of an encoding func-
tion, denoted {[·]}, which maps CLS+ patterns into CLS patterns. This encoding
function will be used to translate each rewrite rule of the CLS+ model into a
rewrite rule for the corresponding CLS model, and to translate the term repre-
senting the initial state of the system in the CLS+ model into a CLS term for
the corresponding CLS model.

The encoding function for CLS+ patterns is defined as follows. We assume a
total and injective function from brane variables into a subset of term variables
that are never used in CLS models. More easily, we assume brane variables to
be a subset of the term variables of CLS. Moreover, we assume in and out to be
symbols of the alphabet E never used in CLS models.

The encoding follows the “ball–bearing” technique described by Cardelli in
[7]. Intuitively, every CLS+ looping sequence is translated into a couple of CLS
looping sequences, one contained in the other, with the brane patterns of the
CLS+ looping sequence between the two corresponding CLS looping sequences.

Definition 11 (Encoding Function). The encoding function {[·]} maps CLS+
patterns into CLS patterns, and is given by the following recursive definition:

{[SP]} = SP

{[X]} = X

{[
(
BP

)L � P]} =
(
out

)L � (BP |
(
in

)L � {[P]})

{[P1 | P2]} = {[P1]} | {[P2]}

70 R. Barbuti et al.

A CLS rewrite rule is obtained from each CLS+ rewrite rule of the trans-
lated model by applying the encoding function to the two patterns of the rule.
More precisely, given a CLS+ rule P1 �→ P2, the corresponding CLS rule is(
in

)L � ({[P1]} | X) �→
(
in

)L � ({[P2]} | X) where X is a term variable that
does not occur in P1 and P2. For example, by applying the encoding to the two
patterns of the CLS+ rewrite rule

R = b · x | c �→ b · x

we obtain

R{[·]} =
(
in

)L � (b · x | c | X) �→
(
in

)L � (b · x | X) .

The encoding of a CLS+ term into a CLS term is as follows: given a CLS+
term T the corresponding CLS term is

(
in

)L � {[T]}. In this case we have that
the encoding function never encounters variables. Consider, as an example, the
following CLS+ term:

T = a |
(
c | d | b · b | d

)L � d

the corresponding CLS term is as follows:

T{[·]} =
(
in

)L � (a |
(
out

)L � (c | d | b · b | d |
(
in

)L � d))

Now, it is easy to see that R can be applied to T , because parallel components
in the looping sequence can be commuted, and the result of the application is

T ′ = a |
(
b · b | d | d

)L � d

but the corresponding CLS rewrite rule R{[·]} cannot be applied to T{[·]}. However,
we have that R ∈ RB, and hence, by the preprocessing phase described above,
we have that also

R′ =
(
b · x | c | x

)L � X �→
(
b · x | x

)L � X

is a rule of the CLS+ model. By translating rule R′ we obtain

R′{[·]} =
(
in

)L � (
(
out

)L � (b · x | c | x |
(
in

)L � X) | Y) �→
(
in

)L � (
(
out

)L � (b · x | x |
(
in

)L � X) | Y)

that can be applied to T{[·]}. The result of the application is

(
in

)L � (a |
(
out

)L � (b · b | d | d |
(
in

)L � d))

that corresponds exactly to the encoding of T ′.

The CLS for Modeling Biological Membranes 71

4.3 CLS, Brane Calculi and P Systems

Brane Calculi are a family of process calculi specialized in the description of
membrane activity, and they allow associating processes with membranes of a
membrane structure. Each process is composed by actions whose execution has
an effect on the membrane structure. Some examples of actions are phagocytosis
(a membrane engulfs another one), exocytosis (a membrane expels another one),
and pinocytosis (a new membrane is created inside another one). These three
actions are enough to define the simplest of Brane Calculi, namely the PEP
calculus. Other actions, such as fusion of membranes and mitosis can be used to
define different calculi of the family. Moreover, extensions of Brane Calculi allow
describing interactions with molecules and complexes, such as letting them enter
and exit membranes.

We have given a sound and complete encoding of the PEP calculus into CLS
in [3,15]. Here, to recall shortly the encoding technique, we give a very simple
example of PEP system and we show its translation into CLS. The PEP system
we consider is the following

φ(| |) ◦ φ⊥(0)(| |)

representing two adjacent membranes φn(| |) and φ⊥n (0)(| |) (◦ denotes juxta-
position) both containing nothing of relevant (what is between brackets (| |) is
the content of the membrane and is the null system). The processes associated
with the two membranes are φ and φ⊥(0), respectively, representing two comple-
mentary phagocytosis actions: the first says that the membrane it is associated
with can be engulfed by another membrane, and the second that the membrane
it is associated with can engulf another membrane, that will be sourrounded by
another new membrane whose associated process is the parameter of the action
(in this case it is the idle process 0). Hence, in accordance with the semantics
of the PEP calculus, we have that the only transition that can be performed by
the system is the following, leading to a system that is equivalent to the null
system :

φ(| |) ◦ φ⊥(0)(| |) → 0(|0(|0(| |)|)|) ≡
By applying the encoding to the system we obtain the following CLS term T :

act · circ · e · brane · b · φ · a · 0 · a · b · 0 · e · brane · d · φ⊥ · c · 0 · c · 0 · c · d · 0

where act is a sort of program counter that precedes the symbol representing the
next action to be executed, symbol circ represents ◦, symbol brane represents a
membrane (| |), symbols φ and φ⊥ represent the corresponding actions, symbol
0 represents the idle process and symbols a, b, c, d and e are used as separators
of actions and parameters. The translation consists also of a set of CLS rewrite
rules to be applied to terms obtained by the encoding of PEP systems. Such a
set of rewrite rules does not depend on the encoded PEP system, hence it is
always the same. By applying rewrite rules, the long sequence obtained from
the encoding is transformed into a hierarchy of looping sequences corresponding
to the membrane hierarchy in the original PEP system, then rewrite rules are

72 R. Barbuti et al.

applied that correspond to the semantics of the actions occurring in the processes
associated with membranes.

Hence, by means of application of rewrite rules, the result of the encoding
of the PEP system may evolve as follows (where →∗ represents a sequence of
rewrite rule applications):

T → act · brane · b · φ · a · 0 · a · b · 0 | act · brane · d · φ⊥ · c · 0 · c · 0 · c · d

→∗
(
act · φ · a · 0 · a

)L � act · 0 |
(
act · φ⊥ · c · 0 · c · 0 · c

)L � act · 0

→
(
act · 0

)L � (act · 0|
(
act · 0

)L �
(
act · 0

)L � act · 0)
→∗ act · 0

Differently from Brane Calculi, P Systems (in their most common formulation)
do not allow describing complex membrane activities such as phagocytosis and
exocytosis. However, they are specialized in the description of reactions between
molecules which are placed in a compartment of a complex membrane structure.

A P System is a membrane structure (a nesting of membranes) in which
there could be multisets of objects representing molecules. A set of multiset
rewrite rules is associated with each membrane, and describe the reactions that
may occur between the molecules contained in the membrane. The result of
the application of a rewrite rule can either remain in the same membrane, or
exit the membrane, or enter an inner membrane. Priorities can be imposed on
rewrite rules, meaning that some rules can be applied only if some others cannot,
and it is possible for a membrane to dissolve and release its content to in the
environment.

A peculiarity of P Systems is that rewrite rules are applied in a fully–parallel
manner, namely in one step of evolution of the system all rules are applied as
many times as possible (to different molecules), and this is one of the main
differences with respect to CLS in which at each step one only rewrite rule
is applied. We show that P Systems can be translated into CLS, and that
the execution of a (fully parallel) step of a P System is simulated by a se-
quence of steps in CLS. A variant of P Systems, called Sequential P Systems,
in which rules are applied sequentially is described in [10]. We do not consider
the translation of this variant into CLS as it would be quite trivial and of little
interest.

To recall the encoding technique, we give a simple example of P System and
we show its translation into CLS. We focus on the translation of multiple par-
allelism, hence we consider a P System (depicted in Figure 3) consisting of a
single membrane with only two rules, without priorities and without membrane
dissolutions. We give a simplified translation: more details can be found in [15].

The alphabet of objects in the considered P System is {a, b, c}. A multiset of
objects from this alphabet is represented by a CLS term as follows: let na, nb

and nc be the number of occurrences of a, b and c in the multiset, respectively,
then

The CLS for Modeling Biological Membranes 73

�

�

�

�1

abb

r1 : a → (ab, here)

r2 : ab → (c, out)

Fig. 3. A simple example of a P system

a ·
na︷ ︸︸ ︷

1 · . . . · 1 | b ·
nb︷ ︸︸ ︷

1 · . . . · 1 | c ·
nc︷ ︸︸ ︷

1 · . . . · 1

is the term representing the multiset. We choose this representation as it allows
us checking whether an object is absent, by checking whether the corresponding
symbol if followed by zero 1s. An empty multiset is represented as a | b | c.

The CLS term obtained by the translation of the considered P System is the
following:

(
1
)L � (Check | a · 1 | b · 1 · 1 | c | r1 | r2 |

(
next

)L � (a | b | c))

where the membrane of the P System is represented by a looping sequence com-
posed by the membrane label (in this case 1). Inside the looping sequence there
is a Check symbol representing the current state of the system, the translation
of the multiset of objects of the membrane, two symbols r1 and r2 corresponding
to the evolutionary rules of the membrane, and an empty multiset surrounded
by a looping sequence next. This empty multiset is used to store temporary
information on the result of the application of evolutionary rules.

The CLS rewrite rules obtained by the encoding of the considered P System
are the following:

(
1
)L � (X | Check | a·1·x̃ | r1) �→

(
1
)L � (X | Check | a·1·x̃ | r1 ·1) (C1)

(
1
)L � (X | Check | a | r1) �→

(
1
)L � (X | Check | a | r1 ·0) (C2)

(
1
)L � (X | Check | a·1·x̃ | b·1·ỹ | r1 ·z | r2) �→

(
1
)L � (X | Check | a·1·x̃ | b·1·ỹ | r1 ·z | r2 ·1) (C3)

(
1
)L � (X | Check | a | r1 ·z | r2) �→

(
1
)L � (X | Run | a | r1 ·z | r2 ·0) (C4)

74 R. Barbuti et al.

(
1
)L � (X | Check | b | r1 ·z | r2) �→

(
1
)L � (X | Run | b | r1 ·z | r2 ·0) (C5)

(
1
)L � (X | Run | a·1·x̃ | r1 · 1 |

(
next

)L � (Y | a·ỹ | b·z̃)) �→
(
1
)L � (X | Run | a·x̃ | r1 · 1 |

(
next

)L � (Y | a·1·ỹ | b·1·z̃)) (R1)

(
1
)L � (X | Run | a·1·x̃ | b·1·ỹ | r2 · 1 |

(
next

)L � (Y | c·z̃)) �→
(
1
)L � (X | Run | a·x̃ | b·ỹ | r2 · 1 |

(
next

)L � (Y | c·1·z̃)) (R2)

(
1
)L � (X | Run | a | r1 ·1) �→

(
1
)L � (X | Run | a | r1 ·0) (R3)

(
1
)L � (X | Run | a | r2 ·1) �→

(
1
)L � (X | Run | a | r2 ·0) (R4)

(
1
)L � (X | Run | b | r2 ·1) �→

(
1
)L � (X | Run | b | r2 ·0) (R5)

(
1
)L � (X | Run | r1 ·0 | r2 ·0) �→

(
1
)L � (X | Update | r1 ·0 | r2 ·0) (R6)

(
1
)L � (X | Update | x · x̃ |

(
next

)L � (Y | x·1 · ỹ)) �→
(
1
)L � (X | Update | x·1 · ỹ · x̃ |

(
next

)L � (Y | x)) (U1)

(
1
)L � (X | Update |

(
next

)L � (a | b | c)) �→
(
1
)L � (X | Check |

(
next

)L � (a | b | c)) (U2)

Rules (C1)–(C5) describe the steps performed by the system while it is in
Check state: the objective of this phase is to test whether each evolutionary rule
is applicable or not. When all rules have been tested, the systems moves into a
state called Run, whose steps are given by the application of rules (R1)–(R6).
In this second phase, evolutionary rules previously identified as applicable are
actually applied, and the result of the application is stored inside the looping se-
quence next. Finally, when no evolutionary rule is further applicable, the system
moves into a state called Update, in which the content of the looping sequence
next is used to reset the multiset of objects of the membrane by applying rule
(U1)–(U2). When this update operation has been performed, the system moves
back to the Check state.

5 Conclusions

We have surveyed the formalism CLS and a number of its variants from the
point of view of its use for describing biological membranes. Verification and
simulation tools have been developed for CLS and its variants and can be used
to study properties of membrane systems. Via translations, these tools can be
used to study systems described by other formalisms such as Brane Calculi and
P Systems, capable of describing biological membranes.

The CLS for Modeling Biological Membranes 75

References

1. Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin,
H., Schug, J.: Hybrid Modeling and Simulation of Biomolecular Networks. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

2. Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A
Probabilistic Model for Molecular Systems. Fundamenta Informaticae 67, 13–27
(2005)

3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus of Looping
Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72,
21–35 (2006)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulation Con-
gruences in the Calculus of Looping Sequences. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 93–107. Springer, Heidelberg
(2006)

5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.: Extending the Calculus of Looping
Sequences to Model Protein Interaction at the Domain Level. In: Mandoiu, I.,
Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 638–649. Springer,
Heidelberg (2007)

6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tiberi, P., Troina, A.: Stochas-
tic CLS for the Modeling and Simulation of Biological Systems (submitted for
publication), draft available at: http://www.di.unipi.it/∼milazzo/

7. Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer,
Heidelberg (2005)

8. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Model-
ing and Querying Biomolecular Interaction Networks. Theoretical Computer Sci-
ence 325(1), 25–44 (2004)

9. Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling Biochemical Pathways
through Enhanced pi-calculus. Theoretical Computer Science 325, 111–140 (2004)

10. Dang, Z., Ibarra, O.H.: On P Systems Operating in Sequential and Limited Parallel
Modes. In: Workshop on Descriptional Complexity of Formal Systems, pp. 164–177
(2004)

11. Danos, V., Laneve, C.: Formal Molecular Biology. Theoretical Computer Sci-
ence 325, 69–110 (2004)

12. Gillespie, D.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal
of Physical Chemistry 81, 2340–2361 (1977)

13. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Symbolic Model Checking
with PRISM: a Hybrid Approach. Int. Journal on Software Tools for Technology
Transfer 6, 128–142 (2004)

14. Laneve, C., Tarissan, F.: A Simple Calculus for Proteins and Cells. In: MeCBIC
2006. Workshop on Membrane Computing and Biological Inspired Process Calculi
(to appear in ENTCS)

15. Milazzo, P.: Qualitative and Quantitative Formal Modeling of Biological Systems.
PhD Thesis, Università di Pisa (2007)

16. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Representation
of Gene Regulatory Network. In: Pacific Symposium on Biocomputing, pp. 341–
352. World Scientific Press, Singapore (2000)

http://www.di.unipi.it/~milazzo/

76 R. Barbuti et al.

17. Pǎun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

18. Pǎun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
19. Pérez–Jiménez, M.J., Romero–Campero, F.J.: A Study of the Robustness of the

EGFR Signalling Cascade Using Continuous Membrane Systems. In: Mira, J.M.,
Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 268–278. Springer, Hei-
delberg (2005)

20. Priami, C.: Stochastic π–Calculus. The Computer Journal 38, 578–589 (1995)
21. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V.,

Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

22. Priami, C., Regev, A., Silvermann, W., Shapiro, E.: Application of a Stochastic
Name–Passing Calculus to Representation and Simulation of Molecular Processes.
Information Processing Letters 80, 25–31 (2001)

23. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:
An Abstraction for Biological Compartments. Theoretical Computer Science 325,
141–167 (2004)

24. Regev, A., Shapiro, E.: The π–Calculus as an Abstraction for Biomolecular Sys-
tems. In: Modelling in Molecular Biology. Natural Computing Series, pp. 219–266.
Springer, Heidelberg (2004)

25. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and Simulation of Bio-
chemical Processes Using the pi-calculus Process Algebra. In: Pacific Symposium
on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)

26. Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational Modeling of
the EGF–Receptor System: a Paradigm for Systems Biology. Trends in Cell Biol-
ogy 13, 43–50 (2003)

Membrane Computing in Connex Environment

Mihaela Maliţa1 and Gheorghe Ştefan2

1 Anselm College, Manchester, N.H., U.S.A.
mmalita@anselm.edu

http://www.anselm.edu/homepage/mmalita/
2 Polytechnical University of Bucharest, Romania,

and BrightScale, Inc., Sunnyvale, CA, U.S.A.
gstefan@brightscale.com

http://arh.pub.ro/gstefan/

Abstract. The Connex technology is presented as a possible way to im-
plement efficiently membrane computations in silicon environment. The
opportunity is offered by the recent trend of promoting the parallel com-
putation as a real competitor on the consumer market. The Connex en-
vironment has an integral parallel architecture, which is introduced here
and its main performances are presented. Some suggestions are provided
about how to use the Connex environment as accelerator for membrane
computation.

1 Introduction

The computation model of membrane computing can be supported by a specific
physical environment or by non-specific, on-silicon parallel architectures. The
second trend is investigated from the view point of the Connex technology: a
highly integrated parallel machine.

Membrane computing summary: The membrane computing model is based
on multiset rewriting rules applied on a membrane structure populated with
objects belonging to a finite alphabet. The potential degree of parallelism is
very high in P systems because in each step all possible rules are applied (see
details in [10]).

Connex environment summary: The Connex technology has an intensive
integral parallel architecture [15]. The first embodiment of this technology (see
[14]) targets the high definition TV market, but the chip CA1024 can be used
also as a general purpose machine for data intensive computing. Application
in graphics, data mining, neural network [1], and communication are efficiently
supported by the Connex technology. Then, why not for membrane computing!?

The Intel study: Since 2002 the clock speed of the processor has improved less
than 20%/year, after a long period characterized by around 50%/year. That is
why the promise of parallel computing starts to fascinate in a special way. Intel
Inc. published seminal studies (see [4], [3]) about the next generation of parallel
computers. The future processors will contain multi- or maybe many–processors

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 77–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 M. Maliţa and G. Ştefan

optimized for the magic triad of Recognition – Mining – Synthesis (RMS).
The main problem for this promised development is to find the way to program
efficiently the next generation of parallel machines. New programming languages
or more sophisticated computation models are needed to fructify the opportuni-
ties offered by the new coming parallel computation technologies. In this context
membrane computing could play a very promising role.

The Berkeley study: Rather than starting from the market opportunities, as
Intel did with the RMS domains, the Berkeley approach [2] starts from their
“13 dwarfs” (dense linear algebra, sparse linear algebra, spectral methods, . . .
finite state machines) identified as parallel computational patterns able to
cover almost all the applications for the next few decades. While Intel takes
into consideration a continuous transition from multi- to many-processors, the
Berkeley approach is oriented from the start toward the many-processor systems
working on data-intensive computation applications. Here is also the place for
membrane computation if a good representation will be developed for it.

Application oriented vs. functionally oriented parallel architectures:
A complex, intense and general purpose application requires usually a multi-
threaded approach. In contrast with it, there are functions involving data intense
computations. By the rule, multi-processors are involved in the first case (be-
cause they are able to exploit thread-level parallelism), and many-processors are
needed in the second case. A multi-processor has usually, according to Flynn, a
MIMD (multiple instructions - multiple data) architecture, rarely a SIMD (single
instructions - multiple data) architecture, and never a MISD (multiple instruc-
tions - single data) type one. For a many-processor machine the architecture
must be shaped starting from a functional approach, and usually involves all the
special forms of possible parallelism.

Our functional approach: The integral parallel architecture (IPA) is a
parallel architecture derived starting from the computational model of partial
recursive functions [7]. The Turing machine model has been successfully used
to ground various sequential computing architectures. Because the functional
approach of Kleene is more related with circuits (which are intrinsic parallel
structures) we consider there is a better fit between the functional recursive
model and the parallel computation. The composition rule provides the best
starting point to develop parallel architectures able to support efficiently the
other two rules: the primitive recursion and the minimalization. If the 13 dwarfs
will be able to cover the RMS domains, maybe then an IPA will be enough
powerful to cover efficiently the 13 computational patterns emphasized by the
seminal work done at Berkeley. A three level hierarchy results. It is topped by
application domains (RMS), mediated by computational patterns (the 13 dwarfs),
and grounded on various IPAs.

In the following sections the idea of IPA and the Connex environment are
introduced in order to offer various suggestions for a membrane computing ac-
celerator. Membrane computing being an intrinsic parallel computational model
has the chance to open new ways toward the efficient use of parallel machines.

Membrane Computing in Connex Environment 79

2 Integral Parallel Architecture (IPA)

Various taxonomies were proposed for parallel computations (see [5] [18]). All
of them tell us about different forms of parallelism. We can discuss about many
forms only when we use the parallel approach to accelerate specific computations.
But, when a real complex and intensive computation must pe done, sometimes
we can not use only one form of parallelism. Actual computations involve usually
all possible forms. For example, using Flynn’s taxonomy, MIMD or SIMD ma-
chines can be defined, but it is not so easy to define MIMD or SIMD application
domains.

General purpose or even application domain oriented parallel machines must
be able to perform all the forms of parallelism, no matter how these forms are
segregated. We propose in the following a new taxonomy and a way to put
together all the resulting forms of parallelism in order to solve efficiently data
intensive computations.

2.1 Parallelism and Partial Recursiveness

We claim that the most suggestive classic computational model for defining
parallel architectures is the model of partial recursive functions, because the
rules defining it have direct correspondences in circuits – the intrinsic parallel
support for computation.

Composition and basic parallel structures. The first rule, of composition,
provides the basic parallel structures to be used in defining all the forms of
parallelism. Let be m n-ary functions hi(x0, . . . xn−1), for i = 0, 1, . . .m−1, and
a m-ary function g(y0, . . . ym−1). In this case, the composition rule is defined as
computing the function

f(x0, . . . xn−1) = g(h0(x0, . . . xn−1), . . . hm−1(x0, . . . xn−1))

The associated physical structure (containing simple circuits or simple program-
mable machines) is shown in Figure 1.

The following four particular, but meaningful forms (see Figure 2) can be
emphasized:

1. data parallel composition: with n = m, each function hi = h depends on
a single input variable xi, for i = 0, 1, . . . n − 1, and g performs the identity
function (see Figure 2a). Given an input vector containing n scalars,

X = {x0, x1, . . . , xn−1},

the result is another vector:

{h(x0), h(x1), . . . , h(xn−1)}.

80 M. Maliţa and G. Ştefan

h0 h1 hm−1

g

�� �

�

� � �

x0, x1, . . . xn−1

out = f(x0, x1, . . . xn−1)

Fig. 1. The physical structure associated to the composition rule. The com-
position of the function g with the functions h0, . . . , hm−1 implies a two-level system.
The first level, performing in parallel m computations, is serially connected with the
second level which performs a reduction function.

2. speculative composition: with n = 1, i.e., x0 = x, (see Figure 2b), and g
performs the identity function. It computes a vector of functions

H = [h0(x), . . . , hn−1(x)]

on the same scalar input x, generating a vector of results:

H(x) = {h0(x), h1(x), . . . , hn−1(x)}

3. serial composition: with n = m = 1 (see Figure 2c). A “pipe” of two
different machines receives a stream of n scalars as input:

< X >=< x0, x1, . . . , xn−1 >

and provides another stream of scalars

< f(x0), f(x1), . . . , f(xn−1) > .

In the general case the function f(x) is a composition of more than two
functions h and g. Thus, the function f can be expressed as a vector of
functions F receiving as input a data stream < X >:

F = [f0, . . . fp−1]

(in Figure 2c F = [h, g], and p = 2).

4. reduction composition: each hi performing the identity function (see Fig-
ure 2d), receives a vector {x0, . . . , xn−1} as input and provides the scalar,
g(x0, . . . , xn−1) (it transforms a stream of vectors into a stream of scalars).

Concluding, the composition rule provides the context of defining computation
using the following basic concepts:

Membrane Computing in Connex Environment 81

g(x0 , . . . xn−1)

� � �

d.
�

x0 x1 xn−1

g(x0, . . . xn−1)

x

f(x)

�

c.

h

�

g

�

h(x0) h(x1) h(xn−1)
� � �

h h h

x0 x1

� � �
xn−1

a.
� � �

h1(x)h0(x) hn−1(x)

h0 h1 hn−1

� � �

x

b.

Fig. 2. The four simple forms of composition. a. Data parallel composition. b.
Speculative composition. c. Serial composition. d. Reduction composition.

scalar : x
vector : X = {x0, x1, . . . , xn−1}
stream : < X >=< x0, x1, . . . , xn−1 >
function : f(x)
vector of functions :

– F = [f0, . . . fp−1] applied on streams
– F(x) = [f0(x), . . . fp−1(x)] applied on scalars.

Using the previously defined forms all the requirements for the next two rules
(primitive recursion, minimalization) are fulfilled.

The primitive recursive rule. There are two ways to implement in parallel
the primitive recursive rule. In both cases a lot of data is supposed available to
be computed, i.e., there are vectors or streams of data as inputs for the primitive
recursive function.

The primitive recursive rule computes the function f(x, y) using the rule:

f(x, y) = h(x, f(x, y − 1)),

where f(x, 0) = g(x). This rule can be translated in the following serial compo-
sition:

f(x, y) = h(x, h(x, h(x, . . . , h(x, g(x)) . . .)))

If the function f(x, y) must be computed for the vector of scalars X =
{y0, y1, . . . , yn−1}, then a data parallel structure is used. Each machine will
compute, using a local data loop, the function f(x, yi) in max(y0, y1, . . . , yn−1)
“cycles”.

82 M. Maliţa and G. Ştefan

If the function f(x, y) must be computed for a stream of scalars, a time parallel
structure is used. A “pipe” of n machines will receive in each “cycle” a new scalar
from the stream of scalars. If y > n, then a data loop can be closed from the
output of the pipe to its input.

Minimalization. Minimalization has also two kinds of parallel solutions: one
using data parallel structures and another using time parallel structures.

The minimalization rule assumes

f(x) = min(y)[m(x, y) = 0]

i.e., the value of f(x) is the minimum y for which m(x, y) = 0.
The first, “brute force” implementation uses the speculative structure repre-

sented in Figure 2b, where each block computes a function which returns a pair
containing a predicate and a scalar:

hi = {(m(x, i) = 0), i}

after that, the reduction step (using a structure belonging to the class represented
in Figure 2d) selects the smallest i from all pairs having the form {1, i}, if any,
that were generated on the previous speculative composition level (all pairs of
the form {0, i} are ignored).

The second implementation occurs in time-parallel environments where spec-
ulation can be used to speed-up the pipe processing. Reconfigurable pipes
can be conceived and implemented using special reduction features distributed
along a pipe. Let be a pipe of functions described by the function vector:

P = [f0(x), . . . , fp−1(x)]

where yi = fi(x), for i = 0, . . . , p − 1. The associated reconfigurable pipe means
to transform the original pipe characterized by:

P = [. . . , fi(yi−1), . . .]

into a pipe characterized by:

P = [. . . , fi(yi−1, . . . , yi−s), . . .]

where fi(yi−1, . . . , yi−s) is a function or a program which decides in each step
the variable to be involved in the current computation, selecting (which is one of
the simplest reduction functions) one variable of {yi−1, . . . yi−s}. The maximum
degree of speculation is s.

2.2 Functional Taxonomy of Parallel Computing

According to the previously identified simple form of compositions (see Figure 2)
we propose a functional taxonomy of parallel computation. We will consider the
following types of parallel processing:

Membrane Computing in Connex Environment 83

data-parallel computing: uses operators that take vectors as arguments and
returns vectors, scalars (by reduction operations) or streams (input values
for time-parallel computations); it is very similar to a SIMD machine.

time-parallel computing: uses operators that take streams as arguments and
returns streams, scalars, or vectors (input values for data-parallel computa-
tions): it is a kind of MIMD machine which works to compute only one
function (while a true MIMD performs multi-threading).

speculative-parallel computing: with operators that take scalars as argu-
ments and return vectors reduced to scalars using selection (used mainly to
speed up time-parallel computations); this contains a true MISD-like struc-
ture (completely ignored in the current multi-processing environments).

An IPA is a parallel architecture featured with all kinds of parallelism.

2.3 IPA and Market Tendencies

The market tendencies emphasized in the Intel approach and based on Berkeley’s
dwarfs demand for an IPA. IPA is a many-core (not multi-core) architecture
designed to support data intensive computations. It is supposed to work as an
accelerator in a mono- or multi-core environment. For all the computational
patterns emphasized in the Berkeley’s view an IPA provides efficient solutions.
Even for the 13th dwarf – Finite State Machine – the speculative & time-parallel
aspects of an IPA provides a solution. (Berkeley’s view claims that “nothing
helps”.)

The need for solving real hard applications promotes IPA as an efficient actual
solution.

3 The Connex System

3.1 Structural Description

The first embodiment of an IPA is the Connex System. It is part of CA1024
chip produced by Connex Technology Inc1. The Connex System contains mainly
an array of 1024 PEs working as a data parallel sub-system, DPS, a stream
accelerator machine containing 8 PEs (the time parallel sub-system, TPS).
DPS is driven by an instruction sequencer, S, used to broadcast in each clock
cycle the same instruction toward each PE from DPS. An input output controller,
IOC, feeds DPS with data and sends out the results from it. An interconnection
fabric allows DPS and TPS to communicate with each other and with the other
components of the chip. S and IOC interact using interrupts. They are both
simple stack machines with their own data and program memory.

The Connex System uses also other components on the chip to be interfaced
with the external world. They are: a MIPS processor acting as a local host, PCI
interface to the external host, and a DDR interface to the external memory.
1 From the moment the title of this paper was announced the name of the company

changed in BrightScale Inc.

84 M. Maliţa and G. Ştefan

PARALLEL
DATA

SUB-SYSTEM

Sequencer

PARALLEL
TIME

SUB-SYSTEM

Memory
DDR

Interface

Interconnection Fabric

Host PCI

Output
Input

Controller

CONNEX
SYSTEM

Fig. 3. The Connex System

TPS receives streams of data under the control of the local host, and sends the
results into the external memory. DPS receives the data vectors from the external
memory and sends back the results in the same place. Thus, the two parallel
machines communicate usually through the content of the external memory. A
data stream is converted into a vector of data, and vice versa, by the programs,
run by Host and IOC, used to control the buffers organized in the external
memory.

3.2 General Performances

The first embodiment of the Connex Architecture is designed for 130nm standard
process technology, and has the following general performances:

– clock frequency: fCK = 200 MHz
– area for the Connex System: ∼ 70 mm2

– 200 GOPS (OP is a 16-bit simple operation; no multiplication, division or
floating point)

Membrane Computing in Connex Environment 85

– > 60 GOPS/Watt
– > 2 GOPS/mm2

– internal bandwidth: 400 GB/sec
– external bandwidth: 3.2 GB/sec, involving an additional 2 Watt.

3.3 Specific Performances

The first application domain investigated in the Connex environment is of High
Definition TV (HDTV). We estimated 80% of the computational power of the
Connex System is necessary to decode in real time two H.264 HDTV streams.
Some figures referring to specific functions in HDTV domains follow:

– 8 × 8 DCT: 4.2 clock cycle (0.066 clock cycle/pixel)
– 8 × 8 IDCT: 4.9 clock cycle (0.077 clock cycle/pixel)
– 4 × 4 SAD: 0.04 clock cycle (0.0025 clock cycle/pixel)

Graphics is another application domain. A preliminary investigation for an
image having the complexity characterized by:

– dynamic images having 10,000 triangles, each covering an average of 100
pixels, one-half being obscured by other triangles

– ambient and diffuze illumination model
– 1920 x 1080 display screen, at 30 frames per second

provides the following figures:

– uses 6.6 GOPS = 3.3% of the total computational power of the Connex
System

– and 390 MB/sec = 12.2% of the total external bandwidth of the CA1024
chip.

For linear algebra domain we present here only the computation of the dot
product for vectors of up to 1024 components. Two cases are estimated:

– for vectors having as components 32-bit floats:
150 clock cycle (> 1.3 MDot Product/sec)

– for vectors having as components 16-bit signed integer:
28 clock cycle (∼ 7 MDot Product/sec)

The neural network domain is also targeted as an application domain. A
preliminary estimation is done in [1]: 5 Giga Connection Updates per Second
(about 17 times faster than the fastest specialized chip on the market: Hitachi
WSI).

All these estimations are very encouraging for those who are looking for using
the Connex environment as an accelerator for membrane computation.

4 An IPA: The Connex Architecture

The IPA of the Connex System is described in the following two subsections.
The vector section describes the architecture of the data parallel sub-system,
and the stream section is devoted to describe the time parallel sub-system.

86 M. Maliţa and G. Ştefan

0 1 2 1022 1023

svec 000

svec r001

svec 002

svec 255

bvec 0

bvec 1

bvec 7

0 1

1 0

11

0

1

10

16-bit word

1-bit word

�

�

Fig. 4. The vector variables of the data parallel subsystem. If the execution
is conditioned by AND(bvector0, bvector1), then only column1, ... column1022 of
scalars can be involved in computation.

4.1 Vector Section

The main physical resources of the Connex System are represented in Figure 4
and are described also in the following pseudo-Verilog form:

// 256 16-bit scalar vectors & the hardwired index vector
reg [15:0] svec_000[0:1023],

svec_001[0:1023],
...
svec_255[0:1023],
ixVect[0:1023] ;

initial
ixVect = {0, 1, 2, ... 1023}; // 16-bit scalars

// 8 Boolean vectors
reg bvec_0[0:1023] ,

bvec_1[0:1023] ,
...
bvec_7[0:1023] ;

// 1024 32-bit scalars stored in the scalar memory
reg [31:0] scalar_memory[0:1023] ;

Membrane Computing in Connex Environment 87

// Flag vectors used to predicate
wire cryFlag[0:1023] ,

zeroFlag[0:1023],
eqFlag[0:1023] ,
gtFlag[0:1023] ,
... ;

The Boolean vectors are used to select the active components of the scalar
vectors.

ScalarOP: ADD, SUB, INC, BWAND, BWOR, BWXOR, ...
BooleanOP: AND, OR, ...

The where construct is a sort of “spatial if”.

// ’where’ construct
where BooleanOP(booleanVect_i, booleanVect_j, ...) {

svect_k = ScalarOP(svect_p, svect_q, ...),
bvect_r = xxxFlag;

elsew {
...
}
}

Here is an example of how this construct can be used:

where AND(bvect_2, OR(bvect_0, bvect_5)) {
svect_034 = ADD(svect_012, svect_078, svect_002),
bvect_3 = cryVect;
}

elsew {
svect_034 = ADD(svect_022, svect_222),
bvect_3 = cryFlag;
}

It is executed by the Connex System as follows:

selVect = OR(bvect_0, bvect_5); // a temporary variable
selVect = AND(bvect_2, selVect);
for(i=0; i<1024; i=i+1)
if (selVect[i]) {

svect_034[i] = ADD(svect_012[i], svect_078[i]),
bvect_3[i] = cryVect[i];

svect_034[i] = ADD(svect_034[i], svect_002[i]),
bvect_3[i] = OR(cryVect[i], bvect_3[i]);

}
else {svect_034[i] = ADD(svect_022[i], svect_222[i]),

bvect_3[i] = cryVect[i];
}

88 M. Maliţa and G. Ştefan

There are two distinct ways to generate selections. One is pattern based. It
starts from the index vector. Here is an example:

/* Pattern based selection example (each other of 4 bit in selVect
will be set on 1)*/

svect_000 = ixVect;
svect_000 = AND(svect_000, 16’b11);
svect_000 = XOR(svect_000, 16’b11), selVect = zeroFlag;

The second way to make a selection is to start from the data contained in the
scalar vector.

// Patternless (data dependent) selection example:
svect_070 = SUB(svect_070, 16’b10011001), selVect = gtFlag;

Usually, any operation specified by one line, having the form:

svect_xyz = ScalarOp(...), bvect_q = BooleanOP(...);

is executeable in one clock cycle. (Exceptions are specified. For example MULT
(...) is executed in 9 clock cycles for 16-bit signed integers, and in 10 clock
cycles for unsigned integers.)

4.2 Stream Section

The stream section of the Connex System receives the input stream < X > and
sends back the output stream < Z >, where:

<X> = <x_0, ... x_(p-1)>
<Z> = <z_0, ... z_(q-1)>

with p = q or p �= q.
The function of the two-dimension pipe (n × w) is specified by the function

vector F, as follows:

F = [func_0, ... func_7];
func_i(y_(i-1), y_(i-2), ... y_(i-w)) = y_i;

where: func i is the program executed by PEi. It could be a one instruction
looping program, if the pipe “advances” in each clock cycle, or a s-instruction
loop for pipe propagation executed at each s clock cycles. Each PE can have
the associated program using variables generated by the previous w PEs. The
degree of speculation is w.

Let be, as an example, the following partially defined computation:

...
x = ...
y = y[15] ? y + (x + c1) : y + (x + c2);
...

Membrane Computing in Connex Environment 89

Where c1 and c2 are constants. The associated function vector is:

F = [... func_i(...),
func_(i+1)(y_i),
func_(i+2)(y_i),
func_(i+3)(y_(i-1), y_(i-2)), ...];

where:

...
y_i = ...;
y_(i+1) = y_i + c1;
y_(i+2) = y_i + c2;
y_(i+3) = y_(i+3)[15] ? y_(i+3) + y_(i+1) : y_(i+3) + y_(i+2);
...

The output of the processing element PEi works as input for both, PEi+1 and
PEi+2. The processing element PEi+3 receives the input variables from the
previous two machines PEi+1 and PEi+2. The second constant dimension of
the pipe allows these “shortcuts” which accelerate the computation.

4.3 Putting Together the Vector Section and the Stream Section

The two sections of the IPA interact through the content of the external memory.
In the external memory a vector or a stream have the same representation. Thus,
depending on the source or on the destination, an array of data can be interpreted
as a vector or as a stream.

Data exchange between the vector section (DPS) and the stream section
(TPS) is done by executing one of the two operation:

X <= <Y>; // stream to vector transfer
<X> <= Y; // vector to stream transfer

where:

X = {x_0, ... x_(n-1)};
<X> = <x_0, ... x_(n-1)>;
Y = {y_0, ... y_(n-1)};
<Y> = <y_0, ... y_(n-1)>;

because the destination and the source must have the same dimension n.

5 How to Use Connex to Accelerate Membrane
Computing

The key is the representation. The big amount of parallel resources of the Connex
architecture can be activated only if an appropriate representation of membrane
is adopted. Follow some simple suggestions. The functionality used in these pro-
posals are described in Appendix: About VectorC.

90 M. Maliţa and G. Ştefan

The first suggestion: Using the formal definition from [11] (see pag. 11), the
content of a membrane system can have associated an n-component vector which
contains an m-component list (with n ≥ m). For example (see Fig. 3 in [Pǎun
’0x]):

[[[<w_3>]<w_2>]<w_1>]... =
[[[a f c]]]...

where each symbol is represented by a 2-byte word, (index, ASCII code), as
follows:

(1,[) (2,[) (3,[) (0,a) (0,f) (0,c) (3,]) (2,]) (1,]) ...

For this first suggestion, only the square parenthesis are indexed, and all the
objects are represented with the index having the value 0.

The sets of rules (R1, R2, . . .) are represented inside the program run by the
sequencer S. Thus, the list representing the membrane system will evolve as
follows:

(00) [[[a f c]]]... =>
(01) [[[a b f f c]]]... => // in 11 clock cycles
(02) [[[a b b f f f f c]]]... => // in 15 clock cycles
(03) [[b b b f f f f f f f f c]]... => // in 27 clock cycles
(04) [[d d d f f f f c]]... => // in 10 clock cycles
(05) [[d e d e d e f f c]]... => // in 10 clock cycles
(06) [d e d e d e d f c]... => // in 10 clock cycles
(07) [d d d d f c] e e e... => // in 15 clock cycles

The degree of parallelism is not big enough in each cycle during the previously
described computation. Only in step (04) all the three bs were substituted by
ds in parallel (in 2 clock cycles). The parallelism is also involved in searching
different symbols such as [,], a, f. On the other hand, all the insertions
asked by the evolution rules are performed sequentially.

The performance of the implementation can be increased only by changing
the representation of the membrane system.

The second suggestion: Another way to represent the membrane system is to
use indexes also for objects. The most significant byte of each vector component
is used to tell us how many objects of the kind indicated by the other byte are
represented. The same membrane system have now the following content:

(1,[) (2,[) (3,[) (1,a) (1,f) (1,c) (3,]) (2,]) (1,]) ...

For the same rules applied results the following evolution of the system:

[[[1a 1f 1c]]]... =>
[[[1a 1b 2f 1c]]]... => // in 5 clock cycles
[[[1a 2b 4f 1c]]]... => // in 5 clock cycles
[[3b 8f 1c]]... => // in 10 clock cycles
[[3d 4f 1c]]... => // in 7 clock cycles

Membrane Computing in Connex Environment 91

[[3d 3e 2f 1c]]... => // in 8 clock cycles
[4d 3e 1f 1c]... => // in 8 clock cycles
[4d 1f 1c] 3e... => // in 5 clock cycles

Now applying the rule f → ff is executed by simply doubling the index associ-
ated to f. The same for the rule d → de. For the rule ff → f the index is divided.
The main effects are: the representation is kept smaller and the execution time
is reduced more than two times.

The degree of parallelism remains small because the application supposes to
work only in one membrane at a time. It will be improved if many membranes
having the same rules are processed in the same time.

The third suggestion: The degree of parallelism increases if on the lowest
level more similar membranes are defined. Let us make a little more complex
the example presented in [11] (see Fig. 3). Suppose on the lowest level there
are two membranes ([1a 1f 1c] and [2a 1f 1c]) with the initial content a
little different, but working governed by the same rules. Results the following
evolution:

[[[1a 1f 1c] [2a 1f 1c]]]... =>
[[[1a 1b 2f 1c] [2a 2b 2f 1c]]]... => // in 5 clock cycles
[[[1a 2b 4f 1c] [2a 4b 4f 1c]]]... => // in 5 clock cycles
[[3b 8f 1c 6b 8f 1c]]... => // in 10 clock cycles
[[3d 4f 1c 6d 4f 1c]]... => // in 7 clock cycles
[[3d 3e 2f 1c 6d 6e 2f 1c]]... => // in 8 clock cycles
[4d 3e 1f 1c 7d 6e 1f 1c]... => // in 8 clock cycles
[4d 1f 1c 7d 1f 1c] 9e... => // in 10 clock cycles

The execution time has very little increased (only in the last step). It is obvious
that having 3 or more low level membranes the degree of parallelism will increase
correspondingly.

The performance can be increased more if the rules are integrated in or as a
vector representation. In the previous examples the rules were applied sequen-
tially because they were “known” only by the program issued by the sequencer
S. The sequencer must know only to apply rules defined inside the Connex Array
in an appropriate manner.

6 Concluding Remarks

Functional vs. Flynn’s taxonomy. Our functional taxonomy works better
in many-processor environment, while Flynn’s taxonomy fits better the multi-
processor environment. The functional taxonomy supposes three different types
equally involved in defining a high performance architecture, while Flynn’s tax-
onomy proposes also three kinds of parallel machines, only one of them being
(MIMD) considered as an effective efficient solution for real machines (see [6]).

92 M. Maliţa and G. Ştefan

Limited non-determinism. The physical resources added for the speculative
mechanism are used to support a sort of limited non-deterministic computation
inside an IPA.

Can we accelerate molecular computing in vector environment? The
vector section of an IPA can be used to accelerate molecular computation if
appropriate representations are imagined. Molecular computing has a huge po-
tential for data parallelism and vector processing is a special kind of data parallel
computation. The main problem is to reformulate the molecular approach to fit
with the restrictions and promises imposed/offered by the vector computation.
The Connex System has also some additional features helping the implementa-
tion of specific search functions, very helpful for rewriting rule based processing.
Various insert and delete capabilities can be used for the same purpose.

An efficient P-Architecture is slightly different from the current Con-
nex Architecture. Although the Connex environment is helpful for investi-
gating molecular computing based applications, there are needed few specific
features in order to obtain a market efficient environment.

Why not a P-language? A very useful intermediary step toward the definition
of a marketable environment for this new computation model is providing a P-
language. Working with the basic definition of P-systems is not enough flexible
for solving real and complex problems. Using a high level type language and
developing for it a specific environment will speed-up the work for a specific
membrane platform.

Acknowledgments

I would like to thank Emanuele Altieri, Frank Ho, Bogdan Mı̂ţu, Tom Thom-
son, Dominique Thiébaut, and Dan Tomescu for their technical contributions in
developing the Connex System.

References

1. Andonie, R., Maliţa, M.: The Connex Array as a Neural Network Accelerator.
In: Third IASTED International Conference on Computational Intelligence, 2007,
Bannf, Alberta, Canada, July 2-4, 2007 (accepted, 2007)

2. Asanovic, K., et al.: The Landscape of Parallel Computing Research: A View from
Berkeley, Technical Report No. UCB/EECS-2006-183 (December 18, 2006)

3. Borkar, S.Y., et al.: Platform 2015: Intel Processor and Platform Evolution for the
Next decade, Intel Corporation (2005)

4. Dubey, P.: A Platform 2015 Workload Model: Recognition, Mining and Synthesis
Moves Computers to the Era of Tera, Intel Corporation (2005)

5. Flynn, M.J.: Some computer organization and their affectiveness. IEEE Trans.
Comp. C21(9), 948–960 (1972)

6. Hennessy, J.L., Patterson, D.A.: Computer Architecture. A Quantitative Ap-
proach, 4th edn. Morgan Kaufmann, San Francisco (2007)

Membrane Computing in Connex Environment 93

7. Kleene, S.C.: General Recursive Functions of Natural Numbers. Math. Ann. 112
(1936)

8. Maliţa, M., Ştefan, G., Stoian, M.: Complex vs. Intensive in Parallel Computation.
In: International Multi-Conference on Computing in the Global Information Tech-
nology - Challenges for the Next Generation of IT&C - ICCGI 2006, Bucharest,
Romania (August 1-3, 2006)

9. Mı̂ţu, B.: private communication

10. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

11. Păun, G.: Introduction to Membrane Computing. In: Ciobanu, G., Păun, G., Pérez-
Jiménez, M.J. (eds.) Applications of Membrane Computing, ch. 1, Springer, Hei-
delberg (2006)

12. Ştefan, G.: The CA1024: A Massively Parallel Processor for Cost-Effective HDTV.
In: SPRING PROCESSOR FORUM: Power-Efficient Design, Doubletree Hotel,
San Jose, CA, May 15-17, 2006 and in SPRING PROCESSOR FORUM JAPAN,
June 8-9, 2006, Tokyo (2006)

13. Ştefan, G., Sheel, A., Mı̂ţu, B., Thomson, T., Tomescu, D.: The CA1024: A Fully
Programable System-On-Chip for Cost-Effective HDTV Media Processing. In: Hot
Chips: A Symposium on High Performance Chips, Memorial Auditorium, Stanford
University (August 20-22, 2006)

14. Ştefan, G.: The CA1024: SoC with Integral Parallel Architecture for HDTV
Processin. In: 4th International System-on-Chip (SoC) Conference & Exhibit,
Radisson Hotel Newport Beach, CA (November 1-2, 2006)

15. Ştefan, G.: Integral Parallel Computation. In: Proceedings of the Romanian Acad-
emy. Series A: Mathematics, Physics, Technical Sciences, Information Science,
vol. 7(3) (September-December 2006)

16. Thiébaut, D., Ştefan, G., Maliţa, M.: DNA search and the Connex technology.
In: International Multi-Conference on Computing in the Global Information Tech-
nology - Challenges for the Next Generation of IT&C - ICCGI 2006, Bucharest,
Romania (August 1-3, 2006)

17. Thiébaut, D., Maliţa, M.: Pipelining the Connex array. In: BARC 2007, Boston
(January 2007)

18. Xavier, C., Iyengar, S.S.: Introduction to Parallel Algorithms. John Wiley & Sons,
Inc., Chichester (1998)

APPENDIX: About VectorC

VectorC is a simulator for the Connex Architecture written in C++. In order
to program the user must know how Connex Architecture works. VectorC is de-
fined by BrightScale Inc. (www.brightscale.com) and is used to explore different
possible applications for the Connex environment. This helps C++ developers to
write code for Connex Architecture. Writing Code using C++ provides the best
in class development/debug tools, along with a familiar language to program.
VectorC consists of a set of libraries that extend the language.

Sources and examples are found on the Saint Anselm College website of Mi-
haela Malita:

http://www.anselm.edu/homepage/mmalita/ResearchS07/WebsiteS07/

94 M. Maliţa and G. Ştefan

The Connex machine is an array of vectors where different operations can be
performed in parallel. The elements of Vectors can be processed in parallel. The
machine keeps track of a selection vector called Selection. This selection is used
as a mask to put over any vector. Only the marked elements will be processed.

The class vector is the most important class. Here are some definitions that
extend the classic vector from C++.

Main files are selection.cpp, vector.cpp, vectorio.cpp, vectorlib.
cpp, mm print.cpp with their header files.

The C vector class is overloaded over the STl vector class.

Example 1. Let’s see how we can add two vectors in parallel.

vector X, Y;
X += Y; // X[i] += Y[i], for all i
X += 5; // X[i] += 5 add with a scalar, for all i

In order to compare vectors in parallel we use:

vector A, B; //declare two vectors A and B
selection C; //declare a selection vector
C = A > b; // c[i] = a[i] > b[i] for all i
C = A > 5; // c[i] = a[i] > 5 for all i

Selection C is a Boolean vector with values 1 for all the positions i, where A[i] > b
and 0 for the rest. Same for all the comparison operators (<, <=, >=, ==). As
we see the input parameter can be either a vector or scalar. �

A selection vector is a boolean vector. All the vectors and selections have the
same size, i.e., SIZEOF VECTOR=1024, for this version of the chip.

The selected elements for a vector can be also moved right or left. See below
the definition for getleft(). All the selected positions take the value of the left
element.

vector vector::getLeft() {
vector v;
for (int i = (SIZEOF_VECTOR - 1); i > 0; i--) {
v.cntnt[i] = vector::cntnt[i-1];

}
v.cntnt[0] = vector::cntnt[SIZEOF_VECTOR - 1];
return v;

}

Example 2. Let be V= 0 1 2 3 4 5 3 7 8 9 10 and all 3’s are selected. Then
the effect of getletf(V,1) means all selected are shifted to the right (or the
selected take the value of the left neighbor) Result is V= 0 1 2 2 4 5 5 7 8 9
10

The piece of code for this is:

.. initialize vector V..;

Membrane Computing in Connex Environment 95

selection Sel = (V == 3); // select positions with value =3
WHERE (Sel) { // shift right everything selected

V = getLeft(V, 1);
}
ENDW

�

Below we shall give two examples to show how we can program in parallel some
operations with Connex.

Example 3. Parallel substitution. Substitute all 5’s with 0 in a vector V. We
initialize first a vector which we call V with all the integers starting from 0. That
is V will be 0,1,2,3,4,5 Then we choose 3 indexes, 3, 10 and 15, and set
them to 5 (V[3] = V[10] = V[15] = 5). In order to change only the elements
that are 5 we use a WHILE structure where V == 5 actually marks (selects) all
the elements in V that are 5. The next operation, that is V = 0, takes place only
for those selected.
Initial V:
0 1 2 5 4 5 6 7 8 9 5 11 12 13 14 5 16 17 18 19
V after substitution:
0 1 2 0 4 0 6 7 8 9 0 11 12 13 14 0 16 17 18 19

The size of the vectors is contained in a constant variable

// uses example use of WHERE - ENDW block
#include "mm_print.h" // for printing the vector
int main () {

vector V = indexvector(); // parallel is 1 clock cycle
V[3] = 5;
V[10] = 5;
V[15] = 5;
WHERE (V == 5) { // select the 5’s

V = 0; // only 5’s become 0
}
ENDW
mm_print_vector(V);
return 0;

}

�

Example 4. Count the differences between two vectors, that is count the
number of elements that are different on the same position. We initialize two
vectors V1 and V2 with indexvector(), the function that gives all the elements
their index value. Then we modify vector V2 in two positions (we modify V1[4],
and V1[10]). Here is the data:
V1 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
V2 = 0 1 2 3 5 5 6 7 8 9 9 11 12 13 14 15 16 17 18 19

96 M. Maliţa and G. Ştefan

The algorithm goes as follows:

– we subtract the vectors in parallel (one clock cycle)
– we mark (select) the non zero positions (this type of search is done in 1 cycle)
– we count the selections (counting the marked positions is again 1 cycle (the

function getCount(Sel) from VectorC is doing this).

The output is the difference V2 - V1:
0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.

The selection vector Sel (where getcount(Sel) is applied):
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.

Number of different cells: 2.

#include "mm_print.h"
int main () {

vector V1 = indexvector(); // initialization
V1[4] = 5;
V1[10] = 9;// V1 = [0, 1, 2, 3, 5, 5, 6, 7, 8, 9, 9, 10, ...]
vector V2 = indexvector(); // V2 = [0, 1, 2, 3, ...]

selection Sel;
V2 -= V1; // V2 = V2 - V1
mm_print_vector(V2); mm_print_cycles();
Sel = (V2 != 0); // Select any non-zero differences
mm_print_vector(Sel);
cout << "Number of different cells: "

<< getCount(Sel);
return 0;

}

�

The VectorC approach is very flexible we can extend at any point the libraries
with more operations for the vector class.

Skin Output in P Systems with Minimal

Symport/Antiport and Two Membranes

Artiom Alhazov1,2 and Yurii Rogozhin1,3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD-2028 Moldova
{artiom,rogozhin}@math.md

2 Åbo Akademi University
Department of Information Technologies

Turku Center for Computer Science, FIN-20520 Turku, Finland
aalhazov@abo.fi

3 Rovira i Virgili University,
Research Group on Mathematical Linguistics,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

Abstract. It is known that symport/antiport P systems with two mem-
branes and minimal cooperation can generate any recursively enumerable
sets of natural numbers using exactly one superfluous object in the out-
put membrane, where the output membrane is an elementary membrane.
In this paper we consider symport/antiport P systems where the output
membrane is the skin membrane. In this case we prove an unexpected
characterization: symport/antiport P systems (and purely symport P
systems) with two membranes and minimal cooperation generate exactly
the recursively enumerable sets of natural numbers.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communica-
tion rules assigned to membranes, first were introduced in [24]; symport rules
move objects across a membrane together in one direction, whereas antiport
rules move objects across a membrane in opposite directions. These operations
are very powerful, i.e., P systems with symport/antiport rules have universal
computational power with only one membrane, e.g., see [12], [15], [13].

A comprehensive overview of the most important results obtained in the area
of P systems and tissue P systems with symport/antiport rules, with respect to
the development of computational completeness results improving descriptional
complexity parameters as the number of membranes and cells, the size of the
rules, and the number of objects can be found in [1].

For instance, in [3] one obtains the exact characterization of NRE for sym-
port/antiport P systems with three membranes and minimal cooperation and
for corresponding purely symport P systems.

In [5] one shows that if some P system with two membranes and with min-
imal cooperation, i.e., a P system with symport/antiport rules of size one or a

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 97–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 A. Alhazov and Y. Rogozhin

P system with symport rules of size two, generates a set of numbers containing
zero, then this set is finite. After that one proves that P systems with sym-
port/antiport rules of size one can generate any recursively enumerable set of
natural numbers without zero (i.e., they are computationally complete with just
one superfluous object remaining in the output membrane at the end of a
halting computation). The same result is true also for purely symport P systems
of size two. Therefore, one superfluous object is both necessary and sufficient in
case of two membranes.

The question about precise characterization of computational power of sym-
port/antiport P systems (purely symport P systems) with two membranes and
minimal cooperation is still open.

Interpreting the result of the computation as the sequence of terminal symbols
sent to the environment, one shows that P systems with two membranes and
symport rules of size two or symport/antiport rules of size one generate all
recursively enumerable languages [6].

In this paper we show that P systems with minimal symport/antiport (and
purely symport P systems) with two membranes characterize NRE when we
consider the output in the skin membrane rather than the elementary one.

2 Basic Notations and Definitions

For the basic elements of formal language theory needed in the following, we
refer to [30]. We just list a few notions and notations: N denotes the set of
natural numbers (i.e., of non-negative integers). V ∗ is the free monoid generated
by the alphabet V under the operation of concatenation and the empty string,
denoted by λ, as unit element; by NRE, NREG, and NFIN we denote the family
of recursively enumerable sets, regular sets, and finite sets of natural numbers,
respectively. For k ≥ 1, by NkRE we denote the family of recursively enumerable
sets of natural numbers excluding the initial segment 0 to k − 1. Particularly,
N1RE = {N ∈ NRE | 0 /∈ N}. The families of recursively enumerable sets of
vectors of natural numbers are denoted by PsRE.

2.1 Counter Automata

A non-deterministic counter automaton (see [11], [1]) is a construct

M = (d, Q, q0, qf , P) , where:

– d is the number of counters, and we denote D = {1, ..., d};
– Q is a finite set of states, and without loss of generality, we use the notation

Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, ..., f},
– q0 ∈ Q is the initial state,
– qf ∈ Q is the final state, and
– P is a finite set of instructions of the following form:

1. (qi → ql, k+), with i, l ∈ F, i �= f, k ∈ D (“increment” -instruction). Add
one to counter k and change the state of the system from qi to ql.

Skin Output in P Systems with Minimal Symport/Antiport 99

2. (qi → ql, k−), with i, l ∈ F, i �= f, k ∈ D (“decrement” -instruction). If the
value of counter k is greater than zero, then this instruction decrements it
by 1 and changes the state of the system from qi to ql. Otherwise (when the
value of counter k is zero) the computation is blocked in state qi.

3. (qi → ql, k = 0), with i, l ∈ F, i �= f, k ∈ D (“test for zero” -instruction).
If the value of counter k is zero, then this instruction changes the state of
the system from qi to ql. Otherwise (the value stored in counter k is greater
than zero) the computation is blocked in state qi.

4. halt. This instruction stops the computation of the counter automaton, and
it has to be only assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state q0
with all counters being equal to zero. The result of the computation of a counter
automaton is the value of the first k counters when the automaton halts in state
qf ∈ Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of k-vectors of natural numbers. If k = 1, then by N(M) we
denote the corresponding numeric set generated by M .

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basics of membrane computing, e.g.,
from [26]; see the P systems web page, [34], for the comprehensive information.

A P system with symport/antiport rules is a construct

Π = (O, μ, w1, . . . , wk, E, R1, . . . , Rk, i0), where:

1. O is a finite alphabet of symbols called objects;
2. μ is a membrane structure consisting of k membranes that are labeled in a

one-to-one manner by 1, 2, . . . , k;
3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated with

the region i (delimited by membrane i);
4. E ⊆ O is the set of objects that appear in the environment in an infinite

number of copies;
5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated

with membrane i; these rules are of the forms (x, in) and (y, out) (symport
rules) and (y, out; x, in) (antiport rules), respectively, where x, y ∈ O+;

6. i0 is the label of a membrane of μ that identifies the output region.

A P system with symport/antiport rules is defined as a computational device
consisting of k hierarchically nested membranes identifying k distinct regions
(the membrane structure μ), where to each membrane i there are assigned a
multiset of objects wi and a finite set of symport/antiport rules Ri, 1 ≤ i ≤ k.
A rule (x, in) ∈ Ri permits the objects specified by x to be moved into region
i from the immediately outer region. Notice that for P systems with symport
rules the rules in the skin membrane of the form (x, in), where x ∈ E∗, are

100 A. Alhazov and Y. Rogozhin

forbidden. A rule (x, out) ∈ Ri permits the multiset x to be moved from region i
into the outer region. A rule (y, out; x, in) permits the multisets y and x, which
are situated in region i and the outer region of i, respectively, to be exchanged.
It is clear that a rule can be applied if and only if the multisets involved by this
rule are present in the corresponding regions. The size of a symport rule (x, in)
or (x, out) is |x|, while the size of an antiport rule (y, out; x, in) is max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules is obtained
by applying the rules in a non-deterministic maximally parallel manner. Specif-
ically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport rules do not allow the system to modify
the objects placed inside the regions. Initially, each region i contains the corre-
sponding finite multiset wi, whereas the environment contains only objects from
E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P
system reaches a configuration where no rule can be applied anymore. The result
of a successful computation is a natural number obtained by counting all objects
in region i0. The set of natural numbers computed in this way by a P system
Π is denoted by N(Π). If the multiplicity of each object is counted separately,
then a vector of natural numbers is obtained, denoted by Ps(Π), see [26].

By NOPm(syms, antit) we denote the family of sets of natural numbers gener-
ated by P systems with symport/antiport rules with at most m > 0 membranes,
symport rules of size at most s ≥ 0, and antiport rules of size at most t ≥ 0.
In the papers on P systems, following [26], i0 is assumed to be an elementary
membrane. In this paper we will write N

skinOPm(syms, antit) if i0 is the skin
membrane. If t = 0, then we may omit antit.

3 Main Results

Theorem 1. N
skinOP2(sym1, anti1) = NRE.

Proof. We simulate a counter automaton M = (d, Q, q0, qf , P). Recall that
M starts with empty counters. We also suppose that all instructions from P
are labeled in a one-to-one manner with elements of {1, . . . , n} = I, n is a
label of the halt instruction and I ′ = I \ {n}. We denote by I+, I−, and I=0
the set of labels for the “increment” -, “decrement” -, and “test for zero” -
instructions, respectively. We also use the following notation: C = {ck}, k ∈ D
and Q′ = Q \ {q0}. We construct the P system Π1 as follows:

Π1 = (O, [1 [2]2]1, w1, w2, E, R1, R2, 1),
O = E ∪ {q0, #, L, T1, T2, P2, J1, J2, J3} ∪ {bj | j ∈ I} ∪ {dj | j ∈ I ′},

E = Q′ ∪ C ∪ {aj | j ∈ I} ∪ {a′j , ej | j ∈ I ′} ∪ {J0, P1} ∪ {Fi | 0 ≤ i ≤ 9},

w1 = q0LJ1J2J3,

w2 = #T1T2P2

∏

j∈I

bj

∏

j∈I′

dj ,

Ri = Ri,s ∪ Ri,r ∪ Ri,f , i = 1, 2.

Skin Output in P Systems with Minimal Symport/Antiport 101

We code the counter automaton as follows. Region 1 will hold the current
state of the automaton, represented by a symbol qi ∈ Q and also the value of all
counters, represented by the number of occurrences of symbols ck ∈ C, k ∈ D,
where D = {1, ..., d}.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system we present is the union of all these
parts. The rules Ri are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

The parts of the computations illustrated in the following describe different
phases of the evolution of the P system. For simplicity, we focus on explaining a
particular phase and omit the objects that do not participate in the evolution at
that time. Each rectangle represents a membrane, each variable represents a copy
of an object in a corresponding membrane (symbols outside of the outermost
rectangle are found in the environment). In each step, the symbols that will
evolve (will be moved) are written in boldface. The labels of the applied rules
are written above the symbol ⇒.

1. START
We use the following idea: in our system we have a symbol L which moves from
region 1 to the environment and back in an infinite loop. This loop may be
stopped only if all stages are completed correctly.

R1,s = {1s1 : (L, out), 1s2 : (L, in)}.

R2,s = ∅.

Notice that some rules are never executed during a correct simulation: ap-
plying them would lead to an infinite computation. To help the reader, we will
underline the labels of such rules in the description below.

2. RUN

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+, −, = 0}}
∪ {1r2 : (qf , out; an, in)}
∪ {1r3 : (bj , out; a′j, in) | j ∈ I ′}
∪ {1r4 : (aj , out; J0, in), 1r5 : (J1, out; bj, in) | j ∈ I}
∪ {1r6 : (J0, out; J1, in)}
∪ {1r7 : (a′j , out; ck, in) | (j : qi → ql, ck+) ∈ P}
∪ {1r8 : (a′j , out) | j ∈ I− ∪ I=0}
∪ {1r9 : (dj , in) | j ∈ I+ ∪ I=0}

102 A. Alhazov and Y. Rogozhin

∪ {1r10 : (ck, out; dj , in) | (j : qi → ql, ck−) ∈ P}
∪ {1r11 : (J3, out; dj , in) | j ∈ I−}
∪ {1r12 : (J3, out; J1, in)}
∪ {1r13 : (dj , out; ej, in) | j ∈ I ′}
∪ {1r14 : (ej , out, ql, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+, −, = 0}}
∪ {1r15 : (bn, out; F0, in)}
∪ {1r16 : (#, out), 1r17 : (#, in)}.

R2,r = {2r1 : (bj , out; aj, in), 2r2 : (aj , out; J2, in) | j ∈ I}
∪ {2r3 : (aj , out; J1, in) | j ∈ I}
∪ {2r4 : (dj , out; a′j, in) | j ∈ I ′}
∪ {2r5 : (a′j , out; ck, in) | (j : qi → ql, ck = 0) ∈ P}
∪ {2r6 : (a′j , out; ej, in) | j ∈ I=0}
∪ {2r7 : (a′j , out; J1, in) | j ∈ I=0}
∪ {2r8 : (ej , out; dj , in) | j ∈ I=0}
∪ {2r9 : (ej , out; J1, in) | j ∈ I=0}
∪ {2r10 : (dj , in) | j ∈ I+ ∪ I−}
∪ {2r11 : (a′j , out) | j ∈ I+ ∪ I−}
∪ {2r12 : (J2, out; bj, in) | j ∈ I ′}
∪ {2r13 : (J2, out; J1, in), 2r14 : (#, out; J0, in)}.

First of all, we mention that if during the phase RUN object J3 comes to the
environment by rules 1r11, 1r12 (Scenario 0), it remains there forever and
cannot move object L to region 2 (during the phase END), thus to stop the
infinite loop. So, the computation never halts.

Let us explain the synchronization of aj coming to the environment and bj

leaving the environment: the first one brings J0 into region 1 while the latter
brings J1 into the environment; then rule 1r6 moves J0 and J1 back.

If aj comes to the environment without bj leaving it or bj is in region 1 or 2
at that moment (it is possible after applying rules 2r3, 2r7, 2r13), J1 remains
in region 1 (or 2) and J0 comes to region 1 and after that in region 2 by rules
1r4, 2r14 (Scenario 1), thus causing an endless computation since 1r16 and
1r17 are always applicable.

If bj leaves the environment without aj coming there, J0 remains in the envi-
ronment and J1 comes there (Scenario 2), so 1r12 is applied and J3 comes to
the environment. The computation never halts, see scenario 0.

Scenario 3 takes place when two symbols aj and symbol bj, j ∈ I appear in
region 1 and in the environment accordingly. In this case rules 1r4,1r5 will be
applied, and rule 1r4 two times. Thus, two symbols J0 appear in region 1 and
rule 2r14 will be applied eventually. The computation never halts, see scenario 1.

We also mention that applying rule 1r11 causes scenario 0 (modeling
a “decrement”-instruction, with no ck in region 1); applying 2r5 leads to

Skin Output in P Systems with Minimal Symport/Antiport 103

scenario 3 (modeling a “test for zero”-instruction, with some ck in region 1),
and applying 2r7 and 2r9 eventually causing scenario 1. Therefore, in order for
a computation to halt, no underlined rules should be applied.

We will now consider the “main” line of computation. We explain the behavior
of simulating the instruction (j : qi → ql, ckγ). Index s stands for any possible
instruction associated to state ql.

“Increment” -instruction:

qlajasa
′
jejckJ0 qiJ1J2J3 bjdj# ⇒1r1 qlqiasa

′
jejckJ0 ajJ1J2J3 bjdj# ⇒2r1

qlqiasa′jejckJ0 bjJ1J2J3 ajdj# ⇒1r3,2r2 qlqiasbjejckJ0 a′jJ1ajJ3 J2dj#

⇒1r4,1r5,2r4 qlqiajasejckJ1 bjdjJ0J3 J2a′j# (A)

⇒1r6,1r13,2r11,2r12 qlqiajasdjckJ0 J1J2a′jejJ3 bj# ⇒1r7,1r9,1r14

qiajasa
′
jejJ0 qldjJ1J2J3ck bj# ⇒1r1,2r10 qlqiaja

′
jejJ0 asJ1J2J3ck bjdj#

In that way, qi is replaced by ql and ck is moved from the environment into
region 1. Notice that symbols aj , bj, a′j , dj , ej , J0, J1, J2 have returned to their
original positions. Symbol dj returns to region 2 in the first step of the simulation
of the next instruction (the last step of the illustration).

“Decrement” -instruction:
(i) There is some ck in region 1:

We consider configuration (A) above with symbol ck in region 1.

qlqiajasejJ1 bjdjJ0J3ck J2a′j# ⇒1r6,1r13,2r11,2r12

qlqiajasdjJ0 J1J2a′jejJ3ck bj# ⇒1r8,1r10,1r14

qiajasa
′
jejckJ0 qlJ1J2J3dj bj# ⇒1r1,2r10 qlqiaja

′
jejckJ0 asJ1J2J3 bjdj#

In the way described above, qi is replaced by ql and ck is removed from region
1 to the environment. Notice that symbols aj , a′j , bj , dj , ej , J0, J1, J2 have
returned to their original positions. Symbol dj returns to region 2 in the first
step of the simulation of the next instruction (the last step of the illustration).

(ii) There is no ck in region 1:
Again we start with configuration (A).

qlqiajasejJ1 bjdjJ0J3 J2a′j#

⇒1r6,1r13,2r11,2r12 qlqiajasdjJ0 J1J2a′jejJ3 bj# ⇒1r8,1r11,1r14

Now rule 1r11 will be applied, leading to an infinite computation (see scenario 0).

104 A. Alhazov and Y. Rogozhin

“Test for zero” -instruction:
qi is replaced by ql if there is no ck in region 1, otherwise a′j in region 2 exchanges
with ck in region 1 and the computation will never stop.
(i) There is no ck in region 1:

We consider configuration (A) above.

qlqiajasejJ1 bjdjJ0J3 J2a′j# ⇒1r6,1r13,2r12 qlqiajasdjJ0 J1J2ejJ3 a′jbj#

⇒1r9,2r6 qlqiajasJ0 djJ1J2J3a′j ejbj# ⇒1r8,2r8 qlqiajasa
′
jJ0 ejJ1J2J3 bjdj#

⇒1r14 qiajasa
′
jejJ0 qlJ1J2J3 bjdj#

In this case, qi is replaced by ql. Notice that symbols aj, a′j , bj , dj , ej, J0, J1,
J2 have returned to their original positions.

(ii) There is some ck in region 1:
Consider configuration (A) with object ck in region 1:

qlqiajasejJ1 bjdjJ0J3ck J2a′j# ⇒1r6,1r13,2r5,2r12

Now applying rule 2r5 leads to an infinite computation.

qlqiajasasa
′
sdjJ0J0 J1J2a′jejJ3 bjbsck# ⇒1r8,1r9,1r14

qiajasasa
′
ja
′
sejJ0J0 qldjJ1J2J3 bjbsck# ⇒1r1,1r13

qlqiajasa
′
ja
′
sdjJ0J0 asejJ1J2J3 bjbs# ⇒1r14,2r1

qiajasa
′
ja
′
sejJ0J0 bsqlJ1J2J3 asdj# ⇒1r1,1r3,2r2

qlqiaja
′
jbsejJ0J0 asasa′sJ1J2J3 dj#

So, scenario 3 takes place and the computation never halts.

3. END

R1,f = {1f1 : (T1, out; F1, in)} ∪ {1f2 : (Fi, out; Fi+1, in) | 1 ≤ i ≤ 8}
∪ {1f3 : (T2, out; P1), 1f4 : (P2, out), 1f5 : (F0, out; P2, in)}.

R2,f = {2f1 : (T1, out; F0, in), 2f2 : (F0, out), 2f3 : (T2, out; F0, in)}
∪ {2f4 : (P1, in), 2f5 : (P1, out; J1, in), 2f6 : (P1, out; J2, in)}
∪ {2f7 : (P1, out; J3, in), 2f8 : (J3, out; L, in), 2f9 : (P2, out; F9, in)}.

Skin Output in P Systems with Minimal Symport/Antiport 105

Once the counter automaton reaches the final state, qf is in region 1 and it
exchanges with object an (rule 1r2) and object F0 will be moved to region 1
in several steps (rules 1r15). Further symbol F0 takes T1 and T2 to region 1,
in either order. The duty of T2 is to bring P1 from the environment to region
2, where P1 pumps objects J1, J2, J3 from region 1 to region 2. If on the pre-
vious steps of simulation of counter automaton M object J3 was moved to the
environment (by rules 1r11, 1r12), scenario 0 takes place and the computation
never halts, as there is only one possibility to stop an infinite loop with object
L, i.e. to move it to region 2 by rule 2f8.

T1 starts a chain of exchanges of objects Fi, as a result object F9 will be moved
to region 1 and then object P2 will be moved to the environment, where it pumps
object F0 to the environment. So, at the end of the computation there are only
objects ck, k ∈ D in region 1. The entire simulation shows N(Π1) ⊇ N(M).

The converse inclusion holds because the system may only halt if it has cor-
rectly simulated a computation of the counter automaton (according to the de-
sign of the system) from state q0 to state qf , while if behavior of M is not
simulated correctly, then the computation never halts and hence does not con-
tribute to N(Π1). This shows that P systems with two membranes and sym-
port/antiport rules of size one with the output in the skin membrane generate
all recursively enumerable sets of natural numbers. Since the power of such sys-
tems cannot exceed that of Turing machines, the statement of the theorem is an
equality. �

Theorem 2. N
skinOP2(sym2) = NRE.

Proof. As in the proof of Theorem 1 we simulate a counter automaton M =
(d, Q, q0, qf , P) that starts with empty counters. We suppose that all instructions
from P are bijectively labelled with elements of {1, . . . , n} = I, n is a label of the
halt instruction, I ′ = I \ {n}, and I = I+ ∪ I−∪ I=0, where we denote by I+, I−,
and I=0 the set of labels for the “increment” -, “decrement” -, and “test for zero”
-instructions, respectively. We use also the next notations: C = {ci | 1 ≤ i ≤ d},
F = {0, . . . f} and F ′ = F \ {f}. We construct the P system Π2 as follows:

Π2 = (O, [1 [2]2]1, w1, w2, E, R1, R2, 1),
O = E ∪ Q ∪ {bj, dj , d

′
j | j ∈ I ′} ∪ {a1, #1, #2, L, t1, t2, t4, t5, t6, t8}

E = C ∪ {aj | j ∈ I ′ \ {1}} ∪ {d′′j | j ∈ I ′} ∪ {t0, t3, t7}

w1 = q0a1#1Lt1t6
∏

j∈I′

bj ,

w2 = #2t2t
n
4 t5t8

∏

i∈F\{0}
qi

∏

j∈I′

dj

∏

j∈I′

d′j ,

Ri = Ri,s ∪ Ri,r ∪ Ri,f , i ∈ {1, 2}.

We code the counter automaton as follows: the environment will hold the cur-
rent state of the automaton, represented by a symbol qi ∈ Q; region 1 will hold

106 A. Alhazov and Y. Rogozhin

the value of all counters, represented by the number of occurrences of symbols
ck ∈ C, k ∈ D, where D = {1, . . . , d}.

As in Theorem 1 we split our proof into several parts that depend on the
logical separation of the behavior of the system and use the same agreements.
The rules Ri are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

1. START
As in Theorem 1 we use the following idea: in our system we have a symbol L
which moves from region 1 to the environment and back in an infinite loop. This
loop may be stopped only if all stages completed correctly.

R1,s = {1s1 : (L, out), 1s2 : (L, in)},

R2,s = ∅.

2. RUN

R1,r = {1r1 : (qiaj , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+, −, = 0}}
∪ {1r2 : (ajdj , out) | j ∈ I ′}
∪ {1r3 : (djck, in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {1r4 : (dj , in) | j ∈ I−}
∪ {1r5 : (djd

′′
j , in) | j ∈ I=0}

∪ {1r6 : (d′j , out) | j ∈ I+}
∪ {1r7 : (d′jck, out) | (j : qi → ql, kγ) ∈ P, k ∈ D, γ ∈ {−, = 0}}
∪ {1r8 : (d′jd

′′
j , in) | j ∈ I+ ∪ I−}

∪ {1r9 : (d′′j ql, out) | (j : qi → ql, kγ) ∈ P, k ∈ D, γ ∈ {−, +, = 0}}
∪ {1r10 : (#2, in), 1r11 : (#2, out)},

R2,r = {2r1 : (ajbj , in) | j ∈ I ′} ∪ {2r2 : (qi, in) | i ∈ F ′}
∪ {2r3 : (ajdj , out), 2r4 : (bjd

′
j , out), 2r5 : (dj , in) | j ∈ I ′}

∪ {2r6 : (d′jd
′′
j , in) | j ∈ I ′}

∪ {2r7 : (d′′j ql, out) | (j : qi → ql, kγ) ∈ P, k ∈ D, γ ∈ {−, +, = 0}}
∪ {2r8 : (bj#2, out), 2r9 : (d′′j #1, in) | j ∈ I ′}
∪ {2r10 : (d′j#1, in) | j ∈ I−}
∪ {2r11 : (#1#2, out)}.

Now we explain the behavior of simulating the instruction (j : qi → ql, ckγ).
Index s stands for any possible instruction associated to state ql.

Skin Output in P Systems with Minimal Symport/Antiport 107

“Increment”-instruction:

qiajasd
′′
j ck bj#1 qldjd

′
j#2 ⇒1r1 d′′j asck qiajbj#1 qldjd

′
j#2 ⇒2r1,2r2

d′′j asck #1 qiqlajdjd′jbj#2 ⇒2r3,2r4 d′′j asck ajdjd′jbj#1 qiql#2 (B)

Now there are two variants of computations (depending on the application of
rule 1r2 or rule 2r5). It is easy to see that the application of rule 2r5 leads to
an infinite computation. In this case rule 2r1 will be applied, symbol bj again
appears in region 2, but symbol d′j is absent in this region at that moment (it is
situated in the environment) and we cannot apply rule 2r4, so symbol #2 will be
moved to region 1 eventually by rule 2r8, that leads to an infinite computation
(rules 1r10, 1r11).

So, consider applying rule 1r2:

d′′j asck ajdjd′jbj#1 qiql#2 ⇒1r2,1r6 d′jd
′′
j djckajas bj#1 qiql#2 ⇒1r3,1r8

ajas d′jd
′′
j djckbj#1 qiql#2

Now there are two variants of computations (depending on the application of
rule 1r6 or rule 2r6). It is easy to see that the application of rule 1r6 leads to an
infinite computation. In this case rule 2r9 will be applied and symbol #1 will be
moved to region 2 and after that symbol #2 will appear in region 1 (rule 2r11)
that leads to an infinite computation (rules 1r10, 1r11).
So, consider applying rule 2r6:

ajas d′jd
′′
j djckbj#1 qiql#2 ⇒2r5,2r6 ajas ckbj#1 qiqld′′j djd

′
j#2 ⇒2r7

ajas qld′′j ckbj#1 qidjd
′
j#2 ⇒1r9 ajqlasd

′′
j ckbj#1 qidjd

′
j#2

In that way, qi is replaced by ql and ck is moved from the environment into region
1. Notice that symbols aj, bj , dj , d

′
j , d
′′
j have returned to their original positions.

“Decrement” -instruction:
(i) There is some ck in region 1.
We consider configuration (B) above with symbol ck in region 1.

d′′j as ajdjd′jckbj#1 qiql#2 ⇒1r2,1r7 d′jd
′′
j djajasck bj#1 qiql#2 ⇒1r4,1r8

ajasck d′jd
′′
j djbj#1 qiql#2

Now there are two variants of computations (depending on the application of
rule 1r7 or rule 2r6). It is easy to see that the application of rule 1r7 leads to an

108 A. Alhazov and Y. Rogozhin

infinite computation. In this case rule 2r9 will be applied and symbol #1 will be
moved to region 2 and after that symbol #2 will appear in region 1 (rule 2r11)
that leads to an infinite computation (rules 1r10, 1r11). So, consider applying
rule 2r6:

ajasck d′jd
′′
j djbj#1 qiql#2 ⇒2r5,2r6 ajasck bj#1 qiqld′′j djd

′
j#2 ⇒2r7

ajasck qld′′j bj#1 qidjd
′
j#2 ⇒1r9 ajqlasd

′′
j ck bj#1 qidjd

′
j#2

In the way described above, qi is replaced by ql and ck is removed from region
1 to the environment. Notice that symbols aj , bj, dj , d

′
j , d
′′
j have returned to their

original positions.

(ii) There is no ck in region 1.
Again we start with configuration (B).

d′′j as ajdjd′jbj#1 qiql#2

In this case rule 2r10 will be applied eventually that leads to an infinite com-
putation.

“Test for zero” -instruction:
Symbol qi is replaced by symbol ql if there is no ck in region 1, otherwise d′j in
region 1 will moved in the environment and the computation will never stop.

(i) There is no ck in region 1.
Again we start with configuration (B).

d′′j as ajdjd′jbj#1 qiql#2 ⇒1r2 d′′j djajas d′jbj#1 qiql#2 ⇒1r5

ajas d′′j d
′
jdjbj#1 qiql#2 ⇒2r5,2r6 ajas bj#1 qiqld′′j d′jdj#2 ⇒2r7

ajas qld′′j bj#1 qid
′
jdj#2 ⇒1r9 qlasajd

′′
j bj#1 qid

′
jdj#2

In that way, qi is replaced by ql. Notice that symbols aj , bj, dj , d
′
j , d
′′
j have re-

turned to their original positions.

(i) There is some ck in region 1.
We consider configuration (B) above with symbol ck in region 1.

d′′j as ajdjd′jckbj#1 qiql#2 ⇒1r2,1r7 d′jd
′′
j djajasck bj#1 qiql#2 ⇒1r5

d′jajasck djbjd′′j #1 qiql#2

Now rule 2r9 will be applied eventually that leads to an infinite computation.

Skin Output in P Systems with Minimal Symport/Antiport 109

3. END

R1,f = {1f1 : (qf t0, in), 1f2 : (t0t1, out), 1f3 : (t1t3, in) 1f4 : (t4#1, out)}
∪ { 1f5 : (t4bj, out) | j ∈ I ′}
∪ { 1f6 : (t5t6, out), 1f7 : (t6t7, in), 1f8 : (t8, out)}.

R2,f = {2f1 : (qf t0, in), 2f2 : (t0t2, out), 2f3 : (Lt2, in), 2f4 : (t3, in),
2f5 : (t3t4, out), 2f6 : (t3t5, out), 2f7 : (t7t1, in),
2f8 : (t6t7, in), 2f9 : (t7t8, in)}.

Once the counter automaton reaches the final state, qf is in the environment
and brings in region 1 symbol t0 (rule 1f1). Now there are two variants of
computations (depending on the application of rule 1f2 or rule 2f1). It is easy
to see that the application of rule 1f2 leads to an infinite computation as there
is no chance for symbol t0 to appear in region 2 and takes symbol L in region 2,
thus to stop an infinite loop (rules 2f2,2f3).

So, consider the applying rule 2f1. In this case symbol qf brings symbol t0
to region 2 and symbol t2 stops an infinite loop (rules 2f2,2f3). Now rule 1f2
will be applied and symbol t1 will be moved to the environment where it takes
symbol t3 and they appear in region 1 (rule 1f3). Further symbol t3 pumps
symbols t4 to region 1 from region 2 (rules 2f4,2f5), there they take symbols bj

and symbol #1 and bring them to the environment (rules 1f4,1f5). Symbol t3
also pumps symbol t5 to region 1 from region 2 (rule 2f6) and after that symbol
t7 appears in region 1 (rules 1f6,1f7). Now with help of symbol t7 two symbols
t6 and t1 will be moved to region 2 (rules 2f7,2f8,2f9). Finally, symbol t8, that
appears in region 1 by rule 2f9, will be moved to the environment (rule 1f8).

So, at the end of the computation there are only objects ck, k ∈ D in region 1.
The entire simulation shows the inclusion N(Π2) ⊇ N(M).

The converse inclusion also holds because the system may only halt if it
has correctly simulated a computation of the counter automaton (according to
the design of the system) from state q0 to state qf , while if behavior of M
is not simulated correctly, then the computation never halts and hence does
not contribute to N(Π2). This shows that P systems with two membranes and
symport rules of size two with the output in the skin membrane generate all
recursively enumerable sets of natural numbers. Since the power of such systems
cannot exceed that of Turing machines, the statement of the theorem is an
equality. �
Program Check. P systems in both theorems were checked for errors with the
help of a program that simulates P systems, originally developed by the first
author and modified by Galina Magariu and Tatiana Verlan with assistance of
Vladimir Rogojin.

4 Conclusions

In this paper we prove the new results that any recursively enumerable set
of natural numbers is generated by symport/antiport (and purely symport) P

110 A. Alhazov and Y. Rogozhin

systems with two membranes and minimal cooperation where the output mem-
brane is the skin membrane. It contrasts with the previous result where an ele-
mentary membrane is used as the output membrane, where at least one superflu-
ous object is necessary in the output membrane in order to get universality. Thus
we answered the question of Francesco Bernardini about computational power
of symport/antiport P systems with two membranes and minimal cooperation
where the output membrane is the skin membrane.

Acknowledgements

The authors acknowledge the project 06.411.03.04P from the Supreme Coun-
cil for Science and Technological Development of the Academy of Sciences of
Moldova. The first author gratefully acknowledges the support by Academy of
Finland, project 203667 and the second author gratefully acknowledges the sup-
port of European Commission, project MolCIP, MIF1-CT-2006-021666. The au-
thors acknowledge Galina Magariu and Tatiana Verlan for suggestions, most of
them incorporated in the present version of the paper.

References

1. Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Sym-
port/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer,
Heidelberg (2006)

2. Alhazov, A., Freund, R., Rogozhin, Y.: Some Optimal Results on Communicative
P Systems with Minimal Cooperation. In: [17], pp. 23–36

3. Alhazov, A., Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: Communica-
tive P Systems with Minimal Cooperation. In: Mauri, G., Păun, G., Pérez-Jiménez,
M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 161–177.
Springer, Heidelberg (2005)

4. Alhazov, A., Rogozhin, Y.: Minimal Cooperation in Symport/Antiport P Systems
with One Membrane. In: [18], pp. 29–34

5. Alhazov, A., Rogozhin, Y.: Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes. In: Hoogeboom, H.J., Păun, G., Rozen-
berg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 135–153. Springer,
Heidelberg (2006)

6. Alhazov, A., Rogozhin, Y.: Generating Languages by P Systems with Minimal Sym-
port/Antiport. Computer Science Journal of Moldova 14, 3(42), 299–323 (2006)

7. Alhazov, A., Rogozhin, Y., Verlan, S.: Symport/Antiport Tissue P Systems with
Minimal Cooperation. In: [17], pp. 37–52

8. Alhazov, A., Rogozhin, Y., Verlan, S.: Minimal Cooperation in Symport/Antiport
Tissue P Systems. International Journal of Foundation of Computer Science 18(1),
163–179 (2007)

9. Bernardini, F., Gheorghe, M.: On the Power of Minimal Symport/Antiport. In:
Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing. LNCS, vol. 2933, pp. 72–83. Springer, Heidelberg (2004)

Skin Output in P Systems with Minimal Symport/Antiport 111

10. Bernardini, F., Păun, A.: Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice. In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing. LNCS, vol. 2933, pp. 43–45. Springer, Heidelberg
(2004)

11. Freund, R., Oswald, M.: GP Systems with Forbidding Context. Fundamenta In-
formaticae 49, 1–3, 81–102 (2002)

12. Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Chan-
nels. In: [29], pp. 261–268

13. Freund, R., Păun, A.: Membrane Systems with Symport/Antiport: Universality
Results. In: [29], pp. 270–287

14. Frisco, P.: About P Systems with Symport/Antiport. In: Păun, G., Riscos-Núñez,
A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week
on Membrane Computing. TR 01/2004, Research Group on Natural Computing,
University of Seville, pp. 224–236 (2004)

15. Frisco, P., Hoogeboom, H.J.: Simulating Counter Automata by P Systems with
Symport/Antiport. In: [29], pp. 288–301

16. Frisco, P., Hoogeboom, H.J.: P Systems with Symport/Antiport Simulating
Counter Automata. Acta Informatica 41, 2–3, 145–170 (2004)

17. Gutiérrez-Naranjo, M.A., Păun, G., Pérez-Jiménez, M.J. (eds.): Cellular Com-
puting (Complexity Aspects). ESF PESC Exploratory Workshop. Fénix Editora,
Sevilla (2005)

18. Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D.
(eds.): Third Brainstorming Week on Membrane Computing. RGNC TR 01/2005,
University of Seville. Fénix Editora, Sevilla (2005)

19. Kari, L., Mart́ın-Vide, C., Păun, A.: On the Universality of P Systems with Min-
imal Symport/Antiport Rules. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.)
Aspects of Molecular Computing. LNCS, vol. 2950, pp. 254–265. Springer, Heidel-
berg (2003)

20. Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: About P Systems with
Minimal Symport/Antiport Rules and Four Membranes. In: [22], pp. 283–294

21. Mart́ın-Vide, C., Păun, A., Păun, G.: On the Power of P Systems with Symport
Rules. Journal of Universal Computer Science 8(2), 317–331 (2002)

22. Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.):
WMC 2004. LNCS, vol. 3365. Springer, Heidelberg (2005)

23. Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967)

24. Păun, A., Păun, G.: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20, 295–305 (2002)

25. Păun, G.: Computing with Membranes. Journal of Computer and Systems Sci-
ence 61, 108–143 (2000)

26. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
27. Păun, G.: Further Twenty Six Open Problems in Membrane Computing. In: [18],

pp. 249–262 (2005)
28. Păun, G.: 2006 Research Topics in Membrane Computing. In: Gutiérrez-Naranjo,

M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brain-
storming Week on Membrane Computing, vol. 1, pp. 235–251. Fénix Edit., Sevilla
(2006)

29. Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing.
LNCS, vol. 2597. Springer, Heidelberg (2003)

30. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.
Springer, Berlin (1997)

112 A. Alhazov and Y. Rogozhin

31. Vaszil, G.: On the Size of P Systems with Minimal Symport/Antiport. In: [22], pp.
422–431

32. Verlan, S.: Optimal Results on Tissue P Systems with Minimal Symport/ Antiport.
In: EMCC meeting, Lorentz Center, Leiden (2004)

33. Verlan, S.: Tissue P Systems with Minimal Symport/Antiport. In: Calude, C.S.,
Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 418–430. Springer,
Heidelberg (2004)

34. P Systems Webpage, http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

On the Reachability Problem in P Systems with

Mobile Membranes

Bogdan Aman2 and Gabriel Ciobanu1,2

1 “A.I.Cuza” University of Iaşi, Faculty of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania

2 Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. We investigate the problem of reaching a configuration from
another configuration in mobile membranes, and prove that the reach-
ability can be decided by reducing it to the reachability problem of a
version of pure and public ambient calculus without the capability open.

1 Introduction

Membrane systems (called also P systems) are introduced by Gh. Păun in [9]
as a class of parallel computing devices inspired by biology. The definition of
this computing model starts from the observation that any biological system is
a complex hierarchical structure, with a flow of materials and information which
underlies their functioning. The membrane computing deals with the evolution of
systems composed by objects, rules and membranes nested in other membranes.
The P systems with mobile membranes [6] is a model which expresses mobility
by the movement of membranes in such a system. The movement is given mainly
by two operations: exocytosis and endocytosis.

Ambient calculus is a formalism introduced in [3] to describe concurrent and
mobile computation. In contrast with other formalisms for mobile processes such
as the π-calculus [8] based on the notion of communication, the ambient calculus
is based on the notion of movement. An ambient is a named location, and repre-
sents a unit of movement. Ambients mobility is controlled by the capabilities in,
out, and open; the mobile ambients describe the migration of processes between
certain boundaries.

The membrane systems and mobile ambients have similar structures and com-
mon concepts. Both have a hierarchical structure, work with an explicit notion
of location, and are used to model various aspects on the distributed systems.
The distributed features of mobile ambients are described in [3], and distributed
algorithms for membrane systems are presented in [4].

In this paper we investigate the problem of reaching a certain configuration
in mobile membranes starting from a given configuration. We prove that reach-
ability in mobile membranes can be decided by reducing it to the reachability
problem of a version of pure and public ambient calculus from which the open

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 113–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

114 B. Aman and G. Ciobanu

capability has been removed. It is proven in [1] that the reachability for this
fragment of ambient calculus is decidable by reducing it to marking reachability
for Petri nets, which is proven to be decidable in [7]. Problems like reachability
and boundedness are investigated in [5] for other classes of P systems, namely
for extensions of PB systems with volatile membranes.

The structure of the paper is as follows. In Section 2 we present the mobile
membrane systems, whereas in Section 3 we present a version of pure and public
mobile ambients without the capability open. The core of the paper is repre-
sented by Section 4, where we investigate the reachability problem for mobile
membranes. Conclusions and references end the paper.

2 Mobile Membranes Systems

Definition 1. A mobile membrane system is a construct∏
= (V ∪ V , H ∪ H, μ, w1, . . . , wn, R), where:

1. n ≥ 1 is the degree of the system, given by the initial total number of mem-
branes;

2. V ∪ V is an alphabet (its elements are called objects), where V ∩ V = ∅;
3. H ∪ H is a finite set of labels for membranes, where H ∩ H = ∅;
4. μ is a membrane structure consisting of n membranes labeled (not necessarily

in a one-to-one manner) with elements of H;
5. w1, w2, . . . , wn are multisets of objects placed in the membranes of the system;
6. R is a finite set of developmental rules, of the following forms:

(a) a↓→ a↓ a↓, for a↓∈ V , a↓∈ V ; replication rule
The objects a↓ are used to create new objects a↓ without being consumed.

(b) a↑→ a↑ a↑, for a↑∈ V , a↑∈ V ; replication rule
The objects a↑ are used to create new objects a↑ without being consumed.

(c) [a↓]h []a → [[]h]a, for a, h ∈ H, a↓∈ V ; endocytosis
An elementary membrane labeled h enters the adjacent membrane labeled
a under the control of object a↓. The labels h and a remain unchanged
during this process; however object a↓ is consumed during the operation.
Membrane a is not necessarily elementary.

(d) [[a↑]h]a → []h []a, for a, h ∈ H, a↑∈ V ; exocytosis
An elementary membrane labeled h is sent out of a membrane labeled
a, under the control of object a↑. The labels of the two membranes re-
main unchanged, and object a↑ of membrane h is consumed during this
operation. Membrane a is not necessarily elementary.

(e) []h → []h[]h for h ∈ H, h ∈ H division rules
An elementary membrane labeled h is divided into two membranes labeled
by h, and h and having the same objects.

The condition H∩H = ∅ above states that the membranes having labels from the
set H can participate only in rules of type (e). Similarly, the condition V ∩V = ∅
states that the objects from V can participate only in rules of type (a) and (b).

On the Reachability Problem in P Systems with Mobile Membranes 115

A configuration in mobile membranes describes a distribution of objects from Γ
into the membranes of

∏
.

The rules are applied using the following principles:

1. In biological systems, the molecules are divided into classes of different types.
Consequently, we divide the objects into four classes: a ↓ - objects which
control the endocytosis, a ↑ - objects which control the exocytosis, and a ↓,
a ↑ - objects which produce new objects from the first two classes without
being consumed.

2. All the rules of type (c), (d) are applied in parallel, non-deterministically
choosing the rules, the membranes and the objects, in such a way that the
parallelism is maximal; this means that in each step we apply a set of rules
such that no further rule of type (c), (d) can be added to the set, and no
further membrane or object can evolve at the same time.

3. Membrane a from each rule of type (c), (d) is said to be passive, while mem-
brane h is said to be active. In any step of a computation, any object and any
active membrane can be involved in at most one rule; however the passive
membranes are not considered involved in the use of rules, and so they can
be used by several rules at the same time (as passive membranes).

4. When a membrane is moved across another membrane (by endocytosis or
exocytosis), its whole content is moved.

5. If a membrane is divided, then its content is replicated into the two new
copies.

6. The skin membrane can never be divided.
7. Not all the rules of type (a), (b), (e) are applied whenever it is possible; we

choose non-deterministically whether the rules of these types are applied.

According to these rules, we get transitions among the configurations of the
system. For two configurations M and N we say that M reduces to N if there
is a sequence of rules applicable to the configuration M in order to obtain the
configuration N .

3 Mobile Ambients

We describe a variant of pure and public mobile ambients (mobile ambients in
which communication and name restriction are omitted); more details can be
found in [1]. Given an infinite set of names N (ranged over by m, n, . . .), we
define the set A of mobile ambients (denoted by A, A′, B, . . .) together with
their capabilities (denoted by C, C′, . . .) as follows:

C ::= in n | out n Capabilities
A ::= C. A | n[A] | A | B | !A Processes

A movement C. A is provided by a capability C, followed by the execution
of process A. An entry capability in n instructs the surrounding ambient to
enter a sibling ambient labeled by n, while an exit capability out n instructs
the surrounding ambient to exit its parent ambient labeled by n. An ambient

116 B. Aman and G. Ciobanu

n[A] represents a bounded place labeled by n in which a process A is executed.
A | B is a parallel composition of processes A and B. !A denotes an unbounded
replication of process A.

Processes of this calculus are grouped into equivalence classes, up to trivial
syntactic restructuring, by the structural congruence relation ≡ which is the least
congruence satisfying the following requirements:

A | B ≡ B | A A ≡ B implies A | A′ ≡ B | A′
(A | B) | A′ ≡ A | (B | A′) A ≡ B implies !A ≡!B
A ≡ A A ≡ B implies n[A] ≡ n[B]
A ≡ B implies B ≡ A A ≡ B implies C.A ≡ C.B
A ≡ B, B ≡ A′ implies A ≡ A′

The operational semantics of the mobile ambients is defined in terms of a
reduction relation ⇒ by the following axioms and rules:

Axioms:
(In) n[in m. A | A′] | m[B] ⇒ m[n[A | A′] | B] ;
(Out) m[n[out m. A | A′] | B] ⇒ n[A | A′] | m[B] ;
(Repl) !A ⇒ A | !A .
Rules:

(Comp) A ⇒ A′
A | B ⇒ A′ | B

(Amb) A ⇒ A′
n[A] ⇒ n[A′]

(Struc) A ≡ A′, A′ ⇒ B′, B′ ≡ B
A ⇒ B .

The axioms represent the one-step reductions for in and out, and the unfold-
ing of replication. The rules propagate reduction across ambient nesting, parallel
composition and allow the use of structural congruence during reduction. Ac-
cording to (Comp), the axioms are applied in an interleaving manner.

We denote by ⇒∗ the reflexive and transitive closure of the binary relation
⇒.

4 Reachability Problem

In this section we prove that the problem of reaching a configuration starting
from a certain configuration is decidable for the special class of mobile mem-
branes systems introduced in Section 2.

Theorem 1. For two arbitrary configurations M1 and M2 in a mobile mem-
brane system, it is decidable whether M1 reduces to M2.

The main steps of the proof are as follows:

1. mobile membranes systems are reduced to pure and public mobile ambients
without the capability open;

2. the reachability problem for two arbitrary configurations can be expressed
as the reachability problem for the corresponding mobile ambients.

On the Reachability Problem in P Systems with Mobile Membranes 117

3. the reachability problem is decidable for a fragment of pure and public mobile
ambients without the capability open.

The following subsections are devoted to the proof of Theorem 1.

4.1 From Mobile Membranes to Mobile Ambients

We use the following translation steps:

1. any object a↓ is translated into a capability in a;
2. any object a↑ is translated into a capability out a;
3. any object a↓ is translated into a replication !in a
4. any object a↑ is translated into a replication !out a
5. a membrane h is translated into an ambient h
6. an elementary membrane h is translated into a replication !h[] where all

the objects inside membrane h are translated into capabilities in ambient h
using the above steps.

A correspondence exists between the rules of the mobile membrane systems and
the reduction rules of the mobile ambients as follows:

- rule (c) corresponds to rule (In);
- rule (d) corresponds to rule (Out);
- rules (a), (b), (e) correspond to instances of rule (Repl).

If we start with a configuration M of a mobile membrane system, we denote
by T (M) the mobile ambient obtained using the above translation steps. For
example, starting from the configuration M = [m↓ m↑]n[]m we obtain T (M) =
n[in m | out m] | m[].

Proposition 1. For configuration M and N , M reduces to N by applying one
rule if and only if T (M) reduces to T (N) by applying only one reduction rule.

Proof (Sketch). Since M reduces N by applying one rule, then one of the rules
of type (a), . . . , (e) is applied. We treat only the case when a rule of type (a) is
applied, the others being treated in a similar manner.

If a rule a↓→ a↓ a↓ is applied, only one object from the configuration M is
used (namely a↓) to create a new object a↓, thus obtaining the configuration N .
By translating the configuration M into T (M), we have that a↓ is translated
in !in a. By applying the reduction rule corresponding to (a) (namely the rule
(Repl)) to !in m, then we have that !in a ⇒ in a | !in a, and so a new capability
in a is created. We note that T (a↓ a↓) = !in a | in a, which means that the
obtained mobile ambient is T (N) (in fact it is structural congruent to T (N)).

According to Proposition 1 the reachability problem for mobile membranes can
be reduced to a similar problem for mobile ambients.

118 B. Aman and G. Ciobanu

4.2 From Mobile Ambients to Petri Nets

After translating the mobile membranes into a fragment of mobile ambients, we
present the algorithm used in [1] to translate this fragment of mobile ambients
into a fragment of Petri nets which is known to be decidable from [7]. The
fragment of mobile ambients used here is a subset of the fragment of mobile
ambients used in [1] and the difference is provided by the extra-rule !A ⇒!A | !A
used in [1].

We note that applying a reduction rule over a process either increases the
number of ambients or leaves it unchanged. The only reduction rule which in-
creases the number of ambients when applied is the rule (Repl), while the other
reduction rules leave the number of ambients unchanged. If we reach process B
starting from process A, then the number of ambients of process B is known.
Therefore, we can use this information to know how many times the reduction
rule (Repl) is applied to replicate ambients. A similar argument does not hold
for capabilities as they can be consumed by the reduction rules (In) and (Out).

An ambient context C is a process in which may occur some holes (denoted
by �). Using the ambient contexts, we split a process into two parts: one is a
context containing ambients, whereas the other is a process without ambients. In
order to uniquely identify all the occurrences of replication, ambient, capability
or hole � within an ambient context or a process, we introduce a labeling system.
Using a countable set of labels, we say that a process A or an ambient context C
is well-labeled if any label occurs at most once in A or C . We denote by Amb(C)
the multiset of ambients occurring in an ambient context C. We say that two
processes are label-free-equivalent if after removing all the labels from the two
processes, they are structurally congruent.

I) Labeled Transition System. For the reachability problem A ⇒∗ B, we
denote by CA a well-labeled ambient context, and by θA a mapping from the set
of holes in CA to some labeled processes without replicable ambients such that
θA(CA) is well-labeled, and θA(CA) = A where labels are ignored.

A labeled transition system LA,B describes all possible reductions for a con-
text CA: this includes reductions of replications and capabilities contained in CA

and in the processes associated with the holes of the context. The states of the
labeled transition system LA,B are associative-commutative equivalent classes
of ambient contexts, and for simplicity, we often identify a state as one of the
representatives of its class.

We define a mapping θLA,B which extends the mapping θA. Initially, LA,B

contains (the equivalence class of) CA as a unique state, and we have θLA,B = θA.
We present in what follows the construction steps of θLA,B , where cap stands for
in or out:

1. For any ambient context C from LA,B and for any labeled capability capwn
in C, if this capability can be executed using one of the rules (In) or (Out)
leading to some ambient context C′, then a state C′ and a transition from C
to C′ labeled by capwn are added to LA,B.

On the Reachability Problem in P Systems with Mobile Membranes 119

2. For any ambient context C from LA,B and for any labeled replication !w

in C such that the reduction rule (Repl) is applied, we define the ambient
context C′ as follows: C′ is identical to C except that the subcontext !wCa

in C is replaced by !wCa | γ(Ca) in C′; the mapping γ relabels Ca with fresh
labels, such that C′ is well-labeled. If Amb(C′) ⊆ Amb(B), then state C′ and
a transition from C to C′ labeled by !w is added to LA,B. Additionally, we
define θ′LA,B

as an extension of θLA,B such that for all �w′
in Ca we have:

(i) θ′LA,B
(γ(�w′

)) and θLA,B(�w′
) are label-free-equivalent,

(ii) labels in θ′LA,B
(γ(�w′

)) are fresh in the currently built transition sys-
tem LA,B,

(iii) θ′LA,B
(γ(�w′

)) is well-labeled.
Finally, we set θLA,B to be θ′LA,B

.
3. For any ambient context C from LA,B, for any labeled hole �w in C and

for any capability capwn in the process θLA,B(�w), we consider the ambi-
ent context Cm identical to C except that �w in C has been replaced by
�w | capwn in Cm. If the capability capwn can be consumed in Cm using
one of the rules (In) or (Out) leading to an ambient context C′, then state
C′ and a transition from C to C′ labeled by capwn are added to transition
system LA,B.

4. For any ambient context C from LA,B and for any labeled hole �w in C
associated by θLA,B with a process of the form !w

′
A′, if a replication !w

′
can

be reduced in process θLA,B(C) using rule (Repl), then a transition from C
to itself labeled by !w

′′
is added to LA,B for any replication !w

′′
in θLA,B (�w).

In the second step, the reduction of a replication contained in the ambient
context by means of the rule (Repl) is done only when the number of ambients
in the resulting process is smaller than the number of ambients in the target
process B, namely Amb(C′) ⊆ Amb(B). This requirement is crucial as it implies
that the transition system LA,B has only finitely many states.

As an example, we give in Figure 1 the labeled transition system associated
with the process n[!1in m.!2out m] | m[] (we omit in this process unnecessary
labels). We use the labeled replications !1 and !2 to distinguish between different
replication operators which appear in this process.

n[] | m[] m[n[]]

in m

out m

!1

!2a b

!1

!2

Fig. 1. A labeled transition system for the process n[!1in m.!2out m] | m[]

It is worth to note that the labeled transitions in LA,B for replications and
capabilities of an ambient context correspond to the reductions performed over

120 B. Aman and G. Ciobanu

processes. As shown in steps 3 and 4, the transitions applied for any capabilities
or replications associated with the holes are independently of the fact that they
are effectively available to perform a transition (at this point).

II) From Processes Without Ambients to Petri Nets. In what follows
we show how to build a Petri net from a labeled process without ambients. We
denote by E(E) the set of all multisets which can be built with elements from
the set E.

We recall that a Petri net is given by a 5-tuple (P , Pi, T , P re, Post), where

– P is a finite set of places;
– P ⊆ Pi is a set of initial places;
– T is a finite set of transitions;
– Pre, Post : T → E(P) are mappings from transitions to multisets of places.

We say that an ambient-free process is rooted if it is of the form capwn.A′ or
of the form !wA′. We define the Petri net PNA′ associated with a rooted process
A′ as follows: the places of PNA′ are precisely the rooted subprocesses of A′,
and A′ itself is the unique initial place; the transitions are defined as the set of
all capabilities inwn, outw

′
n and replications !w occurring in A′. Finally, Pre

and Post are defined for all transitions as follows:

– Pre(capwn) = {capwn} and Post(capwn) = ∅ if capwn is a place in PNA′ .
– Pre(capwn) = {capwn.(A1 | . . . | Ak)} and Post(capwn) = {A1 | . . . | Ak} if

capwn.(A1 | . . . | Ak) is a place in PNA′ (A1 | . . . | Ak being rooted processes).
– Pre(!w) = Pre(!w) = {!wA′}, Post(!w) = {!wA′, A′} and Post(!w) = {!wA′}

if !wA′ is a place in PNA′ .

For !1in m.!2out m, we obtain the Petri net given in Figure 2:

1
1

1

1 1
1

1

1 1
in m out m! !21

!
1
in m.!

2
out m in m.!2out m !2

out m out m

Fig. 2. A Petri net for the process !1in m.!2out m

We denote by PN�w the Petri net PN(θLA,B (�w)), that is, the Petri net
corresponding to the rooted ambient-free process associated with �w by θLA,B .
In what follows we show how to combine the transition system LA,B and the
Petri nets PN�w into one single Petri net.

III) Combining the Transition Systems and Petri Nets. We first turn the
labeled transition system LA,B into a Petri net PNL =(PL, P i

L, TL, P reL, PostL)
where

On the Reachability Problem in P Systems with Mobile Membranes 121

– PL is a set of states of LA,B;
– P i

L is a singleton set containing the state corresponding to the ambient con-
text CA of A;

– TL is the set of transitions of the form (s, l, s′), with
• s and s′ states from LA,B,
• a transition l from s to s′ in LA,B;

– Pre(t) = s and Post(t) = {s′} for all transitions t = (s, l, s′).

We define a Petri net PNA,B = (PA,B, P i
A,B, TA,B, P reA,B, PostA,B) by

– places (initial places) of PNA,B are the union of places (initial places) of
PNL and of each of the Petri nets PN�w (for �w occurring in one of the
states of LA,B);

– transitions of PNA,B are precisely the transitions of PNL;
– the mappings PreA,B and PostA,B are defined for all transitions t = (a, f, b)

as:

(i) PreA,B(t) = {a} and PostA,B(t) = {b} if f does not occur as a transition
in any PN�w (for �w occurring in one of the states of LA,B),

(ii) if f is a transition of PN�w , then PreA,B(t) = {a} ∪ Pre�w (f) and
PostA,B(t) = {b} ∪ Post�w(f), where Pre�w and Post�w are the map-
pings Pre and Post of PN�w), respectively.

4.3 Deciding Reachability

We recall that for a Petri net PN = (P , P i, T , P re, Post), a marking m is a
multiset from E(P). A transition t is enabled by a marking m if Pre(t) ⊆ m.
Executing an enabled transition t for a marking m gives a marking m′ defined
as m′ = (m \ Pre(t)) ∪ Post(t) (where \ stands for the multiset difference).
A marking m′ is reachable from m if there exists a sequence m0, . . . , mk of
markings such that m0 = m, mk = m′ and for each mi, mi+1, there exists an
enabled transition for mi whose execution gives mi+1.

Theorem 2 ([7]). For all Petri nets P , for all markings m, m′ of P , one can
decide whether m′ is reachable from m.

For the reachability problem A ⇒∗ B over ambients, we consider the Petri net
PNA,B and the initial marking mA defined as mA = P i

A,B. In Figure 3 is depicted
the initial marking for process n[!1in m.!2out m] | m[] as a combination of the
labeled transition system of Figure 1 and the Petri net of Figure 2.

It should be noticed that for any marking m reachable from mA, m contains
exactly one occurrence of a place from PL. Roughly speaking, to any reachable
marking corresponds exactly one ambient context. Moreover, the execution of
one transition in the Petri net PNA,B simulates a reduction from ⇒.

We define now the set MB of markings of PNA,B corresponding to B. Intu-
itively, a marking m belongs to MB if m contains exactly one occurrence C of a
place from PL (that is, representing some ambient context) and in the context C,

122 B. Aman and G. Ciobanu

!
1
in m.!

2
out m

a, ! ,a1

in m.!2out m

a, ! ,a2

out m

a, in m, b

!2out m

b, ! , b b, ! , b1 2

a

b

b, out m, a

1

1

1

1 1

1

1

1

1
1

1

1
1 1

1

1
1

1

1

1

1

1

1

1

1

1
1

Fig. 3. The Petri net for the labeled process n[!1in m.!2out m] | m[]

the holes can be replaced with processes without ambients to obtain B. Each of
the processes without replication must correspond to a marking of the sub-Petri
net associated with the hole it fills up. MB is defined as the set of markings m
for PNA,B satisfying:

(i) there exists exactly one ambient context Cm in m;
(ii) σm(Cm) and B are label-free-equivalent, for any substitution σm from holes

�w occurring in Cm to processes without ambients defined as σm(�m) =
P1 | . . . | Pk for {P1, . . . , Pk} the multiset corresponding to the restriction
of m to the places of PN�w

(iii) for all holes �w occurring in a state of the transition system LA,B but not
in Cm, the restriction of m to places of PN�w is precisely the set of initial
places of PN�w .

We adapt the results presented in [1] to our restricted fragment of mobile
ambients.

Proposition 2. For a Petri net PNA,B, there are only finitely many markings
corresponding to a process B, and the set MB can be computed.

The translation correctness is ensured by the following result.

Proposition 3. For all processes A, B we have that A ⇒ B if and only if there
exists a marking from MB such that mB is reachable from mA in PNA,B.

Using Proposition 3 and Theorem 2, we can decide whether an ambient A can
be reduced to an ambient B.

Theorem 3. For two arbitrary ambients A and B from our restricted fragment,
it is decidable whether A reduces to B.

5 Conclusion

In this paper we have investigated the problem of reaching a certain configuration
of a system of mobile membranes starting from another configuration. In order

On the Reachability Problem in P Systems with Mobile Membranes 123

to do this we use the result of [1] where the reachability problem for the pure and
public ambient calculus without the capability open is proven to be decidable.
The same problem is tackled in [2], where the authors do not take into account
the replication of ambients which is used in our case to simulate the division
rules in mobile membranes. We proved that the reachability can be decided by
reducing this problem to the reachability problem for a fragment of ambient
calculus.

Acknowledgements

Research partially supported by CEEX Grant 47/2005.

References

1. Boneva, I., Talbot, J.-M.: When Ambients Cannot be Opened. In: Gordon, A.D.
(ed.) ETAPS 2003 and FOSSACS 2003. LNCS, vol. 2620, pp. 169–184. Springer,
Heidelberg (2003)

2. Busi, N., Zavattaro, G.: Deciding Reachability in Mobile Ambients. In: Sagiv, M.
(ed.) ESOP 2005. LNCS, vol. 3444, pp. 248–262. Springer, Heidelberg (2005)

3. Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

4. Ciobanu, G.: Distributed Algorithms over Communicating Membrane Systems.
BioSystems 70, 123–133 (2003)

5. Delzanno, G., Van Begin, L.: On the Dynamics of PB Systems with Volatile Mem-
branes. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A.
(eds.) WMC 2007, vol. 4860, pp. 240–256. Springer, Heidelberg (2007)

6. Krishna, S.N., Păun, G.: P Systems with Mobile Membranes. Natural Comput-
ing 4(3), 255–274 (2005)

7. Mayr, E.W.: An Algorithm for the General Petri Net Reachability Problem. SIAM
Journal of Computing 13(3), 441–460 (1984)

8. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

9. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

10. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

Modeling Symport/Antiport P Systems with a

Class of Hierarchical Petri Nets

Luca Bernardinello, Nicola Bonzanni, Marco Mascheroni, and Lucia Pomello

Dipartimento di Informatica, Sistemistica e Comunicazione
Universit degli Studi di Milano–Bicocca

via Bicocca degli Arcimboldi 8, I-20126 Milano, Italy
bernardinello@disco.unimib.it

Abstract. A model of P systems with symport/antiport rules is given
in terms of hypernets, a generalization of a class of hierarchical Petri nets
introduced for modeling mobility inside the nets-within-nets paradigm.
The hierarchical structure of a P system is reflected by the associated
hypernet, where molecules are modeled by unstructured agents (simple
tokens) and membranes by agents. Each agent is modeled by a net which
may contain in its places unstructured agents or other agents. Agents
can exchange tokens with their sub- or super-agents and thus the hier-
archy may change. The main result of the paper shows a correspondence
between reachable configurations of the P system and reachable hyper-
markings of the related hypernet, in such a way that if the P system can
evolve from one configuration to another one then in the hypernet there
exists a corresponding transformation of hypermarkings.

1 Introduction

In recent years the notion of system of mobile agents has gained importance in
computer science and engineering. These systems are formed by agents which
move around a space, interacting with each other. Often, these agents are pieces
of software traveling across a network of hosts, where they can be executed in
a local environment. Such a development has led to envisage formal models in
which one can represent mobile agents, their environment, and their interactions.
Since agents move and run in parallel with others, concurrency theory is a natural
framework in which to look for adequate models.

In 1986, Valk proposed a kind of Petri nets in which tokens can be nets, which
can be moved across the places of a hosting net, possibly interacting with it (see
[15]). Building on this idea, hypernets were defined in [1]. A hypernet is formed by
agents, each modeled by a Petri net. In a given configuration, each agent, except
one, is also a token residing in a place of another agent (the exception consists
in the highest level agent, which acts as an environment for all others). The
relation of containment can dynamically change as an effect of firing transitions;
agents can exchange their sub-agents by forming so called consortia.

The hierarchy of agents in a hypernet resembles the hierarchy of membranes
in a P system, and the mechanism of consortia can be seen as a way to exchange

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 124–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modeling Symport/Antiport P Systems 125

molecules across a membrane. This idea is the subject of the present paper, where
we define a translation from P systems with symport/antiport rules to a class of
hypernets. Such class is a generalization of the class defined in [1]. The main idea
of this translation is quite simple: each membrane and each individual molecule
in the P system is represented by an agent in the hypernet. Molecule agents are
unstructured, that is, they are simple tokens, like in usual nets, and can only
be passively moved by the active components. Membrane agents, viceversa, are
nets, with places that can contain molecule agents, and places that can contain
other membrane agents. Consortia correspond to rules of the P system, whereby
molecules can be exchanged across a membrane.

It should be noted that hypernetswould allow, in themselves,movement ofmem-
brane agents, so that the hierarchical structure of membranes could change. This
capability is not exploited here, since we deal with P systems where only molecules
move around, but might be useful in modeling more general kinds of systems.

In this paper, we are not interested in the computational aspects of the theory
of P systems, but rather focus on modeling aspects. Consequently, we compare
the two models on the basis of their reachable configurations.

After recalling the basic definitions related to the class of P systems with
symport/antiport rules (Section 2), we define hypernets in Section 3. Section 4
shows how to build a hypernet from a P system, and states in which sense the
two models can be considered as equivalent. Finally, in Section 5, we draw some
considerations, and suggest possible developments.

2 P Systems with Symport/Antiport Rules

Many kinds of membrane systems have been investigated during the last years.
One of the most studied variant of the general model of P systems was introduced
in [10] under the name of systems with symport/antiport rules. Those terms
came from two membrane transport mechanisms. Whereas the term symport
stands for the biological process by which two molecules pass together across
a membrane, when the two molecules pass simultaneously, but in the opposite
direction, the process is called antiport.

The class of membrane systems with symport/antiport rules is a class of purely
communicatingP systems,where the objects involved in the computation only pass
through membranes. This means that the objects involved never change and a sort
of conservation law for objects is observedduring the entire evolution of the system.

Many results on this kind of P systems, especially about their computational
power, can be found in [11], [7], [8], [4]. Here we provide a simplified version of
the definition of P system with symport/antiport rules, [12].

2.1 Formal Definition

Formally, we define a P system with symport/antiport rules (of degree m), as a
construct of the form

Π = (O, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm),

126 L. Bernardinello et al.

where:

– O is the (finite and non empty) alphabet of objects.
– The membrane structure μ = (N, E, i) is a rooted tree underlying Π , where

N = {1, 2, . . . , m} is the set of nodes and each node in N defines a membrane
of Π . The set E ⊆ N × N defines the edges. For each node j ∈ N , the
membrane associated to the node j contains all the membranes associated
to the children of j. i is the root of the tree and hence the skin membrane
(the outermost membrane of the system).

– w1, w2, . . . , wm are multisets over O representing the objects present in the
regions 1, 2, . . . , m of the membrane structure μ in the initial configuration
of the system (in the following, multisets will be described either by strings,
with exponents denoting the multiplicity of elements, or by the usual char-
acteristic function of multisets).

– R1, R2, . . . , Rm are finite sets of evolution rules associated with the mem-
branes of μ. Moreover we impose Ri = ∅, where i is the skin of the membrane
structure. This clause ensures that the external membrane is impermeable
and hence the total number of objects involved in the computation is finite
(and constant); this is required if we want to build hypernets with a finite
number of agents.

In the following we often use the term molecule when referring to an object
in a membrane of the P system.

As said above, each rule governs the communication through a specific mem-
brane and can be of two kinds, symport rule or antiport rule. A symport rule is
of the form (u, in) or (u, out), where u is a multiset over O, stating that all the
objects of u pass together through a membrane, entering in the former case and
exiting in the latter. For example, in a membrane i, after the application of the
symport rule (u, in), the multiset associated to this membrane will contain all
the objects previously present, plus the objects present in u. The multiset asso-
ciated to the membrane that contains i, will contain all the objects previously
present, minus those in u. Similarly, an antiport rule is of the form (u, out; v, in),
where u and v are multisets over O, stating that when u exits, at the same time,
a multiset v must enter the membrane.

The P system described above evolves from configuration to configuration by
the application of a multiset of rules in each membrane. Formally, a configuration

is a tuple C = (v1, v2, . . . , vm) and C
R̂⇒ C′ denotes that C evolves into C′ due

to the application of R̂, where R̂ = (R̄1, R̄2, . . . , R̄m) is a multi-rules vector
applicable to C and R̄j is a multiset over Rj .

The evolution of the system is non-deterministic and maximally parallel: at
each step, the configuration changes by applying a maximal multiset of rules,
chosen in a non deterministic way; the rules must be all applicable without
mutual interferences in the current configuration.

Modeling Symport/Antiport P Systems 127

i

j

r
3
=(ab2,in)

r
4
=(a,out)

w
j
=a2

w
i
=ab3

r
1
=(b,out)

r
2
=(a2,out)

Fig. 1. Fragment of a symport/antiport P system

2.2 Example

Fig. 1 shows a fragment of a P system with symport rules. The system depicted
here consists of two nested membranes: j, the inner membrane, and i, the outer
one, which we assume to be a membrane contained in a larger membrane struc-
ture. The set of rules of i is Ri = {(b, out), (a2, out)}, and the set of rules of j
is Rj = {(ab2, in), (a, out)}. In the same way we define the initial multisets of
objects wi = ab3 and wj = a2.

In this configuration the rules r1, r3, r4 are enabled and a multi-rules vector
can be built with this rules in a maximally parallel manner, i.e., the multi-rules
vector R̂ = ({r1}, {r3, r4, r4}) is applicable to the initial configuration. Note
that other multi-rules vectors can be applied to the same configuration. The
application of R̂ leads to a new state where the objects in the membrane i are
a2 and the objects in the membrane j are ab2.

3 Hypernets

In this section we introduce a generalization of Petri hypernets [1] that for sim-
plicity we call also here hypernets. A hypernet is defined by a fixed set of agents,
each agent is modeled by a net and can manipulate other agents as tokens, while
being manipulated as token by another agent at the same time. This yields a
hierarchy of agents. The highest level agent acts as an environment for all other
agents, these latter are located each one in some place of another agent. Agents
can exchange tokens with their sub- or super-agents and thus the hierarchy may
change.

In what follows we first define the structure of hypernets giving the definition
of agent and of hypernet, then we define the behaviour of hypernets, and at the
end of the section we illustrate hypernets on an example modeling the P system
given in Subsection 2.2 as it will be discussed in Section 4.

128 L. Bernardinello et al.

3.1 Structure of Hypernets

An agent is modeled by a Petri net, a bipartite oriented graph, whose nodes are
of two types: places and transitions. Places are partitioned into two disjoint sets:
the set of local places, which are locations in which other agents can stay, and
the set of virtual places, which represent communication channels along which
agents exchange tokens each others. Places and transitions are interconnected
by weighted oriented arcs, which define how many tokens are taken away from
an input place and how many are put into an output place, when a transition
fires. For each transition the sum of the weights of the input arcs must be equal
to the sum of the weights of the output arcs. In this way the amount of tokens
will not change while transitions fire. Moreover, to each triple of interconnected
elements place-transition-place it is assigned, by a function φA, a value which
defines, in a way compatible with the arc weights, the number of tokens which
flow along the path identified by the triple. In other words, φA defines how the
tokens taken away from an input place of a transition will be distributed into
the output places, when the transition will fire; and this distribution will be
the same for each occurrence of the same transition. For basic definitions and
notions on Petri nets, see, for example, [14].

Definition 1. An agent is a tuple A = (PA ∪ VA, TA, FA, φA), where (PA ∪
VA, TA, FA) is a, possibly empty, finite Petri net in which:

– PA is the set of local places and VA is the set of virtual places, (or commu-
nication places), with PA ∩ VA = ∅;

– TA is the set of transitions;
– the function FA : ((VA ∪ PA) × TA) ∪ (TA × (VA ∪ PA)) −→ N defines the

flow, assigning a weight to each arc identified by the pair of elements x, y
such that FA(x, y) > 0, in such a way that
∀t ∈ TA,

∑
p∈•t FA(p, t) =

∑
p∈t• FA(t, p), where p ∈ •t iff FA(p, t) > 0 and

p ∈ t• iff FA(t, p) > 0;

and the function φA : (VA ∪ PA) × TA × (VA ∪ PA) −→ N defines the paths,
i.e., the triples (p, t, q) such that φA(p, t, q) > 0, by assigning a weight to them
in such a way that:

∀p ∈ •t, FA(p, t) =
∑

q∈t• φA(p, t, q)
∀q ∈ t•, FA(t, q) =

∑
p∈•t φA(p, t, q)

In the following (p, t, q) ∈ φA iff φA(p, t, q) > 0; moreover, given a subset of
agents X ⊆ N , we use the following notation: PX =

⋃
A∈X PA, VX =

⋃
A∈X VA,

TX =
⋃

A∈X TA, φX =
⋃

A∈X φA.
A hypernet is defined by a set of agents and by a relation Δ. Agents have

disjoint sets of places. A transition may belong to different agents, modeling
synchronous interaction among them. Transitions connected to virtual places
model interchanges of tokens among sub-/super-agents. Said output paths the
path ending with a virtual place and input paths the ones starting with a virtual
place, the relation Δ identifies communication channels by defining, for a given

Modeling Symport/Antiport P Systems 129

transition belonging to different agents, a correspondence (output path - input
path) in a way compatible with path weights.

Definition 2. Let N = {A1, A2, . . . , An} be a family of agents, and let So =
{(p, t, v) ∈ φA|A ∈ N and v ∈ VA} and Si = {(v, t, q) ∈ φA|A ∈ N and v ∈ VA}
be the sets of output paths and input paths, respectively. (Note that a path can
be both an output and an input path.)

A hypernet is a pair H = (N , Δ), where

– The agents in N have disjoint sets of places:

∀Ai, Aj ∈ N , (PAi ∪ VAi) ∩ (PAj ∪ VAj) = ∅;

– and Δ ⊆ So ×Si is a relation which associates, for a given transition, output
paths to input paths with the same weight and belonging to different agents,
i.e.,
∀t ∈ TN , ∀(p, t, q) ∈ φAi and ∀(p′, t, q′) ∈ φAj such that Ai, Aj ∈ N :
((p, t, q), (p′, t, q′)) ∈ Δ ⇒ Ai
= Aj and φAi(p, t, q) = φAj (p

′, t, q′).

Definition 3. Let N = {A1, A2, . . . , An} be a family of agents. A map M :
{A2, . . . , An} −→ PN , assigning to each agent different from A1 the local place
in which is located, is a hypermarking of N iff, considering the relation ↑M⊆
N ×N defined by: Ai ↑M Aj ⇔ M(Ai) ∈ PAj , then the graph 〈N , ↑M〉 is a tree
with root A1.

Definition 4. A marked hypernet is a pair (H, M) where H is a hypernet and
M is a hypermarking defining the initial configuration.

In a configuration the system results hierarchically structured. The highest level
agent A1, the root of the tree describing the hierarchy, plays the role of the
environment containing all the other agents. The relation of containment between
agents, and then the hierarchical structure, can change as an effect of firing
transitions as formalized in the following subsection.

3.2 Behaviour of Hypernets

Let H = (N , Δ), with N = {A1, A2, . . . , An}, be a hypernet.
A consortium is a set of interconnected active agents, cooperating in per-

forming a transition t, moving other passive agents along the paths containing
t.

Definition 5. A consortium is a tuple Γ = (t, τ, δ, γ) where:

– t ∈ TN is the name of the consortium,
– τ ⊆ {A ∈ N|t ∈ TA}, τ
= ∅, is the non empty set of active agents. To this

set we can associate φτt = {(p, t, q) ∈ φτ | p, q ∈ Pτ ∪ Vτ}, the set of paths
of the agents τ containing the transition t.

130 L. Bernardinello et al.

– δ defines a bijective correspondence between output paths containing t and
input paths containing t of active agents, without contradicting the relation
Δ. Let φo,τt = φτt ∩So and φi,τt = φτt ∩Si. If φo,τt
= ∅, δ : φo,τt −→ φi,τt is
a bijection such that ∀s ∈ φo,τt , δ(s) = s′ ⇒ (s, s′) ∈ Δ, while if φo,τt = ∅,
then δ is the empty map. Note that δ relates paths belonging to different
agents.

– The passive agents which are moved when the consortium occurs are selected
through the map γ. Let C ⊆ N\A1 be a chosen set of passive agents, then
γ : C −→ φτt\Si is surjective and associates as many passive agents to each
path containing t and belonging to an active agent as the weight of the path
itself, i.e., ∀s ∈ φτt\Si, |γ−1(s)| = φN (s). Note that an agent can be active
and passive at the same time.

Moreover the following conditions must be satisfied:

– the set of active agents τ is a minimal one, in the sense that the agents in
τ must be each other interconnected through the interaction t, i.e.,
the undirected graph G1 = (τ, E1) is connected,
where E1 = {(Ai, Aj) | Ai, Aj ∈ τ and ∃ si ∈ φAi , ∃ sj ∈ φAj : δ(si) = sj}
and

– the undirected graph G2 = (τ ∪ C, E2) is acyclic,
where E2 connects Ai to Aj if Ai will be put inside Aj through t, i.e., con-
sidered the recursively defined map δ∗ : φτt −→ φτt such that

δ∗(s) =
{

s if s /∈ φo,τt

δ∗(δ(s)) otherwise

E2 = {(Ai, Aj)|δ∗(γ(Ai)) ∈ φAj , Ai ∈ C, Aj ∈ τ}.

The intuition behind the last condition of the previous definition is the following.
By subsequent applications of the map δ it is possible to construct chains of paths
interrelated through paths with only virtual places. However, the meaningful
chains are the one which starts with a path with a real input place, the one
from which an agent will be taken out, and ends with a path with a real output
place, the one in which the agent will be put into. The last condition requires
that these chains are not closed.

In [2] it is proven that chains containing a real place can be prolonged to finite
chains containing at most two real places, one in an input path and one in an
output path.

Definition 6. Let H = (N , Δ) be a generalized hypernet and M be a hyper-
marking.

A consortium Γ = (t, τ, δ, γ) is enabled in M, denoted M[Γ 〉, iff the following
two conditions hold

– ∀A ∈ C, γ(A) = (p, t, q) ⇒ M(A) = p
– ∀Ai, Aj ∈ τ , ∀s ∈ So ∩ φAi , δ(s) ∈ φAj ⇒ Ai ↑M Aj ∨ Aj ↑M Ai

Modeling Symport/Antiport P Systems 131

If M[Γ 〉, then the occurrence of Γ leads to the new hypermarking M′, denoted
M[Γ 〉M′, such that ∀A ∈ N :

M′(A) =
{

M(A) if A /∈ C;
q if A ∈ C and δ∗(γ(A)) = (p, t, q).

It is possible to prove [2] that M′ is a hypermarking, i.e., that the class of
hypermarkings of a hypernet is closed under the occurrence of a consortium.

Two consortia Γ1 = (t1, τ1, δ1, γ1) and Γ2 = (t2, τ2, δ2, γ2) are independent iff
the maps γ1 and γ2 select two different sets of passive agents, i.e., iff C1 ∩C2 = ∅

If two independent consortia are both enabled in a hypermarking M then
they can concurrently occur in M.

Let ΓH be the set of possible consortia in H . A set of consortia U ⊆ ΓH is a
step enabled in a hypermarking M, denoted M[U〉, iff

– ∀Γi, Γj ∈ U , Γi and Γj are independent,
– ∀Γi ∈ U , M[Γi〉

If M[U〉, then the occurrence of the step U leads to the new hypermarking
M′, denoted M[U〉M′, such that ∀A ∈ N :

M′(A) =
{

M(A) if ∀Γi ∈ U , A /∈ Ci;
q if ∃Γi ∈ U : (A ∈ Ci and δ∗i (γi(A)) = (p, ti, q)).

U is a maximal step enabled in M, and its occurrence yields M′, iff M[U〉M′

and ∀U ′ ⊃ U : not(M[U ′〉).
In [2] it is shown how it is possible to associate to each hypernet a 1-safe net

in such a way that there is a strict correspondence between their behaviors, i.e.,
in terms of Petri net theory, in such a way that the case graph of the 1-safe net is
isomorphic to the transition system generated by the reachable hypermarkings
of the hypernet.

Since 1-safe nets are a basic class model in Petri net theory, this translation
shows that hypernets are well rooted inside the theory of Petri nets.

3.3 Example

The Fig. 2 shows the structure of two hypernet’s agents. The unfilled circles are
local places while the filled ones are virtual places. The agent Aj is nested in the
agent Ai, in fact M(Aj) = ai

j , so Aj ↑M Ai. Moreover we assume u1, u2, u3, u4 to
be unstructured agents such that M(u1) = M(u2) = M(u3) = bi and M(u4) =
ai. Now consider the consortium Γ = (r3, τ, δ, γ) where

– the set of active agents is τ = {Ai, Aj},
– the bijection δ builds two communication channels between Ai and Aj gluing

two pair of paths: δ(ai, r3, ā
i) = (āj , r3, a

j) and δ(bi, r3, b̄
i) = (b̄j , r3, b

j),
– the set of passive agents is C = {u1, u2, u4} and γ(u1) = γ(u2) = (bi, r3, b̄

i)
and γ(u4) = (ai, r3, ā

i).

132 L. Bernardinello et al.

bibi

A
i

aiai

r
1

r
3

r
4

r
2

2 2

22

ai
j

(a)

r
4

r
3

2 2 bjbj

aj aj

A
j

(b)

Fig. 2. Fragment of a hypernet

The consortium Γ is valid and enabled in the initial hypermarking. When Γ
occurs the system reaches a new hypermarking M′ where M′(u1) = M′(u2) = bj

and M′(u4) = aj . Note that the agents u1, u2, u4 pass through the communica-
tion channels established by δ from the agent Ai to the agent Aj .

Modeling Symport/Antiport P Systems 133

4 Membrane Systems as Hypernets

Our goal in this section is to show how a P system with symport/antiport rules
and with an impermeable external membrane can be modeled as a hypernet.

In the following, we write i 	 j to mean that membrane i is directly contained
in membrane j.

Let Π = (O, μ, w1, . . . , wm, R1, . . . , Rm) be a P system of degree m, with
symport/antiport rules. We assume that 1 is the outer membrane, with no rules,
so that R1 = ∅.

The hypernet associated to Π will be denoted by H = (N , Δ). The hypernet
H contains one agent for each membrane, and one agent for each individual
molecule in Π . Notice that, in the P systems we handle, molecules are neither
created nor deleted.

Let W =
∑m

i=1 wi. W is a multiset giving the total number of objects for each
type in the system. Define

MOL = {(x, i)|x ∈ O ∧ 1 ≤ i ≤ W (x)}.

For each (x, i) in MOL, we define an unstructured agent in the hypernet H .

N = {A1, A2, . . . , Am} ∪ MOL.

Agent Ai corresponds to membrane i of the P system. It has one place for each
membrane directly contained in i, and one for each type of molecule; moreover, it
has one virtual place for each type of molecule, to be used in exchanging tokens.

Pi = {ai
j|j 	 i} ∪ {xi|x ∈ O},

Vi = {x̄i|x ∈ O}.

The set of transitions of agent Ai has one transition for each rule in membrane
i, and one for each rule in membranes directly contained in i.

Ti = {r|r ∈ Ri} ∪ {r|r ∈ Rj ∧ j 	 i}.

We now turn to define the flow function and the paths for agent Ai.

– For each rule r = (u, in) ∈ Ri, and for each rule r = (u, in; v, out) ∈ Ri:

F (x̄i, r) = F (r, xi) = φ((x̄i, r, xi)) = u(x).

– For each rule r = (v, out) ∈ Ri, and for each rule r = (u, in; v, out) ∈ Ri:

F (xi, r) = F (r, x̄i) = φi((xi, r, x̄i)) = v(x).

Let j 	 i. Then,

– For each rule r = (u, in) ∈ Rj , and for each rule r = (u, in; v, out) ∈ Rj :

F (xi, r) = F (r, x̄i) = φi((xi, r, x̄
i)) = u(x).

134 L. Bernardinello et al.

– For each rule r = (v, out) ∈ Rj , and for each rule r = (u, in; v, out) ∈ Rj :

F (x̄i, r) = F (r, xi) = φi((x̄i, r, xi)) = v(x).

Define now the Δ relation. For all i, j such that i 	 j:

∀r = (u, in) ∈ Ri, ∀x ∈ O : u(x) > 0, (xj , r, x̄j)Δ(x̄i, r, xi),
∀r = (u, out) ∈ Ri, ∀x ∈ O : u(x) > 0, (xi, r, x̄i)Δ(x̄j , r, xj),

∀r = (u, in; v, out) ∈ Ri, ∀x ∈ O : u(x) > 0, (xj , r, x̄j)Δ(x̄i, r, xi),
∀r = (u, in; v, out) ∈ Ri, ∀x ∈ O : v(x) > 0, (xj , r, x̄j)Δ(x̄i, r, xi).

The initial hypermarking M reflects the initial configuration of Π . Membrane
agents are placed according to the hierarchical structure of Π :

∀i ∈ {2, . . . , m} : M(Ai) = aj
i iff i 	 j.

All agents (x, k) corresponding to molecules are initially distributed in the cor-
responding places xi in membrane agents so that a place xi contains wi(x)
unstructured agents of type (x, k).

In order to state the exact relation between the dynamics of a P system
Π and the dynamics of the corresponding hypernet H , we need to define two
relations. The first defines a correspondence between configurations of Π and
hypermarkings of H . The other defines a correspondence between steps of Π
and maximal steps of H . Define

Conf = {(v1, . . . , vm)|
m∑

1

vi =
m∑

1

wi}.

as the set of all potential configurations of Π with the same number and type of
molecules as the initial configuration. Define HM as the set of all hypermarkings
of H .

Let M : {A1, . . . , Am} ∪ MOL → P be an element of HM, where P is the
set of all local places of H , and C = (v1, . . . vm) ∈ Conf , where vi : O → N. We
also need some auxiliary definition. By I(x, i, M) we denote the set of agents
representing molecules of type x hosted in the corresponding place of agent Ai

in M.
I(x, i,M) = {(x, i)|(x, i) ∈ MOL ∧ M((x, i)) = xi}

Definition 7. The hypermarking M simulates configuration C (denoted by
M ∼ C) iff

1. M(Ai) ∈ Pj iff i 	 j, for i ∈ {2, . . . , m},
2. |I(x, i,M)| = vi(x).

Notice that ∼ is a partial surjective function: each configuration of Π has at
least one corresponding hypermarking. The hypermarkings corresponding to one

Modeling Symport/Antiport P Systems 135

given configuration differ only for the distribution of molecules of the same kind
in membrane agents. These molecules are identical in the P system, while their
corresponding agents are distinguished.

We now define a correspondence between maximal steps in the P system and
maximal steps of consortia in the hypernet. This correspondence is based on
another one, associating single rules and consortia.

Let r be a rule of membrane i in Π . By construction, the associated hypernet
has two transitions labeled by r, one in the agent corresponding to i, and one
in the agent corresponding to the membrane containing i; assume it is j. A
consortium simulating the execution of r involves i and j as active agents, and
a number of passive agents taken from MOL.

We consider here an antiport rule r = (u, in; v, out), where u and v are multiset
on O. Symport rules can be seen as special cases where either u or v is the empty
multiset.

Definition 8. Let Γ = (r, τ, δ, γ) be a consortium. Then Γ ∼ r iff the following
conditions hold.

1. τ = {Ai, Aj}
2. The output paths involved in Γ are either of the form (yi, r, ȳi) if v(y) > 0,

or of the form (xj , r, x̄j) if u(x) > 0.
3. The function δ is defined by

δ((yi, r, ȳi)) = (ȳj , r, yj),
δ((xj , r, x̄j)) = (x̄i, r, xi).

4. Let Z = {z ∈ MOL|z = (x, k)∧ γ(z) = (xj , r, x̄j)}; then |Z| = u(x).
5. Let Z = {z ∈ MOL|z = (y, k)∧ γ(z) = (yi, r, ȳi)}; then |Z| = v(y).

A transition in a P system is a multiset of independently executable rules. Let
R =

⋃m
i=1 Ri be the set of all rules of Π , and ρ : R → N be a multiset of rules.

A set U of consortia in H simulates ρ (denoted by U ∼ ρ) if, for each r ∈ R,
U contains ρ(r) consortia which simulate r, and the consortia in U are pairwise
independent.

We are now ready to state the main result of this section. The following
lemma states that any change of configuration in Π can be simulated by a set of
mutually independent consortia in H . Let Π be a P-system with symport and
antiport rules, such that 1 is the outer membrane with R1 = ∅, and H = (N , Δ)
be the associated hypernet, with initial hypermarking M.

Lemma 1. Let C be a configuration of Π, and ρ be a multiset of rules, enabled
at C, with C

ρ⇒ C′. Then, for all M ∈ HM,

M ∼ C ⇒ ∃U ⊆ ΓH : U ∼ ρ, M[U〉M′, M′ ∼ C′.

Notice that the consortia forming U can always be chosen to be pairwise inde-
pendent. From this lemma, one can prove, by induction from the initial config-
uration, that the evolution of the P system can be simulated by the hypernet.

136 L. Bernardinello et al.

4.1 Example

Fig. 2, already discussed above (Section 3) as a generic hypernet, shows the
fragment of the hypernet corresponding to the P system of Fig. 1. The two
membranes i and j are modeled by the agents Ai (Fig. 2(a)) and Aj (Fig. 2(b)).
The local place ai

j ∈ Pi, which contains (as token) the agent Aj , reflects the fact
that the membrane j is nested inside i, while the local places ai, bi represent
the presence of molecules a and b respectively, inside the agent Ai (this is also
true for aj , bj and the membrane j). Then {r1, r2, r3, r4} ⊆ TN are transitions
built from the evolution rules of the membrane system. The initial hypermarking
matches the initial configuration of the P system.

5 Conclusions

In this paper we have considered P systems with symport/antiport rules and
we have shown how they can be modeled by a class of hierarchical Petri net
systems, a generalization of hypernets [1].

The hierarchical structure of the P system is reflected by the agents’s hierarchy
of the hypernet, where molecules are modeled by unstructured agents (hence
empty nets or simple tokens) and membranes by agents, nets which may contain
in their places unstructured agents or other agents.

The exchange of molecules through a membrane of a P system, as defined by
a symport or an antiport rule, corresponds to a consortium involving two active
agents, that represent the two nested membranes which exchange each other
passive unstructured tokens (molecules).

The main result, as given in Section 4, states a correspondence between reach-
able configurations of the P system and reachable hypermarkings of the related
hypernet. If the P system can evolves from a configuration to another one as the
result of the application of a multi-rules vector, then in the hypernet exists an
associated set of consortia transforming a hypermarking, corresponding to the
first configuration, and another corresponding to the second one.

A translation, that takes a hypernet and returns a 1-safe Petri net (one of
the basic models in Petri net theory) such that the case graphs of the latter is
isomorphic to the transition system generated by the execution of consortia of
the former, has been shown in [2]. This transformation proves that hypernets
are well rooted in net theory. In [9] a definition of non sequential processes for
hypernets was given. This can be used to derive an alternative semantics for P
systems based on a purely causal dependency notion.

In the literature other works have investigated the relation between P system
and Petri nets [6], [13], [5]. It is a matter of future work a deeper comparison with
these approaches and with other computational models, inspired by biological
membranes and derived from calculi of concurrency and mobility, as for example
those proposed by Cardelli [3].

Hypernets allow movement of structured agents from one level to another one,
so that the hierarchy of agents may change. In terms of P systems, this means to

Modeling Symport/Antiport P Systems 137

consider movements of membrane agents. This capability is not exploited here,
however it would be interesting in future to study the modeling of P systems
with active membranes [12].

Acknowledgements. Work partially supported by MIUR and CNR - IPI PAN.
The authors wish to thank Claudio Zandron and Alberto Leporati for their
helpful suggestions.

References

1. Bednarczyk, M.A., Bernardinello, L., Paw�lowski, W., Pomello, L.: Modelling mobil-
ity with Petri hypernets. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT
2004. LNCS, vol. 3423, pp. 28–44. Springer, Heidelberg (2005)

2. Bonzanni, N.: P systems e reti di Petri ad alto livello. Universit degli studi di
Milano-Bicocca. Dipartimento di Informatica Sistemistica e Comunicazione. Grad-
uation thesis (March 2007)

3. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS
(LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

4. Frisco, P.: About P systems with symport/antiport. Soft Computing 9(9), 664–672
(2005)

5. Frisco, P.: P systems, Petri nets, and program machines. In: Freund, R., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 209–223.
Springer, Heidelberg (2006)

6. Kleijn, J.H.C.M., Koutny, M., Rozenberg, G.: Towards a Petri net semantics for
membrane systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

7. Mart́ın-Vide, C., Păun, A., Păun, G.: On the power of P systems with symport
rules. Journal of Universal Computer Science 8(2), 317–331 (2002)

8. Mart́ın-Vide, C., Păun, A., Păun, G., Rozenberg, G.: Membrane systems with
coupled transport: Universality and normal forms. Fundamenta Informaticae 49(1-
3), 1–15 (2002)

9. Mascheroni, M.: Hypernet e processi non sequenziali. Universit degli studi di
Milano-Bicocca. Dipartimento di Informatica Sistemistica e Comunicazione. Grad-
uation thesis (April 2007)

10. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3), 295–305 (2002)

11. Păun, A., Păun, G., Rozenberg, G.: Computing by communication in networks
of membranes. International Journal of Foundations of Computer Science 13(6),
779–798 (2002)

12. Păun, G.: Introduction to membrane computing. In: First brainstorming Workshop
on Uncertainty in Membrane Computing, Palma de Mallorca, Spain (2004)

13. Qi, Z., You, J., Mao, H.: P systems and Petri nets. In: Mart́ın-Vide, C., Mauri,
G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS,
vol. 2933, pp. 286–303. Springer, Heidelberg (2004)

14. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. LNCS,
vol. 1491. Springer, Heidelberg (1998)

15. Valk, R.: Nets in computer organisation. In: Brauer, W., Reisig, W., Rozenberg,
G. (eds.) Advances in Petri Nets 1986. LNCS, vol. 255, pp. 218–233. Springer,
Heidelberg (1987)

A Hybrid Approach to Modeling Biological

Systems

Francesco Bernardini1, Marian Gheorghe2,
Francisco José Romero-Campero3, and Neil Walkinshaw2

1 Leiden Institute of Advanced Computer Science, University of Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

bernardi@liacs.nl
2 Department of Computer Science, University of Sheffield

Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

3 Research Group on Natural Computing
Department of Computer Science and

Artificial Intelligence, University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

fran@us.es

Abstract. This paper investigates a hybrid approach to modeling mole-
cular interactions in biology. P systems, π-calculus, and Petri nets mod-
els, and two tools, Daikon, used in software reverse-engineering, and
PRISM, a probabilistic model checker, are investigated for their expres-
siveness and complementary roles in describing and analyzing biological
systems. A simple case study illustrates this approach.

1 Introduction

In the last decade there has been a great interest in using theoretical computer
science models in biology, based on different paradigms (process algebras, cellular
automata, Lindenmayer systems, Petri nets, Boolean functions, P systems, etc.)
with the aim of providing an understandable, extensible and computable model-
ing framework while keeping the needed formalization to perform mathematical
analysis. Every such model covers certain aspects of a system and combining
two or more leads to obtaining a better and more comprehensive modeling ap-
proach. In order to include quantitative and qualitative aspects, there have been
suggested various variants of certain models with new features like: Petri nets
[10,22], stochastic π-calculus [28], and stochastic P systems [19].

In this paper we investigate the concerted use of different methods that will re-
veal a new vision on modeling biological systems by combining different comple-
mentary approaches. This is quite different from the hybrid approach discussed
by [1] where it is shown how to switch between deterministic and stochastic
behavior.

Section 2 introduces the three modeling approaches used in the paper: P
systems, pi-calculus and Petri nets, as well as Daikon tool and a simple exam-
ple involving a regulatory network that will be modeled within each approach.

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 138–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Hybrid Approach to Modeling Biological Systems 139

Section 3 presents Daikon’s findings and the analysis of the invariants provided.
The following two sections show how PRISM and a Petri net tool, PIPE, are
used in order to confirm some of the properties suggested by Daikon. The final
section summarizes our findings.

2 Modeling Paradigms

In this section we present three modeling approaches, namely P systems, π-
calculus and Petri nets and a simple case study to illustrate the approach. This
example is written directly into these three modeling paradigms and will be
executed with a P systems simulator. A system of differential equations is asso-
ciated to this example and the results obtained are compared to the stochastic
behavior exhibited by the P systems simulator and PRISM. In the next three
sections Daikon is used to reveal certain properties of our models as they appear
through data sets generated by simulators, and PIPE, a Petri nets tool, to as-
certain some invariants of the system. and two tools, namely PRISM and PIPE,
that are used to analyze and verify properties identified by Daikon.

The aim of this investigation is not to study the relationships between the
results produced by using differential equations and those generated by P systems
and/or PRISM. The relationships between a special class of P systems working
in a deterministic manner according to a metabolic algorithm and differential
equations models has been already considered [7]. In this study we are using
differential equations only as a substitute for real data in order to illustrate our
approach that allows us to “guess” certain properties of the model and then to
verify whether they hold or not as general properties or just only happens to be
true for the instances generated by simulation.

Nowadays ordinary differential equations (ODE) constitute the most widely
used approach in modeling molecular interaction networks in cell systems. They
have been used successfully to model kinetics of conventional macroscopic chem-
ical reactions. Nevertheless the realization of a reaction network as a system of
ODEs is based on two assumptions. First, cells are assumed to be well stirred and
homogeneous volumes so that concentrations do not change with respect to space.
Whether or not this is a good approximation depends on the time and space scales
involved. In bacteria it has been shown that molecular diffusion is sufficiently fast
to mix proteins. This is not the case in eukaryotic cells where the volume is con-
siderably bigger and it is structured in different compartments like nucleus, mito-
chondria, Golgi body, etc. The second basic assumption is that chemical concen-
trations vary continuously over time. This assumption is valid if the number of
molecules of each species in the reaction volume (the cell or the subcellular com-
partment) are sufficiently large and the reactions are fast. A sufficiently large num-
ber of molecules is considered to be at least thousands of molecules; for hundreds
or fewer molecules the continuous approach is questionable.

Writing and solving numerically a system of ODE describing a chemical reac-
tion network can be largely automated. Each species is assigned a single variable
X(t) which represents the concentration of the species at time t. Then, for each

140 F. Bernardini et al.

molecular species, a differential equation is written to describe its concentration
change over time due to interactions with other species in the system. The rate
of each reaction is represented using a kinetic rate law, which commonly de-
pends on one or more rate constants. Exponential decay law, mass action law
and Michaelis-Menten dynamic are the most widely used kinetic mechanisms.
Finally in order to solve the system of ODEs we must impose a set of initial
condition representing the initial concentration of each species involved.

Due to the limitations of ODEs to handle cellular systems with low number
of molecules and spatial heterogeneity, some computational approaches have
been recently proposed. In what follows we discuss three different approaches, P
systems, π-calculus, and Petri nets.

2.1 P Systems

Membrane computing is an emergent branch of natural computing introduced
by Gh. Păun in [18]. The models defined in this context are called P systems.
In the sequel we will use membrane computing and P systems with the same
meaning. Roughly speaking, a P system consists of a cell-like membrane struc-
ture, in the compartments of which one places multisets of objects and strings
which evolve according to given rules. Recently P systems have been used to
model biological phenomena within the framework of computational systems bi-
ology presenting models of oscillatory systems [6], signal transduction [19], gene
regulation control [20], quorum sensing [27] and metapopulations [21]. In this
respect, P systems present a formal framework for the specification and simu-
lation of cellular systems which integrates structural and dynamic aspects in a
comprehensive and relevant way while providing the required formalization to
perform mathematical and computational analysis.

In the original approach of P systems the rules are applied in a maximally
parallel way. This produces two inaccuracies: the reactions represented by the
rules do not take place at the correct rate, and all time steps are equal and do
not represent the time evolution of the real system. In order to solve these two
problems stochastic P systems have been introduced in [19].

Definition 1. A stochastic P system is a construct

Π = (O, L, μ, M1, M2, . . . , Mn, R1, . . . , Rn),

where:

– O is a finite alphabet of symbols representing objects;
– L is a finite alphabet of symbols representing labels for compartments;
– μ is a membrane structure containing n ≥ 1 membranes labeled with elements

from L;
– Mi = (li, wi, si), for each 1 ≤ i ≤ n, is the initial configuration of membrane

i with li ∈ L, the label of this membrane, wi ∈ O∗ a finite multiset of objects
and si a finite set of strings over O;

A Hybrid Approach to Modeling Biological Systems 141

– Ri, for each 1 ≤ i ≤ n, is a finite set of rewriting rules associated with
membrane i, of one of the following two forms:

• Multiset rewriting rules:

obj1 [obj2]l
k−→ obj′1 [obj′2]l (1)

with obj1, obj2, obj
′
1, obj

′
2 ∈ O∗ some finite multisets of objects and l a label

from L. A multiset of objects, obj is represented as obj = o1 + o2 + . . . + om

with o1, . . . , om ∈ O.
These rules are multiset rewriting rules that operate on both sides of mem-

branes, that is, a multiset obj1 placed outside a membrane labeled by l and
a multiset obj2 placed inside the same membrane can be simultaneously re-
placed with a multiset obj′1 and a multiset obj′2, respectively.

• String rewriting rules:

[obj1 + str1; . . . ; objp + strp]l
k−→ (2)

[obj′1 + str′1,1 + . . . str
′

1,i1 ; . . . ; obj
′
p + str′p,1 + . . . str′p,ip

]l

A string str is represented as follows str = 〈s1.s2. · · · .si〉 where s1, . . . , si ∈
O. In this case each multiset of objects objj and string strj, 1 ≤ j ≤ p, are
replaced by a multiset of objects obj′j and strings str′j,1 . . . str′j,ij

.
The stochastic constant k is used to compute the propensity of the rule by

multiplying it by the number of distinct possible combinations of the objects
and substrings present on the left-side of the rule with respect to the current
contents of membranes involved in the rule. The propensity associated with
each rule is used to compute the probability and time needed to apply it.

Cellular systems consisting of molecular interactions taking place in different lo-
cations of living cells are specified using stochastic P systems as follows. Different
regions and compartments are specified using membranes. Each molecular species
is represented by an object in the multiset associated with the region or compart-
ment where the molecule is located. The multiplicity of each object represents the
number of molecules of the molecular species represented by the object. Strings
are used to specify the genetic information encoded in DNA and RNA. Molecular
interactions, compartment translocation and gene expression are specified using
rewriting rules on multisets of objects and strings - see Table 1.

Table 1. Modeling principles in P systems

Biochemistry P System
Compartment Region defined by a membrane

Molecule Object

Molecular Population Multiset of objects

Biochemical Transformation Rewriting rule

Compartment Translocation Boundary rule

142 F. Bernardini et al.

In stochastic P systems [19] constants are associated with rules in order to
compute their probabilities and time needed to be applied according to Gillespie
algorithm. This approach is based on a Monte Carlo algorithm for stochastic
simulation of molecular interactions taking place inside a single volume [8]. In
contrast to this, in P systems we have a membrane structure delimiting dif-
ferent compartments (volumes), each one with its own set of rules (molecular
interactions) and multiset of objects and strings (molecules). In this respect, a
scheduling algorithm called the Multicompartmental Gillespie algorithm [19] is
used so that each compartment evolves according to a different Gillespie algo-
rithm. In this point our approach differs from other computational approaches
which run a single Gillespie algorithm across the whole system without taking
into account the compartmentalized cellular structure [10,28].

We illustrate our approach with a biomolecular system consisting in positive,
negative and constitutive expression of a gene. Our model includes the specifi-
cation of a gene, its transcribed RNA, the corresponding translated protein and
activator and repressor molecules which bind to the gene producing an increase in

Π = ({gene, rna, protein, act, rep, act-gene, rep-gene}, {b}, []b, (b, Mi, ∅),
{r1, . . . , r9})

Initial multisets: M0,1 = gene; M0,2 = gene + act... + act and
M0,3 = gene + rep... + rep where act and rep occur 10 times each.
Rules:

r1 : [gene]b
c1−→ [gene + rna]b c1 = 0.347 min−1

r2 : [rna]b
c2−→ [rna + protein]b c2 = 0.174 min−1

r3 : [rna]b
c3−→ []b c3 = 0.347 min−1

r4 : [protein]b
c4−→ []b c4 = 0.0116 min−1

r5 : [act + gene]b
c5−→ [act-gene]b c5 = 6.6412087 molec−1min−1

r6 : [act-gene]b
c6−→ [act + gene]b c6 = 0.6 s−1

r7 : [act-gene]b
c7−→ [act-gene + rna]b c7 = 3.47 min−1

r8 : [rep + gene]b
c8−→ [rep-gene]b c8 = 6.6412087 molec−1min−1

r9 : [rep-gene]b
c9−→ [rep + gene]b c9 = 0.6 min−1

Fig. 1. P system model of gene expression

rna
protein

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

time (min)

N
um

be
r

of
 m

ol
ec

ul
es

rna
protein

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

time (min)

N
um

be
r

of
 m

ol
ec

ul
es

Fig. 2. Constitutive expression and positive regulation

A Hybrid Approach to Modeling Biological Systems 143

transcription rate or prevent the gene from being transcribed, respectively. The
bacterium where the system is located is represented using a membrane. The sto-
chastic constants used in our model are taken from the gene control system in the
lac operon in E. coli [2,13,14]. In this case transcription and translation have been
represented using rewriting rules on multisets of objects, a more detailed descrip-
tion of the concurrent processes of transcription and translation using rewriting
rules on strings is presented in [20]. The P systems model is formally defined in
Figure 1. It consists of one single compartment labeled b, with no strings, and con-
sequently using only multiset rewriting rules. The model refers to three distinct
initial conditions, denoted by multisets M0,i, and corresponding to constitutive
expression, positive and negative regulations, respectively. Simulations of consti-
tutive expression and positive regulation case studies are presented in Figure 2
using a tool available at [30]. A set of ordinary differential equations and their as-
sociated graphs, modeling the same examples, are provided in Figure 3. The ODE
model is not used here to show its relationship to the previous P systems approach,
but to provide a set of data that normally is taken through biological experiments.
This will only be used to provide data measurements that will help identifying and
validating properties of the P systems model.

dr

dt
= c1 − c3r + c7

act

act + K
where K is the Michaelis-Menten constant

dp

dt
= c2r − c4p

rna
protein

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

time (min)

N
um

be
r

of
 m

ol
ec

ul
es

rna
protein

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

time (min)

N
um

be
r

of
 m

ol
ec

ul
es

Fig. 3. Constitutive and positive expression using ODE model

2.2 π-Calculus

The π-calculus approach was introduced as a formal language to describe mo-
bile concurrent processes [17]. It is now a widely accepted model for interacting
systems with dynamically evolving communication topology. The π-calculus has
a simple semantics and a tractable algebraic theory. Starting with atomic ac-
tions and simpler processes, complex processes can be then constructed. The
process expressions are defined by guarded processes, parallel composition P |Q,
nondeterministic choice P + Q, replication !P , and a restriction operator (νx)P
creating a local fresh channel x for a process P .

144 F. Bernardini et al.

Different variants have been used to model molecular interactions [28]. A π-
calculus specification of our system is provided by Figure 4. As usual for this type
of modeling approach, each chemical element will be represented as a process
and its definition will refer to all possible interactions of it. The initial process
may be any of S0,i. The process called gene defines all possible interactions of a
constitutive reaction, producing messenger RNA, a positive regulation, leading
to a complex denoted by act-gene, or negative regulation, that gets the complex
rep-gene. This process definition corresponds in a P systems model to rules r1, r5
and r8. In this way we can see, at least syntactically, similarities and differences
between the two modeling approaches for expressing chemical interactions. More
about the use of both P systems and π-calculus to model chemical interactions
is provided by [26].

Table 2. Modeling Principles in π-calculus

Biochemistry π-calculus
Compartment Private communication channel

Molecule Process

Molecular Population Systems of communicating processes

Biochemical Transformation Communication channel

Compartment Translocation Extrusion of a private channel’s scope

Initial processes: S0,1 = gene; S0,2 = gene | act | . . . | act and
S0,3 = gene | rep | . . . | rep
Processes:
gene := τc1 .(gene | rna) + ac5?.act-gene + rc8?.rep-gene
rna := τc2 .(rna | protein) + τc3 .0
protein := τc4 .0
act := ac5 !.0
act-gene := τc6 .(act | gene) + τc7 .(act-gene | rna)
rep := rc8 !.0
rep-gene := τc9 .(rep | gene)

Fig. 4. π-calculus model of gene expression

2.3 Petri Nets

Petri nets are a mathematical and computational tool for modeling and analysis
of discrete event systems typically with a concurrent behavior. Petri nets offer
a formal way to represent the structure of a discrete event system, simulate its
behavior, and prove certain properties of the system. Petri nets have applications
in many fields of system engineering and computer science. Here we only recall
some basic concepts of Petri nets and refer to the current literature [9,23,24,25]
for details regarding the theory and applications of Petri nets. In particular, we
focus only on a specific class of Petri nets called place-transition nets or PT-nets,
for short.

A Hybrid Approach to Modeling Biological Systems 145

Informally, a PT-net is a directed graph formed by two kinds of nodes called
places and transitions respectively. Directed edges, called arcs, connect places
to transitions, and transitions to places; each arc has associated a weight. Thus,
for each transition, one identifies a set of input places, the places which have
at least one arc directed to that transition, and a set of output places, the
places which the outgoing arcs of that transitions are directed to. Then, a non-
negative integer number of tokens is assigned to each place; these numbers of
tokens define the state of the PT-net also called the marking of the PT-net. In
a PT-net, a transition is enabled when the number of tokens in each input place
is greater than or equal to the weight of the arc connecting that place to the
transition. An enabled transition can fire by consuming tokens from its input
places and producing tokens in its output places; the number of tokens produced
and consumed are determined by the weights of the arcs involved. The firing of a
transition can be understood as the movement of tokens from some input places
to some output places.

More precisely, we give the following definition.

Definition 2. A PT-net is a construct N = (P, T, W, M0) where: P is a finite
set of places, T is a finite set of transitions, with P ∩ T = ∅, W : (P × T) ∪
(T × P) → N is the weight function, M0 is a multiset over P called the initial
marking, and L is a location mapping.

PT-nets are usually represented by diagrams where places are drawn as circles,
transitions are drawn as squares, and an arc (x, y) is added between x and y
if W (x, y) ≥ 1. These arcs are then annotated with their weight if this is 2 or
more.

Given a PT-net N , the pre- and post-multiset of a transition t are respec-
tively the multiset preN (t) and the multiset postN (t) such that, for all p ∈ P ,
|p|preN (t) = W (p, t) and |p|postN (t) = W (t, p). A configuration of N , which is
called a marking, is any multiset over P ; in particular, for every p ∈ P , |p|M rep-
resents the number of tokens present inside place p. A transition t is enabled at
a marking M if the multiset preN (t) is contained in the multiset M . An enabled
transition t at marking M can fire and produce a new marking M ′ such that
M ′ = M − preN (t) + postN (t) (i.e., for every place p ∈ P , the firing transition t
consumes |p|preN (t) tokens and produces |p|postN (t) tokens).

In order to reason about some basic properties, it is convenient to introduce a
matrix-based representation for PT-nets. Specifically, let N = (P, T, W, M0) be
a PT-net and let π : P → |P | and τ : T → |T | be two bijective functions. We call
place j the place p with π(p) = j, and we call transition i the transition t with
τ(t) = i. Then, a marking M is represented as a |P | vector which contains in each
position j the number of tokens currently present inside place j. The incidence
matrix of N is the |T | × |P | matrix A such that, for every element aij of A,
aij = |π−1(j)|postN (τ−1(i))| − |π−1(j)|preN (τ−1(i))| (i.e., aij denotes the change in
the number of tokens in place j due to the firing of transition i). A control vector
u is a |T | vector containing 1 in position i to denote the firing of transition i, 0
otherwise. Thus, if a particular marking Mn is reached from the initial marking
M0 through a firing sequence u1, u2, . . . , un of enabled transitions, we obtain

146 F. Bernardini et al.

Mn = M0 + AT ·
n∑

k=1

uk

which represents the reachable-marking equation.
The aforementioned representation of a PT-net N allows us to introduce the

notions of P-invariants and T-invariants. P-invariants are the positive solutions
of the equation A · y = 0; the non-zero entries of a solution y represents the set
of places whose total number of tokens does not change with any firing sequence
from M0. T-invariants instead are the positive solutions of the equation AT ·x = 0;
a solution vector x represents the set of transitions which have to fire from some
marking M to return to the same marking M . Then, a PT-net is said to be bounded
if there exists a |P | vector B such that, for all marking M reachable from M0, we
have M ≤ B; a PT-net is said to be alive if, for all marking M reachable from M0,
there exists at least one transition enabled at marking M .

As pointed out in [10,22], a PT-net model for a system of molecular interac-
tions can be obtained by representing each molecular species as a different place
and each biochemical transformation as a different transition. Tokens inside a
place can then be used to indicate the presence of a molecule in certain propor-
tions. This modeling approach is summarised in Table 3. Thus, a biochemical
system is represented as a discrete event system whose structural properties are
useful for drawing conclusions about the behavior and structure of the original
biochemical system [22]. For instance, P-invariants determine the set of mole-
cules whose total net concentrations remain unchanged during the application of
certain biochemical transformations; T-invariants instead indicate the presence
of cyclic reactions which lead to a condition where some reactions are in a state
of continuous operation. Also, the property of liveness is useful to determine the
absence of metabolic blocks which may hinder the progress of the biochemical
system.

Table 3. Modeling principles in PT-nets

Biochemistry PT-net
Molecule Place

Molecular Population Marking

Biochemical Transformation Transition

Reactant Input Place

Product Output Place

Finally, we recall that it was shown in [4,15,16] how to transform a P system
into a corresponding PT-net. This is done by considering a transition for each
rule in the P system that has the left-hand side of the rule as pre-multiset and
the right-hand side of the rule as post-multiset. In particular, in order to model
the localization of rules and objects inside the membranes, one considers in the
corresponding PT-net a distinct place for each object possibly present inside a
membrane. Thus, the transformation of objects inside the membranes and the

A Hybrid Approach to Modeling Biological Systems 147

Fig. 5. PT-net representation of gene positive and negative regulation

communication of objects between membranes is mapped into the movement
of tokens between places of a PT-net. This translation is briefly illustrated in
Table 4. Thus, we have a direct way for obtaining a PT-net representation of a
given P system model that offers us the possibility of analyzing the P system
model in terms of PT-net properties. We illustrate this approach by showing in
Figure 5 the PT-net translation of the P system model of Figure 1.

Clearly, we have that transition ri corresponds to rule ri, 1 ≤ i ≤ 9. For the
PT-net of Figure 5, if we set M0 as initial marking, where M0 contains one token in
the place gene, then we have only constitutive expression; if we set M0 as having
one token in gene and n in act with n ≥ 1, then we have positive regulation; if we

Table 4. Translation of a P system into a PT-net

P System PT-net
Object a inside membrane i Place ai

Multiplicity of an object Number of tokens inside a place

Rule Transition

Left-hand side of a rule Input places

Right-hand side of a rule Output places

148 F. Bernardini et al.

set M0 with one token in gene and m in rep with m ≥ 1, then we have negative
regulation. The incidence matrix for PT-net of Figure 5 is reported in Appendix 1
together with its P-invariants and T-invariants. The relevance of these invariants
with respect to this specific case study is discussed in Section 5. These are obtained
by using PIPE [29], a freely available Petri net tool. As well as this, PIPE allows us
to check for the properties of boundedness and liveness (i.e., absence of deadlock).
This type of investigation reveals qualitative aspects of the problem modeled as
it relies on qualitative behavior expressed by the Petri nets tool.

2.4 Daikon Tool

Daikon [5] is a tool that was initially developed to reverse-engineer specifications
from software systems. The specifications are in terms of invariants, which are
rules that must hold true at particular points as the program executes. To detect
invariants the program is executed multiple times and the values of the variables
are recorded at specific points (e.g., the start and end of a program function).
Daikon infers the invariants by attempting to fit sets of predefined rules to
the values of program variables at every recorded program point. Usually the
most valuable invariants are preconditions, postconditions and system invariants.
These specify the conditions that must hold between variables before a function
is executed, after a function has finished executing, and throughout the program
execution respectively. As a trivial example, a precondition for the function
div(a, b) that divides a by b would be b ≥ 0. Daikon provides about 70 predefined
invariants [5], such as x > y, a < x < b, y = ax + b, and can also be extended to
check for new user-supplied invariants.

The idea of using a set of executions to infer rules that govern system behavior,
as espoused by Daikon, is particularly useful in the context of biological models.
Theability to automatically infer invariants frommodel simulations is useful for the
following reasons: (1)obvious invariantswill confirmthat themodel isbehavingas it
should, (2) anomalous invariants can indicate a fault in themodel and its parameter
values or (3) could even suggestnovel, latent relationshipsbetweenmodel variables.

3 Finding Functional Relationships in Raw (Wet Real)
Data: Data Analysis Using Daikon

This section demonstrates the use of Daikon to discover relationships between
variables in the output from P system simulations of the gene regulation model.
The aim is to identify invariants that govern model behavior for negative,
constitutive and positive gene regulation. Here we select a sample of the gener-
ated invariants and show how they relate to the high-level functionality of the
system, and how they can be of use for further model analysis. Invariants are
only useful if they are representative of a broad range of model behavior. A sin-
gle simulation can usually not be considered to be representative, especially if
the model is non-trivial and contains stochastic behavior. For this analysis the
model was simulated 30 times, ten times for negative, constitutive and positive
regulation respectively.

A Hybrid Approach to Modeling Biological Systems 149

Using Daikon to generate invariants from simulation output is relatively
straightforward. It takes as input two files, one of which declares the types of
invariants that are of interest, along with the set of relevant variables for each
type of invariant. The other file contains the variable values from model simula-
tions, and lists them under their respective declared invariants. In our case the
output is in the form of a linear time series, where variable values are provided
for t = 0...n time points in the simulation. To analyze this with Daikon, the dec-
laration file contains the three invariant types described above (preconditions,
postconditions and system invariants), along with the key model variables under
each type (gene, act-gene, rep-gene, rna, prot, rep, act). The data trace file maps
any variable values at t = 0 to the preconditions, the relationship between every
pair of variables t and t − 1 to the postconditions, and the variable values for
every value of t to the system invariants. To guarantee accurate invariants, the
data trace has to be constructed from a set of simulations that can be deemed
to be sufficiently representative of the system’s behavior.

Figure 6 contains a sample of the invariants that were discovered. These pro-
vide a number of insights into the behavior of the system that would be diffi-
cult to ascertain from passively observing the simulations. Here we provide an
overview of some of these results.

The preconditions show precisely which model parameters are altered for
the positive, negative and constitutive sets of simulations. For all simulations,
gene starts off as active, and all other variables are zero, apart from the
activators variable act for positive and the repressor variable rep for negative
regulation.

The postconditions provide a number of insights into the dynamics of the
model because they summarize the rules that govern the change in variable values
for every single time-step. For positive regulation we learn that the number of
proteins will never decrease back to zero throughout the simulation (protein can
only be zero if it was already zero at the previous value of t), and that the
gene must become active to produce rna, which can only happen when act-gene
becomes 1. For negative regulation it shows that the amount of activators remain
constantly zero. For constitutive regulation, similarly to positive regulation, the
number of proteins can never decrease to zero.

The invariants are rules that hold throughout the entire simulation. These
usually cover the range of values a variable can hold, e.g., gene can either be
on or off for positive or negative regulation, but is constantly on for constitutive
regulation, or the number of proteins is always between zero and 205 for positive
regulation. It also points out rules that can sometimes be fundamental to the
behavior of the model. For example, in positive regulation act-gene and gene can
never be on at the same time, which makes sense because act-gene is responsible
for activating the gene when it is not active. The same holds for rep-gene and
gene in negative regulation. In positive regulation it also points out that, without
any rna, there can be no proteins.

These rules provide a number of useful insights into the behavior of the model,
many of which are expected, but some of which may either be anomalous or might

150 F. Bernardini et al.

Positive Negative Constitutive

Pre-conditions gene = 1
rna = prot

= rep-gene
= rep
= act-gene
= 0

act = 10

gene = 1
rna = prot

= rep-gene
= act
= act-gene
= 0

rep = 10

gene = 1
rna = prot

= rep-gene
= rep
= act-gene
= act

= 0
Post-condtions (prot = 0) →

(orig(prot) = 0)
(rna = 0)→ (gene = 0)
(orig(rna) = 0) →
(gene = 0)
gene ≤ rna
(prot = 0)→ (gene = 0)

(rna = 0) → (orig(act-

gene = 0)

act = orig(act)
= orig(act-gene)

rna < orig(rep)
rep > orig(prot)

(prot = 0) →
(orig(prot) = 0)
gene = orig(gene)
rep = orig(rep)

Invariants gene = one of {0, 1}
rep = rep-gene

= 0
0 ≤ rna ≤ 24
0 ≤ prot ≤ 205
act = one of {9, 10}
act-gene = one of {0, 1}
(gene ∧ act-gene) = 0

(rna = 0)→ (prot = 0)

gene = one of {0, 1}
act = act-gene

= 0
rna = one of {0, 1}
rep = one of {9, 10}
rep-gene =
one of {0, 1}
prot =
one of {0, 1, 2, 3}
(gene∧ rep-gene) = 0
rna < rep

rep > prot

rep = rep-gene
= act
= act-gene
= 0

gene = 1
0 ≤ rna ≤ 7
0 ≤ prot ≤ 32

rna ≥ rep

Fig. 6. Invariants discovered by Daikon

identify relationships that had not been previously considered. As an example,
the preconditions, which simply summarize the input parameters, are obviously
expected, but in practice identified that a small number of our experimental
simulations had been mistakenly executed with the wrong parameter values (the
precondition for positive regulations stated act = one of {9, 10, 19, 20} instead of
just 9 and 10). Rules such as rna ≥ rep in constitutive regulation and rep > prot
in positive regulation are obviously statistically justified by the simulations, but
had not been considered explicitly. New rules like these are useful seeds for
further experimentation and analysis, and the following section will show how
we have investigated these novel properties with the PRISM model checker.

4 PRISM Analysis of the System

Most research in systems biology focuses on the development of models of differ-
ent biological systems in order to be able to simulate them, accurately enough
such as to be able to reveal new properties that can be difficult or impossible to
discover through direct experiments. One key question is what one can do with
a model, other than just simulate trajectories. This question has been consid-
ered in detail for deterministic models, but less for stochastic models. Stochastic
systems defy conventional intuition and consequently are harder to conceive.

A Hybrid Approach to Modeling Biological Systems 151

The field is widely open for theoretical advances that help us to reason about
systems in greater detail and with finer precision. An attempt in this direction
consists of using model checking tools to analyze in an automatic way various
properties of the model. Probabilistic model checking is a formal verification
technique. It is based on the construction of a precise mathematical model of
a system which is to be analyzed. Properties of this system are then expressed
formally using temporal logic and analyzed against the constructed model by a
probabilistic model checker. Our current attempt uses a probabilistic symbolic
model checking approach based on PRISM (Probabilistic and Symbolic Model
Checker) [11,12]. PRISM supports three different types of probabilistic models,
discrete time Markov chains (DTMC), Markov decision processes (MDP) and
continuous time Markov chains (CTMC). PRISM supports systems specifica-
tions through two temporal logics, PCTL (probabilistic computation tree logic)
for DTMC and MDP and CSL (continuous stochastic logic) for CTMC.

In order to construct and analyze a model with PRISM, it must be specified in
the PRISM language, a simple, high level, state-based language. The fundamen-
tal components of the PRISM language are modules, variables and commands. A
model is composed of a number of modules which can interact with each other.
A module contains a number of local variables and commands.

The values of these variables at any given time constitute the states of the
module. The space of reachable states is computed using the range of each vari-
able and its initial value. The global state of the whole model is determined by
the local state of all modules.

The behavior of each module is described by a set of commands. A command
takes the form:

[action] g → λ1 : u1 + · · · + λn : un;

The guard g is a predicate over all the variables of the model. Each update ui
describes the new values of the variables in the module specifying a transition
of the module. The expressions λi are used to assign probabilistic information,
rates, to transitions.

The label action placed inside the square brackets are used to synchronize
the application of different commands in different modules. This forces two or
more modules to make transitions simultaneously. The rate of this transition is
equal to the product of the individual rates, since the processes are assumed to
be independent.

The main components of a P system are a membrane structure consisting
of a number of membranes that can interact with each other, an alphabet of
objects and a set of rules associated to each membrane. These components can
easily be mapped into the components of the PRISM language using modules
to represent membranes, variables to describe the alphabet and commands to
specify the rules.

A PRISM specification of our system is provided in Appendix 2. Appendix
3 shows the probability that some molecules concentrations will reach certain
values at steady state. The ranges of values provided by Daikon represent an

152 F. Bernardini et al.

indication of possible levels for various molecular concentrations, but in order to
know the likely values around steady states, PRISM provides a set of properties
that help in this respect. For example, for positive regulation, Daikon provides
the range 0 to 24, for rna molecules, but PRISM shows that values between 0
and 15 are more likely to be obtained than values greater than 15, and values
over 20 are very unlikely to be reached. These values are also confirmed by the
graphs provided by differential equations and P system simulator.

Other properties, suggested by Daikon analysis, like rna < rep, prot < rep,
are also validated by PRISM by showing they take place with a higher probability
for values of rep less than 5 - see Appendix 4. The average or expected behavior
of the stochastic system is also provided and this is very close to ODE behavior.

5 Petri Net Analysis of the System

In this section we will show how different invariants will emerge from the analysis
of the Petri net and how Daikon hypotheses are formally verified or new problems
are formulated.

T-invariants in Appendix 1 show that:

– If we fire transition r1 and then transition r3, the current marking of the
network remains unchanged because we first produce a molecule of rna and
then we consume it; the same happens if we first fire transition r7 and than
transition r3, or if we first fire transition r2 and then transition r4 (i.e., we
first produce a molecule of protein and then we consume it).

– The operation of binding the activator to the gene and its de-binding are
one the reverse of the other, hence firing transition r5 followed by transition
r6 (or vice versa) has no effect on the current marking; these two transitions
constitute a continuous loop.

– The operation of binding the repressor to the gene and its de-binding are
one the reverse of the other, hence firing transition r8 followed by transition
r9 (or vice versa) has no effect on the current marking; these two transitions
constitute a continuous loop.

P-invariants computed by PIPE, in Appendix 1, for some initial marking with
one element in gene, n in act and m in rep, where n, m ≥ 0 show that:

– The gene is always present and it can assume three different states: gene,
act-gene, and rep-gene; these three states are mutually exclusive; in the
case of constitutive expression (i.e, n = m = 0), we have M(gene) = 1
indicating that the gene is always present - this confirms Daikon invariant
gene = 1; in the case of positive regulation (i.e., n ≥ 1 and m = 0), we
have M(gene)+ M(act-gene) = 1 indicating two mutually exclusive states -
this confirms Daikon invariant gene ∧ act-gene = 0; in the case of negative
regulation (i.e., m ≥ 1 and n = 0, we have M(gene) + M(rep-gene) = 1
indicating two mutually exclusive states - this confirms Daikon invariant
gene ∧ rep-gene = 0.

A Hybrid Approach to Modeling Biological Systems 153

– For positive regulation, the number of activator molecules cannot be in-
creased but can be decreased only by 1 - similar invariant is found by Daikon.

– For negative regulation, the number of repressor molecules cannot be in-
creased but can be decreased only by 1 - similar invariant is found by Daikon.

PIPE also shows that the network is not bounded but it is alive. In fact, gene
is always present and we can keep firing transition r1 to increase indefinitely
the amount of rna. The liveness here comes from the above invariant and shows
that the system will be working forever. The boundedness instead produces a
result that apparently contradicts PRISM findings, where the probability that
the number of rna’s is greater than 7 is almost 0! This comes from the fact that
PIPE uses a non-deterministic system instead of a probabilistic one considered
by PRISM and P system simulator. It will be interesting to check this property
with a probabilistic Petri net tool.

6 Conclusions

In this paper we have investigated the concerted use of different methods, and
shown how these can provide complementary insights into different facets of
biological system behavior. Individual modeling techniques have their own re-
spective benefits and usually excel at reasoning about a system from a particular
perspective. This paper shows how these benefits can be leveraged by using dif-
ferent modeling techniques in concert.

As a case study, we have constructed a P system model of a small gene expres-
sion system and produced equivalent specifications using Petri net and π-calculus
approaches. Simulations of the P system model were analyzed by Daikon (to iden-
tify potential rules that govern model output), and some of the most interesting
suggested rules were checked using the PRISM probabilistic model checker. The
Petri net model was analyzed with PIPE, a general Petri net analysis tool. The
results show how analysis results from different models of the same system are
useful for the purposes of both validating and improving each other.

The gene expression model was chosen because it is manageable, and thus forms
a useful basis for a case study to compare different modeling techniques. Our fu-
ture work will apply the techniques shown in this paper to a larger and more real-
istic case study. This should provide further insights into the benefits that arise in
modeling increasingly complex systems when the modeler is increasingly reliant
upon the use of various automated tools to study the model behavior.

Acknowledgements

The research of Francesco Bernardini is supported by NWO, Organization for
Scientific Research of The Netherlands, project 635.100.006 “VIEWS”. The
authors would like to thank the anonymous reviewers for their comments and
suggestions that have helped to improve the paper.

154 F. Bernardini et al.

References

1. Bianco, L., Fontana, F.: Towards a Hybrid Metabolic Algorithm. In: Hoogeboom,
H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361,
pp. 183–196. Springer, Heidelberg (2006)

2. Blundell, M., Kennell, D.: Evidence for Endonucleolytic Attack in Decay of Lac
Messenger RNA in Escherichia Coli. J. Mol. Biol. 83, 143–161 (1974)

3. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Path-
ways Using Continuous Time Markov Chains. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
44–67. Springer, Heidelberg (2006)

4. Dal Zilio, S., Formenti, E.: On the Dynamics of PB Systems: A Petri Net View. In:
Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing. LNCS, vol. 2933, pp. 153–167. Springer, Heidelberg (2004)

5. Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. IEEE Transactions on Software
Engineering 27(2), 99–123 (2001)

6. Fontana, F., Bianco, L., Manca, V.: P Systems and the modeling of Biochemical
Oscillations. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 199–208. Springer, Heidelberg (2006)

7. Fontana, F., Manca, V.: Discrete Solutions of Differential Equations by Metabolic
P Systems. Theoretical Computer Science 372(2-3), 165–182 (2007)

8. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

9. Girault, C., Valk, R.: Petri Nets for Systems Engineering. Springer, Heidelberg
(2003)

10. Goss, P.J.E., Peccoud, J.: Quantitative Modeling of Stochastic Systems in Molecu-
lar Biology using Stochastic Petri Nets. Proc. Natl. Acad. Sci. USA 95, 6750–6755
(1999)

11. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn: Probabilistic
Model Checking of Complex Biological Pathways. In: Priami, C. (ed.) CMSB 2006.
LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

12. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg
(2006)

13. Hlavacek, S., Savageau, M.A.: Subunit Structure of Regulator Proteins Influences
the Design of Gene Circuitry Analysis of Perfectly Coupled and Uncoupled Circuits.
J. Mol. Biol. 248, 739–755 (1995)

14. Kennell, D., Riezman, H.: Transcription and Translation Initiation Frequencies of
the Escherichia Coli Lac Operon. J. Mol. Biol. 114, 1–21 (1977)

15. Kleijn, K., Koutny, K.: Synchrony and Asynchrony in Membrane Systems. In:
Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS,
vol. 4361, pp. 66–85. Springer, Heidelberg (2006)

16. Kleijn, K., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Mem-
brane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

17. Milner, R.: Communication and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

A Hybrid Approach to Modeling Biological Systems 155

18. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

19. Pérez-Jiménez, M.J., Romero-Campero, F.J.: P Systems, a New Computationl
modeling Tool for Systems Biology. In: Priami, C., Plotkin, G. (eds.) Transactions
on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197.
Springer, Heidelberg (2006)

20. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modeling Gene Expression Control
Using P Systems: The Lac Operon, A Case Study (submitted, 2007)

21. Pescini, D., Besozzi, D., Mauri, C., Zandron, C.: Dynamical Probabilistic P sys-
tems. International Journal of Foundations of Computer Science 17(1), 183–204
(2007)

22. Reddy, V.N., Liebman, M.N., Mavrouniotis, M.L.: Qualitative Analysis of Bio-
chemical Reaction Systems. Computers in Biology & Medicine 26(1), 9–24 (1996)

23. Reisig, W.: Elements of Distributed Algorithms, modeling and Analysis with Petri
Nets. Springer, Heidelberg (1998)

24. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. LNCS,
vol. 1491. Springer, Heidelberg (1998)

25. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets II: Applications. LNCS,
vol. 1492. Springer, Heidelberg (1998)

26. Romero-Campero, F.J., Gheorghe, M., Ciobanu, G., Auld, J.M., Pérez-Jiménez,
M.J.: Cellular modeling Using P Systems and Process Algebra. Progress in Natural
Science 17(4), 375–383 (2007)

27. Romero-Campero, F.J., Pérez-Jiménez, M.J.: A Model of the Quorum Sensing
System in Vibrio Fischeri Using P Systems (submitted, 2007)

28. Regev, A., Shapiro, E.: The π-calculus as an Abstraction for Biomolecular Systems.
In: Ciobanu, G., Rozenberg, G. (eds.) Modeling in Molecular Biology, Springer,
Heidelberg (2007)

29. Platform Independent Petri Net Editor:
http://pipe2.sourceforge.net

30. P System Simulator:
http://www.dcs.shef.ac.uk/∼marian/PSimulatorWeb/PSystemMF.htm

APPENDIX 1

Transpose of the incidence matrix for PT-net of Figure 5:

r1 r2 r4 r3 r5 r7 r6 r8 r9
gene 0 0 0 0 -1 0 1 -1 1
rna 1 0 0 -1 0 1 0 0 0
protein 0 1 -1 0 0 0 0 0 0
act 0 0 0 0 -1 0 1 0 0
act-gene 0 0 0 0 1 0 -1 0 0
rep 0 0 0 0 0 0 0 -1 1
rep-gene 0 0 0 0 0 0 0 1 -1

which shows the variations on the number of tokens determined by each transition.

http://pipe2.sourceforge.net
http://www.dcs.shef.ac.uk/~marian/PSimulatorWeb/PSystemMF.htm

156 F. Bernardini et al.

T-invariants obtained in PIPE:

r1 1 0 0 0 0
r2 0 1 0 0 0
r4 0 1 0 0 0
r3 1 0 0 1 0
r5 0 0 1 0 0
r7 0 0 0 1 0
r6 0 0 1 0 0
r8 0 0 0 0 1
r9 0 0 0 0 1

P-invariants computed by PIPE for some initial marking contains one token in
gene n in act and m in rep, with n, m ≥ 0:

gene 1 0 0
rna 0 0 0 M(gene) + M(act-gene) + M(rep-gene) = 1
protein 0 0 0 M(act) + M(act-gene) = n
act 0 1 0 M(rep) + M(rep-gene) = m
act-gene 1 1 0
rep 0 0 1
rep-gene 1 0 1

A Hybrid Approach to Modeling Biological Systems 157

APPENDIX 2

// Gene expression control
// Model is stochastic
stochastic
// Bounds to the number of molecules
const int rna_bound;
const int protein_bound;
const int number_activators;
const int number_repressors;
const int initact;
const int initrep;
// Stochastics constants associated with each
command/rule/molecular interaction
const double c1 = 0.347; // [gene]_b -c1-> [gene + rna]_b
const double c2 = 0.174; // [rna]_b -c2-> [rna + protein]_b \\
const double c3 = 0.347; // [rna]_b -c3-> []_b
const double c4 = 0.0116; // [protein]_b -c4-> []_b
const double c5 = 6.6412087; // [act + gene]_b -c5-> [actgene]_b
const double c6 = 0.6; // [actgene]_b -c6-> [act + gene]_b
const double c7 = 3.47; // [actgene]_b -c7-> [actgene + rna]_b
const double c8 = 6.6412087; // [rep + gene]_b -c8-> [repgene]_b
const double c9 = 0.6; // [repgene]_b -c9-> [rep + gene]_b
// Module representing a bacterium
module bacterium

gene : [0 .. 1] init 1;
actgene : [0 .. 1] init 0;
repgene : [0 .. 1] init 0;
act : [0 .. 1] init initact;
rep : [0 .. 1] init initrep;
rna : [0 .. rna_bound] init 0;
protein : [0 .. protein_bound] init 0;
// [gene]_b -c1-> [gene + rna]_b
[] gene = 1 & rna < rna_bound -> c1 : (rna’ = rna + 1);
// [rna]_b -c2-> [rna + protein]_b
[] rna > 0 & protein < protein_bound -> c2*rna :

(protein’ = protein + 1);
// [rna]_b -c3-> []_b
[] rna > 0 -> c3*rna : (rna’ = rna - 1);
// [protein]_b -c4-> []_b
[] protein > 0 -> c4*protein : (protein’ = protein - 1);
// [act + gene]_b -c5-> [actgene]_b
[] act = 1 & gene = 1 -> c5*number_activators : (gene’

= 0) & (act’ = 0) & (actgene’ = 1);
// [actgene]_b -c6-> [act + gene]_b
[] actgene = 1 & act = 0 -> c6 : (actgene’ = 0) &

(act’ = 1) & (gene’ = 1);

158 F. Bernardini et al.

// [actgene]_b -c7-> [actgene + rna]_b
[] actgene = 1 & rna < rna_bound -> c7 : (rna’ = rna +

1);
// [rep + gene]_b -c8-> [repgene]_b
[] rep = 1 & gene = 1 -> c8*number_repressors : (gene’

= 0) & (rep’ = 0) & (repgene’ = 1);
// [repgene]_b -c9-> [rep + gene]_b
[] repgene = 1 & rep = 0 -> c9 : (repgene’ = 0) &

(rep’ = 1) & (gene’ = 1);
endmodule

APPENDIX 3

Ranges of molecules
P = ? [true U <= T rna > bound]
P = ? [true U <= T protein > bound]
Constitutive regulation
rna <= 7
rna >= 0
prot <= 32
prot >= 0

Positive regulation
rna <= 24
rna >= 0
prot <= 205
prot >= 0

A Hybrid Approach to Modeling Biological Systems 159

Negative regulation
rna one of { 0, 1 }
prot one of { 0, 1, 2, 3 }

APPENDIX 4

Relationship between the number of repressors
and rna and protein molecules.
rna < rep
rep > prot
P = ? [true U<=T rna > rep]
P = ? [true U<=T protein > rep]

Expected number of molecules
R = ? [I = T]

Other invariants
P = ? [true U gene = actgene] ⇒ Result: 0.0
P = ? [true U gene = repgene] ⇒ Result: 0.0

Causality in Membrane Systems

Nadia Busi

Abstract. P systems are a biologically inspired model introduced by
Gheorghe Păun with the aim of representing the structure and the func-
tioning of the cell. P systems are usually equipped with the maximal
parallelism semantics; however, since their introduction, some alterna-
tive semantics have been proposed and investigated.

We propose a semantics that describes the causal dependencies oc-
curring between the reactions of a P system. We investigate the basic
properties that are satisfied by such a semantics. The notion of causality
turns out to be quite relevant for biological systems, as it permits to
point out which events occurring in a biological pathway are necessary
for another event to happen.

1 Introduction

Membrane computing is a branch of natural computing, initiated by Gheorghe
Păun with the definition of P systems in [22,23]. The aim is to provide a formal
modeling of the structure and the functioning of the cell, making use especially
of automata, languages, and complexity theoretic tools.

Membrane systems are based upon the notion of membrane structure, which
is a structure composed by several cell-membranes, hierarchically embedded in a
main membrane called the skin membrane. A plane representation of a membrane
structure can be given by means of a Venn diagram, without intersected sets and
with a unique superset. The membranes delimit regions and we associate with
each region a set of objects, described by some symbols over an alphabet, and a
set of evolution rules.

In the basic variant, the objects evolve according to the evolution rules, which
can modify the objects to obtain new objects and send them outside the mem-
brane or to an inner membrane. The evolution rules are applied in a maximally
parallel manner: at each step, all the objects which can evolve should evolve.

A computation device is obtained: we start from an initial configuration, with
a certain number of objects in certain membranes, and we let the system evolve.
If a computation halts, that is no further evolution rule can be applied, the
result of the computation is defined to be the number of objects in a specified
membrane (or expelled through the skin membrane). If a computation never
halts (i.e., one or more object can be rewritten forever), then it provides no
output.

Since their introduction, plenty of variants of P systems have been proposed,
and a lot of research effort has been carried out, especially concerned with the
study of the expressivity and the universality of the proposed models and with
the ability to solve NP-complete problems in polynomial time.

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 160–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Causality in Membrane Systems 161

The aim of this work is to start an investigation of the causal dependencies
arising among reactions occurring in P systems. The main motivation for this
work comes from system biology, as the understanding of the causal relations
occurring between the events of a complex biological pathway could be of pre-
cious help, e.g., for limiting the search space in the case some unpredicted event
occurs.

In this paper we concentrate on P systems with cooperative rules, namely
systems whose evolution rules are of the form u → v, representing the fact that
the objects in u are consumed and the objects in v are produced.

The study of causal semantics in concurrency theory is quite old. For example,
the study of a causal semantics for process algebras dates back to the early
nineties for CCS [20] (see, e.g., [13, 11, 18]), and to the mid nineties for the
π-calculus [21] (see, e.g., [3, 5, 14, 15]).

To the best of our knowledge, the only other works that deal with causality in
bio-inspired calculi with membranes and compartments are the following. In [7] a
causal semantics for the Mate/Bud/Drip Brane Calculus [9] is proposed. In [17]
a causal semantics for Beta Binders [26,27] – based on the π-calculus semantics
and on the enhanced operational semantics approach of [15] – is defined. One of
the main differences between Beta Binders on one side, and Brane Calculi and
P systems on the other side, is that the membrane structure in Beta Binders is
flat, whereas in Brane Calculi and in P systems the membranes are nested to
form a hierarchical structure.

The paper is organized as follows. After providing some basic definitions in
Section 2, in Section 3 we define (cooperative) P systems. Section 4 recalls a
detailed definition of maximal parallelism semantics that will be used in the fol-
lowing to provide a comparison between the causal and the maximal parallelism
semantics. Section 5 is devoted to the definition of the causal semantics; after
an informal introduction, a formal definition is provided, and finally some result
on the properties enjoyed by the causal semantics are given. Section 6 reports
some conclusive remarks.

2 Basic Definitions

In this section we provide some definitions that will be used throughout the
paper.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S | m(s) �= 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. A multiset m such
that dom(m) = ∅ is called empty. The empty multiset is denoted by ∅.

Given the multisets m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all
s ∈ S while ⊕ denotes their multiset union, i.e., m ⊕ m′(s) = m(s) + m′(s).
The operator \ denotes multiset difference: (m \ m′)(s) = if m(s) ≥ m′(s) then
m(s)−m′(s) else 0. The scalar product, j ·m, of a number j with m is (j ·m)(s) =

162 N. Busi

j · (m(s)). The cardinality of a multiset is the number of occurrences of elements
contained in the multiset: |m| =

∑
s∈S m(s).

The powerset of a set S is defined as P(S) = {X | X ⊆ S}.

Definition 2. Let m be a finite multiset over S and X ⊆ S. The multiset m|X
is defined as follows: for all s ∈ S, m|X(s) = m(s) if s ∈ X, and m|X(s) = 0
otherwise.

Definition 3. A string over S is a finite (possibly empty) sequence of elements
in S. Given a string u = x1 . . . xn, the length of u is the number of occurrences
of elements contained in u and is defined by |u| = n.

With S∗ we denote the set of strings over S, and u, v, w, . . . range over S.
Given n ≥ 0, with Sn we denote the set of strings of length n over S.

Given a string u = x1 . . . xn and i such that 1 ≤ i ≤ n, with (u)i we denote
the i-th element of u, namely, (u)i = xi.

Given a string u = x1 . . . xn, the multiset corresponding to u is defined as
follows: for all s ∈ S, mu(s) = |{i | xi = s∧1 ≤ i ≤ n}|. With abuse of notation,
we use u to denote also mu.

Definition 4. With S × T we denote the Cartesian product of sets S and T ,
with ×nS, n ≥ 1, we denote the Cartesian product of n copies of set S and with
×n

i=1Si we denote the Cartesian product of sets S1, . . . , Sn, i.e., S1 × . . . × Sn.
The ith projection of (x1, . . . , xn) ∈ ×n

i=1Si is defined as πi(x) = xi, and lifted
to subsets X ⊆ ×n

i=1Si as follows: πi(X) = {πi(x) | x ∈ X}.

Given a binary relation R over a set S, with Rn we denote the composition of n
instances or R, with R+ we denote the transitive closure of R, and with R∗ we
denote the reflexive and transitive closure of R.

3 P Systems

We recall the definition of catalytic P systems without priorities on rules. For a
thorough description of the model, motivation, and examples see, e.g., [8,12,22,
23, 24]. To this aim, we start with the definition of membrane structure:

Definition 5. Given the alphabet {[,]}, the set MS is the least set inductively
defined by the following rules:

– [] ∈ MS,
– if μ1, μ2, . . . , μn ∈ MS, n ≥ 1, then [μ1 . . . μn] ∈ MS.

We define the following relation over MS: x ∼ y iff the two strings can be
written as x = [1. . . [2. . .]2 . . . [3. . .]3 . . .]1 and y = [1. . . [3. . .]3 . . . [2. . .]2 . . .]1 (i.e.,
if two pairs of parentheses that are neighbors can be swapped together with their
contents).

The set MS of membrane structures is defined as the set of equivalence classes
w.r.t. the relation ∼∗.

Causality in Membrane Systems 163

We call a membrane each matching pair of parentheses appearing in the mem-
brane structure. A membrane structure μ can be represented as a Venn diagram,
in which any closed space (delimited by a membrane and by the membranes im-
mediately inside) is called a region of μ.

Definition 6. A P system (of degree d, with d ≥ 1) is a construct

Π = (V, μ, w0
1 , . . . , w

0
d, R1, . . . , Rd, i0), where:

1. V is a finite alphabet whose elements are called objects;
2. μ is a membrane structure consisting of d membranes (usually labeled with

i and represented by corresponding brackets [i and]i, with 1 ≤ i ≤ d);
3. w0

i , 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d
of μ; they represent multisets of objects present in the regions of μ at the
beginning of computation (the multiplicity of a symbol in a region is given by
the number of occurrences of this symbol in the string corresponding to that
region);

4. Ri, 1 ≤ i ≤ d, are finite sets of evolution rules over V associated with the
regions 1, 2, . . . , d of μ; these evolution rules are of the form u → v, where u
and v are strings from (V × {here, out, in})∗;

5. i0 ∈ {1, . . . , d} specifies the output membrane of Π.

The membrane structure and the multisets represented by w0
i , 1 ≤ i ≤ d, in Π

constitute the initial state1 of the system. A transition between states is governed
by an application of the evolution rules which is done in parallel; all objects, from
all membranes, which can be the subject of local evolution rules have to evolve
simultaneously.

The application of a rule u → v in a region containing a multiset m results in
subtracting from m the multiset identified by u, and then in adding the multiset
defined by v. The objects can eventually be transported through membranes due
to the targets in and out (we usually omit the target here).

The system continues parallel steps until there remain no applicable rules in
any region of Π ; then the system halts. We consider the number of objects from
V contained in the output membrane i0 when the system halts as the result of
the underlying computation of Π .

We introduce a couple of functions on membrane structures that will be useful
in the following:

Definition 7. Let μ be a membrane structure consisting of d membranes, labeled
with {1, . . . , d}.

Given two membranes i and j in μ, we say that i is contained in j if the
surface delimited by the perimeter of i in the Venn diagram representation of μ
is contained inside the perimeter of j.

1 Here we use the term state instead of the classical term configuration because we will
define a (essentially equivalent but syntactically) different notion of configuration in
Section 5.

164 N. Busi

We say that i is the father of j (and j is a child of i) if the membrane j is
contained in i, and no membrane exists that contains j and is contained in i.

The partial function father : {1, . . . , d} → {1, . . . , d} returns the father of a
membrane i, or is undefined if i is the external membrane.

The function children : {1, . . . , d} → P({1, . . . , d}) returns the set of children
of a membrane.

For example, take μ = [1[2[3]3]2 [4]4]1; then, father(2) = father(4) = 1,
father(3) = 2 and father(1) is undefined; moreover, children(4) = ∅ and
children(1) = {2, 4}.

4 Maximal Parallelism Semantics for P Systems

In order to compare the classical maximal parallelism semantics with the causal
semantics, in this section we recall a detailed definition of the computation of
a P system, proposed in [4], where a maximal parallelism evolution step is rep-
resented as a (maximal) sequence of simple evolution steps, which are obtained
by the application of a single evolution rule.

Throughout this section, we let Π = (V, μ, w0
1 , . . . , w0

d, R1, . . . , Rd, i0) be a P
system.

To represent the states of the system reached after the execution of a non
maximal sequence of simple evolution rules, we introduce the notion of partial
configuration of a system. In a partial configuration, the contents of each region
is represented by two multisets:

– The multiset of active objects contains the objects that were in the region
at the beginning of the current maximal parallelism evolution step. These
objects can be used by the next simple evolution step.

– The multiset of frozen objects contains the objects that have been produced
in the region during the current maximal parallelism evolution step. These
objects will be available for consumption in the next maximal parallelism
evolution step.

Definition 8. A partial configuration of Π is a tuple ((w1, w̄1), . . . , (wd, w̄d)) ∈
×d(V ∗ × V ∗).

We use ×d
i=1(wi, w̄i) to denote the partial configuration above.

The set of partial configurations of Π is denoted by ConfΠ . We use γ, γ′, γ1, . . .
to range over ConfΠ .

In the above definition, w1, . . . , wd represent the active multisets, whereas
w̄1, . . . , w̄d represent the frozen multisets.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 9. A configuration of Π is a partial configuration ×d
i=1(wi, w̄i) sat-

isfying the following: w̄i = ∅ for i = 1, . . . , d.
The initial configuration of Π is the configuration ×d

i=1(w
0
i , ∅).

Causality in Membrane Systems 165

The size of a partial configuration is the number of active objects contained in
the configuration.

Definition 10. Let γ = ×d
i=1(wi, w̄i) be a partial configuration. The size of γ

is #(γ) =
∑d

i=1 |wi|.

The execution of a simple evolution rule is formalized by the notion of reaction
relation, defined as follows:

Definition 11. The reaction relation �→ over ConfΠ × ConfΠ is defined as
follows:

×d
i=1(wi, w̄i) �→ ×d

i=1(w
′
i, w̄
′
i) iff there exist k, with 1 ≤ k ≤ d, an evolution

rule u → v ∈ Rk and a migration string ρ ∈ {1, . . . , d}|v| such that

– u ⊆ wk,,
– w′k = wk \ u
– ∀i : 1 ≤ i ≤ d and i �= k implies w′i = wi,
– ∀j : 1 ≤ j ≤ |v| the following holds:

• if π2((v)j) = here then (ρ)j = k,
• if π2((v)j) = out then (ρ)j = father(k)2,
• if π2((v)j) = in then (ρ)j ∈ children(k),3

– ∀i, 1 ≤ i ≤ d : w̄′k = w̄k ⊕
⊕

1≤j≤|v|,(ρ)j=k(v)j .

Note that the size of a configuration represents an upper bound to the length
of the sequences of reactions starting from that configuration. Hence, infinite
sequences of reactions are not possible.

Proposition 1. Let γ be a configuration. If γ �→n γ′ then n ≤ #(γ).

The heating function heated transforms the frozen objects of a configuration
in active objects, and will be used in the definition of the maximal parallelism
computation step.

Definition 12. Let ×d
i=1(wi, w̄i) be a partial configuration of Π.

The heating function heated : ConfΠ → ConfΠ is defined as follows:

heated(×d
i=1(wi, w̄i)) = ×d

i=1(wi ⊕ w̄i, ∅).

Now we are ready to define the maximal parallelism computational step �⇒:

Definition 13. The maximal parallelism computational step �⇒ over (nonpar-
tial) configurations of Π is defined as follows: γ1 �⇒ γ2 iff there exists a partial
configuration γ′ such that γ1 �→+ γ′, γ′ ��→ and γ2 = heated(γ′).

An operational semantics for P systems with maximal parallelism semantics has
been defined for P systems in [1, 2, 10]. The main difference w.r.t. our approach
is concerned with the fact that, while in this section a maximal parallelism
computational step is defined as a maximal sequence of reactions, in [1, 2, 10]
no notion of reaction is provided, and the notion equivalent to the maximal
parallelism computational step is defined directly by SOS rules [25]. A detailed
comparison of the two approaches is beyond the scope of the present paper and
deserves further investigation.
2 As ρ ∈ {1, . . . , d}|v|, this implies that father(k) is defined.
3 This implies that children(k) is not empty.

166 N. Busi

5 A Causal Semantics for P Systems

In this section we provide a causal semantics for cooperative P systems. To define
a causal semantics, we follow the approach used in [18] for CCS, and in [3] for
the π-calculus.

5.1 An Informal Explanation

The idea consists in decorating the reaction relation with two pieces of informa-
tion:

– a fresh name k, that is associated to the reaction and it is taken from the
set of causes K;

– a set H ⊆ K, containing all the names associated to the already occurred
reactions, that represent a cause for the current reaction.

To keep track of the names of the already occurred reactions that may represent
a cause for the reactions that may happen in the future, we introduce a notion of
causal configuration that associates to each object an information on its causal
dependencies. As in [3], for the sake of clarity we only keep track of the so called
immediate causes, as the set of general causes can be reconstructed by transitive
closure of the immediate causal relation. We will provide more explanation on
this point with an example in the following part of the paper.

Now we start with an informal introduction of causality in P systems. Consider
the following system with a unique membrane:

Π1 = ({a, b, c, d, e, f}, [1]1, ae, {a → bc, c → d, e → f}, 1).

If we consider the reaction relation �→ defined in the previous section, we have
that the system Π1 can perform either a reaction obtained by the application of
the rule a → bc followed by a reaction obtained by the application of rule e → f ,
or a sequence of two reactions where the application the rule e → f is followed
by the application of a → bc. The applications of the two rules are independent,
in the sense that all the objects consumed by both the rules are already present
in the initial configuration. Hence, the two rules can be applied in the same
maximal parallelism step, and no one of the rules is causally dependent on the
other one.

Consider now the system

Π2 = ({a, b, c, d, e, f}, [1]1, a, {a → bc, c → d, e → f}, 1),

obtained from Π1 by removing object e from the initial state. In this case, only
rule a → bc can be applied. After the application of such a rule, an instance of
object c is created by the application of rule a → bc. Now, a further reduction step
can be performed, consisting in applying rule c → d. However, the applications
of the two rules a → bc and c → d cannot be swapped, and the two rules cannot
be applied in the same maximal parallelism computational step. This is because
the object c consumed by rule c → d has been produced by rule a → bc. In

Causality in Membrane Systems 167

this case, we say that the reduction step consisting in the application of rule
c → d causally depends on the reduction step consisting in the application of
rule a → bc.

If we consider again system Π1, we have that, after the application of the two
rules a → bc and e → f , the rule c → e can be applied, and it is caused by the
application of rule a → bc.

We would like to note that the causal semantics is in some sense “finer” than
the maximal parallelism step semantics, as it permits to identify exactly which
rule(s) represent a cause for the execution of another rule. Consider, e.g., the
system

Π3 = ({a, b, c, d, e, f}, [1]1, ae, {a → bc, cf → d, e → f}, 1).

According to the maximal parallelism semantics, the two systems cannot be
distinguished, as both can perform a maximal parallelism step containing two
rules (i.e., {a → bc, e → f}), followed by a maximal parallelism step containing a
single rule (resp. {c → d} for Π1 and {cf → d} for Π3). On the other hand, if we
consider the causal semantics, we have that the application of rule c → d in Π1
causally depends only on one of the two rules applied in the previous maximal
parallelism step, i.e., a → bc, whereas the application fo the rule cf → d in Π3
causally depends on both the rules applied in the previous maximal parallelism
step.

5.2 The Formal Definition of Causal Semantics

In this section we provide a formal definition of the notions introduced in the
previous section.

Let K be a denumerable set of cause names, disjoint from the set V of objects.
Throughout this section, we let Π = (V, μ, w0

1 , . . . , w0
d, R1, . . . , Rd, i0) be a P

system.
To be able to define the set of causes of a reaction, we proceed in the following

way: we associate a fresh (i.e., never used before) cause name to each reaction
performed in the system. Then, each instance of object in a configuration of the
system is decorated with the causal name of the reaction that produced it, or
with ∅ if the object is already present in the initial configuration.4 To keep track
of such causal information, we introduce the notion of causal configuration fo a
system.

Definition 14. A causal configuration of Π is a tuple z1, . . . , zd, where zi ∈
(V × P(K))∗ for i = 1, . . . , d.

We use ×d
i=1zi to denote the causal configuration above.

The set of causal configurations of Π is denoted by CConfΠ .

4 For homogeneity with other classes of P systems, actually we decorate each object
with a – possibly empty – set of cause names, even if, in the class of P systems
considered in this paper, a single cause name is sufficient.

168 N. Busi

We use γ, γ′, γ1, . . . to range over CConfΠ .5

Let w0
i = oi,1oi,2 . . . oi,ni for i = 1, . . . , d. The initial causal configuration of

Π is the configuration ×d
i=1(oi,1, ∅)(oi,2, ∅) . . . (oi,ni , ∅) .

For example, ((a, ∅)(e, ∅)) represents the initial causal configuration of the P
system Π1 in the previous subsection, and ((b, k1)(c, k1)(e, ∅)) represents another
configuration of Π1, reached after the firing of rule a → bc (for the sake of clarity
we omit the surrounding braces if the set of causes is a singleton).

Now we are ready to define the causal semantics for P systems. We write
γ

h;H−−→ γ′ to denote the fact that system Π in configuration γ performs an action
– to which we associate the cause name h – that is caused by the (previously
occurred) actions whose action names form the set H . The cause name h is a
fresh name: this means that it has not been used yet in the current computation.

The execution of an evolution rule is formalized by the notion of causal reac-
tion relation.

Before providing the definition of causal reaction relation, we need some aux-
iliary definitions.

Definition 15. The function drop : (V × P(K))∗ → V ∗ removes the causality
information:

drop(ε) = ε,
drop((o, H)w) = o drop(w).

The function drop is extended to configurations in the obvious way:

drop(×d
i=1zi) = ×d

i=1drop(zi).

The function causes : V × P(K))∗ → P(K) produces the set of causal labels
in a string:

causes(ε) = ∅,
causes((o, H)w) = H ∪ causes(w).

The function deco : V ∗ → V × P(K))∗ decorates each object in a string with
a given set of causal labels:

deco(ε, H) = ∅,
deco(ow, H) = (o, H)deco(w, H).

Definition 16. The causal reaction relation
h;H−−→ over CConfΠ × CConfΠ is

defined as follows:
×d

i=1zi
h;H−−→ ×d

i=1z
′
i iff there exist k, with 1 ≤ k ≤ d, a string w ∈ (V ×P(K))∗,

an evolution rule u → v ∈ Rk and a migration string ρ ∈ {1, . . . , d}|v| such that

– u = drop(w),
– H = causes(w),

5 With abuse of notation, we use γ, γ′, γ1, . . . to denote both partial configurations and
causal configurations. It will be clear from the context to which kind of configuration
we are referring to.

Causality in Membrane Systems 169

– w ⊆ zk,
– z′k = zk \ w ⊕ deco(v, {h}),
– ∀j : 1 ≤ j ≤ |v| the following holds:

• if π2((v)j) = here then (ρ)j = k,
• if π2((v)j) = out then (ρ)j = father(k)6,
• if π2((v)j) = in then (ρ)j ∈ children(k),7

– ∀i, 1 ≤ i ≤ d and i �= k: z′i = zi ⊕
⊕

1≤j≤|v|,(ρ)j=i((v)j , h),

5.3 Properties of the Causal Semantics

The causal semantics for the class of P systems considered in this paper enjoys
some nice properties.

The first property is the retrievability of the maximal parallelism step seman-
tics from the causal semantics. According to such a property, there is no loss of
information when moving from the maximal parallelism to the causal semantics,
as we can reconstruct the maximal parallelism semantics of a system by looking
at its causal execution:

Theorem 1. ×d
i=1(wi, ∅) �⇒ ×d

i=1(w
′
i, ∅) is a maximal parallelism computational

step if and only if there exist γ, γ′ ∈ CConf(Π), h1, . . . , hn, H1, . . . Hn such that

– drop(γ) = ×d
i=1(wi, ∅),

– drop(γ′) = ×d
i=1(w

′
i, ∅),

– γ
h1;H1−−−−→ . . .

hn;Hn−−−−→ γ′

– hi �∈ Hj for all i, j: 1 ≤ i, j ≤ n,

– if there exist h, H such that γ′
h;H−−→ then there exists i such that 1 ≤ i ≤ n

and hi ∈ H.

The other property is the so-called diamond property, stating that if two non-
causally related actions can happen one after the other, then they can happen
also in the other order, and at the end they reach the same system.

Theorem 2. If γ
h1;H1−−−−→r1γ

′ h2;H2−−−−→r2γ
′′ and h1 �∈ H2, then there exists a causal

configuration γ′′′ such that γ
h2;H2−−−−→r2γ

′′′ h1;H1−−−−→r1γ
′′.

6 Conclusion

In this paper we tackled the problem of defining a causal semantics for a basic
class of P systems. We think that the study of the causal dependencies that
arise between the actions performed by a system is of primary importance for
models inspired by the biology, because of its possible application to the analysis
of complex biological pathways.

6 As ρ ∈ {1, . . . , d}|v|, this implies that father(k) is defined.
7 This implies that children(k) is not empty.

170 N. Busi

This paper represents a first step in this direction, but a lot of work remains
to be done. For example, if we move to other classes of membrane systems, such
as, e.g., P systems with promoters and inhibitors, we have to deal with more
involved causal relations among reactions, and it could happen that some of the
properties enjoyed by the causal semantics for basic P systems presented in this
work no longer hold. Another interesting research topic is the investigation of the
causal semantics for classes of P systems whose membrane structure is dynami-
cally evolving (e.g., we can consider dissolution rules, duplication, gemmation or
either brane-like operations). Once we have completed the definition of a causal
semantics for systems with an evolving structure, we will start investigating the
causal dependencies arising in biological pathways involving membranes, such
as, e.g., the LDL Cholesterol Degradation Pathway [19], that was modeled in P
systems in [6].

References

1. Andrei, O., Ciobanu, G., Lucanu, D.: Operational semantics and rewriting logic in
membrane computing. In: Proceedings SOS Workshop, ENTCS (2005)

2. Andrei, O., Ciobanu, G., Lucanu, D.: A rewriting logic framework for operational
semantics of membrane systems. Theoretical Computer Science 373(3), 163–181
(2007)

3. Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π-calculus.
Acta Inf., 35(5): 353–400, 1998. An extended abstract appeared in Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 243–254. Springer, Heidelberg
(1995)

4. Busi, N.: Using well-structured transition systems to decide divergence for catalytic
P systems. Theoretical Computer Science 372(2-3), 125–135 (2007)

5. Busi, N., Gorrieri, R.: A Petri net semantics for π- calculus. In: Lee, I., Smolka,
S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 145–159. Springer, Heidelberg
(1995)

6. Busi, N., Zandron, C.: Modeling and analysis of biological processes by mem(brane)
calculi and systems. In: WSC 2006. Proceedings of the Winter Simulation Confer-
ence, ACM, New York (2006)

7. Busi, N.: Towards a causal semantics for brane calculi. In: Proc. Fifth Brainstorm-
ing Week on Membrane Computing, Sevilla, pp. 97–112 (2007)

8. Calude, C.S., Păun, G.: Computing with Cells and Atoms. Taylor & Francis, Lon-
don (2001)

9. Cardelli, L.: Brane calculi - Interactions of biological membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, Springer, Heidelberg
(2005)

10. Ciobanu, G., Andrei, O., Lucanu, D.: Structural operational semantics of P sys-
tems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, Springer, Heidelberg (2006)

11. Darondeau, P., Degano, P.: Causal trees. In: Ronchi Della Rocca, S., Ausiello, G.,
Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 234–248. Springer,
Heidelberg (1989)

12. Dassow, J., Păun, G.: On the power of membrane computing. J. Univ. Comput.
Sci. 5(2) (1999)

Causality in Membrane Systems 171

13. Degano, P., De Nicola, R., Montanari, U.: Partial ordering descriptions and obser-
vations of nondeterministic concurrent processes. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency. LNCS, vol. 354, pp. 438–466. Springer, Hei-
delberg (1989)

14. Degano, P., Priami, C.: Causality for mobile processes. In: Fülöp, Z., Gecseg,
F. (eds.) Automata, Languages and Programming. LNCS, vol. 944, pp. 660–671.
Springer, Heidelberg (1995)

15. Degano, P., Priami, C.: Non interleaving semantics for mobile processes. Theoret-
ical Computer Science 216(1-2), 237–270 (1999)

16. Danos, V., Pradalier, S.: Projective brane calculus. In: Danos, V., Schachter, V.
(eds.) CMSB 2004. LNCS (LNBI), vol. 3082, Springer, Heidelberg (2005)

17. Guerriero, M.L., Priami, C.: Causality and concurrency in beta-binders. TR-01-
2006 The Microsoft Research - University of Trento Centre for Computational and
Systems Biology (2006)

18. Kiehn, A.: Proof Systems for cause based equivalences. In: Borzyszkowski, A.M.,
Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, Springer, Heidelberg (1993)

19. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C.A., Krieger, M., Scott, M.P.,
Zipursky, S.L., Darnell, J.: Molecular Cell Biology, 4th edn. W.H. Freeman and
Company (1999)

20. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

21. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and
Computation 100, 1–77 (1992)

22. Păun, G.: Computing with membranes: an Introduction. Bull. EATCS 67 (1999)
23. Păun, G.: Computing with membranes. Journal of Computer and System Sci-

ences 61(1), 108–143 (2000)
24. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
25. Plotkin, G.D.: Structural operational semantics. Journal of Logic and Algebraic

Programming 60, 17–139 (2004)
26. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V.,

Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

27. Priami, C., Quaglia, P.: Operational patterns in beta-binders. T. Comp. Sys. Bi-
ology 1, 50–65 (2005)

Simulating the Bitonic Sort Using P Systems

Rodica Ceterchi1, Mario J. Pérez-Jiménez2, and Alexandru Ioan Tomescu1

1 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, RO-010014, Bucharest, Romania

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

rceterchi@gmail.com, mario.perez@cs.us.es, alexandru.tomescu@gmail.com

Abstract. This paper gives a version of the parallel bitonic sorting al-
gorithm of Batcher, which can sort N elements in time O(log2 N). We
apply it to the 2D mesh architecture, using the shuffled row-major in-
dexing function. A correctness proof of the proposed algorithm is given.
Two simulations with P systems are introduced and discussed. The first
one uses dynamic communication graphs and follows the guidelines of
the mesh version of the algorithm. The second simulation requires only
symbol rewriting rules in one membrane.

1 Introduction

P systems, introduced in [19], are powerful computational models, with non-
deterministic as well as parallel features. Deterministic P systems can also be
considered, and the power of their parallel features compared against the power
of other computational models which enjoy parallelism. Along this line we refer
to previous work, which relates P systems with parallel networks of processors,
functioning according to the SIMD paradigm (Single Instruction Multiple Data
machines), in [8], [9], for shuffle-exchange networks, and in [6] for 2D mesh net-
works. The comparison was approached by designing P systems which simulate
the functioning of a specific architecture, when solving a specific problem. In [7]
the general features of this type of approach were abstracted, giving a “blueprint”
for the design of a class of deterministic P systems, with dynamic communication
graphs, which simulate a given parallel architecture, functioning to implement a
given algorithm.

Among the choices to be made for the problem to solve, the static sorting
imposes itself, being a central theme in computer science. Although it is well
known that comparison-based sorting (sequential) algorithms require at least
N log N comparisons to sort N items, performing many comparisons in parallel
can reduce the sorting time. This paper analyzes the bitonic sorting algorithm,
one of the fastest parallel sorting algorithms where the sequence of comparisons
is not data-dependent. The bitonic sorting network was discovered by Batcher
[3], who also discovered the network for odd-even sort. These were the first

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 172–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Simulating the Bitonic Sort Using P Systems 173

networks capable of sorting N elements in time O(log2 N). Stone [24] maps the
bitonic sort onto a perfect-shuffle interconnection network, sorting N elements
by using N processors in time O(log2 N). Siegel [23] shows that bitonic sort can
also be performed on the hypercube in time O(log2 N). The shuffled row-major
indexing formulation of bitonic sort on a mesh-connected computer is presented
by Thompson and Kung [25]. They also show how the odd-even merge sort can
be used with snakelike row-major indexing. Nassimi and Sahni [16] present a row-
major indexed bitonic sort formulation for a mesh with the same performance
as shuffled row-major indexing.

Static sorting algorithms have been developed and proposed also in the P
systems area. Among the first approaches, made independently, we mention [2]
and [4], [5]. The problem of sorting with P systems occupies Chapter 8, [1], of
[10].

We analyze in this paper a version of the bitonic sorting algorithm of Batcher,
and its implementation on the 2D mesh architecture. Section 2 introduces the
mesh topology and the model of computation. In Subsection 2.2 we present the
algorithm, and the main result, Theorem 1, whose Corollary is the correctness
proof of the algorithm. Other results in this subsection, like Lemma 2, and the
Remarks, are subsequently used to prove assertions about the algorithm, and,
in Section 3, about the simulations with P systems.

Section 3 is devoted to the presentation of two different simulations of the
algorithm with P systems. The first simulation uses dynamic communication
graphs, as in [7]. A generative approach to the sequence of graphs used to com-
municate values between the membranes is a novel feature. We outline the main
features of a second simulation, which uses only one membrane, and symbol
rewriting rules.

2 Preliminaries: The Bitonic Sort on the 2D-Mesh

2.1 Model of Computation and Indexing Function

The presentation of the bitonic sort on the 2D-mesh architecture is made here
based mainly on the paper [25]. It is the same algorithm as in [21], but with more
emphasis on the routings necessary to compare elements situated at greater
distances on the mesh. Also, some restrictions imposed in [25], will be elimi-
nated, or re-examined, since they were dictated by their explicit connection to
the ILLIAC IV-type parallel computer. In general, our references to parallel ma-
chines/architectures will be at the level of generalization to be found for instance
in [21].

Let us assume, as in [25], that we have a parallel computer with N = n × n
identical processors, disposed in a 2D-mesh structure. A processor is connected to
all of its four vertical or horizontal neighbors, except for the processors situated
on the perimeter, which have at most two or three neighbors, as no “wrap-around
connections“ are permitted.

Another assumption is that it is a SIMD (Single Instruction Multiple Data)
machine. During each time unit, a single instruction is executed by a set of

174 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

processors. In what follows, only two processor registers and two instructions are
needed. For inter-processor data moves, we will use a routing instruction which
copies the value of a register to a register of a neighbor processor. The second
instruction is the internal comparison between the values of the two registers of
a processor.

We define tR the time for one-unit distance routing step, and tC the time
required for one comparison step. Concurrent data movement is allowed, as long
as it is in the same direction. Moreover, any number of parallel comparisons can
be made simultaneously.

In order not to make the notation cumbersome, we let the same letter, say
i, stand for an integer in {0, 1, . . . , n − 1}, and for its binary representation as
a string. For n = 2k, as the case will be, i will be a binary string of length k.
Whenever necessary, we complete with zeros (obviously, to the left) to obtain
strings of the same length. When we refer to bits of such a string, we count from
1 to n, starting from right to left, such that the “first” bit will be that of the
least significant digit, and so forth. However, when we write such a string, we
will write it with bits numbered from right to left.

We will consider the Shuffled row-major indexing function on the processors,
illustrated in Figure 1.

Definition 1. The shuffled row-major indexing function sRM is defined as

sRMk : {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 22k − 1},

sRMk(i1i2 · · · ik, j1j2 · · · jk) = i1j1i2j2 · · · ikjk.

0000
0

0001
1

0100
4

0101
5

0010
2

0011
3

0110
6

0111
7

1000
8

1001
9

1100
12

1101
13

1010
10

1011
11

1110
14

1111
15

00 01 10 11

00

01

10

11

Fig. 1. Shuffled row-major indexing scheme for a 4 × 4 mesh

Assuming that initially N integers are loaded in the N processors, the sorting
problem is defined as moving the jth smallest element to the processor indexed
by j, for all j ∈ {0, 1, . . .N − 1}.

Simulating the Bitonic Sort Using P Systems 175

Let sRM−1 be the inverse of sRM , and let us denote as below the projection
of the first and second argument of sRM−1.

sRM−1
row, sRM−1

col : {0, 1, . . . , 22k − 1} → {0, 1, . . .2k − 1},

sRM−1
row(i1j1i2j2 · · · ikjk) = i1i2 · · · ik,

sRM−1
col (i1j1i2j2 · · · ikjk) = j1j2 · · · jk.

2.2 The Bitonic Sorting Algorithm

A bitonic sequence is a concatenation of two monotonic sequences, one ascending
and the other one descending, or a sequence such that a cyclic shift of its elements
would put them in such a form.

In Batcher’s bitonic sorting network [3] of order n, the input is a bitonic
sequence a of n/2 increasing elements followed by n/2 decreasing elements. These
two sequences are merged by first applying n/2 comparators to a0 and an/2, a1
and a(n/2)+1, ... , an/2 and an−1. This first-phase partitions the elements into two
bitonic sequences of n/2 smaller elements and of n/2 larger elements. These two
bitonic sequences are further sorted by applying two bitonic merging networks
of size n/2 to each sequence. A bitonic sorting network for 16 elements appears
in Figure 2.

Stage 1 Stage 2 Stage 3 Stage 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 2. A bitonic sorting network of size 16

The following lemma is due to K. Batcher [3].

Lemma 1. Given a bitonic sequence 〈a0, a1, . . . , a2n−1〉 the following hold:

1. d = 〈min{a0, an}, min{a1, an+1}, . . . , min{an−1, a2n−1}〉 is bitonic.
2. e = 〈max{a0, an}, max{a1, an+1}, . . . , max{an−1, a2n−1}〉 is bitonic.

176 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

3. max(d) < min(e) (i.e., every element of the sequence d is smaller that any
element of sequence e).

By an abuse of notations, we will refer to a sequence of processors as the sequence
of integers stored in one designated register A of the processors at a certain mo-
ment. Similarly, we will use min / max{Pi, Pj} meaning min / max{Pi[A], Pj [A]}
and refer to such operations as a comparison and interchange of values between
processors Pi and Pj .

We will give a generic algorithm for Batcher’s bitonic sorter on an array
〈P0, . . . , P22k−1〉 of processors, independent of the indexing function used. The
algorithm (as illustrated in Figure 2 for k = 2) will consist of 2k stages, numbered
from 1 to 2k. After each Stage i, (1 ≤ i ≤ 2k), the sequence 〈P2ij , . . . , P2ij+2i−1〉
with 0 ≤ j ≤ 22k−i − 1 will be an ascending sequence for all j even, and a de-
scending sequence, for all j odd.

Input. an array 〈P0, . . . , P22k−1〉 of processors
Output. the sequence 〈P0, . . . , P22k−1〉 is ascending

Stage(i)
for t ← i downto 1 do

// compare processors with indices differing on bit t
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
Merge(2tj, 2tj + 2t − 1, order)

end

Bitonic-Sort
for i ← 1 to 2k do

Stage(i)

end

Algorithm 1. Bitonic sort on an array of 22k processors

Given a bitonic sequence of processors 〈P0, P1, . . . , P2n−1〉, by Merge(0, 2n−
1, ascending) we mean an operation which yields the sequence:

〈min{P0, Pn}, min{P1, Pn+1}, . . . , min{Pn−1, P2n−1},

max{P0, Pn}, max{P1, Pn+1}, . . . , max{Pn−1, P2n−1}〉.

Analogously, a call to Merge(0, 2n − 1, descending) produces

〈max{P0, Pn}, max{P1, Pn+1}, . . . , max{Pn−1, P2n−1},

min{P0, Pn}, min{P1, Pn+1}, . . . , min{Pn−1, P2n−1}〉.

Simulating the Bitonic Sort Using P Systems 177

Theorem 1. After each Stage i, the sequence 〈P2ij , . . . , P2ij+2i−1〉, 0 ≤ j ≤
2k−i −1 will be an ascending sequence for all j even, and a descending sequence,
for all j odd.

Proof. We shall reason by induction on i. For the base case i = 1 it is immediate
that the statement holds. Now let the statement be true for i and show that is
it also true for i + 1.

First, t = i + 1 and 0 ≤ j ≤ 2k−i−1 − 1. The sequence S for the i + 1 case can
be written as

S = 〈P2i+1j , . . . , P2i+1j+2i−1〉 =

〈P2i2j , . . . , P2i2j+2i−1, P2i(2j+1), . . . , P2i(2j+1)+2i−1〉.

From the induction hypothesis, we have that the sub-sequence

S1 = 〈P2i2j , . . . , P2i2j+2i−1〉

is ascending as 2j is even for any j, and that

S2 = 〈P2i(2j+1), . . . , P2i(2j+1)+2i−1〉

is descending as 2j + 1 is odd for any j. Therefore, the whole sequence S is
bitonic.

At this point we apply the Merge operation on S, and get S′ = S′1S
′
2.

By Lemma 1 we have that S′1 and S′2 are both bitonic. Moreover, when doing
an ascending merge, max(S′1) < min(S′2) and when doing a descending merge,
min(S′1) > max(S′2). This ensures that the two sequences are relatively ordered
and can be sorted independently in parallel.

For 1 ≤ t < i+1 the Merge operations are the same as in a merging network.
We note that for all 2i+1j ≤ l < 2i+1(j + 1), l div 2i+1 = j and therefore all
subsequent Merge operations for t < i + 1 on these processors will have the
same order as when t = i + 1. �	

Corollary 1. Given a sequence 〈P0, . . . , P22k−1〉 of processors, Algorithm 1 is
correct.

Lemma 2. Given a 2k ×2k 2D-mesh indexed with the function sRM and using
Algorithm 1, for any two processors x = 2tj + l and y = 2tj + l + 2t−1, with
0 ≤ l ≤ 2t−1−1, 1 ≤ t ≤ i, and 0 ≤ j ≤ 2k−t−1, which compare and interchange
values inside a call of the form Merge (2tj, 2tj + 2t − 1, order), the following
hold:

(i) the binary representations of x and y differ only on bit t;
(ii) if t is even then x and y reside on the same vertical line of the mesh; if t

is odd they are on the same horizontal line;
(iii) the distance on the mesh between x and y is 2�t/2�−1;
(iv) all processors situated on the same line between x and y are involved in the

same Merge operation (i.e., have indices between 2tj and 2tj + 2t − 1).

178 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

Proof. (i) Since x = 2tj + l and l ≤ 2t−1 − 1, we have that l contributes to bits
1 to t − 1 and that 2tj contributes to bits t + 1 to 2k. Therefore bit t of x is 0.
Similarly, since y = x + 2t−1, bit t of y is 1, and all other bits are the same as
those of x.

(ii) Let i1, and j1 be the row and column indices of x, sRM−1
row(x) and

sRM−1
col (x), respectively. Analogously, let i2 and j2 be the row and column in-

dices of y. From i) we have that x and y differ on bit t, and hence the following
two cases hold: t is even and i1
= i2, j1 = j2, or t is odd and i1 = i2, j1
= j2. In
the first case x and y are on the same column, and in the latter, they are on the
same row.

(iii) Using the notations above, let us assume that t is even and i1
= i2,
j1 = j2. If x and y differ on bit t, then i1 and i2 will differ on bit t/2, and
therefore |i1 − i2| = 2t/2−1. From ii) x and y are on the same line of the mesh
and the distance between them is |i1 − i2| = 2t/2−1. Similarly, when t is odd
and i1 = i2, j1
= j2, we have that j1 and j2 differ on bit �t/2�. As before, the
distance between x and y is 2�t/2�−1.

(iv) Consider again the case t even and i1
= i2, j1 = j2. We have to show that
for all numbers i with i1 ≤ i ≤ i2, we have 2tj ≤ sRM(i, j1) ≤ 2tj + 2t − 1. But
since i1 ≤ i ≤ i2, form the definition of sRM , we have that x ≤ sRM(i, j1) ≤ y,
which concludes our proof as 2tj ≤ x and y ≤ 2tj + 2t − 1. Analogously for t
odd. �	

2.3 Applying the Bitonic Sorting Algorithm to the 2D-Mesh

Thompson and Kung [25], and Orcutt [18] showed that Batcher’s bitonic sorting
algorithm can be applied to sorting on a mesh-connected parallel computer, once
the indexing function is chosen. In [25] it is noted that a necessary condition for
optimality is that a comparison-interchange on the jth bit be no more expensive
than the (j+1)th bit, for all j. From (iii) of Lemma 2 we have that the “shuffled
row-major” indexing scheme satisfies such condition, and leads to a complexity
of (14(n − 1) − 8 logn)tR + (2 log2 n + log n)tC according to [25]. The algorithm
for a 4 × 4 mesh with the shuffle row-major indexing is illustrated below and
in Figure 3, where by “well ordered” we refer to the corresponding comparison
directions from Figure 2.

Stage 1. Bitonic sort on pairs of adjacent 1 × 1 matrices by the comparison
interchange indicated, result: “well ordered” 1× 2 matrices. Time: 2tR + tC .

Stage 2. Bitonic sort on 1×2 matrices, result: 2×2 matrices. Time: 4tR +2tC .
Stage 3. Bitonic sort on 2×2 matrices, result: 2×4 matrices. Time: 8tR +3tC .
Stage 4. Bitonic sort on the two 2 × 4 matrices. Time: 12tR + 4tC .

At each stage of Algorithm 1, we have a comparison and interchange of values
between two processors. We have seen in Lemma 2 that using the sRM indexing
function, these two processors will sit on the same vertical or horizontal line
of the mesh. When they are not directly connected, they have to route their
values through neighbor processors, residing on the shortest path between them

Simulating the Bitonic Sort Using P Systems 179

10 9

4 15

14 2

1211

6 1

8 3

5 13

07

9 10

15 4

2 14

1112

1 6

8 3

5 13

07

9 4

15 10

12 14

1112

1 3

8 6

7 13

05

4 9

10 15

14 12

211

1 3

6 8

13 7

05

4 9

10 2

14 12

1511

13 7

6 8

1 3

05

4 2

10 9

11 12

1514

13 8

6 7

5 3

01

2 4

9 10

11 12

1514

13 8

7 6

5 3

01

2 4

7 6

5 3

01

13 8

9 10

11 12

1514

2 3

1 0

5 4

67

11 8

9 10

13 12

1514

1 0

2 3

5 4

67

9 8

11 10

13 12

1514

0 1

2 3

4 5

76

8 9

10 11

12 13

1514

Stage 1 Stage 2

Stage 3

Stage 4

Result

t = 1 t = 2 t = 1

t = 1

t = 1

t = 2

t = 2

t = 3

t = 3t = 4

Fig. 3. Bitonic sorting algorithm applied on a 4×4 2D-mesh, using shuffled row-major
indexing

180 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

(i.e., the line of the mesh on which they are placed). At each Stage i, we have
a comparison and interchange between processors whose indices differ only on
bit t, with 1 ≤ t ≤ i. Keeping in mind the parallel structure of our machine,
the merging operation becomes a merging of square or rectangular portions of
the mesh. Therefore, using the sRM indexing, the Merge operation defined
previously becomes a Merge operation on sub-arrays of processors situated on
the same line of the mesh. We denote such operation compare-interchange.

For a better understanding of the way a call Merge (2tj, 2tj + 2t − 1, order)
(1 ≤ i ≤ 2k, 1 ≤ t ≤ i, 0 ≤ j ≤ 22k−t − 1) is translated to the 2k × 2k mesh
topology, we make the following observations:

Remark 1. The portion of the mesh has dimensions 2t−�t/2�×2�t/2� (i.e., 2t−�t/2�

rows and 2�t/2� columns). This is true since 2t processors are involved in the
Merge and from Lemma 2 the maximal length of the sub-arrays involved in the
Merge situated on the same line is 2 · 2�t/2�−1.

Remark 2. For t even, we have a merging of square portions of the mesh of size
2t/2 × 2t/2 and the compare interchange operations are done between processors
residing on the same column of the mesh, For t odd we have a merging of rectan-
gular portions of the mesh of size 2�t/2�−1 ×2�t/2�, and the compare interchange
operation are done between processors residing on the same row of the mesh.

Let us see what are the necessary routings for the case for t = 1 (the proces-
sors are directly connected since 2�t/2�−1 = 1). Consider a call of the form
Merge(x, x + 1, order). Let processors Px and Px+1 have the two registers de-
noted by A and B. Then the first instruction performed is a routing from Px[A]
to Px+1[B]. Next, perform a comparison operation in processor Px+1, and store
the minimum/maximum in register B. Finally, route back to Px the value of the
B register of Px+1, with a total time is 2tR + tC . The pseudo-code is written
below, where by compare(Px+1, ascending/descending) we understand an in-
ternal comparison in processor Px+1, which places the minimal/maximal value
in register B.

Input. index x and sorting order order
Output. the sequence 〈Px, Px+1〉 is ordered w.r.t. order

route(Px[A], Px+1[B])
compare(Px+1, order)
route(Px+1[B], Px[A])

Algorithm 2. Compare-interchange operation for adjacent processors

The case when we have to merge an array a of 2i processors situated on the
same line of the mesh, indexed from 0 to 2i − 1, and such that Pa[j] is neighbor
with Pa[j+1] for all 0 ≤ j < 2i − 1 is specified in Algorithm 3. The basic idea is
that we have to shift the values of the first half of the array in the B registers of
the second half, perform a comparison operation in parallel in these processors,
and then shift back the minimal/maximal values. Hence a total time of 2itR+tC .

Simulating the Bitonic Sort Using P Systems 181

Input. array a of indices, integer i, and sorting order order
Output. the sequence 〈Pa[0], Pa[1], . . . , Pa[2i−1]〉 is ordered w.r.t. order

compare-interchange(a, i, order)
forall j ← 0 to 2i−1 − 1 in parallel do

route(Pa[j][A], Pa[j+1][B]) // route right one unit

for k ← 1 to 2i−1 − 1 do
forall j ← 0 to 2i−1 − 1 in parallel do

route(Pa[j+k][B], Pa[j+1+k][B]) // shift the values to the second
half of the array

forall j ← 2i−1 to 2i − 1 in parallel do
compare(Pa[j], order) // compare internally

for k ← 2i−1 − 1 downto 1 do
forall j ← 0 to 2i−1 − 1 in parallel do

route(Pa[j+k+1][B], Pa[j+k][B]) // shift back the results

forall j ← 0 to 2i−1 − 1 in parallel do
route(Pa[j+1][B], Pa[j][A]) // final routing back in the A registers

end

Algorithm 3. Compare-interchange operation for an array of neighbor proces-
sors situated on the same line of the mesh

In order to give a version of the bitonic sorting algorithm on a 2D-mesh of
22k processors, we make the following conventions and remarks.

The right and down neighbors of r (defined whenever possible) are:

right(r) = sRM(sRM−1
row(r), sRM−1

col (r) + 1)
down(r) = sRM(sRM−1

row(r) + 1, sRM−1
col (r))

For a specification independent of the parity of bit t, denote (whenever possible):

nextt(r) =

{
right(r), if t odd;
down(r), if t even.

Let next
(c)
t (r) be the c-th iterate of the function nextt, i.e., (nextt ◦ · · · ◦

nextt)(r) c times.
Algorithm 4 represents the bitonic sort on a 2D-mesh of processors. The line

Merge(2tj, 2tj + 2t − 1, order) of Algorithm 1 has been replaced by its corre-
sponding operations on the 2D-mesh. We need a compare-interchange sub-
routine for every line of the sub-matrix of the mesh involved in the Merge. From
Remarks 1-2 we know that the dimensions of the sub-matrix are 2�t/2�×2t−�t/2�.
Hence the maximal length of a sequence of processors situated on the same line
which compare and interchange values in a Merge operation is 2�t/2�. More-
over, the indices of the first processors on every line l (i.e., the smallest indices

182 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

on every line l) in a Merge(2tj, 2tj + 2t − 1, order) are sRM(sRM−1
row(2tj) +

l, sRM−1
col (2

tj)), with 0 ≤ l ≤ 2t−�t/2� − 1.

Input. an array 〈P0, . . . , P22k−1〉 of processors
Output. the sequence 〈P0, . . . , P22k−1〉 is ascending

Stage(i)
for t ← i downto 1 do

// compare processors with indices differing on bit t
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
// for every line in the Merge operation
forall l ← 0 to 2t−�t/2� − 1 in parallel do

// build array a containing processor indices on line l
for c ← 0 to 2�t/2� − 1 do

a[c] ← next
(c)
t (sRM(sRM−1

row(2tj) + l, sRM−1
col (2

tj)))

compare-interchange(a, �t/2�, order)

end

Bitonic-Sort
for i ← 1 to 2k do

Stage(i)

end

Algorithm 4. Bitonic sort on a 2D-mesh of 22k processors

3 Modeling with Membranes

Given the embedded parallel structure of a P system, modeling a 2D-mesh is
a natural and straightforward approach. In what follows, we present two such
systems.

3.1 A P System with Dynamic Communication of 2D-Mesh Type

The first P system we introduce is along the same general lines as the model
proposed in [6]. For each of the processors Pi, i ∈ {0, 1, . . . , 22k − 1} we have
an associated membrane, which we label i. The two registers A and B of each
processor are coded by two different symbols, say a for the A register and b for
the B register. The number of occurrences of a represents the value of the A
register, and analogously for b. Similarly to tissue-like P systems, we will have
a collection of elementary membranes, connected by certain graphs, at certain
moments of their evolution in time. The graphs we consider will be sub-graphs
of the total graph of the 2D-mesh network, also sub-graphs of the identity graph
of the 2D-mesh network.

Simulating the Bitonic Sort Using P Systems 183

In a slightly different manner from [8] or [9], we refer to the communication
graph associated to a given architecture with the following conventions: the ver-
tices of the graph are the processors, and the edges are the network connections
characteristic of the architecture.

In the case of the 2k ×2k 2D-mesh with the sRM indexing function, let Gtotal

be the underlying communication graph consisting of all edges necessary to the
architecture. We introduce the following notation for the set of vertices of Gtotal:

V (Gtotal) = {0, 1, . . . , 22k − 1}.

Hence, the set of edges is

E(Gtotal) = {(sRM(i, j), sRM(i, j + 1),) | 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ 2k − 2}
∪ {(sRM(i, j), sRM(i + 1, j)) | 0 ≤ i ≤ 2k − 2, 0 ≤ j ≤ 2k − 1}.

Note that at a certain step of the sorting algorithm not all edges are involved
in communication. Therefore we will call active sub-graphs of Gtotal those graphs
containing only such edges. We also introduce the identity graph, with

V (Id) = {0, 1, . . . , 22k − 1},

E(Id) = {(sRM(i, j), sRM(i, j)) | 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ 2k − 1},

for modeling internal processing steps.
As in [6], the P system which we will consider in the sequel, departs from the

classical P systems in two respects:

– The connections between individual membranes of a P system, μ, which
was a tree-like structure of membranes (see [19]), and which in tissue-like P
systems becomes a graph structure, is now, a sequence of graphs.

– The rules of a P system, usually associated to membranes, will now be as-
sociated to communication graphs between membranes.

(a) We simulate the internal computations performed by a subset of proces-
sors by the action of symbol or object rewriting rules, at work simulta-
neously inside the corresponding subset of membranes. We will associate
such rules to the corresponding active subsets of Id.

(b) We simulate the exchange of data performed by the processors with
communication rules (symport/antiport rules) between membranes. The
communication rules will be associated to the active sub-graphs of Gtotal.
Auxiliary rewriting is necessary before and after the application of a
communication rule.

In order to describe the evolution of a P system which simulates the behavior
of the bitonic sorting algorithm in the 2D-mesh architecture, we use pairs of the
type [graph, rules]. We have graph a sub-graph of Gtotal or Id and rules a map-
ping from the set of all edges of graph, E(graph), to the set of all symbol/object
rewriting rules for routing or comparison operations.

184 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

The general presentation of such a P system is of the form

Π = (V = {a, b, a∗, b∗}, 〈[ax0]0, . . . , [ax22k−1]22k−1〉, Rμ),

where the membrane indices are {0, 1, . . . , 22k − 1}. Each integer xi, with i ∈
{0, 1, . . . , 22k − 1}, is codified as the number of occurrences of symbol a inside
membrane i. Finally, Rμ is the finite sequence of pairs [graph, rules] which simu-
lates Algorithm 4. We will see in the sequel that Rμ is generated algorithmically,
by concatenating sequences of pairs [graph, rules]1. The additional symbols a∗

and b∗ are necessary for the auxiliary rewriting needed by the communication
(routing) operations.

In order to give such a sequence, we have to closely follow Algorithm 4.
The routing operations in the compare-interchange sub-routine will be re-
placed by their corresponding ones in terms of the P system formalism described
above. Consider two adjacent processors Px and Py which interchange values.
The three possible routing operations are: route(Px[A], Py[B]), route(Px[B],
Py[B]), route(Px[B], Py[A]). The implementation with rewriting and communi-
cation rules of the first operation follows the lines: rewrite a → a∗ into membrane
x, apply the communication rule (a∗, out) along the edge (x, y), transporting all
the a∗ symbols from membrane x into y, and then, in membrane y, rewrite a∗

back to the desired symbol, in this case a∗ → b. Below, we give a specification
of a sequence [graph, rules] accomplishing this routing operation.

[Id1, rules1] · [G, rules] · [Id2, rules2], such that (rAB)
Id1 ⊆ Id, (x, x) ∈ E(Id1), rules1((x, x)) = {a → a∗},

G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(a∗, out)},

Id2 ⊆ Id, (y, y) ∈ E(Id2), rules2((y, y)) = {a∗ → b}.

Similarly, an operation route(Px[B], Py[A]) is specified as:

[Id1, rules1] · [G, rules] · [Id2, rules2], such that (rBA)
Id1 ⊆ Id, (x, x) ∈ E(Id1), rules1((x, x)) = {b → b∗},

G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(b∗, out)},

Id2 ⊆ Id, (y, y) ∈ E(Id2), rules2((y, y)) = {b∗ → a}.

In the case of a route(Px[B], Py [B]), only one communication graph is needed.
The reason for not having supplementary rewriting is that such routings are done
in parallel. The value from Px[B] is routed to Py [B] in parallel with the routing
of Py[B] to a B register of a neighbor processors. Hence the number of symbols
b in membrane y is the desired one Px[B].

[G, rules], such that (rBB)
G ⊆ Gtotal, (x, y) ∈ E(G), rules((x, y)) = {(b, out)}.

1 We denote the empty sequence by λ, and the concatenation of two sequences by “·”.

Simulating the Bitonic Sort Using P Systems 185

Input. array a of membrane indices, integer i, and sorting order order
Output. the sequence of integers stored in the sequence of membranes

with indices 〈a[0], a[1], . . . , a[2i − 1]〉 is ordered w.r.t. order

compare-interchange-membr(a, i, order)
forall j ← 0 to 2i−1 − 1 in parallel do

// route right one unit in the B registers - (rAB) rule
E(Idt

1) ← E(Idt
1) ∪ {(j, j)}; rulest

0,1((j, j)) ← {a → a∗}
E(Gt

0) ← E(Gt
0) ∪ {(j, j + 1)}; rulest

0((j, j + 1)) ← {(a∗, out)}
E(Idt

2) ← E(Idt
2) ∪ {(j + 1, j + 1)};

rulest
0,2((j + 1, j + 1)) ← {a∗ → b}

for k ← 1 to 2i−1 − 1 do
// shift the values to the second half of the array - (rBB) rule
forall j ← 0 to 2i−1 − 1 in parallel do

E(Gt
k) ← E(Gt

k) ∪ {(j + k, j + 1 + k)}
rulest

k((j + k, j + 1 + k)) ← {(b, out)}

forall j ← 2i−1 to 2i − 1 in parallel do
// compare internally - (C) rule
E(Idt

C) ← E(Idt
C) ∪ {(j, j)}

if order is ascending then
rulest

C((j, j)) ← {ab → ab, a → b, b → b}
else

rulest
C((j, j)) ← {ab → ab, a → a, b → a}

for k ← 2i−1 − 1 downto 1 do
// shift back the results - (rBB) rule
forall j ← 0 to 2i−1 − 1 in parallel do

E(Gt
2i−k) ← E(Gt

2i−k) ∪ {(j + k + 1, j + k)}
rulest

2i−k((j + 1 + k, j + k)) ← {(b, out)}

forall j ← 0 to 2i−1 − 1 in parallel do
// final routing back in the A registers - (rBA) rule
E(Idt

2i,1) ← E(Idt
2i,1) ∪ {(j + 1, j + 1)};

rulest
2i,1((j + 1, j + 1)) ← {b → b∗}

E(Gt
2i) ← E(Gt

2i) ∪ {(j + 1, j)}; rulest
2i((j + 1, j)) ← {(b∗, out)}

E(Idt
2i,2) ← E(Idt

2i,2) ∪ {(j, j)}; rulest
2i,2((j, j)) ← {b∗ → a}

end

Algorithm 5. Compare-interchange operation for an array of neighbor mem-
branes associated to processors situated on the same line of the mesh

186 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

Input. an array 〈[ax0]0, . . . , [ax22k−1]22k−1〉 of membranes containing
integers {xi | 0 ≤ i ≤ 22k − 1} codified as appearances of letter a

Output. the sequences Ri
μ of pairs [graph, rules] simulating Stage i, and

finally the sequence Rμ simulating bitonic sort

Sim-Stage(i)
Ri

μ ← λ

for t ← i downto 1 do
forall s ∈ {0, . . . , 2�t/2� − 1} do

Gt
s ← λ; rulest

s ← ∅
// compare processors with indices differing on bit t
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
// for every line in the Merge operation
forall l ← 0 to 2t−�t/2� − 1 in parallel do

// build array a containing processor indices on line l
for c ← 0 to 2�t/2� − 1 do

a[c] ← next
(c)
t (sRM(sRM−1

row(2tj) + l, sRM−1
col (2

tj)))
compare-interchange-membr(a, �t/2�, order)

// route to the second half
Ri

μ ← Ri
μ · [Idt

0,1, rulest
0,1][G

t
0, rulest

0][Idt
0,2, rulest

0,2]
for s ← 1 to 2�t/2�−1 − 1 do

Ri
μ ← Ri

μ · [Gt
s, rulest

s]
// compare internally
Ri

μ ← Ri
μ · [Idt

C , rulest
C]

//route back to the first half
for s ← 2i−1 + 1 to 2i − 1 do

Ri
μ ← Ri

μ · [Gt
s, rulest

s]

Ri
μ ← Ri

μ · [Idt
2i,1, rulest

2i,1][G
t
2i , rulest

2i][Idt
2i,2, rulest

2i,2]

end
Sim-Bitonic-Sort

Rμ = λ
for i ← 1 to 2k do

Sim-Stage(i)
Rμ = Rμ · Ri

μ

end

Algorithm 6. Generating the sequence of pairs Rμ = R1
μ · R2

μ · . . . · R2k
μ simu-

lating the bitonic sorting algorithm on the 2k × 2k 2D mesh

Consider now an internal comparison operation in processor Px, compare(Px,
order) which places max(Px[A], Px[B]) in register B if the order is ascending,
or in register A if the order is descending. This can be formalized as:

Simulating the Bitonic Sort Using P Systems 187

[IdC , rules], such that IdC ⊆ Id, (x, x) ∈ E(IdC), (C)

rulesC((x, x)) =

{
{ab → ab, a → b, b → b}, if order is ascending,
{ab → ab, a → a, b → a}, if order is descending.

For every bit t, we have a sequence Gt
s (sub-graphs of Gtotal) of communication

graphs which simulate all parallel routing operations, illustrated by rules (rAB),
(rBB), (rBA), (C), where 0 ≤ s ≤ 2�t/2�−1−1. From the above considerations and
the steps of Algorithm 3, we introduce the sub-routine compare-interchange-
membr(a, i, order) in Algorithm 5.

After the communication graphs and their corresponding rules have been gen-
erated, all there remains to be done is concatenate the pairs [graph, rules]. This
is done in Algorithm 6.

Theorem 2. The P system Π with Rμ = R1
μ · R2

μ · . . . · R2k
μ generated by Algo-

rithm 6 sorts in ascending order integers codified in membranes as numbers of
occurrences of letter a.

Proof. This is a consequence of Theorem 1 and its corollary and the way the
simulation was conceived. �	

3.2 Bitonic Sorting in One Membrane

We propose here a simulation of the bitonic sorting, which uses only one mem-
brane. We will use (cooperative) symbol rewriting rules. The cooperation will
be minimal, i.e., of degree two, since we follow closely the algorithm, and thus
the whole process is based on comparators.

Consider an alphabet with 22k symbols, V = {v0, v1, · · · v22k−1}. We will call
it the primary alphabet.

We will also consider auxiliary alphabets, which we will specify in the sequel,
in order to achieve sorting by rewriting.

We want to sort in ascending order the sequence of distinct integers

〈x0, x1, · · ·x22k−1〉,

codified over V as the multiset

w = v0
x0v1

x1 · · · v22k−1
x22k−1 .

We want to design a P system which, by rewriting acting in a maximal parallel
manner and competing for objects, produces, from the initial configuration w,
the configuration

wf = v0
σ(x0)v1

σ(x1) · · · v22k−1
σ(x22k−1),

where σ is the permutation which yields the total order, i.e., such that σ(x0) <
σ(x1) < · · · < σ(x22k−1).

188 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

Consider the alphabet V as ordered by the natural order given by the indices,
and let v = v0v1 · · · v22k−1 be the alphabet word (see [1]), i.e., the word obtained
by concatenating the letters of V in their natural order. We call extended al-
phabet words over V , all words in V ∗ in which all the letters appear in their
natural order. Note that both w and wf , the initial and the final configuration
of our P system, are extended alphabet words. Actually, all the intermediate
configurations over V will be of this type.

Let Mj(u) denote the multiplicity of letter vj in a word u ∈ V ∗. Then

w = v0
x0v1

x1 · · · v22k−1
x22k−1 = v0

M0(w) · · · v22k−1
M22k−1(w).

Consider first the case n = 2 (k = 0). We have 2 integers codified over {v0, v1}
as an extended alphabet word. Consider the auxiliary alphabets

– {a, b}, for writing sources of a comparator,
– {c+, d+}, for writing targets of a ⊕-comparator,
– {c−, d−}, for writing targets of a �-comparator.

Consider the rules:

C⊕ = {v0 → a, v1 → b} ∪ {ab → c+d+, a → d+, b → d+} ∪ {c+ → v0, d
+ → v1}.

The first group rewrites all v0s to as and v1s to bs, the second group performs
the comparison and produces the ascending order, and the last group rewrites
back into the original alphabet. We have the sequence of configurations

v0
x0v1

x1 → ax0bx1 → c+min(x0,x1)
d+max(x0,x1) → v0

min(x0,x1)v1
max(x0,x1).

Similarly, the rules:

C� = {v0 → a, v1 → b} ∪ {ab → c−d−, a → c−, b → c−} ∪ {c− → v0, d
− → v1},

achieve a descending comparator, generating the sequence of configurations

v0
x0v1

x1 → ax0bx1 → c−max(x0,x1)
d−min(x0,x1) → v0

max(x0,x1)v1
min(x0,x1).

Lemma 3. On a two-letter alphabet, starting from an initial configuration w =
v0

x0v1
x1 , by applying rules in C⊕ we obtain wf such that (Mi(wf))i is ascending,

and by applying rules in C� we obtain wf such that (Mi(wf))i is descending.

Note that rules C⊕ simulate a Merge(0, 1, +), and C� a Merge(0, 1, −).
We now want to simulate a whole family of merge operations done in parallel.
We take 2 auxiliary alphabets, S+ and S− to codify sources of + or − com-

parators, and another pair, T + and T−, to codify outputs (targets) of + or −
comparators. We label them in a bijective correspondence with V .

S+ = {s0
+, · · · s+

22k−1},

T + = {t0
+, · · · t+22k−1},

Simulating the Bitonic Sort Using P Systems 189

and similarly for −. (For the time being, only 4 copies of the initial alphabet.
We will probably need 4 different copies for every stage, in order to keep them
independent.)

At Stage (1) we have to simulate Merge(2j, 2j + 1, order), for all 0 ≤ j ≤
22k−1 − 1, where order = + for all j even, and order = − for all j odd.

This is equivalent to:

– Rewrite all symbols of V into start symbols for appropriate comparators,
using the sets of rules

{v2j → s2j
+, v2j+1 → s2j+1

+ | 0 ≤ j ≤ 22k−1 − 1 , j even}
∪ {v2j → s2j

−, v2j+1 → s2j+1
− | 0 ≤ j ≤ 22k−1 − 1 , j odd}.

– Apply in parallel the rewriting of symbols which correspond to the simula-
tions of the comparators:

{s2j
+s2j+1

+ → t2j
+t2j+1

+, s2j
+ → t2j+1

+, s2j+1
+ → t2j+1

+ |
0 ≤ j ≤ 22k−1 − 1 , j even}

∪ {s2j
−s2j+1

− → t2j
−t2j+1

−, s2j
− → t2j

−, s2j+1
− → t2j

− |
0 ≤ j ≤ 22k−1 − 1 , j odd}.

– Rewrite back all symbols of T ’s into V .

{v2j ← t2j
+, v2j+1 ← t2j+1

+ | 0 ≤ j ≤ 22k−1 − 1 , j even}
∪ {v2j ← t2j

−, v2j+1 ← t2j+1
− | 0 ≤ j ≤ 22k−1 − 1 , j odd}.

The general scheme is given in Algorithm 7.
The calls to Merge(2tj, 2tj + 2t − 1, order) are equivalent to parallel calls to

Merge(x, y, order), where x and y are like in Lemma 2. The same result ensures
us that, both the rewriting which feeds the comparators, and the rewriting which
implements the comparators can be done in parallel. For Merge(x, y, order =
−), we use

{sx
−sy

− → tx
−ty
−, sx

− → tx
−, sy

− → tx
−}.

We propose the following sets of rules for simulating iteration t at Sim-
Stage(i):

(WF) Rewriting to S’s, with ∗ =

{
+, if 2tj div 2i is even,
−, if 2tj div 2i is odd,

{vx → sx
∗ ∈ St

∗ | x ∈ [2tj, 2tj + 2t−1), 0 ≤ j ≤ 22k−t+1 − 1}.

(C) Rewriting which simulates the comparators, for appropriate pairs of in-
dices:

{sx
+sy

+ → tx
+ty

+, sx
+ → ty

+, sy
+ → ty

+ |
x ∈ [2tj, 2tj + 2t−1), y = x + 2t−1, 0 ≤ j ≤ 22k−t − 1},

{sx
−sy

− → ty
−tx
−, sx

− → tx
−, sy

− → tx
− |

x ∈ [2tj, 2tj + 2t−1), y = x + 2t−1, 0 ≤ j ≤ 22k−t − 1}.

190 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

(WB) Rewriting from T ’s:

{vx ← tx
∗ ∈ Tt

∗ | x ∈ [2tj, 2tj + 2t−1), 0 ≤ j ≤ 22k−t+1 − 1}.

Input. an extended alphabet word w over V
Output. the extended alphabet word wf over V , such that 〈Mi(wf)〉i is

ascending

Sim-Stage(i)
for t ← i downto 1 do

Take 4 extra copies of the start and the terminal alphabets, S+
t ,

S−t , T +
t , T +

t , different for each value of t. For t’s smaller than i we
can re-use the alphabets of previous stages.
forall j ← 0 to 22k−t − 1 in parallel do

if 2tj div 2i is even then order = ascending
else order = descending
// Simulate the calls Merge(2tj, 2tj + 2t − 1, order)
(WF) Rewrite all symbols in V with the appropriate symbol in
S+

t ∪ S−t .
(C) Apply the rewriting which simulates the appropriate
comparators.
(WB) Rewrite back all symbols in T +

t ∪ T−t to symbols of V .

end

Sim-Bitonic-Sort
for i ← 1 to 2k do

Sim-Stage(i)

end

Algorithm 7. Simulating bitonic sort on an alphabet of 22k letters V

4 Conclusions and Open Problems

We have presented a bitonic sorting algorithm which can be implemented on a 2D
mesh of processors. We have not yet found in the literature a formal proof of the
correctness of bitonic sorting, an equivalent, or an analogue of our Theorem 1.

Next, we have proposed two simulations with P systems. The first simulation,
derived in a “straightforward” manner from the functioning of the algorithm
on the mesh, is inspired from work in [6], [8], [9], and [7], where the general
framework was abstracted. It introduces a generative approach to the sequence
of communication graphs, a novel feature to be explored in subsequent work.
Note that, although in our case we have simulated a deterministic algorithm
with a deterministic P system, dynamic communication graphs can be used
with non-deterministic systems as well.

Simulating the Bitonic Sort Using P Systems 191

The second simulation is at the opposite pole: it requires no routings of values
at all, just an appropriate codification of the symbols. It is in this area that other
versions of the algorithm could be implemented, independent of the topology of
a given structure, and the parallel features of the P systems can be compared
against those of other computational devices.

References

1. Alhazov, A., Sburlan, D.: Static Sorting P Systems, ch. 8 in [10]

2. Arulanandham, J.J.: Implementing Bead – Sort with P Systems. In: Calude, C.S.,
Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 115–125. Springer,
Heidelberg (2002)

3. Batcher, K.: Sorting Networks and Their Applications. In: Proc. of the AFIPS
Spring Joint Computing Conf. 32(2968), pp. 307–314

4. Ceterchi, R., Mart́ın-Vide, C.: Dynamic P Systems. In: Păun, G., Rozenberg, G.,
Salomaa, A., Zandron, C. (eds.) Membrane Computing. LNCS, vol. 2597, pp. 146–
186. Springer, Heidelberg (2003)

5. Ceterchi, R., Mart́ın-Vide, C.: P Systems with Communication for Static Sorting.
In: Cavaliere, M., Mart́ın-Vide, C., Păun, G. (eds.) GRLMC Report 26, Rovira i
Virgili University, Tarragona (2003)

6. Ceterchi, R., Pérez Jiménez, M.J.: On Two-Dimensional Mesh Networks and Their
Simulation with P Systems. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozen-
berg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 259–277. Springer,
Heidelberg (2005)

7. Ceterchi, R., Pérez Jiménez, M.J.: On Simulating a Class of Parallel Architectures.
International Journal of Foundations of Computer Science 17, 91–110 (2006)

8. Ceterchi, R., Pérez Jiménez, M.J.: Simulating Shuffle – Exchange Networks with
P Systems. In: Păun, G., Riscos, A., Sancho, F., Romero, A. (eds.) Proceedings of
the Second Brainstorming Week on Membrane Computing. Report RGNC 01/04,
pp. 117–129 (2004)

9. Ceterchi, R., Pérez Jiménez, M.J.: A Perfect Shuffle Algorithm for Reduction
Processes and its Simulation with P Systems. In: Dzitac, I., Maghiar, T., Popescu,
C. (eds.) Proceedings of the International Conference on Computers and Commu-
nications ICCC 2004, Editura Univ. Oradea, pp. 92–97 (2004)

10. Ciobanu, G., Păun, G., Pérez Jiménez, M.J. (eds.): Applications of Membrane
Computing. Springer, Heidelberg (2006)

11. Corbett, P.F., Scherson, I.D.: Sorting in Mesh Connected Multiprocessors. IEEE
Transactions on Parallel and Distributed Systems 3, 626–632 (1992)

12. Dowd, M., Perl, Y., Rudolph, L., Saks, M.: The Periodic Balanced Sorting Network.
Journal ACM 36, 738–757 (1989)

13. Han, Y., Igarashi, Y., Truszczynski, M.: Indexing Functions and Time Lower
Bounds for Sorting on a Mesh-connected Computer. Discrete Applied Mathemat-
ics 36, 141–152 (1992)

14. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3.
Addison-Wesley, Reading, Mass (1973)

15. Layer, C., Pfleiderer, H.-J.: A Reconfigurable Recurrent Bitonic Sorting Network
for Concurrently Accessible Data. In: Becker, J., Platzner, M., Vernalde, S. (eds.)
FPL 2004. LNCS, vol. 3203, pp. 648–657. Springer, Heidelberg (2004)

192 R. Ceterchi, M.J. Pérez-Jiménez, and A.I. Tomescu

16. Nassimi, D., Sahni, S.: Bitonic Sort on a Mesh Connected Parallel Computer. IEEE
Transactions on Computers C28(1), 2–7 (1979)

17. Nassimi, D., Sahni, S.: An Optimal Routing Algorithm for Mesh-Connected Par-
allel Computers. Journal ACM 27, 6–29 (1980)

18. Orcutt, S.E.: Computer Organization and Algorithms for Very High Speed Com-
putations. Ph.D. Th., Stanford U., Stanford, Calif., ch. 2, pp. 20–23 (1974)

19. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

20. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
21. Quinn, M.J.: Parallel Computing. Theory and Practice. McGraw – Hill Series in

Computer Science (1994)
22. Sado, K., Igarashi, Y.: Some Parallel Sorts on a Mesh-connected Processor Array

and Their Time Efficiency. Journal of Parallel and Distributed Computing 3, 398–
410 (1986)

23. Siegel, H.J.: The Universality of Various Types of SIMD Machine Interconnection
Networks. In: Proceedings of the 4th Annual Symposium on Computer Architec-
ture, pp. 23–25 (1977)

24. Stone, H.S.: Parallel Processing with the Perfect Shuffle. IEEE Transactions on
Computers C-20, 153–161 (1971)

25. Thompson, C.D., Kung, H.T.: Sorting on a Mesh-connected Parallel Computer.
Communications of the ACM 20, 263–271 (1977)

26. The membrane computing web page: http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

On the Number of Agents in P Colonies

Luděk Cienciala1, Lucie Ciencialová1, and Alica Kelemenová1,2

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
2 Department of Computer Science, Catholic University Ružomberok, Slovakia

{ludek.cienciala,lucie.ciencialova,alica.kelemenova}@fpf.slu.cz

Abstract. We continue the investigation of P colonies introduced in [8],
a class of abstract computing devices composed of independent mem-
brane agents, acting and evolving in a shared environment.

We decrease the number of agents sufficient to guarantee computa-
tional completeness of P colonies with one and with two objects inside
each agent, respectively, owing some special restrictions to the type of
programs. We characterize the generative power of the partially blind
machine by the generative power of special P colonies.

1 Introduction

P colonies were introduced in [8] as formal models of a computing device inspired
by membrane systems ([10]) and by grammar systems called colonies ([6]). This
model intends to structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents. Each agent is
given by a collection of objects embedded in a membrane. The number of objects
inside the agent is the same for each one of them. The environment contains
several copies of a basic environmental object denoted by e. The number of the
copies of e is unlimited.

A set of programs is associated with each agent. The program determines the
activity of the agent by rules. In every moment of computation all the objects
inside of the agent are being either evolved (by an evolution rule) or transported
(by a communication rule). Two such rules can also be combined into checking
rule which specifies two possible actions: if the first rule is not applicable then
the second one should be applied. So it sets the priority between two rules.

The computation starts in the initial configuration. Using their programs the
agents can change their objects and possibly objects in the environment. This
gives possibility to affect the behavior of the other agents in next steps of compu-
tation. In each step of the computation, each agent with at least one applicable
program nondeterministically chooses one of them and executes it. The com-
putation halts when no agent can apply any of its programs. The result of the
computation is given by the number of some specific objects present at the en-
vironment at the end of the computation.

There are several different ways used how to define the beginning of the com-
putation. (1) At the beginning of computation the environment and all agents

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 193–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

194 L. Cienciala, L. Ciencialová, and A. Kelemenová

contain only copies of object e. (2) All the agents can contain various objects at
the beginning of computation - the agents are in different initial states. The envi-
ronment contains only copies of object e. (3) The initial state of the environment
is nonempty (there are some object different from the object e) - the environment
contains initial “parameters” for future computation, while the agents start with
e-s.

In [4,7,8] the authors study P colonies with two objects inside the agents.
In this case programs consist of two rules, one for each object. If the former
of these rules is an evolution and the latter is a communication or checking, we
speak about restricted P colonies. If also another combination of the types of the
rules is used, we obtain non-restricted P colonies. The restricted P colonies with
checking rules are computationally complete [3,4].

In the present paper we study properties of restricted P colonies without
checking rules and computational power of P colonies with one object and the
minimal number of agents.

We start with definitions in Section 2.
In Section 3 we will deal with P colonies with one object inside each agent.

In [1] there was shown that at most seven programs for each agent as well as
five agents guarantee the computational completeness of these P colonies. In
the preset paper we look for the generative power of P colonies with less than
five agents. Two results are achieved in this direction. First, we show, that four
agents are enough for computational completeness of P colonies. The second
result gives a lower bound for the generative power the P colonies with two
agents. Even a restricted variant of these P colonies is at least as powerful as
the partially blind register machines.

Restricted P colonies are studied in Section 4. It is known that one agent
is sufficient to obtain computational completeness of restricted P systems with
checking rules ([4]). For the restricted P colonies that do not use checking rules
we will prove that two agents are sufficient to obtain the universal computational
power.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory. For more information on membrane computing, we rec-
ommend [11]. We briefly summarize the notation used in the present paper.

We use NRE to denote the family of the recursively enumerable sets of non-
negative integers and N to denote the set of non-negative integers.

Let Σ be an alphabet. Let Σ∗ be the set of all words over Σ (including the
empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all finite multisets over the finite set V
is denoted by V ◦. The support of M is the set supp(M) = {a ∈ V | fM (a) �= 0}.

On the Number of Agents in P Colonies 195

The cardinality of M , denoted by |M |, is defined by |M | =
∑

a∈V fM (a). Any
finite multiset M over V can be represented as a string w over alphabet V with
|w|a = fM (a) for all a ∈ V . Obviously, all words obtained from w by permuting
the letters can also represent the same M , and ε represents the empty multiset.
For multiset M represented by word w we use the notation �w.

2.1 P Colonies

We briefly recall the notion of P colonies introduced in [8]. A P colony consists of
agents and environment. Both the agents and the environment contain objects.
With every agent a set of programs is associated. There are two types of rules
in the programs. The first type, called evolution rules, are of the form a → b.
It means that object a inside of the agent is rewritten (evolved) to the object
b. The second type of rules, called communication rules, are of the form c ↔ d.
When this rule is performed, the object c inside the agent and the object d
outside of the agent change their positions, so, after execution of the rule object
d appears inside the agent and c is placed outside in the environment.

In [7] the ability of agents was extended by checking rule. Such a rule gives to
the agents an opportunity to choose between two possibilities. It has the form
r1/r2. If the checking rule is performed, the rule r1 has higher priority to be
executed than the rule r2. It means that the agent checks the possibility to use
rule r1. If it can be executed, the agent has to use it. If the rule r1 cannot be
applied, the agent uses the rule r2.

Definition 1. A P colony of the capacity c is a construct
Π = (A, e, f, �vE , B1, . . . , Bn), where:

– A is an alphabet whose elements are called objects,
– e is the basic object of the colony, e ∈ A,
– f is the final object of the colony, f ∈ A,
– �vE is a multiset over A − {e},
– Bi, 1 ≤ i ≤ n, are agents; each agent is a construct Bi = (�oi, Pi), where

• �oi is a multiset over A which determines the initial state (content) of
agent Bi and |�oi| = c,

• Pi = {pi,1, . . . , pi,ki} is a finite set of programs, where each program
contains exactly c rules, which are in one of the following forms each:
� a → b, called an evolution rule,
� c ↔ d, called a communication rule,
� r1/r2, called a checking rule; r1, r2 are evolution or communication

rules.

The initial configuration of the P colony is the (n + 1)-tuple of multisets
of objects present in the P colony at the beginning of the computation,
i.e., (�o1, . . . , �on, �vE). Formally, a configuration of P colony Π is given by
(�w1, . . . , �wn, �wE), where |�wi| = c, 1 ≤ i ≤ n, �wi represents all the objects
placed inside the i-th agent and �wE ∈ (A − {e})◦ represents all the objects in
the environment different from the object e.

196 L. Cienciala, L. Ciencialová, and A. Kelemenová

In this paper, the parallel model of P colonies will be studied. At each step
of a parallel computation, each agent which can use one of its programs should
use one. If the number of applicable programs is higher than one, the agent
nondeterministically chooses one of them.

Let the programs of each Pi be labeled in a one-to-one manner by labels in a
set lab (Pi) and lab (Pi) ∩ lab (Pj) = ∅ for i �= j, 1 ≤ i, j ≤ n.

To express derivation step formally we introduce the following four functions.
For a rule r being a → b, c ↔ d, and c ↔ d/c′ ↔ d′, respectively, and for multiset
�w ∈ A◦ we define:

left (a → b, �w) = �a
right (a → b, �w) = �b
export (a → b, �w) = �ε
import (a → b, �w) = �ε

left (c ↔ d, �w) = �ε
right (c ↔ d, �w) = �ε
export (c ↔ d, �w) = �c
import (c ↔ d, �w) = �d

left (c ↔ d/c′ ↔ d′, �w) = �ε
right (c ↔ d/c′ ↔ d′, �w) = �ε
export (c ↔ d/c′ ↔ d′, �w) = �c
import (c ↔ d/c′ ↔ d′, �w) = �d

}
for |�w|d ≥ 1

export (c ↔ d/c′ ↔ d′, �w) = �c
′

import (c ↔ d/c′ ↔ d′, �w) = �d
′

}
for |�w|d = 0 and |�w|d′ ≥ 1

For a program p and any α ∈ {left, right, export, import}, let
α (p, �w) = ∪r∈pα (r, �w).

A transition from a configuration to another one is denoted as
(�w1, . . . , �wn, �wE) ⇒ (�w

′
1, . . . , �w

′
n, �w

′
E) , where the following

conditions are satisfied:

– There is a set of program labels P with |P | ≤ n such that
• p, p′ ∈ P , p �= p′, p ∈ lab (Pj), p′ ∈ lab (Pi) , i �= j,
• for each p ∈ P , p ∈ lab (Pj), left (p, �wE) ∪ export (p, �wE) = �wj , and⋃

p∈P

import (p, �wE) ⊆ �wE .

– Furthermore, the chosen set P is maximal, that is, if any other program
r ∈

⋃
1≤i≤n lab (Pi), r /∈ P , is added to P , then the conditions above are not

satisfied.

Finally, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab (Pj),
let w′j = right (p, �wE) ∪ import (p, �wE) . If there is no p ∈ P with p ∈ lab (Pj)
for some j, 1 ≤ j ≤ n, then let �w

′
j = �wj and moreover, let

�w
′
E = �wE −

⋃
p∈P

import (p, �wE) ∪
⋃

p∈P

export (p, �wE) .

Union and “–” here are multiset operations.
A configuration is halting if the set of program labels P satisfying the con-

ditions above cannot be chosen to be other than the empty set. A set of all
possible halting configurations is denoted by H . With a halting computation we
can associate a result of the computation, given by the number of copies of the

On the Number of Agents in P Colonies 197

special symbol f present in the environment. The set of numbers computed by
a P colony Π is defined as

N (Π) =
{
|�wE |f | (�o1, . . . , �on, �vE) ⇒∗ (�w1, . . . , �wn, �wE) ∈ H

}
,

where (�o1, . . . , �on, �vE) is the initial configuration, (�w1, . . . , �wn, �wE) is a
halting configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Given a P colony Π = (A, e, f, �vE , B1, . . . , Bn) the maximal number
of programs associated with the agents in P colony Π is called the height of
P colony Π . The degree of P colony Π is the number of agents in P colony Π .
The third parameter characterizing a P colony is the capacity of P colony Π ,
describing the number of the objects inside each of the agents.

Let us use the following notations: NPCOLpar(c, n, h) is the family of all sets
of numbers computed by P colonies working in parallel, using no checking rules,
and with the capacity at most c, the degree at most n, and the height at most
h. If the checking rules are allowed, the family of all sets of numbers computed
by P colonies is denoted by NPCOLparK. If the P colonies are restricted, we
use notation NPCOLparR and NPCOLparKR, respectively.

2.2 Register Machines

In this paper we characterize the size of the families NPCOLpar(c, n, h) com-
paring them with the recursively enumerable sets of numbers. To achieve this
aim we use the notion of a register machine.

Definition 2. [9] A register machine is a construct M = (m, H, l0, lh, P) where
m is the number of registers, H is the set of instruction labels, l0 is the start
label, lh is the final label, P is a finite set of instructions injectively labeled with
the elements from the set H.

The instructions of the register machine are of the following forms:

l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the
instruction (labeled with) l2 or l3.

l1 : (SUB(r), l2, l3) If the register r stores a value different from zero, then sub-
tract 1 from its content and go to instruction l2, otherwise
proceed to instruction l3.

lh : HALT Halt the machine. The final label lh is only assigned to this
instruction.

Without loss of generality, one can assume that in each ADD-instruction
l1 : (ADD(r), l2, l3) and in each SUB-instruction l1 : (SUB(r), l2, l3) the labels
l1, l2, l3 are mutually distinct.

The register machine M computes a set N(M) of numbers in the following
way: it starts with all registers empty (hence storing the number zero) with the
instruction labeled l0 and it proceeds to apply the instructions as indicated by
the labels (and made possible by the contents of registers). If it reaches the
halt instruction, then the number stored at that time in the register 1 is said
to be computed by M and hence it is introduced in N(M). (Because of the
nondeterminism in choosing the continuation of the computation in the case of

198 L. Cienciala, L. Ciencialová, and A. Kelemenová

ADD-instructions, N(M) can be an infinite set.) It is known (see, e.g., [9]) that
in this way we compute all Turing computable sets.

Moreover, we call a register machine partially blind [5], if we interpret a sub-
tract instruction l1 : (SUB(r); l2; l3) in the following way: if the value of register
r is different from zero, then subtract one from its contents and go to instruc-
tion l2 or to instruction l3; if in register r is stored zero, then the program ends
without yielding a result.

When the partially blind register machine reaches the final state, the result
obtained in the first register is taken into account if the remaining registers
store value zero. The family of sets of non-negative integers generated by par-
tially blind register machines is denoted by NRMpb. The partially blind register
machines accept a proper subset of NRE.

3 P Colonies with One Object Inside the Agent

In this section we analyze the behavior of P colonies with only one object inside
each agent. Each program in this case is formed by only one rule, either an
evolution or a communication.

If all the agents have their programs with evolution rules, the agents “live
only for themselves” and do not communicate with the environment.

In [1] the following results were proved:
NPCOLparK(1, ∗, 7) = NRE,
NPCOLparK(1, 5, ∗) = NRE.
The number of agents in the second result can be decreased. This is demon-

strated by the following theorem.

Theorem 1. NPCOLparK(1, 4, ∗) = NRE.

Proof. We construct a P colony simulating the computation of a register ma-
chine. Because there are only copies of e in the environment and inside the agents
in the initial configuration, we will initialize a computation by generating the
initial label l0. After generating the symbol l0 this agent stops and it can start
its activity only by using a program with a communicating rule.

Two agents will cooperate in order to simulate the ADD and SUB instructions.
Let us consider a register machine M = (m, H, l0, lh, P). We can represent

the content mi of the register i by mi copies of the specific object ai in the
environment. We construct the P colony Π = (A, e, f, �ε, B1, . . . , B4) with:

– alphabet A = {l, l′|l ∈ H}
∪ {Ei, E

′
i, Fi, F

′
i , F

′′
i | for each li ∈ H}

∪ {ai | 1 ≤ i ≤ m} ∪ {e, d, m, C},
– f = a1,
– Bi = (�e, Pi), 1 ≤ i ≤ 4, where Pi will be specified in the next steps of the

proof.

The programs in P1 serve for the initialization of the computation and in the
simulation of SUB instructions, programs in P2 have an auxiliary character. The
programs in P3 and in P4 realize ADD and SUB instructions.

On the Number of Agents in P Colonies 199

(1) To initialize the simulation of a computation of M we take an agent B1 =
(�e, P1) with the set of programs:

P1 :
1 : 〈e → l0〉 , 2 : 〈l0 ↔ d〉 ;

(2) We need one more agent to generate a special object d. While object C is not
in the environment the agent B2 places a further copy of d to the environment.

P2 :
3 : 〈e → d〉 , 4 : 〈d ↔ C/d ↔ e〉 ;

The P colony Π starts its computation in the initial configuration (�e, �e, �e,

�e, �ε). In the first subsequence of steps of P colony Π only agents B1 and B2
can apply their programs.

configuration of Π labels of applicable programs

step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �e �e �e �e 1 3
2. �l0 �d �e �e 4
3. �l0 �e �e �e �d 2 3
4. �d �d �e �e �l0

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3) two agents B3 and B4
are used in Π . These agents help each other to add one copy of object ar and
object l2 or l3 to the environment using the following programs:

P3 P3 P4 P4

5 : 〈e ↔ l1〉 , 11 : 〈E′1 → l′2〉 , 15 : 〈e ↔ E1〉 , 21 : 〈e ↔ l′2〉 ,
6 : 〈l1 → E1〉 , 12 : 〈E′1 → l′3〉 , 16 : 〈E1 → E′1〉 , 22 : 〈e ↔ l′3〉 ,
7 : 〈E1 ↔ d〉 , 13 : 〈l′2 ↔ e〉 , 17 : 〈E′1 ↔ e〉 , 23 : 〈l′2 → l2〉 ,
8 : 〈d → L1〉 , 14 : 〈l′3 ↔ e〉 , 18 : 〈e ↔ L1〉 , 24 : 〈l′3 → l3〉 ,
9 : 〈L1 ↔ E′1/L1 → m〉 , 19 : 〈L1 → ar〉 , 25 : 〈l2 ↔ e〉 ,

10 : 〈m → d〉 , 20 : 〈ar ↔ e〉 , 26 : 〈l3 ↔ e〉 .

The agent B3 consumes the object l1, changes it to E1 and places it to the
environment. The agent B4 borrows E1 from the environment and returns E′1. B3
rewrites the object d to some Li. If this Li has the same index as E′i placed in the
environment, the computation can go to the next phase. If indices of Li and Ei

are different, the agent B3 tries to generate another Li. If the computation gets
over this checking step, agent B4 generates one copy of object ar and places
it into the environment (adding 1 to the content of register r). Then agent B3
generates the helpful object l′2 or l′3 and places it into the environment. The
agent B4 exchanges it for the “valid label” l2 or l3.

An instruction li : (ADD(r), lj , lk) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.

200 L. Cienciala, L. Ciencialová, and A. Kelemenová

configuration of Π labels of applicable programs

step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lia
u
r dv 4 5

2. �d �e �li �e �a
u
r dv+1 3 6

3. �d �d �Ei �e �a
u
r dv+1d 4 7

4. �d �e �d �e �Eia
u
r dv+1 3 8 15

5. �d �d �Li �Ei �a
u
r dv+1 4 16

6. �d �e �Li �E
′
i �a

u
r dv+2 3 17

7. �d �d �Li �e �E
′
ia

u
r dv+2 4 9

8. �d �e �E
′
i �e �Lia

u
r dv+3 3 11 or 12 18

9. �d �d �l
′
j �Li �a

u
r dv+3 4 13 19

10. �d �e �e �ar �l
′
ja

u
r dv+4 3 20

11. �d �d �e �e �l
′
ja

u+1
r dv+4 4 21

12. �d �e �e �l
′
j �a

u+1
r dv+5 3 23

13. �d �d �e �lj �a
u+1
r dv+5 4 25

14. �d �e �e �e �lja
u+1
r dv+6

(4) For each SUB-instruction l1 : (SUB(r), l2, l3), the next programs are intro-
duced in the sets P1, P3, and in the set P4:

P3 P3 P1 P4

27 : 〈e ↔ l1〉 , 33 : 〈F ′′1 → l′3〉 , 36 : 〈d ↔ F1〉 , 41 : 〈e ↔ l′2〉 ,
28 : 〈l1 → F1〉 , 34 : 〈l′2 ↔ e〉 , 37 : 〈F1 → F ′1〉 , 42 : 〈e ↔ l′3〉 ,
29 : 〈F1 ↔ d〉 , 35 : 〈l′3 ↔ e〉 ; 38 : 〈F ′1 ↔ ar/F ′1 → F ′′1 〉 , 43 : 〈l′2 → l2〉 ,
30 : 〈d ↔ F ′1〉 , 39 : 〈ar → d〉 , 44 : 〈l′3 → l3〉 ,
31 : 〈F ′1 → l′2〉 , 40 : 〈F ′′1 ↔ d〉 , 45 : 〈l2 ↔ e〉 ,
32 : 〈d ↔ F ′′1 〉 , 46 : 〈l3 ↔ e〉 .

Agent B3 starts the simulation of executing SUB-instruction l1, the agent B1
checks whether there is a copy of the object ar in the environment or not and
gives this information (F ′1 – if there is some ar; F ′′1 – if there is no object ar

in the environment) to the environment.
An instruction li : (SUB(r), lj , lk) is simulated by the following sequence of

steps. The computation for 0 in the register r is given below.

configuration of Π labels of applicable programs

step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lid
v 4 27

2. �d �e �li �e �d
v+1 3 28

3. �d �d �Fi �e �d
v+1d 4 29

4. �d �e �d �e �Fid
v+1 36 3

5. �Fi �d �d �e �d
v+2 37 4

6. �F
′
i �e �d �e �d

v+3 38 3

On the Number of Agents in P Colonies 201

configuration of Π labels of applicable programs

step B1 B2 B3 B4 Env P1 P2 P3 P4

7. �F
′′
i �d �d �e �d

v+3 40 4
8. �d �e �d �e �F

′′
i dv+3 3 32

9. �d �d �F
′′
i �e �d

v+4 4 33
10. �d �e �l

′
k �e �d

v+5 3 35
11. �d �d �e �e �l

′
kdv+5 4 42

12. �d �e �e �l
′
k �d

v+6 3 44
13. �d �d �e �lk �d

v+6 4 46
14. �d �e �e �e �lkdv+7

The computation for a value different from 0 in the register r:
configuration of Π labels of applicable programs

step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lia
u
r dv 4 27

2. �d �e �li �e �a
u
r dv+1 3 28

3. �d �d �Fi �e �a
u
r dv+1d 4 29

4. �d �e �d �e �Fia
u
r dv+1 36 3

5. �Fi �d �d �e �a
u
r dv+2 37 4

6. �F
′
i �e �d �e �a

u
r dv+3 38 3

7. �ar �d �d �e �Fia
u−1
r dv+3 39 4 30

8. �d �e �F
′
i �e �a

u−1
r dv+5 3 31

9. �d �d �l
′
j �e �a

u−1
r dv+5 4 34

10. �d �e �e �e �l
′
ja

u−1
r dv+6 3 41

11. �d �d �e �l
′
j �a

u−1
r dv+6 4 43

12. �d �e �e �lj �a
u−1
r dv+7 3 45

13. �d �d �e �e �lja
u−1
r dv+7

(5) The halting instruction lh is simulated by agent B3 with subset of programs:

P3

47 : 〈e ↔ lh〉 , 48 : 〈lh → C〉 , 49 : 〈C ↔ e〉 .

The agent consumes the object lh and in the environment there is no other
object lm. This agent places one copy of the object C to the environment and
stops working. In the next step the object C is consumed by the agent B3. No
agent can start its work and the computation halts. The execution of the halting
instruction lh stops all agents in colony Π :

configuration of Π labels of applicable programs

step B1 B2 B3 B4 Env P1 P2 P3 P4

1. �d �d �e �e �lhdv 4 47
2. �d �e �lh �e �d

v+1 3 48
3. �d �d �C �e �d

v+1d 4 49
4. �d �e �e �e �Cdv+1 3
5. �d �d �e �e �Cdv+2 4
6. �d �C �e �e �d

v+3 - - - - - - - - - - - - - - -

202 L. Cienciala, L. Ciencialová, and A. Kelemenová

The P colony Π correctly simulates the computation in the register machine
M . The computation of Π starts with no object ar placed in the environment
in the same way as the computation in M starts with zeros in all registers. The
computation of Π stops if the symbol lh and consequently object C is placed
inside the corresponding agent in the same way as M stops by executing the
halting instruction labeled lh. Consequently, N(M) = N(Π) and because the
number of agents equals four, the proof is complete. ��

Theorem 2. NRMpb ⊆ NPCOLpar(1, 2, ∗).

Proof. Let us consider a partially blind register machine M with m registers. We
construct a P colony Π = (A, e, f, �vE , B1, B2) simulating a computation of the
register machine M with:

– A = {J, J ′, V, Q} ∪ {li, l
′
i, l
′′
i , Li, L

′
i, L
′′
i , Ei | li ∈ H} ∪ {ar | 1 ≤ r ≤ m},

– f = a1,
– Bi = (�e, Pi), i = 1, 2.

The sets of programs are as follows:

(1) For initializing the simulation:

P1 : P1 : P2 :
1 : 〈e → J〉 , 3 : 〈J → l0〉 , 5 : 〈e ↔ J〉 ,
2 : 〈J ↔ e〉 , 4 : 〈Q → Q〉 , 6 : 〈J → J ′〉 ,

7 : 〈J ′ ↔ e〉 .

At the beginning of the computation the first agent generates the object l0
(the label of the starting instruction of M). It generates some copies of object
J . The agent B2 exchange them by J ′.

configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �e �e 1 −
2. �J �e 2 or 3 −
3. �e �e �J 1 5
4. �J �J 2 or 3 6
5. �l0 �J

′ 8 or 24 or 34 7
6. ? �e �J

′

(2) For every ADD-instruction l1 : (ADD(r), l2, l3), P1 and P2 contain:

P1 : P1 : P2 :
8 : 〈l1 → l′1〉 , 14 : 〈L1 ↔ E1〉 , 18 : 〈e ↔ l′1〉 ,
9 : 〈l′1 ↔ J ′〉 , 15 : 〈L1 → Q〉 , 19 : 〈l′1 → E1〉 ,
10 : 〈l′1 → Q〉 , 16 : 〈E1 → l2〉 , 20 : 〈E1 ↔ e〉 ,
11 : 〈J ′ → L′′1〉 , 17 : 〈E1 → l3〉 , 21 : 〈e ↔ L1〉 ,
12 : 〈L′′1 → L′1〉 , 22 : 〈L1 → ar〉 ,
13 : 〈L′1 → L1〉 , 23 : 〈ar ↔ e〉 .

On the Number of Agents in P Colonies 203

When there is an object l1 inside agent B1, the agent rewrites it to a copy
of l′1 and the agent sends it to the environment. The agent B2 borrows E1 from
the environment and returns E′1 back.

The agent B1 rewrites the object J ′ to some Li. The first agent has to gener-
ate it in three steps to wait until the second agent generates the symbol E′i and
places it into the environment. If this Li has the same index as E′i placed in the
environment, the computation can go to the next phase. If the indices of Li and
Ei are different, the agent B1 generates Q and the computation never stops. If
the computation gets over this checking step, B1 generates object l2 or object l3.

configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �l1 �e �J
′ 8 −

2. �l
′
1 �e �J

′ 9 or 10 −
3. �J

′
�e �l

′
1 11 18

4. �L
′′
1 �l

′
1 12 19

5. �L
′
1 �E1 13 20

6. �L1 �e �E1 14 or 15 −
7. �E1 �e �L1 16 or 17 21
8. �l2 �L1 8 or 24 or 34 22
9. ? �ar 9 or 25 or 35 23
10. ? �e �ar

(3) For every SUB-instruction l1 : (SUB(r), l2, l3) the following subsets of pro-
grams are in P1 and P2:

P1 : P1 : P2 :
24 : 〈l1 → l′′1 〉 , 28 : 〈V ↔ l′′′1 〉 , 31 : 〈e ↔ l′′1 〉 ,
25 : 〈l′′1 ↔ ar〉 , 29 : 〈l′′′1 → l2〉 , 32 : 〈l′′1 → l′′′1 〉 ,
26 : 〈l′′1 → Q〉 , 30 : 〈l′′′1 → l3〉 33 : 〈l′′′1 ↔ e〉 ,
27 : 〈ar → V 〉 .

In the first step the agent checks if there is any copy of ar in the environment
(for zero in register r). Because of the nondeterminism of the computation in

configuration of Π

B1 B2 Env P1 P2

1. �l1 �e �ar 24 −
2. �l

′′
1 �e �ar 25 or 26 −

3. �ar �e �l
′′
1 27 31

4. �V �l
′′
1 − 32

5. �V �l
′′′
1 − 33

6. �V �e �l
′′′
1 28 −

7. �l
′′′
1 �e 29 or 30 −

8. �l2 �e

configuration of Π

B1 B2 Env P1 P2

1. �l1 �e 24 −
2. �l

′′
1 �e 26 −

3. �Q �e 4
4. �Q �e

204 L. Cienciala, L. Ciencialová, and A. Kelemenová

the positive case it can rewrite ar to V , in the other case l′′1 is rewritten to Q
and the computation will never halt. At the end of this simulation the agent B1
generates one of the objects l2, l3.

(4) For the halting instruction lh the following programs are in sets P1 and P2:
P1 : P2 : P2 :
34 : 〈lh ↔ J ′〉 , 39 : 〈e ↔ lh〉 , 43 : 〈Lh ↔ ar〉 , 1 < r ≤ m

35 : 〈J ′ → Lh〉 , 40 :
〈
lh → lh

〉
, 44 : 〈ar ↔ e〉 .

36 : 〈lh → Q〉 , 41 :
〈
lh ↔ e

〉
,

37 : 〈Lh → Lh〉 , 42 : 〈e ↔ Lh〉 ,

38 :
〈
Lh ↔ lh

〉
,

By using these programs, the P colony finishes the computation in the same
way as the partially blind register machine halts its computation. Programs with
labels 43 and 44 in P2 check value zero stored in all except the first register. If
there is some copy of object ar, programs 43 and 44 are applied in a cycle and
the computation never ends. Some copies of object J ′ (for the the program with
label 34) are present in the environment from the initialization of computation.

all counters r, 1 < r ≤ m store zero

configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �lh �e �J
′ 34 or 36 −

2. �J
′

�e �lh 35 39
3. �Lh �lh 37 40
4. �Lh �lh 37 41
5. �LH �e �lh 38 −
6. �lh �e �Lh − 42
7. �lh �Lh − −

content of some counter r, 1 < r ≤ m is
different from zero

configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �lh �e �J
′ar 34 or 36 −

2. �J
′

�e �lhar 35 39
3. �Lh �lh �ar 37 40
4. �Lh �lh �ar 37 41
5. �LH �e �lhar 38 −
6. �lh �e �Lhar − 42
7. �lh �Lh �ar − 43
8. �lh �ar �Lh − 44
9. �lh �Lh �ar − 43

The P colony Π correctly simulates any computation of the partially blind
register machine M . ��

On the Number of Agents in P Colonies 205

4 On the Computational Power of Restricted P Colonies
Without Checking

For restricted P colonies the following results are known:

– NPCOLparKR(2, ∗, 5) = NRE in [2,8],
– NPCOLparR(2, ∗, 5) = NPCOLparKR(2, 1, ∗) = NRE in [4].

The next theorem determines the computational power of restricted P colonies
working without checking rules.

Theorem 3. NPCOLparR(2, 2, ∗) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
a P colony Π = (A, e, f, �vE , B1, B2) simulating the computations of register
machine M with:

- A = {G} ∪ {li, l
′
i, l
′′
i , l′′′i , l′′′′i , li, li, li, li, Li, L

′
i, L
′′
i , Fi | li ∈ H}∪

∪ {ar | 1 ≤ r ≤ m},
- f = a1,
- Bj = (�ee, Pj), j = 1, 2.

At the beginning of the computation the first agent generates the object l0 (the
label of starting instruction of M). Then it starts to simulate the instruction
labeled l0 and it generates the label of the next instruction. The set of programs
is as follows:

(1) For initializing the simulation there is one program in P1:
P1

1 : 〈e → l0; e ↔ e〉
The initial configuration of Π is (�ee, �ee, �ε). After the first step of the

computation (only program 1 is applicable) the system enters configuration
(�l0e, �ee, �ε).

(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P1 the programs:

P1

2 : 〈e → ar; l1 ↔ e〉 , 3 : 〈e → G; ar ↔ l1〉 ,
4 : 〈l1 → l2; G ↔ e〉 , 5 : 〈l1 → l3; G ↔ e〉 .

When there is an object l1 inside the agent, it generates one copy of ar,
puts it into the environment and generates the label of the next instruction (it
nondeterministically chooses one of the last two programs 4 and 5).

configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �l1e �ee �a
x
r 2 −

2. �are �ee �l1a
x
r 3 −

3. �Gl1 �ee �a
x+1
r 4 or 5 −

4. �l2e �ee �a
x+1
r G

206 L. Cienciala, L. Ciencialová, and A. Kelemenová

(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added
to sets P1 and P2:

P1 P1

6 : 〈l1 → l′1; e ↔ e〉 , 12 :
〈
l1 → l2; e ↔ L′′1

〉
,

7 : 〈e → l′′1 ; l′1 ↔ e〉 , 13 :
〈
l1 → l3; e ↔ L1

〉
,

8 : 〈e → l′′′1 ; l′′1 ↔ e〉 , 14 :
〈
L′′1 → l2; l2 ↔ e

〉
,

9 : 〈l′′′1 → l′′′′1 ; e ↔ e〉 , 15 :
〈
L1 → F3; l3 ↔ e

〉
,

10 :
〈
l′′′′1 → l1; e ↔ e

〉
, 16 :

〈
e → l3;F3 ↔ l3

〉
,

11 :
〈
l1 → l1; e ↔ e

〉
, 17 :

〈
l3 → l3; l3 ↔ e

〉
,

P2

18 : 〈e → L1; e ↔ l′1〉 ,

19 : 〈l′1 → L′1;L1 ↔ l′′1 〉 ,

20 : 〈l′′1 → L′′1 ;L′1 ↔ ar〉 ,

21 : 〈ar → e; L′′1 ↔ L1〉 ,

22 : 〈L1 → e; e ↔ e〉 ,

23 : 〈l′′1 → e;L′1 ↔ F3〉 ,

24 : 〈F3 → e; e ↔ e〉 .

At the first phase of the simulation of the SUB instruction the first agent
generates object l′1, which is consumed by the second agent. The agent B2 gen-
erates symbol L1 and tries to consume one copy of symbol ar. If there is any ar,
the agent sends to the environment object L′′1 and consumes L1. After this step
the first agent consumes L′′1 or L1 and rewrites it to l2 or l3. The objects x, x
and x are used for a synchronization of the computation in both agents and for
storing information about the state of the computation.

Instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of steps.

If the register r stores a nonzero value:
configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �l1e �ee �a
x
r 6 −

2. �l
′
1e �ee �a

x
r 7 −

3. �l
′′
1e �ee �l

′
1a

x
r 8 18

4. �l
′′′
1 e �L1l

′
1 �l

′′
1ax

r 9 19
5. �l

′′′′
1 e �L

′
1l
′′
1 �L1a

x
r 10 20

6. �l1e �L
′′
1ar �L1L

′
1a

x−1
r 11 21

7. �l1e �eL1 �L
′′
1ax−1

r 12 22
8. �l2L

′′
1 �ee �a

x−1
r 14 −

9. �l2e �ee �a
x−1
r l2

If the register r stores value zero :
configuration of Π labels of applicable programs

B1 B2 Env P1 P2

1. �l1e �ee 6 −
2. �l

′
1e �ee 7 −

3. �l
′′
1e �ee �l

′
1 8 18

4. �l
′′′
1 e �L1l

′
1 �l

′′
1 9 19

5. �l
′′′′
1 e �L

′
1l
′′
1 �L1 10

On the Number of Agents in P Colonies 207

configuration of Π labels of applicable programs

B1 B2 Env P1 P2

6. �l1e �L
′
1l
′′
1 �L1 11

7. �l1e �L
′
1l
′′
1 �L1 13

8. �l3L1 �L
′
1l
′′
1 15 −

9. �F3e �L
′
1l
′′
1 �l3 16 −

10. �l3l3 �L
′
1l
′′
1 �F3 17 23

11. �l3e �F3e �l3L
′
1 2 or 6

or none

24

12. ? �ee �l3L
′
1

(4) For halting instruction lh no program is added to the sets P1 and P2.
The P colony Π correctly simulates all computations of the register machine

M and the number contained in the first register of M corresponds to the number
of copies of the object a1 present in the environment of Π . ��

5 Conclusions

We have shown that the P colonies with capacity c = 2 and without checking
programs, with height at most 2, are computationally complete. In Section 3 we
have shown that the P colonies with capacity c = 1 and with checking/evolution
programs and 4 agents are computationally complete.

We have verified also that partially blind register machines can be simulated
by P colonies with capacity c = 1 without checking programs with two agents.
The generative power of NPCOLparK(1, n, ∗) for n = 2, 3 remains open.

In Section 4 we have studied P colonies with capacity c = 2 without checking
programs. Two agents guarantee the computational completeness in this case.

For more information on membrane computing, see [11], for more on com-
putational machines and colonies in particular, see [9] and [6,7,8], respectively.
Activities carried out in the field of membrane computing are currently numerous
and they are available also at [12].

Acknowledgements

This work has been supported by the Grant Agency of Czech Republic grants
No. 201/06/0567 and by IGS SU 32/2007.

References

1. Ciencialová, L., Cienciala, L.: Variations on the theme: P colonies. In: Kolář, D.,
Meduna, A. (eds.) Proceedings of the 1st International workshop WFM 2006, Os-
trava, pp. 27–34 (2006)

208 L. Cienciala, L. Ciencialová, and A. Kelemenová

2. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, G., Vaszil, G.: Cells in envi-
ronment: P colonies. Journal of Multiple-valued Logic and Soft Computing 12(3-4),
201–215 (2006)

3. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P colonies with a bounded number
of cells and programs. In: Hoogeboom, H.J., Păun, G., Rozenberg, G. (eds.) Pre-
Proceedings of the 7th Workshop on Membrane Computing, Leiden, the Nether-
lands, pp. 311–322 (2006)

4. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the
sequential mode. In: Ciobanu, G., Păun, G. (eds.) Pre-Proceedings of the 1st Inter-
national Workshop on Theory and Application of P Systems, Timisoara, Romania,
pp. 49–56 (2005)

5. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7(1), 311–324 (1978)

6. Kelemen, J., Kelemenová, A.: A grammar-theoretic treatment of multi-agent sys-
tems. Cybernetics and Systems 23, 621–633 (1992)

7. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model
of computation. In: Proc. of the 6th International Symposium of Hungarian Re-
searchers on Computational Intelligence, Budapest TECH, Hungary, pp. 40–56
(2005)

8. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P colonies: A biochemically
inspired computing model. In: Bedau, M., et al. (eds.) ALIFE IX. Workshop and
Tutorial Proceedings, Ninth International Conference on the Simulation and Syn-
thesis of Living Systems, Boston, Mass., pp. 82–86 (2004)

9. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, NJ (1967)

10. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

11. Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)
12. P systems web page. http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

Events, Causality, and Concurrency in

Membrane Systems

Gabriel Ciobanu1,2 and Dorel Lucanu1

1 “A.I.Cuza” University of Iaşi, Faculty of Computer Science
2 Romanian Academy, Institute of Computer Science, Iaşi

{gabriel,dlucanu}@info.uaic.ro

Abstract. This paper presents a modular approach to causality in mem-
brane systems, using both string and multiset rewriting. In order to deal
with membrane systems, the event structures are extended with notions
like maximal concurrent transitions and saturated states with respect to
concurrency. The event structure of a membrane system is defined in two
steps: first the event structure of a maximal parallel step in membranes
is defined, and then it is combined with a communication step. The main
result of the paper proves that an event structure of a membrane corre-
sponds to its operational semantics. Event structures for communicating
membranes are also defined.

1 Introduction

The event structures represent a formal model for concurrent systems in which
simultaneity among the events is fully considered. The event structures provide
the causality of actions in a true concurrent system, and they were defined
for various formalisms (Petri nets, CCS, π-calculus). The membrane systems
describe a new model of computation inspired by biology. This model is given by
a hierarchical structure, it is highly parallel, and the rules applied in parallel are
chosen in a nondeterministic way. We study the event structure for membrane
systems, defining both the causality and the conflict relations. It is worth to
mention that the event structure of a membrane system was defined first time in
[7]. A related work discussing the causality in membrane systems is [6]. The main
motivation of defining the event structure of a membrane system comes from the
fact that causality is an important aspect which can make the difference between
the classic mathematical models and the new discrete models of the biological
systems.

Membrane computing is a branch of natural computing, initiated by Păun
[10] as a computing model inspired by biological systems which are complex
hierarchical structures, with a flow of entities and information which underlies
their functioning. Essentially, the membrane systems (called also P systems)
are composed of various compartments with different tasks, all of them working
simultaneously to accomplish a more general task. A membrane system con-
sists of a hierarchy of nested membranes, placed inside a distinguishable mem-
brane called skin surrounding all of them. A membrane contains multisets of

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 209–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

210 G. Ciobanu and D. Lucanu

objects, evolution rules, and possibly other membranes. The multisets of objects
from a membrane correspond to the “chemicals swimming in the solution in
the cell compartment”, while the rules correspond to the “chemical reactions
possible in the same compartment”. The field of membrane computing is evolv-
ing quickly, and there are several applications in modeling biological systems
[8].

Here we look at membrane systems as a non-standard computation mecha-
nism based on parallelism and nondeterminism. Parallelism and nondeterminism
represent in fact the essential features of the membrane computation which is
strongly parallel and nondeterministic mainly due to its way of applying the
rules of a membrane to its objects. The rules associated with a compartment are
applied to the objects from a compartment in a parallel way, and the rules are
chosen in a non-deterministic manner. Moreover, all compartments of the sys-
tem evolve in parallel. Membrane systems are able to simulate Turing machines,
hence they are computationally complete. There are mainly two types of results
on membrane systems: computational universality and complexity. This paper
is devoted to the causal dependencies, conflicts and concurrency in membrane
systems. A membrane structure and the multisets of objects from its compart-
ments identify a configuration of a P system. By a nondeterministic and parallel
use of rules, the system can pass to another configuration; such a step is called a
transition. A sequence of transitions constitutes a computation. A computation
is successful if it halts. With a halting computation we can associate a result (in
various ways). Because of the nondeterminism of the application of rules, start-
ing from an initial configuration, we can get several successful computations,
hence several results.

The models involving concurrency and nondeterminism are classified in [12]
according to the fact they can faithfully take into account the difference between
parallel and sequential computation (interleaving or non-interleaving model), or
they can represent the branching structure of processes related to nondetermin-
istic choices (linear time or branching time). Event structures represent the non-
interleaving and branching-time models, and so they model the true concurrency
and nondeterminism. We describe the nature of parallelism and nondeterminism
of the membrane systems in terms of event structures [13], and describe formally
the event structure of a membrane system.

2 Event Structures

In event-based models, a system is represented by a set of events (action oc-
currences) together with some structure on this set, determining the causality
relations between the events. The causality between actions is expressed by a
partial order, and the nondeterminism is expressed by a conflict relation on ac-
tions. For every two events e and e′ it is specified either whether one of them
is a prerequisite for the other (e ≤ e′ or e′ ≤ e), whether they exclude each
other (e#e′), or whether they may happen in parallel (e co e′). The behavior of

Events, Causality, and Concurrency in Membrane Systems 211

an event structure is formalized by associating to it a family of configurations
representing sets of events which occur during (partial) runs of the system.

A concurrent step consists of simultaneously executing rules, each of them
producing events which end up in the resulting event configuration. These steps
are presumably cooperating to achieve a goal, and so they are not totally inde-
pendent. They synchronize at certain points, and this is reflected in the events
produced.

There are many levels of granularity at which one might describe the events
that occur as a process executes. At the level of the components from which the
system is composed, computation consists of events which reflect the rules. At
a higher level, the system might be viewed in terms of parallel executions of its
components. Thus, when we talk about the events which occur within a system,
it is understood that we know the granularity of the representation, and that
events are encoded to this granularity (degree of precision).

Definition 1. An event structures is a triple (E, ≤, #) where

– E is a set of events,
– ≤ ⊆ E × E is a partial order, the causality relation,
– # ⊆ E × E is an irreflexive and symmetric relation, the conflict relation,

satisfying the principle of conflict heredity:

∀e1, e2, e3 ∈ E. e1 ≤ e2 ∧ e1#e3 ⇒ e2#e3

and the finiteness assumption {e′ | e′ ≤ e} is finite. Two events e and e′ are
concurrent, and write e co e′, if ¬(e ≤ e′ ∨ e′ ≤ e ∨ e#e′).

Note that the events of an event structure are corresponding in fact to event
occurrences.

Definition 2. Let (E, ≤, #) be an event structure. A computation state (event
configuration) is a subset x ⊆ E which is

– conflict-free: (∀e, e′ ∈ x)¬(e#e′), and
– downwards-closed: (∀e, e′)(e′ ≤ e and e ∈ x) =⇒ e′ ∈ x.

Definition 3. Let (E, ≤, #) be an event structure. Let x and x′ be two finite
computation states and let e be an event. We write

x
e−→ x′ if and only if e
∈ x and x′ = x ∪ {e}.

Proposition 1 (Diamond Property). Let (E, ≤, #) be an event structure.
Two events e1 and e2 are concurrent, e1 co e2, if and only if there are configu-
rations x, x1, x2, x

′ such that:

212 G. Ciobanu and D. Lucanu

x

x1

�

e1

x2

e
2

�

x′

�

e1
e
2

�

A more detailed presentation of the event structures can be found in [14].

2.1 Maximal Concurrent Transitions in an Event Structure

In this section we define a new transition system over the computation states
of an event structure, where an action (a label of a transition) is given by the
parallel occurrence of a maximal set of concurrent events.

Let max(x) denote the set of ≤-maximal events in the event set x, i.e., e ∈
max(x) if and only if e ∈ x and there does not exist e′ ∈ x such that e < e′. By
�e we denote the set {e′ | e′ ≤ e}; if x is a set of events, then �x = {e′ | (∃e ∈
x) e′ ≤ e}.

Definition 4. Let (E, ≤, #) be an event structure. A maximal concurrent action
is a subset a ⊆ E which

– consists only of concurrent events, i.e., (∀e, e′ ∈ a) e co e′, and
– is maximal with above property, i.e., (∀e ∈ E \ a)(∃e′ ∈ a) e ≤ e′ ∨ e′ ≤

e ∨ e#e′.

We write e � e′ if and only if e < e′ and there does not exist e′′ such that
e < e′′ < e′.

Definition 5. Let (E, ≤, #) be an event structure. Let x and x′ be two finite
computation states and let a be a maximal concurrent action. We write x

a−→ x′

if and only if x ∩ a = ∅ and x′ = x ∪ a.

Definition 6. Let (E, ≤, #) be an event structure. A computation state x is
saturated (with respect to concurrency) if for each event e ∈ E and each com-
putation state x′ such that x

e−→ x′, then ¬(∃e′ ∈ x) e co e′.

Proposition 2. Let (E, ≤, #) be an event structure. Let x and x′ be two finite
computation states and a maximal concurrent action a such that x

a−→ x′. Then:

1. if x = ∅ then x′ = x ∪ a = a = �a;
2. if x is saturated, then x′ is saturated;

Events, Causality, and Concurrency in Membrane Systems 213

3. if x is saturated and x′ = �a, then x = ∅;
4. if x
= ∅ and x is saturated, then (∀e′ ∈ a)(∃e ∈ max(x)) e � e′.

Proof. 1. We have x′ = a, which is downwards-closed.
2. If x′ e−→ x′′ and e′ co e, e′ ∈ x′, then either e′ ∈ x or e′ ∈ a. In both cases we

get a contradiction.
3. We have x′ saturated, too. If e ∈ x, then we must have e co e′ for all e′ ∈ a.

Contradiction.
4. Let e′ be an arbitrary event in a. Since x is downwards-closed and conflict-

free, there exists an event e in x ∩ �a. Since x is finite, we can choose an e
such that e � e′. ��

2.2 Event Structure Associated to a Labeled Transition System

There are many cases when the operational semantics of a system is given by
means of a labeled transition system (lts) describing all possible sequential com-
putations. In order to study the concurrency properties, we must determine the
event structure defined by such a labeled transition system.

Let (S, −→, L, s0) be a labeled transition system, where S is a set of states, −→
is a transition relation consisting of triples (s, �, s′) ∈ S × L × S, often written
as s

�−→ s′, L is a set of labels (actions), and s0 is an initial state. A (sequential)
computation is a sequence s0

�1−→ s1 . . .
�n−→ sn such that (si−1, �i, si) ∈ −→.

Since all the computations start from s0, each prefix of a computation is also a
computation.

Definition 7. Let (S, −→, L, s0) be a labeled transition system. Let ∼ be the
smallest equivalence satisfying: if (s, �1, s1), (s, �2, s2), (s1, �2, s3), (s2, �1, s3) ∈
−→ and (�1
= �2 or s1
= s2), then (s, �1, s1) ∼ (s2, �1, s3).
An event e is a ∼-equivalence class written as [s, �, s′].

Intuitively, two transitions are equivalent iff they are determined by the same
action (label). This can be easier understood from the following picture:

s

s1

�

�1

s2

�
2

�

s3

�

�1
�
2

�

214 G. Ciobanu and D. Lucanu

We have two events e1 = [s, �1, s1] and e2 = [s, �2, s2] corresponding to the
transitions labeled by �1 and �2, respectively. The transitions labeled by �1 and
�2 may occur in any order, i.e., the two events e1 and e2 are concurrent (see
Proposition 1).

Definition 8. Let (S, −→, L, s0) be an acyclic labeled transition system. An event
configuration is a set of events ei = [si−1, �i, si] corresponding to a computation
s0

�1−→ s1 . . .
�n−→ sn.

Theorem 1 (Event Structure of a lts). [9] Each lts (S, −→, L, s0) can be
organized as an event structure.

Proof (Sketch). The event structure (E, ≤, #) associated to (S, −→, L, s0) is de-
fined by:

– E is the set of events as defined above in Definition 7;
– e1 ≤ e2 if every configuration which contains e2 also contains e1;
– e1 # e2 if there is no configuration containing both e1 and e2. ��

s0

s1

�

� 1

s2

�
2

�

s3

�

� 3

s4

�
2

�

s5

�

� 3
�
2

�
s6

�1

�

�
1

�

Fig. 1. An example of a labeled transition system

Example 1. The events defined by the lts in Figure 1 are:

e1 = {(s0, �1, s1)} e4 = {(s1, �2, s4), (s3, �2, s5)}
e2 = {(s0, �2, s2)} e5 = {(s2, �1, s6)}
e3 = {(s1, �3, s3), (s4, �3, s5)} e6 = {(s4, �1, s6)}

An event configuration describes a (partial) computation expressed in terms of
events. This lts defines the following event configurations:

Events, Causality, and Concurrency in Membrane Systems 215

e1 e2 e5

e2 e1 e3 e4

e1 e3 e1 e4 e3

e1 e4 e1 e4 e6

We have e1 < e3 because any event configuration containing e3 also contains e1.
Since any occurrence of e3 is always after an occurrence of e1, it follows that
there is causal relationship between the two events. We get e1 < e4 < e6 and
e2 < e5 in a similar way. Since there is no event configuration containing both
e1 and e2, it follows that there is a conflict between the two events, i.e., e1 # e2.
We get e1 # e5, e2 # e3, e2 # e4, e2 # e6, e5 # e3, e5 # e4, and e5 # e6 in a similar
way.

3 What Is an Event for Membrane Systems?

In order to identify what is an event for a membrane system, we investigate the
event structure of an evolution step.

Example 2. Let us consider a single membrane with the following three rules

�1 : a → b, �2 : b → a, �3 : ab → c

and having the content aabc. We investigate the space of all sequential rewriting
corresponding to the application of rules in the evolution step, changing the
content aabc into bbac, in order to discover the events of this step. The exact
definitions for an evolution step is given in the next subsections.

3.1 String Rewriting

We first assume that the sequential rewriting is executed over strings (non-
commutative words). A context is a string of the form w • w′, where w, w′ are
strings of objects, and • is a special variable. Each rewriting step wuw′ → wvw′

is uniquely determined by the context w • w′ and the rule � : u → v. Thus the
transition (wuw′, �, wvw′) = wuw′ �−→ wvw′ is denoted by (w • w′, �).

The maximal parallel rewriting over strings is defined as follows: w mpr⇒ w′ if and
only if there are �1, . . . , �n, �i : ui → vi (i = 1, n) such that w = w0u1w1 . . . unwn,
w′ = w0v1w1 . . . vnwn and w0w1 . . . wn irreducible (no rule can be applied). We
may have i
= j and li = lj (a rule may be applied more than one time in a
maximal parallel rewriting). Sometimes we write w ⇒(�1,...,�n) w′ in order to
emphasize the multiset of rules implied in the maximal parallel rewriting. Note
that the pair (w, w′) does not uniquely identify the rules involved in w

mpr⇒ w′.
For instance, if a membrane M includes the evolution rules:

�1 : a → cd �2 : a → c �3 : b → f �4 : b → df

216 G. Ciobanu and D. Lucanu

aabc aabc

babc
�

�1

abbc

�1

�
aaac

�2

�

bbbc

�1

��

�1

baac
�

�1�2

�
abac

�1

�

�2

�

bbac

�1

��

�1
�2

�
bbac

{e1,e2,e3},id,∅

�

a) b)

Fig. 2. A lts corresponding to aabc
mpr⇒ bbac

then we have ab ⇒(�1,�3) cdf and ab ⇒(�2,�4) cdf .
We consider first an example. The space of all sequential rewriting for the

evolution step of Example 2 is represented in Figure 2.a.
By Definition 7, we have the following three concurrent events:

e1 = {(•abc, �1), (•bbc, �1), (•bac, �1), (•aac, �1)}
e2 = {(a • bc, �1), (b • bc, �1), (b • ac, �1), (a • ac, �1)}
e3 = {(aa • c, �2), (ab • c, �2), (bb • c, �2), (ba • c, �2)}.

According to Definition 7, the event e1 is also denoted by [•abc, �1] or by [•bbc, �1]
and so on. Each event corresponds to the application of a certain evolution rule
at a certain position in the string. The resulting event structure corresponds very
well to the following description: distribute the object to the rules and then apply
the evolutions rules in parallel. The parallel execution of all involved evolution
rules is possible because the corresponding events are independent (no causali-
ties, no conflicts). Figure 2.b represents the fact that bbac is obtained from aabc
using the computation space described by the event structure ({e1, e2, e3}, id, ∅).

Remark 1. During an evolution step, the content of a membrane is split in two
sides: the objects produced in the current evolution step (these cannot contribute
to apply new rules), and the “unused” objects which may contribute to apply
new rules. In [3] there are used colors to distinguish the two sides. Here we
omit to make explicit distinction because the objects consumed by a rule can be
deduced from the definition of the events.

We give now the formal definition for the event structure associated to a mpr-
step over strings.

Events, Causality, and Concurrency in Membrane Systems 217

Definition 9. The labeled transition system associated to w ⇒(�1,...,�n) w′ is
given by all sequential rewriting starting from w and ending in w′. The event
structure ES(w, w′, �1, . . . , �n) associated to w ⇒(�1,...,�n) w′ is the event struc-
ture associated to its labeled transition system.

Theorem 2. The event structure ES(w, w′, �1, . . . , �n) = (E, ≤, #) associated
to w ⇒(�1,...,�n) w′ consists only of concurrent events, i.e., ≤ = id and # = ∅.

Proof. We have w ⇒(�1,...,�n) w′ iff w = w0u1w1 . . . unwn, w′ = w0v1w1 . . . vnwn,
�i : ui → vi is an evolution rule, for i = 1, . . . , n, and w0w1 . . . wn is irreducible.
The conclusion of the theorem follows from the fact that {[w0 . . . •wi . . . wn, �i]}
is a configuration (any of events can occur first). ��

3.2 Multiset Rewriting

We assume now that the sequential rewriting is executed over multisets (com-
mutative words).

We write w =c w′ if and only if w′ is obtained from w by a permutation of
the objects, i.e., w and w′ are equal modulo commutativity. Let [w] denote the
=c-equivalence class of w, i.e., [w] = {w′ | w =c w′}.

A context is a multiset of the form [•w], where w is a multiset of objects, and
• is a special variable. It is easy to see now that the position of • in a context is
not important, and therefore we write • at the beginning. Each rewriting step
[uw] → [vw] is uniquely determined by the context [•w] and the rule � : u → v.
Therefore the transition ([uw], �, [vw]) = [uw] �−→ [vw] is denoted by ([•w], �).

The maximal parallel rewriting over multisets is defined as follows: [w] mpr⇒ [w′]
iff there are �1, . . . , �n, �i : ui → vi (i = 1, n) such that [w] = [u1 . . . unr],
[w′] = [v1 . . . vnr] and r is irreducible (no rule can be applied). Sometimes we
write [w] ⇒[�1,...,�n] [w′] in order to emphasize the multiset of rules implied in the
maximal parallel rewriting. It is worth to note that, in order to avoid possible
infinite cycles and illegal transitions in a maximal parallel rewriting step, an
object v resulting from [uw] �−→ [vw] is not used afterwards in that step.

The space of all rewriting for the evolution step in Example 2 is indicated in
Figure 3.

We also have three events, but they are not totally causally independent:

e1 = {([•abc], �1), ([•aac], �1)}, e1 < e2

e2 = {([•bbc], �1), ([•bac], �1)}
e3 = {([•abc], �2), ([•bac], �2), ([•bbc]�2)}

According to Definition 7, the event e1 is also denoted by [[•abc], �1] or by
[[•aac], �1]. The other events are similarly denoted. An event corresponds now
to the application of an evolution rule at an arbitrary position. The position
in strings cannot be used anymore to distinguish between events. Moreover,
between the events e1 and e2 we have a causal dependency: e2 may occur only
after e1. In fact, e1 can be read as “the first application of the evolution rule �1”

218 G. Ciobanu and D. Lucanu

[aabc]

[babc]
�

� 1

[aaac]

�
2

�

[bbbc]
�

� 1

[baac] = [aabc]
�

� 1
�
2

�

[bbac] = [babc]
�

� 1
�
2

�

Fig. 3.

and e2 as “the second application of the evolution rule �1”. We notice that the
use of commutativity law changes dramatically the meaning of an event.

Definition 10. The labeled transition system associated to [w] ⇒[�1,...,�n] [w′] is
given by all sequential rewriting starting from [w] and ending in [w′].

Theorem 3. The event structure (E, ≤, #) associated to the labeled transition
system defined by [w] ⇒(�1,...,�n) [w′] has the following properties:

– [[•w1], �1] < [[•w2], �2] if and only if �1 = �2, [[•w1], �1] corresponds to the
i-th application of the rule �1, [[•w2], �1] corresponds to the j-th application
of the rule �1, and i < j;

– # = ∅.

“Parallel” means “no causal dependency” between the events corresponding to
the application of the rules. We may conclude either that working with multisets
is not a good solution at this granularity, namely it is not possible to determine
all the parallel rules applied in a mpr-step, or the procedure which determines
the event structure from a lts finds “false” causalities for the particular case
when the states are given by multisets. We believe that the later one is true; the
causality relation given by the i-th application of a rule (when it is applied more
than once) is artificial. Therefore we remove the false causal dependency in the
definition of the event structure associated to a mpr-step.

Definition 11. The event structure associated to [w]⇒(�1,...,�n) [w′] is (E, id, ∅),
where (E, ≤, ∅) is the event structure associated to the labeled transition system
defined by [w] ⇒[�1,...,�n] [w′]. We denote by ES([w], [w′], �1, . . . , �n) the event
structure (E, id, ∅) given above, and by E([w], [w′], �1, . . . , �n) its set of events E.

Events, Causality, and Concurrency in Membrane Systems 219

3.3 Systems of Communicating Membranes

The constructions described in the previous subsections can be extended to com-
municating membranes. Communicating membranes (membrane systems with
symport/antiport rules) are presented in detail in [11].

A membrane system with symport/antiport rules (of degree n ≥ 1) is a con-
struct of the form Π = (O, μ, w1, . . . , wn, E, R1, . . . , Rn, io), where:

1. O is the alphabet of objects,
2. μ is the membrane structure (of degree n ≥ 1, with the membranes labeled

in a one-to-one manner with 1, 2, . . . , n),
3. w1, . . . , wn are strings over O representing the multisets of objects present

in the n compartments of μ in the initial configuration of the system,
4. E ⊆ O is the set of objects appearing in the environment,
5. R1, . . . , Rn are finite sets of rules associated with the n membranes of μ,
6. io is the label of a membrane of μ indicating the output region.

The communication between membranes are expressed by rules of Ri; we can
have symport rules of the forms (x, in), (x, out), as well as antiport rules of the
form (u, out; v, in), where x, u, v are strings over O. The length of x, respectively
the maximum length of u, v, is called the weight of the corresponding (symport
or antiport) rule. We refer mainly to symport rules.

Let us consider a P system with two membranes: M consisting of the evolution
rule � : a → b(c, inM ′) and the content [a], and M ′ consisting of the evolution
rule �′ : c → d(a, out) and the content [c]. We assume that M includes M ′, i.e.,
the initial configuration of the system is 〈 M | [a] ; 〈 M ′ | [c] 〉 〉. We distinguish
three cases.

Simultaneous Evolution and Communication. If we assume that the application
of a communicating evolution rule, as � or �′, is a single event, then the lts
corresponding to all sequential computations is like in Figure 4. We have two
concurrent events: one corresponding to the application of rule �, and the other
one corresponding to the application of rule �′. Let Π a system of communicating
membranes and let ES be the event structure associated to an evolution step
of Π . If the contents of the membranes are represented as strings, then ES
consists of a set of concurrent events computed as in Section 3.1. If the contents
of the membranes are represented by multisets, then ES consists of a set of
concurrent events computed as in Section 3.2, where the false causalities given
by i-th application of a rule are removed.

Separated Evolution and Communication. If a rewrite semantics is used as in [3],
the event is corresponding to an application of a rewrite rule. The application
of the rule � as a rewrite rule means replacing of the object a with b(c, inM ′) in
the content of M . The move of the in-message from M to M ′ is given with a
new rewrite rule:

in : 〈 M | [w(x, inM ′)] ; 〈 M ′ | [w′] 〉 〉 → 〈 M | [w] ; 〈 M ′ | [w′x] 〉 〉.
Similarly, the application of the rule �′ as a rewrite rule means replacing of the

220 G. Ciobanu and D. Lucanu

〈 M | [a] ; 〈 M ′ | [c] 〉 〉

〈 M | [b] ; 〈 M ′ | [cc] 〉 〉
�

�

〈 M | [aa] ; 〈 M ′ | [d] 〉 〉

� ′

�

〈 M | [ab] ; 〈 M ′ | [cd] 〉 〉
�

�� ′

�

Fig. 4. Simultaneous evolution and communication

object c with d(a, out) in the content of M ′. The move of the out-message from
M ′ to M is given with the following rewrite rule:

out : 〈 M | [w(x, inM ′)] ; 〈 M ′ | [w′] 〉 〉 → 〈 M | [w] ; 〈 M ′ | [w′x] 〉 〉.
According to [2,3], an evolution step of the system consists of two main substeps:
mpr -step consisting in the application of the evolution rules as rewrite rules, and
tar -step consisting in the application of the rewrite rules moving the messages
produced by the mpr -step to their target membrane. The tar -step is applied
only after mpr -step is completely accomplished. The lts for our example is like
in Figure 5. The notation for the system configurations was simplified in order
to save space. We have four events: two corresponding to the evolution rules,
and two corresponding to the communications (moving the messages to their
targets). The later events are causally dependent of the former ones.

Let Π a system of communicating membranes and let ES = (E, ≤, ∅) be
the event structure associated to an evolution step of Π . If ES′ = (E′, id, ∅)
is the event structure associated to a mpr -step and ES′′ = (E′′, id, ∅) is the
event structure associated to a tar -step, then E = E′ ∪ E′′ (disjoint union) and
≤ = id ∪ {e′ < e′′ | e′ ∈ E′, e′′ ∈ E′′}.

Interleaving Evolution and Communication. In [4] it is shown that the behavior
of the P systems can be described as well by interleaving the applications of the
evolutions rules with those of the communication rules.

Even if the lts corresponding to an evolution step is more complex (see
Figure 6), we have the same number of events, namely four. The only causal
dependencies are between the event corresponding to in-communication and
the event corresponding to �, and between the event corresponding to out -
communication and the event corresponding to �′.

For the general case, the event structure ES = (E, ≤, ∅) associated with a
system Π is computed by extending the method described in Section 3.1 if
the contents are represented by strings, or as in Section 3.2 if the contents are
represented by multisets. We have e ≤ e′ if and only if e corresponds to an
evolution rule having in the right hand side in- or out -messages and e′ is the
event corresponding to a moving of such a message to its target.

Events, Causality, and Concurrency in Membrane Systems 221

〈 [a] 〈 [c] 〉 〉

〈 [b(c, inM′)] 〈 [c] 〉 〉
�

�

〈 [a] 〈 [d(a, out)] 〉 〉

� ′

�

〈 [b(c, inM′)] 〈 [d(a, out)] 〉 〉
�

�� ′

�

〈 [b] 〈 [cd(a, out)] 〉 〉
�

in

〈 [ab(c, inM′)] 〈 [d] 〉 〉

out

�

〈 [ab] 〈 [cd] 〉 〉
�

in
out

�

Fig. 5. Separated evolution and communication

〈 [a] 〈 [c] 〉 〉

〈 [b(c, inM′)] 〈 [c] 〉 〉
�

�

〈 [a] 〈 [d(a, out)] 〉 〉

� ′

�

〈 [b] 〈 [cc] 〉 〉
�

in

〈 [b(c, inM′)] 〈 [d(a, out)] 〉 〉
�

�� ′

�

〈 [aa] 〈 [d] 〉 〉

out

�

〈 [b] 〈 [cd(a, out)] 〉 〉
�

in
� ′

�

〈 [ab(c, inM′)] 〈 [d] 〉 〉
�

�
out

�

〈 [ab] 〈 [cd] 〉 〉
�

in
out

�

Fig. 6. Interleaving evolution and communication

222 G. Ciobanu and D. Lucanu

We have to answer two questions.

Q1: What is the best representation for membrane contents: either strings or
multisets?

Q2: What is the most suitable definition for the event structure of an evolution
step including communication?

First we analyze Q1. The strings have the advantage that we can extract the
event structure associated to an evolution step directly from the associated lts.
However, as it is expected, the strings make too many distinctions and therefore
do not supply the desired level of abstraction. If we permute the content of a
membrane in such a way we may apply exactly the same rules but at different
positions, then we get an event structure isomorphic to that corresponding to
the initial content. The multisets supply the desired level of abstraction. The
false causalities we get from the associated lts can be removed at a price which
deserves to be paid.

Question Q2 has not yet a firm answer. The answer is depending on what
biological system we want to model with these systems and on the granularity
level we want to have in analyzing such systems. In [4] it is shown that the
efficiency of a model checking algorithm is strong dependent on this granularity
level. We will see later that the interleaving evolution and communication does
not allow to retrieve the evolution steps from the event structures.

4 Event Structure of a Membrane

In this section we determine the event structure given by a membrane only
considering the multiset approach. We first enumerate some problems which
appear when we take into account the computation structure of a membrane.

Fresh names. The notation for events is no longer suitable for the case of mem-
branes. We consider again the membrane of Example 2 with the content aa this
time, and the computation [aa] mpr⇒ [bb] mpr⇒ [aa] mpr⇒ [bb]. Since the events of the
second step [bb] ⇒[�2,�2] [aa] occur always before the events of the first step
[aa] ⇒[�1,�1] [bb], and the events of the third step [aa] ⇒[�1,�1] [bb] occur before
the events of the second step, we get [a•, �1] < [b•, �2] < [a•, �1], i.e., the causal-
ity relation < is cyclic. Therefore each event [[•u], �] in E([w], [w′], �1, . . . , �n) is
denoted with a new fresh name e, and we define action(e) = [•u, �]. We denote
by Fresh(x) the copy of x, where each event in x is replaced by a fresh name, and
by action(x) the set {action(e) | e ∈ x}. In this way, the event sets corresponding
to different computation steps are disjoint.

Causal dependency. We consider the membrane including the following rules

�′1 : a → bc, �′2 : c → d, �′3 : e → f,

and the content ae. The lts given by all sequential rewriting is represented in
Figure 7a) and it supplies the following events:

Events, Causality, and Concurrency in Membrane Systems 223

e′1 with action(e′1) = [[•e], �′1] = {([•e], �′1), ([•f], �′1)}
e′2 with action(e′2) = [[•a], �′3] = {([•a], �′3), ([•bc], �′3)}
e′3 with action(e′3) = [[•bf], �′2] = {([•bf], �′2)}

[ae] [ae]

[bce]

�

�
′
1

[af]

� ′
3

�

[bce]

�

�
′
1

[af]

� ′
3

�

[bcf]

�

�
′
1

� ′
3

�

[bde]

�
�
′
2

[bcf]

�

�
′
1

� ′
3

�

[bdf]

�′
2

�
[bdf]

�′
2

�
� ′
3

�

a) b)

Fig. 7. Causal dependency and history causality

The only causalities we have are e′1 � e′3 and e′2 � e′3. Consequently, the only
concurrency relation is e′1 co e′2. This definition for causality is different from
history causality introduced in [6], where e � e′ iff the rule involved in e′ uses
objects produced by the rule involved in e. The history causality for our example
produce the lts given in Figure 7b) and we have e′1 � e′3, e′1 co e′2 and e′2 co e′3,
where action(e′2) is now {([•a], �′3), ([•bc], �′3)([•bd], �′3)}. As it is noted in [6], the
history causal semantics does not faithfully reflect the maximal parallel rewrit-
ing; however, the maximal parallel rewriting can be retrieved by imposing some
additional conditions. Another difference from [6] is that there each transition
of the associated lts defines a new event; in particular, ([•e], �′1) and ([•f], �′1)
defines two distinct events in the history causal semantics.

Conflicts. Let us consider the following membrane:

�′′1 : a → c, �′′2 : b → d, �′′3 : b → e.

Two computations are possible for the content ab:
The events e′′2 and e′′3 with action(e′′2) = [[•a], �′′2] = {([•a], �′′2), ([•c], �′′2)} and
action(e′′3) = [[•a], �′′3] = {([•a], �′′3), ([•c], �′′3)} are in conflict, i.e., e′′2#e′′3 , because

224 G. Ciobanu and D. Lucanu

[ab] [ab]

[cb]

�
�
′′
1

[ad]

� ′′2

�

[cb]

�

�
′′
1

[ae]

� ′′3

�

[cd]

�
�
′′
1

� ′′2

�

[ce]

�

�
′′
1

� ′′3

�

they compete on the same object (resource) b. The events e′′11 and e′′12 with
action(e′′11) = [[•b], �′′1] = {([•b], �′′1), ([•d], �′′1)} and action(e′′12) = [[•b], �′′1] =
{([•b], �′′1), ([•e], �′′1)} are also in conflict, i.e., e′′11#e′′12, because they correspond
to different actions: the context [•e] is not possible in e′′11, and the context [•d] is
not possible in e′′12. It is worth to note that e′′11, e

′′
2 ∈ Fresh(E([ab], [cd], l′′1 , l′′2))

and e′′3 , e′′12 ∈ Fresh(E([ab], [cd], l′′1 , l′′3)). In a similar way, e′′11#e′′3 and e′′12#e′′2 .

Definition 12. In terms of multisets, a computation in M is of the form init mpr⇒
[w1]

mpr⇒ · · · , where init is the initial content of M . A multiset (content) w is
reachable in M iff there is a computation from init to [w].

Definition 13. Let M be a membrane. An event structure ES(M) = (EM , ≤M

, #M) associated to a membrane M is given as follows:

1. EM is the smallest set satisfying: for each reachable [w], [w′] such that
[w] ⇒(�1,...,�n) [w′], Fresh(E([w], [w′], �1, . . . , �n)) ⊆ EM ;

2. ≤M is the smallest partial order generated by: if [w] ⇒[�1,...,�m] [w1] and
[w1] ⇒[�′

1,...,�′
n] [w2], then we have e1 � e2 ∈ ≤M for each e1 in Fresh(E([w],

[w1], �1, . . . , �m)) and e2 in Fresh(E([w1], [w2], �′1, . . . , �
′
n));

3. #M is the smallest relation satisfying the principle of conflict heredity and
including: if ([w] ⇒[�1,...,�m] [w1])
= ([w] ⇒[�′

1,...,�′
n] [w2]), then we have

e1#Me2 for each e1 in Fresh(E([w], [w1], �1, . . . , �m)) and e2 in Fresh
(E([w], [w2], �′1, . . . , �

′
n)).

We should note that each Fresh(E([w], [w′], �′1, . . . , �
′
n)) depends on the compu-

tation init mpr⇒ · · · mpr⇒ [w]; otherwise we can have the following situation:

[w1]

e3 ��
��

��
��

�

���
��

��

init

e1

����������

��������

e2

��
��

��
��

��

��
��

��
��

#M [w3] e
�� [w4]

[w2]

e′
3

���������

�������

Events, Causality, and Concurrency in Membrane Systems 225

e1 ∈ Fresh(E(init, [w1]), e2 ∈ Fresh(E(init, [w2]), e3 ∈ Fresh(E([w1], [w3])
and e′3 ∈ Fresh(E([w2], [w3]), e ∈ Fresh(E([w3], [w4]); and we get

e1#Me2, e1 ≤ e3 ≤ e, e2 ≤ e′3 ≤ e

and thus e#Me.
Under this additional requirement to relate Fresh(E([w], [w′], �′1, . . . , �

′
n)) to

the computation init mpr⇒ · · · mpr⇒ [w], ES(M) is indeed an event structure.

Theorem 4. Given a membrane M , there is an event structure ES(M) =
(EM , ≤M , #M) such that if [w], [w′] are reachable in M from init, and [w]
⇒(�1,...,�n) [w′], then there exist two saturated computation steps x, x′ and a
maximal concurrent action a such that x

a−→ x′ is in ES(M) and action(a) =
E([w], [w′], �1, . . . , �n).

Proof. We assume first that [w] ⇒(�1,...,�n) [w′]. Then x is a computation space
corresponding to a computation init mpr⇒ · · · mpr⇒ [w] in M , and a is Fresh(E([w],
[w′], �1, . . . , �n)). If [w] = init , then x = ∅. It is easy to see that x is conflict-
free and downwards-closed, a is a maximal set of concurrent events, and that
x ∩ a = ∅. x′ = x ∪ a is also downwards-closed and conflict-free because it
corresponds to the computation init mpr⇒ · · · mpr⇒ [w] mpr⇒ [w′].

We assume now that x
a−→ x′ is in ES(M). Let depth(x′) denote the length

of the longest chain of causally dependent events in x′. We show by induction
on depth(x′) that x corresponds to a computation init mpr⇒ · · · mpr⇒ [w] and that
x′ corresponds to init mpr⇒ · · · mpr⇒ [w] mpr⇒ [w′]. If depth(x′) = 0, then x = ∅ and
�a = a, i.e., a is a set of ≤-minimal events. The minimal events correspond
to computations of the form init ⇒(�1,...,�n) [w]. Two minimal events are con-
current if and only if both belong to the event structure corresponding to a
computation init mpr⇒ [w]. Since a is a maximal set of concurrent events, it fol-
lows that a = Fresh(E(init , [w], �1, . . . , �n)). We assume now that depth(x′) > 0.
We have that x corresponds to the computation init mpr⇒ · · · mpr⇒ [w] by induc-
tive hypothesis. The ≤-maximal events in x are those which contributed in
the last evolution step of the derivation of [w]. Since each event in a causally
depends on a ≤-maximal event in x, it follows that [w] ⇒(�1,...,�n) [w′] and
a = Fresh(E([w], [w′], �1, . . . , �n)) by the construction of ES(M). ��

5 Event Structure for Communicating Membranes

For the case of systems of communicating membranes we have to distinguish
between the three semantics of an evolution step including communication. Let
Π a system of communicating membranes.

Simultaneous Evolution and Communication. The algorithm computing the event
structure ES(Π) is similar to that from Definition 13. The only difference is that
we have to consider configurations of Π instead of membrane contents. The con-
clusion of Theorem 4 holds too, because the event structure of an evolution step
does not include causalities.

226 G. Ciobanu and D. Lucanu

Separated Evolution and Communication. The algorithm computing the event
structure ES(Π) is similar to that presented in the above paragraph, except-
ing the fact that ≤ must include now the causalities coming from the inside of
evolution steps. The conclusion of Theorem 4 does not hold because the event
structure of an evolution step includes causalities. However, because the com-
munication is separated from the application of the evolution rules as rewrite
rules, we can distinguish between a maximal concurrent actions corresponding to
communications and a maximal concurrent actions corresponding to evolution
rules. In this way, the conclusion of the theorem must be rephrased as follows:

[w] ⇒ [w′] iff there is a maximal concurrent transitions x
a′
−→ x′ a′′

−−→ x′′ in ES(Π)
such that action(a′) = Empr ([w] ⇒ [w′]) and action(a′) = Etar ([w] ⇒ [w′]),
where Empr is the event structure corresponding to the mpr -step of [w] ⇒ [w′]
and Etar is the event structure corresponding to the mpr -step of [w] ⇒ [w′].

Interleaving Evolution and Communication. The algorithm computing the event
structure ES(Π) is similar to that presented in the above paragraph. The con-
clusion of Theorem 4 does not hold from the same reasons as above. Moreover,
we cannot retrieve the evolution steps [w] ⇒ [w′] from ES(Π) because the events
corresponding to the communication can be concurrent with those correspond-
ing to evolution rules, and we have no criteria expressed in terms of causalities
and concurrency to delimit the evolution steps.

6 Conclusion

Many of the formalisms using biology as inspiration can be naturally adapted
to model and better understand the complex biomolecular systems. Membrane
systems are used to model several biological phenomena [8]. For instance, a de-
scription of the sodium-potassium exchange pump is given in [5] by using mem-
brane systems, and some dynamical aspects of the immune system are modeled
by mobile membranes in [1]. However the new discrete time models are not so
popular among the biologists as ordinary and partial differential equations are.

In this paper we emphasize a crucial feature in biology which is not described
properly in the classical mathematical models. We refer to the causality of events
in biological systems. For membrane systems, we overcome this drawback of the
continuous time mathematical models in biology by defining and investigating
a strong notion of causality provided by the event structures. We show that the
notion of causality given by event structures is better for membrane systems
than a weaker form of causality (history causality) presented in [6].

The event structure of a P system is constructed step-by-step, starting from
the event structure of a maximally concurrent transition, followed by the event
structures of the communicating membranes and by various combinations be-
tween the evaluation and communication steps. The interleaving between the
evolution and the communication steps is also described in [4] in terms of op-
erational semantics. An important result is given by Theorem 4, saying that
causality of a membrane system corresponds properly to the operational seman-
tics defined in [2,3].

Events, Causality, and Concurrency in Membrane Systems 227

Acknowledgements. This work has been supported by the research grant
CEEX 47/2005.

References

1. Aman, B., Ciobanu, G.: Describing the Immune System Using Enhanced Mobile
Membranes. In: Proceedings FBTC (Satellite workshop of CONCUR 2007), pp.
1–14 (2007)

2. Andrei, O., Ciobanu, G., Lucanu, D.: A Structural Operational Semantics of the P
Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 32–49. Springer, Heidelberg (2006)

3. Andrei, O., Ciobanu, G., Lucanu, D.: Operational Semantics and Rewriting Logic
in Membrane Computing. Electronic Notes of Theoretical Computer Sci. 156, 57–
78 (2006)

4. Andrei, O., Ciobanu, G., Lucanu, D.: A Rewriting Logic Framework for Operational
Semantics of Membrane Systems. Theoretical Computer Sci. 373, 163–181 (2007)

5. Besozzi, D., Ciobanu, G.: A P System Description of the Sodium-Potassium Pump.
In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.)
WMC 2004. LNCS, vol. 3365, pp. 211–223. Springer, Heidelberg (2005)

6. Busi, N.: Causality in membrane systems. In: Eleftherakis, G., Kefalas, P., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 160–171.
Springer, Heidelberg (2007)

7. Ciobanu, G., Lucanu, D.: What is an event for membrane systems? In: Pre pro-
cedings of Membrane Computing, International Workshop - WMC 8, Thessaloniki,
Greece, pp. 255–266 (2007)

8. Ciobanu, G., Păun, G., Perez-Jimenez, M.J. (eds.): Applications of Membrane
Computing. Natural Computing Series. Springer, Heidelberg (2006)

9. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Transition Systems, Event Struc-
tures, and Unfoldings. Information and Computation 118, 191–207 (1995)

10. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

11. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
12. Sassone, V., Nielsen, M., Winskel, G.: Models for Concurrency: Towards a Classi-

fication. Theoretical Computer Sci. 170, 297–348 (1996)
13. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

Advances in Petri Nets 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg
(1987)

14. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency. LNCS, vol. 354, pp. 364–397. Springer, Hei-
delberg (1989)

15. Winskel, G., Nielsen, M.: Models for Concurrency. In: Abramsky, S., Gabbay, D.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Oxford University
Press, Oxford (1995)

P Systems with String Objects and with

Communication by Request

Erzsébet Csuhaj-Varjú and György Vaszil

Computer and Automation Research Institute
Hungarian Academy of Sciences

Kende utca 13–17, H-1111 Budapest, Hungary
{csuhaj,vaszil}@sztaki.hu

Abstract. In this paper we study P systems using string-objects where
the communication between the regions is indicated by the occurrence of
so-called query symbols in the string. We define two variants of commu-
nication and prove that these systems with both types of communication
are computationally complete, even having a number of membranes lim-
ited with relatively small constants.

1 Introduction

In this paper we continue our investigations on P systems with string objects and
with communication by request. In [2], the authors studied tissue-like P systems
over string objects where the evolution rules of the objects are represented by
context-free rewriting rules which also describe the communication between the
membranes by the help of communication symbols, called query symbols, one
such symbol corresponding to each region of the system.

Membrane systems, or P systems, are distributed and parallel computing de-
vices inspired by the functioning of the living cell [5]. A P system consists of
a hierarchically embedded structure of membranes. Each membrane encloses a
region that contains objects and might also contain other membranes. There are
rules associated to the regions describing the evolution and the movement of the
objects which together correspond to a computation.

For details on membrane systems, see the monograph [6] and the web-page
http://psystems.disco.unimib.it.

While in the standard case a P system consists of a hierarchically embedded
structure of membranes, tissue-like P systems are organized in another manner
[4]. Instead of an individual cell, these correspond to groups of cells, like tissues
or organs, interacting with each other either directly or with the use of the
environment, but in any case, having the common property that the membrane
structures are not necessarily described by a tree as those ones which correspond
to individual cells.

The functioning of P systems with string objects consists of rewriting steps
which rewrite the strings using context-free rewriting rules, and communication
steps which exchange the strings between the regions.

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 228–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

P Systems with Communication by Request 229

Communication in tissue-like P systems with string objects and with commu-
nication by request was defined as follows: When one or more query symbols are
introduced in a string, then the rewriting of that string stops and the queries
are satisfied by replacing the query symbols with strings which do not contain
further query symbols from the region indicated by the query symbol, in all pos-
sible combinations. If no query symbol free string exists in the queried region,
then the string containing the query disappears.

This model has some biological resemblance: if the strings are considered as
descriptions of simple organisms, the query symbols as their “weak points”, pos-
sibly infected or attacked by another organism, then the communication mimics
some features of an infection or parasitism. Inspired by these resemblances, we
call a communication of type i (infection) if after communicating the copies of
the strings, the strings themselves remain in the region, while the communication
is called of type p (parasitism), if after communication the communicated string
itself disappears from its original region. The model is called an MPC system in
short.

MPC systems can also be considered as modified variants of parallel commu-
nicating (PC) grammar systems defined over multisets of strings. PC grammar
systems are networks of grammars organized in a communicating system to gen-
erate a single language. The reader interested in the theory of grammar systems
is referred to [1,7].

In [2], the authors proved that MPC systems with 7 membranes and work-
ing with i-communication are able to describe all recursively enumerable lan-
guages. The computational completeness of these systems working with
p-communication holds as well, even for a subclass consisting of systems having
only 9 membranes.

In this paper we define the two types of communication for standard P sys-
tems and examine the computational power and the size complexity of these
models. We call the new constructs RPC systems in short. In this case, the
requested string can only be communicated either to the parent membrane or
to one of the child membranes, depending on the issued query symbol. Thus,
query symbols refer only to the neighboring regions. According to the above
mentioned biological resemblance, both infection and parasitism are very local
phenomena regarding their spread, i.e., in one step only the neighbors can be
infected and parasitism can be developed only between two closely related, i.e.,
neighbor components.

As for MPC systems, the computational completeness can be proved for RPC
systems with both types of communication: in the case of i-communication sys-
tems with 10 membranes and in the case of p-communication systems with 30
membranes are enough for demonstrating the power of the Turing machines. The
reader can observe that both MPC systems and P systems are able to obtain the
computational completeness even with relatively small number of membranes.
Moreover, in the case of i-communication the difference between the two num-
bers is very small, i.e., the difference in the underlying structure of the membrane
system has not too much influence on the computational power of the system.

230 E. Csuhaj-Varjú and G. Vaszil

2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to
be familiar with the basics of formal language theory, for details see [7]. Let Σ
be an alphabet and let Σ∗ be the set of all words over Σ, that is, the set of
finite strings of symbols from Σ, and let Σ+ = Σ∗ − {ε} where ε denotes the
empty word. For w ∈ Σ∗ and S ⊆ Σ, let |w|S denote the number of occurrences
of symbols from S in the string w (if S = {a} is a singleton set, we may write
|w|a instead of |w|{a}).

Let V be a set of objects, and let N denote the set of non-negative integers.
A multiset is a mapping M : V → N which assigns to each object a ∈ V its
multiplicity M(a) in M . The support of M is the set supp(M) = {a | M(a) ≥ 1}.
If supp(M) is a finite set, then M is called a finite multiset. The set of all finite
multisets over the set V is denoted by V ◦.

We say that a ∈ M if M(a) ≥ 1. For two multisets M1, M2 : V → N,
M1 ⊆ M2 if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined
as (M1 ∪ M2) : V → N with (M1 ∪ M2)(a) = M1(a) + M2(a) for all a ∈ V , the
difference is defined for M2 ⊆ M1 as (M1 − M2) : V → N with (M1 − M2)(a) =
M1(a) − M2(a) for all a ∈ V , and the intersection is (M1 ∩ M2) : V → N with
(M1 ∩ M2)(a) = min(M1(a), M2(a)) for a ∈ V , where min(x, y) denotes the
minimum of x, y ∈ N. We say that M is empty, denoted by ε, if its support is
empty, supp(M) = ∅.

In the following we sometimes list elements a1, . . . , an of a multiset as M =
{{a1, . . . , an}}, by using double brackets to distinguish from the usual set nota-
tion.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane which is unique, is called the skin mem-
brane. The membrane structure is denoted by a sequence of matching parentheses
where the matching pairs have the same label as the membranes they represent.
If membrane li of a given membrane structure μ contains membrane lj , and there
is no other membrane, lk, such that lk contains lj and li contains lk, then we say
that membrane li is the parent membrane of lj , denoted as parentμ(lj) = li, and
lj is one of the child membranes of li, denoted as lj ∈ childμ(li). We also define for
any region li the set of regions neighborμ(li) = {li} ∪ {parentμ(li)} ∪ childμ(li).

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. Applying the rules synchronously in each region,
the system performs a computation by passing from one configuration to an-
other one. Several variants of the basic notion have been introduced and studied
proving the power of the framework, see the monograph [6] for a summary of
notions and results of the area.

In the following we focus on systems where the objects are represented with
strings, object evolution is modeled by context-free string rewriting rules, and
communication is performed by dynamically emerging requests with the use of
query symbols appearing in the string objects.

P Systems with Communication by Request 231

Definition 1. A string rewriting P system with communication by request or
an RPC system (of degree m ≥ 1) is a construct

Π = (V, μ, (M1, R1), . . . , (Mm, Rm), io),

where:

– V = N ∪ T ∪ K with N, T, K being pairwise disjoint alphabets of nonter-
minals, terminals, and query symbols, respectively, and K = {Q1, . . . , Qm}
(one query symbol is associated to each region of Π);

– μ is a membrane structure of m membranes;
– M1, . . . , Mm are finite multisets over (N ∪ T)∗;
– R1, . . . , Rm are finite sets of context-free rewriting rules of the form A → u,

with A ∈ N and u ∈ V ∗, satisfying the property that A → u ∈ Ri and
|u|{Qj} > 0 implies j ∈ neighborμ(i);

– io ∈ {1, 2, . . . , m} is the index of the output membrane of Π .

The work of such a system starts from the initial configuration (M1, . . . , Mm).
It passes from a configuration (M ′

1, . . . , M
′
m), consisting of multisets of strings

over N ∪ T ∪ K placed in the m regions of the system, to another configuration
(M ′′

1 , . . . , M ′′
m) in the following way. If no query symbol is present in the strings

contained by the system, then each string from each multiset M ′
i is rewritten

which can be rewritten according to the rules from Ri, 1 ≤ i ≤ m. This means
the use of one rule from Ri, non-deterministically chosen, for each string. The
strings which cannot be rewritten (no rule can be applied to them) remain
unchanged. The resulting multisets of strings are M ′′

i , 1 ≤ i ≤ m. Note that the
rewriting of strings is maximally parallel, in the sense that all strings which can
be rewritten must be rewritten, and that the process is non-deterministic, the
choice of rules and the places where the rules are applied can lead to several
possible new multisets of strings.

If any query symbol is present in any of the strings contained by M ′
i , 1 ≤ i ≤ n,

then a communication is performed: Each symbol Qj introduced in a string
present in region i (that is, in the multiset M ′

i), where j is the index of one of
the neighboring regions, is replaced with all strings from this neighboring region
j which do not contain query symbols. If in region j there are several strings
without query symbols, then each of them is used, hence the string from region
i is replicated: a copy is created for each query symbol free string from region
j and the occurrences of Qj are replaced with different strings from region j in
each copy. If there are several query symbols in the same string from component
i, then all of them are replaced (we also say that they are satisfied) at the same
time, in all possible combinations. If a query symbol Qj cannot be satisfied (re-
gion j contains no string without query symbols), then the string containing Qj

is removed (it is like replacing it with the strings from an empty language). We
call such a system i-communicating if copies of the requested strings are commu-
nicated to the requesting components, and p-communicating if after replacing
the query symbols with the requested strings, these strings are removed from
the multiset associated to the queried region.

232 E. Csuhaj-Varjú and G. Vaszil

In this way, all query symbols introduced by the rewriting rules disappear,
they are either satisfied (replaced by strings without query symbols) or they
disappear together with the string which contain them (in the case when they
cannot be satisfied). The multisets obtained in this way in one communication
step are M ′′

1 , . . . , M ′′
m, constituting the next configuration of the system.

We give now the formal definition of the transition.

Definition 2. Let Π = (V, μ, (M1, R1), . . . , (Mm, Rm), io) be an RPC system
as above, and let (M ′

1, . . . , M
′
m) and (M ′′

1 , . . . , M ′′
m) be two configurations of Π .

We say that (M ′
1, . . . , M

′
m) directly derives (M ′′

1 , . . . , M ′′
m), if one of the following

two cases holds.

1. There is no string containing query symbols, that is, x ∈ (N ∪ T)∗ for
all x ∈

⋃m
i=1 Mi. In this case, if M ′

i = {{xi,1, . . . , xi,ti}}, then M ′′
i =

{{yi,1, . . . , yi,ti}} where either xi,j ⇒ yi,j according to a context-free rule
of Ri, or yi,j = xi,j if there is no rule in Ri which can be applied to
xi,j , 1 ≤ j ≤ ti, 1 ≤ i ≤ m.

2. There is at least one x ∈
⋃m

i=1 Mi such that |x|K > 0. In this case, rewriting
is stopped and a communication step must be performed as follows. Let

M req
i =

⎧
⎨

⎩

{{x ∈ M ′
i | |x|K = 0}} if there is a j ∈ neighborμ(i), such

that y ∈ M ′
j with |y|Qi > 0,

∅ otherwise,

let
Mavail

i = {{x ∈ M ′
i | |x|K = 0}},

for all i, 1 ≤ i ≤ m, and let for an x = x1Qi1x2Qi2 . . . Qtxt+1, xj ∈ (N ∪
T)∗, Qij ∈ K, 1 ≤ j ≤ t + 1,

Sat(x) = {{x1yi1x2yi2 . . . yitxt+1 | yij ∈ Mavail
ij

, 1 ≤ j ≤ t}}.

Note that if Mavail
ij

= ∅ for some ij , 1 ≤ j ≤ t, then also Sat(x) = ∅.
Now, for all i, 1 ≤ i ≤ m,

M ′′
i = M ′

i − M req
i − {{x ∈ M ′

i | |x|K > 0}} +
⋃

x∈M ′
i,|x|K>0

Sat(x)

in the p-communicating mode, and

M ′′
i = M ′

i − {{x ∈ M ′
i | |x|K > 0}} +

⋃

x∈M ′
i ,|x|K>0

Sat(x)

in the i-communicating mode.

Let us denote the transitions from one configuration to another, (M ′
1, . . . , M

′
m)

to (M ′′
1 , . . . , M ′′

m), by (M ′
1, . . . , M

′
m) ⇒X (M ′′

1 , . . . , M ′′
m) with X = i and X = p

for i-communicating and p-communicating systems, respectively.

P Systems with Communication by Request 233

The language generated by the RPC system consists of all terminal strings
produced in region io during any possible computation in Π .

LX(Π) = {x ∈ T ∗ | (M1, . . . , Mm) ⇒∗X (M ′
1, . . . , M

′
m) and x ∈ M ′

io
}

for X ∈ {i, p}, where ⇒∗X denote the reflexive and transitive closure of ⇒X .
The families of all languages generated in this way by RPC systems of de-

grees at most m ≥ 1 with i-communication or p-communication, is denoted by
iRPCmCF and pRPCmCF , respectively. If we use systems of an arbitrary de-
gree, then we replace the subscript m with ∗. Let us also denote the class of
recursively enumerable languages by RE.

Before presenting our results, we recall the notion of a two-counter machine
from [3]. A two-counter machine TCM = (T ∪ {Z, B}, E, R) is a 3-tape Turing
machine where T is an alphabet, E is a set of internal states with two distinct
elements q0, qF ∈ E, and R is a set of transition rules. The machine has a
read-only input tape and two semi-infinite storage tapes (the counters). The
alphabet of the storage tapes contains only two symbols, Z and B (blank),
while the alphabet of the input tape is T ∪ {B}. R contains transition rules of
the form (q, x, c1, c2) → (q′, e1, e2) where x ∈ T ∪ {ε} corresponds to the symbol
scanned on the input tape in state q ∈ E, and c1, c2 ∈ {Z, ∗} correspond to the
symbols scanned on the storage tapes. If ci = Z, then the symbol scanned on
the ith counter tape is Z, if ci = ∗, then the symbol scanned is either Z or B.
By a rule of this form, M enters state q′ ∈ E, and the counters are modified
according to e1, e2 ∈ {−1, 0, +1}. If x ∈ T , then the machine was scanning x
on the input tape, and the head moves one cell to the right; if x = ε, then the
machine performs the transition irrespective of the scanned input symbol, and
the reading head does not move.

The symbol Z appears initially on the cells scanned by the storage tape heads
and may never appear on any other cell. An integer t can be stored by moving
a tape head t cells to the right of Z. A stored number can be incremented or
decremented by moving the tape head right or left. The machine is capable of
checking whether a stored value is zero or not by looking at the symbol scanned
by the storage tape heads. If the scanned symbol is Z, then the value stored
in the corresponding counter is zero. Note that although we do not allow to
explicitly check the non-emptiness of the counters which is allowed in [3], this
feature can be simulated: After successfully decrementing and incrementing a
counter, the stored value is not altered, but the machine can be sure that the
scanned symbol is B. A word w ∈ T ∗ is accepted by the two counter machine if
the input head has read the last non-blank symbol on the input tape, and the
machine is in the accepting state qF . Two-counter machines are computationally
complete; they are just as powerful as Turing-machines, see [3].

3 The Universality of RPC Systems

First we show that RPC systems with i-communication are computationally
universal; they characterize the class of recursively enumerable languages, even
with a limited number of components.

234 E. Csuhaj-Varjú and G. Vaszil

Theorem 1. iRPC10CF = RE.

Proof. We only give the proof of the inclusion RE ⊆ iRPC10CF . The reverse
inclusion follows from the Church thesis. To this aim, let us consider a re-
cursively enumerable language L ⊆ T ∗ and a two-counter machine TCM =
(T ∪ {Z, B}, E, R), as presented in the previous section, characterizing the lan-
guage L. We construct an RPC system accepting L using i-communication. Let

Π = (V, μ, Csel, Cgen, Cch1 , CS4 , Cc1 , Cind1 , Cch2,1 , Cc2 , Cind2 , Cch2,2 , sel),

where if Ind = {sel, gen, c1, c2, ind1, ind2, ch1, S4, ch2,1, ch2,2} then the compo-
nents are Cα = (Mα, Rα) for α ∈ Ind, and the membrane structure is defined
as μ = [[[[]S4 [[]ind1 []ch2,1]c1 [[]ind2 []ch2,2]c2]ch1]gen]sel.

Let D = {[q, x, c1, c2, q
′, e1, e2] | (q, x, c1, c2) → (q′, e1, e2) ∈ R}, and let us

define for any α = [q, x, c1, c2, q
′, e1, e2] ∈ D, the following notations: State(α) =

q, Read(α) = x, NextState(α) = q′, and Store(α, i) = ci, Action(α, i) = ei for
i = 1, 2.

The general idea of the simulation is to represent the states and the transitions
of TCM with nonterminals of D and the values of the counters by strings of
nonterminals containing as many A symbols as the value stored in the given
counter. Let V = N ∪ K ∪ T , where K = {Qα | α ∈ Ind}, let the set of
nonterminals be N = {S′i, Fi, Bi | 1 ≤ i ≤ 6} ∪ {Si, Ci | 1 ≤ i ≤ 7} ∪ {αi, Hi |
α ∈ D, 1 ≤ i ≤ 8} ∪ {α′1, α

′′
1 , ᾱ′1, ᾱ

′′
1 , ᾱ′1 | α ∈ D} ∪ {F1,i | 1 ≤ i ≤ 5} ∪ {Ji |

1 ≤ i ≤ 4} ∪ {A, F̄ ′1, F̄
′
1, F̄

′
1
, F̄ ′′1 , E, E1, I, J, S′′6 }, and let the rules be defined as

follows.

Msel = {{I}},

Rsel = {I → α1 | α ∈ D, State(α) = q0} ∪
{α8 → β1 | α, β ∈ D, NextState(α) = State(β)} ∪
{α8 → F1 | α ∈ D, NextState(α) = qF } ∪
{αi → αi+1 | α ∈ D, 1 ≤ i ≤ 7} ∪ {Fi → Fi+1 | 1 ≤ i ≤ 5} ∪
{F6 → Qgen, S′6 → S′6, S

′
6 → Qgen, E → ε, ᾱ′′1 → ε}.

This region keeps track of the current state of the simulated two-counter ma-
chine and also selects the transition to be simulated. The symbol I is used to
initialize the system by introducing one of the initial transition symbols of the
form [q0, x, c1, c2, q

′, e1, e2]1 where q0 is the initial state. It also produces the
result of the computation when after simulating the entering of the counter ma-
chine into the final state (that is, after the appearance of the nonterminal F1), it
receives the strings produced in the lower regions and erases the occurrences of
the nonterminals E which, if the simulation was successful, produces a terminal
word accepted by the two-counter machine.

Mgen = {{S1, S
′
1}},

Rgen = {S1 → S2, S2 → Qsel, S
′
1 → Qsel} ∪

{α1 → α′1, α2 → Qsel, αi → αi+1 | α ∈ D, 3 ≤ i ≤ 6} ∪

P Systems with Communication by Request 235

{α′1 → α′′1 , α′′1 → S′2, α7 → xS1 | α ∈ D, Read(α) = x} ∪
{F1 → F1,1, F1,i → F1,i+1, F1,5 → Qch1 | 1 ≤ i ≤ 4} ∪
{S′i → S′i+1 | 2 ≤ i ≤ 4} ∪ {S′5 → S′1, A → ε, J → ε} ∪
{F2 → Qsel, Fi → Fi+1 | 3 ≤ i ≤ 4} ∪ {F5 → Qch1} ∪
{S′6 → S′′6 , H7 → ε}.

This region generates the string accepted by the counter machine by adding
the symbol Read(α) for each α ∈ D chosen in the selector region. After the
appearance of the nonterminal F1 in the system, this region will append the
words from the checking region ch1 to its own string and send this string which
also contains the generated word to the region sel. Then it will receive the word
from region ch2 and erase all A and J symbols before forwarding it also to region
sel.

Mch1 = {{S1, S
′
1}},

Rch1 = {S1 → S2, S2 → S3, S3 → Qgen, S′1 → S′2, S
′
2 → Qgen} ∪

{α′′1 → δ1δ2QS4 | α ∈ D, δj = Qcj if Store(α, j) = Z,

or δj = ε otherwise} ∪ {Si → Si+1 | 4 ≤ i ≤ 6} ∪
{α′1 → ᾱ′1, ᾱ

′
1 → ᾱ′1, ᾱ

′
1 → S′3, S

′
3 → S′4, S

′
4 → S′5} ∪

{F1,1 → F̄ ′1, F̄
′
1 → F̄

′
1, F̄

′
1 → F̄

′
1
, F̄
′
1

→ Qc1Qc2} ∪
{S7 → S1, S

′
5 → S′1, F1,2 → QS4}, and

MS4 = {{S4}},

RS4 = ∅.

The region ch1 checks whether the counter contents are zero when they should
be zero by collecting the counter strings from regions c1, c2 when necessary. At
the end of the simulation, the collected string is forwarded to the region gen
and then to region sel, where a terminal string can only be produced if the word
originating in region ch1 contains no A symbols.

For j = 1, 2, let

Mcj = {{J, C1}},

Rcj = {J → J1, J1 → J2, J2 → Qch1 , A → Qindj , J3 → Qindj , J4 → J} ∪
{ᾱ′1 → ᾱ′′1 , ᾱ′′1 → δαJ3, ᾱ

′
1 → C5 | α ∈ D, δα = A if Action(α, j) = 0,

δα = AA if Action(α, j) = +1, δα = ε if Action(α, j) = −1} ∪
{Ci → Ci+1, C4 → Qch1 , C7 → C1 | i ∈ {1, 2, 3, 5, 6} } ∪
{F̄ ′1 → F̄ ′′1 , F̄

′
1 → Qch2,j , E → E1, H6 → H7}.

These regions maintain strings representing the contents of the two counters.
After the selection of a transition symbol in the region corresponding to Csel,
they execute the action required by the chosen transition symbol by adding AA,
A, or ε to the counter string and then deleting one A and J3 by rewriting it to

236 E. Csuhaj-Varjú and G. Vaszil

Table 1. Components of Π in the proof of Theorem 1, simulating the behavior of the
first counter when using an instruction with α = [q, x,Z, B, q′, +1, −1]. The region CS4

is omitted since it always contains the string S4.

Csel Cgen Cch1 Cc1 Cind1 Cch2,1

0 β8 wS1, S
′
1 E...S1, S

′
1 E...J, C1 B1 AEJ...H1

1 α1 wS2, Qsel E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

1C α1 wS2, α1 E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

2 α2 wQsel, α
′
1 E...S3, Qgen E...J2, C3 B3 AEJ...H3

2C α2 wα2, α
′
1 E...S3, α

′
1 E...J2, C3 B3 AEJ...H3

3 α3 wQsel, α
′′
1 E...Qgen, ᾱ′

1 E...Qch1 , C4 B4 AEJ...H4

3C α3 wα3, α
′′
1 E...α′′

1 , ᾱ′
1 E...ᾱ′

1, C4 B4 AEJ...H4

4 α4 wα4, S
′
2 E...Qc1QS4 , ᾱ

′
1 E...ᾱ′′

1 , Qch1 B5 AEJ...H5

4C α4 wα4, S
′
2 E...ᾱ′′

1 S4, ᾱ
′
1 E...ᾱ′′

1 , ᾱ′
1 B5 AEJ...H5

5 α5 wα5, S
′
3 E...ᾱ′′

1 S5, S
′
3 E...δαJ3, C5 B6 AEJ...H6

6 α6 wα6, S
′
4 E...ᾱ′′

1 S6, S
′
4 E...Qind1J3, C6 E AEJ...H7

6C α6 wα6, S
′
4 E...ᾱ′′

1 S6, S
′
4 E...EJ3, C6 E AEJ...H7

7 α7 wα7, S
′
5 E...ᾱ′′

1 S7, S
′
5 E...EQind1 , C7 J4 AEJ...H8

7C α7 wα7, S
′
5 E...ᾱ′′

1 S7, S
′
5 E...EJ4, C7 J4 AEJ...H8

8 α8 wxS1, S
′
1 E...ᾱ′′

1 S1, S
′
1 E...EJ, C1 B1 AEJQc1H1

8C α8 wxS1, S
′
1 E...ᾱ′′

1 S1, S
′
1 E...EJ, C1 B1 AEJ...H1

Qindj . The simulation can only be successful if exactly one A and the symbol
J3 is rewritten. This is ensured by region Cindj . If there is a string obtained
after the two queries which contain only a number of A or E symbols and one
J4 symbol, then the simulation of the actions required by the chosen transition
was successful. If a counter is empty, this construction also forbids the successful
execution of the decrement instruction since this would introduce E1 in the
counter strings.

The rules of the region supporting the work of the counters Ccj , j = 1, 2, are
defined as follows.

Mindj = {{B1}},

Rindj = {Bi → Bi+1 | 1 ≤ i ≤ 5} ∪ {B6 → E, E → J4, J4 → B1},

and

Mch2,j = {{H1}},

Rch2,j = {Hi → Hi+1 | 1 ≤ i ≤ 7} ∪ {H8 → QcjH1}.

Instead of giving a detailed proof of the correctness of our construction, we
demonstrate the work of the system in Table 1 and Table 2 by indicating a
possible transition sequence of Π while simulating an instruction of the two-
counter machine TCM , and by presenting the terminating part of the simulation.
Note that the cells of the tables contain only some of the strings produced by
the regions, those which are interesting from the point of view of the simulation.

P Systems with Communication by Request 237

Let us first look at Table 1. The simulated instruction is represented by a non-
terminal α1 = [q, x, Z, ∗, q′, +1, −1]1 chosen in region Csel in the first step. This
indicates that the first counter should be empty which requirement is satisfied
since region Cc1 contains a string containing zero A symbols. In the following
few steps, the indexed versions of α reach the regions Cgen, Cch1 , Ccj , j ∈ {1, 2},
and each of these regions executes its part of the simulation. Cgen generates the
letter read by the two-counter machine, Cch1 queries the regions simulating the
counters in the case when their contents should be zero, and this way collects a
“checker” string. If this string contains the nonterminal A, then the simulation
is not correct. Ccj maintain the contents of the counters by adding or deleting
A-s. Its work is aided by Cind1 and Cch2,j . The region Cch2,j collects the counter
strings at the end of each simulating cycle. The simulation was successful if and
only if this collected string only contains A, E or J symbols.

The terminating phase of the simulation is presented on Table 2. When Gsel

selects the symbol F , the system prepares to finish its work. The variously in-
dexed versions of F travel through the system and result in the transfer of the
word generated in Ggen and the checker string of region Cch1 to region Csel.
There the symbol A cannot be erased, so a terminal word can only be produced
if the checker string does not contain this symbol. Meanwhile, the other checker
strings are transferred from Cch2,j to region Cgen where the A and J symbols
can be erased, but nothing else, so when later also this string is transferred to
Csel, a terminal string can only be produced if the behavior of the counter sim-
ulating regions were correct in each step of the simulation. The last row of the
table represents the situation when the erasing process begins. When all A and
J have disappeared from the string in region Cgen, then S′6 can be changed to
a query symbol transferring the result to Csel, where all remaining symbols can
be erased, in the case when the simulation was correct. �
Next we prove that any RPC system using i-communication can be simulated
with an RPC system using p-communication.

Theorem 2. iRPCnCF ⊆ pRPC3nCF, for any n ≥ 1.

Proof. Let Π = (V, μ, (M1, R1), . . . , (Mn, Rn), 1) be a system of degree n with
V = N∪K∪T . We construct Π ′ = (V ′, μ′, (M ′

1, R
′
1), . . . , (M

′
3n, R′3n), 1) of degree

3n, such that Lp(Π ′) = Li(Π).
Let μ′ be defined by adding two new regions [[]2n+i]n+i inside every region i.

This way, n+ i ∈ neighborμ′(i), and 2n+ i ∈ neighborμ′(n+ i) for all 1 ≤ i ≤ n.
Let V ′ = N ′ ∪ K ′ ∪ T where N ′ = N ∪ {S1, S2, S3, S4}, and let the rules of

Π ′ be defined as

M ′
i = Mi ∪ {{S1, S2}},

R′i = Ri ∪ {S1 → Qi, S2 → Qn+i},

and
M ′

n+i = {{S1, S2, S3, S4}}, R′n+i = {S3 → Qn+i, S4 → Q2n+i},

M ′
2n+i = {{S1, S2, S3, S4}}, R′2n+i = {S1 → Qn+i, S2 → Q2n+i}

for all 1 ≤ i ≤ n.

238 E. Csuhaj-Varjú and G. Vaszil

Table 2. Components of Π in the proof of Theorem 1, simulating the terminating phase
of the system. We only present the components which are also included in Table 1.

Csel Cgen Cch1 Cc1 Cind1 Cch2,1

0 β8 wS1, S
′
1 E...S1, S

′
1 E...J, C1 B1 AEJ...H1

1 F1 wS2, Qsel E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

1C F1 wS2, F1 E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

2 F2 wQsel, F1,1 E...S3, Qgen E...J2, C3 B3 AEJ...H3

2C F2 wF2, F1,1 E...S3, F1,1 E...J2, C3 B3 AEJ...H3

3 F3 wQsel, F1,2 E...Qgen, F̄ ′
1 E...Qch1 , C4 B4 AEJ...H4

3C F3 wF3, F1,2 E...F1,2, F̄
′
1 E...F̄ ′

1, C4 B4 AEJ...H4

4 F4 wF4, F1,3 E...QS4 , F̄
′
1 E...F̄ ′′

1 , Qch1 B5 AEJ...H5

4C F4 wF4, F1,3 E...S4, F̄
′
1 E...F̄ ′′

1 , F̄
′
1 B5 AEJ...H5

5 F5 wF5, F1,4 E...S5, F̄
′
1

E...F̄ ′′
1 B6 AEJ...H6

Qch2,1

5C F5 wF5, F1,4 E...S5, F̄
′
1

E...F̄ ′′
1 B6 AEJ...H6

AEJ...H6

6 F6 wQch1 E...S6 E...F̄ ′′
1 E AEJ...H7

F1,5 Qc1Qc2 AEJ...H7

6C F6 wE...S6 E...S6 E...F̄ ′′
1 E AEJ...H7

F1,5 AEJ......H7 AEJ...H7 E AEJ...H7

7 Qgen wE...S′
6 E...S7 E...F̄ ′′

1 J4 AEJ...H8

Qch1 AEJ......H7 AEJ...H7

7C wE...S′
6 wE...S′

6 E...S7 E...F̄ ′′
1 J4 AEJ...H8

AEJ...H7 AEJ......H7 AEJ...H7

The additional membranes of Π ′ work as “suppliers” of symbols. In each
step, each region i rewrites S1 and S2 to query itself, and the region n+ i. From
itself it “receives” the strings it contains besides S1, S2, from region n + i it
receives S1, S2, so the same behavior can be repeated in the next step. This self
query mechanism is used in each region to keep a copy of its contents even in
the case when it is requested by some other region. This way, Π ′ simulates the
communication behavior of Π . �

By Theorems 1 and 2, we obtain the immediate corollary.

Corollary 3. iRPC10 = pRPC30CF = RE.

4 Closing Remarks

We proved that in the case of string rewriting P systems, communication ac-
cording to dynamically emerging requests leads to computational completeness
not only in tissue-like P systems (MPC systems in short, their computational
completeness was shown in [2]), but also in standard P systems (RPC systems),
even in the case of systems with bounded size parameters.

P Systems with Communication by Request 239

There have remained several open problems for further study. For example,
it is not known whether the obtained size bounds are sharp or not, and whether
or not the sharp bounds are different for MPC systems and RPC systems.

Apart from the problem of the sharpness of the bounds, another natural re-
search direction would be to examine the impact of the number of different
query symbols on the power of these systems. In RPC systems, for example,
maxcμ + 2 where maxcμ is the maximal number of children of any region in
the membrane structure μ (plus one for the parent region and one for the re-
gion itself) is a trivial upper bound for the number of different query symbols
necessary. What happens if we decrease the number of symbols, for example,
by forbidding “self”-queries, by allowing only one symbol for any of the child
membranes of each region of the system, or by using the “extreme” restriction
of having only one query symbol type available for use by all the regions? Can
these decreases in the “query-complexity” be compensated by more complicated
membrane structures?

References

1. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London
(1994)

2. Csuhaj-Varjú, E., Păun, G., Vaszil, G.: Tissue-like P systems communicating by
request. In: Krithivasan, K., Rama, R. (eds.) Formal Language Aspects of Natural
Computing. Ramanujan Mathematical Society Lecture Notes Series, vol. 3, pp. 143–
153, Ramanujan Mathematical Society (2006)

3. Fischer, P.C.: Turing machines with restricted memory access. Information and Con-
trol 9, 364–379 (1966)

4. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

5. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000) (and Turku Center for Computer Science-TUCS Report
208 (November 1998), www.tucs.fi)

6. Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)
7. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin

(1997)

www.tucs.fi

On the Dynamics of PB Systems with Volatile

Membranes

Giorgio Delzanno1 and Laurent Van Begin2

1 Università di Genova, Italy
giorgio@disi.unige.it

2 Université Libre de Bruxelles, Belgium
lvbegin@ulb.ac.be

Abstract. We investigate decision problems like reachability and
boundedness for extensions of PB systems with volatile membranes.
Specifically, we prove that reachability and boundedness are decidable
for PB systems extended with rules for membrane dissolution. For PB
systems extended with membrane creation, reachability is still decid-
able whereas boundedness becomes undecidable. Furthermore, we show
that both problems are undecidable for PB systems extended with both
dissolution and creation rules. Finally, we prove that reachability and
boundedness become decidable for PB systems with dissolution rules
and in which only one instance of each type of membrane can be created
during a computation. Our work extends the results in [4] obtained by
Dal Zilio and Formenti for PB systems with static membrane structure.

1 Introduction

The PB systems of Bernardini and Manca [2] are a variant of P-systems [15] in
which boundary rules can be used to move multisets of objects across a mem-
brane. As shown, e.g., in [6], PB systems can be applied to model complex inter-
actions among biological membranes. To fully exploit the power of PB systems,
it seems important to develop methods for qualitative and quantitative analysis
of models specified in this formalism. In this paper we focus our attention on
decision problems related to the qualitative analysis of PB systems, and, more
precisely, on problems like reachability and boundedness. Some preliminary re-
sults on decision problems for PB systems have been obtained in [4]. Specifically,
in [4] Dal Zilio and Formenti proved that the reachability problem is decidable for
PB systems with symbol objects. The reachability problem consists in checking
if a given system can evolve into a fixed a priori configuration. The decidabil-
ity proof in [4] is based on an encoding of PB systems into Petri nets [16], an
infinite-state model of concurrent systems for which the reachability problem is
decidable [13,10]. A Petri net is a collection of places that contain tokens, and of
transitions that define how tokens move from one place to another. The current
configuration of a net is called marking. A marking specifies the current number
of tokens in each place. A PB system can be encoded as a Petri net in which
membranes are modeled as places, symbol objects as tokens, configurations as

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 240–256, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Dynamics of PB Systems with Volatile Membranes 241

markings, and internal/boundary rules as transitions. The execution of a rule is
simulated then by the firing of the corresponding Petri net transition. The Petri
net encoding shows that the reachability problem is decidable in PB systems.
The same reduction can be used to decide other properties like boundedness [5].
In [4] the authors observe that the aforementioned encoding can be extended
to more sophisticated Petri net models so as to deal with dynamically changing
membrane structures. As an example, Petri net transitions extended with trans-
fer arcs naturally model the dissolution of a membrane. Indeed, a transfer arc
can be used to atomically transfer all tokens from one place to another. This op-
eration can be applied to move the content of a dissolved membrane to its father.
Unfortunately, as pointed out in [4], this connection cannot be exploited in or-
der to extend the decidability results obtained for PB systems. Indeed, problems
like reachability and boundedness become undecidable in presence of transfer
or reset arcs [5]. Thus, the decidability of reachability and boundedness for PB
systems with volatile or moving membrane is still an open problem. In this paper
we focus our attention on decision problems for extensions of PB systems with
dissolution and creation rules. Our technical results are as follows.

We first show that reachability is decidable in PB systems with dissolution
rules (PBD systems). Dissolution rules are a peculiar feature of P-systems. Thus,
PBD systems represent a natural extension of PB system. Our decidability proof
is still based on a reduction to a Petri net reachability problem. Our construction
extends the Petri net encoding of [4] in order to weakly simulate the original PBD
system. More precisely, from a PBD reachability problem we compute a Petri net
that may contain executions that do not correspond to real computations of the
corresponding PBD system. Spurious computations can however be eliminated
by enforcing special conditions (e.g. requiring a special set of places to be empty)
on the initial and target markings used to encode a PBD reachability problem. It
is important to notice that our reduction does not require the additional power
provided by Petri nets with transfer arcs.

As a second result, we show that reachability is decidable in PB systems
extended with creation rules (PBC systems). We consider here creation rules
inspired to those proposed for P-systems in [12]. Our proof exploits structural
properties of PBC systems that allow us to reduce the reachability of a target
configuration c, to a reachability problem in a Petri net extracted from both the
original PBC system and the configuration c.

We consider then a model with both dissolution and creation rules (PBDC
systems). For this model, we first give a general negative result for the decidabil-
ity of reachability, and then study a non-trivial subclass in which reachability
becomes decidable. Specifically, we first show that it is sufficient to consider
three membranes with the same name to encode a reachability problem for a
two counter machine [14] as reachability of a PBDC system. We define then
a restricted semantics for PBDC systems in which at most only one copy of
each type of membrane can be created during a computation. This semantics
is inspired to a view of membrane names/types as bounded resources. Under
this semantics, we prove the decidability of PBDC reachability via a reduction

242 G. Delzanno and L. Van Begin

to Petri net reachability. In the encoding we use special places to identify the
membrane structure of the current configuration. The encoding is exponentially
more complex than the encoding used for PBD and PBC systems, since it re-
quires the construction of a Petri net where the number of places is equal to
number of tree structures that can be built upon a finite and fixed a priori set
of membrane names.

As a last analysis, we study the boundedness problem for the aforementioned
extensions of PB systems. Specifically, we first show that boundedness is decid-
able for PBDC systems with restricted semantics. The proof exploits the theory
of well-quasi ordering [1]. As a consequence, we obtain the decidability of bound-
edness for PBD systems. Finally, we prove that boundedness is undecidable in
PBC systems. This result is obtained by encoding counter machines as PBC sys-
tems. The encoding exploits the possibility of creating several instances of the
same membrane to simulate a counter (i.e. the same encoding cannot be applied
in the restricted semantics of PBDC systems).

To our current knowledge, these are the first decidability/undecidability re-
sults obtained for reachability and boundedness in extensions of PB systems with
dissolution and creation rules. Our decidability results extend those obtained for
PB systems by Dal Zilio and Formenti in [4].

Plan of the Paper. In Section 2 we recall the main definitions of PB systems
(Petri (P/T) nets and counter machines are defined in appendix). In Section 3,
4, and 5 we study the reachability problem for extensions of PB systems resp.
with dissolution, creation, and both dissolution and creation rules. In Section
6 we study the boundedness problem for the aforementioned extensions of PB
systems. Finally, in Section 7 we address some conclusion and future work.

2 Preliminaries

In this section we recall the main definitions for PB systems with symbol objects
taken from [2,4]. We first need some preliminary notions. Let N be the set of
positive integers. Consider a finite alphabet Γ of symbols. A multiset over Γ is
a mapping u : Γ � N. For any a ∈ Γ , the value u(a) denotes the multiplicity
of a in u (the number of occurrences of symbol a in u). We often use a multiset
as a string a1 · . . . · an of symbols, i.e., ai ∈ Γ . Furthermore, we use ε to denote
the empty multiset, i.e., such that ε(a) = 0 for any a ∈ Γ . As an example, for
Γ = {a, b, c, d}, a · b · c · c represents the multiset u such that u(a) = u(b) =
1, u(c) = 2, u(d) = 0. We use Γ⊗ to denote the set of all possible multisets over
the alphabet Γ . Given two multisets u, v over Γ , we write u

.= v if u(a) = v(a)
for all a ∈ Γ , and u � v if u(a) ≤ v(a) for all a ∈ Γ . Furthermore, we use ⊕
and � to denote multiset union and difference, respectively. Specifically, for any
a ∈ Γ we have that (u ⊕ v)(a) = u(a) + v(a), and (u � v)(a) = u(a) − v(a).

PB-systems. A PB system [2] with symbol object is a tuple Π = (Γ, M, R, μ0),
where Γ is a finite alphabet of symbols; M is a finite tree representing the
membrane structure with membrane names taken from a set N , R is a finite

On the Dynamics of PB Systems with Volatile Membranes 243

set of rules, and μ0 is the initial configuration, i.e., a mapping from membranes
(nodes in M) to Γ⊗. Rules can be of the following two forms:

(1) Internal Rule : [i u → [i v (2) Boundary Rule : u [i v → u′ [i v′

where i ∈ N , and u, u′, v, v′ ∈ Γ⊗ and we assume that at least one between u
and u′ is not empty. A configuration μ of a PB system Π is a distribution of
objects in Γ in the membranes in M , i.e., a mapping from M to Γ⊗. A rule
of the form (1) is enabled at μ, if i is a membrane in M and u � μ(i). Its
application leads to a new configurations ν′ such that ν′(i) = (ν(i) � u) ⊕ v and
ν′(j) = ν(j) for any j ∈ N s.t. j �= i. Suppose now that membrane j contains as
immediate successor in M membrane i. A rule of the form (2) is enabled at μ,
if u � μ(j) and v � μ(i). Its application leads to a new configurations ν′ such
that ν′(j) = (ν(j) � u) ⊕ u′ and ν′(i) = (ν(i) � v) ⊕ v′ and ν′(k) = ν(k) for any
k ∈ N s.t. k �= i, j. We say that there is a transition μ ⇒ μ′ if μ′ can be obtained
from μ by applying a rule in R. A computation with initial configuration μ0 is
a sequence of transitions μ0 ⇒ μ1 ⇒ A configuration μ is reachable from μ0
if there exists a sequence of transitions μ0 ⇒ . . . ⇒ μ.

Given a PB system Π with initial configuration μ0 and a configuration μ,
the reachability problem consists in checking if μ is reachable from μ0. Given
a PB system Π with initial configuration μ0, the boundedness problem consists
in deciding if the set of configurations reachable from μ0 is finite. Reachability
and boundedness are decidable for PB systems with symbol objects. The proof
is based on an encoding PB systems into Petri nets defined in [4].

3 PB Systems with Dissolution Rules

A PB system with dissolution rules (PBD) provides, in addition to internal and
boundary rules, a third kind of rules of the following form:

(3) Dissolution Rule : [i u → [i v · δ

where δ is a symbol not in Γ . The intuitive meaning of this rule is that after ap-
plying the rule [i u → [i v the membrane i is dissolved and its content (including
its sub-membranes) is moved to the membrane j that contains i as immediate
successor in the current membrane structure. To make the semantics formal, we
make the membrane structure part of the current configuration, M0 being the
initial tree. Thus, a configuration is now a pair c = (M, μ), where M is a tree,
and μ is a mapping from nodes of M to Γ⊗. Rules of type (1) and (2) oper-
ate on a configuration c = (M, μ) without changing the tree structure M and
changing μ as specified in the semantics of PB systems. A dissolution rule like
(3) operates on a configuration c = (M, μ) as follows. For simplicity, we assume
that membrane i is not the root of M . Suppose now that i is an immediate
successor of j in M . The rule is enabled if u � μ(i). Its application leads to a
new configuration c′ = (M ′, ν′) such that M ′ is the tree obtained by removing
node i and by letting all successor nodes of i become successors of j; ν′ is the

244 G. Delzanno and L. Van Begin

mapping defined as ν′(j) = ν(j)⊕ (ν(i)�u)⊕ v and ν′(k) = ν(k) for any k ∈ M
s.t. k �= i, j. Notice that rules of type (1 − 3) are enabled at c = (M, μ) only if
the membrane i is in current tree M . The definition of sequences of transitions
and of reachability problems can naturally be extended to the new type of rules.

3.1 Decidability of Reachability in PBD Systems

In this section we prove that the reachability problem is decidable in PB systems
with dissolution rules. We assume here that names of membranes are all different.
However, the construction we present can be extended to the general case. The
starting point of our construction is the reduction of reachability for PB systems
to reachability in Petri nets given in [4]. Let Π = (Γ, M, R, μ0) be a PB system.
For each membrane i in M and each symbol a ∈ Γ , the Petri net N associated to
Π makes use of place ai to keep track of the number of occurrences (multiplicity)
of objects of type a in i. Transitions associated to internal rules redistribute
tokens in the set of places associated to the corresponding membrane. As an
example, a rule like [i a · b → [i c is encoded by a Petri net transition that
removes one token from place ai and one token from place bi and adds one token
to place ci. Boundary rules are modeled by Petri net transitions that work on
places associated to pairs of membranes. As an example, if membrane j contains
i, a rule like a [i b → b [i a is encoded by a Petri net transition that removes
one token from place aj and one token from place bi and adds one token to place
bj and one token to place ai. For a membrane structure M , a configuration
μ : M � Γ⊗ is represented by a marking mμ such that for every node i in M , ai

has k tokens in m iff a has k occurrences in μ(i). Reachability of a configuration
μ is reduced the to reachability of the marking mμ starting from mμ0 in N .

The Petri net encoding of [4] exploits the property that the membrane struc-
ture of a PB system is never changed by the application of a rule. This property
does not hold anymore for dissolution rules, since they removes nodes from the
current membrane structure. Thus, the size of the membrane structure may de-
crease in a sequence of transitions. Our decidability proof is still based on a
reduction to a Petri net reachability problem. Our reduction exploits the prop-
erty that the number of applications of dissolution rules is bounded a priori by
the size of the initial membrane structure M0. Thus it is enough to associate
a flag present/dissolved to each membrane occurring in the initial configuration
to keep track of the current membrane structure. Special care must be taken in
the transfer of objects from a dissolved membrane to its parent. For this task
we need to operate in two modes. In normal mode we simulate internal and
boundary rules. In dissolving mode we stop all other operations, move objects
one-by-one to the current parent membrane, and non-deterministically go back
to the normal mode. Good simulations can be distinguished by bad ones by
enforcing places associated to dissolved membranes to be empty in the target
configuration.

The formal definition of the Petri net encoding is as follows. Assume a PBD
system Π = (Γ, M0, R, μ0), where Γ = {a1, . . . , am}, and M0 has the mem-
branes with names in N = {n0, n1, . . . , nk}, n0 ∈ N being the root node. Given a

On the Dynamics of PB Systems with Volatile Membranes 245

membrane i, let path(i) be the sequence of nodes in the (unique) path from n0 to
i in M0. We define the Petri net N encoding Π in several steps. First of all we as-
sume that N has at least the places normal, dissolving1, . . . , dissolvingk that we
use to determine the simulation mode as described in the previous paragraphs.
We assume here that normal contains one token iff dissolvingi is empty for all
i : 1, . . . , k, and dissolvingi contains one token iff normal as well dissolvingj

are empty for any j �= i. Furthermore, for each membrane i, the Petri net N has
a place presenti and a place dissolvedi and, for any a ∈ Γ , a place ai.

Notation. In the rest of the paper given a multiset of objects u and a membrane
i we use πi(u) to denote the multiset of places in which, for each a ∈ Γ , ai has
the same number of occurrences as those of a in u.

An internal rule r = [iu → [iv is encoded by a transition tr that satisfies the
following conditions. The pre-set of tr contains place normal (normal mode),
presenti (membrane i is still present), and the multiset of places πi(u). The post-
set of tr contains normal, presenti and the multiset of places πi(v). Thus, the
only difference with the encoding of PB system is the condition on the normal
and presenti flags (in normal mode internal rules are enabled only when the
membrane is not dissolved).

Now let path(i) = (n0, n1, . . . , nq, i) with q ≥ 0. A boundary rule r = u[iv →
u′[iv′ is encoded by a set Br = {bn0

r , . . . , b
nq
r } of transitions. The pre-set of tran-

sition b
nj
r contains places normal and presenti together with the set of places

Dnj = {presentnj , dissolvednj+1 , . . . , dissolvednq}, and the multisets πnj (u)
and πi(v). The post-set contains places normal and presenti together with the
set of places Dnj defined for the pre-set and the multisets πnj (u

′) and πi(v′).
The pre-condition Dnj allows us to select the membrane that is the immedi-
ate ancestor of i in the current configuration, i.e., a membrane nj ∈ path(i)
that is not dissolved and such that all the intermediate membranes between nj

and i in path(i) are dissolved. Notice that, by the assumptions we made on the
normal/dissolving and present/dissolved flags, in normal mode at most one
rule in Br can be enabled at a given configuration.

Consider now a dissolution rule r = [iu → [iv · δ. We first model the internal
rule by the transition sr. The pre-set of sr contains the places normal and
presenti and the multiset πi(u). The post-set contains the place dissolvingi and
the multiset πi(v). We model the transfer of the contents of membrane i to its
current immediate ancestor via a set of transitions Sa

r = {sn0
a , . . . , s

nq
a } for each

a ∈ Γ . The pre-set of transition s
nj
a contains places dissolvingi (i is dissolving)

and ai (the source of a token to be transferred) together with the set of places Dnj

defined in the case of boundary rules. The post-set contains places dissolvingi

and aj (the destination of a transferred token), and the set Dnj . Finally, we add
a transition di

r to stop the transfer of tokens and to switch the operating mode
back to normal. The pre-set of di

r contains the place dissolvingi and its post-set
contains the places normal and dissolvedi. Notice that the simulation phase of
a dissolution rule for membrane i can be activated only if presenti is not empty.
This implies that once the dissolvingi flag is reset (i.e. the mode goes back to

246 G. Delzanno and L. Van Begin

normal) it cannot be set in successive executions (a membrane can dissolve at
most once).

The Petri net N is built by taking the union of the places and transitions
used in the encoding described before. Let M be a membrane structure with a
subset of the nodes in M0 (initial structure of Π). A configuration c = (M, μ) is
encoded by a marking mc in which there is one token in normal, one token in
presenti for each membrane i in M , and one token in dissolvedj for each j not
in M . Furthermore, for each membrane i in c and a ∈ Γ , place ai has as many
tokens as the number occurrences of a in μ(i). All the remaining places in N
(dissolvingi for any i and presentj for any j not in M) are empty.

By construction of N , it is immediate to see that if there is a sequence of
transitions from c0 = (M0, μ0) to c = (M, μ) passing through the configurations
c1, . . . , cv then there is a firing sequence from mc0 to mc passing through the
markings mc1 , . . . , mcv . Such a firing sequence is obtained by completing all
transfers of objects required by the simulation of each dissolution rule (i.e. after
the simulation of the dissolution of membrane i, the normal mode is reactivate
only when the places associated to the objects contained in i are all empty).
Vice versa, suppose there exists a firing sequence from mc0 to mc. We first notice
that only the markings in which the place normal is not empty correspond to
configurations of the original PBD system. Furthermore, suppose that during the
simulation of the dissolution of membrane i, the transfer of objects is stopped
when some of the places associated to objects in i are not empty. Let m be
the resulting marking. Now we notice that the first step of the simulation of
dissolution is to set the presenti flag to false. This implies that in the marking
m place presenti is empty, while there exists a ∈ Γ such that ai is not empty
(some token has not been transferred). It is easy to check that if m has these
two properties, for any marking m′ derived from m by applying transitions of
N , the content of the place ai in m′ is the same as in m. Indeed, transitions that
simulate internal, boundary and dissolution rules operating directly on i are no
more enabled (the condition presenti fails). Furthermore, a dissolution rule on
a membrane j nested into i in M0 cannot transfer tokens to i since dissolvedi

is checked when searching for the father of j in the current tree structure. In
other words, if the simulation of a dissolution rule is not correctly executed,
then there exists at least one non-empty place ai for a dissolved membrane i. By
definition, however, mc is the marking in which all places associate to dissolved
membranes are empty. Thus, if mc is reachable from mc0 then the corresponding
firing sequence corresponds to a real computation in N . Thus, we have that the
reachability of a configuration c = (M, μ) in Π can be encoded as the reachability
of the marking mc in N from mc0 . From the decidability of reachability in Petri
nets, we obtain the following theorem.

Theorem 1. The reachability problem is decidable in PBD systems.

The previous theorem extends the decidability result for PB systems in [4].

On the Dynamics of PB Systems with Volatile Membranes 247

4 PB Systems with Creation

In this section we consider an extension of PB systems inspired to the membrane
creation operation studied in [12]. Let N be a possibly infinite list of membrane
names. A PB system with creation rules (PBC) provides, in addition to internal
and boundary rules, a third kind of rules of the following form:

(4) Creation : a → [i v]i

where a ∈ Γ , v ∈ Γ⊗, and i ∈ N. The intuitive meaning of this rule is that after
applying the rule a → [iv]i inside a membrane j, object a is replaced by the new
membrane i containing the multiset of objects v.

To make the semantics formal, we assume that membrane structures are trees
whose nodes are labeled with names in N. Furthermore, we make both the set of
used names and the membrane structure part of the current configuration, N0 ⊆
N being the initial set of used names, and M0 being the initial tree defined over
N0. Thus, a configuration is now a triple c = (N, M, μ) where N is a set of names,
M is a tree with nodes labeled in N , and μ is a mapping M � Γ⊗. Rules of type
(1) and (2) operate on a configuration c = (N, M, μ) without changing N and
M . A creation rule like (4) operates on a configuration c = (N, M, μ) as follows.
Suppose that n is a node in M . The rule is enabled if a ∈ μ(n). Its application
leads to a new configurations c′ = (N ′, M ′, ν′) such that N ′ = N ∪{i}; M ′ is the
tree obtained by adding a new node m labeled by i as a successor of node n; ν′

is the mapping defined as ν′(n) = ν(n) � a, ν′(m) = v, and ν′(p) = ν(p) for the
nodes p �= m, n. Notice that rules of type (4) can be applied in any membrane.
Indeed, the only precondition for the application of rule 4 is the existence of
object a in a membrane. Furthermore, such an application may create different
nodes with the same membrane name. The reachability problem can naturally
be reformulated for the extended semantics of rules. Specifically, it consists in
checking whether a given target configuration c is reachable from the initial
configuration c0.

Notice that in our model we distinguish nodes from membrane names. Thus,
different nodes may have the same name. In presence of creation rules the mem-
brane structure can grow in an arbitrary manner both in width and depth.
Despite of these powerful features of PBC systems, the reachability problems
can still be decided by resorting to an encoding into Petri net reachability as
explained in the next section.

4.1 Decidability of Reachability in PBC Systems

Differently from the encoding defined for PBD systems in the previous section,
the encoding needed here is function of both the initial and the target configura-
tion. Indeed, since PBC rules can only add new nodes, to decide if a configuration
c = (N, M, μ) is reachable from c0 we can restrict our attention to membrane
structures of size comprised between the size of M0 and the size of M and with
(possibly repeated) labels in N . Actually, we can make some simplification that

248 G. Delzanno and L. Van Begin

allows us to build a Petri net by considering only the target configuration M .
Indeed, as shown in [12], with creation rules we can safely consider initial con-
figurations with only the root membrane (we can always add a finite number of
creation rules to generate any initial configuration in a preliminary phase of the
computation).

Let Π be a PBC system with initial configuration c0 = (N0, M0, μ0) where
M0 is a single node labeled n0. Consider now a target configuration (N, M, μ)
where N = {n0, . . . , nk} and M has m nodes with k ≤ m and the root node of
M is labeled n0. Starting from Π and c we build the Petri net N described next.
For each node n in M , the Petri net N has places usedn and notusedn (used as
one flip-flop), and an for each a ∈ Γ (to model the content of membrane n). We
assume that usedn is not empty iff the membrane has been created and it is in
use, and notusedn is not empty iff the membrane has still to be created. PBC
rules are modeled as follows.

For each node n in M with label i, an internal rule r = [iu → [iv is encoded by
a transition tnr that satisfies the following conditions: The pre-set contains place
usedn together with multiset πn(u); The post-set contains usedn together with
multiset πn(u). The differences with the encoding of PB/PBD systems is the
condition on the usedn flag and the fact that we work on nodes of membrane
structures and not directly on membrane names (as said before two different
nodes may have the same name). The pre-condition on usedn is needed in order
to enable rules operating on node n only after the corresponding creation rule
has been fired.

For each node m in M that has an immediate successor n with label i, a
boundary rule r = u[iv → u′[iv′ is encoded by a transition bm,n

r that satisfies
the following conditions. The pre-set contains places usedn and usedm together
with the multisets πm(u) and πn(v). The post-set contains places usedn and
usedm together with the multisets πm(u′) and πn(v′). Notice that, differently
from the encoding used in PBD, in PBC we do not have to consider paths in
the membrane structure M .

For each node m in M that has an immediate successor n with label i, a
creation rule r = a → [iv]i is encoded by a transition cm,n

r that satisfies the
following conditions. The pre-set contains places usedm, am and notusedn. The
post-set contains places usedm and usedn, together with the multiset πn(v).

The Petri net N is built by taking the union of the places associated to
each membrane and the union of the set of transitions used to encode internal,
boundary and creation rules described before. A configuration c′ = (N ′, M ′, μ′)
is encoded by a marking mc′ in which for each node n in M ′ there is one token
in usedn, and for each a ∈ Γ , an has as many tokens as the number occurrences
of a in μ(n). Furthermore, for each node n′ in M that do not occur in M ′, we
put a token in notusedn′ . All the remaining places are empty.

By construction of N , it is immediate to see that there is a sequence of transi-
tions from c0 = (N0, M0, μ0) to c = (N, M, μ) passing through the configurations
c1, . . . , cv if and only if there is a firing sequence from mc0 to mc passing through
the markings mc1 , . . . , mcv . The creation of a new node n corresponds to the

On the Dynamics of PB Systems with Volatile Membranes 249

activation of the part of the Petri net N that models node n. Since nodes are
created in ”cascade”, a node m is created only after all ancestors have been
created. This property is ensured by the condition on the used flag inserted in
the transitions modeling creation rules.

Following from the decidability of reachability in Petri nets, we obtain the
following theorem.

Theorem 2. The reachability problem is decidable for PBC systems.

The previous theorem extends the decidability result for PB systems in [4].

5 PB Systems with Dissolution and Creation

In this section we consider an extension of PB systems with both dissolution and
creation rules (PBDC systems). The semantics is obtained in a natural way by
adapting the semantics of dissolution rules to membrane structures with labeled
nodes. More precisely, a dissolution rule applied to a configuration (N, M, μ)
modifies M and μ as specified in Section 3 while it does not modify N , i.e., the
set N of used names can only grow monotonically. Notice that the reachability
problem for PBDC systems allows to determine if, for a PBDC system Π , it is
possible from the initial configuration to build a membrane structure M with
a mapping μ that associates multisets of objects to nodes, whatever the set of
names N is. Indeed, the set of possible names for membranes that appear in
executions of Π is determined by the creation rules of the PBDC system (and
its initial configuration). Hence, the number of possibilities for N is finite and
the problem can be reduced to a finite number of reachability problems.

In presence of both creation and dissolution the membrane structure can
change in an arbitrary manner. This feature gives additional power to PB sys-
tems. Indeed, we can reduce the reachability problem for two counter machines
(known to be undecidable) to reachability in a PBDC system. For this reduc-
tion it is enough to consider dissolution and creation rules working on three
membranes with the same name. Specifically, consider a system with initial con-
figuration c0 = [0 s0 [0 c1]0 [0 c2]0]0, where s0 represents the initial control state
of a two counter machine. Membrane [0ci]0 is used to represent counter ci with
value zero for i : 1, 2. Counter ci with value k is represented by the membrane
[0ci ·u]0 where u is the multiset with k occurrences of a special object a. The in-
crement of counter ci in control state s and update to control state s′ is encoded
by the boundary rule s [0 ci → s′ [0 ci · a for i : 1, 2. The decrement of counter
ci in control state s and update to control state s′ is encoded by th e boundary
rule s [0 ci · a → s′ [0 ci for i : 1, 2. The zero test on counter ci in control state
s and update to control state s′ is simulated by five rules. We use the two rules
s [0 ci → auxs [0 ci ·dissolve and [0 dissolive → [0ε ·δ, where ε is the empty mul-
tiset, to move to an auxiliary state auxs and dissolve the membrane containing
ci. We then use the rules [0 auxs · ci → [0 aux′s′,ci

and aux′s′,ci
→ [0 ci · outs′]0

to create a new empty instance of the same membrane containing the objects
ci and outs′ . Finally, we use the boundary rule [0 ci · outs′ → s′ [0 ci to move

250 G. Delzanno and L. Van Begin

to the next state s′. The effect of the execution of these five rules is that of
moving the contents of the counter on which the zero-test is executed to the top
level membrane 0. Indeed, the membrane containing ci is first dissolved and then
re-created. If the zero-test is executed when a counter is not zero, some object a
will remain inside the topmost membrane in all successive configurations. This
feature can be used to distinguish good simulations from bad ones. Specifically,
let us consider the reachability problem for a two counter machine in which the
initial and the target configurations both coincide with the configuration with
a given control state s and both counters set to zero. This problem can be ex-
pressed as the reachability of the configuration c0 from c0. Thus, the following
property holds.

Theorem 3. The reachability problem is undecidable for PBDC systems in
which configurations have at most three different membranes with the same name.

5.1 PBDC Systems with Restricted Semantics

As a final analysis, we consider a restricted semantics for PBDC systems in which
newly created membranes must be assigned fresh and unused names. In other
words we assume that creation rules can be applied at most once for each type
of membrane. Another possible view is that membrane names are themselves
resources that can be used at most once.

Formally, assume a configuration c = (N, M, μ). Suppose that n is a node in
M . In the restricted semantics, the creation rule (4) is enabled if a ∈ μ(n) and
i �∈ N , i.e., the name i is fresh. Its application leads to a new configurations
c′ = (N ′, M ′, ν′) such that N ′ = N ∪ {i}, M ′ is the tree obtained by adding a
new node m labeled i as a successor of node n, and ν′ is the mapping defined as
ν′(n) = ν(n) � a, ν′(m) = v, and ν′(p) = ν(p) for p �= m, n, p ∈ N).

Since with creation rules in the style of [12] the set of rules operating on
membranes is fixed and known a priori, we can assume that the number of
distinct names is finite (it corresponds to the set of names occurring in internal,
boundary, dissolution and creation rules and in the initial configuration). This
restriction yields the following key observation.

Observation 1. If the set of possible membrane names N is finite and every
name in N can be used only once, then starting from a configuration with a single
membrane, the number of distinct membrane structures that we can generate is
finite. Every such membrane structure has at most |N| nodes.

This property does not imply that the number of configurations is finite. Indeed,
there are no restrictions on creation and deletion of objects inside membranes.
As an example, the PBDC system with the internal rule [0a → [0a · a and the
initial membrane [0a]0 generates an infinite set of configurations (membrane 0
with any number of repetitions of object a).

The aforementioned property can be used to show that reachability is decidable
in PBDC Systems with restricted semantics. Let Π be a PBDC system defined
over a finite set of names Λ. Suppose that Λ has cardinality K. Furthermore, as-
sume that the initial configuration c0 = (N0, M0, μ0) is such that M0 is a single

On the Dynamics of PB Systems with Volatile Membranes 251

node. We first build the set Θ of all possible membrane structures with at most K
nodes labeled with distinct labels taken from Λ. As an example, if Λ = {0, 1, 2},
then we will consider all trees with at most three nodes and such that each node
has a distinct label taken from Λ, i.e., [0]0, [1]1, [1 [0]0]1, [2 [0]0 [1]1]2, and so
on. Notice that for a fixed membrane structure T we can always determine the
immediate ancestor j of a node i (if it exists) at static time.

Starting from Π and Θ, we now define a Petri net N that satisfies the following
conditions. First of all, we associate a place T to each membrane structure T ∈ Θ.
We assume that only one of such places can be non empty during the simulation
of the restricted semantics. A non-empty place T ∈ Θ corresponds to the current
membrane structure. Furthermore, for each i ∈ Λ we add to N places usedi and
notusedi (to model freshness of name i), and, for each a ∈ Γ , place ai (to model
the content of membrane i in the current membrane structure). Notice that since
names are used at most once, we can safely confuse nodes of membrane structure
with their labels (each node has a different label in Λ). PBDC rules are modeled
as the finite set of transitions in N defined as follows.

For each membrane structure T ∈ Θ with a membrane i, an internal rule
r = [iu → [iv is encoded by a transition tTr that satisfies the following conditions.
The pre-set contains the places T (the current membrane structure) and usedi

(i is in use) together with multiset πi(u). The post-set contains places T and
usedi together with multiset πi(v). Thus, only the internal rules defined on the
current membrane structure are enabled.

For each membrane structure T ∈ Θ with a membrane j with immediate
successor i, a boundary rule r = u[iv → u′[iv′ is encoded by a transition bT,i,j

r

that satisfies the following conditions. The pre-set contains places T , usedi,
usedj, and the multisets πi(u) and πi(v). The post-set contains places T , usedi,
usedj, and the multisets πi(u′) and πi(v′). Thus, only boundary rules defined on
the current membrane structure are enabled.

For each T ∈ Θ such that i does not occur in the set of names in T (the
side condition that ensures the freshness of generated membrane names), and
for each name j occurring in T , a creation rule r = a → [iv]i is encoded by
a transition cT,i,j

r that satisfies the following conditions. The pre-set contains
places T , usedj, notusedi, and aj . The post-set contains places usedi and usedj ,
the multiset πi(v), and the place Tj+i ∈ Θ associated to the membrane structure
obtained from T by adding a new node labeled i as immediate successor of j.

For each membrane structure T ∈ Θ with a membrane j with immediate
successor i, a dissolution rule r = [iu → [iv · δ is encoded by the following
set of transitions. We first define a transition cT,i,j

r that starts the dissolution
phase of node i. The pre-set of cT,i,j

r contains places T , usedi, usedj, and the
multiset πi(u). The post-set contains the place dissolveT,i,j , and, the multiset
πi(v). Notice that, by removing a token from the place T , we automatically
disable all transitions not involved in the dissolution phase (i.e. T plays the role
of flag normal used for simulating dissolution rules in PBD systems). Now, for
each a ∈ Γ , we model the transfer of the content of node i to node j via a
transition mT,i,j,a

r that satisfies the following conditions: The pre-set contains

252 G. Delzanno and L. Van Begin

the places dissolveT,i,j and ai (the source of a token to be transferred). The
post-set contains the places dissolveT,i,j and aj (the destination of a transferred
token). Finally, let Tj−i be the membrane structure obtained by T by removing
membrane i and moving all of its sub-membranes into membrane j. Then, we
add transition dT,i,j

r to non-deterministically stop the transfer of tokens and
to update the membrane structure to Tj−i, i.e., the pre-set of this transition
contains the place dissolveT,i,j and its post-set contains the places Tj−i, usedi

and usedj. Notice that name i remains marked as used after dissolving the
corresponding membrane (i.e. it cannot be used in successive creation rules).

The Petri net N is built by taking the union of the places and transitions used
to encode internal, boundary, creation and dissolution rules described before.

A generic configuration c = (N, M, μ) is encoded by a marking mc in which:
there is one token in the place associated to the membrane structure M , one
token in usedi for each i ∈ N , one token in notusedi for each i ∈ Λ \ N , and, for
each i that occurs in M and for each a ∈ Γ , as many tokens in ai as the number
of occurrences of object a in μ(i). All other places are empty.

Notice that after a membrane with name i is introduced by a creation rule
(i.e., the place unusedi is emptied while one token is put in usedi), no other
membranes with the same name can be created (there is no rule that puts a
token back to unusedi). The membrane i however can dissolve in a successive
transition, i.e., in a target configuration usedi can be non-empty (i.e., i ∈ N),
even if i does not occur in the current membrane structure. Also notice that
in mc we enforce all places associated to membranes not occurring in M to be
empty. The combination of these two properties allows us to distinguish good
simulations (i.e., in which after the application of dissolution rules all tokens
are transferred to the father membrane) from bad ones (some tokens are left
in a place ai, usedi is non empty, but i is no more in the current membrane
structure). Following from this observation and from the construction of N , we
have that c = (N, M, μ) is reachable from c0 if and only if the marking mc is
reachable from mc0 .

Following from the decidability of reachability in Petri nets, we obtain the
following theorem.

Theorem 4. The reachability problem is decidable in PBDC systems with
restricted semantics.

6 Boundedness Problem for Extended PB Systems

In [4] Dal Zilio and Formenti exploit the Petri net encoding used for deciding
reachability to prove that boundedness is decidable too for PB systems with
symbol objects. In this section we investigate the boundedness problem for the
different extensions of PB systems proposed in the present paper.

As a first result, we show that the boundedness problem is decidable for
PBDC systems with restricted semantics where a membrane name can be used
at most once. To prove this property, let us first define the following partial
order over configurations. Assume two configurations c1 = (N1, M1, μ1) and

On the Dynamics of PB Systems with Volatile Membranes 253

c2 = (N2, M2, μ2). We define c1 c2 if and only if N1 = N2 and M1 = M2
(i.e. c1 and c2 have the same tree structure), and μ1(n) ≤ μ2(n) (the multiset
associated to n in c1 is contained in that associated to n in c2) for all node n
in M1. If we fix an upper bound on the number of possible nodes occurring in a
membrane structure along a computation, then has the following property.

Proposition 1. Fixed a k ∈ N, for any infinite sequence of configurations
c1c2 . . . with membrane structure of size at most k, there exist positions i < j
such that ci cj (i.e. is a well-quasi ordering).

The proof is a straightforward application of composition properties of well-quasi
ordering, see e.g. [1]. Now assume an infinite computation c0 = (N0, M0, μ0)c1 =
(N1, M1, μ1) . . . of a PBDC system with restricted semantics. From Observation
1 it follows that for all i ≥ 0 the number of nodes in Mi is bounded by the
number of possible names. Hence, by Prop. 1 we know that there exist positions
i < j such that ci cj . Furthermore, if ci cj and ci �= cj , then Ni =
Nj , Mi = Mj, and μi ≺ μj . Thus, the transition sequence σ from ci to cj

does not modify the membrane structure but strictly increases the number of
objects contained at each of its node. This implies that the application of σ can
be iterated starting from cj, leading to a infinite strictly increasing, w.r.t ,
sequence of configurations.

As a consequence of these properties, the boundedness problem for PBDC
systems can be decided by building a computation tree T such that: the root
node n0 of T is labeled by the initial configuration c0, if n0, . . . , nk is a path in
T such that ni is labeled with ci i : 0, . . . , k, and for all i : 0, . . . k−1 ci �= ck and
ci � ck then we add a node n′ labeled c′ as successor of nk if and only if ck ⇒ c′.
Furthermore, the PBDC system is not bounded if and only if there exists a leaf
n labeled with c and a predecessor n′ of n labeled with c′ in T such that c′ c.
Since is a decidable relation and the tree T is finite (by Observation 1 and
Prop. 1), the following property then holds.

Theorem 5. The boundedness problem is decidable for PBDC systems with
restricted semantics.

From Theorem 5, we know that boundedness is decidable for PB systems (con-
sistently with the result in [4]) and for PBD systems (they form a subclass of
PBDC systems where the restricted and standard semantics coincides).

The boundedness problem turns out to be undecidable for PBC systems with
standard semantics in which there is no limit on the number of instances of a
given type of membranes that can be created during a computation. The proof is
based on a reduction of two counter machines to PBC systems. The idea is to use
nested membranes to model the current value of a counter. E.g., the membrane
[1used [1 used [1 unused [1 end]1]1]1]1 can be used to encode counter c1 with
value 2 (the number of occurrences of symbol used). Hence a configuration of a
two counter machine with both counters set to zero is encoded as a configuration
of the form

[0 � [1 unused [1 . . . [1 end]1 . . .]1]1[2 unused [2. . . [2 end]2 . . .]2]2]0

254 G. Delzanno and L. Van Begin

A :

�
�������

� [i unused → �1 [i used
� [i used → �′

i [i down
down [i used → down [i down
down [i unused → up [i used
down [i up → up [i used
�′
i [i up → �1 [i used

B :

�
�

down [i end → down [i create
create → [i exit · end]i
ε [i exit → up [i ε

C :

�
�����������

� [i used → �′
i [i used1

used1 [i used → used1 [i used1

used1 [i unused → used2 [i unused
used1 [i end → used2 [i end
used1 [i used2 → used3 [i unused
used1 [i used3 → used3 [i used
�′
i [i used2 → �1 [i unused

�′
i [i used3 → �1 [i used

Fig. 1. Encoding of increment (A and B) and decrement (C)

where � is a symbol corresponding to the current location of the two counter
machine, and membrane with name i encodes counter i for i : 1, 2. Increment of
counter i in location � with �1 as successor location is simulated by replacing the
first unused symbol encountered when descending the tree from the membrane 0
with the symbol used. This is implemented by the set of rules A in Fig. 1 used to
descend the structure of a membrane of type i in search for the first occurrence
of symbol unused. Here �′i, down, up are auxiliary symbols (�′i is blocking for
the other counter(s), down propagate the search down in the tree, up propagate
the success notification up in the tree). Furthermore, if the current tree has no
membrane containing the unused symbol (i.e. all membranes contain used) then
a new membrane is created by applying the set of rules B in Fig. 1. Decrement is
simulated by changing the last occurrence of used encountered by descending the
membrane tree from the root into symbol unused. We can safely assume here that
the counter is non-zero, i.e., that there is at least one membrane with used object.
The set of rules C in Fig. 1 implement this idea. Here �′i, used1, used2, used3 are
auxiliary symbols, used1 is used to mark nodes during the downward search (for
unused), used2 is used to mark the used node to be replaced by unused, and
used3 is used to replace nodes marked with used1 with used during the return
from the search. The zero-test on counter ci in location � with successor �1 can
be implemented by testing if all objects in membranes i are unused (or end).
Note that increment, resp. decrement, of ci is encoded by a top-down traversal
of membranes i until reaching a membrane containing an object unused, resp.
used, which is then replaced by used, resp. unused. Furthermore, each membrane
contains one object. Hence, no membrane i contain a used symbols if and only
if the top level membrane i has object unused or end. This can be checked with
the following rules:

� [i unused → �1 [i unused � [i end → �1 [i end

By construction, we directly have that a two counter machine is bounded if
and only if its encoding into PBC systems is bounded. Since boundedness is
undecidable for two-counter machines, we obtain the following negative result.

On the Dynamics of PB Systems with Volatile Membranes 255

Theorem 6. The boundedness problem is undecidable for PBC systems.

The undecidability of boundedness proved in Theorem 6 is not in contradic-
tion with the decidability of reachability proved in Theorem 2. Similar results
obtained for fragments of process calculi, see e.g. [3], seem to indicate that, in
general, the decidability of reachability cannot be used to give an estimation of
the expressive power of a computational model.

7 Conclusions and Related Work

In this paper we have investigated the decidability of reachability and bound-
edness in extensions of PB systems with rules that dynamically modify the tree
structure of membranes. Concerning related work, as mentioned in the introduc-
tion our results extend those obtained for PB-systems in [4]. Decision problems
for qualitative analysis of subclasses of P-systems have been studied in [11,8]. A
methodology based on P/T nets to characterize the completeness of biological
models has been proposed in [7]. The application of this methodology to the
extended PB systems studied in this paper is an interesting research line for
future work.

Acknowledgements

The research of the second author was supported by the Belgian National Science
Foundation (FNRS).

References

1. Aziz-Abdulla, P., Nylén, A.: On Efficient Verification of Infinite-State Systems. In:
LICS 2000, pp. 132–140 (2000)

2. Bernardini, F., Manca, V., Systems, P.: P Systems with Boundary Rules. In: Păun,
G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597,
pp. 107–118. Springer, Heidelberg (2003)

3. Busi, N., Zavattaro, G.: Deciding Reachability in Mobile Ambients. In: Sagiv, M.
(ed.) ESOP 2005. LNCS, vol. 3444, pp. 248–262. Springer, Heidelberg (2005)

4. Dal Zilio, S., Formenti, E.: On the Dynamics of PB Systems: A Petri Net View. In:
Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing. LNCS, vol. 2933, pp. 153–167. Springer, Heidelberg (2004)

5. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

6. Franco, G., Manca, V.: A Membrane System for the Leukocyte Selective Recruit-
ment. In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
Membrane Computing. LNCS, vol. 2933, pp. 181–190. Springer, Heidelberg (2004)

7. Frisco, P.: P-systems, Petri Nets and Program Machines. In: Freund, R., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 209–223.
Springer, Heidelberg (2006)

256 G. Delzanno and L. Van Begin

8. Ibarra, O.H., Dang, Z., Egecioglu, Ö.: Catalytic P Systems, Semilinear Sets, and
Vector Addition Systems. TCS 312(2-3), 379–399 (2004)

9. Karp, R.M., Miller, R.E.: Parallel Program Schemata. JCSS 3, 147–195 (1969)
10. Kosaraju, S.R.: Decidability of Reachability in Vector Addition Systems. STOC,

267–281 (1982)
11. Li, C., Dang, Z., Ibarra, O.H., Yen, H.-C.: Signaling P Systems and Verification

Problems. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1462–1473. Springer, Heidelberg (2005)

12. Martin-Vide, C., Păun, G., Rodriguez-Paton, A.: On P Systems with Membrane
Creation Comp. Sc. J. of Moldova 9(2), 134–145 (2001)

13. Mayr, E.W.: An Algorithm for the General Petri Net Reachability Problem. SIAM
J. Comput. 13(3), 441–460 (1984)

14. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

15. Păun, G.: Computing with Membranes. JCSS 61(1), 108–143 (2000)
16. Petri, C.A.: Kommunikation mit Automaten. Ph.D. Thesis. U. of Bonn (1962)

A Petri (P/T) Nets and Counter Machines

A Petri net [16] is a pair (P, T, m0) where P is a finite set of places, T is a finite
set of transitions (T ⊆ P⊗ × P⊗), and m0 is the initial marking. A transition
t is defined by the pre-set •t and by the post-set t•, two multisets of places in
P . A marking is a multiset over P . Given a marking m and a place p, we say
that the place p contains m(p) tokens. A transition t is enabled at the marking
m if •t � m. When enabled, the firing of t at m produces a marking m′ (written
m

t→ m′) defined as (m � •t) ⊕ t•. A firing sequence is a sequence of markings
m0m1 . . . such that mi is obtained from mi−1 by firing a transition in T at mi.
Finally, we say that m′ is reachable from m0 if there exists a firing sequence from
m0 passing through m′. The reachability problem is decidable for Petri nets [10].

A two counter machine [14] is a finite automaton extended with two counters
taking their value into the non-negative integers. When the automaton moves
from one location to another it can access one counter by using an operation/test
of the following three forms: increment, decrement and test for zero. These op-
erations/tests have their usual semantics. In particular, decrement is blocking
when the counter is equal to 0.

A Logarithmic Bound for Solving Subset Sum

with P Systems

Daniel Dı́az-Pernil, Miguel A. Gutiérrez-Naranjo,
Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

Research Group on Natural Computing
University of Sevilla, Spain

{sbdani,magutier,marper,ariscosn}@us.es

Abstract. The aim of our paper is twofold. On one hand we prove the
ability of polarizationless P systems with dissolution and with division
rules for non-elementary membranes to solve NP-complete problems in
a polynomial number of steps, and we do this by presenting a solution to
the Subset Sum problem. On the other hand, we improve some similar
results obtained for different models of P systems by reducing the number
of steps and the necessary resources to be of a logarithmic order with
respect to k (recall that n and k are the two parameters used to indicate
the size of an instance of the Subset Sum problem).

As the model we work with does not allow cooperative rules and
does not consider the membranes to have an associated polarization,
the strategy that we will follow consists on using objects to represent
the weights of the subsets through their multiplicities, and comparing the
number of objects against a fixed number of membranes. More precisely,
we will generate k membranes in log k steps.

1 Introduction

This paper is the continuation of a series of results on Complexity Classes in
Membrane Computing that are trying to establish the relevance, in terms of
computing power, of each one of the possible features of a P system (see [3]).

The Subset Sum problem is a well-known NP-complete problem which can be
formulated as follows: Given a finite set A, a weight function, w : A → N, and a
constant k ∈ N, determine whether or not there exists a subset B ⊆ A such that
w(B) = k. It has been a matter of study in Membrane Computing several times,
being mainly used to prove the ability of different P system models in order to
solve problems from the NP class in a polynomial time.

This speed-up is achieved by trading space for time, in the sense that the
considered models allow that an exponential amount of membranes can be pro-
duced by a P system in a polynomial number of steps. For example, solutions
to the Subset Sum problem working in a number of steps which is linear with
respect to the parameters n and k have been designed using P systems with
active membranes [9], using tissue P systems with cell division [2], and using P
systems with membrane creation [4].

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 257–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

258 D. Dı́az-Pernil et al.

In this paper we work with P systems using division of non-elementary mem-
branes and dissolution rules. Our aim goes beyond adding this P system model
to the above mentioned list; we improve previous complexity results by solving
the Subset Sum problem in a linear number of steps with respect to n and log k.
We also improve the pre-computation process, as the initial resources are also
bounded by log k.

The paper is structured as follows: in the next section we present the formal
framework, i.e., we recall the definition of recognizing P systems, the P system
model used along the paper is settled and the class PMCAM0(+d,+ne) is pre-
sented. In Section 3, our design of the solution of the Subset Sum problem is
presented and some conclusions are given in the last section.

2 Formal Framework

In this paper we are using cellular systems for attacking the resolution of decision
problems. This means that for each instance of a problem that we try to solve,
we are only interested in obtaining a Boolean answer (Yes or No). Therefore,
the P system can behave as a black box to which the user supplies an input
and from which an affirmative or negative answer is received. This is indeed the
motivation for defining the concept of recognizing P systems (introduced in [13]).

2.1 Recognizing P Systems

Let us recall that a decision problem, X , is a pair (IX , θX) where IX is a language
over an alphabet whose elements are called instances and θX is a total Boolean
function over IX . If u is an instance of the problem X such that θX(u) = 1
(respectively, θX(u) = 0), then we say that the answer to the problem for the
instance considered is Yes (respectively, No).

Keeping this in mind, recognizing P systems are defined as a special class of
membrane systems that will be used to solve decision problems, in the framework
of the complexity classes theory. Note that this definition is stated informally,
and it can be adapted for any kind of membrane system paradigm.

A recognizing P system is a P system with input and with external output
having two distinguished objects yes and no in its working alphabet such that:

– All computations halt.
– If C is a computation of Π , then either the object yes or the object no (but

not both) must have been released into the environment, and only in the
last step of the computation.

2.2 The P System Model

The power of membrane division as a tool for efficiently solving NP problems in
Membrane Computing has been widely proved. Many examples of designs of P
systems solving NP-complete problems have been proposed in the framework of
P systems with active membranes with two polarizations and three polarizations

A Logarithmic Bound for Solving Subset Sum with P Systems 259

and in the framework of P systems with non-elementary membrane division.
The key of such solutions is the creation of an exponential amount of workspace
(membranes) in a polynomial time.

In the literature, one can find two quite different rules for performing mem-
brane division. On the one hand, in [7], P systems with active membranes were
presented. In this model new membranes were obtained through the process of
mitosis (membrane division). In these devices membranes have polarizations, one
of the “electrical charges” 0, −, +, and several times the problem was formulated
whether or not these polarizations are necessary in order to obtain polynomial
solutions to NP–complete problems. The last result is that from [1], where one
proves that two polarizations suffice.

P systems with active membranes have been successfully used to design (uni-
form) solutions to well-known NP–complete problems, such as SAT [13], Subset
Sum [9], Knapsack [10], Bin Packing [11], Partition [5], and the Common Algo-
rithmic Problem [12].

The syntactic representation of membrane division rule is

[a]e1
h → [b]e2

h [c]e3
h (1)

where h is a label, e1,e2 and e3 are electrical charges and a,b and c are objects.
The interpretation is well-known: An elementary membrane can be divided into
two membranes with the same label, possibly transforming some objects and
changing the electrical charge. All objects present in the membrane except the
object triggering the rule are copied into both new membranes.

In [6], a variant of this rule was used in which the polarization was dropped:

[a]h → [b]h [c]h. (2)

In both cases (with and without polarizations) the key point is that the mem-
branes are always elementary membranes. In the literature, there also exist rules
for the division of non-elementary polarizationless membranes, as

[[]h1 []h2]h0 → [[]h1]h0 [[]h2]h0 (3)

where h0, h1 and h2 are labels. There exists an important difference with respect
to elementary membrane division: in the case of (3), the rule is not triggered by
the occurrence of an object inside a membrane, but by the membrane structure
instead. This point has a crucial importance in the design of solutions, since a
membrane can be divided by the corresponding rule even if there are no objects
inside it.

According to the representation (3), the membrane h0 divides into two new
membranes also with label h0 and all the information (objects and membranes)
different from membranes h1 and h2 inside is duplicated.

In this paper we use a type of membrane division which is syntactically equiv-
alent to (2)

[a]h → [b]h [c]h, (4)

but we will consider a semantic difference; the dividing membrane can be ele-
mentary or non-elementary and after the division, all the objects and membranes

260 D. Dı́az-Pernil et al.

inside the dividing membrane are duplicated, except the object a that triggers
the rule, which appears in the new membranes possibly modified (represented
as objects b and c).

In this paper we work with a variant of P systems with active membranes
which we call with weak division, and that does not use polarizations.

Definition 1. A P system with active membranes with weak division is a P sys-
tem with Γ as working alphabet, with H as the finite set of labels for membranes,
and where the rules are of the following forms:

(a) [a → u]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule,
associated with a membrane labelled with h: an object a ∈ Γ belonging to
that membrane evolves to a multiset u ∈ Γ ∗.

(b) a []h → [b]h for h ∈ H, a, b ∈ Γ . An object from the region immediately
outside a membrane labeled with h is introduced in this membrane, possibly
transformed into another object.

(c) [a]h → b []h for h ∈ H, a, b ∈ Γ . An object is sent out from membrane
labeled with h to the region immediately outside, possibly transformed into
another object.

(d) [a]h → b for h ∈ H, a, b ∈ Γ : A membrane labeled with h is dissolved in
reaction with an object. The skin is never dissolved.

(e) [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ . A membrane can be divided into
two membranes with the same label, possibly transforming some objects. The
content of the membrane is duplicated. The membrane can be elementary or
not.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If at the same time a membrane labeled with h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labeled with h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b)-(e).

Let us note that in this framework we work without cooperation, without prior-
ities, with weak division, and without changing the labels of membranes.

In this paper we work within the model of polarizationless P systems using
weak division of non-elementary membranes and dissolution. Let AM0(+d, +ne)
be the class of such systems.

A Logarithmic Bound for Solving Subset Sum with P Systems 261

2.3 The Class PMCAM0(+d,+ne)

Definition 2. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizing P systems from
AM0(+d, +ne) if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) a confluent
condition, in the following sense: every computation of a system with the same
input multiset must always give the same answer. The pair of functions (cod, s)
is called a polynomial encoding of the problem in the family of P systems.

We denote by PMCAM0(+d,+ne) the set of all decision problems which can
be solved by means of recognizing polarizationless P systems using division of
non-elementary membranes and dissolution in polynomial time.

3 Designing the Solution to Subset Sum

In this section we address the resolution of the problem following a brute force
algorithm, implemented in the framework of recognizing P systems from the
AM0(+d, +ne) class. The idea of the design is better understood if we divide
the solution to the problem into several stages:

– Generation stage: for every subset of A, a membrane labeled by e is generated
via membrane division.

– Calculation stage: in each membrane the weight of the associated subset is
calculated (using the auxiliary membranes e0, . . . , en).

– Checking stage: in each membrane it is checked whether the weight of its
associated subset is exactly k (using the auxiliary membranes ch).

– Output stage: the system sends out the answer to the environment, according
to the result of the checking stage.

262 D. Dı́az-Pernil et al.

Let us now present a family of recognizing P systems from the AM0(+d, +ne)
class that solves Subset Sum, according to Definition 2.

We shall use a tuple (n, (w1, . . . , wn), k) to represent an instance of the Subset
Sum problem, where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and
k is the constant given as input for the problem. Let g : N×N → N be a function
defined by

g(n, k) =
(n + k)(n + k + 1)

2
+ n

This function is primitive recursive and bijective between N × N and N and
computable in polynomial time. We define the polynomially computable function
s(u) = g(n, k).

We shall provide a family of P systems where each P system solves all the in-
stances of the Subset Sum problem with the same size. Let us consider the binary
decomposition of k, Σi∈I2i = k, where the indices i ∈ I indicate the positions
of the binary expression of k where a 1 occurs. Let I ′ = {1, . . . , �log k�} − I
be the complementary set, that is, the positions where a 0 occurs. This binary
encoding of k, together with the weight function w of the concrete instance, will
be provided via an input multiset determined by the function cod as follows:

cod(u) = cod1(u) ∪ cod2(u),

where cod1(u) = {{bwi

i : 1 ≤ i ≤ n}} and
cod2(u) = {{cj : j ∈ I}} ∪ {{c′j : j ∈ I ′}}

Next, we shall provide a family Π = {Π(g(n, k)) : n, k ∈ N} of recognizing
P systems which solve the Subset Sum problem in a number of steps being of
O(n + log k) order. We shall indicate for each system of the family its initial
configuration and its set of rules. We shall present the list of rules divided by
groups, and we shall provide for each of them some comments about the way
their rules work.

Let us consider an arbitrary pair (n, k) ∈ N × N. The system Π(g(n, k)) is
determined by the tuple (Γ, Σ, μ, M, R, iin, i0), that is described next:

• Alphabet:

Γ = Σ ∪ {b+
i , b−i , b=

i , di, d
+
i , d−i , pi, qi : i = 1, . . . , n}

∪ {g0, . . . , g2�log k�+2, h0, . . . , h2�log k�+2n+8, l0, . . . , l2�log k�+2n+10}
∪ {v0, . . . , v2�log k�+2n+12}
∪ {w0, . . . , w2�log k�+2n+18}
∪ {x0, . . . , x2�log k�+2n+15, z0, . . . , z2�log k�+2n+7}
∪ {s, yes, no, T rash}

• Input alphabet: Σ(n, k) = {b1, . . . , bn, c0, . . . , c�log k�, c′0, . . . , c
′
�log k�}.

The initial configuration consists of n + �log k� + 9 membranes, arranged as
shown in Figure 1. Formally, the membrane structure μ is

[[[[[[n. . . [[[[[]ch . . . []ch]a1]a2]e0]e1
n. . .]en]a3 []c]a4]e]f]skin

A Logarithmic Bound for Solving Subset Sum with P Systems 263

• • • • •

•

• • • • •

•

•

skin f e a4 a3

c

en e1 e0 a2 a1

ch

ch

...
w0 g0 v0 h0

x0

cod(u) z0

l0

l0

�
��

. . . �
��

�
��

Fig. 1. Initial Configuration

where there are exactly �log k� + 1 copies of membrane []ch.
Roughly speaking (more precise explanations will be given for the rules), we

can classify the membranes according to their role as follows:

– n+2 membranes that take care of the generation stage, namely those labeled
by e0, e1, . . . en and e.

– �log k� + 3 membranes that take care of preparing and implementing the
checking stage, namely those labeled by ch, a1 and a2.

– 4 membranes that take care of the answer stage, handling and synchronizing
the results of the checking, namely those labeled by a3, a4, c and f .

• The initial multisets are:

M(f) = {{w0}}; M(e) = {{g0}}; M(a4) = {{v0}}; M(a3) = {{h0}};

M(c) = {{x0}}; M(a1) = {{z0}}; M(ch) = {{l0}}

M(skin) = M(a2) = M(e0) = · · · = M(en) = ∅

• The input membrane is iin = e0, and the output region is the environment
(i0 = env).

First task: generate k membranes ch. At the beginning of the computation,
k membranes ch will be generated inside the innermost region of the structure.

The strategy works as follows:

1. Initially, there are �log k� membranes ch in the region a1, and the input
multiset is located in region e0 (recall that cod2(u) consists of �log k� objects
ci or c′i representing the binary encoding of k).

2. In the first �log k� steps, the objects from cod2(u) get into membrane a2 (the
objects enter one by one membrane a2). Simultaneously, the counter zi is
evolving inside membrane a1 and dissolves it at the �log k� step.

3. Thus, in the next step each element from cod2(u) will go inside a mem-
brane ch (all objects go in parallel into different membranes in a one-to-one
manner).

264 D. Dı́az-Pernil et al.

4. Objects c′i will dissolve the membranes where they enter, while each object
ci will generate by division 2i membranes ch.

5. After at most �log k� further steps all divisions have been completed, and
the number of membranes ch is exactly k.

Membrane a2 will not be divided until the generation and weight calculation
stages have been completed, acting as a separator between objects from cod1(u)
and membranes ch.

Set (A1). ci[]a2 → [ci]a2

c′i[]a2 → [c′i]a2

ci[]ch → [ci]ch

c′i[]ch → [c′i]ch

[c′i]ch → Trash

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for i ∈ {0, . . . , �log k�}.

Set (A2). [c0 → Trash]ch

[ci]ch → [ci−1]ch [ci−1]ch for i = 1, . . . , �log k�
[zi → zi+1]a1 for i = 0, . . . , �log k� − 1
[z�log k�]a1 → z�log k�+1
[gi → gi+1]e for i = 0, . . . , 2�log k� + 1
[g2�log k�+2 → d1s]e

In the last step of this stage, the counter gi produces the objects d1 and s
which will trigger the beginning of the next stage.

Set(B). [wi → wi+1]f
[vi → vi+1]a4

[hi → hi+1]a3

[xi → xi+1]c
[li → li+1]ch

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

for i ∈ {0, . . . , 2�log k� + 2}.

[zi → zi+1]a2 for i ∈ {�log k� + 1, . . . , 2�log k� + 2}.

The rest of the counters simply increase their indices in this stage. (See Fig. 2.)

• • • • •

•

• • • •

•

•

skin f e a4 a3

c

en e1 e0 a

ch

ch

...
wβ d1s vβ hβ

xβ

cod1(u) zβ

lβ

lβ

β = 2�log k� + 3

�
��

. . . �
��

�
��

Fig. 2. Time 2�log k� + 3

A Logarithmic Bound for Solving Subset Sum with P Systems 265

Second task: generate 2n membranes e. Objects di residing inside mem-
brane(s) e will produce n consecutive divisions, thus yielding 2n copies of
membrane e. To each one of them, a subset of A is associated in the follow-
ing way: after each division, the membranes where object pi occurs correspond
to subsets of A containing ai, and conversely, membranes where qi occurs will
be associated with subsets not containing ai.

Set (C). [di]e → [d+
i]e[d−i]e for i = 1, . . . n

[d+
i → pidi+1]e for i = 1, . . . n − 1

[d−i → qidi+1]e for i = 1, . . . n − 1
[d+

n → pn]e
[d−n → qn]e

Membrane divisions take place every two steps, so in the (2�log k�+2n+2)-th
step there will be 2n membranes e.

Set (D). s []ai → [s]ai for i = 3, 4
s []ei → [s]ei for i = 0, . . . , n

[s]e0 → Trash

pj []ai → [pj]ai for i = 3, 4 j = 1, . . . , n

pj []ei → [pj]ei for j = 1, . . . , n i = j, . . . , n

[pi → qi]ei for i = 1, . . . , n

qj []ai → [qj]ai for i = 3, 4 j = 1, . . . , n

qj []ei → [qj]ei for j = 1, . . . , n i = j, . . . , n

[qi]ei → Trash for i = 1, . . . , n

While the divisions are being carried out, objects s, pj and qj , for j = 1, . . . , n,
travel into inner membranes (recall that whenever membrane e gets divided, the
internal nested structure of membranes ei is duplicated). In the (2�log k�+n+2)-
th step, an object s arrives to every membrane e0. This object dissolves the
membrane in the next step, and therefore in the (2�log k� + n + 3)-th step we
find inside every membrane e1 the multiset cod1(u), and in this moment the
weight calculation stage begins (see rules in Set (E)).

As we said before, objects pj and qj are traveling into inner membranes, until
they reach ej . This is done in such a way that in the (2�log k� + n + 3)-th step
there is in each membrane e1 either an object p1 or an object q1, in addition to
the multiset cod1(u).

Before going on, let us state two points. First, recall that in the input multi-
set, introduced in e0 at the beginning of the computation, there are w(ai) copies
of bi, for i = 1, . . . , n. Second, let us note that objects qi dissolve membrane ei

immediately after arriving to it, while objects pi take two steps to dissolve mem-
brane ei (first they are transformed into qi and in the next step the dissolution
takes place).

266 D. Dı́az-Pernil et al.

Set (E). [b1 → b+
1]e1

[bi+1 → b−i+1]ei for i = 1, . . . , n − 1
[bi+2 → b=

i+2]ei for i = 1, . . . , n − 2
[bi+3 → b=

i+3]ei for i = 1, . . . , n − 3
[b+

i → b0]ei for i = 1, . . . , n

[b+
i → Trash]ej for i = 1, . . . , n − 1, j = i + 1

[b−i → b+
i]ei for i = 2, . . . , n

[b−i+1 → b+
i+1]ei for i = 1, . . . , n − 1

[b=
i → b+

i]ei for i = 3, . . . , n

[b=
i+1 → b−i+1]ei for i = 2, . . . , n − 1

[b=
i+2 → b−i+2]ei for i = 1, . . . , n − 2

[b+
n → Trash]a3

The basic strategy consists on allowing objects bi to get transformed into
objects b0 only if the element ai ∈ A belongs to the associated multiset.

Let us summarize informally the evolution of objects bi for all possible cases.
Recall that in the (2�log k� + 2)-th step, the counter gi produces an object s in
membrane e:

– At step t = 2�log k� + 3 object s enters in en and either d+
1 or d−1 appear in

each one of the two existing copies of membrane e.
– At step t = 2�log k� + 4 object s enters in en−1 and either p1 or q1 appear

in membranes e.
– At step t = 2�log k�+5, after the second division has been carried out, there

are 4 membranes labeled by e. Object s enters in en−2 (this happens in all
4 copies) and p1 or q1 get into en (there are two of each).

– . . .
– At step t = 2�log k�+n+3 object s arrives into e0, and p1 or q1 enter in e2.
– At step t = 2�log k� + n + 4 object s dissolves e0 (and hence objects bi are

moved to e1), and p1 or q1 arrive into e1.
– At step t = 2�log k� + n + 5 objects b1, b2 and b3 have been transformed

in b+
1 , b−2 and b=

3 , respectively, and they will be located either in e1 (if the
membrane contained an object p1) or in e2 (if there was an object q1 in e1).
Besides, in the same step p2 or q2 get into e2.

– At step t = 2�log k� + n + 6
• Objects b+

1 evolve to b0 (if they were in e1) or to Trash (if they were in
e2).

• Objects b−2 evolve to b+
2 .

• Objects b=
3 have been transformed into b−3 (both those that were in e2

and those in e1).
• All the objects bα

i (i = 1, . . . , n and α ∈ {+, −, =}) will be located either
in membrane e2 (if the latter contained an object p2) or in e3 (if there
was an object q2 in e2).

• Besides, in this moment p3 or q3 get into e3.

A Logarithmic Bound for Solving Subset Sum with P Systems 267

• •

•

• • •

•

•

•

skin f

e

e

...

ch

ch

...

a4 a3

c

. . .

�
��

�
��

�
��

�
��

�
��

wβ

vβ hβ

xβ

lβ

lβ β = 2�log k� + 2n + 8

b
w(B)
0

Fig. 3. Time 2�log k� + 2n + 8

The design has been adjusted in such a way that in the moment when objects
pi and qi arrive into membranes ei it happens that the objects bα

j (j = i, . . . , n
and α ∈ {+, −, =}) are located in ei in half of the membranes or in ei+1 in the
rest of membranes. In the next step there will be objects b+

i in ei only for those
cases where there was an object pi, and hence the weight of element ai ∈ A
should be added to the weight of the associated multiset (that is, w(ai) copies
of b0 will be produced in those membranes).

Set (F). [wi → wi+1]f
[vi → vi+1]a4

[hi → hi+1]a3

[xi → xi+1]c
[zi → zi+1]a2

[li → li+1]ch

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

for i ∈ {2�log k� + 3, . . . , 2�log k� + 2n + 6}.

[z2�log k�+2n+7]a2 → Trash

The rest of the counters simply increase their indices during this stage. At the
end of the stage, in the (2�log k�+2n+7)-th step, zi will dissolve all membranes
a2. Therefore, in the next step we have 2n membranes labeled by e, and inside
them (more precisely, inside membranes a3) we have multisets of objects b0
encoding the weights of all possible subsets B ⊆ A (each membrane encodes a
different subset) and also exactly k copies of membrane ch, see Fig. 3.

Third task: compare k to the weight of each subset. We shall focus next
on the checking stage. That is, the system has to check in all membranes a3 if
the number of objects b0 (encoding the weight of the associated subset) matches
or not the parameter k (represented as the number of membranes ch). This task
is performed by the following set of rules (for the sake of simplicity, we denote
β = 2�log k� + 2n + 8):

Set (G). b0 []ch → [c∗]ch

[b0 → u1]a4

[c∗]ch → Trash

[hβ]a3 → Trash

268 D. Dı́az-Pernil et al.

At the step t = β, objects b0 get into membranes ch, and simultaneously
membrane a3 is dissolved. There are three possible situations:

1. There are exactly k objects b0. In this case at step t = β + 1 there will not
be any object b0 remaining, and all membranes ch have been dissolved.

2. The number of objects b0 is lower than k. In this case at step t = β +1 there
will not be any object b0 remaining, but there will be some membranes ch
that have not been dissolved (because no object b0 entered them).

3. The number of objects b0 is greater than k. In this case there are some
objects b0 that could not get inside a membrane ch (recall that the rules are
applied in a maximal parallel way, but for each membrane only one object
can cross it at a time).

In the second case, inside each membrane ch that has not been dissolved the
rules [lβ+1 → lβ+2]ch and [lβ+2]ch → u2 are applied in the steps t = β + 1 and
t = β + 2, respectively. Hence at step t = β + 3 there will be an object u2 in a4.

In the third case, the exceeding objects b0 may, nondeterministically, either
get into a membrane ch (avoiding that the dissolution rule is applied to that
membrane) or evolve into object u1. Irrespectively of the nondeterministic choice,
we know that there will be no more objects b0 in a4 at step t = β + 2.

Of course, during this stage the rest of the counters continue evolving:

Set (H). [lβ+i−1 → lβ+i]ch for i = 0, 1, 2
[vβ+i−1 → vβ+i]a4 for i = 0, . . . , 4
[xβ+i−1 → xβ+i]c for i = 0, . . . , 7
[wβ+i−1 → wβ+i]f for i = 0, . . . , 10

The next set of rules guarantees that in every membrane where the weight of
the associated subset was different from k (and only in such membranes) there
will be some objects u3.

Set (I1). [ui → ui+1]a4 for i = 1, 2
[lβ+2]ch → u2

[lβ+2 → u3]a4

[c∗ → u3]a4

These objects u3, being in membrane a4, will go into membranes c and dissolve
them. We have here a similar situation as before, as there may be several objects
u3 willing to go into a membrane c. The counter vi takes care of dissolving
membrane a4 so that any exceeding object u3 will be moved to membrane e and
subsequently transformed into Trash.

Set (I2). u3 []c → [u4]c
[vβ+4]a4 → Trash

[u3 → Trash]e
[u4 → u5]c
[u5]c → Trash

A Logarithmic Bound for Solving Subset Sum with P Systems 269

Final task: answer stage. Therefore, only in the branches where the number
of objects b0 were equal to k we have a membrane c inside membrane e at step
β + 7. Besides, we also have a counter wi evolving in membrane f :

– If the instance of the Subset Sum problem has an affirmative answer, i.e., if
there exists a subset of A whose weight is k, then in the step β + 7 there
will be a membrane e with a membrane c inside and an object xβ+7 in it.
This object will produce an object yes which will dissolve his way out to the
environment.

On the contrary, if the instance has a negative answer, then there will not
exist any membrane c in the system in the step β + 7 and the object yes
will not be produced. Hence, the membrane f will not be dissolved by yes
and when the counter wi reaches wβ+10, an object no will appear and will
be sent to the environment.

The set of rules is the following one:

Set (J). [xβ+7]c → yes
[yes]e → yes

[yes]f → yes

[yes]skin → yes []skin

[wβ+10]f → no

[no]skin → no []skin

Consequently, if the answer is affirmative the P system halts after β+11 steps
and otherwise after β + 12 steps.

4 Conclusions

In this paper we have combined different techniques for designing P systems in
order to get a uniform family of P systems that solves the Subset Sum problem
in the framework of P systems with weak division, with dissolution and without
polarization. The main contribution of this paper is related to the Complexity
Theory of P systems. The best solution of the NP-complete problem Subset
Sum in any P system model up to now was linear in both input parameters
n and k. In this paper we show that the dependency on k can be significantly
reduced, since we show a solution where the resources and the number of steps
are of a logarithmic order with respect to k.

Acknowledgement

The authors acknowledge the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the project of excellence TIC-581 of the Junta de Andalućıa.

270 D. Dı́az-Pernil et al.

References

1. Alhazov, A., Freund, R., Păun, G.: P Systems with Active Membranes and
Two Polarizations. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-
Caparrini, F. (eds.) Proc. Second Brainstorming Week on Membrane Computing,
Report RGNC 01/04, pp. 20–35 (2004)

2. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
Solving Subset Sum in Linear Time by Using Tissue P Systems with Cell Division.
LNCS, vol. 4527, pp. 170–179 (2007)

3. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: Computational Efficiency of Dissolution Rules in Membrane Sys-
tems. International Journal of Computer Mathematics 83(7), 593–611 (2006)

4. Gutiérrez Naranjo, M.A., Pérez Jiménez, M.J., Romero-Campero, F.J.: A Linear
Solution of Subset Sum Problem by Using Membrane Creation. In: Mira, J.M.,
Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 258–267. Springer, Hei-
delberg (2005)

5. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A Fast P System
for Finding a Balanced 2-Partition. Soft Computing 9(9), 673–678 (2005)

6. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-
Campero, F.: On the Power of Dissolution in P Systems with Active Membranes.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 373–394. Springer, Heidelberg (2006)

7. Păun, G.: Computing with Membranes: Attacking NP–complete Problems. In:
Antoniou, I., Calude, C., Dinneen, M.J. (eds.) UMC 2000. Unconventional Models
of Computation, pp. 94–115. Springer, Berlin (2000)

8. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
9. Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by P Sys-

tems with Active Membranes. New Generation Computing 23(4), 367–384 (2005)
10. Pérez-Jiménez, M.J., Riscos-Núñez, A.: A Linear–time Solution to the Knapsack

Problem Using P Systems with Active Membranes. In: Mart́ın-Vide, C., Mauri,
G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS,
vol. 2933, pp. 250–268. Springer, Heidelberg (2004)

11. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Solving the Bin Packing Problem
by Recognizer P Systems with Active Membranes. In: Păun, G., Riscos-Núñez,
A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Proc. Second Brainstorming
Week on Membrane Computing, Report RGNC 01/04, University of Seville, pp.
414–430 (2004)

12. Pérez-Jiménez, M.J., Romero–Campero, F.J.: Attacking the Common Algorithmic
Problem by Recognizer P Systems. In: Margenstern, M. (ed.) MCU 2004. LNCS,
vol. 3354, pp. 304–315. Springer, Heidelberg (2005)

13. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A Polynomial
Complexity Class in P Systems Using Membrane Division. In: DCFS 2003. Proc.
5th Workshop on Descriptional Complexity of Formal Systems, pp. 284–294 (2003)

A Formal Framework

for Static (Tissue) P Systems

Rudolf Freund1 and Sergey Verlan2

1 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

rudi@emcc.at
2 LACL, Département Informatique

UFR Sciences et Technologie, Université Paris XII
61, av. Général de Gaulle, 94010 Créteil, France

verlan@univ-paris12.fr

Abstract. The formalism of P systems is known for many years, yet
just recently new derivation modes and halting conditions have been pro-
posed. For developing comparable results, a formal description of their
functioning, in particular, of the derivation step is necessary. We intro-
duce a formal general framework for static membrane systems that aims
to capture most of the essential features of (tissue) P systems and to
define their functioning in a formal way.

1 Introduction

P systems were introduced by Gh. Păun (see [8], [14]) as distributed parallel
computing devices, based on inspiration from biochemistry, especially with re-
spect to the structure and the functioning of a living cell. The cell is considered
as a set of compartments enclosed by membranes; the membranes are nested
one in another and contain objects and evolution rules. The basic model neither
specifies the nature of these objects nor the nature of the rules. Specifying these
two parameters, a lot of different models of computing have been introduced,
see [20] for a comprehensive bibliography. Tissue P systems, first considered by
Gh. Păun and T. Yokomori in [18] and [19], also see [11], use the graph topology
in contrast to the tree topology used in the basic model of P systems.

In this paper, we design a general class of multiset rewriting systems contain-
ing, in particular, P systems and tissue P systems. We recall that any P system
may be seen at the most abstract level as a multiset rewriting system with only
one compartment, encoding the membrane as part of the object representation.
However, this approach completely ignores the inner structure of the system
because all structural information is hidden (by an encoding) which makes it
difficult do deduce any compartment-related information or to model (processes
in) biological systems. At a lower level of abstraction, a P system may be seen
as a network of cells (compartments) evolving with multi-cell multiset rewriting
rules. At the lowest level, the graph/tree structure appears as well as a special-
ization of rules which are of a very particular form. This last level is usually used

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 271–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

272 R. Freund and S. Verlan

in the area of P systems because it permits to easily specify the system and to
incorporate different new types of rules.

It is worth noting that in the definition of membrane systems the applica-
tion of rules often is defined in a quite informal way. This is related to the fact
that for a long time only the maximally parallel derivation mode was considered
and a P system was supposed to work only in this mode. Recent developments
in P systems area have revealed that other derivation modes as the minimally
parallel derivation mode might be considered [5] and allow for many interesting
new results, yet depending on specific interpretations of this notion. Moreover,
different halting conditions have been investigated (see [10], [1]), too. All these
articles have shown that there is a need for a formal definition of part of the
semantics of membrane systems as the derivation step and the halting proce-
dure like it was done for splicing test tube systems [6] or networks of language
processors [7]. In particular, this is important for a classification of P systems
as well as for their implementation. For approaches to find operational and logic
based semantics for P systems we refer to [4] and [2]; a Petri net semantics for
membrane systems is discussed in [12].

This article is an attempt to fulfill the goal of formally defining a procedural
semantics for a quite large number of well-known variants of (tissue) P systems
considered so far in the literature, but, of course, we do not at all claim to have
captured all the variants having already appeared in the literature. In order to
be quite general, we place our reasoning at the abstract level of networks of
cells, already considered in a slightly different way in [3]. We adapt an imple-
mentational point of view and also give a formal definition of the derivation step,
the halting condition and the procedure for obtaining the result of a computa-
tion. Moreover, we give examples of applying our concepts to some well-known
variants of P systems.

2 Preliminaries

We recall some of the notions and the notations we use (for further details see
[8] and [17]). Let V be a (finite) alphabet; then V ∗ is the set of all strings (a
language) over V , and V + = V ∗ − {λ} where λ denotes the empty string. FIN
(FIN (V))denotes the set of finite languages (over the alphabet V), and RE,
REG, and MAT λ denote the families of recursively enumerable and regular
languages as well as matrix languages, respectively. For any family of string
languages F , PsF denotes the family of Parikh sets of languages from F and
NF the family of Parikh sets of languages from F over a one-letter alphabet.
By N we denote the set of all non-negative integers, by N

k the set of all vectors
of non-negative integers.

Let V be a (finite) set, V = {a1, ..., ak}. A finite multiset M over V is a map-
ping M : V −→ N, i.e., for each a ∈ V , M (a) specifies the number of occurrences
of a in M . The size of the multiset M is |M | =

∑
a∈V M (a). A multiset M over V

can also be represented by any string x that contains exactly M (ai) symbols ai

for all 1 ≤ i ≤ k, e.g., by a
M(a1)
1 ...a

M(ak)
k , or else by the set

{
a

M(ai)
i | 1 ≤ i ≤ k

}
.

A Formal Framework for Static (Tissue) P Systems 273

The support of M is the set supp(M) = {a ∈ V | f(a) ≥ 1}. For example, the
multiset over {a, b, c} defined by the mapping a → 3, b → 1, c → 0 can be
specified by a3b or

{
a3, b

}
, its support is {a, b}.

The set of all finite multisets over the set V is denoted by 〈V, N〉. We may
also consider mappings M of form the M : V −→ N∞ where N∞ = N ∪ {∞},
i.e., elements of M may have an infinite multiplicity; we shall call such multisets
where M (ai) = ∞ for at least one i, 1 ≤ i ≤ k, infinite multisets. The set of
all such multisets M over V with M : V −→ N∞ is denoted by 〈V, N∞〉. For
W ⊆ V , W∞ denotes the infinite multiset with W (a) = ∞ for all a ∈ W .

Let x and y be two multisets over V , i.e., from 〈V, N〉 or 〈V, N∞〉. Then x is
called a submultiset of y, written x ≤ y or x ⊆ y, if and only if x (a) ≤ y (a) for
all a ∈ V ; if, moreover, x (a) < y (a) for some a ∈ V , then x is called a strict
multiset of y. Observe that for all n ∈ N, n+∞ = ∞, and ∞−n = ∞. The sum
of x and y, denoted by x+y or x∪y, is a multiset z such that z(a) = x(a)+y(a)
for all a ∈ V . The difference of two multisets x and y, denoted by x−y, provided
that y ⊆ x, is the multiset z with z(a) = x(a) − y(a) for all a ∈ V . Observe that
in the following, when taking the sum or the difference of two multisets x and y
from 〈V, N∞〉, we shall always assume {x(a), y(a)} ∩ N �= ∅.

If X = (x1, . . . , xm) and Y = (y1, . . . , ym) are vectors of multisets over V ,
then X ≤ Y if and only if xj ⊆ yj for all j, 1 ≤ j ≤ m; in the same way,
sum and difference of vectors of multisets are defined by taking the sum and the
difference, respectively, in each component.

3 Networks of Cells

In this section we consider a general framework for describing membrane systems
with a static membrane structure. We consider membrane systems as a collection
of interacting cells containing multisets of objects [3].

Definition 3.1. A network of cells of degree n ≥ 1 is a construct

Π = (n, V, w, Inf, R) , where:

1. n is the number of cells;
2. V a finite alphabet;
3. w = (w1, . . . , wn) where wi ∈ 〈V, N〉, for all 1 ≤ i ≤ n, is the finite multiset

initially associated to cell i;
4. Inf = (Inf1, . . . , Infn) where Infi ⊆ V , for all 1 ≤ i ≤ n, is the set

of symbols occurring infinitely often in cell i (in most of the cases, only
one cell, called the environment, will contain symbols occurring with infinite
multiplicity);

5. R is a finite set of interaction rules of the form

(X → Y ; P, Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), and xi, yi ∈ 〈V, N〉, 1 ≤ i ≤ n,
are vectors of multisets over V as well as P = (p1, . . . , pn), Q = (q1, . . . , qn),

274 R. Freund and S. Verlan

and pi, qi, 1 ≤ i ≤ n, are finite sets of multisets over V . We will also use
the notation

((x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n) ; (p1, 1) . . . (pn, n) , (q1, 1) . . . (qn, n))

for a rule (X → Y ; P, Q); moreover, if some pi or qi is an empty set or some
xi or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from
the specification of the rule.

A network of cells consists of n cells, numbered from 1 to n, that contain
(possibly infinite) multisets of objects over V ; initially cell i contains wi∪Infi

∞.
Cells can interact with each other by means of the rules in R. An interaction
rule

((x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n) ; (p1, 1) . . . (pn, n) , (q1, 1) . . . (qn, n))

rewrites objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n, if every
cell k, 1 ≤ k ≤ n, contains all multisets from pk and does not contain any
multiset from qk. In other words, the first part of the rule specifies the rewriting
of symbols, the second part of the rule specifies permitting conditions and the
third part of the rule specifies the forbidding conditions. In the next section we
give an even more detailed precise definition for the application of an interaction
rule.

For an interaction rule r of the form above, the set

{i | xi �= λ or yi �= ∅ or pi �= ∅ or qi �= λ}

induces a relation between the interacting cells. However, this relation need not
give rise to a structure relation like a tree as in P systems or a graph as in tissue P
systems (e.g., see [15] for definitions of P systems and tissue P systems), though
most models of membrane systems with a static membrane structure can be
seen as special variants of networks of cells, and moreover, a lot of important
features of membrane systems, in particular the derivation step and the halting
condition, may be described at the level of networks of cells.

4 Systems with a Static Structure

In this section we consider networks of cells having a static structure, i.e., the
number of cells does not change during the evolution of the system. We first
define configurations, transition steps, and then halting conditions.

Definition 4.1. Consider a network of cells Π = (n, V, w, Inf, R). A configu-
ration C of Π is an n-tuple of multisets over V (u′1, . . . , u

′
n) with u′i ∈ 〈V, N∞〉,

1 ≤ i ≤ n; in the following, C will also be described by its finite part Cf only,
i.e., by (u1, . . . , un) satisfying u′i = ui ∪ Infi

∞ and ui ∩ Infi = ∅, 1 ≤ i ≤ n.

In the sense of the preceding definition, the initial configuration of Π , C0, is
described by w, i.e., C0

f = w = (w1, . . . , wn), whereas w′i = wi ∪ Infi
∞, 1 ≤ i ≤

n, is the initial contents of cell i, i.e., C0 = w ∪ Inf∞.

A Formal Framework for Static (Tissue) P Systems 275

Definition 4.2. We say that an interaction rule r = (X → Y ; P, Q) is eligible
for the configuration C with C = (u1, . . . , un) if and only if for all i, 1 ≤ i ≤ n,
the following conditions hold true:

– for all p ∈ pi, p ⊆ ui (every p ∈ pi is a submultiset of ui),
– for all q ∈ qi, q � ui (no q ∈ qi is a submultiset of ui), and
– xi ⊆ ui (xi is a submultiset of ui).

Moreover, we require that xj ∩(V − infj) �= ∅ for at least one j, 1 ≤ j ≤ n. This
last condition ensures that at least one symbol appearing only in a finite number
of copies is involved in the rule. The set of all rules eligible for C is denoted by
Eligible (Π, C).

The marking algorithm. Let C = (v1, . . . , vn) be a configuration of a network of
cells Π and Cf its finite description; moreover, let R′ be a finite multiset of rules
from R consisting of the (copies of) rules r1, . . . , rk, where for each i, 1 ≤ i ≤ k,
we have ri = (Xi → Yi; Pi, Qi) ∈ Eligible (Π, C), Xi = (xi,1, . . . , xi,n), Yi =
(yi,1, . . . , yi,n). Moreover, let X ′i and Y ′i , 1 ≤ i ≤ k, be the the vectors of finite
multisets from 〈V, N〉 with Xi,j = X ′i,j ∪ Infj

∞ and X ′i,j ∩ Infj = ∅, 1 ≤ j ≤ n.
Then:

1. consider the vector of multisets Mark0 (Π, C, R′) = (λ, . . . , λ) of size n and
let i = 1;

2. if X ′i ≤ Cf − Marki−1 (Π, C, R′), then set

Marki (Π, C, R′) =
(
Cf − Marki−1 (Π, C, R′)

)
− X ′i,

otherwise, end the algorithm and return false;
3. if i = k then end the algorithm and return true, otherwise set i to i+1 and

return to step 2.

If the marking algorithm returns true for the pair (C, R′) then we say that
the configuration C may be marked by R′, and we define Mark (Π, C, R′) =
Markk (Π, C, R′).

Definition 4.3. Consider a configuration C and let R′ be a multiset of rules
from Eligible (Π, C) (i.e., a multiset of eligible rules). We say that the multiset
of rules R′ is applicable to C if the marking algorithm as described above returns
true and Mark (Π, C, R′). The set of all multisets of rules applicable to C is
denoted by Appl (Π, C).

Definition 4.4. Consider a configuration C and a multiset of rules R′ ∈ Appl
(Π, C). According to the marking algorithm described above, we define the con-
figuration being the result of applying R′ to C as

Apply (Π, C, R′) = (C − Mark (Π, C, R′)) + Σ1≤i≤kY ′i .

276 R. Freund and S. Verlan

We remark that Apply(R′, C) is again a configuration.
For the specific derivation modes to be defined in the following, the selection

of multisets of rules applicable to a configuration C has to be a specific subset
of Appl (Π, C).

Definition 4.5. For the derivation mode ϑ, the selection of multisets of rules
applicable to a configuration C is denoted by Appl (Π, C, ϑ).

Definition 4.6. For the asynchronous derivation mode (asyn),

Appl (Π, C, asyn) = Appl (Π, C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 4.7. For the sequential derivation mode (sequ),

Appl (Π, C, sequ) = {R′ | R′ ∈ Appl (Π, C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Appl (Π, C, sequ) has size 1.

The most important derivation mode considered in the area of P systems from
the beginning is the maximally parallel derivation mode where we only select
multisets of rules R′ that are not extensible, i.e., there is no other multiset of
rules R′′ � R′ applicable to C.

Definition 4.8. For the maximally parallel derivation mode (max),

Appl (Π, C, max) = {R′ | R′ ∈ Appl (Π, C) and there is
no R′′ ∈ Appl (Π, C) with R′′ � R′} .

For the minimally parallel derivation mode, we need an additional feature for
the set of rules R, i.e., we consider a partition of R into disjoint subsets R1 to
Rh. Usually, this partition of R may coincide with a specific assignment of the
rules to the cells. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number of
sets of rules Rj , 1 ≤ j ≤ h, with Rj ∩ R′ �= ∅.

There are several possible interpretations of this minimally parallel derivation
mode which in an informal way can be described as applying multisets such that
from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible – has to be used (e.g.,
see [5]). We start with the basic variant where in each derivation step we only
choose a multiset of rules R′ from Appl (Π, C, asyn) that cannot be extended
to R′′ ∈ Appl (Π, C, asyn) with R′′ � R′ as well as (R′′ − R′) ∩ Rj �= ∅ and
R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h, i.e., extended by a rule from a set of rules
Rj from which no rule has been taken into R′.

Definition 4.9. For the minimally parallel derivation mode (min),

Appl (Π, C, min) = {R′ | R′ ∈ Appl (Π, C, asyn) and
there is no R′′ ∈ Appl (Π, C, asyn)
with R′′ � R′, (R′′ − R′) ∩ Rj �= ∅
and R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h} .

A Formal Framework for Static (Tissue) P Systems 277

In the following we also consider further restricting conditions on the four basic
modes defined above, especially interesting for the minimally parallel derivation
mode, thus obtaining some new combined derivation modes.

A derivation mode closely related to the maximally parallel one, yet not con-
sidered so far in the literature is the following one, where we not only demand
that the chosen multiset R′ is not extensible, but also contains the maximal
number of rules among all applicable multisets:

Definition 4.10. For any basic derivation mode δ ∈ {asyn, sequ, max, min},
we define the maximal in rules δ derivation mode (maxruleδ) by setting

Appl (Π, C, maxruleδ) = {R′ | R′ ∈ Appl (Π, C, δ) and
there is no R′′ ∈ Appl (Π, C, δ)
with |R′′| > |R′|} .

In the case of the minimally parallel derivation mode, we have two more very
interesting variants of possible interpretations, the first one maximizing the
sets of rules involved in a multiset to be applied (maxsetmin), and the sec-
ond one demanding that all sets of rules that could contribute should contribute
(allasetmin). The corresponding restricting conditions are based on a partition
of the rules which usually will be the same as that one given in the definition
for the minimally parallel derivation mode. In general, we define these variants
for any of the basic derivation modes as follows:

Definition 4.11. For any basic derivation mode δ ∈ {asyn, sequ, max, min},
we define the maximal in sets δ derivation mode (maxsetδ) by setting

Appl (Π, C, maxsetδ) = {R′ | R′ ∈ Appl (Π, C, δ) and
there is no R′′ ∈ Appl (Π, C, δ)
with ‖R′′‖ > ‖R′‖} .

Definition 4.12. For any basic derivation mode δ ∈ {asyn, sequ, max, min},
we define the using all applicable sets δ derivation mode (allasetδ) by setting

Appl (Π, C, allasetδ) = {R′ | R′ ∈ Appl (Π, C, δ) and
for all j, 1 ≤ j ≤ h,
Rj ∩

⋃
X∈Appl(Π,C) X �= ∅

implies Rj ∩ R′ �= ∅} .

We should like to mention that, for example, the derivation modes maxsetδ and
allasetδ with δ ∈ {asyn, sequ, max, min} could be extended by the constraint
that a maximal number of rules has to be used, too, thus yielding derivation
modes maxrulemaxsetδ and maxruleallasetδ. Yet we do not consider such com-
binations of restricting conditions in this paper. Moreover, there are several
other derivation modes considered in the literature, for instance, we may apply
(at most) k rules in parallel in every derivation step, but we leave the task to
define such derivation modes in the general framework elaborated in this paper
to the reader.

278 R. Freund and S. Verlan

For all the derivation modes defined above, we now can define how to obtain
a next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying derivation mode:

Definition 4.13. Given a configuration C of Π and a derivation mode ϑ, we
may choose a multiset of rules R′ ∈ Appl (Π, C, ϑ) in a non-deterministic way
and apply it to C. The result of this transition step from the configuration C with
applying R′ is the configuration Apply (Π, C, R′), and we also write C =⇒(Π,ϑ)
C′. The reflexive and transitive closure of the transition relation =⇒(Π,ϑ) is
denoted by =⇒∗(Π,ϑ).

Looking carefully into the definitions for all the (basic and combined) derivation
modes defined above, we immediately infer the following equalities which do not
depend on the kind of rules at all (observe that the restricting conditions for
the combined modes using the condition maxrule or maxset are defined with
respect to the underlying basic mode, which, for example, immediately implies
the equalities for the sequential mode):

Lemma 4.1. The following equalities for derivation modes hold true in general
for all kinds of networks of cells:

maxrulesequ = maxsetsequ = sequ,
maxruleasyn = maxrulemin = maxrulemax.

Provided that the partitions with respect to min as well as allaset and maxset

are the same, also the following equalities hold true:

maxsetmin = maxsetasyn,
allasetmin = allasetasyn.

On the other hand, it is well known from the literature that the four basic
derivation modes may yield different application results. Moreover, the following
simple example shows most of the incomparability between combined and/or
basic derivation modes:

Example 4.1. Consider the network of cells

Π =
(
4, {a, b} ,

(
b3, a3, b, b

)
, (∅, ∅, ∅, ∅) , R

)

with the following rules in R:

1. (b, 1) (a, 2) → (a, 1) (b, 2)
2. (a, 2) (b, 3) → (b, 2) (a, 3)
3. (aa, 2) (b, 4) → (b, 2) (aa, 4)

In fact, Π can be interpreted as a P system with antiport rules, 3 membranes
with membrane i represented by cell i + 1, as well as cell 1 representing the
environment (see subsection 4.4 as well as Figure 1). Due to the availability

A Formal Framework for Static (Tissue) P Systems 279

1 : b ←→ a

2 : a ←→ b

3 : aa ←→ b

aaabbb

b

b

3

2

1

Fig. 1. Network of cells depicted as P system with antiport rules

of objects in the four cells, only the following multisets of rules (represented as
strings) are applicable to the initial configuration C0, C0 =

(
b3, a3, b, b

)
:

Appl (Π, C0, asyn) = Appl (Π, C0) =
{
1, 12, 13, 122, 12, 13, 2, 23, 3

}

Assuming the partition for the minimally parallel derivation mode to be the
partition into the three single rules (which corresponds to assigning the rule i
to cell i + 1 – corresponding to membrane i in a membrane system – and no
rule to cell 1 which represents the environment), we obtain the following sets of
multisets of rules applicable to C0 according to the different derivation modes:

Appl (Π, C0, δ1) = {1, 2, 3} for δ1 ∈ {sequ, maxrulesequ, maxsetsequ},
Appl (Π, C0, min) =

{
13, 122, 12, 13, 23

}
,

Appl (Π, C0, max) =
{
13, 122, 13, 23

}
,

Appl (Π, C0, maxruleδ2) =
{
13, 122

}
, δ2 ∈ {asyn, min, max},

Appl (Π, C0, maxsetδ3) =
{
122, 12, 13, 23

}
, δ3 ∈ {asyn, min},

Appl (Π, C0, maxsetmax) =
{
122, 13, 23

}
,

Appl (Π, C0, allasetδ4) = ∅, δ4 ∈ {sequ, asyn, min, max}.

All these sets of multisets of rules listed above are different which shows the
incomparability of the corresponding derivation modes (observe that the inherent
equalities for the modes δ1, δ2, and δ3 follow from Lemma 4.1). Due to the
competition of the rules for the objects in cell 2, we get Appl (Π, C0, allasetδ4) = ∅
for all basic derivation modes δ4 ∈ {sequ, asyn, min, max}.

Omitting cell 4 in the network of cells above as well as the corresponding rule
3, we obtain a network of cells Π ′,

Π ′ =
(
3, {a, b} ,

(
b3, a3, b

)
, (∅, ∅, ∅) , R′

)
,

280 R. Freund and S. Verlan

with only the rules 1 and 2 in R′ as well as

∅ � Appl (Π ′, C′0, allasetmin) =
{
12, 122

}
�

{
122

}
= Appl (Π ′, C′0, allasetmax) .

Especially for computing and accepting devices, the notion of determinism is of
major importance. For networks of cells, determinism can be defined as follows:

Definition 4.14. A configuration C is said to be accessible in Π with respect to
the derivation mode ϑ if and only if C0 =⇒∗(Π,ϑ) C (C0 is the initial configuration
of Π). The set of all accessible configurations in Π is denoted by Acc (Π).

Definition 4.15. A network of cells Π is said to be deterministic with respect
to the derivation mode ϑ if and only if |Appl (Π, C, ϑ)| ≤ 1 for any accessible
configuration C.

4.1 Halting Conditions

A halting condition is a predicate applied to an accessible configuration. The
system halts according to the halting condition if this predicate is true for the
current configuration. In such a general way, the notion halting with final state
or signal halting can be defined as follows:

Definition 4.16. An accessible configuration C is said to fulfill the signal halt-
ing condition or final state halting condition (S) if and only if C ∈ S (Π, ϑ)
where

S (Π, ϑ) = {C′ | C′ ∈ Acc (Π) and State (Π, C′, ϑ) = true} .

Here State (Π, C′, ϑ) means a decidable feature of the underlying configuration
C′, e.g., the occurrence of a specific symbol (signal) in a specific cell.

The most important halting condition used from the beginning in the P sys-
tems area is the total halting, usually simply considered as halting:

Definition 4.17. An accessible configuration C is said to fulfill the total halting
condition (H) if and only if no multiset of rules can be applied to C with respect
to the derivation mode anymore, i.e., if and only if C ∈ H (Π, ϑ) where

H (Π, ϑ) = {C′ | C′ ∈ Acc (Π) and Appl (Π, C′, ϑ) = ∅} .

The adult halting condition guarantees that we still can apply a multiset of rules
to the underlying configuration, yet without changing it anymore:

Definition 4.18. An accessible configuration C is said to fulfill the adult halt-
ing condition (A) if and only if C ∈ A (Π, ϑ) where

A (Π, ϑ) = {C′ | C′ ∈ Acc (Π) , Appl (Π, C′, ϑ) �= ∅ and
Apply (Π, C′, R′) = C′ for every R′ ∈ Appl (Π, C′, ϑ)} .

A Formal Framework for Static (Tissue) P Systems 281

We should like to mention that we could also consider A (Π, ϑ)∪H (Π, ϑ) instead
of A (Π, ϑ).

For introducing the notion of partial halting, we have to consider a partition
of R into disjoint subsets R1 to Rh as for the minimally parallel derivation mode
(eventually, this partition for partial halting might also be different from the
partition used for the minimally parallel derivation mode). We then say that we
are not halting only if there still is a multiset of rules R′ from Appl (Π, C) with
R′ ∩ Rj �= ∅ for all j, 1 ≤ j ≤ h:

Definition 4.19. An accessible configuration C is said to fulfill the partial halt-
ing condition (h) if and only if C ∈ h (Π, ϑ) where

h (Π, ϑ) = {C′ | C′ ∈ Acc (Π) and there is
no R′ ∈ Appl (Π, C′) with R′ ∩ Rj �= ∅ for all j, 1 ≤ j ≤ h} .

4.2 Computation, Goal and Result of a Computation

A computation in a network of cells Π , Π = (n, V, w, Inf, R), starts with the
initial configuration C0, C0 = w ∪ Inf∞, and continues with transition steps
according to the chosen derivation mode until the halting condition is met.

The computations with a network of cells may have different goals, e.g., to
generate (gen) a (vector of) non-negative integers in a specific output cell (mem-
brane) or to accept (acc) a (vector of) non-negative integers placed in a specific
input cell at the beginning of a computation. Moreover, the goal can also be to
compute (com) an output from a given input or to output yes or no to decide
(dec) a specific property of a given input.

The results not only can be taken as the number (N) of objects in a specified
output cell, but, for example, also be taken modulo a terminal alphabet (T) or
by subtracting a constant from the result (−k).

Such different tasks of a network of cells may require additional parameters
when specifying its functioning, e.g., we may have to specify the output/input
cell(s) and/or the terminal alphabet.

We shall not go into the details of such definitions here, we just mention that
the goal of the computations γ ∈ {gen, acc, com, dec} and the way to extract the
results ρ (usually taken from halting computations) are two other parameters to
be specified and clearly defined when defining the functioning of a network of
cells or a membrane system.

4.3 Taxonomy of Networks of Cells and (Tissue) P Systems

For a particular variant of networks of cells or especially P systems/tissue P
systems we have to specify the derivation mode, the halting condition as well as
the procedure how to get the result of a computation, but also the specific kind
of rules that are used, especially some complexity parameters.

For networks of cells, we shall use the notation

OmCn (ϑ, φ, γ, ρ) [parameters for rules]

282 R. Freund and S. Verlan

to denote the family of sets of vectors obtained by networks of cells Π =
(n, V, w, Inf, R) with m = |V |, as well as ϑ, φ, γ, ρ indicating the derivation
mode, the halting condition, the goal of the computations, and the way how to
get results, respectively; the parameters for rules describe the specific features
of the rules in R. If any of the parameters m and n is unbounded, we replace it
by ∗.

For P systems, with the interaction between the cells in the rules of the corre-
sponding network of cells allowing for a tree structure as underlying interaction
graph, we shall use the notation

OmPn (ϑ, φ, γ, ρ) [parameters for rules] .

Observe that usually the environment is not counted when specifying the number
of membranes in P systems, but this often hides the important role that the
environment takes in the functioning of the system.

For tissue P systems, with the interaction between the cells in the rules of
the corresponding network of cells allowing for a graph structure as underlying
interaction graph, we shall use the notation

OmtPn (ϑ, φ, γ, ρ) [parameters for rules] .

As a special example, let us now consider symport/antiport P systems.

4.4 A Specific Example: P Systems with Symport/Antiport Rules

For definitions and results concerning P systems with symport/antiport rules,
we refer to the original paper [13] as well as to the overview given in [16]. An
antiport rule is a rule of the form ((x, i) (u, j) → (x, j) (u, i)) usually written as
(x, out; u, in), xu �= λ, where j is the region outside the membrane i in the
underlying graph structure. A symport rule is of the form ((x, i) → (x, j)) or
((u, j) → (u, i)).

The weight of the antiport rule (x, out; u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight ≤ k induces the type of rules α usually written
as antik. The weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|,
respectively. Using only symport rules with weight ≤ k induces the type of rules
α usually written as symk. If only antiport rules (x, out; u, in) of weight ≤ 2 and
with |x| + |u| ≤ 3 as well as symport rules of weight 1 are used, we shall write
anti2′ .

As is well known, O∗P2 (max, H, gen, N) [anti2′] = NRE.
Observe that we only need one membrane separating the environment and

the skin region, but this means that two regions corresponding to two cells are
involved.

4.5 A General Result

For any network of cells using multiset rewriting rules of type α, with a derivation
mode ϑ ∈ {allasetmin, maxsetmin, asyn, sequ} and partial halting, we only get
Parikh sets of matrix languages (regular sets of non-negative integers):

A Formal Framework for Static (Tissue) P Systems 283

Theorem 4.2 For every ϑ ∈ {allasetmin, maxsetmin, asyn, sequ},

O∗C∗ (ϑ, h, gen, T) [α] ⊆ PsMAT λ and O∗C∗ (ϑ, h, gen, N) [α] ⊆ NREG

provided that the partitions for the derivation modes allasetmin, maxsetmin and
the partial halting h are the same.

The proof follows the ideas of a similar result proved for a general variant of
P systems with permitting contexts in [1] for ϑ ∈ {allasetmin, asyn, sequ} and
therefore is omitted; we just have to mention that the results are still valid if we
take the derivation mode maxsetmin instead of allasetmin, because when using
partial halting we always have to take at least one rule from every set of rules
(provided that the partitions for the derivation modes allasetmin, maxsetmin
and the partial halting h all are the same). On the other hand, we do not
know whether these results also hold true for the derivation modes min and/or
maxrulemin.

5 Conclusions

The main purpose of this paper is to elaborate a general framework for static P
systems and tissue P systems, but there are many variants of membrane systems
not yet covered by this general framework, especially dynamic changes of the
number of cells cannot be handled with the current version. Yet we have already
started to extend our approach to such dynamic variants like P systems with
active membranes. Moreover, also spiking neural P systems require some efforts
for being captured within this framework. Our approach aims at formalizing
the main features of membrane systems in such a way that derivation modes
and halting conditions can be defined in a clear and unambiguous way to avoid
that different interpretations of notions and concepts in the P systems area yield
incomparable results (as a special example consider the variants described for the
minimally parallel derivation mode). Moreover, specifying the marking algorithm
in a procedural way should allow for easier and unambiguous implementations.
Considering variants of (tissue) P systems at such a high level of abstraction
allows for establishing quite general results.

Acknowledgements

The authors gratefully especially acknowledge the useful suggestions and remarks
from Artiom Alhazov and Markus Beyreder (elaborating Example 4.1) as well as
all the interesting discussions with the participants of WMC 8 in Thessaloniki.

References

1. Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial versus total halting in
P systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-Jiménez, A., Riscos-
Núñez, A. (eds.) Proc. Fifth Brainstorming Week on Membrane Computing,
Sevilla, pp. 1–20 (2007)

284 R. Freund and S. Verlan

2. Andrei, O., Ciobanu, G., Lucanu, D.: A rewriting logic framework for operational
semantics of membrane systems. Theoretical Computer Science 373(3), 163–181
(2007)

3. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Networks of Cells
and Petri Nets. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-Jiménez, A.,
Riscos-Núñez, A. (eds.) Proc. Fifth Brainstorming Week on Membrane Computing,
Sevilla, pp. 33–62 (2007)

4. Ciobanu, G., Andrei, O., Lucanu, D.: Structural operational semantics of P sys-
tems. In: [9], 1–23

5. Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal
parallelism. Theoretical Computer Science 378(1), 117–130 (2007)

6. Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splic-
ing. Computers and AI 15(2–3), 211–232 (1996)

7. Csuhaj-Varjú, E.: Networks of Language Processors. Current Trends in Theoretical
Computer Science, 771–790 (2001)

8. Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal
Computer Science 5(2), 33–49 (1999)

9. Freund, R., Lojka, G., Oswald, M.: Gh. Păun (Eds.): WMC 2006. Pre-Proceedings
of Sixth International Workshop on Membrane Computing, Vienna (June 18-21,
2005)

10. Freund, R., Oswald, M.: P systems with partial halting (accepted, 2007)
11. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue-like P systems with channel

states. Theoretical Computer Science 330, 101–116 (2005)
12. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri net semantics for membrane

systems. In: [9] 439–460
13. Păun, A., Păun, G.: The power of communication: P systems with symport/ an-

tiport. New Generation Computing 20(3), 295–306 (2002)
14. Păun, G.: Computing with membranes. J. of Computer and System Sciences 61,

108–143 (2000), TUCS Research Report 208 (1998), http://www.tucs.fi
15. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
16. Rogozhin, Y., Alhazov, A., Freund, R.: Computational power of symport/antiport:

history, advances, and open problems. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg
(2006)

17. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3,
Springer, Berlin (1997)

18. Păun, G., Sakakibara, Y., Yokomori, T.: P systems on graphs of restricted forms.
Publicationes Matimaticae 60 (2002)

19. Păun, G., Yokomori, T.: Membrane computing based on splicing. In: Winfree,
E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 54, pp. 217–232. American
Mathematical Society, Providence, RI (1999)

20. The P Systems Web Page: http://psystems.disco.unimib.it

http://www.tucs.fi
http://psystems.disco.unimib.it

Conformon-P Systems with Negative Values

Pierluigi Frisco

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, EH14 4AS, UK

pier@macs.hw.ac.uk

Abstract. Some initial results on the study of conformon-P systems
with negative values are reported.

One model of these conformon-P systems is proved to be computa-
tionally universal while another is proved to be at least as powerful as
partially blind program machines.

1 Introduction

The subdivision of a cell into compartments delimited by membranes inspired
G. Păun to define a new class of (distributed and parallel) models of compu-
tation called membrane systems [8]. The hierarchical structure, the locality of
interactions, the inherent parallelism, and also the capacity (in less basic mod-
els) for membrane division, represent the distinguishing hallmarks of membrane
systems. Research on membrane systems, also called ‘P systems’ (where ‘P’ stays
for ‘Păun’), has really flourished [9].

One of the lines of research within membrane systems deals with the study of
the generative power of models of these systems.

Recent results [3,4] obtained with the use of Petri nets and P/T systems [10]
show that the study of the generative variants of computing systems based on
symbol objects (membrane systems, program machines, brane calculi, etc.) can
be facilitated if someone considers the number of unbounded elements present in
these systems. In the present paper we do not introduce the notation of Petri net
and P/T systems but only one result obtained with their use. These information
can be found in the just mentioned publications.

In particular [Corollary 2] from [4] indicates:
A P/T system with two unbounded elements has computational power equiv-

alent to the one of program machines;
A P/T system with only unbounded number of tokens has computational power

equivalent to the one of partially blind program machines;
A P/T system with only unbounded number of places has computational power

equivalent to the one of restricted program machines (in this case restrictions in
the composition of building blocks are present).

There unbounded elements refers to some components of the P/T systems
(as, for instance, number of places and tokens) that are present in unbounded
quantity. In [4] it is also proved that maximal parallelism is equivalent to the

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 285–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

286 P. Frisco

presence of an unbounded number of places. The results proved in [4] indicate
that in the study of a computing system the number and kind of unbounded
elements can give an indication (upper bounds and precise characterization) of
the computing power of the system.

The research reported in the present paper does not have the level of generality
(i.e., the use of Petri nets) used in [4]. It refers to our initial results on the study
of conformon-P systems having one ‘extended’ unbounded element: the value
of the conformons ranges from −∞ to +∞, differently from previous studies in
which it was ranging from 0 to +∞.

2 Basic Definitions

We assume the reader to have familiarity with basic concepts of formal language
theory [6] and program machines [7]. We indicate with N the set of positive
integers, N0 = {0}∪N and Z = N0 ∪{−i | i ∈ N} indicates the set of all integers
(positive, negative and zero).

2.1 Program Machines

A program machine (also known as (multi)counter machines, multipushdown
machines, register machines and counter automata) with n counters (n ∈ N)
is defined as M = (S, R, s0, sd), where S is a finite set of states, s0, sd ∈ S are
respectively called the initial and final states, R is the finite set of instructions of
the form (si, l−, sg, su) or (si, l+, sq), with si, sg, su, sq ∈ S, si �= sd, 1 ≤ l ≤ n.

A configuration of a program machine M with n counters is given by an element
in the n + 1-tuples (sj , N

n
0), sj ∈ S. Given two configurations (si, l1, . . . , ln) and

(s′j , l
′
1, . . . , l

′
n) we define a computational step as (si, l1, . . . , ln) � (sj , l

′
1, . . . , l

′
n):

– if (si, l−, sg, su), l = lp and lp �= 0, then sj = sg, l′p = lp − 1, l′k = lk, k �=
p, 1 ≤ k ≤ n;
if l = lp and lp = 0, then sj = su, l′k = lk, 1 ≤ k ≤ n;
(informally: in state si if the content of counter l is greater than 0, then
subtract 1 from that counter and change state into sg, otherwise change
state into su);

– if (si, l+, sq), l = lp, then sj = sq, l
′
p = lp + 1, l′k = lk, k �= p, 1 ≤ k ≤ n;

(informally: in state si add 1 to counter l and change state into sq).

The reflexive and transitive closure of � is indicated by �∗.
A computation is a finite sequence of transitions between configurations of a

program machine M starting from the initial configuration (s0, l1, . . . , ln) with
l1 �= 0, lk = 0, 2 ≤ k ≤ n. If the last of such configurations has sd as state,
then we say that M accepted the number l1. The set of numbers accepted by M
is defined as L(M) = {l1 | (s0, l1, · · · , ln) �∗ (sd, l

′′
1 , · · · , l′′n)}. For every program

machine it is possible to create another one accepting the same set of numbers
and having all counters empty in the final state.

Partially blind program machines (also known as partially blind multicounter
machines) were introduced in [5] and defined as program machines without test

Conformon-P Systems with Negative Values 287

on zero. The only allowed operations are increase and decrease of one unit per
time of the counters indicated as (si, l+, sq) and (si, l−, sg) respectively. In case
the machine tries to subtract from a counter having value zero it stops in a non
final state. In [5] it is also proved that such machines are strictly less powerful
than non blind ones.

2.2 Conformon-P System with Negative Values

A conformon-P system with negative values has conformons, a name-value pair,
as objects. If V is an alphabet (a finite set of letters), then we can define a con-
formon as [α, a], where α ∈ V and a ∈ Z (in our previous works on conformons,
see for instance [1,2], we considered a ∈ N0). We say that α is the name and
a is the value of the conformon [α, a]. If, for instance, V = A, B, C, . . ., then
[A, 5], [C, 0], [Z, −14] are conformons, while [AB, 21] and [D, 0.5] are not.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form r : α

n→ β, where r is the label of the rule (a kind of name,
it makes easier to refer to the rule) α, β ∈ V and n ∈ N0, and it says that a
conformon with name α can give n from its value to the value of a conformon
having name β. If, for instance, there are conformons [G, 5] and [R, 9] and the rule
r : G

3→ R, one application of r leads to [G, 2] and [R, 12], another application
of r (to [G, 2] and [R, 12]) leads to [G, −1] and [R, 15].

The compartments (membranes) present in a conformon-P system have a label
(again, a kind of name which makes it easier to refer to a compartment), every
label being different. Compartments can be unidirectionally connected to each
other and for each connection there is a predicate. A predicate is an element of
the set {≥ n, ≤ n | n ∈ Z}. Examples of predicates are: ≥ 5, ≤ −2, etc.

If, for instance, there are two compartments (with labels) m1 and m2 and
there is a connection from m1 to m2 having predicate ≥ 4, then conformons
having value greater or equal to 4 can pass from m1 to m2. In a time unit any
number of conformons can move between two connected membranes as long as
the predicate on the connection is satisfied. Notice that we have unidirectional
connections that is: m1 connected to m2 does not imply that m2 is connected
to m1. Moreover, each connection has its own predicate. If, for instance, m1
is connected to m2 and m2 is connected to m1, the two connections can have
different predicates. It is possible to have multiple connections (with different
predicates) between compartments.

The interaction with another conformon and the passage to another membrane
are the only operations that can be performed by a conformon.

Formally, a conformon-P system with negative values of degree m, m ≥ 1, is a
construct Π = (V, μ, αa, ack, L1, . . . , Lm, R1, . . . , Rm), where V is an alphabet;
μ = (N, E) is a directed labeled graph underlying Π . The set N contains vertices
(the membrane compartments), while the set E defines directed labeled edges
(the connections) between vertices.

In αa the value of α can either be input or output, in the former case Π is an
accepting device, in the latter case Π is a generating device, while a ∈ {1, . . . , m}

288 P. Frisco

indicates the input or output membrane, respectively. ack ∈ N indicates the
acknowledgment membrane.

The multisets Li contain conformons associated to region i; Ri are finite sets
of rules for conformons interaction associated to region i.

A configuration of Π is an m-tuple indicating the multisets of conformons
present in each membrane of the system. A transition is the passage from one
configuration to another as the consequence of the application of operations.

A computation is a finite sequence of transitions between configurations of
a system Π starting from (L1, . . . , Lm), the initial configuration characterized
by the fact that no conformon is present in the acknowledgment membrane.
If used as a generating device, then the result of a computation is given by
the multisets of conformons associated to membrane a when any conformon is
associated to membrane ack. When this happens the computation is halted,
that is no other operation is performed even if it could. When a conformon is
associated to the acknowledge membrane the number of conformons (counted
with their multiplicity) associated to membrane a defines the number generated
by Π .

If used as an accepting device, then the input is given by the multiset of con-
formons associated to a in the initial configuration. If Π reaches a configuration
with any conformon in ack, then no other operation is performed even if it could
and Π accepts the input.

Some of the conformon-P systems considered in this paper work under maxi-
mal parallelism: in every configuration the maximum number of operations that
can be performed is performed. If in one configuration some operations are con-
flicting (so that they cannot be executed together as they involve the same con-
formons), then any maximum number of non conflicting operations is performed.
The passage of two conformons through the same connection is considered as
two different operations (similarly for the interactions of two different pairs of
conformons due to one rule).

2.3 Some Modules for Conformon-P Systems

In the following we use the concept of module: a group of membranes with
conformons and interaction rules in a conformon-P system able to perform a
specific task.

An example of module is a splitter [1]: a module that, when a conformon [X, x]
with x ∈ {x1, . . . , xh}, xi < xi+1, 1 ≤ i ≤ h − 1 is associated with a specific
membrane of it, it may pass such a conformon to other specific membranes
according to its value x. A detailed splitter is depicted in Figure 1.a. Vertices
outgoing a module representation of a splitter, Figure 1.b, have as predicates
elements in the set {= n | N0}, this is a shorthand indicating the function
performed by this module.

It should be clear that if a splitter is part of a conformon-P system with
maximal parallelism, then the number of steps required to a conformon to pass
from the uh+1 membrane to any other of the u membrane depends on the value
of the conformon. If we consider the splitter depicted in Figure 1.a, a conformon

Conformon-P Systems with Negative Values 289

≤ x2

x1

≤ x1 ≤ xh−1

xh−1 xh

≤ xh

u1 uh−1 uh

(a)

[X, x]

[X, x]

p

= xh

spl

= x1

u1 uh

(b)

u2

uh+1
p ≥ xh−1

uh+1

x2
≥ x2 ≥ x3 ≥ xh[X, x]

[X, x]

Fig. 1. A detailed splitter (a) and its module representation (b)

present in membrane uh+1 requires only two steps to pass to membrane u1 but
it requires h + 1 steps to pass to membrane uh.

In order to have this time constant (equal to h+1 in the example), then delays
(i.e., sequences of membranes) have to be introduced. We make this assumption
for all the splitters considered in the proof of Theorem 1.

2.4 Figures in This Paper

The representation of the conformon-P systems considered in this paper follows
some rules aimed to a more concise representation an to an easier understanding
of them.

The label of each membrane (a number) is indicated in bold on the top right
corner of each compartment. Splitters are depicted by a thicker line, their label
(also in bold) starts with spl, and their edges have ‘=’ as predicate. The module
representation of a splitter is depicted in Figure 1.b.

Oval compartments with a label inside are shortcuts for membranes or mod-
ules.

Conformons present in the initial configuration of the system are depicted
in bold, the remaining conformons are the ones that could be present in the
membrane during the computation.

The predicate associated to an edge is indicated close to the edge.
Some predicates and the value of some conformons contain a slash (/). This

is a shorthand for multiple predicates or values. For instance, the conformon
[A, 3/4] indicates that in a membrane the conformons [A, 3] and [A, 4] can be
present. If there is a connection from membrane m1 to membrane m2 and the

290 P. Frisco

connection has predicate ≤ 0/ ≥ 5, then this is equivalent to two connections
from m1 to m2, one with predicate ≤ 0 and the other with predicate ≥ 5.

If the conformon [A, a] is present in m copies in a certain membrane, then this
is indicated with ([A, a], m), where an unbounded number of copies is indicated
with +∞.

3 Results

Theorem 1. The class of numbers accepted by conformon-P systems with neg-
ative values and with maximal parallelism coincides with the one accepted by
program machines.

Proof. This proof follows from the one of [Theorem 2] from [1] (where priorities
between interaction rules are present) and from [Theorem 1] from [4].

Figure 1 represents such a conformon-P system used as accepting device sim-
ulating a program machine. During this proof we refer to this figure.

For each state si of the simulated program machine there is a conformon with
name si. For each instructions of the kind (si, l+, sq) ∈ R there is a conformon
with name s′q,l; for each instruction of the kind (si, l−, sg, su) ∈ R there are
conformons with name s′′g,l and s̄g,l. For the final state sd ∈ S there is one
conformon with name s′′′d .

The initial configuration of the conformon-P system with priorities has all
conformons with name s′q,l, s′′g,l and s′′′d and 0 as value in membrane 1; all the
ones with name s̄g,l and 1 as value in membrane 17; all the ones with name si

and 0 as value in membrane 11 except the one with name of the initial state s0
that is in membrane 1 with value 9 (in Figure 2 the generic conformon [si, 9]
is present in membrane 1); conformons [a, 8] and [c, 0] are initially present in
membrane 6 and 13 respectively. Moreover for each counter l of the simulated
machine there are an unbounded number of occurrences of the conformons [l, 0]
in membrane 8, while the input membrane (membrane 14 in the figure) contains
as many copies of such conformons as the values kl of the counters at the initial
configuration of the simulated machine.

The addition of one unit to a counter l is simulated by moving one occurrence
of the conformon [l, 0] from membrane 8 to membrane 14; the subtraction of one
unit is simulated with the passage of one occurrence of the same conformon from
membrane 14 to membrane 8.

For each instruction of the type (si, l+, sq) ∈ R there is in membrane 1 the
rule si

6→ s′q,l; for each instruction of the kind (si, l−, sg, su) ∈ R, there is in

membrane 1 the rule si
7→ s′′g,l; for sd ∈ S there is in membrane 1 the rule

si
8→ s′′′d .
Only one conformons of the kind [si, 9] may be associated to membrane 1.

When such a conformon is present in membrane 1, then one of the interaction
rules indicated above can occur.

Let us consider now the case that the rule si
8→ s′′′d is applied. As there is only

one instance of [s′′′d , 0] then the newly created [s′′′d , 8] passes to spl1 and from

Conformon-P Systems with Negative Values 291

≥ 1
= 8

= 4/
= 5

= 10

≥ 10

= 2/
= 7

≤ 1/ ≥ 7

= 10
= −1/

≥ 0

= 3/ = 6

= 0 = 9

= 0

≥ 0

= 9

≥ 1

= −1/
= 10

≤ 1/ ≥ 6

≤ 1/
≥ 5

= −1/
= 10

≥ 0

= 9

≥ 2

= 2

= 0

≥ 7

≥ 7

≥ 5
= 11

≤ 9

= 0

= 9

= 5

= 7

≤ 0

≥ 9

= 2 ≥ 8

≤ 0

= 5

= 0

≥ 0

= −3

= 7

≤ −1

≥ 1

= 6/ = 7
= 2/ = 3/

≥ 9/ ≤ 0= 1/ = 9

≤ 0/ ≥ 10

≥ 1
= 9

= 1

= −2

= 6

[s′
q,l, 6] [s′′

g,l, 7] [s′′′
d , 8]

spl1

[si, 1/2/3/9]

6

[s′
q,l, 6] s′

q,l
9→ a

[s′′
g,l, 7] s′′

g,l
9→ a

[s′′′
d , 8] a

2→ s′′′
d

[a, 8]

[l, 5] l
9→ a

[s′′′
d , 10]

spl6

[a, 17]

[s′′′
d , 10]

7

[si, 2] [s′′
g,l, 7]

si
3→ s′′

g,l

4

[si,−1]

[s′′
g,l, 10]

s′′
g,l

1→ si

5

[s′′
g,l, 9/10]

[s1, 0]

spl5

[s′′
g,l, 7/10]

[si,−1]

spl4

[si, 9]

1

[s′
q,l, 0] [s′′

g,l, 0] [s′′′
d , 0]

si
6→ s′

q,l si
7→ s′′

g,l si
8→ s′′′

d

[si, 3] [s′
q,l, 6]

si
4→ s′

q,l

2

[s′
q,l, 6/10]

[si,−1]

spl2

[si, 0]

[s′
q,l, 9]

spl3

[si,−1]

[s′
q,l, 10]

s′
q,l

1→ si

3

([l, 0], +∞)

s′
q,l

5→ l

[s′
q,l, 9]

8

[l, 5] [s′
q,l, 4]

s′
q,l

5→ l

9

[l, 10] [s′
q,l,−1]

l
9→ s′

q,l

10

[l, 5/10]

[s′
q,l,−1]

spl8

[l, 5] [s′
q,l, 4/9]

spl7

[l, 0/10]

[s′
q,l, 9]

spl9

11

c
5→ l c

4→ s′′
g,l

[c, 2] [s′′
g,l, 7]

([l, 0], +∞)

14

[s′′
g,l, 7]

16

[c, 0] [s′′
g,l, 9]

s′′
g,l

2→ c

13

[s′′
g,l, 7]

15

[s′′
g,l, 7/11]

[l, 5]

spl13

[s′′
g,l, 11] [c,−2]

s′′
g,l

2→ c

18

[c, 0/2]

[s′′
g,l, 9]

spl15

13

11

13

[s′′
g,l, 7]

c
2→ s′′

g,l

[c, 2]

16

s′′
g,l

9→ s̄g,l

[̄sg,l, 1]

[s′′
g,l, 9]

17

15

11

[l, 0/5]

[c, 2]

spl14

1

6

8

[c,−3] [l, 5]

l
5→ c

15

[c,−2/− 3]

spl12

[s′′
g,l, 7/9] [c, 2]

spl11

[s′
q,l, 9] s′

q,l
6→ sq

[s′′
g,l, 9] s′′

g,l
7→ sg

[s̄g,l, 10] s̄g,l
9→ su

[si, 0]

11

[s′
q,l, 3] [sq, 6] s′

q,l
3→ sq

[s′′
g,l, 2] [sg, 7] s′′

g,l
2→ sg

12

[s′
q,l, 9] [s′′

g,l, 9]

[s̄g,l, 1] [su, 9]

s̄g,l
s→u

19

[s̄g,l, 0] [su, 10]

su
1→ s̄g,l

20

[su, 9/10]

[s̄g,l, 1]

spl16

17

[s′
q,l, 3/9] [sq, 6]

[s′′
g,l, 2/9] [sg, 7]

[s̄g,l, 1/10] [su, 9]

spl10

6

Fig. 2. The conformons-P system related to Theorem 1

here to membrane 6. After the interaction two sets of rules are applicable: one
with a second interaction of si and s′′′d and another with the passage of [s′′′d , 8]
and [si, 1] to spl1. Maximal parallelism forces this last set to be applied.

In membrane 6 [s′′′d , 8] interacts with [a, 8] such that [s′′′d , 10] is created. When
this happens this conformon passes first to spl6 and then to membrane 7, the
acknowledgment membrane, halting in this way the computation.

292 P. Frisco

It is important to notice that the presence of [a, 8] in membrane 6 is necessary
for the halting of the computation. If in a configuration the conformon [s′′′d , 8]
passes in membrane 6 but [a, 8] is not there, then the simulation does not halt.

If instead the interaction in membrane 1 involves the conformon with name
si and either s′q,l or s′′g,l (due to either (si, l+, sq) ∈ R or (si, li, sg, su) ∈ R), then
the following sets of applicable operations are.

1. the conformon with name si can interact again with the same instance of
either s′q,l or s′′g,l;

2. if there is either (si, l+, sq′) ∈ R or (si, l1, sg′ , su′) ∈ R, then the conformon
with name si can interact with an instance of either s′q′,l or s′′g′,l and the
conformon created in the previous interaction (either [s′q,l, 6] or [s′′g,l, 7]) can
pass to spl1;

3. both si and either [s′q,l, 6] or [s′′g,l, 7] can pass to spl1.

Because of maximal parallelism only the second and third set of operations
in the previous list can take place (as they contain two elements while the first
set contains only one element).

If the second set occurs, then the system never reaches an halting configura-
tion. This can be seen if, for instance, we consider the conformon [s′q,l, 6]. Once
in spl1 this conformons passes to membrane 2, then to spl2 and from here to
membrane 6 where it interacts with [a, 8]. As a consequence of this interaction
the conformon with name a passes to spl6 so that the system does never halt.

The role of [a, 8] in membrane 6 is just this: if in any stage during the com-
putation the system performed an operation that does not follow the simulation
of the program machine, then a conformon passes to membrane 6 and interacts
with [a, 8] making it unavailable for [s′′′d , 8].

The creation of [si, 3] and [s′q,l, 6] in membrane 1 starts the simulation of the
instruction (si, l+, sq) ∈ R. As we said, the simulation of the addition of 1 to the
value of the counter is performed with the passage of one instance of [l, 0] from
membrane 8 to membrane 14. When in membrane 2 [si, 3] and [s′q,l, 6] interact,
[si, −1] and [s′q,l, 10] are created and they pass to spl2 (in case [s′q,l, 6] passes to
spl2, then the system never halts). From spl2 [si, −1] and [s′q,l, 10] pass together to
membrane 3 where they interact, [si, 0] and [s′q,l, 9] are created and pass to spl3.
From here [si, 0] passes to membrane 11 while [s′q,l, 9] passes to membrane 8.

The membrane-splitter-membrane-splitter sequence that we just described
(membrane 2 - spl2 - membrane 3 - spl3) is present in other parts of the system.
This sequence allows to control the interaction of two conformons in a very pre-
cise way and to discard the outcome (i.e., conformons) of undesired interactions.

Once in membrane 8 the conformon with name s′q,l goes under another
membrane-splitter sequence. In membrane 8 [s′q,l, 9] interacts with an instance of
[l, 0]. After this interaction three sets of applicable operations are possible, this
situation is similar to the one described before for membrane 1. In this case the
undesired computation sees a conformons [l, 5] passing from spl8 to membrane
6, while a proper simulation sees a conformon [l, 0] passing to membrane 14 and
[s′q,l, 9] passing to membrane 11.

Conformon-P Systems with Negative Values 293

In membrane 11 [s′q,l, 9] interacts with [sq, 0] such that [s′q,l, 3] and [sq, 6] are
created. Again a membrane-splitter sequence allows to create [s′q,l, 0] and [sq, 9]
and let them pass to membrane 1. The instruction (si, l+, sq) ∈ R has been
performed and the system simulates the program machine being in state q.

The simulation of the instruction (si, l−, sg, su) ∈ R starts with the interac-
tion of [si, 9] and [s′′g,l, 0]. If when this happens no [l, 0] conformon is present in
membrane 14, then the conformon [su, 9] passes to membrane 1, otherwise an
occurrence of [l, 0] passes from membrane 14 to membrane 8 and the conformon
[sg, 9] passes to membrane 1.

One interaction of [si, 9] and [s′′g,l, 0] in membrane 1 creates [si, 2] and [s′′g,l, 7]
and, similarly to what described before, they can follow a membrane-splitter
sequence at the end of which [si, 2] is in membrane 11 and [s′′g,l, 9] is in membrane
13.

In this last membrane [s′′g,l, 9] interacts with [c, 0] so that [s′′g,l, 7] and [c, 2]
are created, then these two conformons pass to spl11. From here [c, 2] passes
to membrane 14. The conformon [s′′g,l, 7] also passes to this membrane but only
after two steps (in the meantime it goes in membrane 15 and 16).

If in membrane 14 there is at least an occurrence of [l, 0], then [c, 2] interacts
with any of these so that [c, −3] and [l, 5] are created (at the same time [s′′g,l, 7]
pass to membrane 17). In this configurations a few things can happen. Similarly
to the second and third set of operations indicated in the list above [c, −3] can
either remain in membrane 14 and interact with another instance of [l, 0] (if
present) or it can pass to spl12 and from here to membrane 15. In any case [l, 5]
passes to spl13 and from here to membrane 15. If [c, −3] is not present in this
membrane when [l, 5] is present, then this last conformon passes to spl14 and
from here to membrane 6 (and here it interacts with [a, 8] such that the system
never halts).

It should be clear now that if [c, −3] and [l, 5] do not move together out of
membrane 14 the system never halts. If they do so, then they pass to membrane
15 at the same time. Here [l, 5] can either pass to spl14 (and then to membrane
6) or it can interact with [c, −3] so that [l, 0] and [c, 2] are created and they pass
together to spl14. From here [l, 0] passes to membrane 8 and [c, 2] to membrane
16 (where it waits until [s′′g,l, 7] arrives).

When [s′′g,l, 7] passes to membrane 14 it can be that the conformon with name
c is there or not. This last conformon can be in membrane 14 for two reasons:
either no occurrence of [l, 0] was in that membrane, or one occurrence of [l, 0]
was there and [c, −2] did not pass to spl12. We know from the above that in this
last case the system does not halt (because an [l, 2] is heading membrane 6), so
we are not going to discuss the consequences of the interaction between [s′′g,l, 7]
and the conformon with name c when this last has a negative value.

If [c, 2] is present in membrane 14 when [s′′g,l, 7] arrives there, too, then two
things can happen: the two conformons interact or not. In this last case [s′′g,l, 7]
passes to spl13 and from here to membrane 16 and no operation can happen in
the system. If instead the two conforms interact, then [s′′g,l, 11] and [c, −1] are
created and they pass to membrane 18 (through spl13 and spl12, respectively).

294 P. Frisco

Here either [c, −2] passes to spl15 and no further operation is applied, or the two
conformons interact so to create [s′′g,l, 9] and [c, 0] and then these two conformons
pass to membrane 11 and 13, respectively. So when [s′′g,l, 9] is present in spl15,
then in the simulation the counter l was empty.

What happens to the conformon with name s′′g,l in membrane 11 is similar to
what discussed for the conformon with name s′q,l earlier on. The result of these
operations is that [sg, 9] and [s′′g,l, 0] are created and pass to membrane 1.

We still have to discuss the case in which no conformon with name c is present
in membrane 14 when [s′′g,l, 7] arrives. Here maximal parallelism forces this con-
formon to pass to spl13 and from here to membrane 16 where [c, 2] is also present.
This means that if [c, 2] and [s′′g,l, 7] are present in membrane 16, then the sim-
ulation of the subtraction of 1 from counter l has been performed.

When in membrane 16 [c, 2] and [s′′g,l, 7] interact so that [c, 0] and [s′′g,l, 9] are
created and pass to membrane 13 and 17, respectively. In this last membrane
[s′′g,l, 9] interacts with [s̄g,l, 1] so that [s′′g,l, 0] and [s̄g,l, 10] are created. Because
of maximal parallelism these last two conformons pass to membrane 1 and 11,
respectively.

What happens to the conformon with name s̄g,l in membrane 11 is similar to
what discussed for the conformon with name s′q,l earlier on. The result of these
operations is that [su, 9] and [s̄g,l, 1] are created and pass to membrane 1 and 17
respectively.

If on a given input the program machine reaches an halting state, then the
simulating conformon-P system can reach a final configuration.

The assumption that a program machine can simulate any such conformon-P
system derives from the Turing-Church thesis.
�

In the figure related to the following proof some conformons have a parametric
value of the kind a + bn, a, b ∈ N, n ≥ 0. This indicates all the possible values
that a conformons can have as a consequence of interactions. If, for instance, the
conformons [A, a], [C, c] and the interaction rule C

b→ A are present in the same
membrane, then the value of the A conformon can change into a + bn, where n
indicates the number of interactions between the A and the C conformon.

Theorem 2. Conformon-P systems with negative values and without maximal
parallelism can simulate partially blind program machines.

Proof. This proof follows from the one of [Theorem 1] from [1].
Figure 2 represents such a conformon-P system used as an accepting device

simulating a program machine. During this proof we refer to this figure.
For each state si of the simulated program machine there is a conformon with

name si. For each instruction of the kind (si, l+, sq) ∈ R there is a conformon
with name s′q,l; for each instruction of the kind (si, l−, sg) ∈ R there is a con-
formon with name s′′g,l. For the final state sd ∈ S there is one conformon with
name s′′′d .

The initial configuration of the conformon-P system has all conformons with
name s′q,l, s′′g,l and s′′′d and 0 as value in membrane 1; all the ones with name si

and 0 as value in membrane 8 except the one with name of the initial state s0

Conformon-P Systems with Negative Values 295

4 3

≥ 1= 4

= 1/ = 2

= 5

≥ 2

= 2/ = 3

≤ 0

≥ 5

≤ 5

≥ 0

≥ 7

≤ 7

≥ 1

= 6

≥ 1

≤ 0

≥ 0

= 0 = 6

≤ 0/ ≥ 6

= 5/

si
6→ s′

q,l si
5→ s′′

g,l si
4→ s′′′

d

[s′
q,l, 0] [s′′

g,l, 0] [s′′′
d , 0]

[si, 7]

1

[s′′′
d , 4]

2

[s′′
g,l, 5] si

2→ s′′
g,l

[s′
q,l, 6] si

1→ s′
q,l

[si, 1/2]

3

[s′′
g,l, 7 + 2n]

[s′
q,l, 7 + n]

6

[si,−n]

7

[s′′
g,l, 7] s′′

g,l
5→ sj

[si, 0]

[s′
q,l, 7] s′

q,l
6→ sj

8

([l, 0],kl)

s′′
g,l

3→ l

[s′′
g,l, 5]

4

[s′′
g,l, 2/5]

[l, 3 + 3n]

spl2

[l, 3] [s′′
g,l, 2]

l
3→ s′′

g,l

9

[s′′
g,l, 5 + 3n]

11

([l, 0], +∞)

[s′
q,l, 6]

s′
q,l

5→ l

5

[l, 5 + 5n]

[s′
q,l, 1/6]

spl3

[l,−3n]

10

[s′
q,l, 1] [l, 5]

l
5→ s′

q,l

12

[l,−5n] [s′
q,l, 6 + 5n]

spl4

[s′
q,l, 5/6] [s′′

g,l, 2]

[s′
q,l, 1] sj

6→ s′
q,l

sj
5→ s′′

g,l

13

[sj ,−5n/− 6n]

[s′′
g,l, 7 + 2n]

[s′
q,l, 7 + 6n]

spl6

[s′′
g,l, 2/7] [s′

q,l, 1/6]

[sj , 5 + 5n/6 + 6n]

spl5

[si, 1/2/3/7] [s′′′
d , 4 + 4n]

[s′
q,l, 6 + 6n] [s′′

g,l, 5 + 5n]

spl1

= 1/ = 2/ = 5/ = 6

≤ 0/ ≥ 7

= 0/ = 7= 1

Fig. 3. The conformons-P system related to Theorem 2

that is in membrane 1 with value 7 (in Figure 3 the generic conformon [si, 7] is
present in membrane 1).

Moreover, for each counter l of the simulated machine there are an unbounded
number of occurrences of the conformons [l, 0] in membrane 5, while the input
membrane (membrane 4 in the figure) contains as many copies of such confor-
mons as the values kl of the counters at the initial configuration of the simulated
machine. The addition of one unit to one counter l is simulated moving one occur-
rence of the conformon [l, 0] from membrane 5 to membrane 4; the subtraction of
one unit is simulated with the passage of one occurrence of the same conformon
from membrane 4 to membrane 5.

For each instruction of the type (si, l+, sq) ∈ R there is in membrane 1 the rule
si

6→ s′q,l; for each instruction of the kind (si, l−, v) ∈ R, there is in membrane 1

the rule si
5→ s′′g,l; for sd ∈ S there is in membrane 1 the rule si

4→ s′′′d .
For any configuration of the conformon-P system only one conformon of the

kind [si, 7] may be associated to membrane 1. As we already said, initially this
conformon is the one related to the initial state of the program machine.

When a conformon of the kind [si, 7] is present in membrane 1, then one of
the interaction rules indicate above can occur.

296 P. Frisco

Let us consider now the case that the rule si
8→ s′′′d can be applied. Of course

this rule can be applied more than once, if this happens the value of the si

conformon goes below 0 and the one of the s′′′d conformon is 4n. If n is at least
1, then the s′′′d conformon can pass to spl1, but only if n = 1, then [s′′′d , 4]
passes to membrane 2, the acknowledgment membrane, halting in this way the
computation.

This process of ‘filtering out’ (with splitters) conformons with an undesired
value is present in many places in this conformon-P system. If two conformons
over interacted, then the system never reaches an halting configuration.

If instead a rule of the kind si
6→ s′q,r is applied, then [s′q,r, 6 + 6n] can pass

to spl1, but only [s′q,r, 6] can pass to membrane 5. If in membrane 1 [si, 1] is
produced, then it passes to membrane 3 (through spl1).

In membrane 5 two things can happen:

1. s′q,l interacts several times with the same l conformon;
2. s′q,l interacts with different l conformons.

The only case such that [s′q,l, 1] is produced and passes to membrane 12
(through spl3) is when [s′q,l, 6] interacts only once with one [l, 0] conformons.
In all the other cases the value of the s′q,l conformon becomes negative and such
a conformon does not pass to membrane 12 (in this way the system never halts).

If [s′q,l, 1] is produced, then also one [l, 5] is produced and, once in membrane
12, these two conformons interact so that [s′q,l, 6] and [l, 0] are recreated (because
of spl4, an over interaction in membrane 12 leads the resulting conformons to
remain in that splitter) and they can pass to membrane 3 and 4, respectively.

The passage of an instance of [l, 0] from membrane 5 to membrane 4 simulates
the subtraction of one unit from the l counter. If no [l, 0] conformon is present
in membrane 5 when a s′q,l conformon gets there, then the system never reaches
an halting configuration.

In membrane 3 si and s′q,l can interact such that [si, −n] and [s′q,l, 7+n], n ≥ 0
are produced and they pass to membrane 7 and 6 respectively. Only if n = 0
(which means that only one interaction took place), then [si, 0] and [s′q,l, 7] pass
to membrane 8. Here s′q,l interacts with sj and, in a way similar to what described
until now, this can lead to the production of [sj , 7] and [s′q,l, 0] and these two
conformons can pass to membrane 1.

The simulation of an instruction of the kind (si, l−, v) is performed in a similar
way.

If on a given input the partially blind program machine reaches an halting
state, then the simulating conformon-P system can reach a final configuration.

�

4 Final Remarks

The results reported in this paper leave us somewhat confused. How shall we
interpret these results in terms of unbounded elements [4]? Must the range of
values (from −∞ to +∞) be regarded as one or two unbounded elements or as
no unbounded elements at all? (because the two infinities ‘cancel’ each other)

Conformon-P Systems with Negative Values 297

In this last case [Corollary 2] from [4] is confirmed as Theorem 1 has two un-
bounded elements (number of conformons and maximal parallelism) and Lemma
2 only one (number of conformons). This also implies that it is possible to prove
that a partially blind program machine can simulate any conformon-P system
with negative values without maximal parallelism.

In case the range of values is regarded as one unbounded element, then it
should be possible to prove that the computational power of conformon-P system
with negative values is equivalent to the one of program machines. This implies
that Theorem 1 is redundant (because it uses three unbounded elements).

In case the range of values is regarded as two unbounded elements, then some
of the results reported in [4] should be extended and made more general.

We believe that the range of values should be regarded an one unbounded
element.

Another problem on this line of research regards the characterization of blind
program machines in terms of unbounded elements. Blind program machines
(also known as blind multicounter machines) [5] are program machines that can-
not sense (so neither halt or check) if the value of a counter is zero. It is know
that these machines are strictly less computationally powerful then partially
blind program machines.

References

1. Frisco, P.: The conformon-P system: A molecular and cell biology-inspired com-
putability model. Theoretical Computer Science 312(2-3), 295–319 (2004)

2. Frisco, P.: Infinite hierarchies of conformon-P systems. In: Hoogeboom, H.J., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 395–408.
Springer, Heidelberg (2006)

3. Frisco, P.: P systems, Petri nets, and Program machines. In: Freund, R., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 209–223.
Springer, Heidelberg (2006)

4. Frisco, P.: An hierarchy of recognising computational processes, as Tech. Rep. 0047
(submitted, 2007), also available at
http://www.macs.hw.ac.uk:8080/techreps/build table.jsp

5. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7, 311–324 (1978)

6. Hopcroft, J.E., Ullman, D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

7. Minsky, M.L.: Computation: Finite and Infinite Machines. Automatic computation.
Prentice-Hall, Englewood Cliffs (1967)

8. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 1(61), 108–143 (2000)

9. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
10. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. LNCS,

vol. 1491. Springer, Heidelberg (1998)

http://www.macs.hw.ac.uk:8080/techreps/build_table.jsp

Optimizing Evolution Rules Application and

Communication Times in Membrane Systems
Implementation

Jorge A. Tejedor, Abraham Gutiérrez, Luis Fernández, Fernando Arroyo,
Ginés Bravo, and Sandra Gómez

Natural Computing Group
Escuela Universitaria de Informática, Universidad Politécnica de Madrid

Crta. de Valencia Km. 7, 28031 Madrid, Spain
{jtejedor,abraham,setillo,farroyo,gines,sgomez}@eui.upm.es

http://www.eui.upm.es

Abstract. Several published time analyses in P systems implementation
have proved that there is a very strong relationship between communi-
cation and evolution rules application time in membranes of the system.
This work shows how to optimize the evolution rule application and com-
munication times using two complementary techniques: the improvement
of evolution rules algorithms and the usage of compression schema.

On the one hand, this work uses the concepts of competitiveness rela-
tionship among active rules and competitiveness graph. For this, it takes
into account the fact that some active rules in a membrane can consume
disjoint object sets. Based on these concepts, we present a new evolu-
tion rules application algorithm that improves throughput of active rules
elimination algorithms (sequential and parallel).

On the other hand, this work presents an algorithm for compressing
information related to multisets and evolution rules, based on the as-
sumption that algorithmic complexity of the operations performed over
multisets, in evolution rules application algorithms, is determined by the
representation of multiset information of these rules. This representation
also affects the communication phase among membranes phase.

1 Introduction

Computation with membranes was introduced by Gheorghe Păun in 1998 [14]
through a definition of transition P systems. This new computational paradigm
is based on the observation of biochemical processes. The region defined by a
membrane contains chemical elements (multisets) which are subject to chemical
reactions (evolution rules) to produce other elements. Transition P systems are
hierarchical, as the region defined by a membrane may contain other membranes.
Multisets generated by evolution rules can be moved to adjacent membranes
(parent and children). This multiset transfer feeds back into the system so that
new products are consumed by further chemical reactions in the membranes.

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 298–319, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimizing Evolution Rules Application and Communication Times 299

These systems perform computations through transition between two consec-
utive configurations. Each transition or evolution step goes through two steps:
rules application and objects communication. First, the evolution rules are ap-
plied simultaneously to the multiset in each membrane. This process is performed
by all membranes at the same time. Then, also simultaneously, all membranes
communicate with their destinations.

Nowadays, membrane systems have been sufficiently characterized from a the-
oretical point of view. Their computational power has been settled – many vari-
ants are computationally complete. Among their most relevant characteristics
appears the fact that they can solve non polynomial time problems in polyno-
mial time, but this is achieved by the consumption of an exponential number of
resources, in particular, the number of membranes that evolve in parallel.

There are available several membrane systems simulators, [?]. An overview of
membrane computing software can be found in [2]. However, the way in which
these models can be implemented is a persistent problem today, because “the
next generation of simulators may be oriented to solve (at least partially) the
problems of information storage and massive parallelism by using parallel lan-
guage programming or by using multiprocessor computers” [2]. In this sense,
information storage in membrane computation implementation is an example of
Parkinson’s First Law [13]: “storage and transmission requirements grow double
than storage and transmission improvements”.

The objectives of this paper are: first to present an improvement of the al-
gorithm of active rules elimination [20] used in the rules application step, and
second to present a compression algorithm that allows us to compress informa-
tion without penalizing evolution time in P systems implementation.

To achieve this, the paper is structured as follows: first, related works are
presented; then, the basic ideas of the active rules elimination algorithm are
summarized, which is followed by a definition of the concept of competition
between rules and the optimization of the algorithm is specified. Next sections
present requirements for information compression in membrane systems and the
proposed compression schema; then we analyze the obtained results for a set of
tests for a well known P system. Finally, some conclusions are presented.

2 Related Works

The first works over massively parallel implementation for P systems started
with Syropoulos [18] and Ciobanu [3] who in their distributed implementations
of P systems use Java Remote Method Invocation (RMI) and the Message Pass-
ing Interface (MPI) respectively, on a cluster of PC connected by Ethernet.
These authors do not carry out a detailed analysis about the importance of the
time used during communication phase in the total time of P system evolution;
although Ciobanu stated that “the response time of the program has been ac-
ceptable. There are however executions that could take a rather long time due
to unexpected network congestion”.

300 J.A. Tejedor et al.

Recently, in [19] and [1] one presents analyses for distributed architectures that
are technology independent, based on: the allocation of several membranes in
the same processor; the use of proxies for communication among processors; and,
token passing in the communication. These solutions avoid communication colli-
sions, and reduce the number and length for communication among membranes.
All these allow to obtain a better step evolution time than in others suggested
architectures congested quickly by the network collisions when the number of
membranes grows. Table 1 summarizes minimum times (Tmin), optimal amount
of processors and membranes located in each processor (Popt and Kopt) to reach
those minimum times, and the throughput obtained with corresponding proces-
sors and communications (Thproc and Thcom) for the architecture. This analysis
considers the P system number of membranes (M) that would evolve, the max-
imum time used by the slowest membrane in applying its rules (Tapl), and the
maximum time used by the slowest membrane for communication (Tcom).

Table 1. Distributed architecture parameters depending on application rules time
(Tapl), communication time (Tcom) and number of membranes (M)

Distributed Architecture [19] Distributed Architecture [1]

Tmin = 2
�

2 M Tapl Tcom − 2 Tcom Tmin = 2
�

M Tapl Tcom + Tcom

Popt =
�

M Tapl

2 Tcom
Popt =

�
M Tapl

Tcom

Kopt =
�

2 M Tcom
Tapl

Kopt =
�

M Tcom
Tapl

Thproc∼ 50% Thproc∼ 50%
Thcom∼ 50% Thcom∼ 100%

From all these, we may conclude that to reach minimum times over distributed
architectures, there should be a balance between the time dedicated to evolution
rules application and the time used for communication among membranes. So,
depending on the existing relation between both times, and on the number of
membranes in the P system, it is possible to determine the number of processors
and the number of membranes that will be located at each of them to obtain
the evolution minimum time.

The difference between these architectures lies on the different topology for the
processors net and the policy for token passing. Thus, [1] reaches a throughput
near to a 100% of the communication line, an increment in the parallelism level
by the increment of a 40% in the processors amount involved in the architecture
and a reduction to reach the 70% of the evolution time. Both works conclude
that, for a specific number of membranes M , if it is possible that:

1. For Tapl to be N times faster, the number of membranes that would be hosted
in a processor would be multiplied by

√
N , the number of required processors

would be divided by the same factor and the time required to perform an
evolution step would improve approximately with the same factor

√
N .

Optimizing Evolution Rules Application and Communication Times 301

2. For Tcom to be N times faster, the number of required processors would
be multiplied by

√
N , the number of membranes that would be hosted in

a processor would be divided by the same factor and the time required to
perform an evolution step would improve approximately by the same factor√

N .

Table 2 summarizes the importance of reducing Tapl and Tcom over the dis-
tributed architectures parameters (minimum evolution time, optimum number
of processors and optimum number of membranes per processor).

Table 2. Repercussion on distributed architecture parameters depending on Tapl and
Tcom

Conditions Tmin Popt Kopt

Tapl be N faster and Tcom be equal Tmin√
N

Popt√
N

Kopt ·
√

N

Tapl be equal and Tcom be N’ faster Tmin√
N′ Popt ·

√
N ′ Kopt√

N′

Tapl be N faster and Tcom be N’ faster Tmin√
N′·

√
N

Popt·
√

N′
√

N

Popt·
√

N√
N′

These architectures need to know the time required to perform rules applica-
tion to be able to optimally distribute membranes among processors. Analysis
of the rules application algorithms published to date shows that only the execu-
tion time of active rules elimination algorithm [20](and its parallel version [8])
can be known beforehand. These two algorithms enable prior determination of
the maximum execution time, since this value depends on the number of rules
rather than on the cardinality of the multiset to which they are applied, as it
is reported in other algorithms [3], [6], [7]. In addition, these algorithms are the
fastest in their category (sequential and parallel).

This paper describes how to optimize evolution rule application and com-
munication times by means of two strategies. On one hand, the active rules
elimination algorithm modification taking into account the fact that some active
rules in a membrane can consume disjoint object sets will improve the evolution
rule application time. On the other hand, the use of a compression schema for
multisets and evolution rules presented in membranes will improve both times.

3 Optimization of Active Rules Elimination Algorithm

This section first presents the main ideas about active rules elimination algo-
rithm, second it introduces the concepts of competitive rules and competitive-
ness graph and finally, three optimizations of the algorithm are carried out taking
into account the competitiveness among rules and the features of the algorithm
itself.

302 J.A. Tejedor et al.

3.1 Active Rules Elimination Algorithm

The general idea of this algorithm is to eliminate, one by one, the rules from
the set of active rules. Each step of rule elimination performs two consecutive
actions:

1. Iteratively, any rule other than that which is to be eliminated is applied for
a randomly selected number of times in an interval from 0 to the maximum
applicability threshold. This action ensures the non-determinism inherent to
P systems.

2. The rule to be eliminated is applied a number of times which is equal to its
maximum applicability threshold, thus making it no longer applicable and
resulting in its disappearance from the set of active rules.

We assume that:

1. The object multiset to which active rules are applied is ω.
2. The active rules set is transformed to an indexed sequence R in which the

order of rules is not relevant.
3. The object multiset resulting from application of active rules is ω′.
4. The multiset of applied rules that constitute the algorithm output is ωR.
5. Operation |R| determines the number of rules in the indexed sequence R.
6. Operation ΔR[Ind] �ω′� calculates the maximum applicability threshold of

the rule R [Ind] over ω′.
7. The operation input (R [Ind]) · K performs the scalar product of the an-

tecedent of rules by a natural number.

The algorithm is as follows:

(1) ω′ ← ω
(2) ωR ← ∅MR(O,T)

(3) FOR Last = |R| DOWNTO 1
(4) BEGIN
(5) FOR Ind = 1 TO Last − 1 DO
(6) BEGIN
(7) Max ← ΔR[Ind] �ω′�
(8) K ← random(0, Max)
(9) ωR ← ωR +

{
R [Ind]K

}

(10) ω′ ← ω′ − input (R [Ind]) · K
(11) END
(12) Max ← ΔR[Last] �ω′�
(13) ωR ← ωR +

{
R [Last]Max

}

(14) ω′ ← ω′ − input (R [Last]) · Max
(15) END

Optimizing Evolution Rules Application and Communication Times 303

Remember that if rule R [i] is no longer applicable in the elimination step for
R [j], it is no longer necessary to perform the elimination step for R [i], and thus
the algorithm is greatly improved, as shown in [20].

In each iteration of the algorithm of actives rules elimination, the maximum
applicability threshold of a rule is calculated and then the rule is applied. The
number of iterations executed at worst is:

#iterations =
q∑

i=1

i =
q · (q + 1)

2

Let q be the cardinality of the indexed sequence of active rules. Thus, this
algorithm allows one to know how long it takes to be executed in the worst case,
with knowledge of the rules set of a membrane.

It is important to note that, in general, it is essential to perform the first
action in each elimination step of a rule. This action is necessary to ensure that
any possible result of the rules application to the multiset is produced by the
algorithm. In case the action is not performed, the eliminated rule (applied as
many times as the value of its maximum applicability threshold) may consume
the objects necessary so that any other rule can be applied. However, the latter
does not always occur and the first action in each elimination step can be sim-
plified. For the sake of illustration, let us assume that the antecedents of a set
of active rules are shown in Figure 1.

Fig. 1. Antecedent of the Active Rules Set

In this case, in the elimination step of the rule r1 only the first action with
the rule r2 has to be taken, as r1 and r2 are the only rules with the object
a in its antecedents. The same is the case with rules r3 and r4, as these two
compete for the object d. Thus, taking into account the competition between
rule antecedents, one can adjust the rule elimination algorithm to perform only
6 iterations in the worst case, rather than 10 (2 to eliminate r1, 1 to eliminate
r2, 2 to eliminate r3, 1 to eliminate r4) as shown in Figure 2.

3.2 Definition of Competitiveness Between Rules

Let R be a set of active rules, R = {r1, r2, ..., rq} with q > 0, and let C be a
binary relation defined over the set R such that

∀x, y ∈ R, x 	= y x C y ⇔ input(x) ∩ input(y) 	= ∅

This binary relation can be represented by a non-directed graph CG = (R, C)
called a competitiveness graph, where the rules are related to each other if and

304 J.A. Tejedor et al.

Fig. 2. Execution trace of Rules Elimination and Rules Elimination with competitive-
ness algorithms

only if their antecedents have an object in common. For example, given the rules
inputs shown in Figure 3, the competitiveness graph generated by these rules
taking into account the relation C will be as shown in Figure 4.

Fig. 3. Antecedents of an active rules set

Consider a competitiveness graph CG = (R, C), a rule x ∈ R, and a set
R′ ⊆ R. The subgraph resulting from elimination of rule x is defined as

CSG = (R − {x} , C ∩ R − {x} × R − {x})

and the competitiveness subgraph induced by the subset R′ is the graph

CSG = (R′, C ∩ R′ × R′) .

For a competitiveness graph CG = (R, C), a competitiveness chain is defined
as an ordered sequence of rules pertaining to R

Optimizing Evolution Rules Application and Communication Times 305

Fig. 4. Competitiveness graph

s1, s2, ... , sn si ∈ R,

satisfying:

si C si+1 ∀i ∈ {1, ..., n − 1}
By definition, there is always a competitiveness chain composed of a single

rule.
For a competitiveness graph CG = (R, C), the accessible rule relation (A) is

defined as:

x, y ∈ R x Ay ⇔ ∃ a competitiveness chain s1, ..., sn|s1 = x ∧ sn = y

This is an equivalence relation which divides the rule set R into equivalence
classes.

Let E be an equivalence class produced by A. The connected component of
CG is defined as the graph induced by the nodes pertaining to the equivalence
class E. Then CG is called connected if and only if it has a connected component.

For a competitiveness graph CG = (R, C) and a rule x ∈ R, it is said that x is
an articulation of CG if and only if the subgraph resulting from the elimination
of rule x has more connected components than CG.

3.3 The Algorithm Based on Rules Competitiveness

Based on the rules competitiveness relation, one can improve the algorithm of
elimination of active rules. To do this, an analysis must be made of the evolution
rules of each membrane prior to P system evolution. The analysis will determine
the order of active rules elimination and what rules set are used in the first
action of each elimination step of a given rule. The following optimizations can
be made of the algorithm of rule elimination:

First optimization. The idea of this optimization is based on the fact that in
the elimination step of a rule, the first action of the algorithm must be applied to
the rules in the same connected component of the competitiveness graph. This

306 J.A. Tejedor et al.

can be done because the antecedents of rules in different connected components
do not compete for common objects of the multiset.

The analysis prior to the execution of each P system calculates the competi-
tiveness graph of each membrane. Then the connected components of the graph
are calculated. The algorithm of active rule elimination will be applied indepen-
dently to the rules of each of the connected components, with no need for any
change in its codification.

In the worse case of the example in Figure 4, the sequential version of this al-
gorithm will need to perform 3 iterations in the connected component consisting
of the rules {r1, r2} and 36 iterations in the connected component consisting of
the rules {r3, r4, r5, r6, r7, r8, r9, r10}. Therefore, this example has gone from
55 iterations in the worst case of the algorithm of active rules elimination to 39
iterations (Figure 5), that is, it has been reduced by 71% compared to the active
rules elimination algorithm.

Making a parallel version of the algorithm is quite simple. One needs only
to apply the algorithm of active rules elimination in parallel to the rules of
each connected component on the competitiveness graph. The parallel version
would require only 36 iterations (maximum(36, 3)) in the worst case, as shown
in Figure 6), therefore it has been reduced by 65% compared to the active rules
elimination algorithm.

Second optimization. This optimization is applied in each connected compo-
nent of the competitiveness graph. If the competitiveness graph of a membrane
has articulations, the algorithm can be used to eliminate these rules first and

Fig. 5. Execution trace of 1st sequential optimization

Optimizing Evolution Rules Application and Communication Times 307

Fig. 6. Execution trace of 1st parallel optimization

cause the appearance of new connected components. Thus, if rule r6 is elimi-
nated in our example (Figure 4) the connected component splits in two: the one
composed of {r3, r4, r5} and the one composed of {r7, r8, r9, r10}.

When a connected component has no articulations, elimination of more than
one rule can break it into more than one connected component. Continuing with
the example we have proposed, if we first remove from connected component
{r7, r8, r9, r10} rules r7 and r10 in two elimination steps, it then splits into two
connected components consisting of the rules r8 and r9, respectively.

To perform this optimization, a slight change must be made in the sequential
algorithm of active rules elimination. Now, each step of elimination of a rule
must eliminate a specific rule. Moreover, there is a certain partial order in the
elimination steps of a rule. Whereas order is irrelevant in previous versions of
the active rules elimination algorithm, it is decisive in this version. The set of
rules used and the rule being eliminated in each elimination step is calculated
for each membrane in the analysis prior to the evolution of the P system; as a
result, the calculation does not penalize the execution time of the algorithm.

Figure 7 shows the order in which evolution rules are eliminated and the set
of rules used in each elimination step for the example in Figure 4. The number
of iterations of this algorithm in the worst case is 25, so it has been reduced by
45% compared to the active rules elimination algorithm.

The parallel version of the algorithm involves applying the sequential version
to each of the connected components that are either in the original competitive-
ness graph or that are generated as a result of the elimination of a rule.

The execution trace of the parallel algorithm used with the set of rules of the
example in Figure 4 is shown in Figure 8. It may be noted that the number
of iterations in the worst case is 16 (maximum(8, 2) + maximum(3, 4, 1) +
maximum(1, 1, 3) + maximum(1, 1)) using 5 processes. Hence, the number of
iterations is reduced by 29% compared to the active rules elimination algorithm.

308 J.A. Tejedor et al.

Fig. 7. Execution trace of 2nd sequential optimization

Third optimization. This last optimization is based on an analysis of the
execution trace of the 2nd optimization. It can occasionally be observed that the
elimination step of one rule rj also eliminates one or more additional rules ri.
This can occur either because ri is applied a number of times that coincides with
the maximum applicability threshold, or the rules applied prior to ri consume
the objects needed to continue being active. This can be used in three ways to
improve the execution time of the algorithm:

1. There is no need to execute the elimination step of the rule ri eliminated
in a previous step. Bearing in mind the execution trace in Figure 7, if the
elimination step of rule r6 also eliminates rule r4, then it would no longer
be necessary to execute the elimination step of r4, thus allowing execution
of the algorithm to save 3 iterations.

2. The rule ri is not to be applied in the elimination steps of subsequent rules.
Bearing in mind the execution trace in Figure 7, if the elimination step of
the rule r6 also eliminates rule r8, it is therefore unnecessary in elimination
steps of the rules r7 and r10 to try to apply r8, thus allowing execution of
the algorithm to save 2 iterations.

3. Elimination of the rule ri causes a change in the composition and order of
the subsequent elimination steps. Keeping in mind the execution trace in
Figure 7, if the elimination step of rule r6 also eliminates rule r8, then it is
beneficial for the execution of the algorithm that r9 be the next rule to be
eliminated. This is the case because once r6, r8 and r9 have been eliminated,
r7 and r10 can be eliminated in a single iteration in their elimination step
since they do not share objects. Here, 3 iterations would be saved.

Optimizing Evolution Rules Application and Communication Times 309

Fig. 8. Execution trace of 2nd parallel optimization

To implement this optimization, a determination is necessary of what rules
continue to be active whenever an elimination step is performed, and this in-
formation is used to calculate the next optimal elimination step to be taken.
Logically, calculation of the next optimal elimination step would severely pe-
nalize the execution time of the algorithm. Hence, a different solution must be
sought. This solution involves making an analysis prior to the execution of each
P system, in which we can calculate all the possible active rule sets and assign
them the next optimal step of rule elimination. All this information would be
reflected in a director graph of the algorithm, the definition of which is as follows.

Let R be a set of active rules. The director graph of the algorithm of rule
application is composed of a triple DG = (Q, A, T) where:

1. Q is the node set of the graph, composed of a subset of parts of R, that is:
∀q ∈ Q, , q ∈ P (R)

2. A is a correspondence whose initial set is Q and whose final set is a set of
sequences of rules composed of rules from the origin element of Q. Thus,
each set of active rules has one or more sequences of rules. Each sequence of
rules indicates the order in which elimination step rules are applied. So, a
state can have several elimination steps associated in the analysis prior the
evolution of each P system.
A : Q → E where E is the set of possible sequences with elements in Q

3. T is a set of transitions. Each transition is composed of a triad 〈qi, A (qi) , qf 〉
where qi, qf ∈ Q are the initial and final state, respectively, of the transition
and A (qi) are the elimination step (s) of rules associated to state qi, which,
after being executed, means that active rules are those of state qf .

The execution of the sequential algorithm of application of competitive rules
will involve making a loop that ends when it reaches a state with no active rules.
In each iteration, there are three steps:

1. The elimination steps associated to the state are executed.
2. Active rules are calculated.
3. The state represented by active rules is transited.

Execution of the parallel algorithm of application of competitive rules will
be similar to the sequential one. The difference is that execution of several

310 J.A. Tejedor et al.

elimination steps associated to a state is performed in a parallel way. At worst,
the third optimization performs the same iterations as the second optimization.

4 Multisets and Rules Compression

Algorithmic complexity of the operations over multisets used in the evolution
rules application algorithms is determined by the representation of multiset in-
formation of these rules. This representation also affects the communication
between membranes. So the use of a suitable compression schema can have a
positive influence over the reduction of evolution rule application and commu-
nication times.

4.1 Compression Requirements

First, unlike other environments, where it is admissible a non lossless information
system (i.e., multimedia contents transmission), in our environment it is essential
that our compression system has no information loss.

Almost all the compression methods require two phases: the first one for analy-
sis followed by a second one for conversion. First, an initial analysis of the infor-
mation is done to identify repeated strings. From this analysis, an equivalences
table is created to assign short codes to those strings. In a second phase, infor-
mation is transformed using equivalent codes for repeated strings. Besides, this
table is required with the information for its future compression/decompression.
On the other hand, we must realize that a higher compression without any in-
formation loss will take more processing time. Bitrate is always variable and it is
used mainly in text compression [17]. Because all of this, in spite of the fact that
there are compression systems that are able to reach entropy limit - highest limit
for data compression (e.g., Huffman codes) - they are not the ideal candidates
for our system because of the following reasons:

1. Table storage will increase the needs for memory resources and would de-
crease compression goal.

2. Time for the phase of evolution rules application is penalized with com-
pression/decompression processes when accessing compressed information
on the P system. This reduces parallelism level from distributed systems
and increases evolution time.

3. And also, despite of the fact that communication phase time will be re-
duced because a lowest amount of information is transmitted, this will be
counteracted by the time needed for decompression in the destination.

In this way compression schema for information from P system should accom-
plish the following requirements:

1. there should be no information loss;
2. it should use the lowest amount of space for storage and transmission;
3. it should not penalize time for rules application phase and communica-

tion among membranes while processing compressed information. Thus, this
means that the system should:

Optimizing Evolution Rules Application and Communication Times 311

(a) encode information for a direct manipulation in both phases without
having to use coding/decoding processes,

(b) do the compression in a previous stage to the P system evolution,
(c) therefore, abandon entropy limit to be able to maintain parallelism level

and evolution time reached in previous research works.

4.2 Compression Schema

The second goal of this work pretends to compress the information from multisets
that are present in regions and rules antecedents and consequents from each
rule of a P system. But it does not address the compression of another kind
of information, such as priorities, membrane targets in rule consequents nor
dissolving rule capability.

Representation for multisets information in related literature is Parikh’s vec-
tor [4]. Data compression is directly associated with its representation. A com-
pression schema is presented here in three consecutive steps beginning with
Parikh’s vector codification over the P system alphabet.

Parikh’s vector over P system alphabet. Each region of a membrane can
potentially host an unlimited number of objects, represented by the symbols
from a given alphabet V. We use V* to denote the set of all strings over the
alphabet V (we consider only finite alphabets). For a ∈ V and x ∈ V* we
denote by |x|a the number of occurrences of a in x. Then, for V = {a1, ..., an},
the Parikh vector associated with V is the mapping on V* denoted by ψV (x) =
(|x|ai

, · · · , |x|an
) for each x ∈ V *. The byte’s order reflects the order of the

objects within the alphabet and consequently, the position directly indicates
which symbol’s multiplicity is being stored.

Parikh’s vector for each membrane’s alphabet. First step in compression
considers only the alphabet subset that may exist in each of the regions for the
membrane system, whatever are the possible configurations for the P system
evolution. This subset may be calculated by a static analysis, previous to P
system evolution time. Rules to consider when determining each membrane’s
alphabet in a given P system are:

1. Every object present at the region for the P system initial configuration
belongs to its membrane’s alphabet.

2. Every object present at the consequent for a membrane’s evolution rule with
target “here” belongs to its membrane’s alphabet.

3. Every object present at the consequent for a membrane’s evolution rule
with target “in” to another membrane, belongs to the target membrane’s
alphabet.

4. Every object present at the consequent for a membrane’s evolution rule with
target “out”, belongs to its father alphabet.

5. Every object present at any membrane alphabet with an evolution rule with
dissolution capability belongs to its father alphabet.

312 J.A. Tejedor et al.

Parikh’s vector without null values. Next compression step is an alteration
over the Run Length Encoding (RLE) algorithm [11], used mainly to compress
FAX transmissions. In this lossless codification, data sequences with same value
(usually zeros) are stored as a unique value plus its count. RLE compression
factor is, approximately:

E (X)
E {log2 x}

where X is a discrete random variable that represents the number of successive
zeros between two ones and E(X) is its expected value (average). Compression
value stands between 20% and 30%.

In our case, what we pretend is to eliminate all the null values in Parikh’s
vector, that is, to eliminate all the references to the alphabet elements in a mem-
brane that do not appear in its multiset. This information may be
considered as redundant because it may be obtained from the new coded in-
formation. In a formal way, let V = {a1, a2, . . . , an} be an ordered finite al-
phabet, for x ∈ V ∗ the encoded Parikh vector associated with V is defined by
ΨE

V (x) = {(|x|ai , i) | |x|ai 	= 0}.
At this point we should remark an important factor that is the variable or

constant character for the multiset multiplicities. For the cases with multisets
present at a membrane region, independently from the initial configuration, its
multiplicities values are variable depending on the evolution that takes the mem-
brane system in a non deterministic way. On the other hand, for the cases with
multisets present at the evolution rules antecedents and consequents, its multi-
plicities values are constant and known previously to the P system evolution.

According to this situation, the compression second step encodes without
null values just the information that belongs to constant multisets present at
evolution rules. Thus, we get a more compressed (and lossless) representation.
The reason that does this representation possible is the fact that the absence of
these null values multiplicities does not affect none of the multisets operations
(addition, subtraction, applicability, scalar product, . . .).

Storage unit compression. Last compression step concerns storage unit size
for each of the P system information values. Depending on the storage unit size
(measured in bits), we will be able to codify a greater or smaller range of values.
In membrane computing, that does not allow negative values, given t bits for
the storage unit, the range for possible values will vary from 0 to 2t − 1.

In this section, we will have to take into account multisets present in the
regions separately from the ones present in evolution rules. For the first case,
storage unit size depends on the value range we want to reach during evolution
without having an overflow. Instead of this, for the second case, we have to
take into account, as it was shown in previous sections, that each membrane’s
ordered alphabet and their multiplicities are constant. Thus, an analysis previous
to the P system evolution allows calculating the value ranges that are present
in constant multisets for evolution rules and, so, the size that is needed to get
their codification:

Optimizing Evolution Rules Application and Communication Times 313

1. value range for multiplicities present at the antecedents and consequents for
each membrane,

2. value range for Parikh’s vector positions over the ordered alphabet for each
membrane.

5 Analysis of Results

In this section we present the analysis of results obtained from the improvement
of evolution rules algorithms and the usage of compression schema. First we
analyze the impact that algorithms and compression have over the time required
for evolution rules application. Second, we analyze the impact that compression
has over the time needed for communication among membranes. Afterward, we
analyze the global impact over distributed architectures parameters: evolution
minimum time, optimum number of processors and membranes in each processor.
Finally, we analyze the schema compression itself and its benefits over viable
architectures for P systems implementations.

For the analysis of the following sections, we examine some P systems consid-
ered in [14] and [15]. Table 3 describes these P Systems.

Table 3. P System used for testing

P System Task Reference

A. First example [14]
B. Decidability: n mod k = 0 [14]
C. Generating: n2, n ≥ 1(1st version) [14]

D. Generating: n2, n ≥ 1 (2nd version) [15]

5.1 Impact Analysis for Evolution Rules Application Time

The algorithms for evolution rules application that have been referred to in this
paper, are based upon a limited set of primitive operations over multisets. These
are computation of: applicability, maximum applicability, antecedent/consequent
addition and subtraction over its region multiset and the scalar product of an
antecedent/consequent.

Table 4 shows the number of operations over multisets performed at worst by
the algorithms:

– Actives rules elimination (ARE) [20]
– Sequential version of competitive rules with 2nd optimization (SCR)
– Delimited massively parallel (DMP) [8]
– Parallel version of competitive rules with 2nd optimization (PCR)

applied to P systems mentioned in Table 3.

314 J.A. Tejedor et al.

Table 4. Number of operations over multisets performed at worst

Sequential Parallel
P System ARE SCR SCR/ARE DMP PCR PCR/DMP

A. 18 12 66,6% 18 9 50%
B. 9 9 100% 10 9 100%
C. 18 12 66,6% 18 9 50%
D. 18 12 66,6% 18 9 50%

Average 15.75 11.25 75% 16 9 60%

According to these empirical values, SCR algorithm decreases its execution
time 75% against ARE. Consequently, evolution rules application time will be
approximately 1.33 times faster. With the parallel algorithms we have that PCR
algorithm decreases its execution time 60% against DMP. Consequently, evolu-
tion rules application time will be approximately 1.67 times faster.

The algorithmic complexity of the operations over multisets used in the evolu-
tion rules application algorithms is determined by the representation of multiset
information of these rules. At worst, using representation through Parikh’s vector
over the P system alphabet, complexity will be equal to the alphabet cardinal-
ity. On the other hand, using representation through the proposed compression
schema, complexity at worst will be equal to the multiset support that is present
at the evolution rule antecedent/consequent. Table 5 presents, for each of the P
systems in table 3, its alphabet support, the average support for multisets present
in its evolution rules and a percentage based relation among both cardinalities.
Last row presents these cardinalities average values and their relation.

Table 5. Alphabet cardinality and support average from P systems of Table 3

P System | V | | support(w) | %

A. 4 1.05 26.3%
B. 4 1.50 37.5%
C. 5 1.13 22.6%
D. 5 1.13 22.6%

Average 4.5 1.20 27.25%

According to these empirical values, each of the primitive operations previ-
ously mentioned will decrease its execution time approximately until a 27.25%.
Consequently, evolution rules application time will be approximately 3.67 times
faster.

Taking into account both factors (decrease number of operations and decrease
time per operation) we can affirm that the evolution rules application time with
SRC algorithm will be approximately 4.88 times faster than ARE algorithm and
PRC algorithm will be approximately 6.09 times faster than DMP algorithm.

Optimizing Evolution Rules Application and Communication Times 315

5.2 Impact Analysis for Communication Time Among Membranes

Communication among membranes addresses submission of multisets present at
the applied application rules consequents and, in case of dissolution, the region
multiset itself. Depending on information representation, the data packet size to
transmit will be smaller or bigger. Table 6 shows, for each of the P systems shown
in Table 3, information compression rate for its communication for different
storage units sizes. Last row presents compression rates average.

Table 6. Compression degree for communication units from P systems of Table 3

Storage unit size
P System 8 bits 16 bits 32 bits 64 bits

A. 55.0% 45.0% 40.0% 37.5%
B. 60.0% 50.0% 45.0% 42.5%
C. 54.0% 44.0% 39.0% 36.5%
D. 53.3% 44.4% 40.0% 37.8%

Average 55.6% 45.9% 41.0% 38.6%

According to these empirical values, a reduction until a 55.6% of the infor-
mation to transmit among membranes may be reached in the worst case. Con-
sidering that communication is a linear process that depends upon the amount
of information to transmit, communication time among membranes will be ap-
proximately 1.8 times faster.

5.3 Global Impact Analysis

At this point, we present an impact analysis of the optimization of the evolution
rule application and communication times over distributed architecture para-
meters. In particular, we examine, following the criteria shown in Table 2, the
implication in optimum number of processors and membranes per processor and
minimum evolution time.

On one hand, time reduction for evolution rules application increases the
number of membranes per processor. It also decreases the number of processors
and evolution time.

Using the compression schema with SCR algorithm the following results are
obtained: the evolution rules application time will be approximately 4,88 times
faster so we get an increment of a 120.9% for membranes per processor and a
reduction until a 45.26% for number of processors and for evolution time.

Using the compression schema with PCR algorithm the following results are
obtained: the evolution rules application time will be approximately 6.09 times
faster so we get an increment of a 146.78% for membranes per processor and a
reduction until a 40.52% for number of processors and for evolution time.

On the other hand, time reduction for communication among membranes
increases the number of processors. It also decreases the number of membranes

316 J.A. Tejedor et al.

per processor and evolution time. According to the previous empirical data,
from a communication time 1.80 times faster, we get, for the worst case, a 34.2%
increment for number of processors and a reduction until a 74.5% for the number
of membranes per processor and for evolution time.

Taking into account both factors, reduction for application and communica-
tion time, counteract their effects over the number of processors and the number
of membranes per processor.

Using the compression schema with SCR algorithm the following results are
obtained: we get a reduction of a 60.7% for the number of processors, an incre-
ment of a 64.65% for the number of membranes per processor and a reduction
until a 33,74% for evolution time.

Using the compression schema with PCR algorithm the following results are
obtained: we get a reduction of a 54.36% for the number of processors, an incre-
ment of a 83.93% for the number of membranes per processor and a reduction
until a 30.2% for evolution time.

5.4 Compression Schema Analysis

Table 7 shows compression rates reached for each P system from Table 4, con-
sidering different storage unit sizes. Last row presents average compression rates
for each storage size.

Table 7. Compression degree for P System from Table 3

Storage unit size
P System 8 bits 16 bits 32 bits 64 bits

A. 59.8% 37.8% 26.8% 21.3%
B. 75.0% 47.7% 34.1% 27.3%
C. 51.1% 32.1% 22.8% 18.1%
D. 52.2% 33.3% 23.9% 19.2%

Average compression degree 59.5% 37.7% 26.9% 21.5%

Considering the worst case for this compression schema (8 bits for all the
storage units), at least, we reach a compression rate of 75,0%, which implies
an increase of a 33,3% for memory availability to store information. For average
compression rate (59,5%), it is reached an increase of 68,0% of memory availabil-
ity. So we attenuate the storage problem for information in distributed architec-
tures implemented with low storage capacity microcontrollers based technologies.
Using this compression schema, it will be possible to allocate more membranes
in each microcontroller and so, it will be possible to reach minimum times at
the same time that we are maximizing resources.

On the other hand, it has to be underlined that the compression process is
done by an analysis previous to the P system evolution. Thus, evolution is not

Optimizing Evolution Rules Application and Communication Times 317

penalized with compression/decompression processes while phases for evolution
rules application or communication among membranes.

6 Conclusions

Several published time analyses have proved that there is a very strong rela-
tionship between communication and evolution rules application times during
membranes evolution in P systems implementation. This relation determines
the number of membranes that can be allocated per processor in order to obtain
the minimum evolution time for the P system. This work shows how to optimize
the evolution rule application and communication times using two complemen-
tary techniques: the improvement of evolution rules algorithms and the usage of
compression schema.

On the one hand, this paper introduces the concept of a competitiveness rela-
tionship among active rules. Based on this concept, a new way of parallelism has
been opened toward the massively parallel character needed in rules application
in P systems. Moreover, the sequential version of this algorithm performs a lower
number of operations in execution than in other sequential algorithms published
to date. Both the sequential and the parallel versions of the algorithm carry out
a limited number of operations, thus allowing for prior knowledge of the exe-
cution time. This characteristic makes both versions of the proposed algorithm
appropriate for being used in viable distributed architectures for P systems im-
plementations. This is very important because architectures require determining
the distribution of the number of membranes to be located in each processor of
the architecture in order to obtain minimal evolution step times with minimal
resources.

On the other hand, this work has presented a schema for compressing
multisets and evolution rules for P system. The schema gets the possible highest
compression level for the information without penalizing compression and de-
compression time with cost-consuming operations.The whole compression
process is performed by mean of a previous static analysis to the P system exe-
cution. These facts, thanks to the chosen representation of information, improve
the system performance reducing evolution rule application and communication
times, what is very important because it implies a direct reduction of the evolu-
tion time in system execution.

An additional advantage obtained by the new algorithm and compression
scheme is applied to hardware solutions and architectures based on microproces-
sors nets. In these cases the amount of information that has to be stored and
transmitted is very important. In the first case, the main problem is due to the
low storage capacity of microcontrollers. So, reducing this amount of informa-
tion needed to represent a membrane, means to be able to extend the variety
of problems that can be solved with this technology. In the second case, reduc-
ing the amount of information to transmit means to minimize the bottleneck in
processor communication and so, increase the parallelism level.

318 J.A. Tejedor et al.

References

1. Bravo, G., Fernández, L., Arroyo, F., Tejedor, J.: Master-Slave Parallel Architec-
ture for Implementing P Systems. In: MCBE 2007. The 8th WSEAS International
Conference on Mathematics and Computers in Business and Economics, Vancouver
(Canada) (June 2007)

2. Ciobanu, G., Păun, G., Pérez-Jiménez, M. (eds.): Applications of Membrane Com-
puting. Natural Computing Series. Springer, Heidelberg (2006)

3. Ciobanu, G., Wenyuan, G.: A P System running on a Cluster of Computers. In:
Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing. LNCS, vol. 2933, pp. 123–150. Springer, Heidelberg (2004)

4. Dassow, J.: Parikh Mapping and Iteration. In: Calude, C.S., Pun, G., Rozenberg,
G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 85–102. Springer,
Heidelberg (2001)

5. Fernández, L., Mart́ınez, V.J., Arroyo, F., Mingo, L.F.: A Hardware Circuit for
Selecting Active Rules in Transition P Systems. In: Workshop on Theory and
Applications of P Systems, Timisoara (Romania) (September 2005)

6. Fernández, L., Arroyo, F., Castellanos, J., Tejedor, J.A., Garćıa, I.: New Algo-
rithms for Application of Evolution Rules based on Applicability Benckmarks. In:
BIOCOMP 2006. International Conference on Bioinformatics and Computational
Biology, Las Vegas (EEUU) (July 2006)

7. Fernández, L., Arroyo, F., Tejedor, J.A., Castellanos, J.: Massively Parallel Algo-
rithm for Evolution Rules Application in Transition P Systems. In: WMC 2006,
pp. 337–343 (July 2006)

8. Gil, F.J., Fernández, L., Arroyo, F., Tejedor, J.A.: Delimited Massively Parallel
Algorithm based on Rules Elimination for Application of Active Rules in Transition
P Systems. In: i.TECH-2007. Fifth International Conference Information Research
and Applications, Varna (Bulgary) (June 2007)

9. Gutiérrez, A., Fernández, L., Arroyo, F., Mart́ınez, V.: Design of a Hardware Archi-
tecture based on Microcontrollers for the Implementation of Membrane Systems.
In: SYNASC 2006. 8th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, (September 26-29, 2006), Timisoara, Romania
(2006)

10. Gutiérrez, A., Fernández, L., Arroyo, F., Alonso, S.: Hardware and Software Ar-
chitecture for Implementing Membrane Systems: A case of study to Transition P
Systems. In: DNA13 2007. 13th International Meeting on DNA Computing Mem-
phis, EEUU (June 4-8, 2007)

11. Lelewer, D.A., Hirschberg, D.S.: Data Compression. ACM Computing, 8902-0069
(1987)

12. Mart́ınez, V., Fernández, L., Arroyo, F., Gutiérrez, A.: A Hardware Circuit for the
Application of Active Rules in a Transition P Systems Region. In: Fourth Inter.
Conference Information Research and Applications, (June 20-25, 2006), Bulgaria,
Varna (2006)

13. Parkinson, C.N.: Parkinson’s Law, or the Pursuit of Progress. John Murray (1957)
14. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences

61 (2000), Turku Center of Computer Science-TUCS Report 208 (1998)
15. Păun, G., Rozenberg, G.: A Guide to Membrane Computing. Theoretical Computer

Science 287, 73–100 (2000)
16. Petreska, B., Teuscher, C.: A Reconfigurable Hardware Membrane System. In:

Alhazov, A., Mart́ın-Vide, C., Paun, G. (eds.) Preproceedings of the Workshop on
Membrane Computing, Tarragona, July 17-22 2003, pp. 343–355 (2003)

Optimizing Evolution Rules Application and Communication Times 319

17. Salomon, D.: Data Compression: The Complete Reference. Springer, Heidelberg
(2004)

18. Syropoulos, A., Mamatas, E.G., Allilomes, P.C., Sotiriades, K.T.: A Distributed
Simulation of P Systems. In: Preproceedings of the Workshop on Membrane Com-
puting, Tarragona, pp. 455–460 (2003)

19. Tejedor, J.A., Fernández, L., Arroyo, F., Bravo, G.: An Architecture for Attacking
the Bottleneck Communication in P System. In: AROB 2007. XII International
Symposium on Artificial Life and Robotics, Oita, JAPAN (January 25-27, 2007)

20. Tejedor, J.A., Fernández, L., Arroyo, F., Gutiérrez, A.: Algorithm of Active Rule
Elimination for Application of Evolution Rules. In: MCBE 2007. The 8th WSEAS
International Conference on Mathematics and Computers in Business and Eco-
nomics, Vancouver (Canada) (June 2007)

Hill Kinetics Meets P Systems:

A Case Study on Gene Regulatory Networks as
Computing Agents in silico and in vivo

Thomas Hinze1, Sikander Hayat2, Thorsten Lenser1,
Naoki Matsumaru1, and Peter Dittrich1

1 Friedrich-Schiller-Universität Jena, Bio Systems Analysis Group
Ernst-Abbe-Platz 1–4, D-07743 Jena, Germany

{hinze,thlenser,naoki,dittrich}@minet.uni-jena.de
2 Universität des Saarlandes, Computational Biology Group

Center for Bioinformatics, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
s.hayat@bioinformatik.uni-saarland.de

Abstract. Modeling and simulation of biological reaction networks is an
essential task in systems biology aiming at formalization, understanding,
and prediction of processes in living organisms. Currently, a variety of
modeling approaches for specific purposes coexists. P systems form such
an approach which owing to its algebraic nature opens growing fields of
application. Here, emulating the dynamical system behavior based on
reaction kinetics is of particular interest to explore network functions.
We demonstrate a transformation of Hill kinetics for gene regulatory
networks (GRNs) into the P systems framework. Examples address the
switching dynamics of GRNs acting as NAND gate and RS flip-flop.
An adapted study in vivo experimentally verifies both practicability for
computational units and validity of the system model.

1 Introduction

Along with the development of systems biology, a variety of modeling techniques
for biological reaction networks have been established during the last years [1].
Inspired by different methodologies, three fundamental concepts emerged mostly
independent of each other: analytic, stochastic, and algebraic approaches. Each
paradigm specifically emphasizes certain modeling aspects. Analytic approaches,
primarily adopted from chemical reaction kinetics, enable a macroscopic view on
species concentrations in many-body systems. Based on differential equations
considering generation and consumption rates of species, deterministic moni-
toring and prediction of temporal or spatial system behavior is efficiently ex-
pressed by continuous average concentration gradients. In contrast, stochastic
approaches reflect aspects of uncertainty in biological reaction networks by in-
corporating randomness and probabilities. So, ranges of possible scenarios and
their statistical distribution can be studied facilitating a direct comparison with
wetlab experimental data. Statistical tools help in discovering correlations be-
tween network components. Furthermore, algebraic approaches appear as flexi-
ble instruments regarding the level of abstraction for system description. Due to

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 320–335, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hill Kinetics Meets P Systems 321

wetlab experimental data

verification

simulation

modelling

stochastic

algebraican
aly

tic

grammars
P systems

X machines
cellular autom.

Petri nets
pi−calculus
ambient calc.

master eqn.
Markov chains
Gillespie

about discrete signal carriers, hierarchical

and m
odular com

positions, identifying functional units

considering randomness and probabilities to study
ranges of possible scenarios

pr
ed

ict
ing

 d
yn

am
ica

l b
eh

av
iou

r o
f s

pe
cie

s

equations
difference

transitions
correspond to

recursion steps

discretise
with respect to

time and/or space

equations
differential

parameters of reaction
kinetics correspond

normalised

to probabilities

term
rewriting
systems

differentiate /

molecular configurations
whose trace inter−

states correspond to

pretable as process

state−based
machines /
automata

resp. intermediate
terms correspond

sentential forms

to states

process
calculi /
models

processes or constraints;
edges correspond to depen−

nodes correspond to

dencies between processes

networks
Bayesian

cumulate /
extract

statistically

case studies

stochastic
simulation
algorithms

evaluating structural inform
ation

phenotypic
representation

of GRNs

Fig. 1. Modeling approaches for biological reaction networks and bridges between
them. Algorithmic strategies behind these bridges allow model transformations. Sto-
chastic, analytic, and algebraic approaches form fundamental paradigms, classified into
subclasses (white highlighted) and transformational concepts (black highlighted).

their discrete principle of operation, they work by embedding as well as evaluat-
ing structural information, modularization, molecular tracing, and hierarchical
graduation of provided system information.

Combining advantages of several paradigms comes more and more into the fo-
cus of research. On the one hand, heterogeneous models subsume elements from
different approaches into an extended framework. On the other hand, transfor-
mation strategies aim to model shifting between approaches, see Figure 1. Thus,
specific analysis tools as well as advanced techniques for classification, simplifi-
cation, comparison, and unification can become applicable more easily. This is
additionally motivated by the fact that all three paradigms are independently
known to be capable of constructing Turing complete models for computation.

In general, P systems represent term rewriting mechanisms, hence algebraic
constructs [15,16]. Substantiated by the progress in proteomics, investigating
the dynamical behavior of biological reaction networks is essential to under-
stand their function. Although P systems containing appropriate kinetics are
useful, reaction kinetics is mostly defined for analytic models. In this paper, we
contribute to bridging this gap for GRNs.

Related work addresses corresponding P systems for phenotypic representa-
tions of some biological network classes. While metabolic P systems [11] and P
systems for cell signalling [9,14] have already been equipped with mass-action

322 T. Hinze et al.

kinetics derived from underlying reaction mechanism [5], P systems for GRNs
[2,4] and for quorum sensing [3] are restricted to formulate inhibiting or activat-
ing effects qualitatively. In order to introduce a homogeneous quantitative model,
we decided to incorporate Hill kinetics [12] to the P systems framework by de-
scribing the cooperativity in GRNs dynamically using sigmoid-shaped transfer
functions that are more precise than two-stage on/off switching.

The paper is organized as follows: Based on the definition of Hill kinetics,
we present a method for discretization that leads to P systems ΠHill whose
properties are discussed briefly. A case study includes GRNs acting as NAND
gate and RS flip-flop. For each logic gate, its GRN in concert with ODEs derived
from Hill kinetics, corresponding P system, and simulation results are shown.
Finally, we verify that a reporter gene encoding the green fluorescent protein
(gfp) with transcription factors N-acyl homoserine lactone (AHL) and isopropyl-
βD-thiogalactopyranoside (IPTG) can mimic the aforementioned RS flip-flop in
vivo. Here, gfp expression is quantified using flow cytometry.

2 Transforming Hill Kinetics to P Systems

2.1 Hill Kinetics

Hill kinetics [12] represents a homogeneous analytic approach to model coop-
erative and competitive aspects of interacting biochemical reaction networks
dynamically. It formulates the relative intensity of gene regulations by sigmoid-
shaped threshold functions h of degree m ∈ N+ and threshold Θ > 0 such that
x ≥ 0 specifies the concentration level of a transcription factor that activates
resp. inhibits gene expression. Function value h then returns the normalized
change in concentration level of the corresponding gene product:

activation (upregulation) →: h+(x, Θ, m) = xm

xm+Θm

inhibition (downregulation) ⊥: h−(x, Θ, m) = 1 − h+(x, Θ, m)

Functions h+ and h− together with a proportional factor c1 quantify the pro-
duction rate of a certain gene product GeneProduct. Here we assume a linear
spontaneous decay with rate c2[GeneProduct] such that the differential equation
takes the form d [GeneProduct]

d t = ProductionRate−c2[GeneProduct]. Different ac-
tivation and inhibition rates are simply multiplied as in the following example
illustrated in Figure 2.1 (c1, c2 ∈ R+):

d [GeneProduct]
d t

= c1 · h+(A1, ΘA1 , m) · . . . · h+(An, ΘAn , m) ·
(
1−h+(I1, ΘI1 , m) · . . . · h+(Ip, ΘIp , m)

)
−c2[GeneProduct]

For simplicity, each differential coefficient d y
d t is subsequently denoted as ẏ.

By coupling gene regulatory units we obtain GRNs. Here, gene products
can act as transcription factors for other genes within the network. Additional
complex formation among gene products allows conjunctive composition of
transcription factors and the introduction of further nonlinearities. Thus, an

Hill Kinetics Meets P Systems 323

A n

I 1

A 1

I p

Gene

GeneProduct

Fig. 2. Gene regulatory unit. Repetitive expression of a Gene leads to generation of
a specific GeneProduct, a protein whose amino acid sequence is encoded by the DNA
sequence of the Gene. Transcription factors (specific single proteins or complexes)
quantitatively control the expression rate by their present concentration. Two types
of transcription factors can be distinguished: Inhibitors, here symbolized by I1, . . . , Ip,
repress Gene expression by downregulation while activators A1, . . . , An cause the op-
posite amplifying effect by upregulation.

effective signal transduction and combination between different network elements
becomes feasible.

2.2 Discretization

The analytic nature of Hill kinetics based on continuous concentrations requires
a discretization with respect to value and time in order to derive a homologous
term rewriting mechanism. Following the intention to approximate continuous
concentrations by absolute particle numbers, we assume a large but finite pool
of molecules. The application of a reaction rule in terms of a rewriting process
removes a number of reactant particles from this pool and simultaneously adds
all products. Therefore, selection and priorization of reaction rules to apply are
controlled by an underlying iteration scheme with temporally stepwise operation.

Since Hill kinetics is characterized by variable reaction rates due to the
sigmoid-shaped functions h, this variability should also be reflected in the term
rewriting mechanism. For this reason, we introduce dynamic stoichiometric fac-
tors resulting in time dependent reaction rules. Let Δτ > 0 be the constant time
discretization interval (step length), the gene regulatory unit depicted in Figure
2.1 consists of two reaction rules with variable stoichiometric factors s and u:

s Gene −→ s GeneProduct + s Gene
∣∣
A1,...,An,¬I1,...,¬Ip

where

s = �Δτ · c1 · [Gene]·
h+(A1, ΘA1 , m) · . . . · h+(An, ΘAn , m)·(
1 − h+(I1, ΘI1 , m) · . . . · h+(Ip, ΘIp , m)

)
�

u GeneProduct −→ ∅ where u = �Δτ · c2 · [GeneProduct]�

Here, the upper reaction formulates the generation of GeneProduct particles with
regard to the limiting resource of available Gene objects. Reaction conditions
coming from the presence of activators A1, . . . , An and absence (¬) of inhibitors
I1, . . . , Ip affect the stoichiometric factor s. The notation of indexes after the

324 T. Hinze et al.

vertical bar declares the elements which occur in the h-components (h+, h−)
of the function regulating the rule. In order to map normalized concentrations
from Hill kinetics into absolute particle numbers, we introduce the factor term
[Gene] which represents the total number of Gene objects present in the reaction
system. Accordingly, the decay (consumption) of GeneProduct is expressed by
the lower transition rule.

The rounding regulation (� �) provides for integer numbers as stoichiometric
factors. This is necessary for handling the discrete manner of term rewriting.
Nevertheless, a discretization error can occur and propagate over the time course.
The higher the total number of particles in the reaction system is initially set,
the more this inaccuracy can be reduced.

Now, we incorporate the reaction system obtained by discretization into the
P systems framework. Therefore, we firstly define some syntactical conventions
with respect to formal languages and multisets.

2.3 Formal Language and Multiset Prerequisites

We denote the empty word by ε. Let A be an arbitrary set and N the set of natural
numbers including zero. A multiset over A is a mapping F : A −→ N∪{∞}. F (a),
also denoted as [a]F , specifies the multiplicity of a ∈ A in F . Multisets can be
written as an elementwise enumeration of the form {(a1, F (a1)), (a2, F (a2)), . . .}
since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support supp(F) ⊆ A of F is defined
by supp(F) = {a ∈ A | F (a) > 0}. A multiset F over A is said to be empty iff
∀a ∈ A : F (a) = 0. The cardinality |F | of F over A is |F | =

∑
a∈A F (a). Let

F1 and F2 be multisets over A. F1 is a subset of F2, denoted as F1 ⊆ F2, iff
∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and F2 are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1.
The intersection F1 ∩ F2 = {(a, F (a)) | a ∈ A ∧ F (a) = min(F1(a), F2(a))}, the
multiset sum F1 � F2 = {(a, F (a)) | a ∈ A ∧ F (a) = F1(a) + F2(a)}, and the
multiset difference F1 �F2 = {(a, F (a)) | a ∈ A∧F (a) = max(F1(a)−F2(a), 0)}
form multiset operations. The term 〈A〉 = {F : A −→ N ∪ {∞}} describes the
set of all multisets over A while P(A) denotes the power set of A.

2.4 Transformation: Definition of the Corresponding P System

The general form of a P system ΠHill emulating the dynamical behavior of GRNs
using Hill kinetics is a construct

ΠHill = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , rk, f1, . . . , fk, Δτ, m)

where VGenes denotes the alphabet of genes, VGeneProducts the alphabet of gene
products (without loss of generality VGenes ∩ VGeneProducts = ∅), and Σ ⊆
VGeneProducts represents the output alphabet. ΠHill does not incorporate inner
membranes, so the only membrane is the skin membrane [1]1. The single mem-
brane property results from the spatial globality of GRNs within an organism:
Gene expression is located in the cell nuclei flanked by a receptor-controlled inter-
cellular transduction and combination of transcription factors. Resulting GRNs
form independent network structures of high stability within living organisms.

Hill Kinetics Meets P Systems 325

Let V = VGenes ∪VGeneProducts. The multiset L0 ∈ 〈V 〉 over V holds the initial
configuration of the system.

Initial reaction rules1 ri ∈ 〈Ei,0〉× 〈Pi,0〉× P(TF i) with multiset of reactants
Ei,0 ⊆ V ×N, multiset of products Pi,0 ⊆ V ×N and set of involved transcription
factors TF i ∈ VGeneProducts, i = 1, . . . , k, define the potential system activity at
time point 0. A function fi : R+ × 〈V 〉 × N+ → N is associated with each initial
reaction rule ri. This function adapts the stoichiometric factors according to the
discretized Hill kinetics as described above.

Furthermore, we introduce two global parameters. The time discretization
interval Δτ ∈ R+ corresponds to the length of a time step between discrete time
points t and t + 1. The degree m ∈ N+ is used for all embedded sigmoid-shaped
functions.

Finally, the dynamical behavior of the P system is specified by an iteration
scheme updating both the system configuration Lt and the stoichiometric factors
of reaction rules ri starting from L0 where i = 1, . . . , k:

Lt+1 = Lt � Reactantst � Productst with

Reactantst =
k⊎

i=1
(Ei,t+1 ∩ Lt)

Productst =

⎧
⎨

⎩

k⊎
i=1

Pi,t+1 iff Reactantst =
k⊎

i=1
Ei,t+1

∅ else

Ei,t+1 = {(e, a′) | (e, a) ∈ Ei,t ∧ a′ = fi(Δτ, Lt, m)} (1)
Pi,t+1 = {(q, b′) | (q, b) ∈ Pi,t ∧ b′ = fi(Δτ, Lt, m)} (2)

Informally, the specification of Ei,t+1 and Pi,t+1 means that all reactants e and
products q remain unchanged over the time course. Just their stoichiometric
factors are updated from value a to a′ (reactants) and from b to b′ (products)
according to functions fi. These functions may utilize the numbers of copies
for all |V | types of particles recently present in the system. The cardinality
|Lt ∩ {(wj , ∞)}| then identifies this amount for any wj ∈ V .

In terms of computational devices, P systems ΠHill carry an output providing
the outcome of a calculation. For this purpose, the multiplicity of those gene
products listed in the output alphabet is suitable. We define an output function
output : N → N by

output(t) = |Lt ∩ {(w, ∞) | w ∈ Σ}|.

For better readability, we subsequently write a reaction rule ri =({
(e1, a1), . . . , (eh, ah)

}
,
{
(q1, b1), . . . , (qv, bv)

}
,
{
tf1, . . . , tfc

})
with supp(Ei,t) =

{e1, . . . , eh} and supp(Pi,t) = {q1, . . . , qv} as well as TF i = {tf1, . . . , tfc} by using
the chemical denotation ri : a1 e1 + . . . + ah eh −→ b1 q1 + . . . + bv qv

∣∣
tf1,...,tfc

.

1 Note that in our case the stoichiometry of reaction rules changes over time which is
used to implement time-varying reaction rates.

326 T. Hinze et al.

As a first example, ΠHill of the gene regulatory unit shown in Figure 2.1 reads:

ΠHill,GRNunit = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, r2, f1, f2, Δτ, m)
VGenes = {Gene}

VGeneProducts = {A1, . . . , An, ¬I1, . . . , ¬Ip,GeneProduct}
Σ = {GeneProduct}
L0 = {(Gene, g), (A1, a1), . . . , (An, an), (¬I1, i1), . . . , (¬Ip, ip)}
r1 : s1 Gene −→ s1 GeneProduct + s1 Gene

∣∣
A1,...,An,¬I1,...,¬Ip

r2 : s2 GeneProduct −→ ∅
f1(Δτ, Lt, m) = �Δτ · |Lt ∩ {(Gene, ∞)}| ·

|Lt ∩ {(A1, ∞)}|m
|Lt ∩ {(A1, ∞)}|m + Θm

A1

· . . . · |Lt ∩ {(An, ∞)}|m
|Lt ∩ {(An, ∞)}|m + Θm

An

·
(
1− |Lt ∩ {(¬I1, ∞)}|m

|Lt ∩ {(¬I1, ∞)}|m + Θm
¬I1

·...· |Lt ∩ {(¬Ip, ∞)}|m
|Lt ∩ {(¬Ip, ∞)}|m + Θm

¬Ip

)
�

f2(Δτ, Lt, m) = �Δτ · |Lt ∩ {(GeneProduct,∞)}|�
Δτ ∈ R+

m ∈ N+

Note that s1 at time point t+1 is equal to f1(Δτ, Lt, m) at time point t or holds
its initialization value at time point 0. Respectively, s2 at time point t + 1 is
equal to f2(Δτ, Lt, m) at time point t or holds its initialization value at time
point 0, see equations (1) and (2).

At low molecular concentrations, deterministic application of Hill functions
can conflict between different functions which want to update the system con-
figuration. This is the case if the amount of reactants is too small to satisfy the
needs of all functions. Since the number of multiset elements always remains
nonnegative (see definition of �), the system can violate mass conservation by
satisfying these needs. A system extension based on stochastic rewriting mech-
anisms and/or priorization of reaction rules can overcome this insufficiency.

2.5 System Classification, Properties and Universality

ΠHill belongs to P systems with symbol objects and time varying transition
rules whose evolution is based on conditional rewriting by quantitative usage
of promoters and inhibitors. Thus, the dynamical behavior formulated in Hill
kinetics is time- and value-discretely approximated by a stepwise adaptation.
This leads to a deterministic principle of operation.

From the view on computational completeness, there are several indicators
for Turing universality. On the one hand, we will demonstrate within the next
section how NAND gates and compositions of NAND gates can be emulated by

Hill Kinetics Meets P Systems 327

P systems of the form ΠHill. Arbitrarily extendable circuits consisting of cou-
pled NAND gates can be seen as computational complete. On the other hand,
the multiplicity of each symbol object within the system may range through the
whole recursively enumerable set of natural numbers. So, copies of a gene product
expressed by a dedicated gene are able to represent the register value of a ran-
dom access machine. Autoactivation loops keep a register at a certain value while
external activation increases the amount of gene product (increment operation)
and external inhibition decreases respectively (decrement operation). Increment-
ing and decrementing transcription factors always form complexes with program
counter objects. The interplay of those specific transcription factors manages the
program control.

3 Case Study: Computational Units and Circuits

Synthetic GRNs have been instrumental in elucidating basic principles that gov-
ern the dynamics and consequences of stochasticity in the gene expression of nat-
urally occurring GRNs. The realization as computational circuits infers inherent
evolutionary fault tolerance and robustness to these modular units.

In a case study, we introduce two synthetic GRNs for logic gates (NAND
gate, RS flip-flop) and describe their dynamical behavior quantitatively by an
ordinary differential equation model using Hill kinetics and by corresponding P
systems ΠHill.

A variety of distinguishable transcription factors given by their concentra-
tion over the time course enables communication between as well as coupling of
computational units. Thus, circuit engineering becomes feasible.

3.1 NAND Gate

input: concentration levels of transcription factors x (input1), y (input2)
output: concentration level of gene product z.

z

y

x yx z
x

y
z

a b

NAND gate

0

1

0

0
10

1 1

1
1
1
0

&EffGeneRegGeneYRegGeneX

complex formation

Ordinary Differential Equations

ȧ = h+(x, Θx, m) − a

ḃ = h+(y, Θy, m) − b
ż = 1 − h+(a, Θa, m) · h+(b, Θb, m) − z

Simulation Result (Copasi [10], ODE solver)

dynamical behavior depicted for m = 2, Θj = 0.1, j ∈ {x, y, a, b}

328 T. Hinze et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Time scale

Input1: 1
Input2: 0

Input1: 1
Input2: 1

Input1: 0
Input2: 1

Input1: 0
Input2: 0

Output

Corresponding P System

ΠHill,GRNnand = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , r6, f1, . . . , f6, Δτ, m)
VGenes = {RegGeneX,RegGeneY,EffGene}

VGeneProducts = {x, y, z, ¬a, ¬b}
Σ = {z}
L0 = {(RegGeneX, rgx), (RegGeneY, rgy), (EffGene, eg),

(x, x0), (y, y0), (z, z0), (¬a, a0), (¬b, b0)}
r1 : s1 RegGeneX −→ s1 ¬a + s1 RegGeneX

∣∣
x

r2 : s2 ¬a −→ ∅
r3 : s3 RegGeneY −→ s3 ¬b + s3 RegGeneY

∣∣
y

r4 : s4 ¬b −→ ∅
r5 : s5 EffGene −→ s5 z + s5 EffGene

∣∣
¬a,¬b

r6 : s6 z −→ ∅
f1(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(RegGeneX, ∞)}| · |Lt∩{(x,∞)}|m

|Lt∩{(x,∞)}|m+Θm
x

⌋

f2(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬a, ∞)}|�
f3(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(RegGeneY, ∞)}| · |Lt∩{(y,∞)}|m

|Lt∩{(y,∞)}|m+Θm
y

⌋

f4(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬b, ∞)}|�
f5(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(EffGene, ∞)}| ·(
1 − |Lt∩{(¬a,∞)}|m

|Lt∩{(¬a,∞)}|m+Θm
¬a

· |Lt∩{(¬b,∞)}|m
|Lt∩{(¬b,∞)}|m+Θm

¬b

)⌋

f6(Δτ, Lt, m) = �Δτ · |Lt ∩ {(z, ∞)}|�
Δτ ∈ R+
m ∈ N+

Simulation Result (MATLAB, P system iteration scheme)

dynamical behavior depicted for m = 2, Δτ = 0.1, Θj = 500, j ∈ {x, y, ¬a, ¬b}
rgx = 10, 000, rgy = 10, 000, eg = 10, 000, x0 = 0, y0 = 0, z0 = 0, a0 = 0, b0 = 0

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time scale

Nu
mb

er
 of

 m
ole

cu
les

Hill Kinetics Meets P Systems 329

3.2 RS Flip-Flop

input: concentration levels of transcription factors S, R
output: concentration level of gene product Q

Q

R

S

S

R
Qb

a

RS Q

low active RS flip−flop

&

&

0

0
1

1

1
0

0
0
1
1

hold

−

EffGeneRegGeneSetStateRegGeneResetState

Ordinary Differential Equations

ȧ = 1 − h+(b, Θb, m) · h−(S, ΘS , m) − a

ḃ = 1 − h+(a, Θa, m) · h−(R, ΘR, m) − b

Q̇ = h+(b, Θb, m) · h−(S, ΘS , m) − Q

Simulation Result (Copasi, ODE solver)

dynamical behavior depicted for m = 2, Θj = 0.1, j ∈ {a, b, R, S}

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Time scale

Set
-S: 0, -R: 1

Store
-S: 0, -R: 0

Reset
-S: 1, -R: 0

Store
-S: 0, -R: 0

Output

Corresponding P System

ΠHill,GRNrsff = (VGenes, VGeneProducts, Σ, [1]1, L0, r1, . . . , r6, f1, . . . , f6, Δτ, m)
VGenes = {RegGeneResetState,RegGeneSetState,EffGene}

VGeneProducts = {Q, ¬S, ¬R, ¬a, ¬b}
Σ = {Q}
L0 = {(RegGeneResetState, rgr), (RegGeneSetState, rgs),

(EffGene, eg), (Q, q0), (¬S, ss0), (¬R, rs0), (¬a, a0), (¬b, b0)}
r1 : s1 RegGeneResetState−→s1 ¬a + s1 RegGeneResetState

∣∣
¬S,¬b

r2 : s2 ¬a −→ ∅
r3 : s3 RegGeneSetState −→ s3 ¬b + s3 RegGeneSetState

∣∣
¬R,¬a

r4 : s4 ¬b −→ ∅
r5 : s5 EffGene −→ s5 Q + s5 EffGene

∣∣
¬S,¬b

r6 : s6 Q −→ ∅
f1(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(RegGeneResetState, ∞)}| ·(
1 − |Lt∩{(¬b,∞)}|m

|Lt∩{(¬b,∞)}|m+Θm
¬b

·
(

1 − |Lt∩{(¬S,∞)}|m
|Lt∩{(¬S,∞)}|m+Θm

¬S

))⌋

f2(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬a, ∞)}|�

330 T. Hinze et al.

f3(Δτ, Lt, m) =
⌊
Δτ · |Lt ∩ {(RegGeneSetState, ∞)}| ·(
1 − |Lt∩{(¬a,∞)}|m

|Lt∩{(¬a,∞)}|m+Θm
¬a

·
(

1 − |Lt∩{(¬R,∞)}|m
|Lt∩{(¬R,∞)}|m+Θm

¬R

))⌋

f4(Δτ, Lt, m) = �Δτ · |Lt ∩ {(¬b, ∞)}|�
f5(Δτ, Lt, m) =

⌊
Δτ · |Lt ∩ {(EffGene, ∞)}| ·
|Lt∩{(¬b,∞)}|m

|Lt∩{(¬b,∞)}|m+Θm
¬b

·
(

1 − |Lt∩{(¬S,∞)}|m
|Lt∩{(¬S,∞)}|m+Θm

¬S

)⌋

f6(Δτ, Lt, m) = �Δτ · |Lt ∩ {(Q, ∞)}|�
Δτ ∈ R+
m ∈ N+

Simulation Result (MATLAB, P system iteration scheme)

dynamical behavior depicted for m = 2, Δτ = 0.1, Θj = 500, j ∈ {¬a, ¬b, ¬R, ¬S}
rgr = 10, 000, rgs = 10, 000, eg = 10, 000, q0 = 0, ss0 = 0, rs0 = 0, a0 = 0, b0 = 0

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time scale

Nu
mb

er
 of

 m
ole

cu
les

A homologous analytic model of a bistable toggle switch was introduced in [6].
In case of the forbidden input signalling S = 1, R = 1, the normalized concen-
trations of both inhibitors ¬a and ¬b converge to 0.5. By setting or resetting
input signalling, the flip-flop restores.

4 RS Flip-Flop Validation in vivo

In addition to prediction and simulation of GRNs acting as logic gates, we
demonstrate the practicability of the RS flip-flop by an experimental study in
vivo. Resulting output protein data measured over the time course can validate
the system model. Following the pioneering implementation of a bistable toggle
switch [6], we could confirm its function in a previous study [8]. Two exten-
sions were investigated: Firstly, the effects of IPTG and AHL as appropriate
intercellular inducers for flip-flop setting were shown. Secondly, flow cytometry
was used to quantitatively measure protein concentrations within the flip-flop
implementation. We give a brief overview of experimental setup and results.

4.1 Biological Principles and Prerequisites

Quorum Sensing and Autoinduction via AHL
In quorum sensing, bacterial species regulate gene expression based on cell-
population density [13]. An alteration in gene expression occurs when an

Hill Kinetics Meets P Systems 331

intercellular signalling molecule termed autoinducer, produced and released by
the bacterial cells reaches a critical concentration. Termed as quorum sensing
or autoinduction, this fluctuation in autoinducer concentration is a function
of bacterial cell-population density. Vibrio fischeri, a well studied bacterium,
colonizes the light organs of a variety of marine fishes and squids, where it
occurs at very high densities (1010 cells

ml) and produces light. The two genes es-
sential for cell density regulation of luminescence are: luxI, which codes for an
autoinducer synthase; and luxR, which codes for an autoinducer-dependent ac-
tivator of the luminescence genes. The luxR and luxI genes are adjacent and
divergently transcribed, and luxI is the first of seven genes in the luminescence
or lux operon. LuxI-type proteins direct AHL synthesis while LuxR-type pro-
teins function as transcriptional regulators that are capable of binding AHL
signal molecules. Once formed, LuxR-AHL complexes bind to target promot-
ers of quorum-regulated genes. Quorum sensing is now known to be widespread
among both Gram-positive and Gram-negative bacteria.

Bioluminescence in Vibrio fischeri
Bioluminescence in general is defined as an enzyme catalyzed chemical reac-
tion in which the energy released is used to produce an intermediate or product
in an electronically excited state, which then emits a photon. It differs from
fluorescence or phosphorescence as it is not depended on light absorbed. The
mechanism for gene expression and the structure of the polycistronic message
of the lux structural genes in Vibrio fischeri have been thoroughly characterized
[7]. Briefly, there are two substrates, luciferin, which is a reduced flavin mononu-
cleotide (FMNH2), and a long chain (7−16 carbons) fatty aldehyde (RCHO). An
external reductant acts via flavin mono-oxygenase oxidoreductase to catalyze the
reduction of FMN to FMNH2, which binds to the enzyme and reacts with O2 to
form a 4a-peroxy-flavin intermediate. This complex oxidizes the aldehyde to form
the corresponding acid (RCOOH) and a highly stable luciferase-hydroxyflavin
intermediate in its excited state, which decays slowly to its ground state emitting
blue-green light hν with a maximum intensity at about 490nm:
FMNH2 + RCHO + O2

lucif.−→ FMN + H2O + RCOOH + hν

Transcription Control by LacR and λCI Repressor Proteins
Escherichia coli cells repress the expression of the lac operon when glucose is
abundant in the growth medium. Only when the glucose level is low and the
lactose level is high, the operon is fully expressed. The Lac repressor LacR is
a 360 residue long protein that associates into a homotetramer. It contains a
helix-turn-helix (HTH) motif through which it interacts with DNA. This inter-
action represses transcription by hindering association with RNA polymerase
and represents an example of combinatorial control widely seen in prokaryotes
and eukaryotes. The CI repressor of bacteriophage lambda is the key regulator
in lambda’s genetic switch, a bistable switch that underlies the phage’s ability
to efficiently use its two modes of development.

332 T. Hinze et al.

Fig. 3. A schematic diagram of an AHL biosensor module interfaced with the genetic
toggle switch adapted from [8]. The transgenic artificial GRN consists of a bistable
genetic toggle switch [6] which is interfaced with genes from the lux operon of the
quorum sensing signalling pathway of Vibrio fischeri.

Flow Cytometry
Flow cytometry refers to the technique where microscopic particles are counted
and examined as they pass in a hydro-dynamically focused fluid stream through
a measuring point surrounded by an array of detectors. Previously, flow cytom-
etry analyzes were performed by us using a BD LSRII flow cytometer equipped
with 405nm, 488nm and 633nm lasers. 488nm laser was used for gfp and yellow
fluorescent protein (yfp) quantification.

4.2 Experimental Setup and Implementation

We have shown that an in vivo system [8] can potentially be used to mimic a RS
flip-flop and have quantified its performance using flow cytometry. The presence
or absence of the inducers IPTG or AHL in combination with temperature shift
acts as an input signal, see Figure 3. The toggle switch comprising of structural
genes for reporter/output proteins fused to promoter regions that are regulated
by input signals is visualized as a RS flip-flop. This design endows cells with two
distinct phenotypic states: where the λCI activity is high and the expression of
lacI is low (referred to as high or 1 state), or where the activity of LacR is high
and the expression of λCI is low (referred to as low or 0 state). gfp is expressed
only in the high λCI/low LacR state.

4.3 Results and Discussion

For co-relational purposes, all experiments were conducted with both BL21 and
Top10 strains of Escherichia coli. The concentration of IPTG used in all the
experiments was 2mM and that of AHL was 1μM. Experiments conducted with-
out the use of inducers, lead to an unreliable shifting of the states, signifying
the use if inducers in a tightly, mutually regulated circuit. Further experiments
conducted to understand the switching dynamics of the circuit revealed that in
the current scenario, it was easier to switch from a high to a low state than
vice versa. This discrepancy in switching behavior is attributed to the differing
modes of elimination of LacR and λCI repressor proteins. While switching from
low to high state, the repression due to IPTG-bound Lac repressor needs to be
overcome by cell growth. Switching from high to low state is effected by imme-
diate thermal degradation of the temperature-sensitive λCI. Experiments were

Hill Kinetics Meets P Systems 333

A

B

0

5.000

10.000

15.000

0

5.000

10.000

30.000

GFP mean:
14.803 units

GFP mean:
4.856 units

GFP mean:
1.108 units

GFP mean:
601 units

GFP mean:
15.621 units

GFP mean:
7.073 units

after 12 hrs after 24 hrs after 36 hrs after 48 hrs after 60 hrs after 72 hrs

12 24 36 48 60 720

0

1

0

1
30

°C
42

°C
G

FP
 m

ea
n

(a
ve

ra
ge

 u
ni

ts
)

Fl
ip

−f
lo

p
ou

tp
ut

Se
tti

ng
IP

TG
,

R
es

et
tin

g
AH

L,

Se
t

R
es

et

Se
t

Store Store Store

low (0)

high (1)

time (hrs)

12 24 36 48 60 720

0

1

0

1

30
°C

42
°C

G
FP

 m
ea

n
(a

ve
ra

ge
 u

ni
ts

)
Fl

ip
−f

lo
p

ou
tp

ut
Se

tti
ng

IP
TG

,
R

es
et

tin
g

AH
L,

R
es

et

Se
t

R
es

et

Store Store Store

low (0)

high (1)

time (hrs)

GFP mean:
188 units
after 12 hrs

GFP mean:
312 units
after 24 hrs

GFP mean:
32.178 units
after 36 hrs

GFP mean:
4.106 units
after 48 hrs

644 units
GFP mean:

after 60 hrs

GFP mean:
373 units
after 72 hrs

Fig. 4. Inducer-dependent switching. Repeated activation and deactivation of the tog-
gle switch based on inducers and temperature. Temperature was switched every 24
hours. Cells were incubated with inducers for 12 hours, followed by growth for 12
hours without inducers, initially kept at 30◦C (A) and 42◦C (B). The cells successfully
switched states thrice.

also conducted to test the sustainability of states. The plug and play property of
the circuit was examined by employing yfp as the reporter gene instead of gfp. As
shown in Figure 4, the circuit could mimic a RS flip-flop. A massive parallelism
permissible by the use of large quantities of cells can compensate for the slow
speed of switching. Further tests are to be performed to confirm this hypothesis.

5 Conclusions

The dynamical behavior of GRNs is able to emulate information processing in
terms of performing computations. In order to formalize this capability, we have
introduced P systems of the form ΠHill incorporating cooperativity and compet-
itivity between transcription factors based on Hill kinetics. Its transformation
to a dedicated iteration scheme for a discrete term rewriting mechanism with
variable stoichiometric factors in ΠHill provides a homogeneous approach that

334 T. Hinze et al.

allows to compose GRNs towards functional units like computing agents. Ex-
amples address computational units (NAND gate, RS flip-flop), each defined by
GRN, its ODE model, and the corresponding P system. Simulations of the dy-
namical behavior quantitatively show the switching characteristics as well as the
expected quality of binary output signals. Along with the prediction of GRNs
acting as computational units, an experimental study in vivo demonstrates their
practicability. Although the measurement of the dynamic switching behaviour
was condensed to 12 points in time, they approximate the expected course.
At the crossroad of modelling, simulation, and verification of biological reac-
tion networks, the potential of amalgamating analytic, stochastic, and algebraic
approaches into the P systems framework seems promising for applications in
systems biology to explore network functions.

Acknowledgements

This work is part of the ESIGNET project (Evolving Cell Signalling Networks
in silico), which has received research funding from the European Community’s
Sixth Framework Programme (project no. 12789). Further funding from the
Federal Ministry of Education and Research (BMBF, grant 0312704A) and from
German Research Foundation (DFG, grant DI852/4-1) is acknowledged. We are
very grateful to J.J. Collins for providing us with the plasmids and their se-
quences; to W. Pompe, G. Rödel, K. Ostermann, and L. Brusch from Dresden
University of Technology for their scientific support and V. Helms from Saarland
University for administrative support.

References

1. Alon, U.: An Introduction to Systems Biology. Chapman & Hall, Sydney, Australia
(2006)

2. Barbacari, N., et al.: Gene Regulatory Network Modelling by Membrane Systems.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 162–178. Springer, Heidelberg (2006)

3. Bernardini, F., et al.: Quorum Sensing P Systems. Theor. Comp. Sci. 371, 20–33
(2007)

4. Busi, N., et al.: Computing with Genetic Gates, Proteins, and Membranes. In:
Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS,
vol. 4361, pp. 233–249. Springer, Heidelberg (2006)

5. Fontana, F., et al.: Discrete Solutions to Differential Equations by Metabolic P
Systems. Theor. Comput. Sci. 372(1), 165–182 (2007)

6. Gardner, T.S., et al.: Construction of a Genetic Toggle Switch in Escherichia coli.
Nature 403, 339–342 (2000)

7. Hastings, J., et al.: Bacterial Bioluminescence. Annu. Rev. Microbiol. 31, 549–595
(1977)

8. Hayat, S., et al.: Towards in vivo Computing: Quantitative Analysis of an Artificial
Gene Regulatory Network Behaving as a RS Flip-Flop. In: Proc. Bionetics (2006)

Hill Kinetics Meets P Systems 335

9. Hinze, T., et al.: A Protein Substructure Based P System for Description and
Analysis of Cell Signalling Networks. In: Hoogeboom, H.J., Păun, G., Rozenberg,
G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 409–423. Springer, Hei-
delberg (2006)

10. Hoops, S., et al.: Copasi: a COmplex PAthway SImulator. Bioinf. 22, 3067–3074
(2006)

11. Manca, V.: Metabolic P Systems for Biomolecular Dynamics. Progress in Natural
Sciences 17(4), 384–391 (2006)

12. Mestl, T., et al.: A Mathematical Framework for Describing and Analysing Gene
Regulatory Networks. J. Theor. Biol. 176, 291–300 (1995)

13. Miller, M., et al.: Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 55, 165–199
(2001)

14. Păun, A., et al.: Modeling Signal Transduction Using P Systems. In: Hoogeboom,
H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361,
pp. 100–122. Springer, Heidelberg (2006)

15. Păun, G.: Computing with Membranes. J. Comp. Syst. Sci. 61(1), 108–143 (2000)
16. Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)

Solving Numerical NP-Complete Problems with

Spiking Neural P Systems

Alberto Leporati, Claudio Zandron,
Claudio Ferretti, and Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{leporati,zandron,ferretti,mauri}@disco.unimib.it

Abstract. Starting from an extended nondeterministic spiking neural
P system that solves the Subset Sum problem in a constant number of
computation steps, recently proposed in a previous paper, we investigate
how different properties of spiking neural P systems affect the capability
to solve numerical NP–complete problems. In particular, we show that
by using maximal parallelism we can convert any given integer number
from the usual binary notation to the unary form, and thus we can
initialize the above P system with the required (exponential) number
of spikes in polynomial time. On the other hand, we prove that this
conversion cannot be performed in polynomial time if the use of maximal
parallelism is forbidden. Finally, we show that if we can choose whether
each neuron works in the nondeterministic vs. deterministic and/or in the
maximal parallel vs. sequential way, then there exists a uniform family
of spiking neural P systems that solves the Subset Sum problem.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [6]
as a new class of distributed and parallel computing devices. They were inspired
by membrane systems (also known as P systems) [11,12,15], in particular by
tissue–like P systems [10], and are based on the neurophysiological behavior of
neurons sending electrical impulses (spikes) along axons to other neurons.

In SN P systems the processing elements are called neurons, and are placed
in the nodes of a directed graph, called the synapse graph. The contents of each
neuron consist of a number of copies of a single object type, namely the spike.
Neurons may also contain firing and/or forgetting rules. The firing rules allow
a neuron to send information to other neurons in the form of electrical impulses
(also called spikes) which are accumulated at the target cell. The application of
the rules depends on the contents of the neuron; in the general case, applicability
is determined by checking the contents of the neuron against a regular set asso-
ciated with the rule. As inspired from biology, when a neuron sends out spikes
it becomes “closed” (inactive) for a specified period of time, that reflects the
refractory period of biological neurons. During this period, the neuron does not

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 336–352, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Solving Numerical NP-Complete Problems with SN P Systems 337

accept new inputs and cannot “fire” (that is, emit spikes). Another important
feature of biological neurons is that the length of the axon may cause a time
delay before a spike arrives at the target. In SN P systems this delay is modeled
by associating a delay parameter to each rule which occurs in the system. If no
firing rule can be applied in a neuron, there may be the possibility to apply a
forgetting rule, that removes from the neuron a predefined number of spikes.

Formally, an SN P system of degree m ≥ 1, as defined in [7], is a construct of
the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), with 1 ≤ i ≤ m, where:

(a) ni ≥ 0 is the initial number of spikes contained in σi;
(b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1,
d ≥ 0 are integer numbers; if E = ac, then it is usually written in
the following simplified form: ac → a; d;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d
of type (1) from Ri, we have as �∈ L(E) (where L(E) denotes the
regular language defined by E);

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m}, with (i, i) �∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π .

The rules of type (1) are called firing (also spiking) rules, and they are applied
as follows. If the neuron σi contains k ≥ c spikes, and ak ∈ L(E), then the rule
E/ac → a; d ∈ Ri can be applied. The execution of this rule removes c spikes
from σi (thus leaving k−c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0, then the spike is immediately emitted,
otherwise it is emitted after d computation steps of the system. (Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.)
If the rule is used in step t and d ≥ 1, then in steps t, t+1, t+2, . . . , t+d−1 the
neuron is closed, so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send a spike along it, then that particular spike is
lost), and cannot fire new rules. In the step t+d, the neuron spikes and becomes
open again, so that it can receive spikes (which can be used starting with the
step t + d + 1) and select rules to be fired.

Rules of type (2) are called forgetting rules, and are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi. Note that, by definition, if a firing
rule is applicable then no forgetting rule is applicable, and vice versa.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1 : ac1 → a; d1 and E2 : ac1 → a; d2, can
have L(E1) ∩ L(E2) �= ∅, it is possible that two or more rules can be applied in

338 A. Leporati et al.

a neuron. In such a case, only one of them is nondeterministically chosen. Thus,
the rules are used in the sequential manner in each neuron, but neurons function
in parallel with each other.

The initial configuration of the system is described by the numbers n1, n2, . . .,
nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the number of steps to wait until it becomes open (this
number is zero if the neuron is already open). A computation in a system as
above starts in the initial configuration. A positive integer number is given in
input to a specified input neuron. This number may be encoded in many different
ways, for example as the interval of time steps elapsed between the insertion of
two spikes into the neuron (note that this is a unary encoding). Other possible
encodings are discussed below. To pass from a configuration to another one, for
each neuron a rule is chosen among the set of applicable rules, and is executed.
The computation proceeds in a sequential way into each neuron, and in parallel
among different neurons. Generally, a computation may not halt. However, in
any case the output of the system is usually considered to be the time elapsed
between the arrival of two spikes in a designated output cell. Defined in this way,
SN P systems compute functions of the kind f : N → N; they can also indirectly
compute functions of the kind f : N

k → N by using a bijection from N
k to N.

As discussed in [7], there are other possibilities to encode natural numbers
read from and/or emitted to the environment by SN P systems; for example,
we can consider the number of spikes contained in the input and in the output
neuron, respectively, or the number of spikes read/produced in a given interval
of time. Also, an alternative way to compute a function f : N

k → N is to
introduce k natural numbers n1, n2, . . . , nk in the system by “reading” from the
environment a binary sequence z = 0b10n110n21 . . . 10nk10g, for some b, g ≥ 0;
this means that the input neuron of Π receives a spike in each step corresponding
to a digit 1 from the string z. Note that we input exactly k + 1 spikes, and that
this is again a unary encoding. Sometimes we may need to impose that the
system outputs exactly two spikes and halts (sometimes after the second spike)
hence producing a spike train of the form 0b′

10r10g′
, for some b′, g′ ≥ 0 and with

r = f(n1, n2, . . . , nk). In what follows we will also consider systems which have
k input neurons. For these systems, the input values n1, n2, . . . , nk will arrive
simultaneously to the system, each one entering through the corresponding input
neuron. Moreover, the input numbers will be sometimes encoded in binary form,
using the same number of bits in order to synchronize the different parts of the
system. For further details, we refer the reader to section 3.

If we do not specify an input neuron (hence no input is taken from the envi-
ronment) then we use SN P systems in the generative mode; we start from the
initial configuration, and the distance between the first two spikes of the output
neuron (or the number of spikes, etc.) is the result of the computation. Note that
generative SN P systems are inherently nondeterministic, otherwise they would
always reproduce the same sequence of computation steps, and hence the same
output. Dually, we can neglect the output neuron and use SN P systems in the

Solving Numerical NP-Complete Problems with SN P Systems 339

accepting mode; for k ≥ 1, the natural number n1, n2, . . . , nk are read in input
and, if the computation halts, then the numbers are accepted.

In [6] it was shown that generative SN P systems are universal, that is, can
generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets was obtained by spiking neural P systems with
a bounded number of spikes in the neurons. These results can also be obtained
with even more restricted forms of spiking P systems; for example, [5] shows
that at least one of these features can be avoided while keeping universality:
time delay (refractory period) greater than 0, forgetting rules, outdegree of the
synapse graph greater than 2, and regular expressions of complex form. These
results have been further extended in [3], where it is shown that universality is
kept even if we remove some combinations of two of the above features. Finally,
in [13] the behavior of spiking neural P systems on infinite strings and the gen-
eration of infinite sequences of 0 and 1 was investigated, whereas in [1] spiking
neural P systems were studied as language generators (over the binary alphabet
{0, 1}).

We define the description size of an SN P system Π as the number of bits
which are necessary to describe it. Since the alphabet O is fixed, no bits are nec-
essary to define it. In order to represent syn we need at most m2 bits, whereas
we can represent the values of in and out by using log m bits each. For every
neuron σi we have to specify a natural number ni and a set Ri of rules. For each
rule we need to specify its type (firing or forgetting), which can be done with 1
bit, and in the worst case we have to specify a regular expression and two natural
numbers. If we denote by N the maximum natural number that appears in the
definition of Π , R the maximum number of rules which occur in its neurons,
and S the maximum size required by the regular expressions that occur in Π
(more on this later), then we need a maximum of log N + R(1 + S + 2 log N)
bits to describe every neuron of Π . Hence, to describe Π we need a total of
m2 + 2 log m + m

(
log N + R(1 + S + 2 logN)

)
bits. Note that this quantity is

polynomial with respect to m, R, S and log N . Since the regular languages deter-
mined by the regular expressions that occur in the system are unary languages,
the strings of such languages can be bijectively identified with their lengths.
Hence, when writing the regular expression E, instead of writing unions, con-
catenations and Kleene closures among strings we can do the same by using the
lengths of such strings. (Note that, when concatenating two languages L1 and L2
represented in this way, the lengths in L1 are summed with the lengths of L2 by
combining them in all possible ways). In this way we obtain a representation of E
which is succinct, that is, exponentially more compact than the usual represen-
tation of regular expressions. As we have seen in [8], this succinct representation
yields some difficulties when we try to simulate a deterministic accepting SN
P system that contains general regular expressions, by a deterministic Turing
machine. However, as shown in [5] and [3], it is possible to restrict our atten-
tion to particularly simple regular expressions, without loosing computational
completeness. For these expressions, the membership problem (is a given string
into the language generated by the regular expression?) is polynomial also when

340 A. Leporati et al.

representing the instances in succinct form, and thus they do not yield problems
when simulating the system with a deterministic Turing machine.

In what follows it will be convenient to consider also the following slightly
extended version of SN P systems. Precisely, we will allow rules of the type
E/ac → ap; d, where c ≥ 1, p ≥ 0 and d ≥ 0 are integer numbers. The semantics
of this kind of rules is similar to that of standard rules, the difference being
that now p spikes (instead of one) are emitted by the neuron. As before, a
closed neuron does not receive spikes from other neurons, and does not apply
any rule. If p = 0, then we obtain a forgetting rule as a particular case of our
general rules. Also in the extended SN P systems it may happen that, given
two rules E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2, if L(E1) ∩ L(E2) �= ∅ then
for some contents of the neuron both the rules can be applied. In such a case,
one of them is nondeterministically chosen. Note that we do not require that
forgetting rules are applied only when no firing rule can be applied. We say that
the system is deterministic if, for every neuron that occurs in the system, any
two rules E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2 in the neuron are such that
L(E1)∩L(E2) = ∅. This means that, for any possible contents of the neuron, at
most one of the rules that occur in the neuron may be applied.

Input and output encodings are defined just like in traditional SN P systems.
Finally, the description size of an extended SN P system is defined exactly as we
have done for standard systems, the only difference being that now we require
(at most) three natural numbers to describe a rule.

In [8] we have shown that by using our extended version of SN P systems,
it is possible to solve any given instance of Subset Sum in constant time by
exploiting the power of nondeterminism. The solution is given in the so called
semi–uniform setting, that is, for every fixed instance of Subset Sum a spe-
cific SN P system that solves it is built. In particular, the rules of the system
and the number of spikes which occur in the initial configuration depend upon
the instance to be solved. A drawback of this solution is that in general the
number of spikes needed to initialize the system is exponential with respect to
the usually agreed instance size of Subset Sum. However, in this paper we
show that this preparation can be performed in polynomial time by traditional
SN P systems that, endowed with the power of maximal parallelism, read from
the environment the k-bit integer numbers v1, v2, . . . , vn encoded in binary and
produce v1, v2, . . . , vn spikes, respectively, in n specified neurons. We also prove
that this operation cannot be performed in polynomial time if the use of max-
imal parallelism is forbidden. Then we design an SN P system that performs
the opposite conversion: it takes a given (k-bit) natural number N of spikes
occurring in a certain neuron, and produces the coefficients of the binary en-
coding of N in k predefined neurons. Thanks to these two modules, that allow
us to move from binary to unary encoding and back, we finally design a uni-
form family {Π(〈n, k〉}n,k∈N of SN P systems, where Π(〈n, k〉) solves all possible
instances ({v1, v2, . . . , vn}, S) of Subset Sum such that all vi and S are k-bit
natural numbers. As we will see, the construction of Π(〈n, k〉) relies upon the

Solving Numerical NP-Complete Problems with SN P Systems 341

assumption that different subsystems can work under different regimes: deter-
ministic vs. nondeterministic, and sequential vs. maximally parallel.

The rest of this paper is organized as follows. In section 2 we recall from [8]
how the NP–complete problem Subset Sum can be solved in constant time by
exploiting nondeterminism in our extended SN P systems. In section 3 we convert
natural numbers from binary notation to the unary form through maximally
parallel SN P systems, and we use such a translation as an initialization stage
to solve Subset Sum. In section 4 we perform also the opposite conversion, and
we design a family of SN P systems that solves Subset Sum in a uniform way
(according to the above definition). Section 5 concludes the paper.

2 Solving Numerical NP–Complete Problems with
Extended Spiking Neural P Systems

Let us start by recalling the nondeterministic extended SN P system introduced
in [8] to solve the NP–complete problem Subset Sum in a constant number of
computation steps. The Subset Sum problem can be defined as follows.

Problem 1. Name: Subset Sum.

– Instance: a (multi)set V = {v1, v2, . . . , vn} of positive integer numbers, and
a positive integer number S.

– Question: is there a sub(multi)set B ⊆ V such that
∑

b∈B

b = S?

If we allow to nondeterministically choose among the rules which occur in
the neurons, then the extended SN P system depicted in Figure 1 solves any
given instance of Subset Sum in a constant number of steps. We emphasize the
fact that such a solution occurs in the semi-uniform setting, that is, for every
instance of Subset Sum we build an SN P system that specifically solves that
instance.

Let (V = {v1, v2, . . . , vn}, S) be the instance of Subset Sum to be solved.
In the initial configuration of the system, the leftmost neurons contain (from
top to bottom) v1, v2, . . . , vn spikes, respectively, whereas the rightmost neurons
contain zero spikes each. In the first step of computation, in each of the leftmost
neurons it is nondeterministically chosen whether to include or not the element vi

in the (candidate) solution B ⊆ V ; this is accomplished by nondeterministically
choosing among one rule that forgets vi spikes (in such a case, vi �∈ B) and one
rule that propagates vi spikes to the rightmost neurons. At the beginning of the
second step of computation a certain number N = |B| of spikes, that corresponds
to the sum of the vi which have been chosen, occurs in the rightmost neurons.
We have three possible cases:

– N < S: in this case neither the rule a∗/aS → a; 0 nor the rule a∗/aS+1 → a; 1
(which occur in the neuron at the top and at the bottom of the second layer,
respectively) fire, and thus no spike is emitted to the environment;

– N = S: only the rule a∗/aS → a; 0 fires, and emits a single spike to the
environment. No further spikes are emitted;

342 A. Leporati et al.

Fig. 1. A nondeterministic extended SN P system that solves the Subset Sum problem
in constant time

– N > S: both the rules a∗/aS → a; 0 and a∗/aS+1 → a; 1 fire. The first
rule immediately sends one spike to the environment, whereas the second
rule sends another spike at the next computation step (due to the delay
associated with the rule).

Hence, by counting the number of spikes emitted to the environment at the
second and third computation steps we are able to read the solution of the given
instance of Subset Sum: the instance is positive if and only if a single spike is
emitted.

The proposed system is generative; its input (the instance of Subset Sum to
be solved) is encoded in the initial configuration. We stress once again that the
ability to solve Subset Sum in constant time derives from the fact that the sys-
tem is nondeterministic. As it happens with Turing machines, nondeterminism
can be interpreted in two ways: (1) the system “magically” chooses the correct
values vi (if they exist) that allow to produce a single spike in output, or (2) at
least one of the possible computations produces a single spike in output.

The formal definition of the extended (generative) SN P system depicted in
Figure 1 is as follows:

Π = ({a}, σ1, . . . , σn+2, syn, out) ,

where:

– σi = (vi, {avi → λ, avi → avi ; 0}) for all i ∈ {1, 2, . . . , n};
– σn+1 = (0, {a∗/aS → a; 0});
– σn+2 = (0, {a∗/aS+1 → a; 1);

Solving Numerical NP-Complete Problems with SN P Systems 343

– syn =
⋃n

i=1{(i, n + 1), (i, n + 2)};
– out = 0 indicates that the output is sent to the environment.

However, here we are faced with a problem that we have already met in [9],
and that we will meet again in the rest of the paper. In order to clearly expose
the problem, let us consider the following algorithm that solves Subset Sum

using the well known Dynamic Programming technique [2]. In particular, the
algorithm returns 1 on positive instances, and 0 on negative instances.

Subset Sum({v1, v2, . . . , vn}, S)
for j ← 0 to S

do M [1, j] ← 0
M [1, 0] ← M [1, v1] ← 1
for i ← 2 to n

do for j ← 0 to S
do M [i, j] ← M [i − 1, j]

if j ≥ vi and M [i − 1, j − vi] > M [i, j]
then M [i, j] ← M [i − 1, j − vi]

return M [n, S]

In order to look for a subset B ⊆ V such that
∑

b∈B b = S, the algorithm uses
an n × (S + 1) matrix M whose entries are from {0, 1}. It fills the matrix by
rows, starting from the first row. Each row is filled from left to right. The entry
M [i, j] is filled with 1 if and only if there exists a subset of {v1, v2, . . . , vi} whose
elements sum up to j. The given instance of Subset Sum is thus a positive
instance if and only if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time
complexity of the algorithm is proportional to n(S + 1) = Θ(nS). This means
that the difficulty of the problem depends on the value of S, as well as on the
magnitude of the values in V . In fact, let K = max{v1, v2, . . . , vn, S}. If K is
polynomially bounded with respect to n, then the above algorithm works in
polynomial time. On the other hand, if K is exponential with respect to n, say
K = 2n, then the above algorithm may work in exponential time and space.
This behavior is usually referred to in the literature by telling that Subset Sum

is a pseudo–polynomial NP–complete problem.
The fact that in general the running time of the above algorithm is not poly-

nomial can be immediately understood by comparing its time complexity with
the instance size. The usual size for the instances of Subset Sum is Θ(n log K),
since for conciseness every “reasonable” encoding is assumed to represent each
element of V (as well as S) using a string whose length is O(log K). Here all
logarithms are taken with base 2. Stated differently, the size of the instance is
usually considered to be the number of bits which must be used to represent in
binary S and all the integer numbers which occur in V . If we would represent
such numbers using the unary notation, then the size of the instance would be
Θ(nK). But in this case we could write a program which first converts the in-
stance in binary form and then uses the above algorithm to solve the problem

344 A. Leporati et al.

in polynomial time with respect to the new instance size. We can thus conclude
that the difficulty of a numerical NP–complete problem depends also on the
measure of the instance size we adopt.

The problem we mentioned above concerning the SN P system depicted in
Figure 1 is that the rules avi → λ and avi → avi ; 0 which occur in the leftmost
neurons, as well as those that occur in the rightmost neurons, check for the
existence of a number of spikes which may be exponential with respect to the
usually agreed instance size of Subset Sum. Moreover, to initialize the system
the user has to place a number of objects which may also be exponential. This
is not fair, because it means that the SN P system that solves the NP–complete
problem has in general an exponential size with respect to the binary string
which is used to describe it; an exponential effort is thus needed to build and
initialize the system, that easily solves the problem by working in unary notation
(hence in polynomial time with respect to the size of the system, but not with
respect to its description size). This problem is in some aspects similar to what
has been described in [9], concerning traditional P systems that solve numerical
NP–complete problems.

3 Solving Subset Sum with Inputs Encoded in Binary

Similarly to what we have done in [9], in this section we show that the ability of
the SN P system depicted in Figure 1 to solve Subset Sum does not derive from
the fact that the system is initialized with an exponential number of spikes, at
least if we allow the application of rules in the maximal parallel way.

In this paper, maximal parallelism is intended exactly as in traditional P
systems. Since in SN P systems we have only one kind of objects (the spike),
this means that at every computation step the (multi)set of rules to be applied in
a neuron is determined as follows. Let k denote the number of spikes contained
in the neuron. First, one rule is nondeterministically chosen among those which
can be applied. If such a rule consumes c spikes, then the selection process is
repeated to the remaining k − c spikes, until no rule can be applied. Note that
a rule may eventually be chosen many times, and thus at the end of the process
we obtain a multiset of rules. A little technical difficulty is given by the fact that
the chosen rules may have different delays; hence, we define the delay associated
with a multiset of rules as the maximum of the delays that appear in the rules.
However, for our purposes it will suffice to consider maximally parallel neurons
that contain just one rule. Hence, the process with which the neuron chooses the
rules to be applied is unimportant, and no problems arise with the delays: at
every computation step the only existing rule is chosen, and is applied as many
times as possible (i.e., maximizing the number of spikes which are consumed).

Consider the SN P system depicted in Figure 2, in which all the neurons work
in the maximal parallel way. Assume that a sequence of spikes comes from the
environment, during k consecutive time steps. Such spikes can be considered as
the binary encoding of a k-bit natural number N , by simply interpreting as 1
(resp., 0) the presence (resp., absence) of a spike in each time step. The system

Solving Numerical NP-Complete Problems with SN P Systems 345

Fig. 2. A maximally parallel SN P system that converts a binary encoded positive
integer number to unary form

works as follows. In the first step, the most significant bit of N enters into
the neuron labeled with 0. Simultaneously, neuron st fires and sends a spike to
neuron out, that will contain the resulting unary encoding of N . This is done in
order to close such a neuron, so that it does not receive the intermediate results
produced by neurons 0, 1, . . . , k −1 during the conversion. During the next k −1
steps, all subsequent bits of N enter into the system. Neurons 0, 1, . . . , k − 1 act
as a shift register, and they duplicate every spike before sending both copies
to the neighboring neuron. In this way, since rules are applied in the maximal
parallel way, at the end of the k-th step each neuron j, with j ∈ {0, 1, . . . , k−1},
will contain 2j spikes if the j-th bit of N is 1, otherwise it will contain 0 spikes.
At the (k + 1)-th step, neuron out becomes open again, and receives exactly N
spikes. Two little annoying details are that this neuron emits a “spurious” spike
at the (k + 1)-th computation step, and that it becomes again closed for further
k − 1 time steps. The first spike emitted from the subsystem has obviously to
be ignored, whereas during the (2k)-th step neuron out emits the N spikes we
are interested in. Note that this module can be used only once, since neuron
st initially contains just one spike. By making neuron st work in the sequential
mode (instead of the maximally parallel mode), and slightly complicating the
structure of the system, we can also convert a sequence of n numbers arriving
from the environment in n · k consecutive time steps.

By looking at Figure 3, we can see that for any instance ({v1, v2, . . . , vn}, S) of
Subset Sum it is possible to build a maximally parallel nondeterministic SN P
system that solves it as follows. During the first k computation steps, the system
reads n sequences of spikes, each one encoding in binary the natural number vi.
Each sequence goes to an SN subsystem which performs the conversion from
binary to unary, as illustrated in Figure 2. Thus in the (2k)-th step, for all
i ∈ {1, 2, . . . , n}, vi spikes reach the neuron labeled with vi. At the next step,
each of these neurons nondeterministically decides whether to propagate the

346 A. Leporati et al.

Fig. 3. A nondeterministic SN P system that solves the Subset Sum problem by
working in the maximal parallel way (but for the neuron Sum)

spikes it has received, or to delete them. Hence, the rules of neurons vi are
applied not only in the maximal parallel way, but also in a nondeterministic way
(in the sense that one of the two rules is nondeterministically chosen, and then
is applied in the maximal parallel way). In step 2k + 2, the neuron labeled with
Sum checks whether the number of spikes it has gathered is equal to S; if so,
it fires one spike to the environment, thus signalling that the given instance of
Subset Sum is positive. Conversely, the instance is negative if and only if no
spike is emitted from the system during the (2k + 2)-nd computation step. The
forgetting rules which occur in neuron Sum are needed so that at step k + 2 all
the spurious spikes that (eventually) reach the neuron (coming from the modules
that have performed the conversions from binary to unary) are removed from
the system, and are not added to the spikes that arrive at step 2k+1. Of course,
here we are assuming that S > n; if this is not the case, then the rules must be
modified accordingly. Note that neuron Sum is deterministic, and works in the
sequential way. We also observe that, if desired, we can use two neurons instead
of one in the last layer of the system, as we have done in Figure 1. The first
neuron would be just like Sum, the only difference being that the rule aS → a; 0
becomes a∗/aS → a; 0. The second neuron would contain the same forgetting
rules as Sum, and the firing rule a∗/aS+1 → a; 1 instead of aS → a; 0. In this
way, the instance would be signalled as positive if and only if a single spike is
emitted during the steps 2k + 2 and 2k + 3.

This solution to the Subset Sum problem is still semi–uniform: a single sys-
tem is able to solve all the instances that have the same value of S, and in which
all vi are k-bit numbers. A way to make the system uniform would be to read
from the environment also the value of S, encoded in binary form, and send a
corresponding number of spikes to a predefined neuron. The problem would thus
reduce to comparing with S the number of spikes obtained by nondeterminis-
tically choosing some of the vi. In the next section we will operate in a similar

Solving Numerical NP-Complete Problems with SN P Systems 347

way; however, instead of comparing the contents of two neurons, expressed in
unary form, we will operate as follows: we will keep S in binary form, and we
will convert the sum of vi from unary to binary. In this way, the problem to
compare S with the sum of vi is reduced to a bit-by-bit comparison.

Before doing all this, let us show that the conversion from binary to unary of
a given natural number cannot be performed in polynomial time without using
maximal parallelism. Let Π be a deterministic SN P system that works in the
sequential way: all the neurons compute in parallel with respect to each other,
but in each neuron only one rule is chosen and applied at every computation step.
To be precise, even if the contents of the neuron would allow to apply the chosen
rule many times (such as it happens, for example, with the rule a∗/a → a2; 0
and five spikes occurring in the neuron), only one instance of the rule is applied
(in the example, one spike is consumed and two spikes are produced). Without
loss of generality, we can assume that the regular expressions that occur in Π
have the form ai with i ≤ 3 or a(aa)+, which suffice to obtain computationally
complete SN P systems [5]. Let m be the number of neurons in Π , and let t(k)
be the polynomial number of steps needed by Π to convert the k-bit natural
number N given in input from the binary to the unary form. Moreover, let Q
be the maximum number of spikes produced by any rule of Π . Since in the
worst case every neuron is connected with every other neuron, the total number
of spikes occurring in the system is incremented by at most mQ units during
each computation step. If we denote by M the number of spikes occurring in
the initial configuration, then after t(k) computation steps the number of spikes
in the system will be at most M + mQt(k). This quantity is polynomial with
respect to both the number of steps and the description size of Π , and thus
it cannot cover the exponential gap that exists between the number of objects
needed to represent N in binary and in unary form.

4 A Uniform Family of SN P Systems for Subset Sum

Let us present now a uniform family {Π(〈n, k〉)}n,k∈N of SN P systems such
that for every n and k in N, the system Π(〈n, k〉) solves all possible instances
({v1, v2, . . . , vn}, S) of Subset Sum in which v1, v2, . . . , vn and S are all k-bit
natural numbers.

As told in the previous section, we first need a subsystem that allows to
convert natural numbers from the unary to the binary form. Consider the system
depicted in Figure 4. All the neurons work in the maximal parallel way. Initially,
neuron in contains N spikes, where N is the k-bit natural number we want to
convert. In the first computation step, all the spikes contained in neuron in are
sent to neuron 0 (thus entering into the subsystem), thanks to the rule a → a; 0
applied in the maximal parallel way. In the second step, rule a2 → a; 0 in neuron
0 halves the number of spikes (indeed, computing an integer division by 2) and
sends the result to neuron 1. If the initial number of spikes was even, then in
neuron 0 no spikes are left; instead, if the initial number of spikes was odd, then
exactly one spike will remain in neuron 0. Hence, the number of spikes remaining

348 A. Leporati et al.

Fig. 4. A maximally parallel SN P system that converts a unary encoded positive
integer number to binary form

Fig. 5. The uniform SN P system Π(〈n, k〉) that solves all instances of Subset Sum

composed by k-bit natural numbers

Solving Numerical NP-Complete Problems with SN P Systems 349

Fig. 6. An SN P system that delays of k steps the sequence of spikes given in input

in neuron 0 is equal to the value of the least significant bit of the binary encoding
of N . The computation proceeds in a similar way during the next k − 1 steps; in
each step, the next bit (from the least significant to the most significant) of the
binary encoding of N is computed. Note that the bits that have already been
computed are unaffected by subsequent computation steps. After k computation
steps, the neurons labeled with 0, 1, . . . , k − 1 contain all the bits of the binary
encoding of N . In order to use such bits, we can connect these neurons to other
k neurons, which should be kept closed during the conversion by means of a trick
similar to that used in Figure 2.

The SN P system Π(〈n, k〉) that solves all the instances ({v1, v2, . . . , vn}, S)
of Subset Sum which are composed by k-bit natural numbers is depicted (in a
schematic way) in Figure 5. The sequences of spikes that encode v1, v2, . . . , vn

and S in binary form arrive simultaneously from the environment, and enter into
the system from the top. The values v1, . . . , vn are first converted to unary and
then some of them are summed, as before; the sequence of bits in S, instead, is
just delayed (using the subsystem depicted in Figure 6) so that it arrives in the
“Bit by bit comparison” subsystem simultaneously with the binary representa-
tion of the sum of the vi. Such a binary representation is obtained through the
subsystem depicted in Figure 4. The bit-by-bit comparison subsystem (depicted
in Figure 7) emits a spike if and only if all the bits of the two integer numbers
given in input match, that is, if and only if the two numbers are equal. If we
denote by x =

∑k−1
i=0 xi2i and y =

∑k−1
i=0 yi2i the numbers to be compared, the

subsystem computes the following boolean function:

Compare(x0, . . . , xk−1, y0, . . . , yk−1) =
k−1∧

i=0

(
¬(xi ⊕ yi)

)
= ¬

(
k−1∨

i=0

(xi ⊕ yi)

)

where ⊕ denotes the logical xor operation. The subsystem works as follows.
Bits xi and yi are xored by the neurons depicted on the top of Figure 7. The
neuron labeled with ∨ computes the logical or of its inputs: precisely, it emits
one spike if and only if at least one spike enters into the neuron. Neuron out
receives the output produced by ∨ and computes its logical negation (not). In
order to be able to produce one spike if no spikes come from out, we use two
auxiliary neurons that send to out one spike at every computation step. The
number of neurons, as well as the total number of rules, used by Π(〈n, k〉) is
polynomial with respect to n and k.

We conclude by observing that the output of the SN P system depicted in
Figure 5 has to be observed exactly after 3k + 6 computation steps. First of

350 A. Leporati et al.

Fig. 7. A standard SN P system that compares two k-bit natural numbers

all, the bit-by-bit comparison subsystem emits one spike at every computation
step if the two k-bit integer numbers given in input are both zero. Moreover,
the conversion from binary to unary of v1, v2, . . . , vn produces some spurious
spikes before emitting the result. These spurious spikes are added in neuron
sum, and the result of this addition is first converted to binary and then sent
to the comparison subcircuit. Hence, we have to carefully calibrate the delay
subsystem so that this value does not interfere with the bits of S, that will
arrive to the comparison subsystem only later. From a direct inspection of the
system in Figure 5, it is easily seen that the correct delay to be applied is equal
to 3k + 2 steps.

5 Conclusions

In this paper we have continued the study concerning the computational power
of SN P systems, started in [8]. In particular, by slightly extending the original
definition of SN P systems given in [6] and [7] we have shown that by exploiting
nondeterminism it is possible to solve numerical NP–complete problems such as
Subset Sum and Partition (which can be considered as a particular case of
Subset Sum).

However, a drawback of this solution is that the system may require to specify
an exponential number of spikes both when defining the rules and when describ-
ing the contents of the neurons in the initial configuration. Hence, we have shown
that the numbers v1, v2, . . . , vn occurring in the instance of Subset Sum can be

Solving Numerical NP-Complete Problems with SN P Systems 351

given to the system in binary form, and subsequently converted to the unary
form in polynomial time. In this way we have proved that the capability of the
above system to solve Subset Sum does not derive from the fact that it requires
an exponential effort to be initialized.

The new SN P system thus obtained still provides a semi–uniform solution,
since for each instance of the problem we need to build a specifically designed SN
P system to solve it. Thus, we have finally proposed a family {Π(〈n, k〉)}n,k∈N

of SN P systems such that for all n, k ∈ N, Π(〈n, k〉) solves all the instances
({v1, v2, . . . , vn}, S) of Subset Sum such that v1, v2, . . . , vn and S are all k-bit
natural numbers. This solution assumes that for each neuron (or, at least, for
each subsystem) it is possible to choose whether such a neuron (resp, subsystem)
works in a deterministic vs. nondeterministic way, and in the sequential vs. the
maximally parallel way.

In [8] we have also studied the computational power of deterministic accept-
ing SN P systems working in the sequential way. In particular, we have shown
that they can be simulated by deterministic Turing machines with a polynomial
slowdown. This means that they are not able to solve NP–complete problems
in polynomial time unless P = NP, a very unlikely situation. In future work,
we will address the study of the computational power of deterministic accepting
SN P systems working in the maximally parallel way.

Acknowledgments

We gratefully thank Gheorghe Păun for introducing the authors to the stimulat-
ing subject of spiking neural P systems, and for asking us a “Milano theorem”
(in the spirit of [14]) about their computational power, during the Fifth Brain-
storming Week on Membrane Computing, held in Seville from January 29th to
February 2nd, 2007.

We are also truly indebted with Mario de Jesús Pérez-Jiménez, as well as with
an anonymous referee, for stimulating observations and suggestions made on a
previous version of this paper.

This research was partially funded by Università degli Studi di Milano–Bicocca
— FIAR 2006.

References

1. Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On String
Languages Generated by Spiking Neural P Systems. In: Gutiérrez-Naranjo, M.A.,
Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming
Week on Membrane Computing, vol. I, RGCN Report 02/2006, Research Group
on Natural Computing, Sevilla University, pp. 169–194. Fénix Editora (2006)

2. Cormen, T.H., Leiserson, C.H., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Boston (1990)

352 A. Leporati et al.

3. Garćıa-Arnau, M., Peréz, D., Rodŕıguez-Patón, A., Sośık, P.: Spiking Neural P
Systems: Stronger Normal Forms. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-
Jiménez, A., Riscos-Núñez, A. (eds.) Fifth Brainstorming Week on Membrane
Computing, RGCN Report 01/2007, Research Group on Natural Computing,
Sevilla University, pp. 157–178. Fénix Editora (2007)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
on NP–Completeness. W.H. Freeman and Company, New York (1979)

5. Ibarra, O.H., Păun, A., Păun, G., Rodŕıguez-Patón, A., Sośık, P., Woodworth, S.:
Normal Forms for Spiking Neural P Systems. Theoretical Computer Science 372(2-
3), 196–217 (2007)

6. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta In-
formaticae 71(2-3), 279–308 (2006)

7. Ionescu, M., Păun, A., Păun, G., Pérez-Jiménez, M.J.: Computing with Spiking
Neural P Systems: Traces and Small Universal Systems. In: Mao, C., Yokomori, T.
(eds.) DNA Computing. LNCS, vol. 4287, pp. 1–16. Springer, Heidelberg (2006)

8. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the Computational Power of
Spiking Neural P Systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Fifth Brain-
storming Week on Membrane Computing, Research Group on Natural Computing,
Sevilla University, pp. 227–245. Fénix Editora (2007)

9. Leporati, A., Zandron, C., Gutiérrez-Naranjo, M.A.: P Systems with Input in Bi-
nary Form. International Journal of Foundations of Computer Science 17(1), 127–
146 (2006)

10. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A New Class of Sym-
bolic Abstract Neural Nets: Tissue P Systems. In: Ibarra, O.H., Zhang, L. (eds.)
COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)

11. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000), see also Turku Centre for Computer Science — TUCS
Report No. 208 (1998), available at:
http://www.tucs.fi/Publications/techreports/TR208.php

12. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
13. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Infinite Spike Trains in Spiking

Neural P Systems (submitted for publication)
14. Zandron, C., Ferretti, C., Mauri, G.: Solving NP–Complete Problems Using P Sys-

tems with Active Membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.)
Unconventional Models of Computation, pp. 289–301. Springer, London (2000)

15. The P systems Web page: http://psystems.disco.unimib.it/

http://www.tucs.fi/Publications/techreports/TR208.php
http://psystems.disco.unimib.it/

Towards a Complete Covering of SBML

Functionalities

Tommaso Mazza

’Magna Græcia’ University of Catanzaro, Italy
t.mazza@unicz.it

Abstract. The complexity of biological systems is at times made worse
by the diversity of ways in which they are described: the organic evolution
of the science over many years has led to a myriad of conventions. This
confusion is reflected by the in-silico representation of biological models,
where many different computational paradigms and formalisms are used
in a variety of software tools.

The Systems Biology Markup Language (SBML) is an attempt to
overcome this issue and aims to simplify the exchange of information by
imposing a standardized way of representing models. The success of the
idea is attested to by the fact that more than 110 software tools currently
support SBML in one form or another.

This work focuses on the translation of the Cyto-Sim simulation lan-
guage (based on a discrete stochastic implementation of P systems) to
SBML. We consider the issues both from the point of view of the em-
ployed software architecture and from that of the mapping between the
features of the Cyto-Sim language and those of SBML.

1 Introduction

Nowadays, very few common exchange formats exist. We face difficulties to ex-
change models among different analysis and simulation tools. Therefore, taking
advantage of the different tools power and capabilities is the main issue among
scientists.

To overcome this issue, in March 2001, a first step was taken. During the
First International Symposium on Computational Cell Biology, (Massachussetts,
USA), Michael Hucka presented a new simple, well-supported and with textual
substrate (XML) language adding components that reflect the natural concep-
tual constructs used by modelers in the domain, SBML: Systems Biology
Markup Language. SBML was intended to be a common exchange format for
transferring network models among tools, even if it may not capture everything
represented by every tool (lossy transformation).

Inspired to CellML, the SBML community immediately begun a joint work
with the CellML community with the aim to bring both markup languages to-
gether. The fruit beard by this effort has been CellML2SBML [32], a suite of
XSLT stylesheets that, when applied consecutively, convert models expressed
in CellML into SBML without significant loss of information. In the follow-
ing years, many new and supporting initiatives and tools have been developed

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 353–366, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

354 T. Mazza

in favor of SBML by its growing community. SBML and BioPAX, a common
exchange format for databases of pathways, teams worked together to define
linkages between both representations. The libsbml library had been designed to
help modelers to read, write, manipulate, translate, and validate SBML files and
data streams. The Systems Biology Workbench [2] and Systems Biology Markup
Language [8], a project funded by Japan Science and Technology Corporation
ERATO program, started in the summer 2000. The project goal was to provide
software infrastructure which (i) enables sharing of simulation/analysis software
and models and (ii) enables collaboration between software developers. Subse-
quently, a plethora of many applications and databases based on SBML were
born: MathSBML [33], a Mathematica package that manipulates SBML models;
SBMLToolbox [18] a toolbox that facilitates importing and exporting models rep-
resented in SBML in and out of the MATLAB environment. Other two useful
tools were SBMLSupportLayout and SBWAutoLayout [5], supporting reading,
creating, manipulating and writing layout information for biochemical models.
Yet other smart tools have been developed in the past: SBML ODE Solver Li-
brary [23] (SOSlib), a programming library for symbolic and numerical analysis
of chemical reactions network models encoded in SBML; SBML-PET [36], a
tool designed to enable parameter estimation for biological models including
signalling pathways, gene regulation networks and metabolic pathways. A tool
to translate SBML into pi-calculus [6] was presented in 2006 by Eccher and Pri-
ami and later also SBMLR1, a tool able to link R to libsbml for SBML parsing
and output converting SBML to R graph objects, and more; SemanticSBML2: a
suite of tools to facilitate merging of SBML models for systems biology starting
from all elements in the SBML files described by MIRIAM-type annotations and
SBMLeditor [30] a very simple, low level editor of SBML files.

As many tools have been implemented all around SBML just to highlight
the trust of developers on the standardizing initiatives related to the software
biological infrastructures towards commons exchange formats. In particular, it is
an undeniable fact the increasing and unison consensus among developers in favor
of SBML. In fact, several languages have been recently developed to overcome
these kind of problems (integrations, standardizing, reuse of biological models)
[22], [12], [7], [34], [35], [10], [24], [1], [15], [14]. However, only two XML-based
formats are suitable for representing compartmental reaction network models
with sufficient mathematical depth that the descriptions can be used as direct
input to simulation software. The two are CellML [4], [11] and SBML [13]. The
latter is becoming a de-facto standard for a common representation supporting
basic biochemical models. In fact, today, SBML is supported by over 110 software
systems. As a consequence, many SBML models of gene regulatory networks and
metabolic pathways that code a considerably body of biological knowledge have
been accumulated in repositories.

Among all databases, I recall (i) the PANTHER Classification System, [26], an
unique resource that classifies genes by their functions, using published

1 Web Site of SBMLR: http://cran.r-project.org/src/contrib/Descriptions/rsbml.html
2 Web Site of SemanticSBML: http://sysbio.molgen.mpg.de/semanticsbml/

Towards a Complete Covering of SBML Functionalities 355

scientific experimental evidence and evolutionary relationships to predict func-
tion even in the absence of direct experimental evidence; (ii) KEGG [17], a
knowledge base for systematic analysis of gene functions, linking genomic in-
formation with higher order functional information; (iii) JWS Online [28], a
Systems Biology tool for simulation of kinetic models from a curated model
database; (iv) Reactome [16], a curated resource of core pathways and reactions
in human biology and (v) BioModels database [21], an annotated resource of
quantitative models of biomedical interest.

Therefore, with the constant focus on SBML, in this paper I am going to
inspect in section 2 how Cyto-Sim can speak and understand SBML, in the
section 3, I am going to show the software facilities employed and the software
packages implemented to build a pure Java library to handle SBML documents.
In the section 4, I am going to test the software package implemented on real
SBML files taken from different data sources and, in the last section, I am going
to delineate the future works.

2 SBML ⇔ Cyto-Sim

As deeply shown, SBML is a powerful and well defined language for modeling
biological interactive systems in standard way. The aim of my work has been to
make Cyto-Sim able to speak and understand SBML.

Cyto-Sim [3] is a stochastic simulator of biochemical processes in hierarchical
compartments which may be isolated or may communicate via peripheral and
integral membrane proteins. It is available online as a Java applet [27] and as
standalone application. For security issue, although the functionalities of the
applet has been reduced, it fully and correctly works. By means of it, it is
possible to model: (i) interacting species; (ii) compartmental hierarchies; (iii)
species localizations inside compartments and membranes and (iv) rules and
their and correlated velocity formulas which govern the dynamics of the system
to be simulated, as chemical equations.

Some real biological systems have already been successfully simulated in the
past by means of Cyto-Sim. Now I am going to try to explain at first how to
translate a Cyto-Sim model into SBML (and vice-versa) and later I will test
the quality of the translation comparing the simulations available in literature
against those obtained by Cyto-Sim about the same models.

2.1 Speaking SBML

The conversion process from the Cyto-Sim syntax to the SBML one is quite
straightforward. In Cyto-Sim, users must declare the species present into the
system writing something like this:

/* Object Declaration */
object speciesA, speciesB, speciesC

This line of code corresponds to the following SBML chunk of code:

356 T. Mazza

<listOfSpecies>
<species id="compartmentA_0_speciesA" name="speciesA"

compartment="compartmentA" initialAmount="0.0"/>
<species id="compartmentB_0_speciesB" name="speciesB"

compartment="compartmentB" initialAmount="1.0"/>
<species id="compartmentC_2_speciesC" name="speciesC"

compartment="compartmentB" initialAmount="2.0"/>
</listOfSpecies>

Not all the information in this XML code can be retrieved by the previous
objects specification3. In fact, the compartment, membrane and initial amount
related to one species are reached both from the following code:

/* Compartments Declarations */
compartment compartmentA [ruleA]
compartment compartmentB [compartmentA, ruleB, ruleC,

speciesB, 100 speciesB@7000 : |2 speciesC|]
system compartmentB

and from this:

/* Rules Declarations */
rule ruleA {

speciesA k1-> *
|| + speciesA k2-> speciesA + ||

}
rule ruleB speciesB k3-> speciesC
rule ruleC |speciesC| k4-> || + speciesC

From the code related to the compartments we take information about (i) the
compartment hierarchy, (ii) which rule happens and in what compartment, (iii)
the declared initial quantities (species not declared in this context will not still
exist as default at the beginning of the simulation) and (iv) eventual re-feeding
events at specified evolution times. Considering now that a reaction occurring in
a compartment acts only on the species within it, looking to the localization of
a species we can infer the localization of any reactions acting on it. Moreover it
is possible to notice that the rule ruleC acts on the species speciesC inside the
membrane4 (membrane number 2) of the compartment compartmentB.

In SBML each compartment is quadruplicated to easily handle membranes.

<listOfCompartments>
<compartment id="compartmentA_0" compartmentType="compartmentA"

3 The figure between the compartment and the species names within the string as-
signed to each species id corresponds to the membrane in which a species sits. For
more information about the syntax, look at [3].

4 Recall that in this context a compartment is surrounded by a membrane with a not
negligible thickness, therefore a compartment is logically divided into the internal
(membrane 0), internal and superficial (membrane 1), intra (membrane 2), external
and superficial (membrane 3) and external (membrane 4) membranes.

Towards a Complete Covering of SBML Functionalities 357

outside="compartmentA_1"/>
<compartment id="compartmentA_1" compartmentType="compartmentA"

outside="compartmentA_2"/>
<compartment id="compartmentA_2" compartmentType="compartmentA"

outside="compartmentA_3"/>
<compartment id="compartmentA_3" compartmentType="compartmentA"

outside="compartmentB_0"/>
<compartment id="compartmentB_0" compartmentType="compartmentB"

outside="compartmentB_1"/>
<compartment id="compartmentB_1" compartmentType="compartmentB"

outside="compartmentB_2"/>
<compartment id="compartmentB_2" compartmentType="compartmentB"

outside="compartmentB_3"/>
<compartment id="compartmentB_3" compartmentType="compartmentB"

outside="system_0"/>
<compartment id="system_0" compartmentType="system"

outside="system_1"/>
<compartment id="system_1" compartmentType="system"

outside="system_2"/>
<compartment id="system_2" compartmentType="system"

outside="system_3"/>
<compartment id="system_3" compartmentType="system"/>

</listOfCompartments>

Then a single compartment generates four independent concentric compart-
ments, as a Matrioska doll toy, related to the same compartment but enclosing
different spatial areas and then species. To keep conceptually linked these com-
partments, a compartment type specification is provided.

<listOfCompartmentTypes>
<compartmentType id="compartmentA"/>
<compartmentType id="compartmentB"/>
<compartmentType id="system"/>

</listOfCompartmentTypes>

The previously seen reactions are easily translated into SBML differentiating
the names of the grouped rules (e.g. the ruleA group contains two reactions.
Their names will become: ruleA.0 and ruleA.1). Moreover, the kinetic formulas
just touched (k1, k2, etc) before are expressed by MathML expressions inside
<kineticLaw> tags.

<listOfReactions>
[...]
<reaction id="ruleA.1" name="compartmentA_0_ruleA.1">

<listOfReactants>
<speciesReference species="compartmentA_0_speciesA"

stoichiometry="1.0"/>
</listOfReactants>
<!--listOfProducts>No Products</listOfProducts-->
<kineticLaw>

358 T. Mazza

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<cn>k1_value</cn>
<ci>compartmentA_0_speciesA</ci>

</apply>
</math>

</kineticLaw>
</reaction>

</listOfReactions>

Cyto-Sim also requires the specification of a range of evolution times and of the
species whose quantities have to be plotted on the screen.

evolve 0 - 1000
plot compartmentA[speciesA], compartmentB[speciesB:|speciesC|]

This information can be encoded in SBML by the use of an annotation which is
auto-explicative.

<annotation>
<Cyto-Sim xmlns:cytosim="http://www.sbml.org/2001/ns/cytosim">

<plot>
<species>compartmentA_0_speciesA</species>
<species>compartmentB_0_speciesB</species>
<species>compartmentB_2_speciesC</species>

</plot>
<evolve>

<from>0</from>
<to>1000</to>

</evolve>
</Cyto-Sim>

</annotation>

2.2 Understanding SBML

The process to make an existing SBML file comprehensible to Cyto-Sim is more
complex than the opposite step. Keeping in mind the correspondences among
structures before shown, during this kind of translation we have to check some
restrictions and to guarantee some constraints which are now explained.

Parameters: SBML optionally carries global parameters, visible everywhere
in the file and local ones with more restricted scope. During the parsing
time of an SBML file, Cyto-Sim loads all global parameters putting them
into a global HashMap. In the case of local parameters inside kineticLaw of
reactions, Cyto-Sim considers local and global parameters together taking
care to overwrite eventual global parameters with the same name of local
ones.

Towards a Complete Covering of SBML Functionalities 359

Species Quantities: SBML provides optional size for compartments. Cyto-
Sim handles quantities and not concentration for species, then each concen-
tration (if any) has to be converted into quantity. To do that, Cyto-Sim
requires the size specification for each compartment if there are any specifi-
cation of the species concentrations inside it.

Assignments: Cyto-Sim handles assignment rules at the moment of parsing
and use them to replace eventual existing fixed values specified for species
quantity, compartment size or parameters value. Up to now, it does not
understand initial assignments, rate rules and algebraic rules. These features
will be made available soon.

Functions: Cyto-Sim does not still handle λ-functions.
Units and Constraints: Cyto-Sim does not still make use of units of mea-

surements and constraints.

3 Binding to the SBML Schema

After having conceptually explained how Cyto-Sim converts SBML in its own
language and vice-versa, now I am going to show which software architecture
gives it the possibility to do that. I used two well known tools for this aim: the
Java Architecture for XML Binding (JAXB) package and the XML DOM parser,
both build-in the latest release of Java (Java Mustang).

JAXB [9] simplifies access to an XML document from a Java program by pre-
senting the XML document to the program in a Java format. The first step in this
process is to bind the schema for the XML document into a set of Java classes that
represents the schema. Binding a schema means generating a set of Java classes
that represents the schema. All JAXB implementations provide a tool called bind-
ing compiler in order to bind a schema. In response, the binding compiler generates
a set of interfaces and a set of classes that implement the interface. I obtained Java
classes for each available XML levels and versions. I mean SBML level 1 version
1, level 1 version 2, level 2 version 1 and level 2 version 2. Later, I compiled and
packaged them into just one package. The second step is to unmarshal an SBML
document. Unmarshalling means creating a tree of content objects that represents
the content and the organization of the document. The content tree is not a DOM-
based tree. In fact, content trees produced through JAXB can be more efficient in
terms of memory usage than DOM-based trees. The content objects are instances
of the classes produced by the binding compiler. In addition to providing a bind-
ing compiler, JAXB provides runtime APIs for JAXB-related operations such as
marshalling. It is possible to validate source data against an associated schema
as part of the unmarshalling operation. If the data is found to be invalid (that
is, it doesn’t conform to the schema) the JAXB implementation can report it and
might take further action. JAXB providers have a lot of flexibility here. The JAXB
specification mandates that all provider implementations report validation errors
when the errors are encountered, but the implementation does not have to stop
processing the data. Some provider implementations might stop processing when
the first error is found, others might stop even if many errors are found. In other

360 T. Mazza

Fig. 1. Software Architecture for SBML Binding

words, it is possible for a JAXB implementation to successfully unmarshal an in-
valid XML document, and build a Java content tree. However, the result will not
be valid. The main requirement is that all JAXB implementations must be able to
unmarshal valid documents. I unmarshal and validate each SBML file at runtime.

The W3C Document Object Model (DOM) is a platform and language-neutral
interface that allows programs and scripts to dynamically access and update the
content, structure, and style of a document. The XML DOM is the tool to define
(i) a standard set of objects for XML, (ii) a standard way to access XML docu-
ments; (iii) a standard way to manipulate XML documents. Cyto-Sim uses the
DOM parser contained into xerces2-j [29] built into the Java Mustang release.
The DOM parser is used to:

Check Levels and Versions: Cyto-Sim preliminary opens SBML files and checks
levels and versions (delegating validation and comprehension to
JAXB). It acquires knowledge about which JAXB context instantiating or,
more clearly, which SBML schema considering for binding, unmarshalling
and validation;

Parse MathML expression: Due to intrinsic limitations of JAXB to handle
recursively nested xml tags, Cyto-Sim makes use of DOM to explore MathML
expressions and parse their components.

Towards a Complete Covering of SBML Functionalities 361

4 Experimental Tests

The capability of Cyto-Sim to understand all currently existing SBML levels and
versions has been tested on almost all official existing SBML files available on
the web. I successfully imported all SBML files generated by Gepasi [25], a soft-
ware package for modeling biochemical systems and the most part of the models
stored into the BioModels database [21]. Gepasi makes available 9 SBML level
1 version 1 files 5 while BioModels has 70 curated and 43 not curated models
exported as SBML level 2 version 1 files. I have also tested models from the PAN-
THER (130 SBML level 1 version 2 files) Classification System, and from KEGG
(77 SBML level 2 version 1 files). All SBML files were converted from KEGG
by using a conversion script kegg2sbml. Moreover, I retrieved some interesting
models among all 238 CellML models and tested them. To do that, I had to
manually convert from the CellML format to SBML by means of CellML2SBML
[32] and later import and simulate them with Cyto-Sim. All imported files have
been successfully parsed by Cyto-Sim. This testifies the quality of the conversion
routines and of the architecture employed. Summarizing, I retrieved 567 models
from the most known and famous biological model containers available in SBML
(or in formats having reference to SBML), and tested them. I obtained a suc-
cessful test, when Cyto-Sim had been able to correctly parse the inferred model.
In particular, now I am going to show a couple of examples which Cyto-Sim has
been able not only to correctly parse, but also to simulate and get the same
results shown in literature.

The first test is related to the model BIOMD0000000010 picked up from
the BioModels database. It concerns the functional organization of signal trans-
duction into protein phosphorylation cascades and in particular the mitogen-
activated protein kinase (MAPK) cascades. It greatly enhances the sensitivity
of cellular targets to external stimuli [19]. In this paper it is demonstrated that
a negative feedback loop combined with intrinsic ultrasensitivity of the MAPK
cascade can bring about sustained oscillations in MAPK phosphorylation. The
conversion of the SBML file produces the following model with 1 compartment,
8 species and 10 reactions.

object MKKK, MKKK_P, MKK, MKK_P, MKK_PP, MAPK, MAPK_P, MAPK_PP

rule J0 MKKK ((1.0*2.5*MKKK)/((1+((MAPK_PP/9.0)^1.0))*(10.0+MKKK)))-> MKKK_P
rule J1 MKKK_P ((1.0*0.25*MKKK_P)/(8.0+MKKK_P))-> MKKK
rule J2 MKK ((1.0*0.025*MKKK_P*MKK)/(15.0+MKK))-> MKK_P
rule J3 MKK_P ((1.0*0.025*MKKK_P*MKK_P)/(15.0+MKK_P))-> MKK_PP
rule J4 MKK_PP ((1.0*0.75*MKK_PP)/(15.0+MKK_PP))-> MKK_P
rule J5 MKK_P ((1.0*0.75*MKK_P)/(15.0+MKK_P))-> MKK
rule J6 MAPK ((1.0*0.025*MKK_PP*MAPK)/(15.0+MAPK))-> MAPK_P
rule J7 MAPK_P ((1.0*0.025*MKK_PP*MAPK_P)/(15.0+MAPK_P))-> MAPK_PP
rule J8 MAPK_PP ((1.0*0.5*MAPK_PP)/(15.0+MAPK_PP))-> MAPK_P

5 among all, a very large model representing a set of 100 yeast cells in a liquid culture
whose dynamics is represented by means of 2000 reactions.

362 T. Mazza

rule J9 MAPK_P ((1.0*0.5*MAPK_P)/(15.0+MAPK_P))-> MAPK

compartment uVol[J0, J1, J2, J3, J4, J5, J6, J7, J8, J9, 280.0 MAPK,
10.0 MKK_P, 10.0 MKK_PP, 10.0 MKKK_P, 10.0 MAPK_PP, 280.0 MKK,
10.0 MAPK_P, 90.0 MKKK]

system uVol

evolve 0-33000
plot uVol[MAPK,MAPK_PP]

In the figure 2, on the left is shown the simulation result coming from the litera-
ture and on the right that one obtained with Cyto-Sim. The graphs are identical.

Fig. 2. Sustained oscillations in MAPK cascade

The second test is related to the glucose transport by the Bacterial Phospho-
enolpyruvate [31] whose model has been found in JWS Online. The resulting
model has 1 compartment, 17 species and 10 reactions.

object EI, PyrPI, EIP, HPr, EIPHPr, HPrP, EIIA, HPrPIIA, EIIAP, EIICB,
EIIAPIICB, EIICBP, EIICBPGlc, PEP, Pyr, GlcP, Glc

rule v1 PEP + EI ((1960.0*PEP*EI)-(480000.0*PyrPI))-> PyrPI
rule v2 PyrPI ((108000.0*PyrPI)-(294.0*Pyr*EIP))-> EIP + Pyr
rule v3 HPr + EIP ((14000.0*EIP*HPr)-(14000.0*EIPHPr))-> EIPHPr
rule v4 EIPHPr ((84000.0*EIPHPr)-(3360.0*EI*HPrP))-> HPrP + EI
rule v5 HPrP + EIIA ((21960.0*HPrP*EIIA)-(21960.0*HPrPIIA))-> HPrPIIA
rule v6 HPrPIIA ((4392.0*HPrPIIA)-(3384.0*HPr*EIIAP))-> EIIAP + HPr
rule v7 EIICB + EIIAP ((880.0*EIIAP*EIICB)-(880.0*EIIAPIICB))-> EIIAPIICB
rule v8 EIIAPIICB ((2640.0*EIIAPIICB)-(960.0*EIIA*EIICBP))-> EIICBP +EIIA
rule v9 EIICBP + Glc ((260.0*EIICBP*Glc)-(389.0*EIICBPGlc))-> EIICBPGlc
rule v10 EIICBPGlc ((4800.0*EIICBPGlc)-(0.0054*EIICB*GlcP))-> EIICB +GlcP

compartment compartment_cyto_sim[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,
0.0 EIICBPGlc, 5.0 EIICBP, 25.0 HPrP, 2.0 EIP, 20.0 EIIA, 5.0 EIICB,
25.0 HPr, 2800.0 PEP, 0.0 PyrPI, 0.0 EIPHPr, 50.0 GlcP, 900.0 Pyr,

Towards a Complete Covering of SBML Functionalities 363

0.0 HPrPIIA, 20.0 EIIAP, 500.0 Glc, 0.0 EIIAPIICB, 3.0 EI]
system compartment_cyto_sim

evolve 0-10000
plot compartment_cyto_sim[HPrP,EIIAPIICB,HPrPIIA]

In the figure 3 it is possible to notice that both graphs represent the same
behavior. The differences are due to the deterministic (on the left) or stochastic
(on the right) nature of the simulations.

Fig. 3. Glucose Transport by the Bacterial Phosphoenolpyruvate

At the end, I tested the whole human reactome derived from Reactome. The
actual release of the human reactome I used is an SBML file containing 28
compartments (even including internal membranes of the same compartment),
3054 species (in all their forms) and 1979 interactions represented by means of
reactions. Cyto-Sim is able to parse and even to simulate it, although at the
moment it cannot have meaning because of the lack of quantitative parameters
(reaction rates and initial species quantities).

5 Conclusion

kosmopolitês (citizen of the world), has been used to describe a wide variety
of important views in moral and socio-political philosophy. The nebulous core
shared by all cosmopolitan views is the idea that all human beings, regardless of
their political affiliation, do (or at least can) belong to a single community, and
that this community should be cultivated. Different versions of cosmopolitanism
envision this community in different ways, some focusing on political institu-
tions, others on moral norms or relationships, and still others focusing on shared
markets or forms of cultural expression [20].

In the context of the present work, a citizen of the world is anyone who
speaks and understands a common language, who can travel to the ends of
the earth without worrying about misunderstanding or being misunderstood.
Limited comprehension of language is the greatest barrier for people who need

364 T. Mazza

to spread information and ideas. This is exactly the case for scientists who wish
to share their results and models with the widest possible audience.

In this paper I have presented a quick overview of the SBML story, continu-
ally remarking on the increasing interest of scientists both to support and write
their biological models in SBML. I have shown how Cyto-Sim converts SBML
model into its own syntax and vice-versa and I presented a possible software
architectural arrangement to allow simple binding to SBML schemas and cor-
rect unmarshalling of SBML files. Finally, I presented tests performed on two
models coming from separate databases. I demonstrated the correctness of the
translation routines and highlighted the similarities of the obtained simulation
results.

Today there are more than 600 models written in SBML, ready to be more
accurately studied, confirmed or refuted. Challenging existing knowledge is the
means to increase understanding and therefore to grow knowledge. The best
way to achieve this is to maximize the number of people that speak the same
language, in this case SBML. My work sits perfectly in this context and my hope
is that it has wide application.

References

1. Altman, R.B., et al.: Ribonucleic acid markup language (2002),
http://www.smi.stanford.edu/projects/helix/riboml/

2. Bergmann, F.T., Sauro, H.M.: Sbw - a modular framework for systems biology.
In: Proceedings of the 37th conference on Winter simulation. Winter Simulation
Conference, pp. 1637–1645 (2006)

3. Cavaliere, M., Sedwards, S.: Modelling cellular processes using membrane systems
with peripheral and integral proteins. In: Priami, C. (ed.) CMSB 2006. LNCS
(LNBI), vol. 4210, pp. 108–126. Springer, Heidelberg (2006)

4. Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter,
P.J.: An overview of cellml 1.1, a biological model description language. Simula-
tion 79(12), 740–747 (2003)

5. Deckard, A., Bergmann, F.T., Sauro, H.M.: Supporting the sbml layout extension.
Bioinformatics 22(23), 2966–2967 (2006)

6. Eccher, C., Priami, C.: Design and implementation of a tool for translating
sbml into the biochemical stochastic pi-calculus. Bioinformatics 22(24), 3075–3308
(2006)

7. Fenyo, D.: The biopolymer markup language. Bioinformatics 15(4), 339–340 (1999)
8. Finney, A.M., Hucka, M.: Systems biology markup language: Level 2 and beyond.

Biochem. Soc. Trans. 31, 1472–1473 (2003)
9. Project GlassFish: The jaxb project. https://jaxb.dev.java.net/

10. Hanisch, D., Zimmer, R., Lengauer, T.: Proml - the protein markup language for
specification of protein sequences, structures and families. In Silico Biology 2(3),
313–324 (2002)

11. Hedley, W.J., Nelson, M.R., Bullivant, D.P., Nielson, P.F.: A short introduction to
cellml. Philos. Trans. R. Soc. Lond. A 359, 1073–1089 (2001)

12. Hermjakob, H., et al.: The hupopsiŠs molecular interaction format - a commu-
nity standard for the representation of protein interaction data. Nature Biotech-
nol. 22(2), 177–183 (2004)

http://www.smi.stanford.edu/projects/helix/riboml/
https://jaxb.dev.java.net/

Towards a Complete Covering of SBML Functionalities 365

13. Hucka, M., et al.: The systems biology markup language (sbml): a medium for
representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

14. Doubletwist Inc.: Agave: architecture for genomic annotation, visualization and
exchange (2001), http://www.agavexml.org

15. LabBook Inc.: Bsml (bioinformatics sequence markup language) 2.2 (2002),
http://www.labbook.com/products/xmlbsml.asp

16. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B.,
Jassal, B., Gopinath, G.R., Wu, G.R., Matthews, L., Lewis, S., Birney, E., Stein, L.:
Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–
D432 (2005)

17. Kanehisa, M., Goto, S.: Kegg: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28(1), 27–30 (2000)

18. Keating, S.M., Bornstein, B.J., Finney, A., Hucka, M.: Sbmltoolbox: an sbml tool-
box for matlab users. Bioinformatics 22(10), 1275–1277 (2006)

19. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscil-
lations in the mitogen-activated protein kinase cascades. Eur. J. Biochem 267,
1583–1588 (2000)

20. Kleingeld, P., Brown, E.: Cosmopolitanism. In: The Stanford Encyclopedia of Phi-
losophy, Edward N. Zalta (winter 2006)

21. Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri,
H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka M.: Biomodels
database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems. Nucleic Acids Research 34, D689–D691
(2006)

22. Liao, Y.M., Ghanadan, H.: The chemical markup language. Anal. Chem. 74(13),
389A-390A (2002)

23. Machné, R., Finney, A., Müller, S., Lu, J., Widder, S., Flamm, C.: The sbml ode
solver library: a native api for symbolic and fast numerical analysis of reaction
networks. Bioinformatics 22(11), 1406–1407 (2006)

24. McArthur, D.C.: An extensible xml schema definition for automated ex-
change of protein data: Proximl (protein extensible markup language) (2001),
http://www.cse.ucsc.edu/douglas/proximl/

25. Mendes, P.: Gepasi: a software package for modeling the dynamics, steady states,
and control of biochemical and other systems. Comput. Applic. Biosci. 9, 563–571
(1993)

26. Mi, H., Lazareva-Ulitsky, B., Loo, A., Kejariwal, R., Vandergriff, J., Rabkin, S.,
Guo, N., Muruganujan, A., Doremieux, O., Campbell, M.J.: The panther database
of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33,
D284–D288 (2005)

27. The Microsoft Research University of Trento. Centre for Computational and Sys-
tems Biology. Web page of Cyto-Sim (2006),
http://www.cosbi.eu/Rpty Soft CytoSim.php

28. Olivier, B.G., Snoep, J.L.: Web-based modelling using jws online. Bioinformat-
ics 20, 2143–2144 (2004)

29. Apache XML project: Xerces2 java parser 2.9.0 (2004),
http://xml.apache.org/xerces2-j/

30. Rodriguez, N., Donizelli, M., Le Novère, N.: Sbmleditor: effective creation of models
in the systems biology markup language (sbml). Bioinformatics 8(79) (published
online March 2007)

http://www.agavexml.org
http://www.labbook.com/products/xmlbsml.asp
http://www.cse.ucsc.edu/douglas/proximl/
http://www.cosbi.eu/Rpty_Soft_CytoSim.php
http://xml.apache.org/xerces2-j/

366 T. Mazza

31. Rohwer, J.M., Meadowi, N.D., Rosemani, S., Westerhoff, H.V., Postma, P.W.: Un-
derstanding glucose transport by the bacterial phosphoenolpyruvate: glycose phos-
photransferase system on the basis of kinetic measurements in vitro. The Journal
of Biological Chemistry 275(45), 34909–34921 (2000)

32. Schilstra, M.J., Li, L., Matthews, J., Finney, A., Hucka, M., Le Novère, N.:
Cellml2sbml: conversion of cellml into sbml. Bioinformatics 22(8), 1018–1020
(2006)

33. Shapiro, B.E., Hucka, M., Finney, A., Doyle, J.: Mathsbml: a package for manip-
ulating sbml-based biological models. Bioinformatics 20(16), 2829–2831 (2004)

34. Spellman, P.T., Miller, M.: Design and implementation of microarray gene expres-
sion markup language (mage-ml). Genome Biol. 3(9), 0046.0041–0046.0049 (2002)

35. Taylor, C.F., Paton, N.W.: A systematic approach to modeling, capturing, and dis-
seminating proteomics experimental data. Nature Biotechnol. 21, 247–254 (2003)

36. Zhike, Z., Klipp, E.: Sbml-pet: a systems biology markup language-based parameter
estimation tool. Bioinformatics 22(21), 2704–2705 (2006)

Active Membrane Systems Without Charges

and Using Only Symmetric Elementary Division
Characterise P

Niall Murphy1 and Damien Woods2

1 Department of Computer Science, National University of Ireland, Maynooth, Ireland
nmurphy@cs.nuim.ie

2 Department of Computer Science, University College Cork, Ireland
d.woods@cs.ucc.ie

Abstract. In this paper we introduce a variant of membrane systems
with elementary division and without charges. We allow only elementary
division where the resulting membranes are identical; we refer to this
using the biological term symmetric division. We prove that this model
characterises P and introduce logspace uniform families. This result char-
acterises the power of a class of membrane systems that fall under the
so-called P conjecture for membrane systems.

1 Introduction

The P-conjecture states that recogniser membranes systems with division rules
(active membranes [6]), but without charges, characterise P. This was shown
for a restriction of the model: without dissolution rules [4]. However, it has
been shown that systems with dissolution rules and non-elementary division
characterise PSPACE [2,9]. In this setting, using dissolution rules allows us to
jump from P to PSPACE. As a step towards finding a bound (upper or lower)
on systems with only elementary division rules, we propose a new restriction,
and show that it has an upper bound of P.

Our restriction insists that the two membranes that result from an elementary
division rule must be identical. This models mitosis, the biological process of cell
division [1] and we refer to it using the biological term “symmetric division”.
We refer to division where the two resulting daughter cells are different by the
biological term “asymmetric division”. In nature asymmetric division occurs, for
example, in stem cells as a way to achieve cell differentiation.

Since our model is uniform via polynomial time deterministic Turing ma-
chines, it trivially has a lower bound of P. However, we introduce logspace
uniformity for this model and then prove a P lower bound. All recogniser mem-
brane systems with division rules are upper bounded by PSPACE [9]. In this
paper we show that systems with symmetric elementary division and without
charges are upper bounded by P. From an algorithmic point of view, this result
allows one to write a polynomial time algorithm that models certain membrane
systems which use exponential numbers of membranes and objects.

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 367–384, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

368 N. Murphy and D. Woods

2 Preliminaries

In this section we define membrane systems and complexity classes. These defini-
tions are from Păun [6,7], and Sośık and Rodŕıguez-Patón [9]. We also introduce
the notion of logspace uniformity for membrane systems. We give a P lower
bound for the model that is the main focus of this paper.

2.1 Recogniser Membrane Systems

Active membranes systems are membrane systems with membrane division rules.
Division rules can either only act on elementary membranes, or else on both
elementary and non-elementary membranes. An elementary membrane is one
which does not contain other membranes (a leaf node, in tree terminology).
In Definition 1 we make a new distinction between two types of elementary
division rules. When we refer to symmetric division (es) we mean division where
the resulting two child membranes are identical. When the two child membranes
are not identical we refer to the rule as being asymmetric (e).

Definition 1. An active membrane system without charges using elementary
division is a tuple Π = (V, H, μ, w1, . . . , wm, R) where,

1. m > 1 the initial number of membranes;
2. V is the alphabet of objects;
3. H is the finite set of labels for the membranes;
4. μ is a membrane structure, consisting of m membranes, labelled with ele-

ments of H;
5. w1, . . . , wm are strings over V , describing the multisets of objects placed in

the m regions of μ.
6. R is a finite set of developmental rules, of the following forms:

(a) [a → v]h,
for h ∈ H, a ∈ V, v ∈ V ∗

(b) a[h]h → [h b]h,
for h ∈ H, a, b ∈ V

(c) [h a]h → [h]h b,
for h ∈ H, a, b ∈ V

(d) [h a]h → b,
for h ∈ H, a, b ∈ V

(es) [h a]h → [h b]h [h b]h,
for h ∈ H, a, b ∈ V

(e) [h a]h → [h b]h [h c]h,
for h ∈ H, a, b, c ∈ V .

These rules are applied according to the following principles:

– All the rules are applied in maximally parallel manner. That is, in one step,
one object of a membrane is used by at most one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

Active Membrane Systems 369

– If at the same time a membrane labelled with h is divided by a rule of type
(e) or (es) and there are objects in this membrane which evolve by means
of rules of type (a), then we suppose that first the evolution rules of type
(a) are used, and then the division is produced. This process takes only one
step.

– The rules associated with membranes labelled with h are used for membranes
with that label. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

In this paper we study the language recognising variant of membrane systems
which solves decision problems. A distinguished region contains, at the beginning
of the computation, an input — a description of an instance of a problem. The
result of the computation (a solution to the instance) is “yes” if a distinguished
object yes is expelled during the computation, otherwise the result is “no”. Such
a membrane system is called deterministic if for each input a unique sequence of
configurations exists. A membrane system is called confluent if it always halts
and, starting from the same initial configuration, it always gives the same result,
either always “yes” or always “no”. Therefore, given a fixed initial configuration,
a confluent membrane system non-deterministically chooses from one from a
number of valid configuration sequences and rule applications but all of them
must lead to the same result.

2.2 Complexity Classes

Complexity classes have been defined for membrane systems [8]. Consider a
decision problem X , i.e. a set of instances {x1, x2, . . .} over some finite alphabet
such that to each xi there is an unique answer “yes” or “no”. We consider a
family of membrane systems to solve a decision problem if each instance of the
problem is solved by some class member.

We denote by |xi| the size of any instance xi ∈ X .

Definition 2 (Polynomial uniform families of membrane systems). Let
D be a class of membrane systems and let f : N → N be a total function. The
class of problems solved by uniform families of membrane systems of type D in
time f , denoted by MCD(f), contains all problems X such that:

– There exists auniform family ofmembrane systems,ΠX = (ΠX(1); ΠX(2); . . .)
of typeD: each ΠX(n) is constructable by a deterministic Turing machine with
input n and in time that is polynomial of n.

– Each ΠX(n) is sound: ΠX(n) starting with an input (encoded by a deter-
ministic Turing machine in polynomial time) x ∈ X of size n expels out a
distinguished object yes if an only if the answer to x is “yes”.

– Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x
of size n give the same result; either always “yes” or else always “no”.

– ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Polynomial Semi-uniform families of membrane systems ΠX = (ΠX(x1);
ΠX(x2); . . .) whose members ΠX(xi) are constructable by a deterministic Tur-
ing machine with input xi in a polynomial time with respect to |xi|. In this case,

370 N. Murphy and D. Woods

for each instance of X we have a special membrane system which therefore does
not need an input. The resulting class of problems is denoted by MCS

D(f). Ob-
viously, MCD(f) ⊆ MCS

D(f) for a given class D and a complexity [3] function
f .

We denote by

PMCD =
⋃

k∈N

MCD(O(nk)), PMCS
D =

⋃

k∈N

MCS
D(O(nk))

the class of problems solvable by uniform (respectively semi-uniform) families of
membrane systems in polynomial time. We denote by AM the classes of mem-
brane systems with active membranes. We denote by EAM the classes of mem-
brane systems with active membranes and only elementary membrane division.
We denote by AM0

−a (respectively, AM0
+a) the class of all recogniser membrane

systems with active membranes without charges and without asymmetric divi-
sion (respectively, with asymmetric division). We denote by PMCS

EAM0
−a

the
classes of problems solvable by semi-uniform families of membrane systems in
polynomial time with no charges and only symmetric elementary division. We
let poly(n) be the set of polynomial complexity functions of n.

2.3 (Semi-)Uniformity Via logspace Turing Machines

In Theorem 2 we prove that PMCS
EAM0

−a
has a P upper bound. When we use

(semi-)uniform families constructed in polynomial time by deterministic Turing
machines we trivially have a P lower bound. However, to ensure that the mem-
brane system itself is able to solve any problem in P, and is not benefiting from

and

t

1
t

0
f

input input

T [t] → [t T],
[t T] → λ,
F [f] → [fF],
[f F] → λ,
[and 1] → [and]T ,
[and 0] → [and]F .

or

f
0

f
1

t

input input

F [f] → [f F],
[f F] → λ,
T [t] → [tT],
[t T] → λ,
[or 0] → [or]F ,
[or 1] → [or]T .

Fig. 1. AND and OR gadgets which can be nested together to simulate a circuit. The
input is either a T, F, or a nested series of gadget membranes. A NOT gate membrane
can be made with the rules [not T] → [not]F , [not F] → [not]T .

Active Membrane Systems 371

preprocessing by the output of the encoding Turing machine or family generat-
ing Turing machine, we restrict both of these machines to be logspace Turing
machines.

In the following theorem it is understood that PMCS
EAM0

−a
is logspace

uniform.

Theorem 1. P ⊆ PMCS
EAM0

−a

Proof. A logspace Turing machine encodes an instance of the Circuit Value

problem (CVP) [5] as a PMCS
EAM0

−a
membrane system using the gadgets shown

in Figure 1. The resulting membrane system directly solves the instance of CVP
in polynomial time. ��

The main result of this paper, Theorem 2, holds for both logspace and polynomial
families of PMCS

EAM0
−a

.

3 An Upper Bound on PMCS
EAM0

−a

In this section we give an upper bound of P on the membrane class PMCS
EAM0

−a
.

We provide a random access machine (RAM) algorithm that simulates this class
using a polynomial number of registers of polynomial length, in polynomial time.
We begin with an important definition followed by informal description of our
contribution.

Definition 3 (Equivilance class of membranes). An equivalence class of
membranes is a multiset of membranes where: each membrane shares a sin-
gle parent, each has the same label, and each has identical contents. Further,
only membranes without children can be elements of an equivalence class of size
greater than one; each membrane with one or more children has its own equiva-
lence class of size one.

Throughout the paper, when we say that a membrane system has |E| equivalence
classes, we mean that |E| is the minimum number of equivalence classes that
includes all membranes of the system.

While it is possible for a computation path of PMCS
EAM0

−a
to use an ex-

ponential number of equivalence classes, our analysis guarantees that there is
another, equally valid, computation path that uses at most a polynomial num-
ber of equivalence classes. Our algorithm finds this path in polynomial time.
Moreover, via our algorithm, after a single timestep the increase in the number
of equivalence classes is never greater than |E0||V |, the product of the number
of initial equivalence classes and the number of object types in the system. Since
the system is confluent, our chosen computation path is just as valid to follow
as any alternative path.

372 N. Murphy and D. Woods

In Section 3.2 we prove that by using our algorithm:

– Type (a) rules do not increase the number of equivalence classes since the
rule has the same effect on each membrane of a given equivalence class.

– Type (c) rules do not increase the number of equivalence classes since ob-
jects exit all child membranes for the parent membrane (which is already an
equivalence class with one membrane).

– Type (d) rules do not increase the number of equivalence classes since the
rule is applied to all membranes in the equivalence class. The contents and
child membranes are transfered to the parent (already an equivalence class).

– Type (es) rules do not increase the number of equivalence classes, only the
number of membranes in the existing equivalence classes simply increase.

Type (b) rules require a more detailed explanation. In Section 3.3 we show that
there is a deterministic polynomial sequential time algorithm that finds a com-
putation path that uses only a polynomial number of equivalence classes.

Our RAM algorithm operates on a number of registers that can be thought
of as a data structure (see Section 3.1). The data structure stores the state of
the membrane system at each timestep. It compresses the amount of informa-
tion to be stored by storing equivalence classes instead of explicitly storing all
membranes. Each equivalence class contains the number of membranes in the
class, a reference to each of the distinct objects in one of those membranes, and
the number of copies of that distinct object. Type (a) rules could therefore pro-
vide a way to create exponential space. However, we store the number of objects
in binary thus we store it using space that is the logarithm of the number of
objects.

Our RAM algorithm operates in a deterministic way. To introduce determin-
ism we sort all lists of object multisets by object multiplicity, then lexicograph-
ically. We sort all equivalence classes by membrane multiplicity, then by label,
and then by object. We sort all rules by rules type, matching label, matching
object, and then by output object(s). The algorithm iterates through the equiv-
alence classes and applies all rules of type (a), (c), (d), and (es). It then checks
to see if any rules of type (b) are applicable. If so, it takes each object in its
sorted order and applies it to the relevant membranes in their sorted order.

Theorem 2. PMCS
EAM0

−a
⊆ P

The proof is in the remainder of this section. The result holds for both logspace
and polynomial time uniform membrane systems of type PMCS

EAM0
−a

.

3.1 Structure of RAM Registers

Our RAM uses a number of binary registers that is a polynomial (poly(n)) of
the length n of the input. The length of each register is bounded by a polynomial
of n. For convenience our registers are grouped together in a data structure (as
illustrated in Figure 2).

Active Membrane Systems 373

equivalence class

h parent children copies used

object

v copies used

Rule
type

lhsObject

lhsLabel

rhsObject

rhsAObjects

Fig. 2. A representation of our polynomial sized registers as a data structure

Object registers. For each distinct object type vi, the following registers are
used to encode the object in an equivalence class ek ∈ E.

The register v represents the type of the object, vi ∈ V (see Definition 1).
Throughout the computation, the size of the set V is fixed so this register does
not grow beyond its initial size.

The copies register is the multiplicity of the distinct object vi encoded in
binary. At time 0 we have |vi| objects. At time 1 the worst case is that each
object evolves via a type (a) rule to give a number of objects that is poly(n).
This is an exponential growth function, however, since we store it using binary,
the register length does not grow beyond space that is poly(n).

The register used represents the multiplicity vi objects that have been used
already in this computation step. It is always the case that used ≤ copies for
each object type vi.

Equivalence class registers. The following registers are used to store in-
formation about each equivalence class. To conserve space complexity we only
explicitly store equivalence classes (rather than explicitly storing membranes);
the number of equivalence classes is denoted |E|.

The register h stores the label of equivalence class ek and is an element of
the set H (see Definition 1). The size of register h is fixed and is bounded by
poly(n).

The register parent stores a reference to the equivalence class (a single mem-
brane in this case) that contains this membrane. This value is bounded by the
polynomial depth of the membrane structure. Since the depth of the membrane
structure is fixed throughout a computation, the space required to store a parent
reference is never greater than a logarithm of the depth.

The children register references all of the child equivalence classes of ek at
depth one. Its size is bounded by poly(n) via Theorem 3.

The register copies stores the number, denoted |ek|, of membranes in the
equivalence class. We store this number in binary. In the worst case, the number

374 N. Murphy and D. Woods

that is stored in copies doubles at each timestep (due to type (es) rules). Since
we store this number in binary we use space that is poly(n).

The register used stores the number of membranes in the equivalence class
that have been used by some rule in the current timestep and so this value is
≤ |ek|.

Rules registers. The rules registers store the rules of the membrane system;
their number is bounded by the polynomial |R| and is fixed for all time t. The
rules registers can not change or grow during a computation. The type register
stores if the rule is of type (a), (b), (c), (d) or (es). The lhsObject register stores
the object on the left hand side of the rule. The lhsLabel register stores the
label on the left hand side of the rule. The rhsObject register stores the object
on the right hand side of the rule. The rhsAObjects register stores the multiset
of objects generated by the rule.

3.2 There Is a Computation Path That Uses Polynomially Many
Equivalence Classes

In Section 3.2 we prove Theorem 3. Before proceeding to this theorem we make
an important observation. Suppose we begin at an initial configuration of a
recogniser membrane system. Due to non-determinism in the choice of rules
and objects, after t timesteps we could be in any one of a large number of
possible configurations. However all computations are confluent. So if we are
only interested in whether the computation accepts or rejects, then it does not
matter which computation path we follow.

Theorem 3 asserts that after a polynomial number of timesteps, there is
at least one computation path where the number of equivalence classes of a
PMCS

EAM0
−a

system is polynomially bounded. This is shown by proving that
there is a computation path where the application of each rule type (a) to (es),
in a single timestep, leads to at most an additive polynomial increase in the
number of equivalence classes.

Theorem 3. Given an initial configuration of a PMCS
EAM0

−a
system Π with

|E0| equivalence classes and |V | distinct object types, then there is a computation
path such that at time t ∈ poly(n) the number of equivalence classes is |Et| =
O(|E0| + t|E0||V |) which is poly(n).

Proof. Base case: From Definition 3, |E0| is bounded above by the (polynomial)
number of membranes at time 0. Thus |E0| ∈ poly(n). Each of lemmata 1 to 5
gives an upper bound on the increase in the number of equivalence classes after
one timestep for rule types (a) to (es), respectively. Lemma 2 has an additive
increase of |E0||V | and the other four lemmata have an increase of 0. Thus at
time 1 there is a computation path where the number of equivalence classes is
|E1| ≤ |E0| + |E0||V |. (From Definitions 1 and 2, |V | ∈ poly(n) and |V | is fixed
for all t.)

Active Membrane Systems 375

Inductive step: Assume that |Ei|, the number of equivalence classes at time i,
is polynomial in n. Then, while Lemmata 1 to 5, there exists a computation path
where |Ei+1| ≤ |Ei| + |E0||V |.

After t timesteps we have |Et| = O(|E0|+ t|E0||V |), which is polynomial in n
if t is. ��

The proofs of the following five lemmata assume some ordering on the set of
object types V and on the rules R. For the proof of Lemma 2, we give a specific
ordering, however for the other proofs any ordering is valid.

Lemma 1. Given a configuration Ci of a PMCS
EAM0

−a
system with |E| equiv-

alence classes. After a single timestep, where only rules of type (a) (object evo-
lution) are applied, there exists a configuration Ci+1 such that Ci � Ci+1 and
Ci+1 has ≤ |E| equivalence classes.

Proof. If a type (a) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects, it could be the
case that the membranes in ek evolve differently. However let us assume an
ordering on the object types V and on the rules R. We apply the type (a) rules
to objects using this ordering. Then all membranes in an equivalence class evolve
identically in a timestep, and no new equivalence classes are created. Thus there
is a computation path Ci � Ci+1 where there is no increase in the number of
equivalence classes. ��

Observe that type (b) rules have the potential to increase the number of equiv-
alence classes in one timestep by sending different object types into different
membranes from the same class. For example, if objects of type v1 are sent into
some of the membranes in an equivalence class, and v2 objects are sent into
the remainder, then we increase the number of equivalence classes by 1. The
following lemma gives an additive polynomial upper bound on this increase.

Lemma 2. Given a configuration Ci of a PMCS
EAM0

−a
system Π with |E| equiv-

alence classes. Let |E0| be the number of equivalence classes in the initial con-
figuration of Π. Let |V | be the number of distinct object types in Π. After a
single timestep, where only rules of type (b) (incoming objects) are applied, there
exists a configuration Ci+1 such that Ci � Ci+1 and Ci+1 has ≤ |E| + |E0||V |
equivalence classes.

Proof. Let ej be a parent equivalence class, thus ej represents one membrane (by
Definition 3). If the child membranes of ej are all parent membranes themselves,
then the type (b) communication rule occurs without any increase to the number
of equivalence classes. The remainder of the proof is concerned with the other
case, where ej contains a non-zero number of equivalence classes of elementary
membranes; by the lemma statement this number is ≤ |E|.

For the remainder of this proof let V ′ ⊆ V be the set of distinct object types
in the membrane defined by ej for which there are rules in R applicable for this

376 N. Murphy and D. Woods

timestep, let V be the total number of objects in the membrane defined by ej ,
let E′ ⊂ E be the set of equivalence classes that describe the children of the
membrane defined by ej, and let M be the total number of membranes that
are children of the membrane defined by ej (therefore M is the total number
of membranes in E′). Furthermore we assume that E′ is ordered by number of
membranes, i.e. we let E′ = (e1, e2, . . . , e|E′|) where |ek| is the number of mem-
branes in equivalence class ek and ∀k, |ek| ≤ |ek+1|. Similarly we assume that V ′

is ordered by the number of each object type, i.e. we let V ′ = (v1, v2, . . . , v|V ′|)
where |vk| is the multiplicity of objects of type vk and ∀ k, |vk| ≤ |vk+1|. This
ordering ensures that the same deterministic computation path is followed for
different instances of the same input configuration. We now consider the two
possible cases.

Case 1: V < M. Table 1 explicitly gives the proof for this case. The M mem-
branes, beginning with membranes from equivalence class e1, each receive one
object, beginning with available objects of type v1. We continue, following the
above orderings on V ′ and E′, until there are no more objects to communicate.
Thus after these type (b) rules have been applied, some number from the E′ has
received objects, leading to the E′ rows in the “Range” column of Table 1. If ob-
jects of one distinct type fill up an equivalence class exactly, that class cannot be
split into further equivalence classes in that time step. The “Sub-case” column
captures all possible (given our ordering on E′ and V ′) ways that objects can fill
increasing numbers of equivalence classes. The “Increase EC” column gives the
increase in the equivalence classes after one timestep each sub-case. The worst
case increase is caused by no equivalence class being exclusively filled up by a
distinct object, this means every distinct object communicated will create a new
equivalence class. The worst case increase in the total number of equivalence
classes after one timestep is |V ′|.
Case 2: V ≥ M. Table 2 explicitly gives the proof for this case. The M mem-
branes, beginning with membranes from equivalence class e1, each receive one
object, beginning with available objects of type v1. We continue, following the
above orderings on V ′ and E′, until there are no more available membranes to
communicate to. Thus after these type (b) rules have been applied, some number
from the V ′ have been communicated, leading to the V ′ rows in the “Range”
column of Table 2. If membranes from one equivalence class all receive objects of
the same distinct type, that class cannot be split into further equivalence classes
in that time step. The “Sub-case” column captures all possible (given our or-
dering on E′ and V ′) ways that equivalence classes can be filled by increasing
numbers of distinct objects. The “Increase EC” column gives the increase in the
equivalence classes after one timestep each sub-case. The worst case increase is
caused by no equivalence class being exclusively filled up by a distinct object,
this means every distinct object communicated will create a new equivalence
class. The worst case increase in the total number of equivalence classes after
one timestep is |V ′| − 1.

Active Membrane Systems 377

This procedure is iterated over all parent membranes ej where type (b) rules
are applicable, by Definition 3 the number of such parent membranes ≤ |E0|.
For each parent it is the case that |V ′| ≤ |V |. Thus there is a computation path
Ci � Ci+1 where the increase in the number of equivalence classes is ≤ |E0||V ′| ≤
|E0||V |. ��

Lemma 3. Given a configuration Ci of a PMCS
EAM0

−a
system with |E| equiv-

alence classes. After a single timestep, where only rules of type (c) (outgoing
objects) are applied, there exists a configuration Ci+1 such that Ci � Ci+1 and
Ci+1 has ≤ |E| equivalence classes.

Proof. If a type (c) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be
the case that membranes in ek eject different symbols. However lets assume
an ordering on the object types V and on the rules R. We apply the type (c)
rules to objects using this ordering. Then all membranes in an equivalence class
evolve identically in one (each membrane ejects the same symbol), and so no new
equivalence classes are created from ek. The single parent of all the membranes
in ek is in an equivalence class ej which, by Definition 3, contains exactly one
membrane and so no new equivalence classes are created from ej .

Thus there is a computation path Ci � Ci+1 where there is no increase in the
number of equivalence classes. ��

Interestingly, dissolution is the easiest rule to handle using our approach. The
following lemma actually proves something stronger than the other lemmata:
dissolution never leads to an increase in the number of equivalence classes.

Lemma 4. Given a configuration Ci of a PMCS
EAM0

−a
system with |E| equiv-

alence classes. After a single timestep, where only rules of type (d) (membrane
dissolution) are applied then for all Ci+1, such that Ci � Ci+1, Ci+1 has ≤ |E|
equivalence classes.

Proof. If there is at least one type (d) rule that is applicable to an object and
a membrane in equivalence class ek, then there is at least one rule that is also
applicable to all membranes in ek. Unlike previous proofs, we do not require an
ordering on the objects and rules: all membranes in ek dissolve and equivalence
class ek no longer exists. The single parent of all the membranes in ek is in an
equivalence class ej which, by Definition 3, contains exactly one membrane and
so no new equivalence classes are created from ej .

Thus for all Ci+1, where Ci � Ci+1, there is no increase in the number of
equivalence classes. ��

Lemma 5. Given a configuration Ci of a PMCS
EAM0

−a
system with |E| equiv-

alence classes. After a single timestep, where only rules of type (es) (symmet-
ric membrane division) are applied, there exists a configuration Ci+1 such that
Ci � Ci+1 and Ci+1 has ≤ |E| equivalence classes.

378 N. Murphy and D. Woods

Proof. If a type (es) rule is applicable to an object and membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be
the case that membranes in ek divide using and/or creating different symbols.
However lets assume an ordering on the object types V and on the rules R.
We apply the type (es) rules to objects (and membranes) using this ordering.
Then all membranes in an equivalence class evolve identically in a timestep (each
membrane in ek divides using the same rule). The number of membranes in ek

doubles, but since each new membrane is identical, no new equivalence classes
are created from ek.

Thus there is a computation path Ci � Ci+1 where there is no increase in the
number of equivalence classes. ��

3.3 Polynomial Time RAM Algorithm

Here we outline a RAM algorithm that simulates the computation of any mem-
brane system of the class PMCS

EAM0
−a

in polynomial time (in input length n).
The algorithm operates on any valid initial configuration and successively applies
the evolution rules of the membrane system.

The algorithm makes explicit use of the polynomial size bounded registers
described in Section 3.1. It also relies on the confluent nature of recogniser mem-
brane systems and simulates only one of the set of valid computation paths. In
particular, using the results from Section 3.2, the algorithm chooses a compu-
tation path that uses polynomial space by sorting the membranes, objects and
rules of a configuration.

Our sort function runs in polynomial time (in input length n) and sorts lists
of
– object multisets by object multiplicity, then lexicographically.
– equivalence classes by membrane multiplicity, then by label, and then by

objects.
– rules by rules type, matching label, matching object, and then by output

object(s).

Since instances ofPMCS
EAM0

−a
are constructedbypolynomial time (or logspace)

deterministic Turing machines they are at most polynomial size. Also, since all in-
stances of PMCS

EAM0
−a

run in polynomial time, if our algorithm simulates it with
a polynomial time overhead we obtain a polynomial time upper bound.

Our algorithm begins with a configuration of PMCS
EAM0

−a
(see Algorithm 1).

The input configuration is encoded into the registers of the RAM in polynomial
time. The rules of the system are sorted and the algorithm then enters a loop.
At each iteration all available rules are applied, this simulates a single timestep
of the membrane systems computation. The loop terminates when the system
ejects a yes or no object, indicating that the computation has halted. Since all
instances of PMCS

EAM0
−a

run in polynomial time, this loop iterates a polynomial
number of times. The total time complexity for running the simulation for time
t is O(t|R||E|2|V |).

Active Membrane Systems 379

T
ab

le
1.

In
cr

ea
se

in
th

e
n
u
m

b
er

o
f
eq

u
iv

a
le

n
ce

cl
a
ss

es
(E

C
)

w
h
en

V
<

M
.
T

h
is

ta
b
le

is
u
se

d
in

th
e

p
ro

o
f
o
f
L
em

m
a

2
.
In

th
e

G
ra

p
h
ic

co
lu

m
n
,
a

�
re

p
re

se
n
ts

a
n

eq
u
iv

a
le

n
ce

cl
a
ss

a
n
d

a
©

re
p
re

se
n
ts

a
si
n
g
le

m
em

b
ra

n
e

in
a
n

eq
u
iv

a
le

n
ce

cl
a
ss

.

R
an

ge
Su

b-
ca

se
s

In
cr

ea
se

E
C

G
ra

ph
ic

1
≤

V
<

|e
1
|

|V
′ |

v 1
v 2

v 1

|e
1
|≤

V
<

|e
1
|+

|e
2
|

e
⊂

E
′ ,
|e
|=

1,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

1

v 1 v 1
v 2

v 3

v 2

�
e
⊂

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

|V
′ |

v 1

v 1
v 2

v 3v 2

|e
1
|+

|e
2
|≤

V
<

|e
1
|+

|e
2
|+

|e
3
|

e
⊂

E
′ ,
|e
|=

2,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

2
-

e
⊂

E
′ ,
|e
|=

1,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

1
-

�
e
⊂

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

|V
′ |

-

|e
1
|+

|e
2
|+

|e
3
|≤

V
<

|e
1
|+

|e
2
|+

|e
3
|+

|e
4
|

e
⊂

E
′ ,
|e
|=

3,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

3
-

e
⊂

E
′ ,
|e
|=

2,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

2
-

e
⊂

E
′ ,
|e
|=

1,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

1
-

�
e
⊂

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

|V
′ |

-
. . .

. . .
. . .

. . .

|E
′ |−

1
∑ �=

1

|e
�
|≤

V
<

|E
′ |

∑ �=
1

|e
�
|

e
⊂

E
′ ,
|e
|<

|E
′ |,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′
|V
′ |
−

|E
′ |

-
. . .

. . .
-

e
⊂

E
′ ,
|e
|=

2,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

2
-

e
⊂

E
′ ,
|e
|=

1,
ev

er
y

E
C

in
e

is
fil

le
d

by
ob

je
ct

s
fr

om
a

v
∈

V
′

|V
′ |
−

1
-

�
e
⊂

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

|V
′ |

-

380 N. Murphy and D. Woods

T
ab

le
2.

In
cr

ea
se

in
th

e
n
u
m

b
er

o
f
eq

u
iv

a
le

n
ce

cl
a
ss

es
(E

C
)

w
h
en

V
≥

M
.
T

h
is

ta
b
le

is
u
se

d
in

th
e

p
ro

o
f
o
f
L
em

m
a

2
.
In

th
e

G
ra

p
h
ic

co
lu

m
n
,
a

�
re

p
re

se
n
ts

a
n

eq
u
iv

a
le

n
ce

cl
a
ss

a
n
d

a
©

re
p
re

se
n
ts

a
si
n
g
le

m
em

b
ra

n
e

in
a
n

eq
u
iv

a
le

n
ce

cl
a
ss

.

R
an

ge
Su

b-
ca

se
s

In
cr

ea
se

E
C

G
ra

ph
ic

0
<

M
≤

|v
1
|

-
0

v 1

|v
1
|<

M
≤

|v
1
|+

|v
2
|

∀
e
∈

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

0
v 1

v 2

∀
e
∈

E
′ −

{e
i1
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

1
v 1

v 1

v 2

v 2

|v
1
|+

|v
2
|<

M
≤

|v
1
|+

|v
2
|+

|v
3
|

∀
e
∈

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

0
-

∀
e
∈

E
′ −

{e
i1
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

1
-

∀
e
∈

E
′ −

{e
i1

,e
i2
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

2
-

|v
1
|+

|v
2
|+

|v
3
|<

M
≤

|v
1
|+

|v
2
|+

|v
3
|+

|v
4
|

∀
e
∈

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

0
-

∀
e
∈

E
′ −

{e
i1
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

1
-

∀
e
∈

E
′ −

{e
i1

,e
i2
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

2
-

∀
e
∈

E
′ −

{e
i1

,e
i2

,e
i3
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

3
-

. . .
. . .

. . .
-

|V
′ |−

1
∑ �=

1

|v
�
|<

M
≤
|V

′ |
∑ �=

1

|v
�
|

∀
e
∈

E
′ ,

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

0
-

∀
e
∈

E
′ −

{e
i1
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

1
-

∀
e
∈

E
′ −

{e
i1

,e
i2
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

2
-

∀
e
∈

E
′ −

{e
i1

,e
i2

,e
i3
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

3
-

. . .
. . .

-

∀
e
∈

E
′ −
|E

′ |−
1

⋃ k
=

1

{e
ik
},

ev
er

y
E

C
in

e
is

fil
le

d
by

ob
je

ct
s

fr
om

a
v
∈

V
′

|V
′ |
−

1
-

Active Membrane Systems 381

Algorithm 1 The main body of the membrane simulation algorithm. The
rules of the system are sorted and then applied to the configuration at each
timestep until the system accepts or rejects its input.

Input a configuration of PMCS
EAM0

−a

Output The deciding configuration of the system
Initialise registers with input system;
sortedRules ← sort(rules);

O(t) repeat
/* evolve the membrane system one step */

O(|E|) forall equivalence class in membraneSystem do
O(|R||E||V |) ApplyRules(equivalence class);

until yes or no object is in skin membrane ;

.

.

.

Function ApplyRules(equivalence class) Applies all applicable rules for
an equivalence class for one timestep

Input equivalence class
Output equivalence class after one timestep of computation
b rules ← ∅;
b ecs ← ∅;
b objs ← ∅;

O(|R|) forall rule in sortedRules do
if rule.label matches equivalence class.label and rule is not type (b) then

O(|V |) forall object in sortedObjects do
if not all copies of object have been used then

if rule is type (a) then
O(|V |) Apply a rule(equivalence class, object, rule);

else if rule is type (c) then
O(1) Apply c rule(equivalence class, object, rule);

else if rule is type (d) then
O(|V |) Apply d rule(equivalence class, object, rule);

else if rule is type (es) then
O(1) Apply e rule(equivalence class, object, rule);

if rule is type (b) then
O(|E|) forall child c in equivalence class do

if child c.label = rule.lhsLabel and object.used ≥ 1 then
append child c to b ecs ;
append object to b objs ;

O(|V ||E|) Apply b rule(b ecs, b objs, rule)

O(|V | × |E|) reset all used counters to 0;

.

.
.

382 N. Murphy and D. Woods

Function Apply a rule(equivalence class, object, rule) applies a single
type (a) rule to instances of an object in an equivalence class. Total time
complexity O(|V |).

Input equivalence class, object, rule
Output equivalence class after a type (a) rule on an object has been applied

O(|V |) forall resultingObject in rule.outAobjects do
multiplicity of resultingObject in equivalence class + = the multiplicity of
matching object − the number of object.used × the
resultingObject.multiplicity ;
used number of resultingObject in the equivalence class + = the multiplicity
of resultingObject × object.multiplicity − object.used ;

decrement object.multiplicity ;
set object.used = object.multiplicity ;

.

.
.

Function Apply c rule(equivalence class, object, rule) applies a single
rule of type (c) to a membrane. Total time complexity O(1).

Input equivalence class
Output equivalence class after a (c) rule have been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent of the generated object;
increment object.used in equivalence class.parent of the generated object;
increment equivalence class.used ;

.

.
.

Function Apply d rule(equivalence class, object, rule). This function ap-
plies dissolution rules to an equivalence class. It calculates the total number
of each object in the equivalence class and adds it to the parent. It also
copies the child membranes from the dissolving membrane and adds them
to the parents child list. The total time complexity is O(|V |).

Input equivalence class
Output equivalence class after (d) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent from the rule;
increment object.used in equivalence class.parent from the rule;
/* move contents of the dissolved membrane to its parent */

O(|V |) forall move object in equivalence class objects do
add move object.multiplicity × equivalence class.multiplicity to
move object.multiplicity in equivalence class.parent ;
add move object.used × equivalence class.multiplicity to move object.used in
equivalence class.parent ;
move object.multiplicity ← 0;
move object.used ← 0;

equivalence class.parent.children ← equivalence class.parent.children ∪
equivalence class.children ;
equivalence class.multiplicity ← 0;
equivalence class ← ∅;

.

.
.

Active Membrane Systems 383

Function Apply es rule(equivalence class, object, rule). Applies a single
rule of type (es) to a membrane. Total time complexity O(1).

Input equivalence class
Output equivalence class after (es) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity from the rule;
increment object.used from the rule;
increment equivalence class.used ;
equivalence class.multiplicity ← equivalence class.multiplicity × 2;

.

.
.

Function Apply b rules(b equivalence classes, b objects, b rules). Total
time complexity O(|V ||E|).

Input membrane
Output membrane after (b) rules have been applied
b objects sorted ← sort(b objects);
b equivalence classes sorted ← sort(b equivalence classes);

O(|V |) forall object in b objects sorted do
O(|E|) forall equivalence class in b equivalence classes sorted do

if object.multiplicity < equivalence class.multiplicity then
copy equivalence class to new equiv class ;
subtract object.multiplicity from new equiv class.multiplicity ;
equivalence class.multiplicity ← object.multiplicity ;
equivalence class.used ← equivalence class.multiplicity ;
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;

else if object.multiplicity ≥ equivalence class.multiplicity then
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;
equivalence class.used ← equivalence class.multiplicity ;
subtract equivalence class.multiplicity from object.multiplicity ;

.

.
.

4 Conclusion

We have given a P upper bound on the computational power of one of a number
of membrane systems that fall under the so-called P-conjecture. In particular
we consider a variant of membrane systems that allows only symmetric devi-
sion. This variant can easily generate an exponential number of membranes and
objects in polynomial time. We restricted the uniformity condition to logspace,
making the P lower bound more meaningful. Our technique relies on being able
to find computation paths that use only polynomial space in polynomial time.
It seems that this technique is not näıvely applicable to the case of asymmetric
division: it is possible to find examples where all computation paths are forced
to use an exponential number of equivalence classes.

Furthermore the result seems interesting since before before now, all models
without dissolution rules were upper bounded by P and all those with dissolution

384 N. Murphy and D. Woods

rules characterised PSPACE. This result shows that despite having dissolution
rules, by using only symmetric elementary division we restrict the system so that
it does not create exponential space on all computation paths in polynomial time.

Acknowledgements

Niall Murphy is supported by the Irish Research Council for Science, Engineering
and Technology. Damien Woods is supported by Science Foundation Ireland
grant number 04/IN3/1524. We give a special thanks to Thomas J. Naughton
for interesting comments and ideas.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell, 4th edn. Garland Science, New York (2002)

2. Alhazov, A., Pérez-Jiménez, M.J.: Uniform solution to QSAT using polarization-
less active membranes. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A.,
Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Comput-
ing, Sevilla, January 30-February 3, 2006, vol. I, pp. 29–40. Fénix Editora (2006)

3. Balcázar, J.L., Diaz, J., Gabarró, J.: Structural complexity I, 2nd edn. Springer,
Berlin (1988)

4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: Computational efficiency of dissolution rules in membrane systems.
International Journal of Computer Mathematics 83(7), 593–611 (2006)

5. Ladner, R.E.: The circuit value problem is log space complete for P. SIGACT
News 7(1), 18–20 (1975)

6. Păun, G.: P Systems with active membranes: Attacking NP-Complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

7. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
8. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes

in models of cellular computing with membranes. Natural Computing 2(3), 265–285
(2003)

9. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences 73(1), 137–
152 (2007)

Balancing Performance, Flexibility, and

Scalability in a Parallel Computing Platform for
Membrane Computing Applications

Van Nguyen, David Kearney, and Gianpaolo Gioiosa

School of Computer and Information Science
University of South Australia

{Van.Nguyen,David.Kearney,Gianpaolo.Gioiosa}@unisa.edu.au

Abstract. It is an open question whether it is feasible to develop a par-
allel computing platform for membrane computing applications that sig-
nificantly outperforms equivalent sequential computing platforms while
still achieving acceptable flexibility and scalability. To move closer to an
answer to this question, we have investigated a novel approach to the
development of a parallel computing platform for membrane computing
applications that has the potential to deliver a good balance between
performance, flexibility and scalability. This approach involves the use
of reconfigurable hardware and an intelligent software component that is
able to configure the hardware to suit the specific properties of the mem-
brane computing model to be executed. We have already developed a
prototype computing platform called Reconfig-P based on the approach.
Reconfig-P is the first computing platform of its type to implement paral-
lelism at both the system and region levels. In this paper, we describe the
functionality of the intelligent software component responsible for hard-
ware configuration in Reconfig-P, and perform an empirical analysis of
the performance, flexibility and scalability of Reconfig-P. The empirical
results suggest that the implementation approach on which Reconfig-P is
based is a viable means of attaining a good balance between performance,
flexibility and scalability.

1 Introduction

To exploit the performance advantage of the large-scale parallelism of membrane
computing models, it is necessary to execute them on a parallel computing plat-
form. However, the use of a parallel computing platform instead of a sequential
computing platform often comes at the cost of reduced flexibility and scalability.

The parallel computing platforms for membrane computing applications that
predate the research described in this paper [1, 6, 7] do not achieve a good bal-
ance between performance, flexibility and scalability. Even so, because research
in this area is in its early stages, it is still an open question whether it is feasible
to develop a parallel computing platform for membrane computing applications
that significantly outperforms equivalent sequential computing platforms while
still achieving acceptable flexibility and scalability. To move closer to an answer

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 385–413, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

386 V. Nguyen, D. Kearney, and G. Gioiosa

to this question, it is important to investigate the viability of implementation ap-
proaches that have the potential to deliver a good balance between performance,
flexibility and scalability.

The research presented in this paper involves an investigation of a novel ap-
proach to the development of a parallel computing platform for membrane com-
puting applications. This approach involves the use of reconfigurable hardware
and an intelligent software component that is able to configure the hardware to
suit the specific properties of the membrane computing model to be executed. We
have developed a prototype computing platform called Reconfig-P based on the
approach. In a companion paper [4], we describe the hardware implementation
of membrane computing that is at the foundation of Reconfig-P, and present a
theoretical analysis of its performance. In this paper, we describe the functional-
ity of the intelligent software component responsible for hardware configuration
in Reconfig-P, and perform an empirical analysis of the performance, flexibility
and scalability of Reconfig-P.

2 Background

In this section, we introduce key concepts and previous research associated with
parallel computing platforms for membrane computing applications.

2.1 Membrane Computing and Its Applications

Membrane computing [5] investigates models of computation inspired by certain
structural and functional features of biological cells, especially features that arise
because of the presence and activity of biological membranes. We call membrane
computing models P system models and their instances P systems.

Following is a definition of an example P system model. All P systems Π that
instantiate the model have all the fundamental features of a P system plus two
common additional features (catalysts and reaction rule priorities). We call the
model the core P system model.

Π = (V, T, C, μ, w1, ..., wm, (R1, ρ1), ..., (Rm, ρm)), where

– V is an alphabet that contains labels for all the types of objects in the system;
– T ⊆ V is the output alphabet, which contains labels for all the types of

objects that are relevant to the determination of the system output;
– C ⊆ V − T is the alphabet that contains labels for all the types of catalysts,

which are the types of objects whose multiplicities cannot change through
the application of a reaction rule;

– μ is a hierarchical membrane structure consisting of m membranes, with the
membranes (and hence the regions defined by the membranes) injectively
labeled by the elements of a given set H of m labels (in this paper, H =
{1, 2, . . . , m});

– each wi, 1 ≤ i ≤ m, is a string over V that represents the multiset of objects
contained in region i of μ in the initial configuration of the system;

Balancing Performance, Flexibility, and Scalability 387

– each Ri, 1 ≤ i ≤ m, is a finite set of reaction rules over V associated with
the region i of μ;

– a reaction rule is a pair (r, p), written in the form r → p, where r is a
string over V representing a multiset of reactant objects and p is a string
over {ahere, aout, ain | a ∈ V } representing a multiset of product objects,
each of which either (a) stays in the region to which the rule is associated
(the subscript ‘here’ is usually omitted), (b) travels ‘out’ into the region
that immediately contains the region to which the rule is associated, or (c)
travels ‘in’ to one of the regions that is immediately contained by the region
to which the rule is associated; and

– each ρi is a partial-order relation over Ri which defines the relative priorities
of the reaction rules in Ri.

P system models have been applied in a variety of domains [2]. Most existing
applications of membrane computing are targeted at the modeling and simula-
tion of biological systems.

2.2 Quality Attributes of Computing Platforms for Membrane
Computing Applications

Performance, flexibility and scalability are three of the most important qual-
ity attributes for a computing platform for membrane computing applications.
Ensuring that a computing platform has all three of these attributes to an accept-
able degree is a challenge, because a factor that promotes one of the attributes
can sometimes demote another one of the attributes. In this section, we define
the attributes of performance, flexibility and scalability in the context of a com-
puting platform for membrane computing applications, explain the significance
of these attributes, and indicate the connections that exist between them.

Performance. By the performance of a computing platform for membrane com-
puting applications we mean the speed at which it executes P systems; that is,
the amount of useful processing it performs per unit time. A suitable measure of
the amount of useful processing performed is the number of reaction rule appli-
cations performed. Thus the performance of a computing platform for membrane
computing applications can be measured in reaction rule applications per unit
time.

Flexibility. By the flexibility of a computing platform for membrane computing
applications we mean the extent to which it can support the execution of a wide
range of P systems. Thus a flexible computing platform for membrane computing
applications must be able to adapt to the specific properties of the P system to
be executed. The greater the flexibility of the computing platform, the greater
the diversity among the P systems in the class of P systems that the computing
platform is able to execute.

Scalability. By the scalability of a computing platform for membrane com-
puting applications we mean the extent to which increases in the size of the P

388 V. Nguyen, D. Kearney, and G. Gioiosa

system to be executed do not lead to a reduction in the ability of the computing
platform to perform its functions or a reduction in the performance of the com-
puting platform. We take the size of a P system as being largely determined by
the number of regions and the number of reaction rules it contains.

Connections between performance, flexibility and scalability. The per-
formance of a computing platform for membrane computing applications can
be increased by tailoring its implementation to the specific properties of the P
systems it is intended to execute. However, the greater the diversity of these
P systems, the more difficult it is to efficiently tailor the implementation to
their specific properties. Therefore, increasing the performance of the comput-
ing platform is likely to come at the cost of reduced flexibility, while increasing
the flexibility of the computing platform is likely to come at the cost of reduced
performance.

Increasing the flexibility of a computing platform for membrane computing
applications involves supporting additional P system features. Naturally, this
usually requires the implementation of additional data structures and algorithms.
In software-based computing platforms, the implementation of additional data
structures is likely to come at the cost of increased memory consumption. In
hardware-based computing platforms, the implementation of additional data
structures comes at the cost of increased hardware resource consumption, as
does the implementation of additional algorithms. Therefore, given that mem-
ory resources and hardware resources are limited, implementing additional P
system features reduces the maximum size of the P systems that a computing
platform for membrane computing applications can execute. Thus increasing the
flexibility of a computing platform for membrane computing applications is likely
to come at the cost of reduced scalability, while increasing the scalability of such
a computing platform is likely to come at the cost of reduced flexibility.

2.3 Types of Computing Platforms

We identify three major types of computing platforms: sequential computing
platforms, software-based parallel computing platforms and hardware-based par-
allel computing platforms.

Sequential computing platforms are typically based on a software-programmed
microprocessor. When such a microprocessor is used, the execution hardware is
abstracted by the instruction set architecture, which provides a set of specific
instructions that the microprocessor can process to perform computations. This
is a very flexible computing solution since it is possible to change the function-
ality of the computing platform simply by modifying its software — there is no
need to modify the hardware configuration. As a result of this flexibility, the
same fixed hardware can be used for many applications. However, the flexibility
comes at the cost of lower performance. As each instruction needs to be sequen-
tially fetched from memory and decoded before being executed, there is a high
execution overhead associated with each individual operation. Furthermore, only
one instruction can be executed at a time.

Balancing Performance, Flexibility, and Scalability 389

Software-based parallel computing platforms are typically based on a cluster
of software-programmed microprocessors. Because the microprocessors execute
in parallel, software-based parallel computing platforms can significantly outper-
form sequential computing platforms for many applications. The microproces-
sors synchronize their activities by using shared memory or by sending messages
to each other (often over a network). Such synchronization can be very time
consuming, and therefore can hinder performance significantly. Increasing the
performance of a software-based parallel computing platform involves increas-
ing the amount of parallelism and therefore requires the inclusion of additional
microprocessors. However, as the number of microprocessors increases, the over-
heads associated with synchronization increase substantially (unless the overall
algorithm executed by the computing platform can be neatly partitioned into
separate procedures that are largely independent of each other). This fact limits
the scalability of software-based parallel computing platforms.

Hardware-based parallel computing platforms execute algorithms that have
been directly implemented in hardware. The hardware platform implements the
algorithm in terms of the parallel activities of a certain number of processors
that are spatially, rather than temporally, related. The ability to use parallel
processors brings a potentially very significant improvement in execution time
performance. However, the use of the spatial dimension means that the number
of processors, and therefore the class of algorithms, that can be implemented on
the platform is constrained by the amount of hardware resources available on the
platform. In one approach, an application-specific integrated circuit (ASIC) is
used. The design of an ASIC is tailored to a specific algorithm. As a consequence,
ASICs usually achieve a higher performance than software-programmed micro-
processors when executing the algorithm for which they were designed. However,
with this higher performance comes reduced flexibility: as the implemented algo-
rithm is fabricated on a silicon chip, it cannot be altered without creating another
chip. In another approach, reconfigurable hardware is used. Unlike ASICs, re-
configurable hardware can be modified. Therefore, by using reconfigurable hard-
ware, it is possible to improve on the performance of software-based computing
platforms while retaining some of their flexibility. A field-programmable gate
array (FPGA) is a type of reconfigurable hardware device. An FPGA consists
of a matrix of logic blocks which are connected by means of a network of wires.
The logic blocks at the periphery of the matrix can perform I/O operations.
The functionality of the logic blocks and the connections between them can be
modified by loading configuration data from a host computer. In this way, any
custom digital circuit can be mapped onto the FPGA, thereby enabling it to
execute a variety of applications. Such digital circuits are specified in hardware
description languages. A very popular hardware description language is VHDL.
VHDL allows circuits to be specified either in terms of a structural description of
the circuit or in terms of low-level algorithmic behaviors of the circuit. Another
popular hardware description language is Handel-C. Unlike VHDL, Handel-C
does not support the specification of the structural features of a hardware cir-
cuit. However, having a syntax similar to that of the C programming language,

390 V. Nguyen, D. Kearney, and G. Gioiosa

Handel-C allows algorithms to be specified at a very abstract level, and therefore
eases the process of designing a circuit for an application.

2.4 Existing Parallel Computing Platforms for Membrane
Computing Applications

In this section, we provide a brief survey of existing parallel computing platforms
for membrane computing applications.

Software-based parallel computing platforms. Two research groups have
created prototypes of software-based parallel computing platforms for membrane
computing applications. Ciobanu and Guo [1] have implemented a simulation of
P systems on a Linux cluster using C++ and a library of functions for message-
passing parallel computation called the Message Passing Interface (MPI), while
Syropoulos and colleagues [7] have implemented a distributed simulation of P
systems using Java Remote Method Invocation (RMI). We discuss Ciobanu and
Guo’s computing platform below.

Ciobanu and Guo’s computing platform. Ciobanu and Guo’s computing platform
is a software program written in C++ that is designed to run on a cluster
of computers. The communication mechanism for the computing platform is
implemented using MPI. In its prototype form, the computing platform consists
of a Linux cluster, in which each node has two 1.4GHz Intel Pentium III CPUs
and 1GB of memory, and the nodes are connected by gigabit Ethernet.

Ciobanu and Guo’s computing platform supports the execution of a class of
P systems that is very similar to the class of P systems that instantiate the
core P system model. That is, the computing platform implements most of the
basic features of P systems, but does not implement additional features such
as membrane creation and dissolution. In the computing platform, each region
of a P system is modeled as a separate computational process. Such a process
implements the application of the reaction rules in its corresponding region. The
processes for the regions in the P system execute in parallel. Communication
and synchronization between regions is implemented using MPI.

As the threads for the reaction rules in a region execute on the same node
in the cluster, and there are only two processors per node, it would seem that
it is impossible for the computing platform to achieve region-level parallelism
for anything other than small P systems. To achieve region-level parallelism for
larger P systems, it would be necessary to increase the number of processors
in a node from two to a number at least equal to the number of reaction rules
in the region corresponding to that node. Thus without the inclusion of addi-
tional nodes, the computing platform cannot be said to implement region-level
parallelism, although it does implement system-level parallelism.

Ciobanu and Guo indicate that the major problem with their computing plat-
form from the point of view of performance is the overhead associated with
communication and cooperation between regions. Such communication and co-
operation consumes most of the total execution time.

Balancing Performance, Flexibility, and Scalability 391

Ciobanu and Guo do not evaluate the scalability of their computing platform.
However, it is clear that the scalability of the computing platform is limited to
a large extent by the nature of a cluster-based implementation approach. For
example, to execute P systems with a large number of regions, the computing
platform would have to include a large number of nodes, since there is a one-to-
one correspondence between regions and nodes. As a consequence, there would be
very significant overheads associated with communication and synchronization
between regions, and this would have an adverse impact on the performance of
the computing platform.

As it implements only a basic P system model, Ciobanu and Guo’s computing
platform is not capable of executing P systems that have additional features such
as symport and antiport rules. This detracts from its flexibility. Nevertheless,
since the existing implementation is expressed at a level of abstraction at which
the high-level features of a P system are apparent, it seems very feasible that the
computing platform could be extended to support additional P system features.

Hardware-based parallel computing platforms. A few researchers have de-
signed digital circuits for particular aspects of P systems (e.g., see [3]). However,
to the best of our knowledge, only Petreska and Teuscher [6] have implemented a
hardware-based computing platform for membrane computing applications. We
discuss Petreska and Teuscher’s computing platform below.

Petreska and Teuscher’s computing platform. Petreska and Teuscher [6] have
developed a full implementation of a particular P system model on reconfig-
urable hardware. This P system model is similar to the core P system model,
except that it also includes the feature of membrane creation and dissolution.
The hardware architecture for the specific P system to be executed, which is
specified in structural VHDL, is elegant in that it contains only one type of
high-level hardware component (a universal component) and interconnections
between components of this type.

Petreska and Teuscher have demonstrated the feasibility of implementing some
of the important features of membrane computing on reconfigurable hardware.
Nevertheless, their computing platform has four main limitations.

First, the computing platform does not exploit the performance advantages of
the membrane computing paradigm. This is primarily because it does not imple-
ment parallelism at the region level (i.e., the reaction rules in a region are applied
sequentially). Achieving region-level parallelism requires the implementation of
a scheme for the resolution of conflicts that arise when different reaction rules
compete for or produce the same types of objects in the same region at the same
time. It is difficult to implement such a scheme efficiently in hardware, especially
when a low-level hardware description language is used, and this is perhaps a
major reason why Petreska and Teuscher did not attempt to do so.

Second, the computing platform is inflexible. As the computing platform uses
only one type of high-level hardware component and connects components of
this type to build hardware architectures in a fixed manner, the extent to which
the hardware architecture for a P system can be tailored to the specific charac-
teristics of the P system is limited.

392 V. Nguyen, D. Kearney, and G. Gioiosa

Third, the computing platform is not extensible. As it is specified at the
hardware level in a low-level hardware description language, adding support
for additional P system features would require redesigning the hardware for the
computing platform directly. This is likely in most cases to be a difficult and time-
consuming task, given the dependence of the computing platform on the design
of a single universal hardware component. Thus there is limited opportunity to
improve the flexibility of the computing platform.

Fourth, the computing platform has limited scalability. As there is only a
limited ability to tailor the hardware architecture to the specific characteristics
of the P system to be executed, the hardware architecture often includes many
redundant hardware components. These redundant components unnecessarily
consume hardware resources.

As it implements membrane creation and dissolution in addition to the basic
P system features included in the core P system model, Petreska and Teuscher’s
computing platform can execute a wider range of P systems than Ciobanu and
Guo’s computing platform. So, in this respect, it is more flexible than Ciobanu
and Guo’s computing platform.

3 A Proposed Implementation Approach

In this section, we specify the key features of the novel implementation approach
on which Reconfig-P is based, and explain why this implementation approach
has the potential to deliver a good balance between performance, flexibility and
scalability.

3.1 Key Features of the Implementation Approach

The implementation approach on which Reconfig-P is based involves

– use of a reconfigurable hardware platform,
– generation of a customized digital circuit for each P system to be executed,

and
– use of a hardware description language that allows digital circuits to be

specified at a level of abstraction similar to the level of abstraction at which
a general-purpose procedural software programming language (such as C)
allows algorithms to be specified.

In the approach, a software component of the computing platform is respon-
sible for analyzing the structural and behavioral features of the P system to be
executed and producing a hardware description for the P system that is tailored
to these features. When determining the hardware description for the P system,
the software component aims to maximize performance and minimize hardware
resource consumption.

3.2 Potential of the Implementation Approach

The use of reconfigurable hardware opens up the possibility of generating cus-
tom digital circuits for P systems. The ability to generate a custom circuit for

Balancing Performance, Flexibility, and Scalability 393

the P system to be executed makes it possible to design this circuit according
to the specific structural and behavioral features of the P system, and therefore
facilitates the design of circuits that exhibit good performance and economical
hardware usage. Therefore the implementation approach facilitates the develop-
ment of a computing platform that exhibits good performance and economical
hardware usage. For example, because the number of reaction rules in the P sys-
tem to be executed is known before it is executed, the circuit for the P system
can be designed in such a way that it includes exactly that number of process-
ing units to implement the reaction rules. Without the possibility of generating
a custom circuit, the circuit for the P system would have to include a fixed
number of processing units for reaction rules, and therefore would often include
redundant hardware components. Also, because it is possible by inspection of the
definitions of the reaction rules in a P system to determine for any two regions in
the P system whether it is possible for objects to traverse between these regions,
the circuit for a P system can be designed in such a way that the logic that
implements object traversal is included only for those inter-region connections
over which object traversal is possible.

The fact that digital circuits are specified at a level of abstraction similar
to that at which a general-purpose procedural software programming language
specifies algorithms, rather than at a level of abstraction that reveals the struc-
ture or low-level algorithmic behavior of the circuits, makes it more feasible
to develop a software component that is able to flexibly adapt to the specific
features of the P system to be executed when generating a circuit for that P
system. The greater the ability of the software component to flexibly adapt to
the specific features of the P system to be executed, the greater the range of P
systems for which it is capable of generating circuits that exhibit good perfor-
mance and economical hardware usage. Therefore the implementation approach
facilitates the development of a computing platform that exhibits good flexi-
bility. For example, as mentioned in Section 2.4, implementing parallelism at
the region level of a P system requires resolving conflicts that may occur when
different reaction rules update the same multiplicity values. If a low-level hard-
ware description language were used, it would be very difficult to resolve such
conflicts in an efficient manner. The use of a high-level hardware description lan-
guage makes it more feasible that a solution to the conflict resolution problem
can be found.

Because it involves the use of a hardware description language that is inca-
pable of expressing the low-level structure and behavior of digital circuits, the
implementation approach limits the extent to which low-level optimizations of
circuits can be carried out. However, it is unlikely that the benefits of customiza-
tion and flexibility mentioned above could be achieved if a low-level hardware
description language were used.

The above considerations suggest that the implementation approach has the
potential to deliver a good balance between performance, flexibility and scala-
bility in a parallel computing platform for membrane computing applications.

394 V. Nguyen, D. Kearney, and G. Gioiosa

4 Description of Reconfig-P

In this section, we describe Reconfig-P, our prototype hardware-based parallel
computing platform for membrane computing applications based on the imple-
mentation approach specified in Section 3. Being the first hardware-based com-
puting platform to implement parallelism at both the system and region levels,
Reconfig-P advances the state-of-the-art in hardware implementations of mem-
brane computing. First, we specify the functional requirements of Reconfig-P.
Second, we provide an overview of the major components of Reconfig-P and the
roles of these components in the execution of applications. Third, we provide an
overview of the functionality of P Builder, the software component of Reconfig-P
that is responsible for generating customized hardware representations for P sys-
tems. Finally, we describe how P Builder represents the fundamental structural
and behavioral features of P systems in hardware.

4.1 Functional Requirements

Reconfig-P is required to execute P systems that instantiate the core P system
model on reconfigurable hardware. In addition, to facilitate testing of P system
designs, Reconfig-P is required to enable the user to execute a P system in
software, and view the configuration-by-configuration evolution of the P system,
before generating a hardware circuit for the P system.

It is not a strict requirement that Reconfig-P implement the nondeterminism
of P systems.

4.2 System Overview

Figure 1 shows the major components of Reconfig-P and the roles of these com-
ponents in the execution of a P system.

(1) The user begins using Reconfig-P by writing a P system specification. This
specification defines a P system that is described in terms of the core P system
model. (2) The hardware source code generator called P Builder (which is hid-
den from the user) processes the input information. (3) P Builder analyses the P
system specification, and then generates Handel-C source code that implements
a customized hardware representation for the P system. (4) The user can choose
to (a) execute the source code in hardware, or (b) simulate the execution of
the source code in software. (5) The ability to generate simulation source code
enables users to examine their P system design before building a corresponding
hardware circuit. (6) The simulation instance (specified by a DLL file) is ex-
ecuted on a host computer. The host computer invokes the simulation feature
provided by the Celoxica DK Design Suite to allow users to (a) view the evolu-
tion of their P system one configuration at a time, or (b) return the output of
the simulation in an output file. (7) The generation of hardware execution source
code allows the user, once they have finalized the design of their P system, to
build a hardware circuit for the P system. (8) The hardware execution source
code is then synthesized into a hardware circuit. A hardware execution instance
(specified by a bitstream) can then be executed on a reconfigurable hardware

Balancing Performance, Flexibility, and Scalability 395

1

outputs

writes defines instantiates

generates hardware source

code for P system based on

generates hardware source

code for P system based on

P system

specification

analyses

outputs

uses

is executed on

specifies

is executed on

outputs

analyses

P system Core P system model

P Builder

(Hardware

source code

generator)

Hardware

simulation

source code

Hardware

execution

source code

Hardware

simulation

instance

HostOutput file

Hardware

execution

instance

DK Design Suite

Reconfigurable

computing

platform

(FPGA)

Output file

User

outputs if

execution

mode is

real

outputs if

execution

mode is

simulation

Hardware source

code for P system

(Handel-C)

generates

User

User

Compiler

and linker
.dll file

Netlist Bitstream

outputs

processes

processes

2

3

4

5

6

7

8

is synthesised specifies

(b)(a)

Fig. 1. An overview of Reconfig-P. The shaded region covers the components of
Reconfig-P that are transparent to the user.

platform (an FPGA). The FPGA communicates with the host computer via a
PCI bus. The output of the execution instance is stored in an output file, which
can then be analyzed by the user. Much of the process of executing a P system
is transparent to the user. The shaded region in Figure 1 covers the components
of Reconfig-P that are transparent to the user.

4.3 Overview of P Builder

P Builder is responsible for implementing the hardware reconfiguration capabil-
ity of Reconfig-P. It generates customized Handel-C source code for a P system
based on the specific characteristics of the P system.

P Builder interprets a simple declarative language which is used by the user
to specify P systems. More specifically, P Builder supports the execution of a P
system by

1. converting a text representation of the P system (the P system specification)
into software objects (written in Java);

2. converting the object representation into Handel-C source code that may be
regarded as an abstract hardware representation; and then

3. converting the Handel-C source code into a hardware circuit (by invoking
Xilinx tools) or initiating a software simulation of the hardware circuit spec-
ified by the Handel-C code (by invoking the DK Design Suite).

396 V. Nguyen, D. Kearney, and G. Gioiosa

#region

$label

4

$objects$

$catalysts$

$childRegions$

$parentRegion

1

$rulesWithPriorities$

$rulesWithoutPriorities

f->b3:out

$

…

M1

(a
2
b

3
)

M2

(a
3
b

2
)

M3

(a
4
b

2
)

R1

a->b:inR2

a->b:out

R3

b->a

M1

M3

M2

b

R1

a

a

b

b

Random

numbers

Multiset

replication

coordinator

Rule execution

coordinator

00000010

00000011

a

0
0
0
0

0
1
0

0
0
0
0
0

0
0
1

0

0 1 … 0 0 1

counter

R2

b1

b2

R3

00000011

1

00000010

P system specification
Object-oriented representation

Abstract

hardware

representation

(Handel-C

source code)

Hardware circuit
Software simulation

Fig. 2. P Builder converts the text specification of a P system into an executable
hardware circuit or a software simulation of such a hardware circuit. In the intermediate
stages of the conversion process, the P system is represented as a set of software objects
and then as a set of abstract hardware components (specified in Handel-C).

Since P Builder is hidden from the user, the mechanics of the conversion process
it performs are transparent to the user. The conversion process is illustrated in
Figure 2.

Balancing Performance, Flexibility, and Scalability 397

4.4 How P Builder Generates Abstract Hardware Representations
for P Systems

In [4], we describe the hardware implementation of membrane computing that
is at the foundation of Reconfig-P. In this section, we describe how P Builder
generates the Handel-C source code that specifies the hardware implementation
for a specific P system.

Although at the software level P Builder represents all features of the P sys-
tem to be executed, at the hardware level it represents only those aspects that
are needed to compute the evolution of the P system. This is done to save hard-
ware resources. The essential aspects include: (a) multisets of objects in regions,
(b) inter-region containment relationships, (c) reaction rules, (d) application of
reaction rules, and (e) synchronization of reaction rules.

Multisets of objects in regions. The multiset of objects in a region, when
represented in software, has two key attributes: the labels for the object types
and the current multiplicity values of these object types in the region. Instead of
representing both attributes in hardware, P Builder represents the multiplicity
values as the values stored in an array of registers. Each register in the array is
mapped to an object type in the alphabet of the P system (stored in software).
For example, in Figure 4 the multisets for regions M1, M2 and M3 are each rep-
resented as arrays containing three registers for the storage of the current mul-
tiplicity value in the relevant region of object types a, b and c, respectively. P
Builder assigns to the array registers a fixed bitwidth, which can be defined by
the user (the default bitwidth is 8 bits). For example, the multisets for regions
M1, M2 and M3 in Figure 4 could be declared in Handel-C as shown in Figure 3.

unsigned int 8 multiset1[3] = {0b00000010, 0b00000001, 0b00000011};
unsigned int 8 multiset2[3] = {0b00000011, 0b00000000, 0b00000010};
unsigned int 8 multiset3[3] = {0b00000100, 0b00000000, 0b00000010};

Fig. 3. Handel-C code that P Builder could generate to represent the multisets in
Figure 4

Note that the array for each region contains one register for each object type
in the alphabet of the P system, regardless of which object types the reaction
rules in the region consume or produce. This is to accommodate the traversal of
objects between regions.

Inter-region containment relationships. To represent the inter-region con-
tainment relationships essential to computing the evolution of a P system, P
Builder connects each rule processing unit (see below) to the array that repre-
sents the multiset of objects in the region to which it belongs, as well as to the
arrays for all the regions to which it is possible that objects controlled by the
rule traverse. For example, in Figure 4, rule R1 is connected to the array for its
accommodating membrane M1, as well as to the arrays for M1’s child regions M2
and M3 (since it is possible for the execution of R1 to result in the traversal of

398 V. Nguyen, D. Kearney, and G. Gioiosa

Random numbers

MB3B

MB2B

b

a

a b

b
00000010

00000011

a
00000100

00000001

00000000

MB1B

00000000

cB1B cB2B

m
u

lt
is

e
t

re
p

lic
a

ti
o

n

c
o

o
rd

in
a

to
r

00000000

ru
le

a

p
p

lic
a

ti
o

n
c
o

o
rd

in
a

to
r

00000000

00000011

c

c

00000010

c

p
S

e
n

ti
n

e
l

a
S

e
n

ti
n

e
l

u
S

e
n

ti
n

e
l

0

1

0 1
…

0 0 11

counter

m
a

x
_

in
s
t_

rB 3RB3
B

RB1B

00000010

0
0
0
0
0
0
1
0

pFlagB1B aFlagB1B uFlagB1B mBrB(a) mBpB(c)

pFlagB2B aFlagB2B uFlagB2B mBrB(a) mBpB(b) mBpB(c)

pFlagB3B aFlagB3B uFlagB3B mBrB(c) mBpB(a)

0
0
0
0
0
0
1
0

m
a

x
_

in
s
t_

rB 1
0
0
0
0
0
0
1
1

m
a

x
_

in
s
t_

rB 2RB2
B

a
a

a c
c

RB1B: a cBinB

MB1
B

MB2
B

a
a a

a
c

c

c
c

ca
a

RB2B: a bBoutB cBoutB

MB3
B

b

RB3B: c a

in space-oriented mode
is represented as

in time-oriented mode
is represented as

Random numbers

MB3B

MB2B

b

a

a b

b
00000010

00000011

a
00000100

00000001

00000000

MB1B

ru
le

a

p
p

lic
a

ti
o

n
c
o

o
rd

in
a

to
r

00000000

00000011

c

c

00000010

c

p
S

e
n

ti
n

e
l

a
S

e
n

ti
n

e
l

u
S

e
n

ti
n

e
l

0
1

0 1
…

0 0 11

counter

m
a

x
_

in
s
t_

rB 3RB3
B

RB1B

00000010

0
0
0
0
0
0
1
0

pFlagB1B aFlagB1B uFlagB1B mBrB(a) mBpB(c)

pFlagB2B aFlagB2B uFlagB2B mBrB(a) mBpB(b) mBpB(c)

pFlagB3B aFlagB3B uFlagB3B mBrB(c) mBpB(a)

0
0
0
0
0
0
1
0

m
a

x
_

in
s
t_

rB 1
0
0
0
0
0
0
1
1

m
a

x
_

in
s
t_

rB 2RB2
B

time
tB1B

tB2B

Fig. 4. The abstract hardware representations that P Builder generates for an example
P system when Reconfig-P executes in time-oriented mode and in space-oriented mode

Balancing Performance, Flexibility, and Scalability 399

b objects to M2 and M3). P Builder achieves this by including in the generated
Handel-C code for the relevant rule processing unit a reference to the array that
represents that multiset.

Reaction rules. To implement parallelism at both the system and region levels,
P Builder generates parallel processing units for all reaction rules in all regions
of the P system to be executed. These processing units are all connected to a
global clock. Each processing unit is implemented in Handel-C as a potentially
infinite while loop (see Figure 6, for example). All the rule processing units are
placed in a par block.1

Each rule processing unit contains references to data relevant to its application
and synchronization with other reaction rules, as well as logic that accomplishes
its application. As shown in Figure 4, a rule processing unit includes references to
registers that store the multiplicity information recorded in the definition of the
reaction rule, three 1-bit registers called pFlag, aFlag and uFlag, and one 8-bit
register called max inst rx (where x is the label of the rule). The flags are used by
the rule application coordinator (a processing unit that executes in parallel with
the rule processing units) to synchronize the execution of the rule processing
units.2 The max inst rx register for a reaction rule is used to store the value of
the maximum number of instances of the rule that can be applied in the current
transition.

Application of reaction rules. During a transition of a P system, all reac-
tion rules are executed in parallel. Unless appropriate measures are taken, im-
plementing this parallelism would lead to situations in which a rule processing
unit updates the multiset of objects in its region before one or more of the other
rule processing in the region have finished acquiring objects from the multiset.

To prevent such situations from occurring, P Builder separates the application
of a reaction rule into two phases: a preparation phase. and an updating phase.

Code for the preparation phase. The block of Handel-C code in a rule processing
unit that implements the preparation phase of a reaction rule r (called prepBlock)
implements the calculation of max-instancesr, the maximum number of instances
of r that can be applied in the current transition of the P system (according to
the maximally parallel reaction rule application property of P systems). More
specifically, the code implements the division of the current multiplicity value
of each required object type by the number of objects of that type required for
the application of one instance of r, and then the calculation of the minimum of
the series of results thus obtained, which is equivalent to max-instancesr. The
operation of determining the minimum ratio can be represented as a binary tree
in which each node corresponds to the execution of a MIN operation and exe-
cuting the MIN operation at the root node gives the value of the minimum ratio.

1 The blocks of code included in a par block are executed in parallel.
2 See [4, Section 3.1.4] for a more detailed discussion of how synchronization is imple-

mented in Reconfig-P.

400 V. Nguyen, D. Kearney, and G. Gioiosa

procedure generatePreparationCode (r : reaction rule)

m: region to which r belongs

reactants (r): list of the reactant (including catalyst) object types in r

reactants (r, i): the object type at the i th position of reactants (r)

multiplicity (o, m): the multiplicity of object type o in region m in the current transition
.of the P system

amtToConsume (o, m, r): the amount of objects of type o in region m to be consumed by
.reaction rule r in the current transition of the P system
amtConsumed (o, m, r): the amount of objects of type o in region m consumed by reaction
.rule r in the current transition of the P system

evalAmtConsumedExpr (o, m): string that represents an arithmetical expression that is used
.to evaluate the amount of object type o in region m already consumed in the current
.transition of the P system

maxInst (r): the maximum number of instances of r that can be applied in the current
.transition of the P system

prepBlock: (initially empty) Handel-C block of code for the preparation phase of r
instCalcBlock: (initially empty) Handel-C block of code for the calculation of maxInst (r)
delaysBlock: (initially empty) Handel-C block of code consisting of delay statements

if r has been assigned a priority

. noOfDelays ← 0

. for each reaction rule s in the same region as r with a higher priority than r

. noOfDelays ← noOfDelays + �log2(size of reactants (s))�

. Append noOfDelays many delay statements to delaysBlock

. Append delaysBlock to the current contents of prepBlock

. Obtain the value for amtConsumed (reactants (r, i), m, r) from evalAmtConsumedExpr

. (reactants (r, i), m)

else

. amtConsumed (reactants (r, i), m, r) ← 0

n: number of elements in reactants (r)
oi: abbreviation for ‘reactants (r, i)’

if n = 1

. Append to instCalcBlock Handel-C code that evaluates maxInst (r) according to the

. following formula:

. maxInst (r) = (multiplicity (o1, m) – amtConsumed (o1, m)) /

. . amtToConsume (o1, m, r)

else

. Append to instCalcBlock Handel-C code that evaluates in as parallel a manner as possible the

. minimum value in the set {(multiplicity (o1, m) – amtConsumed (o1, m)) / amtToConsume

. (o1, m, r), (multiplicity (o2, m) – amtConsumed (o2, m)) / amtToConsume (o2, m, r)

. , ..., (multiplicity (on, m) – amtConsumed (on , m)) / amtToConsume (on, m, r)}

.if r has been assigned a priority

. for i = 0 to n

. evalAmtConsumedExpr (oi , m) ← Handel-C code that evaluates maxInst (r) ∗

. amtToConsume (oi, m, r) + the result of evaluating evalAmtConsumedExpr (oi , m)

.Append instCalcBlock to the current contents of prepBlock

Fig. 5. The procedure that P Builder follows when generating the Handel-C code for
the preparation phase of a reaction rule

Balancing Performance, Flexibility, and Scalability 401

MIN values are calculated in as parallel a manner as possible. In the preparation
phase, parallelism is achieved at both the system and region levels. However,
recall that in the core P system model, reaction rules associated with the same
region may have relative priorities. If this is the case, P Builder ensures that the
rule processing units with relative priorities determine their maximum number
of instances one after the other according to their relative priorities. P Builder
achieves this by calculating for each reaction rule the number of clock cycles
taken by all the reaction rules with higher priorities to calculate their respec-
tive max-instancesr values, and then inserting an equivalent number of delay

statements into the Handel-C code for the rule processing unit for the reaction
rule (above the code that calculates the max-instancesr value for the rule).3 P
Builder also generates Handel-C code that evaluates the amount of objects of
each type remaining in the region (after reaction rules with a higher priority
are executed in a maximally parallel manner) which is to be executed before
the code that determines max-instancesr. In this version of Reconfig-P, there
is the constraint that reaction rules associated with the same region that at-
tempt to obtain the same type of object must be assigned relative priorities.
The procedure generatePreparationCode in Figure 5 illustrates how P Builder
generates Handel-C code for the preparation phase of a reaction rule. Figure 6
shows example Handel-C code for the preparation phases of two reaction rules
that belong to the same region.

Code for the updating phase. The block of Handel-C code in a rule processing unit
that implements the updating phase of a reaction rule is called updatingBlock.
In the updating phase of a reaction rule, if the rule is applicable, every instance
of the rule is applied. P Builder implements the checking of the applicability of a
reaction rule by generating a condition statement for its updatingBlock based on
its max-instancesr value. If its max-instancesr value is greater than 0, the rest
of the code in the relevant rule processing unit that implements the updating
phase for the rule is executed; that is, the combined effect of the application of
the instances of the rule is brought about. The relevant rule processing unit de-
creases/increases certain multiplicity values in certain multiset arrays according
to the type, amount and source/destination of the objects consumed/produced
by the instances of the rule. If the rule includes ‘in’ target directives and there are
multiple child regions, P Builder creates and associates a random number mod-
ule to the relevant rule processing unit. The random number module contains
an array of numbers and a counter that is used to retrieve a particular num-
ber at random (see Figure 4). Each number refers to a particular child region.
The numbers are stored in read-only memory instead of in registers in order to
save hardware resources. The procedure generateUpdatingCodeForAnObjectType

in Figure 7 describes the way in which P Builder generates Handel-C code that im-
plements the updating of the multiplicity of an object type in a region. Figure 9
shows some example Handel-C code for the updating phase of a reaction rule.

3 A delay statement specifies the execution of an empty process that takes one clock
cycle to complete.

402 V. Nguyen, D. Kearney, and G. Gioiosa

//Multiset in region: apbqcrds

//Rules in region: Rule 1 and Rule 2
//priority (Rule 1) > priority (Rule 2)

par
{
. ...

. //Rule 1: aa1bb1cc1 → dd1

. while(1)

. {

. ...

. par

. {

. ...

. seq

. {

. tempMin = MIN(p/a 1, q/b 1);

. max instances r 1 = MIN(tempMin,

. r/c 1);

. }

. }

. }

.

. //Rule 2: aa2 → b
b2
in

. while(1)

. {

. ...

. par

. {

. ...

. seq

. {

. delay;

. delay;

. max instances r 2 =

. (p - max instances r 1*a 1)/a 2;

. }

. }

. }

. ...
}

Fig. 6. Example Handel-C source code for the preparation phases of two reaction rules
that belong to the same region

A significant problem associated with implementing the updating phase of a
transition of a P system in hardware is dealing with resource conflicts that arise
because different rules need to update the multiplicity for the same type of object
in the same clock cycle. When generating Handel-C code, P Builder overcomes
the problem by providing two alternative strategies for conflict resolution: the
time-oriented strategy and the space-oriented strategy. The current version of
P Builder requires users to select the conflict resolution strategy to be used.4

In both strategies, P Builder first determines the potential conflicts between
reaction rules through the construction of a conflict matrix for the P system to
be executed. Each row of a conflict matrix for a P system is a quadruple (p, q,
r, s), where p is an object type in the alphabet of the P system, q is a region
in the P system, r is the set of reaction rules whose application results in the
consumption and/or production of objects of type p in q, and s — called the
conflict degree of (p, q) — is the size of r. There is a row for every pair (p, q). P
Builder constructs the conflict matrix before run-time, and then generates the
Handel-C code for the P system in such a way that all rule processing units can
execute independently without any possibility of writing to the same register at
the same time.

We now describe how P Builder generates Handel-C code for the updating
phase of a reaction rule when (a) the time-oriented strategy is used, and (b) the
space-oriented strategy is used.

4 In a future version of P Builder, we plan to implement automatic selection of the
most appropriate conflict resolution strategy based on the specific characteristics of
the P system to be executed.

Balancing Performance, Flexibility, and Scalability 403

Time-oriented conflict resolution. In the Handel-C code that P Builder generates
when the time-oriented conflict resolution strategy is used, all conflicting update
operations for a certain type of object in a certain region are rolled out over
different clock cycles. This is done in such a way that throughout the whole P
system any update operations or sub-operations that can execute in parallel will
execute in parallel, and all the update operations or sub-operations with conflicts
will execute as early as possible. For example, in Figure 4, since without conflict
resolution the multiplicity of object type b in region M3 would be updated by
both rule processing unit R1 and rule processing unit R3 in the same clock cycle,
the two operations of updating the register that stores the multiplicity of object
type b will be done in two consecutive clock cycles, with the update operation in
the first clock cycle occurring in parallel with the rest of the update operations
occurring in the P system. P Builder achieves the necessary interleaving among
conflicting operations by inserting the appropriate number of delay statements
in the appropriate places in the Handel-C code for the rule processing units. In
this example, the updating phase for the whole P system takes two clock cycles
to complete, since the maximum conflict degree in the conflict matrix for the P
system is two. In principle, the time taken to complete the updating phase for
a P system is not affected by the number of reaction rules in the P system, but
is determined by the maximum conflict degree in the conflict matrix for the P
system.

Space-oriented conflict resolution. In the space-oriented conflict resolution strat-
egy, if n reaction rules need to update the multiplicity value for the same type
of object in the same region, then n copies are made of the register that stores
the multiplicity value. The processing units for the conflicting reaction rules are
assigned one copy register each, and in the updating phase write to their re-
spective copy registers. For example, in Figure 4, since the multiplicity of object
type b in region M3 might be updated by both rule processing unit R1 and rule
processing unit R3 in the same clock cycle, two copies b1 and b2 are made of that
part of the multiset array for M3 that represents the current multiplicity of ob-
ject type b in M3. R1 and R3 are assigned one copy each — R1 is able to update
only b1, and R3 is able to update only b2. So if both processing units need to
update the multiplicity of object type b in M3 in the same clock cycle, they can
do so without any conflict, because they update different parts of the multiset
array. To accomplish the updating of the original register, P Builder generates a
processing unit called a multiset replication coordinator (see Figure 4). After the
end of a transition, and before the beginning of the next transition, the multiset
replication coordinator reads the values stored in the copy registers and then
updates accordingly (in a single clock cycle) that part of the multiset array that
represents the multiplicity of the object type whose multiplicity value is being
updated.

The space-oriented strategy offers a potentially significant performance ad-
vantage over the time-oriented strategy. As already mentioned, when the time-
oriented strategy is used, the time taken to complete the entire updating phase
for a P system depends on the maximum conflict degree in the conflict matrix

404 V. Nguyen, D. Kearney, and G. Gioiosa

procedure generateUpdatingCodeForAnObjectType (o: object type to be updated, m: region to which
. o belongs, r : reaction rule)

objectBlock: (initially empty) string to store the Handel-C code that is to be returned by this procedure

amtToConsume (o, m, r): the amount of objects of type o in region m to be consumed by one instance
.of reaction rule r in the current transition of the P system

if o is a reactant in r

. call getDelayStatements with o and m returning noOfDelays

. call getRegisterToUpdate with o and m returning registerToUpdate

. Append to objectBlock (a) noOfDelays sequential delay statements and (b) Handel-C code that

. decreases the value stored at registerToUpdate by amtToConsume (o, m, r) * maxInst (r)

else if o is a product in r

. if direction of o in r is ‘out’

. p: parent region of m

. call getDelayStatements with o and p returning noOfDelays

. call getRegisterToUpdate with o and p returning registerToUpdate

. Append to objectBlock (a) noOfDelays sequential delay statements and (b) Handel-C code

. that increases the value stored at registerToUpdate by amtToProduce (o, p, r) * maxInst (r)

. else if direction of o in r is ‘in’

. if m has exactly one child region c1

. call getDelayStatements with o and c1 returning noOfDelays

. call getRegisterToUpdate with o and c1 returning registerToUpdate

. Append to objectBlock (a) noOfDelays sequential delay statements and (b) Handel-C code

. that increases the value stored at registerToUpdate by amtToProduce (c1, m, r) *

. maxInst (r)

. else if m has more than one child region

. Create the beginning of a Handel-C switch statement, with the expression of the switch

. containing the variable that stores the random number returned by the random number

. module associated with m

. for each child region c of m

. Create a Handel-C case block, where the condition of the case is that the random number

. returned by the random number module associated with m is equal to the label of c

. call getDelayStatements with o and c returning noOfDelays

. call getRegisterToUpdate with o and c returning registerToUpdate

. Insert into the case block (a) noOfDelays sequential delay statements and (b) Handel-C

. code that increases the value stored at registerToUpdate by amtToProduce (o, c, r)

. * maxInst (r)

. Insert the case block into the switch block

. End the switch block

. Append the switch block to objectBlock

. else

. call getDelayStatements with o and m returning noOfDelays

. call getRegisterToUpdate with o and m returning registerToUpdate

. Append to objectBlock (a) noOfDelays sequential delay statements and (b) Handel-C code

. that increases the value stored at registerToUpdate by amtToProduce (o, m, r) * maxInst (r)

return objectBlock

Fig. 7. The procedure that P Builder follows when generating Handel-C code that

implements the updating of the multiplicity of an object type in a region. (See also the

associated procedures getDelayStatements and getRegisterToUpdate in Figure 8.)

Balancing Performance, Flexibility, and Scalability 405

procedure getDelayStatements (o: object type, m: region)

noOfDelays: the number of delay statements to be inserted into a rule processing unit
.for the purpose of conflict resolution

currentIndex (o, m): index that refers to the copy register in objectCopies (o, m) to which
.the current update is to be made

initDegree (o, m): the degree of conflict associated with (o, m) initially to be processed

if initDeg (o, m) = 1 or initDeg (o, m) = 0 or the mode is space-oriented
. noOfDelays ← 0

else
. noOfDelays ← initDeg (o, m) – currDeg (o, m)
. currDeg (o, m) ← currDeg(o, m) – 1

return noOfDelays

procedure getRegisterToUpdate (o: object type, m: region)

registerToUpdate: the register to which the update of the multiplicity of object type o
.in region m in the current transition should be made

currentIndex (o, m): index that refers to the copy register in objectCopies (o, m) to which
.the current update is to be made

objectCopies (o, m): the array containing all copy registers for object o in region m

if the mode is time-oriented
. registerToUpdate ← multiplicity (o, m)

else if the mode is space-oriented
. registerToUpdate ← the copy register at the index currIndex (o, m) of objectCopies (o, m)
. currIndex (o, m) ← currIndex (o, m) + 1

return registerToUpdate

Fig. 8. The procedures invoked by the procedure generateUpdatingCode-

ForAnObjectType shown in Figure 7

for the P system, and therefore is sensitive to the existence of conflicts between
reaction rules. When the space-oriented strategy is used, on the other hand, the
time taken to complete the entire updating phase is fixed at only two clock cy-
cles. However, the performance advantage of the space-oriented strategy comes
at the cost of increased hardware resource usage because of the need to repli-
cate registers and implement special processing units for the coordination of this
replication.

Synchronization of reaction rules. As mentioned above, each rule processing
unit is associated with three 1-bit flags: a pFlag, a uFlag and an aFlag. The
pFlag records whether the rule processing unit has finished its preparation phase,
the uFlag records whether the rule processing unit has finished its updating
phase, and the aFlag records whether the reaction rule implemented by the rule
processing unit is applicable in the current transition. All the flags of a given
type are stored in a single array.

406 V. Nguyen, D. Kearney, and G. Gioiosa

//Multiset in region: apbqcrds

//Rules in region: Rule 1 and Rule 2
//priority (Rule 1) > priority (Rule 2)
//Rule 1: aa1bb1cc1 → dd1

while(1)
{
. ...

. par

. {

. multiset0[0] = p - max instances r 1*a 1;

. multiset0[1] = q - max instances r 1*b 1;

. multiset0[2] = r - max instances r 1*c 1;

. multiset0[3] = s + max instances r 1*d 1;

. }

. ...

.}

//Rule 2: aa2 → b
b2
in

while(1)
{
. ...

. par

. {

. seq

. {

. delay;

. multiset0[0] = p

. - max instances r 1*a 1

. - max instances r 2*a 2;

. }

. ...

. }

. ...

.}

(a)

.

//Rule 1: aa1bb1cc1 → dd1

while(1)
{
. ...

. par

. {

. multiset0 a copy1 =

. - max instances r1*a 1;

. multiset0[1] = q - max instances r 1*b 1;

. multiset0[2] = r - max instances r 1*c 1;

. multiset0[3] = s + max instances r 1*d 1;

. }

. ...

.}

//Rule 2: aa2 → b
b2
in

while(1)
{
. ...

. par

. {

. multiset0 a copy2 =

. - max instances r 2*a 2;

. ...

. }

. ...

} .
.
.

(b)

Fig. 9. Example Handel-C code for the updating phase of a reaction rule using (a) the
time-oriented conflict resolution strategy and (b) the space-oriented conflict resolution
strategy

The flags associated with the rule processing units are used by the rule ap-
plication coordinator, a processing unit that executes in parallel with the other
processing units in Reconfig-P, to synchronize the execution of the rule process-
ing units both within and across transitions (see Figure 4). The rule application
coordinator uses three 1-bit registers called pSentinel, aSentinel and uSentinel

to manage system-level synchronization. pSentinel records whether all the rule
processing units in the P system have finished their respective preparation phases
(and hence are ready to progress to their respective updating phases), aSentinel
records whether at least one reaction rule in the P system being executed is
applicable in the current transition (and hence whether the P system should
halt or progress to a new transition), and uSentinel records whether all the
rule processing units in the P system have finished their respective updating
phases (and hence whether the P system can progress to the next transition).
At every clock cycle, the rule application coordinator checks the status of the
rule processing units in the system, and sets the values of the sentinels to reflect

Balancing Performance, Flexibility, and Scalability 407

Table 1. Details of the P systems used in the experiments

Horizontal cascading Vertical cascading
Horizontal and

vertical cascadingP

system
n Regions

Rules C k Rules C k Rules C k

1 1 4 11 27 7 11 27 7 11 27 7

2 2 7 21 53 7 22 54 7 22 54 7

3 4 13 41 97 7 44 108 7 42 106 7

4 8 25 81 193 9 88 216 7 83 211 7

5 16 49 161 377 17 176 432 7 165 415 7

this status. Also at every clock cycle, the rule application coordinator reads the
current values of the sentinels and takes any action required to ensure that the
system is properly synchronized.

5 Evaluation of Reconfig-P

We have conducted a series of experiments to investigate the performance and
hardware resource usage of Reconfig-P.5 In this section, we present the results
of these experiments, and evaluate the performance, flexibility and scalability of
Reconfig-P in light of these results.

5.1 Details of Experiments

Table 1 shows the P systems that were executed in the experiments. Each P
system was constructed by first taking n copies of the basic P subsystem shown
at the top-right of Figure 10, then cascading these copies in a horizontal, vertical
or horizontal and vertical manner (as shown in Figure 10), and finally placing
the copies into the region shown at the top-left of Figure 10. The value of n is
a measure of the size of the constructed P system; the larger the value of n, the
larger the P system. Thus in the experiments a series of P systems of different
sizes and different structures were executed.

Table 1 lists a C value for each P system. The C value for a P system is a
measure of the amount of conflict that exists between reaction rules in the P
system. More specifically, C is the sum of the conflict degrees of all pairs (p, q)
for the P system, where p is an object type, q is a region and the conflict degree
of the pair is greater than 1.

In the experiments, the logic depth reduction feature of Reconfig-P was not
used (this is the default setting).

5 To facilitate a more precise comparison of the performance of Reconfig-P in the
space-oriented and time-oriented modes than that presented in the pre-proceedings
version of this paper, a more precise method of measuring execution times has been
adopted. This method involves, for example, ignoring the time taken to initialize the
FPGA.

408 V. Nguyen, D. Kearney, and G. Gioiosa

0 bQainbin

R11 :a2 dQ dbinb
out R12 :a20Q a

R14 : bQain
R13 : aQa2

R11 >R12 >R13

R21 :b
2
cQa

out

2

R22 :b
10
Q b

R23 :c10Q c

R24 : aQbin

2

R31 :b
2
cQa

out
c

out

R32 : bQainbin

R33 : bQ a

R21 >R22 >R23

R31 >R32 >R33

u1

0

un-1

un

…

u2

u3

0

u2

un

…u1

uk uk+1… …

u1

0

un-1 un…u2

Horizontal and vertical cascading

(1 k n)

Vertical cascading

(n 1)

Horizontal cascading

(n 1)

Basic P subsystem

Outermost region

Fig. 10. Each P system used in the experiments was constructed by first cascading
n copies of a basic P subsystem in a horizontal, vertical or horizontal and vertical
manner, and then placing these copies into an outermost region.

The target circuit for hardware executions was the Xilinx Virtex-II XC2V6000-
FF11 52-4, and the Handel-C code for the P systems was synthesized, placed and
routed using Xilinx tools. The computing platform for sequential executions was
a 1.73GHz Intel Pentium M processor with 2GB of memory.

5.2 Results of Experiments

The graph at the top of Figure 11 shows the experimental results related to
the performance of Reconfig-P, both when it executes in time-oriented mode
and when it executes in space-oriented mode. It also shows, for the sake of
comparison, the corresponding results for a software-based sequential computing
platform (i.e., a Java simulator for the core P system model).

The graph at the bottom of Figure 11 shows the experimental results related
to the hardware resource usage of Reconfig-P, both when it executes in time-
oriented mode and when it executes in space-oriented mode. We use the number
of LUTs (lookup tables) on the circuit generated for a P system as the measure
of the hardware resource usage of Reconfig-P for that P system. We also record

Balancing Performance, Flexibility, and Scalability 409

the percentage of the LUTs available on the FPGA that is used by the circuit,
because this percentage provides an indication of the extent to which current
FPGA technology meets the hardware resource requirements of Reconfig-P.

5.3 Evaluation of the Performance of Reconfig-P

In evaluating the performance of Reconfig-P, we make the following observations
about the performance results shown in the graph at the top of Figure 11:

– Reconfig-P executes P systems significantly faster than the software-based
sequential computing platform (from 131 to 3192 times faster, and on average
770 times faster). The larger the P system that is executed, the greater the
extent to which Reconfig-P outperforms the sequential computing platform.
This is as expected, because larger P systems have more regions and more
reaction rules and therefore more opportunity for parallelism at both the
system and region levels. The highest performance achieved by Reconfig-P
is approximately 700 million reaction rule applications per second.

– The results show that, in general, the rate of increase in the performance
of Reconfig-P in both the space-oriented and time-oriented modes as the
number of reaction rules in the P system it executes increases is closer to
being linear than constant. This is a good result, because it indicates that
as the size of the P system to be executed increases, Reconfig-P is able to
take advantage of the increased opportunities for parallelism.

– Reconfig-P performed better in space-oriented mode than in time-oriented
mode in all the experiments. The performance in space-oriented mode is
roughly twice as good as the performance in time-oriented mode. However,
the performance difference between the two modes is more pronounced than
usual when the largest P system generated using horizontal cascading is ex-
ecuted. This is a consequence of the fact that the k value for this P system is
much higher than for the other P systems. Increasing k increases the num-
ber of clock cycles per transition when the time-oriented conflict resolution
strategy is used, but does not affect the number of clock cycles per transition
when the space-oriented conflict resolution strategy is used. Although not
verified in the experiments, it is possible that if C is large and k is not too
large (e.g., if a large number of conflicts are evenly distributed among re-
gions), the performance in time-oriented mode would be closer to or perhaps
better than the performance in space-oriented mode. This is because (a) a
large C value results in significant hardware resource usage (due to multiset
replication) and a relatively low clock rate (due to greater logic depths asso-
ciated with implementing the coordination of multiset replication) when the
space-oriented mode is used, and (b) if k is not too large, the performance
degradation due to sensitivity to k in the time-oriented mode may be offset
by the performance degradation due to a relatively low clock rate in the
space-oriented mode.

In summary, the experimental results indicate that Reconfig-P achieves very
good performance.

410 V. Nguyen, D. Kearney, and G. Gioiosa

Fig. 11. Experimental results for the performance of Reconfig-P and a sequential com-
puting platform and for the hardware resource usage of Reconfig-P

Balancing Performance, Flexibility, and Scalability 411

5.4 Evaluation of the Scalability of Reconfig-P

By showing how the performance of Reconfig-P changes as the size of the P
system it executes changes, the performance results shown in the graph at the
top of Figure 11 form the basis of an evaluation of the scalability of Reconfig-P.
The hardware resource usage results shown in the graph at the bottom of Figure
11 also provide insight into the scalability of Reconfig-P, because they indicate
the extent to which Reconfig-P can support the execution of large P systems.

In evaluating the scalability of Reconfig-P, we make the following observations
about the results shown in Figure 11:

– Due to the nature of the membrane computing paradigm, the ideal limit of
the scalability of Reconfig-P is that its performance increases linearly with
respect to the number of reaction rules in the P system that it executes.
If Reconfig-P were not scalable, its performance would remain constant or
decrease as the number of reaction rules in the P system that it executes
increases. As observed in Section 5.3, the rate of increase in the performance
of Reconfig-P in both the space-oriented and time-oriented modes as the
number of reaction rules in the P system that it executes increases is closer
to being linear than constant. This suggests that there are no problems
of scale in the hardware design (e.g., nonlinearly growing logic depths in
certain parts of the hardware circuit that would reduce the clock rate of the
FPGA). However, note that the scalability of Reconfig-P is more limited if
(a) it executes in time-oriented mode, and (b) the number of conflicts per
region increases at a linear (or close to linear) rate with respect to the size
of the P system that it executes.

– The hardware resource usage of Reconfig-P scales linearly with respect to
the size of the P system executed (i.e., with respect to n). This is as good as
can reasonably be expected, and indicates that Reconfig-P is scalable with
respect to hardware resource usage.

– The type of cascading employed in the construction of the P system that is
executed has little effect on hardware resource usage.

– For all P systems, Reconfig-P uses less than 22% of the LUTs available on the
FPGA. Given that the largest P system has 49 regions and 176 reaction rules,
this is an impressive result. Not only does it strongly suggest that current
FPGA technology meets the hardware resource requirements of Reconfig-P,
it also indicates that it would be feasible to extend Reconfig-P to support P
system features not covered by the core P system model.

– Reconfig-P uses only slightly more hardware resources in space-oriented
mode than in time-oriented mode. This suggests that, at least for the P sys-
tems executed in the experiments, multiset replication has only a relatively
small effect on hardware usage. Indeed, even for P systems with C > 400 and
therefore with more than 400 copies of multiplicity values, the hardware re-
sources consumed by Reconfig-P to store, access and coordinate these copies
is relatively small.

412 V. Nguyen, D. Kearney, and G. Gioiosa

In summary, the experimental results related to performance clearly demon-
strate the scalability of Reconfig-P. These results are backed up by the results
related to hardware resource usage, which indicate that Reconfig-P makes eco-
nomical use of hardware resources, and therefore is scalable with respect to
hardware resource usage.

5.5 Evaluation of the Flexibility of Reconfig-P

In its current prototype form, Reconfig-P supports the basic P system features
covered by the core P system model. Therefore it is not able to execute P sys-
tems that include additional features such as structured objects and membrane
permeability. This counts against its flexibility. However, there is good reason to
believe that Reconfig-P can be extended to support additional P system features.
As we have observed, Reconfig-P exhibits exceptionally economic hardware re-
source usage: for the P systems used in the experiments, more than 75% of the
available hardware resources are left unused. Thus there is ample space on the
FPGA for the inclusion of additional data structures and logic required for the
implementation of additional features. Furthermore, the fact that Reconfig-P
is implemented in a high-level hardware description language should ease the
process of incorporating additional features into the existing implementation.

6 Conclusion

By developing Reconfig-P, we have demonstrated that it is possible to efficiently
implement both the system-level and region-level parallelism of P systems on
reconfigurable hardware and thereby achieve significant performance gains.

Theoretical results (presented in [4]) demonstrate that the parallel algorithm
executed by Reconfig-P is significantly faster than the sequential algorithm used
in sequential implementations of membrane computing. Empirical results show
that for a variety of P systems Reconfig-P achieves very good performance while
making economical use of hardware resources. And there is good reason to believe
that Reconfig-P can be extended in the future to support additional P system
features. Therefore, there is strong evidence that the implementation approach
on which Reconfig-P is based is a viable means of attaining a good balance
between performance, flexibility and scalability in a parallel computing platform
for membrane computing applications.

References

1. Ciobanu, G., Guo, W.: P Systems Running on a Cluster of Computers. In: Mart́ın-
Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Com-
puting. LNCS, vol. 2933, pp. 123–139. Springer, Heidelberg (2004)

2. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Com-
puting. Springer, Heidelberg (2006)

Balancing Performance, Flexibility, and Scalability 413

3. Fernandez, L., Martinez, V.J., Arroyo, F., Mingo, L.F.: A Hardware Circuit for
Selecting Active Rules in Transition P Systems. In: Pre-proceedings of the First
International Workshop on Theory and Application of P Systems, Timisoara, Ro-
mania, September 26–27, 2005, pp. 45–48 (2005)

4. Nguyen, V., Kearney, D., Gioiosa, G.: An Implementation of Membrane Computing
using Reconfigurable Hardware. Computing and Informatics (to appear)

5. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
6. Petreska, B., Teuscher, C.: A Reconfigurable Hardware Membrane System. In:

Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing. LNCS, vol. 2933, pp. 269–285. Springer, Heidelberg (2004)

7. Syropoulos, A., Mamatas, E.G., Allilomes, P.C., Sotiriades, K.T.: A Distributed
Simulation of Transition P Systems. In: Mart́ın-Vide, C., Mauri, G., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) Membrane Computing. LNCS, vol. 2933, pp.
357–368. Springer, Heidelberg (2004)

On Flip-Flop Membrane Systems with Proteins

Andrei Păun1,2,3 and Alfonso Rodŕıguez-Patón3

1 Department of Computer Science/IfM, Louisiana Tech University
P.O. Box 10348, Ruston, LA 71272, USA

apaun@latech.edu
2 National Institute Research and Development for Biological Sciences,

Splaiul Independenţei nr. 296, Sector 6, 060031 Bucharest,
3 Universidad Politécnica de Madrid - UPM, Facultad de Informática

Campus de Montegancedo S/N, Boadilla del Monte, 28660 Madrid, Spain
arpaton@fi.upm.es

Abstract. We consider once again the membrane systems with proteins
on membranes. This model is bridging the membrane systems and brane
calculi areas together, thus it is interesting to study it in more depth.
We improve previous results in the area and also define a new variant
of these systems based on time as the output of the computation. The
new model allows (due to its flexibility) even stronger improvements with
respect to the number of proteins needed to perform the computation.

1 Introduction

We continue the work on a membrane systems model combining membrane sys-
tems and brane calculi as introduced in [14]. In brane calculi introduced in [5],
one works only with objects – called proteins – placed on membranes, while the
evolution is based on membrane handling operations, such as exocytosis, phago-
cytosis, etc. In the membrane computing area we have rules associated with each
region defined by a membrane, and in the recent years the rules in membrane
computing have been considered mainly to work on symbol objects rather than
other structures such as strings. The extension considered in [14] and in [15] was
to have both types of rules (both at the level of the region delimited by mem-
branes and also at the level of membrane controlled by a protein). The reason for
considering both extensions was that in biology, many reactions taking place in
the compartments of living cells are controlled/catalysed by the proteins embed-
ded in the membranes bilayer. For instance, it is estimated that in the animal
cells, the proteins constitute about 50% of the mass of the membranes, the rest
being lipids and small amounts of carbohydrates. There are several types of such
proteins embedded in the membrane of the cell; one simple classification places
these proteins into two classes, that of integral proteins (they “work” both in-
side the membrane as well as in the region outside the membrane), and that of
peripheral proteins (they can only work in one region of the cell) – see [1].

In the present paper we continue the discussion in the direction of membrane
systems with proteins, but we extend the model to have also a “more natural”
output of the computation with ideas from [8].

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 414–427, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Flip-Flop Membrane Systems with Proteins 415

Briefly, the systems that we consider in this paper extend the original defini-
tion by using the paradigm of time as the output of a computation as previously
introduced in [6] and [8]. The idea originates in [17] as Problem W; the novelty
is that instead of the “standard” way to output, like the multiplicities of objects
found at the end of the computation in a distinguished membrane as it was
defined in the model from [14] and in [15], it seems more “natural” to consider
certain events (i.e., configurations) that may occur during a computation and
to relate the output of such a computation with the time interval between such
distinguished configurations. Our system will compute a set of numbers simi-
larly with the case of “normal” symport/antiport systems as defined in [14], but
the benefit of the current setting is that the computation and the observance of
the output are now close to the biology and to the tools used for cell biology
(fluorescence microscopy, FACS).

2 The Types of Rules in the System

In what follows we assume that the reader is familiar with membrane computing
basic elements, e.g., from [16] and from [19], as well as with basic elements of
computability, so that we only mention here a few notations we use. The rules
based on proteins on membranes were described in detail in [14], and we refer
the interested reader to that publication and to [15] for further details.

As usual, we represent multisets of objects from a given alphabet V by strings
from V ∗, and the membrane structures by expressions of correctly matching la-
beled parentheses. The family of recursively enumerable sets of natural numbers
is denoted by NRE.

In the P systems which we consider below, we use two types of objects, pro-
teins and usual objects; the former are placed on the membranes, the latter are
placed in the regions delimited by membranes. The fact that a protein p is on
a membrane (with label) i is written in the form [ip|. Both the regions of a
membrane structure and the membranes can contain multisets of objects and of
proteins, respectively.

We consider the following types of rules for handling the objects and the
proteins; in all of them, a, b, c, d are objects, p is a protein, and i is a label (“cp”
stands for “change protein”), where p, p′ are two proteins (possibly equal; if
p = p′, then the rules of the type cp become rules of the type res; i.e., restricted):

Type Rule Effect (besides changing also the protein)
1cp [ip|a → [ip

′|b
a[ip| → b[ip

′| modify an object, but not move
2cp [ip|a → a[ip

′|
a[ip| → [ip

′|a move one object unmodified
3cp [ip|a → b[ip

′|
a[ip| → [ip

′|b modify and move one object
4cp a[ip|b → b[ip

′|a interchange two objects
5cp a[ip|b → c[ip

′|d interchange and modify two objects

416 A. Păun and A. Rodŕıguez-Patón

An intermediate case between res and cp can be that of changing proteins in a
restricted manner, by allowing at most two states for each protein, p, p̄, and the
rules working either in a res manner (without changing the protein), or changing
it from p to p̄ and back (like in the case of bistable catalysts). Rules with such
flip-flop proteins are denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we
allow both rules which do not change the protein and rules which switch from p
to p̄ and back).

Both in the case of rules of type ff and of type cp we can ask that the proteins
are always moved in another state (from p into p̄ and vice versa for ff). Such
rules are said to be of pure ff or cp type, and we indicate the use of pure ff or
cp rules by writing ffp and cpp, respectively.

We can use these rules in devices defined in the same way as the sym-
port/antiport P systems (hence with the environment containing objects, in
arbitrarily many copies each – we need such a supply of objects, because we
cannot create objects in the system), where also the proteins present on each
membrane are mentioned.

That is, a P system with proteins on membranes is a device of the form

Π = (O, P, μ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, io),

where:

1. m is the degree of the system (the number of membranes);
2. O is the set of objects;
3. P is the set of proteins (with O ∩ P = ∅);
4. μ is the membrane structure;
5. w1, . . . , wm are the (strings representing the) multisets of objects present in

the m regions of the membrane structure μ;
6. z1, . . . , zm are the multisets of proteins present on the m membranes of μ;
7. E ⊆ O is the set of objects present in the environment (in an arbitrarily

large number of copies each);
8. R1, . . . , Rm are finite sets of rules associated with the m membranes of μ;
9. io is the output membrane, an elementary membrane from μ.

The rules can be of the forms specified above, and they are used in a non-
deterministic maximally parallel way: in each step, a maximal multiset of rules
is used, that is, no rule can be applied to the objects and the proteins which
remain unused by the chosen multiset. As usual, each object and each protein
can be involved in the application of only one rule, but the membranes are not
considered as involved in the rule applications, hence the same membrane can
appear in any number of rules at the same time.

If, at one step, two or more rules can be applied to the same objects and
proteins, then only one rule will be non-deterministically chosen. At each step, a
P system is characterized by a configuration consisting of all multisets of objects
and proteins present in the corresponding membranes (we ignore the structure
μ, which will not be changed, and the objects from the environment). For exam-
ple, C = w1/z1, . . . , wm/zm is the initial configuration, given by the definition

On Flip-Flop Membrane Systems with Proteins 417

of the P system. By applying the rules in a non-deterministic maximally paral-
lel manner, we obtain transitions between the configurations of the system. A
finite sequence of configurations is called computation. A computation halts if
it reaches a configuration where no rule can be applied to the existing objects
and proteins.

Only halting computations are considered successful, thus a non-halting com-
putation will yield no result. With a halting computation we associate a result,
in the form of the multiplicity of objects present in region io in the halting con-
figuration. We denote by N(Π) the set of numbers computed in this way by a
given system Π . (A generalization would be to distinguish the objects and to
consider vectors of natural numbers as the result of a computation, but we do
not examine this case here.)

We denote, in the usual way, by NOPm(pror ;list-of-types-of-rules) the family
of sets of numbers N(Π) generated by systems Π with at most m membranes,
using rules as specified in the list-of-types-of-rules, and with at most r proteins
present on a membrane. When parameters m or r are not bounded, we use ∗ as
a subscript.

The new definition introduced by the current paper is the addition of time to
the above model, in brief, P system with proteins on membranes and time is a
device of the form

Π = (O, P, μ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, Cstart, Cstop),

where:

1. m, O, P, μ, w1, . . . , wm, z1, . . . , zm, E, R1, . . . , Rm are as defined above;
2. Cstart, Cstop are regular subsets of (O∗)m, describing configurations of Π .

We will use a regular language over O ∪ {$} to describe them, the special
symbol $ �∈ O being used as a marker between the configurations1 in the
different regions of the system. More details are given in [8] and [12].

As an example for the Cstart and Cstop configurations, let us give the following
restriction2 C = b3d7(O − {a, b, d})∗ for a single membrane (the proofs obtained
below need only one membrane, thus we can simplify the notation by not using
the symbol $). This means that in the region delimited by the only membrane
in the system, the configuration C is satisfied if and only if we do not have
any symbol of type a, we must have exactly 3 symbols of type b and exactly 7
symbols of type d. Any other symbol not mentioned is not restricted, e.g. we can
have any number of symbols of type c.

We emphasize the fact that in the definition of Π we assume that Cstart and
Cstop are regular. Other, more restrictive, cases can be of interest but we do not
discuss them here.

1 We express by these configurations restrictions that need to be satisfied by each of
the current multisets in their respective regions so that the overall configuration can
be satisfied.

2 C can be written also in the following form C = (a0b3d7).

418 A. Păun and A. Rodŕıguez-Patón

We can now denote the systems (defined as above) based on time with NTOPm

(pror ;list-of-types-of-rules) the family of sets of numbers N(Π) generated by sys-
tems Π with at most m membranes, using rules as specified in the list-of-types-
of-rules, and with at most r proteins present on a membrane. When parameters
are not bounded we replace them by ∗.

3 Register Machines

In the proofs from the next sections we will use register machines as devices
characterizing NRE, hence the Turing computability.

Informally speaking, a register machine consists of a specified number of reg-
isters (counters) which can hold any natural number, and which are handled
according to a program consisting of labeled instructions; the registers can be
increased or decreased by 1 – the decreasing being possible only if a register
holds a number greater than or equal to 1 (we say that it is non-empty) –, and
checked whether they are non-empty.

Formally, a (non-deterministic) register machine is a device as follows: M =
(m, B, l0, lh, R), where m ≥ 1 is the number of counters, B is the (finite) set
of instruction labels, l0 is the initial label, lh is the halting label, and R is the
finite set of instructions labeled (hence uniquely identified) by elements from B
(R is also called the program of the machine). The labeled instructions are of
the following forms:

– l1 : (ADD(r), l2, l3), 1 ≤ r ≤ m (add 1 to register r and then jump in a
non-deterministic way to one of the instructions with labels l2, l3),

– l1 : (SUB(r), l2, l3), 1 ≤ r ≤ m (if register r is not empty, then subtract 1
from it and go to the instruction with label l2, otherwise go to the instruction
with label l3),

– lh : HALT (the halt instruction, which can only have the label lh).

We say that a register machine has no ADD instructions looping to the
same label (or without direct loops) if there are no instructions of the form
l1 : (ADD(r), l1, l2) or l1 : (ADD(r), l2, l1) in R. For instance, an instruction of the
form l1 : (ADD(r), l1, l2) can be replaced by the following instructions, where l′1 is
a new label: l1 : (ADD(r), l′1, l2), l′1 : (ADD(r), l1, l2). The generated set of numbers
is not changed.

A register machine generates a natural number in the following manner: we
start computing with all m registers being empty, with the instruction labeled by
l0; if the computation reaches the instruction lh : HALT (we say that it halts), then
the values of register 1 is the number generated by the computation. The set of
numbers computed by M in this way is denoted by N(M). It is known (see [?])
that non-deterministic register machines with three registers generate exactly
the family NRE, of Turing computable sets of numbers. Moreover, without loss
of generality, we may assume that in the halting configuration all registers except
the first one, where the result of the computation is stored are empty.

On Flip-Flop Membrane Systems with Proteins 419

4 Previous Results

In [14] the following results were proved:

Theorem 1.

NOP1(pro2; 2cpp) = NRE. (Theorem 5.1 in [14])
NOP1(pro∗; 3ffp) = NRE. (Theorem 5.2 in [14])

NOP1(pro2; 2res, 4cpp) = NRE. (Theorem 6.1 in [14])
NOP1(pro2; 2res, 1cpp) = NRE. (Theorem 6.2 in [14])
NOP1(pro∗; 1res, 2ffp) = NRE. (Theorem 6.3 in [14])

As an extension of the work reported in [14], a significant amount of energy was
devoted to the flip-flopping variant of these membrane systems in [9]. S.N Kr-
ishna was able to prove [9] several results improving Theorem 5.2, and Theorem
6.3 from [14]:

Theorem 2.

NOP1(pro7; 3ffp) = NRE. (Theorem 1 in [9])
NOP1(pro7; 2ffp, 4ffp) = NRE. (Theorem 2 in [9])
NOP1(pro7; 2ffp, 5ffp) = NRE. (Corollary 3 in [9])
NOP1(pro10; 1res, 2ffp) = NRE. (Theorem 4 in [9])
NOP1(pro7; 1ffp, 2ffp) = NRE. (Theorem 6 in [9])
NOP1(pro9; 1ffp, 2res) = NRE. (Theorem 7 in [9])
NOP1(pro9; 2ffp, 3res) = NRE. (Theorem 9 in [9])
NOP1(pro8; 1ffp, 3res) = NRE. (Theorem 10 in [9])
NOP1(pro9; 3res, 4ffp) = NRE. (Theorem 11 in [9])
NOP1(pro8; 2ffp, 5res) = NRE. (Theorem 13 in [9])

A close reading of the theorems mentioned above will yield some improvements
that are given in the following section.

5 New Results

We start this section by first discussing the results from [9] which we mentioned
in Theorem 2. The main idea in all the proofs reported in [9] was to simulate
register machines (it is known that such devices with 3 registers are universal).
The novelty of the proof technique in [9] was to consider for all ADD instruc-
tions associated with a particular register a single protein, similarly we use one
protein for all the SUB instructions associated with a specific register. Thus in
the proofs of the results mentioned in Theorem 2 we will have 6 proteins used
for the simulation of the instructions in the register machine, (both ADD and

420 A. Păun and A. Rodŕıguez-Patón

SUB instructions for the 3 registers in the machine) the other(s) protein(s) be-
ing needed mainly for the test with zero processing in the simulation of SUB
instructions.

The main observation that we want to make at this point is the fact that
register machines with three registers out of which one (the output register) is
non-decreasing are still universal, thus all the results from [9] are better by one
protein without any major changes in their proofs. This is due to the fact that
we only need two proteins to simulate the SUB instructions, and also the proof
technique allows for such a modification. Subsequently, the following results were
shown in [9]:

Theorem 3.

NOP1(pro6; 3ffp) = NRE. (Theorem 1 in [9])
NOP1(pro6; 2ffp, 4ffp) = NRE. (Theorem 2 in [9])
NOP1(pro6; 2ffp, 5ffp) = NRE. (Corollary 3 in [9])
NOP1(pro9; 1res, 2ffp) = NRE. (Theorem 4 in [9])
NOP1(pro6; 1ffp, 2ffp) = NRE. (Theorem 6 in [9])
NOP1(pro8; 1ffp, 2res) = NRE. (Theorem 7 in [9])
NOP1(pro8; 2ffp, 3res) = NRE. (Theorem 9 in [9])
NOP1(pro7; 1ffp, 3res) = NRE. (Theorem 10 in [9])
NOP1(pro8; 3res, 4ffp) = NRE. (Theorem 11 in [9])
NOP1(pro7; 2ffp, 5res) = NRE. (Theorem 13 in [9])

We will proceed now to consider the same framework, but with the extra
feature of the output based on time. We show that we can improve the result
from Theorem 11 from [9]:

Theorem 4. NRE = NTOP1(pro7, 3res, 4ffp).

Proof. We consider a register machine M = (m, B, l0, lh, R) and we construct
the system

Π = (O, P, [1]1, {l0, b}/P, E, R1, Cstart, Cstop)

with the following components:

O = {ar, a
′
r | 1 ≤ r ≤ 3} ∪ {i, i′, li, l′i, l

′′
i , l′′′i , livi , Li, L

′
i | 0 ≤ i ≤ h}

∪{o, o1, o2, b, h, †}.

E = {ar, a
′
r | 1 ≤ r ≤ 3} ∪ {i | 0 ≤ i ≤ h} ∪ {o}.

P = {p1, p2, p3, s2, s3, p, t}.

Cstart = l′′h(O − {l′′h, †})∗, in other words, l′′h appears exactly once and there
are no copies of † in the membrane, and the rest of the symbols can
appear in any multiplicity as they are ignored.

Cstop = (O − {a1})∗, in this case a1 does not appear in the membrane.

On Flip-Flop Membrane Systems with Proteins 421

The proteins p and t are of the type 3res while all the others are of the type
4ffp. Proteins p and pi are used in the simulation of ADD instructions of register
i, proteins p, t and si are used in the simulation of SUB instructions of register
i, and protein p, t, s2 and s3 are used in the simulation of the instructions for
counting or termination.

The system has the following rules in R1:
For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules as

shown in Table 1.

Table 1. Steps for ADD instruction for Theorem 4

Step Rules Type Environ. Membrane

1 a′
r[1pr | l1 → l1[1p

′
r | a′

r 4ffp El1 ba′
r

2 or ar[1p
′
r | a′

r → a′
r[1pr | ar and l1[1p |→ [1p | l2 4ffp, 3res E bl2ar

2 ar[1p
′
r | a′

r → a′
r[1pr | ar and l1[1p |→ [1p | l3 4ffp, 3res E bl3ar

We simulate the work of the ADD instruction in two steps. First we send
out the current instruction label l1 and bring in a copy of the (padding) symbol
a′r using the protein pr. Next we simultaneously apply the rules to replace a′r
with ar using the protein p′r and we bring in the next instruction label l2 or
l3 according to the currently simulated rule l1. Of course, l1 uniquely identifies
which rule was simulated, thus there is no ambiguity about which symbols li are
able to enter the membrane at this time. Let us now consider the case of the
SUB instructions:

For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the rules as shown
in Table 2.

We simulate the work of the SUB instruction in several steps (eight if the
register is not empty and ten if it is empty). We first send out the current label
as l′1 using the protein p. At the next step the symbol l′1 is brought in as l′′1 . Next
we exchange l′′1 and o using the protein sr (the protein sr is moved in its primed
version of the flip-flop). We can now apply two rules in parallel and bring in l′′1
as l′′′1 while sending out o as o1. Next, l′′′1 is sent out as liv1 while we bring in o1
as o2 in parallel.

In this moment our system will perform the checking of the contents of the
register r. If the register is not empty, then liv1 will enter the membrane, decreas-
ing the register and at the same time another marker o2 is sent outside as o to
help identify the correct case later. At the next stage liv1 will be sent out as 2′

using protein p. Finally 2′ will return as the next instruction label to be brought
in (in this case l2 as the register is not empty). If liv1 comes back in the membrane
through the protein t instead of s′r, we will have a wrong computation. In this
case we can send out o2 as symbol † in parallel using the protein p (as this is
the only channel available at this time to o2, t being used by liv1). Next we can
bring in a copy of the symbol † into the membrane. The application of this rule
will never satisfy the starting configuration; hence, we will not be able to use
the time counter.

422 A. Păun and A. Rodŕıguez-Patón

Table 2. Steps for SUB instruction for Theorem 4

Step Rules Type Environ. Membrane

1 [1p | l1 → l′1[1p | 3res El′1 bar

2 l′1[1p |→ [1p | l′′1 3res E bl′′1 ar

3 o[1sr | l′′1 → l′′1 [1s
′
r | o 4ffp El′′1 boar

4 l′′1 [1p |→ [1p | l′′′1 and [1t | o → o1[1t| 3res, 3res Eo1 bl′′′1 ar

5 [1p | l′′′1 → liv1 [1p | and o1[1t |→ [1t | o2 3res, 3res Eliv1 bo2ar

Register r is non-empty

6 liv1 [1s
′
r | ar → ar[1sr | liv1 and [1t | o2 → o[1t | 4ffp, 3res Eoar bliv1

7 [1p | liv1 → 2′[1p | 3res E2′ b
8 2′[1p |→ [1p | l2 3res E bl2

Wrong computation

6 liv1 [1t |→ [1t | L′
3 and [1p | o2 → †[1p | 3res, 3res E† bL′3ar

7 †[1t |→ [1t | † 3res E b † ar

Register r is empty

6 [1t | o2 → o[1t | 3res Eo b
7 liv1 [1t |→ [1t | L′

3 3res E bL′
3

8 3[1s
′
r | L′

3 → L′
3[1sr | 3 4ffp EL′

3 b3
9 [1p | 3 → 3′[1p | 3res E3′ b
10 3′[1p |]ra[1p | l3 3res E bl3

If the register is empty, after step 5 we have liv1 in the environment and o2 in
the membrane, and the protein associated with the subtract rule for the register
r (sr) is primed. At this moment liv1 cannot enter the membrane through the
protein s′r as there are no ar objects in the membranes with which it must be
exchanged. There are two choices: either liv1 enters the membrane through t (and
we get the wrong computation case as above) or t is used by o2, and then liv1 sits
one step in the environment. At the next step we have the “branching point”:
rather than exchanging with ar (which will be present in the membrane in the
case when the register is not empty), liv1 comes into the membrane as L′3 through
t. Next we use the protein s′r to exchange L′3 and 3, and then send out 3 as 3′

using protein p. Now we bring in 3′ as the next instruction to be simulated l3.

Terminating/counting work. It is clear that at the end of the simulation, if
the register machine has reached the final state, we will have the halting instruc-
tion symbol in the membrane along with one copy of the symbol b and multiple
copies of the three different objects associated with their respective registers. At
that time we will have the computed value encoded as the multiplicity of the
object a1 that is associated with the output register. We will also have in the
system the label of the halting instruction, lh; thus, the rule ([1p | lh → l′h[1p |)
can be applied only when the simulation is performed correctly. At the next step,
using the protein s2 we exchange l′h and b.

The terminating/counting work is done by the rules as shown in Table 3.
Next we apply two rules in parallel and bring in b as l′′h while sending out

l′h as l′′h, satisfying the Cstart configuration. One can note that if there are no

On Flip-Flop Membrane Systems with Proteins 423

copies of a1 in the membrane, then also the configuration Cstop is satisfied at
the same time, thus our system would compute the value zero in that case. Next
we exchange h from the environment with l′′h and l′′h from the environment with
a1 until we reach the stopping configuration. For any other value encoded in
the multiplicity of a1 it will take exactly the same number of steps to push the
number of copies of object a1 from the membrane. �

Table 3. Steps for terminating/counting instructions for Theorem 4

Step Rules Type Environ. Membrane

1 [1p | lh → l′h[1p | 3res El′h ban1
1 an2

2 an3
3

2 l′h[1s2 | b → b[1s
′
2 | l′h 4ffp Eb l′han1

1 an2
2 an3

3
3 b[1p |→ [1p | l′′h and [1t | l′h → l′′h[1t | 3res El′′h l′′han1

1 an2
2 an3

3
4 h[1s2 | l′′h → l′′h[1s

′
2 | h or h[1s

′
2 | l′′h → l′′h[1s2 | h 4ffp El′′ha1 l′′han1

1 an2
2 an3

3 h
and l′′h[1s3 | a1 → a1[1s

′
3 | l′′h or 4ffp

or l′′h[1s
′
3 | a1 → a1[1s3 | l′′h 4ffp

An interesting observation is the fact that the object b is used for the counting
at the end of the computation. If one considers the same construct for membrane
systems with proteins as defined in [14] (the “classical” systems with the output
the multiplicity of objects in the membrane), then our construction is still valid
even in the case of systems without time, thus we have the following theorem
also proven:

Theorem 5. NRE = NOP1(pro7, 3res, 4ffp).

The theorem above is valid as one can restrict the register machine to be sim-
ulated (without loss of generality) to the case when the machine halts with the
non-output registers empty.

Thus it can be seen that we are able to improve the result shown in Theorem
10 in [9] both for systems based on multiplicity output and also for systems
based on time. The next result improves significantly Theorem 11 from [9], in
this case for systems based on time, and later one we will discuss also about the
non-timed systems.

Theorem 6. NRE = NTOP1(pro3, 2ffp, 5res).

Proof. We consider a register machine M = (m, B, l0, lh, R) and we construct
the system

Π = (O, P, [1]1, {l0, b, e}/P, E, R1, Cstart, Cstop)

with the following components:

O = {li, l
′
i | 0 ≤ i ≤ h} ∪ {a1, a2, a3, b, o, y}.

E = {a1, a2, a3, o}.

P = {p, q, s}.

424 A. Păun and A. Rodŕıguez-Patón

Cstart = (O − {b})∗, in other words, there are no copies of b in the membrane,
and the rest of the symbols can appear in any multiplicity as they are
ignored.

Cstop = (O − {a1})∗, in this case a1 does not appear in the membrane.

Protein q is of type 5res while all the others are of the type 2ffp. Proteins
p and q are used in the simulation of the ADD instruction, proteins q and s
are used in the simulation of the SUB instruction, and protein q is used in the
simulation of the instructions for counting or termination.

The system has the following rules in R1:
For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules as

shown in Table 4.

Table 4. Steps for ADD instruction for Theorem 6

Step Rules Type Environment Membrane

1 ar[1q | l1 → l′1[1q | ar 5res El′1 bear

2 l′1[1q | e → e[1q | l2 5res Ee bl2ar

2 l′1[1q | e → e[1q | l3 5res Ee bl3ar

3 e[1p |→ [1p
′ | e or e[1p

′ |→ [1p | e 2ffp, 2ffp E bear

We simulate the work of the ADD instruction in two steps. First we send out
the current instruction label l1 as l′1 and bring in a copy of the symbol ar using
the protein q. Next we apply the rule to send out e using the protein q and
we bring l′1 in as the new instruction label. To simulate the non-deterministic
behavior of these machines we have two rules that do the same job, the only
difference being the next instruction label being brought back in the system. It
is clear that the simulation of the ADD instruction is performed correctly. The
work is finished in this case by the rule (e[1p |→ [1p

′ | e) or (e[1p
′ |→ [1p | e).

For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the rules as shown
in Table 5.

Table 5. Steps for SUB instruction for Theorem 6

Step Rules Type Environment Membrane

1 [1s | l1 → l1[1s
′ | 2ffp El1 bear

Register r is non-empty

2 o[1s
′ |→ [1s | o and l1[1q | ar → ar[1q | l′1 2ffp, 5res Ear beol′1

3 o[1q | l′1 → l′1[1q | l2 5res El′1 beol2
4 l′1[1q | o → o[1q | y 5res Eo bey

Register r is empty

2 o[1s
′ |→ [1s | o 2ffp El1 beo

3 l1[1q | o → o[1q | l3 5res Eo bel3

We simulate the work of the SUB instruction in several steps (four if the
register is not empty and three if it is empty). At step 1 we first send out the

On Flip-Flop Membrane Systems with Proteins 425

current label l1 using the protein s. If the register is not empty, at step 2, l1 will
enter the membrane, decreasing the register and at the same time the symbol o
is brought in. At the next stage (step 3) l′1 will be sent out using protein q, and
o will return as the next instruction label to be brought in (in this case l2 as
the register is not empty). Finally l′1 will return as the symbol y while sending
out o, so that no extra copies of o are left in the membrane so that future SUB
simulations will be performed correctly. The symbols y will accumulate in the
membrane.

In the case when the register to be decremented is empty, we perform the
same initial step, sending out the current label using the protein s. This time
l1 cannot enter the membrane at the step 2 as there is no ar in the membrane
to help bring it in. So l1 will wait for one step in the environment. o is entering
the membrane at step 2, so at the step 3 l1 can now come into the membrane
through q and is changed into the label of the next instruction to be simulated
l3.

The terminating/counting work stage is done by the rules as shown in
Table 6.

Table 6. Steps for terminating/counting instructions for Theorem 6

Step Rules Type Environment Membrane

1 o[1q | lh → lh[1q | y 5res Elh bean1
1 an2

2 an3
3

2 lh[1q | b → l′h[1q | y 5res Ebl′h ean1
1 an2

2 an3
3

3 l′h[1q | a1 → l′h[1q | y 5res El′ha1 ean1
1 an2

2 an3
3

It is clear that at the end of the simulation, if the register machine has reached
the final state, we will have the halting instruction symbol in the system mem-
brane, along with one copy of the symbol b and multiple copies of the three
different objects associated with the respective registers and the symbol y. At
that time we will have the computed value encoded as the multiplicity of the
object a1 that is associated with the output register. We will also have in the sys-
tem the label of the halting instruction, lh, thus the rule (o[1q | lh → lh[1q | y)
can be applied only when the simulation is performed correctly. At the next
step, using the protein q we bring in lh as y while sending out b as l′h, satisfying
the Cstart configuration. One can note that if there are no copies of a1 in the
membrane, then also the configuration Cstop is satisfied at the same time, thus
our system would compute the value zero in that case. Next we bring in l′h as
y while sending out a1 as l′h until we reach the stopping configuration. For any
other value encoded in the multiplicity of a1 it will take exactly the same number
of steps to push the a1-s out of the membrane. �

Thus it can be seen that by using time as the output, we are able to improve
the result shown in Theorem 13 from [9], where seven proteins were required for
universality, as opposed to the three used in the above proof.

If one wants to still restrict the discussion to only the case of the non-timed
systems, with the price of one protein we can remove the objects y and e from

426 A. Păun and A. Rodŕıguez-Patón

the membrane (by first modifying them into some other symbols such as y′ and
o′ and then expelling them to the environment). In this way it is easy to see that
our proof for Theorem 6 leads to the following theorem:

Theorem 7. NRE = NOP1(pro4, 2ffp, 5res).

6 Final Remarks

We have shown that previous results about membrane systems with proteins
on membranes can be improved in what concerns the number of proteins. We
have also extended the model to have the output encoded as the time between
two configurations and this has lead to a significant improvement as opposed to
the previous results reported in [9]. Additional similar improvements are under
investigation.

Acknowledgments

A. Păun gratefully acknowledges the support in part by LA BoR RSC grant
LEQSF (2004-07)-RD-A-23 and NSF Grants IMR-0414903 and CCF-0523572.
We acknowledge the significant improvements to the paper suggested by the
anonymous referees.

References

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell, 4th edn. Garland Science, New York (2002)

2. Alhazov, A., Freund, R., Rogozhin, Y.: Some Optimal Results on Sym-
port/Antiport P Systems with Minimal Cooperation. In: Gutiérrez-Naranjo, M.A.,
et al. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory
Workshop, pp. 23–36. Fénix Editora, Sevilla (2005)

3. Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport / An-
tiport: History, Advances and Open Problems. In: Freund, R., Păun, G., Rozenberg,
G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg
(2006)

4. Bernardini, F., Păun, A.: Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice. In: Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing. LNCS, vol. 2933, pp. 43–54. Springer, Heidelberg
(2004)

5. Cardelli, L.: Brane Calculi – Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer,
Heidelberg (2005)

6. Cavaliere, M., Freund, R., Păun, G.: Event–Related Outputs of Computations in
P Systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Cellular Computing (Com-
plexity Aspects), ESF PESC Exploratory Workshop, pp. 107–122. Fénix Editora,
Sevilla (2005)

On Flip-Flop Membrane Systems with Proteins 427

7. Freund, R., Păun, A.: Membrane Systems with Symport/Antiport: Universality
Results. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane
Computing. LNCS, vol. 2597, pp. 270–287. Springer, Heidelberg (2003)

8. Ibarra, O.H., Păun, A.: Counting Time in Computing with Cells. In: Carbone,
A., Pierce, N.A. (eds.) DNA Computing. LNCS, vol. 3892, pp. 112–128. Springer,
Heidelberg (2006)

9. Krishna, S.N.: Combining Brane Calculus and Membrane Computing. In: BIC-
TA 2006. Proc. Bio-Inspired Computing – Theory and Applications Conf, Wuhan,
China (September 2006), Membrane Computing Section and Journal of Automata
Languages and Combinatorics (in press)

10. Minsky, M.L.: Recursive Unsolvability of Post’s Problem of “Tag” and Other Topics
in Theory of Turing Machines. Annals of Mathematics 74, 437–455 (1961)

11. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, New Jersey (1967)

12. Nagda, H., Păun, A., Rodŕıguez-Patón, A.: P Systems with Symport/Antiport and
Time. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2006. LNCS, vol. 4361, pp. 429–442. Springer, Heidelberg (2006)

13. Păun, A., Păun, G.: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20(3), 295–306 (2002)

14. Păun, A., Popa, B.: P Systems with Proteins on Membranes. Fundamenta Infor-
maticae 72(4), 467–483 (2006)

15. Păun, A., Popa, B.: P Systems with Proteins on Membranes and Membrane Divi-
sion. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303.
Springer, Heidelberg (2006)

16. Păun, G.: Membrane Computing – An Introduction. Springer, Heidelberg (2002)
17. Păun, G.: Further Twenty-six Open Problems on Membrane Computing. In: The

Third Brainstorming Meeting on Membrane Computing, Sevilla, Spain (February
2005)

18. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. 3 volumes,
Springer, Berlin (1997)

19. The P Systems Website: http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

Characterizing Membrane Structures Through

Multiset Tree Automata

José M. Sempere and Damián López

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n 46017 Valencia, Spain
{jsempere,dlopez}@dsic.upv.es

Abstract. The relation between the membrane structures of P systems
and an extension of tree automata which introduces multisets in the
transition function has been proposed in previous works. Here we pro-
pose two features of tree automata which have been previously studied
(namely, reversibility and local testability) in order to extend them to
multiset tree automata. The characterization of these families will intro-
duce a new characterization of membrane structures defined by the set
of rules used for membrane creation and deletion.

1 Introduction

The relation between membrane structures and tree languages has been explored
in previous works. So, Freund et al. [4] proved that P systems are able to generate
recursively enumerable sets of trees through their membrane structures. Other
works have focused on extending the definition of finite tree automata in order to
take into account the membrane structures generated by P systems. For instance,
in [13], the authors propose an extension of tree automata, namely multiset tree
automata, in order to recognize membrane structures. In [7], this model is used
to calculate editing distances between membrane structures. Later, a method to
infer multiset tree automata from membrane observations was presented in [14].

In this work we introduce two new families of multiset tree automata, by using
previous results taken from tree language theory. We propose a formal definition
of reversible multiset tree automata and local testable multiset tree automata.
These features have been widely studied in previous works [6,8].

The structure of this work is as follows: first we give basic definitions and
notation for tree languages, P systems and multiset tree automata and we define
the new families of multiset tree automata. Finally, we give some guidelines for
future research.

2 Notation and Definitions

In the sequel we provide some concepts from formal language theory, membrane
systems, and multiset processing. We suggest the books [12], [10] and [2] to the
reader.

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 428–437, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Characterizing Membrane Structures Through Multiset Tree Automata 429

First, we will provide some definitions from multiset theory as exposed in [15].

Definition 1. Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function. We say that A is empty if for all a ∈ D, f(a) = 0.

Definition 2. Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. The
removal of multiset B from A, denoted by A � B, is the multiset C = 〈D, h〉
where for all a ∈ D h(a) = max(f(a) − g(a), 0). Their sum, denoted by A ⊕ B,
is the multiset C = 〈D, h〉, where for all a ∈ D h(a) = f(a) + g(a).

Then, we say that A = B if the multiset (A � B) ⊕ (B � A) is empty.

The size of any multiset M , denoted by |M | will be the number of elements
that it contains. We are specially interested in the class of multisets that we call
bounded multisets. They are multisets that hold the property that the sum of all
the elements is bounded by a constant n. Formally, we denote by Mn(D) the
set of all multisets 〈D, f〉 such that

∑
a∈D f(a) = n.

A concept that is quite useful to work with sets and multisets is the Parikh
mapping. Formally, a Parikh mapping can be viewed as the application Ψ :
D∗ → N

n where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define
Ψ(x) = (#d1(x), · · · , #dn(x)) where #dj (x) denotes the number of occurrences
of dj in x.

We introduce now basic concepts from membrane systems taken from [10]. A
general P system of degree m is a construct

Π = (V, T, C, μ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0), where:

– V is an alphabet (the objects)
– T ⊆ V (the output alphabet)
– C ⊆ V , C ∩ T = ∅ (the catalysts)
– μ is a membrane structure consisting of m membranes
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i
– Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the

ith region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}

and δ is a special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set tar by {here, out, ink : 1 ≤ k ≤ m}.

– i0 is a number between 1 and m and it specifies the output membrane of Π
(in the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging them in the leaving order (if several objects
leave the system at the same time then permutations are allowed). The set of

430 J.M. Sempere and D. López

vector numbers that represent the objects in the output membrane i0 will be
denoted by N(Π). Obviously, both sets L(Π) and N(Π) are defined only for
halting computations.

One of the multiple variations of P systems is related to the creation, division
and modification of membrane structures. There have been several works in
which these variants have been proposed (see, for example, [1,9,10,11]).

In the following, we enumerate some kind of rules which are able to modify
the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′

2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (exo-
cytosis, endocytosis, etc.) has been widely studied in the membrane computing
area.

Now, we will introduce some concepts from tree languages and automata as
exposed in [3,5]. First, let a ranked alphabet be the association of an alphabet V
together with a finite relation r in V × N. We denote by Vn the subset {σ ∈ V |
(σ, n) ∈ r}.

The set V T of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0
σ(t1, ..., tn) ∈ V T whenever σ ∈ Vn and t1, ..., tn ∈ V T , (n > 0)

and let a tree language over V be defined as a subset of V T .
Given the tuple l = 〈1, 2, ..., k〉 we will denote the set of permutations of

l by perm(l). Let t = σ(t1, ..., tn) be a tree over V T . We denote the set of
permutations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , ..., tin) |
〈i1, i2, ..., in〉 ∈ perm(〈1, 2, ..., n〉)}.

Let N
∗ be the set of finite strings of natural numbers, separated by dots,

formed using the catenation as the composition rule and the empty word λ as
the identity. Let the prefix relation ≤ in N

∗ be defined by the condition that
u ≤ v if and only if u · w = v for some w ∈ N

∗ (u, v ∈ N
∗). A finite subset D of

N
∗ is called a tree domain if:

u ≤ v where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabeled tree whose nodes cor-
respond to the elements of D where the hierarchy relation is the prefix order.
Thus, each tree t over V can be seen as an application t : D → V . The set D is
called the domain of the tree t, and denoted by dom(t). The elements of the tree
domain dom(t) are called positions or nodes of the tree t. We denote by t(x) the
label of a given node x in dom(t).

Let the level of x ∈ dom(t) be |x|. Intuitively, the level of a node measures its
distance from the root of the tree. Then, we can define the depth of a tree t as

Characterizing Membrane Structures Through Multiset Tree Automata 431

depth(t) = max{|x| : x ∈ dom(t)}. In the same way, for any tree t, we denote
the size of the tree by |t| and the set of subtrees of t (denoted with Sub(t)) as
follows:

Sub(a) = {a} for all a ∈ V0

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, ..., tn) (n > 0)

Given a tree t = σ(t1, . . . , tn), the root of t will be denoted as root(t) and
defined as root(t) = σ. If t = a then root(t) = a. The successors of a tree t =
σ(t1, . . . , tn) will be defined as Ht = 〈root(t1), . . . , root(tn)〉. Finally, leaves(t)
will denote the set of leaves of the tree t.

Definition 3. A finite deterministic tree automaton is defined by the tuple A =
(Q, V, δ, F) where Q is a finite set of states; V is a ranked alphabet with m as
the maximum integer in the relation r, Q ∩ V = ∅; F ⊆ Q is the set of final
states and δ =

⋃
i:Vi �=∅ δi is a set of transitions defined as follows:

δn : (Vn × (Q ∪ V0)n) → Q n = 1, . . . , m

δ0(a) = a ∀a ∈ V0

Given the state q ∈ Q, we define the ancestors of the state q, denoted by
Ant(q), as the set of strings

Ant(q) = {p1 · · · pn | pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q}

From now on, we will refer to finite deterministic tree automata simply as tree
automata. We suggest [3,5] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees
as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
you can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q, V, δ, F), where:

Q = Sub(T)
F = T

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q

δ0(a) = a a ∈ V0

432 J.M. Sempere and D. López

Let $ be a new symbol in V0, and V T
$ the set of trees (V ∪ {$})T where each

tree contains $ only once. We will name the node with label $ as link point when
necessary. Given s ∈ V T

$ and t ∈ V T , the operation s#t is defined as:

s#t(x) =
{

s(x) if x ∈ dom(s), s(x) �= $
t(z) if x = yz, s(y) = $, y ∈ dom(s)

therefore, given t, s ∈ V T , let the tree quotient (t−1s) be defined as

t−1s =
{

r ∈ V T
$: s = r#t if t ∈ V T − V0

t if t ∈ V0

This quotient can be extended to consider set of trees T ⊆ V T as:

t−1T = {t−1s | s ∈ T }

For any k ≥ 0, let the k-root of a tree t be defined as follows:

rootk(t) =
{

t, if depth(t) < k
t′ : t′(x) = t(x), x ∈ dom(t) ∧ |x| ≤ k, otherwise

3 Multiset Tree Automata and Mirrored Trees

We extend now over multisets some definitions of tree automata and tree lan-
guages. We will introduce the concept of multiset tree automata and then we
will characterize the set of trees that it accepts.

Given any tree automaton A = (Q, V, δ, F) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1) ⊕ MΨ (p2)⊕ · · · ⊕ MΨ (pn) where
∀1 ≤ i ≤ n MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up
parsing as in the tree automaton case.

Definition 4. Amultiset tree automaton is definedby the tupleMA = (Q, V, δ, F),
where Q is a finite set of states, V is a ranked alphabet with maxarity(V) = n,
Q ∩ V = ∅, F ⊆ Q is a set of final states and δ is a set of transitions defined as
follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi �= ∅

δi

Characterizing Membrane Structures Through Multiset Tree Automata 433

δi : (Vi × Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n

δ0(a) = MΨ (a) ∈ M1(Q ∪ V0) ∀a ∈ V0

We can observe that every tree automaton A defines a multiset tree automaton
MA as follows

Definition 5. Let A = (Q, V, δ, F) be a tree automaton. The multiset tree au-
tomaton induced by A is defined by the tuple MA = (Q, V, δ′, F) where each δ′ is
defined as follows: MΨ (r) ∈ δ′n(σ, M) if δn(σ, p1, ..., pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A is
non deterministic.

As in the case of tree automata, δ′ could also be extended to operate on trees.
Here, the automaton carries out a bottom-up parsing where the tuples of states
and/or symbols are transformed by using the Parikh mapping Ψ to obtain the
multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns a multiset
with at least one final state, the input tree is accepted. So, δ′ can be extended
as follows

δ′(a) = MΨ (a) for any a ∈ V0

δ′(t) = {M ∈ δ′
n(σ, M1 ⊕ · · · ⊕ Mn) | Mi ∈ δ′(ti)1 ≤ i ≤ n}

for t = σ(t1, . . . , tn) (n > 0)

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T | MΨ (q) ∈ δ′(t), q ∈ F}

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AntΨ (q) = {M | MΨ (q) ∈ δn(σ, M)}.

Theorem 1. (Sempere and López, [13]) Let A = (Q, V, δ, F) be a tree au-
tomaton, MA = (Q, V, δ′, F) be the multiset tree automaton induced by A and
t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q then MΨ (q) ∈ δ′(t).

Corollary 1. (Sempere and López, [13]) Let A = (Q, V, δ, F) be a tree automa-
ton and MA = (Q, V, δ′, F) be the multiset tree automaton induced by A. If
t ∈ L(A) then t ∈ L(MA).

We introduce the concept of mirroring in tree structures as exposed in [13].
Informally speaking, two trees will be related by mirroring if some permutations
at the structural level hold. We propose a definition that relates all the trees
with this mirroring property.

Definition 6. Let t and s be two trees from V T . We will say that t and s are
mirror equivalent, denoted by t �	 s, if one of the following conditions holds:

434 J.M. Sempere and D. López

1. t = s = a ∈ V0
2. t ∈ perm1(s)
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists 〈s1, s2, . . . , sk〉

∈ perm(〈s1, s2, ..., sn〉) such that ∀1 ≤ i ≤ n ti �	 si

Theorem 2. (Sempere and López, [13]) Let A = (Q, V, δ, F) be a tree automa-
ton, t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F)
be the multiset tree automaton induced by A. If t �	 s then δ′(t) = δ′(s).

Corollary 2. (Sempere and López, [13]) Let A = (Q, V, δ, F) be a tree automa-
ton, MA = (Q, V, δ′, F) the multiset tree automaton induced by A and t ∈ V T .
If t ∈ L(MA) then, for any s ∈ V T such that t �	 s, s ∈ L(MA).

The last results were useful to propose an algorithm to determine whether two
trees are mirror equivalent or not [13]. So, given two trees s and t, we can
establish in time O((min{|t|, |s|})2) if t �	 s.

4 k-Testable in the Strict Sense (k-TSS) Multiset Tree
Languages

In this section, we will define a new class of multiset tree languages. The defini-
tions related to multiset tree automata come from the relation between mirrored
trees and multiset tree automata which we have established in the previous sec-
tion. So, whenever we refer to multiset tree languages we are taking under our
consideration the set of (mirrored) trees accepted by multiset tree automata.

We refer to [6] for more details about reversibility and local testability in tree
languages.

First, we define k-TSS multiset tree languages for any k ≥ 2.

Definition 7. Let T ⊆ V T and the integer value k ≥ 2. T is a k-TSS multiset
tree language if and only if, given whatever two trees u1, u2 ∈ V T such that
rootk−1(u1) = rootk−1(u2), u−1

1 T �= ∅ and u−1
2 T �= ∅ implies that u−1

1 T = u−1
2 T .

Any multiset tree automaton as in the definition given before will be named a
k-TSS multiset tree automaton. Given A a tree automaton, t1, t2 valid contexts
over V T

$, as an extension of a result concerning k-TSS tree languages, we give
the following definition:

Definition 8. Let A be a multiset tree automaton over V T
$. Let u1, u2 ∈ V T

be two trees such that rootk−1(u1) = rootk−1(u2) and t1#u1, t2#u2 ∈ L(A)
for some valid contexts t1 and t2. If A is a k-TSS mirror tree automaton then
δ(u1) = δ(u2).

We can give the following characterization of such automata.

Corollary 3. Let A be a k-TSS multiset tree automaton. There does not exist
two distinct states q1, q2 such that rootk(q1) ∩ rootk(q2) �= ∅.

Characterizing Membrane Structures Through Multiset Tree Automata 435

The previous result can be easily deduced from the definition of k-TSS multiset
tree automata and the definitions given in section 2 about tree automata and
tree languages.

Example 1. Consider the multiset tree automaton with transitions:

δ(σ, aa) = q1, δ(σ, a) = q2,
δ(σ, aq2) = q2, δ(σ, q1q1) = q1,
δ(σ, aq2q1) = q3 ∈ F .

Note that the multiset tree language accepted by the automaton is k-TSS for
any k ≥ 2. Note also that the following one does not have the k-TSS condition
for any k ≥ 2:

δ(σ, aa) = q1, δ(σ, bb) = q2,
δ(σ, q2q2) = q2, δ(σ, q1q1) = q1,
δ(σ, q2q1) = q3 ∈ F ,

because the states q1 and q2 (and q3) share a common k-root.

5 Reversible Multiset Tree Automata

We also extend a previous result concerning k-reversible tree languages (for any
k ≥ 0) to give the following definition.

Definition 9. Let T ⊆ V T and the integer value k ≥ 0. T is a k-reversible
multiset tree language if and only if, given whatever two trees u1, u2 ∈ V T such
that rootk−1(u1) = rootk−1(u2), whenever there exists a context t ∈ V T

$ such
that both u1#t, u2#t ∈ T , then u−1

1 T = u−1
2 T .

Definition 10. Let A be a multiset tree automaton over V T
$. Let p1, p2 ∈ Q be

two states such that rootk(L(p1)) ∩ rootk(L(p2)) �= ∅. A is order k reset free if
the automaton does not contain two transitions such that

δ(σ, q1q2 . . . qnp1) = δ(σ, q1q2 . . . qnp2)

where qi ∈ Q, 1 ≤ i ≤ n.

Definition 11. Let A be a multiset tree automaton. A is k-reversible if A is
order k reset free and for any two distinct final states f1 and f2 the condition
rootk(L(f1)) ∩ rootk(L(f2)) = ∅ is fulfilled.

Example 2. Consider the multiset tree automaton with transitions:

δ(σ, aa) = q1, δ(σ, a) = q2,
δ(σ, q2q2) = q2, δ(σ, aaq1) = q1,
δ(σ, q1q1) = q3 ∈ F , δ(σ, q2q1) = q3 ∈ F .

The multiset tree language accepted by this automaton is k-reversible and it is
also an example of non k-TSS multiset tree language.

Finally, we can relate the two families of multiset tree languages that we have
previously defined with the following result.

436 J.M. Sempere and D. López

Theorem 3. Let T ⊆ V T and an integer value k ≥ 2. If T is k-TSS then T is
(k − 1)-reversible.

Proof. Let t#t1 and t#t2 belong to T , with t ∈ V T
$ and rootk(t1) = rootk(t2).

Trivially, t−1
1 T �= ∅ and t−1

2 T �= ∅. If T is a k-TSS tree language, then by previous
definitions, t−1

1 T = t−1
2 T , and also T is (k − 1)-reversible. �

6 From Transitions to Membrane Structures

Once we have formally defined the two classes of multiset tree automata, we
will translate their characteristics in terms of membrane structures. First we
will give a meaning to the concept of rootk(t). Observe that in a membrane
structure t, which is represented by a set of mirrored trees {t′ | t �	 t′}, the
meaning of rootk(t) is established by taking into account the (sub)structure of
the membranes from the top region up to a depth of length k. Another concept
that we have managed before is the operator #. Observe that this is related to
membrane creation of P systems. So, we can go from membrane configuration
t to t#s by creating a new membrane structure s in a predefined region of t
(established by #).

So, k testability implies that, whenever we take two membrane (sub)structures
of the P system, u1 and u2, if they share a common substructure of order k − 1
then u1 appears in a membrane configuration if and only if it can be substituted
by u2 to give a different membrane configuration.

On the other hand, k-reversibility implies that whenever two membrane struc-
tures u1 and u2 share the same substructure up to length k − 1, if u1#t and
u2#t are substructures of valid configurations of the P system, then u1#s is a
substructure of a valid configuration of the P system if and only if so is u2#s.

7 Conclusions and Future Work

We have introduced two new families of multiset tree languages. These classes
have characterized the membrane structures defined by P systems. We think that
other classes of tree languages will imply new classes of membrane structures.
So, all the theory that has been previously established on tree languages can
enrich the way in which we look up to the membrane structures.

In addition, there is another way to explore the relation between the mem-
brane structures of P systems and the languages that they can accept or generate.
So, a natural question arises: How is affected the structure of the language by
the structure of the membranes? This issue will be explored in future works.

Acknowledgements

Work supported by the Spanish GeneralitatValenciana under contractGV06/068.

Characterizing Membrane Structures Through Multiset Tree Automata 437

References

1. Alhazov, A., Ishdorj, T.O.: Membrane operations in P systems with active mem-
branes. In: Proc. Second Brainstorming Week on Membrane Computing. TR 01/04
of RGNC, pp. 37–44, Sevilla University (2004)

2. Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing.
LNCS, vol. 2235. Springer, Heidelberg (2001)

3. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications (1997) (release October 1,
2002), available on: http://www.grappa.univ-lille3.fr/tata

4. Freund, R., Oswald, M., Păun, A.: P Systems Generating Trees. In: Mauri, G.,
Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004.
LNCS, vol. 3365, pp. 309–319. Springer, Heidelberg (2005)

5. Gécseg, F., Steinby, M.: Handbook of Formal Languages, ch. Tree languages, vol. 3,
pp. 1–69. Springer, Heidelberg (1997)

6. López, D.: Inferencia de lenguajes de árboles. PhD Thesis DSIC, Universidad
Politécnica de Valencia (2003)

7. López, D., Sempere, J.M.: Editing Distances between Membrane Structures. In:
Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 326–341. Springer, Heidelberg (2006)

8. López, D., Sempere, J.M., Garćıa, P.: Inference of reversible tree languages. IEEE
Transactions on Systems, Man and Cybernetics Part B: Cybernetics 34(4), 1658–
1665 (2004)

9. Păun, A.: On P systems with active membranes. In: UMC 2000. Proc. of the First
Conference on Unconventional Models of Computation, pp. 187–201 (2000)

10. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
11. Păun, G., Suzuki, Y., Tanaka, H., Yokomori, T.: On the power of membrane divi-

sion on P systems. Theoretical Computer Science 324(1), 61–85 (2004)
12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1.

Springer, Heidelberg (1997)
13. Sempere, J.M., López, D.: Recognizing membrane structures with tree automata.

In: Gutiérrez Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan,
D. (eds.) 3rd Brainstorming Week on Membrane Computing 2005. RGNC Report
01/2005 Research Group on Natural Computing, Sevilla University, pp. 305–316.
Fénix Editora (2005)

14. Sempere, J.M., López, D.: Identifying P Rules from Membrane Structures with
an Error-Correcting Approach. In: Hoogeboom, H.J., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 507–520. Springer, Heidelberg
(2006)

15. Syropoulos, A.: Mathematics of Multisets. In: Calude, C.S., Pun, G., Rozenberg,
G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 347–358. Springer,
Heidelberg (2001)

http://www.grappa.univ-lille3.fr/tata

OPERASCC: An Instance of a Formal

Framework for MAS Modeling Based on
Population P Systems

Ioanna Stamatopoulou1, Petros Kefalas2, and Marian Gheorghe3

1 South-East European Research Centre, Thessaloniki, Greece
istamatopoulou@seerc.org

2 Department of Computer Science, CITY College, Thessaloniki, Greece
kefalas@city.academic.gr

3 Department of Computer Science, University of Sheffield, UK
M.Gheorghe@dcs.shef.ac.uk

Abstract. Swarm-based systems are biology-inspired systems which can
be directly mapped to multi-agent systems (MAS), possessing character-
istics such as local control over the decisions taken by the agents and a
highly dynamic structure which continuously changes. This class of MAS
is of a particular interest because it exhibits emergent behavior through
self-organization and finds itself applicable to a wide range of domains.
In this paper, we present OPERAS, an open formal framework that
facilitates modeling of MAS, we describe how a particular instance of
this framework, namely OPERASCC , could employ existing biological
computation systems, such as population P systems, and demonstrate
how the resulting method can be used to formally model a swarm-based
system of autonomous spacecrafts.

1 Introduction

Lately, there has been an increasing interest toward biological and biology-
inspired systems. From the smallest living elements, the cells, and how they
form tissues in organisms to entire ecosystems and how they evolve, there is
growing investigation on ways of specifying such systems. The intention is to
create software that mimics the behavior of their biological counterparts. Ex-
amples of biological systems of interest also include insect colonies (of ants,
termites, bees etc.), flocks of birds, tumors growth—the list is endless. The un-
derstanding of how nature deals with various situations has inspired a number of
problem solving techniques [1] that are applicable to a wide range of situations
that had been puzzling computer scientists for decades. Swarm intelligence [2,3],
ant colony optimization techniques [4] for example, has been successfully ap-
plied to robotics [5], network routing [6,7] and data mining [8] and has inspired
agent-based modeling platforms [9].

The promising feature is that these systems can be directly mapped to multi-
agent systems (MAS) by considering each entity as an agent, with its own be-
havioral rules, knowledge, decision making mechanisms and means of communi-
cation with the other entities and with the environment. The overall system’s

G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS 4860, pp. 438–452, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

OPERASCC : An Instance of a Formal Framework for MAS Modeling 439

behavior is merely the result of the agents’ individual actions, the interactions
among them and between them and the environment. This also points to the
issue of self-organization and how collective behavioral patterns emerge as a con-
sequence of individuals’ local interactions in the lack of knowledge of the entire
environment or global control.

An additional modeling key aspect of MAS has not received much attention
so far; it is the dynamic nature of MAS and how their structure is constantly
reconfigured. By structure we imply (i) the changing number of agents in a MAS,
and (ii) either their physical placement in the environment or, more generally,
the structure that is dictated by the communication channels among them. Most
modeling methodologies assume a fixed, static structure that is not realistic since
in a dynamic MAS, communication between two agents may need to be estab-
lished or ceased at any point and also new agents may appear in the system
while existing ones may be removed. One additional issue that the inherent dy-
namic nature of these systems raises has to do with distinguishing between the
modeling of the individual agents (behavior) and the rules that govern the com-
munication and evolution of the collective MAS (control). By ‘control’ we do
not imply central control, as this would cancel any notion of self-organization.
Rather, we refer to the part of the agent that takes care of non-behavioral issues.
A modeling method that allows such a distinction, would greatly assist the mod-
eler by breaking down the work into two separate and independent activities,
modeling the behavior and modeling the control.

Population P systems (PPS) with active membranes [10], a class of variants
of P Systems [11] are membrane structures composed of membranes configured
in an arbitrary graph and naturally possess the trait of reconfiguring their own
structure through rules that restructure the graph and allow membranes to di-
vide and die. Inspired by this appealing characteristic, in this paper we present a
formal framework, called OPERAS, that facilitates the development of dynamic
MAS of the nature of many biology and biology-inspired systems. The next sec-
tion introduces OPERAS formal definition, while section 3 presents an instance
of this framework, namely OPERASCC which utilizes population P systems in
order to model MAS. A brief description of a representative case study dealing
with a swarm-based system follows in Section 4 which also deals with the formal
model for the case problem in question. Finally, Section 5 discusses issues arising
from our attempt and concludes the paper.

2 OPERAS: Formal Modelling of MAS

In an attempt to formally model each individual agent as well as the dynamic
behavior of the overall system, we need a formal method that is capable of
rigorously describing all the essential aspects, i.e. knowledge, behavior, commu-
nication and dynamics. It is also important that the level of abstraction imposed
by a formal method is appropriate enough to lead toward the implementation
of a system. New computation approaches as well as programming paradigms
inspired by biological processes in living cells, introduce concurrency as well as

440 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

neatly tackle the dynamic structure of multi-component systems (P systems,
brane calculus, Gamma, Cham, MGS) [11,12,13]. In agent-oriented software en-
gineering, there have been several attempts to use formal methods, each one fo-
cusing on different aspects of agent systems development [14,15,16,17,18]. Other
formal methods, such as π-calculus, mobile ambients and P systems with mobile
membranes [19,20,21], successfully deal with the dynamic nature of systems and
concurrency of processes but lack intuitiveness when it comes to the modeling of
an individual agent (lack of primitives and more complex data structures). An
interesting comparison of various formal methods for the verification of emergent
behaviors in swarm-based systems is reported in [22].

2.1 OPERAS Definition

We start this section by providing the definition of a model for a dynamic
MAS in its general form. A multi-agent system can be defined by the tuple
(O, P, E, R, A, S) containing:

– a set of reconfiguration rules, O, that define how the system structure evolves
by applying appropriate reconfiguration operators;

– a set of percepts, P , for the agents;
– the environment’s model / initial configuration, E;
– a relation, R, that defines the existing communication channels;
– a set of participating agents, A, and
– a set of definitions of types of agents, S, that may be present in the system.

More particularly:

– the rules in O are of the form condition ⇒ action where condition refers
to the computational state of agents and action involves the application of
one or more of the operators that create/remove a communication channel
between agents or introduce/remove an agent into/from the system;

– P is the distributed union of the sets of percepts of all participating agents;
– R : A × A with (Ai, Aj) ∈ R, Ai, Aj ∈ A meaning that agent Ai may send

messages to agent Aj ;
– A = {A1, . . . An} where Ai is a particular agent defined in terms of its

individual behavior and its local mechanism for controlling reconfiguration;
– Sk = (Behaviourk, Controlk) ∈ S, k ∈ Types where Types is the set of

identifiers of the types of agents, Behaviourk is the part of the agent that
deals with its individual behavior and Controlk is the local mechanism for
controlling reconfiguration; each participating agent Ai of type k in A is a
particular instance of a type of agent: Ai = (Behk, Ctrlk)i.

2.2 OPERAS as an Open Framework

The general underlying idea is that an agent model consists of two parts, its
behavior and its control. The behavior of an agent can be modeled by a formal
method with its computation being driven by percepts from the environment.

OPERASCC : An Instance of a Formal Framework for MAS Modeling 441

The control can be modeled by a set of reconfiguration rules which given the
computation states of agents can change the structure of the system. The MAS
structure is determined through the relation that defines the communication
between the agents. The set of participating agents are instances of agent types
that may participate in the system. This deals with the fact that an agent may
be present at one instance of the system but disappear at another or that a new
agent comes into play during the evolution of the MAS. This assumes that all
agent types that may participate in the system should be known in advance.

There are still some open issues which, however, make the OPERAS ap-
proach a framework rather than a formal method. These are: (i) Which are the
formal methods that can be used in order to model the behavior? (ii) Which
are the formal methods that can to use in order to model the control? (iii)
Could the methods in (i) and (ii) be different? (iv) Should the agents’ behavior
models communicate directly with other agents’ behavior models? (v) Should
the agents’ control models communicate with other agents’ control models? (vi)
Could communication be established implicitly through percepts of the environ-
ment? (vii) Which method chosen from (i) or from (ii) drives the computation of
the resulting system? There is no unique answer to these questions but the mod-
eling solution will depend on the choice of formal methods which are considered
suitable to model either behavior or control.

It is therefore implied that there are several options which could instantiate
OPERAS into concrete modeling methods. Regarding the modeling of each
type of agent Sk, there are more than one options to choose from in order to
specify its behavioral part and the same applies for its control mechanism. We
have long experimented with various formal methods, such as X-machines with
its communicating counterpart and Population P Systems with active cells. In
this paper we present an instance of the framework that employs ideas from the
latter, using a PPS to model the behavior and the control part of the agent.

3 OPERASCC

3.1 Population P Systems with Active Cells

A population P system [10] is a collection of different types of cells evolving
according to specific rules and capable of exchanging biological / chemical sub-
stances with their neighboring cells (Fig. 1). More particularly, a PPS with active
cells [10] is defined as P = (V, K, γ, α, wE , C1, C2, . . . , Cn, R) where:

– V is a finite alphabet of symbols called objects;
– K is a finite alphabet of symbols, which define different types of cells;
– γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i �= j ≤ n }, is a finite undirected

graph;
– α is a finite set of bond-making rules of the form (t, x1; x2, p), with x1, x2 ∈

V ∗, and t, p ∈ K meaning that in the presence of objects x1 and x2 inside
two cells of type t and p respectively, a bond is created between the two cells;

– wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;

442 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 1. An abstract example of a population P system; Ci: cells, Ri: sets of rules related
to cells; wi: multi-sets of objects associated to the cells

– Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,
and ti ∈ K the type of cell i;

– R is a finite set of rules dealing with communication, object transformation,
cell differentiation, cell division and cell death.

All rules present in the PPS are identified by a unique identifier, r. More
particularly:

Communication rules are of the form r : (a ; b, in)t, r : (a ; b, enter)t, r :
(b, exit)t, for a ∈ V ∪{λ}, b ∈ V , t ∈ K, where λ is the empty string, and allow
the moving of objects between neighboring cells or a cell and the environment
according to the cell type and the existing bonds among the cells. The first rule
means that in the presence of an object a inside a cell of type t an object b
can be obtained by a neighboring cell non-deterministically chosen. The second
rule is similar to the first with the exception that object b is not obtained by a
neighboring cell but by the environment. Lastly, the third rule denotes that if
object b is present it can be expelled out to the environment.

Transformation rules are of the form r : (a → b)t, for a ∈ V , b ∈ V +, t ∈ K,
where V + is the set of non-empty strings over V , meaning that an object a is
replaced by an object b within a cell of type t.

Cell differentiation rules are of the form r : (a)t → (b)p, with a, b ∈ V ,
t, p ∈ K meaning that consumption of an object a inside a cell of type t changes
the cell, making it become of type p. All existing objects remain the same besides
a which is replaced by b.

Cell division rules are of the form r : (a)t → (b)t (c)t, with a, b, c ∈ V ,
t ∈ K. A cell of type t containing an object a is divided into two cells of the
same type. One of the new cell has a replaced by b while the other by c. All
other objects of the originating cell appear in both new cells.

Cell death rules are of the form r : (a)t → †, with a ∈ V , t ∈ K meaning
that an object a inside a cell of type t causes the removal of the cell from the
system.

OPERASCC : An Instance of a Formal Framework for MAS Modeling 443

PPS provide a straightforward way for dealing with the change of a system’s
structure and this is the reason why we have chosen them to define an instance
of the OPERAS framework, namely OPERASCC .

3.2 Definition of OPERASCC

In OPERASCC , each agent (behavior) is modeled as a PPS cell, and has a
membrane wrapped around it, that is responsible for taking care of structure
reconfiguration issues (control). In essence, this may be considered as a usual
PPS in which each cell is virtually divided in two regions, inner (for behavior) and
outer (for control), that deal with different sets of objects and have different kinds
of rules that may be applied to them. An abstract example of an OPERASCC

model consisting of two agents is depicted in Fig. 2.
Additionally, when using a PPS for modeling purposes, we consider all ob-

jects to be attribute-value pairs of the form att : v so that it is clear to which
characteristic of the agent an object corresponds to.

Fig. 2. An abstract example of a OPERASCC consisting of two agents

A MAS in OPERASCC is defined as the tuple (O, P, E, R, (A1, . . . An), S) (in
correspondence to P = (R, V, wE , γ, (C1, . . . Cn), k) of a PPS) where:

– Ai = (wbeh, wctrl, t), wbeh being the objects of the agent behavior cell, want

the objects of the control cell (these objects possibly hold information about
the wbeh objects (computation states) of neighboring agent cells) and t ∈ k
the type of the cell;

– O = OA ∪ OC .
• The rules in OA (to be applied only by the behavior cells on the wbeh

objects) are the transformation rules of a PPS that rewrite the objects,
as well as the communications rules that move objects between cells that

444 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

are linked with a bond (both kinds of rules do not affect the structure
of the system).

• The rules in OC (to be applied only by the control cells on the wctrl

objects) are the birth, death, differentiation and bond-making rules of a
PPS (the kinds of rules that affect the structure of the system) as well
as environment communication rules (receiving/sending objects from/to
the environment) so that there is indirect communication between the
control cells.

– P = PA ∪ PC , the set of percepts of all participating agents where PA is
the set of inputs perceived by the behavior cells and PC is the set of inputs
perceived by the control cells.

– E is the set of objects assigned to the environment holding information about
the computation states of all the participating agents;

– R is the finite undirected graph that defines the communication links between
the behavior cells;

– S is the set of possible types of cells.

It should be noted that although the agent descriptions’ set A appears fifth
in OPERAS definition tuple, from a practical perspective it is the first element
being defined; the other tuple elements and their form are naturally dependent
on the particular method(s) chosen to define the behavioral and control part of
the agents.

In every computation cycle:

– In all the cells modeling the behavior of the agent, all applicable object rules
in OA (transformation and communication) are applied;

– All control cells expel in the environment the wbeh objects (computation
states of behavior cells) along with the cell identity;

– All control cells import the computation states, wbeh, of neighboring agents;
– All rules in OC (bond-making, birth, death, differentiation) are triggered in

the control cells, (if applicable) reconfiguring the structure of the system.

Since the model follows the computation rules of a PPS system, the overall sys-
tem’s computation is synchronous. Asynchronous computation may be achieved
with the use of other methods for modeling the agents’ behavior and/or control.
In [23] we present another instance of the framework, namely OPERASXC ,
which uses X-machines for the behavioral part of the agent and membranes
wrapped around the machines for the control part, and apply it on the same
swarm-based system that we present hereafter. Because in that version of the
framework computation is driven by the computation of the participating X-
machines, overall computation is asynchronous.

4 OPERASCC for a Swarm-Based System

4.1 Autonomous Spacecrafts for Asteroid Exploration

A representative example of a system which clearly possesses all the
aforementioned characteristics of a dynamic MAS is the NASA Autonomous

OPERASCC : An Instance of a Formal Framework for MAS Modeling 445

Fig. 3. An instance of the ANTS mission, L: Leader, W : Worker, M : Messenger

Nano-Technology Swarm (ANTS) system [22]. The NASA ANTS project aims
at the development of a mission for the exploration of space asteroids with the
use of different kinds of unmanned spacecrafts. Each each spacecraft is con-
sidered as an autonomous agent and the successful exploration of an asteroid
depends on the overall behavior of the mission, which emerges as a result of self-
organization. We chose this case study because relevant work on the particular
project included research on and comparison of a number of formal methods
[24,22].

The ANTS mission uses of three kinds of unmanned spacecrafts: Li, leaders,
Wi, workers and Mi, messengers (Fig. 3). The leaders are the spacecrafts that
are aware of the goals of the mission and have a non-complete model of the
environment. Their role is to coordinate the actions of the spacecrafts that are
under their command but by no means should they be considered to be a central
controlling mechanism as all spacecrafts’ behavior is autonomous. Depending on
its goals, a leader creates a team consisting of a number of workers and at least
one messengers. Workers and messengers are assigned to a leader upon request
by (i) another leader, if they are not necessary for the fulfilment of its goals, or
(ii) earth (if existing spacecrafts are not sufficient in number to cover current
needs, new spacecrafts are allocated to the mission).

A worker is a spacecraft with a specialized instrument able, upon request
from its leader, to take measurements from an asteroid while flying by it. It also
possesses a mechanism for analyzing the gathered data and sending the analysis
results back to its leader in order for them to be evaluated. This in turn might
update the view of the leader, i.e. its model of the environment, as well as its
future goals.

The messengers, finally, are the spacecrafts that coordinate communication
among workers, leaders and the control center on earth. While each messenger
is under the command of one leader, it may also assist in the communication of
other leaders if its positioning allows it and conditions demand it.

446 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 4. (a) An instance of the MAS structure corresponding to Fig. 3 with an
OPERAS agent (W4) consisting of separate Behavior and Control components. (b) A
change in the structure of MAS after possible events (W2 aborting, L1 employing W6

etc.).

What applies to all types of spacecrafts is that in the case that there is a
malfunctioning problem, their superiors are being notified. If the damage is ir-
reparable they need to abort the mission while on the opposite case they may
“heal” and return back to normal operation.

4.2 The OPERASCC Approach to the ANTS Mission

The swarm-based system in the ANTS mission can be directly mapped into
the OPERAS framework (Fig. 4). A number of agents of three different types
(workers, W , leaders, L, and messengers, M) compose the MAS system. System
configuration is highly dynamic due to its nature and unforeseen situations that
may come up during the mission.

Leader: Formal Modeling of Behavior in OPERASCC . For the modeling
of the leader agent, one has to identify the internal states of the agent, its
knowledge as well as the inputs it is capable of perceiving, so that they are
represented as objects of the corresponding PPS.

The state of a leader can be either one of the three: Processing for an leader
that is fully operational, Malfunctioning for one that its facing problems and
Aborting for one that is either facing irreparable problems or has been com-
manded by the control center on earth to abort the mission.

The knowledge of the agent consists of the objects presented in Table 1 along
with their description. Similarly, the leader type of cell will be able to also
perceive other objects representing input from the environment or from other
agents. The most prominent ones are summarized in Table 2.

OPERASCC : An Instance of a Formal Framework for MAS Modeling 447

Table 1. Objects representing the knowledge of the Leader agent

Object Description
status The current operational state of the leader

existingWorkers The set of IDs and statuses of the workers under its
command

existingMsgs The set of IDs and statuses of the messengers under its
command

results The set containing analysis results it has gathered

model The current model of the agent’s surroundings

goals The agent’s goals

Table 2. Objects representing the percepts of the Leader agent

Object Description

abrt A request from the control center that the agent
should abort the mission

worker A new worker that joins the team under the leaders
command

messenger A new messenger that joins the team under the lead-
ers command

requestForWorker A request for a worker, made by another leader (so
that the worker is reallocated)

requestForMsg A request for a messenger, made by another leader
(so that the messenger is reallocated)

message An object representing a message sent by another
agent

Indicatively, two of the operations that a leader may perform in the form of
transformation rules follow. The rule representing the joining of a worker wi to
the leader’s team of Workers is specified as:
workerJoining :
(status : processing worker : wi existingWorkers : Workers

→ status : processing existingWorkers : {wi} ∪ Workers)L

The newly allocated worker wi may be received by another leader with the use
of a communication rule of the form:
receiveWorker : (message : canSendY ouAWorker ; worker : wi, in)L

which assumes that a canSendY ouAWorker message has been previously sent
by the other leader informing that it is willing to reallocate one of its workers.

Similarly, the rule representing the reallocation of the messenger mi to another
leader is:
reAllocatingMessenger :
(status : processing percept : requestForMsg existingMsgs : Messengers

→ status : processing existingMsgs : Messengers\{mi})L,
if isMessengerNeeded(mi) == false

448 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Table 3. Objects representing the knowledge of the Worker agent

Object Description
status The current operational state of the worker

myLeader the identity of its commanding leader,

teamWorkers The set of other co-workers belonging to the same team

teamMsgs The set of messengers belonging to the same team

Target The target asteroid

Data The set of data collected from the asteroid

Results The set of the data analysis results

Worker: Formal Modeling of Behavior in OPERASCC . Similarly for
a worker agent, the internal states in which a it may be in are Measuring,
when taking measurements from an asteroid, Analysing, when analyzing the
measurements in order to send results to its leader, Idle, Malfunctioning and
Aborting. The knowledge of the agent consists of the objects presented in Table 3
along with their description.

The worker type of cell will also be able to also perceive other objects that
represent either environmental stimuli or messages from other agents. Indicative
ones are being summarized in Table4.

Indicatively, some of the operations that a worker may perform in the form
of transformation rules follow. The rule representing the measurements’ analysis
mechanism of the worker is:
analysingData :
(status : Analysing data : Data → status : Idle results : Results)W

The rule that informs a worker that it is being reallocated to another leader is:
reAllocating :

(status : Idle myLeader : Leader reassignedTo : NewLeader
→ status : Idle myLeader : NewLeader)W

Table 4. Objects representing the percepts of the Worker agent

Object Description

abrt A request from the control center that the agent should abort the
mission

reassignedTo The identifier of the new leader the worker is being reassigned to

data The set of measurements taken from the asteroid

4.3 Formal Modeling of Control in OPERASCC

According to OPERASCC , for the definition of the given system as a dynamic
MAS, we need to assume an initial configuration. To keep the size restricted
for demonstrative purposes, let us consider an initial configuration that in-
cludes one leader L1, one messenger M1 and two workers W1, W2. According
to OPERASCC the above system would be defined as follows.

OPERASCC : An Instance of a Formal Framework for MAS Modeling 449

The set O contains all the aforementioned transformation rules that model
the agents’ behavior as well as the reconfiguration rules (birth, death and bond-
making) regarding (i) the generation of a new worker when the control center on
earth decides it should join the mission, (ii) the destruction (i.e. removal from
the system) of any kind of agent in the case it must abort the mission, (iii) the
establishment of a communication channel between a leader and all members of
its team. More particularly O additionally contains the following rules.

The following birth rules create a new worker wi or messenger mi under the
command of a leader Li when the leader has received the corresponding messages
(objects earthSendsWorker and earthSendsMsg) from the control center on
earth.

newWorkerFromEarth :
(status : Processing earthSendsWorker : wi existingWorkers : Workers)Li

→ (status : Processing existingWorkers : Workers ∪ {wi})Li

(status : Idle myLeader : Li)Wi

newMessengerFromEarth :
(status : Processing earthSendsMsg : mi existingMsgs : Messengers)Li

→ (status : Processing existingMsgs : Messenger ∪ {mi})Li

(status : Idle myLeader : Li)Mi

Inputs, such as earthSendsMsg : mi, from the environment are perceived with
the use of communication rules of the form:

receiveInput : (ε ; earthSendsMsg : mi, enter)L

The death rule below removes agent instances that have aborted the mission
from the model (t ∈ S stands for any type of agent).

abortion : (status : aborting)t → †

Finally, the following bond-making rules ensure the creation of a communication
bond between a leader agent (ε stands for the empty multi-set, i.e. no object is
necessary) and any messenger or worker that belongs to this leader’s team.

workerBondMaking : (Li ε ; myLeader : Li W)

messengerBondMaking : (Li ε ; myLeader : Li M)

The set P contains all objects recognized by the Population P System.
Regarding the environment E, it should initially contain objects representing

the initial percepts for all agents.
Since in the assumed initial configuration we consider to have one group of

spacecrafts under the command of one leader, all agents should be in communi-
cation with all others and so:

R = {(L1, W1), (L1, W2), (W1, W2), (M1, L1), (M1, W1), (M1, W2)}

Finally, the set S that contains the agent types is: S = {L, W, M}.

450 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

5 Conclusions and Further Work

We presented OPERAS with which one can model multi-agent systems that
exhibit dynamic structure, emergent and self-organization behavior. The contri-
butions of OPERAS can be summarized in the following:

– A formal framework for MAS modeling.
– The behavior and the control of an agent are separate components which

imply distinct modeling mental activities.
– Flexibility on the choice of formal methods to utilize and option to combine

different formal methods.

It is because of this distinct separation between behavior and control that
OPERAS provides this flexibility of choosing different methods for modeling
these two aspects; while some methods are better at capturing the internal states,
knowledge and actions of an agent, others focusing on the dynamic aspect of a
MAS are more suitable for capturing the control mechanisms.

In this paper, we employed population P systems with active cells to de-
fine OPERASCC , an instance of the general framework. We presented the
OPERASCC model of a swarm-based system of a number of autonomous space-
crafts. It could easily be spotted that an OPERASCC model does resemble (as
a final outcome) a model which could be developed if one used population P
systems with active cells from scratch [25]. However, in the current context we
have the following advantages:

– PPS can be viewed as a special case for OPERAS.
– The distinction of modeling behavior and control as separate, offers the abil-

ity to deal with transformation/communication rules separately from cell
birth/division/death and bond making, with implications both at theoreti-
cal as well as practical level.

– Practically, during the modeling phase, one can find advantages and draw-
backs at any of the behavior or control component and switch to another
formal method for this component if this is desirable.

As far as the last point is concerned, we verified our initial findings [25] in
which it was stated that modeling the behavior of an agent with PPS rewrite
and communication rules may be rather cumbersome. Especially in this rather
complex case study, although the modeling of the control is absolutely straight-
forward, we had difficulties to establish the necessary peer to peer communication
between agents by employing just the communication rules. That gave us the
opportunity to consider alternatives. For example, we have experimented with
communicating X-machines which have a number of advantages in terms of mod-
eling the behavior of an agent. The resulting model, OPERASXC [23], seems
to ease the modeling process in complex MAS. It is worth noticing that none of
the two formal methods (X-machines and population P systems) by itself could
successfully (or at least intuitively) model a MAS [26,27]. This is true for other
formal methods too, which means the current framework gives the opportunity

OPERASCC : An Instance of a Formal Framework for MAS Modeling 451

to combine those methods that are best suited to either of the two modeling
tasks.

We would like to continue the investigation of how OPERAS could employ
other formal methods that might be suitable for this purpose. In the near future,
we will focus on theoretical aspects of the framework. Towards this direction, we
are also currently working on various types of transformations that could prove
its power for formal modeling as well as address legacy issues concerned with
correctness.

Finally, efforts will also be directed towards enhancing existing animation
tools on population P systems in order to come up with a new version of the
tool that will be able animate OPERASCC specified models. More particu-
larly, the PPS-System [28] is a tool that generates Prolog executable code from
population P systems models written in a particular notation. Future work will
involve extending the notation and the system in order to integrate the necessary
OPERAS features, allowing us to gain a deeper understanding of the modeling
issues involved with OPERASCC and helping us investigate the practicability
of our approach.

References

1. Gheorghe, M. (ed.): Molecular Computational Models: Unconventional Ap-
proaches. Idea Publishing Inc. (2005)

2. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
Intern. Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

3. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

4. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimisation by a colony
of co-operating agents. IEEE Trans. on Systems, Man and Cybernetics 26, 1–13
(1996)

5. Dorigo, M., Trianni, V., Sahin, E., Gross, R., Labella, T.H., Baldassarre, G., Nolfi,
S., Deneubourg, J.L., Mondada, F.: Evolving self-organizing behavior. Autonomous
Robots 17, 223–245 (2004)

6. White, T., Pagurek, B.: Towards multi-swarm problem solving in networks. In:
Proceedings of the 3rd Intern. Conference on Multi Agent Systems, p. 333 (1998)

7. Di Caro, G., Dorigo, M.: Mobile agents for adaptive routing. In: Proceedings of
the 31st Hawaii International Conference on Systems (1998)

8. Abraham, A., Grosan, C., Ramos, V. (eds.): Swarm Intelligence in Data Mining.
Studies in Computational Intelligence, vol. 34. Springer, Heidelberg (2006)

9. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The swarm simulation system:
a toolkit for building multi-agent simulations. Working paper 96-06-042, Santa Fe
Institute, Santa Fe (1996)

10. Bernandini, F., Gheorghe, M.: Population P Systems. Journal of Universal Com-
puter Science 10, 509–539 (2004)

11. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000), also circulated as a TUCS report since 1998

12. Banatre, J., Le Metayer, D.: The gamma model and its discipline of programming.
Science of Computer Programming 15, 55–77 (1990)

452 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

13. Berry, G., Boudol, G.: The chemical abstract machine. Journal of Theoretical Com-
puter Science 96, 217–248 (1992)

14. d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of
dMARS. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS,
vol. 1365, pp. 155–176. Springer, Heidelberg (1998)

15. Rosenschein, S.R., Kaebling, L.P.: A situated view of representation and control.
Artificial Intelligence 73, 149–173 (1995)

16. Brazier, F., Dunin-Keplicz, B., Jennings, N., Treur, J.: Formal specification of mul-
tiagent systems: a real-world case. In: ICMAS 1995. Proceedings of International
Conference on Multi-Agent Systems, pp. 25–32. MIT Press, Cambridge (1995)

17. Benerecetti, M., Giunchiglia, F., Serafini, L.: A model-checking algorithm for multi-
agent systems. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS
(LNAI), vol. 1555, pp. 163–176. Springer, Heidelberg (1999)

18. Fisher, M., Wooldridge, M.: On the formal specification and verification of multi-
agent systems. Intern. Journal of Cooperating Information Systems 6, 37–65 (1997)

19. Krishna, S.N., Păun, G.: P systems with mobile membranes. Natural Computing:
an international journal 4, 255–274 (2005)

20. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

21. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Information
and Computation 100, 1–40 (1992)

22. Rouf, C., Vanderbilt, A., Truszkowski, W., Rash, J., Hinchey, M.: Verification of
NASA emergent systems. In: ICECCS 2004. Proceedings of the 9th IEEE Interna-
tional Conference on Engineering Complex Computer Systems, pp. 231–238 (2004)

23. Stamatopoulou, I., Kefalas, P., Gheorghe, M.: OPERAS for space: Formal mod-
elling of autonomous spacecrafts. In: Papatheodorou, T., Christodoulakis, D.,
Karanikolas, N. (eds.) Current Trends in Informatics. PCI 2007. Proceedings of
the 11th Panhellenic Conference in Informatics, Patras, Greece, May 18-20, 2007,
vol. B, pp. 69–78 (2007)

24. Rouff, C., Vanderbilt, A., Hinchey, M., Truszkowski, W., Rash, J.: Properties of
a formal method for prediction of emergent behaviors in swarm-based systems.
In: SEFM 2004. Proceedings of the Second International Conference on Software
Engineering and Formal Methods, pp. 24–33 (2004)

25. Stamatopoulou, I., Gheorghe, M., Kefalas, P.: Modelling dynamic configuration of
biology-inspired multi-agent systems with Communicating X-machines and Popu-
lation P Systems. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 389–401. Springer, Heidelberg
(2005)

26. Kefalas, P., Stamatopoulou, I., Gheorghe, M.: A formal modelling framework
for developing multi-agent systems with dynamic structure and behaviour. In:
Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI),
vol. 3690, pp. 122–131. Springer, Heidelberg (2005)

27. Stamatopoulou, I., Kefalas, P., Gheorghe, M.: Modelling the dynamic structure of
biological state-based systems. BioSystems 87, 142–149 (2007)

28. Stamatopoulou, I., Kefalas, P., Eleftherakis, G., Gheorghe, M.: A modelling lan-
guage and tool for Population P Systems. In: Proceedings of the 10th Panhellenic
Conference in Informatics, November 11-13, 2005, Volos, Greece (2005)

Author Index

Alhazov, Artiom 97
Aman, Bogdan 113
Arroyo, Fernando 298

Barbuti, Roberto 54
Bernardinello, Luca 124
Bernardini, Francesco 138
Bianco, Luca 1
Bonzanni, Nicola 124
Bravo, Ginés 298
Busi, Nadia 160

Castellini, Alberto 1
Ceterchi, Rodica 172
Cienciala, Luděk 193
Ciencialová, Lucie 193
Ciobanu, Gabriel 113, 209
Corne, David Wolfe 21
Csuhaj-Varjú, Erzsébet 228

Delzanno, Giorgio 240
Dı́az-Pernil, Daniel 257
Dittrich, Peter 320

Fernández, Luis 298
Ferretti, Claudio 336
Freund, Rudolf 271
Frisco, Pierluigi 21, 285

Gheorghe, Marian 138, 438
Gioiosa, Gianpaolo 385
Gómez, Sandra 298
Gutiérrez, Abraham 298
Gutiérrez-Naranjo, Miguel A. 257

Hayat, Sikander 320
Hinze, Thomas 320

Kearney, David 385
Kefalas, Petros 438
Kelemenová, Alica 193

Lenser, Thorsten 320
Leporati, Alberto 32, 336
López, Damián 428
Lucanu, Dorel 209

Maggiolo–Schettini, Andrea 54
Maliţa, Mihaela 77
Mascheroni, Marco 124
Matsumaru, Naoki 320
Mauri, Giancarlo 336
Mazza, Tommaso 353
Milazzo, Paolo 54
Murphy, Niall 367

Nguyen, Van 385

Păun, Andrei 414
Pérez-Jiménez, Mario J. 172, 257
Pomello, Lucia 124

Riscos-Núñez, Agust́ın 257
Rodŕıguez-Patón, Alfonso 414
Rogozhin, Yurii 97
Romero-Campero, Francisco José 138

Sempere, José M. 428
Stamatopoulou, Ioanna 438
Ştefan, Gheorghe 77

Tejedor, Jorge A. 298
Tomescu, Alexandru Ioan 172
Troina, Angelo 54

Van Begin, Laurent 240
Vaszil, György 228
Verlan, Sergey 271

Walkinshaw, Neil 138
Woods, Damien 367

Zandron, Claudio 336

	Title Page
	Preface
	Table of Contents
	Psim: A Computational Platform for Metabolic P Systems
	Introduction
	MP Systems
	The Metabolic Algorithm: Hints
	Generalizing the Metabolic Algorithm

	Psim
	A Case Study

	Conclusion and Further Work

	Modeling the Dynamics of HIV Infection with Conformon-P Systems and Cellular Automata
	Introduction
	The Modeling Platforms
	Cellular Automata
	Conformon-P Systems

	The Process and the Models
	The CA Model
	The Grid of cP System Model

	Experiments and Results
	Final Remarks
	Rules, Links, and Probabilities

	(UREM) P Systems with a Quantum-Like Behavior: Background, Definition, and Computational Power
	The Quest for Quantum P Systems
	Quantum Computers
	Classical and Quantum-Like Register Machines
	Classical and Quantum-Like UREM P Systems
	Solving 3-SAT with QRMs and with Q-UREM P Systems
	The 3-SAT Problem
	Solving 3-SAT with QRMs
	Solving 3-SAT with Q-UREM P Systems

	Directions for Future Research

	The Calculus of Looping Sequences for Modeling Biological Membranes
	Introduction
	The Calculus of Looping Sequences (CLS)
	Formal Definition
	Modeling Guidelines
	Examples

	Two Extensions of CLS
	Stochastic CLS
	CLS with Links (LCLS)

	CLS and Membranes
	Definition of CLS+
	Translating CLS+ into CLS
	CLS, Brane Calculi and P Systems

	Conclusions

	Membrane Computing in Connex Environment
	Introduction
	Integral Parallel Architecture (IPA)
	Parallelism and Partial Recursiveness
	Functional Taxonomy of Parallel Computing
	IPA and Market Tendencies

	The Connex System
	Structural Description
	General Performances
	Specific Performances

	An IPA: The Connex Architecture
	Vector Section
	Stream Section
	Putting Together the Vector Section and the Stream Section

	How to Use Connex to Accelerate Membrane Computing
	Concluding Remarks
	APPENDIX: About VectorC

	Skin Output in P Systems with Minimal Symport/Antiport and Two Membranes
	Introduction
	Basic Notations and Definitions
	Counter Automata
	P Systems with Symport/Antiport Rules

	Main Results
	Conclusions

	On the Reachability Problem in P Systems with Mobile Membranes
	Introduction
	Mobile Membranes Systems
	Mobile Ambients
	Reachability Problem
	From Mobile Membranes to Mobile Ambients
	From Mobile Ambients to Petri Nets
	Deciding Reachability

	Conclusion

	Modeling Symport/Antiport P Systems with a Class of Hierarchical Petri Nets
	Introduction
	P Systems with Symport/Antiport Rules
	Formal Definition
	Example

	Hypernets
	Structure of Hypernets
	Behaviour of Hypernets
	Example

	Membrane Systems as Hypernets
	Example

	Conclusions

	A Hybrid Approach to Modeling Biological \Systems
	Introduction
	Modeling Paradigms
	P Systems
	pi-Calculus
	Petri Nets
	Daikon Tool

	Finding Functional Relationships in Raw (Wet Real) Data: Data Analysis Using Daikon
	PRISM Analysis of the System
	Petri Net Analysis of the System
	Conclusions
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3
	APPENDIX 4

	Causality in Membrane Systems
	Introduction
	Basic Definitions
	P Systems
	Maximal Parallelism Semantics for P Systems
	A Causal Semantics for P Systems
	An Informal Explanation
	The Formal Definition of Causal Semantics
	Properties of the Causal Semantics

	Conclusion

	Simulating the Bitonic Sort Using P Systems
	Introduction
	Preliminaries: The Bitonic Sort on the 2D-Mesh
	Model of Computation and Indexing Function
	The Bitonic Sorting Algorithm
	Applying the Bitonic Sorting Algorithm to the 2D-Mesh

	Modeling with Membranes
	A P System with Dynamic Communication of 2D-Mesh Type
	Bitonic Sorting in One Membrane

	Conclusions and Open Problems

	On the Number of Agents in P Colonies
	Introduction
	Definitions
	P Colonies
	Register Machines

	P Colonies with One Object Inside the Agent
	On the Computational Power of Restricted P Colonies Without Checking
	Conclusions

	Events, Causality, and Concurrency in Membrane Systems
	Introduction
	Event Structures
	Maximal Concurrent Transitions in an Event Structure
	Event Structure Associated to a Labeled Transition System

	What Is an Event for Membrane Systems?
	String Rewriting
	Multiset Rewriting
	Systems of Communicating Membranes

	Event Structure of a Membrane
	Event Structure for Communicating Membranes
	Conclusion

	P Systems with String Objects and with Communication by Request
	Introduction
	Preliminaries and Definitions
	The Universality of RPC Systems
	Closing Remarks

	On the Dynamics of PB Systems with Volatile Membranes
	Introduction
	Preliminaries
	PB Systems with Dissolution Rules
	Decidability of Reachability in PBD Systems

	PB Systems with Creation
	Decidability of Reachability in PBC Systems

	PB Systems with Dissolution and Creation
	PBDC Systems with Restricted Semantics

	Boundedness Problem for Extended PB Systems
	Conclusions and Related Work
	Petri (P/T) Nets and Counter Machines

	A Logarithmic Bound for Solving Subset Sum with P Systems
	Introduction
	Formal Framework
	Recognizing P Systems
	The P System Model
	The Class PMC$_{{\cal AM}^0(+d,+ne)}$

	Designing the Solution to Subset Sum
	Conclusions

	A Formal Framework for Static (Tissue) P Systems
	Introduction
	Preliminaries
	Networks of Cells
	Systems with a Static Structure
	Halting Conditions
	Computation, Goal and Result of a Computation
	Taxonomy of Networks of Cells and (Tissue) P Systems
	A Specific Example: P Systems with Symport/Antiport Rules
	A General Result

	Conclusions

	Conformon-P Systems with Negative Values
	Introduction
	Basic Definitions
	Program Machines
	Conformon-P System with Negative Values
	Some Modules for Conformon-P Systems
	Figures in This Paper

	Results
	Final Remarks

	Optimizing Evolution Rules Application and Communication Times in Membrane Systems Implementation
	Introduction
	Related Works
	Optimization of Active Rules Elimination Algorithm
	Active Rules Elimination Algorithm
	Definition of Competitiveness Between Rules
	The Algorithm Based on Rules Competitiveness

	Multisets and Rules Compression
	Compression Requirements
	Compression Schema

	Analysis of Results
	Impact Analysis for Evolution Rules Application Time
	Impact Analysis for Communication Time Among Membranes
	Global Impact Analysis
	Compression Schema Analysis

	Conclusions

	Hill Kinetics Meets P Systems: A Case Study on Gene Regulatory Networks as Computing Agents $in silico$ and $in vivo$
	Introduction
	Transforming Hill Kinetics to P Systems
	Hill Kinetics
	Discretization
	Formal Language and Multiset Prerequisites
	Transformation: Definition of the Corresponding P System
	System Classification, Properties and Universality

	RS Flip-Flop Validation $in vivo$
	Biological Principles and Prerequisites
	Experimental Setup and Implementation
	Results and Discussion

	Case Study: Computational Units and Circuits
	NAND Gate
	RS Flip-Flop

	Conclusions

	Solving Numerical NP-Complete Problems with Spiking Neural P Systems
	Introduction
	Solving Numerical NP--Complete Problems with Extended Spiking Neural P Systems
	Solving SUBSET SUM with Inputs Encoded in Binary
	A Uniform Family of SN P Systems for SUBSET SUM
	Conclusions

	Towards a Complete Covering of SBML Functionalities
	Introduction
	SBML \Leftrightarrow Cyto-Sim
	Speaking SBML
	Understanding SBML

	Binding to the SBML Schema
	Experimental Tests
	Conclusion

	Active Membrane Systems Without Charges and Using Only Symmetric Elementary Division Characterise P
	Introduction
	Preliminaries
	Recogniser Membrane Systems
	Complexity Classes
	(Semi-)Uniformity Via logspace Turing Machines

	An Upper Bound on PMCamOUR
	Structure of RAM Registers
	There Is a Computation Path That Uses Polynomially Many Equivalence Classes
	Polynomial Time RAM Algorithm

	Conclusion

	Balancing Performance, Flexibility, and Scalability in a Parallel Computing Platform for Membrane Computing Applications
	Introduction
	Background
	Membrane Computing and Its Applications
	Quality Attributes of Computing Platforms for Membrane Computing Applications
	Types of Computing Platforms
	Existing Parallel Computing Platforms for Membrane Computing Applications

	A Proposed Implementation Approach
	Key Features of the Implementation Approach
	Potential of the Implementation Approach

	Description of Reconfig-P
	Functional Requirements
	System Overview
	Overview of P Builder
	How P Builder Generates Abstract Hardware Representations for P Systems

	Evaluation of Reconfig-P
	Details of Experiments
	Results of Experiments
	Evaluation of the Performance of Reconfig-P
	Evaluation of the Scalability of Reconfig-P
	Evaluation of the Flexibility of Reconfig-P

	Conclusion

	On Flip-Flop Membrane Systems with Proteins
	Introduction
	The Types of Rules in the System
	Register Machines
	Previous Results
	New Results
	Final Remarks

	Characterizing Membrane Structures Through Multiset Tree Automata
	Introduction
	Notation and Definitions
	Multiset Tree Automata and Mirrored Trees
	k-Testable in the Strict Sense (k-TSS) Multiset Tree Languages
	Reversible Multiset Tree Automata
	From Transitions to Membrane Structures
	Conclusions and Future Work

	$OPERAS_CC$: An Instance of a Formal Framework for MAS Modeling Based on Population P Systems
	Introduction
	OPERAS: Formal Modelling of MAS
	OPERAS Definition
	OPERAS as an Open Framework

	$OPERAS_CC$
	Population P Systems with Active Cells
	Definition of $OPERAS_CC$

	$OPERAS_CC$ for a Swarm-Based System
	Autonomous Spacecrafts for Asteroid Exploration
	The $OPERAS_CC$ Approach to the ANTS Mission
	Formal Modeling of Control in $OPERAS_CC$

	Conclusions and Further Work

	Author Index

