
Development Via Information Self-structuring of
Sensorimotor Experience and Interaction

Chrystopher L. Nehaniv1, Naeem Assif Mirza1, and Lars Olsson2

1 Adaptive Systems Research Group, University of Hertfordshire, College Lane,
Hatfield, Hertfordshire AL10 9AB, U.K.

{C.L.Nehaniv, N.A.Mirza}@herts.ac.uk
2 Netemic Ltd., Prospect Studios, 67 Barnes High Street, London SW13 9LE, U.K.

lo@abstractvoid.se

Abstract. We describe how current work in Artificial Intelligence is us-
ing rigorous tools from information theory, namely information distance
and experience distance to organize the self-structuring of sensorimotor
perception, motor control, and experiential episodes with extended tem-
poral horizon. Experience is operationalized from an embodied agent’s
own perspective as the flow of values taken by its sensors and effectors
(and possibly other internal variables) over a temporal window. Such
methods allow an embodied agent to acquire the sensorimotor fields
and control structure of its own body, and are being applied to pursue
autonomous scaffolded proximal development in the zone between the
familiar experience and the unknown.

1 Introduction: Information Self-structuring in Ontogeny

Modern Artificial Intelligence (AI) research has increasingly focused on adaptive,
embodied agents with rich sensing capabilities situated in complex environments,
that develop in their capabilities over the course of their “lifetimes” (ontogeny)
[1, 2]. In our and related research particular attention is paid to the process of
autonomous self-structuring in response to a history of self-motivated interaction
with a rich environment. The aim is to investigate in artificial agents mechanisms
of motivation, learning, development, and temporal awareness with inspiration
drawn from biology, psychology, philosophy, engineering, and mathematics.

In this article we review a class of methods for discovering relationships be-
tween any and all sensors and actuators that an agent has access to. The methods
use the measure of information distance based on Shannon information theory [3]
and capture the degree to which the time-varying nature of a variable may be pre-
dictable from another. These measures have been used in robots to autonomously
discover sensorimotor maps from unknown sensors grounded in interaction with
the environment and to discover fundamental control laws for unknown actu-
ators [4, 5] thus gaining mastery over one’s own embodiment (which may well
be changing). Related classical geometric and statistical methods have also been
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used in simulation to discover sensorimotor relationships [6] and the related
structure of space via sensing and acting [7]. Further, the information-theoretic
and related methods have been used to characterize behaviour of robots from
the robot’s perspective [8, 9] and also to measure, geometrically, how one senso-
rimotor experience differs from another [10]. The self-structuring of the sensory
and motor competencies is enabled by the tight coupling of the agent with the
environment [11, 2, 5] and the agent can directly base action on its own history
of interaction with the environment (including the social environment) to make
this possible [12].

2 Information Distance Measures

2.1 Sensors as Information Sources

An agent situated and acting in an environment will have access to many ex-
ternal and internal variables any of which can be modeled as random variables
changing over time. These can be thought of as generalized “sensory” inputs,
from sources having any character at all (whether sensory, motor, or internal),
such as, e.g., registration on sensory surfaces (activations of retinal neurons in
vision or cochlear hairs in hearing, readings coming from spatially distributed
tactile sensors such as skin and whiskers, etc.), proprioception, motor values sent
to effectors, physiological variables, other internal states, etc. Consider one such
random variable X changing with time, taking value x(t) ∈ X , where X is the
set of its possible values. Time is taken to be discrete (i.e. t will denote a natural
number) and X takes values in a finite set or “alphabet” X = {x1, . . . , xm} of
possible values1.

2.2 Information Distance

For any pair of jointly distributed random variables (“sensors”) X and Y the
conditional entropy H(X|Y) of X given Y is the amount of uncertainty (in bits)
that remains about the value X given that the value of Y is known, and is given
by

H(X|Y) = −
∑

x∈X

∑

y∈Y

p(x, y) log2
p(x, y)
p(y)

,

where p(x, y) is the joint distribution of X and Y.2

The information distance between X and Y is then defined as

d(X , Y) = H(X|Y) + H(Y|X ).

1 The approach generalizes to continuous time and value sets with appropriate
changes.

2 The methods require the assumption of approximate local stationarity of the joint
distribution of random variables representing the sensorimotor variables over a tem-
poral window and that this distribution can be estimated closely enough by sampling
the sensorimotor variables.
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Crutchfield [13] shows that this satisfies the mathematical axioms of equivalence,
symmetry and the triangle inequality and so is a metric. (See the Appendix for
a visual proof of this fact.) Thus d defines a geometric structure on any space of
jointly distributed information sources, such as the sensorimotor variables of an
embodied agent.

The metric space geometric structure is advantageous as it potentially al-
lows one to exploit the highly developed advanced techniques of mathematical
analysis and geometry in the control of behaviour.

2.3 Experience Distance

Given the above definitions we can operationalize an agent’s experience from
time t over a temporal horizon of h time units as E(t, h) = (X 1

t,h, . . . , X N
t,h)

where X 1, . . . , X N is the set of all sensorimotor (or other) variables available to
the agent and each X i

t,h is the random variable estimated from the values of X i

over a window of length h beginning at time t (1 ≤ i ≤ N).
We can then define a metric, the experience metric D, on experiences of tem-

poral horizon h as

D(E, E′) =
N∑

k=1

d(X k
t,h, X k

t′,h),

or, alternatively, the cross-modal experience metric D′, as

D′(E, E′) =
N∑

i=1

N∑

j=1

d(X i
t,h, X j

t′,h),

where E = E(t, h) and E′ = E(t′, h) are experiences of an agent at time t and
t′ over horizon h and d is the information distance. That D (and similarly D′)
is a metric follows from the fact that the metric axioms hold component-wise,
since d is a metric.

As experiences are collected, they can be placed in a metric space of experience
using either of these experience metrics. Experiences generated from similar
behaviour as judged from the human observer’s perspective generally turn out
to be nearby from the robot’s perspective in terms of the experience metric in
such a space [14].

This operational notion of experience facilitates the application of information-
theoretic methods to sensorimotor variables in a way that is directly related to
embodiment. Such an agent-centric approach already brings these rigorous meth-
ods closer to a type of Shannon information that is meaningful for perception and
action, however it is possible to go much further and develop a rigorous notion
of relevant information specific to particular organisms and agents, by relating
action, information and utility – see [15].
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3 Development of Artificial Cortex: Using Information
Theory as a Means for Self-organizing Sensorimotor
Structures Grounded in Experience

How can raw, uninterpreted information from unknown sensors come to
be used by a developing embodied agent with no prior knowledge of its
motor capabilities?

In nature, cognitive structures appear to be organized in the course of evolu-
tion and also in the course of development so as to reflect information-theoretic
relations arising in the interaction of sensors, actuators, and the environment
(including the social environment). That wiring economy for intracortical con-
nectivity of functionally related neural processing structures yields evolutionary
fitness has been proposed as a general principle giving rise to topographic struc-
ture of cortical maps (see review in [16]) and permitting “extraordinary speed
in representing ecologically significant information” [17].

We have applied the information distance metric to develop and reconstruct
“retinotopic” and cortex-like sensorimotor maps for robots as they engage in
interaction with real-world environments (see Figure 1, and [4, 5] for details).
Information distance (rather than mutual information or other measures such as
Hamming distance) appears to lead to the best structured cortex-like maps of
sensorimotor variables, especially for cross-modal integration [18]. This power
might be due to information distance’s metric nature, which allows natural
geometrization of information sources (which could possibly also give raise to
wiring economy), coupled with the capacity of information distance to detect re-
lations between information sources that are informationally, but not necessarily
linearly (nor even continuously), correlated.

Even in brain areas much older than the cortex, such as the superior collicu-
lus in mammals (the area homologous to the optic tectum in other vertebrates),
cross-modal alignment of visual, auditory, and tactile and somatosensory maps
is evident [19]. For instance, in the ferret or barn owl such visual and auditory
maps are aligned in this region in proximity to neural pre-motor control cir-
cuitry allowing the animal to combine sensory modalities in guiding action, e.g.
combining or using either of visual and auditory information in neural maps
to guide head movements and eye saccades in orienting toward prey, or, e.g. in
reaching in primates; moreover maps are maintained and aligned over the course
of development, which may be activity and sensory stimulation dependent – see
[20, 21].

In artificial embodied agents, such sensory fields that are constructed on the
basis of information distance (see preceding section) methods [4] can then be used
to autonomously discover sensorimotor laws (Figure 2), e.g. optical or tactile flow
and visually guided movement [5]. The particular embodiment and environment
experienced and the changes in it can shape the sensorimotor maps generated
in this way, as well as drive their dynamic unfolding and adaptation in ontogeny
[4, 5].
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Fig. 1. Sony Aibo in striped environment develops impoverished distinctions between
sensors, but further development may allow distinctions to unfold. Top: Robot moving
in the striped environment. In the remaining subfigures, points represent individual
information sources (sensors or actuators of the robot) plotted using the information
distance (and collapsed into two dimensions). Middle left: Sensory organization of the
vision sensors (pixels in the visual field) developed in impoverished environment reflects
only similar sensory experience of visual receptors from the same columns. Middle right:
Sensory organization of vision sensors after moving to richer visual environment reflects
their topographical layout. Bottom: Cortex-like “Aibunculus” sensorimotor organiza-
tion – analogous to the somatosensory “homuncular” cortical maps – recovered based
on self-structuring during agent-environment interaction using information distance,
discovering visual field (numbered sensors, clustered “retinotopically” and arrayed to
the right) and left-right bilateral body symmetry along an anterior-posterior axis.
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Fig. 2. Sensory fields (in this case a two-dimensional visual field), sensory flows on the
fields (the regularities in value shifts due to actions - in this case head movements),
and sensorimotor laws (describing the flows resulting from actions) are autonomously
derived from experience based on bottom-up information self-structuring and used to
control visually guided movement [5]. Figure shows discovered sensorimotor regularities
in sensory flows induced by motions of the Aibo’s head in various directions, where 0
degrees is up, 180 degrees is down, 270 degrees is right, and 90 degrees is left from the
robot perspective.

Alignment of multimodal information sources is demonstrated using the Aibo
robot for red, green, blue color channels in vision via entropy maximization
and information distance self-structuring, and this combination of information
distance and entropy maximization is shown by far to out-perform other met-
rics and measures for sensory map construction (see [18] for details). Com-
bining multimodal sensory integration with pre-motor control based on
alignment of sensory and body maps is a next natural target for such
methods.



Development Via Information Self-structuring 93

4 Temporally Extended Experience and Interaction
Histories

How can embodied agents develop in response to extended experiences at
various scales in time?

Generally, in AI so far the temporal horizon [22] has either been limited to the
immediate time-scale (traditional behaviour-based reactivity), short-term mod-
ulation (affective computing and robotics), or, if longer term, then has gener-
ally remained ungrounded (case-based reasoning or symbolic planning) and not
susceptible to developmental change in ontogeny. Autobiographic agents dynam-
ically construct and reconstruct their experiences in a process of remembering
while actively engaged in interaction with the rest of the world [23].

Using extensions of the information metric to experiential episodes of vari-
ous temporal horizons (see section 2.3), it is possible to impose geometric order
on a robot’s temporally extended sensorimotor experiences, at various temporal
scales [24]. The structure of these dynamic spaces of experiences provides an
agent-centric enactive representation of interaction histories with the environ-
ment (including the social environment), grounded in the temporally extended
sensorimotor experience and used in generating action [8, 10, 25].

Potentially an agent can act using this dynamically growing, developing space
of experiences to return to familiar experiences, predict the effect of continuing
on a current behavioural trajectory, and explore at the boundary of what is
already mastered (cf. Vygotsky’s notion of “zone of proximal development”). By
using temporally extended experiences to guide action and interaction, we will
have the beginnings of post-reactive robotics and grounded episodic intelligence
in artificially constructed enactive agents that grow, develop, and adapt their
cognitive structures with a broader temporal horizon.

This possibility is explored in our experiments where a robot uses actions de-
termined by a history of interaction to develop the capability to play the early
learning game “peekaboo” of iteratively seeing/revealing and not-seeing/hiding
the face with an interaction partner [10, 12]. The architecture uses experience
distance (based on information distance) to compare experiences and to place
them in a metric space. Actions are chosen based on proximity in this space and
motivational value of experience. (See Figure 3, and [12] for details.) Peekaboo
not only has inherent simple narrative temporal and rule structure [26], but is
also believed to be important in providing scaffolding to young infants in devel-
oping social expectations and primary intersubjectivity [27]. By forming expec-
tations and selecting action based on previous temporally extended experiences,
the agent is able to develop the capacity to engage in practice of temporally com-
plex skills such as social play, and to re-engage in them when similar experience
arises again. It should also be possible to explore at the geometric boundary of
already mastered skills and familiar behaviour in the experience metric space,
which grows and changes dynamically with the lifelong history of interaction.
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Fig. 3. Top left: Aibo hides face in the autonomous development of the ability to engage
in a ‘peekaboo’ turn-taking game. Top right: Aibo engaging in interaction games with
human partner based on interaction history and informationally structured space of
experiences. Center: Dynamics of internal variables and actions selected as face is
seen or not, with iterations by black/white pattern at bottom of panel indicative of
‘peekaboo’-style interaction. Bottom: Interaction games with another platform, the
KASPAR child-sized humanoid robot built at University of Hertfordshire.



Development Via Information Self-structuring 95

It may be that using the information and experience distance metrics to orga-
nize sensorimotor and episodic experience might capture relations that, in nat-
ural organisms, are reflected in the topologies arising from such self-organizing
principles as spike time dependent plasticity (cf. [28, 29]) that structure neural
connections in development and spatiotemporal sensorimotor pattern learning.

5 Summary and Outlook

Information methods can guide the autonomous organization and structuring
of sensorimotor data, lead to the autonomous detection of sensorimotor laws,
and underpin the acquisition of sensorimotor control starting with raw uninter-
preted sensory data and unknown actuators. Similarly, by extending the methods
to encompass sensorimotor flow during particular temporally extended intervals,
episodic experience can be operationalized for an embodied system. The geom-
etry of experiences is organized by their information-theoretic structure, and
is proposed as a basis for achieving development in robots that grow up, re-
engaging in familiar activity, exploring at the boundary of what is already devel-
oped, controllable, and mastered. This includes not only sensorimotor experience
of static environments, but also interaction histories in dynamic environments
involving social interaction or changing embodiment.
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Appendix. Short Proof that Information Distance Satisfies
the Axioms for a Metric on Information Sources

We can give a short proof that d is really a metric: Specifically, d is a metric since
it satisfies the following axioms for every three (jointly distributed) information
sources X , Y and Z:

1. d(X , Y) = 0 if and only if X and Y are equivalent (equivalence).
2. d(X , Y) = d(Y, X ) (symmetry).
3. d(X , Y) + d(Y, Z) ≥ d(X , Z) (triangle inequality).

Proof: In the first condition, “equivalent” means “informationally equivalent”,
i.e. that knowing the value of X completely determines the value of Y, and vice
versa. This can only be the case exactly when both of the conditional entropies
are zero. The second condition is trivial from the symmetry of the expression
H(X|Y) + H(Y|X ). To see that the triangle inequality holds, draw a “Venn
diagram” visualization for the entropies of the three random variables X , Y,
Z (see Fig. 4). Now the quantity d(X , Y) corresponds to the “double crescent”
region (i.e. excluding the overlap) for X and Y representing the sum of their
(non-negative) conditional entropies in bits. Now it is obvious that the double
crescent for X and Y together with the double crescent for Y and Z cover the



98 C.L. Nehaniv, N.A. Mirza, and L. Olsson

one for the pair X and Z, and, since for all the variously shaded regions the
corresponding entropies are non-negative, it follows from the covering that the
inequality holds. ��

Fig. 4. Visual Proof of the Triangle Inequality for Information Distance.
Visualization of the entropies H of three information sources modeled as random vari-
ables X , Y and Z, with the variously shaded double-crescent regions showing, for each
pair of variables, the sum of these conditional entropies, which gives their information
distance. Right: Three information distances are visualized as double-crescent regions
in the key. Here the left crescent for the information distance d(X , Y) from X to Y
represents the conditional entropy H(X|Y) and the right crescent represents the con-
ditional entropy H(Y|X ); similarly, the other double-crescent regions corresponding to
d(Y, Z) and d(X , Z) are shown. Left: Venn diagram visualization for the entropies of
the three information sources. The triangle inequality holds since the double-crescent
region for d(X ,Z) is completely covered by those for d(X , Y) and d(Y, Z).
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