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Abstract. Embodied intelligent systems are naturally subject to physical 
constraints, such as forces and torques (due to gravity and friction), energy 
requirements for propulsion, and eventual damage and degeneration. But 
embodiment implies far more than just a set of limiting physical constraints; it 
directly supports the selection and processing of information. Here, we focus on 
an emerging link between information and embodiment, that is, on how 
embodiment actively supports and promotes intelligent information processing 
by exploiting the dynamics of the interaction between an embodied system and 
its environment. In this light the claim that “intelligence requires a body” means 
that embodied systems actively induce information structure in sensory inputs, 
hence greatly simplifying the major challenge posed by the need to process 
huge amounts of information in real time. The structure thus induced crucially 
depends on the embodied system’s morphology and materials. From this 
perspective, behavior informs and shapes cognition as it is the outcome of the 
dynamic interplay of physical and information theoretic processes, and not the 
end result of a control process that can be understood at any single level of 
analysis. This chapter reviews the recent literature on embodiment, elaborates 
some of the underlying principles, and shows how robotic systems can be 
employed to characterize and quantify the notion of information structure. 
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1   Introduction 

The stance taken here strongly differs from the still widely held traditional one of 
“cognition as computation” where intelligence is considered to be algorithmic and the 
result of abstract symbol manipulation. While this computational perspective has led 
to many important theoretical insights and applications, most of the emphasis has 
been on exclusively internal mechanisms of information processing. Contrasting the 
computational perspective, there has been a considerable amount of research 
demonstrating that cognition is embodied and best understood as a situated activity. 
                                                           
* Current affiliation: JST ERATO, The University of Tokyo, Tokyo, Japan. 
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The extensive conceptual and empirical groundwork for embodied cognition laid 
within psychology, cognitive science, philosophy artificial intelligence, and robotics 
has been reviewed elsewhere [1–16]. Building on this body of empirical and 
theoretical work, here we address a specific set of issues surrounding the potential 
link between embodiment and information processing.  

Our main thesis is that the interaction between physical and information processes 
is central for the emergence and development of intelligence. When talking about 
agents in the real world, it is important to realize that information is not just “out 
there”, an infinite tape ready to be loaded and processed by the cognitive machinery 
of the brain. Instead, through physical (embodied) interactions with the environment, 
information structure (e.g., spatio-temporal correlations in a visual input stream, 
redundancies between different perceptual modalities, or regularities in sensory 
patterns that are invariant with respect to changes in illumination, size, or orientation) 
is actively induced in sensory inputs. In the context of this review, we will use the 
term information structure to refer to the structure in the sensory data typically 
induced by and meaningful with respect to some purposive or intended action such as 
grasping or walking. As suggested here, the presence of such structure might be 
essential for the acquisition of a broad range of cognitive and motor abilities such as 
multimodal sensory integration, cross-modal learning, perceptual categorization, 
reaching, object manipulation, language, and locomotion.  

We first discuss a case study, categorization, illustrating the main concepts, and we 
formulate two pertinent principles. Subsequently, we expand on the notion of 
information structure and information self-structuring, and show how quantitative 
measures can be used to provide corroboration and theoretical groundwork. We will 
then briefly discuss the role of these ideas in learning and development and look at 
how dynamics can be exploited to structure sensory stimulation. Finally, we discuss 
the implications of the ideas developed in this chapter for theories of cognition and 
cognitive development.  

2   Categorization in the Real World 

For autonomous embodied agents acting in the real world (animals, humans, robots), 
perceptual categorization – the ability to make distinctions – is a hard problem. First, 
based on the stimulation impinging on its sensor arrays (sensation) the agent has to 
rapidly determine and attend to what needs to be categorized. Second, the appearance 
and properties of objects or events in the environment being classified vary 
continuously, e.g., owing to occlusions, and changes of distances and orientations 
with respect to the agent. And third, the environmental conditions (e.g., illumination, 
viewpoint, and background noise) fluctuate considerably. There is much relevant 
work in computer vision that has been devoted to extracting scale- and translation-
invariant low-level visual features and high-level multidimensional representations for 
the purpose of robust perceptual categorization [17–19]. Following this approach, 
however, categorization often turns out to be a very difficult if not an impossible 
computational feat, especially when adequate information is lacking. A solution that 
can only be pursued by embodied agents, but is not available when using a purely 
computational (i.e., disembodied) approach, is that through their interaction with the 
environment, agents generate the sensory stimulation required to perform the proper 
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categorization and thus drastically simplify the problem of mapping sensory 
stimulation onto perceptual categories. The most typical and effective way is through 
a process of sensory-motor coordination.  

Because of its almost universal presence in behaving organisms, sensory-motor 
coordination has been widely studied in psychology, neuroscience, and robotics  
[20–31]. Studies indicate how sensory-motor coordination, for instance, simplifies 
category formation (for a review, see [30]), influences visual experience [25], and 
determines concept acquisition [32]. One demonstration of the idea of exploiting 
coordinated interaction with the environment is a study by Pfeifer and Scheier [23] in 
which it is shown that mobile robots can reliably categorize big and small wooden 
cylinders only if their behavior is sensory-motor coordinated. The artificial evolution 
experiments by Nolfi [26] and Beer [27] illustrate a similar point: the fittest agents, i.e., 
those that could most reliably find the category to which different kind of objects 
belonged, were those engaging in sensory-motor coordinated behavior. Intuitively, in 
these examples, the interaction with the environment (a physical process) creates 
additional (that is, previously absent) sensory stimulation which is also highly structured 
thus facilitating subsequent information processing. Computational economy and 
temporal efficiency are purchased at the cost of behavioral interaction, so to speak.  

3   Information Self-structuring 

The idea that the synergy between the world and the observer’s actions plays a 
primary role for the emergence and development of cognition is much in tune with 
previous work on direct and active perception [33–35], animate, interactive, and 
enactive vision [36–38]. From an information theoretical point of view, embodied 
agents generate information structure in their sensory stimulation as they – actively – 
interact with the environment. It is important to note that in this process, the specific 
morphology (type and placement of the sensors and actuators) and the materials used 
unavoidably determine the resulting information structure. Because of the high 
density of touch sensors on the fingertips and because of the shape of the hand, for 
instance, grasping automatically leads to rich, structured tactile stimulation. The 
coordinated sensory-motor action of grasping induces stable patterns of stimulation 
characterized by correlations between the activities of receptor neurons within a 
sensor modality, as well as correlations between receptor neurons in different 
modalities (vision, touch, audition, and proprioception). Such correlations or 
statistical dependencies (which are instances of information structure) create 
redundancy across sensory channels, which may help reducing the effective 
dimensionality of the input, and which in turn – given the typically staggering number 
of possible configurations that the input system can assume – significantly simplify 
perception. We call this idea the “principle of information self-structuring” 
[28,29,39]. 

Theoretical studies and robot models provide quantitative evidence for the notion 
that self-generated motor activity can create information structure in sensory-motor 
data [23,24,26,28,29,39,40]. For instance, in [28] it is shown how a simple robot 
capable of saliency-based attentional behavior – an instance of an active vision system 
– self-structures the information present in its sensory and motor channels (Fig. 1). 
The results exposed in the article also demonstrate that sensory-motor coordination 
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leads to a better embedding of the visual input into a low-dimensional space, as 
compared to un-coordinated behavior. Traditionally, such dimensionality reduction is 
seen as the result of internal processing of a neural architecture, for example through 
mechanisms in early visual processing that lead to efficient low-dimensional (sparse) 
encoding by exploiting input redundancies and regularities [41–43]. We suggest that 
the generation of structured information through embodied interaction provides an 
additional mechanism contributing to efficient neural coding. In this context we also 
point out a distinct advantage of using robotic devices rather than working with 
humans or animals. Robots allow for comprehensive recording and analysis of 
complete histories of sensory stimulation and motor activity, and enable us to conduct 
precisely controlled experiments while introducing systematic changes in body 
morphology, materials, and control architectures [44,45].  

The theoretical concepts outlined in this section receive support from experiments 
with human subjects showing that most of our sensory experiences involve active 
(i.e., sensory-motor) exploration of the world (e.g., through manipulation or visual 
inspection) [25,37]. Such exploration promotes not only object recognition [46–48], 
but also, for instance, the learning of the three-dimensional structure of objects [49], 
and depth perception [50]. 

 

Fig. 1. Information structure in the visual field as a function of embodiment. Images show 
sample video frames obtained from a disrupted (a; “rnd”, “low embodiment” – no sensory-
motor coupling) and normally tracking (b; “fov”, “high embodiment” – high sensory-motor 
coupling) and active vision system. Plots at the bottom show spatial maps of entropy and 
mutual information, expressed as differences relative to the background. There is a significant 
decrease in entropy (c) and an increase in mutual information (d) in the center of the visual 
field for the “fov” condition, compared to little change in the “rnd” condition. (Data replotted 
from [28]). 
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4   Learning and Development 

There is an interesting implication of information self-structuring for learning. 
Information structure does not exist before the interaction occurs, but emerges only 
while the interaction is taking place. However, once it has been induced, learning can 
pick up on it such that next time around, the responsible sensory-motor information 
structure is more easily reactivated. It follows that embodied interaction lies at the 
root of a powerful learning mechanism as it enables the creation of time-locked 
correlations and the discovery of higher-order regularities that transcend the 
individual sensory modalities.  

These ideas also extend to development. It is generally recognized that structured 
information and statistical regularities are crucial for perception, action, and cognition 
– and their development [4,32,41,51,52]. At a very young age, babies frequently use 
several sensory modalities for the purpose of categorization: they look at objects, 
grasp them, stick them into their mouths, throw them on the floor, and so on. The 
resulting intra- and intermodal sensory stimulation appears to be essential for concept 
formation [4,32,53,54]. As they grow older, infants can perform categorization based 
on the visual modality alone which implies that they must have learned something 
about how to predict sensory stimulation in one modality using the information 
available through another modality, for instance, the haptic from the visual one. By 
virtue of its continuous influence on the development of specialized neurons and their 
connections that incorporate consistent statistical patterns in their inputs, information 
structure plays a critical role in development. It is easier for neural circuits to exploit 
and learn sensory-motor patterns containing regularities and recurrent statistical 
features.  

5   On Morphology, Dynamics, and Control 

We have argued that coordinated sensory-motor interaction can impose consistent and 
invariant (that is, learnable) structure on sensory stimulation. It is important to realize 
that such information structure can also result from the dynamics of the interaction of 
a given morphology with the surrounding environment. Several studies with robots, 
for instance, indicate that computational processes involved in control can be partially 
subsumed (or taken over) by the morphological properties of the agent [55–59]. A 
paradigmatic example is provided by passive dynamic walkers which are robots – or 
rather mechanical structures without microprocessors or motors – that walk down a 
slope without control and actuation [56]. The walker’s morphology (center of mass, 
length of the limbs, and the shape of the feet) and its materials are carefully designed 
so as to exploit the physical constraints present in its ecological niche (friction, 
gravity, inclination of the slope) for locomotion. To get the robot to learn to walk on 
level surfaces, one can use the mechanical design obtained during passive dynamic 
walking and endow it with actuators (e.g., located in the ankles or hips) [60]. The 
natural dynamics of the (body-environment) system provides the target for learning 
the control policy for the actuators by stabilizing the limit cycle trajectory that the 
robot follows – the dynamics structures the output of the angle sensors located in the 
joints, so to speak – and the robot learns to walk adaptively on flat ground within a 
relatively short period of time.  
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It is interesting to observe that as a consequence of the different data distributions 
resulting from different sensory morphologies a dependency exists between 
morphology, dynamics, and learning speed [60–62]. For example, by exploiting the 
non-homogenous arrangement of facets in the insect eye (denser in the front than on 
the side), the phenomenon of motion parallax can be “compensated away” and the 
adaptability of neural controller can be greatly improved [62]. We infer that the 
design of controller and morphology are, in a sense, inseparable, since the structure of 
both impacts information processing. However, while some progress has been made 
to optimize the design of robot controllers, robot morphology still largely remains a 
matter of heuristics. Future progress in the design of intelligent robots will require 
analytical tools and methodologies to exploit the interaction between morphology and 
computation [59]. 

The specific morphology of the body and the interaction of body and environment 
dynamics also shape the repertoire of preferred movements: a loosely hanging 
bouncing arm moves in a complex trajectory, but its control is extremely simple (the 
knowledge of how to move the limb seems to reside in the limb itself), whereas 
moving the hand in a straight path – a seemingly simple trajectory – requires a lot of 
control. It follows that part of the “processing” is done by the dynamics of the agent-
environment interaction, and only sparse neural control needs to be exerted when the 
self-regulating and stabilizing properties of the natural dynamics can be exploited (see 
Fig. 2). The idea that brain, morphology, materials, and environment share 
responsibility in generating information structure has been called the “principle of 
ecological balance” [57] because there is a “balance” or task distribution between the 
different aspects of an embodied agent. 

 

Fig. 2. Humanoid exploiting natural dynamics of body-environment interaction. Note that the 
robot is underactuated with respect to the ground which makes the equations of motion 
intractable analytically. By applying sparse but well-timed control actions the system transits 
from a lying (t=0) to a squatting position (t=4.30). 
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6   On the Interaction of Physical and Information Processes 

The importance of the interaction between physical and information processes can 
hardly be over-estimated. The complexity of perceptual categorization in the real 
world, for instance, cannot be managed by computational means only. We have 
therefore stressed the significance of sensory-motor coordination. The principle of 
information self-structuring illustrates that physical interaction with the real world, in 
particular sensory-motor coordinated interaction, induces structured sensory 
stimulation, which, given the proper morphology, substantially facilitates neural 
processing, and hence sets the foundations for learning and development of perception 
and cognition in general.  

We can take the idea of interaction of physical and information processes a step 
further by looking at the dynamics of embodied systems. We mentioned that because 
of the constraints provided by their embodiment, the movements of embodied systems 
follow certain preferred trajectories. It turns out that in biological agents such 
dynamics typically leads to rich and structured sensory stimulation. For example, as 
grasping is much easier than bending the fingers of the hand backwards, grasping is 
more likely to occur, and owing to the morphology (e.g., the high density of touch 
sensors on the fingertips), the intended sensory stimulation is induced. The natural 
movements of the arm and hand are – as a result of their intrinsic dynamics – directed 
towards the front center of the body. This in turn implies that normally a grasped 
object is moved towards the center of the visual field thereby inducing correlations in 
the visual and haptic channels which, as we pointed out earlier, simplify learning. So 
we see that an interesting relationship exists between morphology, intrinsic body 
dynamics, generation of information structure, and learning.  

The idea of action and cognition constrained by embodiment can be applied within 
a developmental framework. For instance, it is possible to explain the infant’s 
immaturity and initial limitations in morphology (e.g., wide spacing of photoreceptors 
in the retina), as unique adaptations to the environmental constraints of the ecological 
niche [63]. The specific effect of this arrangement is to filter out high spatial 
frequency information, and to make close objects most salient to the infant and hence 
reduce the complexity of the required information processing. Such complexity 
reduction may, for instance, facilitate learning about size constancy [64]. That is, the 
developmental immaturity of sensory, motor, and neural systems which at first sight 
appears to be an inadequacy, is in fact of advantage, because it effectively decreases 
the “information overload” that otherwise would most certainly overwhelm the infant 
[53,65]. A similar phenomenon occurs at the level of the motor system where 
musculo-skeletal constraints limit the range of executable movements and hence 
implicitly reduce the number of control variables. The neural system exploits such 
constraints and control is simplified by combining a rather small set of primitives  
(e.g., synergies [66] or force fields [67]), in different proportions rather than 
individually controlling each muscle. 

Here, we have outlined a view of sensory-motor coordination and natural dynamics 
as crucial causal elements for neural information processing because they generate 
information structure. Our argument has revolved mainly around brain areas directly 
connected to sensory and motor systems. It is likely, however, that embodied systems 
operating in a highly coordinated manner generate information structure and statistical 
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regularities at all hierarchical levels within their neural architectures, including effects 
on neural activity patterns far removed from the sensory periphery. This hypothesis 
leads to several predictions, testable in animal or robot experiments.  For example, 
activations or statistical relationships between neurons in cortical areas engaged in 
sensorimotor processing should exhibit specific changes across different states of 
sensorimotor coordination or coupling. Increased structuring of information through 
embodiment would be associated with increased multimodal synchronization and 
binding, or more efficient neural coding. 

7   Conclusion 

The conceptual view of perception as an active process has gained much support in 
recent years (e.g., [25–29,38,57]). The work reviewed in this chapter provides 
additional evidence for this view and proposes a new link between embodiment and 
information. Perception cannot be treated as a purely computational problem that 
unfolds entirely within a given information processing architecture. Instead, 
perception is naturally embedded within a physically embodied system, interacting 
with the real world. Thus, the interplay between physical and information processes 
gives rise to perception. We identified specific contributions of embodiment to 
perceptual processing through the active generation of structure in sensory 
stimulation, which may pave the way towards a formal and quantitative analysis. The 
idea of inducing information structure through physical interaction with the real world 
has important consequences for understanding and building intelligent systems, by 
highlighting the fundamental importance of morphology, materials, and dynamics. 
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