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Abstract. Embodied artificial intelligence is based on the notion that cognition 
and action emerge from interactions between brain, body and environment. This 
chapter sketches a set of foundational principles that might be useful for 
understanding the emergence (“discovery”) of intelligence in biological and 
artificial embodied systems. Special emphasis is placed on information as a 
crucial resource for organisms and on information theory as a promising 
descriptive and predictive framework linking morphology, perception, action 
and neural control.  

1   Introduction 

Artificial Intelligence (AI) strives to understand what “thinking” is by building 
intelligent entities capable of perceiving, understanding, and manipulating the world 
surrounding them. The choice of the physical and computational substrates necessary 
to realize such entities remains a matter of debate. In the early years of electronic 
computation, one had several different competing approaches to implement processes 
of thought electronically: cybernetics, systems theory, neural networks, analog 
machines, and the von Neumann architecture. The classical framework of AI 
eventually was built on top of the model proposed by von Neumann which emerged 
as winner. With the success of the von Neumann concept, the algorithmic view of AI 
prevailed. Intelligence became synonymous with rule-based processing of symbolic 
information, within a computational architecture that existed independently of its 
physical implementation. Such a functionalist stance explicitly divorced intelligence 
from its material or biological substrate. Intelligent systems were targeted at 
implementing mechanisms derived from the reconstruction of models of human self-
inspection or engineered based on technological principles oriented at achieving well-
defined and specific goals. In other words, AI became an essentially “platonic” 
endeavour directed at the top-down design of symbol processing intelligent systems. 

While some of the major challenges of AI became reachable (e.g., human-
competitive chess-playing software), success was too fragmented. Moreover, there 
was quite some uncertainty as to what degree one could actually project a 
phenomenon (e.g., intelligent control) that nature had managed to “engineer” (in fact, 
evolve) on its own onto a human-designed architecture. Natural solutions have to be 
always viable, i.e., provide stable even if non-optimal solutions in the face of 
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uncertainty, noise or incomplete input, or unpredictable changes of context. While 
viability might seem an incidental property that distinguishes artificial from natural 
systems, it also fundamentally counteracts the top-down construction philosophy of 
artificial systems. If this property is taken seriously, emergence of viable solutions for 
intelligent agents cannot be separated from a permanent entrenchment of the agent in 
the real world. In particular, the agent’s controller is not developed in a platonic world 
and planted into the agent, but needs to provide the agent with adequate behaviours 
during its entire lifetime.  

Interestingly, a direct danger to the enterprise of platonic “universal” intelligence 
is posed by the concerns expressed by theorems of the “no free lunch” type [1]. 
Essentially, such theorems state that finding optima efficiently (and thus efficient 
learning) is impossible in arbitrary worlds. We do have, however, an existence proof 
for consistent emergence of intelligence – namely in the biological realm. Biological 
intelligence appears in as distant species as, say, humans and octopuses; eye evolution 
reappears in 40-60 different independent lines of descent and often repeats central 
morphological motifs in remotely related species [2]. In other words, while “no free 
lunch” type considerations are important for an understanding of abstract “platonic” 
models, they probably are of lesser relevance for the emergence of intelligence in 
real-world scenarios. In fact, the world is not arbitrary, but intricately structured and 
constrained by a subtly intertwined set of properties, e.g., symmetries, continuities, 
and smoothness. Intelligence is thus fundamentally a result of embodied interaction 
which exploits structure in the world [3]. Two questions remain: how embodiment 
actually manages to drive the emergence of intelligence under the constraints of 
uninterrupted viability, as there is no intelligent designer? Is it possible to formulate 
an architecture-invariant concept that captures the essence of (neural or 
morphological) computation? If such a concept could be found, one could then apply 
it to the informational dynamics of an agent acting in its environment. This would 
yield a computational analogue of what the Carnot-machine is for thermodynamics: 
by realizing a cycle of information exchange between system and environment, it 
would provide a consistent framework from which the laws of information processing 
could be derived given the constraints governing the flow into and out of the system. 

Such a perspective would change the way we look at intelligent information 
processing. Instead of primarily constructing algorithms that solve a particular given 
task (as in the conventional approach), the phenomenon of intelligent information 
processing would emerge from an informationally balanced dynamics, without 
intervention or guidance from an external intelligent designer. Intelligence would be 
“discovered” rather than engineered (i.e., evoked rather than constructed). For this 
purpose, it is necessary to identify and formulate suitable quantitative principles. 
Here, we suggest that Shannon’s measure of information [4] (and any quantities 
derived from it) is a main candidate to help us define such a framework. In the 
following, we discuss the state-of-the-art of this view on intelligence and how it 
points towards future perspectives for AI. 

2   Information as a Guiding Principle 

First attempts to relate information theory to the control of cybernetic systems were 
done by Ashby [5] who proposed the principle of “requisite variety” (that is, the idea 
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that for control to be possible, the available variety of control actions must be equal or 
greater than the variety of disturbances). Around the same time, it was suggested that 
the organization of sensory and perceptual processing might be explained by 
principles of informational economy (e.g., redundancy reduction [6] and sparse 
coding [7]). Order and structure (i.e., redundancy) in sensor stimulation were 
hypothesized to greatly simplify the task of the brain to build up “cognitive” maps or 
working models of the surrounding environment. In AI, with the increasing 
dominance of the algorithmic as opposed to the cybernetic approach, the use of 
information theory was neglected for a long time (applications were typically limited 
to quantifications of classification strengths, such as in algorithms to generate 
decision trees). One problem lay in the fact that it was not clear how to make 
systematic use of information theory to design or understand intelligent systems. In 
view of the lack of progress, Gibson [8] suspected that the failure of information 
theory was intrinsic, because in its original form it considers a sender whose intention 
is to communicate with a receiver, while – so Gibson’s argument – the environment 
of an agent has no intent of informing the agent. 

Within the resurgence of neural networks, a major step ahead was taken by Linsker 
who proposed the principle of maximum information preservation (Infomax; [9]). His 
objective was to identify principles that would help narrow down architectures 
plausible for biological settings, e.g., the early processing stages of the visual system. 
The underlying tenet was the following: due to the intricate processes of the higher-
level stages, earlier stages cannot predict what information is going to be used later. 
The most unbiased hypothesis is thus to assume that earlier stages maximize the total 
information throughput. In other words, everything that is processed in the later stages 
of the vision system has to pass through these early stages. This hypothesis was 
applied to a feed-forward network making some general architectural assumptions, 
namely a layered structure and localized receptive fields of the neurons arranged in 
two-dimensional sheets. Maximization of the amount of information preserved at each 
processing stage caused the neurons’ receptive fields to exhibit response profiles 
similar to the filters found in the vision systems of many organisms. The Infomax 
principle provides a powerful and general mathematical framework for self-
organization of an information processing system that is independent of the rule used 
for its implementation.  

Another dramatic illustration of the central importance of information for living 
systems comes from work on bioenergetics. Surprisingly, information transmission 
and processing are metabolically expensive. For example, the blowfly retina 
consumes 10% of the energy used by the resting fly and, similarly, the human brain 
accounts for up to 20% of the oxygen consumption at rest [10]. If metabolic cost of a 
particular informational resource (i.e., neural information processing capacity) is 
limiting, there is not only a good chance that neural circuits have evolved to reduce its 
metabolic demands, but also that it will be exploited to a significant degree (and 
sometimes close to its limit) by a biological system [11]. These results indicate that 
“information” is almost as important as energy [12]. Motivated by this dominant role 
of information in living systems, we will therefore suggest to entirely focus on 
information “metabolism” as the single principle driving the emergence and 
formation of intelligence.  
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The obvious caveat is that the complexity of living systems may make it hard to 
pinpoint one single universal principle guiding the emergence of a class of 
phenomena such as intelligence. Many types of selection pressures, driven by a 
variety of resource requirements or by other factors (such as sexual selection) act on 
an organism. Why can we expect that it is sufficient to concentrate on the information 
“metabolism” to understand the emergence of intelligence? Although present space 
does not permit a discussion of this question at full length, we wish to reemphasize a 
few important arguments supporting this view. Not only do sensors and neural 
structures, as mentioned above, consume a considerable amount of energy in living 
agents, but also it is known that in living beings sensors and the neural substrate 
operate close to the theoretically optimal level of information processing. Information 
is thus a resource of primary importance for a living being and one can expect 
available capacities to be fully exploited (if not fully exploited, these capacities will 
degenerate away during evolution). In addition, any further constraints arising from 
other selection pressures can be factored into the trade-off between available 
information capacity and the particular interaction dynamics and embodiment.  

 But perhaps the strongest indicator that universal principles may play a role in the 
emergence of intelligence is the fact that natural intelligence arises in so many 
different forms and guises. Species as remotely related and with drastically different 
sensorimotor and neural substrates as mammals, birds, and octopuses all exhibit a 
high degree of intelligence. It is hard to believe that evolution would “reinvent the 
wheel” of intelligent information processing for each of these branches – much more 
plausible is the assumption of a small number of universal principles giving rise to 
appropriate evolutionary pressures. Intelligence is, after all, about the right strategy of 
processing and utilizing information. Therefore, in the following, we will concentrate 
on the role of information in the emergence of intelligence in embodied systems, to 
the exclusion of any other possible candidate concepts. As we will see, even this 
restricted set of assumptions provides a rich set of possible paths towards both an 
understanding of natural as well as the construction of artificially intelligent embodied 
agents. 

3   Information and Embodiment 

Once we accept the idea that information is a resource of major importance for living 
organisms, how does it help direct our attempts to understand the emergence of 
intelligence in biology and to create intelligence in artificial (embodied) systems?   

3.1   Structure of Information 

First of all, it turns out that for a living being information is not – as its use as a 
measure for communication effort might insinuate – a “bulk” quantity. In fact, 
information is, in general, intricately structured. The information bottleneck 
formalism [13] illustrates this point most lucidly. Of all the information impinging on 
a living agent, only a fraction is of true significance to the choice of the agent’s 
actions. This is demonstrated in a striking way by experiments identifying what 
environmental cues humans are actually conscious of. In controlled settings, for 
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instance, one can show that such cues are surprisingly impoverished (cf. phenomenon 
of change blindness; e.g., [14]). In other words, for a living agent information can be 
separated into a part that is used (and perhaps recorded), and a part which remains 
unused.  

Such a “split” makes particular sense in the light of the above hypothesis of 
information being a central resource for living agents. In this case, one would expect 
evolution to drive up brain power, thus the capacity for information processing until  
the brain’s metabolic costs would outweigh the gains. Thus, a natural limit exists on 
the amount of information that an agent can process. In other words, information 
processing must be governed by a parsimony principle: only selected components of 
information should be extracted and processed from the environment, namely those 
which make the best use of resources with respect to the acquisition and processing 
cost they entail. Such selected components constitute the relevant information 
available to the agent. It turns out that in typical scenarios, relevant information can 
be massively reduced while incurring only in moderate losses in overall performance 
[15]. The performance costs of an agent acting in its environment thus induce 
structure on information itself by separating relevant from irrelevant information. 
Information is hence imbued with a “semantic” flavor. 1  But a performance cost 
profile is not the only factor that provides information with structure. On an even 
more primordial level, already the embodiment of the agent, before the inclusion of 
any external (evolutionary or task-dependent) performance measures, imposes 
structure on the information flows [3,12,16–19].  

To formalize these intuitions, we can express the interaction of the agent with its 
environment as a causal Bayesian network model of the perception-action loop and 
consider the information flows arising in the given system [12,20]. The causal 
Bayesian model allows quantifying the dynamics of the agent as a family of 
probability distributions, capturing different types of mutual information and 
information flow quantities in the system. It is found that a given embodiment of an 
agent favours particular information flows. As a thought experiment, consider, for 
example, a legged robot where each leg contains a movement sensor. Evidently, one 
can expect to find the movement sensor mainly reflecting information about the 
movement of the particular leg it is mounted on, and only to a minor degree that of 
the other legs. This qualitative intuition can be made precise in a quantitative way and 
implies the existence of individual, largely separate information flows for the 
different legs of the robot.  

The power of the method extends far beyond this simplistic model and 
furthermore allows for natural decompositions of information flows. It hence provides 
a quantitative, theoretically well-founded formalism for characterizing how exactly 
embodiment induces a bias on what information an embodied agent will process and 
in which way. We note that this bias is prior to any concrete goals and tasks the agent 
may have.  

In addition, the “information view” also abstracts away the information processing 
architecture – which may explain why different species can solve similar tasks using 

                                                           
1 Semantics was intentionally omitted in the original formulation of information by Shannon, 

but its absence in the purist interpretation of information theory was long felt to be limiting 
the potential of information theory to understanding intelligence. 
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entirely differing brain “hardware.” It further relates to the principle of “degeneracy” 
[21], i.e., the capacity of a system to achieve the same function through many 
different structural arrangements – a principle found also across individual brains of 
the same species that are known to differ significantly in terms of their structural 
components and interconnections, while generating similar perceptual and cognitive 
performance. Degeneracy fits naturally within an evolutionary framework: as long as 
brains manage to evolve means to accomplish concrete information processing tasks, 
it is of minor relevance which part of the brain achieves the task and what its detailed 
architecture is. The abstractive power of information theory promotes the isolation of 
necessary from fortuitous aspects of the information processing architecture. It 
indicates, ab initio, what forms of information processing are favoured, prior to any 
other “implementational” constraints determined by mechanical, biological, and other 
factors.  

Note that on a long time scale, embodiment itself is subject to evolution. Once a 
concrete embodiment is established, some information flows are reinforced while 
others are suppressed. It follows that evolution can be seen to operate indirectly on the 
structure of information flows and even envisage models under which information-
theoretic criteria may direct evolution in a Baldwin-like fashion in an environment 
providing otherwise little short-term fitness structure [22–24]. To simplify the 
discussion, in what follows, we will restrict ourselves to the case in which the 
embodiment is given a priori. 

If the main hypothesis is right that embodiment generates – beyond any concrete 
implementational substrate – a preferred mode of information processing, then for any 
given embodied system there should be natural controllers. Such controllers would 
include particular pattern detectors, elementary behaviours and filters, as well as 
utility (performance) profiles appropriate for the given embodiment [25,26]. The 
properties of such natural controllers emerge from the complete perception-action 
loop. Note that, at the same time, the time scales characterizing changes of 
environment, morphology (“hardware”), or controller (“software”) are vastly 
different. Thus, in this picture, the apparent Cartesian duality between body and mind 
put forward by the classical view evaporates into a mere matter of time scales. In 
particular, this view suggests that the canonical development of a controller for an 
embodied system (both in biology and engineering) would first involve starting from 
the natural information flows emerging from the agent’s embodiment, before any 
concrete tasks and goals are addressed. This is a major deviation from the 
conventional philosophy which states that the overall control of an embodied agent is 
attained by a “skillful” combination of partial strategies that achieve individual 
subgoals. Rather, it makes clear in a mathematically transparent and computationally 
accessible way how embodiment imposes a priori constraints on suitable controllers. 

This view provides a plausible argument why nature is able to discover viable 
solutions for the control of such a variety of “hardware” realizations. It also leads to a 
novel perspective of how the robot designers could go about designing a controller 
that is particularly suitable to a given hardware and that could be adapted on-the-fly to 
any changes of the underlying hardware. Thus, the skeptic’s distrust of viewing an 
agent’s life as merely a sequence of goal-driven behaviours maximizing some utility 
function is vindicated. While a weak notion of “goal” may still exist, the natural way 
of looking at one’s world is prior to all this: it is a basic fact that an agent has a body. 
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Only then, goals may pop into place. In particular, goals can be shifted adaptively, 
while the agent is still equipped with a more or less established sensorimotor 
repertoire. 

3.2   Virtue Out of Necessity: Parsimony as Organizational Principle 

We start this section by noting that the capacity of perception-action loops to structure 
information only emerges if the information processing capability is limited. Indeed, a 
system with unlimited information processing capability would have no need to 
structure information and could process each event as an individual, indivisible, 
incomparable symbol out of its infinite alphabet of symbols. Thus, it has been 
proposed that intelligence arises from the need to compress (e.g., sensor data streams 
can be compressed by identifying regularities and patterns in them; see http:// 
prize.hutter1.net/).  

How little information is sometimes necessary to achieve a good chance of 
survival is exemplified by species of bacteria that can switch randomly from a “safe” 
hibernating state to a “risky” wake state in which they have the opportunity to 
reproduce, but are also exposed to possible attacks, e.g., by antibiotics. Recent 
research indicates that such bacteria do not employ any sensory information to 
evaluate whether it is safe to switch state, but switch randomly between wake and 
hibernating states [27]. In information-theoretical treatments of a related scenario  
(a bacterial colony), it is possible to show that the information processing capacity 
necessary for survival of an agent can, under certain circumstances, be reduced to 
zero if fitness requirements are only moderately reduced from the maximum [16]. 
This observation suggests an information parsimony principle: for a given level of 
required performance, an intelligent agent could aim to minimize its use of 
information processing resources and the associated expenditures.  

A closer look reveals that information parsimony is essentially a “dual” 
formulation of the Infomax principle: instead of Infomax’s view that the agent will 
maximize the information throughput through a given system, information parsimony 
emphasizes that, for a given level of performance, the agent will strive to minimize the 
necessary information processing capacity. While both views are mathematically 
equivalent in the limit of a stationary system, the difference in the formulations 
essentially emphasizes the time scales of development and evolution. Infomax 
assumes a given “hardware” for which the throughput is then maximized  
(i.e., development), while information parsimony assumes a certain performance level 
(fitness) which needs to be achieved with the least possible informational effort  
(i.e., evolution). 

In both cases, an agent should strive to make use of its informational capacity to 
its fullest, and use as much as possible of the available information to its advantage; 
when such information cannot be made use of, evolution will reduce the unused 
information processing capacity in the long run. One of the most striking examples 
from biology is the loss of eye function in blind cave animals [28]. In our hypothesis, 
the parsimony principle will not be limited to this prominent case, but extends to all 
levels of information processing by the agent. The rigorous formulation of the 
information parsimony principle lends additional plausibility to approaches to 
generate intelligent agent controls based on minimal dynamical systems  
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(e.g., [22,29]), and promises additional insights into what lies behind the emergence 
of apparent intelligence (i.e., organisms doing the right thing) with seemingly very 
limited abilities.   

Additional quantitative principles can be formulated using information-theoretical 
notions. For instance, the decomposition of information flows (such as the 
multivariate bottleneck principle [30]) can lead to the emergence of concept detectors 
(e.g., in a world imbued with a chemical gradient, such decomposition would produce 
through self-organization detectors for concepts such as direction, parity, long-term or 
short-term timers [12]). While such low-level concepts seem to emerge in a bottom-
up fashion, the question arises in how far the information decomposition view can 
tackle concept formation in the context of AI. A long-standing challenge, concept 
formation is being looked at by a large body of work from different viewpoints. 
Among these, the informational view promises to provide a coherent, far-reaching 
framework (on a practical level, methods such as independent component analysis or 
multivariate bottleneck methods are known methods to decompose data into “natural” 
components [30,31]). In particular, it offers a coherent currency by which the cost of 
abstraction (relevant to concept formation) can be dealt with universally throughout 
the system. So, in this view, we propose that concept formation becomes quasi a by-
product of the necessity of managing the complexity of processing information. 
According to this picture, limited informational resources require a decomposition of 
incoming information flows into largely independent subcomponents of lower 
complexity which are then handled individually.  

The above principles are not arbitrary but arise naturally from the toolbox of 
information theory. We thus do not just have pockets of isolated quantities, but a 
whole network of interrelated principles: in fact, information can be seen as forming a 
language and as such, it allows formulating, quantifying and relating different aspects 
of information processing in a quantitative, non-metaphorical manner. In summary, 
the introduction of independent component analysis as a systematic machine learning 
tool, as well as models such as the regular and multivariate information bottleneck 
moved us away from the “bulk” picture of information towards a picture of 
“structured” information in a precise information-theoretical sense. Another important 
insight is that embodiment is increasingly recognized as a driving factor after decades 
of an almost Cartesian split in AI research, separating computational processes from a 
body which was merely regarded as a translation device between the environment and 
an internal model of the world [22]. One of the most visible expressions of this 
“paradigm shift” is the increasing interest in morphological computation [3,32,33]. 
Today, such novel perspectives are joined by a variety of powerful new theoretical 
and experimental tools which have led to the development of a candidate framework 
recruiting Shannon information for the study of intelligence (and routes for its 
emergence) in embodied systems. 

4   Outstanding Research Issues 

The view that information theory can provide a comprehensive approach for 
understanding the emergence of intelligence in biological systems and for producing 
intelligent behavior in artificial systems – while anticipated for decades (e.g., Ashby [5]) 
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– has only recently begun to crystallize. The core issue is to which extent information 
processing found in biological organisms can be understood in terms of information-
theoretical principles. We wish to emphasize once again that information theory does 
not just apply to high-level overall performance measures of an agent but reaches 
down to lowest levels of biological information exchange (e.g., the genetic and the 
neural code [34,35]). We hypothesize that whatever frame is adopted to understand 
and model biological and artificial information processing, a suitable formalism needs 
to provide descriptive and predictive power. While a comprehensive (quantitative) 
framework may remain out of reach for still some time, the adoption of an 
information-theoretical perspective holds significant promise, as it allows the 
investigation of a considerable number of relevant issues under a unifying theme. In 
this section, we would like to discuss several future issues of interest from a higher-
level perspective.   

One major issue relates to what drives the evolution of perception-action loops. 
We suggest that a major force in their evolution is the selection pressure due to 
information processing requirements. Going beyond perception-action loops, 
information theory may even allow the formulation of more general statements about 
the informational characteristics of evolving systems. For instance, the “principle of 
ecological balance” [3] (called “complexity monotonicity thesis” in a different 
context [36]) states that there is a correlation between sensory, motor and information 
processing capacity. Although a good chance exists that fundamental information-
theoretic principles can be identified supporting this thesis, its universality is not 
entirely obvious. From the observation of living organisms one expects the (potential) 
sensorial capacity to exceed the motor capacity by far, and memory and the total 
information processing capacity to be much higher than the sensorial capacity. The 
question is whether these relations are incidental or universal, and, if the latter is 
indeed the case, whether this universality can be expressed quantitatively.  

Intimately related to this issue is the question of whether concepts such as relevant 
information [15] (i.e., information requirements deriving from external tasks or fitness 
criteria) could yield a powerful enough drive to instigate an “arms race” between the 
information necessary to achieve a goal, the information captured by the sensors for 
this purpose, the required processing capacity of the brain, and the actuator processing 
capacity necessary to carry out the tasks. This poses central questions concerning the 
relationship between the co-evolution of brain, morphology, and control and the 
emergence of complex systems responsive to relevant (structured) information. 
Complex systems typically contain a high amount of non-repetitive and non-random 
structure. In particular, the amount of structure of nervous systems can be 
characterized by a measure of neural complexity which assesses in an information-
theoretical context the interplay of highly segregated and highly integrated neural 
processes [37]. The presumed increase of neural complexity over evolution may 
simply reflect intense selection pressure on neural structures to efficiently deal with 
informational challenges posed by co-evolving body morphology, sensorimotor 
information flows, and eco-niches. As more and more information structure is 
generated, there is an increased need for neural structures to extract and integrate 
information, which in turn drives complexity to higher levels.   
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Two closely related issues are the ones of open-ended evolution and development, 
that is, how to create systems that do not stop evolving or do not stop learning 
“interesting” things. There have been various attempts at designing intrinsic 
motivation systems that capture the drive towards novel and curious situations. They 
are either based on the notion of empowerment, a measure of the power of the agent to 
modify its environment in a way that is detectable by the agent itself [25], 
homeokinesis, i.e., selection of action sequences which maintain sensorial 
predictability [24], predictability of action sequences [38], or the maintenance of an 
abstract cognitive variable, the learning progress, which has to be kept maximal [39]. 
It is interesting to note that on the physical side, all these approaches seem in one way 
or another to relate to the notion of maximum entropy production – a principle 
believed to be relevant in guiding the dynamics in many complex systems (e.g., [40]). 
In fact, some of the above principles are aptly formulated in the language of 
information. It thus is natural to explore possible avenues to unify these different but 
“similar-minded” approaches. 

5   Final Remarks 

If we, at the end of this chapter, take a step back and, as a final reflection, consider the 
issues from a bird’s eye view, where does this place us? Compared to other sciences, 
AI is a strangely hybrid creature. For instance, engineering sciences (or more 
engineering-oriented branches of computer science, such as software engineering) are 
typically constructive: starting from a more or less uncontested basis, a “code of 
practice” for the creation of state-of-the-art artifacts is developed. The basis may 
occasionally be revised to encompass novel developments (e.g., in software 
engineering: object-orientation or extreme programming), but the task is mostly about 
improving the paths from a firm basis to an envisaged artifact. 

At the other end of the spectrum, we have sciences such as physics which attempt 
to model observed phenomena. In such sciences, the foundations, and not the 
constructive aspects of a system are at the core of the issues. The physicists aim to 
simplify and minimize the assumptions behind their models while attempting to 
capture as many essential features as possible of the examined phenomena. The 
universal descriptive and predictive power of models such as Maxwell’s theory, 
relativity and quantum theory or thermodynamics are striking and, in fact, one of the 
mysteries of science.2 

Biology, on the one hand, resembles physics, as it studies real natural phenomena. 
On the other hand, it incorporates elements of reverse engineering, as it attempts to 
disentangle the intricate mechanisms underlying living beings, all of which have 
historical origins as products of evolution. Unlike physics, however, in biology the 
reduction of phenomena to few simple principles has until recently only been 

                                                           
2 Construction was historically not part of the physicist’s agenda. This “pure” agenda has begun 

to change in recent years with the advent of massive computational power, introducing a new 
branch, computational physics, into the picture. 
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achieved in a few areas (such as the universality of the genetic code); the complexity 
of biological phenomena, and their place outside of the range of validity of powerful 
theoretical models such as equilibrium thermodynamics makes it difficult to impose 
more or less universal organizing principles on the vast collection of empirical data. 
While evolution provides a universal theory for all living organisms, the nature of this 
theory is quite different from the sort of theories that serve as the foundations of 
physics. 

AI lies in between physics and biology (in modern AI, biomechanics, material 
science, neuroscience come also into play and are increasingly superseding the role of 
psychology and linguistics which dominated classical AI; see [3]). AI belongs to the 
realm of engineering, and rightly so, because it strives to construct intelligent 
systems. In many aspects, engineering approaches to AI have proven efficient and 
powerful. However, there is also a universalistic aspiration in AI. Not unlike physics, 
AI aims to find fundamental principles underlying the emergence of intelligence. This 
goal is fueled by the observed power of biological systems which achieve intelligence 
at many different levels, quite unlike the engineered intelligent systems which are 
usually optimized for one particular task. Biology under the Darwinian stance is 
“engineered without an engineer”, successfully reinventing wheels (eyes, and other 
“goodies”, actually) again and again in an extremely large and complex space – a 
strong indication that some universal set of principles are at work. A satisfying picture 
of AI should aim (and hopefully will be able) to isolate and exploit such principles. 
Consider thus, the grand goal of AI, the one of understanding how intelligence can be 
“engineered without engineer”: it lies between the constructive view of the 
engineering sciences, the “first principles” view of physics, and the biological view. 
The latter one is particularly opaque, since any fundamental principles may be buried 
in volumes of fortuitous historic accidents or restrictions of the biological substrate.  

As discussed in this chapter, a primary candidate for building a suitable 
framework is provided by a suitable adaptation of information theory to the 
information processing task posed to embodied agents: they thus may turn out to serve 
as the “Carnot-machine” for intelligent information processing. It is striking that 
information theory which was developed by Shannon essentially as a response to an 
engineering challenge, not only provides a different way of looking at probability 
theory (which later was used extensively in AI), but also found to be intimately 
related to the physical field of thermodynamics. The well-understood formalism of 
the latter, however, reached its limits in the “exotic” non-equilibrium states of 
biology. We conjecture that information theory will play an important role in linking 
the convoluted world of biological information processing, a physics-like set of 
fundamental principles for intelligent information processing, and the goal of 
engineering an intelligent system, all in the service of getting closer to the grand 
vision of artificial intelligence.  
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