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Abstract. The discipline of Artificial Intelligence (AI) was born in the summer 
of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century 
has passed, and AI has turned into an important field whose influence on our 
daily lives can hardly be overestimated. The original view of intelligence as a 
computer program – a set of algorithms to process symbols – has led to many 
useful applications now found in internet search engines, voice recognition 
software, cars, home appliances, and consumer electronics, but it has not yet 
contributed significantly to our understanding of natural forms of intelligence. 
Since the 1980s, AI has expanded into a broader study of the interaction 
between the body, brain, and environment, and how intelligence emerges from 
such interaction. This advent of embodiment has provided an entirely new way 
of thinking that goes well beyond artificial intelligence proper, to include the 
study of intelligent action in agents other than organisms or robots. For 
example, it supplies powerful metaphors for viewing corporations, groups of 
agents, and networked embedded devices as intelligent and adaptive systems 
acting in highly uncertain and unpredictable environments. In addition to giving 
us a novel outlook on information technology in general, this broader view of 
AI also offers unexpected perspectives into how to think about ourselves and 
the world around us. In this chapter, we briefly review the turbulent history of 
AI research, point to some of its current trends, and to challenges that the AI of 
the 21st century will have to face. 

1   Introduction 

For a long time, humans have been romanced by the idea of understanding how 
thinking works, or how to construct intelligent machines and replicate the intelligent 
behavior displayed by many natural systems. Traditional Jewish mysticism, for 
instance, includes tales of the Golem, a thinking automaton made from the sticky clay 
of the bank of the river Moldau. In the 17th century, philosopher Gottfried Wilhelm 
von Leibniz outlined plans for a thinking machine by conceiving an artificial 
universal language composed of symbols, which could stand for objects or concepts, 
and logical rules for their manipulation. A little more than half a century ago (when 
Norbert Wiener was devising Cybernetics [1] and Gray Walter was building robotic 
tortoises [2], the English mathematician Alan Turing proposed a much-discussed 
imitation game used as a yardstick for assessing if a machine is intelligent or not, 
which since then has been known as the Turing Test for artificial intelligence [3, 4]. 
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The advent of the general-purpose computer in the fifties of last century did 
substantially alter the dreams and ambitions of people and made AI an even more 
tangible possibility. So, in 1956, the fathers of “modern” AI, Marvin Minsky, John 
McCarthy, Allen Newell, Nathaniel Rochester, Claude Shannon, and Herbert Simon 
came together for a summer school at Dartmouth College (Hanover, New Hampshire) 
under the premise “that every aspect of learning or any other feature of intelligence 
can in principle be so precisely described that a machine can be made to simulate it” 
[5]. That date can be considered the birth of AI because it is only thereafter that 
numerous research groups around the world began to engage in the construction of 
artificial systems with the professed goal of emulating, equaling, or even surpassing 
human mental and physical abilities (a different view on the history of AI can be 
found in [6]). The many attempts to synthesize intelligence or higher cognition (by 
formalizing knowledge and crystallizing cognitive principles obtained from the study 
of human beings) have resulted in many specialized AI systems that nowadays are at 
work in specific problem domains, such as knowledge discovery and data mining (for 
example, for the identification of customer profiles), fuzzy logic, probabilistic 
reasoning, and artificial neural networks (as used in intelligent control for robots, 
home appliances and consumer electronics), evolutionary optimization (for the design 
of antennae, circuits, and turbines), as well as statistical and machine learning (often 
employed in genomics and proteomics). 

Although, as these examples show, AI has proven successful in many cases, it is 
clear that the original goals set out by the first generation of AI visionaries have not 
yet been reached. The holy grail of AI, the creation of general (human-like) machine 
intelligence (think of HAL from Stanley Kubrick’s 2001 or Bladerunner’s Roy 
Batty), has remained elusive. Natural intelligence is far from being understood and 
artificial forms of intelligence are still so much more primitive than natural ones. 
Seemingly simple tasks like object manipulation and recognition – tasks easily solved 
by a 3-year-old – have not yet been realized artificially. A look at the current research 
landscape reveals how little we know about how biological brains achieve their 
remarkable functionalities, how these functionalities develop in the child, or how they 
have arisen in the course of evolution. Also, we do not understand the cultural and 
social processes that have helped shape human intelligence. Because basic theories of 
natural intelligence are lacking and – despite impressive advances – the required 
technologies for building sophisticated artificial systems are yet not available, it is not 
surprising that the capabilities of current robots fall far short of even very simple 
animals. The inevitable conclusion then is that something important must have been 
missed or still needs to be discovered [7]. There is still no overall theory, no 
framework, explaining what thinking is and how to build intelligent machines.  

Although we do not have any clear cut answer as to what aspects of natural 
intelligence are key for creating artificial intelligence, we will point at some avenues 
that might be worth pursuing in realizing the dreams of our ancestors.  

2   Trends 

The field of artificial intelligence has changed dramatically over the last 50 years. 
Back in the 1950s, the brain was conceptualized as some kind of powerful computer, 
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and intelligence was thought to be the result of a symbol-crunching computer program 
located somewhere in our brain (this perspective is also known as the “brain as a 
computer metaphor” or the “information processing view”; [8, 9]). Since then, the by 
now “classical”, computational, or cognitivistic approach has grown into a large 
discipline with many facets, and has achieved many successes in applied computer 
science and engineering. Think, for instance, of the victory of IBM’s chess-playing 
supercomputer (Deep Blue) on reigning world chess champion, Garry Kasparov, on 
May 1997. While this early view of intelligence is probably adequate in formal or 
computational domains like chess playing or logical reasoning, in the past 20 years it 
has become increasingly evident that conceptualizing intelligence as a mere 
computational process cannot explain natural, adaptive forms of intelligence. The 
latter kind of intelligence requires a complete physical organism interacting with the 
real world: in other words, intelligence requires a body [10-15]. 

The new approach to understanding intelligence has led to a paradigm shift which 
emphasizes the physical and information-theoretical implications of embodied adaptive 
behavior, as opposed to the disembodied view of the computational framework [16-19]. 
The focus in this new paradigm is on systems acting in the real, physical and social 
world [20]. The implications of this change in perspective are far-reaching and can 
hardly be overestimated. With the fundamental paradigm shift from a computational to 
an embodied perspective, the kinds of research areas, theoretical and engineering issues, 
and the disciplines involved in AI have also changed substantially. The research effort 
in the field, for instance, has shifted towards understanding the lower level mechanisms 
and processes underlying intelligent behavior, as well as realizing higher forms of 
intelligence by first starting with simpler ones [21]. Cognition and action are viewed as 
the result of emergence and development rather than something that can be directly built 
(i.e. programmed) into a robot (such research draws heavily on insights from child 
development; e.g. [17, 22-24]. Automated design methods using ideas borrowed from 
biological evolution and ontogeny have also provided novel insights into the general 
nature of intelligence [25]. 

Physical agents in the real world, whether biological or artificial, are highly 
complex, and their investigation requires the cooperation of researchers from many 
different fields. In terms of research disciplines contributing to AI, we observe that in 
the classical approach computer science, psychology, philosophy, and linguistics 
played major roles, whereas in the embodied approach, computer science and 
philosophy [26] are now complemented by robotics, biomechanics [17, 27], material 
science and biology [28] and neuroscience [29]. The shift from high-level 
considerations (as raised in psychology and linguistics) to lower level sensory-motor 
processes – with the neurosciences now offering explanations at both the sensory-
motor and cognitive levels of intelligence – is evident [30, 31]. There have also been 
changes concerning the notions used for describing the research area: a significant 
number of researchers dealing with embodiment no longer refer to themselves as 
working in artificial intelligence but rather in robotics, engineering of adaptive 
systems, artificial life, adaptive locomotion, bio-inspired systems, or neuroin- 
formatics. But more than that, not only have researchers in artificial intelligence 
migrated into neighboring fields, but researchers in these neighboring fields have also 
started to contribute to artificial intelligence [29, 32]. This brings us to the issues of 
cross-disciplinarity and cross-fertilization.  
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3   Cross-Disciplinarity  

Although most researchers in AI today are still working within the boundaries of the 
field as it was defined 50 years ago, the trend seems to be an expansion of AI into a 
broader study of the interaction between body, brain, and environment, and how 
intelligence emerges from such interaction [18, 33]. It has become evident that many 
fields (linguistics, cognitive sciences, robotics, material science, neuroscience, and 
morphogenesis) are highly relevant in order to advance the state of the art. The 
community is interested in locomotion, manipulation, and, in general, how an agent 
can act successfully in a dynamic and complex world. Concepts such as embodiment, 
autonomy, situatedness, interactive emergence, development, semiotic dynamics, and 
social interaction have come to the forefront and have spawned a spectrum of new and 
interdisciplinary approaches to the study of natural and artificial intelligence. There 
are important implications of the embodied view of intelligence for science, 
engineering, economics, and society at large. Here, we only mention but a few. 

One of the important insights is that intelligence is not a “box” sitting inside the brain, 
but is distributed throughout the organism and requires the organism to interact with and 
explore its local environment. With respect to engineering, it has been demonstrated that 
systems which are not centrally controlled or do not feature a strict hierarchical structure 
tend to be more robust and adaptive against external perturbations [34]. It is important to 
realize that the underlying concepts might be directly mapped onto robot design (e.g. for 
de-mining operations, waste cleanup in hazardous environments, environmental explora-
tion, service in hospitals and homes, and so on) and onto the design of embedded systems 
(i.e. systems equipped with sensors and motors which interact autonomously and 
continuously with their surrounding environment). The application of concepts from 
embodied AI in embedded systems could have profound economical and technological 
implications, because such systems are extremely widespread: they are used, for instance, 
in fuel injection devices, water purification plants, air conditioning systems, remote 
monitoring and control systems, as well as in many systems designed for human 
computer interaction. Finally, companies, societies and political bodies with an organiza-
tional structure based on local interactions and self-organization have been shown to 
react more robustly to unpredictable market forces than hierarchically organized ones (a 
good example of this is the financial difficulties currently experienced by many major 
airlines, compared to the proliferation and success of smaller, regional airlines). 

4   Challenges and Outlook 

Niels Bohr once famously quipped: “It’s hard to predict, especially the future”. 
Similarly, it is difficult to make predictions, especially about the future of artificial 
intelligence. However, after 50 years of explorations into artificially intelligent 
systems (and many false predictions), we have learned enough about the nature of 
intelligence to venture plausible guesses as to where AI could go as a field and which 
challenges it might face in the coming decades. In this section, we list some of these 
challenges and point to chapters in this volume that discuss them. 

It seems to be generally accepted nowadays that the behavior of any system 
physically embedded within a particular environment is not the mere outcome of an 
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internal control structure (e.g. the central nervous system) but is also affected by the 
system’s morphology and the its material properties . Increasing evidence suggests 
that a direct link exists between embodiment and information: coupled sensory-motor 
activity and body morphology induce statistical regularities in sensory input and 
within the control architecture and therefore enhance internal information processing 
[35]. Mechanisms need to be created for the embodied and embedded systems to 
collect relevant learning material on their own [36] and for learning to take place in an 
“ecological context” (i.e. with respect to the environment). These and related issues 
are addressed in the chapters by Pfeifer et al. [18] and Polani et al. [19]. Potential 
avenues of how to exploit the interaction between control structure and physical 
properties (morphology and material characteristics) are described in the chapters by 
Iida et al. [16] and Behkam and Sitti [18]. 

Another challenge will be to devise a systematic theory of intelligence [14]. As 
argued by Nehaniv et al. [17] and Polani et al. [19], a promising approach may have 
to place special emphasis on information theory as a descriptive and predictive 
framework linking morphology, perception, action, and neural control. It will also be 
important to understand how raw (uninterpreted) information from unknown sensors 
can be used by a developing embodied agent with no prior knowledge of its motor 
capabilities to bootstrap cognition through a process of autonomous self-structuring in 
response to a history of self-motivated interaction with a rich environment [18, 19, 
37]. This is closely connected to the issue of self-motivation and curiosity which are 
discussed in the chapters by Kaplan and Oudeyer [22] and Lipson [25]. Research on 
general capacities such as creativity, curiosity, motivations, action selection, and 
prediction (i.e. the ability to foresee consequence of actions) will be necessary 
because, ideally, no tasks should be pre-specified to a robot, but only an internal 
“abstract” reward function, some core knowledge, or a set of basic motivational (or 
emotional) “drives.” Robots need to be endowed with the capacity to explore which 
are the activities that are maximally fitted to their current capabilities. Robots 
controlled by some core motives will hopefully be able to autonomously function in 
their environments not only to fulfill predefined tasks but also to search for situations 
where learning happens efficiently.  

In the same vein, it will be necessary to address the issue of how robots (and 
embodied agents in general) can give meaning to symbols and construct meaningful 
language systems (semiotic systems). A fascinating new insight – explored under the 
label of “semiotic dynamics” – is that such semiotic systems and the associated 
information structure may not be static entities, but are continuously invented and 
negotiated by groups of people or agents which use them for communication and 
information organization [9]. This quite naturally leads to investigation of the 
collective dynamics of groups of socially intelligent robots and systems [20].  

A further challenge will be how to integrate artificial intelligence and other fields. 
For instance, Potter [29] argues that neuroscience and artificial intelligence could 
profit from each other and invites researchers in both fields to venture across the 
divide (e.g. tools developed in the context of neuroinformatics could be used to design 
and manage neural databases). Similarly, Steels [9] predicts that many of the insights 
gained in fields such as nonlinear dynamical systems theory or evolutionary biology 
may have a direct bearing on the foundations of artificial intelligence as well as on 
how communication systems and other forms of interaction self-organize. A closer 
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(symbiotic) interaction between artificial and natural systems will also benefit 
rehabilitation engineering as shown by recent work on human-machine interaction 
[38, 39]. As envisioned by Fattori et al. [31], robotics and neurophysiology could 
meet in a research field where bioelectrical signals obtained by single or multi-
electrode recordings can be used to drive a robotic device [40]. As a last challenge, 
one could envision situations where AI could be used in the context of computer-
assisted human-human interaction technologies [41]. 

5   Epilogue 

The reconsideration of brain and body as a fundamental unit, physically and 
informationally, as well as the emergence of a new quantitative framework that links 
the natural and artificial domains, has begun to produce new insights into the nature 
of intelligent systems. While much additional work is surely needed to arrive at or 
even approach a general theory of intelligence, the beginnings of a new synthesis are 
on the horizon. Perhaps, finally, we will come closer to understanding and building 
human-like intelligence. The superior adaptability of embodied, distributed systems 
has been acknowledged for a long time, but there is now theoretical evidence from 
artificial intelligence research and corroboration from computer simulations 
supporting this point. In summary, the ideas emerging from the modern, embodied 
view of artificial intelligence provide novel ways of approaching technological, 
social, and economic problems in the rapidly changing world of the 21st century. 
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